
Turbo Codes are Low Density Parity Check Codes

David J� C� MacKay

July �� ����� Draft ��	� not for distribution
 �First draft written July ��
����

Abstract

Turbo codes and Gallager codes �also known as low density parity check codes� are at
present neck and neck in the race towards capacity�

In this paper we note that the parity check matrix of a Turbo code can be written as
low density parity check matrix�

Turbo codes and Gallager codes are both greatly superior to error�correcting codes found in
textbooks� Some similarities between these codes have been noted� For example� both families of
codes can be de�ned in terms of sparse graphs which de�ne the constraints satis�ed by codewords
�cite Tanner� Wiberg� Loeliger� Frey� MacKay�� Both families of codes are decoded using a
local probability propagation algorithm which is known as the sum�product algorithm or belief
propagation �cite Wiberg� McEliece and MacKay� Frey��

There are also di�erences between the two code families� In the original form studied by
Gallager and MacKay and Neal� Gallager codes are quick to decode but have an encoding time
that scales as N�� whereas Turbo codes are usually de�ned in terms of linear time encoders�
�Fast	encodeable Gallager codes have recently been investigated� MacKay�� In Turbo codes there
is a sharp distinction between the bits viewed as source bits and the bits viewed as parity check
bits
 they play di�erent roles in the decoding algorithm� and posterior probabilities over the states
of parity check bits are usually not computed� In Gallager codes� there is a symmetry between
all bits� Turbo codes as originally de�ned tend to su�er from low weight codewords which cause
the asymptotic performance for large Eb�N� to have an �error �oor� Gallager codes� in contrast�
show no such error �oor� and it has been proved that they have asymptotically good distance
properties� Gallager codes are simple to modify in order to create codes with higher or lower
rates� In contrast� increasing the rate of a Turbo code can be tricky because simple puncturing
of the parity bits might weaken the code by introducing low weight codewords�

Since these two families of codes are both so good in performance� it seems a good idea
to try to relate them so as to enhance technology transfer and hybridisation between the two
methodologies� However� to our knowledge� only a few researchers have tried to connect these
�elds together and design new codes �cite Frey and MacKay��

This paper makes a simple observation about Turbo codes� treating a Turbo code as a block
code� the parity check matrix of that code is actually a low density parity check matrix� This
observation is probably extremely obvious to anyone who is familiar with convolutional codes�
but for the bene�t of readers like myself who are not� I will spell this out in a little more detail�

�

Hughes, Exh. 1056, p. 1f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


�

�

� � � � M�q� � �M No� of trellises

�

� log q

���

�
�
N

No� of bits per trellis

Turbo

Gallager

Gallager �GF �q��

t

t

t

�

�

� � �
Mean no� of trellises p

��

��

��

��

q

Trellis complexity

Turbo

Gallager

Gallager �GF �q��

t

t

t

Figure �� One view of the locations of Gallager codes and Turbo codes in �code space� using
rate ��� codes as an example� From this perspective� Gallager codes and Turbo codes seem quite
di�erent�

� De�nitions

A low density parity check code is a block code which has a parity check matrix� H� every row
and column of which is �sparse�

A regular Gallager code is a low density parity check code in which every column of H has
the same weight t and every row has the same weight tr
 regular Gallager codes are constructed
at random subject to these constraints�

An �N�K� Turbo code is de�ned by a number of constituent encoders �often� two� and an equal
number of �interleavers which areK�K permutation matrices� Without loss of generality� we take
the �rst interleaver to be the identity matrix� The constituent encoders are often convolutional
codes� A string of K source bits is encoded by feeding them into each constituent encoder in
the order de�ned by the associated interleaver� and transmitting the bits that come out of each
constituent encoder� For simplicity� let us concentrate on Turbo codes with two constituent
codes that are both convolutional codes� Often the �rst constituent encoder is chosen to be a
systematic encoder� and the second is a non�systematic one which emits parity bits only� The
transmitted codeword then consists of K source bits followed by M� parity bits generated by the
�rst convolutional code and M� parity bits from the second�

For the purposes of this paper we will not need to discuss the decoder for either of these codes�
One unifying viewpoint for these two code families is in terms of trellis constrained codes� A

trellis constrained code is a code whose codewords satisfy a set of constraints� each constraint
being compactly described by a trellis in which two or more of the codeword bits participate�
Viewing these codes as trellis constrained codes� they appear rather di�erent� The M �N parity
check matrix of a regular Gallager code de�nes M trellises� Each trellis constrains the parity of
tr of the bits to be even� and each of the N bits participates in t trellises� We can think of a
Turbo code as a trellis constrained code in which there are two trellises
 the K source bits and
the �rst M� parity bits participate in the �rst trellis and the K source bits and the last M� parity
bits participate in the second trellis� Each codeword bit participates in either one or two trellises�
depending on whether it is a parity bit or a source bit� See �gure ��

