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Abstract—Due to their light weight, low power, and practically
unlimited identification capacity, radio frequency identification
(RFID) tags and associated devices offer distinctive advantages
and are widely recognized for their promising potential in
context-aware computing; by tagging objects with RFID tags,
the environment can be sensed in a cost- and energy-efficient
means. However, a prerequisite to fully realizing the potential is
accurate localization of RFID tags, which will enable and enhance
a wide range of applications. In this paper we show how to exploit
the phase difference between two or more receiving antennas to
compute accurate localization. Phase difference based localization
has better accuracy, robustness and sensitivity when integrated
with other measurements compared to the currently popular
technique of localization using received signal strength. Using
a software-defined radio setup, we show experimental results
that support accurate localization of RFID tags and activity
recognition based on phase difference.

Index Terms—RFID localization, phase difference, maximum
likelihood estimation, software-defined radio.

I. INTRODUCTION

With the integration of computing into everyday objects
and activities, ubiquitous computing has become part of our
day to day lives. Due to the mobility and dynamic nature
of the communication structure as well as the physical en-
vironment, ubiquitous computing has unique challenges and
presents unprecedented opportunities [1], making context-
aware computing a new paradigm. In this emerging context-
aware computing, the applications adapt not only to the
computing and communication constraints and resources, but
also to the contextual information, such as the objects in
the surroundings and people and activities in the vicinity,
and even emotional and other states of the user [1]. To
realize these potential improvements and make the context-
aware applications cost-effective, the systems must be able to
“sense” the environment effectively, with low energy and low
cost [22], [21]. While traditional approaches such as vision-
sensor and active sensor based methods are obvious choices
for object recognition and localization [17], realization of a
robust and cost-effective system based on these sensors has
yet to be implemented after several decades of research.1

Recent deployment of radio frequency identification (RFID)
technology for efficient asset tracking and management has
made RFID tags and associated devices widely available with
low cost and low energy usage. For example, there are active

1This does not imply that computer vision does not make any progress; on
the contrary, computer vision has made numerous important breakthroughs.

RFID tags that typically last for five to seven years with
a compact battery as a reliable wireless signal transmitter;
obviously passive RFID tags have practically no lifetime limit.
Clearly RFID tags, at a coarser level, provide a cost-effective
and energy-efficient way of solving the environment sensing
problem. One straightforward solution is to attach one or more
RFID tags to each object of interest in the environment. As
RFID tags have a limited range of readability, by reading all
the tags in the proximity, using a reader or similar device, a
computer can approximate its environment based on the sensed
objects. Additionally, a unique advantage of RFID technology
over vision and other sensor based methods is that RFID tags
do not require line of sight in order to be “seen” and thus avoid
problems associated with occlusion. Because of the unique
and strategic advantages of RFID tags, they have been heavily
investigated for numerous applications (e.g. [8], [17], [3], [16],
[9], [15]).

While coarse-grained localization, that is, whether an object
is present or absent in the proximity, is sufficient for many
applications, a large number of applications will benefit from
accurate location information of objects. For example, in a
smart house setting, a low-cost solution of knowing precisely
where people are and what objects are close to them will
enable optimization of user interfaces and energy utilization
and enhanced convenience. In addition, it is often important to
track the motion of people/objects so that dynamic activities
can be recognized and modeled. These applications have
motivated numerous localization schemes and systems for
RFID devices (see [5], [27] for recent reviews). Even though
there are other schemes for localization such as using WiFi
devices, WiFi devices are much larger in size and have much
more strict power requirements, which makes RFID tags the
most attractive choice for numerous applications.

In this paper, to achieve a fine-grained localization, we
exploit the phase difference of the received signals at different
antennas. While the received signal strength can attenuate
quickly and therefore may lead to significant estimation errors
of the location, the phase difference, on the other hand,
can be estimated much more reliably as long as the signal-
to-noise ratio is not too small. A unique advantage of the
proposed phase difference method is that by measuring the
phase difference between pulses within the same burst, one
can estimate the motion of the object, thus making it feasible
to monitor human activities at natural speeds. For example,
our experiments suggest that we can reliably measure phase
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difference within 0.57◦ (see Figs. 6 and 7). Another advantage
of phase difference is that it can be combined with received-
signal-strength-based scene analysis methods to improve the
localization accuracy by using phase difference to estimate the
local distance to reference tags.

