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Abstract 

The new standard for digital video broadcast DVB-S2 
features Low-Density Parity-Check (LDPC) codes as their 
channel coding scheme. The codes are definedfor various 
code rates with a block size of 64800 which allows a trans-
mission close to the theoretical limits. 

The decoding ofLDPC is an iterative process. For DVB-
S2 about 300000 messages are processed and reordered 
in each of the 30 iterations. These huge data processing 
and storage requirements are a real challenge for the de-
coder hardware realization, which has to fulfill the specified 
throughput of 255MB it/s for base station applications. 

In this paper we will show, to the best of our knowledge, 
the first published IP LDPC decoder core for the DVB-S2 
standard. We present a synthesizable IP block based on ST 
Microelectronics 0. 13pm CMOS technology. 

1 Introduction 

The new DVB-S2 standard [1] features a powerful for-
ward error correction (FEC) system which enables trans-
mission close to the theoretical limit (Shannon limit). This 
is enabled by using Low-Density Parity-Check (LDPC) 
codes [2] one of the most powerful codes known today 
which can even outperform Turbo-Codes 131. To provide 
flexibility 11 different code rates ranging from (R = 1/4 up 
to /io) are specified with a codeword length up to 64800 
bits. This huge maximum codeword length is the reason 
for the outstanding communications performance (0.7dB 
to Shannon) of this DVB-S2 LDPC code proposal, so in 
this paper we only focus on the codeword length of 64800 
bits. To yield this performance, the decoder has to iterate 30 
times. At each iteration up to 300 000 data are scrambled 
and calculated. This huge data processing, storage and net-
work/interconnect requirements is a real challenge for the 
decoder realization. 

A LDPC code can be represented by a bipartite graph. 
For the DVB-S2 code 64800 so called variable nodes (\ TN) 
and 64800 * (1 - R) check nodes (CN) exist. The connec-
tivity of these two type of nodes is specified in the standard 
[1]. For decoding the LDPC code messages are exchanged 
iteratively between this two type of nodes, while the node 
processing is of low complexity. Within one iteration first 
the variable nodes are procesed, then the check nodes. 

For a fully parallel hardware realization each node is 
instantiated and the connections between them are hard-
wired. This was shown in [4] for a 1024 .bit LDPC code. 
But even for this relatively short block length severe rout-
ing congestion problems exist. Therefore a partly paral-
lel architecture becomes mandatory for larger block length, 
where only a subset of nodes are instantiated. A network 
has to provide the required connectivity between VN and 
CN nodes. But realizing any permutation pattern is very 
costly in terms of area, delay and power. 

To avoid this problem a decoder first design approach 
was presented in [5]. First an architecture is specified and 
afterwards a code is designed which fits this architecture. 
This approach is only suitable for regular LDPC code where 
each VN has the same number of incident edges, the CN 
respectively. But for an improved communications perfor-
mance so called irregular LDPC codes are mandatory [6], 
where the VN nodes are of varying degrees. This is the case 
for the DVB-S2 code. In [7] we have presented a design 
method for irregular LDPC codes which can be efficiently 
processed by the decoder hardware. We used so called ir -
regular repeat accumulate (IRA) codes [8] which are within 
the class of LDPC codes with the advantage of a very sim-
ple (linear) encoding complexity. In general, LDPC code 
encoder are very difficult to implement due to the inherent 
complex encoding scheme. 

The LDPC codes as defined in the DVB-S2 standard 
are IRA codes, thus the encoder realization is straight for-
ward. Furthermore, the DVB-S2 code shows regularities 
which can be exploited for an efficient hardware realization. 
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Figure 1. Tanner graph for the DVB-S2 LDPC 
code 

These regularities are also the base for our methodology in-
troduced in [7]. 

In this paper we show how to exploit these regulari-
ties and present an efficient mapping of \TN and CN nodes 
to hardware instances. Memory area and access conflicts 
are most critical in this mapping process. Thus we used 
simulated annealing to minimize memory requirements and 
avoidance of RAM access conflicts. 

