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Abstract—We optimize the random-like ensemble of irregular
repeat-accumulate (IRA) codes for binary-input symmetric
channels in the large block-length limit. Our optimization tech-
nique is based on approximating the evolution of the densities
(DE) of the messages exchanged by the belief-propagation (BP)
message-passing decoder by a one-dimensional dynamical system.
In this way, the code ensemble optimization can be solved by
linear programming. We propose four such DE approximation
methods, and compare the performance of the obtained code
ensembles over the binary-symmetric channel (BSC) and the
binary-antipodal input additive white Gaussian noise channel
(BIAWGNC). Our results clearly identify the best among the
proposed methods and show that the IRA codes obtained by these
methods are competitive with respect to the best known irregular
low-density parity-check (LDPC) codes. In view of this and the
very simple encoding structure of IRA codes, they emerge as
attractive design choices.

Index Terms—Belief propagation (BP), channel capacity, den-
sity evolution, low-density parity-check (LDPC) codes, stability,
threshold, turbo codes.

1. INTRODUCTION

INCE the discovery of turbo codes [1], there have been sev-
S eral notable inventions in the field of random-like codes.
In particular, the rediscovery of the low-density parity-check
(LDPC) codes, originally proposed in [2], the introduction of
irregular LDPCs [3], [4], and the introduction of the repeat-ac-
cumulate (RA) codes [5].

In [3], [4], irregular LDPCs were shown to asymptotically
achieve the capacity of the binary erasure channel (BEC) under
iterative message-passing decoding. Although the BEC is the
only channel for which such a result currently exists, irreg-
ular LDPC codes have been designed for other binary-input
channels (e.g., the binary-symmetric channel (BSC), the
binary-antipodal input additive white Gaussian noise channel
(BIAWGNC) [6], and the binary-input intersymbol interference
(ISI) channel [7]-[9]) and have shown to achieve very good
performance.

First attempts to optimize irregular LDPC codes ([10] for the
BEC and other channels [11]) with the density evolution (DE)
technique computes the expected performance for a random-like
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code ensemble in the limit of infinite code block length. In order
to reduce the computational burden of ensemble optimization
based on the DE, faster techniques have been proposed, based
on the approximation of the DE by a one-dimensional dynam-
ical system (recursion). These techniques are exact only for the
BEC (for which DE is one-dimensional). The most popular tech-
niques proposed so far are based on the Gaussian approximation
(GA) of messages exchanged in the message-passing decoder.
GA in addition to the symmetry condition of message densi-
ties implies that the Gaussian density of messages is expressed
by a single parameter. Techniques differ in the parameter to be
tracked and in the mapping functions defining the dynamical
system [12]-[18].

The introduction of irregular LDPCs motivated other
schemes such as irregular RA (IRA) [19], for which similar
results exist (achievability of the BEC capacity) and irregular
turbo codes [20]. IRA codes are, in fact, special subclasses
of both irregular LDPCs and irregular turbo codes. In IRA
codes, a fraction f; of information bits is repeated ¢ times, for
1 = 2,3, .... The distribution

{fi207i:2737...:§:fi:1}

=2

is referred to as the repetition profile, and it is kept as a degree
of freedom in the optimization of the IRA ensemble. After the
repetition stage, the resulting sequence is interleaved and input
to a recursive finite-state machine (called accumulator) which
outputs one bit for every a input symbols, where a is referred to
as grouping factor and is also a design parameter.

IRA codes are an appealing choice because the encoder is
extremely simple, their performance is quite competitive with
that of turbo codes and LDPCs, and they can be decoded with a
very-low-complexity iterative decoding scheme.

The only other work that has proposed a method to design
IRA codes is [19], [21] where the design focuses on the
choice of the grouping factor and the repetition profile. The
recursive finite-state machine is the simplest one which gives
full freedom to choose any rational number between 0 and
1 as the coding rate. We will also restrict our study to IRAs
that use the same simple recursion of [19], although it might
be expected that better codes can be obtained by including
the finite-state machine as a degree of freedom in the overall
ensemble optimization. The method used in [19] to choose
the repetition profile was based on the infinite-block-length
GA of message-passing decoding proposed in [14]. In this
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Fig. 1. IRA encoder.

optimization methods. Our approach to design IRAs is based
on several tools that have been noticed recently: the EXtrinsic
mutual Information Transfer (EXIT) function and its analyt-
ical properties [12], [22], [23], reciprocal channel (duality)
approximation [22], [24], and the nonstrict convexity of mutual
information.

