FILE HISTORY

US 5,915,210

PATENT: $\quad 5,915,210$
INVENTORS: Cameron, Dennis Wayne
Roehr, Jr., Walter Charles
Bhagat, Jai P.
Garahi, Masood
Hays, William D.
Ackerman, David W.
TITLE: \quad Method and system for providing multicarrier simulcast transmission

APPLICATION
NO:
FILED: $\quad 24$ JUL 1997
ISSUED: 22 JUN 1999
COMPILED: 19 AUG 2013

O DENNIS WAYNE CAMERON, JACKSON, MS; WALTER CHARLES ROEHR JR, , RESTON, VA:
S JAI F. BHAGAT, JACKSON, MS; MASOOD GARAHI, MADISON, MS; WILLIAM D. HAYS;
JACKSON, MS; DAVID W. ACKERMAN. WASHINGTON, DC. O JACKSON, MS; DAVID W. ACKERMAN, WASHINGTON, DC.

BEST COPY

FOREIGN/PCT APRLICATFONS**********
VERIFIED
\qquad

FOREIGN FILING LICENSE GRANTED 09/10/97

METHOD AND SYSTEM FOR PROVIDING MULTICARRIER SIMULCAST TRANSMISSION
E
Us_DEPT, OF COMM./PAT. \& TM-PTO-436L (Ren:12.94)

METHOD AND SYSTEM FOR PROVIDING MULTICARRIER SIMULCAST TRANSMISSION

Transaction History

Date	Transaction Description
$12-06-1996$	Incoming Letter Pertaining to the Drawings
$12-06-1996$	Preliminary Amendment
$12-06-1996$	Preliminary Amendment
$01-03-1997$	Initial Exam Team nn
$02-21-1997$	Application Captured on Microfilm
$03-07-1997$	Case Docketed to Examiner in GAU
$04-25-1997$	Mail Notice of Allowance
$04-25-1997$	Notice of Allowance Data Verification Completed
$04-25-1997$	Mail Examiner's Amendment
$04-25-1997$	Examiner's Amendment Communication
$03-25-1998$	Mail Abandonment for Failure to Correct Drawings/Oath
$03-25-1998$	Abandonment for Failure to Correct Drawings/Oath/NonPub Request
$04-09-1998$	Abandonment for Purposes of Filing an FWC - File Combined with Child Application

$\mathbf{5 , 9 1 5 , 2 1 0}$

METHOD AND SYSTEM FOR PROVIDING MULTICARRIER SIMULCAST TRANSMISSION

Transaction History

Date	Transaction Description
07-24-1997	Preliminary Amendment
08-21-1997	Initial Exam Team nn
08-26-1997	IFW Scan \& PACR Auto Security Review
09-12-1997	Amendment after Notice of Allowance (Rule 312)
09-12-1997	Information Disclosure Statement (IDS) Filed
09-12-1997	Information Disclosure Statement (IDS) Filed
09-15-1997	Application Dispatched from OIPE
12-19-1997	Information Disclosure Statement (IDS) Filed
12-19-1997	Information Disclosure Statement (IDS) Filed
04-09-1998	Case Docketed to Examiner in GAU
04-16-1998	Mail Notice of Allowance
04-16-1998	Notice of Allowance Data Verification Completed
04-16-1998	Mail Examiner's Amendment
04-16-1998	Examiner's Amendment Communication
06-16-1998	Issue Fee Payment Verified
06-16-1998	Mailroom Date of Drawing(s)
06-19-1998	Application Ordered to Match Drawing(s)
06-19-1998	Drawing(s) Received at Publications
06-24-1998	Application Received to Match Drawing(s)
07-28-1998	Drawing(s) Processing Completed
$07-28-1998$	Drawing(s) Matched to Application
09-15-1998	Date Forwarded to Examiner
09-23-1998	Mail Response to 312 Amendment (PTO-271)
09-23-1998	Response to Amendment under Rule 312
01-06-1999	Mailroom Date of Drawing(s)
01-08-1999	Drawing(s) Received at Publications
06-11-1999	Issue Notification Mailed
06-22-1999	Recordation of Patent Grant Mailed
$10-27-1999$	Post Issue Communication - Certificate of Correction

POSITION		ID No.	DATE
CLASSIFIER		12	$1 / 20117$
EXAMINER		412	$1270 \rightarrow 7$
TYPIST		NK	2.12
VERIFIER 7 ¢	$2 / 13$	4 Hl	$21 / 5$
CORPS CORR.			
SPEC. HAND			
FILE MAINT.			
DRAFTING			

INDEX OF CLAIMS

POSITION	ID NO.	DATE
CLASSIFIER		
EXAMINER	CAt	G/P/ C17
TYPIST		${ }^{1} 1$
VERIFIER		
CORPS CORR.		
SPEC. HAND		
FILE MAINT.		
DRAFTING		

INDEX OF CLAIMS

(LEFT INSIDE)

SEARCHED

U.S. Patent Jun. 22, $1999 \quad$ Sheet 1 of $30 \quad 5,915,210$

FIG. $/$
PRIOR ART

U.S. Patent Jun. 22, $1999 \quad$ Sheet 2 of $30 \quad 5,915,210$

FIG. 7

U.S. Patent Jun. 22, $1999 \quad$ Sheet 9 of $30 \quad 5,915,210$

FIG. 10

U.S. Patent Jun. 22, $1999 \quad$ Shet 11 of $30 \quad 5,915,210$

FIG. 11

U.S. Patent Jun. 22, $1999 \quad$ Sheet 12 of $30 \quad 5,915,210$

FIG. 12

U.S. Patent Jun. 22, $1999 \quad$ Sheet 13 of $30 \quad 5,915,210$

FIG. 16

Mobile Transceiver

FIG. 17

Mobile Receiver

FIG. 19

FIG. 21

	FIG. 22		2200	
2202	22042206		2208	2210
User 1	No, of Probe Signals Sent	No. of Registration Signals Received	No. of Messages Successfully Delivered	Other Traffic Data
User 2	No. of Probe Signals Sent	No. of Registration Signals Received	No. of Massages Successfully Delivered	Other Traffic Data
User 3	No. of Probe Signals Sent	No. of Registration Signals Received	No. of Messages Successfully Delivered	Other Traffic Data
User 4	No. of Probe Signals Sent	No, of Registration Signals Received	No of Messages Successfully Delivered	Other Traffic Data
	* *			

Service Queue

,2402	2404	2406	2408
Base Transmitter 1	Zonal Assignment	Base Receivers in Coverage Area	Other Data
Base Transmitter 2	Zonal Assignment	Base Receivers in Coverage Area	Other Data
Base Transmitter 3	Zonal Assignment	Base Receivers in Coverage Area	Other Data
Base Transmitter 4	Zonal Assignment	Base Receivers in Coverage Area	Other Data
. . *			

Base Transmitter Database

U.S. Patent Jun. 22, $1999 \quad$ Sheet 26 of $30 \quad 5,915,210$

FIG. 26

FIG. 28(4)

FIG. 28(B)

1

METHOD AND SYSTEM FOR PROVIDING
MULTICARRIER SIMULCAST TRANSMISSION

This application is a continuation of application Ser. No. s $08 / 760,457$, filed Dee. 6,1996 , now abandoned, which is a Rule 60 continuation of prior application Ser. No. 07/973, 918, filed Nov. 12, 1992, now U.S. Pat. No. 5,590,403.

BACKGROUND OF THE INVENTION

A. Field of the Invention

The present invention relates to methods and systems for providing two-way communication capability between a central oetwork and a mobile unit over a relatively large area, and more particularly to such methods and systems which allow for rapid communication of large messages and efficient use of system resources.
B. Description of the Related Art

Conventional two-way portable/mobile wireless messaging systems often provide a variety of services to subscribers. Conventional messaging systems in particular provide one-way services using store and forward techniques to mobile receivers carned by the subscriber. A fundamental goal of two-way messaging systems is to provide a network of interconnected transmitters and receivers which provides sufficient transmitted signal strength and receive capability to uniformly coyer a geographic region. Some conventional messaging systems provide the message to the user on a small viewing screen on the mobile unit.

However, such conventional systems often suffer from problems associated with low system throughpui, evidenced by slow message delivery and message size limilations and do not provide an acknowledgment feature wherein the mobile unit transmits an acknowledgment signal to the system to acknowledge receipt of the message from the system. Generally, system throughput refers to overall communication capability of a system as defined by the total amount of message data from the system to the mobile units transferred by the system during a given period of time divided by the frequency bandwidth necessary to transmit the message data and may be measured in bits transferred per Hz . Further, such conventional systems suffer from lechnical problems preventing consistent wide area coverage and would require extremely wide portions of valuable frequency bandwidth to achieve acceptable system throughput rates

Simulcast technology in communication systems was originally developed to extend transmitier coverage beyond that which could be obtained from a single transmitter. Over time, bowever, simulcasting has evolved into a technique capable of providing continuous coverage to a large area.

Generally, simulcast technology provides multiple transmitters, operating on substantially the same frequencies and transmitting the same information positioned to cover extended areas. As shown in FIG. 1, transmitter 100 generally provides coverage over area A, D, and E , transmitter 102 generally provides coverage over area B, D, and E, and transmitter 104 generally provides coverage over ares C, E, and F. In some cases, the coverage area of a first transmitter may be eptirely enclosed within the coverage area of anothet transmitter, sucb as in building interiors and valleys. In areas where one (and only one) iransmitter dominates (e.g., areas A, B, and C in FIG. 1), simuleast is effective because the other transmitters do not significantly affect receivers in those areas.
However, in "overlap" areas D, E, and F shown in FIG. 1, where the signals from two or more transmitters are approxi-
mately equal, problems can arise because destructive interference of signals occurs in these overlap areas such as areas D, E, and F. Destructive interference occuts when the two signals are equal in magnitude and 180° out of phase and completely cancel each other. While there were some successes, reliable design procedures were not available.
Attempting to precisely syachronize the carrier frequencies of all simulcast transmitters does not overcome the problem because points (i.e. nodes) at which destructive summing occurred persisted for long periods of time. Al such points, a mobile receiver ean not receive the simuleast signal.

Deliberately offsetting the carrier frequencies of adjacent Iransmitters can ensure that destructive interference does not persist at one point for an extended period of time. The slight errors in frequency displayed by bigh quality reference oscillators (e.g., 20 bertz errors in 100 MHz signals or a few parts in 107) render deliberate offsetting unnecessary. Further, merely offsetting the carrier frequencies could not guarantec acceptable quality demodulation because proper alignment of the modulating signals in time is also required.

FIG. 2 displays the situation al, for example, point D in FIG. I when modulating waveforms are synchronized and includes coverage boundary $\mathbf{2 0 2}$ from a first transmitter and a second transmitter coverage boundary 204 from a second adjacent transmitter. An equi-signal boundary 200 exists where the signals from the first and second transmitters have approximately equal signal streogths. A more realistic equisignal boundary would take into account natural and manmade topography and propagation conditions, and therefore would probably not be a straight line,

FIGS. 3 and 4 generally illustrate various signals as they may occur at or near the equi-signal boundary 200 as shown in FIG. 2. In particular, FIGS. 3 and 4 illustrate various aspects of modulation synchronization and bow altering transmission parameters may affect the synchronization. In general, there are at least three sources which cause the signals from the first transmitter and the second transmitter 40 to be out of synchronization: (1) timing shifis in the delivery of the modulating waveform to each of the transmitters; (2) timing shifts internal to each transmitter, and (3) timing shifts caused by propagation distances and anomalies. From the perspective of a receiver located in an overlap area, these three sources of timing shifts combine to produce an overall timing shifts between the received signals from the first and second transmitters. In current commercial practice, the summation of these three components results in time shifts of about 200 microseconds. The timing shift present in simulcast systems disadvantageously limits the baud rate at which information may be transferred. In general, FIGS. 3 and 4 will also illustrate how timing shifts prevents high baud rate transmissions.
A time line representation of a signal 306 from a first transmitter is shown in FIG. 3(A) and a signal 308 from a second transmitter is shown in FIG, 3(B), both from the perspective of a receiver located in an overlap area. Vertical dashed lines 300 represent baud intervals on the time axis. As can be seen from FIGS. 3(A) and (B), the signals 306 and 308 are frequency modulated between a high and a low frequency value and the signals 306 and 308 are exactly in phase. As will be appreciated, the timing shift between signals 306 and 308 must be small when compared to the baud interval shown in FIGS, 3(A) and (B) since signals 306 S5 and 308 are in synctronization. Of course, as the baud and 308 are in synchronization. Or cours, as the baud 306 ind 308 , 0 , the timing shifts will likely cause signals 306 and 308 to be out of synchronization.

FIGS. 3(C), (D), and (E) show the summation of these two signals 306 and 308 at an equi-signal boundary, such as boundary 200 in FIG. 2. FIG. 3(C) shows a composite signal 310 indicating that the frequency information remains uuchanged, FIG. 3(D) shows a linear graph 312 of the relative phase difference caused by a sligiti carrier frequency difference between the signals from the first transmitter and the second transmitter. FIG. 3(E) shows a composite amplitude signal 314. A noise thresbold is indicated by the horizontal dashed line 304 in FIG. $3(\mathrm{E})$.

Of interest, FIG. 3(E) shows the composite amplitude signal 314 dipping below the noise threshold 304 at an anti-phase condition 302 (e.g., when the relative phase angle is $\pm 180^{\circ}$, as shown in FlG. 3(D)). As can be' seen from FlG 3 (E), the anti-phase condition 302 caused by the slight phase shiff between transmitter 1 and transmitter 2 will not cause any loss of data because the anti-phase condition persists for only a small portion of the baud interval.

The slight offset of the carrier frequencies between the first and second transmitters causes a slow drift of the relative phase of the two signals, as shown in FIG. 3(D). When the signals are $\pm 180^{\circ}$ out of phase, the temporary dip in the amplitude signal may cause the loss of a few bits in the composite signal, at worst. These errors can be counteracted with a conventional error correcting code, such as is commonly known.
FIG. 4 shows a set of similar signals to those in FIG. 3. but wherein the signal 402 from the first transmitter is offset from, or out of syncbronization with, the signal 404 from the second transmitter by a full baud. It particular, signal 404 lags signal 402 by one baud interval. As previously discussed, the offset of signals 402 and 404 may be caused by various timing shifts in the delivery of both signals 402 and 404 lo a receiver in an overlap area. FIGS. 4(A) and (B) Illustrate the extreme case where the sum of these timing shifts is equal to the baud interval shown by dashed lines 400. As can be seen in FIG. 4(C), composite signal 406 includes a period of indeterminate frequency which undestrably covers several entire baud interyals and, therefore successful demodulation is impossible during those baud intervals. If the baud interval were increased to minimize the effect of these liming shifts, data loss would be less likely. Therefore, it can be seen that the baud rate at which good data transfer can be accomplished is limited by the timing shifis between signals delivered to receivers in overlap areas.
Through these examples, it can be seen that high degrees of modulation synchronization make it possible to obtain good data demodulation in a simulcast system. However, the baud rate limitation of simuleast systems is a significant drawback and limits system throughput.

An alternative to simulcast for wide area coverage is assignment of orthogonal, non-overlapping subdivisions of the available system eapacily to adjacent areas. Subdivisions can be made in time (e.g., broadeasting the information on the same frequency in different time slots to adjacent areas), or in frequency (e.g, broadcasting the information simultaneously on different frequencies in adjacent areas). There are several problems with such orthogonal systems, however, First, orthogonal assignments require tuning the receiver to the assigned frequency or time channel for the area in which the recciver currently resides. In the broadcast services every traveler has experienced the frustration of finding the correct channel for their favorite programs. Simuleast operation ayoids the need for scanning and re-funing as the mobile unit moves between areas. Such scanning and re-turing also disadvantageously increases mobile unit power consumption.

Second, and more serious, the orthogonal assignment pproach drastically reduces the system throughput capacity approach drastically reduces the sysiem throughpul capacity or possibly more preno asignents are required to obtsin contione, orbogol as in most conventional bisin conl systems. This waste of capacity conventional orthogonal systems. This waste of capacity is somewhat recouped if the same information is nol needed throughou he service area because a given piece only to those cells where it is needed
10 Conventional cellular radio service is a typical example of on orthogonal system. in collular, the same frequencies are reused in spatially separated cells to allow different data to be transmitted to different mobile units. An example of three cellular arrangements is shown in FIG. 5 where the number of cells (N) is cqual to 3, 4, and 7 Each cell (ice A, B, C \ldots) in conventional cellular service usually only includes single transmitter and operates in a different frequency or time division within the communication protocol. As shown in FIG. 5, cellular service generally locates transmitters utilizing the same division (all the " A " trankmitters) far enough apart to reduce the likelihood of interference between such transmitters. As the number of cells increases, the likelihood of interference decreases. For example, with $\mathrm{N}=3$ as shown by arrangement 500 in FIG. 3, the distance between the coverage area of " A " cells is about $1 / 2$ cell width with $\mathrm{N}=4$ in arrangement 502 , the dislance between the woverage areas of " A " celks is slightly larger, and with $\mathrm{N}=7$ arrangement 504 the distance between " A " cells is larger than the width of one cell.
However, as the number of cells increases, the length of the individual time intervals per cell decreases for time division multiplexed systems, thereby decreasing the systems total information transfer. In frequency division systems, more cells undesirably increases the frequency bandwidth required. Therefore, system throughput in bits per Hz is decreased as the number of colls increases. erthermore, cellular systoms ofien require an electronic urthermore, cellular sysioms oflen require an electronic handshake" between system and mobile unit to identify the specific cell (i.e. transmitter) in which the mobile unit is 40 located to allow capacity reuse.

II. SUMMARY OF THE INVENTION

The systems and methods of the present invention bave a wide variety of objects and adyantages. The systems and methods of the present invention have as a primary object to provide a communication system with wide area coverage and high message throughpat while minimizing frequency bandwidth usage.
It is an object of the invention to provide a simulcast to communication system with a high data transfer raie which does not exceed the baud rate limitations of simulcast transmission.

It is a further object of the present invention to provide a communication system which provides for superior data 5s communication integrity.

Yet another object of the irvention is to provide a mobile transceiver unit which prevents unnecessary RF interference, particularly on commercial aircraft. Still further, it is an object of the invention to provide a zone based communication sysiem which may dynarnically redefine zone boundaries to improve information throughput.
Another object of the invention is to provide a zone based simuleast communication sysiem which can effectively communicate with both mobile iranscejver units located near the center of each zone as well as mobile transceiver units located within the overlap areas between two or more zones.

Additional objects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practicing the invention. The objects and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
To achieve the objects and in accordance with the purpose of the invention, as embodied and broadly described herein, the invention is directed to a method for information transmission by a plurality of transmitters to provide broad communication capability over a region of space, the information transmission occurring during at least both a first time period and a second time period and the plurality of transmitters being divided into at least a first and second set. of Iransmitters, the method comprising the steps of (a) gencrating a system information signal which includes a plurality of blocks of information, (b) transmitting the system information signal to the plurality of transmitters, (c) transmitting by the first and second sets of transmitters a first
bloek of information in simulcast during the first time block of information in simuleast during the first time period, (d) transmitting by the first set of transmiters a second block of information during the second time perioc, and (e) transmitting by the second set of transmitters a block of information during the second time period.
In another embodiment, the invention is directed to a multi-earrier simulcast transmission system for transmitting in a desired frequency band a message contained in an information signal, the system comprising a first transmitter means for transmitting an information signal by generating 30 a first plurality of carrier signals witbin the desired frequency band and by modulaning the first pluratity of carrier signals to convey the information signal, and a sccond transmitter means, spatially separated from the first transmitter, for transmitting the information signal in simulcast with the first transmitter by generating a second plurality of carrier signals at substantially the same frequencies as the first plurality of carrier signals and by modulating the second plurality of carrier signals to convey the information signal.

In another embodiment, the invention is directed to a communication method implemented in a computer controlled communication network for locating a mobile transceiver within a region of space, the region of space being divided into a plarality of zones with each zone serviced by at least one base transmitter and at least one base receiver the network storing data corresponding to a zone where the mobile transceiver was last known to be located, the communication method comprising the steps of (a) transmitting a message signal by a base transmitter servicing a zone where the mobile transceiver was last known to be located, (b) transmitting a systemwide probe signal by a plurality of base transmitters servicing a plurality of zones if the mobile transceiver does not indicate receipt of the message signal from the base transmitter, (c) receiving the regional probe signal by the mobile transceiver, (d) transmitting an acknowledgment signal by the mobile transceiver in response to the received regional probe signal, (e) receiving the acknowledgment signal from the mobile transceiver by a base receiver, and (f) updating the data to reflect the zone of the base receiver that received the acknowledgment signal as the last known location of the mobile transeciver.
In yet another embodiment, the invention is directed to a method of communicating messages between a plurality of base transmitters and mobile receivers within a region of space divided into a plurality of zones with each zone having at least one base transmitter assigned thereto, the commu-
nication method comprising the steps of (a) Iransmitting substantially simultaneously a first information signal and a second information signal to communicate messages to the mobile receivers, the first information signal being itsansmitted in simuleast by a first set of base transmitters assigned to a first zone, and the second information signal being transmitted in simulcast by a second set of base transmitters assigned to a second zone, (b) dynamically reassigning one or more of the base transmitters in the first set of base transmitters assigned to the first zone to the second set of base transmitters assigned to the second zone as a function of the messages to be communicated in an area, thereby creating an updated first sel of base transmiliers and an updated second set of base transmitters, and (c) transmilting subsiantially simultaneously a third information signal and a fourth information signal, the third information signal being transmitted in simuleast by the updated first set of base transmitters, and the fourth information signal being transmitted in simulcast by the updated second set of base transmitters to communicate additional messages to said mobile receivers.
In another embodiment, the invention is directed to a mobile transceiver unit for transmitting messages to and receiving messages from a network comprising input means for allowing the user to input a user message to the unit, transmitter means for transmitting a radio frequency signal including the user message from the mobile unit to the network, receiver means for receiving radio frequency signals having a message from the nelwork, signal delector means for detecting at least one type of electromagnetic signal generated external to the mobile unit and the network, and a circuit, connecting the signal delector means to the ransmitler means, for disabling the transmitter means upon detection of the electromagnetic signal, thereby preventing is unwanted radio frequency transmission.

In another embodiment, the invention is directed to a communication metbod for controlling a mobile fransceiver which may communicate with a communication network controlled by a computer, the network including a plurality of base transmitters for transmitting messages from the network to the mobile transceiver and base recoivers for receiving messages from the mobile transceiver, the mobile ransceiver being capable of sending a registration signal to e received by a base receiver in the network to identify the aners location and the plurality of basfy the mobile transceiver's location and the plurality of base transmitters in the network being capable of sending a probe ignal to the mobile transceiver to cause the mobile transceiver to transmit a signal to a base receiver to identify its location, the method comprising the steps of (a) sending a message from the network to the mobile transceiver to disable the mobile transceiver's capability to transmit a egistration signal, (b) storing the number of probe signals sent by the network to the mobile transceiver during a first period of time and the number of messages successfully delivered to the mobile Iransceiver by the network during second period of time, (c) processing by the computer the stored number of probe signals and number of messages successfully delivered to evaluate a likelihood that a probe signal will be required to be sent by the aetwork to locate th mobile unit to deliver a message, and (d) sending a message to the mobile unit to enable the mobile transceiver's capability 10 transmil a registration signal if the calculated likelihood exceeds a selected value.
Finally, in another embodiment, the invention is directed to a communication method for controlling a mobile iransceiver which may communicate with a communication network controlled by a computer, the network including a
plurality of base transmitters for transmitting messages to the mobile transceiver and base receivers for receiving messages from the mobile transceiver, the mobile transceiver being capable of sending a registration signal to be received by a buse receiver in the network to identify the mobile transceiver's location, the network using received registration signals to determine a set of base transmitlers to be operated to transmit a message to the mobile transceiver, the method comprising the steps of (a) sending a message from the network to the mobile transceiver to enable the mobile transceiver's capability to transmit a registration signal, (b) storing the number of registration signals from the mobile transceiver to the network during a first period of time and the number of messages successfully delivered to the mobile transceiver by the network during a period of time, (c) processing the stored number of registration signals and number of messages successfully delivered to evaluate a likelihood that a registration signal from said mobile unit will not be used by the network to determine a set of base transmitters, and (d) sending a message to the mobile unit to disable the mobile transceiver's capability to transmit registration signal if the likelibood exceeds a selected value.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.

III. BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments of the invention and together with the description, serve to explain the principles of the invention.

FIG. 1 is a schematic diagram of an arrangement of
simuleast transmitiers,
FIG. 2 is a schematic diagram of uniform smooth earth propagation;
FIG. 3 is a schematic diagram of synchronized modulated waveforms;
FIG. 4 is a schematic diagram of modulated waveforms offiset a full baud;
FIG. 5 is a schematic diagram of cellular system coverage;
FIG. 6 is a schematic diagram of a communication system;
FIG. 7 is a flow chart of a preferred method of communication;
FIG. 8 is a flow chart of a preferred method of sending a regional probe signal;
FIG. 9 is a schematic diagram of a frequency spectrum for multi-carrier modulation;

FGG. 10 is a schematic diagram of an on/off keying modulator;
FIG. 11 is a schematic diagram of a frequency shiff keying 5 modulator;
FIG. 12 is a schematic diagram of a four carrier quadrature modulator;

FIG. 13 is a schematic diagram of a first embodiment of
a base transmitter;
FLG. 14 is a schematic diagram of a second embodiment: of a base transmitter;
FIG. 15 is a schematic diagram of a mobile transceiver;
FIG. 16 is a pictorial representation of a mobile transceiver

F3G. 17 is a schematic diagram of a mobile receiver;

FIG. $18(\mathrm{~A})$ is a schematic diagram of an analog base receiver,
FIG. 18(B) is a schematic diagram of a digital base receiver;

FIG. 19 is a schematic diagram of a base receiver with a store and forward feature;

FIG. 20 is a schematic diagram of a network operations conter;
FIG. 21 is a schematic diagram of a database structure; FIG. 22 is a schematic diagram of a traffic database:
FIG. 23 is a schematic diagram of a service queue;
FIG. 24 is a schematic diagram of a base transmitter ${ }_{15}$ database;

FIG. 25 is a schematic diagram of dynamically changing zonal assignments;

FIG. 26 is a flow chart of a preferred method of dynamically zonel reassignment;

FIG. 27(A) is a schematic diagram of the cycle protocol; FIG. 27(B) is a schematic diagram of the forward batch interval protocol;

FIG.27(C) is a schematic diagram of the individual batch ${ }_{25}$ protocol;

FIG. $28(\mathrm{~A})$ is a flow chart of a preferred method to enable the registration feature of a mobile unit;

FIG. 28(B) is a flow chart of a preferred method to disable the registration feature of a mobile unit;
FIG, 29(A) is a flow chart of a preferred evaluation method used to enable the registration feature; and

FIG. 29 (B) is a flow chart of a preferred method used to disable the registration feature.
IV. DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference will now be made in detail to the present preferred embodiments and exemplary embodiments of the invention, examples of which are illustrated in the aocominvention, examples of which are ilhustrated in the accom-
panying drawings. Wherever possible, the same reference panying drawings. Wherever possible, the same reference
numbers will be used throughout the drawings to refer to the same or like parts.

A. Overview of The System Hardware

FIG. 6 shows an overview of the major elements of a preferred communication system according to the ptesent invention. As shown therein, the communication system includes a network operations center 600 which is connected so to a satellite uplink 602 via data path 604. A satellite uplink is used to provide data to satellite 606 . Satellite 606 redirects the received data to several satellite downlink stations including station 608 and station 610. Conventional satellite technology allows for nominal data transfer rates of 24 M bils/second. Further, conventional satellite technology allows for accurate delivery of data to stations 608 and 610 , which allows for precise synchronization between the sig. nals broadeast in simulcast by the stations 608 and 610 . It should be understood that stations 608 and 610 may option60 ally receive identical data, or may individually receive different data simultaneously from the satellite 606.

Satellite downlink stations 608 and 610 are concected to spatially separated base transmitters 612 and 614 via data paths 616 and 618, respectively. Base transmitter 612 is connected to antenna 620, and base transmitter 614 is connected to antenna 622. Preferably, the base transmitters of the present system haye a power output capability of
about 350 walts, which will provide an effective transmitter coverage area of several tens of miles. Each zone preferably includes multiple transmitter stations shown as, for example, base transmitters 613 and 615 in FIG. 6 as will be evident from the following discussion.
Mobile unit 624 is connected to antenna 626 and, in the preferred embodiment, is a small, portable unit capable of being carried easily by a user and therefore is similar to conventional pagers in those aspects. More preferably, the mobile unit has both receive and transmit capability, with a nominal transmit power output of about 1 watl.

The communication system includes several base receivers $628,630,632$, and 634 each connected to antennas 636 , 638,640 , and 642 , respectively. Base receivers 628 and 630 are connected to a regional station 644 via data paths 646 and 648 , respectively. Base receivers 632 and 634 are connected to regional station 650 via data paths 652 and 654 , respectively. Base transmitters 612,614 preferably have a large transmit power output capability to provide coverage to the mobile unit in areas to which communication is typically difficelt, such as building interiors, and to extend the coverage area of each transmitter. An appropriate number of base receivers should be dispersed throughout the geographic area to reliably receive the signals from the mobile unit. Due to the difference in output power between base transmitters and mobile units, an overall ratio of 10 base receivers to 1 base transmitter may be appropriate, and the 2 to 1 ratio shows in FIG. 6 is merely shown for ease of illustration.

Regional station 650 is connected to the network operations center 600 via data path 656 and regional station 644 is connected to the network operations center 600 via data path 658. The data paths 656 and 658 preferably include low cost phone lines, but may include any convenient and appropriate data transfer technology. Generally, the communication system of the present invention roughly divides various regions of space into portions called zones. Each zone must have one or preferably more base transmitters assigned to it. Zone boundaries are roughly defined by the transmitter coverage areas of the base transmitters assigned to that zone. For example, FIG. 6 shows a dashed zone dividing line 660 roughly dividing a zone 1 from a zone 2 . Zone 1 includes base transmitter 614, base receivers 632 and 634 , regional station 650, and mobile unit 624. Zone 2 includes base transmitter 612, base receivers 628 and 630 , and regional station 644. Dashed line 660 only rougbly defines the boundary between zones because precise boundaries do not exist: For example, to insure adequate coverage of the region, as shown in FIG. 1, the range of both transmitter 614 should at least cover the region above dasbed line 660, and preferably should extend somewhat below dashed line 660 . Similarly, the range of base transmitter 612 should at least cover the region below dashed line 660 , and preferably should extend somewhat above dashed line 660 . As can be seen, an overlap of transmitfer coverage may occur in the vicinity of dashed line 660.
Referring back to FIG. 2, it can be seen that boundary 202 and boundary 204 overlap in an area near the equi-signal 200 and between these boundaries which may be termed an "overlap area." In F1G. 6, dashed line 660 is drawn near the may be defined as the equi-signal boundary between base transmitter 614 and base transmitter 612 . Of course, dashed line 660 does not represent the overlap area lhat may oceur between base transmitter 614 and base transmitter 612 .

As explained in the Background of the Invention section, if base transmitters 612 and 614 are broadeasting identical
signals on the same frequencies in simulcast, good reception by a receiver located near the dashed line 660 , and possibly in an overlap area (nol shown), can be achieved. Simulcast thus may provide uniform transmitter coverage for the region shown in FIG. 6. However, if base transmitter 612 is broadcasting a first information signal and base transmitter 614 is broadeasting a different, second information signal on identical frequencies simultancously, it will likely be difficult for a recejver located in the overlap area to receive either the first or the second information signal, In this instance, the overlap area may be referred to as an interferance area because a receiver in this area would receive a composite signal, including the first and second information signal, that would likely be unusable.
The following will be an exemplary discussion of the various interactions of the ejements of the commumication system when delivering a message to mobile unit 624 . In accordance with the invention, a preferred method 700 of this interaction is shown in
FIG. 7. Network operations center 600 generates a system information signal of several blocks of information as shown in step 702. The blocks of information include an electronic message to be delivered to the mobile unit 624 .
In step 704, the system information signal is iransmitted to the base transmitters. In particular the network operations center 600 provide the system information signal and appropriate other data to the satellite uplink 602 via data path 604 for transmission to the satellite 606. The data is then received and retransmitted by satellite 606 lo satellite downlink stations 608 land 610 . The data received by satellite downlink 608 is provided to base transmitter 612 through data path 616, and the data received by satellite downlink 610 is provided to base transmitter 614 through data path 618.

At this point, the exemplaty communication system shown in FIG. 6 may transfer the message to the mobile unit during one of two time intervals. In the first time interval, both base transmitter 612 and base transmitter 614 transmit data via antenna 620 and antenna 622, respectively, in simuleast to be received by mobile unit 624, which corresponds to step 706 in FIG. 7. This first alternative may be useful to deliver the message if, for example, the location of mobile unit 624 in zone 1 or zone 2 is unknown and broad coverage is desired.

In the second time interval, base transmitter 614 transmits a block of information including the message data to mobile unit 624 and base transmitter 612 transmits another block of information, which corresponds to steps 708 and 710 of FIG.
50. 7. This second alternative may be useful if, for example, the mobile unit 624 is liknown to be located in zone 1 and out of range of base transmitter 612. Delivery of the message to mobile unit 624 during the second time interval is adyantageous because during message delivery to the mobile unit 624 by base transmitter 614 , base transmitter 612 could be delivering a different message to a different mobile unil (nol chown) As ean be seen, this second altemative would shown). As can be seen, sech system efficiency
If the mobile unit 624 bas properly received the message m0 via antenna 626, then the mobile unit 624 may generate a return signal Hand broadcast that signal via antenna 626. The relurn signal may be received by any or several of the base receivers $628,630,632$, or 634 . For example, the return signal could be received by base receiver 632 through antenna 640 if antenna 640 is located closer to the mobile units than any other antenna 636,638 , or 642 . In this case, the base receiver would receive the return signal and provide
it to regional station 650 through data path 652 . The regional station would then provide the return signal to the network operations center 600 through data path 656 for further processing as appropriate. It should be understood that a return signal may include either an autonomons acknowledgment signal which indicates that the mobile unit accurately received the message or a user generated reply signal.

If the mobile unit 624 does not completely receive the message, it can generate and broadcast a negative acknowledge signal. The negative acknowledge signals when delivered to the network operations center 600 , indicates that retransmission of the message is necessary.

It should be understood that the exemplary system shown in FIG. 6 includes a modest number of elements for ease of explanation. It is envisioned that the system of the present invention include a large number of base transmitters, base receivers, regional stations, and mobile units with a substantial number of base transmitters assigned to each zone and all basc transmitters assigned to a particular zone operating in simuleast. Furiher, it is envisioned that the present system could advantageously support a large numbe of zones to cover a wide geographic area.
B. Overview of the Zonal Simulcast Concepts

The preferred sysiems and methods of the present invention variously use simulcast techniques within individual zones and over several or all of the zones. As previously noted, zones are generally defined by the coverage areas of the one or more base iransmitters. The network operations center 600 assigns each base transmitter in the system to a zone. For example, in FIG. 6, base transmitter 614 is assigned to zone 1, and the base transmitter 612 is assigned to zone 2 by the network operations center 600. To maximize information throughput, the systems and methods of the present invention dynamically control zonal assignments and the use of simuleast techniques.

In general, the communication system of the present invention operates by repeating a communication cycle to achieve desired information transfer, which is more fully discussed infra. The communication cycle is divided into a systemwide time interval and a zonal time interval. In the systemwide time interval, the base transmitters from at least several zones are operated in simulcast to simultancously transmit identical information to a large geographic area. It should be understood that the systemwide time merely iwo or more zones.
Broadly speaking, the communication system need not know the location of a mobile unit to transmil to during the systemwide time interval. Therefore, the systemwide time intervai can be used to send a "probe" signal that requests a particular mobile unit to broadcast an acknowledgment signal to allow the system to determine its approximate location by delermining which base receiver receives the acknowledgment signal. Probe signals, thereby, may be used to track the locations of mobile units, or to uncover the location of "lost" mobile units.

In the zonal time interval, each base transmitter assigned to a particular zone transmits identical information in simulcast. However, for mobile units at or near the interference areas between adjacent zones, poor communication to those mobile units is likely during the zonal time interval because transmitters in adjacent zones will be simultaneously transmitting different data on the same, or substantially the same, frequencies. The zonal time interval provides good communication capability for mobile units not located near the zonal boundaries and allows the system to "reuse" identical
frequencies in adjacent zones. Furthermore, if zonal boundaries are selected to be located in areas where mobile units are not likely to be located, i.e. unpopulated areas, the likelihood of providing good communication capabilities to 5 a large percentage of mobile units can be increased

As can be seen, from a system perspective, it is desirable to communicate with the mobile units in the zonal time interval because information throughput is maximized by reusing the transmission frequency band in the several zones. In other words, asing the zonal time interval allows zones. In other words, using the zonal time interval allows
commumication with a large number of mobile units in a communication with a large number of mobile units in a
short amount of time. Accordingly, communication during the systemwide time interval should be minimized because message transmission during this interval requires a large 15 amount of system resources be dedicated to that message.

For mobile units located near the boundaries between zones where interference is likely during the zonal time interval, good commurication capability can be achieved for these units during the systemwide time interval. In the preferred systems and methods, when a mobile unit fails to acknowledge a message sent during the zonal time interval or provides a negative acknowledgement, the network operations center sends a probe signal during a subsequent systemwide time interval to determine the location of that mobile unit. If the location of the mobile unit indicates that a likely reason for the failure of the mobile unit to receive the message is caused by inter-zonal interference, the network operations center may simply relransmit the message during the systemwide time interval. In other instances, the failure to successfully deliver a message may be simply caused by the mobile unit being located in a weak signal area within a zone. In these instances, the system may retransmit the message during the zonal time interval using an appropriate error correcting code or using a stronger error correcting code.

