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Abstract - This is a report on our ongoing effort 
to implement Low-Density Parity-Check codes with 
Iterative Belief Propagation decoding in a communi- 
cation system. The system requires the codes to have 
block lengths from 1000 to 2000 bits. We describe two 
different methods of constructing the codes using: (1) 
a combination of random and circulant matrices, and 
(2) random and circulant matrices with constraints 
to control the number of low weight codewords. We 
illustrate the performances of the different construc- 
tions with simulations. 

I. INTRODUCTION 
Sparse matrix parity-check code was introduced by Gal- 
lager [4] and has attracted much attention recently; see, for 
example, MacKay [6], Luby et al[5], and Bond [l]. 

The most common method of implementing the sparse ma- 
trix method is to randomly construct a m x (n + m) parity- 
check matrix 

H = [ R  C ] ,  
where R is mxn and C is m xm with certain desired properties 
and then put it into systematic form 

[ C-lR I ] .  

The most common condition to impose on the parity-check 
matrix H is that the locations of 1’s of any two different rows 
be different with at most one exception. The generator matrix 
is then m i  

C-’R 1 .  
Of course, there is no guarantee that the matrix C is invert- 
ible. Indeed, it is quite likely for C to be non-invertible. Note 
that C is not invertible in F z  if its base 10 determinant is even. 

11. CONSTRUCTION USING CIRCULANT MATRICES 
In our implementation, we use a circulant matrix C. Recall 
that a square matrix is circulant if each row of the matrix is 
the cyclic shift of the previous row. An example of a circulant 
matrix is 

1 1 0 0  [H i y ]  
It is easy to see that the inverse of a circulant matrix is again 
circulant. The use of a circulant matrix allows us to guaran- 
tee invertibility and to control the number of cycles. Another 
advantage of a circulant matrix is that it is automatically reg- 
ular. The most important reason for using a circulant matrix 
is the following mathematical fact. 

Let C be a circulant matrix with first row 
[ a0 a1 a,-1 3. We showed in Bond [3] that if 

a0 + a12 + + an-1zn-l is primitive in Fz[x], then 
each row of the inverse of C has asymptotically the same 
number of zeros and ones in each row. Using this fact on 
the inverse of primitive circulant matrices, it is not hard to 
see that the average weight of the check-bits is about m/2 
(see Bond [2]), where n is the number of check-bits. This 
guarantees good performance on the average when circulant 
matrices corresponding to  primitive polynomials are used in 
the construction. 

111. RANDOM AND CIRCULANT CONSTRUCTION WITH 
CONSTRAINTS 

By using a circulant matrix that corresponds to  a primitive 
polynomial in the construction of the parity-check matrix, we 
can guarantee that the average weight of the codewords is at 
least m/2. However, it is possible to have low weight code- 
words. We attempt to eliminate the low weight codewords by 
carefully choosing the random part of the parity-check matrix. 

The codewords are vectors of the form 

where b E F;. For w to be a low weight codeword, b and 
a = C-’Rb must have low weights. So to  have low weight 
codewords, the equation Rb = Ca must be solvable by low 
weight vectors b, a. We choose R carefully so that Rh = Ca 
has few or no solutions with low weight a’s and b’s. 

IV. CONCLUSIONS 
Low-density parity-check codes with excellent average dis- 

tance properties can be constructed by using parity-check ma- 
trices that are concatenations of circulant matrices and ran- 
dom matrices. However, these codes may have low minimum 
weights and this can give block error rates that are unaccept- 
able for many important applications. In this talk we present 
the block error rate for codes constructed using circulant ma- 
trices and codes that are obtained by carefully choosing the 
circulant matrix and random matrix to ensure that the result- 
ing codes have few or no low weight codewords. 
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