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Table 4.7 Advantages and disadvantages of direct-manipulation
dialogues 

 Advantages Disadvantages

Task analogy May require complex or large software
Reduced familiarizationl May require high-performance graphics

learning display
Readily retained May require auxiliary input devices
Encourages exploration (e.g., mouse)

Visually appealing Skilled graphics design required
Powerful
Concise

Design tools available 

graphics packages. Nevertheless, a wide variety of command language,
driven software tools were produced in the past for use on

minicomputers with character—orientated displays.

Computer—aided design

Similarly, first-generation CAD systems were based upon textual input

of commands, for example, circuit analysis programs such as SPICE

and HILO require component values to be specified in relation to
numbered or labelled circuit nodes. Current systems, by contrast,

attempt to provide a more direct representation of the simulation, for

example direct schematic capture in the case of circuit analysis, or 2-
and 3-dimensional models for finite-element modelling.

4.10.4 Advantages and disadvantages

Table 4.7 shows the advantages and disadvantages of

direct-manipulation dialogues. The primary advantage is the direct

analogy between the task and the system, which gives the user a sense of

understanding and control from the start, and encourages exploration.

In addition, it reduces the time required for the user to become familiar

with the system, since many aspects should map directly onto his or her

existing knowledge of the task, and learning is reduced since knowledge

of the task is also knowledge of the system, and no independent set of

commands is needed. With careful graphic design, direct manipulation

can be visually appealing and satisfying, and can also be made powerful

and concise, thus appealing specifically to expert users. (For example, a
double click of the mouse button on a Macintosh application icon is

equivalent to typing the command name in a conventional operating
system.)
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The major disadvantages of direct-manipulation dialogues are that
they may require complex and expensive hardware to support a suitable
graphics display, and substantial software development to implement the
chosen metaphor realistically.

A variety of design tools are available for prototyping graphical
direct-manipulation interfaces. Applications such as MacPaint and its
equivalent on other workstations have been successfully used for
simulating static graphics displays, while Hypercard and derivatives
provide some capability to represent dynamic interaction as well. Most
windowing systems provide development tools allowing rapid
development of pop-up and/or pull-down menus, dialogue boxes, and
icon and fount editors (see Section 10.8). The major disadvantages of all
these tools is the restriction they place upon the designer, who must

conform to the particular ‘style’ embodied in the tool (e.g., the card
metaphor in Hypercard, the specific window and menu format and
actions for a window system). The inclusion of first-class graphic design
skills in the design team is also an essential requirement for
direct-manipulation interfaces: this presents particular problems since
the graphic designer’s ideas may have to be mediated by a software
engineer in order to produce a physical representation if adequate
design tools are not available.

4.10.5 Conclusions

The technological disadvantages of direct-manipulation dialogues which
have inhibited their development in the past are gradually disappearing
with the availability of high-performance, cheap microprocessors and
improvements in display technology. At the same time there is an
increasing need for larger numbers of users to become familiar with
more and more different computer systems. As a result there is a

widespread trend towards direct-manipulation interfaces as representing
an effective way to provide a system which is appealing to novices and
experts alike, and which is easy to learn, encourages experimentation,
and is readily retained once learnt.

However, direct manipulation dialogues are not a panacea; in many
applications their technical complexity is not justified or may be
impracticable or the target user population may be better served by
some other dialogue style. Even where direct manipulation is
appropriate, other dialogue modes may also need to be introduced to
achieve functions which cannot readily be represented metaphorically.

4.11 Design principles and guidelines
Sections 4.6—4.10 have presented specific features of the five major
different dialogue styles. In this section, more general design issues are
considered which are relevant to all dialogue styles.
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4.11.1 Design sequence"

Dialogue design, like any other aspect of system design, should be

carried out in a top-down fashion. Hebditch (1979) specifies the process

of stepwise refinement as follows:

1 Choose dialogue style

The basic dialogue style must be selected from among the five styles

discussed previously. The choice between these styles will be affected by

the characteristics of the user population (expert or naive users, etc.),

the type of dialogue required, and by the constraints of the available

technology and application area. This will result in an individual style

or combination of styles being chosen for the dialogue.

2 Design dialogue structure

The second stage is to undertake task analysis and determine the user’s

model of the task on which the dialogue structure should be based.

Having proposed a dialogue structure, every effort should be made to

obtain user feedback by means of informal discussion or more formal
simulation of the interface.

3 Design message formats

Once a satisfactory dialogue structure has been achieved, more detailed

attention must be paid to the display layout and textual content.

Similarly, detailed user input requirements should be considered with

the objective of maximizing efficiency, for example by avoiding

unnecessary keying. These issues are considered in the following
sections.

4 Design error handling

Having designed how the system will work when sensible data is input,

consideration must be given to the ways in which user errors can be

made. These include: input data validation, where checks must be made

that sensible responses or values are given by the user; user protection,

where the user must be protected from the consequences of his or her

own errors (e.g., deleting important files); error recovery, that is, the

provision of mechanisms for backtracking, undoing or retrying

commands which were executed in error; and meaningful error messages.

Again, these issues are considered in more detail below.
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5 Design data structures

Once all aspects of the user interface have been specified, consideration
can be given to the internal structure of the system, such as choice of
data structures to support the required functionality. These structures
should map directly onto the user’s model of the system, though their
complexity may vary considerably between different applications. For
example, the graphics data structures required to support a WIMP
interface are quite complex, whereas those required to support a text

editor might be much simpler. In either case however, the structures
should be derived from the interface specification (which in the case of

the editor is, in effect, the user manual), so as to avoid conceptual
mismatches between the user’s and system’s models of the system.

4.11.2 Screen design—text

Stewart (1976) has proposed six major factors which contribute to high
quality textual screen layout: these are summarized below.

1 Logical sequencing

Information should be presented to the user in a sequence which

logically reflects the user’s task, even if this conflicts with the optimum
system presentation sequence. If this is not possible, then the rationale
for using an alternative sequence should be made explicit to the user.

2 Spaciousness

Clutter on a display greatly increases visual search time: the use of

spacing and blanks is important in structuring the display and
emphasizing those aspects to which the user’s attention should be
directed.

3 Grouping

Related items of data should be grouped together to provide

higher-level structure to the screen as a whole. This reinforces the _
concept of ‘chunking’ and speeds up search times by allowing related
items to be treated as a group. Even on character-based displays,

auxiliary characters such as line segments may be able to be exploited to

emphasize grouping.

