

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

BLACKBERRY CORP.,
Petitioner,

v.

CYPRESS SEMICONDUCTOR CORP.,
Patent Owner.

DECLARATION OF ANDREW WOLFE PH.D.
in Support of Petition for Inter Partes Review of

U.S. Patent No. 6,493,770

Mail Stop PATENT BOARD
Patent Trial and Appeal Board
U.S. Patent and Trademark Office
P.O. Box 1450
Alexandria, VA 22313-1450

BLACKBERRY EX. 1012, pg. 1

ii

TABLE OF CONTENTS

I. INTRODUCTION .. 1

II. QUALIFICATIONS ... 1

III. MATERIALS CONSIDERED AND PREPARED .. 7

IV. SUMMARY OF OPINIONS .. 8

V. LEGAL PRINCIPLES USED IN ANALYSIS .. 9

A. Patent Claims in General ... 10

B. Prior Art ... 11

C. Unpatentability - Anticipation ... 12

D. Unpatentability - Obviousness .. 13

VI. BACKGROUND OF THE PATENT AND RELEVANT
TECHNOLOGY ... 15

VII. THE ’770 PATENT .. 19

VIII. CLAIM CONSTRUCTION ... 25

IX. OVERVIEW OF THE PRIOR ART .. 27

A. Patent Owner’s Admitted Prior Art (“APA”) 27

B. U.S. Patent No. 6,073,193 to Yap (“Yap”) ... 31

C. U.S. Patent No. 5,628,028 to Michelson (“Michelson”) 36

D. PCCextend 100 User’s Manual (“PCCextend”) 38

E. U.S. Patent No. 5,862,393 to Davis (“Davis”) 40

X. UNPATENTABILITY ANALYSIS .. 45

A. The Claims of the ’770 Patent ... 45

BLACKBERRY EX. 1012, pg. 2

iii

B. Claim 11 is unpatentable under 35 U.S.C. § 102(b) as being
anticipated by the USB Specification V1.0... 48

C. Claims 1, 5, 7, 10, 11, and 15–17 are unpatentable under 35
U.S.C. § 103(a) as being obvious over the APA in view of
Yap .. 62

D. Claims 2, 3, 12, and 13 are unpatentable under 35 U.S.C. §
103(a) as being obvious over APA in view of Yap and
Michelson .. 80

E. Claims 1–3, 10, 11–13, 16–18, and 20 are unpatentable under
35 U.S.C. § 103(a) as being obvious over Michelson in view
of PCCextend and Davis ... 86

F. Claims 5, 7, 15, 19 are unpatentable under 35 U.S.C. § 103(a)
as being obvious over Michelson in view of PCCextend,
Davis, and the APA ...108

G. Claims 18–20 are unpatentable under 35 U.S.C. § 102(e) as
being anticipated by Yap ...114

XI. CONCLUDING STATEMENTS ... 118

BLACKBERRY EX. 1012, pg. 3

1

I, Andrew Wolfe, hereby declare as follows:

I. INTRODUCTION

1. I am currently a consultant at Wolfe Consulting.

2. I have been retained in this matter to provide various opinions

regarding U.S. Patent No. 6,493,770 (the “’770 patent”). I am being compensated

for my work in this matter at my ordinary hourly consulting rate. My compensation

in no way depends upon the outcome of this proceeding.

3. I have been advised that Cypress Semiconductor Corp. owns the ’770

Patent. I have no financial interest in the ’770 patent.

II. QUALIFICATIONS

4. I have more than 30 years of experience as a computer architect,

computer system designer, personal computer graphics designer, educator, and as an

executive in the electronics industry.

5. In 1985, I earned a B.S.E.E. degree in Electrical Engineering and

Computer Science from The Johns Hopkins University. In 1987, I received an

M.S. degree in Electrical and Computer Engineering from Carnegie Mellon

University. In 1992, I received a Ph.D. in Computer Engineering from Carnegie

Mellon University. My doctoral dissertation proposed a new approach for the

architecture of a computer processor.

BLACKBERRY EX. 1012, pg. 4

2

6. In 1983, I began designing touch sensors, microprocessor-based

computer systems, and I/O (input/output) cards for personal computers as a senior

design engineer for Touch Technology, Inc. During the course of my design

projects with Touch technology, I designed I/O cards for PC-compatible computer

systems, including the IBM PC-AT, to interface with interactive touch-based

computer terminals that I designed for use in public information systems. I

continued designing and developing related technology as a consultant to the Carroll

Touch division of AMP, Inc., where in 1986 I designed one of the first custom

touchscreen integrated circuits.

7. From 1986 through 1987, I designed and built a high-performance

computer system as a student at Carnegie Mellon University. From 1986 through

early 1988, I also developed the curriculum, and supervised the teaching laboratory,

for processor design courses.

8. In the latter part of 1989, I worked as a senior design engineer for

ESL-TRW Advanced Technology Division. While at ESL-TRW, I designed and

built a bus interface and memory controller for a workstation-based computer

system, and also worked on the design of a multiprocessor system.

9. At the end of 1989, I (along with some partners) reacquired the rights to

the technology I had developed at Touch Technology and at AMP, and founded The

Graphics Technology Company. Over the next seven years, as an officer and a

BLACKBERRY EX. 1012, pg. 5

3

consultant for The Graphics Technology Company, I managed the company's

engineering development activities and personally developed dozens of touchscreen

sensors, controllers, and interactive touch-based computer systems.

10. I have consulted, formally and informally, for a number of fabless

semiconductor companies. In particular, I have served on the technical advisory

boards for two processor design companies: BOPS, Inc., where I chaired the board,

and Siroyan Ltd., where I served in a similar role for three networking chip

companies—Intellon, Inc., Comsilica, Inc, and Entridia, Inc.—and one 3D game

accelerator company, Ageia, Inc.

11. I have also served as a technology advisor to Motorola and to several

venture capital funds in the U.S. and Europe. Currently, I am a director of Turtle

Beach Corporation, providing guidance in its development of premium audio

peripheral devices for a variety of commercial electronic products.

12. From 1991 through 1997, I served on the Faculty of Princeton

University as an Assistant Professor of Electrical Engineering. At Princeton, I

taught undergraduate and graduate-level courses in Computer Architecture,

Advanced Computer Architecture, Display Technology, and Microprocessor

Systems, and conducted sponsored research in the area of computer systems and

related topics. I was also a principal investigator for DOD research in video

technology and a principal investigator for the New Jersey Center for Multimedia

BLACKBERRY EX. 1012, pg. 6

4

Research. From 1999 through 2002, I taught the Computer Architecture course to

both undergraduate and graduate students at Stanford University multiple times as a

Consulting Professor. At Princeton, I received several teaching awards, both from

students and from the School of Engineering. I have also taught advanced

microprocessor architecture to industry professionals in IEEE and ACM sponsored

seminars. I am currently a lecturer at Santa Clara University teaching graduate

courses on Computer Organization and Architecture and undergraduate courses on

electronics and embedded computing.

13. From 1997 through 2002, I held a variety of executive positions at a

publicly-held fabless semiconductor company originally called S3, Inc. and later

called Sonicblue Inc. For example, I held the positions of Chief Technology

Officer, Vice President of Systems Integration Products, Senior Vice President of

Business Development, and Director of Technology. At the time I joined S3, the

company supplied graphics accelerators for more than 50% of the PCs sold in the

United States.

14. Beginning in 1998, I began to work closely with S3’s largest customer,

Diamond Multimedia, to explore possible opportunities for a merger. My

investigation included evaluating the technology, market, and business model

related to the “Diamond Rio PMP300,” the first commercially viable flash-memory

MP3 player. In 1999, I led the merger negotiations between the two companies,

BLACKBERRY EX. 1012, pg. 7

5

managed significant parts of company integration, and, after the merger was

complete, worked on new product development. Soon after the merger with

Diamond, we introduced the “Diamond Rio PMP500,” a portable music player that

included Universal Serial Bus (“USB”) capability and also the ability to play

downloaded files purchased from the Audible.com website. We also developed

relationships with MP3 music vendors, including eMusic and MP3.com.

15. While at Diamond, we also developed the Rio 600 and 800 MP3

players, which included support for digital rights management (“DRM”) protected

music using protocols from Microsoft. During the development of the PMP500

and the Rio 600, we also developed a music delivery platform and webstore backend

service for selling DRM-protected music. In 1999, this business segment was spun

out as a separate company called RioPort.com. I served on the RioPort.com board

of directors and became involved in their product and technology strategy. I also

managed engineering and marketing for the Rio product line for a period of time as

an interim general manager.

16. I served as a board member and technical advisor at KBGear Inc. from

1999-2001. KBGear Inc. designed and produced digital cameras and music players

that included USB ports and flash memory.

17. I have published more than 50 peer-reviewed papers in computer

architecture and computer systems and IC design.

BLACKBERRY EX. 1012, pg. 8

6

18. I also have chaired IEEE and ACM conferences in microarchitecture

and integrated circuit design and served as an associate editor for IEEE and ACM

journals.

19. I am a named inventor on 36 U.S. patents and 24 foreign patents.

20. In 2002, I was the invited keynote speaker at the ACM/IEEE

International Symposium on Microarchitecture and at the International Conference

on Multimedia. From 1990 through 2005, I have also been an invited speaker on

various aspects of technology and the PC industry at numerous industry events

including the Intel Developer’s Forum, Microsoft Windows Hardware Engineering

Conference, Microprocessor Forum, Embedded Systems Conference, Comdex, and

Consumer Electronics Show, as well as at the Harvard Business School and the

University of Illinois Law School. I have been interviewed on subjects related to

computer graphics and video technology and the electronics industry by

publications such as the Wall Street Journal, New York Times, Los Angeles Times,

Time, Newsweek, Forbes, and Fortune as well as CNN, NPR, and the BBC. I have

also spoken at dozens of universities including MIT, Stanford, University of Texas,

Carnegie Mellon, UCLA, University of Michigan, Rice, and Duke.

21. Based on my technical education, and my years of professional

experience as both an engineer and as an educator, I consider myself to be an expert

in the field of computer architecture and computer system design, consumer

BLACKBERRY EX. 1012, pg. 9

7

electronics, and computer programming, including computer busses, interfaces, and

input/output ports. Moreover, I am very familiar with the operation and functional

capabilities and limitations of commercial computers and computer peripherals

existing during the late 1990s.

22. My professional experience with computer peripheral device interface

design and with USB technology, as well as my educational background, is

summarized in more detail in my C.V., which is included as Exhibit 1021 to the

petition.

III. MATERIALS CONSIDERED AND PREPARED

23. In forming the opinions expressed below, I considered the ’770 patent

and the other patents in its family (U.S. Patent Nos. 6,012,103 and 6,249,825)

(collectively the “USB Patents”) and their file histories as well as the prior art

references and related documentation discussed herein. I have also relied upon my

education, background, and experience.

24. In addition, I have reviewed the declaration of Geert Knapen that was

presented with respect to a prior IPR petition related to the ’770 patent. In most

cases, I found the presentation of pertinent facts and the accompanying analysis in

that declaration to be both accurate and well written. Furthermore, in many cases,

my relevant opinions are identical to Mr. Knapen’s. In these cases, I have

duplicated Mr. Knapen’s language in this declaration to simplify the presentation to

BLACKBERRY EX. 1012, pg. 10

8

the PTAB. Where my opinions differ from Mr. Knapen’s or I felt that a different

form of presentation is preferable, I have written new text.

IV. SUMMARY OF OPINIONS

25. Based on my investigation and analysis, and for the reasons set forth

below, it is my opinion that all of the elements and steps recited in claims 1–3, 5, 7,

10–13, and 15–20 of the ’770 patent are disclosed in prior art references and that

those claims are anticipated and/or rendered obvious in view of these references. In

particular, I have relied primarily on the six prior art references identified below in

support of my opinions:

(1) Patent Owner’s Admitted Prior Art (“APA”) (Ex. 1001);

(2) U.S. Patent No. 6,073,193 to Yap (“Yap”) (Ex. 1002);

(3) U.S. Patent No. 5,628,928 to Michelson (“Michelson”) (Ex. 1003);

(4) PCCextend100 User’s Manual (“PCCextend”) (Ex. 1004);

(5) U.S. Patent No. 5,862,393 to Davis (“Davis”) (Ex. 1005);

(6) Univeral Serial Bus Specification v1.0, January 15, 1996, Copyright

1996, Compaq Computer Corporation, Digital Equipment Corporation, IBM PC

Company, Intel Corporation, Microsoft Corporation, NEC, Northern Telecom

(“USB 1.0 Specification”) (Ex. 1013);

26. Besides the above documents, I have also considered the following

references in preparing my declaration:

BLACKBERRY EX. 1012, pg. 11

9

(1) Prosecution History of U.S. Patent 6,012,103 (Ex. 1006);

(2) Prosecution History of U.S. Patent 6,249,825 (Ex. 1007);

(3) Prosecution History of U.S. Patent 6,493,770 (Ex. 1008);

(4) U.S. Patent No. 5,590,273 to Balbinot (Ex. 1014)

(5) U.S. Patent No. 6,338,109 to Snyder (Ex. 1015)

(6) Quinnell, Richard A., “USB: A Neat Package with a Few Loose Ends,”

EDN Magazine (October 24, 1996) (Ex. 1016).

(7) Levine, Larry. PCMCIA Primer, pp. 117-130 (M&T Books 1995)

(Ex. 1017).

(8) PCMCIA PC Card Standard Release 2.01, pp. 3-2 to 3-5; 4-2 to 4-7;

4-10 to 4-19; 4-28 to 4-31; 4-34 to 4-37; 5-2 to 5-5; 5-12 to 5-21; 5-23; 5-48 to 5- 51;

6-6 to 6-17 (published 1992) (Ex. 1018)

(9) PCMCIA Card Services Specification Release 2.0, pp. 3-2 to 3-7; 3- 14

to 3-17; 3-20 to 3-25; 3-28 to 3-29; 5-78 to 5-79 (published 1992) (Ex. 1019)

(10) U.S. Patent No. 5,537,654 to Bedingfield (Ex. 1020)

27. The bases for my opinions are set forth in greater detail below and in

the claim charts attached as Appendix A.

V. LEGAL PRINCIPLES USED IN ANALYSIS

28. I am not a patent attorney and I am presenting no opinions on the law

related to patent validity. BlackBerry’s attorneys have explained certain legal

BLACKBERRY EX. 1012, pg. 12

10

principles to me that I have relied on in forming my opinions set forth in this

declaration.

29. I was informed that my assessment and determination of whether or not

claims 1–3, 5, 7, 10–13, and 15–20 of the ’770 patent are unpatentable must be

undertaken from the perspective of what would have been known or understood by

someone of ordinary skill in the art as of the earliest priority filing date of the USB

Patents—July 2, 1997. From analyzing the USB Patents and the relevant prior art,

it is my opinion that a person of ordinary skill in the relevant art for the ’770 patent

(“PHOSITA”) would be sufficiently skilled in the design of peripheral devices used

in connection with computer systems to understand and practice the prior art

discussed in this declaration. Unless otherwise specified, when I state that

something would be known to or understood by one skilled in the art or possessing

ordinary skill in the art, I am referring to someone with this level of knowledge and

understanding.

A. Patent Claims in General

30. I have been informed that patent claims are the numbered sentences at

the end of each patent. I have been informed that the claims are important because

the words of the claims define what a patent covers. I have also been informed that

the figures and text in the rest of the patent provide a description and/or examples

BLACKBERRY EX. 1012, pg. 13

11

and help explain the scope of the claims, but that the claims define the breadth of the

patent’s coverage.

31. I have also been informed that an “independent claim” expressly sets

forth all of the elements that must be met in order for something to be covered by

that claim. I have also been informed that a “dependent claim” does not itself recite

all of the elements of the claim but refers to another claim for some of its elements.

In this way, the claim “depends” on another claim and incorporates all of the

elements of the claim(s) from which it depends. I also have been informed that

dependent claims add additional elements. I have been informed that, to determine

all the elements of a dependent claim, it is necessary to look at the recitations of the

dependent claim and any other claim(s) on which it depends.

32. I have also been informed that patent claims may be expressed as

“methods” or “apparatuses/devices/systems.” That is, I have been informed that a

patent may claim the steps of a “method,” such as a particular way to perform a

process in a series of ordered steps, or may claim a combination of various elements

in an “apparatus,” “device,” or “system.”

B. Prior Art

33. I have been informed that the law provides categories of information

(known as “prior art”) that may anticipate or render obvious patent claims. I have

been informed that, to be prior art with respect to a particular patent in this

BLACKBERRY EX. 1012, pg. 14

12

proceeding, a reference must have been published, or patented, or be the subject of a

patent application by another, before the priority date of the patent. I have also

been informed that a person of ordinary skill in the art is presumed to have

knowledge of all prior art. I have been asked to presume that the reference

materials that I opine on, i.e., the APA; U.S. Patent No. 6,073,193 to Yap; U.S.

Patent No. 5,628,028 to Michelson; PCCextend 100 User’s Manual; U.S. Patent No.

5,862,393 to Davis; and USB 1.0 Specification, are prior art from a technical

perspective – that is, all were available to a person of ordinary skill in the art on or

before the priority date of the patent.

C. Unpatentability - Anticipation

34. I have been informed and understand that determination of whether a

patent claim is “anticipated” is a two-step process. First, the language of the claim

is construed as it would be understood by one of ordinary skill in the art at the time

of the filing of the patent application. Reference is made to the intrinsic evidence of

record, which includes the language of the claim itself and other issued claims, the

patent specification, and the prosecution history. Words in a claim will be given

their ordinary or accustomed meaning unless it appears that the inventor used them

differently. The prosecution history may limit the interpretation of the claim,

especially if the applicant disavowed or disclaimed any coverage in order to obtain

allowance of the claim.

BLACKBERRY EX. 1012, pg. 15

13

35. Second, I understand that after the patent claim has been construed,

determining anticipation of the patent claim requires a comparison of the properly

construed claim language to the prior art on an element-by-element basis.

36. I understand that a claimed invention is “anticipated” if each and every

element of the claim has been disclosed in a single prior art reference, or has been

embodied in a single prior art device or practice, either explicitly or inherently (i.e.,

necessarily present or implied).

37. I understand that although anticipation cannot be established by

combining references, additional references may be used to interpret the anticipating

reference by, for example, indicating what the anticipating reference would have

meant to one having ordinary skill in the art.

D. Unpatentability - Obviousness

38. I have been informed that, even if every element of a claim is not found

explicitly or implicitly in a single prior art reference, the claim may still be

unpatentable if the differences between the claimed elements and the prior art are

such that the subject matter as a whole would have been obvious at the time the

invention was made to a person of ordinary skill in the art. That is, the invention

may be obvious to a person having ordinary skill in the art when seen in light of one

or more prior art references. I have been informed that a patent is obvious when it

is only a combination of old and known elements, with no change in their respective

BLACKBERRY EX. 1012, pg. 16

14

functions, and that these familiar elements are combined according to known

methods to obtain predictable results. I have been informed that the following four

factors are considered when determining whether a patent claim is obvious: (1) the

scope and content of the prior art; (2) the differences between the prior art and the

claim; (3) the level of ordinary skill in the art; and (4) secondary considerations

tending to prove obviousness or nonobviousness. I have also been informed that

the courts have established a collection of secondary factors of nonobviousness,

which include: unexpected, surprising, or unusual results; prior art that teaches away

from the alleged invention; substantially superior results; synergistic results;

long-standing need; commercial success; and copying by others. I have also been

informed that there must be a connection, or nexus, between these secondary factors

and the scope of the claim language.

39. I have also been informed that some examples of rationales that may

support a conclusion of obviousness include:

a) Combining prior art elements according to known methods to yield

predictable results;

b) Simply substituting one known element for another to obtain

predictable results;

c) Using known techniques to improve similar devices (or product) in

the same way (e.g. obvious design choices);

BLACKBERRY EX. 1012, pg. 17

15

d) Applying a known technique to a known device (or product) ready

for improvement to yield predictable results;

e) Choosing from a finite number of identified, predictable solutions,

with a reasonable expectation of success-in other words, whether

something is “obvious to try”;

f) Using work in one field of endeavor to prompt variations of that

work for use in either the same field or a different one based on

design incentives or other market forces if the variations are

predictable to one of ordinary skill in the art; and

g) Arriving at a claimed invention as a result of some teaching,

suggestion, or motivation in the prior art that would have led one of

ordinary skill to modify the prior art reference or to combine prior

art reference teachings.

40. I have also been informed that other rationales to support a conclusion

of obviousness may be relied upon, for instance, that common sense (where

substantiated) may be a reason to combine or modify prior art to achieve the claimed

invention.

VI. BACKGROUND OF THE PATENT AND RELEVANT
TECHNOLOGY

41. The ’770 patent relates to a system and method for interfacing a

computer system to a peripheral device. A wide variety of peripheral devices were

BLACKBERRY EX. 1012, pg. 18

16

common at the time of the ’770 patent’s priority date, examples of which included a

computer mouse, keyboard, printer, network adapter, modem, data storage device,

and computer monitor. Often these peripherals, particularly a network adapter,

modem, or data storage device, were in the form of a PC card (also referred to as a

PCMCIA card). Various specifications have been developed to facilitate

interaction between a computer and a peripheral device. These specifications have

included the Personal Computer Memory Card International Association

(PCMCIA) Specification and the Universal Serial Bus (USB) Specification.

42. In the Background of the ’770 Patent (“Background”), the patentee

admits that it was known to connect a peripheral device to a computer using a USB

connection. Ex. 1001, 1:50–2:4; 4:15–34; Fig. 1. The patentee also admits in the

Background that, when the USB connector of a peripheral is inserted into a

powered-up host computer or inserted into a powered-down host computer which is

then powered up, the host computer detects the peripheral device and a configuration

process known as “enumeration” begins which causes the peripheral device to be

recognized by the host computer’s operating system. Id. at 1:66–2:19.1

1 The USB 1.0 Specification actually explained that enumeration is an ongoing

activity for the bus and that it is only done at startup time for some busses. “4.6.3

Bus Enumeration Bus enumeration is the activity that identifies and addresses

devices attached to a bus. For many buses, this is done at startup time and the

BLACKBERRY EX. 1012, pg. 19

17

43. The Background further alleges that the only opportunity for

associating a software device driver with a peripheral device is at the time when the

enumeration process occurs. Ex. 1001, 2:20–28. “Thus, to alter the configuration

or personality of a peripheral device, such as downloading new code or

configuration information into the memory of the peripheral device, the host

computer system must detect a peripheral device connection or a disconnection and

then a reconnection.” Id. at 2:24–28.

44. This was admitted to be one of the “problems of known systems and

methods. . . .” Id. at 2:37–40. Accordingly, it was admitted to be known that a

peripheral device could have a first configuration and that a second configuration

could be downloaded into the peripheral device over a computer bus. All of these

features are also found in one or more of the prior art references discussed herein.

45. The Background describes that the problem that the host computer

system must detect a physical disconnection and reconnection is solved by a switch

which is connected to one of the USB data lines D+ and D-. Ex. 1001, 6:59–65;

information collected is static. Since the USB allows USB devices to attach to or

detach from the USB at any time, bus enumeration for this bus is an on-going

activity. Additionally, bus enumeration for the USB also includes detection and

processing of removals.” Ex. 1013 at 32. “enumerating the USB is an on-going

activity” Ex. 1013 at 31.

BLACKBERRY EX. 1012, pg. 20

18

7:9–30. It was known that a host detects the connection of a peripheral device by

monitoring voltage levels on one of the two USB data lines. Id. at 6:28–31; Ex.

1013 at 114. Thus, by changing the state of the data lines, the switch is

“electronically simulating a physical disconnection or reconnection of the peripheral

device,” as recited in independent claims 1, 11, and 18. However, as discussed in

more detail below, it was well known in the prior art (e.g., in U.S. Patent No.

6,073,193 to Yap; PCCextend 100 User’s Manual, and U.S. Patent No. 5,862,393 to

Davis) to position a switch in the lines of a bus between a peripheral device and host

computer which can be opened and closed to simulate a physical disconnection and

reconnection and cause reconfiguration. The method of resetting a USB port after

configuration was also well known. Ex. 1013 at 115–117, 119, 14, 29, 165–169,

221–222, 263. Also, the USB specification explained that certain devices had

“hardware support for reset and suspend/resume signaling.” Ex. 1013 at 35. A

reset on such a device sets the port state to “Disconnected.” Ex. 1013 at 223.

Coming out of reset, attached devices are redetected. “Upon coming out of reset, a

hub must detect which downstream ports have devices connected to them.” Ex.

1013 at 224. A reset that switches power on and off to simulate a disconnect was

also part of the USB specification. Ex. 1013 at 132, 242. In fact, the USB

specification discloses the existence of non-removable devices that can only be reset

using this simulation process. Ex. 1013 at 264. Thus, the problem that a host

BLACKBERRY EX. 1012, pg. 21

19

needs to detect a disconnection and reconnection to cause reconfiguration had a

well-known solution in the prior art.

VII. THE ’770 PATENT

46. The background admits that physically disconnecting and reconnecting

a peripheral device to reconfigure the peripheral device was known at the time of the

invention. See supra, Section VI. This physical disconnection and reconnection

caused a host computer to perform an enumeration process to recognize the

requirements and capabilities of the device and select an appropriate device driver

with which to use the peripheral device. See, e.g., Ex. 1001, 1:66–2:18.

47. The ’770 Patent relates to using an electronic circuit to simulate the

disconnection and reconnection to take the place of an actual physical disconnection

and reconnection. Id. at 2:62–3:8; 5:36–43.

48. Figure 2 of the ’770 Patent (reproduced below) illustrates a USB

system “in accordance with the invention.” Ex. 1001, 3:52–53; 4:64–65. The

USB system includes a host computer with an operating system that stores “one or

more peripheral device drivers, such as a first peripheral device driver 68” and a

“plurality of different configuration information sets 70.” Id. at 5:2–13.

BLACKBERRY EX. 1012, pg. 22

20

49. The host computer selects one of the plurality of configuration

information sets, such as an updated configuration information set, to download to

the peripheral device. Ex. 1001, 5:36–54. Instead of relying on a physical

disconnection and reconnection of the peripheral device to reconfigure the

peripheral device based on the updated configuration information set, the host uses

an “electronic disconnect and reconnect method in accordance with the invention.”

Id. at 5: 36–43. In other words, the “disconnect/connect cycle may be electrically

simulated” so that “a change in the configuration information for a particular

peripheral device may be implemented.” Id. at 2:66–3:1.

50. For example, the peripheral device may have a first configuration that

is an “initial factory configuration of the peripheral device.” Id. at 5:44–48.

“[W]hen the peripheral device is first connected to the USB, the configuration

BLACKBERRY EX. 1012, pg. 23

21

information 70” for a second configuration, including “any microprocessor code

applicable to the peripheral device and the appropriate configuration data for the

peripheral device may be downloaded over the USB into the memory 74 of the

peripheral device 54 as shown by the dashed arrow 78.” Id. at 5:48–54.

51. Then, the “electrical simulation of the disconnection and reconnection

of the peripheral device . . . may be initiated and a re-enumeration process may

occur.” Id. at 5:54–57. “During the re-enumeration process, the newly

downloaded configuration information may be used to reconfigure the USB for the

peripheral device and the host computer may select the appropriate software device

driver 68 for the peripheral device based on the configuration information and load

the device driver into memory 64 as shown by arrow 80.” Id. at 5:57–63.

52. According to the ’770 Patent, a conventional host computer USB

interface circuit monitors the two USB data leads, labeled D+ and D-, to detect a

disconnection and reconnection. Id. at 3:54-55; 6:17–44; Fig. 3.

BLACKBERRY EX. 1012, pg. 24

22

53. As shown in Fig. 3, when the host device and the peripheral device are

connected, 3.3 V from a power bus is supplied to the D+ line. Id. at 6:17–31. “In

operation, the host computer detects the connection of a peripheral device by

monitoring the voltage levels of one of the two USB data leads.” Id. at 6:28–31.

When the peripheral device is physically disconnected from the host computer, the

connection from the 3.3 V supply voltage to the D+ line is broken as well, causing

the host to measure zero volts on the D+ line. Id. at 6:31–36. Based on this

measurement, the host computer “determines that no peripheral device is connected

to the USB port.” Id. When that peripheral device or another peripheral device is

connected to the host computer, “the 1.5 kΩ resistor 110 connected to a supply

voltage of the peripheral device USB interface 101 adds a voltage to the D+ line and

the D+ line at the host computer is pulled to above 3 volts which is detected as a

connected peripheral device by the host computer and the host computer begins the

enumeration process.” Id. at 6:36–44.