The rest of the paper is organized as follows. Section II
presents the systematic IRA encoder and its related decoder: the
belief-propagation (BP) message-passing algorithm. Existing
results on the analysis of the decoder (i.e., DE technique) are
summarized and applied to the IRA code ensemble. This leads
to a two-dimensional dynamical system whose state is defined
on the space of symmetric distributions, for which we derive a
local stability condition. In Section III, we propose a general
framework in order to approximate the DE (defined on the
space of distributions) by a standard dynamical system defined
on the reals. We propose four low-complexity ensemble opti-
mization methods as special cases of our general framework.
These methods differ by the way the message densities and the
BP transformations are approximated:

1) GA, with reciprocal channel (duality) approximation;

2) BEC approximation, with reciprocal channel approxima-
tion;

3) GA, with EXIT function of the inner decoder;

4) BEC approximation, with EXIT function of the inner de-
coder.

All four methods lead to optimization problems solvable by
linear programming. In Section IV, we show that the first pro-
posed method yields a one-dimensional DE approximation with
the same stability condition as the exact DE, whereas the exact
stability condition must be added to the ensemble optimization
as an explicit additional constraint for the second method. Then,
we show that, in general, the GA methods are optimistic, in the
sense that there is no guarantee that the optimized rate is below
capacity. On the contrary, we show that for the BEC approxima-
tion methods rates below capacity are guaranteed. In Section V,
we compare our code optimization methods by evaluating their
iterative decoding threshold (evaluated by the exact DE) over
the BIAWGNC and the BSC.

II. ENCODING, DECODING, AND DENSITY EVOLUTION

Fig. 1 shows the block diagram of a systematic IRA encoder.
A block of information bits b = (b1, ...,b;) € F5 is encoded
by an (irregular) repetition code of rate k /n. Each bit b; is re-
peated r; times, where (r1,...,7;) is a sequence of integers
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Fig. 2. Tanner graph of an IRA code.
and the resulting block £ = (z1.1,...,21,) € F5 is encoded
by an accumulator, defined by the recursion
a—1
T2 441 :$2,j+le,aj+iv J=0,....m—=1 (1)
i=0
with initial condition x5 o = 0, where £o = (22,1, ...,%2,m) €

5* is the accumulator output block corresponding to the input
Ty, a > 11s a given integer (referred to as grouping factor),
and we assume that m = n/a is an integer. Finally, the code-
word corresponding to the information block b is given by & =
(b, .’BQ).

The transmission channel is memoryless, binary-input, and
symmetric-output, i.e., its transition probability py |x (y|z) sat-
isfies

@

where y — —v indicates a reflection of the output alphabet.!

IRA codes are best represented by their Tanner graph [25]
(see Fig. 2). In general, the Tanner graph of a linear code is a
bipartite graph whose node set is partitioned into two subsets:
the bitnodes, corresponding to the coded symbols, and the chec-
knodes, corresponding to the parity-check equations that code-
words must satisfy. The graph has an edge between bitnode o
and checknode £ if the symbol corresponding to « participates
in the parity-check equation corresponding to f3.

Since the IRA encoder is systematic (see Fig. 1), it is useful to
further classify the bitnodes into two subclasses: the information
bitnodes, corresponding to information bits, and the parity bitn-
odes, corresponding to the symbols output by the accumulator.
Those information bits that are repeated ¢ times are represented
by bitnodes with degree 7, as they participate in ¢ parity-check
equations. Each checknode is connected to a information bit
nodes and to two parity bitnodes and represents one of the equa-
tions (for a particular 7) (1). The connections between checkn-
odes and information bitnodes are determined by the interleaver
and are highly randomized. On the contrary, the connections be-
tween checknodes and parity bitnodes are arranged in a regular

pyix (¥|0) = pyx(—y[1)
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zig-zag pattern since, according to (1), every pair of consecutive
parity bits are involved in one parity-check equation.

A random IRA code ensemble with parameters ({\;}, a) and
(information) block length k is formed by all graphs of the form
of Fig. 2 with k information bitnodes, grouping factor a, and
A;n edges connected to information bitnodes of degree ¢, for
i = 2,...,d. The sequence of nonnegative coefficients {\;}
such that 2?22 Ai = 1 is referred to as the degree distribu-
tion of the ensemble. The probability distribution over the code
ensemble is induced by the uniform probability over all inter-
leavers (permutations) of n elements.