4 Relevance

There is a natural desire on the part of the designer to include all which

may be relevant to a display. However, displaying the maximum
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A, Bad format
PART NUMBER FILE SUB-FILE MISC BKTS
SUPPLIER J. BLOGGS & SON, ROTHERHAM
PART 092643lX DESCRIPTION LH BRONZE STUD BRACKET
GROUP B (‘LASS R STATUS NOT YET ALLOCATED ISUB-ACCOUNT 92 BUDGET GROUP Z4l3
QUANTITY UNIT DOZENS DEPRECIATION PERIOD IS ACTION
DATE OF ADDITION I/I2/75 ADDED BY F. BRIGGS DES‘)
DATE LAST AMENDED 14/5/75 AMENDED BY PROC II R. SMITH
DATE OF DELETION
COMPONENTS NONE ISUB ASSEMBLIES NONE

 

B4 Better format ISpaciousness

S , PART NUMBER FILE (‘MISCELLANEOUS BRACKETS°q"°"“"g PART: 092643lX LH BRONZE STUD BRACKET
GROUP: B BUDGET GROUP: 2413 _Gn,,,p,,,gCLASS: R SUB-ACCOUNT:4’-’ 92
UNITS: DOZENS DEPRECIATION PERIOD: I5
ACTION PRODUCT STATUS: NOT YET ALLOCATED
ADDITION DATE: l DEC 75 F. BRIGGS DES 9
LAST AMENDED: l4 MAY 75 R. SMITH PROC 1|
DELETION DATE: NONE

/.MAIN SUPPLIER: J. BLOGGS & SON. ROTHERHAMsimphcity ConsistencyRelevance

Figure 4.12 Screen textual layout guidelines (reproduced from
Stewart, 1976)

amount on the screen is not the same as maximizing the information

transfer rate, and it is this latter principle which is of primary

importance.

5 Consistency

In frame-based systems where the user views a number of sequential

screens full of information, it is important to be consistent in the use of

display space, so that the user learns where different types of
information are to be found.

6 Simplicity

The overriding consideration in screen design should be to present the

appropriate quantity and level of information in the simplest way
possible.

Figure 4.12 illustrates these points, and emphasizes the importance of

aesthetic appeal in the design of the user interface: the interface is the

‘shop window’ on the product, and as such is the major factor

influencing the user for or against the product.
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4.11.3 Screen design—graphics

Graphic design is a well-developed and established area in printing and

publishing, but its importance in human—computer interface design is

only now becoming established as computer systems are more widely
used, and more flexible and controllable display formats become

feasible. To a significant extent, screen design is constrained by

technological considerations: the response time, display rate. display

bandwidth and display type (character- or graphics-oriented) of an

interface all impose restrictions on the style of interaction which can be

accommodated. For example, the display style will inevitably be much

more restricted on a monochrome alphanumeric terminal than on a

colour graphics workstation.

Verplank (1988) cites the following five principles of graphical
user-interface design, which are primarily derived from experience in the

design of the Xerox Star user interface and its predecessors:

1 The illusion of manipulable objects

Effective graphic design involves three distinct components. First, a set

of objects appropriate to the intended application must be invented.
This involves (hopefully) identifying generic stereotypes of the required

objects on which icon design can be based. Next, the skills of graphic

design must be used to represent these objects in a convincing way.

Finally, consistent graphic mechanisms must be provided for indicating
actions on the object such as selection.

2 Visual order and user focus

Graphical interfaces provide the opportunity to exploit very powerful
visual stimuli, and features such as flashing, inverse video, strong

colours and animation can lead to an overpowering and visually

cluttered interface if they are used to excess. One important point is to

ensure that the user can readily identify the part of the screen on which
attention should be focused: hence, the most powerful attention-getting

devices should be used sparingly for this function (e.g., use of flashing

to identify the cursor, or use of inverse video on an icon or window title
to indicate that it is selected).

3 Revealed structure

Parallels are commonly drawn between direct manipulation and the

WYSIWYG concept, in that both are intended to minimize the

difference between the observed screen and its effect. A particular

problem of this approach however is that it fails to convey the

underlying structure of the activity. For example, in textual documents,
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Figure 4.13 Revealed structure of Figure 4.4 showing handles and

alignment grid

the layout is typically controlled by non-displayed control characters:

although these are irrelevant on the final printout, they may be very

important in defining the effect or scope of an action during editing.

Typically, this need is dealt with by providing a display mode in which
the structure is revealed (for example by showing rulers, e.g. MacWrite

or control codes, e.g. Word). Similarly, graphical editors such as

MacDraw require a mechanism for explicitly showing the diagram

structure, and providing methods of selecting and manipulating

elements of it (Figure 4.13). These ‘handles’ and other hidden elements

such as alignment grids form a key element in the design of the

graphical user interface, since they convey important information to the

user concerning the structure and dynamic manipulation of the screen
which is essential for effective interactive use.

4 Consistent and appropriate graphic vocabulary

As with text, it is important for graphic symbology to be used

consistently throughout an interface design. There is evidence (Mayes et

al., 1988) that interaction with a computer involves a process of

‘information flow’ where local display information is picked up, used

and discarded as necessary to meet functional needs: although the detail

of the symbology may only be identified at a subconscious level,

inconsistency will inhibit interaction and familiarization with the

interface. Figure 4.14 shows some of the graphics conventions used in a

MacWrite dialogue box (activation buttons; radio buttons (mutually

exclusive set); check boxes (inclusive set); text entry windows). Note
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Luserwriter Page Setup V5.1
Paper: O US Letter © H4 Letter Reduce or 7

Q us Lega| Q 35 Letter Enlarge:
Orientation Printer Effects:

1. 1% IZlFont Substitution?Esmoothing?
[j Faster Bitmap Printing?
 
Figure 4.14 Example Macintosh dialogue box illustrating standard
graphic symbology

that many Macintosh users readily use these features, which are a
consistent part of the Macintosh interface style, without consciously
being aware of their underlying definition.

5 A match with the medium

The specific characteristics of the display medium substantially influence
the aesthetic appeal of different graphic constructs, and considerable
time is required for graphic designers to become proficient in exploiting
the capabilities of any particular display style. In the past, screen
designers worked within the constraints of alphanumeric
character-based displays; currently, many systems are based upon

bit-mapped (1 bit per pixel) raster graphics displays; in the future, it is
probable that much greater use will be made of grey-scale and colour
graphics displays. The experience gained in current bit-mapped displays
does not necessarily translate directly into appealing aesthetic design for
colour or grey-scale displays, and we can therefore expect a delay of
several years before the full potential of these displays is realized.

