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Abstract

Until the Repeat Accumulate codes of Divsalar, et al. l4), few people would haye

guessed that simple rate-1 codes could play a crucial role in the construction of "good"
codes. In this paper, we wiil construct "good" linear block codes at any rate r < 1 by

serially concatenating an arbitrary outer code ofrate r with a large number of rate-1 inner
codes through unifonn random interleavers. We derive the average output weight enumer-

ator for this ensemble in the limit as the number of inner codes goes to infinity. Using a

probabilistic upper bound on the minimum drstance, we prove that long codes from this
ensemble will achieve the Gilbert-Varshamov bound with high probability. Finaily, by nu-
mencally evaluating the probabilistic upper bound, we observe that it is typically achieved
with a. small number of inner codes.

Introduction

The introduction of turbo codes by Berrou, Glavieux, and Thitimajshima [3] is remarkable
because it combined simple components together to set a new standard for error-correcting
codes. Since then, iterative "turbo" decoding has made it practical to consider a whole new
world of concatenated codes while the use of "random" interieavers and recursive convolu-
tional encoders has given us a starting point for choosing new code stmctures. Many of these

concatenated code structures fit into a class that Divsalar, Jin, and NIcEIiece call "turbolike"
codes [4]. This class includes their Repeat Accumulate (RA) codes which consist only of a rep-
etition code, an interleaver, and an accumulator. Still they prove that, for sufficiently 1ow rates

and any fixed E6/N6 greater than a thieshold, these codes have vanishing word error probabil-
ity as the block length goes to infinity. This shows that powerful error-corecting codes may be
constructed from extremely simple components.

In this paper we consider the serial concatenation of an arbitrary outer code of rate r ( I
with rn identr,:al rate- 1 inner codes where. following the convention cf turbo coding literature,
we use the te;:m serial concatenation to mean serial concatenation through a "ratdom" inter-
leaver. Any real system must, of course, choose a particular interleaver. Our analysis, however,
will make use of the unifurm random interleaver (URI) t2l which is equivalent to averaging
over all possible interleavers. We analyze this system using a probabilistic bound on the min-
imum distance and show that, in the limit as the number of inner codes m goes to infinity, the
minimum distance is bounded by an expression that resembles the Giibert Bound (GB) [5].

*This work was supported in part by the National Science Foundation (NSF) under grant NCR-961 2802 and
by the National Storage Industry Consortium (NSIC).
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Figure 1: Our system consists of any rate r < 1 code followed by rn rate-l codes.

Our work is largely motivated by [4] and by rhe results of Oberg and Siegel [10]. Both
papers consider the effect of a simple rate-1 'Accumulate" code in a serially concatenated
system. In [4] a coding theorem is proved for RA codes, while in [10] the'Accumulate" code
is analyzed as a precoder for the dicode magnetic recording channel. Benedetto, et al. also
investigated the design and performance of Double Serially Concatenated Codes in [ 1 ].

If the outer code consists of multiple independent copies of a short block code and the
inner code is a cascade of m interleaved 'Accumulate" codes, we wiil refer to these codes
as Generalized Repeated Accumulated (GRA*) codes. McEliece has analyzed thr: maximum
likelihood decoding performance of these codes for rn : 7 l9l, and we focus on the minimum
distarrce of these codes for m ), L.

The outline of the paper is as foliows. In Section 2 we review the weight enumerator (VIE)
of linear block codes and the union bound on the probability of error for maximum likelihood
decoding. We also review the average weight enumerator for the serial concatenation of two
linear block codes through a URI, and relate serial concatenation to matrix multiplication using
a normalized form of each code's inpLa outpnt weight enumerator {IO\NE).In Section 3 we
introduce our system, shown in Figure 1, and we compute its average output WE. In Section
4 we derive a probabilistic bound on the minimum distance of any code, taken from a random
ensemble, in terms of the ensemble's average WE. Applying this bound to the WE from Section
3 gives an expression very similar to the GB, and examining the bound as the block length
goes to infinity produces the Giibert-Varshamov Bound (GVB). In Section 5 we numerically
evaluate our bound on minimum distance for various GRA'n codes and observe that 3 or 4
'Accumulate" codes seem to be sufficient to. achieve the bounii. corresponding to asymptotically
large m. Finally, in Section 6 we discuss some conclusions and directions for future work.

2 Weight Enumerators and Serial Concatenation
2.L The Union Bound

In this section, we review the weight enumerator of a linear block code and the union bound on
error probability for maximum likelihood decoding. The IOWE A,u1 of an (n, k) block code
is the number of codewords with input weight ,l, and output weight h, and the WE .45 is the
number of codewords with output weight h and any input weighr. Using these definitions, the
probability of word error is upper bounded by

nk
p <\-\-a ..h'- - k?,"* n' 

'

and the probability of bit error is upper bounded by

nk

P, < tIY.e*n.0.
7:r7, *

The term z[ represents an upper bound on the pairwise en'or probabilitv, between any two
codewords differing in h positions, for the channel of inteiest. The constant z is defined for
many memoryless channels [7, Section 5.3], and for the AWGN channel it is z : s-(k/n){.Ea/No) .
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2.2 Serial Concatenation through a Uniform Interleaver