We present to the best of our knowledge the first IP core 
capable to process all specified code rates in the DVB-S2 
standard. We show synthesis results using a 0.1 3pm tech-
nology. 

The paper is structured as follows: the DVB-S2 LDPC 
codes and the decoding algorithm are presented in Sec-
tion 2. In Section 3 the mapping of nodes to hardware 
instances is explained. The overall decoder architecture is 
shown in Section 4. Section 5 gives synthesis results and 
Section 6 concludes the paper. 

2 DVB-S2 LDPC Codes 

LDPC codes are linear block codes defined by a sparse 
binary matrix (parity check matrix) H. The set of valid 
codewords x E C have to satisfy 

	

HXT==0, 	VxEC. 	 (1) 

A column in H is associated to a bit of the codeword 
and each row corresponds to a parity check. A nonzero ele-
ment in a row means that the corresponding bit contributes 
to this parity check. The code can best be described by 
a Tanner graph [6], a graphical representation of the as-
sociations between code bits and parity checks. Code bits 
are shown as variable nodes (circles), and parity checks as 
check nodes (squares), with edges connecting them. The 
number of edges on each node is called the node degree. If 
the node degree is identical for all variable nodes, the cor -
responding parity check matrix is called regular, otherwise 
it’s irregular. 

By carefully inspection of the construction rules, the 
DVB-S2 parity check matrix consists of two distinctive 

Rate j I f3 k I 	N]K 

/4 12 5400 10800 4 49600 16200 

1/ 12 7200 14400 5 43200 21600 
2/5 12 8640 17280 6 38880 25920 

/2 8 12960 19440 7 32400 32400 
3/ 12 12960 25920 11 25920 38880 
2/3 13 1 	4320 38880 10 21600 1 43200 
3/4 12 5400 43200 14 16200 48600 
4/5 11 6480 45360 18 12960 51840 
/6 13 5400 48600 22 10800 54000 

8/9 4 7200 1 50400 1 27 7200 57600 

9/io 4 6480 	1 51840 1 30 6480 58320 

Table 1. Parameters describing the DVB-S2 
LDPC Tanner graph for different coderates 

parts: a random part dedicated to the systematic informa-
tion, and a fixed part that belongs to the parity information. 
The Tanner graph for DVB-S2 is shown in Figure 1. There 
exist two types of variable nodes, the information (IN) and 
parity nodes (PN), corresponding to the systematic and par-
ity bits respectively. The permutation H represents the ran-
dom matrix part of the connectivity between IN and CN 
nodes, while the PN nodes are all of degree two and are 
connected in a fixed zigzag pattern to the CN nodes. The N 
check nodes have a constant degree k. The K information 
nodes consist of two subsets f, and  f, with  f the number 
of IN nodes of degree] and 3. Table 1 summarizes the code 
rate dependent parameters as defined in the standard [l]. 

The connectivity of the IN and CN nodes is defined by 
the DVB-S2 encoding rule 

Pj=PjEDIm, j=(x+q(mmod360))modN. ( 2) 

Pj is the jth parity bit, ’m  the mth information code bit, and 
x, q, and N are code rate dependent parameters specified 
by the DVB-S2 standard. Equation 2 determines the entries 
of the parity check matrix. The mth column has nonzero 
elements in each row j, thus the permutation H generates 
one edge between every CN m and IN j. 

The fixed zigzag connectivity of the PN and CN nodes is 
defined by the encoding scheme: 

PjPjPj-1, j=1,2,...,N�l. 	(3) 

This is a simple accumulator. The corresponding part 
of the parity check matrix has two nonzero elements in 
each column, forming a square banded matrix. This type of 
LDPC codes with this simple encoding procedure are also 
called irregular repeat accumulate (IRA) codes [8]. 