54. The ’770 Patent describes simulating the disconnection/reconnection

cycle by using a switch to break the connection between a supply voltage and the D+

line. Id. at 7:10–34; Fig. 4 (reproduced below).

BLACKBERRY EX. 1012, pg. 25

23

55. The switch 130 “may be a semiconductor switch such as a field effect

transistor (FET),” and “may have a control lead 132 which may control the operation

of the electrical switch.” Id. at 6:61–67. By opening the switch, “the D+ data lead

is no longer connected to the supply voltage and the host computer determines that

the peripheral device has been disconnected even though the peripheral device is

still physically connected to the USB.” Id. at 7:13–18. “Similarly, when the

electrical switch is closed again, the D+ data lead is again connected to the supply

voltage and the host computer will detect that the peripheral device has been

reconnected to the USB.” Id. at 7:18–21.

56. According to the ’770 Patent, the “electronic disconnection and

reconnection of the peripheral device, as described above, in combination with the

storage of the configuration information sets on the host computer permits the

BLACKBERRY EX. 1012, pg. 26

24

configuration of the peripheral devices to be changed easily without requiring the

physical disconnection and reconnection of a peripheral device.” Id. at 7:25–29.

57. According to the ’770 Patent, the USB interface system and method

may be a single semiconductor chip, which may be incorporated into a plurality of

peripheral devices. Id. at 3:12–15. “The chip may initially have a generic

configuration (e.g., not specific to a particular peripheral device).” Id. at 3:15–17.

“Then, the appropriate configuration information for a particular peripheral device

and manufacturer may be downloaded to the chip, an electronic simulation of the

disconnection and reconnection of the peripheral device occurs, the peripheral

device is recognized as a new, manufacturer specific peripheral device and the

appropriate software device driver is loaded into the memory of the host computer.”

Id. at 3:17–24.

58. “For example, a plurality of different peripheral devices manufactured

by different companies may each include a USB interface system in accordance with

the invention.” Id. at 5:63–66. “The USB interface system for each peripheral

device is identical (e.g., has a USB interface circuit and a memory) except that each

memory may contain an identification code that is unique to, for example, a

particular manufacturer.” Id. at 5:66–6:3. “When one of the peripheral devices is

connected to the USB and the host computer, the appropriate configuration

information for the peripheral device, based on the identification code, is

BLACKBERRY EX. 1012, pg. 27

25

downloaded over the USB to the memory of the peripheral device and the

appropriate software device driver is loaded into the memory of the host computer.”

Id. at 6:6–7:9.

59. According to the ’770 Patent, one advantage of the electrical

disconnection and reconnection, is that “since the peripheral device is physically

connected to the bus during the electrical simulation, the peripheral device may

utilize the electrical power supplied by the bus to operate the peripheral device.”

Id. at 3:1–3:6; see also 9:17–22 (“[B]ecause the peripheral device is not physically

disconnected from the host computer, the peripheral device may use the electrical

power available over the USB bus . . .”).

VIII. CLAIM CONSTRUCTION

60. I have been informed that claim terms in the present proceeding are to

be given their broadest reasonable interpretation in light of the specification in

which it appears. Therefore, it is my understanding that each claim term of the

asserted patent are to be given their broadest reasonable interpretation, as

understood by one of ordinary skill in the art and consistent with the disclosure of

the asserted patent.

61. Below, I set forth what I believe to be the broadest reasonable

interpretation of certain claim terms in view of the specification, as well as the

factual basis for those opinions. As to the other terms that I do not address in this

BLACKBERRY EX. 1012, pg. 28

26

section, I used and applied the broadest reasonable interpretation of those terms in

view of the specification as understood by one of ordinary skill in the art.

62. “electronically simulate/simulating a physical disconnection and

reconnection of the peripheral device”: using an electronic circuit to perform an

action, such as an electronic reset, associated with physical disconnection and

reconnection of a peripheral device. This interpretation is the broadest reasonable

interpretation that is consistent with the claims of the ’770 Patent and the rest of the

specification. See Ex. 1001, 3:25–35; claims 1, 10, 11, 17, and 18. For example,

independent claim 1 recites a second circuit configured to electronically simulate a

physical disconnection and reconnection of a peripheral device, and dependent

claim 10 recites “wherein said second circuit comprises a reset circuit configured to

reset the first or second configuration of the peripheral device.” Similarly,

independent claim 11 recites (B) electronically simulating a physical disconnection

and reconnection of a peripheral device, and dependent claim 17 recites “wherein

step (B) comprises electronically resetting the configuration of the peripheral

device, controllable by the peripheral device.” Thus, the interpretation of the

“electronically simulating” language must be broad enough so as not to exclude the

reset circuit and resetting operation in the dependent claims The interpretation of

the “electronically simulating” language proposed herein encompasses the claimed

reset circuit and resetting operation in the dependent claims, as well as the other

BLACKBERRY EX. 1012, pg. 29

27

aspects of electronically simulating (such as simulating with a switch) in the claims,

as well as the other aspects of electronically simulating (such as simulating with a

switch) described in the patent (see, e.g., 7:9–22), and is therefore the broadest

reasonable interpretation consistent with the claims.

IX. OVERVIEW OF THE PRIOR ART

A. Patent Owner’s Admitted Prior Art (“APA”)

63. The Background describes the known Universal Serial Bus (USB).

Ex. 1001, 1:50-2:29. Figure 1 of the ’770 patent is labeled Prior Art and is

described as illustrating a standardized USB interface wherein a peripheral device

24 is connected to a host computer system 22 by a USB. Ex. 1001, 4:15–34; Fig. 1

(reproduced below).

BLACKBERRY EX. 1012, pg. 30

28

64. According to the ’770 Patent, it was known that when the peripheral

device is initially connected to the USB, the host detects the peripheral device and an

enumeration process begins in which the host determines the characteristics of the

peripheral device by receiving configuration information from the memory 38

within the peripheral device and configures the USB according to the characteristics

of the peripheral device. Ex. 1001, 1:66–2:4; 4:35–41. It was also known that the

memory 38 for storing configuration information may be an erasable programmable

read only memory (EPROM). Ex. 1001, 4:32–34. The Background further

discloses that new code or configuration information could be downloaded from the

host into the memory of the peripheral device over the USB. Ex. 1001, 2:24–29.

These teachings are consistent with my understanding of the prior art at the time of

the invention. See, e.g., Snyder (Ex. 1015), 3:64–4:10 (reciting “loading a set of

microprocessor instructions into a memory device coupled to a microprocessor of

the microcontroller, the instructions loaded from an external computer”); 9:59–67

(“The storage medium can include, but is not limited to, any type of disk including

floppy disks, optical discs, CD-ROMs, and magneto-optical disks, ROMs, RAMs,

EPROMS, EEPROMS, magnetic or optical cards, or any type of media suitable for

storing electronic instructions.”).

65. Further, according to the ’770 Patent, once the enumeration process

was complete in prior art USB systems, the CPU of the host computer could load an

BLACKBERRY EX. 1012, pg. 31

29

appropriate software device driver for the peripheral device and the software

applications executed by the host computer could communicate with the peripheral

device using the USB. Ex. 1001, 4:51–56. Further, according to the ’770 Patent, it

was known that another software device driver could be loaded after a disconnection

event and connection event. Ex. 1001, 4:56–62.

66. The Background describes that in a USB system, the only opportunity

for associating software device drivers with a peripheral device is at the time when

the peripheral device is plugged into the USB and the enumeration process occurs.2

Ex. 1001, 2: 20–23. “Thus, to alter the configuration or personality of a peripheral

device, such as downloading new code or configuration information into the

memory of the peripheral device, the host computer system must detect a peripheral

device connection or a disconnection and then a reconnection.” Ex. 1001, 2:24–28.

According to the ’770 Patent, the invention is directed to “a system and method for

interfacing to a universal serial bus which avoids these and other problems of known

systems and methods.” Ex. 1001, 2:36–40.

2 As previously noted, the USB 1.0 Specification actually explains that enumeration

is an ongoing activity for the bus and that it is only done at startup time for some

busses. Enumeration was known to be repeated after a “reset,” which is a standard

USB signal defined in the USB 1.0 Specification that does not require unplugging

and plugging back in a USB device.

BLACKBERRY EX. 1012, pg. 32

30

67. Based on the above passages, it is my opinion that the Background and

the description of the prior art figures of the ’770 Patent (Fig. 1, described in 4:15–

62 and Fig. 3) (“Admitted Prior Art” or “APA”) admit that at least the following

features were known in the prior art: (1) detecting a peripheral device connected to a

computer bus; (2) a peripheral device that has a first configuration; (3) downloading

information for a second configuration from the host computer into the peripheral

device over the computer bus; (4) reconfiguring a peripheral device connected by a

computer bus and port to a host computer; (5) physically disconnecting and

reconnecting a peripheral device to reconfigure the peripheral device to a second

configuration based on downloaded information for the second configuration; (6) a

USB connector; (7) a USB peripheral device interface.

68. The APA is consistent with my own recollection and experience in the

field at the time and of other prior art that I am aware of, including, e.g., the prior art

identified in this declaration. Moreover, in my opinion, the totality of the

circumstances indicates that the Applicant considered the detecting and

downloading features to be in the prior art. For example, in the prosecution history

of the ’825 and ’770 Patents, the Applicant did not challenge the PTO’s

characterization of the detecting and downloading features as being Admitted Prior

Art. Ex. 1007, pp. 53–54 and 62–63; Ex. 1008, pp. 70–71 and 90–91. When the

Examiner relied on “Applicant’s Admitted Prior Art” to teach the detecting and

BLACKBERRY EX. 1012, pg. 33

31

downloading features of the claims, Applicant did not challenge this feature, and

instead argued that the feature of electronically simulating a physical disconnection

and reconnection was not taught in the secondary references. Ex. 1007, pp. 62–63;

Ex. 1008, pp. 90–91.

69. Thus, it is my opinion that the features described above are merely

characterizing what was already known in the prior art.

B. U.S. Patent No. 6,073,193 to Yap (“Yap”)

70. Yap teaches a method and apparatus for re-initializing a USB

peripheral device when there is a USB microcontroller busy condition by

disconnecting at least one data line of the USB microcontroller from a USB bus

coupled to the USB microcontroller. Ex. 1002, at Abstract; 2:29–37.

71. Yap teaches a circuit that is configured to electronically simulate the

physical disconnection and reconnection of the peripheral device. Id. at 3:60–4:10;

4:24–38; Figs. 2 & 3. Yap describes that a malfunction may occur in a USB device,

wherein after the device is configured, the host may terminate the function of the

USB device. Ex. 1002, 1:43–54. “When this occurs, (1) the user may have to

re-boot the USB device or physically disconnect and then re-connect the USB

device to allow the host computer to recognize and then re-configure the USB

device….” Ex. 1002, 1:58–2:3. Yap appreciates that this “method defeats the

BLACKBERRY EX. 1012, pg. 34

32

whole purpose of plug-and-play technology,” where devices are automatically

configured by the host computer. Id.

72. Yap discloses that objects of the invention are to recover from a USB

brown out condition “without a need to re-boot the USB device or physically

disconnect and then re-connect the USB device.” Id. at 2:20–24. Thus, Yap

expressly discloses that the disadvantage of having to physically disconnect and

reconnect the USB device to allow the host computer to recognize and reconfigure

the USB device is that it may be inconvenient. Yap describes a method and

apparatus for recovering from a malfunction “without a need to re-boot the USB

device or physically disconnect and then re-connect the USB device.” Ex. 1002,

2:22–24.

73. Figure 2 (reproduced below) of Yap shows a first embodiment where

switching devices S+ and S-, shown as FET transistors, are coupled to the USB data

lines D+ and D-. Opening and closing the lines “emulates the disconnect and

re-connect procedure as specified in the USB specification v1.0, page 116.” Ex.

1002, 4:21–23. The switching devices are also described in Yap as transistors, Id.

at 3:60–4:23, which are a type of solid state switching device.

BLACKBERRY EX. 1012, pg. 35

33

74. Yap teaches that “[b]y disconnecting the D+ and D- data lines via

switching devices S+ and S-, a physical removal of the USB device 10 may be

simulated in order to allow the USB host to re-configure the USB device” Id. at

4:6–10.

75. Yap teaches that opening the switching devices S+ and S- for a duration

greater than 2.5 microseconds and then reconnecting them again simulates the

disconnection and re-connection. Ex. 1002, 4:16–23. This duplicates the

explanation in the USB specification. Ex. 1013 at 116.

76. Fig. 3 of Yap discloses an embodiment in which the switching devices

S+ and S- are located in the microcontroller of the USB peripheral device. Ex.

1002, 4:24–38; Fig. 3 (reproduced below):

BLACKBERRY EX. 1012, pg. 36

34

77. A person of ordinary skill in the art would understand that in each of

Yap’s embodiments, one of the data lines, D+ or D-, must be pulled high through a

1.5KΩ resistor or its equivalent. This is a standard USB requirement. Full-speed

devices, the most commonly available type at the time, would pull up the D+ line to

a 3-3.6V level using a 1.5KΩ resistor or its equivalent. On the host side, D+ and D-

are both connected to ground via a 15KΩ resistor. I have illustrated that

understanding below. Ex. 1013 at 114.

78. Figure 7.5 and 7.6 from the USB 1.0 specification, reproduced below,

illustrate this requirement. Referring to those figures, the left hand boxes of each

figure show resistor elements R1 as rectangles connecting D+ and D- to a ground

voltage, show as the small triangles.

BLACKBERRY EX. 1012, pg. 37

35

USB Host
2

D+

D‐

USB
Peripheral
Logic 8

3.3V ± 0.3V

BLACKBERRY EX. 1012, pg. 38

36

Yap Figure 2 as understood by a PHOSITA in view of the USB specifications

79. I have prepared the illustration immediately above to show, in view of

the USB 1.0 specification, how one of ordinary skill in the art would understand

Figure 2 of Yap in its connection with a USB host.

C. U.S. Patent No. 5,628,028 to Michelson (“Michelson”)

80. Michelson relates to programming and reprogramming the hardware

configuration of a PCMCIA card. Ex. 1003, 1:7–16. Michelson states that a

“typical PCMCIA card includes a standard PCMCIA connector connected to a

PCMCIA interface circuit through a standard PCMCIA bus.” Ex. 1003, 1:28–30.

“[T]he host computer includes a PCMCIA adapter circuit coupled to a PCMCIA

host socket which is mechanically and electrically connected to a PCMCIA card

connector on the PCMCIA card” (Id. at 2:17–20), and “PCMCIA card 14 card

connector 28 is inserted in PCMCIA host socket 18 of host computer 12” (Id. at

3:34–36). “Through a standard PCMCIA bus (i.e., PCMCIA address lines 62, data

lines 64, and control lines 66) connected to PCMCIA connector 28”, the peripheral

PCMCIA device receives data from the host computer. Id. at 4:13–23.

81. Michelson describes that when a PCMCIA card is inserted into the host

socket of a host computer, an adapter in the host recognizes the insertion. Ex. 1003,

3:34–37. The processor in the host reads data in a Card Information Structure (CIS)

BLACKBERRY EX. 1012, pg. 39

37

memory (such as an EEPROM) on the PCMCIA card and configures the host and

the PCMCIA card to operate together. Ex. 1003, 2: 22–27. The CIS data

sufficiently identifies the PCMCIA card to the host to enable the host computer and

the PCMCIA card to operate together and to enable the processor to select the

appropriate application software from the host memory. Ex. 1003, 3:34–49.

82. The CIS data specifically identify the card manufacturer and card

identification (ID) number and includes a variety of set-up information. Ex. 1003,

3:49–54.

83. After an initial configuration, the processor 22 then executes the

application software that corresponds to the PCMCIA card. Ex. 1003, 3:59–61.

The application software causes the processor to either select a default field

programmable gate array (FPGA) programming data file from host memory that

corresponds to a particular application for the PCMCIA card or request input from

the user as to which FPGA programming data file is to be selected from host

memory. Ex. 1003, 3:61–66.

84. The host then downloads the data from the selected FPGA

programming data file through PCMCIA adapter and bus to the PCMCIA interface

chip, which then programs the FPGA by loading the data from the FPGA

programming data file into the FPGA. Ex. 1003, 3:66–4:17. The interface chip

BLACKBERRY EX. 1012, pg. 40

38

initiates reprogramming by a circuit, which sends a “reset” and “reprogram” signal.

Ex. 1003, 4:17–22.

85. Michelson also discloses that the FPGA programming data files can be

supplied with the PCMCIA card or new, additional, or updated FPGA programming

data files can be obtained at a later time. Ex. 1003, 6:61–63.

D. PCCextend 100 User’s Manual (“PCCextend”)

86. PCCextend describes a PCMCIA extender card that simulates a card

removal/insertion cycle. Ex. 1004, p. 1. The extender card is inserted into a

desired slot in a host system. Ex. 1004, p. 1. A PC Card (i.e., a PCMCIA card)

under test is inserted into the card connector of the extender card. Ex. 1004, Fig.

2.0-1 (reproduced below) shows the extender card described in PCCextend.

BLACKBERRY EX. 1012, pg. 41

39

87. The “extender card is a debug tool for PCMCIA development and test.”

Ex. 1004, p. 1. The extender card has test points and a termination and prototype

area to allow access to all PC Card signals and to allow the user to add components

to any signal. Ex. 1004, pp. 3–4.

88. PCCextend teaches that “[i]nsertion and removal of the extender and

PC card should be done with care. The PC Card’s fragile connectors may be broken

or bent if improper force is used. Both card and extender should be inserted straight

without any lateral movement or force.” (Italics and bold omitted.) Ex. 1004, p. 1.

89. PCCextend describes that the extender card has a PCCswitch SW1,

where “the PCCswitch can interrupt the card detect signals (-CD 1 and -CD2) to

simulate a card removal/insertion cycle.” Ex. 1004, p. 3; see also schematic of

extender card’s host side connector on p. 16 (reproduced below).

BLACKBERRY EX. 1012, pg. 42

40

90. PCCextend states that when a card is inserted, card detect lines CD 1

and CD2 may be momentarily interrupted by pressing the PCCswitch. Ex. 1004, p.

4. “Most software drivers will issue a removal beep followed by an insertion beep.”

Id.

91. PCCextend further teaches that the “software may also remove power

from the socket when the card is removed.” Id.

E. U.S. Patent No. 5,862,393 to Davis (“Davis”)

92. Davis describes a system for managing power of a computer with

removable devices such as PCMCIA cards. Ex. 1005, 3:50–53. The PCMCIA

card is described as a “peripheral board or ‘card.’” Id. at 6:15–17. The card is

BLACKBERRY EX. 1012, pg. 43

41

“connected to a computer 8 via a socket 14.” Id. at 4:16–23; 6:15–20; Fig. 1. A

pair of card detect lines are used by a device controller to detect the card connected

to the computer. Id. at 6:17–56; Fig. 1. Davis teaches that, in such devices, a

device insertion signal is normally generated in response to inserting a device into a

socket. Ex. 1005, 2:56–58. Davis further provides an inventive solution “by

taking advantage of the known characteristics of device removal and insertion

signals.” Ex. 1005, 2:66–3:3. More specifically, Davis teaches a first circuit (e.g.,

the device controller) that uses card detect lines 16a, 16b to detect the peripheral

device connected to the port. For instance, Davis recites:

Turning now to FIG. 1, a device 12, such as a peripheral board or “card”, is

connected to a computer 8 via a socket 14. Once connected, a pair of card

detect lines 16a and 16b connect the device 12 to a device controller 18.

In addition, a ground path 19 extends between the ground potential of the

device 12 and to the card controller 18. Pull-up resistors 22a and 22b are

located at the controller-side of the card detect lines 16a and 16b. Each

pull-up resistor 22a and 22b is connected between a power source (Vcc) and a

card detect line, thereby placing a logical high level on the card detect line

when a device 12 is not connected to the socket 14. Although the pull-up

resistors 22a and 22b are shown in FIG. 1 as discrete resistive components,

those skilled in the art will appreciate that the pull-up resistors can be

implemented as devices internal to the device controller 18. A ground

potential is located at the device side of the card detect liner[3] 16a and

3 One of ordinary skill in the art, reading the specification, would have recognized

BLACKBERRY EX. 1012, pg. 44

42

16b, thereby placing a logical low level on both card detect lines when the

device 12 is properly connected to the socket 14. In response to

connecting the device 12 to the socket 14, the logical high-level signal

present on each card detect line 16a and 16b transitions to a logical low

level.

Id. at 6:14–54 (emphasis added).

93. Davis discloses an electronic switch in the card detect line that

electronically simulates a physical disconnection and reconnection of a peripheral

device. More specifically, Davis describes using FET switches to create an

“‘apparent’ device removal event” and an “‘apparent’ device insertion event.” Ex.

1005, 3:32, 43. Fig. 3 (reproduced below) shows the FET transistors, which are

configured to “break[] a signal path between the card detect lines 16a’ and 16b’ and

system advisory lines 25a and 25b.” Id. at 7:23–35. Davis teaches that by

“interrupt[ing] the passage of signals from the card detect lines 16a’ and 16b’ to the

device controller 18,” the FET switches “trick[s] the device controller to take actions

in response to the apparent removal of the device 12.” Id. at 9:45–52.

“Significantly, the device 12 remains inserted within the socket 14, thereby leading

to the presence of logical lower4 levels signals on the card detect lines 16a’ and 16b’

that represent a device insertion event.” Id.; see also 9:18–32.

that “liner” contains a typographical error and should read “lines.”

4 One of ordinary skill in the art, reading the specification, would have recognized

BLACKBERRY EX. 1012, pg. 45

43

94. One event “ ‘tricks’ [a] controller 18 into making a determination that

the device 12 has been removed from the socket 14” and another event “‘tricks’ the

controller 18 into making a determination that the device 12 has been inserted into

the socket 14.” Ex. 1005, 11:15, 47.

95. According to Davis, a sequence of power-down and power-up events

can cause a computer device to enter a default state or a random state based on the

loss of configuration information. Ex. 1005, 1:43–52. If the power management

event is not communicated to the device driver to cause it to supply configuration

information to the device, the only way to return a device that has lost its device

that “lower” contains a typographical error and should read “low.”

BLACKBERRY EX. 1012, pg. 46

44

configuration to a useful state is to restart or re-boot the computer system. Ex.

1005, 1:43–49; 2:21–32. Davis presents a technique that uses the device removal

and insertion signals normally generated by the physical removal or insertion of a

device to advise a driver for a device about a power management event and cause

configuration information to be sent to the device. Ex. 1005, 2:48–65.

96. Davis describes a switching device 23 connected in the card detect lines

16a’ and 16b’ between the peripheral device 12 (via the socket 14) and the device

controller 18 in the host computer as shown in Fig. 2 (reproduced below):

97. Davis describes that “the switching device 23 can be implemented by

an electronic switch, typically a field effect transistor (FET) or a bipolar transistor.”

Ex. 1005, 7:31–34. The switches may be located in the card detect lines 16a’ and

16b’, as shown in Fig. 3, to open and close the signal path. “[A] device removal

BLACKBERRY EX. 1012, pg. 47

45

event can be represented by deactivating the FET and opening this single5 [sic] path.

Likewise, a device insertion event can be represented by activating the FET and

closing this signal path.” Ex. 1005, 10:29–32. Interrupting the passage of signals

from the card detect lines 16a’ and 16b’ to the device controller 18 “trick[s] the

device controller to take actions in response to the apparent removal of the device.”

Ex. 1005, 9:43–51. Closing the switches “effectively ‘tricks’ the controller 18 into

making a determination that the device 12 has been inserted into the socket 14.” Id.

at 11:48–52.

X. UNPATENTABILITY ANALYSIS

A. The Claims of the ’770 Patent

98. I have been asked to review the claims of the ’770 Patent and to provide

an opinion as to whether the subject matter of the claims would have been

anticipated and/or obvious in light of the prior art.

99. The analysis below is presented on a claim-by-claim basis.

Listing of Claims

100. Below is a listing of the claims of the ’770 Patent that are being

petitioned for inter partes review:

5 One of ordinary skill in the art, reading the specification, would have recognized

that “single path” contains a typographical error and should read “signal path.”

BLACKBERRY EX. 1012, pg. 48

46

Claim Claim Language Grounds of Invalidity
1 A system for reconfiguring a peripheral

device having a first configuration
connected by a computer bus to a host
computer, the system comprising:

a first circuit configured to download
information for a second configuration
from the host computer into the peripheral
device over the computer bus; and
a second circuit configured to
electronically simulate a physical
disconnection and reconnection of the
peripheral device to reconfigure the
peripheral device to said second
configuration while supplying electrical
power to said peripheral device.

1. APA in view of Yap
2. Michelson in view of
PCCextend and Davis

2 The system of claim 1, wherein said first
configuration is a generic configuration
assigned to the peripheral device and said
second configuration comprises any one of
a plurality of unique manufacturer
configurations.

1. APA in view of Yap and
Michelson
2. Michelson in view of
PCCextend and Davis

3 The system of claim 2, wherein said first
circuit is configured to (i) read an
identification code from the peripheral
device and (ii) select said second
configuration based on said identification
code.

1. APA in view of Yap and
Michelson
2. Michelson in view of
PCCextend and Davis

5 The system of claim 1, wherein said
computer bus comprises a Universal Serial
Bus.

1. APA in view of Yap
2. Michelson in view of
PCCextend and Davis and
APA

7 The system of claim 5, wherein said
information for said second configuration
comprises (i) configuration data and (ii) an
executable code.

1. APA in view of Yap
2. Michelson in view of
PCCextend and Davis and
APA

10 The system of claim 1, wherein said
second circuit comprises a reset circuit
configured to reset the first or second

1. APA in view of Yap
2. Michelson in view of
PCCextend and Davis

BLACKBERRY EX. 1012, pg. 49

47

Claim Claim Language Grounds of Invalidity
configuration of the peripheral device.

11 A method for reconfiguring a peripheral
device having a first configuration
connected by a computer bus to a host
computer, the method comprising the steps
of:

(A) downloading information for a second
configuration from the host computer into
the peripheral device over the computer
bus; and

(B) electronically simulating a physical
disconnection and reconnection of the
peripheral device to reconfigure the
peripheral device to said second
configuration while supplying electrical
power to said peripheral device.

1. APA in view of Yap
2. Michelson in view of
PCCextend and Davis
3. USB 1.0 Specification

12 12. The method of claim 11, wherein said
first configuration comprises a generic
configuration assigned to the peripheral
device and said second configuration
comprises any one of a plurality of unique
manufacturer configurations.

1. APA in view of Yap and
Michelson
2. Michelson in view of
PCCextend and Davis

13 13. The method of claim 11, wherein step
(A) comprises: reading an identification
code from the peripheral device, and
selecting said second configuration based
on said identification code.

1. APA in view of Yap and
Michelson
2. Michelson in view of
PCCextend and Davis

15 15. The method of claim 11, wherein step
(A) comprises communicating said
information for the second configuration to
the peripheral device over a Universal
Serial Bus.

1. APA in view of Yap
2. Michelson in view of
PCCextend and Davis and
APA

16 16. The method of claim 11, wherein said
information for the second configuration
comprises (i) configuration data and (ii) an
executable code.

1. APA in view of Yap
2. Michelson in view of
PCCextend and Davis

BLACKBERRY EX. 1012, pg. 50

48

Claim Claim Language Grounds of Invalidity
17 17. The method of claim 11, wherein step

(B) comprises electronically resetting the
configuration of the peripheral device,
controllable by the peripheral device.

1. APA in view of Yap
2. Michelson in view of
PCCextend and Davis

18 18. A system for reconfiguring a
peripheral device having a configuration
connected by a computer bus to a host
computer, the system comprising:

a first circuit configured to detect the
peripheral device connected to the
computer bus; and

a second circuit configured to
electronically simulate a physical
disconnection and reconnection of the
peripheral device to reset said
configuration of said peripheral device
while supplying electrical power to said
peripheral device.

1. Yap
2. Michelson in view of
PCCextend and Davis

19 19. The system of claim 18, wherein said
computer bus comprises a Universal Serial
Bus.

1. Yap
2. Michelson in view of
PCCextend and Davis and
APA

20 20. The system of claim 18, wherein said
second circuit comprises a solid state
switch.

1. Yap
2. Michelson in view of
PCCextend and Davis

B. Claim 11 is unpatentable under 35 U.S.C. § 102(b) as being

anticipated by the USB Specification V1.0.