To evaluate the effectiveness of phase difference for local-
ization, we set up a plot study system that consists of active
RFID tags, Universal Software Radio Peripheral (USRP) as
receivers, and a pan-tilt unit to accurately place tags for various
controlled experiments. Note that the model and the phase
difference estimation methods apply to passive RFID tags in
a similar manner2; here we limit our scope to active RFID
tags, mainly so that our experiments are easy to replicate.
The initial results we have are encouraging even though more
localization experiments under real-world settings need to be
further investigated.

The rest of the paper is organized as follows. Section II
outlines the general localization problem and then reviews the
related work on localization using RFID technology in the
given framework by categorizing them based on several crite-
ria. In Section III we describe the phase difference model and
Section IV presents algorithms for phase difference estimation.
Section V presents experimental results on localization and
motion estimation and modeling. Section VI concludes the
paper with a summary and discussion.

II. RELATED WORK

The most general setup for RFID localization can be posted
in a statistical inference framework [6], [14]. We represent
the region of interest as a scene that consists of K RFID
tags (wireless signal transmitters), whose configuration at
time t is given by the location in the three dimensional
space, the orientation of the transmitter’s antenna, and the
power level3; and N receivers, whose configuration is given
similarly. Given a number of measurements between the tags
and the receivers, the localization problem is to estimate
the probability distribution of the location of the tags and
receivers. Note that even though the localization algorithms
developed for wireless ad-hoc networks and in particular,
wireless sensor networks [14], can, in theory, be applied
to localization using RFID technology, due to the unique
characteristics of RFID technology, for example, no or very
limited computation capabilities available on the tags, the
potential large number of tags, and typical indoor operating
environments; localization algorithms specific to RFIDs should
be developed and studied [4].

The existing localization methods can be categorized based
on 1) the constraints (i.e., range-free (based on connectivity
information) or continuous measurements (such as received
signal strength)), 2) the temporal nature of locations of tags
and receivers (e.g., anchor-free or with reference tags or
receivers at fixed locations), 3) and the statistical inference

2For example, we can use one RFID reader to power and initiate wireless
communications from passive tags.

3The power level of an active RFID tag is constant; for a passive tag, it
can be changed by changing the power level of the reader.

algorithm given the constraints. In the given setting, it is
clear that range-free localization methods can be seen as a
special case of using received signal strength, where only
binary values of received signal strengths are available through
reachability.

Before we summarize existing methods and systems for
localization using RFID technology, we stress the significant
differences between the results based only on computer simu-
lations and the results based on physical system measurements.
While RFID tags and readers are widely available, setting
up an experimental system is not a straightforward task, as
capturing wireless signals is full of challenges [23]. To avoid
difficulties associated with prototyping, simulation is often
used in various localization studies. For example, Wang et
al. [20] propose an active scheme and passive scheme for
RFID localization and provide supporting evidence through
simulation in Matlab; Zhang et al. [25] propose the use of
direction estimation for two dimensional localization; while
they propose to use the phase difference to estimate the
direction of arrival but they provide only simulation results.
Bouet and Pujolle [4] use connectivity constraints through
detectability of tags of mobile readers. While simulation
results can be used to verify principles and theoretical aspects
of localization and other methods, they are not sufficient to
evaluate RFID localization performance as the wireless signals
are affected by many other factors. Therefore, localization
accuracy comparison between methods based on physical
system measurements and methods based on simulation results
(e.g. [4]) should be interpreted carefully.

Due to the difficulties of capturing and processing RFID
communications, localization systems commonly rely on avail-
able wireless measurements at the receivers (e.g., RFID
readers) such as received signal strength (RSS) (e.g., [11],
[13]).4 These RSS measurements can be binarized using some
hardware or software threshold, resulting in binary readabil-
ity/reachability values, which can be used as connectivity
constraints in range-free localization systems. When the trans-
mitting power of the transmitters can be dynamically changed,
one can obtain a multi-level approximation of the range using
multiple readability values [13]. This can be interpreted as an
intermediate range representation between continuous values
and range-free binary values. These measurements lead to
constraints on the location and the orientation of tags as well
as on the readers, which are then used by a statistical inference
algorithm for localization. The localization step is often called
the scene analysis step [5].

