

Fig. 2 Mean waiting time for priority and nonpriority calls for 15 channels and load of 95%

This is the situation of interest in a trunked mobile system with priority, as the application of priorities is under heavy traffic: if the system is correctly sized, under regular load conditions no priorities are needed, as the waiting time must be low for all customers. For all delay probabilities the relative error of the mean waiting time for priority calls is no longer guaranteed to be lower than 10%, but the overestimation is still better than the waiting time calculated by considering the $\mathrm{M} / \mathrm{M} / \mathrm{C}$ queue and only eqn. 1 .

Conclusion: The performance of a linked mobile radio system with two priority levels and deterministic distributed call duration can be evaluated in a very simple way when an exact result is not required. The deterministic type of call is unusual, but distributions with a coefficient of variation <1 can often be found, and the approximation introduced can be helpful to find the minimum size of the system (C) needed to attain a target GoS. The authors conjecture that this work could be applied to a wider range of $P D$ and C and to more than two priority levels. The results achieved can be used in other fields where the teletraffic theory applies.

Acknowledgment: This work was funded by CICYT project TIC94-0475.
© IEE 1996
28 June 1996
Electronics Letters Online No: 19961121
F. Barceló, V. Casares and J. Paradells (Departamento de Matemática Aplicada y Telemática, c/Gran Capitán s/n, 08034 Barcelona, Spain)

References

1 Gross, D., and Harris, Cm.: 'Fundamentals of queueing theory' (John Wiley \& Sons, 1974)
2 chrapkowski, A., and grube, g.: 'Mobile trunked radio system design and simulation'. IEEE 41st Vehicular Technol. Conf., 1991, pp. 245-250
3 hoang, h., malhamé, r., and chan, G.: 'Traffic engineering of trunked land mobile radio dispatch systems'. 41st Vehicular Technol. Conf., 1991, pp. 251-256
4 HOANG, H., and COHEN, P.: 'A model for channel sharing in land mobile radio dispatch services', IEEE Trans., 1985, VT-34, (2), pp. 76-85
5 Seelen, l.p., timms, h.C., and van horn, m.h.: 'Tables for multiserver queues' (North Holland, 1985)
6 tIJMS, H.C.: 'Stochastic modelling and analysis: A computational approach' (John Wiley \& Sons, 1986)

Gallager's algorithm (reviewed in detail in [9]) may be viewed as an approximate belief propagation algorithm [10]. (The Turbo decoding algorithm may also be viewed as a belief propagation algorithm.)

We refer to the elements of \mathbf{x} as bits and to the rows of \mathbf{H} as checks. We denote the set of bits n that participate in check m by $\mathbf{N}(m)=\left\{n: H_{n n}=1\right\}$. Similarly we define the set of checks in which bit n participates, $\mathbf{M}(n)=\left\{m: H_{m n}=1\right\}$. We denote a set $\mathbf{N}(m)$ with bit n excluded by $\mathbf{N}(m)$ in. The algorithm has two alternating parts, in which quantities $q_{m n}$ and $r_{m n}$ associated with each non-zero element in the \mathbf{H} matrix are iteratively updated. The quantity $q f_{m n}^{x}$ is meant to be the probability that bit n of \mathbf{x} is x, given the information obtained via checks other than check m. The quantity $r_{m n}^{x}$ is meant to be the probability of check m being satisfied if bit n of \mathbf{x} is considered fixed at x and the other bits have a separable distribution given by the probabilities $\left\{q_{m m}: n^{\prime} \in\right.$ $\mathbf{N}(m) \backslash n\}$. The algorithm would produce the exact posterior probabilities of all the bits if the bipartite graph defined by the matrix \mathbf{H} contained no cycles [10].

Initialisation: The variables $q_{m n}^{0}$ and $q_{m n}^{1}$ are initialised to the values f_{n}^{0} and f_{n}^{1}, respectively.

Horizontal step: We define $\delta q_{m n} \equiv q_{m n}^{0}-q_{m n}^{1}$ and compute for each m, n :

$$
\begin{equation*}
\delta r_{m n}=\prod_{n^{\prime} \in \mathbf{N}(m) \backslash n} \delta q_{m n^{\prime}} \tag{1}
\end{equation*}
$$

then set $r_{m n}^{0}=1 / 2\left(1+\delta_{m n}\right)$ and $r_{m n}^{1}=1 / 2\left(1-\delta r_{m n}\right)$.
Vertical step: For each n and m and for $x=0,1$ we update:

$$
\begin{equation*}
q_{m n}^{x}=\alpha_{m n} f_{n}^{x} \prod_{m^{\prime} \in \mathbf{M}(n) \backslash m} r_{m^{\prime} n}^{x} \tag{2}
\end{equation*}
$$

where $\alpha_{m n}$ is chosen such that $q_{m n}^{0}+q_{m n}^{1}=1$. We can also update the 'pseudoposterior probabilities' q_{n}^{0} and q_{n}^{1} given by:

$$
\begin{equation*}
q_{n}^{x}=\alpha_{n} f_{n}^{x} \prod_{m \in \mathbb{M}(n)} r_{m n}^{x} \tag{3}
\end{equation*}
$$

These quantities are used to create a tentative bit-by-bit decoding $\hat{\mathbf{x}}$; if however $\mathbf{H} \hat{\mathbf{x}}=0$ then the decoding algorithm halts. Otherwise, the algorithm repeats from the horizontal step. A failure is declared if some maximum number of iterations (e.g. 100) occurs without a valid decoding.