101. The following analysis demonstrates, on a limitation-by-limitation

basis, how claim 11 of the ’770 patent is anticipated by the USB 1.0 Specification

under 35 U.S.C. § 102(b). Claim 11 recites:

BLACKBERRY EX. 1012, pg. 51

49

11. A method for reconfiguring a peripheral device having a first

configuration connected by a computer bus to a host computer, the

method comprising the steps of:

(A) downloading information for a second configuration from the

host computer into the peripheral device over the computer bus; and

(B) electronically simulating a physical disconnection and

reconnection of the peripheral device to reconfigure the peripheral

device to said second configuration while supplying electrical power

to said peripheral device.

102. For example, the USB specification explains that configuration and

reset are part of the standard USB functionality for all devices.

Ex. 1013 at 29

103. Similarly, the USB specification explains that enumeration is a

continuing function for USB systems. “Since the USB allows USB devices to

attach to or detach from the USB at any time, bus enumeration for this bus is an

on-going activity.” Ex. 1013 at 32.

104. Also, the USB specification explains that all USB systems include at

least one USB hub and that a hub can attach and detach ports as well as control the

power to ports and attached devices.

BLACKBERRY EX. 1012, pg. 52

50

Ex. 1013 at 28

Ex. 1013 at 35

105. The USB specification discloses that each host port or hub port

includes 15KΩ pull-down resistors on each of the D+ and D- data lines. Each

connected full-speed device includes a 1.5KΩ pull-up resistor on the D+ data line.

This is the same functionality disclosed in the ’770 patent. This pull-up resistor

circuit is used to detect the presence of a full-speed device on a port. This leads to

BLACKBERRY EX. 1012, pg. 53

51

device enumeration and configuration. The device connects with a default

configuration and then can be reconfigured according to USB 1.0 (Ex. 1013 at

section at 34, section 4.8).

Ex. 1013 at 114.

BLACKBERRY EX. 1012, pg. 54

52

Ex. 1013 at 117.

106. This detection process is repeated whenever a device is powered down

then powered on again, such as via a USB hub.

Ex. 1013 at 117.

Ex. 1013 at 224.

BLACKBERRY EX. 1012, pg. 55

53

Ex. 1013 at 224.

107. After detection, the host reads the configuration information from the

device. “When a USB device is attached, the following actions are undertaken: …

7. The host reads the configuration information from the device by reading each

configuration 0 to n.” Ex. 1013 at 169.

108. The same detection process is repeated after a reset.

Ex. 1013 at 14.

Ex. 1013 at 168.

109. Claim 11 further requires “downloading information for a second

configuration from the host computer into the peripheral device over the computer

bus.” This step is disclosed in the USB 1.0 specification.

110. In general, a USB host must configure a USB device by downloading

configuration information. In some cases, that configuration can persist after a

BLACKBERRY EX. 1012, pg. 56

54

reset or disconnect while in some cases, a new configuration is performed after each

reset or disconnect.

Ex. 1013 at 14.

Ex. 1013 at 16.

Ex. 1013 at 168.

Ex. 1013 at 169.

BLACKBERRY EX. 1012, pg. 57

55

Ex. 1013 at 24.

Ex. 1013 at 24.

Ex. 1013 at 34.

111. Configuration occurs following bus enumeration. “Since the USB

allows USB devices to attach to or detach from the USB at any time, bus

enumeration for this bus is an on-going activity.” Ex. 1013 at 32.

112. Configuration may be repeated with an alternate (second)

configuration.

BLACKBERRY EX. 1012, pg. 58

56

Ex. 1013 at 184.

Ex. 1013 at 202.

Ex. 1013 at 214.

113. Claim 11 further requires “electronically simulating a physical

disconnection and reconnection of the peripheral device to reconfigure the

peripheral device to said second configuration while supplying electrical power to

said peripheral device.” This step is disclosed in the USB 1.0 specification.

114. The USB specification defines a reset process that electronically

simulates a disconnection and reconnection. Devices are required to respond to the

reset signal (an SE0 condition for > 2.5µs) in the same manner as a physical

disconnect and reconnect of a USB device and thereafter will adopt a second

configuration based on the second set of configuration information as described with

respect to the prior claim element.

BLACKBERRY EX. 1012, pg. 59

57

Ex. 1013 at 115.

Ex. 1013 at 165.

Ex. 1013 at 116.

Ex. 1013 at 117.

BLACKBERRY EX. 1012, pg. 60

58

Ex. 1013 at 119.

Ex. 1013 at 224.

Ex. 1013 at 242.

BLACKBERRY EX. 1012, pg. 61

59

Ex. 1013 at 166.

BLACKBERRY EX. 1012, pg. 62

60

Ex. 1013 at 167.

BLACKBERRY EX. 1012, pg. 63

61

Ex. 1013 at 169.

115. The USB Specification also indicates that every USB system contains a

hub. See Ex. 1013 at 28, 35 as cited above.

116. USB hubs are disclosed as being able to disconnect and reconnect

device power using software. This uses a switch to simulate a disconnect and

reconnect of the device.

BLACKBERRY EX. 1012, pg. 64

62

Ex. 1013 at 132.

117. Since each and every element of claim 11 is disclosed in the USB

specification, claim 11 is anticipated.

C. Claims 1, 5, 7, 10, 11, and 15–17 are unpatentable under 35 U.S.C.
§ 103(a) as being obvious over the APA in view of Yap

1. Independent Claim 1

118. Based on my review and analysis, it is my opinion that the combination

of the APA and Yap discloses the subject matter of independent claim 1 and renders

it obvious.

119. Claim 1 recites “A system for reconfiguring a peripheral device having

a first configuration connected by a computer bus to a host computer.” As

discussed above in Sections VI and IX, the APA discloses connecting a peripheral

device to a host computer through a standard USB computer bus. Ex. 1001, 1:50–

2:19; Fig. 1; 4:15–33.

BLACKBERRY EX. 1012, pg. 65

63

120. The APA further discloses that the peripheral device in the prior art can

have a first configuration. Id. at 1:66–2:19. It specifically states that “During the

[enumeration process] query, a data table stored in the peripheral device, which

contains the particular peripheral device’s configuration information, is read from

the peripheral device into the host computer’s memory.” Id. at 2:10–14. In my

opinion, the disclosure of a data table containing the peripheral device’s

configuration information is an example of a first configuration. That is, a first set

of configuration information would define a first configuration for the peripheral

device. Thus, the APA teaches a peripheral device having a first configuration

connected by a computer bus to a host computer.

121. The APA further discloses that it was known in the USB prior art for

the host “to alter the configuration or personality of a peripheral device, such as

downloading new code or configuration information into the memory of the

peripheral device.” Ex. 1001, 2:24–29. Altering the configuration or personality

of the device is an example of reconfiguring a peripheral device. Thus, the APA

discloses reconfiguring of the peripheral device having the first configuration

connected by the computer bus to the host computer.

122. Claim 1 further recites “a first circuit configured to download

information for a second configuration from the host computer into the peripheral

device over the computer bus.”

BLACKBERRY EX. 1012, pg. 66

64

123. The APA teaches that it was known to download new code or

configuration information into the peripheral device over the computer bus, but a

problem with known systems and methods was that this required the host computer

system to detect a peripheral device connection or a disconnection and then a

reconnection:

In a serial bus system, such as the USB, the only opportunity for

associating software device drivers with a peripheral device is at the

time when the peripheral device is plugged into the USB and the

enumeration process occurs. Thus, to alter the configuration or

personality of a peripheral device, such as downloading new code

or configuration information into the memory of the peripheral

device, the host computer system must detect a peripheral

device connection or a disconnection and then a reconnection.

. . .

Thus, there is a need for a system and method for interfacing to a

universal serial bus which avoids these and other problems of

known systems and methods, and it is to this end that the present

invention is directed.

Ex. 1001, 2:20–40 (emphasis added).

124. In my opinion, such downloading requires a “circuit configured to

download information.” The disclosure of “new code or configuration

information” in the APA is an example of “information for a second configuration”

which is downloaded from the host computer into the peripheral device over the

BLACKBERRY EX. 1012, pg. 67

65

computer bus. The new code or configuration information can alter the personality

of the peripheral device to change its requirements or capabilities. The peripheral

device with the altered requirements and capabilities has a second configuration.

Further, one of ordinary skill in the art would have understood from the Background

that the downloading can take place over the computer bus because it states that a

host computer must detect a “peripheral device connection or a disconnection and

then a reconnection” to alter the device’s personality by downloading new code or

configuration information. This language suggests that the peripheral device was

connected to the host for downloading and subsequently disconnected and

reconnected. Further, because the prior art Fig. 1 (reproduced below) shows only a

single computer bus 26 connected to the device, it would have been obvious to one

of ordinary skill in the art for the downloading in the Background to occur over the

computer bus. Thus, the APA discloses the first circuit as recited in claim 1.

BLACKBERRY EX. 1012, pg. 68

66

125. Claim 1 further recites “a second circuit configured to electronically

simulate a physical disconnection and reconnection of the peripheral device to

reconfigure the peripheral device to said second configuration.”

126. The APA discloses that it was known that altering the configuration of

a peripheral device connected to a host computer required the host to detect a

disconnection and then a reconnection to cause the host computer to recognize the

new configuration. Ex. 1001, 2:20–29. The APA also states that this was one of

the “problems of known systems and methods.” Ex. 1001, 2:37–40. It was a

problem because it required a physical disconnection and reconnection of the

peripheral device. Ex. 1001, 2:13–17.

BLACKBERRY EX. 1012, pg. 69

67

127. Yap discloses a solution to the above problem. Yap teaches a circuit

that is configured to electronically simulate the physical disconnection and

reconnection of a peripheral device connected by a USB to a host computer to

reconfigure the peripheral device. Ex. 1002, Fig. 2 (reproduced below) and Fig. 3.

128. Yap describes that a malfunction may occur in a USB device, wherein

after the device is configured, the host may terminate the function of the USB device

for not communicating with the host computer a number of times (called a “brown

out” condition) and not try to re-establish communications. Ex. 1002, 1:43–58.

“When this occurs, (1) the user may have to re-boot the USB device or physically

disconnect and then re-connect the USB device to allow the host computer to

recognize and then re-configure the USB device” Ex. 1002, 1:58–2:3

(emphasis added). Yap appreciates that this “method defeats the whole purpose of

BLACKBERRY EX. 1012, pg. 70

68

plug-and-play technology,” where devices are automatically configured by the host

computer. Id. at 1:66–67.

129. Yap relates to recovering from such a malfunction “without a need to

re-boot the USB device or physically disconnect and then re-connect the USB

device.” Ex. 1002, 2:20–24. Thus, Yap expressly discloses that the disadvantage

of having to physically disconnect and reconnect the USB device to allow the host

computer to recognize and reconfigure the USB device is that it may be

inconvenient.

130. Yap teaches a circuit that is configured to electronically simulate the

physical disconnection and reconnection of the peripheral device to allow the USB

host to reconfigure the USB device using switching devices S+ and S- in the data

lines D+ and D-, respectively, as shown in Figure 2 (reproduced below) and 3:60–

4:23:

BLACKBERRY EX. 1012, pg. 71

69

In FIG. 2, a first embodiment of the USB device 10 of FIG. 1 further

includes switching devices S+ and S-, such as transistors, contact

switches, etc., coupled to positive data (D+) and negative data (D-)

lines of the signal lines 6a. . . . Accordingly, when the USB

micro-controller 6 drives the I/O pin to an appropriate logic state, the

D+ and D- data lines may be opened or shorted via switching devices

S+ and S-. By disconnecting the D+ and D- data lines via

switching devices S+ and S-, a physical removal of the USB

device 10 may be simulated in order to allow the USB host to

re-configure the USB device 10 during a brown out condition. . .

. Firmware in the USB micro-controller 6 keeps the data lines

connected via switching devices S+ and S- during normal operation.

However, when a brown out condition is detected, as will be

described later, the USB micro-controller 6 opens the data lines

via the switching devices S+ and S- for a duration greater than

2.5 micro-seconds and then reconnects them again. This

BLACKBERRY EX. 1012, pg. 72

70

procedure, for example, emulates the disconnect and re-connect

procedure as specified in the USB specification v1.0, page 116.

Id. at 3:60–4:23 (Emphasis added.); see also Fig. 3 (showing embodiment with

switching devices S+ and S- of Figure 2 within the USB microcontroller); Ex. 1002,

4:24–38.

131. Thus, Yap discloses a circuit configured to electronically simulate the

disconnect and reconnect procedure of the USB Specification 1.0 as a solution to the

problem of requiring a physical disconnection and reconnection of the peripheral

device to reconfigure the peripheral device. Ex. 1002, 2:20–25; Ex. 1013 at 116–

169. Like the circuit shown and described in the ’770 Patent, the simulation circuit

in Yap changes the state of bus data lines D+ and D- and is thus an example of a

circuit that simulates a disconnection and reconnection over the computer bus. Yap

discloses that a USB disconnect and reconnect would result in a reconfiguration of

the peripheral device. Ex. 1002, 3:60–4:23; see also Ex. 1001, 1:66–2:4 and 2:20–

29; Ex. 1013 at 116, 169.

132. In my opinion, one of ordinary skill in the art would have been

motivated to modify the system described in the APA to include the electronic

disconnect and reconnect circuit of Yap because Yap discloses that such circuit

solves the same problem described by the APA - namely, the inconvenience of

having to physically disconnect and reconnect a peripheral device to reconfigure the

device. See Ex. 1002, 1:66–2:3 (“[T]he first method defeats the whole purpose of

BLACKBERRY EX. 1012, pg. 73

71

plug-and-play technology”). Further, as Yap indicates, using the switches to

emulate a disconnection and reconnection furthers the aim of plug and play

technology. Ex. 1002, 1:67. Additionally, such modification uses a known

technique (e.g., placing a switch on a data line) to achieve a predictable result (e.g.,

simulation of a disconnect and reconnect over a bus). In my opinion, applying the

switches in Yap to the teachings of the APA would have resulted in a system that

includes a circuit configured to electronically simulate a physical disconnection and

reconnection of the peripheral device to reconfigure the peripheral device to a

second configuration. Modifying the system of the APA to include a circuit that

electronically simulates a disconnection and reconnection of the peripheral device as

taught by Yap would cause the peripheral device to be reconfigured to a second

configuration (i.e., an altered configuration) based on a second set of configuration

information (i.e., the new code and configuration information downloaded to the

device) because the APA states that this is what happens when the host computer

detects a peripheral device disconnection and then a reconnection. Ex. 1001, 2:24–

29.

133. Claim 1 further recites that the second circuit is configured to perform

the electronic simulation “while supplying electrical power to said peripheral

device.”

BLACKBERRY EX. 1012, pg. 74

72

134. Yap teaches that the electronic simulation of a physical disconnection

and reconnection is performed while electrical power is supplied to the peripheral

device. More specifically, Figs. 2 and 3 in Yap (Ex. 1002) show that the USB

micro-controller 6 and USB peripheral logic 8 remain powered by VCC from the

USB host 2 during the electronically simulated physical disconnection and

reconnection, because no switch is placed on the VCC line. Further, because the

micro-controller in the peripheral device is controlling the switches S+ and S- during

the simulated disconnection and re-connection (Ex. 1002, 4:3–9), the peripheral

device must remain powered. For instance, the micro-controller would need power

to turn on the switches S+, S- to simulate a device reconnect. A person of ordinary

skill in the art would understand the teaching from Yap figures 2 and 3 that show

power and ground coming from the USB connector to teach such a bus-powered

device.

135. Thus, it is my opinion that claim 1 would have been obvious over the

combination of APA and Yap.

2. Dependent Claim 5

136. Claim 5 depends on claim 1, which is addressed above in Section

X.C.1, and further recites “wherein said computer bus comprises a Universal Serial

Bus.”

BLACKBERRY EX. 1012, pg. 75

73

137. The APA discloses this feature. For example, the APA discloses that

it was known in the prior art that “a peripheral device is first connected to the USB

and the host computer through a standard USB communications port” Ex.

1001, 1:66–2:4; Fig. 1. The APA also discloses that it was known in the prior art to

download new configuration information to the peripheral device over a USB. Ex.

1001, 2:24–29. That is, a USB interface is the only interface shown to exist

between the host computer and the peripheral device in the prior art system shown in

Fig. 1 of the ’770 patent, and the Background states that the host must detect a

“disconnection and reconnection” of the device to alter the configuration by

downloading, one of ordinary skill in the art would understand that the prior art

downloading by the host referred to in the Background must be able to take place

over the USB interface (i.e., a Universal Serial Bus (USB) and port), and hence the

prior art downloading to the peripheral device must also be able to take place over

the USB interface. Yap also discloses an electronic circuit for electronically

simulating a disconnect and reconnect over a Universal Serial Bus and port. Ex.

1002, Figs. 2–3. Thus, the combination of the APA and Yap would include a

Universal Serial Bus and port as claimed. As discussed above with respect to

independent claim 1 in Section X.C.1, it would also have been obvious to one of

ordinary skill in the art for the downloading in the Background to occur over the

USB and port. Further, it would have been obvious to communicate the

BLACKBERRY EX. 1012, pg. 76

74

information to the peripheral device over the universal serial bus and port in the

APA because, according to the APA, USB is a type of communications port over

which data may be communicated. See, e.g., Ex. 1001, 1:50–65; 4:23-26, 51–56;

Fig. 1.

138. Thus, it is my opinion that claim 5 would have been obvious over the

APA and Yap.

3. Dependent Claim 7

139. Claim 7 depends on claim 5, which is addressed above in Section

X.C.2, and further recites “wherein said information for said second configuration

comprises (i) configuration data and (ii) an executable code.”

140. The APA discloses configuration data and executable code. For

example, the APA discloses that the following was a known problem in the prior art:

Thus, to alter the configuration or personality of a peripheral device,

such as downloading new code or configuration information into

the memory of the peripheral device, the host computer system must

detect a peripheral device connection or a disconnection and then a

reconnection.

Ex. 1001, 2:24–29 (emphasis added), 2:36–40.

141. The “new code” is an example of “executable code” and the new

“configuration information” is an example of “configuration data.” Thus, the

combination of APA and Yap would include a circuit configured to download

configuration data and/or executable code. It would have been obvious to one of

BLACKBERRY EX. 1012, pg. 77

75

ordinary skill in the art that one or both of these types of configuration information

could have been downloaded, depending on what type of configuration changes

were desired. See, e.g., Snyder (Ex. 1015), at 2:41–44; 3:64–4:11; 5:11-22; 6:24–

30; 7:51–67. See also Bedingfield (Ex. 1020), at 2:6–66; 5:42–55; 4:27–3:33;

7:28–33. Thus, claim 7 would have been obvious over the combination of APA and

Yap.

4. Dependent Claim 10

142. Claim 10 depends on claim 1, which is addressed above in Section

X.C.1, and further recites “wherein said second circuit comprises a reset circuit

configured to reset the first or second configuration of the peripheral device.”

143. Yap discloses this feature. For example, Yap discloses:

By disconnecting the D+ and D- data lines via switching devices S+

and S-, a physical removal of the USB device 10 may be

simulated in order to allow the USB host to re-configure the

USB device 10 during a brown out condition.. . . Firmware in the

USB micro-controller 6 keeps the data lines connected via switching

devices S+ and S- during normal operation. However, when a

brown out condition is detected, as will be described later, the USB

micro-controller 6 opens the data lines via the switching devices

S+ and S- for a duration greater than 2.5 microseconds and then

reconnects them again. This procedure, for example, emulates

the disconnect and re-connect procedure as specified in the USB

BLACKBERRY EX. 1012, pg. 78

76

specification v1.0, page 116.[6]

Ex. 1002, 4:6–23 (Emphasis added).

144. The switch circuit that emulates the disconnect and re-connect

procedure in Yap is a reset circuit configured to reset the first or second

configuration of the peripheral device because it is essentially the same structure as

disclosed in the ’770 Patent. See Ex. 1001, Fig. 4; Ex. 1002, Figs. 2 and 3. Also,

Yap discloses “a physical removal of the USB device 10 may be simulated in order

to allow the USB host to re-configure the USB device 10.” Ex. 1002, 4:6–10. Yap

further discloses “[T]he USB micro-controller 6 opens the data lines via the

switching devices S+ and S- for a duration greater than 2.5 micro-seconds and then

reconnects them again. This procedure, for example, emulates the disconnect and

re-connect procedure as specified in the USB specification v1.0, page 116.” Id. at

4:16–23. The USB v 1.0 Specification is incorporated by reference in Yap. Ex.

1002, 1:38–41. (See the analysis of the USB specification above.) Section 9.1.2

of the USB v1 .0 Specification, for instance, teaches that attachment of a USB

device causes a process known as a bus enumeration, during which the host issues a

reset command to reset the configuration of the device. Ex. 1013, p. 169. Thus, a

circuit which electronically simulates a physical disconnection and reconnection, as

6 As cited previously, page 116 of the USB specification (Ex. 1013) discloses a reset

procedure.

BLACKBERRY EX. 1012, pg. 79

77

taught in Yap, includes a reset circuit configured to reset the configuration of the

peripheral device. Also, Yap relates to a USB system, and it was well-known at the

time that opening a data line for a duration greater than 2.5 micro-seconds in a USB

system causes a reset of the current configuration (e.g., a first or second

configuration). Ex. 1013, pp. 116–119, 223, 240.

145. As such, the proposed combination of the APA and Yap discloses a

reset circuit configured to reset the first or second configuration of the peripheral

device.

146. Thus, it is my opinion that claim 10 would have been obvious over the

APA and Yap.

5. Independent Claim 11

147. Claim 11 is a method claim version of system claim 1. That is, claim

11 recites method steps performed by the first and second circuits in claim 1 and

recited in that claim. Based on my review and analysis, it is my opinion that the

combination of the APA in the ’770 patent and Yap renders the subject matter of

independent claim 11 obvious for the same reasons set forth above in Sections X.C.1

with respect to claim 1.

148. Thus, it is my opinion that claim 11 would have been obvious over the

APA and Yap.

BLACKBERRY EX. 1012, pg. 80

78

6. Dependent Claim 15

149. Claim 15 depends on claim 11, which is addressed above in Section

X.C.5, and further recites “wherein step (A) comprises communicating said

information for the second configuration to the peripheral device using a Universal

Serial Bus.” The APA teaches or suggests this feature. First, as acknowledged in

the APA, it was known for a host computer to communicate with the peripheral

device using the USB. Ex. 1001, 4:23–26; 5:1–56. Second, one of ordinary skill

in the art would have understood the terms “communicating” and “downloading” to

be equivalent in view of the specification and claims. See, e.g., Ex. 1001, 4:14–34,

5:1–62; claims 6, 15. As noted above with respect to claim 5 in Section X.C.2, the

APA discloses downloading (i.e., communicating) information for a second

configuration to a peripheral device over a Universal Serial Bus. See supra Section

X.C.2. As such, the combination of the APA and Yap would include this feature.

Further, it would have been obvious to communicate the information to the

peripheral device over the universal serial bus and port in the APA because,

according to the APA, USB is a type of communications port over which data may

be communicated. See, e.g., Ex. 1001, 1:50–65; 4:15–28, 51-56; Fig. 1.

Therefore, claim 15 would have been obvious over the APA and Yap.

BLACKBERRY EX. 1012, pg. 81

79

7. Dependent Claim 16

150. Claim 16 depends on claim 11, which is addressed above in Section

X.C.5, and further recites “wherein said information for the second configuration

comprises (i) configuration data and (ii) an executable code.” Thus, claim 16 is a

method version of system claim 7. As discussed above with respect to claim 7 in

Section X.C.3, the APA discloses downloading configuration data and/or executable

code, and it would have been obvious to download one or both in the combination of

the APA and Yap. Thus, claim 16 would have been obvious over the APA and Yap

for the same reasons discussed with respect to claim 7 in Section X.C.3.

8. Dependent Claim 17

151. Claim 17 depends on claim 11, which is addressed above in Section

X.C.5, and further recites “wherein step (B) comprises electronically resetting the

configuration of the peripheral device, controllable by the peripheral device.”

Claim 17 is a method claim equivalent to system claim 10, and additionally calls for

resetting to be “controllable by the peripheral device.” As discussed above with

respect to claim 10 in Section X.C.4, Yap teaches or suggests electronically resetting

the configuration of the peripheral device.

152. Claim 17 further recites that the resetting is “controllable by the

peripheral device.” However, this feature is also shown by Yap. For example, in

the electronic disconnect and reconnect circuit disclosed in Yap, “the USB

BLACKBERRY EX. 1012, pg. 82

80

micro-controller 6 opens the data lines via the switching devices S+ and S-….” Ex.

1002, 4:18–23. In addition, Figs. 2 and 3 show the control lines for the switching

devices S+ and S- connected to or disposed within the USB micro-controller 6,

which is part of the peripheral device 10. Ex. 1002, Figs 2 and 3. As such, the

electronic disconnect and reconnect, and concomitantly the “reset” discussed above

in connection with claim 10, is “controllable by the peripheral device.”

153. Thus, claim 17 would have been obvious over the APA and Yap.

D. Claims 2, 3, 12, and 13 are unpatentable under 35 U.S.C. § 103(a)
as being obvious over APA in view of Yap and Michelson

1. Dependent Claim 2

154. Dependent claim 2 depends from independent claim 1, which is

addressed above in Section X.C.1, and recites that “said first configuration is a

generic configuration assigned to the peripheral device and said second

configuration comprises any one of a plurality of unique manufacturer

configurations.” Michelson discloses this feature.

155. Michelson discloses a PCMCIA card that may be reprogrammed with

data stored on a host computer through a standard PCMCIA bus. Ex. 1003 at

Abstract. The PCMCIA card includes a Card Information Structure (CIS)

EEPROM 30 that stores CIS data which is read and used by the host computer to

configure the computer and the card to operate together and to load application

software which causes FPGA programming data to be downloaded to the card. Id.

BLACKBERRY EX. 1012, pg. 83

81

at 2:17–44 and 3:34–4:8. The configuration defined at least in part by the CIS data

is an example of a generic configuration in the sense that it provides general

configuration information required to configure the host computer and card to

operate together. The CIS data may include identification of the card manufacturer

and card identification (ID) number. Ex. 1003, 3:49–51.

156. Michelson distinguishes the CIS data from FPGA programming data,

which is downloaded in response to the CIS data, and which is “design-specific

data” that controls the operation of the functional hardware. Ex. 1003, 1:50–57. A

device that only contains the CIS data has a first configuration which comprises a

generic configuration because it is not yet functionally programmed. Michelson

discloses that the CIS data, including the manufacturer identification, is used by the

host computer to select an FPGA programming data file that corresponds to “a

particular application for the PCMCIA card.” Ex. 1003, 3:63–64. Since the

downloaded FPGA programming data is selected based in part on the manufacturer

identification, it would have been obvious for the downloaded data to comprise a

unique manufacturer configuration. Michelson also discloses that “[t]he FPGA

programming data files can be supplied with the PCMCIA card….” (Ex. 1003, 6:61–

62), i.e., by the manufacturer, which one of ordinary skill in the art would

understand to mean that the programming data file may constitute a unique

manufacturer configuration. A plurality of unique manufacturer configurations

BLACKBERRY EX. 1012, pg. 84

82

could exist because it would have been obvious for different manufacturers to each

provide its own unique FPGA programming data. Thus, once the device in

Michelson is programmed with a downloaded application from the manufacturer, it

has one of a plurality of unique manufacturer configurations.

157. It would have been obvious to modify the APA and Yap to include an

initial generic configuration and a downloadable unique manufacturer configuration

as taught by Michelson in order to allow a user to access a large number of

programming data files to program and reprogram the peripheral device without the

need for storing the files on the device. See, e.g., Ex. 1003, 1:65–67 (“The

EPROM(s) required to store the FPGA programming data generally consumes a

large amount of the PCMCIA card real estate”). This involves a simple substitution

of known features in a known manner to achieve predictable results.

158. Further, it would have been obvious to modify the APA and Yap so that

the first configuration is a generic configuration and the second configuration is a

unique manufacturer configuration, as taught by Michelson, because all three

references relate to configuring peripheral devices connected to a host computer by a

computer bus and port, and the modification involves a simple substitution of known

features (i.e., generic and unique manufacturer sets of configuration information) in

a known manner to achieve predictable results. It would also have been obvious for

a first configuration to include a generic configuration so that microcontroller

BLACKBERRY EX. 1012, pg. 85

83

manufacturers could sell microcontrollers with a generic configuration for use in a

variety of peripheral devices to provide only basic functionality, such as allowing

the device to communicate with a host computer, and manufacturers or users of the

peripheral devices could thereafter update the configuration to include a unique

manufacturer configuration providing specific functionality. In fact, it was well

known to do so at the time of the invention. See, e.g., Michelson (Ex. 1003), 1:50–

2:45; Balbinot (Ex. 1014), 3:12–23; 2:21–59; Quinnell (Ex. 1016), p. 48 (describing

“enumeration code that Intel provided [that] allows the evaluation board to respond

to the USB host’s setup commands and receive an address assignment” and “[t]o

turn the evaluation board into a peripheral device, I would have to program the

82930 [an Intel USB microcontroller].”).