Alternatively, the network operations center may determine from the probe signal that the mobile umit is simply located in a different zone than the zone that the message was first sent. In this case, the network operations center preferably causes the message to be retransmitted in the appropriate zone without again using a portion of the valuable systemwide time interval.
In accordance with the invention, a preferred method 800 as for sending a probe signal is shown in FIG. 8. In step 802, a message signal is rransmitted by a base transmitter servicing a zone where the mobile transceiver was lasi known to be located. In particular, this may be preferably an attempt by the network to deliver a message to the mobile trans${ }_{0}$ criver.

If the mobile transceiver does not indicate receipt of the message signal from the base fransmitter transmitted in step 802, the network assumes that the mobile transceiver bas not received the message and transmits a probe signal by a plurality of base transmitters servicing a plurality of zones in step 804. The mobile transceiver receives the probe signal in step 806.

Upon receipt of the probe signal by the mobile transceiver, the mobile transceiver transmits an acknowl60 edgment signal in step 1808. A base receiver receives the acknowledgment signal from the mobile transceiver in step 810.

Finally the data, such as the last location field 2104 shown in user database 2100, is updated to reflect the zone of the base receiver, or receivers, that receives the acknowledgment signal as the last known location of the mobite transment signal as the
ceiver in step 812 .

13

C. The Multi-Carrier Modulation Transmission Format
The base transmitters of the communication system, such as base transmitters 612 and 614 shown in FIG. 6 , preferably utilize a multi-carrier modulation format as will now be described. In general, a multi-carrier modulation format envisions the simultaneous transmission of several closely spaced carrier frequencies within a desired frequency band, each individually modulated to convey an information signal. The multi-carrier modulation formal advantageously allows for high data transfer rates by providing good bit rate transmission rates while keeping below the baud rate limitations of simulcast transmission techniques.
FIG, 9 shows a frequency representation 900 of an eigh carrier modulation format. Carrier frequency 902 is shown with side bands 904 , carrier frequency 906 is shown with side bands 908 , carrier frequency 910 is shown with side bands 912 , carrier frequency 914 is shown with side bands 916 , carrier frequency 918 is shown with side bands 920 , carrier frequency 922 is shown with side bands 924 , carrier frequency 926 is shown with side bands 928 , and carrier frequency 930 is shown with side bands 932 .
It should be understood that although this exemplary figure shows an eight carrier signal modulation format, other different numbers of carrier frequencies may be considered for use in the systems and methods of the present invention.
In this exemplary embodiment, the carrier frequencies are spaced 3 KHz apart within a desired frequency band of 50 KHz . Dashed line skirts 934 and 936 represent minimum frequency roll ofit levels, such as may be required by Federal Communication Commission regulations, to prevent overlap interference into adjacent frequency bands,
Because eight unique data streams may be modulated onto the respective eight carrier signals in this embodiment, the data transfer rate of the transmission from the base transmitters can be greatly increased, while keeping the baud rate within acceplable ranges for simulcast transmission. It should also be understood that in accordance with good simulcasi practice, the respective carrier frequencies between adjacent base transmitters, such as base transmitter 612 and base transmitter 614 in FIG. 6, should be slightly offset to prevent sustained nodles or "dead spots" where destructive interference between the signals from each transmitter provides an unusable composite signal, as was explained in the background section of this application. This frequency offset is preferably on the order of $10-20$ hertz.
As previously discussed, each carrier signal may be individually modulated to convey a data stream. The following will discuss ahternative techniques for modulatiog a plurality of carriers in accordance with the systems and methods of the present, invention.

1. Modulated $\mathrm{On} / \mathrm{Off}$ Keying

Perhaps the simplest modulation scheme conceptually is modulated on/off keying (MOOK). FIG. 10 shows a schematic representation of a MOOK modulator 1000 . The MOOK modulator 1000 includes a plurality of carrier frequency generatiog devices, such as frequency generator 1002 generating frequency F1, frequency generator 1004 generating frequency $\mathbf{F 2}$, frequency generator 1006 generating frequency F3, frequency generator 1008 generating frequency FA , and frequency generator 1010 generating frequency Fn. As shown in FIG. 10, the MOOK modulator 1000 may include any number (i.e. n) of frequency generators, but eight carrier frequencies are preferred, as shown in FIG. 9.

The output from each of the carrier frequency generators $102,104,106,108$, and 110 is applied to a plurality of respective switches SW1 812, SW2 814, SW3 816, SW4 818, and SWn 820. The output from each switch is provided to a combiner 1022.

Each of the switches SW1 812, Sw2 814, SW3 816, Sw4 818 , and SWn 820 opens and closes under the control of a control logic system (not shown) to effect the MOOK modulation. The control logic system (not shown) causes the desired switches to variously iclose and open, thereby conveying an n-bit binary word. Each carrier frequency transmits a binary "one" if the respective switch is closed and a binary "zero" if the respective switeh is
The summer 1022 combines the modulated carrier fre5 quencies to provide a multi-carrier modulated output signal that conveys an n-bit binary word,
2. Binary Frequency Shift Keying Modulation

An alternative multi-carrier modulation scheme including frequency shift keying (FSK) techniques may be implemented by the modulator shown in FIG. 11. A frequency shift keying modulator 1100 includes a first frequency source 1102, a second frequency source 1104, a third frequency source 1106, a fourth frequency source 1108 , and an ath frequency source 1110. The output from each frequency source is provided to a respective modulator 1112, 1114, 1116,1118 , and 1120.

A control logic system (nol shown) provides a frequency control signal to each modulator to frequency shift modulate the carrier frequencies. In particular, the control logic system (not shown) provides frequeney control signal 1 to modulator 1112, frequency control signal 2 to modulator 1114 , frequency control signal 3 to modulator 1116, frequency signal 4 to modulator 1118, land frequency control signal n to modulator 1120 . In binary frequency shift keying (BFSK), the respective frequency control signals provide dala corresponding to a binary "one" or "zero" which causes the respective modulators to modulate a first or second frequency onto the carrier signal.
A summer 1122 combines the modulated carrier frequencies to produce an output signal.
3. M'ary Frequency Shift Keying Modulation

A modulation scheme related to binary frequency shift 45 keying is M'ary frequency shift keying. M'ary frequency shift keying modulates three or more different frequencies onto the respective carner signals, In quaternary frequency shift keying, for example, two bits of information may be inslantancously eonveyed on a single carrier frequency Similarly, 8'ary frequency shift keying may instantaneously convey three bits of information per carrier frequency.

Referring again to FIG, 11, M'ary frequency shift keying may be implemented by providing modulators 1112, 1114 1116, 1118, and 1120 with the capability to modulate M different frequencies onto the carrier signal. Accordingly, the various frequency control signals must provide data indicating which of the M frequencies is to be modulated onto the carrier signal. For example, in quaternary frequency shif keying, the frequency control signals must each include two bils of information to indjeate which of the four different frequencies are to be modulated onto the carrier frequency, The summer 1122 combines the modulated carrier frequencies to produce an output signal.
4. Quadrature Amplitude Mult-Carrier Modulation Yet another aliernative modulation technique for a multicarrier transmission format is shown in FIG. 12. A quadra-
ture modulator $\mathbf{1 2 0 0}$ includes a first quadrature carrier generator 1202, a second quadrature earrier generator 1204 , a third quadrature earrier generator 1206, and a fourth quadrature carrier generator 1208. As is well known, quadrature modulators lin general each produce an in-phase carrier signal and a quadrature carrier signal that is $\pm 90^{\circ}$ out of phase with reference to the in-phase signal. Of course, any number of quadrature carrier generators could be envisioned, depending upon data transfer and throughput needs. FIG. 12 shows four quadrature carrier generations which effectively correspond to eight unique modulator signals. Therefore, quadrature amplitude multi-carrier modulation may preferably reduce the width of the frequency band necessary to achieve a desired data transfor rate.

Each quadrature carrier generator 1202, 1204, 1206, and 1208 receives a control signal from a control logic system (not shown) which provides the data to be modulated onto the quadrature carrier signals. In a simple implementation, the quadrature carrier generators may amplitude modulate the in-phase and quadrature phase output signals to convey two bits of information. The in-phase and quadrature signals output from each quadrature earrier generators 1202, 1204, 1206, and 1208 are provided to a summer 1210 which combines the signals to produce an output sigaal.
5. Permutation Freguency Shift Kevinq (PFSK)

PFSK may be implemented through control logic systems similar to that used in a MOOK or an M'ary FSK modulation scheme. In PFSK, every baud has a fixed number of carrier signals present, preferably any 4 of the possible 8 . In a PFSK arrangement, a constant average transmitter power is advantageously delivered and the receiver only need decide which 4 carrier frequencies contain the most energy. In the case of MOOK, the receiver must attempt to determine on a subchannel-by-subchannel basis the presence or absence of a signal. This aspect of PFSK may simplify mobile receiver design.
Compared to a binary or M'ary FSK modulation schemes, a higher number of bits may be delivered per baud with PFSK. For example, PFSK may generate signals that independent ESK subchannels could never generate, such as all four carriers being the four highest frequencies, and tberefore it can be seen that PFSK may advantageously increase. information transfer rates.

D. The Base Transmitter

Each base transmitter unit, such as base transmitter 612 or 614 shown in FIG. 6, receives transmitter control data and message data fransmitted from the satellite 606. FIG. 13 shows a first preferred embodiment of a base transmitter 1300 in accordance with the present invention. The base transmitter 1300 receives data from the satellite downlink connected to data input 1302 which provides this data to a control logic system 1304 to control the operation of the base transmitter unit. The control logic $\mathbf{1 3 0 4}$ provides a control signal to a plurality of modulators $1306,1308,1310$, 1312, and 1314. Modulator 1306 produces a carrier signal F1, modulator 1308 produces a carrier signal F , modulator 6 1310 produces a carrier signal $\mathrm{F3}$, modalator 1312 produces a carrier signal F4, and modulator 1314 produces a carrier signal Fn .

For example, the control logic may generate appropriate control signals to modulate the carrier signals in a MOOK, 6 BFSK, M'ary FSK, PFSK, or quadrature amplitude modulation scheme, as previously discussed, Each modulator then
provides the modulated outpus signal to a combiner 1316 which combines each of the several modulated carrier frequencies into a single output signal.
The single signal is then applied to a power amplifier 1318 to amplify this signal to an appropriate level. The power amplifier 1318 may, for example, produce a nominal output signal of 350 watts to antenna 1320. In this embodiment, power amplifier $\mathbf{1 1 3 1 8}$ preferably has extremely linear characteristics to prevent formation of intermodulation products, and to insure that these intermodulation products do not cause signals to be generated at undesirable frequencies. Antenna 1320 broadcasts the desired signal from power amplifier 1318
FIG. 14 shows a second preferred embodiment of a base is transmitter unit. The second embodiment comprises a base transmitter 1400 which includes a satellite downlink connected to data input 1402, controt logic 1404, and several modulators $1406,1408,1410,1412$, and 1414 . Eacb modulator receives an appropriate control signal from the control logic 1404, as previously discussed with respect to base transmitter 1300.

The output from each of modulators 1406, 1408, 1410, 1412, and 1414 in base transmitter 1400 is provided to respective power amplifiers $1416,1418,1420,1422$, and 1424 to provide an appropriate power output level for transmission, such as 350 watts aggregate.
The output from each of power amplifiers 1416, 1418, 1420,1422 , and 1424 is provided to combiner 1426 to combine the modulated carrier signals into a single output signal which is provided to antenna 1428 for broadcast
E. The Mobile Unit

The mobile unit may be a small, poriable mobile transcoiver, such as pictorially represented in FIG. 16. Referring now to FGG. 15, the mobile transceiver 1500 shown therein includes a receiver section for receiving signals from the base transmitters of the system, and a transmitter section for transmitting replies, or other 0 messages, to the base receivers of the system.

In particular, the mobile transceiver 1500 includes an antenaa 1502 which is connected to a transmit/receive switch 1504 to switch the antenna between the transmit and receive sections of the mobile transceiver 1500. A receiver 1506 is provided to receive the messages from the base transmiter Of course, the receiver musl be appropriately esigned to receive the multi-camier sigals from the bas esigned to receive the micciver mas ransmitters and must be appropriately designed to demodu late the particular modulation scheme utilized. For example, appropriate analog filters and appropriate demodulators could be used. In the preferred embodiment, the receiver performs a transform, such as a fast fourier transform, on the received signal to separale the data from the various carriers in the mult-carrier modulation format.
The receiver 1506 is connected to a display and storage logic section 1508 to process the received signal. An annunciator 1510 to alert the user that a message has been received ciator 1510 to alert the user that a message has been received
is connected to and controlled by the display and storage logic 1508. The annunciator 1510 may commonly include a sound producing device such as a beeper, or a vibrator, or a flashing light.

A set of display controls 1512 to control the display of the mobile transceiver 1500 is connected to the display and storage logic 1508. A display 1514, preferably an LCD display, is also connected to the display and storage logic 1508 to display messages and various other information to the user.

Display and storage logic 1508 is connected to transmit togic 1518 via connection 1526. Display and storage logic 1508 may generate an autonomous acknowledge signal which causes the transmilter 1520 to broadcast an appropriately modulated RF signal. As previously discussed, it is desirable for the mobile transceiver to transmit an acknowledge signal if the message was properly received by the mobile unit, or alternatively to transmit a negative acknowledge signal if the message was only partially received. The negative acknowledge signal indicates that the network operations center should rebroadcast the message to the mobile unit.

- Preferably, the rebroadcast of the message to the mobile unit should occur with an appropriate error correcting code which may be decoded by the mobile anit to insure complete and accurate reception of the message. Of course, error correcting codes should be used only when necessary because their use slows data transfer and increases the complexity of the mobile unit. Olber types of autonomous replies may also be useful, for example, to indicate to the 20 network operations center that the user has not viewed the message even though the mobile unit properly received it, such as when the mobile transceiver is unattended by the user.

A sot of input switches 1516 is provided fo allow the user ${ }^{25}$ to:
input a reply to a received message, or to otherwise generate a message to be transmitted by the mobile transceiver. The input switches are connected to transmit logic 1518 which decodes the sigual from the input switches 1516 to generate an output signal to the transmitter 1520. The transmitter 1520 generates an appropriately modulated RF signal to be broadcast by antenna 1502.

The mobile transceiver 1500 also preferably includes a noise detector 1522 . The noise detector 1522 provides an output signal upon sensing through antenn IS02 a threshold level signal. The noise delector 1522 provides an output signal to disable the transmitter 1520 via connection 1524 and to thereby prevent unwanted transmission by the mobile unit.
Noise detector 1522 preferably is set to detect electromagnetic signals which are generated externally to the communication system and which are indicative of a condition when transmissions by the mobile unit are undesirable. For example, the noise detector 1522 could be designed to serve a threshold level of noise at 400 Hz . When designer io serve a mercial aireraf which the user coters a commercial aircratt, which commonly use 400 hertz power supply, the receipt of this noise by the noise detector 1522 would then disable the transmit capability of the mobile transceiver 1500 during operation of the aircraft to prevent any unnecessary or unwanted interference with the operations of the aircraft by autonomous or intentional iransmissions by the mobile transceiver 1500 .

The display and storage logic 1508 of the mobile transceiver 1500 further preferably includes a timing circuit (not shown) which may be used to turn the receiver section 1506 on or off, as desired. The timing circuit (not shown) advan tageously allows the mobile transceiver to "power down" during periods of time when messages are not anticipated to be transmitted. For example, in a preferred communication protocol, the receiver could simply power ap at the beginning of each cycle to receive data to determine if a message will be transmitted to that mobile transeeiver during that cycle or when information concerning message availability will be transmitted. If the mobile transceiver is to receive a message, the timing circuit could power up at the appropri-
ate time to receive the message, and then power down after receipt. The timing circuit, therefore, advantageousiy proeceiph. The uming circe of lougs is should be understood that the liming circuil could course, should be undor cone display 1514, and the transmit bic 1518 . the display 1514, and the transmit logic 1518.
In an alternate implementation, the receiver 1506 may adaptively change its demodulation techniques to accommodate various formats. For example, each zone may advantageously uke a different modulation format depending on message trafic levels, and other considerations. In particular, the receiver may receive a signal indicating the modulation scheme utilized in a given zone via a modulation format message contained in an overbead portion of the data stream. The demodulation of FSK, M'ary FSK, PFSK, and MOOK formats all begin with the determination of the energy levels detected at each of the carrier frequencies, and thus require identical processing of the received RF energy. The logic (not shown) in the receiver interprets the meaning of these measured energy levels based upon the modulation sebeme selected as indicated by the received modulation format message. In this manner simpler and more economical transmitters, with a decreased capacity for information transfer, can be used in zones that have decreased traffic loads and more expensive, high-throughput transmitters can be used only in those areas where they are needed.
A pictorial representation of the mobile transceiver is shown in FIG, 16. The mobile transceiver 1600 shown therein includes a case 1602, a pair of display control buttons 1604, a display 1606 , and a set of six reply buttons $1608,1610,1612,1614,1616$, and 1618. As indicated previously, display 1606 is preferably an LCD display and a set of display control buttons 1604 may be used to scroll text up or down on the display 1606. The message "will you be home for dinner?" is shown on display 1606.

The set of six reply buttons $1608,1610,1612,1614,1616$, land 1618 provide a flexible system for user generated replies to received messages. The display and storage logic 1508 provides information immediately above each button indicating a possible reply message by the user. In the simple example shown in FIG. 16, the user may reply "yes," "no," or "?" to the message 620 displayed on the sereen 1606. The transmit logic 1518 generates an appropriate signal based pon which button the user presses. In this simple scenario, butions 1614, 1616, and 1618 are unused.

In alternate applications, up to six possible reply messages may be shown on the screen 1606. Of course, other particularized applications may be ervisioned for the reply feature of the mobile transceiver 1500 . For example, if the user is a sfockbroker, the display 1606 could display the terms "buy," "sell," or "hold" above the appropriate buttons A variety of other applications may be envisioned

With the six button reply option provided by mobile transceiver 1500 , a three bit message may be transmitted by the mobile transceiver to the base receivers. The two remaining states of the three bil message may be used by the transmit logic 11518 for the autonomous acknowledgment signal which indicates that the message has been properly received, and for the autonomous negative acknowledgment signal which indicates that the message bas not been completely or properly received.

Of course, the mobile transeciver 1500 shown in FIG. 16 could be configured differently to provide more or less reply buttons, different display control buttons, and different dis65 play formats as desired or needed by the user.

Further, the mobile transceiver 1500 could additionally include a data output port (not shown) for connection to
other electronic devices of the user. For example, the mobile transeciver could be connected through an output port to a laptop or palmtop PC, or could be incorporated therein. The PC could display the message on its screen, thereby obviating the need for the display 1606, and the keyboard could be used to generate any appropriate reply messages from the user, thereby obviating need for the reply butions and allowing free form messages to be sent by the mobile transceiver. A user selected reply would be transferred to the mobile transceiver $\mathbf{1 5 0 0}$ from the PC for transmission to the base receiver.

Alternatively, the mobile transceiver could be connected to a voice data replay deviee, such as a speaker, thereby allowing the user to receive messages from a voice mailbox, for example. Of course, a voice data generation device, such as a microphone, could be connected to the mobile transceiver 1500 to allow the user to reply to the voice mail message he has received or to initiate voice data communieation from the mobile Iransceiver to the base receivers. Similarly, facsimile transmissions could be supported.
An atternate embodiment of the mobile unit includes only receive capabilities, but does not include any transmit capabilities. FIG, 17 shows a mobile receiver 1700 . The various components of the mobile receiver generally correspond in functionality to the similar elements shown in FIG, 15, Of course, the roobile receiver 1700 eannot generate replies, which includes user initialed replies, an autonomous acknowledgment signals or negative acknowledgmen signals, because of the lack of transmit capability. Also, the location of this alternate embodiment cannot be tracked by the network control center because of the lack of transmit capability. Generally, because of these reasons, the-mobile receiver 1700 embodiment of the mobile tunit is less preferable than the mobile transceiver embodiment 1500. Furtber, it should be appreciated that the mobile transceiver embodiment may include circuitry for generating various autonompus responses without interaction by the user.

F. The Base Receiver

The base receivers of the present system receive the low power output signal from the mobile transceiver unit. As is shown in FIG. 6, mobile receivers are dispersed throughout the geograptic service area. Base receivers need not be associated with zonal boundaries per se, but will always be tocated to service at least one zone, of course. A few base receivers may exist in the overlap region between zones.
During transmission of the return signal by the mobile transceiver unit, it is possible that several base receivers could receive this return signal. In this instance, the network operations center 600 preferably selects the data from the base receiver with the highest received signal strength (i.e. the signal with the lowest probability of errors) to maximize the likelihood of receiving accurate data. The signal strength approach is preferred and can be satisfactorily implemented if the base receiver locations are carefully selected to insure adequate signal streogth reception from the mobile transceiver units and to minimize the overlap between base receiver coverage areas. Alfernately, the network operations center 600 could use "voting" techniques by comparing each data sel from the several base receivers to arrive at the most likely return signal data using conventional voting receiver lechnology.

FIG. $18(\mathrm{~A})$ shows à first cmbodiment of an analog base receiver. Analog receiver 1802 is connected to an antenna 65 1800 . The analog receiver 1802 simply receives the signal from the antenna 1800 and removes the modulated wave-
form from the carrier frequency and outputs this waveform in analog format to a regional demodulator 1804 via data path 1806. Data path 1806 is preferably a 4 KHz analog path 1806 . Data p
telephone channel.
The regional demodulator 1804 receives signals from several analog receivers included in several base receivers. Preferably, the regional demodulator 1804 is located in the regional station, such as regional station 650 shown in FIG. 6. The demodulated signal from the regional demodulator 1804 is then transferred to the regional processing circuitry 1808, and then onto the network operations center 600 .
The analog receiver 1802 could generate identification data to be transmitted with each received message so the network operations center 600 can deiermine the source of each message received. Alternatively, and preferably, dedieated communication paths are used for each base receiver and therofore, the source of the message can be inferred from the communication path that is activated.
FIG. 18(B) shows a digital base receiver embodiment which includes an antenna 1800 attached to an analog receiver 1802. As in the previously discussed embodiment, he analog receiver 1802 removes the modulated waveform from the carrier signal transmitted by the mobile transceiver unit. The anslog receiver 1802 outputs the modulated waveTorm to a demodulator 1810 included in the base receiver. The demodulator 1810 produces a digital output signal corresponding to the data stream transmitted by the mobile transceiver unit. The demodulator 1810 provides the digital output signal to the regional processing circuitry 1808 in the regional station via data path 1812. Data path 1812 may be any conventional data path which can satistactorily convey the digital data from the demodulator 1810 to the regional processing center 1808. The regional processing circuitry 1808 then passes the data to the network operations center 600.
correction shows a digital base receiver including erfor correction and store and forward features. An anienna 1900 connected to an analog receiver 1802 which is connected 10 a demodulator 1810, as previously described with referfrom demodulator 1810 to error correction cignal is output from demodulator 1810 to error correction circuitry 1906 integrity of the relurn signal received from the mobile integnity of the teturn signal received from the mobile should decode and correct data which have been compatibly shouid decode and correct data whic encoded by the mobile transceiver.
The error corrected data output from the error correction circuitry 1906 is provided to a store and forward circuit 1908. The store and forward circuit 1908 stores the received data to allow it to be transmitted later at a convenient time and at a convenient data transmission rate.
For example, in the present system it is likely that the return signal traffic received by the base receiver will occur in short bursts at a relatively high data transfer cate. However, it is also likely that the average data transfer rate from the base receivers is substantially lower than the instantáneous data transfer rate during traffic bursts. The store and forward circuit 1908 may preferably act as a buffer o allow the return signal data to be communicated from the store and forward circuit 1908 to the regional processing circuitry 1808 at a lower (and less expensive) data transfer rate. Store and forward circuit 1908 is, therefore, preferably connected to regional processing circuitry 1808 via data path 1910 which may include a low cost telephone line.
G. The Network Operations Center

1. Overview

The network operations center 600 is shown in schematic form in FIG. 20. The network operations cenier 600 includes

21
a base receiver input system 2000 which receives data from the various regional stations throughout the system (e.g., regional stations 644 and 650) via various data paths, such as data paths 656 and 658 as shown in FIG. 6. The dats received by the base receiver input system 2000 includes reply data from users with various control data. Base receiver input system 2000 may include appropriate conventional signal processing equipment, Cobtrol data may include data identifying the base receiver (i.e. location of the mobile unit) which received the associated reply. Preferably, the base receiver input section 2000 receives data from the regional stations via phone lines. However, other appropriate data paths may be considered.

The base receiver inpul system 2000 then provides the received data to a central computer 2002. The central computer 2002 may also receive inpul from a user inpu system 2004. For example, the user input system 2004 may receive data from users via phone lines who may access and interact with the central computer via voice, DTMF, or modem transmission and may include appropriate conventional signal processing equipment. A user may interact with the central computer 2002 to modify his service, to initiate or receive messages, or to perform other desirable functions.

Generally, the central computer 2002 processes the data received from the base receiver inpul system 2000 and from the user input system 2004 to perform various operations on the data, ito update various database ontries for use by the central computer 2002, and to gencrate data for transmission to a satellite uplink output system 2006.

It should be understood that, although FIG. 20 shows the eentral computer as existing at a single location in the network operations center 600, a distributed computing system may be used to perform the necessary functionality of the central computer 2002. Presently, howeyer, a single location for the central computer 2002 is preferred.

Satellite uplink output system 2006 receives data from the central computer 2002 and provides it to satellite 606, shown in FIG. 6, for transmission to base transmitters within the system (e.g., base transmitters 612 and 614 in FIG. 6).

The central computer 2002 is also connected to a databasc system 2008 which stores various data such as message data, user status data, system slatus data, and message status data, for example, for use by the central computer 2002 in processing.

Also, a control access 2010 is provided to allow systems engineers or programmers to access the central computer 2002 to observe and modify its operations and system performance.

2. Database Structure

The database 2008 nf the network operations center includes several database structures necessary for the operation of the sysiem. While a preferred partitioning of these databases is described below, it should be understood that other partitionings could be considered, such as moying the various "user traffic" fields from the traffic stalistics databas to the user database.
a. The User Database

For example, the user dalabase structure shown ia FIG. 21 includes a record for each user of the system who possesses a mobile unit. The record for user 12100 includes various fields, such as an ID number field 2102 which indicates a unique number associated with that particular user. The transmit capahility field 2106 indicates whether the mobile
unit assigned to the user bas the capability to transmit. The nit assigned to the user bas the capability to transmit. The ast location field 2104 includes data which indicates the last known location of the user. The last location field may he updated when the central computer recognizes that a new base receiver has received a return signal from the mobile unit, thereby indicating the mobile unit has moved since the last return signal. Of course, if the mobile unit only includes 3 mobile receiver without transmit capability, the last location field 2104 cannot be updated and the mobile unit may 0 be given a default location.

The service area field 2108 includes data corresponding to the area in which the user has subscribed to. For example, if a user desires service in geographic areas less than the total system service area, the central computer could use the data 15 in the service area field 2108 to cause only selected base transmitters to attempt to transmit messages to a mobile unit.

The button format field 2110 includes data indicating the format of reply buttons the user may access on the mobile ransceiver. Of course, for mobile units with only receive capabilities, the button format field will not be used.

The message field 2112 includes data representing one or more messages which are inlended for the user. A receive flag is set when the central computer has received data indicating tbat the message has been received by the mobile unit via an acknowledgment signal. If the mobile unit does not have transmit capability, the receive flag is set upon transmission of the message by the appropriate base transmitters. The user database structure may include other fields for each user of the communication sysiem of the present invention as needed to provide various desired services.

b. The Receiver Database

Database 2008 of FIG. 20 includes a receiver database (not shown) which includes an entry with several associated fields for each base receiver in the system. A first field for ach base receiver preferably includes the total number of mobile units which bave last communicated with this receiver. A second field for each base receiver preferably includes a list of base transmitters which may cover all or a portion of the receiver coverage area of that base receiver.

c. Traffic Statistics Database

Database 2008 of FIG. 20 should also include preferably
15 a traffic statistics database as shown in FIG. 22 which includes various fields containing statistics calculated by the central computer 2002 concerning traffic patterns for the system. For example, the traffic database 2200 preferably includes a user field 2202 for data indicating a user of the network. Several fields are preferably associated with the user field 2202. Field 2204 includes data representing the number of probe signals sent by the network to locate the mobile unit associated with the user field 2202 . Field 2206 includes data representing the number of registration signals received by the nerwork from the mobile unit associated with the user field 2202. Field 2208 includes data representing the number of messages from the network that have been og the number of essages from the aetwork aved with user field 2202 . Field 2210 may be used for other traffic
related data, such as data indicaling the average traffic per cyole, and data indicating a time average (i.e. for the last hour) traffic amount.
Furthet, the traffic database 2200 could include fields (not shown) for data concerning overall system performance and, in particular, each zone in the network. Such area specific raffic data may be useful in optimizing system performance by allowing intelligent redefinition of zonal boundaries.

23
d. The Service Queue

Database 2008 of FIG. 20 also includes a service quene $\mathbf{2 3 0 0}$ as shown in FIG. 20. The service queue $\mathbf{2 3 0 0}$ includes a current messages queue and a probe list queve. The current messages queue includes a system wide list of messages to be delivered by the system. The current messages queue includes, for example, a series of ID number fields 2302 , 2304, and 2306 with associated data location fields 2308 , 2310, and 2312, respectively. The data location fields 2308 , 2310, and 2312 include pointers to the appropriate fields in the user database structure shown in FIG. 21. The ID numbe fields 2302, 2304, and 2306 include data indicating the ID number of the user lo which the message is to be delivered.

In operation, the central computer retrieves the ID number 2302 and data location 2308 from the lop of the current messages queue and retrieves the appropriate data from the user database $\mathbf{2 1 0 0}$ to process and transmit a message to the user.

The probe list queue includes a ID number fields 2314, 20 2316 , and 2318 and data location fields $\mathbf{2 3 2 0}, 2322$, and 2324 similar in form to those in the current messages queue. The probe list queue contains a list of users which the system has previously attempted unsuccessfully to deliver a message to. In otber words, the users listed in the probe list are considered to be "lost" by the system. The central computer 2002 then initiates a probe routine for the ID number 2314 and data location 2320 located at the top of the probe list.

After successful execution of the probe routine, the lasi location field 2304 in the user database structure 2100 wil have been updated to provide an accurate last location of the user from the base receiver that received the mobile unit's acknowledgment to the probe signal. After the last location field 2304 has been updated, the message can then be replaced in the eurrent messages queue for delivery to the user via the appropriate base transmitters located near the mobile unit.

Preferably, the petwork operations center gives priority to the delivery of all messages in the current message queue, and then sends probe signals to the users listed in the probe list queue after delivery has been attempted for all messages in the current message queve. If the message volume in the current message queue remains high for an extended period of time, the network operations center preferably begins to periodically send probe signals to the users listed in the Probe List, even thougb undelivered messages remain in the current messages queue. For example, in this instance of persislent filled current messages queue, the network opera tion center preferably transmits three probe signals in every cycle transmitted.

e. Base Transmitter Assignment List

The database 2008 of the network operations center also meludes a base transmitter database 2400 as shown in FIG. 24. The base transmitter database 2400 includes a zonal assignment field $\mathbf{2 4 0 4}$ for data representing a zone assignment associated with a base transmitter field 2402 in the system. Also, a field 2406 for data representing the base receivers in the transmitter coverage area, and a ficld 2408 for other data associated with a base transmitter, are associated with base transmitter field 2402. As can be seen in FIG. 24, each base transmitter in the network has a base transmitter field and associated fields as described above.
In normal operating conditions of the system with low amounts of message traffic being transmitted, each base transmitter will remain assigned to its particular zone.

However, the systems and methods of the present invention provide for dynamically changing the zonal assignments of various base transmitters to improve information throughput. These dynamic zone allocation concepts dynamically reassign base transmitters to new zones generally based upon the volume of messages transmitted during the systemwide time interval, and more particularly based upon the ocalized volume of messages to mobile units. In general, dynamic zone allocation may be used to deliver messages to mobile units in overlap areas (i.e. "zonal dithering") or 10 balance the volume of message traffic between zones.

FIG. 25 is useful to explain these concepts. Various base ransmitters, each designated as an "X," are dispersed throughout a region of space shown in FIG. 25. Also, various base receivers are dispersed throughout this region of space 2500, each being designated by an "R." The normal zonal boundary for zone 1 in FIG. 25 is shown by solid line 2502. A normal boundary for zone $\mathbf{2}$ is represented by solid line 2504 during normal load trafic operation conditions, As can be seen, base transmitters 2506, 2508, and 2510 are located near the zonal boundary of zone 2 , and base transmitters 2512,2514 , and 2516 are located near the boundary of zone 1. Base receivers 2518 and 2520 are located in an overlap area 2521 between zones 1 and 2. As previously discussed, mobile units located in this overlap area 2521 near base receivers 2518 and 2520 must be communicated with during the systemwide time interval because of the interference created during the zonal time interva! by adjacent base transmitters.
During normal, low to moderate volume system operations, the zonal overlap area 2521 , i.e., interference area, near base receivers 2518 and 2520 will preferably have a small number of mobile units located therein. Therefore, communication with these mobile units will not significantly consume system resources by occasionally communicating with them during the systemwide time interyal.
However, if the traffic volume from the overlap area 2521 near base receivers 2518 and 2520 increases, such as because additional mobile units enter this overlap area 2521, the handling of this traffic in the systemwide time interval can significantly consume system resources. For example, communication with a large number of mobile units during the systemwide time interyal may significantly delay delivery of messages to units in this and other regions.

In this instance, the zonal boundaries are changed in remove this high traffic region from a zonal overlap area. For example, system efficiency is restored if the zone 1 boundary were moved to dashed line 2522 and the zone 2 boundary were moved to dashed line 2524 .

The central computer 2002 may dynamically accomplish his zonal redefinition by assigning one or more base trantsmitters to a new zone to reduce systemwide time interyal messages. In the present example shown in FIG. 25, the central computer updates the base transmitter zonal assignment list to reassign base transmitters 2512,2514, and 2516 zone 2 while removing these base transmilters from zone In view of this zonal a fofition, the new zone 1 boundary In view is shown by dashed line 2522, and the new zone 2 boundary is shown by dashed line 2524. The high traffic region near base receivers $\mathbf{2 5 1 8}$ and $\mathbf{2 5 2 0}$ is now squarely within zone 2 and messages to these units may be efficiently delivered during subsequent zonal time interval(s).
In accordance with the invention, a preferred method 2600 for accomplishing zonal redefinition is shown in FIG. 26. In accordance with the method, step 2602 provides for ransmilting substantially simultaneously a first information
signal and a second information signal, the first information signal being transmitted in simulcast by a first set of base transmitters assigned to a first zone, and the second information signal being transmitted in simulcast by a second set of base transmitters assigned to a second zone, For example, as shown in FIG. 25, the base transmitters in zone 1 defined by boundary line 2502 could be the first set of base transmitters, and the base transmitters located in zone 2 defined by boundary line 2504 could be the second set of base transmitters.
Step 2604 of the method provides for dynamically reassigning one or more of the base transmitters in the first set of base transmitters assigned to the first zone to the scoond set of base transmitters assigned to the second zone, thereby creating an updated first set of base transmitters and an updated second set of base transmitters. For example, base transmitters $\mathbf{2 5 1 2}, \mathbf{2 5 1 4}$, and 2516 could be reassigned from zone 1 to zone 2. As shown in FIG. 25, new zonal boundaries would be defined by dashed lines 2512 for zone 1 and 2524 for zone 2.

Step 2606 provides transmitting substantially simultaneously a third information signal and a fourth information signal, the third information signal being transmitted in simulcast by the updated first set of base transmitters and the fourth information signal being fransmitted in simuleast by the updated second set of base transmitters. For example, as shown in FIG. 25, the base transmitters assigned to zone 1 defined by dasbed line 2522 (i.e. not including basc transmitters 2512, 2514, and 2516) could transmit during a subsequent communication cycle a third information signal, and base transmitters in zone 2 defined by dashed line 2524 (i.e. including base transmilters 2512,2514 , and 2516) could transmit a fourth information signal during that same subsequent communication cycle.

Further, it is desirable that during the redefinition of the zonal boundaries, it is insured that the new overlap area 2525 near base receiver 2526 and between dashed lines 2522 and 2524 is an area that is not likely to produce, or is not currently producing a high volume of message traffic. Generally, zonal boundaries should be preferably redefined to maximize information throughput by minimizing the data that must be transferred during the systemwide time inlerval. A network manager conld review the overall traffic patterns and tendencies to determine an optimum redefinition of zonal boundaries. Of course, the central computer 2002 could also implement an algorithm accessing the traffic statistics database 2200 to determine optimal zonal boundary redefinition.
In a preferred embodiment in the instance where an entire region is saturated with mobile units, such as a large metropolitan area repetitive reassignments of base transmitlers may be used to reduce message traffics during, the systemwide time interval. There may exist no appropriate overlap area, such as overiap area 2525 , with a low traffic level to facilitate a long term reassignment of base transmitters with the resulting redefinition of zonal boundaries. In this case, the preferred embodiment alternates between a first and second set of zonal boundaries over each commu irst and second set of zonal boundaries over each commuaication cycle and does not attempt to deliver messages
For example, in FIG, 25 this preferred embodiment would utilize the zonal boundaries defined by lines 2502 and 2504 during a first zonal time interval and would not attempt to deliver messages to mobile units in overlap area 2521. In a 6 subsequent cycle, this preferred embodiment redefines the zonal boundaries to dashed lines 2522 and 2524 and delivers
messages to the motrile units in previous overlap area 2521 messages to the motric units in previous overlap area 2521
during the zonal time interval using zone 2 base transmitters. during the zonal time interval using zone 2 base transmitters.
During this cycle, the network would not attempt to deliver messages to mobile units in overlap area 2525. In yet a later cycle, this preferred embodiment would switch back to zonal boundaries 2502 and 2504 which would allow message delivery to mobile units in the now previous overlap area 2525 during the zonal time interval using zone 1 base transmitters. As can be seen, alternating between a first and second set of zonal boundaries advantageously reduces the need for communication during the systemwide time interval, but slows message delivery somewhat by only allowing communication to mobile units in overlap areas during zonal time intervals on alternating communication 15 sycles.
H. The Preferred System Communication Protocol

The system communication protocol is preferably a lime 20 division protocol organized within repetitive communication cycles of preferably 30 seconds in duration.

