
A synthesizable IP Core for DVB-S2 LDPC Code Decoding

Frank Kienle, Torben Brack, Norbert Wehn
Microelectronic System Design Research Group

University of Kaiserslautern
Erwin-Schr6dinger-Stral3e

67663 Kaiserslautern, Germany
{kienle, brack, wehn}@eit.uni-kl.de

Abstract

The new standard for digital video broadcast DVB-S2
features Low-Density Parity-Check (LDPC) codes as their
channel coding scheme. The codes are definedfor various
code rates with a block size of 64800 which allows a trans-
mission close to the theoretical limits.

The decoding ofLDPC is an iterative process. For DVB-
S2 about 300000 messages are processed and reordered
in each of the 30 iterations. These huge data processing
and storage requirements are a real challenge for the de-
coder hardware realization, which has to fulfill the specified
throughput of 255MB it/s for base station applications.

In this paper we will show, to the best of our knowledge,
the first published IP LDPC decoder core for the DVB-S2
standard. We present a synthesizable IP block based on ST
Microelectronics 0. 13pm CMOS technology.

1 Introduction

The new DVB-S2 standard [1] features a powerful for-
ward error correction (FEC) system which enables trans-
mission close to the theoretical limit (Shannon limit). This
is enabled by using Low-Density Parity-Check (LDPC)
codes [2] one of the most powerful codes known today
which can even outperform Turbo-Codes 131. To provide
flexibility 11 different code rates ranging from (R = 1/4 up
to /io) are specified with a codeword length up to 64800
bits. This huge maximum codeword length is the reason
for the outstanding communications performance (0.7dB
to Shannon) of this DVB-S2 LDPC code proposal, so in
this paper we only focus on the codeword length of 64800
bits. To yield this performance, the decoder has to iterate 30
times. At each iteration up to 300 000 data are scrambled
and calculated. This huge data processing, storage and net-
work/interconnect requirements is a real challenge for the
decoder realization.

A LDPC code can be represented by a bipartite graph.
For the DVB-S2 code 64800 so called variable nodes (\ TN)
and 64800 * (1 - R) check nodes (CN) exist. The connec-
tivity of these two type of nodes is specified in the standard
[1]. For decoding the LDPC code messages are exchanged
iteratively between this two type of nodes, while the node
processing is of low complexity. Within one iteration first
the variable nodes are procesed, then the check nodes.

For a fully parallel hardware realization each node is
instantiated and the connections between them are hard-
wired. This was shown in [4] for a 1024 .bit LDPC code.
But even for this relatively short block length severe rout-
ing congestion problems exist. Therefore a partly paral-
lel architecture becomes mandatory for larger block length,
where only a subset of nodes are instantiated. A network
has to provide the required connectivity between VN and
CN nodes. But realizing any permutation pattern is very
costly in terms of area, delay and power.

To avoid this problem a decoder first design approach
was presented in [5]. First an architecture is specified and
afterwards a code is designed which fits this architecture.
This approach is only suitable for regular LDPC code where
each VN has the same number of incident edges, the CN
respectively. But for an improved communications perfor-
mance so called irregular LDPC codes are mandatory [6],
where the VN nodes are of varying degrees. This is the case
for the DVB-S2 code. In [7] we have presented a design
method for irregular LDPC codes which can be efficiently
processed by the decoder hardware. We used so called ir -
regular repeat accumulate (IRA) codes [8] which are within
the class of LDPC codes with the advantage of a very sim-
ple (linear) encoding complexity. In general, LDPC code
encoder are very difficult to implement due to the inherent
complex encoding scheme.

The LDPC codes as defined in the DVB-S2 standard
are IRA codes, thus the encoder realization is straight for-
ward. Furthermore, the DVB-S2 code shows regularities
which can be exploited for an efficient hardware realization.