159. Thus, it is my opinion that claim 2 would have been obvious over the

combination of the APA, Yap, and Michelson.

2. Dependent Claim 3

160. Dependent claim 3 depends on claim 2, which is addressed above in

Section X.D.1. Claim 3 further recites “wherein said first circuit is configured to (i)

read an identification code from the peripheral device and (ii) select said second

configuration based on said identification code.” Michelson discloses this feature.

161. For example, Michelson discloses that the processor 22 of the host

computer reads CIS data which identifies the PCMCIA card to enable the processor

BLACKBERRY EX. 1012, pg. 86

84

to select the appropriate FPGA programming data (configuration software) “that

corresponds to a particular application for PCMCIA card 14.” Ex. 1003, 3:61–66.

The CIS data includes a card manufacturer identification and card identification (ID)

number. Ex. 1003, 3:49–54. The card manufacturer and/or the card (ID) number

read from the CIS are examples of an identification code under a broadest reasonable

interpretation of the term, and the downloaded programming data is selected based

on the identification information. It would have been obvious to modify the

combination of the APA and Yap to read an identification code from the peripheral

device and select the second configuration based on the identification code as

disclosed by Michelson to ensure that an appropriate configuration is selected.

Moreover, the USB specification itself as incorporated into Yap, discloses reading

an identification code from the peripheral device and selecting a second

configuration based on that identification code. See e.g. ex. 1013 at 24, 169, 184,

and 214

162. Thus, the claim 3 would have been obvious over the APA, Yap, and

Michelson.

3. Dependent Claim 12

163. Claim 12 depends from independent claim 11, which is addressed

above in Section X.C.5. Claim 12 further recites “wherein said first configuration

comprises a generic configuration assigned to the peripheral device and said second

BLACKBERRY EX. 1012, pg. 87

85

configuration comprises any one of a plurality of unique manufacturer

configurations.” Thus, claim 12 is a method version of system claim 2. As

discussed above with respect to claim 2 in Section X.D.1, this feature is disclosed by

Michelson. E.g., Ex. 1003, 3:34–4:8.

164. Thus, claim 12 would have been obvious over APA, Yap, and

Michelson for the same reasons disclosed above in Section X.D.1.

4. Dependent Claim 13

165. Claim 13 depends from claim 12, which is addressed above in Section

X.D.3. Claim 13 further recites “wherein step (A) comprises: reading an

identification code from the peripheral device, and selecting said second

configuration based on said identification code.” Thus, claim 13 is a method

version of system claim 3. As discussed above with respect to claim 3 in Section

X.D.2, this feature is disclosed and/or suggested by Michelson and the USB

specification incorporated into Yap.

166. Thus, claim 13 would have been obvious over the APA, Yap, and

Michelson for the same reasons discussed above with respect to claim 3 in Section

X.D.2.

BLACKBERRY EX. 1012, pg. 88

86

E. Claims 1–3, 10, 11–13, 16–18, and 20 are unpatentable under 35
U.S.C. § 103(a) as being obvious over Michelson in view of
PCCextend and Davis

1. Independent Claim 1

167. As noted above, claim 1 recites a system for reconfiguring a peripheral

device having a first configuration connected by a computer bus to a host computer.

168. Michelson “relates to programming and reprogramming the hardware

configuration of a (PCMCIA) card.” Ex. 1003 1:7–16. “PCMCIA cards are

typically used to add functionality or memory to a personal, portable, or desktop

computer (i.e., host computer)” (1:13–15) and so are “peripheral devices.” Thus,

Michelson discloses a system for reconfiguring a peripheral device. Id.

169. Michelson states that a “typical PCMCIA card includes a standard

PCMCIA connector connected to a PCMCIA interface circuit through a standard

PCMCIA bus.” Ex. 1003, 1:28–30. “[T]he host computer includes a PCMCIA

adapter circuit coupled to a PCMCIA host socket which is mechanically and

electrically connected to a PCMCIA card connector on the PCMCIA card” (Id. at

2:17–20), and “PCMCIA card 14 card connector 28 is inserted in PCMCIA host

socket 18 of host computer 12” (Id. at 3:34–37). “Through a standard PCMCIA bus

(i.e., PCMCIA address lines 62, data lines 64, and control lines 66) connected to

PCMCIA connector 28”, the peripheral PCMCIA device receives data from the host

computer. Id. at 4:13–23. The PCMCIA bus is an example of a computer bus. A

BLACKBERRY EX. 1012, pg. 89

87

“port” is an interface between a host computer and a peripheral, and the socket is an

example of a port of the host computer. Thus, Michelson teaches a PCMCIA

peripheral device connected by a PCMCIA bus to a port of a host computer.

170. Further, the PCMCIA card in Michelson has a first configuration as

explained above in regard to claim 2 in Section X.D.1. Thus, Michelson discloses a

system for reconfiguring a peripheral device having a first configuration connected

by a computer bus to a host computer.

171. Claim 1 further recites “a first circuit configured to download

information for a second configuration from the host computer into the peripheral

device over the computer bus.”

172. Michelson teaches this feature. After the host computer 12 and

PCMCIA card 14 are configured by information in the CIS, as discussed previously,

programming data is downloaded by a processor (which is an example of a first

circuit) to the PCMCIA card:

Processor 22 then executes (step 50) the application software 40

resident in host memory 24 that corresponds to PCMCIA card 14.

The application software 40 causes the processor to either select a

default FPGA programming data file 42 from host memory 24 that

corresponds to a particular application for PCMCIA card 14 or

request input from the user as to which FPGA programming data file

42 is to be selected from host memory 24. Processor 22 then sends

(step 52) the data from the selected FPGA programming data

BLACKBERRY EX. 1012, pg. 90

88

file 42 through PCMCIA adapter 16 to PCMCIA interface chip

26. Interface chip 26 then programs (step 54) a field

programmable gate array (FPGA, not shown in FIG. 1) within

card controller 32 by loading the data from the FPGA

programming data file 42 into the FPGA. Where the application

software causes the processor to select a default data programming

file, PCMCIA card 14 and host computer 12 are made operable (step

56) without user intervention.

Ex. 1003, 3:59–4:8 (emphasis added); steps 50–56 of Figure 2.

173. The information is downloaded over the bus: “Through a standard

PCMCIA bus (i.e., PCMCIA address lines 62, data lines 64, and control lines 66)

connected to PCMCIA connector 28, interface chip 26 receives FPGA programming

data from host computer 12 (FIG. 1).” Id. at 4:13–17. The default or user-selected

FPGA programming data file 42, which is downloaded from the host computer into

the FPGA in the PCMCIA card over the PCMCIA bus in Michelson is an example of

“information for a second configuration.” The discussion above with respect to

FPGA programming data is sufficient to show reconfiguring to a second

configuration, but it was also well known at the time that a host could change the

CIS in a PCMCIA peripheral device, which would also result in a reconfiguration to

a second configuration. Ex. 1020, 7:28–33 (“In addition, in the prior art, the

PCMCIA attribute structure is typically pre-defined and non-changeable, e.g., a

read-only memory (ROM) is used to provide the PCMCIA attribute structure.

BLACKBERRY EX. 1012, pg. 91

89

However, the use of shared memory 130 allows for a software definable PCMCIA

card information structure that can be dynamically altered by CPU 170.”). Thus,

Michelson discloses a first circuit configured to download information for a second

configuration from the host computer into the peripheral device over the computer

bus.

174. Claim 1 further recites “a second circuit configured to electronically

simulate a physical disconnection and reconnection of the peripheral device to

reconfigure the peripheral device to said second configuration”

175. Michelson discloses that, after the processor downloads FPGA

programming data file 42 through PCMCIA adapter 16 to PCMCIA interface chip

26, the FPGA is “reset” to enable reprogramming:

Interface chip 26 initiates FPGA 60 programming through FPGA

programming circuit 68, which drives reset line 63 and reprogram

line 65, and completes FPGA 60 programming by loading the FPGA

programming data into FPGA 60 through peripheral data lines 72.

Id. at 4:17–22 (emphasis added).

176. Thus, Michelson teaches the limitation of “a second circuit configured

to electronically simulate a physical disconnection and reconnection of the

peripheral device to reconfigure the peripheral device to said second configuration”

in at least two ways.

BLACKBERRY EX. 1012, pg. 92

90

177. First, the broadest reasonable interpretation of the “electronically

simulate a physical disconnection and reconnection” claim language covers the

“reset” operation in Michelson, as discussed above in Section X.C.4. The reset line

63 is part of a reset circuit. As noted above in Section X.C.4, the ’770 Patent

specifies in claim 10 that the second circuit configured to electronically simulate a

disconnect and reconnect over the bus can be a reset circuit. The “reset” of the

FPGA 60 is an example of an “electronic reset” because FPGA is an electronic

circuit and operates in response to an electrical reset signal. Ex. 1003 4:17–22.

The “reset” of Michelson “electronically simulat[es] a physical disconnection and

reconnection of the peripheral device to reconfigure the peripheral device to a

second configuration based on the second set of configuration information” because

a “reset” is associated with physical disconnection and reconnection of a PCMCIA

card over a bus, Ex. 1008, pp. 4-6 to 4-7 and 4-10 to 4-12, and the reset reconfigures

the FPGA 60 to the configuration information downloaded over the PCMCIA bus,

id. at pp. 4-10 to 4-11, 5-20; Ex. 1019, pp. 3-20 to 3-24; Ex. 1020, 2:51–3:4; 5:66–

6:9; Ex. 1003, 4:17–22. Also, the reset line 63 in Michelson is part of a reset

circuit, and the ’770 Patent specifies that the second circuit can be a reset circuit.

Thus, the disclosure of a reset circuit in Michelson teaches a circuit configured to

electronically simulate a physical disconnection and reconnection of the peripheral

device to reconfigure the peripheral device to a second configuration.

BLACKBERRY EX. 1012, pg. 93

91

178. Second, even if the above limitation is construed more narrowly to

include a switch, which it should not be, PCCextend teaches that it was known in the

prior art to provide a switch to simulate a card removal (disconnect) and insertion

(reconnect) cycle for PCMCIA cards. PCCextend describes a “PCMCIA extender

card” which is inserted between a PC card under test and a socket in the host system.

Ex. 1004, p. 1. PCCextend states: “Caution: Insertion and removal of the extender

and PC card should be done with care. The PC Card’s fragile connectors may be

broken or bent if improper force is used.” Id., at p. 1. PCCextend describes that

the extender card has a PCCswitch SW1, where “the PCCswitch can interrupt the

card detect signals (-CD 1 and -CD2) to simulate a card removal/insertion cycle.”

Id. at p. 3. Using the PCCSwitch to interrupt the card detect signals on the bus in

PCCextend is an example of electronically simulating a disconnect and reconnect.

It would have been obvious to a person of ordinary skill in the art to modify the card

of Michelson to include a switch on the card detect lines as taught by PCCextend to

reprogram the card because it was well-known that PCMCIA cards could be

reprogrammed by removing and reinserting the card, and PCCextend teaches that

the PCCswitch can be used to simulate such a removal/insertion cycle. Ex. 1003,

1:46–49; Ex. 1004, p. 3.

179. Further, it would have been obvious to a person of ordinary skill in the

art at the time of the invention to apply the use of the PCCswitch in PCCextend to

BLACKBERRY EX. 1012, pg. 94

92

the reprogramming operation in Michelson to avoid the need to physically

disconnect and reconnect the card in view of the fragile nature of the connectors.

Simulating a card removal/insertion cycle using the PCCSwitch causes the

peripheral device to be reconfigured. Ex. 1017, pp. 119–123; Ex. 1018, 4-10 to

4-11; 5-21. See also Ex. 1019, p. 3–21.

180. It was well known that PCMCIA cards could be reprogrammed by

removing and re-inserting the card. Simulating a card removal/insertion cycle

using the PCCSwitch causes the peripheral device to be reconfigured. Id.; see also

Ex. 1017, pp. 119–123; Ex. 1018, 4-10 to 4-11; 5-21. See also Ex. 1019, p. 3–21.

It would have been obvious to a person of ordinary skill in the art to modify the card

of Michelson to include a switch on the card detect lines as taught by PCCextend to

reprogram the card because it was well-known that PCMCIA cards could be

reprogrammed by removing and reinserting the card, and PCCextend teaches that

the PCCswitch can be used to simulate such a removal/insertion cycle. Ex. 1003,

1:46–49 and Ex. 1004, p. 3.

181. To the extent the term may be more narrowly construed to require an

electronic switch, which it should not, Davis discloses an electronic switch in the

card detect line that electronically simulates a physical disconnection and

reconnection of a peripheral device over a PCMCIA bus. Davis states that “the

switching device 23 can be implemented by an electronic switch, typically a field

BLACKBERRY EX. 1012, pg. 95

93

effect transistor (FET) or a bipolar transistor.” Ex. 1005, 7:31–34. Davis states

that “a device removal event can be represented by deactivating the FET and

opening this single[7] path. Likewise, a device insertion event can be represented by

activating the FET and closing this signal path.” Ex. 1005, 10:29–32. Interrupting

the card detect signals on the bus using the FET switch of Davis is another example

of simulating a disconnect and reconnect over a bus. It would have been obvious to

use an electronic switch in the combination of Michelson and PCCextend to

simulate a disconnect and reconnect as taught by Davis to avoid the need for

physically disconnecting and reconnecting the device or pushing a button to activate

a switch.

182. Moreover, one of ordinary skill in the art would have been motivated to

substitute the FET switch in Davis for the manual switch in PCCextend, as choosing

the type of switch to simulate a physical disconnection would have been merely a

matter of design choice. In either case, the simulated disconnection/reconnection

would cause the device to be reconfigured.

183. Claim 1 further recites that the second circuit is configured to

electronically simulate the physical disconnection and reconnection “while

supplying electrical power to said peripheral device.”

7 One of ordinary skill in the art, reading the specification, would have recognized

that “single” contains a typographical error and should read “signal.”

BLACKBERRY EX. 1012, pg. 96

94

184. Both Michelson and PCCextend teach that the electronic simulation of

a physical disconnection and reconnection is performed while electrical power is

supplied to the peripheral device.

185. As noted above, the reset in Michelson meets the electronic simulation

of a physical disconnection/reconnection limitation in claim 1. In Michelson, a

circuit 68 in the peripheral device drives the reset line 63 to reprogram the device.

Ex. 1003, 4:17–22; 5:45–5 1; and FIG. 3. It was well-known at the time of

Michelson for a host computer to power a PCMCIA peripheral device over the

PCMCIA bus. Since the reset process disclosed in Michelson occurs in the

peripheral device, it does not affect the supply of power to the device over the

PCMCIA bus. In fact, the device in Michelson must remain powered by the bus in

order to perform the reset process. Id. Thus, Michelson teaches electronic

simulation of a physical disconnection/reconnection while supplying electrical

power to the peripheral device.

186. PCCextend indicates that power is supplied to the PCCextend100

board, which is part of the peripheral device, through VCC supply pins. Ex. 1004 at

3. For instance, a power LED on the board lights up when “a Vcc of greater than

3.5V is present.” Id. Further, PCCextend shows that the Vcc pins are not affected

by the PCCSwitch SW1. Id. at pp. 15–16. PCCextend advises that “[t]he software

may also remove power from the socket when the card is removed,” Id. at 5

BLACKBERRY EX. 1012, pg. 97

95

(emphasis added), which one of ordinary skill in the art would interpret to mean that

there are circumstances where power is not removed from the socket and, thus,

supplied to the device when the PCCSwitch is used to simulate a physical

disconnection and reconnection. As such, the proposed combination of Michelson,

PCCextend, and Davis would include this feature. Alternatively, it would have

been obvious for the proposed combination to include this feature so that the

peripheral device could perform a reset or other functions requiring power.

187. Thus, it is my opinion that claim 1 would have been obvious over

Michelson, PCCextend, and Davis.

2. Dependent Claim 2

188. Claim 2 depends from independent claim 1, which is addressed above

in Section X.E.1. With respect to the additional limitations set forth in claim 2, as

noted in Section X.D.1, Michelson teaches the limitation that “said first

configuration is a generic configuration assigned to the peripheral device and said

second configuration comprises any one of a plurality of unique manufacturer

configurations.”

189. As such, the combination of Michelson, PCCextend, and Davis would

include this feature. Thus, claim 2 would have been obvious over the combination

of Michelson, PCCextend, and Davis.

BLACKBERRY EX. 1012, pg. 98

96

3. Dependent Claim 3

190. Claim 3 depends from claim 2, which is addressed in Section X.E.2,

and further recites that “said first circuit is configured to (i) read an identification

code from the peripheral device and (ii) select said second configuration based on

said identification code.” As noted above in Section X.D.2, Michelson discloses

this feature, and/or it would have been obvious in view of Michelson. As such, the

combination of Michelson, PCCextend, and Davis would include this feature.

191. Thus, it is my opinion that claim 3 would have been obvious over

Michelson, PCCextend, and Davis.

4. Dependent Claim 10

192. Claim 10 depends from independent claim 1, which is addressed above

in Section X.E.1. With respect to the additional limitations set forth in claim 10 that

“wherein said second circuit comprises a reset circuit configured to reset the first or

second configuration of the peripheral device,” this limitation is taught by

Michelson for the reasons discussed above in Section X.E.1 with respect to claim 1.

Also, it was well known at the time that a card removal and insertion event as

simulated by PCCextend and Davis would result in a reset. Ex. 1018, pp. 4-6 to

4-7; see also id. at p. 4-11. Further, it was well known that resetting a PCMCIA

device included resetting a configuration of the device (i.e., a first or second

configuration). See, e.g., Ex. 1017, pp. 119–126; Ex. 1018, pp. 4-6 to 4-7, 4-10 to

BLACKBERRY EX. 1012, pg. 99

97

4-11, 5-21; Ex. 1019, pp. 3-14 to 3-16, 3-20 to 3-24, 3-28 to 3-29, 5-79, B-14; Ex.

1020, 2:51–3:4; 5:66–6:9. As such, the combination of Michelson, PCCextend,

and Davis would include this feature.

193. Thus, claim 10 would have been obvious over Michelson, PCCextend,

and Davis.

5. Independent Claim 11

194. Claim 11 is a method claim version of system claim 1. That is, claim

11 recites method steps performed by the first and second circuits in claim 1 and

recited in that claim. Thus, claim 11 would have been obvious over Michelson,

PCCextend, and Davis for the same reasons as claim 1, as discussed in Section X.E.1

above.

6. Dependent Claim 12

195. Claim 12 depends from independent claim 11, which is addressed

above in Section X.E.5. Claim 12 further recites “wherein said first configuration

comprises a generic configuration assigned to the peripheral device and said second

configuration comprises any one of a plurality of unique manufacturer

configurations.” Thus, claim 12 is a method version of system claim 2. As

discussed above with respect to claim 2 in Section X.E.2, this feature is disclosed by

Michelson, and/or it would have been obvious in view of Michelson. Ex. 1003,

3:34–4:8. Thus, claim 12 would have been obvious over Michelson, PCCextend,

BLACKBERRY EX. 1012, pg. 100

98

and Davis for at least the same reasons discussed above with respect to claim 2 in

Section X.E.2.

7. Dependent Claim 13

196. Claim 13 depends from claim 12, which is addressed above in Section

X.E.6. Claim 13 further recites “wherein step (A) comprises: reading an

identification code from the peripheral device, and selecting said second

configuration based on said identification code.” Thus, claim 13 is a method

version of system claim 3. As discussed above with respect to claim 3 in Section

X.E.3, this feature is disclosed by Michelson and/or would have been obvious in

view of Michelson. Thus, claim 13 would have been obvious over Michelson,

PCCextend, and Davis for the same reasons discussed above with respect to claim 3

in Section X.E.3.

8. Dependent Claim 16

197. Claim 16 depends from independent claim 11, which is addressed

above in Section X.E.5. Claim 16 further recites “wherein said information for the

second configuration comprises (i) configuration data and (ii) executable code.”

Michelson discloses this feature.

198. Michelson discloses downloading a FPGA programming data file into

the card controller FPGA 60 of the PCMCIA device. E.g., Ex. 1003, 3:59–4:22;

BLACKBERRY EX. 1012, pg. 101

99

5:36–50. Michelson discloses that the FPGA programming data file controls the

functionality of the card controller FPGA 60. Id. at 5:51–6:62.

199. One of ordinary skill in the art would understand that the FPGA

programming data file disclosed in Michelson is a combination of both

“configuration data” (because it includes data) and “executable code” (because it

programs the FPGA for execution). It would also have been obvious to one of

ordinary skill in the art to include additional information, such as a version number,

in the FPGA programming data file to allow the host to determine the device

characteristics. Furthermore, it would have been obvious to one of ordinary skill in

the art to program the peripheral device in Michelson with

microprocessor-executable software or firmware containing data and code, instead

of with FPGA programming data file, because these were both well-known ways of

programming a peripheral device at the time and were known substitutes that

yielded predictable results. See, e.g., Snyder (Ex. 1015), 9:18–20 (“Although in the

preferred embodiment the USB microcontroller 8 includes several FPGAs, RAM

and EEPROMs … the invention may be implemented using a conventional general

purpose digital computer or microprocessor programmed according to the teachings

… [and a]pproriate software coding can readily be prepared.”). Moreover, the

APA of the ’770 Patent admits that it was known in the prior art “to alter the

configuration or personality of a peripheral device, such as downloading new code

BLACKBERRY EX. 1012, pg. 102

100

or configuration information into the memory of the peripheral device.” Ex.

1001, 2:24–28. It would have been obvious to include one or both of the new code

and configuration information, depending on the type of configuration change

desired. See also Bedingfield (Ex. 1020), 2:6–66; 5:42–55; 4:27–3:33; 7:28–33.

As such, it would have been obvious to include the feature in the combination of

Michelson, PCCextend, and Davis. Thus, claim 16 would have been obvious over

the combination of Michelson, PCCextend, and Davis.

9. Dependent Claim 17

200. Claim 17 depends from independent claim 11, which is addressed

above in Section X.E.5. With respect to the additional feature set forth in claim 17

that “wherein step (B) comprises electronically resetting the configuration of the

peripheral device,” Michelson discloses and/or suggests this feature, as discussed

above in Section X.E.4.

201. Claim 17 additionally recites that the resetting is “controllable by the

peripheral device.” Michelson discloses this feature as well. More specifically,

Michelson discloses that after the processor downloads FPGA programming data

file 42 through PCMCIA adapter 16 to PCMCIA interface chip 26, the FPGA is

“reset” by FPGA programming circuit 68 to enable reprogramming:

Referring to FIG. 3, card controller 32 includes a PCMCIA card

controller FPGA 60 (e.g., part number XC3042TQ100-100,

manufactured by Xilinx, as described in Xilinx Programmable Logic

BLACKBERRY EX. 1012, pg. 103

101

Data Book, which is hereby incorporated by reference). … Interface

chip 26 initiates FPGA 60 programming through FPGA

programming circuit 68, which drives reset line 63 and reprogram

line 65, and completes FPGA 60 programming by loading the FPGA

programming data into FPGA 60 through peripheral data lines 72.

Ex. 1003, 4:9–22.

202. The configuration of the card controller FPGA 60 is electronically

“reset” by a reset signal on line 63 from the programming circuit 68 in response to

the interface chip 26. Id. Programming circuit 68 is part of the PCMCIA card 14.

See, e.g., Ex. 1003, Fig. 3, 4:9–22. Thus, the “reset” is “controllable by the

peripheral device.”

203. Further, PCCexend teaches a PCCSwitch which also resets the

configuration by simulating a device removal and attachment. Ex. 1004, pp. 1, 3,

and 4. The PCCSwitch is part of a circuit on the peripheral device, and the reset is

thus controllable by the peripheral device. Further, one of ordinary skill in the art

would have recognized that in this context, whether a switch is controlled by the host

or by the peripheral device is purely a matter of design choice and that controlling

the switch from the peripheral device provides no new and unexpected results.

204. For at least these reasons, the combination of Michelson, PCCextend,

and Davis would include this feature. Thus, claim 17 would have been obvious

over the combination of Michelson, PCCextend, and Davis.

BLACKBERRY EX. 1012, pg. 104

102

10. Independent Claim 18

205. Claim 18 recites “A system for reconfiguring a peripheral device

having a configuration connected by a computer bus to a host computer.”

Michelson “relates to programming and reprogramming the hardware configuration

of a (PCMCIA) card.” Ex. 1003, 1:7–16. A PCMCIA card is “typically used to

add functionality or memory to a personal, portable, or desktop computer (i.e., a host

computer),” id. at 1:13–15, and is thus a type of peripheral device. The system for

“[r]eprogramming the hardware configuration” teaches a system for “reconfiguring”

a peripheral device because it changes the configuration of the card. Thus,

Michelson teaches a system for reconfiguring a peripheral device.

206. Michelson states that a “typical PCMCIA card includes a standard

PCMCIA connector connected to a PCMCIA interface circuit through a standard

PCMCIA bus.” (Ex. 1003, 1:28–30) and “the host computer includes a PCMCIA

adapter circuit coupled to a PCMCIA host socket which is mechanically and

electrically connected to a PCMCIA card connector on the PCMCIA card” (Ex.

1003, 2:17–20), and “PCMCIA card 14 card connector 28 is inserted in PCMCIA

host socket 18 of host computer 12,” id. at 3:34–37. “Through a standard PCMCIA

bus (i.e., PCMCIA address lines 62, data lines 64, and control lines 66) connected to

PCMCIA connector 28”, the peripheral PCMCIA device receives data from the host

computer. Id. at 4:13–23. Fig. 1 of Michelson shows a PCMCIA card connected

BLACKBERRY EX. 1012, pg. 105

103

to a socket of a host computer. Fig. 3 shows a PCMCIA card having a PCMCIA

bus (lines 62, 64, 66) connected to the connector 28. The PCMCIA bus is an

example of a computer bus. Thus, Michelson discloses a peripheral device

“connected by a computer bus to a host computer.”

207. Michelson discloses that the PCMCIA card has a first configuration,

such as a generic configuration that is defined at least in part by the Card

Information Structure (CIS) data, which is read by the host computer to configure

the computer and the card to operate together enable the host processor 22 to select

the appropriate application software 40 from the host memory 24. Ex. 1003, 3:34–

58. Thus, Michelson teaches that the peripheral device has “a configuration.”

208. Claim 18 further recites a “first circuit configured to detect the

peripheral device connected to the computer bus.” Michelson discloses this

feature.

209. For example, Michelson discloses that, “when PCMCIA card 14 card

connector 28 is inserted in PCMCIA host socket 18 of host computer 12, PCMCIA

adapter 16 recognizes (step 44) the insertion” Ex. 1003, 3:34–37.

210. Claim 18 further recites a “second circuit configured to electronically

simulate a physical disconnection and reconnection of the peripheral device to reset

said configuration of said peripheral device.”

BLACKBERRY EX. 1012, pg. 106

104

211. As noted above in Section X.E.1, Michelson discloses that, after the

processor downloads FPGA programming data file 42 through PCMCIA adapter 16

to PCMCIA interface chip 26, the FPGA is “reset” to enable reprogramming. Ex.

1003, 4:17–22. The electronic reset of Michelson is an example of “electronically

simulating a physical disconnection and reconnection of the peripheral device,” as

discussed above in Section X.E.1. The electronic reset resets the configuration of

the peripheral device, because it is part of the reprogramming of the peripheral

device.

212. Thus, Michelson teaches the feature of “a second circuit configured to

electronically simulate a physical disconnection and reconnection of the peripheral

device to reset said configuration of said peripheral device.”

213. Additionally, even if the above limitation is construed more narrowly,

which it should not be, PCCextend teaches that it was known in the prior art to

provide a switch to simulate a card removal (disconnect) and insertion (reconnect)

cycle for PCMCIA cards to reprogram the card. Ex. 1003, pp. 3–4 (Figure 2.3-1

omitted). PCCextend describes a “PCMCIA extender card” which is inserted

between a PC card under test and a socket in the host system. Ex. 1004, p. 1.