The blocks of data transmitted by the network are preferably formed by a bit interleaving process to prevent loss of data during bursts of ioterference. Bit interleaving may be envisioned as stacking two or more blocks of data (whicb read from left to right), and then transmitting a bit stream in column-by-colump, top-to-bottom sequerice. As can be een, burst of i Perferene will likely only cause the be seen, a burst of intererence will likely only cause the loss of a few bits per word at most, which can be corrected by error correction techniques, rather than the loss of entire words. Of course, the mobile unit must appropriately deinterleave the data prior to processing.

FIG. 27 generally illustrates a variety of preferred time intervals which may variously be used for communication between the system and various sets and subsets of mobile units. An adaptable schedule for these time intervals is preferably generated, and may be revised according to system demands. The scheduling of the time intervals advantageously allows a mobile unit to "power down" during inactive time periods when the mobile unit will not transmit or receive any messages, therehy conserving battery power. Similariy, messages or information for delivery to a subset of the total number of mobile units will preferably be transmitted during time intervals which minimize s the delivery of those messages or information to unintended mobile units not included in the subset to further conserve battery power.

A preferred cycle protocol 2700 is shown in FIG. 27(A) The cycle protocol 2700 includes a cycle header time interval 2702, a systemwide forward (FWD) batch time interval 2704, a systemwide response time interval 2706, a zonal forward (FWD) batch time interval 2708, a zonal reverse time interval 2710 , and a reverse contention time interval 2712. Other arrangements, such as moving the systemwide reverse interval next to the zonal reverse inter val may be considered if transmitter turn on time is significant.

The cycle protocol geoerally sehedules time slots for systemwide and zonal forward channel information transfer from the network to the mobile units and for systemwide and zonal reverse channel information Iransfer from the mobile Iransceiver units to the network. Briefly, the cycle beader 2702 field includes overbead or "housekeeping" information, the systemwide forward batch field 2704 and the zonal forward batch field 2708 provide forward communication capability through the base transmitters to the mobile units in a systemwide time interval and a zonal time
inierval, respectively. The systemwide response field 2706 and zonal reverse ficld 2710 provide a return signal period for the mobile transcejivers to respond to messages generated during the systemwide and zonal forward batch periods 2504 and 2508 , respectively. Finally, the reverse contention 2712 field allows the mobile transceiver to initiate access to the network.
Each of the fields shown, except the cycle header 2702 field, is preferably variable in duration, and may be changed by the central computer 2002, depending on message traffic requirements. The beginning of the cycle is synchronized by the central computer to a time standard and preferably coincides with the start of minute or half minute intervals. Each mobile unit preferably includes liming circuitry as previously described, which allows for the mobile unil to power up at the beginning of each cycle to receive communication.

For each cycle, the central computer 2002 calculates the smount of time required for each field to maximize information throughput by the network. For example, for the cycle protocol 2700 shown in FIG. 27(A), the central computer will calculate the amount of time necessary for the systemwide forward batch field 2704, the systemwide response interval 2706, the zonal forward interval 2708, the zonal reverse interval 2710 , and the reverse contention interval 2712 . The cycle header 2702 will preferably include timing offsef data which will indicate the timing offset from the cycle hesder uotil the beginning of the systemwide response interval 2706, the beginning of the zonal forward interval 2708, the beginning of the zonal reverse interval 2710 , and the beginning of the reverse contention interval 2712.

The cycle header 2702 starts preferably with an 8 digit long preamble (not shown) for digit synchronization purposes. The preamble allows for the mobile unit to synchro- 3 nize its timing circuitry with the network. For example, the timing circuilry of the mobile unit could become offsel from the network due to commonly caused inaccuracies. The preamble is followed by a "start of header" string of four digits and all timing offsets within the cycle are calculated as a number of predefined intervals beginning from the start of the last header digit. The start of header string is followed by an 8 digit string grouped into two words, each of which is protected against errors by encoding it using a forward error correcting code, preferably a Bose, Chaudhuri, and 4 Hocquenghem (BCH) code or a Reed Solomon code. These error correcting codes add additional digits to the information digits in a code word, where the additional digits are a specific function of the information digits, so that if certain cormmon orror events occur, a decoding step involving all of the transmitted digits, both information and additional, can recover the original information digits. The first code word will contain a count of the current cycles executed for that day. The second code word will contain the necessary timing offisets for the beginning of the time intervals in the cycle protocol 2700. Further information regarding error correcting codes may be found in Gallagher, "Information Theory and Reliable Communication," Wiley 1968 , which is hereby incorporated by reference.
The systemwide forward batch 2704 field generally includes a zonal hesder time interval including overhead information and a series of 64 batches. Also, the zonal corward interval 2710 similarly includes a zonal beader time interval with overhead information and a serics of 64 batches. Each batch is a string of data containing information specifically directed to a single group of mobile units. Each batch preferably contains information directed to a
certain class of mobile units with the classes divided by the types of service provided, For example, a first batch could be directed to all mobile transceiver units, and a second batch could be directed to all mobile r eceiver units. Further, each batch may contain several messages, each intended for different mobile units within the particular class of unit to which that batch is directed, Generally, FIG. 27(B) shows the forward batch interval protocol 2750 preferred for both the systemwide forward interval 2704 and the zonal fonward interval 2708.

The systemwide forward interval 2704 is preferably used ouly for sending a probe signal to a mobile transceiver umit which does not respond to zonal messages (i.e. a "lost" unit). However, when necessary, the systemwide forward interval 2704 may be used to deliver messages to mobile units located in overlap areas. The ID number, or address, of the lost mobile unit is preferably followed by data indicating a timing offset which is a time delay amount until the beginning of the time slot designated for the relurn signal of that mobile unit. An alternative implementation, which may be useful for mobile units that have not responded for a period of time, could have mobile units that have received a probe signal respond during the reverse contention interval.
After the end of the broadeast on the systemwide forward batch time interval 2704, all network base transmitters sbut down until the beginning of the zonal forward batch time interval 2708.
The forward hatch interval protocol 2750 includes a forward channel header interval 2714 which includes data to allow the timing circuitry of the mobile units to syachronize themselves witb the incoming data stream. The forward channel header 2714 also preferably includes data indicating a timing offset scheduling a reverse channel time interval for each batch, as may be required. Of course, the forward channel header 2714 for the systemwide forward interval 2704 would indicate a timing offisel for reverse channel ransmission during a systemwide response interval 2706 nd the fonvand thanel header 2714 for the zon forwar ad the forward channel header 2714 for the zonal forward interval 2708 would indicate a timing offset for reverse chamel transmission during the zonal reverse interval 2710.

The forward channel header 2714 further includes a data stream to the mobile unit listing which of the 64 batches will follow and the timing offsets indicating when those batches will be transmitted, Again, this feature advantageously allows the mobile unit to "power down" during the systemwide and zonal forward intervals 2704 and 2708 until the appropriate time for receiving its batch information, thereby conserving the battery power of the mobile unit. The remain50 ing fields batch i 2720 , batch 12722 , and batch k 2724 are the individual batches directed to the mobile units.

It should be understood that different classes of mobile units can follow different desirable batch protocols, depending on the type of service, processing power, battery ss capacity, or otber factors.

The individual batch protocol 2780 is shown in FIG. 27(C). The batch header field 2726 is similar to the beader fields discussed above for FIGS. 27(A) and (B). The batch header 2726 includes a list of particular mobile units to receive messages within the batch and includes timing offsets indicating when such messages will be broadeast. Further, the batch beader 2726 includes data indicating a timing offset scheduling a reverse channel interval in the system reverse interval, the zonal reverse interval, or the 65 reverse contention interval, as appropriate. Again, this information allows the mobile unit to extend its battery life because the mobile unit need only power up at the appro-
priate time to receive or transmit the appropriate message. Furber, it is preferred that the reverse channel timing offsel data be transmitted using error correction codes to insure data he transmitted using ermor correction codes to insure
accurate receipt thereof by the mobile unit. Accurate receipt of the reverse chaonel timing offset data will prevent uowanted or untimely transmissions by the mobile unit and insure that a mobile unit may properly transmit a negative acknowledgment signal if it fails to properly receive an unencoded message.
The individual message interval 2732 iacludes the individual message intended for a particular mobile unit or units. The duration of each message and aumber of messages within a batch may be varied by the network operations center 600 and is traffic dependent.
Each mobile unit with transmit capability that has received a message in the immediately previous sysiemwide forward interval 2704 or the zooal forward interval 2708 will have an appropriate time slot for transmission scheduled in the systemwide response interval 2706, of the zonal reverse interval 2710 , respectively. The timing circuit in the mobile Iransceiver unit determines the assigned time slot for transmission. For example, if the mobile unit simply intends to transmit an acknowledgment signal, which indicates that the mobile unit has properly received the message from the network, an 8 bit preamble followed by the address of that mobije unit need only be transmitted and a 3 bit acknowledgment. However, if a more exiensive reply from the mobile unit is required, additional dala could be transferred during this time slot. In particular, long reverse messages could be scheduled in response to a request from the mobile unit sent during the contention interval 2712, as discussed beresfles
Due to the low power transmit capability of the mobile runsceiver units, there is an increased tikelihood of data transmission errors for reply signals. The extended Golay code for error protection may be utilized for reverse channel messages from mobile transceiver units to the network.
The systemwide response interval 2706 and the zonal reverse interval 2710 provide communication capability from the mobile transceiver units to the network (i.e. the reverse channel).
Still further, a preferred embodiment accommodates mobile terminals with extensive reverse message generation capabilities (e.g., a laptop computer connected to a radio transceiver) by allowing for contention messages that request extended reverse channel time for the transmission of a long reverse message. The reverse contention interval 2712 is located after the zonal reverse interval 2710 and provides for unscheduled messages from the mobile unit to the network. For example, the mobile transceiver unit could send a message to the network during the reverse contention interval 2712 indicating that the user no longer wishes to receive messages, thereby terminating service. Also, the user could transmit a message to the network during the reverse contention interval 2712 indicating that the user now desires to reestablish services and begin receiving messages from the network. Further, a "registration signal," which is discussed infra, could be transmitted during the reverse contention inlerval 2712
The reverse contention interval prefcrably utilizes a so-called "slotted ALOHA" protocol, which allows the mobile unit to randomly select a predefined time slot within the contention interval to transmit a message. A mobile station wanting to transmit will first divide the contention interval into slots, preferably 5.33 ms in length, and then choose randomly any of them to start transmitting. The
slotied ALOHA protocol is preferred because of the low likelihood of data "collisions" (i.e. 2 or more mobile units transmitting during the same time slof).
I. Registration of the Mobile Unit

Because the network operations center 600 stores the location of each mobile unit in the system in the user database 2100, it is preferred that each mobile transeeiver unit have the capability to "register" with the network 10 operations center 600 by sending a registration signal to a base receiver into the network to update the location data.

The mobile transceiver unit preferably registers by simply transmitting its identification number to a base receiver, which forwards this data and data representing the location of the base receiver to the network operations center 600.

The mobile transceiver preferably registers upon crossing zonal boundaries to alert the network operation center that the mobile transceiver has leff one zone and entered another. For example, the mobile unil could receive information from the nearest base transmitter identifying which zone that base transmitter is assigned to at the beginning of each communication cycle. Upon receipt of such information from a base transmitter indicating that a nearby base iransmitter is assigned to a new zone, the mobile transceiver then preferably transmits a registration signal

The mobile transceiver unit may also transmit a registration sigosl in other desirable instances. For example, if the mobile transceiver unit has moved away from the transmitter coverage areas of the network for a period of time, the mobile transceiver unit may preferably transmit a registration signal upon returning to a coverage area. The display and storage logic 1508 of the mobile transceiver unit preferably recognizes that the unit has left the coverage area of the network upon failure to receive data from a base transmitter in the network during the cycle header time interval $\mathbf{2 7 0 2}$, for example. The mobile unil may leave the coverage area of a base transmitter of the network when the user takes the unit out of the country, or enters the basement of a building, for example.

The mobile unit may also preferably transmit a registration signal when power is restored to the mobile unit after having power removed, such as after being turned off by the user. Of course, the power may be restored to the unit by replacing or recharging a dead battery, which may also cause transmission of a registration signal.

In general, the network must balance the need for frequent registrations by the mobile transceiver units, and the desirable result of accurately knowing the location of each sa mobile unit, thereby preventing the need for probe signals, with the undesirable overhead costs of too frequent registration, which sacrifices data tbroughput by utilizing valuable transmit time.

In the preferred embodiment, the central computer 2002 55 of the network operations center 600 can achieve desirable performance by implementing one or more algorithms to evaluate the need for registration by a mobile unit, and then appropriately controlling the registration performance of that mobile unit. If the central computer determines that 60 registration of a particular mobile unit is useful, then the mobile unit preferably sbould receive a message from the network to cause the mobile unit to send registration signals at approptiate times. Conversely, if the central computer determines that the registration signals from the mobile unit are too frequently not useful, the mobile unit preferably should receive a message from the network to cause the mobile unit not to transmit registration signals.

To implement this feature, the mobile transceiver unit further preferably includes a registration flag (oot shown) in the display and storage logic section 1508. If the registration flag is set, the display and storage logic section 1508 causes the mobile ransceiver to autonomously send a registration signal to the network operations center on a desired basis. If the registration flag is not set, the display and storage logic section 1508 prevents any registration signals from being sent.
The registration flag may be set or removed upon command from the network operations center by transmission of an appropriate signal from a base transmitter near the mobile unit. A variety of algorithms, possibly regarding individual users or groups of users, can be used to determine whether or not the registration flag should be set. It should be apprecialed that the present invention provides two distinct algorithms for implementing these registration concepts depending upon whether the registration flag is set or not in the mobile unit (i.e. the state of the mobile unit).
FIG. 28(A) shows a flow chart describing a preferred method 2800 for implementing the registration concepts of the present invention wherein the registration feature of the mobile unit is disabled, In stcp 2802, the network sends a message to disable the registration feature (i.e. set the registration flag to zero) of the mobile unit to disable the mobile transceiver's capability to transmit a registration signal. As can be seen, step 2802 determines the initial state for the method set forth in FIG. 28(A).
In step 2804, the network stores the number of probe signals sent to the mobile transceiver during a first period of time, and the number of messages successfully delivered to the mobile transceiver by the network during a second period of time. Preferably, the first and second time intervals are ideatical. The traffic slatistics database 2200 of the databasc 2008 is preferably used to store the number of probe signals and successful messages for each mobile unit, As explained hereinafter, these two statistics from the operation of the aetwork are preferably used to determine whether registration by the mobile unit is useful.
In step 2806, the stored number of probe signals and number of messages successfully delivered is processed to evaluate a likelibood that a probe signal will be required to be set by the network to locate the mobile unit to deliver a message. The preferred embodiment of the invention processes the slored number lof probe signals and messages successfully delivered in accordance with the method sel forth in FIG. 29(A).
To Referring now to FIG. 29(A), therein is shown a series of subsieps which are preferably performed during the implementation of the processing step 2804 shown in FIG. 28 (A). In particular, steps 2902 and 2904 are event driven and only proceed to the next step affer an input has been received by the oetwork. Step 2902 determines if the network sent a probe signal to a losi mobile transceiver unit and if a reply to the probe signal was received by a base receiver in the network. If this event occurs, a counter (not shown) is incremented by a value P by the central computer 2002.
In step 2904, if a message was successfully delivered to a mobile transceiver, preferably including an acknowledgment signal return from the mobile transceiver to the network, the counter (not shown) in the central computer 2002 is decremented by a value D.
After the occurrence of either of the events tested for in siep 2902 or step 2904, the algonithm proceeds to step 2906. In step 2906, if the counter value is greater than a predetermined value J, this indicates that the likelihood that a
probe signal will be necessary to locate the mobile transprobe signal will be necessary to locate
ceiver is greater than a selected value.
As can be soen, the process of substeps in FIG. 29(A) balances the frequency of probe signals sent to a particular unit against the number of successfully delivered messages to that unit. If the system must send a large number of probe signals, it would be useful to enable the registration feature by setting the registration flag on that mobile unit to enable the registration feature. In contrast, if many messages have been successfully delivered without requiring a probe signal, it is unnecessary to enable the registration feature by setting the registration flag.
In step 2808, a message is sent to the mobile unit to enable the mobile Iransceiver's capability to transmit a registration signal if the calculated likelihood in step 2804 exceeds a selected value. As can be seen, step 2808 preferably sets the registration flag in the mobile transceiver unit.
FIG. 28(B) shows a flow chart describing a method 2810 for implementing the registration concepts of the present invention wherein the registration feature of the mobile unit is coabled.

In step 2812, the network seads a message to enable the registration feature (i.e. set the registration flag to 1) of the mobile unit to enable the mobile transceiver's capability to transmit a registration signal, As can be seen, step 2812 determines the initial state for the method set forth in FIG. 28(B).
In slep 2814, the network stores the number of registration signals received by the network during a first period of time, and the number of messages successfully delivered to the
30 mobile transeciver by the network during a second period of time. Preferably, the first and second time intervals identical. The traffic statistics database $\mathbf{2 2 0 0}$ of the database 2008 is preferably used to store the number of registration signals and successfil messages for each mobile unit As explained Thereinafter, these two statistics from the opera tion of the network are preferebly used to determine whether the registration by the mobile unit is useful. In step 2816, the stored number of registration signals and number of messages successfully delivered is processed to evaluate the likelihood that a registration signal will be received by a base receiver in the network that will not be used by the network to determine a set of base transmitters to be operated to transmit a message to the mobile transceiver. The preferred embodiment of the invention processes the stored number of registration signals received and number of messages successfully delivered in accordance with the method set forth in FIG. 29(B).
Referring now to FIG. 29(B), therein is shown a series of substeps which are preferably performed during the implementation of the processing step 2814 shown in FIG. 28(B). In particular, steps 2912 and 2914 are event driven and ooly proceed to the nexi step after an input has been received by the network. Slep 2912 determines if a registration signal was received by a base receiver in the relwork. If so, a counter (not shown) in the ceotral computet 2002 Is so, counter (not sbown) in the ceatral computer 2002 is incremented by a value A. In step 2914, if a message was successfully delivered to a mobile transceiver, preferably including an acknowledgment signal return from the mobile transceiver to the system, the counter (not shown) in the 50 ceptral computer 2002 is decremented by a value M

It should be understood that the counter referred to with regard to steps 2912 and 2914 is different then the compler referred to with regard to steps 2902 and 2904 since each counter only necessary when the registration feature is enabled or disabled in the mobile transceiver. However, the same physical or logical device may be used to implement both counters.

Afler the occurrence of either events in the step 2912 or step 2914, the algorithm proceeds to step 2916. In step 2916, the process determines if the counter value is greater than a predetermined value T. The value of T can be varied to meet the noeds of a particular network. When the counter value exceeds T, it is indicated that the likelihood that a registration signal from that mobile unit will not be used by the network lo determine a new set of base transmitters, and therefore the registration status for that mobile unit needs to be changed to disable the registration feature.

In other words, the process in FIG. 29(B) balances the frequency of registration signals sent by a particular unit against the number of successfully delivered messages to that unit. As can be seen, if the mobile unit sends a larg number of registration signals without the system using these registration signals, it would be useful to bave the registration feature on that mobile unit disabled. In contrast if many messages have been successfully delivered withou 100 many regisiration signals being sent hy the mobile unit, it is unnecessary for the registration feature to be disabled.
In step 2818, a message is sent to the mobile unit to disable the mobile transceiver's capability to transmit a registration signal if the calculated fikelihood io stcp 2814 exceeds a selected value. As can be seen, step 2818 may preferably remove the registration flag in the mobile transceiver unit.

Of course, it should be understood that the variables P, D, and J used in FIG. 29 (A), and the variables A, M, and T used in FIG. 29(B) can be adjusted as desired to enbance system performance, as will be apparent to one of ordinary skill in performance, as will be apparent one one ordinary skill in the art. The counters can be implemented with so-called
"reffective boundaries" so that if a counter reaches a mini"reflective boundaries" so that if a couoter reaches a mini-
mum value (e.g., zero), it will continuously reset to that minimum value when further decremented.
It will be apparent to those skilled in the aft that various modifications and variations can be made in the systems and methods of the present imvention without departing from the scope or spirit of the invention.

Other embodiments of the iavention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a rue scope and spirit of the invention being indicated by the following claims.

What is clamed is:

1. Amulti-carrier simuleast transmission system for transmitting in a desired frequency band at least one message contained in an information signal, the system comprising:
a first transmitter configured to transmit a first plurality of carrier signals within the desired frequency band, each of the first plurality of carrier signals representing a portion of the information signal substantially not represented by others of the first plurality of carrier signals; and
a second transmitter, spatially separated from the first transmitter, configured to transmit a second plurality of carrier signals in simulcast with the first plurality of carrier siguals, each of the second plurality of carrier signals corresponding to and representing substantially 6 the same information as a respective carricr signal of the first plurality of earrier signals.
2. The multi-carrier simuleast transmission system of elaim 1, wherein the first transmitter comprises a pluratity of ransmitiers located in a first area, and the second Iransmitter comprises a plurality of transmitters located in a second afea.
3. The multi-carrier simulcast transmission system of laim 1, wherein the first and second pluralities of carrier signals are evenly spaced within the desired frequency band. 4ignals The evenly spaced within the desired frequency band. claim 3, wherein the first and second pluralities of carrier signals are spaced approximately every 3 KHz , and wherein he desired frequency band is approximately 50 KHz wide. 5. The multi-carrier simulcast transmission system of claim 1, wherein each of the first and second pluralities of ${ }_{0}$ carrier signals comprise eight carrier signals.
4. The multi-carrier simulcast transmission system of claim 1, wherein the flrst and second pluralities of carrier signals include an identical number of carrier signals, and wherein each carrier signal in the first plurality corresponds 10 and is slightty frequency shifted $10-20 \mathrm{~Hz}$ from the respective carrier signal in the second plurality.
5. The multi-carrier simulcast transmission system of claim 1, wherein the first transmitter comprises means for modulating the first plurality of cartier signals using a modulation scheme, and the second transmitter comprises means for modulating the second pluratity of carrier signals using the modulation scheme
6. The multi-carrier simulcast transmission system of claim 7, wherein the modulation scheme is selected from the group including: modulated on/off keying, binary frequency shift keying, M'ary frequency shift keying, and quadrature amplitude modulation.
7. The multi-carrier simuleast transmission system of claim 2, further comprising:
a network operations center configured to generate the information signal, the network operations center including a receiver for receiving data input to the network operations center, a database for storing data, a central computer connected to the receiver and the database for processing the input data and the database data to generate the information signal, and a satellite uplink connected to the central computer for broadeasting the information signal; and
a satellite for receiving the information signal from the network operations center and for retransmitting the information signal to the first and second transmitters, wherein each of the first and second transmitters com prises satellite downlink means and base transmitter means.
45 10. In a multi-carrier simulcast transmission system, à method for transmitting in a desired frequency band [a] at least one message contained in an information signal, the method comprising the steps of:
generating a first plurality of carrier signals within the desired frequency band, each of the first plurality of carrier signals representing a portion of the information signal substantially not represented by others of the first pluarlity of carrier signals;
generating a second plurality of carrier signals within the desired frequency band, each of the second plurality of carrier signals corresponding to and representing substantially the same information as a respective carrier signal of the first plurality of carrier signals;
transmitting the first plurality of carrier signals from a first transmitter;
transmitting the second plurality of carrier signals from a second transmitter in simulcast with transmission of the first plurality of carrier signals from the first transmit ler.
8. The method of claim 10, wherein the first and second pluralities of carrier signals are evenly spaced within the

5,915,210

12. The method of claim 10, wherein the first and second pluralities of carrier signals are spaced approximately every 3 KHz , and wherein the desired frequency band is approximately 50 KHz wide.
13. The method of claim 10, wherein the first and second 5 pluralities of carrier signals each comprise eight cartier signals.
14. The method of claim 10, wherein the first and second pluralities of carrier the first plurality corresponds to and is slightly freguency shiffed $10-20 \mathrm{~Hz}$ from the respective carrier signal in the second plurality.
15. The method of claim 10, wherein at least one of the first and second pluralities of carrier signals is modulated first and second pluralities of carrier signals is modulated
according to a modulation sebeme selected from the group according to a modulation seheme selected from the group
including: modulated on/off keying, binary frequency shift 15 including: modulated on/off keying, binary frequency shift
keying, M'ary frequency shift keying, and quadrature amplitude modulation.
16. The method of claim 10 , wherein the step of generating the first plurality of carrier signals comprises the substep of modulating the first plurality of earrier signals 20 using a modulation scheme.
17. The method of claim 10, wherein the step of generating a second plurality of carrier signals comprises the substep of modulating the second plurality of carrier signals using a modulation scheme.
18. The method of claim 10 , wherein the step of generating a second plurality of carrier signals comprises the substep of generating the second plurality of carrier signals at frequencies slighily offset from the firsi plurality of carrier signals.
19. A multi-carrier simuleast transmission system for transmitting in a desired frequency band al least one message contained in an information signal, the system comprising:
means for transmitting a first plurality of carrier signals within the desired frequency band, each of the first plurality of carrier signals representing a portion of the information signal substantially not represented by others of the first plurality of carrier signals; and
means for transmitting a second plurality of carrier signals in simulcast with the first plurality of carrier signals, each of the second plurality of carrier signals corresponding to and representing substantially the same information as a respective carrier signal of the firs! plurality of carrier signals.

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : 5,915,210
DATED : June 22, 1999
INVENTOR(S) : CAMERON et al.

It is certified that error appears in the above-indentified patent and that said Letters Patent is hereby corrected as shown below:

Claim 10, column 34, line 46, delete "[a]".
Claim 14, column 35, line 9, after "carrier" insert therefor --signals include an identical number of carrier signals, and wherein each carrier signal in--

5 DENNIS W. CAMERON, JACKSON, MS; WALTER C. ROEHR JR., RESTON, VA; JAI P.
©咅 JACKSON, MS; DAVID W. ACKERMAN, WASHINGTON, DC.

\qquad
FOREIGN/PCT APPLICATIONS********** VERIFIED
\qquad

FOREIGN FILING LICENSE GRANTED 02/12/97

STATE OR COUNTHY	SHEETS	TOTAL	$\begin{aligned} & \text { WNDEPENDENT } \\ & \text { CLAIMS } \end{aligned}$	FIUNG FEE RECENED	ATTOANEY DOCKE NO.
MS	29	1	1	\$770.00	03680.0083-0.

FINNEGAN HENDERSON FARABOW

METHOD AND SYSTEM FOR PROVIDING MULTICARRIER SIMULCAST TRANSMISSION
压

This is to certify that annexed hereto is a true copy from the records of the United States
Patent and Trademark Office of the application which is identified above.
By authonity of the
COMMISSIONER OF PATENTS AND TRADEMARKS

BAR COOE LABEL	U.S. PATENT APPLICATION		
SERLAL NUMAER	Fill g date	CLASS	GROUP ART UNTT
08/760,457	$\begin{aligned} & 12 / 06 / 96 \\ & \text { RULE } 60 \\ & \hline \end{aligned}$	455	2611

FOREIGN/PCT APPLICATIONS********** VERIFIED
\qquad

FOREIGN F́ILING LICENSE GRANTED 02/12/97

STATE OR COUNTRY	$\begin{aligned} & \text { SHEETS } \\ & \text { DRAWNG } \end{aligned}$	$\left.\right\|_{\text {COAML }} ^{\text {TOTAL }}$	INDEPENDENT CLAIMS	$\begin{aligned} & \text { FILNG FEE } \\ & \text { RECENED } \end{aligned}$	ATTORNEY DOCXET NO.
MS	29	1	1	\$770.00	03680.0083-0

FIINNEGAN HENDERSON FARABOW
GARRETT AND DUNNER
资 1300 I STREET NW
O. WASHINGTON DC 20005-3315

METHOD AND SYSTEM FOR PROVIDING MULTICARRIER SIMULCAST TRANSMISSION

This is to certify that annexed hereto is a true copy from the records of the United States Patent and Trademark Office of the application which is identified above.

By authority of the
COMMISSONEG OF PATENTS AND TRADEMARKS

08104120450

PATENT APPLICATION: SERIAL NO.

- U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE FEE RECORD SHIET

300 SD 01/06/97 08760457
$1101 \quad 770.00$ CK 036800083040°

Attorney Docket No. 03680.0083-04000
Prior Application:
Art Unit: 2611
Examiner: T. Le
SIR: This is a request for filing a
Continuation under 37 C.F.R. § 1.60 of pending prior application Serial No. 07/973,918 filed November 12, 1992 of Dennis Cameron et al. for A NATIONWIDE COMMUNICATION SYSTEM.

1. $[\mathrm{XX}]$ Enclosed is a complete copy of the prior application including the oath or Declaration and drawings, if any, as originally filed. I hereby verify that the attached papers äre a true copy of prior application Serial No. 07/973,918 as originally filed on November 12, 1992.
2. [] Cancel claims \qquad (At least one original independent claimmust be retained for filing purposes.)
3. $[X X]$ A Preliminary Amendment is enclosed.
4. $[\mathrm{XX}]$ The filing fee is calculated on the basis of the claims existing in the prior application as amended at 2 and 3 above.

(1) For	(2) Number Filed	(3) Number Extra	(4) Rate	(5) Basic Fee $\$ 770$
Total Claims	.18-20=	0	x \$ 22.00	\$0
Independent Claims	2-3=	0	x\$78.00	\$0
Multiple Dependent Claim(s) (if applicable)			+\$250.00	\$0
			Total $=$	\$770.00
Reduction by $1 / 2$ for filing by small entity				-
TOTAL FILING FEE $=$				\$770.00

5. [XX] A check in the amount of $\$ 770$ to cover the filing fee is enclosed.

Reg. No. 31,964; Richard V. Burgujian, Reg. No. 31,744; J. Michael Jakes, Reg. No. 32,824; and Allen M. Lo, Reg. No. 37,059.
13. $[X X]$ The power appears in the original declaration of the prior application.
14. [] Since the power does not appear in the original declaration, a copy of the power in the prior application is enclosed.
15. [XX$]$ Please address all correspondence to EINNEGAN. HENDERSON, EARABOW, GARRETT AND DUNNER, L.L.P., 1300 I Street, N.W., Washington, D.C. 20005-3315.
16. [] Recognize as associate attorney \qquad .
17. $[X X]$ Also enclosed is a Petition Under 37 C.F.R. § 1.48 (b).

PETITION FOR EXTENSION. If any extension of time is necessary for the filing of this application, including any extension in the parent application, serial no. 07/973,918 filed November 12, 1992, for the purpose of maintaining copendency between the parent application and this application, and such extension has not otherwise been requested, such as extension is hereby requested, and the Commissioner is authorized to charge necessary fees for such an extension to our Deposit Account No. 06-0916. A duplicate copy of this paper is enclosed for use in charging the deposit account.

FINNEGAN, HENDERSON, FARABOW, GARRETT \& DUNNER, L.L.P.

Date: December 6, 1996

$08 / 760457$

ASSISTANT COMMISSIONER FOR PATENTS
Washington, D.C. 20231
Attorney Docket No. 03680.0083-04000
Prior Application:
Art Unit: 2611
Examiner: T. Le
SIR: This is a request for filing a
Continuation under 37 C.F.R. § 1.60 of pending prior application Serial No. 07/973,918 filed November 12, 1992 of Dennis Cameron et al. for A NATIONWIDE COMMUNICATION SYSTEM.

1. $[X X]$ Enclosed is a complete copy of the prior application including the oath or Declaration and drawings, if any, as originally filed. I hereby verify that the attached papers äre a true copy of prior application Serial No. 07/973,918 as originally filed on November 12, 1992.
2. [] Cancel claims \qquad (At least one original independent claimmust be retained for filing purposes.)
3. $[X X]$ A Preliminary Amendment is enclosed.
4. [$X X]$ The filing fee is calculated on the basis of the claims existing in the prior application as amended at 2 and 3 above.

(1) For	(2) Number Filed	(3) Number Extra	(4) Rate	(5) Basic Fee $\$ 770$
Total Claims	$18-20=$	0	x \$ 22.00	\$0
Independent Claims	2-3=	0	x \$ 78.00	\$0
Multiple Dependent Claim(s) (if applicable)			+\$250.00	\$0
			Total $=$	\$770.00
Reduction by $1 / 2$ for filing by small entity				-
TOTAL FILING FEE $=$				\$770.00

5. [XX] A check in the amount of $\$ 770$ to cover the filing fee is enclosed,
6. $[X X]$ The Commissioner is hereby authorized to charge any fees which may be required including fees due under 37 C.F.R. § 1.1 .6 and any other fees due under 37 C.F.R. § 1.17, or credit any overpayment during the pendency of this application to deposit Account No. 06-0916.
7. $[X X]$ Amend the specification by inserting before the first line, the sentence: - This is a continuation of application Serial No. 07/973,918, filed November 12, 1992.--
8. [] New formal drawings are enclosed.
9. $[\mathrm{XX}]$ The prior application is assigned of record to: Destineer Corporation.
10. []

Priority of application Serial No \qquad filed on \qquad
\qquad in \qquad (country) is claimed under 35 U.S.C. § 119.
11. [] A verified statement claiming small entity status is [] enclosed or [] is on file in the prior application.
12. $[X X]$ The power of attorney in the prior application is to at least one of the following: FINNEGAN, HENDERSON, FARABOW, GARRETT \& DUNNER, L.L.P., Reg. No. 22,540, Douglas B. Henderson, Reg. No. 20,291; Ford F. Farabow, Jr., Reg. No. 20,630; Arthur S. Garrett, Reg. No. 20,338; Donald R. Dunner, Reg. No. 19,073; Brian G. Brunsvold, Reg. No. 22,593; Tipton D. Jennings, IV, Reg, No. 20,645; Jerry D. Voight, Reg. No. 23,020; Laurence R. Hefter, Reg. No. 20,827; Kenneth E. Payne, Reg. No. 23,098; Herbert H. Mintz, Reg. No. 26,691; C. Larry O'Rourke, Reg. No. 26,014; Albert J. Santorelli, Reg. No. 22,610; Michael C. Elmer, Reg. No. 25,857; Richard H. Smith, Reg. No, 20,609; Stephen L. Peterson, Reg. No. 26,325; John M. Romary, Reg. No. 26,331; Bruce C. Zotter, Reg. No. 27,680; Dennis P. O'Reilley, Reg. No. 27,932; Allen M. Sokal, Reg. No. 26,695; Robert D. Bajefsky, Reg. No. 25,387; Richard L. Stroup, Reg. No. 28,478; David W. Hill, Reg. No. 28,220; Thomas L. Irving, Reg. No. 28,619; Charles E. Lipsey, Reg. No. 28,165; Thomas W. Winland, Reg. No. 27,605; Basil J. Lewris, Reg. No. 28,818; Martin I. Fuchs, Reg. No. 28,508; E. Robert Yoches, Reg. No. 30,120; Barry W. Graham, Reg. No. 29,924; Susan Haberman Griffen, Reg. No. 30,907; Richard B. Racine, Reg. No. 30,415; Thomas H. Jenkins, Reg. No. 30,857; Robert E. Converse, Jr., Reg. No. 27,432; Clair X. Mullen, Jr., Reg. No. 20,348; Christopher P. Foley, Reg. No. 31,354; John C. Paul, Reg. No. 30,413; Roger D. Taylor, Reg. No. 28,992; David M. Kelly, Reg. No. 30,953; Kenneth J. Meyers, Reg. No. 25,146; Carol P. Einaudi, Reg. No. 32,220; Walter Y. Boyd, Jr,, Reg. No. 31,738; Steven M. Anzalone, Reg, No. 32,095; Jean B. Fordis, Reg. No. 32,984; Barbara C. McCurdy, Reg. No. 32,120; James K. Hammond,

Reg. No. 31,964; Richard V. Burgujian, Reg. No. 31,744; J. Michael Jakes, Reg. No. 32,824; and Allen M. Lo, Reg. No. 37,059.
13. $[\mathrm{XX}]$ The power appears in the original declaration of the prior application.
14. [] Since the power does not appear in the original declaration, a copy of the power in the prior application is enclosed.
15. [XX] Please address all correspondence to FINNEGAN, HENDERSON, FARABOW, GARRETT AND DUNNER, L.L.P., 1300 I Street, N.W., Washington, D.C. 20005-3315
16. [] Recognize as associate attorney \qquad -
17. [XX] Also enclosed is a Petition Under 37 C.F.R. § 1.48(b).

PETITION FOR EXTENSION. If any extension of time is necessary for the filing of this application, including any extension in the parent application, serial no. 07/973,918 filed November 12, 1992, for the purpose of maintaining copendency between the parent application and this application, and such extension has not otherwise been requested, such as extension is hereby requested, and the Commissioner is authorized to charge necessary fees for such an extension to our Deposit Account No. 06-0916. A duplicate copy of this paper is enclosed for use in charging the deposit account.

FINNEGAN, HENDERSON, FARABOW,
GARRETT \& DUNNER, L.L.P.

Allen M. Lo
Reg. No.: 37,059
Date: December 6, 1996

Fing
the overall communication capability of a system as defined by the total amount of message data from the system to the mobile units transferred by the system during a given period of time divided by the frequency bandwidth necessary to transmit the message data and may be measured in bits transferred per Hz . Further, such conventional systems suffer from technical problems preventing consistent wide area coverage and would require extremely wide portions of valuable frequency bandwidth to achieve acceptable system throughput rates.

Simulcast technology in communication systems was originally developed to extend transmitter coverage beyond that which could be obtained from a single transmitter. Over time, however, simulcasting has evolved into a technique capable of providing continuous coverage to a large area.

Generally, simulcast technology provides multiple transmitters, operating on substantially the same frequencies and transmitting the same information positioned to cover extended areas. As shown in Fig. 1, transmitter 100 generally provides coverage over area A, D, and E, transmitter 102 generally provides coverage over area B, D, and E, and transmitter 104 generally provides coverage over area C, E, and F. In some cases, the coverage area of a first transmitter may be entirely enclosed within the coverage area of another transmitter, such as in building interiors and valleys. In areas where one (and only one) transmitter dominates (e.g., areas A, B, and C in Fig. 1), simulcast is effective because the other transmitters do not significantly affect receivers in those areas.