1530-1591/05 $20.00 ' 2005 IEEE

Exhibit G
Page 105

Case 2:13-cv-07245-MRP-JEM Document 29 Filed 03/06/14 Page 106 of 130 Page ID
 #:414

CALTECH - EXHIBIT 2002
0001

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

	

K information nodes (IN) 	N parity nodes (PN)

�� f3

Q.:.QQ:Q QQQQ
Permutation H 	I

	

degree k 	
CN

Figure 1. Tanner graph for the DVB-S2 LDPC
code

These regularities are also the base for our methodology in-
troduced in [7].

In this paper we show how to exploit these regulari-
ties and present an efficient mapping of \TN and CN nodes
to hardware instances. Memory area and access conflicts
are most critical in this mapping process. Thus we used
simulated annealing to minimize memory requirements and
avoidance of RAM access conflicts.

We present to the best of our knowledge the first IP core
capable to process all specified code rates in the DVB-S2
standard. We show synthesis results using a 0.1 3pm tech-
nology.

The paper is structured as follows: the DVB-S2 LDPC
codes and the decoding algorithm are presented in Sec-
tion 2. In Section 3 the mapping of nodes to hardware
instances is explained. The overall decoder architecture is
shown in Section 4. Section 5 gives synthesis results and
Section 6 concludes the paper.

2 DVB-S2 LDPC Codes

LDPC codes are linear block codes defined by a sparse
binary matrix (parity check matrix) H. The set of valid
codewords x E C have to satisfy

	

HXT==0, 	VxEC. 	 (1)

A column in H is associated to a bit of the codeword
and each row corresponds to a parity check. A nonzero ele-
ment in a row means that the corresponding bit contributes
to this parity check. The code can best be described by
a Tanner graph [6], a graphical representation of the as-
sociations between code bits and parity checks. Code bits
are shown as variable nodes (circles), and parity checks as
check nodes (squares), with edges connecting them. The
number of edges on each node is called the node degree. If
the node degree is identical for all variable nodes, the cor -
responding parity check matrix is called regular, otherwise
it’s irregular.

By carefully inspection of the construction rules, the
DVB-S2 parity check matrix consists of two distinctive

Rate j I f3 k I 	N]K

/4 12 5400 10800 4 49600 16200

1/ 12 7200 14400 5 43200 21600
2/5 12 8640 17280 6 38880 25920

/2 8 12960 19440 7 32400 32400
3/ 12 12960 25920 11 25920 38880
2/3 13 1 	4320 38880 10 21600 1 43200
3/4 12 5400 43200 14 16200 48600
4/5 11 6480 45360 18 12960 51840
/6 13 5400 48600 22 10800 54000

8/9 4 7200 1 50400 1 27 7200 57600

9/io 4 6480 	1 51840 1 30 6480 58320

Table 1. Parameters describing the DVB-S2
LDPC Tanner graph for different coderates

parts: a random part dedicated to the systematic informa-
tion, and a fixed part that belongs to the parity information.
The Tanner graph for DVB-S2 is shown in Figure 1. There
exist two types of variable nodes, the information (IN) and
parity nodes (PN), corresponding to the systematic and par-
ity bits respectively. The permutation H represents the ran-
dom matrix part of the connectivity between IN and CN
nodes, while the PN nodes are all of degree two and are
connected in a fixed zigzag pattern to the CN nodes. The N
check nodes have a constant degree k. The K information
nodes consist of two subsets f, and f, with f the number
of IN nodes of degree] and 3. Table 1 summarizes the code
rate dependent parameters as defined in the standard [l].

The connectivity of the IN and CN nodes is defined by
the DVB-S2 encoding rule

Pj=PjEDIm, j=(x+q(mmod360))modN. (2)

Pj is the jth parity bit, ’m the mth information code bit, and
x, q, and N are code rate dependent parameters specified
by the DVB-S2 standard. Equation 2 determines the entries
of the parity check matrix. The mth column has nonzero
elements in each row j, thus the permutation H generates
one edge between every CN m and IN j.

The fixed zigzag connectivity of the PN and CN nodes is
defined by the encoding scheme:

PjPjPj-1, j=1,2,...,N�l. 	(3)

This is a simple accumulator. The corresponding part
of the parity check matrix has two nonzero elements in
each column, forming a square banded matrix. This type of
LDPC codes with this simple encoding procedure are also
called irregular repeat accumulate (IRA) codes [8].