PCCextend states: “Caution: Insertion and removal of the extender and PC card

should be done with care. The PC Card’s fragile connectors may be broken or bent

if improper force is used.” Ex. 1004, p. 1. PCCextend describes that the extender

BLACKBERRY EX. 1012, pg. 107

105

card has a PCCswitch SW1, where “the PCCswitch can interrupt the card detect

signals (-CD 1 and -CD2) to simulate a card removal/insertion cycle.” Id. at p. 3.

Using the PCCSwitch to interrupt the card detect signals on the bus in PCCextend is

an example of electronically simulating a disconnect and reconnect.

214. As noted above in Section X.E.1, it would have been obvious to a

person of ordinary skill in the art at the time of the invention to apply the use of the

PCCswitch in PCCextend the reprogramming operation in Michelson, such as to

avoid the need to physically disconnect and reconnect the card in view of the fragile

nature of the connectors. Simulating a card removal/insertion cycle using the

PCCSwitch causes the peripheral device to be reconfigured. Id.; see also Ex. 1017,

pp. 119–123; Ex. 1018, 4-10 to 4-11; 5-21. See also Ex. 1019, p. 3-21.

215. Furthermore, as noted above in Section X.E.1, to the extent the

electronically simulate term may be construed even more narrowly to require an

electronic switch in the card detect line that electronically simulates a physical

disconnection and reconnection over a PCMCIA bus, Davis discloses a switch in the

form of a FET that electronically simulates a physical disconnection and

reconnection of a peripheral device. Ex. 1005, 7:31–34; 8:31–34.

216. Davis discloses controlling the opening and closing of the switch with

the power management module to simulate a disconnection (removal) and

reconnection (insertion). Ex. 1005, 9:41–52 and 10:1–20. Davis states that “a

BLACKBERRY EX. 1012, pg. 108

106

device removal event can be represented by deactivating the FET and opening this

single path. Likewise, a device insertion event can be represented by activating the

FET and closing this signal path.” Id. at 10:29–32. Interrupting the card detect

signal on the bus using the FET switch of Davis is another example of simulating a

disconnect and reconnect. It would have been obvious to use an electronic switch

in the combination of Michelson and PCCextend to avoid the need for physically

disconnecting and reconnecting the device or pushing a button to activate a switch.

217. It was well known at the time that removal/insertion of a PCMCIA card

would result in a reset of the card. (Ex. 1017, pp. 119–123; Ex. 1018, 4-10 to 4-11;

5-21. See also Ex. 1019, p. 3-21). Thus, modifying Michelson to include card

detect line switches as taught by PCCextend and Davis would cause the

configuration of the card to be reset.

218. As noted above in Section X.E.1, one of ordinary skill in the art would

have been motivated to substitute the FET switch in Davis for the manual switch in

PCCextend, as choosing the type of switch to simulate a physical disconnection and

reconnection would have been merely a matter of design choice. In either case, the

simulated disconnection/reconnection would cause the configuration of the device

to be reset.

BLACKBERRY EX. 1012, pg. 109

107

219. Claim 18 further recites that the second circuit is configured to

electronically simulate the physical disconnection and reconnection “while

supplying electrical power to said peripheral device.”

220. As noted above in Section X.E.1, Michelson discloses electronically

simulating a physical disconnection/reconnection while supplying power to the

peripheral device.

221. Further, as stated above in Section X.E.1, PCCextend discloses

simulating a physical disconnection and reconnection of the peripheral device by

changing the voltage on a card detect line without removing power to the peripheral

device.

222. As such, it would have been obvious to one of ordinary skill in the art to

combine Michelson, PCCextend, and Davis to perform the electronic simulation of a

disconnection and reconnection of a peripheral device “while supplying electrical

power to said peripheral device” for the same reasons discussed above in Section

X.E.1 in connection with claim 1.

223. Thus, it is my opinion that claim 18 would have been obvious over

Michelson, PCCextend, and Davis.

11. Dependent Claim 20

224. Claim 20 depends from independent claim 18, which is addressed

above. With respect to the additional limitation set forth in claim 20 that “said

BLACKBERRY EX. 1012, pg. 110

108

second circuit comprises a solid state switch,” Davis teaches that the second circuit

configured to electronically simulate a physical disconnection and reconnection

comprises a solid state switch (e.g., a FET). Ex. 1005, 7:23–35; 10:21–39; Fig. 3.

225. It would have been obvious to use a solid state switch in the

combination of Michelson and PCCextend to electrically simulate a physical

disconnection and reconnection of a PCMCIA card in view of Davis as doing so

would merely be applying a well-known prior art switching component in its

intended role (i.e., as a switch that simulates a physical disconnection) to yield

predictable results. Thus, claim 20 would have been obvious over Michelson,

PCCextend, and Davis.

F. Claims 5, 7, 15, 19 are unpatentable under 35 U.S.C. § 103(a) as
being obvious over Michelson in view of PCCextend, Davis, and
the APA

1. Dependent Claim 5

226. Claim 5 depends on claim 1, which is addressed above in Section

X.E.1, and further recites “wherein said computer bus comprises a Universal Serial

Bus.”

227. With respect to the additional limitations set forth in claim 5,

Michelson describes communicating a second set of configuration information to

the peripheral device over a PCMCIA bus (e.g., Ex. 1003, 4:13–17), not a USB.

BLACKBERRY EX. 1012, pg. 111

109

228. However, as described in the APA, the advantages of the USB were

well known:

A new emerging technology called the Universal Serial Bus (USB)

is a system intended to create a single standardized peripheral device

connection system. The USB makes the task of connecting

peripheral devices to computers easier and more reliable since it uses

a standardized connector and form factor, and makes operating those

peripheral devices with the computer, easier and more reliable than

with the various different types of communication ports. The

computer to which these peripheral devices are connected by the

USB is known as the “host computer”. The USB replaces the

multiple cable and connector types with a single standardized

connection system. The USB also permits the connection and

disconnection of USB compatible peripheral devices while the

computer is turned on which eliminates the typical turning off and

rebooting of the computer in order to connect or disconnect a

peripheral device to the computer.

Ex. 1001, 1:50–65.

229. One of ordinary skill in the art of interfacing peripheral devices would

have been motivated to substitute a USB for a PCMCIA bus to achieve the known

advantages of the more modern USB. Ex. 1001, 1:50–64. Additionally, the

substitution would have involved only routine engineering, see, e.g., Snyder (Ex.

1015) at 9:31–34, particularly in view of the similarities between PCMCIA and

USB. For example, both monitor bus lines to detect disconnections and

BLACKBERRY EX. 1012, pg. 112

110

reconnections, both reconfigure a device when it is connected, and both include a

reset as part of the reconfiguration. See, e.g., Ex. 1001, 1:66–2:21; 4:15–62; 6:17–

44; Figs. 1 and 3; Ex. 1013, pp. 116–119, 169; Ex. 1005, 6:37–54; Ex. 1017, pp.

119–126; Ex. 1018, pp. 4-6 to 4-7, 4-10 to 4-11, 5-21; Ex. 1019, pp. 3-14 to 3-16,

3-20 to 3-24, 3-28 to 3-29, 5-79, B-14; Ex. 1020, 2:51–3:4; 5:66–6:9. Thus, it

would have been obvious to one of ordinary skill in the art to communicate the

information for the second configuration to the peripheral device over a USB.

Furthermore, although not required in claim 5, it would also have been obvious to

electronically simulate a physical disconnection and reconnection over the USB by

incorporating a switch as taught in PCCextend/Davis on the bus lines (D+ and D-) of

a USB, since these lines are also used for device detection, and the resulting

combination would allow simulation of a disconnection and reconnection of the

peripheral device to reconfigure the device to a second configuration based on the

received configuration information. Furthermore, simulating a disconnect and

reconnect in the proposed combination (e.g., by placing switches on D+ and/or D-

lines) would result in a reconfiguration of the device to a second configuration while

supplying power to the peripheral device (e.g., using Vbus and GND lines). Ex.

1013, pp. 29–30, 116–119, 169.

230. Thus, claim 5 would have been obvious over the combination of

Michelson, PCCextend, Davis, and the APA.

BLACKBERRY EX. 1012, pg. 113

111

2. Dependent Claim 7

231. Claim 7 depends on claim 5, which is addressed above in Section

X.F.1, and further recites “wherein said information for said second configuration

comprises (i) configuration data and (ii) an executable code.” Thus, claim 7 is a

system version of method claim 16. As noted above in Section X.E.8, both

Michelson and the APA teach or suggest this feature, for the reasons discussed

above in Section X.E.8.

232. Thus, claim 7 would have been obvious over Michelson, PCCextend,

Davis, and the APA.

3. Dependent Claim 15

233. Claim 15 depends on claim 11, which is addressed above in Section

X.E.5, and further recites “wherein step (A) comprises communicating said

information for the second configuration to the peripheral device using a Universal

Serial Bus and port.”

234. Michelson teaches or suggests downloading by communicating a

second set of configuration information to the peripheral device over a PCMCIA bus

(e.g., Ex. 1003, 4:13–17), not a USB. However, as described in the APA, the

advantages of the USB were well known:

A new emerging technology called the Universal Serial Bus (USB)

is a system intended to create a single standardized peripheral device

connection system. The USB makes the task of connecting

BLACKBERRY EX. 1012, pg. 114

112

peripheral devices to computers easier and more reliable since it uses

a standardized connector and form factor, and makes operating those

peripheral devices with the computer, easier and more reliable than

with the various different types of communication ports. The

computer to which these peripheral devices are connected by the

USB is known as the “host computer”. The USB replaces the

multiple cable and connector types with a single standardized

connection system. The USB also permits the connection and

disconnection of USB compatible peripheral devices while the

computer is turned on which eliminates the typical turning off and

rebooting of the computer in order to connect or disconnect a

peripheral device to the computer.

Ex. 1001, 1:50–65.

235. One of ordinary skill in the art of interfacing peripheral devices would

have been motivated to substitute a USB for a PCMCIA bus to achieve the known

advantages of the more modern USB. Ex. 1001, 1:50–64. Additionally, the

substitution would have involved only routine engineering, see, e.g., Snyder (Ex.

1015) at 9:31–34, particularly in view of the similarities between PCMCIA and

USB. For example, both monitor bus lines to detect disconnections and

reconnections, both reconfigure a device when it is connected, and both include a

reset as part of the reconfiguration. See, e.g., Ex. 1001, 1:66–2:21; 4:27–62; 6:17–

44; Figs. 1 and 3; Ex. 1013, pp. 116–119, 169; Ex. 1005, 6:37–54; Ex. 1017, pp.

119–126; Ex. 1018, pp. 4-6 to 4-7, 4-10 to 4-11, 5-21; Ex. 1019 at pp. 3-14 to 3-16,

BLACKBERRY EX. 1012, pg. 115

113

3-20 to 3-24, 3-28 to 3-29, 5-79, B-14; Ex. 1020, 2:51–3:4; 5:66–6:9. Thus, it

would have been obvious to one of ordinary skill in the art to communicate the

information for the second configuration to the peripheral device over a USB.

Furthermore, although not required in claim 15, it would also have been obvious to

electronically simulate a physical disconnection and reconnection over the USB by

incorporating a switch as taught in PCCextend/Davis on the bus lines (D+ and D-) of

a USB, since these lines are also used for device detection, and the resulting

combination would allow simulation of a disconnection and reconnection of the

peripheral device to reconfigure the device to a second configuration based on the

received configuration information while supplying power to the peripheral device

(e.g., using Vbus and GND lines). Ex. 1013, pp. 29–30, 116–119, 169. Thus,

claim 15 would have been obvious over Michelson, PCCextend, Davis, and the

APA.

4. Dependent Claim 19

236. Dependent claim 19 depends from independent claim 18, which is

addressed above in Section X.E.10, and further recites “where said computer bus

comprises a Universal Serial Bus.” It would have been obvious to modify

Michelson, PCCextend and Davis to include a Universal Serial Bus. That is, one of

ordinary skill in the art of interfacing peripheral devices would have been motivated

to substitute a USB for a PCMCIA bus to achieve the known advantages of the more

BLACKBERRY EX. 1012, pg. 116

114

modern USB, and the substitution would have involved only routine engineering,

particularly in view of the similarities between PCMCIA and USB. See also supra

Section X.F.1. Furthermore, simulating a disconnect and reconnect in the proposed

combination (e.g., by placing switches on D+ and/or D- lines) would result in a reset

of the configuration of the device while supplying power to the peripheral device

(e.g., using Vbus and GND lines). Ex. 1013, pp. 29–30, 116–119, 169.

237. Thus, claim 19 would have been obvious over Michelson, PCCextend,

Davis, and the APA.

G. Claims 18–20 are unpatentable under 35 U.S.C. § 102(e) as being
anticipated by Yap

1. Independent Claim 18

238. Independent claim 18 recites in the preamble a “system for

reconfiguring a peripheral device having a configuration connected by a computer

bus to a host computer.”

239. Yap teaches a system that simulates a physical removal of a USB

device (i.e., a peripheral device) to “allow the USB host to re-configure the USB

device.” Ex. 1002, 4:6–10. Thus, the peripheral device has a configuration. The

peripheral device in Yap is connected by a “universal serial bus (‘USB’)” to a host

computer. Ex. 1002, Fig. 1 (reproduced below); 3:50–59. Yap further

incorporates by reference the USB Specification v1.0, which teaches a computer bus

and port for connecting USB devices, like the one in Yap, to a host computer. Ex.

BLACKBERRY EX. 1012, pg. 117

115

1002, 1:38–42; Ex. 1013, pp. 19 (“For Universal Serial Bus, the [port is the] point

where a Universal Serial Bus device is attached.”); 28 (“The Universal Serial Bus

connects USB devices with the USB host.”). As such, Yap discloses a system for

simulating a disconnection and reconnection of a peripheral device connected by a

computer bus and a port to a host computer. Thus, Yap discloses all the features of

the preamble.

240. Claim 18 further recites “a first circuit configured to detect the

peripheral device connected to the computer bus.”

241. Yap teaches a system that emulates the disconnection of a USB device

from the USB host and the re-connection of the USB device to the USB host. Ex.

1002, 4:19–23; 5:65–6:3. When a USB peripheral device is connected or

re-connected to the USB host, the USB host necessarily detects the peripheral device

in order to be able to interact with the peripheral device. Further, the USB v 1.0

Specification, which is incorporated by reference in Yap, teaches that USB hosts

BLACKBERRY EX. 1012, pg. 118

116

have circuits that are configured to detect the peripheral device connected to the port

by monitoring the voltage on the D+ and D- data lines. Ex. 1013 (USB v1.0

Specification), p. 112. Thus, the USB host computer in Yap requires a circuit

configured to detect a peripheral device connected to a port.

242. Claim 18 further recites “a second circuit configured to electronically

simulate a physical disconnection and reconnection of the peripheral device to reset

said configuration of said peripheral device.”

243. Yap teaches a circuit that is configured to electronically simulate the

physical disconnection and reconnection of the peripheral device over the computer

bus using switching devices S+ and S- in the data lines D+ and D-, respectively, as

shown in Figure 2:

244. Yap states that “[b]y disconnecting the D+ and D- data lines via

switching devices S+ and S-, a physical removal of the USB device 10 may be

BLACKBERRY EX. 1012, pg. 119

117

simulated in order to allow the USB host to re-configure the USB device 10”

Ex. 1002, 4:6–9. Yap further states: “[T]he USB micro-controller 6 opens the data

lines via the switching devices S+ and S- for a duration greater than 2.5

microseconds and then reconnects them again. This procedure, for example,

emulates the disconnect and re-connect procedure as specified in the USB

specification v1.0, page 116.” Ex. 1002, 4:18–13. Figure 3 of Yap discloses a

second embodiment with the second circuit and switching devices S+ and S- within

the USB microcontroller. Ex. 1002, 4:24–38. As such, Yap discloses a circuit that

is configured to electronically simulate the physical disconnection and reconnection

of the peripheral device over the computer bus.

245. The simulated disconnection and reconnection in Yap resets the

configuration of the peripheral device. See supra Section X.C.4.

246. Claim 18 further recites that the second circuit is configured to

electronically simulate the physical disconnection and reconnection of the

peripheral device “while supplying electrical power to said peripheral device.”

247. Yap teaches that the electronic simulation of a physical disconnection

and reconnection is performed while electrical power is supplied to the peripheral

device. For a more detailed discussion, see above with respect to claim 1 in Section

X.C.1.

248. Thus, in my opinion, claim 18 is anticipated by Yap.

BLACKBERRY EX. 1012, pg. 120

118

2. Dependent Claim 19

249. Claim 19 depends from independent claim 18, which is addressed

above in Section X.G.1. With respect to the additional limitation set forth in claim

19 that “wherein said computer bus comprises a Universal Serial Bus,” Yap teaches

that the computer bus and port comprise a “Universal Serial Bus (‘USB’).” Ex.

1002, Abstract; 3:50–59; Fig. 1. Thus, claim 19 is anticipated by Yap.

3. Dependent Claim 20

250. Claim 20 depends from independent claim 18, which is addressed

above in Section X.G.1. With respect to the additional limitations set forth in claim

20 that “wherein said second circuit comprises a solid state switch,” Yap teaches that

the switches S+ and S- may be transistors. Ex. 1002, 3:60–63; claims 14 and 15.

Transistors are solid state switches. Further, Figs. 2 and 3 show that the switches

S+ and S- are solid state FET transistors. Thus, claim 20 is anticipated by Yap.

XI. CONCLUDING STATEMENTS

251. In signing this declaration, I understand that the declaration will be

filed as evidence in a contested case before the Patent Trial and Appeal Board of the

United States Patent and Trademark Office. I acknowledge that I may be subject to

cross-examination in the case and that cross-examination will take place within the

United States. If cross-examination is required of me, I will appear for

cross-examination within the United States during the time allotted for

cross-examination.

BLACKBERRY EX. 1012, pg. 121

BLACKBERRY EX. 1012, pg. 122

252. l declare that all statements made herein of my knowledge are true and

that all statements made on information and belief are believed to be true; and

further, that these statements were made with knowledge that willful false

statements and the like so made are punishable by fine or imprisonment, or both,

under 18 USC. § 1001.

253. I declare under penalty ofperjury under the laws ofthe United States of

Wolfe, Ph.D.

America that the foregoing is true and correct.

Date: September 12, 2014

ll9
BLACKBERRY EX. 1012, pg. 122

B-1

Appendix A

BLACKBERRY EX. 1012, pg. 123

B-2

A. Ground 1: Claims 1, 5, 7, 10, 11, and 15-17 are unpatentable
under 35 U.S.C. § 103, as being obvious over the Admitted Prior
Art (APA) and U.S. Patent No. 6,073,193 to Yap

U.S. Patent
6,593,770

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

Claim 1
[a] A system for
reconfiguring a
peripheral
device having a
first
configuration
connected by a
computer bus to
a host computer,
the system
comprising:

APA, Ex. 1 00 1, Prior Art Fig. 1:

APA, Ex. 1001, 4:15-34:

FIG. 1 is a diagram illustrating a standardized bus
interface, such as a conventional computer system 20, that
may include a host computer system 22 and a peripheral
device 24. The peripheral device is connected to the host
computer by a universal serial bus (USB) 26. The host
computer may include a central processing unit (CPU) 28
connected to a USB interface (I/F) circuit 30, and the USB
standard provides a universal electrical and physical
interface for the peripheral devices via bus 26. The CPU
executes software application code located in a memory 31
and communicates data to and from the peripheral device
through the USB interface and the USB 26. The host
computer may also include an operating system 32 which
may include a software device driver 33. The peripheral
device 24 may include a USB interface circuit 34, a CPU 36

BLACKBERRY EX. 1012, pg. 124

B-3

U.S. Patent
6,593,770

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

and a non-volatile memory 38 that may store configuration
information describing the characteristics of the peripheral
device. The non-volatile memory may be a read only
memory (ROM) or an erasable programmable read only
memory (EPROM).

APA, Ex. 1001, 1:50-2:19:

A new emerging technology called the Universal Serial
Bus (USB) is a system intended to create a single
standardized peripheral device connection system. The
USB makes the task of connecting peripheral devices to
computers easier and more reliable since it uses a
standardized connector and form factor, and makes
operating those peripheral devices with the computer,
easier and more reliable than with the various different
types of communication ports. The computer to which
these peripheral devices are connected by the USB is
known as the “host computer”. The USB replaces the
multiple cable and connector types with a single
standardized connection system. The USB also permits the
connection and disconnection of USB compatible
peripheral devices while the computer is turned on which
eliminates the typical turning off and rebooting of the
computer in order to connect or disconnect a peripheral
device to the computer.

When a peripheral device is first connected to the USB
and the host computer through a standard USB
communications port, the presence of the connected
peripheral device is detected and a configuration process of
the USB for the connected peripheral device, known as
device enumeration, begins. The enumeration process
assigns a unique USB address to the connected peripheral
device, queries the connected peripheral device about its
requirements and capabilities, writes data about the
connected peripheral device into the host computer’s
operating system, and loads the appropriate software
device driver from a storage location into the host

BLACKBERRY EX. 1012, pg. 125

B-4

U.S. Patent
6,593,770

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

computer’s operating system. During the query, a data table
stored in the peripheral device, which contains the
particular peripheral device’s configuration information, is
read from the peripheral device into the host computer’s
memory. Upon completion of the enumeration process, the
connected peripheral device is recognized by the host
computer’s operating system and may be used by
application software being executed by the microprocessor
of the host computer. The association of the device with the
software device driver cannot be subsequently changed.

APA, Ex. 1001, 2:20-39:

In a serial bus system, such as the USB, the only
opportunity for associating software device drivers with a
peripheral device is at the time when the peripheral device
is plugged into the USB and the enumeration process
occurs. Thus, to alter the configuration or personality of a
peripheral device, such as downloading new code or
configuration information into the memory of the
peripheral device, the host computer system must detect a
peripheral device connection or a disconnection and then a
reconnection.

The USB provides a number of advantages, as described
above, over standard peripheral device connection
techniques. The USB, however, does not provide a system
and method for easily altering the configuration data for a
peripheral device. In addition, the USB also does not
provide a method for easily changing the software device
driver associated with a particular peripheral device.

Thus, there is a need for a system and method for interfacing to
a universal serial bus which avoids these and other problems of
known systems and methods, and it is to this end that the
present invention is directed.
APA, Ex. 1001, 1:66-2:19:

When a peripheral device is first connected to the USB
and the host computer through a standard USB

BLACKBERRY EX. 1012, pg. 126

B-5

U.S. Patent
6,593,770

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

communications port, the presence of the connected
peripheral device is detected and a configuration process of
the USB for the connected peripheral device, known as
device enumeration, begins. The enumeration process
assigns a unique USB address to the connected peripheral
device, queries the connected peripheral device about its
requirements and capabilities, writes data about the
connected peripheral device into the host computer’s
operating system, and loads the appropriate software
device driver from a storage location into the host
computer’s operating system. During the query, a data table
stored in the peripheral device, which contains the
particular peripheral device’s configuration information, is
read from the peripheral device into the host computer’s
memory. Upon completion of the enumeration process, the
connected peripheral device is recognized by the host
computer’s operating system and may be used by
application software being executed by the microprocessor
of the host computer. The association of the device with the
software device driver cannot be subsequently changed.

APA, Ex. 1001, 4:35-50:

When the peripheral device is initially connected to the
USB, an enumeration process is conducted in which the
host computer determines the characteristics of the
peripheral device by receiving the configuration
information from the memory 38 within the peripheral
device, and configures the USB according to the
characteristics of the peripheral device. As shown, the
configuration information about the characteristics of the
peripheral device in a conventional USB system is stored in
a non-volatile memory 38 on the peripheral device. The
data about the characteristics of the peripheral device is
programmed into the non-volatile memory at the factory,
and the characteristics of the peripheral device may not be
easily altered. In addition, the memory in the peripheral
device stores all of the configuration information about the

BLACKBERRY EX. 1012, pg. 127

B-6

U.S. Patent
6,593,770

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

peripheral device which may require a large amount of
memory in the peripheral device.

[b] a first circuit
configured to
download
information for a
second
configuration
from the host
computer into
the peripheral
device over the
computer bus;
and

APA
APA, Ex. 1001, 2:20-39:

In a serial bus system, such as the USB, the only
opportunity for associating software device drivers with a
peripheral device is at the time when the peripheral device
is plugged into the USB and the enumeration process
occurs. Thus, to alter the configuration or personality of a
peripheral device, such as downloading new code or
configuration information into the memory of the
peripheral device, the host computer system must detect a
peripheral device connection or a disconnection and then a
reconnection.

. . .
Thus, there is a need for a system and method for
interfacing to a universal serial bus which avoids these and
other problems of known systems and methods, and it is to
this end that the present invention is directed.

[c] a second
circuit
configured to
electronically
simulate a
physical
disconnection
and
reconnection of
the peripheral
device to
reconfigure the
peripheral
device to said
second
configuration

APA
APA, Ex. 1001, 2:20-39:

In a serial bus system, such as the USB, the only
opportunity for associating software device drivers with a
peripheral device is at the time when the peripheral device
is plugged into the USB and the enumeration process
occurs. Thus, to alter the configuration or personality of a
peripheral device, such as downloading new code or
configuration information into the memory of the
peripheral device, the host computer system must detect a
peripheral device connection or a disconnection and then a
reconnection.

. . .
Thus, there is a need for a system and method for

interfacing to a universal serial bus which avoids these and
other problems of known systems and methods, and it is to
this end that the present invention is directed.

BLACKBERRY EX. 1012, pg. 128

B-7

U.S. Patent
6,593,770

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

APA, Ex. 1001, 4:51-61, discussing Prior Art Fig. 1 (“Once
the enumeration process has been completed, the CPU of the
host computer may load an appropriate software device driver
33 for the peripheral device and the software applications
being executed by that CPU of the host computer may
communicate with the peripheral device using the USB. When
the first peripheral device is disconnected and another
peripheral device is connected to the USB, the enumeration
process for the new peripheral device may be conducted and
another software device driver may be loaded. The
configuration of the peripheral device cannot be easily
altered.”).

YAP
Yap, Ex. 1002, 1:21-24 (“This invention relates to a method
and apparatus for allowing a USB device to recover from a
malfunction condition.”).

Yap, Ex. 1002, 1:27-42:

USB is a peripheral bus standard that allows computer
peripherals to be attached to a personal computer without
the need for specialized cards or other vendor specific
hardware attachments. . . . Information about the USB
standard, including the USB specification v1.0,
incorporated herein by reference, for building USB
compliant devices, is currently available free of charge over
the Internet.

Yap, Ex. 1002, 1:43-67:

However, a malfunction condition may occur in a USB
device, such as a plug-and-play device, wherein the USB
device after being configured by the host computer may
malfunction and stop communicating with the host
computer due to problems, such as transmission errors,
USB protocol errors, bugs in the host operating system or

BLACKBERRY EX. 1012, pg. 129

B-8

U.S. Patent
6,593,770

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

device firmware, etc. For example, a host operating system
may terminate the function of the USB device, which may
be busy at the moment or fails to acknowledge incoming
data packets more than three times, for not communicating
with the host computer. The above situation is referred to as
a “brown out” condition.

According to the USB specification v1 .0, page 201, the
host operating system is supposed to record the last error
type without trying to re-establish communications with the
non-communicating USB device. When this occurs, (1) the
user may have to re-boot the USB device or physically
disconnect and then re-connect the USB device to allow the
host computer to recognize and then re-configure the USB
device The first method defeats the whole purpose of
plug-and-play technology

Yap, Ex. 1002, 2:7-24:

Accordingly, one object of the present invention is to
provide a method and apparatus for recovering from a USB
device brown out condition which requires no user
intervention.

. . .
It is also an object of the present invention to provide a

method and apparatus for recovering from a USB device
brown out condition without a need to re-boot the USB
device or physically disconnect and then re-connect the
USB device.

Yap, Ex. 1002, Fig. 2:

BLACKBERRY EX. 1012, pg. 130

B-9

U.S. Patent
6,593,770

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

Yap, Ex. 1002, 3:60-4:23:

In FIG. 2, a first embodiment of the USB device 10 of
FIG. 1 further includes switching devices S+ and S-, such
as transistors, contact switches, etc., coupled to positive
data (D+) and negative data (D-) lines of the signal lines 6a.
. . . [W]hen the USB micro-controller 6 drives the I/O pin to
an appropriate logic state, the D+ and D- data lines may be
opened or shorted via switching devices S+ and S-. By
disconnecting the D+ and D- data lines via switching
devices S+ and S-, a physical removal of the USB device 10
may be simulated in order to allow the USB host to
re-configure the USB device 10 during a brown out
condition. . . . Firmware in the USB micro-controller 6
keeps the data lines connected via switching devices S+
and S- during normal operation. However, when a brown
out condition is detected, as will be described later, the
USB micro-controller 6 opens the data lines via the
switching devices S+ and S- for a duration greater than 2.5
micro¬seconds and then reconnects them again. This
procedure, for example, emulates the disconnect and
re-connect procedure as specified in the USB specification
v1.0, page 116.

