
UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

BLACKBERRY CORP.,
Petitioner,

v.

CYPRESS SEMICONDUCTOR CORP.,
Patent Owner.

DECLARATION OF ANDREW WOLFE PH.D.
in Support of Petition for Inter Partes Review of

U.S. Patent No. 6,012,103

Mail Stop PATENT BOARD Patent Trial and
Appeal Board U.S. Patent and Trademark
Office P.O. Box 1450
Alexandria, VA 22313-1450

BLACKBERRY Ex. 1012, page 1

ii

TABLE OF CONTENTS

I. INTRODUCTION ... 4

II. QUALIFICATIONS .. 4

III. MATERIALS CONSIDERED AND PREPARED 10

IV. SUMMARY OF OPINIONS .. 11

I. LEGAL PRINCIPLES USED IN ANALYSIS ... 13

A. Patent Claims in General ... 13

B. Prior Art ... 16

C. Unpatentability – Anticipation .. 17

D. Unpatentability -- Obviousness ... 18

VI. BACKGROUND OF THE PATENT AND RELEVANT TECHNOLOGY
 20

VII. THE ’103 PATENT .. 24

VIII. CLAIM CONSTRUCTION .. 30

IX. OVERVIEW OF THE PRIOR ART ... 33

A. Patent Owner’s Admitted Prior Art (“APA”) ... 33

B. U.S. Patent No. 6,073,193 to Yap (“Yap”) ... 38

C. U.S. Patent No. 5,628,028 to Michelson (“Michelson”) 43

D. PCCextend 100 User’s Manual (“PCCextend”) ... 45

E. U.S. Patent No. 5,862,393 to Davis (“Davis”) .. 48

X. UNPATENTABILITY ANALYSIS ... 53

A. The Claims of the ’103 Patent ... 53

B. Claim 14 of the ’103 Patent Is Anticipated Under 35 U.S.C. § 102(b) by
the USB Specification V1.0. ... 55

C. Claims 14, 18-20, and 23-27 are unpatentable under 35 U.S.C. § 103(a) as
being obvious over the APA in view of Yap ... 70

1. Independent Claim 14 ... 70

2. Dependent Claim 18 .. 79

3. Dependent Claim 19 .. 80

BLACKBERRY Ex. 1012, page 2

iii

4. Dependent Claim 20 .. 82

5. Dependent Claim 23 .. 83

6. Independent Claim 24 ... 85

7. Dependent Claim 25 .. 90

8. Dependent Claim 26 .. 91

9. Dependent Claim 27 .. 92

C. Claims 15 and 16 are unpatentable under 35 U.S.C. § 103(a) as being
obvious over APA in view of Yap, further in view of Michelson 93

1. Dependent Claim 15 .. 93

2. Dependent Claim 16 .. 96

D. Claims 14-16, 18, and 23-26 are unpatentable under 35 U.S.C. § 103(a) as
being obvious over Michelson in view of PCCextend and Davis 97

1. Independent Claim 14 ... 97

2. Dependent Claim 15 ..105

3. Dependent Claim 16 ..106

4. Dependent Claim 18 ..106

5. Dependent Claim 23 ..107

6. Independent Claim 24 ...109

7. Dependent Claim 25 ..114

8. Dependent Claim 26 ..115

E. Claims 19, 20, and 27 are unpatentable under 35 U.S.C. § 103(a) as being
obvious over Michelson in view of PCCextend 100 User’s Manual and Davis,
further in view of the Admitted Prior Art ..115

1. Dependent Claim 19 ..115

2. Dependent Claim 20 ..118

3. Dependent Claim 27 ..120

XI. CONCLUDING STATEMENTS ...121

BLACKBERRY Ex. 1012, page 3

 4

I, Andrew Wolfe, hereby declare as follows:

I. INTRODUCTION

1. I am currently a consultant at Wolfe Consulting.

2. I have been retained in this matter to provide various opinions

regarding U.S. Patent No. 6,012,103 (the “’103 patent”). I am being compensated

for my work in this matter at my ordinary hourly consulting rate. My

compensation in no way depends upon the outcome of this proceeding.

3. I have been advised that Cypress Semiconductor Corp. owns the ’103

Patent. I have no financial interest in the ’103 patent.

II. QUALIFICATIONS

4. I have more than 30 years of experience as a computer architect,

computer system designer, personal computer graphics designer, educator, and as

an executive in the electronics industry.

5. In 1985, I earned a B.S.E.E. degree in Electrical Engineering and

Computer Science from The Johns Hopkins University. In 1987, I received an

M.S. degree in Electrical and Computer Engineering from Carnegie Mellon

University. In 1992, I received a Ph.D. in Computer Engineering from

Carnegie Mellon University. My doctoral dissertation proposed a new

approach for the architecture of a computer processor.

6. In 1983, I began designing touch sensors, microprocessor-based

computer systems, and I/O (input/output) cards for personal computers as a

BLACKBERRY Ex. 1012, page 4

 5

senior design engineer for Touch Technology, Inc. During the course of my

design projects with Touch technology, I designed I/O cards for PC-compatible

computer systems, including the IBM PC-AT, to interface with interactive

touch-based computer terminals that I designed for use in public information

systems. I continued designing and developing related technology as a

consultant to the Carroll Touch division of AMP, Inc., where in 1986 I designed

one of the first custom touchscreen integrated circuits.

7. From 1986 through 1987, I designed and built a high-performance

computer system as a student at Carnegie Mellon University. From 1986

through early 1988, I also developed the curriculum, and supervised the teaching

laboratory, for processor design courses.

8. In the latter part of 1989, I worked as a senior design engineer for

ESL-TRW Advanced Technology Division. While at ESL-TRW, I designed and

built a bus interface and memory controller for a workstation-based computer

system, and also worked on the design of a multiprocessor system.

9. At the end of 1989, I (along with some partners) reacquired the

rights to the technology I had developed at Touch Technology and at AMP, and

founded The Graphics Technology Company. Over the next seven years, as an

officer and a consultant for The Graphics Technology Company, I managed the

company's engineering development activities and personally developed dozens

BLACKBERRY Ex. 1012, page 5

 6

of touchscreen sensors, controllers, and interactive touch-based computer

systems.

10. I have consulted, formally and informally, for a number of fabless

semiconductor companies. In particular, I have served on the technical

advisory boards for two processor design companies: BOPS, Inc., where I

chaired the board, and Siroyan Ltd., where I served in a similar role for three

networking chip companies—Intellon, Inc., Comsilica, Inc, and Entridia,

Inc.—and one 3D game accelerator company, Ageia, Inc.

11. I have also served as a technology advisor to Motorola and to

several venture capital funds in the U.S. and Europe. Currently, I am a director

of Turtle Beach Corporation, providing guidance in its development of premium

audio peripheral devices for a variety of commercial electronic products.

12. From 1991 through 1997, I served on the Faculty of Princeton

University as an Assistant Professor of Electrical Engineering. At Princeton, I

taught undergraduate and graduate-level courses in Computer Architecture,

Advanced Computer Architecture, Display Technology, and Microprocessor

Systems, and conducted sponsored research in the area of computer systems and

related topics. I was also a principal investigator for DOD research in video

technology and a principal investigator for the New Jersey Center for Multimedia

Research. From 1999 through 2002, I taught the Computer Architecture course

BLACKBERRY Ex. 1012, page 6

 7

to both undergraduate and graduate students at Stanford University multiple

times as a Consulting Professor. At Princeton, I received several teaching

awards, both from students and from the School of Engineering. I have also

taught advanced microprocessor architecture to industry professionals in IEEE

and ACM sponsored seminars. I am currently a lecturer at Santa Clara

University teaching graduate courses on Computer Organization and

Architecture and undergraduate courses on electronics and embedded computing.

13. From 1997 through 2002, I held a variety of executive positions at a

publicly-held fabless semiconductor company originally called S3, Inc. and later

called Sonicblue Inc. For example, I held the positions of Chief Technology

Officer, Vice President of Systems Integration Products, Senior Vice President of

Business Development, and Director of Technology. At the time I joined S3,

the company supplied graphics accelerators for more than 50% of the PCs sold in

the United States.

14. Beginning in 1998, I began to work closely with S3’s largest

customer, Diamond Multimedia, to explore possible opportunities for a merger.

My investigation included evaluating the technology, market, and business

model related to the “Diamond Rio PMP300,” the first commercially viable

flash-memory MP3 player. In 1999, I led the merger negotiations between the

two companies, managed significant parts of company integration, and, after the

BLACKBERRY Ex. 1012, page 7

 8

merger was complete, worked on new product development. Soon after the

merger with Diamond, we introduced the “Diamond Rio PMP500,” a portable

music player that included Universal Serial Bus (“USB”) capability and also the

ability to play downloaded files purchased from the Audible.com website. We

also developed relationships with MP3 music vendors, including eMusic and

MP3.com.

15. While at Diamond, we also developed the Rio 600 and 800 MP3

players, which included support for digital rights management (“DRM”)

protected music using protocols from Microsoft. During the development of

the PMP500 and the Rio 600, we also developed a music delivery platform and

webstore backend service for selling DRM-protected music. In 1999, this

business segment was spun out as a separate company called RioPort.com. I

served on the RioPort.com board of directors and became involved in their

product and technology strategy. I also managed engineering and marketing

for the Rio product line for a period of time as an interim general manager.

16. I served as a board member and technical advisor at KBGear Inc.

from 1999-2001. KBGear Inc. designed and produced digital cameras and

music players that included USB ports and flash memory.

17. I have published more than 50 peer-reviewed papers in computer

architecture and computer systems and IC design.

BLACKBERRY Ex. 1012, page 8

 9

18. I also have chaired IEEE and ACM conferences in microarchitecture

and integrated circuit design and served as an associate editor for IEEE and

ACM journals.

19. I am a named inventor on 36 U.S. patents and 24 foreign patents.

20. In 2002, I was the invited keynote speaker at the ACM/IEEE

International Symposium on Microarchitecture and at the International

Conference on Multimedia. From 1990 through 2005, I have also been an

invited speaker on various aspects of technology and the PC industry at

numerous industry events including the Intel Developer’s Forum, Microsoft

Windows Hardware Engineering Conference, Microprocessor Forum, Embedded

Systems Conference, Comdex, and Consumer Electronics Show, as well as at the

Harvard Business School and the University of Illinois Law School. I have

been interviewed on subjects related to computer graphics and video technology

and the electronics industry by publications such as the Wall Street Journal, New

York Times, Los Angeles Times, Time, Newsweek, Forbes, and Fortune as well

as CNN, NPR, and the BBC. I have also spoken at dozens of universities

including MIT, Stanford, University of Texas, Carnegie Mellon, UCLA,

University of Michigan, Rice, and Duke.

21. Based on my technical education, and my years of professional

experience as both an engineer and as an educator, I consider myself to be an

BLACKBERRY Ex. 1012, page 9

 10

expert in the field of computer architecture and computer system design,

consumer electronics, and computer programming, including computer busses,

interfaces, and input/output ports. Moreover, I am very familiar with the

operation and functional capabilities and limitations of commercial computers

and computer peripherals existing during the late 1990s.

22. My professional experience with computer peripheral device

interface design and with USB technology, as well as my educational background,

is summarized in more detail in my C.V., which is attached as Exhibit 1021.

III. MATERIALS CONSIDERED AND PREPARED

23. In forming the opinions expressed below, I considered the ’103

patent and the other patents in its family (U.S. Patent Nos. 6,249,825 and

6,493,770) (collectively the “USB Patents”) and their file histories as well as the

prior art references and related documentation discussed herein. I have also relied

upon my education, background, and experience.

24. In addition, I have reviewed the declaration of Geert Knapen that was

presented with respect to a prior IPR petition related to the ’103 patent. In most

cases, I found the presentation of pertinent facts and the accompanying analysis in

that declaration to be both accurate and well written. Furthermore, in many cases,

my relevant opinions are identical to Mr. Knapen’s. In these cases, I have

duplicated Mr. Knapen’s language in this declaration to simplify the presentation

BLACKBERRY Ex. 1012, page 10

 11

to the PTAB. Where my opinions differ from Mr. Knapen’s or I felt that a

different form of presentation is preferable, I have written new text.

IV. SUMMARY OF OPINIONS

25. Based on my investigation and analysis, and for the reasons set forth

below, it is my opinion that all of the elements and steps recited in claims 14-16,

18-20, and 23-27 of the ’103 patent are disclosed in prior art references and that

those claims are rendered unpatentable for obviousness in view of these references.

In particular, I have relied primarily on the six prior art references identified

below in support of my opinions:

(1) Patent Owner’s Admitted Prior Art (“APA”) (Ex. 1001);

(2) U.S. Patent No. 6,073,193 to Yap (“Yap”) (Ex. 1002);

(3) U.S. Patent No. 5,628,928 to Michelson (“Michelson”) (Ex. 1003);

(4) PCCextend1 00 User’s Manual (“PCCextend”) (Ex. 1004);

(5) U.S. Patent No. 5,862,393 to Davis (“Davis”) (Ex. 1005);

(6) Universal Serial Bus Specification v1.0, January 15,

1996, Copyright 1996, Compaq Computer Corporation, Digital

Equipment Corporation,IBM PC Company, Intel Corporation,

Microsoft Corporation, NEC, Northern Telecom (“USB1.0

Specification”) (Ex. 1013);

BLACKBERRY Ex. 1012, page 11

 12

26. In addition to the documents above, I have also considered the

following references in preparing this declaration.

(1) Prosecution History of U.S. Patent 6,012,103 (Ex. 1006);

(2) Prosecution History of U.S. Patent 6,249,825 (Ex. 1007);

(3) Prosecution History of U.S. Patent 6,493,770 (Ex. 1008);

(4) U.S. Patent No. 5,590,273 to Balbinot (Ex. 1014)

(5) U.S. Patent No. 6,338,109 to Snyder (Ex. 1015)

(6) Quinnell, Richard A., “USB: A Neat Package with a Few Loose Ends,”

EDN Magazine (October 24, 1996) (Ex. 1016)

(7) Levine, Larry. PCMCIA Primer, pp. 117-130 (M&T Books 1995)(Ex.

1017).

(8) PCMCIA PC Standard Release 2.01, pp. 3-2 to 3-5; 4-2 to 4-7; 4-10 to

4-19; 4-28 to 4-31; 4-34 to 4-37; 5-2 to 5-5; 5-12 to 5-21; 5-23; 5-48 to 5-51; 6-6

to 6-17 (Ex. 1018)

(9) PCMCIA Card Services Specification Release 2.0, pp. 3-2 to 3-7; 3- 14 to

3-17; 3-20 to 3-25; 3-28 to 3-29; 5-78 to 5-79 (Ex. 1019)

(10) U.S. Patent No. 5,537,654 to Bedingfield (Ex. 1020)

27. The bases for my opinions are set forth in greater detail below and in

the claim charts attached as Appendix A.

BLACKBERRY Ex. 1012, page 12

 13

I. LEGAL PRINCIPLES USED IN ANALYSIS

28. I am not a patent attorney and I am presenting no opinions on the law

related to patent validity. Blackberry’s attorneys have explained certain legal

principles to me that I have relied on in forming my opinions set forth in this

declaration.

29. I was informed that my assessment and determination of whether or

not claims 14-16, 18-20, and 23-27 of the ’103 patent are unpatentable must be

undertaken from the perspective of what would have been known or understood by

someone of ordinary skill in the art as of the earliest priority filing date of the USB

Patents—July 2, 1997. From analyzing the USB Patents and the relevant prior art,

it is my opinion that a person of ordinary skill in the relevant art for the ’103 patent

(“PHOSITA”) would be sufficiently skilled in the design of peripheral devices used

in connection with computer systems to understand and practice the prior art

discussed in this declaration. Unless otherwise specified, when I state that

something would be known to or understood by one skilled in the art or possessing

ordinary skill in the art, I am referring to someone with this level of knowledge and

understanding.

A. Patent Claims in General

30. I have been informed that patent claims are the numbered sentences at

the end of each patent. I have been informed that the claims are important because

BLACKBERRY Ex. 1012, page 13

 14

the words of the claims define what a patent covers. I have also been informed that

the figures and text in the rest of the patent provide a description and/or examples

and help explain the scope of the claims, but that the claims define the breadth of

the patent’s coverage.

31. I have also been informed that an “independent claim” expressly sets

forth all of the elements that must be met in order for something to be covered by

that claim. I have also been informed that a “dependent claim” does not itself

recite all of the elements of the claim but refers to another claim for some of its

elements. In this way, the claim “depends” on another claim and incorporates all

of the elements of the claim(s) from which it depends. I also have been informed

that dependent claims add additional elements. I have been informed that, to

determine all the elements of a dependent claim, it is necessary to look at the

recitations of the dependent claim and any other claim(s) on which it depends. I

have also been informed that patent claims may be expressed as “methods” or

“apparatuses/devices/systems.” That is, I have been informed that a patent may

claim the steps of a “method,” such as a particular way to perform a process in a

series of ordered steps, or may claim a combination of various elements in an

“apparatus,” “device,” or “system.”

32. I have also been informed that patent claims may be expressed as

“means-plus-function” claims. I have been informed that a claim limitation is

BLACKBERRY Ex. 1012, page 14

 15

presumed to be a means-plus-function limitation when it explicitly uses the term

“means” and includes functional language. I have further been informed that a

claim limitation expressed in means-plus-function language shall be construed to

cover the corresponding structure described in the specification and equivalents

thereof.

33. I understand that some of the claim elements of the ’103 patent are

written in so-called means-plus-function format. Those elements are governed

by 35 U.S.C. § 112, ¶ 6, which states: “An element in a claim for a combination

may be expressed as a means or step for performing a specified function without

the recital of structure, material, or acts in support thereof, and such claim shall be

construed to cover the corresponding structure, material, or acts described in the

specification and equivalents thereof.”

34. I understand that a disclosed structure is corresponding if the patent’s

specification clearly links or associates that structure to the function recited in the

claim.

35. I understand that a prior art reference teaches a means-plus-function

claim element recited in a patent when the prior art reference teaches (A)

performing the identical function recited in the claim element (B) using a structure

identical or equivalent to the structure described in the patent. Two structures are

equivalent if a PHOSITA would consider the differences between them to be

BLACKBERRY Ex. 1012, page 15

 16

insubstantial for performing the required function. One way to determine this is

to look at whether or not the prior art structure performs the identical function in

substantially the same way to achieve substantially the same result. Another way

is to consider whether a PHOSITA believed that the prior art structure and the

structure in the patent were interchangeable at the time the patent was issued.

B. Prior Art

36. I have been informed that the law provides categories of

information

(known as “prior art”) that may anticipate or render obvious patent claims. I have

been informed that, to be prior art with respect to a particular patent in this

proceeding, a reference must have been published, or patented, or be the subject

of a patent application by another, before the priority date of the patent. I have

also been informed that a person of ordinary skill in the art is presumed to have

knowledge of all prior art. I have been asked to presume that the reference

materials that I opine on, i.e., the APA; U.S. Patent No. 6,073,193 to Yap; U.S.

Patent No. 5,628,028 to Michelson; PCCextend 100 User’s Manual; USB 1.0

Specification, and U.S. Patent No. 5,862,393 to Davis, are prior art from a

technical perspective – that is, all were available to a person of ordinary skill in

the art on or before the priority date of the patent.

BLACKBERRY Ex. 1012, page 16

 17

C. Unpatentability – Anticipation

37. I have been informed and understand that determination of whether a

patent claim is “anticipated” is a two-step process. First, the language of the claim

is construed as it would be understood by one of ordinary skill in the art at the

time of the filing of the patent application. Reference is made to the intrinsic

evidence of record, which includes the language of the claim itself and other

issued claims, the patent specification, and the prosecution history. Words in a

claim will be given their ordinary or accustomed meaning unless it appears that

the inventor used them differently. The prosecution history may limit the

interpretation of the claim, especially if the applicant disavowed or disclaimed any

coverage in order to obtain allowance of the claim.

38. Second, I understand that after the patent claim has been construed,

determining anticipation of the patent claim requires a comparison of the properly

construed claim language to the prior art on an element-by-element basis.

39. I understand that a claimed invention is “anticipated” if each and

every element of the claim has been disclosed in a single prior art reference, or has

been embodied in a single prior art device or practice, either explicitly or

inherently (i.e., necessarily present or implied).

40. I understand that although anticipation cannot be established by

combining references, additional references may be used to interpret the

BLACKBERRY Ex. 1012, page 17

 18

anticipating reference by, for example, indicating what the anticipating reference

would have meant to one having ordinary skill in the art.

41. I understand that certain asserted claim elements in the Asserted

Patent have been written in means-plus-function format. I understand that

anticipatory prior art must satisfy both the functional and—assuming it can be

identified in the written description of the patent—the corresponding structural

requirements of a given means-plus-function claim element (by having either the

structure that the patent specification discloses or its equivalent).

D. Unpatentability -- Obviousness

42. I have been informed that, even if every element of a claim is not

found explicitly or implicitly in a single prior art reference, the claim may still be

unpatentable if the differences between the claimed elements and the prior art are

such that the subject matter as a whole would have been obvious at the time the

invention was made to a person of ordinary skill in the art. That is, the invention

may be obvious to a person having ordinary skill in the art when seen in light of

one or more prior art references. I have been informed that a patent is obvious

when it is only a combination of old and known elements, with no change in their

respective functions, and that these familiar elements are combined according to

known methods to obtain predictable results. I have been informed that the

following four factors are considered when determining whether a patent claim is

BLACKBERRY Ex. 1012, page 18

 19

obvious: (1) the scope and content of the prior art; (2) the differences between the

prior art and the claim; (3) the level of ordinary skill in the art; and (4) secondary

considerations tending to prove obviousness or nonobviousness. I have also been

informed that the courts have established a collection of secondary factors of

nonobviousness, which include: unexpected, surprising, or unusual results; prior

art that teaches away from the alleged invention; substantially superior results;

synergistic results; long-standing need; commercial success; and copying by

others. I have also been informed that there must be a connection, or nexus,

between these secondary factors and the scope of the claim language.

43. I have also been informed that some examples of rationales that may

support a conclusion of obviousness include:

a) Combining prior art elements according to known methods to yield

predictable results;

b) Simply substituting one known element for another to obtain

predictable results;

c) Using known techniques to improve similar devices (or product) in

the same way (e.g. obvious design choices);

d) Applying a known technique to a known device (or product) ready

for improvement to yield predictable results;

BLACKBERRY Ex. 1012, page 19

 20

e) Choosing from a finite number of identified, predictable solutions,

with a reasonable expectation of success—in other words, whether

something is “obvious to try”;

f) Using work in one field of endeavor to prompt variations of that

work for use in either the same field or a different one based on

design incentives or other market forces if the variations are

predictable to one of ordinary skill in the art; and

g) Arriving at a claimed invention as a result of some teaching,

suggestion, or motivation in the prior art that would have led one

of ordinary skill to modify the prior art reference or to combine

prior art reference teachings.

44. I have also been informed that other rationales to support a

conclusion of obviousness may be relied upon, for instance, that common sense

(where substantiated) may be a reason to combine or modify prior art to achieve the

claimed invention.

VI. BACKGROUND OF THE PATENT AND RELEVANT
TECHNOLOGY

45. The ’103 patent relates to a system and method for interfacing a

computer system to a peripheral device. A wide variety of peripheral devices were

common at the time of the ’103 filing, examples of which included a computer

mouse, keyboard, printer, network adapter, modem, data storage device, and

BLACKBERRY Ex. 1012, page 20

 21

computer monitor. Often these peripherals, particularly a network adapter,

modem, or data storage device, were in the form of a PC card (also referred to as a

PCMCIA card). Various specifications have been developed to facilitate interaction

between a computer and a peripheral device. These specifications have included

the Personal Computer Memory Card International Association (PCMCIA)

Specification and the Universal Serial Bus (USB) Specification.

46. In the Background of the Invention of the ’103 Patent

(“Background”), the patentee admits that it was known to connect a peripheral

device to a computer using a USB connection. Ex. 1001, 1:41-60; 4:7-21; Fig. 1.

The patentee also admits in the Background that, when the USB connector of a

peripheral is inserted into a powered-up host computer or inserted into a

powered-down host computer which is then powered up, the host computer detects

the peripheral device and a configuration process known as “enumeration” begins

which causes the peripheral device to be recognized by the host computer’s

operating system. Ex. 1001, 1:55-2:8.1

1 The USB 1.0 Specification actually explained that enumeration is an ongoing

activity for the bus and that it is only done at startup time for some busses. “4.6.3

Bus Enumeration Bus enumeration is the activity that identifies and addresses

devices attached to a bus. For many buses, this is done at startup time and the

information collected is static. Since the USB allows USB devices to attach to or

BLACKBERRY Ex. 1012, page 21

 22

47. The Background further alleges that the only opportunity for

associating a software device driver with a peripheral device is at the time when

the enumeration process occurs. Ex. 1001, 2:9-12. “Thus, to alter the

configuration or personality of a peripheral device, such as downloading new

code or configuration information into the memory of the peripheral device, the

host computer system must detect a peripheral device connection or a

disconnection and then a reconnection.” Id. at 2:13-17.

48. This was admitted to be one of the “problems of known systems and

methods. . . .” Id. at 2:27. Accordingly, it was admitted to be known that a

peripheral device could have a first configuration and that a second configuration

could be downloaded into the peripheral device over a computer bus. All of these

features are also found in one or more of the prior art references discussed herein.

49. The ’103 Patent describes that the problem that the host computer

system must detect a physical disconnection and reconnection is solved by a switch

which is connected to one of the USB data lines D+ and D-. Ex. 1001, 6:50-60. It

was known that a host detects the connection of a peripheral device by monitoring

detach from the USB at any time, bus enumeration for this bus is an on-going

activity. Additionally, bus enumeration for the USB also includes detection and

processing of removals.” Ex. 1013 at 32. “enumerating the USB is an on-going

activity” Ex. 1013 at 31.

BLACKBERRY Ex. 1012, page 22

 23

voltage levels on one of the two USB data lines. Id. at 6:17-20, Ex. 1013 at 114.

Thus, by changing the state of the data lines, the switch is “electronically

simulating a physical disconnection and reconnection of the peripheral,” as

recited in independent claims 14 and 24. E.g., Ex. 1001, 7:1-14. However, as

discussed in more detail below, it was well known in the prior art (e.g., in U.S.

Patent No. 6,073,193 to Yap; PCCextend 100 User’s Manual, and U.S. Patent No.

5,862,393 to Davis) to position a switch in the data lines of a bus between a

peripheral device and host computer which can be opened and closed to simulate a

physical disconnection and reconnection and cause reconfiguration. The method

of resetting a USB port after configuration was also well known. Ex. 1013 at

115-117, 119, 14, 29, 165-169, 221-222, 263. Also, the USB specification

explained that certain devices had “hardware support for reset and

suspend/resume signaling.” Ex. 1013 at 35. A reset on such a device sets the

port state to “Disconnected.” Ex. 1013 at 223. Coming out of reset, attached

devices are redetected. “Upon coming out of reset, a hub must detect which

downstream ports have devices connected to them.” Ex. 1013 at 224. A reset

that switches power on and off to simulate a disconnect was also part of the

USB specification. Ex. 1013 at 132, 242. In fact, the USB specification

discloses the existence of non-removable devices that can only be reset using

this simulation process. Ex. 1013 at 264. Thus, the problem that a host needs to

BLACKBERRY Ex. 1012, page 23

 24

detect a disconnection and reconnection to cause reconfiguration had a well-known

solution in the prior art.

VII. THE ’103 PATENT

50. The Background admits that physically disconnecting and

reconnecting a peripheral device to reconfigure the peripheral device was known at

the time of the invention. See Supra, Section VI. This physical disconnection and

reconnection caused a host computer to perform an enumeration process to

recognize the requirements and capabilities of the device and select an appropriate

device driver with which to use the peripheral device. Ex. 1001, 1:55-66.

51. The ’103 Patent relates to using an electronic circuit to simulate the

disconnection and reconnection to take the place of an actual physical

disconnection and reconnection. Ex. 1001, 2:51-57; 5:25-32.

52. Figure 2 of the ’103 Patent (reproduced below) illustrates a

USB system “in accordance with the invention.” Ex. 1001, 4:52-54; 3:41-42. The

USB system includes a host computer with an operating system that stores “[o]ne

or more peripheral device drivers, such as a first peripheral device driver 68” and a

“plurality of different configuration information sets 70. . .” Ex. 1001, 4:58- 5:6.

BLACKBERRY Ex. 1012, page 24

 25

53. The host computer selects one of the plurality of configuration

information sets, such as an updated configuration information set, to download to

the peripheral device. Ex. 1001, 5:12-14; 25-32. Instead of relying on a physical

disconnection and reconnection of the peripheral device to reconfigure the

peripheral device based on the updated configuration information set, the host uses

an “electronic disconnect and reconnect method in accordance with the invention.”

Id. at 5: 25-32. In other words, the “disconnect/connect cycle may be electrically

simulated” so that “a change in the configuration information for a particular

peripheral device may be implemented.” Id. at 2:51-57.

BLACKBERRY Ex. 1012, page 25

 26

54. For example, the peripheral device may have a first configuration

that is an “initial factory configuration of the peripheral device.” Id. at 5:33-37.

“[W]hen the peripheral device is first connected to the USB, the configuration

information 70, including any microprocessor code applicable to the peripheral

device and the appropriate configuration data for the peripheral device may be

downloaded over the USB into the memory 74 of the peripheral device 54 as

shown by the dashed arrow 78.” Id. at 5:37-43.