2.1 Decoding Algorithm

LDPC codes can be decoded using the message pass-
ing algorithm [2]. It exchanges soft-information iteratively

Exhibit 0
Page 106

Case 2:13-cv-07245-MRP-JEM Document 29 Filed 03/06/14 Page 107 of 130 Page ID
 #:415

0002
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

panty node update (parallel)

b 	
check node update (parallel)

E(�Y
forward update (sequential)

backward update (parallel)

Figure 2. a) conventional message up-
date scheme b) optimized message update
scheme

between the variable and check nodes. The update of the
nodes can be done with a canonical scheduling [2]: In the
first step all variable nodes must be updated, in the second
step all check nodes respectively. The processing of indi-
vidual nodes within one step is independent, and can thus
be parallelized.

The exchanged messages are assumed to be log-
likelihood ratios (LLR). Each variable node of degree i cal-
culates an update of message k according to:

i�i

kch+ 	:X1, 	 (4)
1=0 1

with Xch the corresponding channel LLR of the VN and 2,
the LLRs of the incident edges. The check node LLR up-
dates are calculated according to

i�I
tanh(7.qj2) = [J tanh(71/2). 	(5)

l=O,lk

For fixed-point implementations it was shown in [91 that
the total quantization loss is < 0.1db when using a 6 bit
message quantization compared to infinite precision. For a
5 bit message quantization the loss is 0.1-0.2 dB [6].

2.2 Optimized update of degree 2 Parity Nodes

The DVB standard supports LDPC codes ranging from
code rate R = 1/4 to R = /io. Each code has one common
property: the connectivity of the check nodes caused by the
accumulator of the encoder. CN0 is aiway connected to CN,
by a variable node of degree 2 and so on for all CN nodes.
A variable node of degree 2 has the property that the input
of the first incident edge is the output of the second incident
edge (plus the received channel value) and vice versa. For a
sequential processing of the check nodes (e.g. from left to
right in Figure 1) an already updated message can directly
passed to the next check node due to the simple zigzag con-
nectivity. This immediate message update changes the con-

Rate q I 	EPN I 	EIN 	
]
_Addr

1/4 135 97199 97200 270
1/3 120 86399 129600 360
2/5 108 77759 155520 432
1/2 90 64799 162000 450
3/5 72 51839 233280 648
2/3 60 43199 172800 480
3/4 45 32399 194400 540
4/5 36 25919 207360 576
/6 30 21599 216000 600

8/9 20 14399 180000 500
9/lo 18 12959 1 181440 504

Table 2. Code rate dependent parameters,
with E the number of incident edges of IN and
PN nodes and Addr the number of values re-
quired to store the code stucture

ventional update scheme between CN an VN nodes (Equa-
tion 4).

The difference in the update scheme is presented in Fig-
ure 2. Only the connectivity between check nodes and par-
ity nodes is depicted, the incident edges from the informa-
tion nodes are omitted. Figure 2a) shows the standard belief
propagation with the two phase update. In the first phase all
messages from the PN to CN nodes are updated, in the sec-
ond phase the messages from CN to PN nodes respectively.
The message update within one phase is commutative and
can be frilly parallized. Figure 2b) shows our new message
update scheme in which the new CN message is directly
passed to the next CN node. This data flow is denoted as
a forward update and corresponds to a sequential message
update. The backwards update from the PN to CN nodes is
again a parallel update. Note that a sequential backwards
update would result in a maximum a posteriori (MAP) al-
gorithm.

This new update scheme improves the communications
performance. For the same communications performance
10 iterations can be saved i.e. 30 iterations instead of 40
have to be used. Furthermore we need to store only one
message instead of two messages for the next iteration,
which is explained in more detail in Section 4.