- 2 -

However, in "overlap" areas D, E, and F shown in Fig. 1, where the signals from two or more transmitters are approximately equal, problems can arise because destructive interference of signals occurs in these overlap areas such as areas D, E, and F. Destructive interference occurs when the two signals are equal in magnitude and 180° out of phase and completely cancel each other. While there were some successes, reliable design procedures were not aqailable.

Attempting to precisely synchronize the carrier frequencies of all simulcast transmitters does not overcome the problem because points (i.e. nodes) at which destructive summing occurred persisted for long periods of time. At such points, a mobile receiver can not receive the simulcast signal.

Deliberately offsetting the carrier frequencies of adjacent transmitters can ensure that destructive interference does not persist at one point for an extended period of time. The slight errors in frequency displayed by high quality reference oscillators (e.g., 20 hertz errors in 100 MHz signals or a few parts in 10^{7}) render deliberate offsetting unneciessary. Further, merely offsetting the carrier frequencies could not guarantee acceptable quality demodulation because proper alignment of the modulating signals in time is also required.

Fig. 2 displays the situation at, for example, point D in Fig. 1 when modulating waveforms are synchronized and includes coverage boundary 202 from a first transmitter and a second transmitter coverage boundary 204 from a second adjacent transmitter.* An equi-signal boundary 200 exists where the signals $(1-3-$
from the first and second transmitters have approximately equal signal strengths. A more realistic equi-signal boundary would take into account natural and man-made topography and propagation conditions, and therefore would probably not be a straight line.

Figs. 3 and 4 generally illustrate various signals as they may occur at or near the equi-signal boundary 200 as shown in Fig. 2. In particular, Figs. 3 and 4 illustrate various aspects of modulation synchronization and how altering transmission parameters may affect the synchronization. In general, there are at least three sources which cause the signals from the first transmitter and the second transmitter to be out of synchronization: (1) timing shifts in the delivery of the modulating waveform to each of the transmitters; (2) timing shifts internal to each transmitter; and (3) timing shifts caused by propagation distances and anomalies. From the perspective of a receiver located in an overlap area, these three sources of timing shifts combine to produce an overall timing shifts between the received signals from the first and second transmitters. In current commercial practice, the summation of these three components results in time shifts of about 200 microseconds. The timing shift present in simulcast systems disadvantageously limits the baud rate at which information may be transferred. In general, Figs. 3 and 4 will also illustrate how timing shifts prevents high baud rate transmissions.

A time line representation of a signal 306 from a first transmitter is shown in Fig. $3(A)$ and a signal 308 from a second transmitter is shown in Fig. 3(B), both from the perspective of a
receiver located in an overlap area. Vertical dashed Iines 300 represent baud intervals on the time axis. As can be seen from Figs, $3(A)$ and (B), the signals 306 and 308 are frequency modulated between a high and a low frequency value and the signals 306 and 308 are exactly in phase. As will be appreciated, the timing shift between signals 306 and 308 must be small when compared to the baud interval shown in Figs. $3(A)$ and (B) since signals 306 and 308 are in synchronization. Of course, as the baud interval decreases, the timing shifts will likely cause signals 306 and 308 to be out of synchronization.

Figs. $3(C),(D)$, and (E) show the summation of these two signals 306 and 308 at an equi-signal boundary, such as boundary 200 in Fig. 2. Fig. 3(C) shows a composite signal 310 indicating that the frequency information remains unchanged, Fig. 3(D) shows a linear graph 312 of the relative phase difference caused by a slight carrier frequency difference between the signals from the first transmitter and the second,transmitter. Fig. 3(E) shows a composite amplitude signal 314. A noise threshold is indicated by the horizontal dashed line 304 in Fig. 3(E).

Of interest, Fig. $3(E)$ shows the composite amplitude signal 314 dipping below the noise threshold 304 at an anti-phase condition 302 (e.g., when the relative phase angle is $\pm 180^{\circ}$, as shown in Fig, $3(\mathrm{D})$). As can be seen from Fig. $3(E)$, the anti-phase condition 302 caused by the slight phase shift between transmitter 1 and transmitter 2 will not cause any loss of data because the anti-phase condition persists for only a small portion of the baud interval.

Through these examples, it can be seen that high degrees of modulation synchronization make it possible to obtain good data demodulation in a simulcast system. However, the baud rate limitation of simulcast systems is a significant drawback and limits system throughput.

An alternative to simulcast for wide area coverage is assignment of orthogonal, non-overlapping subdivisions of the available system capacity to adjacent areas. Subdivisions can be made in time (e.g., broadcasting the information on the same frequency in different time slots to adjacent areas), or in frequency (e.g., broadcasting the information simultaneously on different frequencies in adjacent areas). There are several problems with such orthogonal systems, however. First, orthogonal assignments require tuning the receiver to the assigned frequency or time channel for the area in which the receiver currently resides. In the broadcast services every traveler has experienced the frustration of finding the correct channel for their favorite programs. Simulcast operation avoids the need for scanning and re-tuning as the mobile unit moves between areas. Such scanning and re-tuning also disadvantageously increases mobile unit power consumption.

Second, and more serious, the orthogonal assignment approach drastically reduces the system throughput capacity as measured in bits per Hz because anywhere from 3 to 7 , or possibly more, orthogonal assignments are required to obtain continuous area coverage in most conventional orthogonal systems. This waste of capacity is somewhat recouped if the same information is not ${ }^{1} /-7-$

number of cells increases. Furthermore, cellular systems often require an electronic "handshake" between system and mobile unit to identify the specific cell (i.e. transmitter) in which the mobile unit is located to allow capacity reuse.
II. SUMMARY OF THE INVENTION

The systems and methods of the present invention have a wide variety of objects and advantages. The systems and methods of the present invention have as a primary object to provide a communication system with wide area coverage and high message throughput while minimizing frequency bandwidth usage.

It is an object of the invention to provide a simulcast communication system with a high data transfer rate which does not exceed the baud rate limitations of simulcast transmission.

It is a further object of the present invention to provide a communication system which provides for superior data communication integrity.

Yet another object of the invention is to provide a mobile transceiver unit which prevents unnecessary RF interference, particularly on commercial aircraft.

Still further, it is an object of the invention to provide a zone based communication system which may dynamically redefine zone boundaries to improve information throughput.

Another object of the invention is to provide a zone based simulcast communication system which can effectively commuicate with both mobile transceiver units located near the center of each zone as well as mobile transceiver units located within the overlap areas between two or more zones.

Additional objects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practicing the invention. The objects and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.

To achieve the objects and in accordance with the purpose of the invention, as embodied and broadly described herein, the invention is directed to a method for information transmission by a plurality of transmitters to provide broad communication capability over a region of space, the information transmission occurring during at least both a first time period and a second time period and the plurality of transmitters being divided into at least a first and second set of transmitters, the method comprising the steps of (a) generating a system information signal which includes a plurality of blocks of information, (b) transmitting the system information signal to the plurality of transmitters, (c) transmitting by the first and second sets of transmitters a first block of information in simulcast during the first time period, (d) transmitting by the first set of transmitters a second block of information during the second time period, and (e) transmitting by the second set of transmitters a third block of information during the second time period.

In another embodiment, the invention is directed to a multi-carrier simulcast transmission system for transmitting in a desired frequency band a message contained in an information signal, the system comprising a first transmitter means for 1|-10-
transmitting an information signal by generating a first plurality of carrier signals within the desired frequency band and by modulating the first plurality of carrier signals to convey the information signal, and a second transmitter means, spatially separated from the first transmitter, for transmitting the information signal in simulcast with the first transmitter by generating a second plurality of carrier signals at substantially the same frequencies as the first plurality of carrier signals and by modulating the second plurality of carrier signals to convey the information signal.

In another embodiment, the invention is directed to a communication method implemented in a computer controlled communication network for locating a mobile transceiver within a region of space, the region of space being divided into a plurality of zones with each zone serviced by at least one base transmitter and at least one base receiver, the network storing data corresponding to a zone where the mobile transceiver was last known to be located, the communication method comprising the steps of (a) transmitting a message signal by a base transmitter servicing a zone where the mobile transceiver was last known to be located, (b) transmitting a systemwide probe signal by a plurality of base transmitters servicing a plurality of zones if the mobile transceiver does not indicate receipt of the message signal from the base transmitter, (c) receiving the regional probe signal by the mobile transceiver, (d) transmitting an acknowledgment signal by the mobile transceiver in response to the received regional probe signal, (e) receiving the acknowledgment signal from the

mobile transceiver by a base receiver, and (f) updating the data to reflect the zone of the base receiver that received the acknowledgment signal as the last known location of the mobile transceiver.

In yet another embodiment, the invention is directed to a method of communicating messages between a plurality of base transmitters and mobile receivers within a region of space divided into a plurality of zones with each zone having at least one base transmitter assigned thereto, the communication method comprising the steps of (a) transmitting substantially simultaneously a first information signal and a second information signal to communicate messages to the mobile receivers, the first information signal being transmitted in simulcast by a first set of base transmitters assigned to a first zone, and the second information signal being transmitted in simulcast by a second set of base transmitters assigned to a second zone, (b) dynamically reassigning one or more of the base transmitters in the first set of base transmitters assigned to the first zone to the second set of base transmitters assigned to the second zone as a function of the messages to be communicated in an area, thereby creating an updated first set of base transmitters and an updated second set of base transmitters, and (c) transmitting substantially simultaneously a third information signal and a fourth information signal, the third information signal being transmitted in simulcast by the updated first set of base transmitters, and the fourth information signal being transmitted in simulcast by the updated second set of base

identify its location, the method comprising the steps of (a) sending a message from the network to the mobile transceiver to disable the mobile transceiver's capability to transmit a registration signal, (b) storing the number of probe signals sent by the network to the mobile transceiver during a first period of time and the number of messages successfully delivered to the mobile transceiver by the network during a second period of time, (c) processing by the computer the stored number of probe signals and number of messages successfully delivered to evaluate a likelihood that a probe signal will be required to be sent by the network to locate the mobile unit to deliver a message, and (d) sending a message to the mobile unit to enable the mobile transceiver's capability to transmit a registration signal if the calculated likelihood exceeds a selected value.

Finally, in another embodiment, the invention is directed to a communication method for controlling a mobile transceiver which may communicate with a communication network controlled by a computer, the network including a plurality of base transmitters for transmitting messages to the mobile transceiver and base receivers for receiving messages from the mobile transceiver, the mobile transceiver being capable of sending a registration signal to be received by a base receiver in the network to identify the mobile transceiver's location, the network using received registration signals to determine a set of base transmitters to be operated to transmit a message to the mobile transceiver, the method comprising the steps of (a) sending a message from the network to the mobile transceiver to enable the mobile

- 14 -

1

5

10

Hut orrices
INNECAN, HENDERSON
farabovy, Garret
8 DUNNER
WASMINOTON, DC zoos
1.202.408.4000

30

Fig. 4 is a schematic diagram of modulated waveforms offset a full baud;

Fig. 5 is a sefiematic diagram of cellular system coverage;
Fig. is a schematic diagram of a communication system;
Fig. 7 flow chart of a preferred method of

Fig. 11 s a schanatic diagram of a frequency shift keying modulator;

Fig. 12 is a schematic diagram of a four carrier quadrature

File History Content Report

The following content is missing from the original file history record obtained from the
United States Patent and Trademark Office. No additional information is available,
Document Date - 1996-12-06
Document Title - Specification
Page(s) - 17

IV, DESCRIPTION OF THE PREFERRED EMBODIMENTS
Reference will now be made in detail to the present preferred embodiments and exemplary embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
A. Overview of The System Hardware

Fig. 6 shows an overview of the major elements of a preferred communication system according to the present invention. As shown therein, the communication system includes a network operations center 600 which is connected to a satellite uplink 602 via data path 604. A satellite uplink is used to provide data to satellite 606. Satellite 606 redirects the received data to several satellite downlink stations including station 608 and station 610 . Conventional satellite technology allows for nominal data transfer rates of 24 M bits/second. Further, conventional satellite technology allows for accurate delivery of data to stations 608 and 610, which allows for precise synchronization between the signals broadcast in simulcast by the stations 608 and 610 . It should be understood that stations 608 and 610 may optionally receive identical data, or may individually receive different data simultaneously from the satellite 606.

Satellite downlink stations 608 and 610 are connected to spatially separated base transmitters 612 and 614 via data paths 616 and 618 , respectively. Base transmitter 612 is connected to antenna 620 , and base transmitter 614 is connected to antenna 622. Preferably, the base transmitters of the present system have a

| 1 |
| :--- | :--- |$|$| power output capability of about 350 watts, which will provide an |
| :--- |
| effective transmitter coverage area of several tens of miles. |
| Altrough not shewn in fig. |

to 1 ratio shown in Fig, 6 is merely shown for ease of illustration.

Regional station 650 is connected to the network operations center 600 via data path 656 and regional station 644 is connected to the network operations center 600 via data path 658. The data paths 656 and 658 preferably include low cost phone lines, but may include any convenient and appropriate data transfer technology.

Generally, the communication system of the present invention roughly divides various regions of space into portions called zones. Each zone must have one or preferably more base transmitters assigned to it, Zone boundaries are roughly defined by the transmitter coverage areas of the base transmitters assigned to that zone. For example, Fig. 6 shows a dashed zone dividing line 660 roughly dividing a zone 1 from a zone 2 . zone 1 includes base transmitter 614, base receivers 632 and 634, regional station 650, and mobile unit 624. Zone 2 includes base transmitter 612, base receivers 628 and 630 , and regional station 644. Dashed line 660 only roughly defines the boundary between zones because precise boundaries' do not exist. For example, to insure adequate coverage of the region, as shown in Fig. 1, the range of both transmitter 614 should at least cover the region above dashed line 660, and preferably should extend somewhat below dashed line 660. Similarly, the range of base transmitter 612 should at least cover the region below dashed line 660 , and preferably should extend somewhat above dashed line 660. As can be seen, an overlap of transmitter coverage may occur in the vicinity of dashed line 660 ,

13001 STAEET, n w
WASHINOTON. OC 20005
(-202 408 - 4000

Fig. 7. Network operations center 600 generates a system information signal of several blocks of information as shown in step 702. The blocks of information include an electronic message to be delivered to the mobile unit 624 .

In step 704, the system information signal is transmitted to the base transmitters. In particular the network operations center 600 provide the system information signal and appropriate other data to the satellite uplink 602 via data path 604 for transmission to the satellite 606 . The data is then received and retransmitted by satellite 606 to satellite downlink stations 608 and 610. The data received by satellite downlink 608 is provided to base transmitter 612 through data path 616 r and the data received by satellite downlink 610 is provided to base transmitter 614 through data path 618 .

At this point, the exemplary communication system shown in Fig. 6 may transfer the message to the mobile unit during one of two time intervals. In the first time interval, both base transmitter 612 and base transmitter 614 transmit data via antenna 620 and antenna 622 , respectively, in simulcast to be received by mobile unit 624 , which corresponds to step 706 in Fig. 7. This first alternative may be useful to deliver the message if, for example, the location of mobile unit 624 in zone 1 or zone 2 is unknown and broad coverage is desired.

In the second time interval, base transmitter 614 transmits a block of information including the message data to mobile unit 624 and base transmitter 612 transmits another block of information, which corresponds to steps 708 and 710 of Fig. 7. This second

- 22 -
alternative may be useful if, for example, the mobile unit 624 is known to be located in zone 1 and out of range of base transmitter 612. Delivery of the message to mobile unit 624 during the second time interval is advantageous because during message delivery to the mobile unit 624 by base transmitter 614 , base transmitter 612 could be delivering a different message to a different mobile unit (not shown). As can be seen, this second alternative would increase information throughput and system efficiency.

If the mobile unit 624 has properly received the message via antenna 626 , then the mobile unit 624 may generate a return signal and broadcast that signal via antenna 626 . The return signal may be received by any or several of the base receivers $628,630,632$, or 634. For example, the return signal could be received by base receiver 632 through antenna 640 if antenna 640 is located closer to the mobile units than any other antenna 636,638 , or 642 . In this case, the base receiver would receive the return signal and provide it to regional station 650 through data path 652. The regional station would then provide the return signal to the network operations center 600 through data path 656 for further processing as appropriate. It should be understood that a return signal may include either an autonomous acknowledgment signal which indicates that the mobile unit accurately received the message or a user generated reply signal.

If the mobile unit 624 does not completely receive the message, it can generate and broadcast a negative acknowledge signal. The negative acknowledge signals when delivered to the

network operations center 600 , indicates that retransmission of the message is necessary.

It should be understood that the exemplary system shown in Fig. 6 includes a modest number of elements for ease of explanation. It is envisioned that the system of the present invention include a large number of base transmitters, base receivers, regional stations, and mobile units with a substantial number of base transmitters assigned to each zone and all base transmitters assigned to a particular zone operating in simulcast. Further, it is envisioned that the present system could advantageously support a large number of zones to, cover a wide geographic area.
B. Overview of the Zonal Simulcast Concepts

The preferred systems and methods of the present invention variously use simulcast techniques within individual zones and over several or all of the zones. As previously noted, zones are generally defined by the coverage areas of the one or more base transmitters. The network operations center 600 assigns each base transmitter in the system to a zone. For example, in Fig. 6, base transmitter 614 is assigned to zone 1 , and the base transmitter 612 is assigned to zone 2 by the network operations center 600 , To maximize information throughput, the systems and methods of the present invention dynamically control zonal assignments and the use of simulcast techniques.

In general, the communication system of the present invention operates by repeating a communication cycle to achieve desired information transfer, which is more fully discussed infra. The
$-24-$
communication cycle is divided into a systemwide time interval and a zonal time interval. In the systemwide time interval, the base transmitters from at least several zones are operated in simulcast to simultaneously transmit identical information to a large geographic area. It should be understood that the systemwide, time merely two or more zones.

Broadly speaking, the communication system need not know the location of a mobile unit to transmit to it during the systemwide time interval. Therefore, the systemwide time interval can be used to send a "probe" signal that requests a particular mobile unit to broadcast an acknowledgment signal to allow the system to determine its approximate location by determining which base receiver receives the acknowledgment signal. Probe signals, thereby, may be used to track the locations of mobile units, or to uncover the location of "lost" mobile units.

In the zonal time interval, each base transmitter assigned to a particular zone transmits identical information in simulcast. However, for mobile units at or near the interference areas between adjacent zones, poor communication to those mobile units is likely during the zonal time interval because transmitters in adjacent zones will be simultaneously transmitting different data on the same, or substantially the same, frequencies. The zonal time interval provides good communication capability for mobile units not located near the zonal boundaries and allows the system to "reuse" identical frequencies in adjacent zones. Furthermore, if zonal boundaries are selected to be located in areas where mobile units are not likely to be located, i,e. unpopulated areas,
the likelihood of providing good, communication capabilities to a
large percentage of mobile units can be increased.
As can be seen, from a system perspective, it is desirable to
comunicate with the mobile units in the zonal time interval
because information throughput is maximized by reusing the
transmission frequency band in the several zones. In other words,
using the zonal time interval allows communication with a large
number of mobile units in a short amount of time. Accordingly,
communication during the systemwide time interval should be
minimized because message transmission during this interval
requires a large amount of system resources be dedicated to that
message.
For mobile units located near the boundaries between zones
where interference is likely during the zonal time interval, good
communication capability can be achieved for these units during
the systemwide time interval. In the preferred systems and
methods, when a mobile unit fails to acknowledge a message sent
during the zonal time interval or provides a negative
acknowledgment, the network operations center sends a probe signal
during a subsequent systemwide time interval to determine the
location of that mobile unit. If the location of the mobile unit
indicates that a likely reason for the failure of the mobile unit
to receive the message is caused by inter-zonal interference, the
network operations center may simply retransmit the message during
the systemwide time interval. In other instances, the failure to
successfully deliver a message may be simply caused by the mobile
unit being located in a weak signal area within a zone. In these

- 26 -

1

5

- tanorerees

Finmecan. Henderson Farabol: Garrett a Dinaner
3 OOD ITREET, $N *$
1.202 408-4000
instances, the system may retransmit the message during the zonal time interval using an appropriate error correcting code or using a stronger error correcting code.

Alternatively, the network operations center may determine from the probe signal that the mobile unit is simply located in a different zone than the zone that the message was first sent. In this case, the network operations center preferably causes the message to be retransmitted in the appropriate zone without again using a portion of the valuable systemwide time interval.

In accordance with the invention, a preferred method 800 for sending a probe signal is shown in Fig. 8. In step 802, a message signal is transmitted by a base transmitter servicing a zone where the mobile transceiver was last known to be located. In particular, this may be preferably an attempt by the network to deliver a message to the mobile transceiver.

If the mobile transceiver does not indicate receipt of the message signal from the base transmitter transmitted in step 802, the network assumes that the mobile transceiver has not received the message and transmits a probe signal by a plurality of base transmitters servicing a plurality of zones in step 804 . The mobile transceiver receives the probe signal in step 806.

Upon receipt of the probe signal by the mobile transceiver, the mobile transceiver transmits an acknowledgment signal in step 808. A base receiver receives the acknowledgment signal from the mobile transceiver in step 810.

Finally, the data, such as the last location field 2104 shown in user database 2100 , is updated to reflect the zone of the base receiver, or receivers, that receives the acknowledgment signal as the last known location of the mobile transceiver in step 812.
C. The Multi-Carrier Modulation Transmission Format

The base transmitters of the communication system, such as base transmitters 612 and 614 shown in Fig. 6, preferably utilize a multi-carrier modulation format as will now be described. In general, a multi-carrier modulation format envisions the simultaneous transmission of several closely spaced carrier frequencies within a desired frequency band, each individually modulated to convey an information signal. The multi-carrier modulation format advantageously allows for high data transfer rates by providing good bit rate transmission rates while keeping below the baud rate limitations of simulcast transmission techniques.

Fig. 9 shows a frequency representation 900 of an eight carrier modulation format. Carrier frequency 902 is shown with side bands 904, carrier frequency 906 is shown with side bands 908 , carrier frequency 910 is shown with side bands 912 , carrier frequency 914 is shown with side bands 916 , carrier frequency 918 is shown with side bands 920 , carrier frequency 922 is shown with side bands 924 , carrier frequency 926 is shown with side bands 928, and carrier frequency 930 is shown with side bands 932 .

It should be understood that although this exemplary figure shows an eight carrier signal modulation format., other different numbers of carrier frequencies may be considered for use in the systems and methods of the present invention.

In this exemplary embodiment, the carrier frequencies are spaced 3 KHz apart within a desired frequency band of 50 KHz . Dashed line skirts 934 and 936 represent minimum frequency roll off levels, such as may be required by Federal Communication Comnission regulations, to prevent overlap interference into adjacent frequency bands.

Because eight unique data streams may be modulated onto the respective eight carrier signals in this embodiment, the data transfer rate of the transmission from the base transmitters can be greatly increased, while keeping the baud rate within acceptable ranges for simulcast transmission. It should also be understood that in accordance with good simulcast practice, the respective carrier frequencies between adjacent base transmitters, such as base transmitter 612 and base transmitter 614 in Fig. 6, should be slightly offset to prevent sustained nodes or "dead spots" where destructive interference between the signals from each transmitter provides an unusable composite signal, as was explained in the background section of this application. This frequency offset is preferably on the order of $10-20$ hertz.

As previously discussed, each carrier signal may be individually modulated to convey a data stream. The following will discuss alternative techniques for modulating a plurality of
carriers in accordance with the systems and methods of the present invention.

1. Modulated On/Off Keving

Perhaps the simplest modulation scheme conceptually is modulated on/off keying (MOOK). Fig. 10 shows a schematic representation of a MOOK modulator 1000. The MOOK modulator 1000 includes a plurality of carrier frequency generating devices, such as frequency generator 1002 generating frequency F1, frequency generator 1004 generating frequency F2, frequency generator 1006 generating frequency F3, frequency generator 1008 generating frequency F4, and frequency generator 1010 generating frequency Fn. As shown in Fig, 10 , the MOOK modulator 1000 may include any number (i.e. n) of frequency generators, but eight carrier frequencies are preferred, as shown in Fig. 9 :

The output from each of the carrier frequency generators 102 , 104, 106, 108, and 110 is applied to a plurality of respective switches SW1 812, SW2 814, SW3 816, SW4 818, and SWn 820. The output from each switch is provided to a combiner 1022.

Each of the switches SW1 812, SW2 814, SW3 816, SW4 818, and SWn 820 opens and closes under the control of a control logic system (not shown) to effect the MOOK modulation. The control logic system (not shown) causes the desired switches to variously close and open, thereby conveying an n-bit binary word. Each carrier frequency transmits a binary "one" if the respective switch is closed and a binary "zero" if the respective switch is open.

The summer 1022 combines the modulated carrier frequencies to provide a multi-carrier modulated output signal that conveys an n-bit binary word.

2. Binary Frequency Shift Keyinq Modulation

An alternative multi-carrier modulation scheme including frequency shift keying (FSK) techniques may be implemented by the modulator shown in Fig, 11. A frequency shift keying modulator 1100 , includes a first frequency source 1102, a second frequency source 1104, a third frequency source 1106, a fourth frequency source 1108, and an nth frequency source 1110. The output from each frequency source is provided to a respective modulator 1112 , $1114,1116,1118$, and 1120.

A control logic system (not shown) provides a frequency control signal to each modulator to frequency shift modulate the carrier frequencies. In particular, the control logic system (not shown) provides frequency control signal 1 to modulator 1112, frequency control signal 2 to modulator 1114, frequency control signal 3 to modulator 1116, frequency signal 4 to modulator 1118 , and frequency control signal n to modulator 1120 . In binary frequency shift keying (BFSK), the respective frequency control signals provide data corresponding to a binary "one" or "zero" which causes the respective modulators to modulate a first or second frequency onto the carrier signal.

A summer 1122 combines the modulated carrier frequencies to produce an output signal.

$$
7-31-
$$

3. M'ary Frequency Shift Keving Modulation

A modulation scheme related to binary frequency shift keying is M'ary frequency shift keying. M'ary frequency shift keying modulates three or more different frequencies onto the respective carrier signals. In quaternary frequency shift keying, for example, two bits of information may be instantaneously conveyed on a single carrier frequency. Similarly; 8'ary frequency shift keying may instantaneously convey three bits of information per carrier frequency.

Referring again to Fig. 11, M'ary frequency shift keying may be implemented by providing modulators 1112, 1114, 1116, 1118, and 1120 with the capability to modulate M different frequencies onto the carrier signal. Accordingly, the various frequency control signals must provide data indicating which of the M frequencies is to be modulated onto the carrier signal. For example, in quaternary frequency shift keying, the frequency control signals must each include two bits of information to indicate which of the four different frequencies are to be modulated onto the carrier frequency.

The sumer 1122 combines the modulated carrier frequencies to produce an output signal.
4. Quadrature Amplitude Multi-Carrier Modulation

Yet another alternative modulation technique for a multi-carrier transmission format is shown in Fig. 12. A quadrature modulator 1200 includes a first quadrature carrier generator 1202 , a second quadrature carrier generator 1204, a third quadrature carrier generator 1206, and a fourth quadrature

$$
\therefore+32-
$$

carrier generator 1208 . As is well known, quadrature modulators in general each produce an in-phase carrier signal and a quadrature carrier signal that is $+/-90^{\circ}$ out of phase with reference to the in-phase signal. Of course, any number of quadrature carrier generators could be envisioned, depending upon data transfer and throughput needs. Fig. 12 shows four quadrature carrier generations which effectively correspond to eight unique modulator signals. Therefore, quadrature amplitude multi-carrier modulation may preferably reduce the width of the frequency band necessary to achieve a desired data transfer rate,

Each quadrature carrier generator 1202, 1204, 1206, and 1208 receives a control signal from a control logic system (not shown) which provides the data to be modulated onto the quadrature carrier signals. In a simple implementation, the quadrature carrier generators may amplitude modulate the in-phase and quadrature phase output signals to convey two bits of information. The in-phase and quadrature signals output from each quadrature carrier generators $1202,1204,1206$, and 1208 are provided to a sumer 1210 which combines the signals to produce an output signal.
5. Permutation Frequency Shift Keying (PFSK)

PFSK may be implemented through control logic systems similar to that used in a MOOK or an M'ary FSK modulation scheme. In PFSK, every baud has a fixed number of carrier signals present, preferably any 4 of the possible 8 . In a PFSK arrangement, a constant average transmitter power is advantageously delivered and the receiver only need decide which 4 carrier frequencies contain

the most energy. In the case of MOOK, the receiver must attempt to determine on a subchannel-by-subchannel basis the presence or absence of a signal. This aspect of PFSK may simplify mobile receiver design.

Compared to a binary or M'ary FSK modulation schemes, a higher number of bits may be delivered per baud with PFSK. For example, PFSK may generate signals that independent FSK subchannels could never generate, such as all four carriers being the four highest frequencies, and therefore it can be seen that PFSK may advantageously increase information transfer rates.

D. The Base Transmitter

Each base transmitter unit, such as base transmitter 612 or 614 shown in Fig. 6, receives transmitter control data and message data transmitted from the satellite 606 . Fig. 13 shows a first preferred embodiment of a base transmitter 1300 in accordance with the present invention. The base transmitter 1300 receives data from the satellite downlink connected to data input 1302 which provides this data to a control logic system 1304 to control the operation of the base transmitter unit. The control logic 1304 provides a control signal to a plurality of modulators 1306, 1308, 1310, 1312, and 1314. Modulator 1306 produces a carrier signal F1, modulator 1308 produces a carrier signal F2, modulator 1310 produces a carrier signal F3, modulator 1312 produces a carrier signal F4, and modulator 1314 produces a carrier signal Fn.

For example, the control logic may generate appropriate control signals to modulate the carrier signals in a MOOK, BFSK, M'ary FSK, PFSK, or quadrature amplitude modulation scheme, as
previously discussed. Each modulator then provides the modulated output signal to a combiner 1316 which combines each of the several modulated carrier frequencies into a single output signal.

The single signal is then applied to a power amplifier 1318 to amplify this signal to an appropriate level. The power amplifier 1318 may, for example, produce a nominal output signal of 350 watts to antenna 1320. In this embodiment, power amplifier 1318 preferably has extremely linear characteristics to prevent formation of intermodulation products, and to insure that these intermodulation products do not cause signals to be generated at undesirable frequencies. Antenna 1320 broadcasts the desired signal from power amplifier 1318.

Fig. 14 shows a second preferred embodiment of a base transmitter unit. The second embodiment comprises a base transmitter 1400 which includes a satellite downlink connected to data input 1402, control logic 1404, and several modulators 1406, 1408, 1410, 1412, and 1414. Each modulator receives an appropriate control signal from the control logic 1404, as previously discussed with respect to base transmitter 1300 .

The output from each of modulators $1406,1408,1410,1412$, and 1414 in base transmitter 1400 is provided to respective power amplifiers $1416,1418,1420,1422$, and 1424 to provide an appropriate power output level for transmission, such as 350 watts aggregate.

The output from each of power amplifiers $1416,1418,1420$, 1422 , and 1424 is provided to combiner 1426 to combine the modulated carrier signals into a single output signal which is provided to antenna 1428 for broadcast.

E. The Mobile Unit

The mobile unit may be a small, portable mobile transceiver, such as pictorially represented in Fig. 16. Referring now to Fig. 15, the mobile transceiver 1500 shown therein includes a receiver section for receiving signals from the base transmitters of the system, and a transmitter section for transmitting replies, or other messages, to the base receivers of the system.

In particular, the mobile transceiver 1500 includes an antenna 1502 which is connected to a transmit/receive switch 1504 to switch the antenna between the transmit and receive sections of the mobile transceiver 1500. A receiver 1506 is provided to receive the messages from the base transmitter. Of course, the receiver must be appropriately designed to receive the multi-carrier signals from the base transmitters and must be appropriately designed to demodulate the particular modulation scheme utilized. For example, appropriate analog filters and appropriate demodulators could be used. In the preferred embodiment, the receiver perforns a transform, such as a fast fourier transform, on the received signal to separate the data from the various carriers in the multi-carrier modulation format.

The receiver 1506 is connected to a display and storage logic section 1508 to process the received signal. An annunciator 1510 to alert the user that a message has been received is connected to

- 36 -

and controlled by the display and storage logic 1508. The annunciator 1510 may commonly include a sound producing device such as a beeper, or a vibrator, or a flashing light.

A set of display controls 1512 to control the display of the mobile transceiver 1500 is connected to the display and storage $\log i c$ 1508. A display 1514, preferably an LCD display, is also connected to the display and storage logic 1508 to display messages and various other information to the user.

Display and storage logic 1508 is connected to transmit logic 1518 via connection 1526. Display and storage logic 1508 may generate an autonomous acknowledge signal which causes the transmitter 1520 to broadcast an appropriately modulated RF signal. As previously discussed, it is desirable for the mobile transceiver to transmit an acknowledge signal if the message was properly received by the mobile unit, or alternatively to transmit a negative acknowledge signal if the message was only partially received. The negative acknowledge signal indicates that the network operations center should rebroadcast the message to the mobile unit.

Preferably, the rebroadcast of the message to the mobile unit should occur with an appropriate error correcting code which may be decoded by the mobile unit to insure complete and accurate reception of the message. Of course, error correcting codes should be used only when necessary because their use slows data transfer and increases the complexity of the mobile unit. Other types of autonomous replies may also be useful, for example, to indicate to the network operations center that the user has not
viewed the message even though the mobile unit properly received it, such as when the mobile transceiver is unattended by the user. A set of input switches 1516 is provided to allow the user to input a reply to a received message, or to otherwise generate a message to be transmitted by the mobile transceiver. The input switches are connected to transmit logic 1518 which decodes the signal from the input switches 1516 to generate an output signal to the transmitter 1520. The transmitter 1520 generates an appropriately modulated RF signal to be broadcast by antenna 1502.

The mobile transceiver 1500 also preferably includes a noise detector 1522. The noise detector 1522 provides an output signal upon sensing through antenna 1502 a threshold level signal. The noise detector 1522 provides an output signal to disable the transmitter 1520 via connection 1524, and to thereby prevent unwanted transmission by the mobile unit.

Noise detector 1522 preferably is set to detect electromagnetic signals which are generated externally to the communication system and which are indicative of a condition when transmissions by the mobile unit are undesirable. For example, the noise detector 1522 could be designed to serve a threshold level of noise at 400 Hz . When the user enters a commercial aircraft, which commonly uses 400 hertz power supply, the receipt of this noise by the noise detector 1522 would then disable the transmit capability of the mobile transceiver 1500 during operation of the aircraft to prevent any unnecessary or unwanted interference with the operations of the aircraft by autonomous or intentional transmissions by the mobile transceiver 1500.

The display and storage logic 1508 of the mobile transceiver 1500 further preferably includes a timing circuit (not shown) which may be used to turn the receiver section 1506 on or off, as desired. The timing circuit (not shown) advantageously allows the mobile transceiver to "power down" during periods of time when messages are not anticipated to be transmitted. For example, in a preferred communication protocol, the receiver could simply power up at the beginning of each cycle to receive data to determine if a message will be transmitted to that mobile transceiver during that cycle or when information concerning message availability will be transmitted. If the mobile transceiver is to receive a message, the timing circuit could power up at the appropriate time to receive the message, and then power down after receipt. The timing circuit, therefore, advantageously prolongs the battery life of the mobile transceiver 1500. Of course, it should be understood that the timing circuit could control the other elements of the mobile transceiver, such as the display 1514, and the transmit logic 1518.

In an alternate implementation, the receiver 1506 may adaptively change its demodulation techniques to accommodate various formats. For example, each zone may advantageously use a different modulation format depending on message traffic levels, and other considerations. In particular, the receiver may receive a signal indicating the modulation scheme utilized in a given zone via a modulation format message contained in an overhead portion of the data stream. The demodulation of FSK, M'ary FSK, PFSK, and MOOK formats all begin with the determination of the energy levels

- 39 -

13001 stacet. a w. MLSHINGTON DC 2000
detected at each of the carrier frequencies, and thus require identical processing of the received RF energy. The logic (not shown) in the receiver interprets the meaning of these measured energy levels based upon the modulation scheme selected as indicated by the received modulation format message. In this manner simpler and more economical transmitters, with a decreased capacity for information transfer, can be used in zones that have decreased traffic loads and more expensive, high-throughput transmitters can be used only in those areas where they are needed.

A pictorial representation of the mobile transceiver is shown in Fig, 16. The mobile transceiver 1600 shown therein includes a case 1602, a pair of display control buttons 1604, a display 1606 , and a set of six reply buttons $1608,1610,1612,1614,1616$, and 1618. As indicated previously, display 1606 is preferably an LCD display and a set of display control buttons 1604 may be used to scroll text up or down on the display 1606 . The message "will you be home for dinner?" is shown on display 1606.

The set of six reply buttons $1608,1610,1612,1614,1616$, and 1618 provide a flexible system for user generated replies to received messages. The display and storage logic 1508 provides information immediately above each button indicating a possible reply message by the user. In the simple example shown in Fig. 16, the user may reply "yes," "no," or "?" to the message 1620 displayed on the screen 1606. The transmit logic 1518 generates an appropriate signal based upon which button the user

the display 1606 , and the keyboard could be used to generate any appropriate reply messages from the user, thereby obviating need for the reply buttons and allowing free form messages to be sent by the mobile transceiver. A user selected reply would be transferred to the mobile transceiver 1500 from the PC for transmission to the base receiver.

Alternatively, the mobile transceiver could be connected to a voice data replay device, such as a speaker, thereby allowing the user to receive messages from a voice mailbox, for example. Of course, a voice data generation device, such as a microphone, could be connected to the mobile transceiver 1500 to allow the user to reply to the voice mail message he has received or to initiate voice data communication from the mobile transceiver to the base receivers. Similarly, facsimile transmissions could be supported.