55. Then, the “electrical simulation of the disconnection and reconnection

of the peripheral device . . . may be initiated and a re-enumeration process may

occur.” Id. at 5:43-46. “During the re-enumeration process, the newly

downloaded configuration information may be used to reconfigure the USB for the

peripheral device and the host computer may select the appropriate software device

driver 68 for the peripheral device based on the configuration information and load

the device driver into memory 64 as shown by arrow 80.” Id. at 5:46-52.

56. According to the ’103 Patent, a conventional host computer USB

interface circuit monitors the two USB data leads, labeled D+ and D-, to detect a

disconnection and reconnection. Id. at 3:43-44; 6:6-33; Fig. 3.

BLACKBERRY Ex. 1012, page 26

 27

57. As shown in Fig. 3, when the host device and the peripheral

device are connected, 3.3 V from a power bus is supplied to the D+ line. Id. at

6:16-17. “In operation, the host computer detects the connection of a peripheral

device by monitoring the voltage levels of one of the two USB data leads.” Id. at

6:17-20. When the peripheral device is physically disconnected from the host

computer, the connection from the 3.3 V supply voltage to the D+ line is broken as

well, causing the host to measure zero volts on the D+ line. Id. at 6:20-25. Based

on this measurement, the host computer “determines that no peripheral

device is connected to the USB port.” Id. When that peripheral device or another

peripheral device is connected to the host computer, “the 1.5 kΩ resistor 110

connected to a supply voltage of the peripheral device USB interface 101 adds a

voltage to the D+ line and the D+ line at the host computer is pulled to above 3

BLACKBERRY Ex. 1012, page 27

 28

volts which is detected as a connected peripheral device by the host computer and

the host computer begins the enumeration process.” Id. at 6:25-32.

58. The ’103 Patent describes simulating the disconnection/reconnection

cycle by using a switch to break the connection between a supply voltage and the

D+ line. Id. at 6:65-7:22; Fig. 4 (reproduced below).

The switch 130 “may be a semiconductor switch such as a field effect transistor

(FET),” and “may have a control lead 132 which may control the operation of the

electrical switch.” Id. at 6:50-6:56. By opening the switch, “the D+ data lead is

no longer connected to the supply voltage and the host computer determines that the

peripheral device has been disconnected even though the peripheral device is still

physically connected to the USB.” Id. at 7:1-7. “Similarly, when the electrical

switch is closed again, the D+ data lead is again connected to the supply voltage and

BLACKBERRY Ex. 1012, page 28

 29

the host computer will detect that the peripheral device has been reconnected to the

USB.” Id. at 7:7-11.

59. According to the ’103 Patent, the “electronic disconnection and

reconnection of the peripheral device, as described above, in combination with the

storage of the configuration information sets on the host computer permits the

configuration of the peripheral devices to be changed easily without requiring the

physical disconnection and reconnection of a peripheral device.” Id. at 7:14-19.

60. According to the ’103 Patent, the USB interface system and method

may be a single semiconductor chip, which may be incorporated into a plurality of

peripheral devices. Id. at 3:1-4. “The chip may initially have a generic

configuration (e.g., not specific to a particular peripheral device).” Id. at 3:4-6.

“Then, the appropriate configuration information for a particular peripheral device

and manufacturer may be downloaded to the chip, an electronic simulation of the

disconnection and reconnection of the peripheral device occurs, the peripheral

device is recognized as a new, manufacturer specific peripheral device and the

appropriate software device driver is loaded into the memory of the host

computer.” Id. at 3:6-13.

61. “For example, a plurality of different peripheral devices

manufactured by different companies may each include a USB interface system

in accordance with the invention.” Id. at 5:52-55. “The USB interface system for

BLACKBERRY Ex. 1012, page 29

 30

each peripheral device is identical (e.g. has a USB interface circuit and a memory)

except that each memory may contain an identification code that is unique to, for

example, a particular manufacturer.” Id. at 5:55-59. “When one of the peripheral

devices is connected to the USB and the host computer, the appropriate

configuration information for the peripheral device, based on the identification

code, is downloaded over the USB to the memory of the peripheral device and the

appropriate software device driver is loaded into the memory of the host

computer.” Id. at 5:59-65.

62. According to the ’103 Patent, one advantage of the electrical

disconnection and reconnection, is that “since the peripheral device is physically

connected to the bus during the electrical simulation, the peripheral device may

utilize the electrical power supplied by the bus to operate the peripheral device.”

Id. at 2:57-63; see also 9:6-10 (“[B]ecause the peripheral device is not physically

disconnected from the host computer, the peripheral device may use the electrical

power available over the USB bus”).

VIII. CLAIM CONSTRUCTION

63. I have been informed that claim terms in the present proceeding are to

be given their broadest reasonable interpretation in light of the specification in

which it appears. Therefore, it is my understanding that each claim term of the

asserted patent are to be given their broadest reasonable interpretation, as

BLACKBERRY Ex. 1012, page 30

 31

understood by one of ordinary skill in the art and consistent with the disclosure of

the asserted patent.

64. Below, I set forth what I believe to be the broadest reasonable

interpretation of certain claim terms in view of the specification, as well as the

factual basis for those opinions. As to the other terms that I do not address in this

section, I used and applied the broadest reasonable interpretation of those terms in

view of the specification as understood by one of ordinary skill in the art:

a. “electronically simulate/simulating a physical disconnection and

reconnection of the peripheral device”: using an electronic circuit to perform an

action, such as an electronic reset, associated with physical disconnection and

reconnection of a peripheral device. This interpretation is the broadest reasonable

interpretation that is consistent with the claims of the ’103 Patent and the rest of

the specification. See Ex. 1001, 3:14-24; claims 1, 13, 14 & 23. For example,

independent claim 1 recites a third circuit configured to electronically simulate a

physical disconnection and reconnection of a peripheral device, and dependent

claim 13 recites “wherein said third circuit comprises a reset circuit configured to

reset the configuration of the peripheral device.” Similarly, independent claim 14

recites electronically simulating a physical disconnection and reconnection of a

peripheral device, and dependent claim 23 recites “wherein said simulating

comprises electronically resetting the configuration of the peripheral device,

BLACKBERRY Ex. 1012, page 31

 32

controllable by the peripheral device.” Thus, the interpretation of the

“electronically simulating” language must be broad enough so as not to exclude the

reset circuit and resetting operation in the dependent claims. The interpretation of

the “electronically simulating” language proposed herein encompasses the claimed

reset circuit and resetting operation in the dependent claims, as well as the other

aspects of electronically simulating (such as simulating with a switch) in the

claims, as well as the other aspects of electronically simulating (such as simulating

with a switch) described in the patent (see, e.g., 6:65-7:22), and is therefore the

broadest reasonable interpretation consistent with the claims.

b. “configuration information”: In the context of the ’103 patent,

configuration information means “configuration data for a particular peripheral

device.” (see e.g., 4:19–21, 4:62- 5:2)

c. “means for physically connecting a peripheral device to a computer

system through the computer peripheral bus”: The corresponding structure in

the ’103 Patent for physically connecting a peripheral device to a computer system

through the computer peripheral bus is a connector and equivalents thereof. The

only structure disclosed in the ’103 patent for physically connecting a peripheral

device to a computer system through the computer peripheral bus is a connector.

See, e.g., id. at 1:39-54; Figs. 1, 2, 5, 6 and 7.

BLACKBERRY Ex. 1012, page 32

 33

d. “means for receiving a second set of configuration information from a

computer system over the computer peripheral bus and port”: The

corresponding structure in the ’103 Patent for receiving a second set of

configuration information from a computer system over the computer peripheral

bus and port is a peripheral device interface and equivalents thereof. For example,

Fig. 2 shows an interface 76 for receiving configuration information over the

computer bus and port. See, e.g., id. at 5:8-12; Figs. 2, and 5-7.

e. “means for electronically simulating a physical disconnection and

reconnection of the peripheral device to reconfigure the peripheral device to a

second configuration based on the second set of configuration information”:

The corresponding structure in the ’103 Patent for electronically simulating a

physical disconnection and reconnection of the peripheral device to reconfigure the

peripheral device to a second configuration based on the second set of

configuration information is circuit 120 and its description at 6:48-7:11. See,

e.g., Fig. 4.

IX. OVERVIEW OF THE PRIOR ART

A. Patent Owner’s Admitted Prior Art (“APA”)

65. The Background describes the known Universal Serial Bus (USB).

Ex. 1001, 1:39-2:8. Figure 1 of the ’103 patent is labeled Prior Art and is

described as illustrating a standardized USB interface wherein a peripheral device

BLACKBERRY Ex. 1012, page 33

 34

24 is connected to a host computer system 22 by a USB. Ex. 1001, 4:4-23; Fig. 1

(reproduced below).

66. According to the ’103 Patent, it was known that when the

peripheral device is initially connected to the USB, the host detects the peripheral

device and an enumeration process begins in which the host determines the

characteristics of the peripheral device by receiving configuration information from

the memory 38 within the peripheral device and configures the USB

according to the characteristics of the peripheral device. Ex. 1001, 1:55-60;

4:24-30. It was also known that the memory 38 for storing configuration

BLACKBERRY Ex. 1012, page 34

 35

information may be an erasable programmable read only memory (EPROM). Ex.

1001, 4:17-23. The Background further discloses that new code or configuration

information could be downloaded into the memory of the peripheral device over

the USB. Ex. 1001, 2:10-18. These teachings are consistent with my

understanding of the prior art at the time of the invention. See, e.g., Snyder (Ex.

1015), at 3:64-4:10 (reciting “loading a set of microprocessor instructions into a

memory device coupled to a microprocessor of the microcontroller, the instructions

loaded from an external computer”); 9:59-67 (“The storage medium can include,

but is not limited to, any type of disk including floppy disks, optical discs,

CD-ROMs, and magneto-optical disks, ROMs, RAMs, EPROMS, EEPROMS,

magnetic or optical cards, or any type of media suitable for storing electronic

instructions.”).

67. Further, according to the ’103 Patent, once the enumeration process

was complete in prior art USB systems, the CPU of the host computer could load

an appropriate software device driver for the peripheral device and the software

applications executed by the host computer could communicate with the peripheral

device using the USB. Ex. 1001, 4:40-45. Further, according to the ’103 Patent, it

was known that another software device driver could be loaded after a

disconnection event and connection event. Ex. 1001, 4:45-49.

BLACKBERRY Ex. 1012, page 35

 36

68. The Background describes that in a USB system, the only opportunity

for associating software device drivers with a peripheral device is at the time when

the peripheral device is plugged into the USB and the enumeration process occurs. 2

Ex. 1001, 2: 9-12. “Thus, to alter the configuration or personality of a peripheral

device, such as downloading new code or configuration information into the

memory of the peripheral device, the host computer system must detect a

peripheral device connection or a disconnection and then a reconnection.” Ex.

1001, 2:13-17. According to the ’103 Patent, the invention is directed to “a system

and method for interfacing to a universal serial bus which avoids these and other

problems of known systems and methods.” Ex. 1001, 2:25-27.

69. Based on the above passages, it is my opinion that the Background

and the description of the prior art figure of the ’103 Patent (Fig. 1, described in

4:4-51 and Fig. 3) (“Admitted Prior Art” or “APA”) admit that at least the

following features were known in the prior art: (1) detecting the peripheral device

connected to the port; (2) a peripheral device that has a first configuration; (3)

2 As previously noted, the USB 1.0 Specification actually explains that

enumeration is an ongoing activity for the bus and that it is only done at startup

time for some busses. Enumeration was known to be repeated after a “reset,”

which is a standard USB signal defined in the USB 1.0 Specification that does not

require unplugging and unplugging back in a USB device.

BLACKBERRY Ex. 1012, page 36

 37

downloading information for a second configuration from the host computer into

the peripheral device over the computer bus; (4) reconfiguring a peripheral device

connected by a computer bus and port to a host computer; (5) physically

disconnecting and reconnecting a peripheral device to reconfigure the peripheral

device to a second configuration based on a downloaded set of configuration

information; (6) a USB connector; (7) a USB peripheral device interface.

70. The APA is consistent with my own recollection and experience in

the field at the time and of other prior art that I am aware of, including, e.g., the

prior art identified in this declaration. Moreover, in my opinion, the totality of the

circumstances indicates that the Applicant considered the detecting and

downloading features to be in the prior art. For example, in the prosecution history

of the related ’825 and ’770 Patents, the Applicant did not challenge the PTO’s

characterization of the detecting and downloading features as being Admitted

Prior Art. Ex. 1007, pp. 53-54 and 62-63; Ex. 1008, at pp. 70-71 and 90-91. When

the Examiner relied on “Applicant’s Admitted Prior Art” to teach the detecting and

downloading features of the claims, Applicant did not challenge this feature, and

instead argued that the feature of electronically simulating a physical disconnection

and reconnection was not taught in the secondary references. Ex. 1007, pp. 62-63;

Ex. 1008, at pp. 90-91.

BLACKBERRY Ex. 1012, page 37

 38

71. Thus, it is my opinion that the features described above are merely

characterizing what was already known in the prior art.

B. U.S. Patent No. 6,073,193 to Yap (“Yap”)

72. Yap teaches a method and apparatus for re-initializing a USB

peripheral device when there is a USB microcontroller busy condition by

disconnecting at least one data line of the USB microcontroller from a USB bus

coupled to the USB microcontroller. Ex. 1002, at Abstract; 2:29-37.

73. Yap teaches a circuit that is configured to electronically simulate the

physical disconnection and reconnection of the peripheral device. Id. at 3:60-4:10;

4:24-38; Figs. 2 & 3. Yap describes that a malfunction may occur in a USB

device, wherein after the device is configured, the host may terminate the function

of the USB device. Ex. 1002, 1:43-54. “When this occurs, (1) the user may have

to re-boot the USB device or physically disconnect and then re-connect the USB

device to allow the host computer to recognize and then re-configure the USB

device” Ex. 1002, 1:58-2:3. Yap appreciates that this “method defeats the

whole purpose of plug-and-play technology,” where devices are automatically

configured by the host computer. Id.

74. Yap discloses that objects of the invention are to recover from a USB

brown out condition “without a need to re-boot the USB device or physically

disconnect and then re-connect the USB device.” Id. at 2:20-24. Thus, Yap

BLACKBERRY Ex. 1012, page 38

 39

discloses that the disadvantage of having to physically disconnect and reconnect

the USB device to allow the host computer to recognize and reconfigure the USB

device is that it may be inconvenient. Yap describes a method and apparatus for

recovering from a malfunction “without a need to re-boot the USB device or

physically disconnect and then re-connect the USB device.” Ex. 1002, 2:22-24.

75. Figure 2 (reproduced below) of Yap shows a first embodiment where

switching devices S+ and S-, shown as FET transistors, are coupled to the USB

data lines D+ and D-. Opening and closing the lines “emulates the disconnect and

re-connect procedure as specified in the USB specification v1 .0, page 116.” Ex.

1002, 4:21-23. The switching devices are also described in Yap as transistors, Id.

at 3:60-4:23, which are a type of solid state switching device.

BLACKBERRY Ex. 1012, page 39

 40

76. Yap teaches that “[b]y disconnecting the D+ and D- data lines via

switching devices S+ and S-, a physical removal of the USB device 10 may be

simulated in order to allow the USB host to re-configure the USB device” Id.

at 4:6-10.

77. Yap teaches that opening the switching devices S+ and S- for a

duration greater than 2.5 microseconds and then reconnecting them again simulates

the disconnection and re-connection. Ex. 1002 4:16-23. This duplicates the

explanation in the USB 1.0 specification. Ex. 1013 at 116.

78. Fig. 3 of Yap discloses an embodiment in which the switching

devices S+ and S- are located in the microcontroller of the USB peripheral

device. Ex. 1002, 4:24-38; Fig. 3 (reproduced below):

79. A person of ordinary skill in the art would understand that in each

of Yap’s embodiments, one of the data lines, D+ or D-, must be pulled high

BLACKBERRY Ex. 1012, page 40

 41

through a 1.5KΩ resistor or its equivalent. This is a standard USB

requirement. Full-speed devices, the most commonly available type at the

time, would pull up the D+ line to a 3-3.6V level using a 1.5KΩ resistor or its

equivalent. On the host side, D+ and D- are both connected to ground via a

15KΩ resistor. I have illustrated that understanding below.

71. Figure 7.5 and 7.6 from the USB 1.0 specification, reproduced

below, illustrate this requirement. Referring to those figures, the left hand

boxes of each figure show resistor elements R1 as rectangles connecting D+ and

D- to a ground voltage, show as the small triangles.

BLACKBERRY Ex. 1012, page 41

 42

Ex. 1013 at 114

BLACKBERRY Ex. 1012, page 42

The USB is terminated at the hub and function ends as shown in Figure 7-5 and Figure 7-6. Full speed
and low speed devices are differentiated by the position of the pull-up resistor 011 the dowllstreain end of
the cable. Full speed devices are terminated as $l‘lOW‘1] in Figure 7-5 with the pull-up on the D+ line.
Low speed devices are terminated as sliovm in Figure 7-6 with the pull-up on the D- line.

The pull-up terminator‘ is a 1.5]~:.Q 15% resistor tied to :1 voltage source between 3 .0 V and 3.6 V

1‘efe1'eucedto the local gonad. The pulldomi terminators; are resistors of 15 kfl 15% connected to their

local ground.

F.S.lL.S. USB
Transceiver Transceiver

Zu=90Q¢15%
Hub Port 0

R-|=15K.Q or

RF‘-5*“ Full Speed Function

F.S.lL.S. USB
Transceiver

Low Speed Function

Figure 7—6. Low Speed De\1°ce Cable and Resistor Connections

Ex. 1013 at 114

42

BLACKBERRY Ex. 1012, page 42

 43

USB Host
2

D+

D-

USB
Peripheral
Logic 8

3.3V ± 0.3V

Yap Figure 2 as understood by a PHOSITA in view of the USB
specifications

I have prepared the illustration immediately above to show, in view of the

USB 1.0 specification, how one of ordinary skill in the art would

understand Figure 2 of Yap in its connection with a USB host.

C. U.S. Patent No. 5,628,028 to Michelson (“Michelson”)

80. Michelson relates to programming and reprogramming the

hardware configuration of a PCMCIA card. Ex. 1003, 1:7-16. Michelson

states that a “typical PCMCIA card includes a standard PCMCIA connector

connected to a PCMCIA interface circuit through a standard PCMCIA bus.” Ex.

1003, 1:28-30. “[T]he host computer includes a PCMCIA adapter circuit coupled

to a PCMCIA host socket which is mechanically and electrically connected to a

BLACKBERRY Ex. 1012, page 43

 44

PCMCIA card connector on the PCMCIA card” (id. at 2:17-20), and “PCMCIA

card 14 card connector 28 is inserted in PCMCIA host socket 18 of host

computer 12.” (id. at 3:34-36). “Through a standard PCMCIA bus (i.e., PCMCIA

address lines 62, data lines 64, and control lines 66) connected to PCMCIA

connector 28”, the peripheral PCMCIA device receives data from the host

computer. Id. at 4:13-23.

81. Michelson describes that when a PCMCIA card is inserted into the

host socket of a host computer, an adapter in the host recognizes the insertion. Ex.

1003, at 3:34-37. The processor in the host reads data in a Card Information

Structure (CIS) memory (such as an EEPROM) on the PCMCIA card and

configures the host and the PCMCIA card to operate together. Ex. 1003 2: 22-27.

The CIS data sufficiently identifies the PCMCIA card to the host to enable the host

computer and the PCMCIA card to operate together and to enable the processor to

select the appropriate application software from the host memory. Ex. 1003, 3:34-

49.

82. The CIS data specifically identify the card manufacturer and card

identification (ID) number and includes a variety of set-up information. Ex. 1003,

3:49-54.

83. After an initial configuration, the processor 22 then executes the

application software that corresponds to the PCMCIA card. Ex. 1003 at 3:59-61.

BLACKBERRY Ex. 1012, page 44

 45

The application software causes the processor to either select a default field

programmable gate array (FPGA) programming data file from host memory that

corresponds to a particular application for the PCMCIA card or request input from

the user as to which FPGA programming data file is to be selected from host

memory. Ex. 1003, 3:61-66.

84. The host then downloads the data from the selected FPGA

programming data file through PCMCIA adapter and bus to the PCMCIA interface

chip, which then programs the FPGA by loading the data from the FPGA

programming data file into the FPGA. Ex. 1003, 3:66-4:17. The interface chip

initiates reprogramming by a circuit, which sends a “reset” and “reprogram” signal.

Ex. 1003, 4:17-22.

85. Michelson also discloses that the FPGA programming data files can

be supplied with the PCMCIA card or new, additional, or updated FPGA

programming data files can be obtained at a later time. Ex. 1003, 6:61-63.

D. PCCextend 100 User’s Manual (“PCCextend”)

86. PCCextend describes a PCMCIA extender card that simulates a card

removal/insertion cycle. Ex. 1004, p. 1. The extender card is inserted into a

desired slot in a host system. Ex. 1004, p. 1. A PC Card (i.e., a PCMCIA card)

under test is inserted into the card connector of the extender card. Ex. 1004, Fig.

2.0-1 (reproduced below) shows the extender card described in PCCextend.

BLACKBERRY Ex. 1012, page 45

 46

87. The “extender card is a debug tool for PCMCIA development and test.”

Ex. 1004, p. 1. The extender card has test points and a termination and prototype

area to allow access to all PC Card signals and to allow the user to add components

to any signal. Ex. 1004, pp. 3-4.

88. PCCextend teaches that “[i]nsertion and removal of the extender and

PC card should be done with care. The PC Card’s fragile connectors may be

broken or bent if improper force is used. Both card and extender should be inserted

straight without any lateral movement or force.” (italics and bold omitted.)

Ex. 1004, p. 1.

89. PCCextend describes that the extender card has a PCCswitch SW1,

where “the PCCswitch can interrupt the card detect signals (-CD 1 and -CD2) to

BLACKBERRY Ex. 1012, page 46

 47

simulate a card removal/insertion cycle.” Ex. 1004, p. 3; see also schematic of

extender card’s host side connector on p. 16 (reproduced below).

90. PCCextend states that when a card is inserted, card detect lines CD 1

and CD2 may be momentarily interrupted by pressing the PCCswitch. Ex. 1004, p.

4. “Most software drivers will issue a removal beep followed by an insertion

beep.” Id.

91. PCCextend further teaches that the “software may also remove power

from the socket when the card is removed.” Id.

BLACKBERRY Ex. 1012, page 47

 48

E. U.S. Patent No. 5,862,393 to Davis (“Davis”)

92. Davis describes a system for managing power of a computer with

removable devices such as PCMCIA cards. Ex. 1005, 3:50-54. The PCMCIA

card is described as a “peripheral board or ‘card.’” Id. at 6:15-17. The card is

“connected to a computer 8 via a socket 14.” Id. at 4:16-23; 6:15-21; Fig. 1. A pair

of card detect lines are used by a device controller to detect the card connected

to the computer. Id. at 6:17-56; Fig. 1. Davis teaches that, in such devices, a

device insertion signal is normally generated in response to inserting a device

into a socket. Ex. 1005, 2:56-58. Davis further provides an inventive solution “by

taking advantage of the known characteristics of device removal and insertion

signals.” Ex. 1005, 2:66 – 3:3. More specifically, Davis teaches a first circuit

(e.g., the device controller) that uses card detect lines 16a, 16b to detect the

peripheral device connected to the port. For instance, Davis recites:

Turning now to FIG. 1, a device 12, such as a peripheral board or

"card", is connected to a computer 8 via a socket 14. Once

connected, a pair of card detect lines 16a and 16b connect the

device 12 to a device controller 18. In addition, a ground path 19

extends between the ground potential of the device 12 and to the

card controller 18. Pull-up resistors 22a and 22b are located at the

controller-side of the card detect lines 16a and 16b. Each pull-up

resistor 22a and 22b is connected between a power source

(Vcc) and a card detect line, thereby placing a logical high level on

the card detect line when a device 12 is not connected to the socket

BLACKBERRY Ex. 1012, page 48

 49

14. Although the pull-up resistors 22a and 22b are shown in FIG. 1

as discrete resistive components, those skilled in the art will

appreciate that the pull-up resistors can be implemented as devices

internal to the device controller 18. A ground potential is located

at the device side of the card detect liner3 16a and 16b,

thereby placing a logical low level on both card detect lines

when the device 12 is properly connected to the socket 14. In

response to connecting the device 12 to the socket 14, the logical

high-level signal present on each card detect line 16a and 16b

transitions to a logical low level.

Id. at 6:14-36 (emphasis added).

93. Davis discloses an electronic switch in the card detect line that

electronically simulates a physical disconnection and reconnection of a peripheral

device. More specifically, Davis describes using FET switches to create an

“‘apparent’ device removal event” and an “‘apparent’ device insertion event.” Ex.

1005 at 3:32, 43. Fig. 3 (reproduced below) shows the FET transistors, which are

configured to “break[] a signal path between the card detect lines 16a’ and 16b’

and system advisory lines 25a and 25b.” Id. at 7:23-35. Davis teaches that by

“interrupt[ing] the passage of signals from the card detect lines 16a’ and 16b’ to

3 One of ordinary skill in the art, reading the specification, would have recognized

that “liner” contains a typographical error and should read “lines.”

BLACKBERRY Ex. 1012, page 49

 50

the device controller 18,” the FET switches “trick[s] the device controller to take

actions in response to the apparent removal of the device 12.” Id. at 9:45-52.

 “Significantly, the device 12 remains inserted within the socket 14, thereby

leading to the presence of logical lower4 levels signals on the card detect lines 16a’

and 16b’ that represent a device insertion event.” Id.; see also 9:18-32.

94. One event “‘tricks’ [a] controller 18 into making a determination

that the device 12 has been removed from the socket 14” and another event “‘tricks’

4 One of ordinary skill in the art, reading the specification, would have recognized

that “lower” contains a typographical error and should read “low.”

BLACKBERRY Ex. 1012, page 50

 51

the controller 18 into making a determination that the device 12 has been inserted

into the socket 14.” Ex. 1005, 11:15-17, 44-47.

95. According to Davis, a sequence of power-down and power-up events

can cause a computer device to enter a default state or a random state based on the

loss of configuration information. Ex. 1005 at 1:43-52. If the power management

event is not communicated to the device driver to cause it to supply configuration

information to the device, the only way to return a device that has lost its device

configuration to a useful state is to restart or re-boot the computer system.

Ex. 1005, 1:43-49; 2:21-32. Davis presents a technique that uses the device

removal and insertion signals normally generated by the physical removal or

insertion of a device to advise a driver for a device about a power management

event and cause configuration information to be sent to the device. Ex. 1005 at

2:48-65.

96. Davis describes a switching device 23 connected in the card detect

lines 16a’ and 16b’ between the peripheral device 12 (via the socket 14) and the

device controller 18 in the host computer as shown in Fig. 2 (reproduced below):

BLACKBERRY Ex. 1012, page 51

 52

97. Davis describes that “the switching device 23 can be implemented

by an electronic switch, typically a field effect transistor (FET) or a bipolar

transistor.” Ex. 1005, 7:31-34. The switches may be located in the card detect

lines 16a’ and 16b’, as shown in Fig. 3, to open and close the signal path. “[A]

device removal event can be represented by deactivating the FET and opening this

single5 [sic] path. Likewise, a device insertion event can be represented by

activating the FET and closing this signal path.” Ex. 1005, 10:29-32. Interrupting

the passage of signals from the card detect lines 1 6a’ and 1 6b’ to the device

controller 18 “trick[s] the device controller to take actions in response to the

apparent removal of the device.” Ex. 1005, 9:43-51. Closing the switches

5 One of ordinary skill in the art, reading the specification, would have recognized

that “single path” contains a typographical error and should read “signal path.”

BLACKBERRY Ex. 1012, page 52

 53

“effectively ‘tricks’ the controller 18 into making a determination that the device

12 has been inserted into the socket 14.” Id. at 11:48-52.

X. UNPATENTABILITY ANALYSIS

A. The Claims of the ’103 Patent

98. I have been asked to review the claims of the ’103 Patent and to

provide an opinion as to whether the subject matter of the claims would have been

anticipated and/or obvious in light of the prior art.

99. The analysis below is presented on a claim-by-claim basis.

Listing of Claims

100. Below is a listing of the claims of the ’103 Patent that are being

petitioned for inter partes review:

Claim Claim Language Grounds of Invalidity
14 A method for reconfiguring a peripheral

device connected by a computer bus and
port to a host computer, the method
comprising the steps of:
detecting the peripheral device connected to
the port, wherein the peripheral device has a
first configuration;

downloading a second set of configuration
information from the host computer into the
peripheral device over the computer bus;
and

electronically simulating a physical
disconnection and reconnection of the
peripheral device to reconfigure the
peripheral device to a second configuration
based on the second set of configuration

1. APA in view of Yap
2. Michelson in view of
PCCextend and Davis
3. USB 1.0 specification

BLACKBERRY Ex. 1012, page 53

 54

Claim Claim Language Grounds of Invalidity
15 The method of claim 14, wherein said first

configuration comprises generic
configuration assigned to the peripheral
device and said second configuration
comprises a unique manufacturer
configuration.

1. APA in view of Yap
and Michelson
2. Michelson in view of
PCCextend and Davis

16 The method of claim 15, wherein said
downloading step comprises:
reading an identification code from the
peripheral device, and

selecting said second set of configuration
information based on said identification
code.