Yap, Ex. 1002, Fig. 3:

BLACKBERRY EX. 1012, pg. 131

B-10

U.S. Patent
6,593,770

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

Yap, Ex. 1002, 4:24-38 (“FIG. 3, is a second embodiment
of the USB device 10 wherein the switching devices S+ and
S-, of FIG. 2 are included within the USB micro-controller
6. . . . Otherwise, the operation of the circuit of FIG. 3 is
identical to the operation of the circuit of FIG. 2.”).

[d] while
supplying
electrical power
to said
peripheral
device.

YAP
Yap, Ex.1002, Figs. 2-3

Yap, Ex. 1002, 3:64-67:

Please note that only one pair of complementary data lines
of a plurality of complementary data lines and VCC and
GND connections are shown in FIG. 2 for simplicity.

Yap, Ex. 1002, 4:10-16:

In addition, the general purpose I/O pin of the USB
micro-controller 6 is configured such that during and after a
reset condition due to power up the data lines stay
connected (e.g., the I/O pin enables switching devices S+
and during and after reset). Firmware in the USB
micro-controller 6 keeps the data lines connected via
switching devices S+ and S- during normal operation.

Yap, Ex. 1002, 4:3-23:

BLACKBERRY EX. 1012, pg. 132

B-11

U.S. Patent
6,593,770

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

Accordingly, when the USB micro-controller 6 drives the
I/O pin to an appropriate logic state, the D+ and D- data
lines may be opened or shorted via switching devices S+
and S-. By disconnecting the D+ and D- data lines via
switching devices S+ and S-, a physical removal of the
USB device 10 may be simulated in order to allow the USB
host to re-configure the USB device 10 during a brown out
condition.

Claim 5
The system of
claim 1, wherein
said computer
bus comprises a
Universal Serial
Bus.

APA
APA, Ex. 1001, 2:20-39:

In a serial bus system, such as the USB, the only
opportunity for associating software device drivers with a
peripheral device is at the time when the peripheral device
is plugged into the USB and the enumeration process
occurs. Thus, to alter the configuration or personality of a
peripheral device, such as downloading new code or
configuration information into the memory of the
peripheral device, the host computer system must detect a
peripheral device connection or a disconnection and then a
reconnection.

. . .
Thus, there is a need for a system and method for

interfacing to a universal serial bus which avoids these and
other problems of known systems and methods, and it is to this
end that the present invention is directed.

Claim 7
The system of
claim 5, wherein
said information
for said second
configuration
comprises (i)
configuration
data and (ii) an
executable code.

APA
APA, Ex. 1001, 2:20-39:

In a serial bus system, such as the USB, the only
opportunity for associating software device drivers with a
peripheral device is at the time when the peripheral device
is plugged into the USB and the enumeration process
occurs. Thus, to alter the configuration or personality of a
peripheral device, such as downloading new code or
configuration information into the memory of the

BLACKBERRY EX. 1012, pg. 133

B-12

U.S. Patent
6,593,770

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

peripheral device, the host computer system must detect a
peripheral device connection or a disconnection and then a
reconnection.

. . .
Thus, there is a need for a system and method for

interfacing to a universal serial bus which avoids these and
other problems of known systems and methods, and it is to this
end that the present invention is directed.

Claim 10
The system of
claim 1, wherein
said second
circuit
comprises a
reset circuit
configured to
reset the first or
second
configuration of
the peripheral
device.

YAP

Yap, Ex. 1002, Fig. 2:

Yap, Ex. 1002, 3:60-4:23:

In FIG. 2, a first embodiment of the USB device 10 of
FIG. 1 further includes switching devices S+ and S-, such
as transistors, contact switches, etc., coupled to positive
data (D+) and negative data (D-) lines of the signal lines 6a.
. . . [W]hen the USB micro-controller 6 drives the I/O pin to
an appropriate logic state, the D+ and D- data lines may be
opened or shorted via switching devices S+ and S-. By
disconnecting the D+ and D- data lines via switching
devices S+ and S-, a physical removal of the USB device 10
may be simulated in order to allow the USB host to

BLACKBERRY EX. 1012, pg. 134

B-13

U.S. Patent
6,593,770

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

re-configure the USB device 10 during a brown out
condition. . . . Firmware in the USB micro controller 6
keeps the data lines connected via switching devices S+
and S- during normal operation. However, when a brown
out condition is detected, as will be described later, the
USB micro-controller 6 opens the data lines via the
switching devices S+ and S- for a duration greater than 2.5
microseconds and then reconnects them again. This
procedure, for example, emulates the disconnect and
re-connect procedure as specified in the USB specification
v1.0, page 116.

Yap, Ex. 1002, Fig. 3:

Yap, Ex. 1002, 4:24-38 (“FIG. 3, is a second embodiment of
the USB device 10 wherein the switching devices S+ and S-, of
FIG. 2 are included within the USB micro-controller 6. . . .
Otherwise, the operation of the circuit of FIG. 3 is identical to
the operation of the circuit of FIG. 2.”).

Claim 11
[a] A method for
reconfiguring a
peripheral
device having a
first
configuration
connected by a
computer bus to

See discussion above with respect to claim element 1[a].

BLACKBERRY EX. 1012, pg. 135

B-14

U.S. Patent
6,593,770

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

a host computer,
the method
comprising the
steps of:
[b] (A)
downloading
second
configuration
from the host
computer into
the peripheral
device over the
computer bus;
and

See discussion above with respect to claim element 1[b].

[c] (B)
electronically
simulating a
physical
disconnection
and
reconnection of
the peripheral
device to
reconfigure the
peripheral
device to said
second
configuration

See discussion above with respect to claim element 1[c].

[d] while
supplying
electrical power
to said
peripheral
device.

See discussion above with respect to claim element 1[d].

Claim 15
The method of
claim 11,
wherein step (A)

See discussion above with respect to claim 5.

BLACKBERRY EX. 1012, pg. 136

B-15

U.S. Patent
6,593,770

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

comprises
communicating
said information
for the second
configuration to
the peripheral
device over a
Universal Serial
Bus.

Claim 16
The method of
claim 11,
wherein said
information for
the second
configuration
comprises (i)
configuration
data and (ii) an
executable code.

See discussion above with respect to claim 7.

Claim 17
The method of
claim 11,
wherein step (B)
comprises
electronically
resetting the
configuration of
the peripheral
device,
controllable by
the peripheral
device.

See discussion above with respect to claim 10.

BLACKBERRY EX. 1012, pg. 137

B-16

B. Ground 2: Claims 2, 3, 12, and 13 are unpatentable under 35
U.S.C. § 103, as being obvious over the Admitted Prior Art
(APA), U.S. Patent No. 6,073,193 to Yap, and U.S. Patent No.
5,628,028 to Michelson

 Correspondence to APA (Ex. 1001), Yap (Ex. 1002), and
Michelson (Ex. 1003)

Claim 2
The system of
claim 1, wherein
said first
configuration is a
generic
configuration
assigned to the
peripheral device
and said second
configuration
comprises any one
of a plurality of
unique
manufacturer
configurations.

MICHELSON
Michelson, Ex. 1003, 2:34-4:8:

Referring also to FIG. 2, when PCMCIA card 14 card
connector 28 is inserted in PCMCIA host socket 18 of
host computer 12, PCMCIA adapter 16 recognizes (step
44) the insertion and interrupts (step 46) processor 22.
Alternatively, if PCMCIA card 14 is inserted while host
computer 12 is turned off (i.e., powered-down), host
computer 12 learns of the existence of PCMCIA card 14
during the power-on procedure. Processor 22 then
executes (step 48) Card and Socket Services 38 (C&SS)
software resident in host memory 24 and through
PCMCIA interface chip 26 reads CIS data from CIS
EEPROM 30. As a minimum, the CIS data must
sufficiently identify the PCMCIA card to the host, to
enable the processor 22 to configure the host computer
12 and the PCMCIA card 14 to operate together and to
enable the processor to select the appropriate application
software 40 from host memory 24. The CIS data
specifically identify the card manufacturer (e.g., Data
Translation, Inc.) and card identification (ID) number
and includes a variety of set-up information, including
base address, interrupt level, size of address window, and
other information regarding the card’s functionality, as
specified by release 2.1. The CIS data are entered into the
EEPROM at the time of card manufacture and are not
thereafter changed. Hence, configuration of host
computer 12 and PCMCIA card 14 is completed without
the use of card controller 32. Processor 22 then executes
(step 50) the application software 40 resident in host
memory 24 that corresponds to PCMCIA card 14. The

BLACKBERRY EX. 1012, pg. 138

B-17

 Correspondence to APA (Ex. 1001), Yap (Ex. 1002), and
Michelson (Ex. 1003)

application software 40 causes the processor to either
select a default FPGA programming data file 42 from
host memory 24 that corresponds to a particular
application for PCMCIA card 14 or request input from
the user as to which FPGA programming data file 42 is to
be selected from host memory 24. Processor 22 then
sends (step 52) the data from the selected FPGA
programming data file 42 through PCMCIA adapter 16
to PCMCIA interface chip 26. Interface chip 26 then
programs (step 54) a field programmable gate array
(FPGA, not shown in FIG. 1) within card controller 32
by loading the data from the FPGA programming data
file 42 into the FPGA. Where the application software
causes the processor to select a default data
programming file, PCMCIA card 14 and host computer
12 are made operable (step 56) without user intervention.

Michelson, Ex. 1003, 6:61-65:

The FPGA programming data files can be supplied with
the PCMCIA card or new, additional, or updated FPGA
programming data files can be obtained at a later time.
Similarly, users can create their own FPGA
programming data files or make modifications as
desired.

Claim 3
The system of
claim 2, wherein
said first circuit is
configured to (i)
read an
identification code
from the peripheral
device and (ii)
select said second
configuration
based on said
identification code.

MICHELSON
Michelson, Ex. 1003, 2:34-4:8:

Referring also to FIG. 2, when PCMCIA card 14 card
connector 28 is inserted in PCMCIA host socket 18 of
host computer 12, PCMCIA adapter 16 recognizes (step
44) the insertion and interrupts (step 46) processor 22.
Alternatively, if PCMCIA card 14 is inserted while host
computer 12 is turned off (i.e., powered-down), host
computer 12 learns of the existence of PCMCIA card 14
during the power-on procedure. Processor 22 then
executes (step 48) Card and Socket Services 38 (C&SS)

BLACKBERRY EX. 1012, pg. 139

B-18

 Correspondence to APA (Ex. 1001), Yap (Ex. 1002), and
Michelson (Ex. 1003)

software resident in host memory 24 and through
PCMCIA interface chip 26 reads CIS data from CIS
EEPROM 30. As a minimum, the CIS data must
sufficiently identify the PCMCIA card to the host, to
enable the processor 22 to configure the host computer
12 and the PCMCIA card 14 to operate together and to
enable the processor to select the appropriate
application software 40 from host memory 24. The CIS
data specifically identify the card manufacturer (e.g.,
Data Translation, Inc.) and card identification (ID)
number and includes a variety of set-up information,
including base address, interrupt level, size of address
window, and other information regarding the card’s
functionality, as specified by release 2.1. The CIS data
are entered into the EEPROM at the time of card
manufacture and are not thereafter changed. Hence,
configuration of host computer 12 and PCMCIA card 14
is completed without the use of card controller 32.

Processor 22 then executes (step 50) the application
software 40 resident in host memory 24 that corresponds
to PCMCIA card 14. The application software 40 causes
the processor to either select a default FPGA
programming data file 42 from host memory 24 that
corresponds to a particular application for PCMCIA card
14 or request input from the user as to which FPGA
programming data file 42 is to be selected from host
memory 24. Processor 22 then sends (step 52) the data
from the selected FPGA programming data file 42
through PCMCIA adapter 16 to PCMCIA interface chip
26. Interface chip 26 then programs (step 54) a field
programmable gate array (FPGA, not shown in FIG. 1)
within card controller 32 by loading the data from the
FPGA programming data file 42 into the FPGA. Where
the application software causes the processor to select a
default data programming file, PCMCIA card 14 and
host computer 12 are made operable (step 56) without
user intervention.

BLACKBERRY EX. 1012, pg. 140

B-19

 Correspondence to APA (Ex. 1001), Yap (Ex. 1002), and
Michelson (Ex. 1003)

Michelson, Ex. 1003, 6:61-65:

The FPGA programming data files can be supplied with the
PCMCIA card or new, additional, or updated FPGA
programming data files can be obtained at a later time.
Similarly, users can create their own FPGA programming
data files or make modifications as desired.

Claim 12
The method of
claim 11, wherein
said first
configuration
comprises a
generic
configuration
assigned to the
peripheral device
and said second
configuration
comprises any one
of a plurality of
unique
manufacturer
configurations.

See discussion above with respect to claim 2.

Claim 13
The method of
claim 11, wherein
step (A)
comprises:
reading an
identification code
from the peripheral
device, and
selecting said
second
configuration
based on said
identification code.

See discussion above with respect to claim 3.

BLACKBERRY EX. 1012, pg. 141

B-20

BLACKBERRY EX. 1012, pg. 142

B-21

C. Ground 3: Claims 1-3, 10, 11, 12, 13, 16, 17, 18, and 20 are
unpatentable under 35 U.S.C. § 103 as being obvious over
Michelson (U.S. Patent No. 5,628,028), PCCextend 100 User’s
Manual (“PCCextend”), and Davis (U.S. Patent No. 5,862,393)

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

Claim 1
[a] A system
for
reconfiguring a
peripheral
device having a
first
configuration
connected by a
computer bus
to a host
computer, the
system
comprising:

MICHELSON
Michelson, Ex. 1003, 1:7-16:

This invention relates to programming and reprogramming
the hardware configuration of a (PCMCIA) card. Personal
computer memory card international association (PCMCIA)
cards are computer cards that meet the minimum compliance
requirements of the PCMCIA standard (e.g., release 2.1, which
is hereby incorporated by reference). PCMCIA cards are
typically used to add functionality or memory to a personal,
portable, or desktop computer (i.e., host computer).

Michelson, Ex. 1003, 1:28-36:

A typical PCMCIA card includes a standard PCMCIA
connector connected to a PCMCIA interface circuit through a
standard PCMCIA bus. The PCMCIA interface circuit operates
according to the standard PCMCIA protocol to send data to and
receive data from a host computer. The typical PCMCIA card
also includes a PCMCIA card controller that sends data to and
receives data from the PCMCIA interface circuit and controls
the operation of the functional hardware on the card.”).

Michelson, Ex. 1003, 2:3-16:

In general, the invention includes a PCMCIA card having
an FPGA based card controller that is programmed with FPGA
programming data stored on a host computer through a
standard PCMCIA bus. Storing FPGA programming data on
the host computer allows a user access to a practically
unlimited number of FPGA programming data files to program

BLACKBERRY EX. 1012, pg. 143

B-22

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

and reprogram the FPGA of the PCMCIA FPGA based card
controller for different applications and permits a user to
supplement, update, improve, or otherwise modify operation
for existing applications. Additionally, storing the FPGA
programming data files on the host computer saves valuable
PCMCIA card real estate, reduces the amount of power
required by the card during FPGA programming, and reduces
the cost of the PCMCIA hardware.”).

Michelson, Ex. 1003, 2:17-42:

In preferred embodiments, the host computer includes a
PCMCIA adapter circuit coupled to a PCMCIA host socket
which is mechanically and electrically connected to a PCMCIA
card connector on the PCMCIA card. A PCMCIA interface
circuit is connected to the PCMCIA card connector on the
PCMCIA card. Using Card and Socket Services software
stored in host memory, the host processor reads Card
Information Structure (CIS) data from a memory device, such
as an EEPROM, on the PCMCIA card and configures the host
computer and PCMCIA card to operate together. Additionally,
using application software stored in host memory, the
processor selects an FPGA programming data file from host
memory and sends data from the selected FPGA programming
data file through the PCMCIA adapter circuit to the PCMCIA
interface circuit. The PCMCIA interface circuit loads the data
into a PCMCIA card controller FPGA to program the FPGA.
When an error or a different user application is detected or
when a user creates a new FPGA programming data file or
modifies an existing FPGA programming data file, the
processor is instructed to select another FPGA programming
data file from host memory. The processor then sends data
from the newly selected FPGA programming data file to the
PCMCIA interface circuit, and the PCMCIA interface circuit
loads the data into the PCMCIA card controller FPGA to
reprogram the FPGA.

Michelson, Ex. 1003, Fig. 1:

BLACKBERRY EX. 1012, pg. 144

B-23

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

Michelson, Ex. 1003, 2:62-3:8:

Referring to FIG. 1, a PCMCIA system 10 includes a host
computer 12 and a PCMCIA card 14. Within host computer 12, a
PCMCIA adapter 16, connected to a standard 68 pin PCMCIA
host socket 18 . . ., is coupled to a system bus 20 that interconnects
PCMCIA adapter 16, a host processor 22, and a host memory 24.
Within PCMCIA card 14, a PCMCIA interface chip 26 . . .,
connected to a standard 68 pin PCMCIA card connector 28 . . ., is
coupled to a Card Information Structure (CIS) EEPROM 30 . . ., a
PCMCIA card controller 32, and a card functionality circuit 34.

Michelson, Ex. 1003, Fig. 3:

BLACKBERRY EX. 1012, pg. 145

B-24

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

Michelson, Ex. 1003, 4:9-22

Referring to FIG. 3, card controller 32 includes a PCMCIA
card controller FPGA 60 (e.g., part number XC3042TQ 100-
100, manufactured by Xilinx, as described in Xilinx
Programmable Logic Data Book, which is hereby incorporated
by reference). Through a standard PCMCIA bus (i.e., PCMCIA
address lines 62, data lines 64, and control lines 66) connected
to PCMCIA connector 28, interface chip 26 receives FPGA
programming data from host computer 12 (FIG. 1). Interface
chip 26 initiates FPGA 60 programming through FPGA
programming circuit 68, which drives reset line 63 and
reprogram line 65, and completes FPGA 60 programming by
loading the FPGA programming data into FPGA 60 through
peripheral data lines 72.

Michelson, Ex. 1003, Fig. 2:

Michelson, Ex. 1003, 2:34-58:

Referring also to FIG. 2, when PCMCIA card 14 card
connector 28 is inserted in PCMCIA host socket 18 of host
computer 12, PCMCIA adapter 16 recognizes (step 44) the

BLACKBERRY EX. 1012, pg. 146

B-25

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

insertion and interrupts (step 46) processor 22. Alternatively, if
PCMCIA card 14 is inserted while host computer 12 is turned
off (i.e., powered-down), host computer 12 learns of the
existence of PCMCIA card 14 during the power-on procedure.
Processor 22 then executes (step 48) Card and Socket Services
38 (C&SS) software resident in host memory 24 and through
PCMCIA interface chip 26 reads CIS data from CIS EEPROM
30. As a minimum, the CIS data must sufficiently identify the
PCMCIA card to the host, to enable the processor 22 to
configure the host computer 12 and the PCMCIA card 14 to
operate together and to enable the processor to select the
appropriate application software 40 from host memory 24. The
CIS data specifically identify the card manufacturer (e.g., Data
Translation, Inc.) and card identification (ID) number and
includes a variety of set-up information, including base
address, interrupt level, size of address window, and other
information regarding the card’s functionality, as specified by
release 2.1. The CIS data are entered into the EEPROM at the
time of card manufacture and are not thereafter changed.
Hence, configuration of host computer 12 and PCMCIA card
14 is completed without the use of card controller 32.

[b] a first
circuit
configured to
download
information for
a second
configuration
from the host
computer into
the peripheral
device over the
computer bus;
and

MICHELSON
Michelson, Ex. 1003, 3:32-40:

The typical PCMCIA card also includes a PCMCIA card
controller that sends data to and receives data from the
PCMCIA interface circuit and controls the operation of the
functional hardware on the card. For example, if the PCMCIA
card is a memory card, then the functional hardware is memory
(e.g., a bank of random access memory (RAM) chips (static or
dynamic) or a hard disk drive) and the PCMCIA card controller
controls reading and writing to the memory.

Michelson, Ex. 1003, 3:59-4:22:

Processor 22 then executes (step 50) the application
software 40 resident in host memory 24 that corresponds to
PCMCIA card 14. The application software 40 causes the

BLACKBERRY EX. 1012, pg. 147

B-26

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

processor to either select a default FPGA programming data
file 42 from host memory 24 that corresponds to a particular
application for PCMCIA card 14 or request input from the user
as to which FPGA programming data file 42 is to be selected
from host memory 24. Processor 22 then sends (step 52) the
data from the selected FPGA programming data file 42 through
PCMCIA adapter 16 to PCMCIA interface chip 26. Interface
chip 26 then programs (step 54) a field programmable gate
array (FPGA, not shown in FIG. 1) within card controller 32 by
loading the data from the FPGA programming data file 42 into
the FPGA. Where the application software causes the processor
to select a default data programming file, PCMCIA card 14 and
host computer 12 are made operable (step 56) without user
intervention.

Referring to FIG. 3, card controller 32 includes a PCMCIA
card controller FPGA 60 (e.g., part number XC3042TQ 100-
100, manufactured by Xilinx, as described in Xilinx
Programmable Logic Data Book, which is hereby incorporated
by reference). Through a standard PCMCIA bus (i.e., PCMCIA
address lines 62, data lines 64, and control lines 66) connected
to PCMCIA connector 28, interface chip 26 receives FPGA
programming data from host computer 12 (FIG. 1). Interface
chip 26 initiates FPGA 60 programming through FPGA
programming circuit 68, which drives reset line 63 and
reprogram line 65, and completes FPGA 60 programming by
loading the FPGA programming data into FPGA 60 through
peripheral data lines 72.

Michelson, Ex. 1003, 5:37-5 1:

For a variety of reasons, including the detection of a
PCMCIA card controller 60 malfunction (e.g., error condition
detected) or the detection of a user request to change the
PCMCIA card application (e.g., software interrupt), PCMCIA
card controller 60 may be reprogramed. The host computer
executes application software 40 (FIG. 1) in host memory 24 to
select a new FPGA programming data file 42 from host
memory 24 and then sends the data from the newly selected

BLACKBERRY EX. 1012, pg. 148

B-27

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

FPGA programming data file 42 through PCMCIA adapter 16
to PCMCIA interface chip 26. Interface chip 26 uses FPGA
programming circuit 68 to reset PCMCIA card controller
FPGA 60 and enable reprogramming, and interface chip 26
completes reprogramming by loading the data from the newly
selected FPGA programming data file into card controller
FPGA 60.

[c] a second
circuit
configured to
electronically
simulate a
physical
disconnection
and
reconnection of
the peripheral
device to
reconfigure the
peripheral
device to said
second
configuration

MICHELSON
Michelson, Ex. 1003, 4:9-22:

Referring to FIG. 3, card controller 32 includes a PCMCIA
card controller FPGA 60 (e.g., part number XC3042TQ100-
100, manufactured by Xilinx, as described in Xilinx
Programmable Logic Data Book, which is hereby incorporated
by reference). Through a standard PCMCIA bus (i.e., PCMCIA
address lines 62, data lines 64, and control lines 66) connected
to PCMCIA connector 28, interface chip 26 receives FPGA
programming data from host computer 12 (FIG. 1). Interface
chip 26 initiates FPGA 60 programming through FPGA
programming circuit 68, which drives reset line 63 and
reprogram line 65, and completes FPGA 60 programming by
loading the FPGA programming data into FPGA 60 through
peripheral data lines 72.

Michelson, Ex. 1003, 5:37-5 1:

For a variety of reasons, including the detection of a
PCMCIA card controller 60 malfunction (e.g., error condition
detected) or the detection of a user request to change the
PCMCIA card application (e.g., software interrupt), PCMCIA
card controller 60 may be reprogramed. The host computer
executes application software 40 (FIG. 1) in host memory 24 to
select a new FPGA programming data file 42 from host
memory 24 and then sends the data from the newly selected
FPGA programming data file 42 through PCMCIA adapter 16
to PCMCIA interface chip 26. Interface chip 26 uses FPGA
programming circuit 68 to reset PCMCIA card controller
FPGA 60 and enable reprogramming, and interface chip 26

BLACKBERRY EX. 1012, pg. 149

B-28

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

completes reprogramming by loading the data from the newly
selected FPGA programming data file into card controller
FPGA 60.

Michelson, Ex. 1003, 5:52-6:60:

For example, instead of simply storing all the data received
from the sensors in the FIFO before sending it to the host
computer, card controller FPGA 60 can be reprogrammed with
additional functionality that formats the data received from the
sensors according to the host computer’s requirements before
storing the data in the FIFO. Similarly, card controller FPGA
60 can be reprogrammed with additional functionality that
analyzes the sensor data and interrupts the host computer when
predetermined thresholds are exceeded. In such a system, the
host computer need not interact with the PCMCIA card unless
a predetermined threshold is exceeded.

For example, a data acquisition PCMCIA card may be
coupled to a temperature controller and sensors for determining
the temperature of a room. Such a PCMCIA card continually
receives data from the sensors and, in a simple data acquisition
card, the host computer periodically reads the data acquisition
FIFO and analyzes the data to determine if predetermined
temperature thresholds have been exceeded. The PCMCIA
card could be reprogrammed to analyze the data received from
the sensors and interrupt the host computer when a
predetermined temperature threshold is exceeded. Hence, the
host computer would only read the PCMCIA card FIFO when
notified that a threshold had been exceeded.

Moreover, the operation of the PCMCIA card controller
may need to change for different user applications. For
example, if a temperature controller is moved to a smaller room
where temperature fluctuates more quickly, the PCMCIA card
controller needs to be reprogrammed to accept data from the
temperature sensors more frequently. In such a situation, the
user notifies the processor of a change in application and the
processor selects a corresponding FPGA programming data file
and sends the data to the PCMCIA interface which reprograms

BLACKBERRY EX. 1012, pg. 150

B-29

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

the PCMCIA card controller FPGA by loading the FPGA with
the new FPGA programming data.

Typically host memory is very large and is supplemented
with extended memory (not shown). Hence, a practically
unlimited number of FPGA programming data files can be
stored within the host computer and made available to the user.
The programming and reprogramming of the PCMCIA card
controller FPGA is limited only by the size (i.e., capability) of
the FPGA. The functionality of the PCMCIA card is limited
only by the fixed hardware (i.e., the functional hardware) on
the PCMCIA card (e.g., A/D or D/A converters, contacts on
and configuration of the external connector, and FIFO size).

For example, a PCMCIA card controller FPGA can be
programmed to function as an I/O card controller, a data
acquisition card controller, a fax/modem card controller, or a
memory card controller; however, the PCMCIA card can only
function as these card types if the additional functional
hardware is available on the card. For an I/O card controller,
the FPGA can be programmed (and reprogrammed) with the
functionality required to transfer data between the host
computer and the I/O bus (e.g., Small Computer System
Interface (SCSI)), and, thus, the only additional functional
hardware required is an external I/O bus connector and
electrical conductors from the I/O bus connector to the FPGA.
For a memory card, additional functional hardware typically
includes a bank of static or dynamic RAM chips, ROM chips,
flash memory, or a hard disk drive, and the addressing and
refreshing functionality can be located within the PCMCIA
card controller FPGA and, hence, reprogrammable. As an
example, where a portion of a disk drive or a portion of a bank
of RAMs becomes damaged and non-functional, the addressing
functionality in the FPGA can be reprogrammed to address
only the working portion of the memory hardware. For a
fax/modem, additional functional hardware generally includes
a phone connection, A/D and D/A converters, buffers, and
amplifiers, and functionality controlling hardware, for
instance, hardware controlling the baud rate, can be located
within the FPGA and, thus, reprogrammable.

BLACKBERRY EX. 1012, pg. 151

B-30

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

PCCextend

PCCextend, Ex. 1004, p. 1 (“Using the PCCextend is relatively
straightforward. The extender card is inserted into the desired slot
in the host system. Then the PC Card under test is inserted into the
card connector.”).

PCCextend, Ex. 1004, p. 1 (“Caution: Insertion and removal of the
extender and PC card should be done with care. The PC Card’s
fragile connectors may be broken or bent if improper force is used.
Both card and extender should be inserted straight without any
lateral movement or force.” (Italics and bold omitted.)).