The information bitnodes average degree is given by d =
1/ (Z?:z A;/1). The number of edges connecting information
bitnodes to checknodes is n = k/ (E;l:2 Ai/i). The number of
parity bitnodes is m = k/(a 2?22 A;/1). Finally, the code rate
is given by

k SN /i
R= ——= ”Ez:}; JA 3)
Mmoo 14ayi,N/i atd
Under the constraints 0 < \; < 1 and Zizz A = 1, we get
d > 2. Therefore, the highest rate with parameter a set to 1 is
1/3. This motivates the use of @ > 2 in order to get higher rates.

A. Belief Propagation Decoding of IRA Codes

In this work, we consider BP message-passing decoding
[26]-[28]. In message-passing decoding algorithms, the graph
nodes receive messages from their neighbors, compute new
messages, and forward them to their neighbors. The algorithm
is defined by the code Tanner graph, by the set on which
messages take on values, by the node computation rules, and
by the node activation scheduling.

In BP decoding, messages take on values in the extended real
line R U {—00, c0}. The BP decoder is initialized by setting all
messages output by the checknodes equal to zero. Each bitnode
« is associated with the channel observation message (log-like-
lihood ratio)

pYIX(ya|xa =0)
pY|X(ya|xa = 1)

“

Uy = log

where v, is the channel output corresponding to the transmis-
sion of the code symbol z,,.

The BP node computation rules are given as follows. For a
given node, we identify an adjacent edge as outgoing and all
other adjacent edges as incoming. Consider a bitnode « of de-
gree 7 and let mq, ..., m;_1 denote the messages received from
the + — 1 incoming edges and u,, the associated channel obser-
vation message. The message m,_ . passed along the outgoing
edge is given by

Mo =M1+ -+ Mi—1 + Uq. (5)
Consider a checknode (3 of degree 7 and let my, ..., m; 1 de-
note the messages received from the 7+ — 1 incoming edges. The
message m,_ s passed along the outgoing edge is given by
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where the mapping v: R — F2 x Ry is defined by [11]

~v(z) = (Sign(z)./ —log tanh %) @)

and where the sign function is defined as [11]

ifz>0
with probability 1/2 if z = 0
, with probability 1/2 if z = 0
, if z < 0.

sign(z) =

= -0 O

Since the code Tanner graph has cycles, different schedulings
yield in general nonequivalent BP algorithms. In this work, we
shall consider the following “classical” schedulings.

e LDPC-like scheduling [19]. In this case, all bitnodes and
all checknodes are activated alternately and in parallel.
Every time a node is activated, it sends outgoing messages
to all its neighbors. A decoding iteration (or “round” [31])
consists of the activation of all bitnodes and all checkn-
odes.

e Turbo-like scheduling. Following [29], a good de-
coding scheduling consists of isolating large trellis-like
subgraphs (or, more generally, normal realizations in
Forney’s terminology) and applying locally the forward—
backward Bahl-Cocke—Jelinek—Raviv (BCJR) algorithm
[30] (that implements efficiently the BP algorithm on
normal cycle-free graphs), as done for turbo codes [1].
A decoding iteration consists of activating all the in-
formation bitnodes in parallel (according to (5)) and of
running the BCJR algorithm over the entire accumulator
trellis. In particular, the checknodes do not send messages
to the information bitnodes until the BCJR iteration is
completed.

Notice that for both of the above schedulings one decoder itera-
tion corresponds to the activation of all information bitnodes in
the graph exactly once.

B. Density Evolution and Stability

The bit-error rate (BER) performance of BP decoding aver-
aged over the IRA code ensemble and over the noise observa-
tions can be analyzed, for any finite number £ of iterations and
in the limit of k& — oo, by the DE technique [11]. The usefulness
of the DE method stems from the Concentration Theorem [31],
[10] which guarantees that, with high probability, the BER after
¢ iterations of the BP decoder applied to a randomly selected
code in the ensemble and to a randomly generated channel noise
sequence is close to the BER computed by DE, for sufficiently
large block length.

Next, we formulate the DE for IRA codes and we study
the stability condition of the fixed-point corresponding to
zero BER. As in [11, Sec. III-B], we introduce the space of
distributions whose elements are nonnegative nondecreasing
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It can be shown that, for a binary-input symmetric-output
channel, the distributions of messages at any iteration of the DE
satisfy the symmetry condition

/ h(w)dF (z) = / e~ h(—)dF ()

for any function A for which the integral exists. If /" has density
f, (8) is equivalent to

f(@) = " f(=x). ©)

With some abuse of terminology, distributions satisfying (8) are
said to be symmetric. The space of symmetric distributions will
be denoted by Feym.
The BER operator Pe: Foypy —
1

S(F(0) + F(0))

where F'~(z) is the left-continuous version of F(z). We intro-
duce the “delta at zero” distribution, denoted by Ay, for which
Pe(Ag) = 1/2, and the “delta at infinity” distribution, denoted
by A, for which Pe(A,) = 0.