However� we will now see that from the point of view of their parity check matrices� Turbo

�

Hughes, Exh. 1056, p. 2f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


�a�

z�hd � s�

� t�a�

z�hdz�hdz�hdz�

�
�
� t�b��

�
��

�
��

�
��

�b�

z�

�
�

� t�b�

hd � sz�hdz�hdz�hdz�

�

�
�
� t�a��

�
��

�
��

�
��

�z�

z�

�
�

� t�b�

hd

� s�

� t�a�
z�hdz�hdz�hdz�

�

�
�

�
�
��

�
��

�
��

��������

Figure �� Linear feedback shift registers for generating convolutional codes� K � ��

codes are actually very similar to Gallager codes�

��� The parity check matrix of a single convolutional code

Note di�erent meaning for parity check matrix from convolutional code literature� Here we are
talking about the literal parity check matrix of the code viewed as a linear block code�

A systematic recursive convolutional code� as used in Turbo codes� is equivalent �in the
sense that its codewords are the same� to a nonsystematic nonrecursive convolutional code ��g	
ure ���b��� Now� what parity constraints are satis�ed by the latter code� Well� if we pass stream
b through the convolutional �lter that generated stream a and vice versa� then the two resulting
streams are identical� So the parity check matrix of a single convolutional code may be written
as a low density parity check matrix as shown in �gure ���b��

Issue neglected here� termination� Termination simply adds an extra k constraints� where k
is the constraint length� Not a big deal�

��� The parity check matrix of a Turbo code

Note that for the standard constraint length � convolutional codes� the pro�le of the turbo codes
parity check matrix is roughly K columns of weight about �� and the remaining columns of weight
about �
 the row weight is about � for all rows�

Here puncturing ignored� How to handle it� if the bit only participates in one check� remove
that check� If it participates in more than one check� use row manipulations to create new higher
weight checks that dont involve that bit�

Note that classic Turbo codes are punctured down to rate ����

�

Hughes, Exh. 1056, p. 3f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


�a�

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
3 3

�a�

3

�b�

�c�

�d�

2

2
5

Figure �� Schematic pictures of the parity check matrices of �a� a regular Gallager code� rate ����
�a� an almost regular Gallager code rate ��� �b� a convolutional code� rate ���� and �c� a Turbo
code� rate ���� Notation� A diagonal line represents an identity matrix� A band of diagonal lines
represent a band of diagonal �s� A circle inside a square represents the random permutation of
all the columns in that square� Horizontal and vertical lines indicate the boundaries of the blocks
within the matrix� �d� shows another code with roughly the same pro�le as a Turbo code�

�

Hughes, Exh. 1056, p. 4f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


� Consequences

Some of the theoretical results proved for Gallager codes carry over to Turbo codes� The positive
ones �for example� that Gallager codes are �very good� dont carry over since they rely on creating
the whole matrix at random� But the negative ones do� One negative result is that Turbo codes
de�nitely cant get to the Shannon limit unless the constraint length of the constituent codes
grows�

� Discussion

For those of us who thought that there was a considerable distance in �code space between Turbo
codes and Gallager codes� this observation forces a shift in viewpoint� It also allows us to roll out
a few simple theorems about the maximum likelihood performance of Turbo codes�

So� given that they are such similar codes� what are the di�erences� Why are regular Gallager
codes worse than Turbo codes� We have caught up with Turbo codes only by ��� making them
over GF����
 ��� making them irregular� But notice these Turbo codes are binary and their parity
check matrices are pretty near regular�

I have some ideas about why Turbo are better�
Notice that the standard way of decoding a Gallager code is not how Turbo codes are decoded�

Message passing di�erent and would be more inaccurate in the Gallager style� Turbo sends
messages all the way along trellises� so the within�trellis messages are correct�

��� Wasted checks

Consider a Gallager code with tr � �� Imagine that of the four bits that participate in one check�
three of them happen to be well�determined given the output of the channel� This check allows
us instantly to correct the fourth bit� but then it plays no useful role� This is not the way a good
code works�

In contrast� in a Turbo code� if some bits are well determined� the sole e�ect is to prune the
trellis� Whatever bits are well�determined� the remaining bits participate in a trellis that looks
�locally� just the same�

�
Hughes, Exh. 1056, p. 5f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/