PCCextend, Ex. 1004, pp. 3-4:

2.3 Using the PCCswitch

PCCextend 100 includes the PCCswitch, which can be used to
momentarily interrupt the CD1 and CD2 signals. The
PCCswitch is centrally located on the PCCextend 100 between
the termination area and test points. When properly configured,
the PCCswitch can interrupt the card detect signals (-CD 1 and
-CD2) to simulate a card removal/insertion cycle. . . . When a
card is inserted, CD1 and CD2 may be momentarily interrupted
by pressing the PCCswitch.

BLACKBERRY EX. 1012, pg. 152

B-31

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

To test the operation of the PCCswitch, be sure that your PC
Card Software drivers are loaded. Momentarily press the
PCCtest switch. Most software drivers will issue a removal
beep followed by an insertion beep. The software may also
remove power from the socket when the card is removed.

DAVIS
Davis, Ex. 1005, 1:20-33 (“A power management system typically
operates to conserve electrical power consumption by reducing
power requirements in response to a detected lack of activity by a
computer or its devices.”).

Davis, Ex. 1005, 1:43-49:

A power management event typically comprises either a
power-down or power-up event. A sequence of power-down
and power-up events can cause a computer device to enter a
default state or a random state based on the loss of
configuration information. It is often necessary to supply
configuration information to a device via its device driver in
response to a sequence of power-down and power-up events.

Davis, Ex. 1005, 2:21-32:

These removable devices can lose device configuration
information in response to a power-down/power-up sequence
in the absence of an appropriate power management system.
Indeed, if the power management event is not communicated to

BLACKBERRY EX. 1012, pg. 153

B-32

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

the device driver, the only way to return a device that has lost
its device configuration to a useful state is to restart or re¬boot
the computer system. The present invention solves these issues
by using the device removal and insertion signals normally
generated by the removal or insertion of a device to support a
power management application and to advise a driver for a
device about a power management event.

Davis, Ex. 1005, 5:13-26:

To achieve the desired power management function, it is
often necessary to cause a removable device to enter a reduced
power state when a device is inactive or placed in the idle state.
However, a device will often lose its device configuration
information in response to powering down that device. To fully
use that device once power is restored, it is necessary to
reconfigure the device with device configuration information.
Specifically, it is desirable to communicate configuration
information to a device via its device driver in response to
restoring power. The present invention provides a solution to
this problem by notifying the appropriate device driver of a
power management event and by supplying device
configuration information to a corresponding device in
response to the restoration of power.

Davis, Ex. 1005, 6:37-54:

The state of the card detect lines 16a and 16b can be used by
the device controller 18 to determine if a device 12 is connected
to the socket 14. The device controller 18 determines that a
device 12 is connected to the socket 14 when both card detect
lines 16a and 16b transition from the logical high level to the
logical low level. In contrast, in the event that one of the card
detect lines 16a and 16b transitions from the logical low level
to the logical high level, then the device controller 18
determines that a device 12 has been removed from the socket
14. In summary, a device insertion event is defined by a
particular state for both of the card detect lines 16a and 16b,

BLACKBERRY EX. 1012, pg. 154

B-33

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

preferably each card detect line carrying a logical low level
signal. A device removal event, however, is preferably defined
by one of the card detect lines 1 6a and 1 6b transitioning to the
logical high level. Those skilled in the art will appreciate that
the removable device interface system described above is
compatible with the standard specification for PCMCIA or PC
Card devices.

Davis, Ex. 1005, Figs. 2 and 3:

BLACKBERRY EX. 1012, pg. 155

B-34

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

Davis, Ex. 1005, 7:8-36:

FIG. 2 is a block diagram illustrating the components for an
embodiment of the present invention. Referring now to FIG. 2,
a switching device 23 is connected between the device 12 (via
the socket 14) and the device controller 18. Specifically, the
switching device 23 is connected to the socket 14 (and, if
inserted, the device 12) by the card detect lines 16a’ and 16b’.
In addition, the switching device 23 is connected to the device
controller 18 via the system advisory lines 25a and 25b. A
power management module 24, which supports the power
management function by controlling the power states of the
computer and its devices, communicates with the switching
device 23 via a control line 26. The control line 26 carries
control signals output by the power management module 24 for
controlling the operating state of the switching device 23.

The switching device 23 can operate in the open state in
response to a particular control signal from the power
management module 24, thereby breaking a signal path
between the card detect lines 1 6a’ and 1 6b’ and system

BLACKBERRY EX. 1012, pg. 156

B-35

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

advisory lines 25a and 25b. In the alternative, the switching
device 23 can operate in the closed state in response to another
control signal to maintain a signal connection between the card
detect lines 16a’ and 16b’ and the system advisory line 25a and
25b. It will be appreciated that the switching device 23 can be
implemented by an electronic switch, typically a field effect
transistor (FET) or a bipolar transistor. Other types of
electronic switches, however, can be used to implement the
switching device 23, as is known in the art.

Davis, Ex. 1005, 10:21-35:

FIG. 3 is a schematic diagram for the preferred embodiment
of the present invention. Turning now to FIGS. 2 and 3, the
switching device 23 is preferably implemented by a FET
device 23’ connected between either (1) the combination of the
card detect line 1 6a and the system advisory line of 25a or (2)
the combination of the card detect line 1 6b and the system
advisory line 25b. The FET 23’ serves to manipulate a signal
control path between the socket 14 and the device controller 18,
and a device removal event can be represented by deactivating
the FET and opening this single path. Likewise, a device
insertion event can be represented by activating the FET and
closing this signal path (while the device 12 is properly
installed within the socket 14 and a card detect line extends
between the socket and the device controller).

Davis, Ex. 1005, 8:31-34:

By manipulating the operating state of the switching device 23,
information regarding device insertion or removal events can
be communicated to the card controller 18. 8:31-34.

Davis, Ex. 1005, 9:41-52:

In response to a power-down event, the power management
module outputs a particular control signal to the switching device
24, thereby causing the switching device to enter the open state or

BLACKBERRY EX. 1012, pg. 157

B-36

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

position. This interrupts the passage of signals from the card detect
lines 16a’ and 16b’ to the device controller 18, thereby tricking the
device controller to take actions in response to the apparent
removal of the device 12. Significantly, the device 12 remains
inserted within the socket 14, thereby leading to the presence of
logical lower levels signals on the card detect lines 1 6a’ and 1 6b’
that represent a device insertion event.

[d] while
supplying
electrical
power to said
peripheral
device.

MICHELSON
Michelson, Ex. 1003, 4:17-22;

Interlace chip 26 initiates FPGA 60 programming through
FPGA programming circuit 68, which drives reset line 63 and
reprogram line 65, and completes FPGA 60 programming by
loading the FPGA programming data into FPGA 60 through
peripheral data lines 72.

Michelson, Ex. 1003, 5:45-51

Interface chip 26 uses FPGA programming circuit 68 to reset
PCMCIA card controller FPGA 60 and enable reprogramming,
and interface chip 26 completes reprogramming by loading the
data from the newly selected FPGA programming data file into
card controller FPGA 60.

Michelson, Ex. 1003, Figs. 1 and 3.

PCCEXTEND

PCCextend, Ex. 1004, p. 3 (“The power LEDs are designed to
indicate the presence of power on the Vcc supply pins”).

PCCextend, Ex. 1004, p. 5 (“The software may also remove power
from the socket when the card is removed”) (emphasis added).

PCCextend, Ex. 1004, pp. 15-16.

Claim 2
The system of
claim 1,
wherein said
first

MICHELSON
Michelson, Ex. 1003, 2:34-4:8:

Referring also to FIG. 2, when PCMCIA card 14 card

BLACKBERRY EX. 1012, pg. 158

B-37

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

configuration is
a generic
configuration
assigned to the
peripheral
device and said
second
configuration
comprises any
one of a
plurality of
unique
manufacturer
configurations.

connector 28 is inserted in PCMCIA host socket 18 of host
computer 12, PCMCIA adapter 16 recognizes (step 44) the
insertion and interrupts (step 46) processor 22. Alternatively, if
PCMCIA card 14 is inserted while host computer 12 is turned
off (i.e., powered-down), host computer 12 learns of the
existence of PCMCIA card 14 during the power-on procedure.
Processor 22 then executes (step 48) Card and Socket Services
38 (C&SS) software resident in host memory 24 and through
PCMCIA interface chip 26 reads CIS data from CIS EEPROM
30. As a minimum, the CIS data must sufficiently identify the
PCMCIA card to the host, to enable the processor 22 to
configure the host computer 12 and the PCMCIA card 14 to
operate together and to enable the processor to select the
appropriate application software 40 from host memory 24. The
CIS data specifically identify the card manufacturer (e.g., Data
Translation, Inc.) and card identification (ID) number and
includes a variety of set-up information, including base
address, interrupt level, size of address window, and other
information regarding the card’s functionality, as specified by
release 2.1. The CIS data are entered into the EEPROM at the
time of card manufacture and are not thereafter changed.
Hence, configuration of host computer 12 and PCMCIA card
14 is completed without the use of card controller 32.

Processor 22 then executes (step 50) the application
software 40 resident in host memory 24 that corresponds to
PCMCIA card 14. The application software 40 causes the
processor to either select a default FPGA programming data
file 42 from host memory 24 that corresponds to a particular
application for PCMCIA card 14 or request input from the user
as to which FPGA programming data file 42 is to be selected
from host memory 24. Processor 22 then sends (step 52) the
data from the selected FPGA programming data file 42 through
PCMCIA adapter 16 to PCMCIA interface chip 26. Interface
chip 26 then programs (step 54) a field programmable gate
array (FPGA, not shown in FIG. 1) within card controller 32 by
loading the data from the FPGA programming data file 42 into
the FPGA. Where the application software causes the processor
to select a default data programming file, PCMCIA card 14 and

BLACKBERRY EX. 1012, pg. 159

B-38

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

host computer 12 are made operable (step 56) without user
intervention.

Michelson, Ex. 1003, 6:61-65:

The FPGA programming data files can be supplied with the
PCMCIA card or new, additional, or updated FPGA programming
data files can be obtained at a later time. Similarly, users can create
their own FPGA programming data files or make modifications as
desired.

Claim 3
The system of
claim 2,
wherein said
first circuit is
configured to
(i) read an
identification
code from the

MICHELSON
Michelson, Ex. 1003, 2:34-4:8:

Referring also to FIG. 2, when PCMCIA card 14 card
connector 28 is inserted in PCMCIA host socket 18 of host
computer 12, PCMCIA adapter 16 recognizes (step 44) the
insertion and interrupts (step 46) processor 22. Alternatively, if
PCMCIA card 14 is inserted while host computer 12 is turned
off (i.e., powered-down), host computer 12 learns of the
existence of PCMCIA card 14 during the power-on procedure.
Processor 22 then executes (step 48) Card and Socket Services
38 (C&SS) software resident in host memory 24 and through
PCMCIA interface chip 26 reads CIS data from CIS EEPROM
30. As a minimum, the CIS data must sufficiently identify the
PCMCIA card to the host, to enable the processor 22 to
configure the host computer 12 and the PCMCIA card 14 to
operate together and to enable the processor to select the
appropriate application software 40 from host memory 24. The
CIS data specifically identify the card manufacturer (e.g., Data
Translation, Inc.) and card identification (ID) number and
includes a variety of set-up information, including base
address, interrupt level, size of address window, and other
information regarding the card’s functionality, as specified by
release 2.1. The CIS data are entered into the EEPROM at the
time of card manufacture and are not thereafter changed.
Hence, configuration of host computer 12 and PCMCIA card
14 is completed without the use of card controller 32.

BLACKBERRY EX. 1012, pg. 160

B-39

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

Processor 22 then executes (step 50) the application
software 40 resident in host memory 24 that corresponds to
PCMCIA card 14. The application software 40 causes the
processor to either select a default FPGA programming data
file 42 from host memory 24 that corresponds to a particular
application for PCMCIA card 14 or request input from the user
as to which FPGA programming data file 42 is to be selected
from host memory 24. Processor 22 then sends (step 52) the
data from the selected FPGA programming data file 42 through
PCMCIA adapter 16 to PCMCIA interface chip 26. Interface
chip 26 then programs (step 54) a field programmable gate
array (FPGA, not shown in FIG. 1) within card controller 32 by
loading the data from the FPGA programming data file 42 into
the FPGA. Where the application software causes the processor
to select a default data programming file, PCMCIA card 14 and
host computer 12 are made operable (step 56) without user
intervention.

Michelson, Ex. 1003, 6:61-65:

The FPGA programming data files can be supplied with the
PCMCIA card or new, additional, or updated FPGA programming
data files can be obtained at a later time. Similarly, users can create
their own FPGA programming data files or make modifications as
desired.

Claim 10
The system of
claim 1,
wherein said
second circuit
comprises a
reset circuit
configured to
reset the first or
second
configuration
of the
peripheral

MICHELSON
Michelson, Ex. 1003, 4:9-22:

Referring to FIG. 3, card controller 32 includes a PCMCIA
card controller FPGA 60 (e.g., part number XC3042TQ100-
100, manufactured by Xilinx, as described in Xilinx
Programmable Logic Data Book, which is hereby incorporated
by reference). Through a standard PCMCIA bus (i.e., PCMCIA
address lines 62, data lines 64, and control lines 66) connected
to PCMCIA connector 28, interface chip 26 receives FPGA
programming data from host computer 12 (FIG. 1). Interface
chip 26 initiates FPGA 60 programming through FPGA

BLACKBERRY EX. 1012, pg. 161

B-40

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

device. programming circuit 68, which drives reset line 63 and
reprogram line 65, and completes FPGA 60 programming by
loading the FPGA programming data into FPGA 60 through
peripheral data lines 72.

PCCextend

PCCextend, Ex. 1004, p. 1 (“Using the PCCextend is relatively
straightforward. The extender card is inserted into the desired slot
in the host system. Then the PC Card under test is inserted into the
card connector.”).

PCCextend, Ex. 1004, p. 1 (“Caution: Insertion and removal of the
extender and PC card should be done with care. The PC Card’s
fragile connectors may be broken or bent if improper force is used.
Both card and extender should be inserted straight without any
lateral movement or force.” (Italics and bold omitted.)).

PCCextend, Ex. 1004, pp. 3-4:

2.3 Using the PCCswitch
PCCextend 100 includes the PCCswitch, which can be used to
momentarily interrupt the CD1 and CD2 signals. The
PCCswitch is centrally located on the PCCextend 100 between
the termination area and test points. When properly configured,
the PCCswitch can interrupt the card detect signals (-CD 1 and

BLACKBERRY EX. 1012, pg. 162

B-41

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

-CD2) to simulate a card removal/insertion cycle. . . . When a
card is inserted, CD1 and CD2 may be momentarily interrupted
by pressing the PCCswitch.

To test the operation of the PCCswitch, be sure that your PC
Card Software drivers are loaded. Momentarily press the
PCCtest switch. Most software drivers will issue a removal
beep followed by an insertion beep. The software may also
remove power from the socket when the card is removed.

DAVIS

Davis, Ex. 1005, Figs. 2 and 3:

BLACKBERRY EX. 1012, pg. 163

B-42

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

Davis, Ex. 1005, 7:8-36:

FIG. 2 is a block diagram illustrating the components foran
embodiment of the present invention. Referring now to FIG. 2,
a switching device 23 is connected between the device 12 (via
the socket 14) and the device controller 18. Specifically, the
switching device 23 is connected to the socket 14 (and, if
inserted, the device 12) by the card detect lines 16a’ and 16b’.
In addition, the switching device 23 is connected to the device
controller 18 via the system advisory lines 25a and 25b. A
power management module 24, which supports the power
management function by controlling the power states of the
computer and its devices, communicates with the switching
device 23 via a control line 26. The control line 26 carries
control signals output by the power management module 24 for
controlling the operating state of the switching device 23. The
switching device 23 can operate in the open state in response to
a particular control signal from the power management module
24, thereby breaking a signal path between the card detect lines
1 6a’ and 1 6b’ and system advisory lines 25a and 25b. In the
alternative, the switching device 23 can operate in the closed

BLACKBERRY EX. 1012, pg. 164

B-43

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

state in response to another control signal to maintain a signal
connection between the card detect lines 16a’ and 16b’ and the
system advisory line 25a and 25b. It will be appreciated that the
switching device 23 can be implemented by an electronic
switch, typically a field effect transistor (FET) or a bipolar
transistor. Other types of electronic switches, however, can be
used to implement the switching device 23, as is known in the
art.

Davis, Ex. 1005, 10:21-35:

FIG. 3 is a schematic diagram for the preferred embodiment of the
present invention. Turning now to FIGS. 2 and 3, the switching
device 23 is preferably implemented by a FET device 23’
connected between either (1) the combination of the card detect
line 1 6a and the system advisory line of 25a or (2) the
combination of the card detect line 1 6b and the system advisory
line 25b. The FET 23’ serves to manipulate a signal control path
between the socket 14 and the device controller 18, and a device
removal event can be represented by deactivating the FET and
opening this single path. Likewise, a device insertion event can be
represented by activating the FET and closing this signal path
(while the device 12 is properly installed within the socket 14 and
a card detect line extends between the socket and the device
controller).

Davis, Ex. 1005, 8:31-34:

By manipulating the operating state of the switching device 23,
information regarding device insertion or removal events can be
communicated to the card controller 18. 8:31-34.

Claim 11
[a] A method
for
reconfiguring a
peripheral
device having a
first

See discussion above with respect to claim element 1[a].

BLACKBERRY EX. 1012, pg. 165

B-44

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

configuration
connected by a
computer bus
to a host
computer, the
method
comprising the
steps of:
[b] (A)
downloading
information for
a second
configuration
from the host
computer into
the peripheral
device over the
computer bus;
and

See discussion above with respect to claim element 1[b].

[c] (B)
electronically
simulating a
physical
disconnection
and
reconnection of
the peripheral
device to
reconfigure the
peripheral
device to said
second
configuration

See discussion above with respect to claim element 1[c].

[d] while
supplying
electrical
power to said
peripheral

See discussion above with respect to claim element 1[d].

BLACKBERRY EX. 1012, pg. 166

B-45

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

device.
Claim 12

The method of
claim 11,
wherein said
first
configuration
comprises a
generic
configuration
assigned to the
peripheral
device and said
second
configuration
comprises any
one of a
plurality of
unique
manufacturer
configurations.

See discussion above with respect to claim 2.

Claim 13
The method of
claim 11,
wherein step
(A) comprises:
reading an
identification
code from the
peripheral
device, and
selecting said
second
configuration
based on said
identification
code.

See discussion above with respect to claim 3.

BLACKBERRY EX. 1012, pg. 167

B-46

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

Claim 16
The method of
claim 11,
wherein said
information for
the second
configuration
comprises (i)
configuration
data and (ii) an
executable
code.

MICHELSON

Michelson, Ex. 1003, 1:50-57:

The programmable architecture of FPGAs is provided through
programmable logic blocks interconnected by a hierarchy of
routing resources. The devices are customized by loading
programming data into internal static memory cells. FPGA
programming data are design-specific data that define the
functional operation of the FPGA’s internal blocks and their
interconnections (e.g., the functional operation of the PCMCIA
card controller and interface circuit).

Michelson, Ex. 1003, 2:18-44:

In preferred embodiments, the host computer includes a
PCMCIA adapter circuit coupled to a PCMCIA host socket
which is mechanically and electrically connected to a
PCMCIA card connector on the PCMCIA card. A PCMCIA
interface circuit is connected to the PCMCIA card connector
on the PCMCIA card. Using Card and Socket Services
software stored in host memory, the host processor reads Card
Information Structure (CIS) data from a memory device, such
as an EEPROM, on the PCMCIA card and configures the host
computer and PCMCIA card to operate together. Additionally,
using application software stored in host memory, the
processor selects an FPGA programming data file from host
memory and sends data from the selected FPGA programming
data file through the PCMCIA adapter circuit to the PCMCIA
interface circuit. The PCMCIA interface circuit loads the data
into a PCMCIA card controller FPGA to program the FPGA.
When an error or a different user application is detected or
when a user creates a new FPGA programming data file or
modifies an existing FPGA programming data file, the
processor is instructed to select another FPGA programming
data file from host memory. The processor then sends data
from the newly selected FPGA programming data file to the

BLACKBERRY EX. 1012, pg. 168

B-47

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

PCMCIA interface circuit, and the PCMCIA interface circuit
loads the data into the PCMCIA card controller FPGA to
reprogram the FPGA. The PCMCIA card may also have a
functionality circuit that includes additional functional
hardware specific to the function of the PCMCIA card.

See also Michelson, Ex. 1003, Fig. 2, 3:59-4:8, 5:37-51, 6:10-20.

Claim 17
The method of
claim 11,
wherein step
(B)
comprises
electronically
resetting the
configuration
of the
peripheral
device,
controllable by
the peripheral
device.

See discussion above with respect to claim 10.

Claim 18
[a] A system
for
reconfiguring a
peripheral
device having a
configuration
connected by a
computer bus
to a host
computer, the
system
comprising:

MICHELSON
Michelson, Ex. 1003, 1:7-16:

This invention relates to programming and reprogramming
the hardware configuration of a (PCMCIA) card. Personal
computer memory card international association (PCMCIA)
cards are computer cards that meet the minimum compliance
requirements of the PCMCIA standard (e.g., release 2.1, which
is hereby incorporated by reference). PCMCIA cards are
typically used to add functionality or memory to a personal,
portable, or desktop computer (i.e., host computer).

Michelson, Ex. 1003, 1:28-36:

A typical PCMCIA card includes a standard PCMCIA

BLACKBERRY EX. 1012, pg. 169

B-48

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

connector connected to a PCMCIA interface circuit through a
standard PCMCIA bus. The PCMCIA interface circuit operates
according to the standard PCMCIA protocol to send data to and
receive data from a host computer. The typical PCMCIA card
also includes a PCMCIA card controller that sends data to and
receives data from the PCMCIA interface circuit and controls
the operation of the functional hardware on the card.”).

Michelson, Ex. 1003, 2:3-16:

In general, the invention includes a PCMCIA card having
an FPGA based card controller that is programmed with FPGA
programming data stored on a host computer through a
standard PCMCIA bus. Storing FPGA programming data on
the host computer allows a user access to a practically
unlimited number of FPGA programming data files to program
and reprogram the FPGA of the PCMCIA FPGA based card
controller for different applications and permits a user to
supplement, update, improve, or otherwise modify operation
for existing applications. Additionally, storing the FPGA
programming data files on the host computer saves valuable
PCMCIA card real estate, reduces the amount of power
required by the card during FPGA programming, and reduces
the cost of the PCMCIA hardware.”).

Michelson, Ex. 1003, 2:17-42:

In preferred embodiments, the host computer includes a
PCMCIA adapter circuit coupled to a PCMCIA host socket
which is mechanically and electrically connected to a
PCMCIA card connector on the PCMCIA card. A PCMCIA
interface circuit is connected to the PCMCIA card connector
on the PCMCIA card. Using Card and Socket Services
software stored in host memory, the host processor reads Card
Information Structure (CIS) data from a memory device, such
as an EEPROM, on the PCMCIA card and configures the host
computer and PCMCIA card to operate together. Additionally,
using application software stored in host memory, the

BLACKBERRY EX. 1012, pg. 170

B-49

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

processor selects an FPGA programming data file from host
memory and sends data from the selected FPGA programming
data file through the PCMCIA adapter circuit to the PCMCIA
interface circuit. The PCMCIA interface circuit loads the data
into a PCMCIA card controller FPGA to program the FPGA.
When an error or a different user application is detected or
when a user creates a new FPGA programming data file or
modifies an existing FPGA programming data file, the
processor is instructed to select another FPGA programming
data file from host memory. The processor then sends data
from the newly selected FPGA programming data file to the
PCMCIA interface circuit, and the PCMCIA interface circuit
loads the data into the PCMCIA card controller FPGA to
reprogram the FPGA.

Michelson, Ex. 1003, Fig. 1:

Michelson, Ex. 1003, 2:62-3:8:

Referring to FIG. 1, a PCMCIA system 10 includes a host
computer 12 and a PCMCIA card 14. Within host computer 12,
a PCMCIA adapter 16, connected to a standard 68 pin
PCMCIA host socket 18 . . ., is coupled to a system bus 20 that
interconnects PCMCIA adapter 16, a host processor 22, and a

BLACKBERRY EX. 1012, pg. 171

B-50

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

host memory 24. Within PCMCIA card 14, a PCMCIA
interface chip 26 . . ., connected to a standard 68 pin PCMCIA
card connector 28 . . ., is coupled to a Card Information
Structure (CIS) EEPROM 30 . . ., a PCMCIA card controller
32, and a card functionality circuit 34.

Michelson, Ex. 1003, Fig. 3:

Michelson, Ex. 1003, 4:9-22

Referring to FIG. 3, card controller 32 includes a PCMCIA card
controller FPGA 60 (e.g., part number XC3042TQ100-100,
manufactured by Xilinx, as described in Xilinx Programmable
Logic Data Book, which is hereby incorporated by reference).
Through a standard PCMCIA bus (i.e., PCMCIA address lines
data lines 64, and control lines 66) connected to PCMCIA
connector 28, interface chip 26 receives FPGA programming data
from host computer 12 (FIG. 1). Interface chip 26 initiates FPGA
60 programming through FPGA programming circuit 68, which
drives reset line 63 and reprogram line 65, and completes FPGA
60 programming by loading the FPGA programming data into
FPGA 60 through peripheral data lines 72.

[b] a first
circuit
configured to
detect the
peripheral
device

MICHELSON
Michelson, Ex. 1003, Fig. 2:

BLACKBERRY EX. 1012, pg. 172

B-51

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

connected to
the computer
bus; and

Michelson, Ex. 1003, 2:34-58:

Referring also to FIG. 2, when PCMCIA card 14 card
connector 28 is inserted in PCMCIA host socket 18 of host
computer 12, PCMCIA adapter 16 recognizes (step 44) the
insertion and interrupts (step 46) processor 22. Alternatively, if
PCMCIA card 14 is inserted while host computer 12 is turned
off (i.e., powered-down), host computer 12 learns of the
existence of PCMCIA card 14 during the power-on procedure.
Processor 22 then executes (step 48) Card and Socket Services
38 (C&SS) software resident in host memory 24 and through
PCMCIA interface chip 26 reads CIS data from CIS EEPROM
30. As a minimum, the CIS data must sufficiently identify the
PCMCIA card to the host, to enable the processor 22 to
configure the host computer 12 and the PCMCIA card 14 to
operate together and to enable the processor to select the
appropriate application software 40 from host memory 24. The
CIS data specifically identify the card manufacturer (e.g., Data
Translation, Inc.) and card identification (ID) number and
includes a variety of set-up information, including base
address, interrupt level, size of address window, and other
information regarding the card’s functionality, as specified by
release 2.1. The CIS data are entered into the EEPROM at the
time of card manufacture and are not thereafter changed.
Hence, configuration of host computer 12 and PCMCIA card

BLACKBERRY EX. 1012, pg. 173

B-52

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

14 is completed without the use of card controller 32.
[c] a second
circuit
configured to
electronically
simulate a
physical
disconnection
and
reconnection of
the peripheral
device to reset
said
configuration
of said
peripheral
device

MICHELSON
Michelson, Ex. 1003, 4:9-22:

Referring to FIG. 3, card controller 32 includes a PCMCIA
card controller FPGA 60 (e.g., part number XC3042TQ100-
100, manufactured by Xilinx, as described in Xilinx
Programmable Logic Data Book, which is hereby incorporated
by reference). Through a standard PCMCIA bus (i.e.,
PCMCIA address lines 62, data lines 64, and control lines 66)
connected to PCMCIA connector 28, interface chip 26 receives
FPGA programming data from host computer 12 (FIG. 1).
Interface chip 26 initiates FPGA 60 programming through
FPGA programming circuit 68, which drives reset line 63 and
reprogram line 65, and completes FPGA 60 programming by
loading the FPGA programming data into FPGA 60 through
peripheral data lines 72.

Michelson, Ex. 1003, 5:37-5 1:

For a variety of reasons, including the detection of a
PCMCIA card controller 60 malfunction (e.g., error condition
detected) or the detection of a user request to change the
PCMCIA card application (e.g., software interrupt), PCMCIA
card controller 60 may be reprogramed. The host computer
executes application software 40 (FIG. 1) in host memory 24 to
select a new FPGA programming data file 42 from host
memory 24 and then sends the data from the newly selected
FPGA programming data file 42 through PCMCIA adapter 16
to PCMCIA interface chip 26. Interface chip 26 uses FPGA
programming circuit 68 to reset PCMCIA card controller
FPGA 60 and enable reprogramming, and interface chip 26
completes reprogramming by loading the data from the newly
selected FPGA programming data file into card controller
FPGA 60.