1. APA in view of Yap
and Michelson
2. Michelson in view of
PCCextend and Davis

18 The method of claim 14, wherein said
electronic connecting and disconnecting of
said peripheral device respond to an
electrical switch.

1. APA in view of Yap
2. Michelson in view of
PCCextend and Davis

19 The method of claim 14, wherein
downloading comprises communicating
said second set of configuration information
to the peripheral device using a universal
serial bus and port.

1. APA in view of Yap
2. Michelson in view of
PCCextend and Davis and
APA

20 The method of claim 19, wherein said
second set of configuration information
comprises configuration data and
executable code.

1. APA in view of Yap
2. Michelson in view of
PCCextend and Davis and
APA

23 The method of claim 14, wherein said
simulating comprises electronically
resetting the configuration of the peripheral
device, controllable by the peripheral
device.

1. APA in view of Yap
2. Michelson in view of
PCCextend and Davis

24 A peripheral interface device for a computer
peripheral bus and port, comprising:
means for physically connecting a
peripheral device to a computer system
through the computer peripheral bus,

1. APA in view of Yap
2. Michelson in view of
PCCextend and Davis

BLACKBERRY Ex. 1012, page 54

 55

Claim Claim Language Grounds of Invalidity
 wherein the peripheral device has a first

configuration;

means for receiving a second set of
configuration information from a computer
system over the computer peripheral bus
and port; and

means for electronically simulating a
physical disconnection and reconnection of
the peripheral device to reconfigure the
peripheral device to a second configuration
based on the second set of configuration
information.

25 The device of claim 24, wherein said means
for electronic simulation comprises an
electrical switch.

1. APA in view of Yap
2. Michelson in view of
PCCextend and Davis

26 The device of claim 25, wherein said
electrical switch comprises a solid state
transistor.

1. APA in view of Yap
2. Michelson in view of
PCCextend and Davis

27 The device of claim 26, wherein said
computer peripheral bus and port comprise
a universal serial bus and port.

1. APA in view of Yap
2. Michelson in view of
PCCextend and Davis and
APA

B. Claim 14 of the ’103 Patent Is Anticipated Under 35 U.S.C. §
102(b) by the USB Specification V1.0.

101. The following analysis demonstrates, on a limitation-by-limitation

basis, how claim 14 of the ’103 patent is anticipated by the USB Spec. under 35

U.S.C. § 102(b).

102. Claim 14 recites “a method for reconfiguring a peripheral device

connected by a computer bus and port to a host computer.” This method is

disclosed in the USB 1.0 specification.

BLACKBERRY Ex. 1012, page 55

 56

103. For example, the USB specification explains that configuration and

reset are part of the standard USB functionality for all devices.

Ex. 1013 p. 29

104. Similarly, the USB specification explains that enumeration is a

continuing function for USB systems. “Since the USB allows USB devices to

attach to or detach from the USB at any time, bus enumeration for this bus is an

on-going activity.” (Ex. 1013 p. 32.)

105. Also, the USB specification explains that all USB systems include at

least one USB hub and that a hub can attach and detach ports as well as control the

power to ports and attached devices.

BLACKBERRY Ex. 1012, page 56

 57

Ex. 1013 at 28

Ex. 1013 at 35

106. Claim 14 further requires “detecting the peripheral device connected

to the port, wherein the peripheral device has a first configuration.” This step is

disclosed in the USB 1.0 specification.

107. The USB specification discloses that each host port or hub port

includes 15KΩ pull-down resistors on each of the D+ and D- data lines. Each

BLACKBERRY Ex. 1012, page 57

 58

connected full-speed device includes a 1.5KΩ pull-up resistor on the D+ data line.

This is the same functionality disclosed in the ’103 patent. This pull-up resistor

circuit is used to detect the presence of a full-speed device on a port. This leads

to device enumeration and configuration. The device connects with a

default configuration and then can be reconfigured according to USB

1.0 (Ex. 1013 at section at 34, section 4.8.)

Ex. 1013 at 114.

BLACKBERRY Ex. 1012, page 58

 59

Ex. 1013 at 117.

108. This detection process is repeated whenever a device is powered

down then powered on again, such as via a USB hub.

Ex. 1013 at 117.

Ex. 1013 at 224.

BLACKBERRY Ex. 1012, page 59

 60

Ex. 1013 at 224.

109. After detection, the host reads the configuration information from the

device. “When a USB device is attached, the following actions are undertaken:

… 7. The host reads the configuration information from the device by reading

each configuration 0 to n.” (Ex. 1013 p. 169.)

110. The same detection process is repeated after a reset.

Ex. 1013 at 14.

Ex. 1013 at 168.

111. Claim 14 further requires “downloading a second set of

configuration information from the host computer into the peripheral device

over the computer bus.” This step is disclosed in the USB 1.0 specification.

BLACKBERRY Ex. 1012, page 60

 61

112. In general, a USB host must configure a USB device by

downloading configuration information. In some cases, that configuration can

persist after a reset or disconnect while in some cases, a new configuration is

performed after each reset or disconnect.

Ex. 1013 at 14

Ex. 1013 at 16

Ex. 1013 at 168

BLACKBERRY Ex. 1012, page 61

 62

Ex. 1013 at 169

Ex. 1013 at 24

BLACKBERRY Ex. 1012, page 62

When a USB device is attached to or removed from the USB. the host uses a process lcnown as bus
enumeration to identify and manage the detice state changes necessary. When a USB device is attached.
the following actions are urtdertalten:

1. The hub to which the USB device is now attached informs the host of the event via a reply on its
status change pipe (refer to Chapter 1 l for more infomtation}. At this point. the USB device is it: the
attached state and the port to uhich it is attached is disabled.

‘I3 The host detennines the exact nature of the change by querying the hub.

3. Now that the host knows the port to which the new device has been attached. the host issues a port
enable and reset command to that port.

4. The hub maintains the reset signal to that port for 10 ms. When the reset signal is released. the port
has been enabled and the hub provides 100 mA of bus power to the USB device. The USB device is
now in the powered state. All of its registers and state have been reset and it answers to the default
address.

5. Before the USB device receives a unique address. it's default pipe is still accessible via the default
address. The host reads the device descriptor to determine what actual maximum data payload size
this USB device's default pipe can use.

6. The host assigns a unique address to the USB device. moving the device to the addressed state.

7. The host reads the confimtion information from the device by reading each confimtion zero to
n. This process may take several frames to complete.

8. Based on the configttration information and how the USB detice nil] he used. the host assifl a
configuration value to the device. The device is now in the configured state and all of the endpoints
in this configuration have taken on their described characteristics. The USB device may now draw
the amount of\'bus power described in its configuration descriptori From the device's point ofview
it is now ready for use.

When the USB device is removed. the hub ain sends a notification to the host. Detaching a device
disables the port to which it had been attached. Upon receiving the detach notification. the host will
update its local topological information.

Ex. 1013 at 169

0 Self identifying peripherals. automatic mapping of function to driver. and configuration

0 Dynamically attachable and reconfigurable peripherals

EX.1O13 at 24

62

BLACKBERRY Ex. 1012, page 62

 63

Ex. 1013 at 24

Ex. 1013 at 34

113. Configuration occurs following bus enumeration. “Since the USB

allows USB devices to attach to or detach from the USB at any time, bus

enumeration for this bus is an on-going activity.” (Ex. 1013 p. 32.)

114. Configuration may be repeated with an alternate (second)

configuration.

BLACKBERRY Ex. 1012, page 63

 64

Ex. 1013 at 184

Ex. 1013 at 202

Ex. 1013 at 214

115. Claim 14 further requires “electronically simulating a physical

disconnection and reconnection of the peripheral device to reconfigure the

peripheral device to a second configuration based on the second set of

configuration information.” This step is disclosed in the USB 1.0 specification.

116. The USB specification defines a reset process that electronically

simulates a disconnection and reconnection. Devices are required to respond to

the reset signal (an SE0 condition for > 2.5µs) in the same manner as a physical

disconnect and reconnect of a USB device and thereafter will adopt a second

configuration based on the second set of configuration information as described

with respect to the prior claim element.

BLACKBERRY Ex. 1012, page 64

 65

Ex. 1013 at 115

Ex. 1013 at 165

Ex. 1013 at 116

BLACKBERRY Ex. 1012, page 65

Disconnect (n.a.) D+ and D- < VSE(max) for 2 2.5 its
(Upstream only)

Connect D+ or D- > VsE(max) for 2 2.5 [.15
(Upstream only)

Reset D+ and D- < V5: for 210 ms D+ and D- < Vs: (min)tor 2 2.5 us
(Downstream only) (must be recognized within 5.5 its)’

EX. 1013 at 115

This section describes USB detice slates that are externally xisible (see Figure 9-1). Note: USB devices
perform a reset operation in response to a Reset request to the upstream port from the host. When reset
signaling has completed. the USB device is reset.

EX.1013 at 165

All ports on the downstrearn side of the host or a hub have pull-down resistors on both the D+ and D-
litres. All devices have a pull-up resistor on one of the data lines on their upstrearn port. The type of
device detennines which data line has the pull-up resistor. Full speed devices have the pull-up on the D+
litte (see Figure 7-5) and low speed devices have the pull-up on the D- line (see Figttre 7-6). When a
device is attached to hub or host but the data lines are not being driven. these resistors create a quiescent
bias condition on the lines such that the data line with the pull-up is above 2.8 V and the other data line is
near ground. This is called the idle state.

When no function is attached to the downstream pon of the host or hub or the pull-up resistor on an
attached device is not powered. the pull-doun resistors will cause both D+ and D- to be pulled below the
single-ended low threshold of the host or hub port. This creates a state called a single-ended zero (SEO)
on the downstream port. A disconnect condition is indicated if an SEO persists on a downstneant port for
more than 2.5 its (30 ftlll speed bit titnes). Note that disconnect signaling applies only in an upstream
direction (see Figure 7-7).

A connect condition will be detected when a device is connected to the host or hub's port. and one of the
data lines is pulled above the single-ended high threshold level for more than 2.5 its (30 full speed data
bit times). The data line that is high when the port state changes from disconnected to connected sets the
idle state for this bus segment and detemiines whether the connected detice is a full speed device or a
low speed device. All signaling levels given in Table 7-1 are set for this network segment (and this
segment alone} once the idle state is determined. Figtne 7-8 shows a full speed device cotnrection
sequence and Figure 7-9 shows a low speed device connection sequence.

All hub ports start out in an implied disconnected state afier power is applied to that port. If a device is
connected to the port. the pon goes through the connect sequence described above to detect the deuce
type and set the port signaling characteristics {refer to Section 11.2.3).

EX.1013 at 116

Device Disconnect

Disconnected Detected

Figure '!—'.l'. Disconnect Detection

65

BLACKBERRY Ex. 1012, page 65

 66

Ex. 1013 at 117

Ex. 1013 at 119

Ex. 1013 at 224

Ex. 1013 at 242

BLACKBERRY Ex. 1012, page 66

EX. 1013 at 117
A reset is signaled dovmstream from a hub port on the bus by the presence of an extended SEO at the
upstream port of a device. Alter the reset is removed. the device will be in the attached. but not yet
addressed or configured state (refer to Section 9.1). Note that reset sigaliug applies only in the
downstream direction.

The reset signal can be generated by host command on any hub or host controller port. The reset signal
must be generated for a minimtmi of 10 ms. The port that generated the reset will be sent to the logically
disconnected state at the ettd of the reset. If a dexice is cotmected to the port. the bus pull-up resistor will
determine the device type (low or full speed) and the port will end up in the disabled state (refer to
Section 11.2.3}.

An active device (powered and not in the suspend state} seeing a single-ended zero on its upstream port
for more than 2.5 us may treat that signal as a reset. but must have interpreted the signaling as a reset
nithin 5.5 tts. A detice that recognizes a reset from a SEO between 32 and 64 full speed bit times or

between -it and 8 low speed bit times satisfies these requirements. The reset signal propagates through all
enabled ports of any hubs downstream of the simtaling port. but does not propagate through any ports that
are disabled. A bus-powered hub that receives a reset on its root port removes power from all its
downstream ports. After the reset is removed. all devices that received the reset are set to their default
USB address and are in the unconftgtmed state. All ports on a hub that received a reset are disabled.

EX.1013 at 119

Bus state evaluation is dotte at the end of the frame and is able to discriminate between the SEO. the

difierential 1 and 0 bus states. When no device is connected to a dovmstream hub port. its pull—down
resistors pull both D+ and D- below Vsetmnn.

(‘onnect1'Disco:mect detect can only be perfonned afler Vbus is applied to the downstream port. (This
requirement only affects hubs whose downstream ports are power switched.) When a device is
connected. the bus state changes from the disconnected to the attach detect state. Low speed devices pull
up D- to an SE! and leave D+ at SEO. Full speed devices pull up D+ to an SE] and leave D- at SEO.
Each downstream hub port must be capable of detecting and difl'erentiatin_2 between low speed and full
speed device connections once a device is connected. The differential J and K states are undefined until
a device is attached and the device‘s speed has been ascertained.

When a connect or disconnect occurs. it must be reflected in the hub status by the end of the frame in
which the event occurred tmless the hub is in the reset or suspend modes. A hub in the suspend mode is
awakened by a connect or disconnect event and must be capable of reporting the event upon completion
of resume. Upon coming out of reset. a hub must detect which downstream ports have devices connected
to them. Connect and disconnect changes are reported on a per-port basis.

EX.1013 at 224

USB desices must power on in such a manner that they do not drive D+ or D- (except with the pull-up
resistor) during the reset process. This is required so the upstream hub can drive reset downstream and be
assured that the downstream device will see the reset signaling.

EX.1013 at 242

66

BLACKBERRY Ex. 1012, page 66

 67

Ex. 1013 at 166

BLACKBERRY Ex. 1012, page 67

/We
' Attached ‘-

! Hub Reset ‘s
" or Huh ‘I
'1.‘ Deconfigured C°"fi9"“edl,~'

X/\%:;:€;\/"\
Suspended

eusActi_F/

Power

lnlerruptio

1 W/KBusm‘. , Elnactiv

‘ Default fsuspendedul‘:
Reset K /musAclivim J

:1 ’ HE’; ” \
I 1. Address ‘. -‘I
-‘ ,f Assigned ; 1\ _ , .

1";/d
1‘ 3' Device Device ‘. ,1

\. Dewnfigured Configured : ’.__ f ___.__ /'

\/ \7.n2:.::,e\/\
Configured I; Suspended ‘E

‘\/‘\E'“fL‘°Ij1"1/‘\/

Figure 94. Device Stale Diagram

Ex. 1013 at 166

67

BLACKBERRY Ex. 1012, page 67

 68

Ex. 1013 at 167

BLACKBERRY Ex. 1012, page 68

Table 9—l. Visible Device States

configured Suspended

Device is not attached to
USB. Other attributes

are not significant.

Device is attached to

USB. but is not powered.
Other attributes are not

significant.

Device is attached to

USB and powered. but
has not been reset.

Device is attached to

USB and powered and
has been reset. but has
not been assigned a
unique address. Device
responds at the default
address.

Device is attached to

USB. powered. has been
reset, and a unique
device address has been

assigned. Device is not
configured.

Device is attached to

USB. powered. has been
reset, has unique
address, is configured,
and is not suspended.
Host may now use the
function provided by the
device.

Device is. at minimum,
attached to USB. has
been reset, and is
powered at the minimum
suspend level. It may
also have a unique
address and be

configured for use.
However, since the
device is suspended, the
host may not use the
device's function.

Ex. 1013 at 167

68

BLACKBERRY Ex. 1012, page 68

 69

Ex. 1013 at 169

117. The USB Specification also indicates that every USB system contains

a hub. See Ex. 1013 at 28, 35 as cited above.

118. USB hubs are disclosed as being able to disconnect and reconnect

device power using software. This uses a switch to simulate a disconnect and

reconnect of the device.

BLACKBERRY Ex. 1012, page 69

 70

Ex. 1013 at 132

119. Since each and every element of claim 14 is disclosed in the USB

specification, claim 14 is anticipated.

C. Claims 14, 18-20, and 23-27 are unpatentable under 35 U.S.C.
§ 103(a) as being obvious over the APA in view of Yap

1. Independent Claim 14

120. Based on my review and analysis, it is my opinion that the

combination of the APA and Yap discloses the subject matter of independent

claim 14 and renders it obvious.

121. Claim 14 recites “A method for reconfiguring a peripheral device

connected by a computer bus and port to a host computer.” As discussed

above in Sections VI and IX, the APA discloses connecting a peripheral device

to a host computer through a standard USB computer bus and port. Ex. 1001,

1:55-2:8; Fig. 1; 4:4-23.

BLACKBERRY Ex. 1012, page 70

 71

122. The APA further discloses that it was known in the USB prior art for

the host “to alter the configuration or personality of a peripheral device, such as

downloading new code or configuration information into the memory of the

peripheral device” Id. at 2:13-17. Altering the configuration or personality of

the device is an example of reconfiguring a peripheral device. Thus, the APA

discloses all the features of the preamble.

123. Claim 14 further recites “detecting the peripheral device connected to

the port, wherein the peripheral device has a first configuration.”

124. The APA teaches that “[w]hen a peripheral device is first connected

to the USB and the host computer through a standard USB communications port, the

presence of the connected peripheral device is detected and a configuration

process of the USB for the connected peripheral device, known as device

enumeration, begins.” (Emphasis added.) Ex. 1001, 1:55-60; Prior Art Figure 3;

6:6-32 (describing using the voltages on the USB D+ or D- lines to detect a

device).

125. The APA further discloses that the peripheral device in the prior art

can have a first configuration. Ex. 1001 1:55-2:8. It specifically states that

“[d]uring the [enumeration process] query, a data table stored in the peripheral

device, which contains the particular peripheral device’s configuration

information, is read from the peripheral device into the host computer’s memory.”

BLACKBERRY Ex. 1012, page 71

 72

Id. at 1:66-2:3. In my opinion, the disclosure of a data table containing the

peripheral device’s configuration information is an example of a first

configuration. Thus, the APA discloses detecting a peripheral device connected to

a port, where the peripheral device has a first configuration, as recited in claim 14.

126. Claim 14 further recites “downloading a second set of configuration

information from the host computer into the peripheral device over the computer

bus.”

127. The APA teaches that it was known to download new code or

configuration information into the peripheral device over the computer bus, but a

problem with known systems and methods was that this required the host computer

system to detect a peripheral device connection or a disconnection and then a

reconnection:

In a serial bus system, such as the USB, the only opportunity

for associating software device drivers with a peripheral device is at

the time when the peripheral device is plugged into the USB and the

enumeration process occurs. Thus, to alter the configuration or

personality of a peripheral device, such as downloading new code

or configuration information into the memory of the peripheral

device, the host computer system must detect a peripheral device

connection or a disconnection and then a reconnection. . . . Thus,

there is a need for a system and method for interfacing to a universal

serial bus which avoids these and other problems of known systems

BLACKBERRY Ex. 1012, page 72

 73

and methods, and it is to this end that the present invention is

directed.

Ex. 1001, 2:9-29 (emphasis added).

128. The disclosure of “new code or configuration information” in the

APA is an example of a “second set of configuration information” which is

downloaded from the host computer into the peripheral device over the computer

bus. The new code or configuration information can alter the personality of the

peripheral device to change its requirements or capabilities. The peripheral device

with the altered requirements and capabilities has a second configuration. Further,

one of ordinary skill in the art would have understood from the Background that

the downloading can take place over the computer bus and port because it states

that a host computer must detect a “peripheral device connection or a

disconnection and then a reconnection” to alter the device’s personality by

downloading new code or configuration information. This language suggests that

the peripheral device was connected to the host for downloading and subsequently

disconnected and reconnected. Further, because the prior art Fig. 1 (reproduced

below) shows only a single computer bus 26 connected to the device, it would have

been obvious to one of ordinary skill in the art for the downloading in the

Background to occur over the computer bus.

BLACKBERRY Ex. 1012, page 73

 74

129. Thus, the APA discloses downloading a second set of configuration

information from the host computer into the peripheral device over a computer bus.

130. Claim 14 further recites “electronically simulating a physical

disconnection and reconnection of the peripheral device to reconfigure the peripheral

device to a second configuration based on the second set of configuration

information.”

131. The APA teaches that it was known in the prior art to alter the

configuration of a peripheral device by downloading new code or configuration

information into the peripheral device, but that this required the host computer

BLACKBERRY Ex. 1012, page 74

 75

system to detect a peripheral device connection or a disconnection and then a

reconnection to recognize the new configuration. Ex. 1001, 2:13-21. The APA

further teaches that this was one of the “problems of known systems and methods.”

Id. at 2:25-28. It was a problem because it required a physical disconnection and

reconnection of the peripheral device. Ex. 1001, 2:13-17.

132. Yap discloses a solution to the above problem. Yap teaches

electronically simulating a physical disconnection and reconnection of the peripheral

device connected by a USB to a host computer to reconfigure the peripheral device.

Ex. 1002, at Fig. 2 (reproduced below) and Fig. 3.

133. Yap describes that a malfunction may occur in a USB device wherein

after the device is configured, the host may terminate the function of the USB

BLACKBERRY Ex. 1012, page 75

 76

device for not communicating with the host computer a number of times (called a

“brown out” condition) and not try to re-establish communications. Ex. 1002,

1:43-54. “When this occurs, (1) the user may have to re-boot the USB device or

physically disconnect and then re-connect the USB device to allow the host computer

to recognize and then re-configure the USB device” Id. at 1:58-2:3. Yap

appreciates that this “method defeats the whole purpose of plug-and-play technology”

(id., 1:66-67) where devices are automatically configured by the host computer. Id.

134. Thus, Yap relates to recovering from such a malfunction “without a

need to re-boot the USB device or physically disconnect and then re-connect the USB

device” Id. at 2:20-24. Yap expressly discloses that the disadvantage of having to

physically disconnect and reconnect the USB device to allow the host computer to

recognize and reconfigure the USB device is that it may be inconvenient.

135. Yap teaches electronically simulating the physical disconnection and

reconnection of the peripheral device to allow the USB host to reconfigure the

USB device using switching devices S+ and S- in the data lines D+ and D-,

respectively, as shown in Figure 2 (reproduced below):

BLACKBERRY Ex. 1012, page 76

 77

In FIG. 2, a first embodiment of the USB device 10 of FIG. 1

further includes switching devices S+ and S-, such as

transistors, contact switches, etc., coupled to positive data (D+)

and negative data (D-) lines of the signal lines 6a. … Accordingly,

when the USB micro-controller 6 drives the I/O pin to an

appropriate logic state, the D+ and D- data lines may be opened or

shorted via switching devices S+ and S-. By disconnecting the D+

and D- data lines via switching devices S+ and S-, a physical

removal of the USB device 10 may be simulated in order to

allow the USB host to reconfigure the USB device 10

during a brown out condition. . . . Firmware in the USB

micro-controller 6 keeps the data lines connected via switching

devices S+ and S- during normal operation. However, when a

brown out condition is detected, as will be described later, the

USB micro-controller 6 opens the data lines via the switching

devices S+ and S- for a duration greater than 2.5 microseconds

and then reconnects them again. This procedure, for example,

emulates the disconnect and re-connect procedure as specified

in the USB specification v1.0, page 116.

BLACKBERRY Ex. 1012, page 77

 78

Ex. 1002, 3:60-4:23 (Emphasis added); see also Fig. 3 (showing embodiment

with switching devices S+ and S- of Figure 2 within the USB microcontroller)

and 4:24-3 8.

136. Thus, Yap discloses electronically simulating the disconnect and

reconnect procedure of the USB Specification v1 .0 as a solution to the problem of

requiring a physical disconnection and reconnection to reconfigure the peripheral

device. Ex. 1002, at 2:20-25; Ex. 1013, at p. 116-169. Like the circuit shown and

described in the ’103 Patent, the circuit in Yap changes the state of bus data lines

D+ and D- and is thus an example of a circuit that simulates a disconnection and

reconnection over the computer bus. Yap discloses that a USB disconnect and

reconnect would result in a reconfiguration of the peripheral device. Ex. 1002, at

3:60-4:23; see also Ex. 1001, at 1:55-2:8; 2:9-17; Ex. 1013, at pp. 116, 169.

137. In my opinion, one of ordinary skill in the art would have been

motivated to modify the steps described in the APA to include the step in Yap of

electronically simulating a physical disconnection and reconnection because Yap

discloses that such circuit solves the same problem described by the

APA—namely the inconvenience of having to physically disconnect and reconnect

a peripheral device to reconfigure the device. See Ex. 1002, at 1:66-2:3 (“[T]he

first method defeats the whole purpose of plug-and-play technology.”). Further,

as Yap indicates, using the switches to emulate a disconnection and reconnection

furthers the aim of plug and play technology. Ex. 1002, 1:66-2:3. Additionally,

BLACKBERRY Ex. 1012, page 78

 79

such modification uses a known technique (e.g., placing a switch on a data line)

to achieve a predictable result (e.g., simulation of a disconnect and reconnect

over a bus).

138. In my opinion, applying the switches in Yap to the teachings of the

APA would have resulted in a step of electronically simulating a physical

disconnection and reconnection of the peripheral device to reconfigure the

peripheral device to a second configuration. Modifying the method of the APA to

include an electronic simulation of a disconnection and reconnection as taught by

Yap would cause the peripheral device to be reconfigured to a second

configuration (i.e., an altered configuration) based on the second set of

configuration information (i.e., the new code and configuration information

downloaded to the device) because the APA states that this is what happens when

the host computer detects a peripheral device disconnection and then a

reconnection. Ex. 1001, 2:13-17.

139. Thus, it is my opinion that claim 14 is obvious over the combination of

APA and Yap.

2. Dependent Claim 18

140. Claim 18 depends on claim 14, which is addressed above in Section

X.B.1, and further recites “wherein said electronic connecting and disconnecting of

said peripheral device respond to an electrical switch.”

BLACKBERRY Ex. 1012, page 79

 80

141. Yap teaches electronic simulation of a physical disconnection and

reconnection of a peripheral device by opening and closing electrical switches S+

and S- in data lines D+ and D-. Ex. 1002, 3:60-4:23. It would have been obvious

to perform the electronic connection and disconnection of the peripheral device

with an electrical switch as taught by Yap as doing so would merely be using a

well known component (a switch) for its intended purpose

(disconnect/reconnect) to yield predictable results. The traditional usage of a

switch is to connect or disconnect conductors. Accordingly, it is my opinion that

claim 18 is obvious over the combination of APA and Yap.

3. Dependent Claim 19

142. Claim 19 depends on claim 14, which is addressed above in Section

X.B.1, and further recites “wherein downloading comprises communicating said

second set of configuration information to the peripheral device using a universal

serial bus and port.”

143. The APA discloses this feature. For example, the APA discloses

that it was known in the prior art that “a peripheral device is first connected to the

USB and the host computer through a standard USB communications port

… .” Ex. 1001, 1:55-60; Fig. 1. The APA also discloses that it was known in the

prior art to download new configuration information to the peripheral device

over a USB. Id. at 2:13-17. That is, since a USB interface is the only interface

BLACKBERRY Ex. 1012, page 80

 81

shown to exist between the host computer and the peripheral device in the prior art

system shown in Fig. 1 of the ’103 Patent, and the APA states that the host must

detect a “disconnection and reconnection” of the device to alter the configuration

by downloading, one of ordinary skill in the art would have understood that the

prior art downloading referred to in the APA must be able to take place over the

USB interface (i.e., a Universal Serial Bus (USB) and port). Thus, the

combination of the APA and Yap would include communicating the second set of

configuration information to the peripheral device using a universal serial bus and

port. Further, it would have been obvious to communicate the information to

the peripheral device over the universal serial bus and port in the APA because,

according to the APA, USB is a type of communications port over which

data may be communicated. See, e.g., Ex. 1001, 1:39-60; 4:12-15, 40-45; Fig. 1.

144. Claim 19 additionally recites that the downloading comprises

“communicating” the second set of configuration information to the peripheral

device. In my opinion, one of ordinary skill in the art would have understood the

terms “communicating” and “downloading” to be equivalent in view of the

specification and claims. See, e.g., Ex. 1001, 4:3-15, 40-5 1; claims 8, 19, 28. As

such, the combination of APA and Yap would include this feature.

145. Thus, it is my opinion that claim 19 would have been obvious over the

APA and Yap.

BLACKBERRY Ex. 1012, page 81

 82

4. Dependent Claim 20

146. Claim 20 depends on claim 19, which is addressed above in Section

X.B.3, and further recites “wherein said second set of configuration information

comprises configuration data and executable code.”

147. The APA discloses configuration data and executable code. For

example, the APA discloses that the following was a known problem in the prior

art:

Thus, to alter the configuration or personality of a peripheral device,

such as downloading new code or configuration information into

the memory of the peripheral device, the host computer system

must detect a peripheral device connection or a disconnection and

then a reconnection.

Ex. 1001, at 2:13-17 (emphasis added); 2:26-29.

148. The “new code” is an example of “executable code” and the new

“configuration information” is an example of “configuration data.” Thus, the

combination of APA and Yap would include a circuit configured to download

configuration data and/or executable code. It would have been obvious to one of

ordinary skill in the art that one or both of these types of configuration information

could have been downloaded, depending on what type of configuration changes

were desired. See, e.g., Snyder (Ex. 1015), at 2:41-44; 3:64-4:11; 5:11-22;

BLACKBERRY Ex. 1012, page 82

 83

6:24- 30; 7:51-67. See also Bedingfield (Ex. 1020), at 2:6-66; 5:42-55;

4:27-5:33; 5:66- 6:9; 7:28-33.