As the measurements and therefore constraints are pairwise
between transmitters and receivers, they can be used to localize
either transmitters or receivers using known fixed receivers
or transmitters (called anchors), or both as in anchor-free
systems. For example, SpotON [11] is based on RSS measure-
ments estimated from adjustable sensors and the measurements

4There are other measurements that can be used to estimate the distance,
such as time difference of arrival [18] and time of arrival; these measurements
are rarely used in RFID technology as these measurements are difficult and
expensive to implement.
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are used to estimate inter-tag distances with improved accuracy
by calibrating radio signals to reduce the effects of hardware
variability; as custom-built sensors used in SpotON are both
transmitters and receivers, the system is more similar to
a wireless ad-hoc network than to an RFID-based system.
Landmarc [13] localizes RFID tags through comparing profiles
with a number of reference tags with known locations; in
this system nine readers with eight different power levels are
used and a number of reference tags (i.e., tags with fixed and
known location) are used for localization. To localize a tag, its
estimated signal strengths from all the readers are compared
to the corresponding measurements of reference tags. The
estimated tag location is given by a weighted average of the k-
nearest neighbors. The system is robust to some environmental
factors as the reference and the unknown tags are subject to
the same conditions; however, it is sensitive to tag orientation
as the reference tags and the unknown tag can be oriented
differently, specially when the tag is used to track moving ob-
jects. VIRE [26] uses the same localization method as in [13]
and improves the efficiency of Landmarc by introducing a
proximity map so that only tags in the neighboring areas need
to be compared, rather than all the tags as in [13]. Zhang et
al. [24] improves the localization accuracy of [13] by modeling
the noise so that dissimilarity among tags is reduced for more
reliable nearest neighbor matching and estimation. While the K
nearest-neighbor estimation is commonly used as the inference
algorithm, statistical inference algorithms are also used. For
example, Bekkali et al. [2] propose to use Kalman filtering to
estimate locations of unknown tags based on multilateration
to the reference tags using two mobile RFID readers. A more
general statistical inference framework is to use the Bayesian
network [12] to estimate the locations and even orientation of
tags and readers.

In this paper, we study the phase difference for accurate
localization and motion tracking and activity recognition.
In contrast to Zhang et al. [25], where phase difference is
used only in simulations, our phase difference estimation is
implemented and demonstrated using a prototype system and
therefore our study is directly relevant to RFID applications
that rely on localization. Our experiments show the phase
difference can be estimated with high accuracy and can be
used for three dimensional positioning. To the best of our
knowledge, this is the first time that phase differences from
RFID tags are measured reliably and are used for three
dimensional positioning, motion estimation and tracking.

III. SYSTEM SETUP AND COMMUNICATION MODEL

In this paper, we focus on quantitative models of phase
difference for RFID tags. The phase difference measurements
are based on software-defined radios due to their flexibility
in implementing various algorithms. To be more precise in
presenting our model and algorithms, our formulation is based
on the following setup we have. Clearly, for a different setup,
the phase difference estimation algorithm and results should
be similar even though changes may need to be made. As
shown in Fig. 1, the system we have consists of RFID tags,

Fig. 1. The system setup (consisting a software-defined radio (USRP), RFID
tags, and a pan-tilt unit) we have used for accurate manipulation and placement
of tags for controlled experiments.

a software-defined radio system, and a pan-tilt unit. The
tags we use are the M100 asset tags from RF Code5. The
carrier frequency of the tags is 433.92 MHz with typical
transmission range over 90 meters (sufficient to cover entirely
typical houses and offices). The tag uses the on-off keying
(OOK) for communication, as it is simple to implement and
is energy efficient (to prolong battery life). To meet the
energy efficiency requirement, the signals are transmitted in
a burst only at almost regular internals6. Using a compact
battery (Lithium CR2032, which is replaceable), a tag typically
lasts over seven years. During each burst, a fixed number of
pulses are transmitted at seemingly the same magnitude with
predetermined intervals, where we suspect that the lengths of
the intervals are used to identify the tag. Each pulse is basically
a sine wave for a short period of time on the carrier frequency.

To be able to implement various phase difference estima-
tion algorithms and measure various aspects of the wireless
communication, we have used software-defined radios for the
experiments due to their flexibility7. The software-defined
radios are based on the USRP from Ettus Research LLC8,
along with software modules and packages from the GNU
software-defined ratio project9. We have used two RFX400
daughter boards, where both are configured as receivers. In
order to estimate phase difference, the two receivers must
be driven with the same sampling clock; otherwise, even a
tiny mismatch between the clock will result in a huge phase
difference. The USRP guarantees that the two channels are
driven by the same sampling clock. In our system, the daughter
boards are tuned to 433.92 MHz.