Michelson, Ex. 1003, 5:52-6:60:

BLACKBERRY EX. 1012, pg. 174

B-53

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

For example, instead of simply storing all the data received
from the sensors in the FIFO before sending it to the host
computer, card controller FPGA 60 can be reprogrammed with
additional functionality that formats the data received from the
sensors according to the host computer's requirements before
storing the data in the FIFO. Similarly, card controller FPGA
60 can be reprogrammed with additional functionality that
analyzes the sensor data and interrupts the host computer when
predetermined thresholds are exceeded. In such a system, the
host computer need not interact with the PCMCIA card unless
a predetermined threshold is exceeded.

For example, a data acquisition PCMCIA card may be
coupled to a temperature controller and sensors for determining
the temperature of a room. Such a PCMCIA card continually
receives data from the sensors and, in a simple data acquisition
card, the host computer periodically reads the data acquisition
FIFO and analyzes the data to determine if predetermined
temperature thresholds have been exceeded. The PCMCIA
card could be reprogrammed to analyze the data received from
the sensors and interrupt the host computer when a
predetermined temperature threshold is exceeded. Hence, the
host computer would only read the PCMCIA card FIFO when
notified that a threshold had been exceeded.

Moreover, the operation of the PCMCIA card controller
may need to change for different user applications. For
example, if a temperature controller is moved to a smaller room
where temperature fluctuates more quickly, the PCMCIA card
controller needs to be reprogrammed to accept data from the
temperature sensors more frequently. In such a situation, the
user notifies the processor of a change in application and the
processor selects a corresponding FPGA programming data
file and sends the data to the PCMCIA interface which
reprograms the PCMCIA card controller FPGA by loading the
FPGA with the new FPGA programming data.

Typically host memory is very large and is supplemented
with extended memory (not shown). Hence, a practically
unlimited number of FPGA programming data files can be
stored within the host computer and made available to the user.

BLACKBERRY EX. 1012, pg. 175

B-54

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

The programming and reprogramming of the PCMCIA card
controller FPGA is limited only by the size (i.e., capability) of
the FPGA. The functionality of the PCMCIA card is limited
only by the fixed hardware (i.e., the functional hardware) on
the PCMCIA card (e.g., A/D or D/A converters, contacts on
and configuration of the external connector, and FIFO size).

For example, a PCMCIA card controller FPGA can be
programmed to function as an I/O card controller, a data
acquisition card controller, a fax/modem card controller, or a
memory card controller; however, the PCMCIA card can only
function as these card types if the additional functional
hardware is available on the card. For an I/O card controller,
the FPGA can be programmed (and reprogrammed) with the
functionality required to transfer data between the host
computer and the I/O bus (e.g., Small Computer System
Interface (SCSI)), and, thus, the only additional functional
hardware required is an external I/O bus connector and
electrical conductors from the I/O bus connector to the FPGA.
For a memory card, additional functional hardware typically
includes a bank of static or dynamic RAM chips, ROM chips,
flash memory, or a hard disk drive, and the addressing and
refreshing functionality can be located within the PCMCIA
card controller FPGA and, hence, reprogrammable. As an
example, where a portion of a disk drive or a portion of a bank
of RAMs becomes damaged and non-functional, the
addressing functionality in the FPGA can be reprogrammed to
address only the working portion of the memory hardware. For
a fax/modem, additional functional hardware generally
includes a phone connection, A/D and D/A converters, buffers,
and amplifiers, and functionality controlling hardware, for
instance, hardware controlling the baud rate, can be located
within the FPGA and, thus, reprogrammable.

PCCextend
PCCextend, Ex. 1004, p. 1 (“Using the PCCextend is relatively
straightforward. The extender card is inserted into the desired slot
in the host system. Then the PC Card under test is inserted into the
card connector.”).

BLACKBERRY EX. 1012, pg. 176

B-55

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

PCCextend, Ex. 1004, p. 1 (“Caution: Insertion and removal of the
extender and PC card should be done with care. The PC Card’s
fragile connectors may be broken or bent if improper force is used.
Both card and extender should be inserted straight without any
lateral movement or force.” (Italics and bold omitted.)).

PCCextend, Ex. 1004, pp. 3-4:

2.3 Using the PCCswitch

PCCextend 100 includes the PCCswitch, which can be used to
momentarily interrupt the CD1 and CD2 signals. The
PCCswitch is centrally located on the PCCextend 100 between
the termination area and test points. When properly configured,
the PCCswitch can interrupt the card detect signals (-CD 1 and
-CD2) to simulate a card removal/insertion cycle. . . . When a
card is inserted, CD1 and CD2 may be momentarily interrupted
by pressing the PCCswitch.

BLACKBERRY EX. 1012, pg. 177

B-56

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

To test the operation of the PCCswitch, be sure that your PC
Card Software drivers are loaded. Momentarily press the
PCCtest switch. Most software drivers will issue a removal
beep followed by an insertion beep. The software may also
remove power from the socket when the card is removed.

DAVIS

Davis, Ex. 1005, 1:20-33 (“A power management system typically
operates to conserve electrical power consumption by reducing
power requirements in response to a detected lack of activity by a
computer or its devices.”).

Davis, Ex. 1005, 1:43-49:

A power management event typically comprises either a
power-down or power-up event. A sequence of power-down
and power-up events can cause a computer device to enter a
default state or a random state based on the loss of
configuration information. It is often necessary to supply
configuration information to a device via its device driver in
response to a sequence of power-down and power-up events.

Davis, Ex. 1005, 2:21-32:

These removable devices can lose device configuration
information in response to a power-down/power-up sequence
in the absence of an appropriate power management system.
Indeed, if the power management event is not communicated to

BLACKBERRY EX. 1012, pg. 178

B-57

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

the device driver, the only way to return a device that has lost
its device configuration to a useful state is to restart or reboot
the computer system. The present invention solves these issues
by using the device removal and insertion signals normally
generated by the removal or insertion of a device to support a
power management application and to advise a driver for a
device about a power management event.

Davis, Ex. 1005, 5:13-26:

To achieve the desired power management function, it is
often necessary to cause a removable device to enter a reduced
power state when a device is inactive or placed in the idle state.
However, a device will often lose its device configuration
information in response to powering down that device. To fully
use that device once power is restored, it is necessary to
reconfigure the device with device configuration information.
Specifically, it is desirable to communicate configuration
information to a device via its device driver in response to
restoring power. The present invention provides a solution to
this problem by notifying the appropriate device driver of a
power management event and by supplying device
configuration information to a corresponding device in
response to the restoration of power.

Davis, Ex. 1005, 6:37-54:

The state of the card detect lines 16a and 16b can be used by
the device controller 18 to determine if a device 12 is
connected to the socket 14. The device controller 18
determines that a device 12 is connected to the socket 14 when
both card detect lines 16a and 16b transition from the logical
high level to the logical low level. In contrast, in the event that
one of the card detect lines 16a and 16b transitions from the
logical low level to the logical high level, then the device
controller 18 determines that a device 12 has been removed
from the socket 14. In summary, a device insertion event is
defined by a particular state for both of the card detect lines 16a

BLACKBERRY EX. 1012, pg. 179

B-58

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

and 16b, preferably each card detect line carrying a logical low
level signal. A device removal event, however, is preferably
defined by one of the card detect lines 16a and 16b
transitioning to the logical high level. Those skilled in the art
will appreciate that the removable device interface system
described above is compatible with the standard specification
for PCMCIA or PC Card devices.

Davis, Ex. 1005, Figs. 2 and 3:

BLACKBERRY EX. 1012, pg. 180

B-59

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

Davis, Ex. 1005, 7:8-36:

FIG. 2 is a block diagram illustrating the components for an
embodiment of the present invention. Referring now to FIG. 2,
a switching device 23 is connected between the device 12 (via
the socket 14) and the device controller 18. Specifically, the
switching device 23 is connected to the socket 14 (and, if
inserted, the device 12) by the card detect lines 16a' and 16b'. In
addition, the switching device 23 is connected to the device
controller 18 via the system advisory lines 25a and 25b. A
power management module 24, which supports the power
management function by controlling the power states of the
computer and its devices, communicates with the switching
device 23 via a control line 26. The control line 26 carries
control signals output by the power management module 24 for
controlling the operating state of the switching device 23.

The switching device 23 can operate in the open state in
response to a particular control signal from the power
management module 24, thereby breaking a signal path
between the card detect lines 16a' and 16b' and system advisory
lines 25a and 25b. In the alternative, the switching device 23

BLACKBERRY EX. 1012, pg. 181

B-60

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

can operate in the closed state in response to another control
signal to maintain a signal connection between the card detect
lines 16a' and 16b' and the system advisory line 25a and 25b. It
will be appreciated that the switching device 23 can be
implemented by an electronic switch, typically a field effect
transistor (FET) or a bipolar transistor. Other types of
electronic switches, however, can be used to implement the
switching device 23, as is known in the art.

Davis, Ex. 1005, 10:21-35:

FIG. 3 is a schematic diagram for the preferred embodiment
of the present invention. Turning now to FIGS. 2 and 3, the
switching device 23 is preferably implemented by a FET
device 23' connected between either (1) the combination of the
card detect line 16a and the system advisory line of 25a or (2)
the combination of the card detect line 16b and the system
advisory line 25b. The FET 23' serves to manipulate a signal
control path between the socket 14 and the device controller
18, and a device removal event can be represented by
deactivating the FET and opening this single path. Likewise, a
device insertion event can be represented by activating the FET
and closing this signal path (while the device 12 is properly
installed within the socket 14 and a card detect line extends
between the socket and the device controller).

Davis, Ex. 1005, 8:31-34:

By manipulating the operating state of the switching device 23,
information regarding device insertion or removal events can
be communicated to the card controller 18. 8:31-34.

Davis, Ex. 1005, 9:41-52:

In response to a power-down event, the power management
module outputs a particular control signal to the switching device
24, thereby causing the switching device to enter the open state or
position. This interrupts the passage of signals from the card detect

BLACKBERRY EX. 1012, pg. 182

B-61

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

lines 16a' and 16b' to the device controller 18, thereby tricking the
device controller to take actions in response to the apparent
removal of the device 12. Significantly, the device 12 remains
inserted within the socket 14, thereby leading to the presence of
logical lower levels signals on the card detect lines 16a' and 16b'
that represent a device insertion event.

[d] while
supplying
electrical
power to said
peripheral
device.

See discussion above with respect to claim element 1[d].

Claim 20
The system of
claim 18,
wherein said
second circuit
comprises a
solid state
switch.

DAVIS
Davis, Ex. 1005, Figs. 2 and 3:

BLACKBERRY EX. 1012, pg. 183

B-62

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

Davis, Ex. 1005, 7:8-36:

FIG. 2 is a block diagram illustrating the components for an
embodiment of the present invention. Referring now to FIG. 2,
a switching device 23 is connected between the device 12 (via
the socket 14) and the device controller 18. Specifically, the
switching device 23 is connected to the socket 14 (and, if
inserted, the device 12) by the card detect lines 16a' and 16b'. In
addition, the switching device 23 is connected to the device
controller 18 via the system advisory lines 25a and 25b. A
power management module 24, which supports the power
management function by controlling the power states of the
computer and its devices, communicates with the switching
device 23 via a control line 26. The control line 26 carries
control signals output by the power management module 24 for
controlling the operating state of the switching device 23.

The switching device 23 can operate in the open state in
response to a particular control signal from the power
management module 24, thereby breaking a signal path
between the card detect lines 16a' and 16b' and system advisory
lines 25a and 25b. In the alternative, the switching device 23

BLACKBERRY EX. 1012, pg. 184

B-63

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and Davis (Ex. 1005)

can operate in the closed state in response to another control
signal to maintain a signal connection between the card detect
lines 16a' and 16b' and the system advisory line 25a and 25b. It
will be appreciated that the switching device 23 can be
implemented by an electronic switch, typically a field effect
transistor (FET) or a bipolar transistor. Other types of
electronic switches, however, can be used to implement the
switching device 23, as is known in the art.

Davis, Ex. 1005, 10:21-35:

FIG. 3 is a schematic diagram for the preferred embodiment
of the present invention. Turning now to FIGS. 2 and 3, the
switching device 23 is preferably implemented by a FET
device 23' connected between either (1) the combination of the
card detect line 16a and the system advisory line of 25a or (2)
the combination of the card detect line 16b and the system
advisory line 25b. The FET 23' serves to manipulate a signal
control path between the socket 14 and the device controller
18, and a device removal event can be represented by
deactivating the FET and opening this single path. Likewise, a
device insertion event can be represented by activating the FET
and closing this signal path (while the device 12 is properly
installed within the socket 14 and a card detect line extends
between the socket and the device controller).

BLACKBERRY EX. 1012, pg. 185

B-64

D. Ground 4: Claims 5, 7, 15, and 19 are unpatentable under 35
U.S.C. § 103 as being obvious over Michelson (U.S. Patent No.
5,628,028), PCCextend, Davis (U.S. Patent No. 5,862,393), and
APA

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and APA (Ex. 1001)

Claim 5
The system of
claim 1,
wherein said
computer bus
comprises a
Universal
Serial Bus.

APA
APA, Ex. 1001, 2:20-39:

In a serial bus system, such as the USB, the only
opportunity for associating software device drivers with a
peripheral device is at the time when the peripheral device is
plugged into the USB and the enumeration process occurs.
Thus, to alter the configuration or personality of a peripheral
device, such as downloading new code or configuration
information into the memory of the peripheral device, the host
computer system must detect a peripheral device connection or
a disconnection and then a reconnection.

. . .
Thus, there is a need for a system and method for interfacing to

a universal serial bus which avoids these and other problems of
known systems and methods, and it is to this end that the present
invention is directed.

Claim 7
The system of
claim 5,
wherein said
information for
said second
configuration
comprises (i)
configuration
data and (ii) an
executable
code.

MICHELSON

Michelson, Ex. 1003, 1:50-57:

The programmable architecture of FPGAs is provided through
programmable logic blocks interconnected by a hierarchy of
routing resources. The devices are customized by loading
programming data into internal static memory cells. FPGA
programming data are design-specific data that define the
functional operation of the FPGA's internal blocks and their
interconnections (e.g., the functional operation of the PCMCIA
card controller and interface circuit).

BLACKBERRY EX. 1012, pg. 186

B-65

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and APA (Ex. 1001)

Michelson, Ex. 1003, 2:18-44:

In preferred embodiments, the host computer includes a
PCMCIA adapter circuit coupled to a PCMCIA host socket
which is mechanically and electrically connected to a
PCMCIA card connector on the PCMCIA card. A PCMCIA
interface circuit is connected to the PCMCIA card connector
on the PCMCIA card. Using Card and Socket Services
software stored in host memory, the host processor reads Card
Information Structure (CIS) data from a memory device, such
as an EEPROM, on the PCMCIA card and configures the host
computer and PCMCIA card to operate together. Additionally,
using application software stored in host memory, the
processor selects an FPGA programming data file from host
memory and sends data from the selected FPGA programming
data file through the PCMCIA adapter circuit to the PCMCIA
interface circuit. The PCMCIA interface circuit loads the data
into a PCMCIA card controller FPGA to program the FPGA.
When an error or a different user application is detected or
when a user creates a new FPGA programming data file or
modifies an existing FPGA programming data file, the
processor is instructed to select another FPGA programming
data file from host memory. The processor then sends data
from the newly selected FPGA programming data file to the
PCMCIA interface circuit, and the PCMCIA interface circuit
loads the data into the PCMCIA card controller FPGA to
reprogram the FPGA. The PCMCIA card may also have a
functionality circuit that includes additional functional
hardware specific to the function of the PCMCIA card.

See also Michelson, Ex. 1003, Fig. 2, 3:59-4:8, 5:37-51, 6:10-20.

APA

APA, Ex. 1001, 2:20-39:

In a serial bus system, such as the USB, the only
opportunity for associating software device drivers with a

BLACKBERRY EX. 1012, pg. 187

B-66

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and APA (Ex. 1001)

peripheral device is at the time when the peripheral device is
plugged into the USB and the enumeration process occurs.
Thus, to alter the configuration or personality of a peripheral
device, such as downloading new code or configuration
information into the memory of the peripheral device, the host
computer system must detect a peripheral device connection or
a disconnection and then a reconnection.

. . .
Thus, there is a need for a system and method for interfacing to

a universal serial bus which avoids these and other problems of
known systems and methods, and it is to this end that the present
invention is directed.

Claim 15
The method of
claim 11,
wherein step
(A) comprises
communicating
said
information for
the second
configuration
to the
peripheral
device using a
Universal
Serial Bus.

See discussion above with respect to claim 5.

Claim 19
The system of
claim 18,
wherein said
computer bus
comprises a
Universal
Serial Bus.

APA
APA, Ex. 1001, 2:20-39:

In a serial bus system, such as the USB, the only
opportunity for associating software device drivers with a
peripheral device is at the time when the peripheral device is
plugged into the USB and the enumeration process occurs.
Thus, to alter the configuration or personality of a peripheral
device, such as downloading new code or configuration
information into the memory of the peripheral device, the host

BLACKBERRY EX. 1012, pg. 188

B-67

U.S. Patent
6,593,770

Correspondence to Michelson (Ex. 1003), PCCextend (Ex.
1004) and APA (Ex. 1001)

computer system must detect a peripheral device connection or
a disconnection and then a reconnection.

. . .
Thus, there is a need for a system and method for interfacing to

a universal serial bus which avoids these and other problems of
known systems and methods, and it is to this end that the present
invention is directed.

E. Ground 5: Claims 18-20 are unpatentable under 35 U.S.C. § 102
as being anticipated by Yap

U.S. Patent
6,593,770

Correspondence to Yap (Ex. 1002)

Claim 18
[a] A system
for
reconfiguring a
peripheral
device having a
configuration
connected by a
computer bus
to a host
computer, the
system
comprising:

YAP

Yap, Ex. 1002, 4:6-10:

Accordingly, when the USB micro-controller 6 drives the I/O pin
to an appropriate logic state, the D+ and D- data lines may be
opened or shorted via switching devices S+ and S-. By
disconnecting the D+ and D- data lines via switching devices S+
and S-, a physical removal of the USB device 10 may be simulated
in order to allow the USB host to re-configure the USB device 10
during a brown out condition.

See also Yap, Ex. 1002, 1:58-62, 4:6-10, 5:55-6:3.

See also Yap, Ex. 1002, Fig. 1:

BLACKBERRY EX. 1012, pg. 189

B-68

U.S. Patent
6,593,770

Correspondence to Yap (Ex. 1002)

[b] a first
circuit
configured to
detect the
peripheral
device
connected to
the computer
bus; and

YAP
Yap, Ex. 1002, 4:22-23:

[T]he USB micro-controller 6 opens the data lines via the
switching devices S+ and S- for a duration greater than 2.5
micro-seconds and then reconnects them again. This
procedure, for example, emulates the disconnect and
re-connect procedure as specified in the USB specification
v1.0, page 116.

See also Yap, Ex. 1002, 1:58-62, 2:20-25, 5:53-6:3.

[c] a second
circuit
configured to
electronically
simulate a
physical
disconnection
and
reconnection of
the peripheral
device to reset
said
configuration
of said
peripheral
device

Yap, Ex. 1002, 1:55-2:3:

According to the USB specification v1.0, page 201, the host
operating system is supposed to record the last error type
without trying to re-establish communications with the
noncommunicating USB device. When this occurs, (1) the user
may have to re-boot the USB device or physically disconnect
and then re-connect the USB device to allow the host computer
to recognize and then re-configure the USB device, or (2) the
host computer operating system must be smart enough to avoid
terminating the USB device when the USB device is terminally
busy not communicating (e.g., continuously returning
nonacknowledge (NAK) signals) and reset and re-configure
the USB device. The first method defeats the whole purpose of
plug-and-play technology, and the second method requires
additional USB host computer operating system overhead to
keep track of and recover from the USB device brown out
condition.

BLACKBERRY EX. 1012, pg. 190

B-69

U.S. Patent
6,593,770

Correspondence to Yap (Ex. 1002)

Yap, Ex. 1002, 2:20-25:

It is also an object of the present invention to provide a method
and apparatus for recovering from a USB device brown out
condition without a need to re-boot the USB device or
physically disconnect and then re-connect the USB device.

Yap, Ex. 1002, 4:3-23 and Fig. 2:

Accordingly, when the USB micro-controller 6 drives the I/O
pin to an appropriate logic state, the D+ and D- data lines may
be opened or shorted via switching devices S+ and S-. By
disconnecting the D+ and D- data lines via switching devices
S+ and S-, a physical removal of the USB device 10 may be
simulated in order to allow the USB host to re-configure the
USB device 10 during a brown out condition. . . . Firmware in
the USB micro-controller 6 keeps the data lines connected via
switching devices S+ and S- during normal operation.
However, when a brown out condition is detected, as will be
described later, the USB micro-controller 6 opens the data lines
via the switching devices S+ and S- for a duration greater than
2.5 micro-seconds and then reconnects them again. This
procedure, for example, emulates the disconnect and
re-connect procedure as specified in the USB specification
v1.0, page 116.

BLACKBERRY EX. 1012, pg. 191

B-70

U.S. Patent
6,593,770

Correspondence to Yap (Ex. 1002)

Yap, Ex. 1002, 5:53-6:3:

[T]he data lines of the USB micro-controller 6 are opened via
the switching devices S+ and S- for a duration greater than 2.5
micro-seconds and re-connected again. This procedure, for
example, emulates the disconnect and re-connect procedure as
specified in the USB specification v1.0, page 116, as
previously discussed.

See also Yap, Ex. 1002, 1:40, 2:35, 2:46, 2:59, 3:60-63, 5:10-14,
5:56-6:3, 6:18-23 and Fig. 3.

[d] while
supplying
electrical
power to said
peripheral
device.

YAP
Yap, Ex.1002, Figs. 2-3

Yap, Ex. 1002, 3:64-67:

Please note that only one pair of complementary data lines of a
plurality of complementary data lines and VCC and GND
connections are shown in FIG. 2 for simplicity.

Yap, Ex. 1002, 4:10-16:

In addition, the general purpose I/O pin of the USB
microcontroller 6 is configured such that during and after a

BLACKBERRY EX. 1012, pg. 192

B-71

U.S. Patent
6,593,770

Correspondence to Yap (Ex. 1002)

reset condition due to power up the data lines stay connected
(e.g., the I/O pin enables switching devices S+ and during and
after reset). Firmware in the USB micro-controller 6 keeps the
data lines connected via switching devices S+ and S- during
normal operation.

Yap, Ex. 1002, 4:3-23:

Accordingly, when the USB micro-controller 6 drives the I/O
pin to an appropriate logic state, the D+ and D- data lines may
be opened or shorted via switching devices S+ and S-. By
disconnecting the D+ and D- data lines via switching devices
S+ and S-, a physical removal of the USB device 10 may be
simulated in order to allow the USB host to re-configure the
USB device 10 during a brown out condition.

Claim 19
The system of
claim 18,
wherein said
computer bus
comprises a
Universal
Serial Bus.

YAP
Yap, Ex. 1002, 3:60-63.

In FIG. 2, a first embodiment of the USB device 10 of FIG. 1
further includes switching devices S+ and S-, such as transistors,
contact switches, etc., coupled to positive data (D+) and negative
data (D-) lines of the signal lines 6a.

Yap, Ex. 1002, 4:15-23:

However, when a brown out condition is detected, as will be
described later, the USB micro-controller 6 opens the data lines
via the switching devices S+ and S- for a duration greater than 2.5
micro-seconds and then reconnects them again. This procedure,
for example, emulates the disconnect and re-connect procedure as
specified in the USB specification v1.0, page 116.

See also Yap, Ex. 1002, 4:5-10, 4:24-30, 5:65-6:3 and Figs. 2-3:

BLACKBERRY EX. 1012, pg. 193

B-72

U.S. Patent
6,593,770

Correspondence to Yap (Ex. 1002)

F. Ground 6: Claim 11 is unpatentable under 35 U.S.C. § 102(b), as
being anticipated over the USB Spec.

’770 Patent
Claim 11

USB Spec. (Ex. 1013)

A method for
reconfiguring a
peripheral device having
a first configuration
connected by a computer
bus to a host computer,
the method comprising
the steps of:

USB Spec., Ex. 1013, p. 29:

USB Spec., Ex. 1013, p. 32:

Since the USB allows USB devices to attach to or detach
from the USB at any time, bus enumeration for this bus is
an on-going activity.

USB Spec., Ex. 1013, p. 28:

BLACKBERRY EX. 1012, pg. 194

B-73

’770 Patent
Claim 11

USB Spec. (Ex. 1013)

USB Spec., Ex. 1013, p. 35:

USB Spec., Ex. 1013, p. 34:

USB Spec., Ex. 1013, p. 114:

BLACKBERRY EX. 1012, pg. 195

B-74

’770 Patent
Claim 11

USB Spec. (Ex. 1013)

USB Spec., Ex. 1013, p. 117:

USB Spec., Ex. 1013, p. 117:

BLACKBERRY EX. 1012, pg. 196

B-75

’770 Patent
Claim 11

USB Spec. (Ex. 1013)

USB Spec., Ex. 1013, p. 224:

USB Spec., Ex. 1013, p. 224:

USB Spec., Ex. 1013, p. 14:

BLACKBERRY EX. 1012, pg. 197

B-76

’770 Patent
Claim 11

USB Spec. (Ex. 1013)

USB Spec., Ex. 1013, p. 168

USB Spec., Ex. 1013, p. 116:

A connect condition will be detected when a device is
connected to the host or hub’s port, and one of the data
lines is pulled above the single-ended high threshold
level for more than 2.5 (30 full speed data bit times).

USB Spec., Ex. 1013, p. 169:

When a USB device is attached, the following actions are
undertaken: … 7. The host reads the configuration
information from the device by reading each
configuration 0 to n.

(A) downloading
information for a second
configuration from the
host computer into the
peripheral device over
the computer bus; and

USB Spec., Ex. 1013, p. 14:

USB Spec., Ex. 1013, p. 16:

USB Spec., Ex. 1013, p. 168:

BLACKBERRY EX. 1012, pg. 198

B-77

’770 Patent
Claim 11

USB Spec. (Ex. 1013)

USB Spec., Ex. 1013, p. 169:

USB Spec., Ex. 1013, p. 24:

USB Spec., Ex. 1013, p. 24:

BLACKBERRY EX. 1012, pg. 199

B-78

’770 Patent
Claim 11

USB Spec. (Ex. 1013)

USB Spec., Ex. 1013, p. 34:

USB Spec., Ex. 1013, p. 184:

USB Spec., Ex. 1013, p. 32:

Since the USB allows USB devices to attach to or detach
from the USB at any time, bus enumeration for this bus is
an on-going activity.

USB Spec. Ex. 1013, p. 202:

BLACKBERRY EX. 1012, pg. 200

B-79

’770 Patent
Claim 11

USB Spec. (Ex. 1013)

USB Spec., Ex. 1013, p. 214:

(B) electronically
simulating a physical
disconnection and
reconnection of the
peripheral device to
reconfigure the
peripheral device to said
second configuration
while supplying
electrical power to said
peripheral device.

USB Spec., Ex. 1013, p. 32:

Since the USB allows USB devices to attach to or detach
from the USB at any time, bus enumeration for this bus is
an on-going activity.

USB Spec., Ex. 1013, p. 115:

USB Spec., Ex. 1013, p. 165:

USB Spec., Ex. 1013, p. 116:

BLACKBERRY EX. 1012, pg. 201

B-80

’770 Patent
Claim 11

USB Spec. (Ex. 1013)

USB Spec., Ex. 1013, p. 117:

USB Spec., Ex. 1013, p. 119:

BLACKBERRY EX. 1012, pg. 202

B-81

’770 Patent
Claim 11

USB Spec. (Ex. 1013)

USB Spec., Ex. 1013, p. 224:

USB Spec., Ex. 1013, p. 242:

USB Spec., Ex. 1013, p. 166:

BLACKBERRY EX. 1012, pg. 203

B-82

’770 Patent
Claim 11

USB Spec. (Ex. 1013)

USB Spec., Ex. 1013, p. 167:

BLACKBERRY EX. 1012, pg. 204

B-83

’770 Patent
Claim 11

USB Spec. (Ex. 1013)

USB Spec., Ex. 1013, p. 169:

BLACKBERRY EX. 1012, pg. 205

B-84

’770 Patent
Claim 11

USB Spec. (Ex. 1013)

USB Spec., Ex. 1013, p. 132:

BLACKBERRY EX. 1012, pg. 206