4.11.4 Response time

It is clear that slow response from a system can have an adverse impact

upon the user interface, but the exact response speed required for
satisfactory interaction depends to a large extent on the nature of the
interaction taking place. Furthermore, variability in system response

speed also appears to disrupt user performance. Martin (1973) suggests
a broad division of response times into 5 categories, derived primarily
from Miller’s (1968) analysis of 17 situations in which maximum

acceptable response times varied widely:

1 > 15 seconds

Response times of this order generally rule out interactive use of the
system. The user’s attention is likely to be diverted to other activities
and only return to the screen on completion of these.
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2 > 4 seconds

Response delays of this order are poor for short-term memory

retention, and thus should be avoided in the middle of a sequence of

related operations. They may be acceptable on completion of a major

cognitive process when intermediate short-terrn data can be discarded

(‘closure’), for example dispatching a job to the computer.

3 > 2 seconds

Response delays of more than 2 seconds during interactive dialogues

requiring a high level of concentration can be surprisingly disruptive.

4 < 2 seconds

A response time of this order is generally considered acceptable for

interactive work, for command input, menu selection, form-filling, etc.

5 Almost instantaneous

Almost instantaneous response is required for very tightly coupled

activities between the user and system, such as character—by-character

response to keyboard input or tracking a mouse or cursor movement on
a screen.

4.11.5 Error handling

It is human nature for the designer of a system to concentrate most of

his design effort on the way he intends the system to work, rather than

recovery from user errors. However-, any system will inevitably be used

at some time by inexpert users, and thus user input errors will occur and

must be handled effectively by the system. Error handling can be

subdivided into several distinct requirements, as follows:

System and user protection

Primary requirements are to protect the system from the user, and the

user from the consequences of other users’ actions (in a multiuser

system). In multitasking systems these requirements are generally

supported by hardware memory-managements systems and privileged

modes. In simpler single-user systems there may be less protection and

considerable effort must be devoted to testing all conceivable user

interaction to avoid ‘crashes’: the ‘infinite—number-of-monkeys’ test. A

secondary need is to protect the user from the system: this involves

engineering the user interface so that irreversible actions (such as
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deleting a file) are not committed accidentally or without careful
thought.

Pseudo-errors

Many systems are unreasonably pedantic about the syntax of user input.
Programmers’ experience of rigid syntax in programming languages
gives them an insight into dialogue structures which is denied to other
users. Such users will judge the dialogue on the basis of what is
‘reasonable’ (i.e., readily comprehensible and not ambiguous) for
another human. rather than on the basis of some rigid and arbitrary
syntax required by the system. For example, the dates

4/1/53 04/01/53 04/01/1953 4.1.53

are all readily interpreted as 4 January 1953 (unless you are American,
in which case they represent 1 April 1953!), yet many computer systems
are much more restrictive in the date format they will accept. These
pseudo-errors result from lack of foresight on the part of the
programmer: very little extra programming effort can make the interface
appear much more friendly.

Error messages

Most computer users will have experienced error messages similar to the
following:

FATAL ERROR — PROGRAM ABORTED
“SYNTAX ERROR“
WHAT?

INVALID DATA

ERROR OE7 IN DEVICE 080

Error messages should be clear, concise, specific, constructive and
positive. The above examples achieve only the second of these
requirements. Clarity and specificity are achieved by providing exact
information about the conditions under which the error occurred and
exactly what the error was, so that the user has some starting point for
diagnosing the reasons for the error. Constructiveness implies that,
wherever possible, the system will suggest ways of recovering from the
error, or correcting it. Finally, error messages should adopt a positive
and conciliatory tone, and not condemn the user’s mistake: as in other
commercial areas, the consumer is always right.

4.11.6 Documentation

Documentation includes both offline and online material provided to
support the dialogue, and would require a separate chapter to do justice
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to the subject. In many engineering projects it fails to get the attention it

deserves. High-quality documentation of a project at several different

levels appropriate to designers, maintenance staff, training staff and

users is a key requirement for any interactive system. An interesting

recent trend has been the establishment of documentation companies, to

whom software houses subcontract the preparation of documentation

for their systems. This approach has two particular advantages: first, the

documentation is handled by expert writers, rather than software

engineers; second, the documenters are independent from the software

development team, and are thus much better able to view the product

from the user’s viewpoint.

Excellent overviews and guidelines on documentation are provided in

Bailey (1982), Chapter 19, and in Shneiderman (1987), Chapter 9.

4.12 Case study: NEWFOR teletext

subtitle generation system
4.12.1 Introduction

The provision of television subtitles for the hearing-impaired via teletext

has been growing since the introduction of teletext in the mid-1970s.

Subtitle preparation is a complex and time—consuming task which

typically required 3045 hours per captioned programme hour using

first-generation teletext origination equipment. The NEWFOR subtitle

generation system was developed following research into the display

requirements for captions for the hearing-impaired, and analysis of the

operational requirements of the caption preparation process. The

system is now available commercially, has been sold to a number of

broadcasting organizations throughout the world, and is used for all

subtitling carried out by ORACLE Teletext for Independent Television

in the UK. A full description of the development of the system

described below will be found in Downton et al. (1985).

4.12.2 Specification of subtitle requirements

Experience gained from foreign-language film captioning is not directly

relevant to captioning for the hearing-impaired, since foreign-language

viewers can be assumed to have normal literacy skills, and to be able to

use their hearing to identify speakers, mood, sound effects and other

subsidiary audible information. The objective of the initial phase of this

project was therefore to determine the most effective techniques for

conveying soundtrack information to the deaf and hearing-impaired.

A wide range of television programmes were therefore subtitled onto

videotape and demonstrated at deaf and hard-of-hearing clubs

throughout Britain. Viewers were shown a variety of contrasting subtitle
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We've a la: lb eommcn
Q let to give each other- .r

 
Figure 4.15 A sample teletext subtitle (courtesy ORACLE
Teletext Ltd)

display formats and techniques and asked to express preferences and to
comment on and discuss the captions. Over a period of time a consensus

set of display guidelines were derived (Baker, 1981), and these guidelines
provided a specification for the required display formats and styles of
the subtitle preparation system. The guidelines specified format and
amount of text per subtitle, subtitle positioning, display options
(flashing, foreground/background colour, etc.) and text presentation
rate. For example, it was found that subtitles should normally be
presented in white, double-height rnixed-case characters, left-justified
within a black box, as shown in Figure 4.15.

4.12.3 Task characteristics

Subtitles are generally prepared in advance of programme transmission
and stored on floppy disk. Figure 4.16 shows the block diagram of a
workstation used for this task, and Figure 4.17 illustrates the typical

task sequence involved in subtitle preparation (derived from
observation of work on first-generation teletext preparation systems and
interviews with subtitlers).