An alternate embodiment of the mobile unit includes only receive capabilities, but does not include any transmit capabilities. Fig. 17 shows a mobile receiver 1700 . The various components of the mobile receiver generally correspond in functionality to the similar elements shown in Fig. 15. Of course, the mobile receiver 1700 cannot generate replies, which includes user initiated replies, an autonomous acknowledgment signals or negative acknowledgment signals, because of the lack of transmit capability. Also, the location of this alternate embodiment cannot be tracked by the network control center because of the lack of transmit capability. Generally, because of these reasons, the mobile receiver 1700 embodiment of the mobile unit is

less preferable than the mobile transceiver embodiment 1500 . Further, it should be appreciated that the mobile transceiver embodiment may include circuitry for generating various autonomous responses without interaction by the user.
F. The Base Receiver

The base receivers of the present system receive the low power output signal from the mobile transceiver unit. As is shown in Fig. 6, mobile receivers are dispersed throughout the geographic service area. Base receivers need not be associated with zonal boundaries per se, but will always be located to service at least one zone, of course. A few base receivers may exist in the overlap region between zones.

During transmission of the return signal by the mobile transceiver unit, it is possible that several base receivers could receive this return signal. In this instance, the network operations center 600 preferably selects the data from the base receiver with the highest received signal strength (i.e. the signal with the lowest probability of errors) to maximize the likelihood of receiving accurate data. The signal strength approach is preferred and can be satisfactorily implemented if the base receiver locations are carefully selected to insure adequate signal strength reception from the mobile transceiver units and to minimize the overlap between base receiver coverage areas. Alternately, the network operations center 600 could use "voting" techniques by comparing each data set from the several base receivers to arrive at the most likely return signal data using conventional voting receiver technology,
$(1-143-$

Fig. $18(\mathrm{~A})$ shows a first embodiment of an analog base receiver. Analog receiver 1802 is connected to an antenna 1800. The analog receiver 1802 simply receives the signal from the antenna 1800 and removes the modulated waveform from the carrier frequency and outputs this waveform in analog format to a regional demodulator 1804 via data path 1806 . Data path 1806 is preferably a 4 KHz analog telephone channel.

The regional demodulator 1804 receives signals from several analog receivers included in several base receivers. Preferably, the regional demodulator 1804 is located in the regional station, such as regional station 650 shown in Fig. 6. The demodulated signal from the regional demodulator 1804 is then transferred to the regional processing circuitry 1808 , and then onto the network operations center 600 .

The analog receiver 1802 could generate identification data to be transmitted with each received message so the network operations center 600 can determine the source of each message received. Alternatively, and preferably, dedicated communication paths are used for each base receiver and therefore, the source of the message can be inferred from the communication path that is activated.

Fig. $18(B)$ shows a digital base receiver embodiment which includes an antenna 1800 attached to an analog receiver 1802. As in the previously discussed embodiment, the analog receiver 1802 removes the modulated waveform from the carrier signal transmitted by the mobile transceiver unit. The analog receiver 1802 outputs the modulated waveform to a demodulator 1810 included in the base

is also likely that the average data transfer rate from the base receivers is substantially lower than the instantaneous data transfer rate during traffic bursts. The store and forward circuit 1908 may preferably act as a buffer to allow the return signal data to be communicated from the store and forward circuit 1908 to the regional processing circuitry 1808 at a lower (and less expensive) data transfer rate. Store and forward circuit 1908 is, therefore, preferably connected to regional processing circuitry 1808 via data path 1910 which may include a low cost telephone line.
G. The Network Operations Center

1. Overview

The network operations center 600 is shown in schematic form in Fig. 20. The network operations center 600 includes a base receiver input system 2000 which receives data from the various regional stations throughout the system (e.g., regional stations 644 and 650) via various data paths, such as data paths 656 and 658 as shown in Fig. 6. The data received by the base receiver input system 2000 includes reply data from users with various control data. Base receiver input system 2000 may include appropriate conventional signal processing equipment. Control data may include data identifying the base receiver (i,e. location of the mobile unit) which received the associated reply. Preferably, the base receiver input section 2000 receives data from the regional stations via phone lines. However, other appropriate data paths may be considered.

The base receiver input system 2000 then provides the received data to a central computer 2002 . The central computer 2002 may also receive input from a user input system 2004. For example, the user input system 2004 may receive data from users via phone lines who may access and interact with the central computer via voice, DTMF, or modem transmission and may include appropriate conventional signal processing equipment. A user may interact with the central computer 2002 to modify his service, to initiate or receive messages, or to perform other desirable functions.

Generally, the central computer 2002 processes the data received from the base receiver input system 2000 and from the user input system 2004 to perform various operations on the data, to update various database entries for use by the central computer 2002, and to generate data for transmission to a satellite uplink output system 2006.

It should be understood that, although Fig. 20 shows the central computer as existing at a single location in the network operations center 600 , a distributed computing system may be used to perform the necessary functionality of the central computer 2002. Presently, however, a single location for the central computer 2002 is preferred.

Satellite uplink output system 2006 receives data from the central computer 2002 and provides it to satellite 606 , shown in Fig. 6, for transmission to base transmitters within the system (e.g., base transmitters 612 and 614 in Fig. 6).

	The central computer 2002 is also connected to a database
system 2008 which stores various data such as message data, user	
status data, system status data, and message status data, for	

1
data may be useful in optimizing system performance by allowing intelligent redefinition of zonal boundaries.
d. The Service Queve
Database 2008 of Fig. 20 also includes a service queue 2300
as shown in Fig. 20. The service queue 2300 includes a current messages queue and a probe list queue. The current messages queue includes a system wide list of messages to be delivered by the system. The current messages queue includes, for example, a series of ID number fields 2302, 2304, and 2306 with associated data location fields 2308,2310 , and 2312 , respectively. The dara location fields 2308,2310 , and 2312 include pointers to the appropriate fields in the user database structure shown in Fig. 21. The ID number fields 2302, 2304, and 2306 include data indicating the ID number of the user to which the message is to be delivered.
In operation, the central computer retrieves the ID number 2302 and data location 2308 from the top of the current messages queue and retrieves the appropriate data from the user database 2100 to process and transmit a message to the user.
The probe list queue includes a ID number fields 2314, 2316, and 2318 and data location fields 2320,2322 , and 2324 similar in form to those in the current messages queue. The probe list queue contains a list of users which the system has previously attempted unsuccessfully to deliver a message to. In other words, the users listed in the probe list are considered to be "lost" by the system. The central computer 2002 then initiates a probe routine

for the ID number 2314 and data location 2320 located at the top of the probe list.

After successful execution of the probe routine, the last Iocation field 2304 in the user database structure 2100 will have been updated to provide an accurate last location of the user from the base receiver that received the mobile unit's acknowledgment to the probe signal. After the last location field 2304 has been updated, the message can then be replaced in the current messages queue for delivery to the user via the appropriate base transmitters located near the mobile unit.

Preferably, the network operations center gives priority to the delivery of all messages in the current message queve, and then sends probe signals to the users listed in the probe list queue after delivery has been attempted for all messages in the current message queue. If the message volume in the current message queue remains high for an extended period of time, the network operations center preferably begins to periodically send probe signals to the users listed in the Probe List, even though undelivered messages remain in the current messages queue. For example, in this instance of persistent filled current messages queue, the network operation center preferably transmits three probe signals in every cycle transmitted.

e. Base Transmitter Assiqnment List

The database 2008 of the network operations center also includes a base transmitter database 2400 as shown in Fig. 24. The base transmitter database 2400 includes a zonal assignment field 2404 for data representing a zone assignment associated with

a base transmitter field 2402 in the system. Also, a field 2406 for data representing the base receivers in the transmitter coverage area, and a field 2408 for other data associated with a base transmitter, are associated with base transmitter field 2402 . As can be seen in Fig. 24, each base transmitter in the network has a base transmitter field and associated fields as described above.

In normal operating conditions of the system with low amounts of message traffic being transmitted, each base transmitter will remain assigned to its particular zone. However, the systems and methods of the present invention provide for dynamically changing the zonal assignments of various base transmitters to improve information throughput. These dynamic zone allocation concepts dynamically reassign base transmitters to new zones generally based upon the volume of messages transmitted during the systemwide time interval, and more particularly based upon the localized volume of messages to mobile units. In general, dynamic zone allocation may be used to deliver messages to mobile units in overlap areas (i,e. "zonal dithering"), or to balance the volume of message traffic between zones.

Fig. 25 is useful to explain these concepts. Various base transmitters, each designated as an " X," are dispersed throughout a region of space shown in Fig, 25. Also, various base receivers are dispersed throughout this region of space 2500 , each being designated by an "R." The normal zonal boundary for zone 1 in Fig, 25 is shown by solid line 2502. A normal boundary for zone 2 is represented by solid line 2504 during normal load traffic

53 -

operation conditions. As can be seen, base transmitters 2506, 2508 , and 2510 are located near the zonal boundary of zone 2 , and base transmitters 2512,2514 , and 2516 are located near the boundary of zone 1. Base receivers 2518 and 2520 are located in an overlap area 2521 between zones 1 and 2. As previously discussed, mobile units located in this overlap area 2521 near base receivers 2518 and 2520 must be communicated with during the systemwide time interval because of the interference created during the zonal time interval by adjacent base transmitters.

During normal, low to moderate volume system operations, the zonal overlap area 2521 , i.e., interference area, near base receivers 2518 and 2520 will preferably have a small number of mobile units located therein. Therefore, communication with these mobile units will not significantly consume system resources by occasionally communicating with them during the systemwide time interval.

However, if the traffic volume from the overlap area 2521 near base receivers 2518 and 2520 increases, such as because additional mobile units enter this overlap area 2521 , the handling of this traffic in the systemwide time interval can significantly consume system resources. For example, commanication with a large number of mobile units during the systernwide time interval may significantly delay delivery of messages to units in this and other regions.

In this instance, the zonal boundaries are changed to remove this high traffic region from a zonal overlap area. For example, system efficiency is restored if the zone 1 boundary were moved to

dashed line 2522 and the zone 2 boundary were moved to dashed line 2524.

The central computer 2002 may dynamically accomplish this zonal redefinition by assigning one or more base transmitters to a new zone to reduce systemwide time interval messages. In the present example shown in Fig. 25 , the central computer updates the base transmitter zonal assignment list to reassign base transmitters 2512,2514 , and 2516 to zone 2 while removing these base transmitters from zone 1 . In view of this zonal redefinition, the new zone 1 boundary is shown by dashed line 2522, and the new zone 2 boundary is shown by dashed line 2524 . The high traffic region near base receivers 2518 and 2520 is now squarely within zone 2 and messages to these units may be efficiently delivered during subsequent zonal time interval(s).

In accordance with the invention, a preferred method 2600 for accomplishing zonal redefinition is shown in Fig. 26. In accordance with the method, step 2602 provides for transmitting substantially simultaneously a first information signal and a second information signal, the first information signal being transmitted in simulcast by a first set of base transmitters assigned to a first zone, and the second information signal being transmitted in simulcast by a second set of base transmitters assigned to a second zone. For example, as shown in Fig. 25, the base transmitters in zone 1 defined by boundary line 2502 could be the first set of base transmitters, and the base transmitters located in zone 2 defined by boundary line 2504 could be the second set of base transmitters.

Step 2604 of the method provides for dynamically reassigning one or more of the base transmitters in the first set of base transmitters assigned to the first zone to the second set of base transmitters assigned to the second zone, thereby creating an updated first set of base transmitters and an updated second set of base transmitters. For example, base transmitters 2512, 2514, and 2516 could be reassigned from zone 1 to zone 2 . As shown in Fig. 25, new zonal boundaries would be defined by dashed lines 2512 for zone 1 and 2524 for zone 2 .

Step 2606 provides transmitting substantially simultaneously a third information signal and a fourth information signal, the third information signal being transmitted in simulcast by the updated first set of base transmitters and the fourth information signal being transmitted in simulcast by the updated second set of base transmitters. For example, as shown in Fig. 25, the base transmitters assigned to zone 1 defined by dashed line 2522 (i.e. not including base transmitters 2512,2514 , and 2516) could transmit during a subsequent communication cycle a third information signal, and base transmitters in zone 2 defined by dashed line 2524 (i.e. including base transmitters 2512, 2514, and 2516) could transmit a fourth information signal during that same subsequent communication cycle.

Further, it is desirable that during the redefinition of the zonal boundaries, it is insured that the new overlap area 2525 near base receiver 2526 and between dashed lines 2522 and 2524 is an area that is not likely to produce, or is not currently producing a high volume of message traffic, Generally, zonal

> Law orrices

FInNECAN. HENDERSON
Farabow. Garrett
\& Dinner
MOOC STAECT, N w.
WASNINGTON. OC 20005
1.252.408:5000

30
boundaries should be preferably redefined to maximize information throughput by minimizing the data that must be transferred during the systemwide time interval. A network manager could review the overall traffic patterns and tendencies to determine an optimum redefinition of zonal boundaries. Of course, the central computer 2002 could also implement an algorithm accessing the traffic statistics database 2200 to determine optimal zonal boundary redefinition.

In a preferred embodiment in the instance where an entire region is saturated with mobile units, such as a large metropolitan area repetitive reassignments of base transmitters may be used to reduce message traffics during the systemwide time interval. There may exist no appropriate overlap area, such as overlap area 2525 , with a low traffic level to facilitate a long term reassignment of base transmitters with the resulting redefinition of zonal boundaries. In this case, the preferred embodiment alternates between a first and second set of zonal boundaries over each communication cycle and does not attempt to deliver messages during the systemwide time interval.

For example, in Fig. 25 this preferred embodiment would utilize the zonal boundaries defined by lines 2502 and 2504 during a first zonal time interval and would not attempt to deliver messages to mobile units in overlap area 2521 . In a subsequent cycle, this preferred embodiment redefines the zonal boundaries to dashed lines 2522 and 2524 and delivers messages to the mobile units in previous overlap area 2521 during the zonal time interval using zone 2 base transmitters. During this cycle, the network


```
    1
would not attempt to deliver messages to mobile units in overlap area 2525. In yet a later cycle, this preferred embodiment would switch back to zonal boundaries 2502 and 2504 which would allow message delivery to mobile units in the now previous overlap area 2525 during the zonal time interval using zone 1 base transmitters. As can be seen, alternating between a first and second set of zonal boundaries advantageously reduces the reed for communication during the systemwide time interval, but slows message delivery somewhat by only allowing communication to mobile units in overlap areas during zonal time intervals on alternating communication cycles.
H. The Preferred System Communication Protocol
The system communication protocol is preferably a time division protocol organized within repetitive communication cycles of preferably 30 seconds in duration.
The blocks of data transmitted by the network are preferably formed by a bit interleaving process to prevent loss of data during bursts of interference. Bit interleaving may be envisioned as stacking two or more blocks of data (which read from left to right), and then transmitting a bit stream in a column-by-column, top-to-bottom sequence. As can be seen, a burst of interference will likely only cause the loss of a few bits per word at most, which can be corrected by error correction techniques, rather than the loss of entire words. Of course, the mobile unit must appropriately deinterleave the data prior to processing.
```


1
overhead or "housekeeping" information, the systemwide forward batch field 2704 and the zonal forward batch field 2708 provide forward communication capability through the base transmitters to the mobile units in a systemwide time interval and a zonal time interval, respectively. The systemwide response field 2706 and zonal reverse field 2710 provide a return signal period for the mobile transceivers to respond to messages generated during the systemwide and zonal forward batch periods 2504 and 2508 , respectively. Finally, the reverse contention 2712 field allows the mobile transceiver to initiate access to the network.

Each of the fields shown, except the cycle header 2702 field, is preferably variable in duration, and may be changed by the central computer 2002, depending on message traffic requirements. The beginning of the cycle is synchronized by the central computer to a time standard and preferably coincides with the start of minute or half minute intervals. Each mobile unit preferably includes timing circuitry, as previously described, which allows for the mobile unit to power up at the beginning of each cycle to receive communication.

For each cycle, the central computer 2002 calculates the amount of time required for each field to maximize information throughput by the network. For example, for the cycle protocol 2700 shown in Fig. $27(A)$, the central computer will calculate the amount of time necessary for the systemwide forward batch field 2704, the systemwide response interval 2706, the zonal forward interval 2708, the zonal reverse interval 2710 , and the reverse contention interval 2712. The cycle header 2702 will preferably ()$^{-60-}$

Further information regarding error correcting codes may be found in Gallagher, "Information Theory and Reliable Commuication," Wiley 1968, which is hereby incorporated by reference.

The systemwide forward batch 2704 field generally includes a zonal header time interval including overhead information and a series of 64 batches. Also, the zonal forward interval 2710 similarly includes a zonal header time interval with overhead information and a series of 64 batches. Each batch is a string of data containing information specifically directed to a single group of mobile units. Each batch preferably contains information directed to a certain class of mobile units with the classes divided by the types of service provided. For example, a first batch could be directed to all mobile transceiver units, and a second batch could be directed to all mobile receiver units. Further, each batch may contain several messages, each intended for different mobile units within the particular class of unit to which that batch is directed. Generally, Fig. $27(B)$ shows the forward batch interval protocol 2750 preferred for both the systemwide forward interval 2704 and the zonal forward interval 2708.

The systemwide forward interval 2704 is preferably used only for sending a probe signal to a mobile transceiver unit which does not respond to zonal messages (i.e. a "lost" unit). However, when necessary, the systemwide forward interval 2704 may be used to deliver messages to mobile units 'located in overlap areas. The ID number, or address, of the lost mobile unit is preferably followed by data indicating a timing offset which is a time delay amount

1

5
power of the mobile unit. The remaining fields batch i 2720 , batch j 2722, and batch k 2724 are the individual batches directed to the mobile units.

It should be understood that different classes of mobile units can follow different desirable batch protocols, depending on the type of service, processing power, battery capacity, or other factors.

The individual batch protocol 2780 is shown in Fig. 27(C). The batch header field 2726 is similar to the header fields discussed above for Figs. 27 (A) and (B). The batch header 2726 includes a list of particular mobile units to receive messages within the batch and includes timing offsets indicating when such messages will be broadcast. Further, the batch header 2726 includes data indicating a timing offset scheduling a reverse channel interval in the system reverse interval, the zonal reverse interval, or the reverse contention interval, as appropriate. Again, this information allows the mobile unit to extend its battery life because the mobile unit need only power up at the appropriate time to receive or transmit the appropriate message. Further, it is preferred that the reverse channel timing offset data be transmitted using error correction codes to insure accurate receipt thereof by the mobile unit. Accurate receipt of the reverse channel timing offset data will prevent unwanted or untimely transmissions by the mobile unit and insure that a mobile unit may properly transmit a negative acknowledgment signal if it fails to properly receive an unencoded message.

The systemwide response interval 2706 and the zonal reverse interval 2710 provide communication capability from the mobile transceiver units to the network (i.e. the reverse channel).

Still further, a preferred embodiment accomodates mobile terminals with extensive reverse message, generation capabilities (e.g., a laptop computer connected to a radio transceiver) by allowing for contention messages that request extended reverse channel time for the transmission of a long reverse message. The reverse contention interval 2712 is located after the zonal reverse interval 2710 and provides for unscheduled messages from the mobile unit to the network. For example, the mobile transceiver unit could send a message to the network during the reverse contention interval 2712 indicating that the user no longer wishes to receive messages, thereby terminating service. Also, the user could transmit a message to the network during the reverse contention interval 2712 indicating that the user now desires to reestablish services and begin receiving messages from the network. Further, a "registration signal," which is discussed infra, could be transmitted during the reverse contention interval 2712.

The reverse contention interval preferably utilizes a so-called "slotted ALOHA" protocol, which allows the mobile unit to randomly select a predefined time slot within the contention interval to transmit a message. A mobile station wanting to transmit will first divide the contention interval into slots, preferably 5.33 ms in length, and then choose randomly any of them to start transmitting. The slotted ALOHA protocol is preferred

because of the low likelihood of data "collisions" (i.e. 2 or more mobile units transmitting during the same time slot).
I. Registration of the Mobile Unit

Because the network operations center 600 stores the location of each mobile unit in the system in the user database 2100 , it is preferred that each mobile transceiver unit have the capability to "register" with the network operations center 600 by sending a registration signal to a base receiver into the network to update the location data.

The mobile transceiver unit preferably registers by simply transmitting its identification number to a base receiver, which forwards this data and data representing the location of the base receiver to the network operations center 600 .

The mobile transceiver preferably registers upon crossing zonal boundaries to alert the network operation center that the mobile transceiver has left one zone and entered another. For example, the mobile unit could receive information from the nearest base transmitter identifying which zone that base transmitter is assigned to at the beginning of each communication cycle. Upon receipt of such information from a base transmitter indicating that a nearby base transmitter is assigned to a new zone, the mobile transceiver then preferably transmits a registration signal.

The mobile transceiver unit may also transmit a registration signal in other desirable instances. For example, if the mobile transceiver unit has moved away from the transmitter coverage areas of the network for a period of time, the mobile transceiver

1

5
unit may preferably transmit a registration signal upon returning to a coverage area. The display and storage logic 1508 of the mobile transceiver unit preferably recognizes that the unit has left the coverage area of the network upon failure to receive data from a base transmitter in the network during the cycle header time interval 2702, for example. The mobile unit may leave the coverage area of a base transmitter of the network when the user takes the unit out of the country, or enters the basement of a building, for example.

The mobile unit may also preferably transmit a registration signal when power is restored to the mobile unit after having power removed, such as after being turned off by the user. Of course, the power may be restored to the unit by replacing or recharging a dead battery, which may also cause transmission of a registration signal.

In general, the network must balance the need for frequent registrations by the mobile transceiver units, and the desirable result of accurately knowing the location of each mobile unit, thereby preventing the need for probe signals, with the undesirable overhead costs of too frequent registration, which sacrifices data throughput by utilizing valuable transmit time

In the preferred embodiment, the central computer 2002 of the network operations center 600 can achieve desirable performance by implementing one or more algorithms to evaluate the need for registration by a mobile unit, and then appropriately controlling the registration performance of that mobile unit. If the central computer detemines that registration of a particular mobile unit

bam orricss
finnecan. Henderson
farabow, Carrett © Dunner
3001 staEct, n we
WasmingTon. OC 2500s
is useful, then the mobile unit preferably should receive a message from the network to cause the mobile unit to send registration signals at appropriate times. Conversely, if the central computer detemines that the registration signals from the mobile unit are too frequently not useful, the mobile unit preferably should receive a message from the network to cause the mobile unit not to transmit registration signals.

To implement this feature, the mobile transceiver unit further preferably includes a registration flag (not shown) in the display and storage logic section 1508. If the registration flag is set, the display and storage logic section 1508 causes the mobile transceiver to autonomously send a registration signal to the network operations center on a desired basis. If the registration flag is not set, the display and storage logic section 1508 prevents any registration signals from being sent. The registration flag may be set or removed upon command from the network operations center by transmission of an appropriate signal from a base transmitter near the mobile unit. A variety of algorithms, possibly regarding individual users or groups of users, can be used to determine whether or not the registration flag should be set. It should be appreciated that the present invention provides two distinct algorithms for implementing these registration concepts depending upon whether the registration flag is set or not in the mobile unit (i.e. the state of the mobile unit).

Referring now to Fig. $29(\mathrm{~A})$, therein is shown a series of substeps which are preferably performed during the implementation of the processing step 2804 shown in Fig. 28(A). In particular, steps 2902 and 2904 are event driven and only proceed to the next step after an input has been received by the network. Step 2902 determines if the network sent a probe signal to a lost mobile transceiver unit and if a reply to the probe signal was received by a base receiver in the network. If this event occurs, a counter (not shown) is incremented by a value P by the central computer 2002.

In step 2904, if a message was successfully delivered to a mobile transceiver, preferably including an acknowledgment signal return from the mobile transceiver to the network, the counter (not shown) in the central computer 2002 is decremented by a value D.

After the occurrence of either of the events tested for in step 2902 or step 2904, the algorithm proceeds to step 2906. In step 2906, if the counter value is greater than a predetermined value J, this indicates that the likelihood that a probe signal will be necessary to locate the mobile transceiver is greater than a selected value.

As can be seen, the process of substeps in Fig. 29(A) balances the frequency of probe signals sent to a particular unit against the number of successfully delivered messages to that unit. If the system must send a large number of probe signals, it would be useful to enable the registration feature by setting the registration flag on that mobile unit to enable the registration

feature. In contrast, if many messages have been successfully delivered without requiring a probe signal, it is unnecessary to enable the registration feature by setting the registration flag.

In step 2808 , a message is sent to the mobile unit to enable the mobile transceiver's capability to transmit a registration signal if the calculated likelihood in step 2804 exceeds a selected value. As can be seen, step 2808 preferably sets the registration flag in the mobile transceiver unit.

Fig. $28(B)$ shows a flow chart describing a method 2810 for implementing the registration concepts of the present invention wherein the registration feature of the mobile unit is enabled. . In step 2812, the network sends a message to enable the registration feature (i.e. set the registration flag to 1) of the mobile unit to enable the mobile transceiver's capability to transmit a registration signal. As can be seen, step 2812 determines the initial state for the method set forth in Fig. 28 (B).

In step 2814, the network stores the number of registration signals received by the network during a first period of time, and the number of messages successfully delivered to the mobile transceiver by the network during a second period of time. Preferably, the first and second time intervals are identical. The traffic statistics database 2200 of the database 2008 is preferably used to store the number of registration signals and successful messages for each mobile unit. As explained hereinafter, these two statistics from the operation of the

network are preferably used to determine whether the registration by the mobile unit is useful.

In step 2816, the stored number of registration signals and number of messages successfully delivered is processed to evaluate the likelihood that a registration signal will be received by a base receiver in the network that will not be used by the network to determine a set of base transmitters to be operated to transmit a message to the mobile transceiver. The preferred embodiment of the invention processes the stored number of registration signals received and number of messages successfully delivered in accordance with the method set forth in Fig. 29 (B).

Referring now to Fig. 29(B), therein is shown a series of substeps which are preferably performed during the implementation of the processing step 2814 shown, in Fig. 28(B). In particular, steps 2912 and 2914 are event driven and only proceed to the next step after an input has been received by the network. Step 2912 determines if a registration signal was received by a base receiver in the network. If so, a counter (not shown) in the central computer 2002 is incremented by a value A.

In step 2914, if a message was successfully delivered to a mobile transceiver, preferably including an acknowledgment signal return from the mobile transceiver to the system, the counter (not shown) in the central computer 2002 is decremented by a value M.

It should be understood that the counter referred to with regard to steps 2912 and 2914 is different then the counter referred to with regard to steps 2902 and 2904 since each counter is only necessary when the registration feature is enabled or

- 73 -

disabled in the mobile transceiver. However, the same physical or logical device may be used to implement both counters.

After the occurrence of either events in the step 2912 or step 2914, the algorithm proceeds to step 2916. In step 2916, the process determines if the counter value is greater than a predetermined value T. The value of T can be varied to meet the needs of a particular network. When the counter value exceeds T, it is indicated that the likelihood that a registration signal from that mobile unit will not be used by the network to determine a new set of base transmitters, and therefore the registration status for that mobile unit needs to be changed to disable the registration feature.

In other words, the process in Fig. $29(B)$ balances the frequency of registration signals sent by a particular unit against the number of successfully delivered messages to that unit. As can be seen, if the mobile unit sends a large number of registration signals without the system using these registration signals, it would be useful to have the registration feature on that mobile unit disabled. In contrast, if many messages have been successfully delivered without too many registration signals being sent by the mobile unit, it is unnecessary for the registration feature to be disabled.

In step 2818 , a message is sent to the mobile unit to disable the mobile transceiver's capability to transmit a registration signal if the calculated likelihood in step 2814 exceeds a selected value. As can be seen, step 2818 may preferably remove the registration flag in the mobile transceiver unit.
) $-74-$

WHAT IS CLAIMED IS:

```
1. A method for information transmission by a/ plurality of
transmitters to provide broad communication dapability over a
region of space, the information fransmission occurring during at
least both a first time period and a second time period and the
plurality of transmitters being divided into at least a first and
second set of transmitters, the method comprising the steps of;
(a) generating a system infomation signal which includes a plurality of blocks of information;
```

(b) transmitting the sysyem infonmation signal to the plurality of transmitters;
(c) transmitting by the first and second sets of transmitters a first block of information in simulcast during the first time period;
(d) transmitting by the first set of transmitters a second block of informathon during the second time period; and
(e) transmatting by the second set of transmitters a third block of infopmation during the second time period.

Law orvers
FINRECAN, HENDERSON FARABOW GARRETT 8 DunNer
ISOO i STREET $\mu \mathrm{w}$. whasmington, oc zo003 (1) 202 408) 4000
3. A communication method implemented in a computer controlled comunication network for locating a mobile transceiver within a region of space, the region of space being divided into a plurality of zones with each zone sfrviced by at least one base transmitter and at least one base feceiver, the network storing data corresponding to a zone wherø the mobile transceiver was last known to be located, the communi申ation method comprising the steps of:
(a) transmitting a message signal by a base transmitter servicing a zone where the mopile transceiver was last known to be located;
(b) transmitting a sysfemwide probe signal by a plurality of base transmitters servicing a plurality of zones if the mobile transceiver does not indicate receipt of the message signal from the base transmitter;
(c) receiving the regional probe signal by the mobile transceiver;
(d) transmittind an acknowledgment signal by the mobile transceiver in response to the received regional probe signal;
(e) receiving/the acknowledgment signal from the mobile transceiver by a pase receiver; 'and
(f) updating the data to reflect the zone of the base receiver that received the acknowledgment signal as the last known location of the mobile transceiver.

- 81 -

DECLARATION AND POWER OF ATTORNEY

As a below named inventor, I hereby declare that: my residence, postoffiee"ziddress and citizenship are as stated below next to my name; that I believe 1 am the original, first and solentiventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed bglow of the subject matter which is claimed and for which a patent is sought on the invention entitled:

A NATIONWIDE COMMUNICATION SYSTEM

the specification of which is \square attached ndolor $X_{⿹}$ was filed on .November, 12,1992
...... as Application Serial No.
. and yas amended on (if applicable)
I hereby state that I have revigwed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, §1,56(

I hereby claim foreign priority benefitswder Title 35, United States Code, $\$ 119$ of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

COUNTAY	APPUCATION NUMSER	OATE OF FIUNG	PRIORITY CLAMEO WNOER 35 U.S. 119
			OYES DNO
			QYES ©NO

A. I hereby claim the benefit under Title 35, United Staies Code, $\S 120$ of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, $\$ 1.56$ (a) which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

APPUCATION NUMBEA	DATE OF FIUNG	STATUS (Paienied, Pending. ABAndonad]

I hereby appoint the following attorneys to prosecute this application and transact all business in the Patent and Trademark Office connected therewith: Finnegan, Henderson, Farabow, Garrett and Dunner, Reg. No. 22,540; Douglas B. Henderson. Reg. No. 20,291; Ford. F. Farabow, Jr., Reg. No. 20,630; Arthur S. Garrett, Reg. No. 20,338; Donald R. Dunner, Reg. No. 19,073; Brian G. Brunsvold, Reg. No. 22,593; Tipton D. Jennings, IV, Reg. No. 20,645; Jerry D. Voight, Reg. No. 23,020; Laurence R. Hefter, Reg. No. 20,827; Kenneth E. Payne, Reg. No. 23,098; Herbert H. Mintz, Reg. No. 26,691; C. Larry O'Rourke, Reg. No. 26,014; Albert J. Santorelli, Reg. No. 22,610; Michael C. Elmer, Reg. No. 25,857; Richard H. Smith, Reg No. 20,609; Steptien L. Peterson, Reg. No. 26,325; John M. Romary, Reg. No. 26,331; Bruce C. Zotter, Reg. No. 27,680 Dennis P. O'Reilley, Reg. No. 27,932; Allen M. Sokal, Reg. No. 26,695; Robert D. Bajefsky, Reg. No, 25,387; Richard L Stroup, Reg. No. 28,478; David W. Hill, Reg. No. 28,220; Thomas L. Irving, Reg. No. 28,619; Charles E. Lipsey, Reg. No. 28,165; Thomas W. Winland, Reg. No. 27,605; Basil J. Lewris, Reg. No. 28,818; Robert J. Gaybrick, Reg. No. 27,890; Martin I. Fuchs, Reg. No. 28,508; E. Robert Yoches, Reg. No. 30,120; Stephen J. Rosenman, Reg. No. 29,209; Barry W. Graham, Reg. No. 29,924; Thomas H. Jenkins, Reg. No. 30,857; and . MATTHEW. I. . BAILEY. Reg , No. . $33,829$.
. Please address all correspondence to FINNEGAN, HENDERSON, FARABOW, GARRETT AND DUNNER, 1300 I Street, N.W., Washington, D.C. 20005, Telephone No. (202) $408-4000$
I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Listing of Inventors Continued from Page I of Declaration and Power of Attomey for invention entitled:
A NATIONWIDE COMMUNICATION SYSTEM

FINNEGAN, HENDERSON, FARABOW, GARRETT \& DUNNER • WASHINGTON, D.C.

PRINT OF DRAWINGS AS ORIGINALLY FLLED
$08 / 7$ 2n457
899,476

 AS ORIGENALLY FLLED

081899,476

PRINT OF DRAWINGS AS ORIGENALLY FILED

Fig. 7

PRINT OF DRAWINGS PRINT OF DRAWINGS
AS ORIGINALLY FILED

PRINT OF DRAWINGS

AS ORIGINALLY FILED

PRRNT OF DRAWINGS AS ORIGINALLY FILED

$78 / 76045 \%$
899,476

AS ORIGINALLY FILED
$08 / 260457$
899,476

PRINT OF DRAWINGS AS ORIGDNALLY FILED
$\stackrel{4}{\square}$

PRINT OF DRAWINGS, AS ORIGINALLY FILED

$08 / 760457$
899,476

PRINT OF DRAWINGS AS ORIGINALLY FILED

Mobile Receiver

$08 / 7457$ 899,476

1.2402	2404	<2406	r^{2408}
Base Transmitter 1	Zonal Assignment	Base Receivers in Coverage Area	Other Data
Base Transmitter 2	Zonal Assignment	Base Receivers in Coverage Area	Other Data
Base Transmitter 3	Zonal Assignment	Base Receivers in Coverage Area	Other Data
Base Transmitter 4	Zonal Assignment	Base Receivers in Coverage Area	Other Data
3 - ■			

$\underset{\text { Fig. } 24}{\text { Base Transmitter Database }}$

PRINT OF DRAWINGS AS ORIGENALLY FILED

Fig. 26

Fig. 27(8)
$08 / 29045 \%$
899,476

Fig. 7

08/ 899,476

Fig. 16

Network Operations Center

$\underset{\text { Fig. } 22}{\text { Traffic Database }}$

$08 / 89457$
899,476

1. 2404			r^{2408} Other Data
Base Transmitter 1	Zonal Assignment	Base Receivers in Coverage Area	
Base Transmitter 2	Zonal Assignment	Base Receivers in Coverage Area	Other Data
Base Transmitter 3	Zonal Assignment	Base Receivers in Coverage Area	Other Data
Base Transmitter 4	Zonal Assignment	Base Receivers in Coverage Area	Other Data
- - .			

$\underset{\text { Fig. } 24}{\text { Base Transmitter Database }}$

Fig. 26

8

Fig. 27(8)
$\stackrel{\infty}{\pi}$

Individual Batch Protocol

FIG. I
PRIOR ART

FIG. 7

FIG. 8

800

FIG. 10

FIG. 11

FIG. 12

FOUR CARRIER QUADRATURE MODULATOR

FIG. 16

Mobile Transceiver

FIG. 17

Mobile Receiver

FIG. 19

FIG. 23

Service Queue

으N

Base Transmitter Database
(1)

FIG. 26

FIG. 28(A)

FIG. 28(B)

Fig. 1, add reference character " F " in the overlap area between transmitters 102 and 104;

Figs. 1-5, add the label "Prior Art"; and
Fig. 6, add base transmitters 613 and 615.

IN THE SPECIFICATION:

Page 19, line 3, replace "Although not shown in Fig. 6, each" with --耳ach--; and
line 4, after "stations" insert - shown as, for example, base

Law offices
FINNECAN, HENDERSON Farabow, Garrett 8 DUNNER,L.L.P. 1300 Y STREET, N W. WASHINATON, OC zOÓOS 202-400.4000 transmitters 613 and 615 in Fig. $6,-f$

IN THE CLAIMS:
Please cancel chaims 1 and 3-7 without prejudice or disclaimer of the subject matter thereof, and amend claim 2and add new claims 8-24 as follows:

1. \mathcal{F}. (Amended) A multi-carrier simulcast transmission system or transmitting in a desired frequency band a message contained in an information/ signal, the system comprising:
a first transmitter [means for transmitting ary information signal by generating] configured to transmit a first plurality of carrier signals within the desired frequency band [and by modulating the first plurality of carrier signals to convey the information signal], each of the first plurality of carrier signals representing a portion of the information signal not represented by others of the plurality of carrier signals; and -2.
a second transmitter [means], spatially separated from the first transmitter, [for transmitting the information signal] configured to transmit a seeond plurality of carrier signals in simulcast with the first plurality of carrier signals, each of the second plurality of carrier signals corresponding to and representing substantially the same information as a respective carrier signat of the first plurality of carrier signals [transmitter by generating a second plurality of carrier signals at substantially the same frequencies as the first plurality of carrier signals and by modulating the second plurality of carrier signals to convey this information signall.

mx farabow, Garrett 8 DINNER, L.L.P. 13001 STEEET, n w WASHINOTON, DC EOOOS 202.408.4000
slightly frequency shifted $10-20 \mathrm{~Hz}$ from the respective carrier signal in the second plurality.
1.13. The multi-carrier simulcast transmission system of claim 2. wherein the first transmitter comprises means for modulating the first plurality of carrier signals using a modulation scheme, and the second transmitter comprises means for modulating the second plurality of carrier signals using the modulation scheme.
${ }^{5}$
2. The multi-carrier simulcast transmission system of claim 12 , wherein the modulation scheme is selected from the group including: modulated on/off keying, binary frequency shift keying, M'ary frequency shift keying, and quadrature amplitude modulation.
3. The multi-carrier simulcast transmission system of claim22, further comprising:
a network operations center configured to generate the information signal, the network operations center including a receiver for receiving data input to the network operations center, a database for storing data, a central computer connected to the receiver and the database for processing the input data and the database data to generate the information signal, and a satellite uplink connected to the central computer for broadcasting the information signal; and
a satellite for receiving the information signal from the network operations center and for retransmitting the information signal to the first and second transmitters,
wherein each of the first and second transmitters comprises satellite downlink means and base transmitter means.