2.1 Decoding Algorithm 

LDPC codes can be decoded using the message pass-
ing algorithm [2]. It exchanges soft-information iteratively 
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panty node update (parallel) 
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Figure 2. a) conventional message up-
date scheme b) optimized message update 
scheme 

between the variable and check nodes. The update of the 
nodes can be done with a canonical scheduling [2]: In the 
first step all variable nodes must be updated, in the second 
step all check nodes respectively. The processing of indi-
vidual nodes within one step is independent, and can thus 
be parallelized. 

The exchanged messages are assumed to be log-
likelihood ratios (LLR). Each variable node of degree i cal-
culates an update of message k according to: 

i�i 

kch+ 	:X1, 	 (4) 
1=0 1 

with Xch the corresponding channel LLR of the VN and 2, 
the LLRs of the incident edges. The check node LLR up-
dates are calculated according to 

i�I 
tanh(7.qj2) = [J tanh(71/2). 	(5) 

l=O,lk 

For fixed-point implementations it was shown in [91 that 
the total quantization loss is < 0.1db when using a 6 bit 
message quantization compared to infinite precision. For a 
5 bit message quantization the loss is 0.1-0.2 dB [6]. 

2.2 Optimized update of degree 2 Parity Nodes 

The DVB standard supports LDPC codes ranging from 
code rate R = 1/4 to R = /io. Each code has one common 
property: the connectivity of the check nodes caused by the 
accumulator of the encoder. CN0 is aiway connected to CN, 
by a variable node of degree 2 and so on for all CN nodes. 
A variable node of degree 2 has the property that the input 
of the first incident edge is the output of the second incident 
edge (plus the received channel value) and vice versa. For a 
sequential processing of the check nodes (e.g. from left to 
right in Figure 1) an already updated message can directly 
passed to the next check node due to the simple zigzag con-
nectivity. This immediate message update changes the con- 

Rate q I 	EPN  I 	EIN 	
] 
_Addr 

1/4 135 97199 97200 270 
1/3 120 86399 129600 360 
2/5 108 77759 155520 432 
1/2 90 64799 162000 450 
3/5 72 51839 233280 648 
2/3 60 43199 172800 480 
3/4 45 32399 194400 540 
4/5 36 25919 207360 576 
/6 30 21599 216000 600 

8/9 20 14399 180000 500 
9/lo 18 12959 1 181440 504 

Table 2. Code rate dependent parameters, 
with E the number of incident edges of IN and 
PN nodes and Addr the number of values re-
quired to store the code stucture 

ventional update scheme between CN an VN nodes (Equa-
tion 4). 

The difference in the update scheme is presented in Fig-
ure 2. Only the connectivity between check nodes and par-
ity nodes is depicted, the incident edges from the informa-
tion nodes are omitted. Figure 2a) shows the standard belief 
propagation with the two phase update. In the first phase all 
messages from the PN to CN nodes are updated, in the sec-
ond phase the messages from CN to PN nodes respectively. 
The message update within one phase is commutative and 
can be frilly parallized. Figure 2b) shows our new message 
update scheme in which the new CN message is directly 
passed to the next CN node. This data flow is denoted as 
a forward update and corresponds to a sequential message 
update. The backwards update from the PN to CN nodes is 
again a parallel update. Note that a sequential backwards 
update would result in a maximum a posteriori (MAP) al-
gorithm. 

This new update scheme improves the communications 
performance. For the same communications performance 
10 iterations can be saved i.e. 30 iterations instead of 40 
have to be used. Furthermore we need to store only one 
message instead of two messages for the next iteration, 
which is explained in more detail in Section 4. 