4.12.4 Dialogue design

The basic design strategy was to share the tasks of subtitle preparation
in an optimum way. In captioning, the skills of the human operator lie
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VDU NEWFOR

terminal computer

 
Subtitle
data

Video

processing  
 

Timecode
reader

 
 

  Video and
subtitlesColour

monitor

  U-matic
VCR

Figure 4.16 Block diagram of NEWFOR subtitling workstation

Timccode

in linguistic intuition and creativity, understanding of the television

programme, and the ability to control the captioning process and assess

the results. The captioner may have no detailed knowledge of the

technical aspects of teletext. The computer system is suited to handling

routine tasks such as text and display format manipulation, data logging
and storage and input/output control. Table 4.8 shows the final division

of tasks between NEWFOR and the operator: in first-generation

systems all of these tasks were explicitly carried out under operator
control.

First-generation teletext origination systems mostly used a direct

command input mode together with qualifying parameters as a method

of control. To reduce the memory and training requirements, a

hierarchical menu structure of commands, invoked by typing the first

letter of the command, formed the basis of the dialogue with the

NEWFOR system. The user’s model of the captioning process was

reinforced by grouping tasks into operating modes within the hierarchy

which corresponded to the preparation strategies adopted by the
captioners, as shown in Figure 4.18.

The menu acted as a prompt to the user initially, but as familiarity

was gained, particular commands could be remembered by acronyms
such as IOT (input offline titles), and the menu could then be

bypassed. For novice users, a ‘Help’ option was available at every
command level which gave further details of all commands available at
that level.

A standard terminal display style was used throughout all NEWFOR
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Format/captionerrors

  
 

  
 

Prepare U-matic programme dub
(including time~coding)

Prepare typed script
(if no script available)

Edit script for captions

1'.

Input caption text

Format caption text

  

 

 

 
 

 

 

Synchronize captions usingtimecode

 

—i Review captioned programme

Formatted. timecoded caption disk
for broadcast with master video 

l

Timing errors

Figure 4.1? Example task sequence in caption preparation

modes, as shown in Figure 4.19. The upper 70 per cent of the screen

provided a workspace for displaying current caption input or help
information, while the remaining blocked—off display area provided

various status displays. Subdivisions within the status block indicate
current menu options, operational mode and non-textual characteristics
of the current subtitle, such as time code, display time, foreground and

background colour, and caption position.

4.12.5 System performance

Performance was assessed using two criteria: training time and

productivity. In each case direct comparison could be made with
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MAIN MENU —L- MountInput Live ——-— Titles—- Xon/off
— Add
—— Remove
— Print

— Help

— Titles
— Xon/off

— Help

—Offline

Tshortforms —y—-Add—Remove
—-Print
—Save
-Load
- Clear

— Help

Help

tdit < >
I Jump
' Insert
l Delete

I Open
| Cue
| Save
| Merge

: Help
l Other commands

Figure 4.18 Part of hierarchical NEWFOR command menu

Table 4.8 Task division for NEWFOR subtitling system
j:::j 

Captioner Computer l

Text input Text format (using geometric and linguistic criteria)
Position selection Positioning of formatted text
Colour selection Calculation of boxing outline

Synchronization Calculation of on—air display time
Storage of result _einsertion of colour and boxing control characters |
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NEHIUII HFIIN MENU
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-i»: inure detailr atuui available commands
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. I':.. -a I-H'1'I"*-‘7ti‘I

: '3,‘ Mt F-rt lettzr of the command goal require

IN-suit lrrru? Eait hx Replay llisk Help >>

Figure 4.19 Sample NEWFOR terminal display

competing first-generation teletext origination systems used for the same

process of subtitle preparation.

Training

Initial training to use NEWFOR in the offline input mode was a matter

of only a few minutes, since little more than copy typing was required.

By comparison, previous systems required an explicit knowledge of

teletext display characteristics, including control characters, plus the

capability to edit and position subtitle texts. Typically at least one

week’s training was required to achieve proficiency. A second, more

extensive training period was required to achieve full working

knowledge of all aspects of the system. This required about one month

for NEWFOR, whereas competing systems typically required 2—3
months.

Productivity

The introduction of NEWFOR at ORACLE Teletext Ltd improved

productivity from around 25-40 hours per captioned hour of

programme material in 1984 to 10—l5 hours per captioned hour in 1986.

In addition to providing this substantial productivity gain, the

offloading of many of the more mundane aspects of caption preparation

meant that NEWFOR could also be used for pseudo-live captioning,

which would have been quite impossible with first generation systems.

SKYHAWKE Ex. 1017, page 55



SKYHAWKE Ex. 1017, page 56

 
DIALOGUE STYLES: BASIC TECHNIQUES AND GUIDELINES 117

In fact, early versions of NEWFOR were used to subtitle a variety of

important live events during its development phase, for example the

royal wedding (1981), the papal visit (1982), the state opening of

Parliament (1983) and the opening of the Thames Barrier (1984). A

modified version of the system linked to a chord keyboard is currently

used for live Subtitling of the early-evening ITV and Channel 4 News.
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5 Knowledge

analysis of tasks:

task analysis and

specification for

human—computer

systems
PETER JOHNSON and HILARY JOHNSON

5.1 Introduction

Task analysis has emerged as an important aid to early design in

human-computer interaction (HCI). It provides an information source

from which design decisions can be made, and a basis for evaluating

designed systems. Task analysis is an empirical method which can

produce a complete and explicit model of tasks in the domain, and of

how people carry out those tasks. It focuses design on users’ tasks and

goals, and the methods for achieving those goals, resulting in improved,

more usable system designs.

Although task analysis is the investigation of what people do when

they carry out tasks, a method of task analysis concerns more than

simply observing how people perform tasks. An approach to task

analysis involves a number of aspects:

0 a theory of tasks;

0 techniques of data collection;

0 a method of analysing tasks;

0 a representational framework for constructing task models.

In this chapter we describe a theory of task knowledge and then

consider techniques of data collection, methods of analysing and

generalizing from those data, and a framework for task modelling. The
data collection, analysis/generification method, and framework for task

modelling put forward are part of our approach to the knowledge
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analysis of tasks (KAT). This approach has been developed from earlier
work on task analysis for knowledge descriptions (TAKD) (Johnson et
al., 1984; Diaper and Johnson, 1989). KAT has been described in
Johnson, Johnson and Russell (1988) and is concerned with analysing

and modelling the knowledge people possess and utilize in carrying out
tasks. It is to be contrasted with task analysis techniques not concerned

with knowledge, such as ability profiling (Fleishman and Quaintance,
1984), hierarchical task analysis (Annett & Duncan, 1967), and other
techniques which have an evaluative role in assessing the complexity of
task performance but have no explicit method of task analysis.