$08 / 760457$

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Dennis CAMERON et al.
Continuation application of
Serial No.: 07/973,918
Filed: December 6, 1996
For: A Nationwide Communication System

```
Group Art Unit: Unassigned
```

Examiner: Unassigned

Assistant Commissioner of Patents
Washington, D.C. 20231
Sir :
REQUEST FOR APPROVAL OF DRAWING CHANGE
The Examiner is requested to approve the proposed drawing changes,
which are indicated in red in the attached drawings, as follows:
Fig. 1, add reference character " F " in the overlap area between
transmitters 102 and 104;
Figs. 1-5, add the label "Prior Art"; and
Fig. 6, add base transmitters 613 and 615 .
If there is any fee due in connection with the filing of this proposed drawing change, please charge such fee to our Deposit Account No. 06-0916.

Respectfully submitted,
FINNEGAN, HENDERSON, FARABOW. GARRETT \& DUNNER

Law offices
Finnegan, Henderson, Farabow Garrett Farabow, Garrett
g Dunner, L. Lip. 8 DUNNER, L.L.P.
13001 STRCET, RM WASHINOTON, DC 20005 z oz A08.4000

Dated: December 6, 1996

Allen M. Lo Reg. No. 37,059

Fig. 4
Prior Act

Transaction History Date 1997-04-25
BEST COPY
Date information retrieved from USPTO Patent
Application Information Retrieval (PAIR)
system records at www.uspto.gov

UNITED STATES DEPARTMENT OF COMMERCE

 Patent and Trademark OfficeAddress: COMMISSIONER OF PATENTS AND TRADEMARIKS Washington, D.C. 20231

SEMAS Nangber		CAMERON FIRST NAMED APPLICANT	b	

26M1/0425
FINNEGAN HENDERSON FARABOW

GARRETT AND DUINNER
1300 Y STREET NW
NASHINGTON DC 20005-3315
2GAPI UNIT 1 PAPER NUMBER

DATE MAILED:

NOTICE OF ALLOWABILITY

PART I.

1. [1. This communication is responsive to apolication filed 12/6/96
2. [] All the claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. It not included herewilh (or previously mailed), a Notice of Allowance And lssue Fee Due or other appropriate communication will be sent in due course.
3. The allowed claims are \qquad renumbered $1-18$
4. The drawings blied on \qquad are acceptable.
5. Acknowiedgment is made of the claim for prierity under 35 U.S.C. 119 . The certified copy has $(-)$ been recelved. $i-)$ not been received. 1 - been filled in parent application Serial No. tiled on
6. Note the altached Examiner's Amendment

N Note the attached Examiner Interview Summary Record, PTOL-413
8. Note the allached Examiner's Statement of Reasons for Allowance.
9. [7) Note the attached NOTICE OF REFERENCES CITED, PTO-892.
10. Note the altached INFORMATION DISCLOSURE CITATION. PTO-1449.

PART II.
A SHORTENED STATUTORY PERIOD FOR RESPONSE to comply with the requirements noted below is set to EXPIRE THREE MONTHS FROM THE "DATE MAItED" indicated on this form. Failure to timely comply will result in the ABANDONMENT of this application. Extensions of time may be obtained under the provisions of 37 CFA 1.136(a).

1. Note the atlached EXAMINER:S AMENOMENT OI NOTICE OF INFORMAL APPLICATION, PTO-152, which discloses that the oath or declaration is deficient. A SUBSTITUTE OATH OR DECLARATION IS REOUIRED
2. APPlicant must make the drawing changes indicateo below in the manner set forth on the reverse side OF THIS PAPER.
a. Drawing informalities are indicated on the NOTICE RE PATENT DRAWINGS. PTO-948, attached bereto or to Paper No. The proposed drawing sometion flled on $12 / 6 / 96$ REQUIRED.
c. \square Approved drawing corrections are described by the examinet in the atfached EXAMINER'S AMENDMENT. CORRECTION is pEQUIREO
d. Formal drawings are now REQUIRED

Any response to this letter should include in the upper right hand corner, the tollowing intormation trom the NOTICE OF ALLOWANCE AND ISSUE FEE DUE: ISSUE BATCH NUMBER. DATE OF THE NOTICE OF ALLOWANCE, AND SERIAL NUMBER.

Allichments:

- Examiner's Amendment
- Examine interview Summary Record. PTOL- 413
- Notice of Intormal Application, PTO-152

1 Reasons tor Allowance

- Notice ol Relerences Gited, PTO-692

Wolice re Palent Orawings. PTO-94a

- Listing of Bonded Drattsmen
intormation Disclosure Citation, ATO-1449
T. LE
(703) 305-4819

```
Serial Number: 08/760,457 -2-
```

Art Unit: 2611

1. The petition under 37 CFR 1.48 (b) regarding the deletion of
"Mr. Rade Petrovic" as an inventor has been entered and the
inventorship of this application has been corrected.
2. The following is an Examiner's Statement of Reasons for Allowance:

As to claims 2 and 16 , the prior art of record fails to show a multi-carrier simulcast transmission system comprising the first and second transmitters for simultaneously transmitting the same information signals. The system comprises a plurality of carrier signals in each of the transmitters wherein each of the carrier signals represent a portion of the information signal not represented by others of the plurality carrier signals.

Any comments considered necessary by applicant must be submitted no later than the payment of the Issue Fee and, to avoid processing delays, should preferably accompany the Issue Fee. Such submissions should be clearly labeled "Comments on Statement of Reasons for Allowance."
3. The prior art made of record and not relied upon is considered pertinent to applicant's disclosure.

Tomisato et al. and Wei both teach a diversity transmitter system with plural modulator for transmitting information via plural carrier frequencies.

```
Serial Number: 08/760,457
-3-
Art Unit: 2611
4. Any inquiry concerning this communication or earlier
communications from the examiner should be directed to Thanh Le
whose telephone number is (703) 305-4819.
    Any inquiry of a general nature or relating to the status of
this application should be directed to the Group receptionist
whose telephone number is (703) 305-4700.
```

Thanh C. Le
Mar 10, 1997

Rinhed E if
Reinhard J. Eisenzopl 3-13-97
Supervisory Patent Examiner Group 2600

TO SEPARATE, HOLD TOP AND BOTTOM EDGES, SNAP-APART AND DISCARD CARBON

NOTICE OF DRAFTSPERSON'S PATENT DRAWING REVIEW

PTO Draftpersons review all originally filed drawings regardless of whether they are designated as formal or informal. Additionally, patent Examiners will review the drawings for compliance with the regulations. Disect telephone inquiries concerning this review to the Drawing Review Branch, 703-305-8404.

COMMENTS:

PTO CoDv

This application is abandoned in view of:

1. \square Applicant's failure to respond to the Office letter, mailed \qquad -
2. \square Applicant's letter of express abandonment which is in compliance with 37 C.F.R. 1.138.
3. Applicant's failure to timely file the response received \qquad within the period set in the Office letter.
4. \square Applicant's failure to pay the required issue fee within the statutory period of 3 months from the mailing date of \qquad of the Notice of Allowance.

- The issue fee was received on \qquad -
\square The issue fee has not been received in Allowed Files Branch as of \qquad .

In accordance with 35 U.S.C. 151, and under the provisions of 37 C.F.R. 1.316 (b), applicant(s) may petition the Commissioner to accept the delayed payment of the issue fee il the delay in payment was unavoidable. The petition must be accompanied by the issue fee, unless it has been previously submitted, in the amount specified by 37 C.F.R. 1.17(1), and a verified showing as to the causes of the delay.

If applicants) never received the Notice of Allowance, a petition for a new Notice of Allowance - and withdrawal of the holding of abandonment may be appropriate in view of Delgar Inc, v. Schuyler, 172 U.S.P.Q. 513.
5. Applicant's failure to timely correct the drawings and/or submit new or substitute formal
drawings by
\square The corrected and/or substitute drawings were received on as required in the last Office action.
6. The reasons) below.
143) $305-8428$

Praxviry P1, casing (brunch

$1 ; 3-7$

Washington, D.C. 20231 Attorney's Docket Number: $\underline{3680.0083-05}$
Prior Application: 08/760,457
Art Unit: 2611
Examiner: T. Le
SIR: This is a request for filing a
[X] Continuation [] Continuation-in-part [] Divisional application under 37 C.F.R. § 1.62 of pending prior application Serial No. 08/760.457, filed December 6, 1996, which is a Rule 1.60 continuation of prior application Serial No. $07 / 973.918$, filed
November 12. 1992, now patent No. $5,590,403$, for METHOD AND SYSTEM FOR PROVIDING MULTICARRIER SIMULCAST TRANSMISSION (Title of Invention)
by the following named inventor(s).

Full Name of	: Family Name	First Given Name	Second Given Name
Inventor	CAMERON	Dennis	Wayne
Residence \&	: City	State or Foreign Country	Country of Citizenship
Citizenship	: Jackson.	Mississippi	U.S.A.
Post Office	: Post Office Address		State \& Zip Code/Country
Address : 29 Polo Drive, Jackson, Mississippi			
Full Name of	: Family Name	First Given Name	Second Given Name
Inventor	: ROEHR JR.	Walter	Charles
Residence \&	: City	State or Foreign Country	Country of Citizenship
Citizenship	Reston.	Virginia	U.S.A.
Post Office	: Post Office Add	ss City	State \& Zip Code/Country
Address	11317 South S	re Road, Reston. Virginia	22090

Full Name of	Family Name	First Given Name	Second Given Name
Inventor	BHAGAT	Jai	P.
Residence \&	: City	State or Foreign Country	Country of Citizenship
Citizenship	: Jackson.	Mississippi	U.S.A.
Post Office	: Post Office Ad	City	State \& Zip Code/Country
Address : 155 Rolling Meadows Drive, Jackson, Mississippi 39211			
Full Name of	: Family Name	First Given Name	Second Given Name
Inventor	GARAHI	Masood	
Residence \&	: City	State or Foreign Country	Country of Citizenship
Citizenship	: Madison.	Mississippi	U.S.A.
Post Office	: Post Office Ad	ess City	State \& Zip Code/Country
Address : 454 Morning Forest Lane. Madison. Mississippi 39110			
Full Name of	Family Name	First Given Name	Second Given Name
Inventor	HAYS	William	D.
Residence \&	: City	State or Foreign Country	Country of Citizenship
Citizenship	: Jackson.	Mississippi	U.S.A.
Post Office	: Post Office Ad	ess City	State \& Zip Code/Country
Address : 2345 Twin Lake Circle, Jackson, Mississippi 39211			
Full Name of	Family Name	First Given Name	Second Given Name
Inventor	: ACKERMAN	David	W.
Residence \& : City		State or Foreign Country Country of Citizenship	
Citizenship	- Washington.		U.S.A
Post Office	: Post Office Address Cit		State \& Zip Code/Country
Address	3730 W Street, N.W.. Washington, D.C. 20007		

The above-identified prior application in which no payment of the issue fee, abandonment of, or termination of proceedings has occurred, is hereby expressly abandoned as of the filing date of this new application. Please use all the contents of the prior application file wrapper, including the drawings, as the basic papers for the new application.

1. [] Enter the amendment previously filed on \qquad under 37 C.F.R. § 1.116 but unentered, in the prior application.
2. [1 A Preliminary Amendment is enclosed.
3. $[\mathrm{X}]$ The filing fee is calculated on the basis of the claims existing in the prior application as amended at 1 and 2 above.

For	Number Filed		Number Extra	Rate	Basic Fee $\$ 770.00$		
Total							
Claims	18	$-20=$	-0-	x $\$ 22.00=$:	\$		$0-$
Independent Claims	2	$-3=$: 0	x $\$ 80.00=$			-

Multiple Dependent Claim(s) (if applicable) $:+\$ 260,00=$:
Total $=$: $\$ 770,00$
Reduction by $1 / 2$ for :
filing by small entity:
TOTAL FILING FEE $=$: $\$ 770,00$
4. $[X X] \quad$ A check in the amount of $\$ 770.00$ to cover the filing fee is enclosed.
5. $[\mathrm{XX}] \quad$ The Commissioner is hereby authorized to charge any fees including fees due under 37 C.F.R. §§ 1.16 and 1.17 which may be required, or credit any overpayment to Deposit Account No. 06-0916.
6. [] A new declaration is included since this application is a continuation-inpart which discloses and claims additional matter.
7. $[\mathrm{XX}] \quad$ Amend the specification by inserting before the first line, the sentence:

AThis application is a [] continuation-in-part, [X] continuation, [] division, of application Serial No.08/760.457, filed December 6, 1996, now abandoned, which is a Rule 60 continuation of prior application Serial No. $\mathbf{0 7 / 9 7 3 . 9 1 8}$, filed November 12, 1992, now patent No. 5,590,403.A
8. [] A verified statement claiming small entity status
[] is enclosed or [] is on file in the prior application.

9. []	Priority of application Serial No. \qquad filed on \qquad (country) is claimed under 35 U.S.C. § 119. A certified copy
	[] is enclosed or [] is on file in the prior application.
10. $[\mathrm{X}]$	The prior application is assigned of record to: Destineer Corpor
11. $[\mathrm{X}]$	The power of attorney in the prior application is to at least one of the following: FINNEGAN, HENDERSON, FARABOW, GARRETT \& DUNNER, L.L.P., Reg. No. 22,540, Douglas B. Henderson, Reg. No. 20,291; Ford F. Farabow, Jr., Reg. No. 20,630; Arthur S. Garrett, Reg. No. 20,338; Donald R. Dunner, Reg. No. 19,073; Brian G. Brunsvold, Reg. No. 22,593; Tipton D. Jennings, IV, Reg. No. 20,645; Jerry D. Voight, Reg. No. 23,020; Laurence R. Hefter, Reg. No. 20,827; Kenneth E. Payne, Reg. No. 23,098; Herbert H. Mintz, Reg. No. 26,691; C. Larry O'Rourke, Reg. No. 26,014; Albert J. Santorelli, Reg. No. 22,610; Michael C. Elmer, Reg. No. 25,857; Richard H. Smith, Reg. No. 20,609; Stephen L. Peterson, Reg. No. 26,325; John M. Romary, Reg. No. 26,331; Bruce C. Zotter, Reg. No. 27,680; Dennis P. O'Reilley, Reg. No. 27,932; Allen M. Sokal, Reg. No, 26,695; Robert D. Bajefsky, Reg. No. 25,387; Richard L. Stroup, Reg. No. 28,478; David W. Hill, Reg. No. 28,220; Thomas L. Ivving, Reg. No. 28,619; Charles E. Lipsey, Reg. No. 28,165; Thomas W. Winland, Reg. No. 27,605; Basil J. Lewris, Reg, No. 28,818; Martin I. Fuchs, Reg. No. 28,508; E. Robert Yoches, Reg. No. 30,120; Barry W. Graham, Reg. No. 29,924; Susan Haberman Griffen, Reg. No. 30,907; Richard B. Racine, Reg. No. 30,415; Thomas H Jenkins, Reg. No. 30,857; Robert E. Converse, Jr., Reg. No. 27,432; Clair X. Mullen, Jr, Reg. No. 20,348; Christopher P. Foley, Reg. No. 31,354; John C. Paul, Reg. No. 30,413; David M. Kelly, Reg. No. 30,953 ; Kenneth J. Meyers, Reg. No. 25,146; Carol P. Einaudi, Reg. No. 32,220; Walter Y. Boyd, Jr., Reg. No. 31,738; Steven M. Anzalone, Reg. No. 32,095; Jean B. Fordis, Reg. No. 32,984; Barbara C. McCurdy, Reg. No. 32,120; James K. Hammond, Reg. No. 31,964; Richard V. Burgujian, Reg. No. 31,744; J. Michael Jakes, Reg. No. 32,824; Dirk D. Thomas, Reg. No. 32,600; Thomas W. Banks, Reg. No. 32,719; Christopher P. Isaac, Reg. No. 32,616; Bryan C. Diner, Reg. No. 32,409; M. Paul Barker, Reg. No. 32,013; Andrew Chanho Sonu, Reg. No. 33,457 ; David S. Forman, Reg. No. 33,694; Vincent P. Kovalick, Reg. No. 32,867; and Allen M. Lo, Reg. No. 37,059.
12. [XX$]$	Please address all correspondence to FINNEGAN, HENDERSON, FARABOW, GARRETT and DUNNER, L.L.P., 1300 I Street, N.W., Washington, D.C. 20005-3315.

13. [Recognize as associate attorney

(name, address \& Reg. No.)

14. [Also enclosed is

PETITION FOR EXTENSION. If any extension of time is necessary for the filing of this application, including any extension in the parent application, serial no. 08/760.457, filed December 6, 1996, for the purpose of maintaining copendency between the parent application and this application, and such extension has not otherwise been requested, such an extension is hereby requested, and the Commissioner is authorized to charge necessary fees for such an extension to our Deposit Account No. 06-0916. A duplicate copy of this paper is enclosed for use in charging the deposit account.

It is understood that secrecy under 35 U.S.C. § 122 is hereby waived to the extent that if information or access is available to any one of the applications in the file wrapper of a 37 C.F.R. § 1.62 application, be it either this application or a prior application in the same file wrapper, the U.S. Patent and Trademark Office may provide similar information or access to all the other applications in the same file wrapper.

	25. A multi-carrier simulcast transmission system for transmitting in a desired frequency band at least one message contained in an information signal, the system comprising: means for transmitting a first plurality of carrier signals within the desired frequency band, each of the first plurality of carrier signals representing a portion of the information signal substantially not represented by others of the first plurality of carrier signals; and means for transmitting a second plurality of carrier signals in simulcast with the first plurality of carrier signals, each of the second plurality of carrier signals corresponding to and representing substantially the same information as a respective carrier signal of the first plurality of carrier signals.-
finnegan, henderson, farabow, Garrett 8 DUNNER, LL. p_{2} WलSHINGTON, o. c. zooos 202-400-4000	REMARKS Prior to examination, applicants have amended independent claims 2 and 16 and added new claim 25 . New claim 25 defines a multi-carrier simulcast system using means-plus-function recitations, rather than structural recitations as contained in independent claim 2.

Transaction History Date $1997-09-12$
Date information retrieved from USPTO Patent
Application Information Retrieval (PAIR) system records at www, uspto.gov

OMB No. 0651-0011

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; draw line through citation if not in conformance and not considered. Include copy of this form | with next communication to applicant.

INTERNATIONAL SEARCH REPORT anformation on patent family members			Inic onal Applicaion No PCT/US 93/10713	
(e) $\begin{gathered}\text { Palent document } \\ \text { cited in sewch report }\end{gathered}$	Publication date		mily	Publication date
WO-A-9004314	19-04-90	$\begin{aligned} & \text { US-A- } \\ & \text { EP-A- } \\ & \text { JP-T- } \\ & \text { US-A- } \end{aligned}$	$\begin{aligned} & 4918437 \\ & 0438463 \\ & 4501195 \\ & 4968966 \end{aligned}$	$\begin{aligned} & 17-04-90 \\ & 31-07-91 \\ & 27-02-92 \\ & 06-11-90 \end{aligned}$
US-A-4850032	18-07-89	NONE		
US-A-4701758	20-10-87	NONE		
US-A-4506384	19-03-85	NONE		
US-A-5128934	07-07-92	NONE		

INFORMATION DISCLOSURE CITATION (Use several sheets if necessary)

This is a communication from the examiner in charge of your application. COMMISSIONER OF PATENTS AND TRADEMARKS

NOTICE OF ALLOWABLLITY

All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included herewith (or previously mailed), a Notice of Allowance and Issue Fee Due or other appropriate communication will be mailed in due course. 0/This communication is responsive to Pre-amendment filed $7 / 24197$ (1) The allowed elaim(s) is/are 2 and $8-24$, cenumbered 1-18The drawings filed on \qquad are acceptable.
\square Acknowledgement is made of a claim for foreign priority under 35 U.S.C. § 119 (a)-(d).All \square Some*None of the CERTIFIED copies of the priority documents have beenreceived.
\square recelved in Application No. (Series Code/Serial Number) \qquad -

- received in this national stage application from the International Bureau (PCT Rule 17.2(a)).
${ }^{*}$ Cerlified copies not received: \qquad -Acknowledgement is made of a claim for domestic priority under 35 U.S.C. § $119(\mathrm{e})$.
A SHORTENED STATUTORY PERIOD FOR RESPONSE to comply with the requirements noted below is set to EXPIRE THREE MONTHS FROM THE "DATE MAILED" of this Office action. Failure to timely comply will result in ABANDONMENT of this application. Extensions of time may be obtained under the provisions of 37 CFR 1.136(a).
\square Note the attached EXAMINER'S AMENDMENT or NOTICE OF INFORMAL APPLICATION, PTO-152, which discloses that the oath or dectaration is deficient. A SUBSTITUTE OATH OR DECLARATION IS REQUIRED,
Applicant MUST submit NEW FORMAL DRAWINGS
\square because the originally filed drawings were declaredthy applicant to be informal.$\sqrt{\text { including changes required by the Notice }}$
including changes required by the Notice offattperson's Patent Drawing
पincluding changes required by the proposed drawing correction flied on
by the examiner. \qquad $12 / 6 / 96$including changes required by the attached Examiner's AmendmenvComment.
Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the reverse side of the drawings. The drawings should be filed as a separate paper with a transmittal letter addressed to the Official Draftperson.Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.
Any response to this letter should include, in the upper right hand corner, the APPLICATION NUMBER (SERIES CODE/SERIAL NUMBER) If applicant has received a Notice of Allowance and Issue Fee Due, the ISSUE BATCH NUMBEA and DATE of the NOTICE OF ALLOWANCE should also be included.

Attachment(s)

Notice of Relerences Cited, PTO-892Information Disclosure Statement(s), PTO-1449, Paper No(s). \qquadNotice of Draftsperson's Patent Drawing Review, PTO-948Notice of Informal Patent Application, PTO-152Interview Summary, PTO-413Examiner's AmendmenVCommentExaminer's Comment Regarding Requirement for Deposit of Biological Material[. Exeminer's Statement of Reasons for Allowance
T.VE (103) 305-4819

PTOL-37 (Rev, 10/95)

Art Unit: 2745

1. The following is an Examiner's Statement of Reasons for Allowance:

As to claims 2 and 16, the prior art of record fails to show a multi-carrier simulcast transmission system comprising the first and second transmitters for simultaneously transmitting the same information signals, The system comprises a plurality of carrier signals in each of the transmitters wherein each of the carrier signals represents a portion of the information signal not represented by others of the plurality carrier signals.

Any comments considered necessary by applicant must be submitted no later than the payment of the Issue Fee and, to avoid processing delays, should preferably accompany the Issue Fee. Such submissions should be clearly labeled "Comments on Statement of Reasons for Allowance."
2. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Thanh Le whose telephone number is (703) 305-4819.

THANH CONG LE PRIMARY EXAMINER GROUP 2700

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED ANDIS ALLO WED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITSIS CLOSED.

THE ISSUE FEE MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED THIS STATUTORY PERIOD CANNOT BE EXTENDED.

HOW TO RESPOND TO THIS NOTICE:

1. Review the SMALL ENTITY status shown above.

If the SMALLEENTITY is shown as YES, verify your cutrent SMALL ENTITY status:
A. If the status is changed, pay twice the amount of the FEE DUE shown above and notify the Patent and Trademark Office of the change in status, or
B. If the status is the same, pay the FEE DUE shown above.

If the SMALL ENनITY is shown as NO:
A. Pay FEE DUE shown above, or
B.File verified statement of Small Entity Status before, or with payment of $1 / 2$ the FEE DUE shown above.
It. Part B-Issue Fee Transmittal should be completed and returned to the Patent and Trademark Office (PTO) with your ISSUE FEE. Even if the ISSUE FEE has already been paid by charge to deposit account, Part B Issue Fee Transmittal should be completed and feturned. If you are charging the ISSUESEEE to your deposit account;"section " 4 b " of Part B-Issue Fee Transmittal should be completed and an extra copy of the form should be submitted.
III. All-communications regarding this application must give application number and batch number

Please direct all communicationsiprior to issuance to Box.ISSUE FEE unless advised to the contrary:
IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due.
PATENT AND TRADEMARK OFFICE COPY
PTOL-95 (REV, 10:96) Approved for úse through 06/30189: (0651-0033)
\qquad

FIG. I
PRIOR ART

APPROVED	O.G. FIG.
BY ORAFTSMAN	CLASS

APPROVED		
BY	O.G. FIG.	
DRAFTSMAN	CLASS	SUBCLASS

APPROVEU	D.	IG
BY	CLASS	SUBCLASS
ORAFTSMAN		

FIG. 7

,

FIG. 8

APPROVED	O.G. FIG.	
BY DRAFTSMAN		

FIG. 10

FIG. 11

APPROVED	O.G. FIG.	
BY	CLASS	SUBCLASS
DRAFTSMAN		

FIG. 12

\qquad
\qquad

FIG. 17

Mobile Receiver

FIG. 19

APPROVED	O.G. FIG.	
BY ORAFTSMAN		

FIG. 20

APPROVED	O.G. FIG.	
BY DRAFTSMAN		

FIG. 21

FIG. 22

Traffic Database

FIG. 23

Service Queue

\left.| APPROVED | O.G. FIG. | |
| :---: | :---: | :---: |
| | | |
| BY | | |
| DRAFTSMAN | | |$\right)$ CLASS | SUBCLASS |
| :--- |

FIG. 24			
2402	2404	2406	2408
Base Transmitter 1	Zonal Assignment	Base Receivers in Coverage Area	Other Data
Base Transmitter 2	Zonal Assignment	Base Receivers in. Coverage Area	Other Data
Base Transmitter 3	Zonal Assignment	Base Receivers in Coverage Area	Other Data
Base Transmitter 4	Zonal Assignment	Base Receivers in Coverage Area	Other Data
		* *	

Base Transmitter Database

APPROVED		
BY	O.G. FIG.	
DRAFTSMAN	CLASS	SUBCLASS

FIG. 26

Transmitting substantially simultaneously a first information signal and a second information signal, the first information signal being transmitted in simulcast by a first set of base transmitters assigned to a first zone, and the second information signal being transmitted in simulcast by a second set of base transmitters assigned to a second zone fing Dynamically reassigning one or more of the base transmitters in the first set of base transmitters assigned to the first zone to the second set of base transmitters assigned to the second zone, thereby creating an updated first set of base transmitters and an updated second set of base transmitters
Transmitting substantially simultaneously a third information signal and a fourth information signal the third information signal being transmitted in simulcast by the updated first set of base transmitters, and the fourth information signal being transmitted in simulcast by the updated second set of base transmitters

APPROVED	O.G. FIG.	
BY DRAFTSMAN		

APPROVED		O.G. FIG.
ORAFTSMAN		

FIG. 28(A)

FIG. 28(B)

NOTICE OF DRAWING REQUIREMENTS

-Corrected/substituted drawings for the above-identified application, received in the PTO on Form PTO-948. . are still considered informal for the reasons) identified on the attachedApplicant has the time remaining in the response period set in the Notice of Allowability or Notice of Drawing Requirements mailed \qquad to overcome the objections raised in the attached Form PTO-948. This response period may be extended under the provisions of 37 CR 1.136 (a) by filing the appropriate request and fee before the end of the six month statutory period for response.The PTO delayed in reviewing the corrected drawings. Applicant is given ONE month time limit from the date of this letter to provide corrected drawings. NO EXTENSION OF THIS TIME LIMIT MAY BE GRANTED UNDER EITHER 37 CFR 1,136(a) or (b), See MPEP 714.03. However, the response period set in the Notice of Allowability or Notice of Drawing Requirements mailed may be extended under the provisions of 37 CFR.1.136(a) by filing the appropriate request and fee before the end of the six month statutory period for response.
-

The PTO delayed in reviewing the corrected drawings. Applicant is given ONE month time limit from the date of this letter to provide corrected drawings. NO EXTENSION OF THIS TIME LIMIT MAY BE GRANTED UNDER EITHER 37 CFR 1.136(a) or (b). See MPEP 714.03

NOTICE OF DRAFTPERSON'S

 PATENT DRAWING REVIEWThe drawing fibied (insert date)
A. not objected to by the Drafiperson under 37 CFR 1.84 or 1.152.
B. objected to by the Draftiperson under 37 CFR 1.84 or 1.152 as indicated below. The Examiner will require submission of new, corrected drawings ॠhe necessary. Corrected drawings must be submitted according to the instructions on the back of this notice.

1. DRAWINGS. 37 CFR 1.84(a): Acceptable categories of drawings: Black ink. Color. \qquad Color drawing are not acceptable until petition is granted. \qquad Fig.(s) \qquad Pencil and non black ink is not permitted. Fig(s) 2. PHOTOGRAPHS. 37 CFR 1.84 (b) \qquad Photographs are not acceptable until petition is granted, \qquad 3 full-tone sets are required. Fig(s) \qquad \qquad Photographs not properly mounted (must brystol board or photographic double-weight paper). Fig(s) \qquad \qquad Poor quailty (half-tone). Fig(s) \qquad 3. TYPE OF PAPER. 37 CFR 1.84 (e) \qquad Paper not flexible, strong, white and durable. \qquad Fig.(s) \qquad \qquad Erasures, alterations, ovenwritings, interlineations, folds, copy machine marks not acceptable. (too thin) \qquad Mylar, vellum paper is not acceplable (100 thin), Fig(s) \qquad 4. SIZE, OF PAPER. 37 CFR 1.84(F): Acceptable sizes: 21.0 cm by 29.7 cm (DNN size A4) 21.6 cm by 27.9 cm ($81 / 2 \times 11$ inches) All drawings sheets not the same size. Sheet(s) \qquad 5. MARGINS. 37 CFR $184(\mathrm{~g})$: Acceptable margins: Top 2.5 cm Left 2.5 cm Right 1.5 cm Bottom 1.0 cm SIZE: A4 Size Top 2.5 cm Left 2.5 cm Right 1.5 cm Bottom 1.0 cm SIZE: $81 / 2 \times 11$ \qquad Margins not acceptable. Fig(s) \qquad \qquad Top (T) \qquad Lefi (L) \qquad Right (R) \qquad Bottom (B) 6. VIEWS. CFR $1.84(\mathrm{~h})$ REMINDER: Specification may require revision to cortespond to drawing changes. \qquad Views connected by projection lines of lead lines. Fig.(s) \qquad Partial views. 37 CFR 1.84(h)(2) \qquad Brackets needed to show figure as one entity. \qquad Fig.(s) \qquad Views not labeled separately or properly. Fig.(s) \qquad \qquad Enlarged view not labeled separately or properly. Fig.(s) \qquad	7. SECTIONAL VIEWS 37 CFR 1.84 (h)(3) \qquad Hatching not indicated for sectional portions of an object. Fig.(s) \qquad \qquad Sectional designation should be noted with Arabic or Roman numbers. Fig.(3) \qquad 8. ARRANGEMENT OF VIEWS, 37 CFR 1.84 (i) \qquad Words do not appear on a horizontal, left-to-tight fashion when page is either upright or turned, so that the top becomes the right side, except for graphs. Fig.(s) \qquad \qquad Views not on the same plane.on drawing sheet. Fig.(s) \qquad 9. SCALE. 37 CFR $1.84(\mathrm{k})$ \qquad Scale not large enough to show mechansim without crowding when drawing is reduced in size to two-thirds in reproduction. Fig.(5) \qquad 10.CHARACTER OF LINES, NUMBERS, \& LETTERS. 37 CFR $1.84(1)$ \qquad Lines, numbers \& letters not uniformly thick and well defined, clean, durable and black (poor line quality), Fig.(s) \qquad 11.SHADING. 37 CFR 1.84(m) \qquad Solid black areas pale. Fig.(s) \qquad \qquad Solid black shading not permitted. Fig.(s) \qquad \qquad Shade lines, pale, rough and blurred. Fig(s) 12. NUMBERS, LETTERS, \& REFERENCE CHARACTERS. 37 CFR 1.48 (p) \qquad Numbers and reference characters not plain and legible. \qquad Fig.(s) \qquad \qquad Figure legends are poor. Fig.(s) \qquad \qquad Numbers and reference characters not oriented in the same direction as the view. 37 CFR 1,84 (p)(3) Fig.(s) \qquad \qquad Engligh alphabet not used. 37 CFR 1.84 (p)(3) Fig.(s) \qquad \qquad Numbers, letters and reference characters must be at least $32 \mathrm{~cm}(1 / 8$ inch $)$ in height. 37 CFR 1.84(p)(3) Fig.(5) \qquad 13. LEAD LINES 37 CFR 1.84 (q) \qquad Lead lines cross each other. Fig.(s) \qquad \qquad Lead lines missing. Fig.(s) \qquad 14. NUMBERING OF SHEETS OF DRAWNGS. 37 CFR $1.48(1)$ \qquad Sheets not numbered consecutively, and in Ababic numerals beginning with number 1. Fig.(s) \qquad 15. NUMBERING OF VIEWS. 37 CFR 1.84(u) \qquad Views not numbered consecutively, and in Abrabic numerals, beginning with number I. Fig.(s) \qquad 16. CORRECTIONS. 37 CFR L.84(w) \qquad Corrections not made from PTO-948 dated \qquad 17.DESIGN DRAWINGS. 37 CFR I. 152 \qquad Surface shading shown not appropriate. Fig.(s) \qquad \qquad Solid black shading not used for color contrast. Fig.(s) \qquad
COMMENTS	$\begin{aligned} & \text { ACEEPTABLE SRE } \\ & \text { (SEE ITEM 4) } \end{aligned}$
REVIEWER \qquad ATTACHMENT TO PAPER NO, \qquad PTO COPY	$12998 \text { ielephone no } 3058335$

FIG. I
PRIOR ART

-

FIG. 7

FIG. 8

FIG. 11

FIG. 12

FOUR CARRIER QUADRATURE MODULATOR

FIG. 14

FIG. 16

$$
F / G .17
$$

Mobile Receiver

FIG. 19

Abstract

FIG. 21

$95134477-942495$
FIG. 22

Traffic Database
FIG. 23
Service Queue

Base Transmitter Database

FIG. 26

Transmitting substantially simultaneously a first information signal and a second information signal, the first information signal being transmitted in sirhulcast by a first set of base transmitters assigned to a first zone, and the second information signal being transmitted in simulcast by a second set of base transmitters assigned to a second zone	2602	2600
Dynamically reassigning one or more of the base transmitters in the first set of base transmitters assigned to the first zone to the second set of base transmitters assigned to the second zone, thereby creating an updated first set of base transmitters and an updated second set of base transmitters	2604	
Transmitting substantially simultaneously a third information signal and a fourth information signal, the third information signal being transmitted in simulcast by the updated first set of base transmitters, and the fourth information signal being transmitted in simulcast by the updated second set of base transmitters	2606	

FIG. 28(A)

FIG. 28(B)

 \square The petition filed \qquad under 37 CFR $1.312(b)$ is granted.
The paper has been forwarded to the examiner for consideration on the merits.
B. The amendment filed
considered, and has been:

1. \square entered
2. \square entered as directed to matters of form not affecting the scope of the invention (0.3311).
3. \square disapproved. A report appears below.
4. \square entered in part. A report appears below.
5. \square entered in part. A report appears below.

Repor: Attachement of IDS filed $9 / 12 / 98 \& 12 / 9 / 98$

THANH CONG LE PRIMARY EXAMINER TCOTOO

Dated:
1999

STATUS INQUIRY

The above-application was filed in the United States Patent and Trademark Office on July 24, 1997. The Issue Fee Transmittal was paid on June 16, 1998 and no communication regarding the Issue Fee Transmittal has been received from the Examiner.

Please inform us of the status of this application.
Respectfully submitted,

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO::	$5,915,210$
DATED:	June 22,1999
INVENTORS:	CAMERON et al.

It is certified that an error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Claim 10, column 34, line 46, delete " $[\mathrm{a}]$ "

Claim 14, column 35, line 9, after "carrier" insert therefor -signals include ar identical number of carrier signals, and wherein each carrier signal in--.

Mailing Address of Sender
Finnegan, Henderson, Farabow
Garrett \& Dunner, L.L.P.
13001 Street, N.W.
Washington, DC 20005-3315
FORM PTO 1050 (Rev. 2-93)

PATENT NO $\quad \mathbf{5 , 9 1 5 , 2 1 0}$
No. of add'l copies (a) $50 \&$ per page
\qquad
\qquad

File History Content Report

The following content is missing from the original file history record obtained from the United States Patent and Trademark Office. No additional information is available.