The symmetry property (8) implies that a sequence of sym-
metric distributions { F()12°  converges to A if and only if
limy_ oo Pe(F(9) = 0, where convergence of distributions is in
the sense given in [11, Sec. III-F].

The DE for IRA code ensembles is given by the following
proposition whose derivation is omitted as it is completely anal-
ogous to the derivation of DE in [11] for irregular LDPC codes.

®)

[0,1/2] is defined by

Pe(F)

Proposition 1: Let Py (respectively, IN’/) denote the average
distribution of messages passed from an information bitnode
(respectively, parity bitnode) to a checknode, at iteration /. Let
Q. (respectively, ()¢) denote the average distribution of mes-
sages passed from a checknode to an information bitnode (re-
spectively, parity bitnode), at iteration /.

Under the cycle-free condition, P, P[ Qo, Qg satisfy the fol-
lowing recursion:

Py =F, @ \NQy) (10)
P =F,®Q (11)
Q=T (P(Pr)™ @ T(P)® ) (12)
Qe =17 (T(Prr) @ T(P-1)™) (13)
for / = 1,2,..., with initial condition Py = ]50 = Ay, where

F,, denotes the distribution of the channel observation messages
(4), ® denotes convolution of distributions, defined by

(Fo 6= / F(z - 0dG(t)

where ©®™ denotes m-fold convolution,

d
3\ FOD),
1=2

I'(F,) is the distribution of y = ~y(z) (defined on Fo x R),
when z ~ F,, and I'"! denotes the inverse mapping of I', i.e.,
I'=1(G,) is the distribution of z = v~ (y) wheny ~ G,,. O

(14)
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ries of (10)—(13) are sequences of pairs of symmetric distribu-
tions (P, P;)). For this system, the BER at iteration £ is given
by Pe(P).

It is easy to see that (A, A) is a fixed point of (10)—(13).
The local stability of this fixed point is given by the following
result.

Theorem 1: The fixed point (A, Ao ) for the DE is locally
stable if and only if

e"(e" —1)
A 15
2<a+1+e’“(a—1) (15)
where 7 = —log( [ e7*/2dF,(z)).
Proof: See Appendix I. O

Here necessity and sufficiency are used in the sense of [11].
By following steps analogous to [11], it can be shown that if
(15) holds, then there exists £ > 0 such that if for some /£ € N

Pe(RP,(Py, Po) + (1 — R)Py(Py, Py)) < ¢

then Pe(RPp + (1 — R)P,) converges to zero as / tends to in-
finity. On the contrary, if Ao is strictly larger than the right-hand
side (RHS) of (15), then there exists & > 0 such that for all
£ eN

Pe(RP/(Py, Py) + (1 — R)Py(Py, Py)) > £.

III. IRA ENSEMBLE OPTIMIZATION

In this section, we tackle the problem of optimizing the IRA
code ensemble parameters for a broad class of binary-input sym-
metric-output channels.

A property of DE given in Proposition 1 is that Pe(P,) for
¢ = 1,2,...1s a nonincreasing nonnegative sequence. Hence,
the limit limy_, . Pe(P,) exists. Consider a family of channels

C(w) = {pYx v ERy)

where the channel parameter v is, for example, an indicator of
the noise level in the channel. Following [31], we say that C(v)
is monotone with respect to the IRA code ensemble ({\;},a)
under BP decoding if, for any finite £

v <V & Pe(P;) < Pe(P))

where P, and P; are the message distributions at iteration ¢ of
DE applied to channels p”Y| + and p?,' x> respectively.

Let BER(v) = limy_, . Pe(P), where { Py} is the trajectory
of DE applied to the channel p”Y| - The threshold v* of the
ensemble ({\;}, a) over the monotone family C(v) is the worst

case channel parameter for which the limiting BER is zero, i.e.,
v* =sup{rv > 0 : BER(v) = 0}. (16)

Thus, for every value of v, the optimal IRA ensemble parame-
ters a and {);} maximize R subject to vanishing BER(v) = 0,
i.e., are solution of the optimization problem

((maximize a7, \;/i
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the solution of which can be found by some numerical tech-
niques, as in [11]. However, the constraint BER(~) = 0 is given
directly in terms of the fixed point of the DE recursion, and
makes optimization very computationally intensive.