The work of Kieras and Polson (1985), Payne and Green (1986) and

Card, Moran and Newell (1983) are good examples of current

evaluative approaches in HCI which incorporate methods of predicting
the difficulty of using an interactive computer system and assume some
form of task model. Each of these approaches is capable, in varying

degrees, of making recommendations about how proposed system
designs can be used in terms of the ease with which users could perform
given tasks. There are two important features to these approaches: first,
they are not directly concerned with design generation and therefore
assume both that decisions about what tasks the system should support

have been made elsewhere and that one or more design solutions have

already been proposed. Second, they focus on the evaluation and
prediction of user performance and do not detail any particular method
of task analysis. In contrast, TAKD and particularly KAT identify the
knowledge requirements of tasks and are aimed at assisting in the

generation of design solutions. KAT may, with further development,
also form part of an evaluation methodology.

A similar intention underpins Olson’s (1987) approach to a cognitive

analysis of people’s use of software. However, she does not attempt to
identify the knowledge recruited or required by those tasks. Rather, she
attaches a view of the cognitive demands of different types of tasks to a

form of office system analysis. The cognitive demands considered by
Olson are rather simplistic; tasks are described as requiring one or more

of the following processes:

0 transportation;
0 transformation;

0 algorithmic decision making;

0 judgement-based decision making;
0 information correlation;

0 information analysis;
0 communication;
0 information creation.

She assumes that transportation, transformation, simple forms of

correlating information, and algorithmic decision making are all
suitable for computer support or automation since ‘they require actions
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that are tedious for the human’. In contrast, judgemental decision

making, more complex correlations of information, analysis of
information, communication, and creation of information are ‘to be
allocated to human processing because they capitalize on human

strengths.’

One interesting aspect of Olson’s approach is her attempt to make
explicit some of the criteria by which design decisions can be made from
a task analysis which has been undertaken. This attempt is converse to
the present and prevalent practice where design is not based on any
rigorous task analysis and where decisions about allocation of function
are made either from intuition or past, not always successful, design

experience. By having explicit criteria (compare the design guidelines
contained in Chapter 4 of this book) it is possible to check and evaluate
the decisions against those criteria. With only intuition to guide the
designer, it is often a matter of ‘hoping for the best’.

Rather than leaving design for usability to luck and intuition, we

want to identify methods of task analysis which can be used to inform
the designer about those factors concerning users’ tasks which can
influence usability in advance of the designers making inappropriate
design decisions. This chapter addresses this issue by describing the
method of KAT and its underlying theoretical rationale, and makes
recommendations as to how KAT could be used in the design process.

The range and complexity of tasks with which we are concerned are not
confined to simple keyboard tasks, and are not restricted to physical
tasks. We are concerned with tasks as complex and rich as designing the

room layout of houses, producing graphs, tables and multimedia
documents, producing group documents, running meetings, controlling
sophisticated building surveillance equipment, and fashion design.
These are just some examples of the complex real-world tasks used as
case studies during the development of the KAT methodology.

5.1.1 Theoretical basis for KAT

Before considering the methods for identifying knowledge in tasks, the
theoretical underpinnings for three important aspects of KAT are
discussed. These relate to the representation of tasks as concepts, task
structure, and action and object representativeness and centrality.

Tasks as concepts

It is assumed that tasks are represented as concepts or

general knowledge structures in long-term memory. This is akin to the
theoretical position taken by Schank (1982) in assuming that knowledge
of frequently occurring events is structured into meaningful units in
memory. We have named these conceptual memory structures task
knowledge structures ( TKS). Empirical support for our assumption can
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be found in the work of Galambos (1986). Galambos conducted a series

of experiments which show that people recognize and use structures of
events, such as the order, the sequence and the importance of activities
within the event sequence to understand, explain and make predictions
about these events. Further support for our view that task knowledge is

represented in memory comes from the work of Graesser and Clark
(1985), in which general knowledge structures, goals to causal and
enabling states, plans for achieving goals, intermediate states and
alternative solutions or paths are all assumed to be represented in a

conceptual knowledge structure which is used to interpret events.
A TKS is a summary representation of the different types of knowledge

which are recruited and activated in association with task performance.

A TKS is related to other TKSS by a number of possible relations;

among them within- and between-role relations. Within-role relations are
one form of relation between TKSs in association with a given role.
Those tasks which are related because they are performed by the same

role will have the within-role relation property associating their

respective TKSs. A second form of relation between TKSs is in terms of
the similarity between tasks across roles. Each task may be performed
differently in one or other respect in the context of a given role. However,
a person assuming many roles would have a knowledge structure for
each task within a role and also knowledge, not necessarily explicit, of

the relations between these tasks across or between different roles.

Task knowledge structures contain goal-oriented and taxonomic
substructures. Goa1—oriented substructures represent the goals, plans

and procedures for carrying out the task. The taxonomic substructure
contains the action—object pairings, their respective properties or
features and their role relation links. Further details, and an example of

task knowledge structures, are provided later in Section 5.4 on task
modelling.

Structure in tasks

Tasks would be unstructured if within a domain all possible

components of tasks could co-occur with equal probability combined
with all other possible components of tasks. This is obviously not the
case; task components or behaviours do not occur independently of one
another. Some pairs or even n-tuples of task components are quite

probable, whereas others are improbable; some groupings of
components while being logically possible may never occur in reality.
Furthermore, within tasks some task components are naturally carried

out together, precede, follow on from, or prime one another.
Components of tasks are generally carried out according to some
feasible temporal ordering, designated by a plan. For example, a builder
who is building a house cannot begin to build until the bricks have
arrived. An architect designing the layout of a house cannot design the
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upstairs layout until she or he knows how many bedrooms are required.
The same architect might have to simultaneously consider certain

related task components. For instance, in designing a bathroom layout,

the respective position of the bath is considered at the same time as the

positions of the wash-hand basin and w.c.
We assume that for the purposes of carrying out tasks a person’s

knowledge is structured in a similar manner to the structure of tasks

reflected in task performance. We represent this structure in terms of

task knowledge structures (TKS).

Representativeness and centrality

People’s task knowledge includes information about objects, both

physical and informational, and their associated actions. Objects and
actions differ in how central and representative (or typical) they are.

Representativeness (or typicality) refers to how representative an object
is to a class of objects. For example, a particular chair may be a good

representative instance of ‘chairs’. One way to think of
representativeness is as a ‘good/bad example’; Thus, any particular chair
may be a good or bad example of the general class of ‘chairs’. Centrality
refers to the centralness or importance of the object to the task. This

argument is similar to that put forward by Rosch (1985) and colleagues

(Rosch et al., 1976) to describe the relations between objects and their

categorical representation in memory. Empirical psychological evidence
for the centrality of the procedures and action/object representativeness
in task behaviour has been obtained by Leddo and Abelson (1986), who

found that for tasks such as borrowing a book from a library there were

particular task segments which were more central to, and more

representative of, going to the library than other segments.