Document Date - 1999-10-27
Document Title - Certificate of Correction - Post Issuc Communication

CHANGE OF ADDRESS/POWER OF ATTORNEY

```
FILE LOCATION 9200 SERIAL NUMBER 08899476 PATENT NUMBER 5915210
    THE CORRESPONDENCE ADDRESS HAS BEEN CHANGED TO CUSTOMER # 25537
    THE PRACTITIONERS OF RECORD HAVE BEEN CHANGED TO CUSTOMER # 25537
    the fee adDresS has been Changed to CuStomer # 25537
    ON 11/21/00 THE ADDRESS OF RECORD FOR CUSTOMER NUMBER 25537 IS:
                    WORLDCOM, INC
                    TECHNOLOGY LAW DEPARTMENT
                    1133 19TH ST, NW
                    WASHINGTON DC 20036
    AND THE PRACTITIONERS OF RECORD FOR CUSTOMER NUMBER 25537 ARE:
```


PTO INSTRUCTIONS: PLEASE TAKE THE FOLLOWING ACTION WHEN THE
CORRESPONDENCE ADDRESS HAS BEEN CHANGED TO CUSTOMER NUMBER:
RECORD, ON THE NEXT AVAILABLE CONTENTS LINE OF THE FILE JACKET,
'ADDRESS CHANGE TO CUSTOMER NUMBER'. LINE THROUGH THE OLD
ADDRESS ON THE FILE JACKET LABEL AND ENTER ONLY THE 'CUSTOMER
NUMBER AS THE NEW ADDRESS. FILE THIS LETTER IN THE FILE JACKET.
WHEN ABOVE CHANGES ARE ONLY TO FEE ADDRESS AND/OR PRACTITIONERS
OF RECORD, FILE LETTER IN THE FILE JACKET.
THIS FILE IS ASSIGNED TO GAU 2745.
PTO-FMD
TALBOT-1/97

FORM PTO-875
-U.S. Goveinment Pinting ortice: 1996 - 413-288/49191
(Rev. 10/96)

Thomson Innovation Patent Export, 2013-08-19 13:09:02-0500

Table of Contents

1. US5915210A Method and system for providing multicarrier simulcast transmission

Family 1/1

24 record(s) per family, collapsed by 17 record(s)

Record 1/17 CA2442424A1 MOBILE TWO-WAY COMMUNICATION SYSTEM | SYSTEME DE COMMUNICATION MOBILE BIDIRECTIONNEL

Title: MOBILE TWO-WAY COMMUNICATION SYSTEM | SYSTEME DE COMMUNICATION MOBILE BIDIRECTIONNEL

Title - DWPI: Method of transmitting information by multiple transmitters in mobile communications system transmitting information signal including multiple blocks during time periods on carrier frequencies within desired frequency band
Priority Number: US1992973918A | US1993124219A | CA2149125A
Priority Date: 1992-11-12 | 1993-09-21 | 1993-11-12
Application Number: CA2442424A
Application Date: 1993-11-12
Publication Date: 1994-05-26
IPC Class Table:

IPC	Section	Class	Subclass	Class Group	Subgroup
H04W007212	H	H04	H04W	H04W0072	H04W007212
H04W000412	H	H04	H04W	H04W0004	H04W000412
H04W006400	H	H04	H04W	H04W0064	H04W006400

IPC Class Table - DWPI:

IPC - DWPI	Section - DWPI	Class - DWPI	Subclass - DWPI	Class Group DWPI	Subgroup - DWPI
H04B000150	H	H04	H04B	H04B0001	H04B000150
H04B001502	H	H04	H04B	H04B0015	H04B001502
H04B000700	H	H04	H04B	H04B0007	H04B000700
H04B000706	H	H04	H04B	H04B0007	H04B000706
H04B000726	H	H04	H04B	H04B0007	H04B000726
H04H000300	H	H04	H 04 H	H04H0003	H04H000300
H04M0001000	H	H04	H04M	H04M0001	H04M0001000

H04Q000736	H	H04	H04Q	H04Q0007	H04Q000736
H04L001254	H	H04	H04L	H04L0012	H04L001254
H04L002726	H	H04	H04L	H04L0027	H04L002726
H04L002738	H	H04	H04L	H04L0027	H04L002738
H04Q000732	H	H04	H04Q	H04Q0007	H04Q000732
H04Q000738	H		H04Q	H0007Q	

Assignee/Applicant: MOBILE TELECOMMUNICATION TECHNOLOGIES,US JP F Terms:
 JP FI Codes:

Assignee - Original: MOBILE TELECOMMUNICATION TECHNOLOGIES
Any CPC Table:
ECLA:

Abstract

: A two-way communication system for communication between a system network and a mobile unit. The system network includes a plurality of base transmitters and base receivers included in the network. The base transmitters are divided into tonal assignments and broadcast in simulcast using multi-carrier modulation techniques. The system network controls the base transmitters to broadcast in simulcast during both systemwide and tonal time intervals. The system network dynamically alters zone boundaries to maximize information throughput. The system also uses a mobile unit which receives messages from the network and transmits messages to the network. The mobile unit includes a switch that allows a user to request the network to retransmit a received message that contains errors.

Language of Publication: EN

INPADOC Legal Status Table:

Gazette Date	Code	INPADOC Legal Status Impact
2005-11-14	FZDE	-
Description: DEAD		
2003-10-01	EEER	+
Description: EXAMINATION REQUEST		

Post-Issuance (US):

Reassignment (US) Table:
Maintenance Status (US):
Litigation (US):
Opposition (EP):
License (EP):
EPO Procedural Status: EX-RQ 2003-10-01 2003 Request for examination
Front Page Drawing:

Record 2/17 AU199455944A Mobile two-way communication system

Title: Mobile two-way communication system
Title - DWPI: Method of transmitting information by multiple transmitters in mobile communications system transmitting information signal including multiple blocks during time periods on carrier frequencies within desired frequency band
Priority Number: US1992973918A | US1993124219A | WO1993US10713A
Priority Date: 1992-11-12 | 1993-09-21 | 1993-11-12
Application Number: AU199455944D
Application Date: 1993-11-12
Publication Date: 1994-06-08
IPC Class Table:

IPC	Section	Class	Subclass	Class Group	Subgroup
H04H002067	H	H04	H04H	H04H0020	H04H002067
H04L002726	H	H04	H04L	H04L0027	H04L002726
H04W006800	H	H04	H04W	H04W0068	H04W006800
H04W006810	H	H04	H04W	H04W0068	H04W006810
H04W008402	H	H04	H04W	H04W0084	H04W008402
H04W000412	H	H04	H04W	H04W0004	H04W000412

IPC Class Table - DWPI:

IPC - DWPI	Section - DWPI	Class - DWPI	Subclass - DWPI	Class Group - DWPI	Subgroup - DWPI
H04B000150	H	H04	H04B	H04B0001	H04B000150
H04B001502	H	H04	H04B	H04B0015	H04B001502
H04B000700	H	H04	H04B	H04B0007	H04B000700
H04B000706	H	H04	H04B	H04B0007	H04B000706
H04B000726	H	H04	H04B	H04B0007	H04B000726
H04H000300	H	H04	H04H	H04H0003	H04H000300
H04M0001000	H	H04	H04Q	H04M0001	H04M0001000
H04Q000736	H	H04	H04L	H04L0012	H04L001254
H04L001254	H	H04	H04L	H04L0027	H04L002726
H04L002726	H	H04	H04L	H04L0027	H04L002738
H04L002738	H				

H04Q000732	H	H04	H04Q	H04Q0007	H04Q000732
H04Q000738	H	H04	H04Q	H04Q0007	H04Q000738

Assignee/Applicant: MOBILE TELECOMM TECH

JP F Terms:

JP FI Codes:
Assignee - Original:
Any CPC Table:

Type	Invention	Additional	Version	Office
Current	H04W 68/00	H04L 27/2637	20130101	EP
Current	H04H 20/67	H04W 4/12	20130101	EP
Current	H04L 27/2626		20130101	EP
Current	H04L 27/2647		20130101	EP
Current	H04W 68/10		20130101	EP
Current	H04W 84/022		20130101	EP
Current	H04W 84/025		20130101	EP

ECLA: H04W006800 | H04H002067 | H04L002726M | H04L002726M3A5 | H04W006810 |
H04W008402S | H04W008402S2 | T04W000412 | T04W006810

Abstract:

Language of Publication: EN
INPADOC Legal Status Table:
Post-Issuance (US):
Reassignment (US) Table:
Maintenance Status (US):
Litigation (US):
Opposition (EP):
License (EP):
EPO Procedural Status:

Front Page Drawing:

Record 3/17 MX9307095A SISTEMA Y METODO DE COMUNICACIONES A ESCALA NACIONAL.

Title: SISTEMA Y METODO DE COMUNICACIONES A ESCALA NACIONAL.
Title - DWPI:
Priority Number: US1992973918A | US1993124219A
Priority Date: 1992-11-12 | 1993-09-21
Application Number: MX19937095A
Application Date: 1993-11-12
Publication Date: 1994-06-30
IPC Class Table:

IPC	Section	Class	Subclass	Class Group	Subgroup
H04H002067	H	H04	H04H	H04H0020	H04H002067
H04L002726	H	H04	H04L	H04L0027	H04L002726
H04W006800	H	H04	H04W	H04W0068	H04W006800
H04W006810	H	H04	H04W	H04W0068	H04W006810
H04W008402	H	H04	H04W	H04W0084	H04W008402
H04W000412	H	H04	H04W	H04W0004	H04W000412

IPC Class Table - DWPI:
Assignee/Applicant: MOBILE TELECOMUNICATION TECHNO
JP F Terms:
JP FI Codes:
Assignee - Original:
Any CPC Table:

Type	Invention	Additional	Version	Office
Current	H04W 68/00	H04L 27/2637	20130101	EP
Current	H04H 20/67	H04W 4/12	20130101	EP
Current	H04L 27/2626		20130101	EP
Current	H04L 27/2647		20130101	EP
CurrentCurrent	H04W 68/10		20130101	EP
Current	H04W 84/022		20130101	EP
	H04W 84/025		20130101	EP

ECLA: H04W006800 | H04H002067 | H04L002726M | H04L002726M3A5 | H04W006810 | H04W008402S | H04W008402S2 | T04W000412 | T04W006810

```
Abstract:
Language of Publication: ES
INPADOC Legal Status Table:
Post-Issuance (US):
Reassignment (US) Table:
```

Maintenance Status (US):
Litigation (US):
Opposition (EP):
License (EP):
EPO Procedural Status:
Front Page Drawing:
(No drawing/image available)

Record 4/17 WO1994011960A3 MOBILE TWO-WAY COMMUNICATION SYSTEM | SYSTEME DE COMMUNICATION BIDIRECTIONNELLE MOBILE

Title: MOBILE TWO-WAY COMMUNICATION SYSTEM | SYSTEME DE COMMUNICATION BIDIRECTIONNELLE MOBILE

Title - DWPI: Method of transmitting information by multiple transmitters in mobile communications system transmitting information signal including multiple blocks during time periods on carrier frequencies within desired frequency band
Priority Number: US1992973918A | US1993124219A
Priority Date: 1992-11-12 | 1993-09-21
Application Number: WO1993US10713A
Application Date: 1993-11-12
Publication Date: 1994-07-07
IPC Class Table:

IPC	Section	Class	Subclass	Class Group	Subgroup
H04H002067	H	H04	H04H	H04H0020	H04H002067
H04L002726	H	H04	H04L	H04L0027	H04L002726
H04W006800	H	H04	H04W	H04W0068	H04W006800
H04W006810	H	H04	H04W	H04W0068	H04W006810
H04W008402	H	H04	H04W	H04W0084	H04W008402
H04W000412	H	H04	H04W	H04W0004	H04W000412

IPC Class Table - DWPI:

IPC - DWPI	Section - DWPI	Class - DWPI	Subclass - DWPI	Class Group - DWPI	Subgroup - DWPI
H04B000150	H	H04	H04B	H04B0001	H04B000150
H04B001502	H	H04	H04B	H04B0015	H04B001502
H04B000700	H	H04	H04B	H04B0007	H04B000700
H04B000706	H	H04	H04B	H04B0007	H04B000706
H04B000726	H	H04	H04H	H04H0003	H04H000300
H04H000300	H	H04	H04M	H04M0001	H04M0001000
H04M0001000	H	H04	H04Q	H04Q0007	H04Q000736
H04Q000736	H	H04	H04L	H04L0012	H04L001254
H04L001254	H	H	H04		
H04L002726	H				H04L0002726

H04L002738	H	H04	H04L	H04L0027	H04L002738
H04Q000732	H	H04	H04Q	H04Q0007	H04Q000732
H04Q000738	H	H04	H04Q	H04Q0007	H04Q000738

Assignee/Applicant: MOBILE TELECOMMUNICATION TECHNOLOGIES
JP F Terms:
JP FI Codes:
Assignee - Original: MOBILE TELECOMMUNICATION TECHNOLOGIES Any CPC Table:

Type	Invention	Additional	Version	Office
Current	H04W 68/00	H04L 27/2637	20130101	EP
Current	H04H 20/67	H04W 4/12	20130101	EP
Current	H04L 27/2626		20130101	EP
Current	H04L 27/2647		20130101	EP
Current	H04W 68/10		20130101	EP
Current	H04W 84/022		20130101	EP
Current	H04W 84/025		20130101	EP

ECLA: H04W006800 | H04H002067 | H04L002726M | H04L002726M3A5 | H04W006810 | H04W008402S | H04W008402S2 | T04W000412 | T04W006810

Abstract:

A two-way communication system for communication between a system network and a mobile unit. The system network includes a plurality of base transmitters and base receivers included in the network. The base transmitters are divided into zonal assignments and broadcast in simulcast using multi-carrier modulation techniques. The system network controls the base transmitters to broadcast in simulcast during both systemwide and zonal time intervals. The system network dynamically alters zone boundaries to maximize information throughput. The system also uses a mobile unit which receives messages from the network and transmits messages to the network. The mobile unit includes a switch that allows a user to request the network to retransmit a received message that contains errors.

Système de communication bidirectionnelle destiné à la communication entre un réseau de système et une unité mobile. Ledit réseau de système comporte une pluralité d'émetteurs de base et de récepteurs de base. Les émetteurs de base sont répartis et affectés à des zones données et diffusent en simultané à l'aide de techniques de modulation de système à porteuses multiples. Le réseau de système commande aux émetteurs de base de diffuser en simultané pendant des intervalles de temps à la fois à l'échelle du système et des zones. Le réseau de système modifie dynamiquement les limites de zones pour maximiser le débit d'informations. Le système utilise également une unité mobile qui reçoit des messages du réseau et transmet des messages audit réseau. L'unité mobile comporte un commutateur qui permet à un utilisateur de demander au réseau de retransmettre un message reçu qui contient des erreurs.
Language of Publication: EN
INPADOC Legal Status Table:

FR; GB; GR; IE; IT; LU; MC; NL; PT; SE; BF; BJ; CF; CG; CI; CM; GA; GN; ML; MR; NE; SN; TD; TG

	AK	+

Description: DESIGNATED STATES WO 9411960 A3 AT; AU; BB; BG; BR; BY; CA; CH; CZ; DE; DK; ES; FI; GB; HU; JP; KP; KR; KZ; LK; LU; LV; MG; MN; MW; NL; NO; NZ; PL; PT; RO; RU; SD; SE; SK; UA; UZ; VN

$1994-05-26$	AL	+

Description: DESIGNATED COUNTRIES FOR REGIONAL PATENTS WO 9411960 A2 AT; BE; CH; DE; DK; ES; FR; GB; GR; IE; IT; LU; MC; NL; PT; SE; BF; BJ; CF; CG; CI; CM; GA; GN; ML; MR; NE; SN; TD; TG

$1994-05-26$	$A K$	+

Description: DESIGNATED STATES WO 9411960 A2 AT; AU; BB; BG; BR; BY; CA; CH; CZ; DE; DK; ES; FI; GB; HU; JP; KP; KR; KZ; LK; LU; LV; MG; MN; MW; NL; NO; NZ; PL; PT; RO; RU; SD; SE; SK; UA; UZ; VN

Post-Issuance (US):

Reassignment (US) Table:
Maintenance Status (US):
Litigation (US):
Opposition (EP):
License (EP):
EPO Procedural Status:
Front Page Drawing:

Record 5/17 US5581804A Nationwide communication system
Title: Nationwide communication system
Title - DWPI: Method of transmitting information by multiple transmitters in mobile communications system transmitting information signal including multiple blocks during time periods on carrier frequencies within desired frequency band
Priority Number: US1992973918A
Priority Date: 1992-11-12
Application Number: US1995387228A
Application Date: 1995-02-13
Publication Date: 1996-12-03
IPC Class Table:

IPC	Section	Class	Subclass	Class Group	Subgroup
H04H002067	H	H04	H04H	H04H0020	H04H002067
H04L002726	H	H04	H04L	H04L0027	H04L002726
H04W006800	H	H04	H04W	H04W0068	H04W006800
H04W006810	H	H04	H04W	H04W0068	H04W006810
H04W008402	H	H04	H04W	H04W0084	H04W008402
H04W000412	H	H04	H04W	H04W0004	H04W000412
H04W008406	H	H04W	H04W0084	H04W008406	

IPC Class Table - DWPI:

IPC - DWPI	Section - DWPI	Class - DWPI	Subclass - DWPI	Class Group - DWPI	Subgroup - DWPI
H04B000150	H	H04	H04B	H04B0001	H04B000150
H04B001502	H	H04	H04B	H04B0015	H04B001502
H04B000700	H	H04	H04B	H04B0007	H04B000700
H04B000706	H	H04	H04B	H04B0007	H04B000706
H04B000726	H	H04	H04B	H04B0007	H04B000726
H04H000300	H	H04	H04H	H04H0003	H04H000300
H04M0001000	H	H04	H04M0001	H04M0001000	
H04Q000736	H	H04Q	H04Q0007	H04Q000736	
H04L001254	H	H04	H04L0012	H04L001254	
H04L002726	H	H04	H04L0027	H04L002726	

H04L002738	H	H04	H04L	H04L0027	H04L002738
H04Q000732	H	H04	H04Q	H04Q0007	H04Q000732
H04Q000738	H	H04	H04Q	H04Q0007	H04Q000738

Assignee/Applicant: Destineer Corporation,Jackson,MS,US
 JP F Terms:
 JP FI Codes:
 Assignee - Original: Destineer Corporation
 Any CPC Table:

Type	Invention	Additional	Version	Office
Current	H04W 84/025	H04L 27/2637	20130101	EP
Current	H04H 20/67	H04W 4/12	20130101	EP
Current	H04L 27/2626	H04W 84/06	20130101	EP
Current	H04L 27/2647		20130101	EP
Current	H04W 68/10		20130101	EP
Current	H04W 84/022		20130101	EP

ECLA: H04W008402S2 | H04H002067 | H04L002726M | H04L002726M3A5 | H04W006810 | H04W008402S | T04W000412 | T04W008406

Abstract:

A two-way communication system for communication between a system network and a mobile unit. The system network includes a plurality of base transmitters and base receivers included in the network. The base transmitters are divided into zonal assignments and broadcast in simulcast using multi-carrier modulation techniques. The system network controls the base transmitters to broadcast in simulcast during both systemwide and zonal time intervals. The system network dynamically alters zone boundaries to maximize information throughput. The preferred mobile unit includes a noise detector circuit to prevent unwanted transmissions. The system network further provides an adaptive registration feature for mobile units which controls the registration operations by the mobile units to maximize information throughput.
Language of Publication: EN
INPADOC Legal Status Table:

Gazette Date	Code	INPADOC Legal Status Impact
2008-06-09	REMI	-
Description: MAINTENANCE FEE REMINDER MAILED		
2008-06-03	FPAY	+
Description: FEE PAYMENT		
2007-03-14	AS	

Description: ASSIGNMENT NEWCASTLE PARTNERS, L.P., TEXAS SECURITY AGREEMENT; ASSIGNORS:BELL

Post-Issuance (US):

Reassignment (US) Table:

Assignee	Assignor	Date Signed	Reel/Frame	Date
NEWCASTLE PARTNERS L.P.,DALLAS,TX,US	BELL INDUSTRIES, INC.	2007-03-12	019009/0529	2007-03-14
	BELL INDUSTRIES, INC.	2007-03-12		
Conveyance: sECURITY AGREEMENT				
Corresponent: RANDY M. FRIEDBERG, ESQ. OLSHAN GRUNDMAN FROME ROSENSZWEIG ET AL PARK AVENUE TOWER 65 EAST 55TH STREET NEW YORK, NY 10022				
WELLS FARGO FOOTHILL INC. AS AGENT,SANTA MONICA,CA,US	BELL INDUSTRIES, INC., A CALIFORNIA CORPORATION BELL INDUSTRIES, INC., A MINNESOTA CORPORATION	2007-01-31	018826/0503	2007-01-31
Conveyance: PATENT SECURITY AGREEMENT				
Corresponent: PAUL HASTINGS JANOFSKY \& WALKER LLP 515 SOUTH FLOWER STREET, 25TH FLOOR LOS ANGELES, CA 90071				

Maintenance Status (US):

Litigation (US): 2012-05-29 2012 Mobile Telecommunications Technbologies, LLC Research in Motion Corporation N.D. Texas 3:12cv01652
Opposition (EP):
License (EP):
EPO Procedural Status:

Front Page Drawing:

Record 6/17 US5590403A Method and system for efficiently providing two way communication between a central network and mobile unit

Title: Method and system for efficiently providing two way communication between a central network and mobile unit
Title - DWPI: Method of transmitting information by multiple transmitters in mobile communications system transmitting information signal including multiple blocks during time periods on carrier frequencies within desired frequency band
Priority Number: US1992973918A
Priority Date: 1992-11-12
Application Number: US1992973918A
Application Date: 1992-11-12
Publication Date: 1996-12-31
IPC Class Table:

IPC	Section	Class	Subclass	Class Group	Subgroup
H04H002067	H	H04	H04H	H04H0020	H04H002067
H04L002726	H	H04	H04L	H04L0027	H04L002726
H04W006800	H	H04	H04W	H04W0068	H04W006800
H04W006810	H	H04	H04W	H04W0068	H04W006810
H04W008402	H	H04	H04W	H04W0084	H04W008402
H04W000412	H	H04	H04W	H04W0004	H04W000412
H04W008406	H	H04W	H04W0084	H04W008406	

IPC Class Table - DWPI:

IPC - DWPI	Section - DWPI	Class - DWPI	Subclass - DWPI	Class Group - DWPI	Subgroup - DWPI
H04B000150	H	H04	H04B	H04B0001	H04B000150
H04B001502	H	H04	H04B	H04B0015	H04B001502
H04B000700	H	H04	H04B	H04B0007	H04B000700
H04B000706	H	H04	H04B	H04B0007	H04B000706
H04B000726	H	H04	H04B	H04B0007	H04B000726
H04H000300	H	H04	H04H	H04H0003	H04H000300
H04M0001000	H	H04	H04M	H04M0001	H04M0001000
H04Q000736	H	H04	H04Q0007	H04Q0000736	
H04L001254	H	H04	H04L	H04L0012	H04L001254

H04L002726	H	H04	H04L	H04L0027	H04L002726
H04L002738	H	H04	H04L	H04L0027	H04L002738
H04Q000732	H	H04	H04Q	H04Q0007	H04Q000732
H04Q000738	H	H04	H04Q	H04Q0007	H04Q000738

Assignee/Applicant: Destineer Corporation,Jackson,MS,US
JP F Terms:
JP FI Codes:
Assignee - Original: Destineer Corporation
Any CPC Table:

Type	Invention	Additional	Version	Office
Current	H04W 84/025	H04L 27/2637	20130101	EP
Current	H04H 20/67	H04W 4/12	20130101	EP
Current	H04L 27/2626	H04W 84/06	20130101	EP
Current	H04L 27/2647		20130101	EP
Current	H04W 68/10			
Current	H04W 84/022		20130101	EP

ECLA: H04W008402S2 | H04H002067 | H04L002726M | H04L002726M3A5 | H04W006810 | H04W008402S | T04W000412 | T04W008406

Abstract

: A two-way communication system for communication between a system network and a mobile unit. The system network includes a plurality of base transmitters and base receivers included in the network. The base transmitters are divided into zonal assignments and broadcast in simulcast using multi-carrier modulation techniques. The system network controls the base transmitters to broadcast in simulcast during both systemwide and zonal time intervals. The system network dynamically alters zone boundaries to maximize information throughput. The preferred mobile unit includes a noise detector circuit to prevent unwanted transmissions. The system network further provides an adaptive registration feature for mobile units which controls the registration operations by the mobile units to maximize information throughput. Language of Publication: EN INPADOC Legal Status Table:

Gazette Date	Code	INPADOC Legal Status Impact
$2013-07-02$	IPR	-

Description: AIA TRIAL PROCEEDING FILED BEFORE THE PATENT AND APPEAL BOARD: INTER PARTES REVIEW TRIAL NO: IPR2013-00306 2013-05-23

$2013-06-11$	AS	-

Description: ASSIGNMENT MOBILE TELECOMMUNICATIONS TECHNOLOGIES, LLC, TEXAS CHANGE OF NAME; ASSIGNOR:NORTH AMERICAN IP HOLDINGS, LLC; REEL/FRAME:030601/0312 2012-04-01

Description: fee payment

$1995-02-01$	AS	-

Description: ASSIGNMENT DESTINEER CORPORATION, MISSISSIPPI ASSIGNMENT OF ASSIGNORS INTEREST; ASSIGNOR:MOBILE TELECOMMUNICATION TECHNOLOGIES CORPORATION; REEL/FRAME:007330/0969 1995-01-13

$1993-01-27$	AS	-

Description: ASSIGNMENT MOBILE TELECOMMUNICATION TECHNOLOGIES, MISSISSIPPI ASSIGNMENT OF ASSIGNORS INTEREST.; ASSIGNORS:CAMERON, DENNIS W.; ROEHR, WALTER C.; PETROVIC, RADE; AND OTHERS; REEL/FRAME:006436/0460; SIGNING DATES FROM 19930106 TO 19930111

Post-Issuance (US):

Reassignment (US) Table:

Assignee	Assignor	Date Signed	Reel/Frame	Date
MOBILE TELECOMMUNICATIONS TECHNOLOGIES LLC,LEWISVILLE,TX,US	NORTH AMERICAN IP HOLDINGS, LLC	2012-04-01	030601/0312	2013-06-11
Conveyance: CHANGE OF NAME (SEE DOCUMENT FOR DETAILS).				
Corresponent: JOHN R. KASHA 14532 DUFIEF MILL RD NORTH POTOMAC, MD 20878				
NORTH AMERICAN IP HOLDINGS LLC,LEWISVILLE,TX,US	ST NETWORK SERVICES LLC	2011-03-31	030591/0151	2013-06-11
Conveyance: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).				
Corresponent: JOHN R. KASHA 14532 DUFIEF MILL RD NORTH POTOMAC, MD 20878				
ST NETWORK SERVICES LLC,LEWISVILLE,TX,US	VELOCITA WIRELESS LLC	2009-03-19	030591/0117	2013-06-11
Conveyance: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).				
Corresponent: JOHN R. KASHA 14532 DUFIEF MILL RD NORTH POTOMAC, MD 20878				
VELOCITA WIRELESS LLC,WOODBRIDGE,NJ,US	BELL INDUSTRIES, INC.	2008-06-13	030591/0055	2013-06-11
Conveyance: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).				
Corresponent: JOHN R. KASHA 14532 DUFIEF MILL RD NORTH POTOMAC, MD 20878				
NEWCASTLE PARTNERS	BELL INDUSTRIES, INC.	2007-03-12	019009/0529	2007-03-14

	HAYS, WILLIAM D.	$1993-01-06$
	ACKERMAN, DAVID W.	$1993-01-08$
Conveyance: ASSIGNMENT OF ASSIGNORS INTEREST.		
Corresponent: VINCENT P. KOVALICK FINNEGAN, HENDERSON ET AL. 1300 WASHINGTON, DC $20005-3315$		

Maintenance Status (US):

Litigation (US): 2012-05-24 2012 Mobile Telecommunications Technologies, LLC Clearwire Corporation E.D. Texas 2:12cv00308| 2013-04-02 2013 Mobile Telecommunications
Technologies, LLC Apple, Inc. E.D. Texas 2:13cv00258
Opposition (EP):
License (EP):
EPO Procedural Status:
Front Page Drawing:

Record 7/17 US5634198A Nationwide communication system
Title: Nationwide communication system
Title - DWPI: Method of transmitting information by multiple transmitters in mobile communications system transmitting information signal including multiple blocks during time periods on carrier frequencies within desired frequency band
Priority Number: US1992973918A
Priority Date: 1992-11-12
Application Number: US1995387229A
Application Date: 1995-02-13
Publication Date: 1997-05-27
IPC Class Table:

IPC	Section	Class	Subclass	Class Group	Subgroup
H04H002067	H	H04	H04H	H04H0020	H04H002067
H04L002726	H	H04	H04L	H04L0027	H04L002726
H04W006800	H	H04	H04W	H04W0068	H04W006800
H04W006810	H	H04	H04W	H04W0068	H04W006810
H04W008402	H	H04	H04W	H04W0084	H04W008402
H04W000412	H	H04	H04W	H04W0004	H04W000412
H04W008406	H	H04W	H04W0084	H04W008406	

IPC Class Table - DWPI:

IPC - DWPI	Section - DWPI	Class - DWPI	Subclass - DWPI	Class Group - DWPI	Subgroup - DWPI
H04B000150	H	H04	H04B	H04B0001	H04B000150
H04B001502	H	H04	H04B	H04B0015	H04B001502
H04B000700	H	H04	H04B	H04B0007	H04B000700
H04B000706	H	H04	H04B	H04B0007	H04B000706
H04B000726	H	H04	H04B	H04B0007	H04B000726
H04H000300	H	H04	H04H	H04H0003	H04H000300
H04M0001000	H	H04	H04M0001	H04M0001000	
H04Q000736	H	H04Q	H04Q0007	H04Q000736	
H04L001254	H	H04	H04L	H04L0012	H04L001254
H04L002726	H	H04L	H04L0027	H04L002726	

H04L002738	H	H04	H04L	H04L0027	H04L002738
H04Q000732	H	H04	H04Q	H04Q0007	H04Q000732
H04Q000738	H	H04	H04Q	H04Q0007	H04Q000738

Assignee/Applicant: Destineer Corporation,Jackson,MS,US
 JP F Terms:
 JP FI Codes:
 Assignee - Original: Destineer Corporation
 Any CPC Table:

Type	Invention	Additional	Version	Office
Current	H04W 84/025	H04L 27/2637	20130101	EP
Current	H04H 20/67	H04W 4/12	20130101	EP
Current	H04L 27/2626	H04W 84/06	20130101	EP
Current	H04L 27/2647		20130101	EP
Current	H04W 68/10		20130101	EP
Current	H04W 84/022		20130101	EP

ECLA: H04W008402S2 | H04H002067 | H04L002726M | H04L002726M3A5 | H04W006810 | H04W008402S | T04W000412 | T04W008406

Abstract:

A two-way communication system for communication between a system network and a mobile unit. The system network includes a plurality of base transmitters and base receivers included in the network. The base transmitters are divided into zonal assignments and broadcast in simulcast using multi-carrier modulation techniques. The system network controls the base transmitters to broadcast in simulcast during both systemwide and zonal time intervals. The system network dynamically alters zone boundaries to maximize information throughput. The preferred mobile unit includes a noise detector circuit to prevent unwanted transmissions. The system network further provides an adaptive registration feature for mobile units which controls the registration operations by the mobile units to maximize information throughput.
Language of Publication: EN
INPADOC Legal Status Table:

| Gazette Date | Code | INPADOC Legal Status Impact |
| :--- | :--- | :--- | :--- |
| 2008-12-01 | REMI | - |
| Description: MAINTENANCE FEE REMINDER MAILED | | |
| 2008-11-26 | FPAY | + |
| Description: FEE PAYMENT | | |
| 2007-03-14 | AS | |

Description: ASSIGNMENT NEWCASTLE PARTNERS, L.P., TEXAS SECURITY AGREEMENT; ASSIGNORS:BELL

Post-Issuance (US):

Reassignment (US) Table:

Assignee	Assignor	Date Signed	Reel/Frame	Date
NEWCASTLE PARTNERS L.P.,DALLAS,TX,US	BELL INDUSTRIES, INC.	2007-03-12	019009/0529	2007-03-14
	BELL INDUSTRIES, INC.	2007-03-12		
Conveyance: security agreement				
Corresponent: RANDY M. FRIEDBERG, ESQ. OLSHAN GRUNDMAN FROME ROSENSZWEIG ET AL PARK AVENUE TOWER 65 EAST 55TH STREET NEW YORK, NY 10022				
WELLS FARGO FOOTHILL INC. AS AGENT,SANTA MONICA,CA,US	BELL INDUSTRIES, INC., A CALIFORNIA CORPORATION BELL INDUSTRIES, INC., A MINNESOTA CORPORATION	2007-01-31	018826/0503	2007-01-31
Conveyance: PATENT SECURITY AGREEMENT				
Corresponent: PAUL HASTINGS JANOFSKY \& WALKER LLP 515 SOUTH FLOWER STREET, 25TH FLOOR LO ANGELES, CA 90071				

Maintenance Status (US):
Litigation (US):
Opposition (EP):
License (EP):
EPO Procedural Status:
Front Page Drawing:

Record 8/17 EP669062B1 MOBILE TWO-WAY COMMUNICATION SYSTEM | MOBILES ZWEI-WEG-KOMMUNIKATIONSSYSTEM \| SYSTEME DE COMMUNICATION BIDIRECTIONNELLE MOBILE

Title: MOBILE TWO-WAY COMMUNICATION SYSTEM | MOBILES ZWEI-WEGKOMMUNIKATIONSSYSTEM | SYSTEME DE COMMUNICATION BIDIRECTIONNELLE MOBILE
Title - DWPI: Method of transmitting information by multiple transmitters in mobile communications system transmitting information signal including multiple blocks during time periods on carrier frequencies within desired frequency band
Priority Number: US1992973918A | US1993124219A | WO1993US10713A
Priority Date: 1992-11-12 | 1993-09-21 | 1993-11-12
Application Number: EP1994901305A
Application Date: 1993-11-12
Publication Date: 1998-01-28
IPC Class Table:

IPC	Section	Class	Subclass	Class Group	Subgroup
H04H002067	H	H04	H04H	H04H0020	H04H002067
H04L002726	H	H04	H04L	H04L0027	H04L002726
H04W006800	H	H04	H04W	H04W0068	H04W006800
H04W006810	H	H04	H04W	H04W0068	H04W006810
H04W008402	H	H04	H04W	H04W0084	H04W008402
H04W000412	H	H04	H04W	H04W0004	H04W000412

IPC Class Table - DWPI:

IPC - DWPI	Section - DWPI	Class - DWPI	Subclass - DWPI	Class Group - DWPI	Subgroup - DWPI
H04B000150	H	H04	H04B	H04B0001	H04B000150
H04B001502	H	H04	H04B	H04B0015	H04B001502
H04B000700	H	H04	H04B	H04B0007	H04B000700
H04B000706	H	H04	H04B	H04B0007	H04B000706
H04B000726	H	H04	H04B	H04B0007	H04B000726
H04H000300	H	H04	H04H	H04H0003	H04H000300
H04M0001000	H	H04	H04Q	H04M0001	H04M00001000
H04Q000736	H	H04	H04L	H04L0012	H04L001254
H04L001254	H				H04Q000736

H04L002726	H	H04	H04L	H04L0027	H04L002726
H04L002738	H	H04	H04L	H04L0027	H04L002738
H04Q000732	H	H04	H04Q	H04Q0007	H04Q000732
H04Q000738	H	H04	H04Q	H04Q0007	H04Q000738

Assignee/Applicant: MOBILE TELECOMMUNICATION TECHNOLOGIES, Jackson MI 39225,US,01167521
JP F Terms:
JP FI Codes:
Assignee - Original: MOBILE TELECOMMUNICATION TECHNOLOGIES Any CPC Table:

Type	Invention	Additional	Version	Office
Current	H04W 68/00	H04L 27/2637	20130101	EP
Current	H04H 20/67	H04W 4/12	20130101	EP
Current	H04L 27/2626		20130101	EP
Current	H04L 27/2647		20130101	EP
Current	H04W 68/10		20130101	EP
Current	H04W 84/022		20130101	EP
Current	H04W 84/025		20130101	EP

ECLA: H04W006800 | H04H002067 | H04L002726M | H04L002726M3A5 | H04W006810 | H04W008402S | H04W008402S2 | T04W000412 | T04W006810

Abstract:

A two-way communication system for communication between a system network and a mobile unit. The system network includes a plurality of base transmitters and base receivers included in the network. The base transmitters are divided into zonal assignments and broadcast in simulcast using multi-carrier modulation techniques. The system network controls the base transmitters to broadcast in simulcast during both systemwide and zonal time intervals. The system network dynamically alters zone boundaries to maximize information throughput. The system also uses a mobile unit which receives messages from the network and transmits messages to the network. The mobile unit includes a switch that allows a user to request the network to retransmit a received message that contains errors.
Language of Publication: EN
INPADOC Legal Status Table:

Gazette Date	Code	INPADOC Legal Status Impact				
$2013-02-28$	PGFP	+				
Description: POSTGRANT: ANNUAL FEES PAID TO NATIONAL OFFICE	GB					
2013-01-31	PGFP	+				
Description: POSTGRANT: ANNUAL FEES PAID TO NATIONAL OFFICE						

2008-05-30	PGFP	+
Description: POSTGRANT: ANNUAL FEES PAID TO NATIONAL OFFICE DE		
2008-04-30	PGFP	+
Description: POSTGRANT: ANNUAL FEES PAID TO NATIONAL OFFICE GB		
2007-01-02	PGFP	+
Description: POSTGRANT: ANNUAL FEES PAID TO NATIONAL OFFICE DE		
2006-11-22	PGFP	+
Description: POSTGRANT: ANNUAL FEES PAID TO NATIONAL OFFICE GB		
2006-11-17	PGFP	+
Description: POSTGRANT: ANNUAL FEES PAID TO NATIONAL OFFICE FR		
2003-11-05	25	-
Description: LAPSED IN A CONTRACTING STATE ANNOUNCED VIA POSTGRANT INFORM. FROM NAT. OFFICE TO EPO GR 1998-01-28		
2003-11-05	25	-
Description: LAPSED IN A CONTRACTING STATE ANNOUNCED VIA POSTGRANT INFORM. FROM NAT. OFFICE TO EPO ES 1998-01-28		
2003-11-05	25	-
Description: LAPSED IN A CONTRACTING STATE ANNOUNCED VIA POSTGRANT INFORM. FROM NAT. OFFICE TO EPO DK 1998-04-28		
2003-11-05	25	-
Description: LAPSED IN A CONTRACTING STATE ANNOUNCED VIA POSTGRANT INFORM. FROM NAT. OFFICE TO EPO SE 1998-04-28		
2003-11-05	25	-
Description: LAPSED IN A CONTRACTING STATE ANNOUNCED VIA POSTGRANT INFORM. FROM NAT. OFFICE TO EPO PT 1998-04-28		
2003-11-05	25	-
Description: LAPSED IN A CONTRACTING STATE ANNOUNCED VIA POSTGRANT INFORM. FROM NAT. OFFICE TO EPO NL 1998-01-28		