149. Thus, it is my opinion that claim 20 would have been obvious over the

APA and Yap.

5. Dependent Claim 23

150. Claim 23 depends on claim 14, which is addressed above in Section

X.B.1, and further recites “wherein said simulating comprises electronically

resetting the configuration of the peripheral device, controllable by the peripheral

device.”

151. Yap discloses the resetting feature. For example, Yap discloses:

By disconnecting the D+ and D- data lines via switching devices

S+ and S-, a physical removal of the USB device 10 may be

simulated in order to allow the USB host to re-configure the

USB device 10 during a brown out condition.. . . Firmware in

the USB micro-controller 6 keeps the data lines connected via

switching devices S+ and S- during normal operation. However,

when a brown out condition is detected, as will be described later,

the USB micro-controller 6 opens the data lines via the switching

devices S+ and S- for a duration greater than 2.5 microseconds

and then reconnects them again. This procedure, for example,

BLACKBERRY Ex. 1012, page 83

 84

emulates the disconnect and re-connect procedure as specified

in the USB specification v1.0, page 116.6

Ex. 1002, 4:6-23 (Emphasis added). The switch circuit that emulates the

disconnect and reconnect procedure in Yap is electronically resetting the current

configuration of the peripheral device because the resetting step uses essentially the

same structure as that disclosed in the ’103 Patent. See Ex. 1001, Fig. 4; Ex. 1002,

Figs. 2 and 3. Also, Yap discloses “a physical removal of the USB device 10 may

be simulated in order to allow the USB host to re-configure the USB device 10.”

Ex. 1002, 4:6-10. Yap further discloses “[T]he USB micro-controller 6 opens the

data lines via the switching devices S+ and S- for a duration greater than 2.5

micro-seconds and then reconnects them again. This procedure, for example,

emulates the disconnect and re-connect procedure as specified in the USB

specification v1 .0, page 116.” Id. at 4:16-23. This conclusion is supported by the

USB v 1.0 Specification, which is incorporated by reference in Yap. Ex. 1002 at

1:38-41. (See the analysis of the USB specification above.) Section 9.1.2 of the

USB v1.0 Specification, for instance, teaches that attachment of a USB device

causes a process known as a bus enumeration, during which the host issues a reset

command to reset the configuration of the device.” Ex. 1013, page 169. Thus,

6 As cited previously, page 116 of the USB specification (Ex. 1013) discloses a

reset procedure.

BLACKBERRY Ex. 1012, page 84

 85

electronically simulating a physical disconnection and reconnection as

taught by Yap includes resetting the configuration of the peripheral device.

Also, Yap relates to a USB system, and it was well-known at the time that opening

a data line for a duration greater than 2.5 micro-seconds in a USB system causes a

reset of the current configuration. Ex. 1013, pp. 116-119, 223, 240. As such, the

proposed combination of the APA and Yap discloses electronically resetting the

configuration of the peripheral device.

152. Yap further discloses that the electronic resetting is “controllable by

the peripheral device.” For example, in the electronic disconnect and reconnect

circuit disclosed in Yap, “the USB micro-controller 6 opens the data lines via the

switching devices S+ and S-… .” Ex. 1002, 4:18-23. In addition, Figs. 2 and 3

show the control lines for the switching devices S+ and S- connected to or

disposed within the USB micro-controller 6, which is part of the peripheral device

10. Ex. 1002, Figs 1 and 3. As such, the electronic disconnect and reconnect, and

concomitantly the “reset” discussed above, is “controllable by the peripheral

device.”

153. Thus, claim 23 would have been obvious over the APA and Yap.

6. Independent Claim 24

154. Claim 24 recites a “peripheral interface device for a computer

peripheral bus and port.”

BLACKBERRY Ex. 1012, page 85

 86

155. The APA expressly discloses these features. More specifically, the

APA discloses a standardized USB bus interface for connecting a peripheral device

to a computer peripheral bus and port. Ex. 1001, 1:55-60; Prior Art Fig.1; 4:4-23.

The standardized USB interface is an example of the peripheral interface device.

156. Claim 24 further recites “means for physically connecting a peripheral

device to a computer system through the computer peripheral bus, wherein the

peripheral device has a first configuration.”

157. The structure that corresponds to the recited function is a connector and

equivalents thereof. See supra Section VIII. The APA discloses a “standardized

connector.” Ex. 1001, 1:39-54; Prior Art Fig. 1; 4:4-23. This connector performs

the recited function of physically connecting a peripheral device to a computer

system through the computer peripheral bus.

158. Further, as discussed in relation to claim 14, the APA further discloses

that the peripheral device in the prior art can have a first configuration. Ex. 1001,

1:55-2:8; see also supra X.B.1. Thus, the “means for physically connecting”

limitation is taught by the APA.

159. Claim 24 further recites “means for receiving a second set of

configuration information from a computer system over the computer peripheral

bus and port.”

BLACKBERRY Ex. 1012, page 86

 87

160. The structure corresponding to the recited function is a peripheral

device interface and equivalents thereof. See supra Section VIII. The APA

discloses a USB peripheral device interface for sending information to and

receiving information from the host over the USB. Ex. 1001, Prior Art Fig. 1; 4:4-

23. The APA further teaches that the peripheral device can receive a second set of

configuration information to alter the device’s personality:

In a serial bus system, such as the USB, the only opportunity for

associating software device drivers with a peripheral device is at

the time when the peripheral device is plugged into the USB and

the enumeration process occurs. Thus, to alter the configuration

or personality of a peripheral device, such as downloading new

code or configuration information into the memory of the

peripheral device, the host computer system must detect a

peripheral device connection or a disconnection and then a

reconnection. Thus, there is a need for a system and method for

interfacing to a universal serial bus which avoids these and other

problems of known systems and methods, and it is to this end that

the present invention is directed.

Ex. 1001, 2:9-28.

161. As discussed above in Section X.B.1, one of ordinary skill in the art

would have understood from the APA that the downloading can take place over the

computer bus and port because it states that a host computer must detect a

“peripheral device connection or a disconnection and then a reconnection” to

BLACKBERRY Ex. 1012, page 87

 88

alter the device’s personality by downloading new code or configuration

information. This language suggests that the peripheral device was connected to

the host for downloading and subsequently disconnected and reconnected. Further,

because the prior art Fig. 1 shows only a single computer bus 26, it would have

been obvious to one of ordinary skill in the art for the downloading in the

Background to occur over the computer bus. This bus interface performs the

recited function of receiving a second set of configuration information from a

computer system over the computer peripheral bus and port. Thus, the “means

for receiving” limitation is taught by the APA.

162. Claim 14 further recites “means for electronically simulating a

physical disconnection and reconnection of the peripheral device to reconfigure the

peripheral device to a second configuration based on the second set of

configuration information.” The structure corresponding to the recited function is

circuit 120 and its description at 6:48-7:11. See supra Section VIII. Yap teaches

an electronic circuit that simulates a physical disconnection and reconnection of the

peripheral device to reconfigure the peripheral device. Ex. 1002, at Figs. 2-3.

More particularly, Yap teaches “switching devices S+ and S-” that perform the

function of electronically simulating a physical disconnection and reconnection.

Ex. 1002, at 3-60-4:10. For a further discussion of this feature in Yap and how it

would have been obvious to a person of ordinary skill to combine this teaching with

BLACKBERRY Ex. 1012, page 88

 89

that of the admitted prior art, and how the proposed combination would

reconfigure the peripheral device to a second configuration based on the

second set of configuration information, see the discussion above with respect to

claim 14 in Section X.B.1.

163. As discussed above, Yap incorporates the USB 1.0 Specification by

reference. (Ex. 1002 at 1:40) and it describes USB devices. Also, a person of

ordinary skill would be familiar with USB operation. As such, a person of

ordinary skill reading Yap would understand that pull-up and pull-down resistors

are present as illustrated below.

USB Host
2

D+

D-

USB
Peripheral
Logic 8

3.3V ± 0.3V

Yap Figure 2 as understood by a PHOSITA in view of the USB
specifications

164. Yap therefore provides the same basic circuit as circuit 120, a MOSFET

transistor in series with a 1.5KΩ resistor between a 3.3V reference voltage and the

BLACKBERRY Ex. 1012, page 89

 90

host interface D+ line. This transistor acts as a switch in both cases. When the

transistor is off, the 1.5KΩ pull-up resistor has no substantial impact on the D+

line at the host and the 15KΩ pull-down resistor on the host side pulls the D+ line

to the ground voltage. When the transistor is on, the 1.5KΩ pull-up resistor pulls

the D+ voltage to 90% of the 3.3V reference level. This is identical to the

operation of circuit 120. In my opinion these circuits are not substantially

different. They perform the identical function of simulating a physical

disconnection and reconnection of the peripheral device. The circuits do so in the

same way, by using a MOSFET transistor to allow a 1.5KΩ pull-up resistor to alter

the D+ line when the transistor is turned on and not when the transistor is turned

off. They produce the same result; the D+ line is pulled to about 3V when the

transistor is turned on and not when the transistor is turned off.

165. Thus, claim 24 would have been obvious over the APA and Yap.

7. Dependent Claim 25

166. Claim 25 depends on claim 24, which is addressed above in Section

X.B.6, and further recites “wherein said means for electronic simulation comprises

an electrical switch.”

167. Yap teaches that the structure for simulating a physical

disconnection and reconnection of the peripheral device “includes switching

devices S+ and S-, such as transistors.” Ex. 1002, 3:61-62. The switching

BLACKBERRY Ex. 1012, page 90

 91

devices S+ and S- are examples of electrical switches. Therefore, it would have

been obvious to use an electrical switch, such as a transistor, as the structure for

electronically simulating a disconnection and reconnection of a peripheral device in

the combination of the APA and Yap, as doing so would merely be using a

well-known component (an electrical switch) in its intended role (simulating a

physical disconnection and reconnection on a line) to yield predictable results. Thus,

claim 25 would have been obvious over the APA and Yap.

8. Dependent Claim 26

168. Claim 26 depends on claim 25, which is addressed above in Section

X.B.7, and further recites “wherein said electrical switch comprises a solid state

transistor.”

169. Yap teaches that the electrical switching devices S+ and S- could be

“transistors” (Ex. 1002, 3:62 & 67; 4: 28-33), such as the field-effect transistors

(FET) in Figures 2 and 3, which are solid state transistors. It would have been

obvious to use a solid state transistor as an electrical switch that electronically

simulates a physical disconnection and reconnection of a peripheral device, for at

least the reasons provided with respect to claim 25 in Section X.B.7. Thus, claim

26 would have been obvious over the APA and Yap.

BLACKBERRY Ex. 1012, page 91

 92

9. Dependent Claim 27

170. Claim 27 depends on claim 26, which is addressed above in Section

X.B.8, and further recites “wherein said computer peripheral bus and port comprise

a universal serial bus and port.”

171. The APA discloses this feature. For example, the APA discloses

connecting a peripheral device to a host computer using a USB and USB port. Ex.

1001, 1:55-60; Prior Art Fig. 1; 4:4-23. The APA also discloses that it was known

in the prior art to download a new configuration information to the peripheral

device over a USB. Id. at 2:13-17. That is, a USB interface is the only interface

shown to exist between the host computer and the peripheral device in the prior art

system shown in Fig. 1 of the ’103 patent, and the Background states that the host

must detect a “disconnection and reconnection” of the device to alter the

configuration by downloading. One of ordinary skill in the art would understand

that the prior art downloading by the host referred to in the Background must be

able to take place over the USB interface (i.e., a Universal Serial Bus (USB) and

port), and hence the prior art receiving by the peripheral interface device must also

be able to take place over the USB interface. Therefore, the combination of APA

and Yap would include this feature. As discussed above with respect to

independent claim 24 in Section X.B.6, it would also have been obvious to one of

ordinary skill in the art for the downloading in the Background to occur over the

BLACKBERRY Ex. 1012, page 92

 93

USB and port. Further, it would have been obvious to communicate the

information to the peripheral device over the USB and port in the APA because,

according to the APA, USB is a type of communications port over which data may

be communicated. See, e.g., Ex. 1001, 1:39-60; 4:12-15, 40-45; Fig. 1. Thus,

claim 27 would have been obvious over the APA and Yap.

C. Claims 15 and 16 are unpatentable under 35 U.S.C. § 103(a) as
being obvious over APA in view of Yap, further in view of
Michelson

1. Dependent Claim 15

172. Dependent claim 15 depends from independent claim 14, which is

addressed above in Section X.B.1, and further recites that “said first configuration

comprises generic configuration assigned to the peripheral device and said second

configuration is a unique manufacturer configuration.”

173. Michelson discloses this feature. More specifically, Michelson

discloses a PCMCIA card that may be reprogrammed with data stored on a host

computer through a standard PCMCIA bus. Ex. 1003 at Abstract. The PCMCIA

card includes a Card Information Structure (CIS) EEPROM 30 that stores CIS data

which is read and used by the host computer to configure the computer and the

card to operate together and to load application software which causes FPGA

programming data to be downloaded to the card. Id. at 2:17-44 and 3:34-4:8. The

configuration defined at least in part by the CIS data is an example of a

BLACKBERRY Ex. 1012, page 93

 94

generic configuration in the sense that it provides general configuration

information required to configure the host computer and card to operate together.

The CIS data may include identification of the card manufacturer and card

identification (ID) number. Ex. 1003, 3:49-54.

174. Michelson distinguishes the CIS data from FPGA programming data,

which is downloaded in response to the CIS data, and which is “design-specific

data” that controls the operation of the functional hardware. Ex. 1003, 1:50-57. A

device that only contains the CIS data has a first configuration which comprises a

generic configuration because it is not yet functionally programmed. Michelson

discloses that the CIS data, including the manufacturer identification, is used by

the host computer to select an FPGA programming data file that corresponds to “a

particular application for the PCMCIA card.” Ex. 1003, 3:61-66. Since the

downloaded FPGA programming data is selected based in part on the manufacturer

identification it would have been obvious for the downloaded data to comprise a

unique manufacturer configuration. Michelson also discloses that “[t]he FPGA

programming data files can be supplied with the PCMCIA card . . .” (Ex. 1003,

6:61-63), i.e., by the manufacturer, which one of ordinary skill in the art would

understand to mean that the programming data file may constitute a unique

manufacturer configuration. Once the device in Michelson is programmed with a

BLACKBERRY Ex. 1012, page 94

 95

downloaded application from the manufacturer, is has a unique manufacturer

configuration.

175. It would have been obvious to modify the APA and Yap to include an

initial generic configuration and a downloadable unique manufacturer

configuration as taught by Michelson in order to allow a user to access a large

number of programming data files to program and reprogram the peripheral device

without the need for storing the files on the device. See, e.g., Ex. 1003, 1:65-67

(“The EPROM(s) required to store the FPGA programming data generally

consumes a large amount of the PCMCIA card real estate.”).

176. Further, it would have been obvious to modify the APA and Yap so

that the first configuration is a generic configuration and the second configuration

is a unique manufacturer configuration, as taught by Michelson, because all three

references relate to configuring peripheral devices connected to a host computer

by a computer bus and port, and the modification involves a simple substitution of

known features (i.e., generic and unique manufacturer sets of configuration

information) in a known manner to achieve predictable results. It would also have

been obvious for a first configuration to include a generic configuration so that

microcontroller manufacturers could sell microcontrollers with a generic

configuration for use in a variety of peripheral devices to provide only basic

functionality, such as allowing the device to communicate with a host computer,

BLACKBERRY Ex. 1012, page 95

 96

and manufacturers or users of the peripheral devices could thereafter update the

configuration to include a unique manufacturer configuration providing specific

functionality. In fact, it was well known to do so at the time of the invention. See,

e.g., Michelson (Ex. 1003), 1:50-2:45; Balbinot (Ex. 1014), 3:12-23; 2:21-59;

Quinnell (Ex. 1016), p. 48 (describing “enumeration code that Intel provided [that]

allows the evaluation board to respond to the USB host’s setup commands and

receive an address assignment” and “[t]o turn the evaluation board into a

peripheral device, I would have to program the 82930 [an Intel USB

microcontroller].”).

177. Thus, it is my opinion that claim 15 would have been obvious over the

APA, Yap, and Michelson.

2. Dependent Claim 16

178. Dependent claim 16 depends on claim 15, which is addressed above in

Section X.C. 1, and recites “wherein said downloading step comprises: reading an

identification code from the peripheral device, and selecting said second set of

configuration information based on said identification code.” Michelson discloses

this feature.

179. For example, Michelson discloses that the processor 22 of the host

computer reads CIS data which identifies the PCMCIA card to enable the

processor to select the appropriate FPGA programming data (configuration

BLACKBERRY Ex. 1012, page 96

 97

software) “that corresponds to a particular application for PCMCIA card 14.” Ex.

1003, 3:61-66. The CIS data includes a card manufacturer identification and card

identification (ID) number. Id. at 3:49-54. The card manufacturer and/or the card

identification number (ID) read from the CIS are examples of an identification

code under a broadest reasonable interpretation of the term, and the downloaded

programming data is selected based on the identification information. It would

have been obvious to modify the combination of the APA and Yap to read an

identification code from the peripheral device and select the second configuration

based on the identification code as disclosed by Michelson to ensure that an

appropriate configuration is selected.

180. Thus, it is my opinion that claim 16 would have been obvious over the

APA, Yap, and Michelson.

D. Claims 14-16, 18, and 23-26 are unpatentable under 35 U.S.C.
§ 103(a) as being obvious over Michelson in view of PCCextend and
Davis

1. Independent Claim 14

181. As noted above, claim 14 recites a method for reconfiguring a

peripheral device connected by a computer bus and port to a host computer.

182. Michelson “relates to programming and reprogramming the hardware

configuration of a (PCMCIA) card.” Ex. 1003, 1:7-16. “PCMCIA cards are

typically used to add functionality or memory to a personal, portable, or desktop

BLACKBERRY Ex. 1012, page 97

 98

computer (i.e., host computer)” (Id. at 1:13-15) and so are “peripheral devices.”

Thus, Michelson discloses reconfiguring a peripheral device.

183. Michelson states that a “typical PCMCIA card includes a standard

PCMCIA connector connected to a PCMCIA interface circuit through a standard

PCMCIA bus.” Ex. 1003, 1:28-30. “[T]he host computer includes a PCMCIA

adapter circuit coupled to a PCMCIA host socket which is mechanically and

electrically connected to a PCMCIA card connector on the PCMCIA card,” id. at

2:17-20, and “PCMCIA card 14 card connector 28 is inserted in PCMCIA host

socket 18 of host computer 12,” id. at 3:34-37. “Through a standard PCMCIA bus

(i.e., PCMCIA address lines 62, data lines 64, and control lines 66) connected to

PCMCIA connector 28”, the peripheral PCMCIA device receives data from the

host computer. Id. at 4:13-23. The PCMCIA bus is an example of a computer bus.

A “port” is an interface between a host computer and a peripheral, and the socket

is an example of a port of the host computer. Thus, Michelson teaches

reconfiguring a PCMCIA peripheral device connected by a PCMCIA bus to a port

of a host computer, as set forth in the preamble of claim 14.

184. Claim 14 further recites “detecting the peripheral device connected to

the port, wherein the peripheral device has a first configuration” Michelson

discloses that the PCMCIA adapter 16 in the host computer detects the peripheral

device that is inserted to the socket. Ex. 1003, Fig. 2, step 44; 3:34-37.

BLACKBERRY Ex. 1012, page 98

 99

185. Further, the PCMCIA card in Michelson has a first configuration as

explained above in regard to claim 15. See supra Section X.C. 1. Thus, Michelson

discloses the detecting step as recited in claim 14.

186. Claim 14 further recites “downloading a second set of configuration

information from the host computer into the peripheral device over the computer

bus.”

187. Michelson teaches this feature. After the host computer 12 and

PCMCIA card 14 are configured by information in the CIS, as discussed

previously, programming data is downloaded by a processor to the PCMCIA card:

Processor 22 then executes (step 50) the application software 40

resident in host memory 24 that corresponds to PCMCIA card 14.

The application software 40 causes the processor to either select a

default FPGA programming data file 42 from host memory 24 that

corresponds to a particular application for PCMCIA card 14 or

request input from the user as to which FPGA programming data

file 42 is to be selected from host memory 24. Processor 22 then

sends (step 52) the data from the selected FPGA

programming data file 42 through PCMCIA adapter 16 to

PCMCIA interface chip 26. Interface chip 26 then programs

(step 54) a field programmable gate array (FPGA, not shown in

FIG. 1) within card controller 32 by loading the data from the

FPGA programming data file 42 into the FPGA. Where the

application software causes the processor to select a default data

BLACKBERRY Ex. 1012, page 99

 100

programming file, PCMCIA card 14 and host computer 12 are

made operable (step 56) without user intervention.

Ex. 1003, 3:59-4:8 (emphasis added); Fig. 2, steps 50-56.

188. The information is downloaded over the bus: “Through a standard

PCMCIA bus (i.e., PCMCIA address lines 62, data lines 64, and control lines 66)

connected to PCMCIA connector 28, interface chip 26 receives FPGA

programming data from host computer 12 (FIG. 1).” Id. at 4:13-17. The default or

user-selected FPGA programming data file 42, which is downloaded from the host

computer into the FPGA in the PCMCIA card over the PCMCIA bus in Michelson

is an example of a “second set of configuration information.” Thus, Michelson

discloses the downloading step as recited in claim 14.

189. Claim 14 further recites “electronically simulating a physical

disconnection and reconnection of the peripheral device to reconfigure the peripheral

device to a second configuration based on the second set of configuration

information.” Michelson discloses that, after the processor downloads FPGA

programming data file 42 through PCMCIA adapter 16 to PCMCIA interface chip

26, the FPGA is “reset” to enable reprogramming:

Interface chip 26 initiates FPGA 60 programming through FPGA

programming circuit 68, which drives reset line 63 and reprogram

line 65, and completes FPGA 60

BLACKBERRY Ex. 1012, page 100

 101

programming by loading the FPGA programming data into FPGA 60

through peripheral data lines 72.

Id. at 4:17-22 (emphasis added).

190. The FPGA programming data is an example of a second set of

configuration information, so reprogramming the FPGA by loading the FPGA

programming data is an example of reconfiguring to a second configuration based

on a second set of configuration information. The discussion above with respect to

FPGA programming data is sufficient to show reconfiguring to a second

configuration based on a second set of configuration information, but it was also

well known at the time that a host could change the CIS in a PCMCIA peripheral

device, which would also result in a reconfiguration based on a second set of

configuration information. Ex. 1020 at 7:28-33 (“In addition, in the prior art, the

PCMCIA attribute structure is typically pre-defined and non-changeable, e.g., a

read-only memory (ROM) is used to provide the PCMCIA attribute structure.

However, the use of shared memory 130 allows for a software definable PCMCIA

card information structure that can be dynamically altered by CPU 170.”).

191. Thus, Michelson teaches “electronically simulating a physical

disconnection and reconnection of the peripheral device to reconfigure the

peripheral device to a second configuration based on the second set of

configuration information” in at least two ways.

BLACKBERRY Ex. 1012, page 101

 102

192. First, the broadest reasonable interpretation of the “electronically

simulating” claim language covers the “reset” operation in Michelson, as discussed

above in Section X.B.5. The reset line 63 in Michelson performs a resetting

operation, and the ’103 patent (see, e.g., claim 23) specifies that the simulating

step comprises electronically resetting the configuration of the peripheral device.

As noted above in Section X.B.5, the ’103 Patent specifies in claim 23 that the

second circuit configured to electronically simulate a disconnect and reconnect

over the bus can be a reset circuit. The “reset” of the FPGA 60 is an example of

an “electronic reset” because FPGA is an electronic circuit and operates in

response to an electrical reset signal. Ex. 1003, 4:17-22. The electronic reset of

Michelson is an example of “electronically simulating a physical

disconnection and reconnection of the peripheral device to reconfigure the

peripheral device to a second configuration based on the second set of

configuration information” because a “reset” is associated with physical

disconnection and reconnection of a PCMCIA card, Ex. 1008 at pp. 4-6 to 4-7

and 4-10 to 4-12, and the reset reconfigures the FPGA 60 to the configuration

information downloaded over the PCMCIA bus, id. at pp. 4-10 to 4-11, 5-20; Ex.

1019 at p. 3-20 to 3-24; Ex. 1020, 2:51-3:4; 5:66-6:9; Ex. 1003 at 4:17-22. Thus,

the disclosure of a reset circuit that performs a resetting operation in Michelson

BLACKBERRY Ex. 1012, page 102

 103

teaches electronically simulating a physical disconnection and reconnection of a

peripheral device to reconfigure a peripheral device to a second configuration.

193. Second, even if the above limitation is construed more narrowly to

include a switch, which it should not be, PCCextend teaches that it was known in

the prior art to provide a switch to simulate a card removal (disconnect) and

insertion (reconnect) cycle for PCMCIA cards. PCCextend describes a “PCMCIA

extender card” which is inserted between a PC card under test and a socket in the

host system. Ex. 1004, p. 1. PCCextend states: “Caution: Insertion and removal of

the extender and PC card should be done with care. The PC Card’s fragile

connectors may be broken or bent if improper force is used.” Ex. 1004, p. 1.

PCCextend describes that the extender card has a PCCswitch SW1, where “the

PCCswitch can interrupt the card detect signals (-CD 1 and -CD2) to simulate a

card removal/insertion cycle.” Id. at p. 3. Using the PCCSwitch to interrupt the

card detect signals on the bus in PCCextend is an example of electronically

simulating a disconnect and reconnect.

194. It would have been obvious to a person of ordinary skill in the art to

modify the card of Michelson to include a switch on the card detect lines as taught

by PCCextend to reprogram the card because it was well-known that PCMCIA

cards could be reprogrammed by removing and reinserting the card, and

PCCextend teaches that the PCCswitch can be used to simulate such a

BLACKBERRY Ex. 1012, page 103

 104

removal/insertion cycle. Ex. 1003 at 1:46-49 and Ex. 1004, p. 3. Further, it would

have been obvious to a person of ordinary skill in the art at the time of the

invention to apply the use of the PCCswitch in PCCextend to the reprogramming

operation in Michelson to avoid the need to physically disconnect and reconnect

the card in view of the fragile nature of the connectors. Simulating a card

removal/insertion cycle using the PCCSwitch causes the peripheral device to be

reconfigured. Ex. 1004, p. 3; see also Ex. 1017, pp. 119-123; Ex. 1018 at 4-10 to

4-11; 5-21. See also Ex. 1019 at p. 3-21.

195. To the extent the term may be more narrowly construed to require an

electronic switch, which it should not, Davis discloses an electronic switch in the

card detect line that electronically simulates a physical disconnection and

reconnection of a peripheral device over a PCMCIA bus. Davis states that “the

switching device 23 can be implemented by an electronic switch, typically a field

effect transistor (FET) or a bipolar transistor.” Ex. 1005, 7:31-34. Davis states

that “a device removal event can be represented by deactivating the FET and

opening this single path. Likewise, a device insertion event can be represented by

activating the FET and closing this signal path.” Id. at 10:29-32. Interrupting the

card detect signal on the bus using the FET switch of Davis is another example of

simulating a disconnect and reconnect. It would have been obvious to use an

electronic switch in the combination of Michelson and PCCextend to avoid the

BLACKBERRY Ex. 1012, page 104

 105

need for physically disconnecting and reconnecting the device or pushing a button

to activate a switch.

196. Moreover, one of ordinary skill in the art would have been motivated to

substitute the FET switch in Davis for the manual switch in PCCextend, as choosing

the type of switch to simulate a physical disconnection would have been merely a

matter of design choice. In either case, the simulated

disconnection/reconnection would cause the device to be reconfigured.

197. Thus, in my opinion, claim 14 would have been obvious over

Michelson, PCCextend, and Davis.

2. Dependent Claim 15

198. Claim 15 depends from independent claim 14, which is addressed

above in Section X.D.1, and further recites “said first configuration comprises

generic configuration assigned to the peripheral device and said second

configuration comprises a unique manufacturer configuration.”

199. Michelson discloses a peripheral device with a first configuration that

includes a generic configuration and a second configuration that includes a unique

manufacturer configuration, as explained with respect to claim 15 above in Section

X.C. 1. It would also have been obvious to include this feature in view of

Michelson as set forth in Section X.C. 1. As such, the combination of Michelson,

PCCextend, and Davis would include this feature.

BLACKBERRY Ex. 1012, page 105

 106

200. Thus, it is my opinion that claim 15 would have been obvious over

Michelson, PCCextend, and Davis.

3. Dependent Claim 16

201. Claim 16 depends from claim 15, which is addressed above in Section

X.D.2, and further recites “said downloading step comprises: reading an

identification code from the peripheral device, and selecting said second set of

configuration information based on said identification code.”

202. As noted above in Section X.C.2, Michelson discloses this feature

and/or it would have been obvious in view of Michelson. As such, the

combination of Michelson, PCCextend, and Davis would include this feature.

203. Thus, it is my opinion that claim 16 would have been obvious over

the combination of Michelson, PCCextend, and Davis.

4. Dependent Claim 18

204. Claim 18 depends from independent claim 14, which is addressed above

in Section X.D. 1, and further recites that “said electronic connecting and

disconnecting of said peripheral device respond to an electrical switch.”

205. Both the PCCextend and Davis teach this limitation. See supra

X.D. 1. PCCextend describes that the extender card has a PCCswitch SW1, where

“the PCCswitch can interrupt the card detect signals (-CD 1 and -CD2) to simulate

a card removal/insertion cycle.” Ex. 1004, at p. 3. Davis states that “a device

BLACKBERRY Ex. 1012, page 106

 107

removal event can be represented by deactivating the FET and opening this single

path. Likewise, a device insertion event can be represented by activating the FET

and closing this signal path.” Ex. 1005, at 10:29-32. The FET in Davis is an

electrical switch.