Procedures, subgoals and plans differ in representativeness and

centrality to the task by virtue of the typicality or centrality of the

actions and objects of which they are composed. For instance, in a

similar way to arguing that a ‘robin’ is a representative instance of the

essence of the ‘bird’ category, so the procedure ‘drawing house sketches’

might be held to be more representative of an architectural task than

‘painting country scenes’, since ‘drawing’ is a more representative

action. Both procedures may in some instances be used in the course of

achieving the goal of designing a house. In a similar way some
procedures may be more central to the task than others. For example, in

a tea-making task a vessel in which the water and tea can be combined
is considered to be a central object to the task and the action of

‘brewing’ or ‘combining’ the tea and water is also central (without it tea
cannot be made). However, it does not matter if this vessel is the most

typical instance of its class in the task-domain, namely a teapot, or
alternatively an atypical instance such as an empty paint can (as has
sometimes been used under extreme circumstances). Consequently, a
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procedure such as ‘brewing the tea in the teapot’ is central since it
contains a central action and a central object. The distinction between

centrality and representativeness is thus that central task elements are
considered to be necessary and enable the task goal to be achieved, while
representative task elements are the instances from the class of the domain
which people most readily or typically associate with a given task.

5.1.2 Identifying knowledge

Having discussed the theoretical assumptions contained in task
knowledge structures, it is now possible to consider which aspects of
task knowledge should be identified by a task analysis. Different tasks
may require particular collections of knowledge, and within a single
task a variety of types of knowledge will be required for successful task
execution. Therefore, we assume that there are subsets of knowledge

which make up a person’s total task knowledge.
In identifying the knowledge people utilize in successful task

completion, the analyst first needs to identify the person’s goals,
subgoals and subtasks; in other words, how the person conceptualizes
the goal structure of the task. Second, it is necessary to consider the
ordering in which the subtasks are carried out: this is determined by the
task plan. Third, the different task strategies (a strategy is a particular
set of procedures) must be identified along with the circumstances under
which those strategies are employed. Fourth, it is necessary to identify
the procedures which contain the objects involved in the task and the
actions which are associated with them: these are the action/object

groupings. Finally, the task objects and task actions are categorically
structured and this structure is a further important aspect of task

knowledge which must be identified.

This introductory section has provided a brief-summary of the
theoretical assumptions from which our approach to task analysis has
been derived. The next section describes a methodology for identifying

the task knowledge components important for task analysis.

5.2 Knowledge analysis of tasks: KAT

methodology (part 1)

This section presents in detail the methods of analysis associated with
KAT. There are three parts to the KAT method. First, there are

techniques for identifying and collecting data about the knowledge
people utilize in performing tasks. Second, there are techniques for
identifying the representativeness of a particular task knowledge
component and establishing generic task knowledge. This can then be
used in the third part of the task analysis method, namely the task
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knowledge structure (TKS) modelling process. The methodology does
not address the issue of definition of the task domain or how to select

sample tasks within a chosen domain. However, in Section 5.7 KAT is
related to current practices in system design where the selection of tasks
from task domains is considered.

5.2.1 Data collection: applying knowledge-gathering
techniques to task analysis

This section is divided into two parts: the first part is concerned with

general guidelines for task analysis, and the second provides guidelines
for using the various techniques. The next section is concerned with

guidelines for identifying task knowledge elements in KAT.

General guidelines for task analysis

Task analysis essentially involves obtaining different types of information
about a task or tasksfrom different sources using appropriate methods.

Task analysis is an iterative process where the analyst is constantly
seeking to identify new information, confirm existing information and
reject false information. These general rules of thumb are further

qualified by four general guidelines:

1 identify the purpose of the analysis;

2 check the analysis with the task performer(s);

3 analyse more than one person and one task; and

4 make use of more than one technique for gathering knowledge.

Knowledge-gathering techniques

1 Structured interviews and questionnaires Interviews and

questionnaries are suitable for extracting rules, general principles
behind task execution, background information covering

low-probability events and the reasons underlying behaviour.
Interviews may take less time to carry out than other techniques but
they rarely provide detailed knowledge descriptions, and should be
supplemented with direct or indirect observation of the task
performance of a number of individuals. Interviews are a useful
technique for providing an initial view of the task or set of tasks in
the domain.

2 Observational techniques These are particularly appropriate for

providing corroborating evidence and gathering more detailed
knowledge, when knowledge is context-bound and when the task
involves many individual steps. However, these techniques are
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time-consuming, cannot be used in isolation and require inference
on the part of the analyst to identify the structure of the task and
certain types of objects and actions. Direct observational techniques,
for example looking over the person’s shoulder, are intrusive and
may seriously influence the person’s behaviour. Indirect observation,
for example video recording, is less intrusive but requires time and
effort in setting up and analysis.

3 Concurrent and retrospective protocols Protocols are verbal reports
given by the person performing the task: they can be either
concurrent with the task performance, or retrospective. Protocols
provide detailed information on many aspects of a task, including
task goals, task plans, procedures, actions and objects. However,
protocols require some inference on the part of the analyst, the
responses must be carefully coded and the enterprise is
time-consuming. Furthermore, it is not always wise to rely solely on
verbal reports since people are not always able to give accurate,
precise or reliable verbal reports about their own behaviour. In
concurrent protocols (CPs) subjects report what they are doing while
they are doing it. CPS are appropriate when there is insufficient time
to carry out retrospective protocols and when the" analyst is
interested in what a subject is doing at a given time. It should be
noted that CPs may interfere with normal task behaviour in a
serious and not always obvious way. In retrospective protocols
( RPS) the subject is required to generate a durable memory trace
while completing the task, and then the contents of the trace are
verbally reported after the task has been completed. A retrospective
protocol could be given while the task performer observes his or her
own task performance, for example, using a video recording. RP
reports are appropriate when the analyst requires more reliable
information than is available through CP and when the subject can

be called back to go over the task recording. Additionally, RPs are

appropriate when the analyst is concerned with the reasons for and
explanations of any behaviour, cognitive aspects of tasks such as
planning knowledge, and the feelings and emotions the person
entertains about the task. Both concurrent and retrospective

protocols are normally collected along with direct or indirect
observations.