A variety of methods have been developed in order to simplify
the code ensemble optimization [19], [24], [14], [32]. They con-
sist of replacing the DE with a dynamical system defined over
the reals (rather than over the space of distributions), whose tra-
jectories and fixed points are related in some way to the trajec-
tories and the fixed point of the DE. Essentially, all proposed
approximated DE methods can be formalized as follows. Let
®: Foym — Rand ¥: R — F,,., be mappings of the set of sym-
metric distributions to the real numbers and vice versa. Then,
a dynamical system with state space R? can be derived from
(10)—(13) as

v = (P, @\ (Q) (1%
=0 (F.oQ) (19)
Q=T (T (U(@E-1)? & T (V(ae1))*“ V) @0)

Q =r1 (r(xp(@,l)) ®F(\D(w¢,1))®“) @1
for £ = 1,2, ..., with initial condition zqg = 7o =
where (¢, ) are the system state variables. N

By eliminating the intermediate distributions Q, and Q,, we
can put (18)—(21) in the form

D(Ay), and

e =P(xo1,To_1)

To =P(xp—1,To—1). (22)

For all DE approximations considered in this work, the map-
pings ® and ¥ and the functions ¢ and ¢ satisfy the following
desirable properties.

1) ®(Ag) = 0, B(As) = 1.

2) U(0) = Ap, ¥(1) = A
3) ¢ and ¢ are defined on [0, 1] x [0,1] and have range in
[0,1].

4) $(0,0) > 0 and $(0,0) > 0.

5) ¢(1,1) = ¢(1,1) = 1, ie., (1,1) is a fixed point of the
recursion (22). Moreover, this fixed point corresponds to
the zero-BER fixed point (A, A ) of the exact DE.

6) If F,, # Ag, the function ¢(z, ) — 7 is strictly decreasing
in 7 for all z € [0, 1]. Therefore, the equation

T = (/)(:E%)

has a unique solution in [0, 1] for all € [0,1]. This
solution will be denoted by Z(z).

It follows that all fixed points of (22) must satisfy

z = ¢(z,5(z))

and that in order to avoid fixed points other than (1,1), (23)
must not have solutions in the interval [0, 1), i.e., it must satisfy

(23)
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m; m,

Fig. 3. EXIT model.
Notice that, in general, (24) is neither a necessary nor a sufficient
condition for the uniqueness of the zero-BER fixed point of the
exact DE. However, if the quality of the DE approximation is
good, this provides a heuristic for the code ensemble optimiza-
tion.

By replacing the constraint BER(v) = 0 by (24) in (17), we
obtain the approximated IRA ensemble optimization method as

maximize aZ,‘L.i:Z Ai/i
S L=, >0, Vi
¥ < d(r.F(x), Vael01).

Approximations of the DE recursion differ essentially in the
choice of ® and V¥, and in the way the intermediate distribu-
tions Q; and Q, and the channel message distribution F,, are
approximated. Next, we illustrate the approximation methods
considered in this work.

subject to (25)

and to

A. EXIT Functions

Several recent works show that DE can be accurately de-
scribed in terms of the evolution of the mutual information be-
tween the variables associated with the bitnodes and their mes-
sages (see [12], [33]-[35], [13], [23], [18]).

The key idea in order to approximate DE by mutual infor-
mation evolution is to describe each computation node in BP
decoding by a mutual information transfer function. For histor-
ical reasons, this function is usually referred to as the EXtrinsic
mutual Information Transfer (EXIT) function.

EXIT functions are generally defined as follows. Consider the
model of Fig. 3, where the box represents a generalized compu-
tation node of the BP algorithm (i.e., it might contain a sub-
graph formed by several nodes and edges, and might depend
on some other random variables such as channel observations,
not shown in Fig. 3). Let mq, ..., m;_; denote the input mes-
sages, assumed independent and identically distributed (i.i.d.)
~ Fi,, and let m, ~ F,, denote the output message. Let X;
denote the binary code symbol associated with message m ;, for
7 =1,...,2—1,and let X denote the binary code symbol asso-
ciated with message m,. Since Fi,, Fous € Fsym, We can think
of m,; and m, as the outputs of binary-input symmetric-output
channels with inputs X; and X and transition probabilities

P(m]‘ S Z|XJ = 0)
P(m, < z|X =0)

= Fin(2)
= Foui(2)

(26)
27)
respectively.

The channel (26) models the a priori information that the
node receives about the symbols X;’s, and the channel (27)
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