206. It would have been obvious to a person of ordinary skill in the art

to have the electronic simulation of the disconnection and reconnection respond to

an electrical switch, as doing so would merely be applying a well known prior art

switching component in its intended role (i.e., as a switch that simulates a physical

disconnection) to yield predictable results, as discussed in Section X.D. 1. Thus,

claim 18 would have been obvious over Michelson, PCCextend, and Davis.

5. Dependent Claim 23

207. Claim 23 depends from independent claim 14, which is addressed in

Section X.D.1 above, and further recites “wherein said simulating comprises

electronically resetting the configuration of the peripheral device, controllable by

the peripheral device.”

208. The combination of Michelson, PCCextend, and Davis teach that the

electronically simulating step comprises the step of resetting the configuration of

the peripheral device, as explained with respect to claim 14 in Section X.D. 1.

Also, it was well known at the time that a card removal and insertion event as

simulated by PCCextend and Davis would result in a reset. Ex. 1018 at pp. 4-6 to

BLACKBERRY Ex. 1012, page 107

 108

4-7; see also id. at p. 4-11. Further, it was well known that resetting a PCMCIA

device included resetting a configuration of the device (i.e., a first or second

configuration). See, e.g., Ex. 1017, pp. 119-126; Ex. 1018, pp. 4-6 to 4-7, 4-10

to 4-11, 5-21; Ex. 1019 at pp. 3-14 to 3-16, 3-20 to 3-24, 3-28 to 3-29, 5-79,

B-14; Ex. 1020, 2:51-3:4; 5:66-6:9. As such, the combination of Michelson,

PCCextend, and Davis would include the resetting feature.

209. The references further teach that the resetting is “controllable by the

peripheral device.” More specifically, Michelson discloses that after the processor

downloads FPGA programming data file 42 through PCMCIA adapter 16 to

PCMCIA interface chip 26, the FPGA is “reset” by FPGA programming circuit 68

to enable reprogramming:

Referring to FIG. 3, card controller 32 includes a PCMCIA card

controller FPGA 60 (e.g., part number XC3042TQ100- 100,

manufactured by Xilinx, as described in Xilinx Programmable

Logic Data Book, which is hereby incorporated by reference)

Interface chip 26 initiates FPGA 60 programming through FPGA

programming circuit 68, which drives reset line 63 and reprogram

line 65, and completes FPGA 60 programming by loading the

FPGA programming data into FPGA 60 through peripheral data

lines 72.

Ex. 1003, 4:9-22. The configuration of the card controller FPGA 60 in Michelson

is electronically “reset” by a reset signal on line 63 from the programming

BLACKBERRY Ex. 1012, page 108

 109

circuit 68 in response to the interface chip 26. Programming circuit 68 is part of

the PCMCIA card 14. Ex. 1003, Fig. 3:9-22. Thus, the “reset” is “controllable by

the peripheral device.”

210. Further, PCCexend teaches a PCCSwitch which also resets the

configuration by simulating a device removal and attachment. Ex. 1004, pp. 1, 3,

and 4. The PCCSwitch is part of a circuit on the peripheral device, and the reset is

thus controllable by the peripheral device. Further, one of ordinary skill in the art

would have recognized that in this context, whether a switch is controlled by the

host or by the peripheral device is purely a matter of design choice and that

controlling the switch from the peripheral device provides no new and unexpected

results.

211. For at least these reasons, the combination of Michelson, PCCextend,

and Davis would include this feature. Thus, it is my opinion that claim 23 would

have been obvious over the combination of Michelson, PCCextend, and Davis.

6. Independent Claim 24

212. Claim 24 recites a peripheral interface device for a computer peripheral

bus and port. Michelson discloses these features.

213. For example, as noted above in Section X.D.1, Michelson “relates to

programming and reprogramming the hardware configuration of a (PCMCIA)

card.” Ex. 1003, 1:7-12. “PCMCIA cards are typically used to add functionality or

BLACKBERRY Ex. 1012, page 109

 110

memory to a personal, portable, or desktop computer (i.e., host computer)” (id. at

1:13-15) and so are “peripheral devices.” Michelson states that a “typical

PCMCIA card includes a standard PCMCIA connector connected to a

PCMCIA interface circuit through a standard PCMCIA bus.” Ex. 1003,

1:28-30 (emphasis added). “[T]he host computer includes a PCMCIA adapter

circuit coupled to a PCMCIA host socket which is mechanically and electrically

connected to a PCMCIA card connector on the PCMCIA card” (id. at 2:17-20)

(emphasis added), and “PCMCIA card 14 card connector 28 is inserted in

PCMCIA host socket 18 of host computer 12” (id. at 3:34-36). The PCMCIA bus

is an example of a computer bus. A “port” is an interface between a host computer

and a peripheral, and the socket is an example of a port of the host computer. The

disclosure of a PCMCIA connector connected to a PCMCIA interface circuit

through a PCMCIA bus and port in Michelson is an example of a peripheral

interface device for a computer peripheral bus and port.

214. Claim 24 further recites “means for physically connecting a peripheral

device to a computer system through the computer peripheral bus, wherein the

peripheral device has a first configuration.”

215. As noted above in Section VIII, the structure disclosed in the

specification corresponding to the recited function is a connector and equivalents

thereof.

BLACKBERRY Ex. 1012, page 110

 111

216. Michelson states that a “typical PCMCIA card includes a standard

PCMCIA connector connected to a PCMCIA interface circuit through a

standard PCMCIA bus.” Ex. 1003 at 1:28-30 (emphasis added). Michelson

states that “the host computer includes a PCMCIA adapter circuit coupled to a

PCMCIA host socket which is mechanically and electrically connected to a

PCMCIA card connector on the PCMCIA card” (2:17-20) and “PCMCIA card 14

card connector 28 is inserted in PCMCIA host socket 18 of host computer 12”

(3:34-36). The PCMCIA card 14 card connector 28 corresponds to the “means for

physically connecting.”

217. Further, the PCMCIA card in Michelson has a first configuration as

explained above in regard to claim 14 in Section X.D.1 and claim 15 in Section

X.C.1. Thus, the above limitation is taught by Michelson.

218. Claim 24 further recites “means for receiving a second set of

configuration information from a computer system over the computer peripheral bus

and port.”

219. As noted above in Section VIII, the structure disclosed in the

specification corresponding to the recited function is an interface between the

computer and the peripheral device.

BLACKBERRY Ex. 1012, page 111

 112

220. Michelson teaches the above structure. After the host computer 12

and PCMCIA card 14 are configured by information in the CIS, as discussed in the

preceding section:

Processor 22 then executes (step 50) the application software 40

resident in host memory 24 that corresponds to PCMCIA card 14.

The application software 40 causes the processor to either select a

default FPGA programming data file 42 from host memory 24 that

corresponds to a particular application for PCMCIA card 14 or

request input from the user as to which FPGA programming data

file 42 is to be selected from host memory 24. Processor 22 then

sends (step 52) the data from the selected FPGA programming

data file 42 through PCMCIA adapter 16 to PCMCIA

interface chip 26. Interface chip 26 then programs (step 54) a

field programmable gate array (FPGA, not shown in FIG. 1)

within card controller 32 by loading the data from the FPGA

programming data file 42 into the FPGA. Where the application

software causes the processor to select a default data programming

file, PCMCIA card 14 and host computer 12 are made operable

(step 56) without user intervention.

Ex. 1003, 3:59- 4:8 (emphasis added); steps 50-56 of Figure 2.

221. The information is downloaded over the bus: “Through a standard

PCMCIA bus (i.e., PCMCIA address lines 62, data lines 64, and control lines 66)

connected to PCMCIA connector 28, interface chip 26 receives FPGA

programming data from host computer 12 (FIG. 1).” Ex. 1003, 4:13-15. The

BLACKBERRY Ex. 1012, page 112

 113

disclosure of an interface chip 26 in Michelson is an example of an interface

between the PCMCIA host and the PCMCIA card for receiving configuration

information over the PCMCIA bus. The default or user-selected FPGA

programming data file 42 which is downloaded from the host computer into the

FPGA in the PCMCIA card over the PCMCIA bus is an example of the “second

set of configuration information.” Thus, the above limitation is taught by

Michelson.

222. Claim 24 further recites “means for electronically simulating a

physical disconnection and reconnection of the peripheral device to reconfigure the

peripheral device to a second configuration based on the second set of

configuration information.”

223. The structure disclosed in the specification corresponding to the

recited function is circuit 120 and its description is at 6:48-7:11. As discussed

in the analysis of claim 14 in Section X.D.1, the combination of Michelson,

PCCextend, and Davis teaches an electronic circuit that simulates a physical

disconnection and reconnection of the peripheral device, the electronic simulation

causing the peripheral device to be reconfigured to a second configuration based

on the second set of configuration information. This circuit is not substantially

different than circuit 120. The circuits each perform the identical function of

simulating a physical disconnection and reconnection of the peripheral device by

BLACKBERRY Ex. 1012, page 113

 114

using a transistor switch to switch between two voltage levels on a corresponding

pair of bus signals to detect the presence of an attached device. The transistor

switch changes the voltage levels in substantially the same way to simulate the

disconnection and reconnection. They achieve substantially the same result of

functionally disconnecting and reconnecting bus without a physical disconnect.

Thus, it is my opinion that claim 24 would have been obvious based on Michelson

in view of PCCextend and Davis.

7. Dependent Claim 25

224. Claim 25 depends from independent claim 24, which is addressed

above in Section X.D.6, and further recites that “said means for electronic

simulation comprises an electrical switch.”

225. As discussed in more detail above with respect to claim 18 in Section

X.D.4, both the PCCextend and Davis teach electrical switches that simulate a

physical disconnection and reconnection of the peripheral device to reconfigure the

peripheral device to a second configuration based on a second set of configuration

information. The discussion above further establishes that it would have been

obvious to apply the switches in those references to the device reprogramming of

Michelson. See supra Section X.D.4. Thus, it is my opinion that claim 25 would

have been obvious over Michelson, PCCextend, and Davis.

BLACKBERRY Ex. 1012, page 114

 115

8. Dependent Claim 26

226. Claim 26 depends from claim 25, which is addressed above in Section

X.D.7, and further recites that “said electrical switch comprises a solid state

transistor.”

227. Davis teaches that “the switching device 23 can be implemented by

an electronic switch, typically a field effect transistor (FET) or a bipolar

transistor.” Ex. 1005, 7:31-34. FETs and bipolar transistors are types of solid state

transistors. It would have been obvious to use a solid state transistor as the

electrical switch that electronically simulates a physical disconnection and

reconnection, as a solid state transistor is a well-known type of electrical switch

intended for disconnecting/reconnecting, and the use of a solid state transistor as a

switch would yield predictable results.

228. Thus, it is my opinion that claim 26 would have been obvious over

Michelson, PCCextend, and Davis.

E. Claims 19, 20, and 27 are unpatentable under 35 U.S.C. § 103(a)
as being obvious over Michelson in view of PCCextend 100 User’s Manual
and Davis, further in view of the Admitted Prior Art

1. Dependent Claim 19

229. Claim 19 depends on claim 14, which is addressed above in Section

X.D. 1, and further recites “wherein downloading comprises communicating said

second set of configuration information to the peripheral device using a universal

serial bus and port.”

BLACKBERRY Ex. 1012, page 115

 116

230. Michelson describes downloading by communicating the second set

of configuration information to the peripheral device over a PCMCIA bus (e.g.,

Ex. 1003 at 4:13-17), not a USB.

231. However, as described in the APA, the advantages of the USB were

well known: “A new emerging technology called the Universal Serial Bus (USB)

is a system intended to create a single standardized peripheral device connection

system. The USB makes the task of connecting peripheral devices to computers

easier and more reliable since it uses a standardized connector and form factor, and

makes operating those peripheral devices with the computer, easier and more

reliable than with the various different types of communication ports. The

computer to which these peripheral devices are connected by the USB is known as

the “host computer”. The USB replaces the multiple cable and connector types

with a single standardized connection system. The USB also permits the

connection and disconnection of USB compatible peripheral devices while the

computer is turned on which eliminates the typical turning off and rebooting of the

computer in order to connect or disconnect a peripheral device to the computer.”

Ex. 1001, 1:39-58.

232. Thus, one of ordinary skill in the art of interfacing peripheral devices

would have been motivated to substitute a USB for a PCMCIA bus to achieve the

known advantages of the more modern USB. Ex. 1001, 1:39-54. Additionally, the

BLACKBERRY Ex. 1012, page 116

 117

substitution would have involved only routine engineering, see, e.g., Snyder (Ex.

1015) at 9:31-34, particularly in view of the similarities between PCMCIA and

USB. For example, both monitor bus lines to detect disconnections and

reconnections, both reconfigure a device when it is connected, and both include a

reset as part of the reconfiguration. See, e.g., Ex. 1001, 1:55-2:8; 4:24-5 1; 6:6-33;

Figs. 1 and 3; Ex. 1013, pp. 116-119, 169; Ex. 1005, 6:37-54; Ex. 1017, pp. 119-

126; Ex. 1018, pp. 4-6 to 4-7, 4-10 to 4-11, 5-21; Ex. 1019 at pp. 3-14 to 3-16, 3-

20 to 3-24, 3-28 to 3-29, 5-79, B-14; Ex. 1020, 2:51-3:4; 5:66-6:9. Thus, it would

have been obvious to one of ordinary skill in the art to communicate the second set

of configuration information to the peripheral device over a USB and port.

Furthermore, although not required in claim 19, it would also have been obvious to

electronically simulate a physical disconnection and reconnection over the USB by

incorporating a switch as taught in PCCextend/Davis on the bus lines (D+ and D-)

of a USB, since these lines are also used for device detection, and the resulting

combination would allow simulation of a disconnection and reconnection of the

peripheral device to reconfigure the device to a second configuration based on the

received second set of configuration information.

233. Thus, claim 19 would have been obvious over Michelson, PCCextend,

Davis, and the APA.

BLACKBERRY Ex. 1012, page 117

 118

2. Dependent Claim 20

234. Claim 20 depends on claim 19, which is addressed above in Section

X.E.1, and further recites “wherein said second set of configuration information

comprises configuration data and executable code.”

235. Michelson discloses this feature. For example, Michelson discloses

downloading a FPGA programming data file into the card controller FPGA 60 of the

PCMCIA device. E.g., Ex. 1003, 3:59-4:22; and 5:36-50. Michelson discloses that

the FPGA programming data file controls the functionality of the card controller

FPGA 60. Ex. 1003, 5:51-6:62.

236. One of ordinary skill in the art would understand that the FPGA

programming data file disclosed in Michelson is a combination of both

“configuration data” (because it includes data) and “executable code” (because it

programs the FPGA for execution). It would also have been obvious to one of

ordinary skill in the art to include additional information, such as a version

number, in the FPGA programming data file to allow the host to determine the

device characteristics. Furthermore, it would have been obvious to one of ordinary

skill in the art to program the peripheral device in Michelson with

microprocessor-executable software or firmware containing data and code, instead of

with FPGA programming data file, because these were both well-known ways of

programming a peripheral device at the time and were known substitutes that yielded

BLACKBERRY Ex. 1012, page 118

 119

predictable results. See, e.g., Snyder (Ex. 1015), 9:18-20 (“Although in the

preferred embodiment the USB microcontroller 8 includes several FPGAs, RAM

and EEPROMs . . . the invention may be implemented using a conventional general

purpose digital computer or microprocessor programmed according to the

teachings . . . [and a]pproriate software coding can readily be prepared.”).

Therefore, the combination of Michelson, PCCextend, Davis, and APA would

include this feature. Moreover, the APA of the ’103 Patent admits that it was

known in the prior art “to alter the configuration or personality of a peripheral

device, such as downloading new code or configuration information into the

memory of the peripheral device.” Ex. 1001, 2:13-17. It would have been obvious

to include one or both of the new code and configuration information, depending

on the type of configuration change desired. See, e.g., Snyder (Ex. 1015), at 2:41-

44; 3:64-4:11; 5:11-22; 6:24-30; 7:51-67. See also Bedingfield (Ex. 1020), at 2:6-

66; 5:42-55; 4:27-3:33; 5:66-6:9; 7:28-33. As such, it would also have been

obvious to include the claimed feature in the combination of Michelson,

PCCextend, Davis, and the APA. Thus, claim 20 would have been obvious over

Michelson, PCCextend, Davis, and the APA.

BLACKBERRY Ex. 1012, page 119

 120

3. Dependent Claim 27

237. Claim 27 depends on claim 26, which is addressed above in Section

X.D.8, and recites “wherein said computer peripheral bus and port comprise a

universal serial bus and port.”

238. As explained above with respect to claim 19 in Section X.E. 1, one of

ordinary skill in the art of interfacing peripheral devices would have been

motivated to substitute a USB for a PCMCIA bus to achieve the known

advantages of the more modern USB in view of the APA. Ex. 1001, 1:39-54.

Additionally, the substitution would have involved only routine engineering,

particularly in view of the similarities between PCMCIA and USB discussed

above in Section X.E. 1. It would have been obvious to use a universal serial bus

and port to physically connect a peripheral device to a computer system and to

receive a second set of configuration information from the computer system.

Furthermore, although not required in claim 27, it would have been obvious to

electronically simulate a physical disconnection and reconnection over the USB

by incorporating a switch as taught in PCCextend/Davis on the bus lines (D+ and

D-) of a USB, since these lines are also used for device detection, and the resulting

combination would allow simulation of a disconnection and reconnection of the

peripheral device to reconfigure the device to a second configuration based on the

BLACKBERRY Ex. 1012, page 120

BLACKBERRY Ex. 1012, page 121

received second set of configuration information. Thus, claim 27 would have

been obvious over Michelson, PCCextend, Davis, and the APA.

XI. CONCLUDING STATEMENTS

239. In signing this declaration, I understand that the declaration will

be filed as evidence in a contested" case before the Patent Trial and Appeal

Board of the United States Patent and Trademark Office. I acknowledge

that I may be subject to cross-examination in the case and that

cross-examination will take place within the United States. If

cross-examination is required of me, I will appear for cross-examination

within the United States during the time allotted for cross-examination.

. 240. I declare that all statements made herein of my knowledge are

true and that all statements made on information and belief are believed to be

true; and further, that these statements were made with knowledge that

willful false statements and the like so made are punishable by fine or

imprisonment, or both, under 18 U.S.C. § 1001.

241. I declare under penalty of perjury under the laws of the United

States of America that the foregoing is true and correct.

. Respectfully S mitted,

 Date: September 10, 2014

Andrew Wolfe

121

BLACKBERRY Ex. 1012, page 121

APPENDIX A

BLACKBERRY Ex. 1012, page 122

A. Ground 1: Claims 14, 18-20, and 23-27 are unpatentable under
35 U.S.C. § 103, as being obvious over the Admitted Prior Art (APA)
and U.S. Patent No. 6,073,193 to Yap

’103 Patent
Claim 14

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

[a] A method for
reconfiguring a
peripheral device
connected by a
computer bus
and port to a host
computer, the
method
comprising the
steps of:

APA
APA, Ex. 1001, Prior Art Fig. 1:

APA, Ex. 1001, 4:4-23:

FIG. 1 is a diagram illustrating a standardized bus interface,
such as a conventional computer system 20, that may include
a host computer system 22 and a peripheral device 24. The
peripheral device is connected to the host computer by a
universal serial bus (USB) 26. The host computer may
include a central processing unit (CPU) 28 connected to a
USB interface (I/F) circuit 30, and the USB standard
provides a universal electrical and physical interface for the
peripheral devices via bus 26. The CPU executes software
application code located in a memory 31 and communicates
data to and from the peripheral device through the USB
interface and the USB 26. The host computer may also

BLACKBERRY Ex. 1012, page 123

’103 Patent
Claim 14

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

include an operating system 32 which may include a
software device driver 33. The peripheral device 24 may
include a USB interface circuit 34, a CPU 36 and a
non-volatile memory 38 that may store configuration
information describing the characteristics of the peripheral
device. The non-volatile memory may be a read only
memory (ROM) or an erasable programmable read only
memory (EPROM).

APA, Ex. 1001, 1:39-2:8:

A new emerging technology called the Universal Serial Bus
(USB) is a system intended to create a single standardized
peripheral device connection system. The USB makes the
task of connecting peripheral devices to computers easier
and more reliable since it uses a standardized connector and
form factor, and makes operating those peripheral devices
with the computer, easier and more reliable than with the
various different types of communication ports. The
computer to which these peripheral devices are connected by
the USB is known as the “host computer”. The USB replaces
the multiple cable and connector types with a single
standardized connection system. The USB also permits the
connection and disconnection of USB compatible peripheral
devices while the computer is turned on which eliminates the
typical turning off and rebooting of the computer in order to
connect or disconnect a peripheral device to the computer.
When a peripheral device is first connected to the USB and
the host computer through a standard USB communications
port, the presence of the connected peripheral device is
detected and a configuration process of the USB for the
connected peripheral device, known as device enumeration,
begins. The enumeration process assigns a unique USB
address to the connected peripheral device, queries the
connected peripheral device about its requirements and
capabilities, writes data about the connected peripheral
device into the host computer’s operating system, and loads
the appropriate software device driver from a storage

BLACKBERRY Ex. 1012, page 124

’103 Patent
Claim 14

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

location into the host computer’s operating system. During
the query, a data table stored in the peripheral device, which
contains the particular peripheral device’s configuration
information, is read from the peripheral device into the host
computer’s memory. Upon completion of the enumeration
process, the connected peripheral device is recognized by the
host computer’s operating system and may be used by
application software being executed by the microprocessor
of the host computer. The association of the device with the
software device driver cannot be subsequently changed.

APA, Ex. 1001, 2:9-28:

In a serial bus system, such as the USB, the only opportunity
for associating software device drivers with a peripheral
device is at the time when the peripheral device is plugged
into the USB and the enumeration process occurs. Thus, to
alter the configuration or personality of a peripheral device,
such as downloading new code or configuration information
into the memory of the peripheral device, the host computer
system must detect a peripheral device connection or a
disconnection and then a reconnection.
The USB provides a number of advantages, as described
above, over standard peripheral device connection
techniques. The USB, however, does not provide a system
and method for easily altering the configuration data for a
peripheral device. In addition, the USB also does not provide
a method for easily changing the software device driver
associated with a particular peripheral device.
Thus, there is a need for a system and method for interfacing
to a universal serial bus which avoids these and other
problems of known systems and methods, and it is to this
end that the present invention is directed.

[b] detecting the
peripheral device
connected to the
port, wherein the
peripheral device

APA
APA, Ex. 1001, 1:55-2:8:

When a peripheral device is first connected to the USB and
the host computer through a standard USB communications

BLACKBERRY Ex. 1012, page 125

’103 Patent
Claim 14

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

has a first
configuration;

port, the presence of the connected peripheral device is
detected and a configuration process of the USB for the
connected peripheral device, known as device enumeration,
begins. The enumeration process assigns a unique USB
address to the connected peripheral device, queries the
connected peripheral device about its requirements and
capabilities, writes data about the connected peripheral
device into the host computer’s operating system, and loads
the appropriate software device driver from a storage
location into the host computer’s operating system. During
the query, a data table stored in the peripheral device, which
contains the particular peripheral device’s configuration
information, is read from the peripheral device into the host
computer’s memory. Upon completion of the enumeration
process, the connected peripheral device is recognized by the
host computer’s operating system and may be used by
application software being executed by the microprocessor
of the host computer. The association of the device with the
software device driver cannot be subsequently changed.

APA, Ex. 1001, Prior Art Fig. 1:

BLACKBERRY Ex. 1012, page 126

’103 Patent
Claim 14

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

APA, Ex. 1001, 4:24-38:

When the peripheral device is initially connected to the
USB, an enumeration process is conducted in which the host
computer determines the characteristics of the peripheral
device by receiving the configuration information from the
memory 38 within the peripheral device, and configures the
USB according to the characteristics of the peripheral
device. As shown, the configuration information about the
characteristics of the peripheral device in a conventional
USB system is stored in a non-volatile memory 38 on the
peripheral device. The data about the characteristics of the
peripheral device is programmed into the non-volatile
memory at the factory, and the characteristics of the
peripheral device may not be easily altered. In addition, the
memory in the peripheral device stores all of the
configuration information about the peripheral device which
may require a large amount of memory in the peripheral
device.

BLACKBERRY Ex. 1012, page 127

’103 Patent
Claim 14

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

APA, Ex. 1001, Prior Art Fig. 3:

APA, Ex. 1001, 6:6-32:

FIG. 3 is a diagram illustrating a conventional host computer
universal serial bus interface circuit 100 and a peripheral
device USB interface circuit 101. The host computer USB
interface 100 may include two USB data leads 102, 103 that
may be labeled D+and D-, which are both connected to
ground through a resistor 112, 113 respectively. The
peripheral device USB interface 101 may include a buffer
amplifier 104, having a first normal output of the buffer (D+)
106 and a second inverted output of the buffer (D-) 108. The
D+ output of the buffer may be connected to a supply
voltage, which may be 3.3 volts for example, through a 1.5
kΩ resistor 110. In operation, the host computer detects the
connection of a peripheral device by monitoring the voltage
levels of one of the two USB data leads. In particular, in the
computer host, the D+ data line is terminated with a 15 kΩ
resistor 112 to ground. Thus, when the D+ line is not
connected to a peripheral device, the measured voltage of the

BLACKBERRY Ex. 1012, page 128

’103 Patent
Claim 14

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

D+ line is approximately zero volts and the host computer
determines that no peripheral device is connected to the USB
port. When a peripheral device is connected to the USB port,
the 1.5 kΩ resistor 110 connected to a supply voltage of the
peripheral device USB interface 101 adds a voltage to the
D+ line and the D+ line at the host computer is pulled to
above 3 volts which is detected as a connected peripheral
device by the host computer and the host computer begins
the enumeration process.

[c] downloading
a second set of
configuration
information from
the host
computer into the
peripheral device
over the
computer bus;
and

APA
APA, Ex. 1001, 2:9-28:

In a serial bus system, such as the USB, the only opportunity
for associating software device drivers with a peripheral
device is at the time when the peripheral device is plugged
into the USB and the enumeration process occurs. Thus, to
alter the configuration or personality of a peripheral device,
such as downloading new code or configuration information
into the memory of the peripheral device, the host computer
system must detect a peripheral device connection or a
disconnection and then a reconnection.

. . .
Thus, there is a need for a system and method for interfacing
to a universal serial bus which avoids these and other
problems of known systems and methods, and it is to this
end that the present invention is directed.

[d] electronically
simulating a
physical
disconnection
and reconnection
of the peripheral
device to
reconfigure the
peripheral device
to a second
configuration
based on the

APA
APA, Ex. 1001, 2:9-28:

In a serial bus system, such as the USB, the only opportunity
for associating software device drivers with a peripheral
device is at the time when the peripheral device is plugged
into the USB and the enumeration process occurs. Thus, to
alter the configuration or personality of a peripheral device,
such as downloading new code or configuration information
into the memory of the peripheral device, the host computer
system must detect a peripheral device connection or a
disconnection and then a reconnection.

BLACKBERRY Ex. 1012, page 129

’103 Patent
Claim 14

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

second set of
configuration
information.

. . .
Thus, there is a need for a system and method for interfacing
to a universal serial bus which avoids these and other
problems of known systems and methods, and it is to this
end that the present invention is directed.

APA, Ex. 1001, 4:40-50, discussing Prior Art Fig. 1 (“Once
the enumeration process has been completed, the CPU of the
host computer may load an appropriate software device
driver 33 for the peripheral device and the software
applications being executed by that CPU of the host
computer may communicate with the peripheral device using
the USB. When the first peripheral device is disconnected
and another peripheral device is connected to the USB, the
enumeration process for the new peripheral device may be
conducted and another software device driver may be
loaded. The configuration of the peripheral device cannot be
easily altered.”).

YAP
Yap, Ex. 1002, 1:21-24 (“This invention relates to a method
and apparatus for allowing a USB device to recover from a
malfunction condition.”).

Yap, Ex. 1002, 1:27-42:

USB is a peripheral bus standard that allows computer
peripherals to be attached to a personal computer without the
need for specialized cards or other vendor specific hardware
attachments. . . . Information about the USB standard,
including the USB specification v1.0, incorporated herein by
reference, for building USB compliant devices, is currently
available free of charge over the Internet.

Yap, Ex. 1002, 1:43-67:

However, a malfunction condition may occur in a USB
device, such as a plug-and-play device, wherein the USB

BLACKBERRY Ex. 1012, page 130

’103 Patent
Claim 14

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

device after being configured by the host computer may
malfunction and stop communicating with the host computer
due to problems, such as transmission errors, USB protocol
errors, bugs in the host operating system or device firmware,
etc. For example, a host operating system may terminate the
function of the USB device, which may be busy at the
moment or fails to acknowledge incoming data packets more
than three times, for not communicating with the host
computer. The above situation is referred to as a “brown out”
condition.
According to the USB specification v1.0, page 201, the host
operating system is supposed to record the last error type
without trying to re-establish communications with the
noncommunicating USB device. When this occurs, (1) the
user may have to re-boot the USB device or physically
disconnect and then re-connect the USB device to allow the
host computer to recognize and then re-configure the USB
device The first method defeats the whole purpose of
plug-and-play technology

Yap, Ex. 1002, 2:7-24:

Accordingly, one object of the present invention is to
provide a method and apparatus for recovering from a USB
device brown out condition which requires no user
intervention.