3 Hardware mapping

As already mentioned only partly parallel architectures
are feasible. Hence only a subset P of the nodes are instan-
tiated. The variable and check nodes have to be mapped on
these P functional units. All messages have to be stored dur -
ing the iterative process, while taking care of RAM access
conflicts. Furthermore we need a permutation networks
which provides the connectivity of the Tanner graph. -

Exhibit G
Page 107

Case 2:13-cv-07245-MRP-JEM Document 29 Filed 03/06/14 Page 108 of 130 Page ID
 #:416

0003
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

360 message RAM banks
0 rir

1
rn

13601 13611 13621 7211

I 720 I 	I 721 722 I 10191 [nfonnationNodes1
18081 110801 110821 I 19I

message mapping 114401 114411 114421 117991 shiftvolue
18001 18011 118021 12159 1
2160 11 .

iou

32041 3204 323
I 	304 I
1081
131

otr4ls
VN 0flotwl

1210 I
1140 	I
Il

shuffling 1 	I
network ii ". 	-._

0 I 	90 I 1180 I l3231 I 	40
1 I I 	91 I 11811 b23 1 I 	60

2 I I 	92 I 182 I I32312
113

I 	410
Check Nodes I I 93 I I 883 I I3231a 330

4 I 	94 1184 1323141 I message mapping I 	I 95 I 	I 1185 I 	I I32315fl I
6 II I 	96 I 186J I 	� � � bntd I I 	100

89 07911 269 1 I 1323991 ’

CN fiunctionol
units

Figure 3. Message and functional unit map-
ping for R=

We can split the set of edges E connecting the check
nodes in two subsets EJN and Epg, indicating the connec-
tions between CN/IN nodes and CNIPN nodes respectively.
The subsets are shown in Table 2 for each code rate. Fur -
thermore the q factor of Equation 2 is listed. The implemen-
tation of EJN is the challenging part, since this connectivity
(11) changes for each code rate. The realization of EPN is
straightforward, thus we focus on the mapping of the IN
and CN nodes.

Due to the varying node degrees the functional nodes
process all incoming messages in a serial manner. Thus a
functional node can except one message per clock cycle and
produces at most one updated message per clock cycle.

A careful analysis of Equation 2 shows that the connec-
tivity of 360 edges of distinct information nodes are deter-
mined by just one value x, while q is a code rate dependent
constant, see Table 2.

These 360 edges can be processed simultaneously by
P = 360 functional units. Within a half iteration a func-
tional unit has to process q * (k �2) edges. (k �2) is the
number of edges between one check node and information
nodes. For each code rate q was chosen to satisfy the con-
straint

EJN1360=q*(k-2). 	 (6)

It guarantees that each functional unit has to process the
same amount of nodes which simplifies the node mapping.
Figure 3 shows the mapping of the IN and CN nodes for the
LDPC code of rate R = 1/2. Always 360 consecutive VN
nodes are mapped to 360 functional units. To each func-

tional unit a RAM is associated to hold the corresponding
messages (edges). Please note that for each IN of degree
8, 8 storage places are allocated to this VN, because each
incident edge has to be stored.

The check nodes mapping depends on the rate depen-
dent factor q. For R = 1/2 the first q = 90 CN nodes are
mapped to the first functional unit. The next 90 CN nodes
are mapped to the next producer and so on. Again the CN
number corresponds to CN degree storage locations.

This node mapping is the key for an efficient hardware
realization, since it enables to use a simple shuffling net-
work to provide the connectivity of the Tanner graph. The
shuffling network ensures that at each cycle 360 input mes-
sages are shuffled to 360 distinct target memories. Thus we
have to store Ejy1390 = 450 shuffling and addressing infor-
mation for the R = 1/2 code, see Table 2 for the other code
rates. The shuffling offsets and addresses can be extracted
from the x tables provided by [1].

4 Decoder Architecture

Based on the message mapping described in the previ-
ous chapter, the basic architecture of the DVB-S2 LDPC
decoder is shown in Figure 4. It consists of functional units
which can process the functionality of variable and check
nodes. This is possible, since only one type of the node are
processed during one half iteration. The IN message menlo-
ries banks hold the messages which are exchanged between
information and check nodes. Furthermore we have memo-
ries for storing the exchanged messages for the parity nodes
(PN message memories), which are all of degree two. The
address and shuffling RAM together with the shuffling net-
work provides the connectivity of the Tanner graph.