In this secrion, we review the serial concatenation ol codes through a uniform random inter-

leaver. The introduction oi URI in the analysis of turbo codes by Benedetto and Nlontorsi

[2] has made the analysis of complex concatenated coding systems relatirely straightforward,

und ,sing the uRI for anaiysis is equivalenl to averaging over all possible.interleavers' The

importanl property of the dzu is that the distribution of outpur sequences is a function only

of tn" *"ig1,t iistilbution of input sequences. More precisely, an input sequence of rveight '--

producesa-llpossibleoutputSequencesofweightt,'eachwithequalprobability..
'- - 

ion.la", uny (n, ,k) blo.t coa" with IOWE 4-,6 preceded by a URi. 1&'e will refer to such a

code as a uniform)y interlea;-ed code (IJIC). The probabillty of the combined system mapping

an input ."qu.n." of weighr u to an output sequence of iveight h is

Pr (w - h) : 4Yf (1)
(I)

we can now consider an (n,,t) block code formed by first encoding with an (n1, ft) outer

code with IO\yE Af)", then permuting the output bits with a URI, and finally encoding again

with an (n, n1) inner code with IowE /f)r. The average number of codewords with input

weight a, and output weight h is then given by

n1

A*, - L, o[:L,Pr (h1 * t')
hr =o
nr J (i)

a.- a(o) ,'h.h
,/ /Ltrh, tn,'- l,-l

hr=o \nll

The average IOWE for the serial conc.atenation of two codes may also be written as the

matrix producl of the IoWE for the outer code and a normalized version of the I9\YE for the

inner code. Let us define, for any code, the input output weight transition probability (IOWTP)

P-'l,astheprobabilitythatauniformrandominputSequenceofweightrlismappedtoan
output sequence ofweight h. From (1), we can see that

,t(l
-(r) "-,h
'.,n: (:)

Substituting (3) into (2), we have

r . - $ a(,) pt,,. :A(o)p(').n''n: 
?'=o 

u'h1 r h1'h'

where A(o) is the matrix representation of the outer code IOWE and P(i) is the matrix represen-

tationoftheinnercodeloWTP'ByinductivelyapplyingthistomultipleinnercodelowTP
matdces, one can see that matrix multiplication computes the overall A-4 for an arbitrary

number of serial concatenations. It is also clear from (3) that IOWTP matlices are stochastic

(i.e. a1I rows sum to 1).

2.3 A Simple ExamPle

In this section, we will compute the IowE and IowTP of the rate-l 'Accumulate" code [4]'

The .Accumulate" code is a block code formed by truncating the simplest recursive convo-

lutional code possible, having generator malrix G(D) : 1/(1 @ D)' after n symbols' The

(2)

(r)
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Input Sequence 000 001 010 100 011 I01 110 111

Input Weight 0 1 1 1 2 2 2 J

Output Sequence 000 00i 011 t11 010 110 100 101

Output Weight 0 2 3 2 2

Table 1: Input-output sequences and weight mappings for n' : 3 'Accumulate" code'

generator matrix for this block code is an n x n matrix with all 1',s in the upper triangle and a1i

0'selsewhere.Intheexampie,wewilllookatthecasen:3Thegeneratormatrixis

Using.Tablel,weseethatauniformrandominputofweightlmapstooutputweightsi,2,
and iwith equal probability, and cannot be mapped to output weight 0. so the rr.r : 1 row of

,fr" Iboi.ip ,irtrix is I O i7: 113 i/3 ]. Filling in the rest of the entries, we give both the

IOWE A.,h and the associated IOWTP P.,6 in malrix form:

f 1 11
G: I o 1 1

l0 01

ii ! 1 rl P-h:l: ;il li:'i'l
Lo o I o.l,,,n Lo o t o .i.,,,

A_

3 Multipte Rate-L Serial Concatenations

3.1 The Input Output Weight Enumerator

ln this section, we will consider a code f.ormed by encoding rn * 1 times. The f,rst (outer)

encoder is for an (n, k) block code with IOWE Afl. The next rn (inner) encoders are for

identical rate-l UICs of block length n with IOWE A?, lwe 1et P be the IOWTP matrix

associated witn Af)n, ihen we can write the average IOWE '4',1 for this code as

A-,n: L, o';\,[P']n,,, . (4)

fit=0

The iinearity of the code goo.rni""s that the matrix P will be block diagonal with at least

two blocks because inputs of iveight 0 will aiways be mapped to outputs of weight 0 and inpuls

of weight greater than 0 will alwiys be mapped to ourputs of weight greater than 0. So let the

firstblockbethelxlsubrnatrixa-ssociatedwithr-c,:h:0,andletthesecondblockQbethe
n x n submatrix formed by deleting the first row and column of P. writing P-as the product

of block diagonal matrices, we see that

rr n lp*:Lo e_l

3.2 Stationary Distritrutions and Markov Chains

In this section, we wili discuss the slationary distributions of a Markov Chain (MC) and how

they relate to the stationary weight disuibutions of a raLe-1 UIC. This discussion is based on

/oJ

/
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