4 Experimental techniques Below follows a summary of several
experimental techniques which may be employed in identifying the
similarity of task components, for example the actions and objects,
and the features or attributes of those actions and objects. All the

techniques described in this section normally require the analyst
already to have obtained detailed background information through
completed interviews or analysed protocols.
(a) Kelly ’s repertory grid (adapted from Kelly, 1955) The task
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(b)

(C)

(d)

analyst must have already identified many or all of the
components of knowledge associated with a task or set of tasks.
The technique involves, first, selecting a given set of objects (or
other task components, e.g., procedures) and then presenting
these to the subject in groups of three. The subject is then asked
in what way(s) any two of them are alike and different from the
third. This grouping and separating process is repeated until all
the objects have been presented to the subject. The result is a
grouping of similar objects or other components which are
assumed to share common attributes. One problem with this

technique is that the analyst has to be very careful in choosing
which three components are presented at any one time since the
contrasting set can have a strong influence on any comparison or
grouping. There is also a possibility of forcing a classification
outcome which is arbitary, an artefact of the selection procedure,

and not representative of the actual relationships between
knowledge components in the task domain.
Card sorting (adapted from Rosch, 1978) In this technique the
analyst is concerned with the similarity of task components. The
task components can be objects, actions, procedures, etc. The
procedure of this technique is somewhat similar to that of Kelly’s
repertory grid (above). Task components are entered on cards,
one card for each component, and the subject is instructed to

group ‘similar components’, or ‘components which are the same
kind of thing’. Rosch (1978) and other researchers generally
instruct subjects to ‘put together the things that go together’. The
result of this technique, as with Kelly’s repertory grid, is a
structuring of similar components which are assumed to share
common attributes. Unlike Kelly’s approach, card sorting is

much less likely to be subjected to experimenter bias.

Rating scales Rating scales can be useful in identifying
representativeness. For example, the name of each object, or
other task component, is entered on a separate card and subjects
are instructed to judge the given object for its representativeness
and/or centrality to the task on an appropriate scale, for example
with the highest number of the scale representing greater
representativeness or centrality. An alternative to this procedure
is to instruct the subjects to sort the cards into an order of relative
representativeness and/or centrality to the task.
Frequency counts With frequency counts the analyst must note
on how many occasions a task knowledge component is either
used or referred to in a task or across tasks. The assumption is

that a knowledge component which is more central and/or

representative will have a higher frequency score than a
component of lesser centrality or representativeness. Frequency
counts provide an index which can be used to compare individual
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differences across different people performing the same task, and

also across tasks. Such comparisons provide some indication of

differences in task organization and task plans across individuals.
One problem with this technique is that it is likely to be very

time-consuming and exacting for the analyst. Furthermore.

frequency is only one criterion of centrality. and some task
knowledge components may be infrequently used or mentioned

but central to task performance in certain contexts.

5 Other useful techniques Other techniques which might be used in
addition to, or incorporated into, the above are:

(a) knowledge competitions;

(b) group discussions;

(c) multi-choice questions;

(d) task carried out by the analyst with instruction;
(e) observation with a knowledgeable person providing the

commentary;

(0 asking for sample outputs’,

(g) cooperating subjects (two or more subjects working in groups).

For further details on these techniques see Welbank (1983).

5.2.2 Identifying knowledge components in KAT

KAT is concerned with identifying a person’s task knowledge in terms

of actions and objects, and the structure of those objects, procedures,

the task plan, task goals and sub’goals. The techniques considered in
Section 5.2.1 above are now classified according to which aspects of
knowledge they elicit most effectively.

Identifying objects and actions

1/ Objects (and their associated actions) used in carrying out the task can
be identified from one or more of the following techniques:

1 Selecting objects and the actions associated with them from
textbooks, a tutorial session, pilot study or by the analyst herself

carrying out the task.

2 Questionning the task performer in a structured interview about the
actions and objects, and then listing all the relevant nouns and verbs

produced by the person in answering the questions.

3 Asking the task performer to list all the objects they can think of
which are involved in the task, and the actions carried out on them.

4 Directly or indirectly observing the person carrying out the task,
carefully noting what objects they manipulate and in what ways.

5 Noting all the objects and actions mentioned by the person in either
concurrent or retrospective protocols.
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entifying planning and procedural knowledge

IIS section summarizes techniques for identifying a person’s

iowledge of the task plan, the sequence of carrying out routine

ocedures, and strategies used in the task.

Asking specific questions in the structured interview This involves

asking a person how she or he plans the task, if the same plan is

used for any other task, and identifying any modifications required

to the plan. It is useful to ask specific questions of the sort, ‘What do

you do if’, for example, ‘X goes wrong or fails?’ The analyst should
also ask whether any particular strategies or procedures exist for

carrying out some part of the task, and if so how they are used, and

why they are there. A further question to ask is what indicates the

end of one part of the task, and what triggers the start of another

procedure.

Protocols and observation This involves initially having some

knowledge of the task so that the ending of one phase or part of the

task and the starting of another can be easily identified. A schema

for recording and interpreting the data is required.

Card sorting This technique identifies the sequence of carrying out

routine procedures and involves putting known task procedures on

individual cards, which the person then sorts into an appropriate
order for task execution. The results are then verified with other task

performers.

entifying subgoals and subtasks

1e identification of goals, subgoals and subtasks can be obtained by

re, a selection of, or all the following four techniques:

Asking specific questions in an interview about what are the goals

and subgoals ofithe task.

Using a textbook, instruction manual, or any other available written

material, which decomposes the task into goals and subgoals.

Asking or aiding the person to construct a tree, flow or hierarchical

diagram of connected goals and subgoals of the task, making a

specific requirement that they label different parts of the task.

Identifying different phases of the task either from observations,

concurrent or retrospective protocols. When using observations a

phase or part of the task may be identified by pauses. In concurrent

or retrospective protocols, it is important to make a note of such
statements as, ‘Now, I intend/want to ...’, etc. The analyst should be

sure which referents belong to ‘this’, ‘that’, ‘it’, etc. The task goal
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structure can and should be verified by checking it against the goal

structure provided by another person.

In this section we have discussed various techniques for collecting task

analysis data. Together these techniques form part of the KAT

methodology. The next section is concerned with analysis and

generalization of the collected data.

5.3 Identifying representative, central and

generic properties of tasks: KAT

methodology (part 2)

This section is concerned with identifying representative, central and

generic properties of tasks within a given domain or across domains.

Some task components are more representative/typical of a task than

are others. Central task components are those necessary to successful

task execution: without these central components the task goal will fail
to be achieved.

Generic task components, on the other hand, are those common

across a number of task performers. The term ‘generic’ in the context of

KAT relates to general rather than specific elements of tasks identified

by the analyst. The essential function of identifying generic task

components is to reduce variation both across subjects, across the

technology and across instances of similar tasks in the domain(s).

5.3.1 Representativeness and centrality

Identifying representativeness and centrality

Task knowledge components can be structured in terms of their

representativeness and centrality to the task, using one or more of the

following methods:

1 Frequency Count the frequency of times a particular task

component is referred to, in either interviews or protocols. The

assumption here is that the more representative/typical

components will be the most frequently referred to.