A. Communication Model

The wireless communication between the tags and the
USRP unit is a typical wireless communication system and

5Specifications available from http://www.rfcode.com.
6The intervals are randomly perturbed for collision avoidance.
7Note the algorithms presented can be implemented in hardware efficiently

if a hardware implementation is desired.
8http://www.ettus.com/.
9Available http://gnuradio.org.
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here we follow the model in [19]. Based on our observation,
the wireless signal from an RFID tag in one pulse can be
described as A cos(2πfct), where A is the constant magnitude
and fc is the carrier frequency. At each daughter board,
the received signal at its antenna is amplified and down-
converted to the baseband. A baseband signal is represented
by the inphase and quadrature components, denoted as I(t)
and Q(t), respectively. If the carrier of the tag and the USRP
are on exactly the same frequency, both I(t) and Q(t) should
be a constant, depending only on the phase of the carriers.
However, there will always be a frequency difference between
the carrier of the tag and the carrier of the USRP due to
the manufacturing process of the oscillator. Let fr denote the
frequency tuned to at the receivers. The waveforms at receiver
1 can be represented as

I1(t) = A1 cos(2π(fr − fc)t + φ1) + σ1n11,
Q1(t) = A1 sin(2π(fr − fc)t + φ1) + σ1n12,

(1)

where A1 is the received signal magnitude, φ1 is the initial
phase difference between the carrier at the tag and the carrier
at the receiver, the initial carrier phase at the receiver, n11 and
n12 are Gaussian noise terms of unit variance, and σ1 is the
noise level. Using similar notations, the waveforms at receiver
2 can be represented as

I2(t) = A2 cos(2π(fr − fc)t + φ2) + σ2n21,
Q2(t) = A2 sin(2π(fr − fc)t + φ2) + σ2n22.

(2)

Wireless signals travel at the speed of light, such that φ1

and φ2 depend on the lengths of the paths from the tag to the
receivers. However, the exact values of φ1 and φ2 also depend
on the initialization process of the hardware, such that they
cannot be used directly for distance and location estimation.
Fortunately, the phase difference, i.e., φ1 − φ2, captures the
difference of the distances of the paths, which can be used for
location estimation.

B. Measured Waveforms and Phase Difference

To demonstrate that the wireless signals are reliable for
phase difference estimation, Fig. 2 shows one burst received
at the two antennas along with a zoomed version showing the
signals during one pulse. These plots show clearly that the
signals are robust and allow for reliable phase estimation and
thus the phase difference estimation.

The waveforms received at the antennas as given in Eqs.
(1) and (2) allow a straightforward estimation the phase
difference. That is, at time t, the phase difference should be
tan−1(Q1(t)/I1(t)) − tan−1(Q2(t)/I2(t)). Figure 3 shows
one example of estimated phases during a pulse and a typical
distribution of estimated phase difference during a burst.
Figure 3(a) plots I1(t) v.s. Q1(t) (green ’+’) and I2(t) v.s.
Q2(t) (red ’+’); where the time is encoded by the intensity
of the colors; it shows clearly the constant phase difference.
Figure 3(b) shows the probability distribution of the phase
differences of a stationary tag during one burst; here the
probability distribution is estimated using the Parzen window
method [10]. In this typical example, the standard deviation

(a)

(b)

Fig. 2. Waveforms received at antennas during a transmission of a burst.
(a) Estimated magnitudes of the signals received at two antennas (top and
bottom); (b) Each panel shows the received signals at an antenna, here the
blue plot shows I(t), and the red one shows Q(t), and the black dashed one
shows the magnitude

p
I(t)2 + Q(t)2.

(a) (b)

Fig. 3. Phase difference estimation example for one pulse. (a) The signals at
two antennas, showing clearly the constant phase shift; (b) The estimated
probability distribution of the estimated phase differences during a burst;
here it is estimated using a Parzen window and the standard deviation of
the distribution is 0.954◦.

of the phase differences is 0.954◦. For the waveforms at
433.92 MHz, this corresponds to a localization accuracy of 1.8
millimeters.10 While the estimated accuracy is under an ideal
situation, it shows clearly the feasibility of phase difference
estimation for accurate localization.