. . .
It is also an object of the present invention to provide a
method and apparatus for recovering from a USB device
brown out condition without a need to re-boot the USB
device or physically disconnect and then re-connect the USB
device.

Yap, Ex. 1002, Fig. 2:

BLACKBERRY Ex. 1012, page 131

’103 Patent
Claim 14

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

Yap, Ex. 1002, 3:60 - 4:23:

In FIG. 2, a first embodiment of the USB device 10 of FIG.
1 further includes switching devices S+ and S-, such as
transistors, contact switches, etc., coupled to positive data
(D+) and negative data (D-) lines of the signal lines 6a. . . .
[W]hen the USB micro-controller 6 drives the I/O pin to an
appropriate logic state, the D+ and D- data lines may be
opened or shorted via switching devices S+ and S-. By
disconnecting the D+ and D- data lines via switching devices
S+ and S-, a physical removal of the USB device 10 may be
simulated in order to allow the USB host to re-configure the
USB device 10 during a brown out condition. . . . Firmware
in the USB microcontroller 6 keeps the data lines connected
via switching devices S+ and S- during normal operation.
However, when a brown out condition is detected, as will be
described later, the USB micro-controller 6 opens the data
lines via the switching devices S+ and S- for a duration
greater than 2.5 microseconds and then reconnects them
again. This procedure, for example, emulates the disconnect
and re-connect procedure as specified in the USB
specification v1.0, page 116.

BLACKBERRY Ex. 1012, page 132

’103 Patent
Claim 14

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

Yap, Ex. 1002, Fig. 3:

Yap, Ex. 1002, 4:24-38 (“FIG. 3, is a second embodiment of
the USB device 10 wherein the switching devices S+ and S-,
of FIG. 2 are included within the USB micro-controller
6. . . . Otherwise, the operation of the circuit of FIG. 3 is
identical to the operation of the circuit of FIG. 2.”).

’103 Patent
Claim 18

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

[a] The method
of claim 14,
wherein said
electronic
connecting and
disconnecting of
said peripheral
device respond
to an electrical
switch.

YAP

Yap, Ex. 1002, Fig. 2:

BLACKBERRY Ex. 1012, page 133

’103 Patent
Claim 18

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

Yap, Ex. 1002, 3:60 – 4:23:

In FIG. 2, a first embodiment of the USB device 10 of FIG. 1
further includes switching devices S+ and S-, such as
transistors, contact switches, etc., coupled to positive data
(D+) and negative data (D-) lines of the signal lines 6a. . . .
[W]hen the USB micro-controller 6 drives the I/O pin to an
appropriate logic state, the D+ and D- data lines may be
opened or shorted via switching devices S+ and S-. By
disconnecting the D+ and D- data lines via switching devices
S+ and S-, a physical removal of the USB device 10 may be
simulated in order to allow the USB host to re-configure the
USB device 10 during a brown out condition. . . . Firmware
in the USB microcontroller 6 keeps the data lines connected
via switching devices S+ and S- during normal operation.
However, when a brown out condition is detected, as will be
described later, the USB micro-controller 6 opens the data
lines via the switching devices S+ and S- for a duration
greater than 2.5 microseconds and then reconnects them
again. This procedure, for example, emulates the disconnect
and re-connect procedure as specified in the USB
specification v1.0, page 116.

BLACKBERRY Ex. 1012, page 134

’103 Patent
Claim 18

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

Yap, Ex. 1002, Fig. 3:

Yap, Ex. 1002, 4:24-38 (“FIG. 3, is a second embodiment of
the USB device 10 wherein the switching devices S+ and S-,
of FIG. 2 are included within the USB micro-controller 6. . . .
Otherwise, the operation of the circuit of FIG. 3 is identical
to the operation of the circuit of FIG. 2.”).

’103 Patent
Claim 19

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

The method of
claim 14, wherein
downloading
comprises
communicating
said second set of
configuration
information to the
peripheral device
using a universal
serial bus and port.

APA
APA, Ex. 1001, 2:9-28:

In a serial bus system, such as the USB, the only
opportunity for associating software device drivers with a
peripheral device is at the time when the peripheral device
is plugged into the USB and the enumeration process
occurs. Thus, to alter the configuration or personality of a
peripheral device, such as downloading new code or
configuration information into the memory of the
peripheral device, the host computer system must detect a
peripheral device connection or a disconnection and then a
reconnection.
. . .

BLACKBERRY Ex. 1012, page 135

’103 Patent
Claim 19

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

Thus, there is a need for a system and method for
interfacing to a universal serial bus which avoids these and
other problems of known systems and methods, and it is to
this end that the present invention is directed.

’103 Patent
Claim 20

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

The method of
claim 19, wherein
said second set of
configuration
information
comprises
configuration data
and executable
code.

APA
APA, Ex. 1001, 2:9-28:

In a serial bus system, such as the USB, the only
opportunity for associating software device drivers with a
peripheral device is at the time when the peripheral device
is plugged into the USB and the enumeration process
occurs. Thus, to alter the configuration or personality of a
peripheral device, such as downloading new code or
configuration information into the memory of the
peripheral device, the host computer system must detect a
peripheral device connection or a disconnection and then a
reconnection.
. . .
Thus, there is a need for a system and method for
interfacing to a universal serial bus which avoids these and
other problems of known systems and methods, and it is to
this end that the present invention is directed.

’103 Patent
Claim 23

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

The method of
claim 14,
wherein said
simulating
comprises
electronically
resetting the

YAP
Yap, Ex. 1002, Fig. 2:

BLACKBERRY Ex. 1012, page 136

’103 Patent
Claim 23

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

configuration of
the peripheral
device,
controllable by
the peripheral
device.

Yap, Ex. 1002, 3:60 – 4:23:

In FIG. 2, a first embodiment of the USB device 10 of FIG. 1
further includes switching devices S+ and S-, such as
transistors, contact switches, etc., coupled to positive data
(D+) and negative data (D-) lines of the signal lines 6a. . . .
[W]hen the USB micro-controller 6 drives the I/O pin to an
appropriate logic state, the D+ and D- data lines may be
opened or shorted via switching devices S+ and S-. By
disconnecting the D+ and D- data lines via switching devices
S+ and S-, a physical removal of the USB device 10 may be
simulated in order to allow the USB host to re-configure the
USB device 10 during a brown out condition. . . . Firmware
in the USB microcontroller 6 keeps the data lines connected
via switching devices S+ and S- during normal operation.
However, when a brown out condition is detected, as will be
described later, the USB micro-controller 6 opens the data
lines via the switching devices S+ and S- for a duration
greater than 2.5 micro seconds and then reconnects them
again. This procedure, for example, emulates the disconnect
and re-connect procedure as specified in the USB
specification v1.0, page 116.

BLACKBERRY Ex. 1012, page 137

’103 Patent
Claim 23

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

Yap, Ex. 1002, Fig. 3:

Yap, Ex. 1002, 4:24-38 (“FIG. 3, is a second embodiment of
the USB device 10 wherein the switching devices S+ and S-,
of FIG. 2 are included within the USB micro-controller 6. . . .
Otherwise, the operation of the circuit of FIG. 3 is identical
to the operation of the circuit of FIG. 2.”).

’103 Patent
Claim 24

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

[a] A peripheral
interface device
for a computer
peripheral bus
and port,
comprising:

APA
APA, Ex. 1001, Prior Art Fig. 1:

BLACKBERRY Ex. 1012, page 138

’103 Patent
Claim 24

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

APA, Ex. 1001, 4:4-23:

FIG. 1 is a diagram illustrating a standardized bus interface,
such as a conventional computer system 20, that may
include a host computer system 22 and a peripheral device
24. The peripheral device is connected to the host computer
by a universal serial bus (USB) 26. The host computer may
include a central processing unit (CPU) 28 connected to a
USB interface (I/F) circuit 30, and the USB standard
provides a universal electrical and physical interface for the
peripheral devices via bus 26. The CPU executes software
application code located in a memory 31 and communicates
data to and from the peripheral device through the USB
interface and the USB 26. The host computer may also
include an operating system 32 which may include a
software device driver 33. The peripheral device 24 may
include a USB interface circuit 34, a CPU 36 and a
non-volatile memory 38 that may store configuration

BLACKBERRY Ex. 1012, page 139

’103 Patent
Claim 24

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

information describing the characteristics of the peripheral
device. The non-volatile memory may be a read only
memory (ROM) or an erasable programmable read only
memory (EPROM).

APA, Ex. 1001, 1:39 – 2:8:

A new emerging technology called the Universal Serial Bus
(USB) is a system intended to create a single standardized
peripheral device connection system. The USB makes the
task of connecting peripheral devices to computers easier
and more reliable since it uses a standardized connector and
form factor, and makes operating those peripheral devices
with the computer, easier and more reliable than with the
various different types of communication ports. The
computer to which these peripheral devices are connected
by the USB is known as the “host computer”. The USB
replaces the multiple cable and connector types with a single
standardized connection system. The USB also permits the
connection and disconnection of USB compatible peripheral
devices while the computer is turned on which eliminates
the typical turning off and rebooting of the computer in
order to connect or disconnect a peripheral device to the
computer.
When a peripheral device is first connected to the USB and
the host computer through a standard USB communications
port, the presence of the connected peripheral device is
detected and a configuration process of the USB for the
connected peripheral device, known as device enumeration,
begins. The enumeration process assigns a unique USB
address to the connected peripheral device, queries the
connected peripheral device about its requirements and
capabilities, writes data about the connected peripheral
device into the host computer’s operating system, and loads
the appropriate software device driver from a storage
location into the host computer’s operating system. During
the query, a data table stored in the peripheral device, which
contains the particular peripheral device’s configuration

BLACKBERRY Ex. 1012, page 140

’103 Patent
Claim 24

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

information, is read from the peripheral device into the host
computer’s memory. Upon completion of the enumeration
process, the connected peripheral device is recognized by
the host computer’s operating system and may be used by
application software being executed by the microprocessor
of the host computer. The association of the device with the
software device driver cannot be subsequently changed.

APA, Ex. 1001, 2:9-28:

In a serial bus system, such as the USB, the only opportunity
for associating software device drivers with a peripheral
device is at the time when the peripheral device is plugged
into the USB and the enumeration process occurs. Thus, to
alter the configuration or personality of a peripheral device,
such as downloading new code or configuration information
into the memory of the peripheral device, the host computer
system must detect a peripheral device connection or a
disconnection and then a reconnection.
The USB provides a number of advantages, as described
above, over standard peripheral device connection
techniques. The USB, however, does not provide a system
and method for easily altering the configuration data for a
peripheral device. In addition, the USB also does not
provide a method for easily changing the software device
driver associated with a particular peripheral device.
Thus, there is a need for a system and method for interfacing
to a universal serial bus which avoids these and other
problems of known systems and methods, and it is to this
end that the present invention is directed.

[b] means for
physically
connecting a
peripheral device
to a computer
system through
the computer
peripheral bus,

APA
APA, Ex. 1001, 1:39-50:

A new emerging technology called the Universal Serial Bus
(USB) is a system intended to create a single standardized
peripheral device connection system. The USB makes the
task of connecting peripheral devices to computers easier
and more reliable since it uses a standardized connector and

BLACKBERRY Ex. 1012, page 141

’103 Patent
Claim 24

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

wherein the
peripheral device
has a first
configuration;

form factor, and makes operating those peripheral devices
with the computer, easier and more reliable than with the
various different types of communication ports. The
computer to which these peripheral devices are connected
by the USB is known as the “host computer”. The USB
replaces the multiple cable and connector types with a single
standardized connection system.

APA, Ex. 1001, 1:55 - 2:8:

When a peripheral device is first connected to the USB and
the host computer through a standard USB communications
port, the presence of the connected peripheral device is
detected and a configuration process of the USB for the
connected peripheral device, known as device enumeration,
begins. The enumeration process assigns a unique USB
address to the connected peripheral device, queries the
connected peripheral device about its requirements and
capabilities, writes data about the connected peripheral
device into the host computer’s operating system, and loads
the appropriate software device driver from a storage
location into the host computer’s operating system. During
the query, a data table stored in the peripheral device, which
contains the particular peripheral device’s configuration
information, is read from the peripheral device into the host
computer’s memory. Upon completion of the enumeration
process, the connected peripheral device is recognized by
the host computer’s operating system and may be used by
application software being executed by the microprocessor
of the host computer. The association of the device with the
software device driver cannot be subsequently changed.

APA, Ex. 1001, Prior Art Fig. 1:

BLACKBERRY Ex. 1012, page 142

’103 Patent
Claim 24

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

APA, Ex. 1001, 4:4-39:

FIG. 1 is a diagram illustrating a standardized bus interface,
such as a conventional computer system 20, that may
include a host computer system 22 and a peripheral device
24. The peripheral device is connected to the host computer
by a universal serial bus (USB) 26. The host computer may
include a central processing unit (CPU) 28 connected to a
USB interface (I/F) circuit 30, and the USB standard
provides a universal electrical and physical interface for the
peripheral devices via bus 26.
When the peripheral device is initially connected to the
USB, an enumeration process is conducted in which the host
computer determines the characteristics of the peripheral
device by receiving the configuration information from the
memory 38 within the peripheral device, and configures the
USB according to the characteristics of the peripheral
device. As shown, the configuration information about the

BLACKBERRY Ex. 1012, page 143

’103 Patent
Claim 24

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

characteristics of the peripheral device in a conventional
USB system is stored in a non-volatile memory 38 on the
peripheral device. The data about the characteristics of the
peripheral device is programmed into the non-volatile
memory at the factory, and the characteristics of the
peripheral device may not be easily altered. In addition, the
memory in the peripheral device stores all of the
configuration information about the peripheral device which
may require a large amount of memory in the peripheral
device.

[c] means for
receiving a
second set of
configuration
information from
a computer
system over the
computer
peripheral bus
and port; and

APA
APA, Ex. 1001, 2:9-28:

In a serial bus system, such as the USB, the only opportunity
for associating software device drivers with a peripheral
device is at the time when the peripheral device is plugged
into the USB and the enumeration process occurs. Thus, to
alter the configuration or personality of a peripheral device,
such as downloading new code or configuration information
into the memory of the peripheral device, the host computer
system must detect a peripheral device connection or a
disconnection and then a reconnection.
. . .
Thus, there is a need for a system and method for interfacing
to a universal serial bus which avoids these and other
problems of known systems and methods, and it is to this
end that the present invention is directed.

APA, Ex. 1001, 4:17-23 (“The peripheral device may
include . . . a non-volatile memory 38 that may store
configuration information describing the characteristics of
the peripheral device. The non-volatile memory may be a
read only memory (ROM) or an erasable programmable
read only memory (EPROM).”).

[d] means for
electronically
simulating a
physical

APA
APA, Ex. 1001, 2:9-28:

In a serial bus system, such as the USB, the only opportunity

BLACKBERRY Ex. 1012, page 144

’103 Patent
Claim 24

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

disconnection and
reconnection of
the peripheral
device to
reconfigure the
peripheral device
to a second
configuration
based on the
second set of
configuration
information.

for associating software device drivers with a peripheral
device is at the time when the peripheral device is plugged
into the USB and the enumeration process occurs. Thus, to
alter the configuration or personality of a peripheral device,
such as downloading new code or configuration information
into the memory of the peripheral device, the host computer
system must detect a peripheral device connection or a
disconnection and then a reconnection.

. . .
Thus, there is a need for a system and method for interfacing
to a universal serial bus which avoids these and other
problems of known systems and methods, and it is to this
end that the present invention is directed.

APA, Ex. 1001, 4:40-50, discussing Prior Art Fig. 1 (“Once
the enumeration process has been completed, the CPU of the
host computer may load an appropriate software device
driver 33 for the peripheral device and the software
applications being executed by that CPU of the host
computer may communicate with the peripheral device
using the USB. When the first peripheral device is
disconnected and another peripheral device is connected to
the USB, the enumeration process for the new peripheral
device may be conducted and another software device driver
may be loaded. The configuration of the peripheral device
cannot be easily altered.”).

YAP
Yap, Ex. 1002, 1:21-24 (“This invention relates to a method
and apparatus for allowing a USB device to recover from a
malfunction condition.”).

Yap, Ex. 1002, 1:27-42:

USB is a peripheral bus standard that allows computer
peripherals to be attached to a personal computer without
the need for specialized cards or other vendor specific
hardware attachments. . . . Information about the USB

BLACKBERRY Ex. 1012, page 145

’103 Patent
Claim 24

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

standard, including the USB specification v1.0, incorporated
herein by reference, for building USB compliant devices, is
currently available free of charge over the Internet.

Yap, Ex. 1002, 1:43-67:

However, a malfunction condition may occur in a USB
device, such as a plug-and-play device, wherein the USB
device after being configured by the host computer may
malfunction and stop communicating with the host computer
due to problems, such as transmission errors, USB protocol
errors, bugs in the host operating system or device firmware,
etc. For example, a host operating system may terminate the
function of the USB device, which may be busy at the
moment or fails to acknowledge incoming data packets
more than three times, for not communicating with the host
computer. The above situation is referred to as a “brown
out” condition.
According to the USB specification v1.0, page 201, the host
operating system is supposed to record the last error type
without trying to re-establish communications with the
noncommunicating USB device. When this occurs, (1) the
user may have to re-boot the USB device or physically
disconnect and then re-connect the USB device to allow the
host computer to recognize and then re-configure the USB
device The first method defeats the whole purpose of
plug-and-play technology

Yap, Ex. 1002, 2:7-24:

Accordingly, one object of the present invention is to
provide a method and apparatus for recovering from a USB
device brown out condition which requires no user
intervention.

. . .
It is also an object of the present invention to provide a
method and apparatus for recovering from a USB device
brown out condition without a need to re-boot the USB

BLACKBERRY Ex. 1012, page 146

’103 Patent
Claim 24

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

device or physically disconnect and then re-connect the
USB device.

Yap, Ex. 1002, Fig. 2:

Yap, Ex. 1002, 3:60 - 4:23:

In FIG. 2, a first embodiment of the USB device 10 of FIG.
1 further includes switching devices S+ and S-, such as
transistors, contact switches, etc., coupled to positive data
(D+) and negative data (D-) lines of the signal lines 6a. . . .
[W]hen the USB micro-controller 6 drives the I/O pin to an
appropriate logic state, the D+ and D- data lines may be
opened or shorted via switching devices S+ and S-. By
disconnecting the D+ and D- data lines via switching
devices S+ and S-, a physical removal of the USB device 10
may be simulated in order to allow the USB host to
re-configure the USB device 10 during a brown out
condition. . . . Firmware in the USB microcontroller 6 keeps
the data lines connected via switching devices S+ and S-
during normal operation. However, when a brown out
condition is detected, as will be described later, the USB
micro-controller 6 opens the data lines via the switching
devices S+ and S- for a duration greater than 2.5

BLACKBERRY Ex. 1012, page 147

’103 Patent
Claim 24

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

microseconds and then reconnects them again. This
procedure, for example, emulates the disconnect and
re-connect procedure as specified in the USB specification
v1.0, page 116.

Yap, Ex. 1002, Fig. 3:

Yap, Ex. 1002, 4:24-38 (“FIG. 3, is a second embodiment of
the USB device 10 wherein the switching devices S+ and S-,
of FIG. 2 are included within the USB micro-controller
6. . . . Otherwise, the operation of the circuit of FIG. 3 is
identical to the operation of the circuit of FIG. 2.”).

’103 Patent
Claim 25

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

The device of
claim 24,
wherein said
means for
electronic
simulation
comprises an
electrical switch.

YAP
Yap, Ex. 1002, Fig. 2:

BLACKBERRY Ex. 1012, page 148

’103 Patent
Claim 25

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

Yap, Ex. 1002, 3:60 - 4:23:

In FIG. 2, a first embodiment of the USB device 10 of FIG. 1
further includes switching devices S+ and S-, such as
transistors, contact switches, etc., coupled to positive data
(D+) and negative data (D-) lines of the signal lines 6a. . . .
[W]hen the USB micro-controller 6 drives the I/O pin to an
appropriate logic state, the D+ and D- data lines may be
opened or shorted via switching devices S+ and S-. By
disconnecting the D+ and D- data lines via switching devices
S+ and S-, a physical removal of the USB device 10 may be
simulated in order to allow the USB host to re-configure the
USB device 10 during a brown out condition. . . . Firmware
in the USB microcontroller 6 keeps the data lines connected
via switching devices S+ and S- during normal operation.
However, when a brown out condition is detected, as will be
described later, the USB micro-controller 6 opens the data
lines via the switching devices S+ and S- for a duration
greater than 2.5 microseconds and then reconnects them
again. This procedure, for example, emulates the disconnect
and re-connect procedure as specified in the USB
specification v1.0, page 116.

BLACKBERRY Ex. 1012, page 149

’103 Patent
Claim 25

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

Yap, Ex. 1002, Fig. 3:

Yap, Ex. 1002, 4:24-38 (“FIG. 3, is a second embodiment of
the USB device 10 wherein the switching devices S+ and S-,
of FIG. 2 are included within the USB micro-controller
6. . . . Otherwise, the operation of the circuit of FIG. 3 is
identical to the operation of the circuit of FIG. 2.”).

’103 Patent
Claim 26

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

The device of
claim 25, wherein
said electrical
switch comprises a
solid state
transistor.

YAP
Yap, Ex. 1002, 3:60-63.

In FIG. 2, a first embodiment of the USB device 10 of FIG.
1 further includes switching devices S+ and S-, such as
transistors, contact switches, etc., coupled to positive data
(D+) and negative data (D-) lines of the signal lines 6a.

’103 Patent
Claim 27

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

The device of
claim 26, wherein
said computer

APA
APA, Ex. 1002, Background of the Invention, 1:39-60:

BLACKBERRY Ex. 1012, page 150

’103 Patent
Claim 27

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

peripheral bus and
port comprise a
universal serial
bus and port.

A new emerging technology called the Universal Serial Bus
(USB) is a system intended to create a single standardized
peripheral device connection system. The USB makes the
task of connecting peripheral devices to computers easier
and more reliable since it uses a standardized connector and
form factor, and makes operating those peripheral devices
with the computer, easier and more reliable than with the
various different types of communication ports. The
computer to which these peripheral devices are connected
by the USB is known as the “host computer”. The USB
replaces the multiple cable and connector types with a
single standardized connection system. The USB also
permits the connection and disconnection of USB
compatible peripheral devices while the computer is turned
on which eliminates the typical turning off and rebooting of
the computer in order to connect or disconnect a peripheral
device to the computer.
When a peripheral device is first connected to the USB and
the host computer through a standard USB communications
port, the presence of the connected peripheral device is
detected and a configuration process of the USB for the
connected peripheral device, known as device enumeration,
begins.

APA, Ex. 1001, Prior Art Fig. 1:

BLACKBERRY Ex. 1012, page 151

’103 Patent
Claim 27

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002)

APA, Ex. 1002, 4:4-12:

FIG. 1 is a diagram illustrating a standardized bus interface,
such as a conventional computer system 20, that may
include a host computer system 22 and a peripheral device
24. The peripheral device is connected to the host computer
by a universal serial bus (USB) 26. The host computer may
include a central processing unit (CPU) 28 connected to a
USB interface (I/F) circuit 30, and the USB standard
provides a universal electrical and physical interface for the
peripheral devices via bus 26.

BLACKBERRY Ex. 1012, page 152

B. Ground 2: Claim 15 and 16 are unpatentable under 35 U.S.C. § 103, as
being obvious over the Admitted Prior Art (APA), U.S. Patent No.
6,073,193 to Yap, and U.S. Patent No. 5,628,028 to Michelson

’103 Patent
Claim 15

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002) further in view of Michelson (Ex.

1003)
The method of
claim 14, wherein
said first
configuration
comprises generic
configuration
assigned to the
peripheral device
and said second
configuration
comprises a
unique
manufacturer
configuration.

MICHELSON
Michelson, Ex. 1003, 2:34 - 4:8:

Referring also to FIG. 2, when PCMCIA card 14 card
connector 28 is inserted in PCMCIA host socket 18 of host
computer 12, PCMCIA adapter 16 recognizes (step 44) the
insertion and interrupts (step 46) processor 22.
Alternatively, if PCMCIA card 14 is inserted while host
computer 12 is turned off (i.e., powered-down), host
computer 12 learns of the existence of PCMCIA card 14
during the power-on procedure. Processor 22 then executes
(step 48) Card and Socket Services 38 (C&SS) software
resident in host memory 24 and through PCMCIA interface
chip 26 reads CIS data from CIS EEPROM 30. As a
minimum, the CIS data must sufficiently identify the
PCMCIA card to the host, to enable the processor 22 to
configure the host computer 12 and the PCMCIA card 14
to operate together and to enable the processor to select the
appropriate application software 40 from host memory 24.
The CIS data specifically identify the card manufacturer
(e.g., Data Translation, Inc.) and card identification (ID)
number and includes a variety of set-up information,
including base address, interrupt level, size of address
window, and other information regarding the card’s
functionality, as specified by release 2.1. The CIS data are
entered into the EEPROM at the time of card manufacture
and are not thereafter changed. Hence, configuration of
host computer 12 and PCMCIA card 14 is completed
without the use of card controller 32.
Processor 22 then executes (step 50) the application
software 40 resident in host memory 24 that corresponds to
PCMCIA card 14. The application software 40 causes the
processor to either select a default FPGA programming

BLACKBERRY Ex. 1012, page 153

’103 Patent
Claim 15

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002) further in view of Michelson (Ex.

1003)
data file 42 from host memory 24 that corresponds to a
particular application for PCMCIA card 14 or request input
from the user as to which FPGA programming data file 42
is to be selected from host memory 24. Processor 22 then
sends (step 52) the data from the selected FPGA
programming data file 42 through PCMCIA adapter 16 to
PCMCIA interface chip 26. Interface chip 26 then
programs (step 54) a field programmable gate array
(FPGA, not shown in FIG. 1) within card controller 32 by
loading the data from the FPGA programming data file 42
into the FPGA. Where the application software causes the
processor to select a default data programming file,
PCMCIA card 14 and host computer 12 are made operable
(step 56) without user intervention.

Michelson, Ex. 1003, 6:61-65:

The FPGA programming data files can be supplied with the
PCMCIA card or new, additional, or updated FPGA
programming data files can be obtained at a later time.
Similarly, users can create their own FPGA programming
data files or make modifications as desired.

’103 Patent
Claim 16

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002) further in view of Michelson (Ex.

1003)
The method of
claim 15, wherein
said downloading
step comprises:
reading an
identification code
from the
peripheral device,
and selecting said
second set of

MICHELSON
Michelson, Ex. 1003, 2:34 - 4:8:

Referring also to FIG. 2, when PCMCIA card 14 card
connector 28 is inserted in PCMCIA host socket 18 of host
computer 12, PCMCIA adapter 16 recognizes (step 44) the
insertion and interrupts (step 46) processor 22.
Alternatively, if PCMCIA card 14 is inserted while host
computer 12 is turned off (i.e., powered-down), host
computer 12 learns of the existence of PCMCIA card 14

BLACKBERRY Ex. 1012, page 154

’103 Patent
Claim 16

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002) further in view of Michelson (Ex.

1003)
configuration
information based
on said
identification
code.

during the power-on procedure. Processor 22 then executes
(step 48) Card and Socket Services 38 (C&SS) software
resident in host memory 24 and through PCMCIA interface
chip 26 reads CIS data from CIS EEPROM 30. As a
minimum, the CIS data must sufficiently identify the
PCMCIA card to the host, to enable the processor 22 to
configure the host computer 12 and the PCMCIA card 14
to operate together and to enable the processor to select the
appropriate application software 40 from host memory 24.
The CIS data specifically identify the card manufacturer
(e.g., Data Translation, Inc.) and card identification (ID)
number and includes a variety of set-up information,
including base address, interrupt level, size of address
window, and other information regarding the card’s
functionality, as specified by release 2.1. The CIS data are
entered into the EEPROM at the time of card manufacture
and are not thereafter changed. Hence, configuration of
host computer 12 and PCMCIA card 14 is completed
without the use of card controller 32.
Processor 22 then executes (step 50) the application
software 40 resident in host memory 24 that corresponds to
PCMCIA card 14. The application software 40 causes the
processor to either select a default FPGA programming
data file 42 from host memory 24 that corresponds to a
particular application for PCMCIA card 14 or request input
from the user as to which FPGA programming data file 42
is to be selected from host memory 24. Processor 22 then
sends (step 52) the data from the selected FPGA
programming data file 42 through PCMCIA adapter 16 to
PCMCIA interface chip 26. Interface chip 26 then
programs (step 54) a field programmable gate array
(FPGA, not shown in FIG. 1) within card controller 32 by
loading the data from the FPGA programming data file 42
into the FPGA. Where the application software causes the
processor to select a default data programming file,
PCMCIA card 14 and host computer 12 are made operable
(step 56) without user intervention.

BLACKBERRY Ex. 1012, page 155

’103 Patent
Claim 16

Correspondence to Admitted Prior Art (Ex. 1001)
and Yap (Ex. 1002) further in view of Michelson (Ex.

1003)

Michelson, Ex. 1003, 6:61-65:

The FPGA programming data files can be supplied with the
PCMCIA card or new, additional, or updated FPGA
programming data files can be obtained at a later time.
Similarly, users can create their own FPGA programming
data files or make modifications as desired.