Fig. 1 GL codes' performance over Gaussian channel compared with that of standard textbook codes and state of the art codes

- Gaussian channel, - - - (right) standard textbook,
-- - (left) state of the art

Results: Fig. 1 compares the performance of GL codes with textbook codes and with state of the art codes. The vertical axis shows the empirical bit error probability.
Textbook codes: The curve labelled $(7,1 / 2)$ shows the performance of a rate $1 / 2$ convolutional code with constraint length 7 , known as the de facto standard for satellite communications [7]. The curve ($7,1 / 2$) C shows the performance of the concatenated code composed of the same convolutional code and a ReedSolomon code.
State of the art: The curve $(15,1 / 4)$ C shows the performance of an extremely expensive and computer intensive concatenated code developed at JPL based on a constraint length 15 , rate $1 / 4$ convo-
lutional code (data courtesy of R.J. McEliece). The curve labelled Turbo shows the performance of the rate $1 / 2$ Turbo code described in [2]. (Better Turbo codes have since been reported [3].)
GL codes: From left to right the codes had the following parameters (N,K,R): (29507, 9507, 0.322) (construction 2B); (15000, 5000, 0.333) (2A); (14971, 4971, 0.332) (2B); (65389, $32621,0.499)(1 \mathrm{~B}) ;(19839,9839,0.496)(1 \mathrm{~B}) ;(13298,3296,0.248)$ (1B); (29331, 19331, 0.659) (1B). It should be emphasised that all the errors made by the GL codes were detected errors: the decoding algorithm reported the fact that it had failed.
Our results show that performance substantially better than that of standard convolutional and concatenated codes can be achieved; indeed the performance is almost as close to the Shannon limit as that of Turbo codes [2]. It seems that the best results are obtained by making the weight per column as small as possible (construction 2A). Unsurprisingly, codes with larger block length are better. In terms of the value of E_{b} / N_{0}, the best codes were ones with rates between $1 / 2$ and $1 / 3$.

Cost: In a brute force approach, the time to create the codes scales as N^{3}, where N is the block size. The encoding time scales as N^{2}, but encoding involves only binary arithmetic, so for the block lengths studied here it takes considerably less time than the simulation of the Gaussian channel. It may be possible to reduce encoding time using sparse matrix techniques. Decoding involves approximately 6 Nt floating point multiplies per iteration, so the total number of operations per decoded bit (assuming 20 iterations) is about $120 t / R$, independent of block length. For the codes presented here, this is about 800 operations.
This work not only confirms the assertion [1] that good codes can be thought of and even decoded, but also that it was possible to think of them, and decode them, thirty-five years ago.

Acknowledgments: D.J.C. MacKay is grateful to R. McEliece and R. Sewell for helpful discussions.

© IEE 1996

15 July 1996
Electronics Letters Online No: 19961141
D.J.C. MacKay (Cavendish Laboratory, Cambridge, CB3 0HE, United Kingdom)
e-mail: mackay@mrao.cam.ac.uk
R.M. Neal (Department of Statistics and Computer Science, University of Toronto, Toronto, M5S 1A4, Canada)
e-mail: radford@stat.toronto.edu

References

1 Battail. G.: 'We can think of good codes, and even decode them'. Eurocode '92, Number 339 in CISM Courses and Lectures, pp. 353-368
2 berrol, C., glavieux, A., and thitimajshima, p.: 'Near Shannon limit error-correcting coding and decoding: Turbo-codes',Proc. 1993 IEEE Int. Conf. Commun., 1993, (Geneva, Switzerland), pp 1064-1070
3 divsilar, D., and pollara, F:: 'On the design of turbo codes'. Technical Report TDA 42-123, Jet Propulsion Laboratory, Pasadena, November 1995
4 FORNEY. C.D.: 'Concatenated codes'. Technical Report 37, (MIT, 1966)

5 Gallager, r.g.: 'Low density parity check codes', IRE Trans. Info. Theory, 1962, IT-8, pp. 21-28
6 gallager, R.G.: 'Low Density Parity Check Codes'. No. 21 in Research monograph series (MIT Press, Cambridge, Mass., 1963)
7 GOLOMb, S.W., Peile, R.e., and scholtz, R.A.: 'Basic Concepts in Information Theory and Coding: The Adventures of Secret Agent 00111 ' (Plenum Press, New York, 1994)
8 MACKAY, D.J.C., and NEAL, R.M.: 'Good codes based on very sparse matrices',Cryptography and Coding. 5th IMA Conf., 1995, pp. 100-111 (number 1025 in Lecture Notes in Computer Science)
9 MaCKAY, D.J.C., and NEAL, R.M.: 'Good error correcting codes based on very sparse matrices'
10 PEarl, J.: 'Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference’ (Morgan Kaufmann, San Mateo, 1988)