1998-07-01	NLV1	-
Description: NL: LAPSED OR ANNULED DUE TO FAILURE TO FULFILL THE REQUIREMENTS OF ART. 29P AND 29M OF THE PATENTS ACT; NO LEGAL EFFECT FROM		
1998-06-17	REG	-
Description: REFERENCE TO A NATIONAL CODE IE FG4D EUROPEAN PATENTS GRANTED DESIGNATING IRELAND 78693		
1998-06-05	ET	+
Description: FR: TRANSLATION FILED		
1998-04-28	PG25	-
Description: LAPSED IN A CONTRACTING STATE ANNOUNCED VIA POSTGRANT INFORM. FROM NAT. OFFICE TO EPO DK LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT 1998-04-28		
1998-04-28	PG25	-
Description: LAPSED IN A CONTRACTING STATE ANNOUNCED VIA POSTGRANT INFORM. FROM NAT. OFFICE TO EPO PT LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT 1998-04-28		
1998-04-28	PG25	-
Description: LAPSED IN A CONTRACTING STATE ANNOUNCED VIA POSTGRANT INFORM. FROM NAT. OFFICE TO EPO SE LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT 1998-04-28		
1998-03-05	REF	-
Description: CORRESPONDS TO: DE 69316771		
1998-01-30	REG	-
Description: REFERENCE TO A NATIONAL CODE CH EP ENTRY IN THE NATIONAL PHASE		
1998-01-28	REF	-
Description: CORRESPONDS TO: AT 162915 T		
1998-01-28	PG25	-
Description: LAPSED IN A CONTRACTING STATE ANNOUNCED VIA POSTGRANT INFORM. FROM NAT. OFFICE TO EPO NL LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT 1998-01-28		

| 1995-12-27 | 17Q | + |
| :--- | :--- | :--- | :--- |
| Description: FIRST EXAMINATION REPORT 1995-11-10 | | |
| 1995-08-30 | AK | + |
| Description: DESIGNATED CONTRACTING STATES: EP 0669062 A1 AT; BE; CH; DE; DK; ES; FR; GB; GR; IE; IT;
 LI; LU; MC; NL; PT; SE | | |
| 1995-08-30 | 17P | + |
| Description: REQUEST FOR EXAMINATION FILED 1995-06-12 | | |

Post-Issuance (US):
Reassignment (US) Table:
Maintenance Status (US):
Litigation (US):
Opposition (EP):
License (EP):
EPO Procedural Status: EX-RQ 1995-06-12 1995 Request for examination| EX-REPORT 1995-
11-10 1995 Dispatch of 1st examination report
Front Page Drawing:

Record 9/17 AT162915T MOBILES ZWEI-WEG-KOMMUNIKATIONSSYSTEM
Title: MOBILES ZWEI-WEG-KOMMUNIKATIONSSYSTEM
Title - DWPI:
Priority Number: US1992973918A | US1993124219A
Priority Date: 1992-11-12 | 1993-09-21
Application Number: AT1994901305T
Application Date: 1993-11-12
Publication Date: 1998-02-15
IPC Class Table:

IPC	Section	Class	Subclass	Class Group	Subgroup
H04H002067	H	H04	H04H	H04H0020	H04H002067
H04L002726	H	H04	H04L	H04L0027	H04L002726
H04W006800	H	H04	H04W	H04W0068	H04W006800
H04W006810	H	H04	H04W	H04W0068	H04W006810
H04W008402	H	H04	H04W	H04W0084	H04W008402
H04W000412	H			H04W0004	H04W000412

IPC Class Table - DWPI:
Assignee/Applicant: MOBILE TELECOMM TECH
JP F Terms:
JP FI Codes:
Assignee - Original:
Any CPC Table:

Type	Invention	Additional	Version	Office
Current	H04W 68/00	H04L 27/2637	20130101	EP
Current	H04H 20/67	H04W 4/12	20130101	EP
Current	H04L 27/2626		20130101	EP
Current	H04L 27/2647		20130101	EP
Current	H04W 68/10		20130101	EP
Current	H04W 84/022		20130101	EP
Current	H04W 84/025		20130101	EP

ECLA: H04W006800 | H04H002067 | H04L002726M | H04L002726M3A5 | H04W006810 | H04W008402S | H04W008402S2 | T04W000412 | T04W006810

Abstract:

Language of Publication: XX
INPADOC Legal Status Table:

Gazette Date	Code	INPADOC Legal Status Impact

```
1998-07-15
Description: CEASED AS TO PARAGRAPH 5 LIT. 3 LAW INTRODUCING PATENT TREATIES
```

Post-Issuance (US):
Reassignment (US) Table:
Maintenance Status (US):
Litigation (US):
Opposition (EP):
License (EP):
EPO Procedural Status:
Front Page Drawing:

(No drawing/image available)

Record 10/17 US5754946A Nationwide communication system

Title: Nationwide communication system
Title - DWPI: Method of transmitting information by multiple transmitters in mobile communications system transmitting information signal including multiple blocks during time periods on carrier frequencies within desired frequency band
Priority Number: US1992973918A
Priority Date: 1992-11-12
Application Number: US1993124219A
Application Date: 1993-09-21
Publication Date: 1998-05-19
IPC Class Table:

IPC	Section	Class	Subclass	Class Group	Subgroup
H04H002067	H	H04	H04H	H04H0020	H04H002067
H04L002726	H	H04	H04L	H04L0027	H04L002726
H04W006800	H	H04	H04W	H04W0068	H04W006800
H04W006810	H	H04	H04W	H04W0068	H04W006810
H04W008402	H	H04	H04W	H04W0084	H04W008402
H04W000412	H	H04	H04W	H04W0004	H04W000412

IPC Class Table - DWPI:

IPC - DWPI	Section - DWPI	Class - DWPI	Subclass - DWPI	Class Group - DWPI	Subgroup - DWPI
H04B000150	H	H04	H04B	H04B0001	H04B000150
H04B001502	H	H04	H04B	H04B0015	H04B001502
H04B000700	H	H04	H04B	H04B0007	H04B000700
H04B000706	H	H04	H04B	H04B0007	H04B000706
H04B000726	H	H04	H04B	H04B0007	H04B000726
H04H000300	H	H04	H04H	H04H0003	H04H000300
H04M0001000	H	H04	H04Q	H04M0001	H04M0001000
H04Q000736	H	H04	H04L	H04L0012	H04L001254
H04L001254	H	H04	H04L	H04L0027	H04L002726
H04L002726	H	H04	H04L	H04L0027	H04L002738
H04L002738	H				

H04Q000732	H	H04	H04Q	H04Q0007	H04Q000732
H04Q000738	H	H04	H04Q	H04Q0007	H04Q000738

Assignee/Applicant: Mobile Telecommunication Technologies,Jackson,MS,US
JP F Terms:
JP FI Codes:
Assignee - Original: Mobile Telecommunication Technologies
Any CPC Table:

Type	Invention	Additional	Version	Office
Current	H04W 68/00	H04L 27/2637	20130101	EP
Current	H04H 20/67	H04W 4/12	20130101	EP
Current	H04L 27/2626		20130101	EP
Current	H04L 27/2647		20130101	EP
Current	H04W 68/10		20130101	EP
Current	H04W 84/022		20130101	EP
Current	H04W 84/025		20130101	EP

ECLA: H04W006800 | H04H002067 | H04L002726M | H04L002726M3A5 | H04W006810 | H04W008402S | H04W008402S2 | T04W000412 | T04W006810

Abstract:

A two-way communication system for communication between a system network and a mobile unit. The system network includes a plurality of base transmitters and base receivers included in the network. The base transmitters are divided into zonal assignments and broadcast in simulcast using multi-carrier modulation techniques. The system network controls the base transmitters to broadcast in simulcast during both systemwide and zonal time intervals. The system network dynamically alters zone boundaries to maximize information throughput. The system also uses a mobile unit which receives messages from the network and transmits messages to the network. The mobile unit includes a switch that allows a user to request the network to retransmit a received message that contains errors.
Language of Publication: EN
INPADOC Legal Status Table:

Gazette Date	Code	INPADOC Legal Status Impact
2009-11-19	FPAY	+
Description: FEE PAYMENT		
2007-03-14	AS	-
Description: ASSIGNMENT NEWCASTLE PARTNERS, L.P., TEXAS SECURITY AGREEMENT; ASSIGNORS:BELL INDUSTRIES, INC.; BELL INDUSTRIES, INC.; REEL/FRAME:019009/0529 2007-03-12		
2007-01-31	AS	-
Description: ASSIGNMENT WELLS FARGO FOOTHILL, INC., AS AGENT, CALIFORNIA PATENT SECURITY		

Post-Issuance (US):

Reassignment (US) Table:

Assignee	Assignor	Date Signed	Reel/Frame	Date
NEWCASTLE PARTNERS L.P.,DALLAS,TX,US	BELL INDUSTRIES, INC.	$2007-03-12$	$019009 / 0529$	$2007-03-14$
	BELL INDUSTRIES, INC.	$2007-03-12$		

Conveyance: SECURITY AGREEMENT
Corresponent: RANDY M. FRIEDBERG, ESQ. OLSHAN GRUNDMAN FROME ROSENSZWEIG ET AL PARK AVENUE TOWER 65 EAST 55TH STREET NEW YORK, NY 10022

WELLS FARGO FOOTHILL INC. AS AGENT,SANTA MONICA,CA,US	BELL INDUSTRIES, INC., A CALIFORNIA CORPORATION	2007-01-31	018826/0503	2007-01-31
	BELL INDUSTRIES, INC., A MINNESOTA CORPORATION	2007-01-31		

Conveyance: PATENT SECURITY AGREEMENT

Corresponent: PAUL HASTINGS JANOFSKY \& WALKER LLP 515 SOUTH FLOWER STREET, 25TH FLOOR LOS ANGELES, CA 90071

SKYTEL CORP.,ASHBURN,VA,US	DESTINEER CORPORATION	1999-01-29	015074/0637	2004-08-23
Conveyance: MERGER (SEE DOCUMENT FOR DETAILS).				
Corresponent: MICHAEL A. WRENN 1133 19TH STREET NW 9854/003 WASHINGTON, DC 20036				
DESTINEER CORPORATION,JACKSON, MS,US	MOBILE TELECOMMUNICATION TECHNOLOGIES CORPORATION	1995-01-13	007330/0969	1995-02-01

Conveyance: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).
Corresponent: VINCENT P. KOVALICK FINNEGAN, HENDERSON, FARABOW ET AL. 1300 I STREET, N.W. WASHINGTON, DC 20005-3315

MOBILE TELECOMMUNICATION TECHNOLOGIES,JACKSON, MS,US	CAMERON, DENNIS WAYNE	1993-10-04	006870/0558	1994-01-25
	ROEHR, WALTER CHARLES	1993-10-07		
	PETROVIC, RADE	1993-10-01		
	BHAGAT, JAI P.	1993-10-04		
	GARAHI, MASOOD	1993-10-04		
	HAYS, WILLIAM D.	1993-10-04		
	ACKERMAN, DAVID W.	1993-10-06		

Conveyance: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).
Corresponent: VINCENT P. KOVALICK FINNEGAN, HENDERSON, FARABOW, ET AL. 1300 I ST., N.W. WASHINGTON, DC 20005

Maintenance Status (US):

Litigation (US): 2012-05-29 2012 Mobile Telecommunications Technbologies, LLC Research in Motion Corporation N.D. Texas 3:12cv01652| 2013-04-02 2013 Mobile Telecommunications Technologies, LLC Apple, Inc. E.D. Texas 2:13cv00258| 2013-04-02 2013
MobileTelecommunications Technologies, LLC Samsung Telecommunications America, LLC E.D.
Texas 2:13cv00259
Opposition (EP):
License (EP):
EPO Procedural Status:
Front Page Drawing:

Record 11/17 DE69316771T2 MOBILES ZWEI-WEG-KOMMUNIKATIONSSYSTEM
Title: MOBILES ZWEI-WEG-KOMMUNIKATIONSSYSTEM
Title - DWPI:
Priority Number: US1992973918A | US1993124219A | WO1993US10713A
Priority Date: 1992-11-12 | 1993-09-21 | 1993-11-12
Application Number: DE69316771A
Application Date: 1993-11-12
Publication Date: 1998-09-24
IPC Class Table:

IPC	Section	Class	Subclass	Class Group	Subgroup
H04H002067	H	H04	H04H	H04H0020	H04H002067
H04L002726	H	H04	H04L	H04L0027	H04L002726
H04W006800	H	H04	H04W	H04W0068	H04W006800
H04W006810	H	H04	H04W	H04W0068	H04W006810
H04W008402	H	H04	H04W	H04W0084	H04W008402
H04W000412	H			H04W0004	H04W000412

IPC Class Table - DWPI:

Assignee/Applicant: Mobile Telecommunication Technologies Jackson JP F Terms:
JP FI Codes:
Assignee - Original: Mobile Telecommunication Technologies Jackson Any CPC Table:

Type	Invention	Additional	Version	Office
Current	H04W 68/00	H04L 27/2637	20130101	EP
Current	H04H 20/67	H04W 4/12	20130101	EP
Current	H04L 27/2626		20130101	EP
Current	H04L 27/2647		20130101	EP
Current	H04W 68/10		20130101	EP
Current	H04W 84/022		20130101	EP
Current	H04W 84/025		20130101	EP

ECLA: H04W006800 | H04H002067 | H04L002726M | H04L002726M3A5 | H04W006810 | H04W008402S | H04W008402S2 | T04W000412 | T04W006810

Abstract:

A two-way communication system for communication between a system network and a mobile unit. The system network includes a plurality of base transmitters and base receivers included in the network. The base transmitters are divided into zonal assignments and broadcast in simulcast using multi-carrier modulation techniques. The system network controls the base transmitters to broadcast in simulcast during both systemwide and zonal time intervals. The system network
dynamically alters zone boundaries to maximize information throughput. The system also uses a mobile unit which receives messages from the network and transmits messages to the network.
The mobile unit includes a switch that allows a user to request the network to retransmit a received message that contains errors.
Language of Publication: DE
INPADOC Legal Status Table:
Post-Issuance (US):
Reassignment (US) Table:
Maintenance Status (US):
Litigation (US):
Opposition (EP):
License (EP):
EPO Procedural Status:
Front Page Drawing:

Record 12/17 BR199307436A Sistema de comunicação de duas vias móvel
Title: Sistema de comunicação de duas vias móvel
Title - DWPI: Method of transmitting information by multiple transmitters in mobile communications system transmitting information signal including multiple blocks during time periods on carrier frequencies within desired frequency band
Priority Number: US1992973918A | US1993124219A | WO1993US10713A
Priority Date: 1992-11-12 | 1993-09-21 | 1993-11-12
Application Number: BR19937436A
Application Date: 1993-11-12
Publication Date: 1999-06-01
IPC Class Table:

IPC	Section	Class	Subclass	Class Group	Subgroup
H04H002067	H	H04	H04H	H04H0020	H04H002067
H04L002726	H	H04	H04L	H04L0027	H04L002726
H04W006800	H	H04	H04W	H04W0068	H04W006800
H04W006810	H	H04	H04W	H04W0068	H04W006810
H04W008402	H	H04	H04W	H04W0084	H04W008402
H04W000412	H	H04	H04W	H04W0004	H04W000412

IPC Class Table - DWPI:

IPC - DWPI	Section - DWPI	Class - DWPI	Subclass - DWPI	Class Group - DWPI	Subgroup - DWPI
H04B000150	H	H04	H04B	H04B0001	H04B000150
H04B001502	H	H04	H04B	H04B0015	H04B001502
H04B000700	H	H04	H04B	H04B0007	H04B000700
H04B000706	H	H04	H04B	H04B0007	H04B000706
H04B000726	H	H04	H04B	H04B0007	H04B000726
H04H000300	H	H04	H04H	H04H0003	H04H000300
H04M0001000	H	H04	H04Q	H04M0001	H04M0001000
H04Q000736	H	H04	H04L	H04L0012	H04L001254
H04L001254	H	H04	H04L	H04L0027	H04L002726
H04L002726	H	H04	H04L	H04L0027	H04L002738
H04L002738	H				

H04Q000732	H	H04	H04Q	H04Q0007	H04Q000732
H04Q000738	H	H04	H04Q	H04Q0007	H04Q000738

Assignee/Applicant: MOBILE TELECOMM TECH
 JP F Terms:
 JP FI Codes:
 Assignee - Original:
 Any CPC Table:

Type	Invention	Additional	Version	Office
Current	H04W 68/00	H04L 27/2637	20130101	EP
Current	H04H 20/67	H04W 4/12	20130101	EP
Current	H04L 27/2626		20130101	EP
Current	H04L 27/2647		20130101	EP
Current	H04W 68/10		EP	
Current	H04W 84/025		20130101	EP
Current		20130101	EP	

ECLA: H04W006800 | H04H002067 | H04L002726M | H04L002726M3A5 | H04W006810 | H04W008402S | H04W008402S2 | T04W000412 | T04W006810
Abstract:
Language of Publication: PT
INPADOC Legal Status Table:

Post-Issuance (US):

Reassignment (US) Table:
Maintenance Status (US):
Litigation (US):
Opposition (EP):

License (EP):
EPO Procedural Status:
Front Page Drawing:

Record 13/17 US5915210A Method and system for providing multicarrier simulcast transmission
Title: Method and system for providing multicarrier simulcast transmission
Title - DWPI: Method of transmitting information by multiple transmitters in mobile communications system transmitting information signal including multiple blocks during time periods on carrier frequencies within desired frequency band
Priority Number: US1992973918A | US1996760457A
Priority Date: 1992-11-12 | 1996-12-06
Application Number: US1997899476A
Application Date: 1997-07-24
Publication Date: 1999-06-22
IPC Class Table:

IPC	Section	Class	Subclass	Class Group	Subgroup
H04H002067	H	H04	H04H	H04H0020	H04H002067
H04L002726	H	H04	H04L	H04L0027	H04L002726
H04W006800	H	H04	H04W	H04W0068	H04W006800
H04W006810	H	H04	H04W	H04W0068	H04W006810
H04W008402	H	H04	H04W	H04W0084	H04W008402
H04W000412	H	H04	H04W	H04W0004	H04W000412
H04W008406	H	H04W	H04W0084	H04W008406	

IPC Class Table - DWPI:

IPC - DWPI	Section - DWPI	Class - DWPI	Subclass - DWPI	Class Group - DWPI	Subgroup - DWPI
H04B000150	H	H04	H04B	H04B0001	H04B000150
H04B001502	H	H04	H04B	H04B0015	H04B001502
H04B000700	H	H04	H04B	H04B0007	H04B000700
H04B000706	H	H04	H04B	H04B0007	H04B000706
H04B000726	H	H04	H04B	H04B0007	H04B000726
H04H000300	H	H04	H04H	H04H0003	H04H000300
H04M0001000	H	H04	H04M0001	H04M0001000	
H04Q000736	H	H04Q	H04Q0007	H04Q000736	
H04L001254	H	H04	H04L	H04L0012	H04L001254
H04L002726	H	H04L	H04L0027	H04L002726	

H04L002738	H	H04	H04L	H04L0027	H04L002738
H04Q000732	H	H04	H04Q	H04Q0007	H04Q000732
H04Q000738	H	H04	H04Q	H04Q0007	H04Q000738

Assignee/Applicant: Destineer Corporation,Jackson,MS,US
 JP F Terms:
 JP FI Codes:
 Assignee - Original: Destineer Corporation
 Any CPC Table:

Type	Invention	Additional	Version	Office
Current	H04W 84/025	H04L 27/2637	20130101	EP
Current	H04H 20/67	H04W 4/12	20130101	EP
Current	H04L 27/2626	H04W 84/06	20130101	EP
Current	H04L 27/2647		20130101	EP
Current	H04W 68/10		20130101	EP
Current	H04W 84/022		20130101	EP

ECLA: H04W008402S2 | H04H002067 | H04L002726M | H04L002726M3A5 | H04W006810 | H04W008402S | T04W000412 | T04W008406

Abstract:

A two-way communication system for communication betweeen a system network and a mobile unit. The system network includes a plurality of base transmitters and base receivers include in the network. The base transmitters are divided into zonal assignments and broadcast in simulcast using multi-carrier modulation techniques. The system network controls the base transmitters to broadcast in suimulcast during both systemwide and zone boundaries to maximize information throughout. The preferred mobile unit inlcudes a noise detector circuit to prevent unwanted transmissions. The system network further provides an adaptive registration feature for mobile units which controls the registration operation by the mobile units to maximize information throughout.
Language of Publication: EN INPADOC Legal Status Table:

| Gazette Date | Code | INPADOC Legal Status Impact |
| :--- | :--- | :--- | :--- | :--- |
| 2010-12-22 | FPAY | + |
| Description: FEE PAYMENT | | |
| 2007-03-14 | | |
| Description: ASSIGNMENT
 INDUSTRIES, INC.; BELL INDUSTRIES, INC.; REEL/FRAME:019009/0529 | | |
| 2007-03-12 | | |

Description: ASSIGNMENT WELLS FARGO FOOTHILL, INC., AS AGENT, CALIFORNIA PATENT SECURITY AGREEMENT; ASSIGNORS:BELL INDUSTRIES, INC., A CALIFORNIA CORPORATION; BELL INDUSTRIES, INC., A MINNESOTA CORPORATION; REEL/FRAME:018826/0503 2007-01-31

$2006-12-22$	FPAY	+

Description: FEE PAYMENT

$2002-12-20$	FPAY	+

Description: FEE PAYMENT

$1999-11-23$	CC	-

Description: CERTIFICATE OF CORRECTION

Post-Issuance (US): CORR-CERT Certificate of Correction 1999-11-23 1999 a Certificate of Correction was issued for this patent Reassignment (US) Table:

Assignee	Assignor	Date Signed	Reel/Frame	Date
NEWCASTLE PARTNERS L.P.,DALLAS,TX,US	BELL INDUSTRIES, INC.	2007-03-12	019009/0529	2007-03-14
	BELL INDUSTRIES, INC.	2007-03-12		
Conveyance: SECURITY AGREEMENT				
Corresponent: RANDY M. FRIEDBERG, ESQ. OLSHAN GRUNDMAN FROME ROSENSZWEIG ET AL PARK AVENUE TOWER 65 EAST 55TH STREET NEW YORK, NY 10022				
WELLS FARGO FOOTHILL INC. AS AGENT,SANTA MONICA,CA,US	BELL INDUSTRIES, INC., A CALIFORNIA CORPORATION BELL INDUSTRIES, INC., A MINNESOTA CORPORATION	2007-01-31 2007-01-31	018826/0503	2007-01-31
Conveyance: PATENT SECURITY AGREEMENT				
Corresponent: PAUL HASTINGS JANOFSKY \& WALKER LLP 515 SOUTH FLOWER STREET, 25TH FLOOR LOS ANGELES, CA 90071				

Maintenance Status (US): CC
Litigation (US): 2013-04-02 2013 Mobile Telecommunications Technologies, LLC Apple, Inc. E.D. Texas 2:13cv00258
Opposition (EP):
License (EP):

EPO Procedural Status:
Front Page Drawing:

Record 14/17 CA2149125C MOBILE TWO-WAY COMMUNICATION SYSTEM | SYSTEME DE COMMUNICATION MOBILE BIDIRECTIONNEL

Title: MOBILE TWO-WAY COMMUNICATION SYSTEM | SYSTEME DE COMMUNICATION MOBILE BIDIRECTIONNEL

Title - DWPI: Method of transmitting information by multiple transmitters in mobile communications system transmitting information signal including multiple blocks during time periods on carrier frequencies within desired frequency band
Priority Number: US1992973918A | US1993124219A | WO1993US10713A
Priority Date: 1992-11-12 | 1993-09-21 | 1993-11-12
Application Number: CA2149125A
Application Date: 1993-11-12
Publication Date: 2004-03-30
IPC Class Table:

IPC	Section	Class	Subclass	Class Group	Subgroup
H04H002067	H	H04	H04H	H04H0020	H04H002067
H04L002726	H	H04	H04L	H04L0027	H04L002726
H04W006800	H	H04	H04W	H04W0068	H04W006800
H04W006810	H	H04	H04W	H04W0068	H04W006810
H04W008402	H	H04	H04W	H04W0084	H04W008402
H04W000412	H	H04	H04W	H04W0004	H04W000412

IPC Class Table - DWPI:

IPC - DWPI	Section - DWPI	Class - DWPI	Subclass - DWPI	Class Group - DWPI	Subgroup - DWPI
H04B000150	H	H04	H04B	H04B0001	H04B000150
H04B001502	H	H04	H04B	H04B0015	H04B001502
H04B000700	H	H04	H04B	H04B0007	H04B000700
H04B000706	H	H04	H04B	H04B0007	H04B000706
H04B000726	H	H04	H04H	H04H0003	H04H000300
H04H000300	H	H04	H04M	H04M0001	H04M0001000
H04M0001000	H	H04	H04Q	H04Q0007	H04Q000736
H04Q000736	H	H04	H04L	H04L0012	H04L001254
H04L001254	H	H	H04	H04L0027	
H04L002726	H				H04L002726

H04L002738	H	H04	H04L	H04L0027	H04L002738
H04Q000732	H	H04	H04Q	H04Q0007	H04Q000732
H04Q000738	H	H04	H04Q	H04Q0007	H04Q000738

Assignee/Applicant: MOBILE TELECOMMUNICATION TECHNOLOGIES,JACKSON,MS,US
 JP F Terms:
 JP FI Codes:
 Assignee - Original: MOBILE TELECOMMUNICATION TECHNOLOGIES Any CPC Table:

Type	Invention	Additional	Version	Office
Current	H04W 68/00	H04L 27/2637	20130101	EP
Current	H04H 20/67	H04W 4/12	20130101	EP
Current	H04L 27/2626		20130101	EP
Current	H04L 27/2647		20130101	EP
Current	H04W 68/10		20130101	EP
Current	H04W 84/022		20130101	EP
Current	H04W 84/025		20130101	EP

ECLA: H04W006800 | H04H002067 | H04L002726M | H04L002726M3A5 | H04W006810 | H04W008402S | H04W008402S2 | T04W000412 | T04W006810

Abstract:

A two-way communication system for communication between a system network and a mobile unit. The system network includes a plurality of base transmitters and base receivers included in the network. The base transmitters are divided into zonal assignments and broadcast in simulcast using multi-carrier modulation techniques. The system network controls the base transmitters to broadcast in simulcast during both systemwide and zonal time intervals. The system network dynamically alters zone boundaries to maximize information throughput. The system also uses a mobile unit which receives messages from the network and transmits messages to the network. The mobile unit includes a switch that allows a user to request the network to retransmit a received message that contains errors.
Language of Publication: EN
INPADOC Legal Status Table:

| Gazette Date | Code | INPADOC Legal Status Impact |
| :--- | :--- | :--- | :--- |
| 2005-11-14 | MKLA | - |
| Description: LAPSED | | |
| 2000-11-10 | EEER | + |
| Description: EXAMINATION REQUEST | | |

Post-Issuance (US):

Reassignment (US) Table:
Maintenance Status (US):
Litigation (US):
Opposition (EP):
License (EP):
EPO Procedural Status: EX-RQ 2000-11-10 2000 Request for examination
Front Page Drawing:

Record 15/17 EP789464B1 Mobile two-way communication system | Bidirektionales Mobilfunksystem | Système de communication bi-directionnel mobile

Title: Mobile two-way communication system | Bidirektionales Mobilfunksystem | Système de communication bi-directionnel mobile
Title - DWPI: Method of transmitting information by multiple transmitters in mobile communications system transmitting information signal including multiple blocks during time periods on carrier frequencies within desired frequency band
Priority Number: US1992973918A | US1993124219A | EP1994901305A | WO1993US10713A
Priority Date: 1992-11-12 | 1993-09-21 | 1993-11-12 | 1993-11-12
Application Number: EP1997201162A
Application Date: 1993-11-12
Publication Date: 2004-06-16
IPC Class Table:

IPC	Section	Class	Subclass	Class Group	Subgroup
H04H002067	H	H04	H04H	H04H0020	H04H002067
H04L002726	H	H04	H04L	H04L0027	H04L002726
H04W006800	H	H04	H04W	H04W0068	H04W006800
H04W006810	H	H04	H04W	H04W0068	H04W006810
H04W008402	H	H04	H04W	H04W0084	H04W008402
H04W000412	H	H04	H04W	H04W0004	H04W000412

IPC Class Table - DWPI:

IPC - DWPI	Section - DWPI	Class - DWPI	Subclass - DWPI	Class Group - DWPI	Subgroup - DWPI
H04B000150	H	H04	H04B	H04B0001	H04B000150
H04B001502	H	H04	H04B	H04B0015	H04B001502
H04B000700	H	H04	H04B	H04B0007	H04B000700
H04B000706	H	H04	H04B	H04B0007	H04B000706
H04B000726	H	H04	H04H	H04H0003	H04H000300
H04H000300	H	H04	H04M	H04M0001	H04M0001000
H04M0001000	H	H04	H04Q	H04Q0007	H04Q000736
H04Q000736	H	H04	H04L	H04L0012	H04L001254
H04L001254	H	H	H04		
H04L002726	H				H04L0002726

H04L002738	H	H04	H04L	H04L0027	H04L002738
H04Q000732	H	H04	H04Q	H04Q0007	H04Q000732
H04Q000738	H	H04	H04Q	H04Q0007	H04Q000738

Assignee/Applicant: MOBILE TELECOMMUNICATION TECHNOLOGIES,Jackson MI 39225,US,01167521
 JP F Terms:
 JP FI Codes:
 Assignee - Original: MOBILE TELECOMMUNICATION TECHNOLOGIES
 Any CPC Table:

Type	Invention	Additional	Version	Office
Current	H04W 68/00	H04L 27/2637	20130101	EP
Current	H04H 20/67	H04W 4/12	20130101	EP
Current	H04L 27/2626		20130101	EP
Current	H04L 27/2647		20130101	EP
Current	H04W 68/10		20130101	EP
Current	H04W 84/022		20130101	EP
Current	H04W 84/025		20130101	EP

ECLA: H04W006800 | H04H002067 | H04L002726M | H04L002726M3A5 | H04W006810 | H04W008402S | H04W008402S2 | T04W000412 | T04W006810

Abstract:

A two-way communication system for communication between a system network and a mobile unit. The system includes a plurality of base transmitters and base receivers included in the network. The base transmitters are divided into zonal assignments and broadcast in simulcast using multi-carrier modulation techniques. The system network controls the base transmitters to broadcast in simulcast during both systemwide and zonal time intervals. The system network dynamically alters zone boundaries to maximise information throughput. The system also uses a mobile unit which receives messages from the network and transmits messages to the network. The mobile unit includes a switch that allows a user to request the network to retransmit a received message that contains errors.
Language of Publication: EN
INPADOC Legal Status Table:

| Gazette Date | Code | INPADOC Legal Status Impact |
| :--- | :--- | :--- | :--- |
| 2008-10-31 | PGFP | + |
| Description: POSTGRANT: ANNUAL FEES PAID TO NATIONAL OFFICE GB | | |
| | | |
| 2008-04-30 | PG25 | - |
| Description: LAPSED IN A CONTRACTING STATE ANNOUNCED VIA POSTGRANT INFORM. FROM NAT. OFFICE TO
 EPO FR LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES 2006-11-30 | | |

Post-Issuance (US):

Reassignment (US) Table:
Maintenance Status (US):
Litigation (US):
Opposition (EP):
License (EP):
EPO Procedural Status: EX-REPORT 2001-04-23 2001 Dispatch of 1st examination report | EXRQ 1998-06-29 1998 Request for examination
Front Page Drawing:

Record 16/17 DE69333552T2 Bidirektionales Mobilfunksystem
Title: Bidirektionales Mobilfunksystem
Title - DWPI: Method of transmitting information by multiple transmitters in mobile communications system transmitting information signal including multiple blocks during time periods on carrier frequencies within desired frequency band
Priority Number: US1992973918A | US1993124219A
Priority Date: 1992-11-12 | 1993-09-21
Application Number: DE69333552A
Application Date: 1993-11-12
Publication Date: 2005-06-23
IPC Class Table:

IPC	Section	Class	Subclass	Class Group	Subgroup
H04H002067	H	H04	H04H	H04H0020	H04H002067
H04L002726	H	H04	H04L	H04L0027	H04L002726
H04W006800	H	H04	H04W	H04W0068	H04W006800
H04W006810	H	H04	H04W	H04W0068	H04W006810
H04W008402	H	H04	H04W	H04W0084	H04W008402
H04W000412	H	H04	H04W	H04W0004	H04W000412

IPC Class Table - DWPI:

IPC - DWPI	Section - DWPI	Class - DWPI	Subclass - DWPI	Class Group - DWPI	Subgroup - DWPI
H04B000150	H	H04	H04B	H04B0001	H04B000150
H04B001502	H	H04	H04B	H04B0015	H04B001502
H04B000700	H	H04	H04B	H04B0007	H04B000700
H04B000706	H	H04	H04B	H04B0007	H04B000706
H04B000726	H	H04	H04B	H04B0007	H04B000726
H04H000300	H	H04	H04H	H04H0003	H04H000300
H04M0001000	H	H04	H04Q	H04M0001	H04M0001000
H04Q000736	H	H04	H04L	H04L0012	H04L001254
H04L001254	H	H04	H04L	H04L0027	H04L002726
H04L002726	H	H04	H04L	H04L0027	H04L002738
H04L002738	H				

H04Q000732	H	H04	H04Q	H04Q0007	H04Q000732
H04Q000738	H	H04	H04Q	H04Q0007	H04Q000738

Assignee/Applicant: Mobile Telecommunication Technologies,US
JP F Terms:
JP FI Codes:
Assignee - Original: Mobile Telecommunication Technologies
Any CPC Table:

Type	Invention	Additional	Version	Office
Current	H04W 68/00	H04L 27/2637	20130101	EP
Current	H04H 20/67	H04W 4/12	20130101	EP
Current	H04L 27/2626		20130101	EP
Current	H04L 27/2647		20130101	EP
Current	H04W 68/10			
Current	H04W 84/022		20130101	EP
Current		20130101	EP	

ECLA: H04W006800 | H04H002067 | H04L002726M | H04L002726M3A5 | H04W006810 |
H04W008402S | H04W008402S2 | T04W000412 | T04W006810

Abstract:

Language of Publication: DE
INPADOC Legal Status Table:
Post-Issuance (US):
Reassignment (US) Table:
Maintenance Status (US):
Litigation (US):
Opposition (EP):
License (EP):
EPO Procedural Status:
Front Page Drawing:

Record 17/17 MY130432A METHOD AND SYSTEM FOR EFFICIENTLY PROVIDING TWO WAY COMMUNICATION BETWEEN A CENTRAL NETWORK AND MOBILE UNIT

Title: METHOD AND SYSTEM FOR EFFICIENTLY PROVIDING TWO WAY COMMUNICATION BETWEEN A CENTRAL NETWORK AND MOBILE UNIT
Title - DWPI:
Priority Number: US1992973918A | US1993124219A
Priority Date: 1992-11-12 | 1993-09-21
Application Number: MY1993PI2376A
Application Date: 1993-11-12
Publication Date: 2007-06-29
IPC Class Table:

IPC	Section	Class	Subclass	Class Group	Subgroup
H04B000706	H	H04	H04B	H04B0007	H04B000706
H04H002067	H	H04	H04H	H04H0020	H04H002067
H04L002726	H	H04	H04L	H04L0027	H04L002726
H04W006800	H	H04	H04W	H04W0068	H04W006800
H04W006810	H	H04	H04W	H04W0068	H04W006810
H04W008402	H	H04	H04W	H04W0084	H04W008402
H04W000412	H	H04W	H04W0004	H04W000412	

IPC Class Table - DWPI:
Assignee/Applicant: MOBILE TELECOMMUNICATION TECHNOLOGIES,US JP F Terms:
JP FI Codes:
Assignee - Original: MOBILE TELECOMMUNICATION TECHNOLOGIES
Any CPC Table:

Type	Invention	Additional	Version	Office
Current	H04W 68/00	H04L 27/2637	20130101	EP
Current	H04H 20/67	H04W 4/12	20130101	EP
Current	H04L 27/2626		20130101	EP
Current	H04L 27/2647 68/10		20130101	EP
Current	H04W 84/022		20130101	EP
Current	H04W 84/025		20130101	EP
Current			EP	

ECLA: H04W006800 | H04H002067 | H04L002726M | H04L002726M3A5 | H04W006810 | H04W008402S | H04W008402S2 | T04W000412 | T04W006810
Abstract:
A TWO-WAY COMMUNICATION SYSTEM FOR COMMUNICATION BETWEEN A SYSTEM NETWORK AND A MOBILE UNIT (624).THE SYSTEM NETWORK INCLUDES A PLURALITY OF

BASE TRANSMITTERS $(612,614)$ AND BASE RECEIVERS $(628,630,632,634)$ INCLUDED IN THE NETWORK. THE BASE TRANSMITTERS $(612,614)$ ARE DIVIDED INTO ZONAL ASSIGNMENTS AND BROADCAST IN SIMULCAST USING MULTI-CARRIER MODULATION TECHNIQUES.THE SYSTEM NETWORK CONTROLS THE BASE TRANSMITTERS $(612,614)$ TO BROADCAST IN SIMULCAST DURING BOTH SYSTEMWIDE AND ZONAL TIME INTERVALS.THE SYSTEM NETWORK DYNAMICALLY ALTERS ZONE BOUNDARIES TO MAXIMIZE INFORMATION THROUGHPUT. THE PREDERRED MOBILE UNIT (624) INCLUDES A NOISE DETECTOR CIRCUIT TO PREVENT UNWANTED TRANSMISSIONS.THE SYSTEM NETWORK FURTHER PROVIDES AN ADAPTIVE REGISTRATION FEATURE FOR MOBILE UNITS (624) WHICH CONTROLS THE REGISTRATION OPERATIONS BY THE MOBILE UNITS (624) TO MAXIMIZE INFORMATION THROUGHPUT.(FIG 7)

Language of Publication: MS
INPADOC Legal Status Table:
Post-Issuance (US):
Reassignment (US) Table:
Maintenance Status (US):
Litigation (US):
Opposition (EP):
License (EP):
EPO Procedural Status:
Front Page Drawing:

THOMSON REUTERS
Copyright 2007-2013 THOMSON REUTERS

USPTO Maintenance Report

Patent Bibliographic Data		$008 / 19 / 2013$ 02:07 PM		
$\begin{array}{l}\text { Patent } \\ \text { Number: }\end{array}$	5915210		$\begin{array}{l}\text { Application } \\ \text { Number: }\end{array}$	08899476