C. Ground 3: Claims 14-16, 18, 23-26 are unpatentable under 35 U.S.C.
§ 103 as being obvious over Michelson, U.S. Patent No. 5,628,028, in view of
PCCextend 100 User’s Manual (“PCCextend”), and Davis (U.S. Patent No.
5,862,393)

’103 Patent
Claim 14

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

[a] A method for
reconfiguring a
peripheral device
connected by a
computer bus
and port to a host
computer, the
method
comprising the
steps of:

MICHELSON
Michelson, Ex. 1003, 1:7-16:

This invention relates to programming and reprogramming
the hardware configuration of a (PCMCIA) card. Personal
computer memory card international association (PCMCIA)
cards are computer cards that meet the minimum compliance
requirements of the PCMCIA standard (e.g., release 2.1,
which is hereby incorporated by reference). PCMCIA cards
are typically used to add functionality or memory to a
personal, portable, or desktop computer (i.e., host computer).

Michelson, Ex. 1003, 1:28-36:

A typical PCMCIA card includes a standard PCMCIA
connector connected to a PCMCIA interface circuit through
a standard PCMCIA bus. The PCMCIA interface circuit
operates according to the standard PCMCIA protocol to send
data to and receive data from a host computer. The typical
PCMCIA card also includes a PCMCIA card controller that

BLACKBERRY Ex. 1012, page 156

’103 Patent
Claim 14

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

sends data to and receives data from the PCMCIA interface
circuit and controls the operation of the functional hardware
on the card.”).

Michelson, Ex. 1003, 2:3-16:

In general, the invention includes a PCMCIA card having an
FPGA based card controller that is programmed with FPGA
programming data stored on a host computer through a
standard PCMCIA bus. Storing FPGA programming data on
the host computer allows a user access to a practically
unlimited number of FPGA programming data files to
program and reprogram the FPGA of the PCMCIA FPGA
based card controller for different applications and permits a
user to supplement, update, improve, or otherwise modify
operation for existing applications. Additionally, storing the
FPGA programming data files on the host computer saves
valuable PCMCIA card real estate, reduces the amount of
power required by the card during FPGA programming, and
reduces the cost of the PCMCIA hardware.”).

Michelson, Ex. 1003, 2:17-42:

In preferred embodiments, the host computer includes a
PCMCIA adapter circuit coupled to a PCMCIA host socket
which is mechanically and electrically connected to a
PCMCIA card connector on the PCMCIA card. A PCMCIA
interface circuit is connected to the PCMCIA card connector
on the PCMCIA card. Using Card and Socket Services
software stored in host memory, the host processor reads
Card Information Structure (CIS) data from a memory
device, such as an EEPROM, on the PCMCIA card and
configures the host computer and PCMCIA card to operate
together. Additionally, using application software stored in
host memory, the processor selects an FPGA programming
data file from host memory and sends data from the selected
FPGA programming data file through the PCMCIA adapter
circuit to the PCMCIA interface circuit. The PCMCIA

BLACKBERRY Ex. 1012, page 157

’103 Patent
Claim 14

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

interface circuit loads the data into a PCMCIA card
controller FPGA to program the FPGA. When an error or a
different user application is detected or when a user creates a
new FPGA programming data file or modifies an existing
FPGA programming data file, the processor is instructed to
select another FPGA programming data file from host
memory. The processor then sends data from the newly
selected FPGA programming data file to the PCMCIA
interface circuit, and the PCMCIA interface circuit loads the
data into the PCMCIA card controller FPGA to reprogram
the FPGA.

Michelson, Ex. 1003, Fig. 1:

Michelson, Ex. 1003, 2:62 - 3:8:

Referring to FIG. 1, a PCMCIA system 10 includes a host
computer 12 and a PCMCIA card 14. Within host computer
12, a PCMCIA adapter 16, connected to a standard 68 pin
PCMCIA host socket 18 . . ., is coupled to a system bus 20
that interconnects PCMCIA adapter 16, a host processor 22,

BLACKBERRY Ex. 1012, page 158

’103 Patent
Claim 14

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

and a host memory 24. Within PCMCIA card 14, a PCMCIA
interface chip 26 . . ., connected to a standard 68 pin
PCMCIA card connector 28 . . ., is coupled to a Card
Information Structure (CIS) EEPROM 30 . . ., a PCMCIA
card controller 32, and a card functionality circuit 34.

Michelson, Ex. 1003, Fig. 3:

Michelson, Ex. 1003, 4:9-22

Referring to FIG. 3, card controller 32 includes a PCMCIA
card controller FPGA 60 (e.g., part number XC3042TQ100-
100, manufactured by Xilinx, as described in Xilinx
Programmable Logic Data Book, which is hereby
incorporated by reference). Through a standard PCMCIA
bus (i.e., PCMCIA address lines 62, data lines 64, and
control lines 66) connected to PCMCIA connector 28,
interface chip 26 receives FPGA programming data from
host computer 12 (FIG. 1). Interface chip 26 initiates FPGA
60 programming through FPGA programming circuit 68,
which drives reset line 63 and reprogram line 65, and
completes FPGA 60 programming by loading the FPGA
programming data into FPGA 60 through peripheral data
lines 72.

[b] detecting the
peripheral device

MICHELSON
Michelson, Ex. 1003, Fig. 2:

BLACKBERRY Ex. 1012, page 159

’103 Patent
Claim 14

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

connected to the
port, wherein the
peripheral device
has a first
configuration;

Michelson, Ex. 1003, 2:34-58:

Referring also to FIG. 2, when PCMCIA card 14 card
connector 28 is inserted in PCMCIA host socket 18 of host
computer 12, PCMCIA adapter 16 recognizes (step 44) the
insertion and interrupts (step 46) processor 22. Alternatively,
if PCMCIA card 14 is inserted while host computer 12 is
turned off (i.e., powered-down), host computer 12 learns of
the existence of PCMCIA card 14 during the power-on
procedure. Processor 22 then executes (step 48) Card and
Socket Services 38 (C&SS) software resident in host
memory 24 and through PCMCIA interface chip 26 reads
CIS data from CIS EEPROM 30. As a minimum, the CIS
data must sufficiently identify the PCMCIA card to the host,
to enable the processor 22 to configure the host computer 12
and the PCMCIA card 14 to operate together and to enable
the processor to select the appropriate application software
40 from host memory 24. The CIS data specifically identify
the card manufacturer (e.g., Data Translation, Inc.) and card
identification (ID) number and includes a variety of set-up
information, including base address, interrupt level, size of
address window, and other information regarding the card’s
functionality, as specified by release 2.1. The CIS data are

BLACKBERRY Ex. 1012, page 160

’103 Patent
Claim 14

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

entered into the EEPROM at the time of card manufacture
and are not thereafter changed. Hence, configuration of host
computer 12 and PCMCIA card 14 is completed without the
use of card controller 32.

[c] downloading
a second set of
configuration
information from
the host
computer into the
peripheral device
over the
computer bus;
and

MICHELSON
Michelson, Ex. 1003, 3:32-40:

The typical PCMCIA card also includes a PCMCIA card
controller that sends data to and receives data from the
PCMCIA interface circuit and controls the operation of the
functional hardware on the card. For example, if the
PCMCIA card is a memory card, then the functional
hardware is memory (e.g., a bank of random access memory
(RAM) chips (static or dynamic) or a hard disk drive) and
the PCMCIA card controller controls reading and writing to
the memory.

Michelson, Ex. 1003, 3:59 - 4:22:

Processor 22 then executes (step 50) the application software
40 resident in host memory 24 that corresponds to PCMCIA
card 14. The application software 40 causes the processor to
either select a default FPGA programming data file 42 from
host memory 24 that corresponds to a particular application
for PCMCIA card 14 or request input from the user as to
which FPGA programming data file 42 is to be selected from
host memory 24. Processor 22 then sends (step 52) the data
from the selected FPGA programming data file 42 through
PCMCIA adapter 16 to PCMCIA interface chip 26. Interface
chip 26 then programs (step 54) a field programmable gate
array (FPGA, not shown in FIG. 1) within card controller 32
by loading the data from the FPGA programming data file
42 into the FPGA. Where the application software causes the
processor to select a default data programming file,
PCMCIA card 14 and host computer 12 are made operable
(step 56) without user intervention.
Referring to FIG. 3, card controller 32 includes a PCMCIA
card controller FPGA 60 (e.g., part number XC3042TQ100-

BLACKBERRY Ex. 1012, page 161

’103 Patent
Claim 14

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

100, manufactured by Xilinx, as described in Xilinx
Programmable Logic Data Book, which is hereby
incorporated by reference). Through a standard PCMCIA
bus (i.e., PCMCIA address lines 62, data lines 64, and
control lines 66) connected to PCMCIA connector 28,
interface chip 26 receives FPGA programming data from
host computer 12 (FIG. 1). Interface chip 26 initiates FPGA
60 programming through FPGA programming circuit 68,
which drives reset line 63 and reprogram line 65, and
completes FPGA 60 programming by loading the FPGA
programming data into FPGA 60 through peripheral data
lines 72.

Michelson, Ex. 1003, 5:37-51:

For a variety of reasons, including the detection of a
PCMCIA card controller 60 malfunction (e.g., error
condition detected) or the detection of a user request to
change the PCMCIA card application (e.g., software
interrupt), PCMCIA card controller 60 may be reprogramed.
The host computer executes application software 40 (FIG. 1)
in host memory 24 to select a new FPGA programming data
file 42 from host memory 24 and then sends the data from
the newly selected FPGA programming data file 42 through
PCMCIA adapter 16 to PCMCIA interface chip 26. Interface
chip 26 uses FPGA programming circuit 68 to reset
PCMCIA card controller FPGA 60 and enable
reprogramming, and interface chip 26 completes
reprogramming by loading the data from the newly selected
FPGA programming data file into card controller FPGA 60.

[d] electronically
simulating a
physical
disconnection
and reconnection
of the peripheral
device to
reconfigure the

MICHELSON
Michelson, Ex. 1003, 4:9-22:

Referring to FIG. 3, card controller 32 includes a PCMCIA
card controller FPGA 60 (e.g., part number XC3042TQ100-
100, manufactured by Xilinx, as described in Xilinx
Programmable Logic Data Book, which is hereby
incorporated by reference). Through a standard PCMCIA

BLACKBERRY Ex. 1012, page 162

’103 Patent
Claim 14

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

peripheral device
to a second
configuration
based on the
second set of
configuration
information.

bus (i.e., PCMCIA address lines 62, data lines 64, and
control lines 66) connected to PCMCIA connector 28,
interface chip 26 receives FPGA programming data from
host computer 12 (FIG. 1). Interface chip 26 initiates FPGA
60 programming through FPGA programming circuit 68,
which drives reset line 63 and reprogram line 65, and
completes FPGA 60 programming by loading the FPGA
programming data into FPGA 60 through peripheral data
lines 72.

Michelson, Ex. 1003, 5:37-51:

For a variety of reasons, including the detection of a
PCMCIA card controller 60 malfunction (e.g., error
condition detected) or the detection of a user request to
change the PCMCIA card application (e.g., software
interrupt), PCMCIA card controller 60 may be reprogramed.
The host computer executes application software 40 (FIG. 1)
in host memory 24 to select a new FPGA programming data
file 42 from host memory 24 and then sends the data from
the newly selected FPGA programming data file 42 through
PCMCIA adapter 16 to PCMCIA interface chip 26. Interface
chip 26 uses FPGA programming circuit 68 to reset
PCMCIA card controller FPGA 60 and enable
reprogramming, and interface chip 26 completes
reprogramming by loading the data from the newly selected
FPGA programming data file into card controller FPGA 60.

Michelson, Ex. 1003, 5:52 - 6:60:

For example, instead of simply storing all the data received
from the sensors in the FIFO before sending it to the host
computer, card controller FPGA 60 can be reprogrammed
with additional functionality that formats the data received
from the sensors according to the host computer’s
requirements before storing the data in the FIFO. Similarly,
card controller FPGA 60 can be reprogrammed with
additional functionality that analyzes the sensor data and

BLACKBERRY Ex. 1012, page 163

’103 Patent
Claim 14

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

interrupts the host computer when predetermined thresholds
are exceeded. In such a system, the host computer need not
interact with the PCMCIA card unless a predetermined
threshold is exceeded.
For example, a data acquisition PCMCIA card may be
coupled to a temperature controller and sensors for
determining the temperature of a room. Such a PCMCIA
card continually receives data from the sensors and, in a
simple data acquisition card, the host computer periodically
reads the data acquisition FIFO and analyzes the data to
determine if predetermined temperature thresholds have been
exceeded. The PCMCIA card could be reprogrammed to
analyze the data received from the sensors and interrupt the
host computer when a predetermined temperature threshold
is exceeded. Hence, the host computer would only read the
PCMCIA card FIFO when notified that a threshold had been
exceeded.
Moreover, the operation of the PCMCIA card controller may
need to change for different user applications. For example,
if a temperature controller is moved to a smaller room where
temperature fluctuates more quickly, the PCMCIA card
controller needs to be reprogrammed to accept data from the
temperature sensors more frequently. In such a situation, the
user notifies the processor of a change in application and the
processor selects a corresponding FPGA programming data
file and sends the data to the PCMCIA interface which
reprograms the PCMCIA card controller FPGA by loading
the FPGA with the new FPGA programming data.
Typically host memory is very large and is supplemented
with extended memory (not shown). Hence, a practically
unlimited number of FPGA programming data files can be
stored within the host computer and made available to the
user. The programming and reprogramming of the PCMCIA
card controller FPGA is limited only by the size (i.e.,
capability) of the FPGA. The functionality of the PCMCIA
card is limited only by the fixed hardware (i.e., the
functional hardware) on the PCMCIA card (e.g., A/D or D/A
converters, contacts on and configuration of the external

BLACKBERRY Ex. 1012, page 164

’103 Patent
Claim 14

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

connector, and FIFO size).
For example, a PCMCIA card controller FPGA can be
programmed to function as an I/O card controller, a data
acquisition card controller, a fax/modem card controller, or a
memory card controller; however, the PCMCIA card can
only function as these card types if the additional functional
hardware is available on the card. For an I/O card controller,
the FPGA can be programmed (and reprogrammed) with the
functionality required to transfer data between the host
computer and the I/O bus (e.g., Small Computer System
Interface (SCSI)), and, thus, the only additional functional
hardware required is an external I/O bus connector and
electrical conductors from the I/O bus connector to the
FPGA. For a memory card, additional functional hardware
typically includes a bank of static or dynamic RAM chips,
ROM chips, flash memory, or a hard disk drive, and the
addressing and refreshing functionality can be located within
the PCMCIA card controller FPGA and, hence,
reprogrammable. As an example, where a portion of a disk
drive or a portion of a bank of RAMs becomes damaged and
non-functional, the addressing functionality in the FPGA can
be reprogrammed to address only the working portion of the
memory hardware. For a fax/modem, additional functional
hardware generally includes a phone connection, A/D and
D/A converters, buffers, and amplifiers, and functionality
controlling hardware, for instance, hardware controlling the
baud rate, can be located within the FPGA and, thus,
reprogrammable.

PCCextend

PCCextend, Ex. 1004, p. 1 (“Using the PCCextend is
relatively straightforward. The extender card is inserted into
the desired slot in the host system. Then the PC Card under
test is inserted into the card connector.”).

PCCextend, Ex. 1004, p. 1 (“Caution: Insertion and removal
of the extender and PC card should be done with care. The

BLACKBERRY Ex. 1012, page 165

’103 Patent
Claim 14

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

PC Card’s fragile connectors may be broken or bent if
improper force is used. Both card and extender should be
inserted straight without any lateral movement or force.”
(Italics and bold omitted.)).

PCCextend, Ex. 1004, pp. 3-4:

2.3 Using the PCCswitch

PCCextend 100 includes the PCCswitch, which can be used
to momentarily interrupt the CD1 and CD2 signals. The
PCCswitch is centrally located on the PCCextend 100
between the termination area and test points. When properly
configured, the PCCswitch can interrupt the card detect
signals (-CD1 and -CD2) to simulate a card
removal/insertion cycle. . . . When a card is inserted, CD1
and CD2 may be momentarily interrupted by pressing the
PCCswitch.

BLACKBERRY Ex. 1012, page 166

’103 Patent
Claim 14

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

To test the operation of the PCCswitch, be sure that your PC
Card Software drivers are loaded. Momentarily press the
PCCtest switch. Most software drivers will issue a removal
beep followed by an insertion beep. The software may also
remove power from the socket when the card is removed.

DAVIS

Davis, Ex. 1005, 1:20-33 (“A power management system
typically operates to conserve electrical power consumption
by reducing power requirements in response to a detected
lack of activity by a computer or its devices.”).

Davis, Ex. 1005, 1:43-49:

A power management event typically comprises either a
power-down or power-up event. A sequence of power-down
and power-up events can cause a computer device to enter a
default state or a random state based on the loss of
configuration information. It is often necessary to supply
configuration information to a device via its device driver in
response to a sequence of power-down and power-up events.

Davis, Ex. 1005, 2:21-32:

These removable devices can lose device configuration
information in response to a power-down/power-up sequence
in the absence of an appropriate power management system.

BLACKBERRY Ex. 1012, page 167

’103 Patent
Claim 14

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

Indeed, if the power management event is not communicated
to the device driver, the only way to return a device that has
lost its device configuration to a useful state is to restart or
reboot the computer system. The present invention solves
these issues by using the device removal and insertion
signals normally generated by the removal or insertion of a
device to support a power management application and to
advise a driver for a device about a power management
event.

Davis, Ex. 1005, 5:13-26:

To achieve the desired power management function, it is
often necessary to cause a removable device to enter a
reduced power state when a device is inactive or placed in
the idle state. However, a device will often lose its device
configuration information in response to powering down that
device. To fully use that device once power is restored, it is
necessary to reconfigure the device with device
configuration information. Specifically, it is desirable to
communicate configuration information to a device via its
device driver in response to restoring power. The present
invention provides a solution to this problem by notifying
the appropriate device driver of a power management event
and by supplying device configuration information to a
corresponding device in response to the restoration of power.

Davis, Ex. 1005, 6:37-54:

The state of the card detect lines 16a and 16b can be used by
the device controller 18 to determine if a device 12 is
connected to the socket 14. The device controller 18
determines that a device 12 is connected to the socket 14
when both card detect lines 16a and 16b transition from the
logical high level to the logical low level. In contrast, in the
event that one of the card detect lines 16a and 16b transitions
from the logical low level to the logical high level, then the
device controller 18 determines that a device 12 has been

BLACKBERRY Ex. 1012, page 168

’103 Patent
Claim 14

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

removed from the socket 14. In summary, a device insertion
event is defined by a particular state for both of the card
detect lines 16a and 16b, preferably each card detect line
carrying a logical low level signal. A device removal event,
however, is preferably defined by one of the card detect lines
16a and 16b transitioning to the logical high level. Those
skilled in the art will appreciate that the removable device
interface system described above is compatible with the
standard specification for PCMCIA or PC Card devices.

Davis, Ex. 1005, Figs. 2 and 3:

BLACKBERRY Ex. 1012, page 169

’103 Patent
Claim 14

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

Davis, Ex. 1005, 7:8-36:

FIG. 2 is a block diagram illustrating the components for an
embodiment of the present invention. Referring now to FIG.
2, a switching device 23 is connected between the device 12
(via the socket 14) and the device controller 18. Specifically,
the switching device 23 is connected to the socket 14 (and, if
inserted, the device 12) by the card detect lines 16a’ and
16b’. In addition, the switching device 23 is connected to the
device controller 18 via the system advisory lines 25a and
25b. A power management module 24, which supports the
power management function by controlling the power states
of the computer and its devices, communicates with the
switching device 23 via a control line 26. The control line 26
carries control signals output by the power management
module 24 for controlling the operating state of the
switching device 23.

BLACKBERRY Ex. 1012, page 170

’103 Patent
Claim 14

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

The switching device 23 can operate in the open state in
response to a particular control signal from the power
management module 24, thereby breaking a signal path
between the card detect lines 16a’ and 16b’ and system
advisory lines 25a and 25b. In the alternative, the switching
device 23 can operate in the closed state in response to
another control signal to maintain a signal connection
between the card detect lines 16a’ and 16b’ and the system
advisory line 25a and 25b. It will be appreciated that the
switching device 23 can be implemented by an electronic
switch, typically a field effect transistor (FET) or a bipolar
transistor. Other types of electronic switches, however, can
be used to implement the switching device 23, as is known
in the art.

Davis, Ex. 1005, 10:21-35:

FIG. 3 is a schematic diagram for the preferred embodiment
of the present invention. Turning now to FIGS. 2 and 3, the
switching device 23 is preferably implemented by a FET
device 23’ connected between either (1) the combination of
the card detect line 16a and the system advisory line of 25a
or (2) the combination of the card detect line 16b and the
system advisory line 25b. The FET 23’ serves to manipulate
a signal control path between the socket 14 and the device
controller 18, and a device removal event can be represented
by deactivating the FET and opening this single path.
Likewise, a device insertion event can be represented by
activating the FET and closing this signal path (while the
device 12 is properly installed within the socket 14 and a
card detect line extends between the socket and the device
controller).

Davis, Ex. 1005, 8:31-34:

By manipulating the operating state of the switching device
23, information regarding device insertion or removal events
can be communicated to the card controller 18. 8:31-34.

BLACKBERRY Ex. 1012, page 171

’103 Patent
Claim 14

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

Davis, Ex. 1005, 9:41-52:

In response to a power-down event, the power management
module outputs a particular control signal to the switching
device 24, thereby causing the switching device to enter the
open state or position. This interrupts the passage of signals
from the card detect lines 16a’ and 16b’ to the device
controller 18, thereby tricking the device controller to take
actions in response to the apparent removal of the device 12.
Significantly, the device 12 remains inserted within the
socket 14, thereby leading to the presence of logical lower
levels signals on the card detect lines 16a’ and 16b’ that
represent a device insertion event.

’ 103 Patent
Claim 15

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

The method of
claim 14, wherein
said first
configuration
comprises generic
configuration
assigned to the
peripheral device
and said second
configuration
comprises a
unique
manufacturer
configuration.

MICHELSON
Michelson, Ex. 1003, 2:34 - 4:8:

Referring also to FIG. 2, when PCMCIA card 14 card
connector 28 is inserted in PCMCIA host socket 18 of host
computer 12, PCMCIA adapter 16 recognizes (step 44) the
insertion and interrupts (step 46) processor 22.
Alternatively, if PCMCIA card 14 is inserted while host
computer 12 is turned off (i.e., powered-down), host
computer 12 learns of the existence of PCMCIA card 14
during the power-on procedure. Processor 22 then executes
(step 48) Card and Socket Services 38 (C&SS) software
resident in host memory 24 and through PCMCIA interface
chip 26 reads CIS data from CIS EEPROM 30. As a
minimum, the CIS data must sufficiently identify the
PCMCIA card to the host, to enable the processor 22 to
configure the host computer 12 and the PCMCIA card 14
to operate together and to enable the processor to select the
appropriate application software 40 from host memory 24.
The CIS data specifically identify the card manufacturer

BLACKBERRY Ex. 1012, page 172

’ 103 Patent
Claim 15

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

(e.g., Data Translation, Inc.) and card identification (ID)
number and includes a variety of set-up information,
including base address, interrupt level, size of address
window, and other information regarding the card’s
functionality, as specified by release 2.1. The CIS data are
entered into the EEPROM at the time of card manufacture
and are not thereafter changed. Hence, configuration of
host computer 12 and PCMCIA card 14 is completed
without the use of card controller 32.
Processor 22 then executes (step 50) the application
software 40 resident in host memory 24 that corresponds to
PCMCIA card 14. The application software 40 causes the
processor to either select a default FPGA programming
data file 42 from host memory 24 that corresponds to a
particular application for PCMCIA card 14 or request input
from the user as to which FPGA programming data file 42
is to be selected from host memory 24. Processor 22 then
sends (step 52) the data from the selected FPGA
programming data file 42 through PCMCIA adapter 16 to
PCMCIA interface chip 26. Interface chip 26 then
programs (step 54) a field programmable gate array
(FPGA, not shown in FIG. 1) within card controller 32 by
loading the data from the FPGA programming data file 42
into the FPGA. Where the application software causes the
processor to select a default data programming file,
PCMCIA card 14 and host computer 12 are made operable
(step 56) without user intervention.

Michelson, Ex. 1003, 6:61-65:

The FPGA programming data files can be supplied with the
PCMCIA card or new, additional, or updated FPGA
programming data files can be obtained at a later time.
Similarly, users can create their own FPGA programming
data files or make modifications as desired.

BLACKBERRY Ex. 1012, page 173

’103 Patent
Claim 16

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

The method of
claim 15, wherein
said downloading
step comprises:
reading an
identification code
from the
peripheral device,
and selecting said
second set of
configuration
information based
on said
identification
code.

MICHELSON
Michelson, Ex. 1003, 2:34 - 4:8:

Referring also to FIG. 2, when PCMCIA card 14 card
connector 28 is inserted in PCMCIA host socket 18 of host
computer 12, PCMCIA adapter 16 recognizes (step 44) the
insertion and interrupts (step 46) processor 22.
Alternatively, if PCMCIA card 14 is inserted while host
computer 12 is turned off (i.e., powered-down), host
computer 12 learns of the existence of PCMCIA card 14
during the power-on procedure. Processor 22 then executes
(step 48) Card and Socket Services 38 (C&SS) software
resident in host memory 24 and through PCMCIA interface
chip 26 reads CIS data from CIS EEPROM 30. As a
minimum, the CIS data must sufficiently identify the
PCMCIA card to the host, to enable the processor 22 to
configure the host computer 12 and the PCMCIA card 14
to operate together and to enable the processor to select the
appropriate application software 40 from host memory 24.
The CIS data specifically identify the card manufacturer
(e.g., Data Translation, Inc.) and card identification (ID)
number and includes a variety of set-up information,
including base address, interrupt level, size of address
window, and other information regarding the card’s
functionality, as specified by release 2.1. The CIS data are
entered into the EEPROM at the time of card manufacture
and are not thereafter changed. Hence, configuration of
host computer 12 and PCMCIA card 14 is completed
without the use of card controller 32.
Processor 22 then executes (step 50) the application
software 40 resident in host memory 24 that corresponds to
PCMCIA card 14. The application software 40 causes the
processor to either select a default FPGA programming
data file 42 from host memory 24 that corresponds to a
particular application for PCMCIA card 14 or request input
from the user as to which FPGA programming data file 42
is to be selected from host memory 24. Processor 22 then
sends (step 52) the data from the selected FPGA

BLACKBERRY Ex. 1012, page 174

’103 Patent
Claim 16

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

programming data file 42 through PCMCIA adapter 16 to
PCMCIA interface chip 26. Interface chip 26 then
programs (step 54) a field programmable gate array
(FPGA, not shown in FIG. 1) within card controller 32 by
loading the data from the FPGA programming data file 42
into the FPGA. Where the application software causes the
processor to select a default data programming file,
PCMCIA card 14 and host computer 12 are made operable
(step 56) without user intervention.

Michelson, Ex. 1003, 6:61-65:

The FPGA programming data files can be supplied with the
PCMCIA card or new, additional, or updated FPGA
programming data files can be obtained at a later time.
Similarly, users can create their own FPGA programming
data files or make modifications as desired.

’103 Patent
Claim 18

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

The method of
claim 14, wherein
said electronic
connecting and
disconnecting of
said peripheral
device respond to
an electrical
switch.

MICHELSON
Michelson, Ex. 1003, 4:9-22:

Referring to FIG. 3, card controller 32 includes a PCMCIA
card controller FPGA 60 (e.g., part number
XC3042TQ100-100, manufactured by Xilinx, as described
in Xilinx Programmable Logic Data Book, which is hereby
incorporated by reference). Through a standard PCMCIA
bus (i.e., PCMCIA address lines 62, data lines 64, and
control lines 66) connected to PCMCIA connector 28,
interface chip 26 receives FPGA programming data from
host computer 12 (FIG. 1). Interface chip 26 initiates FPGA
60 programming through FPGA programming circuit 68,
which drives reset line 63 and reprogram line 65, and
completes FPGA 60 programming by loading the FPGA
programming data into FPGA 60 through peripheral data
lines 72.

BLACKBERRY Ex. 1012, page 175

’103 Patent
Claim 18

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

PCCextend

PCCextend, Ex. 1004, p. 1 (“Using the PCCextend is
relatively straightforward. The extender card is inserted into
the desired slot in the host system. Then the PC Card under
test is inserted into the card connector.”).

PCCextend, Ex. 1004, p. 1 (“Caution: Insertion and removal
of the extender and PC card should be done with care. The
PC Card’s fragile connectors may be broken or bent if
improper force is used. Both card and extender should be
inserted straight without any lateral movement or force.”
(Italics and bold omitted.)).

PCCextend, Ex. 1004, pp. 3-4:

2.3 Using the PCCswitch

PCCextend 100 includes the PCCswitch, which can be used
to momentarily interrupt the CD1 and CD2 signals. The
PCCswitch is centrally located on the PCCextend 100
between the termination area and test points. When properly

BLACKBERRY Ex. 1012, page 176

’103 Patent
Claim 18

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

configured, the PCCswitch can interrupt the card detect
signals (-CD1 and -CD2) to simulate a card
removal/insertion cycle. . . . When a card is inserted, CD1
and CD2 may be momentarily interrupted by pressing the
PCCswitch.

To test the operation of the PCCswitch, be sure that your PC
Card Software drivers are loaded. Momentarily press the
PCCtest switch. Most software drivers will issue a removal
beep followed by an insertion beep. The software may also
remove power from the socket when the card is removed.