As mentioned the decoder processes 360 nodes in par-
allel so 360 messages have to be provided per cycle. All
360 messages are read from the same address from the IN
message memory bank. Though, for the information node
processing we just increment the reading address. The func-
tional unit can accept each clock cycle new data, while a
control flag just labels the last message belonging to a node
and starts the output processing. The newly produced 360
messages are then written back to the same address loca-
tion but with a cyclic shift, caused by the shuffling network.
To process the check nodes we have to read from dedicated
addresses, provided by the address RAM. These addresses
were extracted from node mapping as described in the pre-
vious chapter. Again 360 messages are read per clock cycle
and written back to the same address after the processing
via the shuffling network. This ensures that the messages
are shuffled back to their original position.

The processing of the parity nodes can be done con-
currently during the check node processing, by using the
update soheme described in Section 2.2. Each functional

4

Exhibit

Page 108

Case 2:13-cv-07245-MRP-JEM Document 29 Filed 03/06/14 Page 109 of 130 Page ID
 #:417

0004
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Figure 4. Basic architecture of our LDPC decoder

unit processes consecutive check nodes (Figure 3). The
message which is passed during the forward update of the
check nodes is kept in the functional unit. Only the mes-
sages of the backward update has to be stored which re-
duces the memory requirements for the zigzag connectivity
to EpN12 messages. The PN message memories are only
read and written during the check node phase, while the
channel (CH) RAMs delivers the corresponding received
channel value.

We use single port SEAMs due to area and power ef-
ficiency. Hence we have to take care of read/write con-
flicts during the iterative process. Read/write conflicts oc-
cur, since data are continously read from the 360 RAMs and
provided to the functional units, while new processed mes-
sages have to be written back.

The check node processing is the most critical part.
We have to read from dedicated addresses extracted dur-
ing the mapping process. Therefore, the IN message mem-
ory block is partitioned in 4 RAMs which is shown in Fig-
ure 5. Even if the commutativity of the message processing
within a check node is exploited all write conflicts can not
be avoided. Therefore a buffer is required to hold a mes-
sage if writing is not possible due to a conflict. We use
simulated annealing to find the best addressing scheme to
reduce RAM access conflicts and hence to minimize the
buffer overhead. This optimization step ensures that only
one buffer is required which holds for all code rates. Per
clock cycle we read data from one RAM, and write at most
2 data back to two distinct RAMs, coming from the buffers
or the shuffling network. The two least significant bits of
the addresses determines the assignment to a partition. This

allows a simple control flow, which just has to compare the
reading and the writing addresses of the current clock cycle.

The resulting decoder throughput T is

T=_:_.f, 	 (7)
#cyc

with I the number of information bits to be decoded and
#cyc the number of cycles to decode one block including
the input/output (I/O) processing.

The number of cycles is calculated as 	+It. (2. W).
Thus Equation 7 yields:

I

+It (2.(+Tiatency))
feycie. 	(8)

P10 	 P

The part C is the number of cycles for input/output Flo
(110) processing. The decoder is capable to receive 10 chan-
nel values per clock cycle. Reading a new codeword of size
C and writing the result of the prior processed block can be
done in parallel with reading/writing Pio data concurrently.
The latency Tiazency for each iteration depends on the pro-
cessing units and the shuffling network.

5 Results

The LDPC decoder is implemented as a synthesizable
VHDL model. Results are obtained with the Synopsis
Design Compiler based on a ST Microelectronics 0.1 3pm
CMOS technology. The maximum clock frequency is 270
MHz under worst case conditions. The decoder is capable
to process all specified code rates of the DVB standard with

Exhibit G
Page 109

Case 2:13-cv-07245-MRP-JEM Document 29 Filed 03/06/14 Page 110 of 130 Page ID
 #:418

0005
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

