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This is the situation of interest in a trunked mobile system with 
priority, as the application of priorities is under heavy traffic: if 
the system is correctly sized, under regular load conditions no pri- 
orities are needed, as the waiting time must be low for all custom- 
ers. For all delay probabilities the relative error of the mean 
waiting time for priority calls is no longer guaranteed to be lower 
than lo%, but the overestimation is still better than the waiting 
time calculated by considering the MIMIC queue and only eqn. 1. 

Conclusion: The performance of a linked mobile radio system with 
two priority levels and deterministic distributed call duration can 
be evaluated in a very simple way when an exact result is not 
required. The deterministic type of call is unusual, but distribu- 
tions with a coefficient of variation < 1 can often be found, and 
the approximation introduced can be helpful to find the minimum 
size of the system (CJ needed to attain a target GoS. The authors 
conjecture that this work could be applied to a wider range of P D  
and C and to more than two priority levels. The results achieved 
can be used in other fields where the teletraffic theory applies. 
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The authors report the empirical performance of Gallager’s low 
density parity check codes on Gaussian channels. It is shown that 
performance substantially better than that of standard 
convolutional and concatenated codes can be achieved; indeed the 
performance is almost as close to the Shannon limit as that of 
Turbo codes. 

Introduction: A linear code may be described in terms of a genera- 
tor matrix G, or in terms of a parity check matrix H, whilsh satis- 
fies Hx = 0 for all codewords x. In 1962, Gallager reported work 
on binary codes defined in terms of low density parity check 
matrices (abbreviated ‘GL codes’) [5, 61. The matrix H was defined 
in a non-systematic form; each column of H had a small weight 
(e.g., 3) and the weight per row was also uniform; the matrix H 
was constructed at random, subject to these constraints. Gallager 
proved distance-properties of these codes and described a proba- 
bility-based decoding algorithm with promising empirical perform- 
ance. However, it appears; that GL codes have been 2,enerally 
forgotten, the assumption perhaps being that concatenated codes 
[4] were superior for practical purposes. 

Duricg our work on MN codes [8] we realised that it is possible 
to create ‘good’ codes from very sparse random matrices. and to 
decode them (even beyond their minimum distance) using approx- 
imate probabilistic algorithms. We eventually reinvented Gallag- 
er’s decoding algorithm and GL codes. In this Letter we report the 
empirical performance of these codes on Gaussian chann’els. The 
theoretical properties of GL codes have been proven (essentially, 
that the channel coding the’orem holds for them) elsewhere [9]. GL 
codes can also be defined over GF(q). We are currently implement- 
ing this generalisation. 

We created sparse rando’m parity check matrices in the follow- 
ing ways: 

Construction 1A: An M by N matrix (M rows, N columns) is cre- 
ated at random with weight per column t (e.g. t = 3), and weight 
per row as uniform as possible, and overlap between any two col- 
umns no greater than 1. (The weight of a column is the number of 
non-zero elements; the overlap between two columns is thrir inner 
product). 

Construction 2A: Up to MI2 of the columns are designated ‘weight 
2 columns’, and these are constructed such that there is zero over- 
lap between any pair of columns. The remaining colurnns are 
made at random with weight 3, with the weight per row as uni- 
form as possible, and overlap between any two columns of the 
entire matrix no greater than 1. 

Constructions IB and 2B: A small number of columns are deleted 
from a rnatrix produced by constructions 1A and 2A, respectively, 
so that the bipartite graph1 corresponding to the matrix has no 
short cycles of length less than some length 1. 

The above constructions do not ensure that all the row:s of the 
matrix are linearly independent, so the M x N matrix created i s  
the parity matrix of a linear code with rate at least R = MA‘, where 
K = N-M. Results are reported here on the assumption that the 
rate is 17. The generator rnatrix of the code can be created by 
Gaussian elimination. 

We simulated a Gaussian channel with binary input f a  and 
additive noise of variance cr2 = 1. If communication using a code 
of rate R is used then it is conventional to describe the signal to 
noise ratio by EbIN, = a2121202, and to report this number in deci- 
bels as 10log,,Eb/No. 

Decoding: The process of decoding involves finding the most prob- 
able vector x such that Hx mod 2 = 0, with the likelihood of x 
given by IIJ? where f i  = 1/(1 + exp(-2ay,lo2)) and f! = 1- 
f : ,  and y,  i s  the channel’s output at time n. 
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Gallager’s algorithm (reviewed in detail in [9]) may be viewed as 
an approximate belief propagation algorithm [lo]. (The Turbo 
decoding algorithm may also be viewed as a belief propagation 
algorithm.) 