3 Hardware mapping 

As already mentioned only partly parallel architectures 
are feasible. Hence only a subset P of the nodes are instan-
tiated. The variable and check nodes have to be mapped on 
these P functional units. All messages have to be stored dur -
ing the iterative process, while taking care of RAM access 
conflicts. Furthermore we need a permutation networks 
which provides the connectivity of the Tanner graph. - 

Exhibit G 
Page 107 

Case 2:13-cv-07245-MRP-JEM   Document 29   Filed 03/06/14   Page 108 of 130   Page ID
 #:416

0003
f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


360 message RAM banks 
0 rir 

1 
rn 

13601 13611 13621 7211 

I 720  I 	I 721 722 I 10191 [nfonnationNodes1 
18081 110801 110821 I 19I 

message mapping 114401 114411 114421 117991 shiftvolue 
18001 18011 118021 12159 1 
2160 11 . 

iou 

32041  3204 323 
I 	304 I 
1081 
131 

otr4ls 
VN 0flotwl 

 
1210 I 
1140 	I 
Il 

shuffling 1 	I 
network ii ". 	-._ 

0 I 	90 I 1180 I l3231 I 	40 
1 I I 	91 I 11811 b23 1 I 	60 

2 I I 	92 I 182 I I32312 
113 

I 	410 
Check Nodes I I 93  I I 883  I I3231a 330 

4 I 	94 1184 1323141 I message mapping I 	I 95 I 	I 1185 I 	I I32315fl I 
6 II I 	96 I 186J I 	� � � bntd I I 	100 

89 07911 269 1 I 1323991 ’ 

CN fiunctionol 
units 

Figure 3. Message and functional unit map-
ping for R= 

We can split the set of edges E connecting the check 
nodes in two subsets EJN  and Epg, indicating the connec-
tions between CN/IN nodes and CNIPN nodes respectively. 
The subsets are shown in Table 2 for each code rate. Fur -
thermore the q factor of Equation 2 is listed. The implemen-
tation of EJN  is the challenging part, since this connectivity 
(11) changes for each code rate. The realization of EPN  is 
straightforward, thus we focus on the mapping of the IN 
and CN nodes. 

Due to the varying node degrees the functional nodes 
process all incoming messages in a serial manner. Thus a 
functional node can except one message per clock cycle and 
produces at most one updated message per clock cycle. 

A careful analysis of Equation 2 shows that the connec-
tivity of 360 edges of distinct information nodes are deter-
mined by just one value x, while q is a code rate dependent 
constant, see Table 2. 

These 360 edges can be processed simultaneously by 
P = 360 functional units. Within a half iteration a func-
tional unit has to process q * (k �2) edges. (k �2) is the 
number of edges between one check node and information 
nodes. For each code rate q was chosen to satisfy the con-
straint 

EJN1360=q*(k-2). 	 (6) 

It guarantees that each functional unit has to process the 
same amount of nodes which simplifies the node mapping. 
Figure 3 shows the mapping of the IN and CN nodes for the 
LDPC code of rate R = 1/2. Always 360 consecutive VN 
nodes are mapped to 360 functional units. To each func- 

tional unit a RAM is associated to hold the corresponding 
messages (edges). Please note that for each IN of degree 
8, 8 storage places are allocated to this VN, because each 
incident edge has to be stored. 

The check nodes mapping depends on the rate depen-
dent factor q. For R = 1/2 the first q = 90 CN nodes are 
mapped to the first functional unit. The next 90 CN nodes 
are mapped to the next producer and so on. Again the CN 
number corresponds to CN degree storage locations. 

This node mapping is the key for an efficient hardware 
realization, since it enables to use a simple shuffling net-
work to provide the connectivity of the Tanner graph. The 
shuffling network ensures that at each cycle 360 input mes-
sages are shuffled to 360 distinct target memories. Thus we 
have to store Ejy1390 = 450 shuffling and addressing infor-
mation for the R = 1/2 code, see Table 2 for the other code 
rates. The shuffling offsets and addresses can be extracted 
from the x tables provided by [1]. 