DAVIS

Davis, Ex. 1005, Figs. 2 and 3:

BLACKBERRY Ex. 1012, page 177

’103 Patent
Claim 18

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

Davis, Ex. 1005, 7:8-36:

FIG. 2 is a block diagram illustrating the components for an
embodiment of the present invention. Referring now to FIG.
2, a switching device 23 is connected between the device 12

BLACKBERRY Ex. 1012, page 178

’103 Patent
Claim 18

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

(via the socket 14) and the device controller 18.
Specifically, the switching device 23 is connected to the
socket 14 (and, if inserted, the device 12) by the card detect
lines 16a’ and 16b’. In addition, the switching device 23 is
connected to the device controller 18 via the system
advisory lines 25a and 25b. A power management module
24, which supports the power management function by
controlling the power states of the computer and its devices,
communicates with the switching device 23 via a control
line 26. The control line 26 carries control signals output by
the power management module 24 for controlling the
operating state of the switching device 23.
The switching device 23 can operate in the open state in
response to a particular control signal from the power
management module 24, thereby breaking a signal path
between the card detect lines 16a’ and 16b’ and system
advisory lines 25a and 25b. In the alternative, the switching
device 23 can operate in the closed state in response to
another control signal to maintain a signal connection
between the card detect lines 16a’ and 16b’ and the system
advisory line 25a and 25b. It will be appreciated that the
switching device 23 can be implemented by an electronic
switch, typically a field effect transistor (FET) or a bipolar
transistor. Other types of electronic switches, however, can
be used to implement the switching device 23, as is known
in the art.

Davis, Ex. 1005, 10:21-35:

FIG. 3 is a schematic diagram for the preferred embodiment
of the present invention. Turning now to FIGS. 2 and 3, the
switching device 23 is preferably implemented by a FET
device 23’ connected between either (1) the combination of
the card detect line 16a and the system advisory line of 25a
or (2) the combination of the card detect line 16b and the
system advisory line 25b. The FET 23’ serves to manipulate
a signal control path between the socket 14 and the device
controller 18, and a device removal event can be represented

BLACKBERRY Ex. 1012, page 179

’103 Patent
Claim 18

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

by deactivating the FET and opening this single path.
Likewise, a device insertion event can be represented by
activating the FET and closing this signal path (while the
device 12 is properly installed within the socket 14 and a
card detect line extends between the socket and the device
controller).

Davis, Ex. 1005, 8:31-34:

By manipulating the operating state of the switching device
23, information regarding device insertion or removal
events can be communicated to the card controller 18.
8:31-34.

’103 Patent
Claim 23

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

The method of
claim 14, wherein
said simulating
comprises
electronically
resetting the
configuration of
the peripheral
device,
controllable by
the peripheral
device.

MICHELSON
Michelson, Ex. 1003, 4:9-22:

Referring to FIG. 3, card controller 32 includes a PCMCIA
card controller FPGA 60 (e.g., part number XC3042TQ100-
100, manufactured by Xilinx, as described in Xilinx
Programmable Logic Data Book, which is hereby
incorporated by reference). Through a standard PCMCIA
bus (i.e., PCMCIA address lines 62, data lines 64, and
control lines 66) connected to PCMCIA connector 28,
interface chip 26 receives FPGA programming data from
host computer 12 (FIG. 1). Interface chip 26 initiates FPGA
60 programming through FPGA programming circuit 68,
which drives reset line 63 and reprogram line 65, and
completes FPGA 60 programming by loading the FPGA
programming data into FPGA 60 through peripheral data
lines 72.

PCCextend

PCCextend, Ex. 1004, p. 1 (“Using the PCCextend is

BLACKBERRY Ex. 1012, page 180

’103 Patent
Claim 23

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

relatively straightforward. The extender card is inserted into
the desired slot in the host system. Then the PC Card under
test is inserted into the card connector.”). PCCextend, Ex.
1004, p. 1 (“Caution: Insertion and removal of the extender
and PC card should be done with care. The PC Card’s
fragile connectors may be broken or bent if improper force
is used. Both card and extender should be inserted straight
without any lateral movement or force.” (Italics and bold
omitted.)).

PCCextend, Ex. 1004, pp. 3-4:

2.3 Using the PCCswitch

PCCextend 100 includes the PCCswitch, which can be used
to momentarily interrupt the CD1 and CD2 signals. The
PCCswitch is centrally located on the PCCextend 100
between the termination area and test points. When properly
configured, the PCCswitch can interrupt the card detect
signals (-CD1 and -CD2) to simulate a card
removal/insertion cycle. . . . When a card is inserted, CD1
and CD2 may be momentarily interrupted by pressing the

BLACKBERRY Ex. 1012, page 181

’103 Patent
Claim 23

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

PCCswitch.

To test the operation of the PCCswitch, be sure that your PC
Card Software drivers are loaded. Momentarily press the
PCCtest switch. Most software drivers will issue a removal
beep followed by an insertion beep. The software may also
remove power from the socket when the card is removed.

DAVIS

Davis, Ex. 1005, Figs. 2 and 3:

BLACKBERRY Ex. 1012, page 182

’103 Patent
Claim 23

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

Davis, Ex. 1005, 7:8-36:

FIG. 2 is a block diagram illustrating the components for an
embodiment of the present invention. Referring now to FIG.
2, a switching device 23 is connected between the device 12
(via the socket 14) and the device controller 18. Specifically,
the switching device 23 is connected to the socket 14 (and,
if inserted, the device 12) by the card detect lines 16a’ and
16b’. In addition, the switching device 23 is connected to
the device controller 18 via the system advisory lines 25a
and 25b. A power management module 24, which supports
the power management function by controlling the power
states of the computer and its devices, communicates with
the switching device 23 via a control line 26. The control
line 26 carries control signals output by the power
management module 24 for controlling the operating state of

BLACKBERRY Ex. 1012, page 183

’103 Patent
Claim 23

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

the switching device 23.
The switching device 23 can operate in the open state in
response to a particular control signal from the power
management module 24, thereby breaking a signal path
between the card detect lines 16a’ and 16b’ and system
advisory lines 25a and 25b. In the alternative, the switching
device 23 can operate in the closed state in response to
another control signal to maintain a signal connection
between the card detect lines 16a’ and 16b’ and the system
advisory line 25a and 25b. It will be appreciated that the
switching device 23 can be implemented by an electronic
switch, typically a field effect transistor (FET) or a bipolar
transistor. Other types of electronic switches, however, can
be used to implement the switching device 23, as is known
in the art.

Davis, Ex. 1005, 10:21-35:

FIG. 3 is a schematic diagram for the preferred embodiment
of the present invention. Turning now to FIGS. 2 and 3, the
switching device 23 is preferably implemented by a FET
device 23’ connected between either (1) the combination of
the card detect line 16a and the system advisory line of 25a
or (2) the combination of the card detect line 16b and the
system advisory line 25b. The FET 23’ serves to manipulate
a signal control path between the socket 14 and the device
controller 18, and a device removal event can be represented
by deactivating the FET and opening this single path.
Likewise, a device insertion event can be represented by
activating the FET and closing this signal path (while the
device 12 is properly installed within the socket 14 and a
card detect line extends between the socket and the device
controller).

Davis, Ex. 1005, 8:31-34:

By manipulating the operating state of the switching device
23, information regarding device insertion or removal events

BLACKBERRY Ex. 1012, page 184

’103 Patent
Claim 23

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

can be communicated to the card controller 18. 8:31-34.

’103 Patent
Claim 24

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

[a] A peripheral
interface device
for a computer
peripheral bus
and port,
comprising:

MICHELSON
Michelson, Ex. 1003, 1:7-16:

This invention relates to programming and reprogramming
the hardware configuration of a (PCMCIA) card. Personal
computer memory card international association (PCMCIA)
cards are computer cards that meet the minimum compliance
requirements of the PCMCIA standard (e.g., release 2.1,
which is hereby incorporated by reference). PCMCIA cards
are typically used to add functionality or memory to a
personal, portable, or desktop computer (i.e., host computer).

Michelson, Ex. 1003, 1:28-36:

A typical PCMCIA card includes a standard PCMCIA
connector connected to a PCMCIA interface circuit through a
standard PCMCIA bus. The PCMCIA interface circuit
operates according to the standard PCMCIA protocol to send
data to and receive data from a host computer. The typical
PCMCIA card also includes a PCMCIA card controller that
sends data to and receives data from the PCMCIA interface
circuit and controls the operation of the functional hardware
on the card.”).

Michelson, Ex. 1003, 2:3-16:

In general, the invention includes a PCMCIA card having an
FPGA based card controller that is programmed with FPGA
programming data stored on a host computer through a
standard PCMCIA bus. Storing FPGA programming data on
the host computer allows a user access to a practically
unlimited number of FPGA programming data files to

BLACKBERRY Ex. 1012, page 185

’103 Patent
Claim 24

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

program and reprogram the FPGA of the PCMCIA FPGA
based card controller for different applications and permits a
user to supplement, update, improve, or otherwise modify
operation for existing applications. Additionally, storing the
FPGA programming data files on the host computer saves
valuable PCMCIA card real estate, reduces the amount of
power required by the card during FPGA programming, and
reduces the cost of the PCMCIA hardware.”).

Michelson, Ex. 1003, 2:17-42:

In preferred embodiments, the host computer includes a
PCMCIA adapter circuit coupled to a PCMCIA host socket
which is mechanically and electrically connected to a
PCMCIA card connector on the PCMCIA card. A PCMCIA
interface circuit is connected to the PCMCIA card connector
on the PCMCIA card. Using Card and Socket Services
software stored in host memory, the host processor reads
Card Information Structure (CIS) data from a memory
device, such as an EEPROM, on the PCMCIA card and
configures the host computer and PCMCIA card to operate
together. Additionally, using application software stored in
host memory, the processor selects an FPGA programming
data file from host memory and sends data from the selected
FPGA programming data file through the PCMCIA adapter
circuit to the PCMCIA interface circuit. The PCMCIA
interface circuit loads the data into a PCMCIA card
controller FPGA to program the FPGA. When an error or a
different user application is detected or when a user creates a
new FPGA programming data file or modifies an existing
FPGA programming data file, the processor is instructed to
select another FPGA programming data file from host
memory. The processor then sends data from the newly
selected FPGA programming data file to the PCMCIA
interface circuit, and the PCMCIA interface circuit loads the
data into the PCMCIA card controller FPGA to reprogram
the FPGA.

BLACKBERRY Ex. 1012, page 186

’103 Patent
Claim 24

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

Michelson, Ex. 1003, Fig. 1:

Michelson, Ex. 1003, 2:62 - 3:8:

Referring to FIG. 1, a PCMCIA system 10 includes a host
computer 12 and a PCMCIA card 14. Within host computer
12, a PCMCIA adapter 16, connected to a standard 68 pin
PCMCIA host socket 18 . . ., is coupled to a system bus 20
that interconnects PCMCIA adapter 16, a host processor 22,
and a host memory 24. Within PCMCIA card 14, a PCMCIA
interface chip 26 . . ., connected to a standard 68 pin
PCMCIA card connector 28 . . ., is coupled to a Card
Information Structure (CIS) EEPROM 30 . . ., a PCMCIA
card controller 32, and a card functionality circuit 34.

Michelson, Ex. 1003, Fig. 3:

BLACKBERRY Ex. 1012, page 187

’103 Patent
Claim 24

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

Michelson, Ex. 1003, 4:9-22

Referring to FIG. 3, card controller 32 includes a PCMCIA
card controller FPGA 60 (e.g., part number XC3042TQ100-
100, manufactured by Xilinx, as described in Xilinx
Programmable Logic Data Book, which is hereby
incorporated by reference). Through a standard PCMCIA bus
(i.e., PCMCIA address lines 62, data lines 64, and control
lines 66) connected to PCMCIA connector 28, interface chip
26 receives FPGA programming data from host computer 12
(FIG. 1). Interface chip 26 initiates FPGA 60 programming
through FPGA programming circuit 68, which drives reset
line 63 and reprogram line 65, and completes FPGA 60
programming by loading the FPGA programming data into
FPGA 60 through peripheral data lines 72.

[b] means for
physically
connecting a
peripheral
device to a
computer system
through the
computer
peripheral bus,
wherein the

MICHELSON
Michelson, Ex. 1003, 1:28-36:

A typical PCMCIA card includes a standard PCMCIA
connector connected to a PCMCIA interface circuit through a
standard PCMCIA bus. The PCMCIA interface circuit
operates according to the standard PCMCIA protocol to send
data to and receive data from a host computer. The typical
PCMCIA card also includes a PCMCIA card controller that
sends data to and receives data from the PCMCIA interface

BLACKBERRY Ex. 1012, page 188

’103 Patent
Claim 24

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

peripheral
device has a first
configuration;

circuit and controls the operation of the functional hardware
on the card.”).

Michelson, Ex. 1003, 2:3-16:

In general, the invention includes a PCMCIA card having an
FPGA based card controller that is programmed with FPGA
programming data stored on a host computer through a
standard PCMCIA bus. Storing FPGA programming data on
the host computer allows a user access to a practically
unlimited number of FPGA programming data files to
program and reprogram the FPGA of the PCMCIA FPGA
based card controller for different applications and permits a
user to supplement, update, improve, or otherwise modify
operation for existing applications. Additionally, storing the
FPGA programming data files on the host computer saves
valuable PCMCIA card real estate, reduces the amount of
power required by the card during FPGA programming, and
reduces the cost of the PCMCIA hardware.”).

Michelson, Ex. 1003, 2:17-42:

In preferred embodiments, the host computer includes a
PCMCIA adapter circuit coupled to a PCMCIA host socket
which is mechanically and electrically connected to a
PCMCIA card connector on the PCMCIA card. A PCMCIA
interface circuit is connected to the PCMCIA card connector
on the PCMCIA card. Using Card and Socket Services
software stored in host memory, the host processor reads
Card Information Structure (CIS) data from a memory
device, such as an EEPROM, on the PCMCIA card and
configures the host computer and PCMCIA card to operate
together. Additionally, using application software stored in
host memory, the processor selects an FPGA programming
data file from host memory and sends data from the selected
FPGA programming data file through the PCMCIA adapter
circuit to the PCMCIA interface circuit. The PCMCIA
interface circuit loads the data into a PCMCIA card

BLACKBERRY Ex. 1012, page 189

’103 Patent
Claim 24

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

controller FPGA to program the FPGA. When an error or a
different user application is detected or when a user creates a
new FPGA programming data file or modifies an existing
FPGA programming data file, the processor is instructed to
select another FPGA programming data file from host
memory. The processor then sends data from the newly
selected FPGA programming data file to the PCMCIA
interface circuit, and the PCMCIA interface circuit loads the
data into the PCMCIA card controller FPGA to reprogram
the FPGA.

Michelson, Ex. 1003, Fig. 1:

Michelson, Ex. 1003, 2:62 - 3:8:

Referring to FIG. 1, a PCMCIA system 10 includes a host
computer 12 and a PCMCIA card 14. Within host computer
12, a PCMCIA adapter 16, connected to a standard 68 pin
PCMCIA host socket 18 . . ., is coupled to a system bus 20
that interconnects PCMCIA adapter 16, a host processor 22,
and a host memory 24. Within PCMCIA card 14, a PCMCIA
interface chip 26 . . ., connected to a standard 68 pin

BLACKBERRY Ex. 1012, page 190

’103 Patent
Claim 24

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

PCMCIA card connector 28 . . ., is coupled to a Card
Information Structure (CIS) EEPROM 30 . . ., a PCMCIA
card controller 32, and a card functionality circuit 34.

Michelson, Ex. 1003, Fig. 3:

Michelson, Ex. 1003, 4:9-22:

Referring to FIG. 3, card controller 32 includes a PCMCIA
card controller FPGA 60 (e.g., part number XC3042TQ100-
100, manufactured by Xilinx, as described in Xilinx
Programmable Logic Data Book, which is hereby
incorporated by reference). Through a standard PCMCIA bus
(i.e., PCMCIA address lines 62, data lines 64, and control
lines 66) connected to PCMCIA connector 28, interface chip
26 receives FPGA programming data from host computer 12
(FIG. 1). Interface chip 26 initiates FPGA 60 programming
through FPGA programming circuit 68, which drives reset
line 63 and reprogram line 65, and completes FPGA 60
programming by loading the FPGA programming data into
FPGA 60 through peripheral data lines 72.

Michelson, Ex. 1003, 2:34-58:

Referring also to FIG. 2, when PCMCIA card 14 card

BLACKBERRY Ex. 1012, page 191

’103 Patent
Claim 24

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

connector 28 is inserted in PCMCIA host socket 18 of host
computer 12, PCMCIA adapter 16 recognizes (step 44) the
insertion and interrupts (step 46) processor 22. Alternatively,
if PCMCIA card 14 is inserted while host computer 12 is
turned off (i.e., powered-down), host computer 12 learns of
the existence of PCMCIA card 14 during the power-on
procedure. Processor 22 then executes (step 48) Card and
Socket Services 38 (C&SS) software resident in host memory
24 and through PCMCIA interface chip 26 reads CIS data
from CIS EEPROM 30. As a minimum, the CIS data must
sufficiently identify the PCMCIA card to the host, to enable
the processor 22 to configure the host computer 12 and the
PCMCIA card 14 to operate together and to enable the
processor to select the appropriate application software 40
from host memory 24. The CIS data specifically identify the
card manufacturer (e.g., Data Translation, Inc.) and card
identification (ID) number and includes a variety of set-up
information, including base address, interrupt level, size of
address window, and other information regarding the card’s
functionality, as specified by release 2.1. The CIS data are
entered into the EEPROM at the time of card manufacture
and are not thereafter changed. Hence, configuration of host
computer 12 and PCMCIA card 14 is completed without the
use of card controller 32.

[c] means for
receiving a
second set of
configuration
information
from a computer
system over the
computer
peripheral bus
and port; and

MICHELSON
Michelson, Ex. 1003, 3:32-40:

The typical PCMCIA card also includes a PCMCIA card
controller that sends data to and receives data from the
PCMCIA interface circuit and controls the operation of the
functional hardware on the card. For example, if the
PCMCIA card is a memory card, then the functional
hardware is memory (e.g., a bank of random access memory
(RAM) chips (static or dynamic) or a hard disk drive) and the
PCMCIA card controller controls reading and writing to the
memory.

Michelson, Ex. 1003, 3:59 - 4:22:

BLACKBERRY Ex. 1012, page 192

’103 Patent
Claim 24

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

Processor 22 then executes (step 50) the application software
40 resident in host memory 24 that corresponds to PCMCIA
card 14. The application software 40 causes the processor to
either select a default FPGA programming data file 42 from
host memory 24 that corresponds to a particular application
for PCMCIA card 14 or request input from the user as to
which FPGA programming data file 42 is to be selected from
host memory 24. Processor 22 then sends (step 52) the data
from the selected FPGA programming data file 42 through
PCMCIA adapter 16 to PCMCIA interface chip 26. Interface
chip 26 then programs (step 54) a field programmable gate
array (FPGA, not shown in FIG. 1) within card controller 32
by loading the data from the FPGA programming data file 42
into the FPGA. Where the application software causes the
processor to select a default data programming file, PCMCIA
card 14 and host computer 12 are made operable (step 56)
without user intervention.
Referring to FIG. 3, card controller 32 includes a PCMCIA
card controller FPGA 60 (e.g., part number XC3042TQ100-
100, manufactured by Xilinx, as described in Xilinx
Programmable Logic Data Book, which is hereby
incorporated by reference). Through a standard PCMCIA bus
(i.e., PCMCIA address lines 62, data lines 64, and control
lines 66) connected to PCMCIA connector 28, interface chip
26 receives FPGA programming data from host computer 12
(FIG. 1). Interface chip 26 initiates FPGA 60 programming
through FPGA programming circuit 68, which drives reset
line 63 and reprogram line 65, and completes FPGA 60
programming by loading the FPGA programming data into
FPGA 60 through peripheral data lines 72.

Michelson, Ex. 1003, Figs. 1 and 3:

BLACKBERRY Ex. 1012, page 193

’103 Patent
Claim 24

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

Michelson, Ex. 1003, 5:37-51:

For a variety of reasons, including the detection of a
PCMCIA card controller 60 malfunction (e.g., error
condition detected) or the detection of a user request to
change the PCMCIA card application (e.g., software
interrupt), PCMCIA card controller 60 may be reprogramed.
The host computer executes application software 40 (FIG. 1)
in host memory 24 to select a new FPGA programming data
file 42 from host memory 24 and then sends the data from the

BLACKBERRY Ex. 1012, page 194

’103 Patent
Claim 24

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

newly selected FPGA programming data file 42 through
PCMCIA adapter 16 to PCMCIA interface chip 26. Interface
chip 26 uses FPGA programming circuit 68 to reset
PCMCIA card controller FPGA 60 and enable
reprogramming, and interface chip 26 completes
reprogramming by loading the data from the newly selected
FPGA programming data file into card controller FPGA 60.

[d] means for
electronically
simulating a
physical
disconnection
and reconnection
of the peripheral
device to
reconfigure the
peripheral
device to a
second
configuration
based on the
second set of
configuration
information.

MICHELSON
Michelson, Ex. 1003, 4:9-22:

Referring to FIG. 3, card controller 32 includes a PCMCIA
card controller FPGA 60 (e.g., part number XC3042TQ100-
100, manufactured by Xilinx, as described in Xilinx
Programmable Logic Data Book, which is hereby
incorporated by reference). Through a standard PCMCIA bus
(i.e., PCMCIA address lines 62, data lines 64, and control
lines 66) connected to PCMCIA connector 28, interface chip
26 receives FPGA programming data from host computer 12
(FIG. 1). Interface chip 26 initiates FPGA 60 programming
through FPGA programming circuit 68, which drives reset
line 63 and reprogram line 65, and completes FPGA 60
programming by loading the FPGA programming data into
FPGA 60 through peripheral data lines 72.

Michelson, Ex. 1003, 5:37-51:

For a variety of reasons, including the detection of a
PCMCIA card controller 60 malfunction (e.g., error
condition detected) or the detection of a user request to
change the PCMCIA card application (e.g., software
interrupt), PCMCIA card controller 60 may be reprogramed.
The host computer executes application software 40 (FIG. 1)
in host memory 24 to select a new FPGA programming data
file 42 from host memory 24 and then sends the data from the
newly selected FPGA programming data file 42 through
PCMCIA adapter 16 to PCMCIA interface chip 26. Interface
chip 26 uses FPGA programming circuit 68 to reset
PCMCIA card controller FPGA 60 and enable

BLACKBERRY Ex. 1012, page 195

’103 Patent
Claim 24

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

reprogramming, and interface chip 26 completes
reprogramming by loading the data from the newly selected
FPGA programming data file into card controller FPGA 60.

Michelson, Ex. 1003, 5:52 - 6:60:

For example, instead of simply storing all the data received
from the sensors in the FIFO before sending it to the host
computer, card controller FPGA 60 can be reprogrammed
with additional functionality that formats the data received
from the sensors according to the host computer’s
requirements before storing the data in the FIFO. Similarly,
card controller FPGA 60 can be reprogrammed with
additional functionality that analyzes the sensor data and
interrupts the host computer when predetermined thresholds
are exceeded. In such a system, the host computer need not
interact with the PCMCIA card unless a predetermined
threshold is exceeded.
For example, a data acquisition PCMCIA card may be
coupled to a temperature controller and sensors for
determining the temperature of a room. Such a PCMCIA card
continually receives data from the sensors and, in a simple
data acquisition card, the host computer periodically reads
the data acquisition FIFO and analyzes the data to determine
if predetermined temperature thresholds have been exceeded.
The PCMCIA card could be reprogrammed to analyze the
data received from the sensors and interrupt the host
computer when a predetermined temperature threshold is
exceeded. Hence, the host computer would only read the
PCMCIA card FIFO when notified that a threshold had been
exceeded.
Moreover, the operation of the PCMCIA card controller may
need to change for different user applications. For example,
if a temperature controller is moved to a smaller room where
temperature fluctuates more quickly, the PCMCIA card
controller needs to be reprogrammed to accept data from the
temperature sensors more frequently. In such a situation, the
user notifies the processor of a change in application and the

BLACKBERRY Ex. 1012, page 196

’103 Patent
Claim 24

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

processor selects a corresponding FPGA programming data
file and sends the data to the PCMCIA interface which
reprograms the PCMCIA card controller FPGA by loading
the FPGA with the new FPGA programming data.
Typically host memory is very large and is supplemented
with extended memory (not shown). Hence, a practically
unlimited number of FPGA programming data files can be
stored within the host computer and made available to the
user. The programming and reprogramming of the PCMCIA
card controller FPGA is limited only by the size (i.e.,
capability) of the FPGA. The functionality of the PCMCIA
card is limited only by the fixed hardware (i.e., the functional
hardware) on the PCMCIA card (e.g., A/D or D/A
converters, contacts on and configuration of the external
connector, and FIFO size).
For example, a PCMCIA card controller FPGA can be
programmed to function as an I/O card controller, a data
acquisition card controller, a fax/modem card controller, or a
memory card controller; however, the PCMCIA card can
only function as these card types if the additional functional
hardware is available on the card. For an I/O card controller,
the FPGA can be programmed (and reprogrammed) with the
functionality required to transfer data between the host
computer and the I/O bus (e.g., Small Computer System
Interface (SCSI)), and, thus, the only additional functional
hardware required is an external I/O bus connector and
electrical conductors from the I/O bus connector to the
FPGA. For a memory card, additional functional hardware
typically includes a bank of static or dynamic RAM chips,
ROM chips, flash memory, or a hard disk drive, and the
addressing and refreshing functionality can be located within
the PCMCIA card controller FPGA and, hence,
reprogrammable. As an example, where a portion of a disk
drive or a portion of a bank of RAMs becomes damaged and
non-functional, the addressing functionality in the FPGA can
be reprogrammed to address only the working portion of the
memory hardware. For a fax/modem, additional functional
hardware generally includes a phone connection, A/D and

BLACKBERRY Ex. 1012, page 197

’103 Patent
Claim 24

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

D/A converters, buffers, and amplifiers, and functionality
controlling hardware, for instance, hardware controlling the
baud rate, can be located within the FPGA and, thus,
reprogrammable.

PCCextend
PCCextend, Ex. 1004, p. 1 (“Using the PCCextend is
relatively straightforward. The extender card is inserted into
the desired slot in the host system. Then the PC Card under
test is inserted into the card connector.”).

PCCextend, Ex. 1004, p. 1 (“Caution: Insertion and removal
of the extender and PC card should be done with care. The
PC Card’s fragile connectors may be broken or bent if
improper force is used. Both card and extender should be
inserted straight without any lateral movement or force.”
(Italics and bold omitted.)).

PCCextend, Ex. 1004, pp. 3-4:

2.3 Using the PCCswitch

PCCextend 100 includes the PCCswitch, which can be used

BLACKBERRY Ex. 1012, page 198

’103 Patent
Claim 24

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

to momentarily interrupt the CD1 and CD2 signals. The
PCCswitch is centrally located on the PCCextend 100
between the termination area and test points. When properly
configured, the PCCswitch can interrupt the card detect
signals (-CD1 and -CD2) to simulate a card removal/insertion
cycle. . . . When a card is inserted, CD1 and CD2 may be
momentarily interrupted by pressing the PCCswitch.

To test the operation of the PCCswitch, be sure that your PC
Card Software drivers are loaded. Momentarily press the
PCCtest switch. Most software drivers will issue a removal
beep followed by an insertion beep. The software may also
remove power from the socket when the card is removed.

DAVIS

Davis, Ex. 1005, 1:20-33 (“A power management system
typically operates to conserve electrical power consumption
by reducing power requirements in response to a detected
lack of activity by a computer or its devices.”).

Davis, Ex. 1005, 1:43-49:

A power management event typically comprises either a
power-down or power-up event. A sequence of power-down
and power-up events can cause a computer device to enter a
default state or a random state based on the loss of
configuration information. It is often necessary to supply

BLACKBERRY Ex. 1012, page 199

’103 Patent
Claim 24

Correspondence to Michelson (Ex. 1003),
PCCextend (Ex. 1004) and Davis (Ex. 1005)

configuration information to a device via its device driver in
response to a sequence of power-down and power-up events.

Davis, Ex. 1005, 2:21-32:

These removable devices can lose device configuration
information in response to a power-down/power-up sequence
in the absence of an appropriate power management system.
Indeed, if the power management event is not communicated
to the device driver, the only way to return a device that has
lost its device configuration to a useful state is to restart or re
boot the computer system. The present invention solves these
issues by using the device removal and insertion signals
normally generated by the removal or insertion of a device to
support a power management application and to advise a
driver for a device about a power management event.

Davis, Ex. 1005, 5:13-26:

To achieve the desired power management function, it is
often necessary to cause a removable device to enter a
reduced power state when a device is inactive or placed in
the idle state. However, a device will often lose its device
configuration information in response to powering down that
device. To fully use that device once power is restored, it is
necessary to reconfigure the device with device configuration
information. Specifically, it is desirable to communicate
configuration information to a device via its device driver in
response to restoring power. The present invention provides a
solution to this problem by notifying the appropriate device
driver of a power management event and by supplying device
configuration information to a corresponding device in
response to the restoration of power.

Davis, Ex. 1005, 6:37-54:

The state of the card detect lines 16a and 16b can be used by
the device controller 18 to determine if a device 12 is

BLACKBERRY Ex. 1012, page 200