We refer to the elements of x as bits and to the rows of H as 
checks. We denote the set of bits n that participate in check rn by 
N(rn) = {n  : Hn,, = 1). Similarly we define the set of checks in 
which bit n participates, M(n) = { M  : H,,,, 1). We denote a set 
N(m) with bit n excluded by N(rn)In. The algorithm has two alter- 
nating parts, in which quantities qmn and r,, associated with each 
non-zero element in the H matrix are iteratively updated. The 
quantity qf$n is meant to be the probability that bit n of x is x, 
given the information obtained via checks other than check m. 
The quantity r& is meant to be the probability of check n.1 being 
satisfied if bit n of x is considered fixed at x and the other bits 
have a separable distribution given by the probabilities {q,n,2,: n’ E 

N(m)\n}. The algorithm would produce the exact posterior proba- 
bilities of all the bits if the bipartite graph defined by the matrix H 
contained no cycles [lo]. 

Initialisation: The variables q:n and q!7n are initialised to the 
values f,” and f : ,  respectively. 

Horizontal step: We define 6q,n,l = q:n ~ q,& and compute for 
each rn, n: 

brmn = n brlmnl (1) 
n’ t N (m) \n 

then set rEn = 1/2(1 + S,T,,) and rh = 1/2(14rmn). 

Vertical step: For each n and rn and for x = 0,l we update: 

qkn =a,,f,” n rZln ( 2 )  

q; = a n E  n cn (3) 

m’tM(n) \m 

where a,,, is chosen such that qk + q& = 1. We can also 
update the ‘pseudoposterior probabilities’ q! and q: gken by: 

mtM(n) 

These quantities are used to create a tentative bit-by-bit decoding 
2 ;  if however H2 = 0 then the decoding algorithm halts. Other- 
wise, the algorithm repeats from the horizontal step. A failure is 
declared if some maximum number of iterations (e.g. 100) occurs 
without a valid decoding. 

10-1 

1 i 

Results: Fig. 1 compares the performance of GL codes with text- 
book codes and with state of the art codes. The vertical axis shows 
the empirical bit error probability. 

Textbook codes: The curve labelled (7,1/2) shows the perform- 
ance of a rate 112 convolutional code with constraint length 7, 
known as the de facto standard for satellite communications [7]. 
The curve (7,1/2)C shows the performance of the concatenated 
code composed of the same convolutional code and a Reed- 
Solomon code. 

State of the art: The curve (15,114)C shows the performance of 
an extremely expensive and computer intensive concatenated code 
developed at JPL based on a constraint length 15, rate 1/4 convo- 

lutional code (data courtesy of R.J. McEliece). The curve labelled 
Turbo shows the performance of the rate 112 Turbo code 
described in [2]. (Better Turbo codes have since been reported [3].) 

GL codes: From left to right the codes had the following 
parameters (N,K,R): (29507, 9507, 0.322) (construction 2B); 
(15000, 5000, 0.333) (2A); (14971, 4971, 0.332) (2B); (65389, 
32621, 0.499) (1B); (19839, 9839, 0.496) (1B); (13298, 3296, 0.248) 
(1B); (29331, 19331, 0.659) (1B). It should be emphasised that all 
the errors made by the GL codes were detected errors: the decod- 
ing algorithm reported the fact that it had failed. 

Our results show that performance substantially better than that 
of standard convolutional and concatenated codes can be 
achieved; indeed the performance is almost as close to the Shan- 
non limit as that of Turbo codes [2]. It seems that the best results 
are obtained by making the weight per column as small as possible 
(construction 2A). Unsurprisingly, codes with larger block length 
are better. In terms of the value of EJN,, the best codes were ones 
with rates between 112 and 1/3. 

Cost: In a brute force approach, the time to create the codes scales 
as N .  where N is the block size. The encoding time scales as NL, 
but encoding involves only binary arithmetic, so for the block 
lengths studied here it takes considerably less time than the simu- 
lation of the Gaussian channel. It may be possible to reduce 
encoding time using sparse matrix techniques. Decoding involves 
approximately 6 Nf floating point multiplies per iteration, so the 
total number of operations per decoded bit (assuming 20 itera- 
tions) is about 120t/R, independent of block length. For the codes 
presented here, this is about 800 operations. 

T h ~ s  work not only confirms the assertion [1] that good codes 
can be thought of and even decoded, but also that it was possible 
to think of them, and decode them, thirty-five years ago. 
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