4 Decoder Architecture 

Based on the message mapping described in the previ-
ous chapter, the basic architecture of the DVB-S2 LDPC 
decoder is shown in Figure 4. It consists of functional units 
which can process the functionality of variable and check 
nodes. This is possible, since only one type of the node are 
processed during one half iteration. The IN message menlo-
ries banks hold the messages which are exchanged between 
information and check nodes. Furthermore we have memo-
ries for storing the exchanged messages for the parity nodes 
(PN message memories), which are all of degree two. The 
address and shuffling RAM together with the shuffling net-
work provides the connectivity of the Tanner graph. 

As mentioned the decoder processes 360 nodes in par-
allel so 360 messages have to be provided per cycle. All 
360 messages are read from the same address from the IN 
message memory bank. Though, for the information node 
processing we just increment the reading address. The func-
tional unit can accept each clock cycle new data, while a 
control flag just labels the last message belonging to a node 
and starts the output processing. The newly produced 360 
messages are then written back to the same address loca-
tion but with a cyclic shift, caused by the shuffling network. 
To process the check nodes we have to read from dedicated 
addresses, provided by the address RAM. These addresses 
were extracted from node mapping as described in the pre-
vious chapter. Again 360 messages are read per clock cycle 
and written back to the same address after the processing 
via the shuffling network. This ensures that the messages 
are shuffled back to their original position. 

The processing of the parity nodes can be done con-
currently during the check node processing, by using the 
update soheme described in Section 2.2. Each functional 
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Figure 4. Basic architecture of our LDPC decoder 

unit processes consecutive check nodes (Figure 3). The 
message which is passed during the forward update of the 
check nodes is kept in the functional unit. Only the mes-
sages of the backward update has to be stored which re-
duces the memory requirements for the zigzag connectivity 
to EpN12  messages. The PN message memories are only 
read and written during the check node phase, while the 
channel (CH) RAMs delivers the corresponding received 
channel value. 

We use single port SEAMs due to area and power ef-
ficiency. Hence we have to take care of read/write con-
flicts during the iterative process. Read/write conflicts oc-
cur, since data are continously read from the 360 RAMs and 
provided to the functional units, while new processed mes-
sages have to be written back. 

The check node processing is the most critical part. 
We have to read from dedicated addresses extracted dur-
ing the mapping process. Therefore, the IN message mem-
ory block is partitioned in 4 RAMs which is shown in Fig-
ure 5. Even if the commutativity of the message processing 
within a check node is exploited all write conflicts can not 
be avoided. Therefore a buffer is required to hold a mes-
sage if writing is not possible due to a conflict. We use 
simulated annealing to find the best addressing scheme to 
reduce RAM access conflicts and hence to minimize the 
buffer overhead. This optimization step ensures that only 
one buffer is required which holds for all code rates. Per 
clock cycle we read data from one RAM, and write at most 
2 data back to two distinct RAMs, coming from the buffers 
or the shuffling network. The two least significant bits of 
the addresses determines the assignment to a partition. This  

allows a simple control flow, which just has to compare the 
reading and the writing addresses of the current clock cycle. 

The resulting decoder throughput T is 

T=_:_.f, 	 (7) 
#cyc 

with I the number of information bits to be decoded and 
#cyc the number of cycles to decode one block including 
the input/output (I/O) processing. 

The number of cycles is calculated as 	+It. (2. W). 
Thus Equation 7 yields: 

I 

+It (2.(+Tiatency)) 
feycie. 	(8) 

P10 	 P 

The part C is the number of cycles for input/output Flo 
(110) processing. The decoder is capable to receive 10 chan- 
nel values per clock cycle. Reading a new codeword of size 
C and writing the result of the prior processed block can be 
done in parallel with reading/writing Pio data concurrently. 
The latency Tiazency  for each iteration depends on the pro-
cessing units and the shuffling network. 

5 Results 

The LDPC decoder is implemented as a synthesizable 
VHDL model. Results are obtained with the Synopsis 
Design Compiler based on a ST Microelectronics 0.1 3pm 
CMOS technology. The maximum clock frequency is 270 
MHz under worst case conditions. The decoder is capable 
to process all specified code rates of the DVB standard with 
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