IV. MAXIMUM LIKELIHOOD ESTIMATION OF THE PHASE
DIFFERENCE

While the straightforward estimation the phase difference is
often sufficient, for more reliable and accurate estimation in

10Given by 0.954
360

× 299792458
433920000

meter = 0.0018 meter, where 299792458
is the speed of light (meters/second).
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cases such as phase difference tracking for moving RFID tags,
one can use the maximum likelihood estimation. One option
is to estimate the phase for each antenna separately and then
compute the phase difference. The other option is to directly
estimate the phase difference. In the first case, suppose we
have n samples from the first antenna, I1(t1), . . . , I1(tn), and
Q1(t1), . . . , Q1(tn). As the sampling rate of the channels is
constant and known, we have ti = i×∆t, where ∆t is given
by the sampling rate.

Under the common assumption that the noise terms are
statistically independent and follow the Gaussian distribution,
we have

φ̂1 = arg maxφ1

∏i=n
i=1 (P (I1(ti)|φ1)× P (Q1(ti)|φ1)

= arg minφ1

∑i=n
i=1 (I1(ti)−A1 cos(∆ω × i + φ1))2

+(Q1(ti)−A1 sin(∆ω × i + φ1))2,
(3)

where ∆ω = 2π(fr−fc)∆t. Here we assume that the original
waveform is a pulse with a constant amplitude and therefore
A1 does not depend on i; we utilize the assumption that the
I1(ti) − A1 cos(∆ω × i + φ1) and Q1(ti) − A1 sin(∆ω ×
i + φ1) are Gaussian distributed. This leads to a nonlinear
optimization problem and it can be solved through a gradient
method by initializing the variables with the mean estimation
of the variables. For example, A1 can be initialized with the
average amplitude during the active pulse transmission.

Note that the joint optimization of φ1 and φ2 can be done by
weighting the criterion used in Eq. (3) by σ2

1 and σ2
2 , which

can be estimated using the channel signals when no pulses
are being transmitted. We have implemented the maximum
likelihood using a nonlinear optimization function in Matlab11.
In typical waveforms, maximum likelihood estimation gives
an improved phase difference estimation, even though the
improvement is not always significant.

V. EXPERIMENTAL RESULTS

In this section we show the experimental results using the
system setup outlined in Section II. In these experiments, we
mount an RFID tag on the pan-tilt unit and set up the USRP
unit with two receiving antennas tuned to 433.92 MHz; all the
experiments were carried out in a room (roughly of 3.0m ×
6.0m × 3.5m) with all the fixtures (desks, chairs, and books
so on) in the room. While the set up we have may not be
as realistic as in situations required by some applications, all
the effects including multiple path, noise, and environment
factors are intrinsically part of the measurements. Compared to
simulation only studies (e.g. [20], [25]), our results are directly
relevant and applicable to localization applications.

A critical test is whether the phase difference can be esti-
mated reliably and whether the phase difference is discriminat-
ing, i.e., whether it changes smoothly when the tag is moved.
Figure 4 shows one of the experiments that demonstrates these
important features of the phase difference. In this experiment,

11We used fminsearch function; the Matlab is available from
http://www.mathworks.com.

(a)

(b)

Fig. 4. Phase differences on a surface patch. (a) Top-down view; (b) side
view to show the distribution in the three dimensional space.

we vary both the pan and tilt of the pan-tilt unit to cover a
portion in the three dimensional space, which is similar to
a portion of a sphere. For accurate measurements of phase
difference, we systematically move the tag; at each location
when the tag stops moving, we wait until we capture an
active burst of pulses and then we move the tag to the next
location. Figure 4 shows the phase difference on the surface;
Fig. 4(a) gives a two-dimensional view of the surface to show
the detailed variations and Fig. 4(b) shows a three-dimensional
view. It is clear that the phase difference varies smoothly,
depending on the three dimensional location of the tag. In
other words, the phase difference provides information of the
tag position in the three dimensional space.

Figure 5 shows a one-dimensional localization experiment.
Due to an equipment constraint (as we have only one USRP
unit with complete configurations), the localization is one
dimensional. In these particular experiments, we demonstrate
the localization accuracy based on profiling. Here we fix the
tilt angle and change the pan from -130◦ to 70◦ with a 25◦ step
size. For each run, we generate a profile as in [13], i.e., the
phase differences along the path, and use the phase differences
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