2 Ratings The analyst may use rating scales where the name of each

task knowledge component is presented on a separate card or other

medium, and the person asked to judge the relative

representativeness/typicality or centrality of each component on a

scale of, for example, 1 to 5.

3 Ordering Presenting task components on cards as in (2), the subject

is required to sort the cards into an order of increasing

representativeness or centrality of the task.

SKYHAWKE EX. 1017, page 69



SKYHAWKE Ex. 1017, page 70

KNOWLEDGE ANALYSIS OF TASKS 131 

4 Recall The analyst instructs the person to recall from memory all

the task components. The order in which they are listed may reflect

the order of centrality of each component within the task. The

resulting lists recalled (one from each person) can then be correlated

to determine the degree of agreement of task component centrality

across the sample population.

5.3.2 A method of generification

A method of generification must be capable of identifying generic

actions, objects, plansand procedures. Generification is the process of

abstracting from instances of tasks, people and technology and thereby

reducing the variance in task performance.

Generic actions and objects

The first step in identifying generic actions and objects is for the analyst

to construct two separate lists, one for the actions and one for the

objects that have been manipulated, mentioned or referred to in some

way by the task performer(s). These lists will contain disparate (and

often repetitive) information from each task performer over one or a

range of tasks.

For example, in the task analysis of an architectural task, namely

‘designing the room layout of houses’, lists containing all the actions

and objects suggested by two different architects were obtained. In

many cases the same actions and objects were manipulated or referred

to on both lists. Examples of the objects were plans, symbols, windows,

pipes, appliances, doors, pens, rulers; examples of the actions were draw,

rehang, check, reposition, etc.

The second step is to reduce the lists generated above to

comprehensive and non-repetitive lists with each action and object

appearing once only. However, the original lists are also retained, as

they provide a measure of frequency of the respective objects and

actions in the task and hence may be of use in the identification of

representative actions and objects.

The third step is to choose generic actions and objects and is achieved

in one of two ways. The first method is to assume a critical value or

threshold of frequency across subjects and tasks. The analyst must

decide at what level the frequency threshold is to be set in order tc

judge if something is or is not generic. (Caution must be taken in setting

this level as some or possibly all the objects and actions may already be

generic by virtue of being identified.) For example, it may be decided to

treat an item as generic if it is referred to by two or more task

performers. If this yields an unmanageable (i.e., too large) list of generic

actions and objects then the threshold may be raised. Setting the

threshold relies to some extent on the analyst’s intuition and experience;
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however, the analyst can systematically experiment with different
threshold values. Threshold setting is an iterative process. Essentially,
the essence of the approach is to treat frequency across people and tasks
as an indicator of generic terms.

Alternatively, the generic actions and objects can be selected by
grouping like terms. The assumption here is that the comprehensive
and non-repetitive lists contain all actions and objects involved in the
task and that these are then grouped. Grouping all like terms involves
the following:

1 The analyst(s) relying on intuition and using an iterative procedure
to associate a particular term with other similar terms. Similarity is
determined by attempting to re-express the original task description
in terms of the alternative or target term. If the alternative term was
‘adequate’ then the two are said to be similar.

2 Grouping by independent judges. The analyst asks one or more
judges to sort objects and actions into groups with the instruction to
‘group together the actions (objects) which go together, or are the
same kind of action (object)’. The results of each judge’s sorting can
then be correlated to identify the agreed, generic task components.

After the groupings have been produced, the next step is to identify a
generic label or term which might cover all the individual elements in a
particular set. These labels then represent the generic task elements.

In the architectural task ‘designing the room layout of houses’, we
used the threshold level method to identify generic actions and objects.
This procedure was used since there was a time constraint and generally
it is quicker to use a threshold value than to group like terms. By using
this method we identified many generic actions (such as ‘draw’) and
objects (such as ‘plans’). The ‘grouping like terms’ procedure has
advantages over the threshold method since it provides an opportunity
for the task performer to judge whether the generic actions and objects
identified are indeed generic. If the threshold method is used then some
checking of generic elements can be achieved by involving the task
performers in a validation process.

The fourth step is the validation of the generic elements. To validate
the generic elements, all the actions and objects are listed separately
from the generic labels. The task performers are then instructed to
identify to which generic group each action or object belongs. If the
action or object is not adequately covered by a generic title then the
task performer is free to supply an alternative group title.

Generic procedures, plans and goal structure

Procedures, plans, goals and subgoals are considered together here. One
obvious way in which procedures, plans, goals and subgoals differ from
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generic actions and generic objects is in terms of the number of
alternative choices available to the person. For example, there may be a

large number of objects and actions which have to be manipulated in

performing a task. However, there are likely to be a smaller number of
alternative plans involved in carrying out a task depending on

circumstantial constraints and very few alternative task goals and

subgoals. Task plans have generic features which are always present in

carrying out a particular task, but there will also be specific features
which make the plan and the ordering of procedures flexible and which

depend on differing circumstances and contexts. The procedure for
identifying generic procedures, plans, goals and subgoals is different

from that of the identification of generic actions and objects, and

consists of the following four stages:

1 List all the components and sequence-related details of plans,

procedures, goals and subgoals which result from carrying out the
identification procedures in Section 5.2.2 (‘identifying planning and

procedural knowledge’, and ‘identifying subgoals and subtasks’)
above.

2 Verify these details with a number of task performers by asking if

the procedures are appropriate and if they are in the correct

sequential order, or alternatively by having activities written

individually on cards that task performers must sort into an

appropriate order for carrying out the task.

3 Include in the generic description all generic procedures, provided

by a chosen number of task performers and instances of the same
tasks.

4 Verify this generic description with a sample of task performers by

asking if this is how the task is usually carried out and by noting
under which circumstances exceptions are appropriate.

5.4 Task modelling: KAT methodology

(part 3)

5.4.1 Constructing task models

A task model is a model of the user’s knowledge of a task. The aim of

task analysis is to identify the functional attributes of a person’s task

knowledge (see Johnson et al., 1988). In this section we provide a

methodology to aid the analyst in constructing task models.
We demonstrate the task-modelling method here by constructing a

model in the domain of the architectural task referred to previously.

Four stages have been identified in the construction of a task model.
These are as follows:
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0 construction of a summary task knowledge structure (TKS);

0 construction of goal-oriented substructure;

I task procedures;

0 construction of a taxonomic substructure from the generic task
actions and objects.

Construction of a summary task knowledge structure (TKS)
In this, the first stage in task modelling, we assume that the analyst has
identified the task(s) to be analysed, and then collected the appropriate
data using the procedures outlined earlier in Section 5.1. These data
should then have been subjected to a generification analysis by which
common task knowledge components were identified (see section 5.2).
These common task knowledge components then make up a subpart of
the TKS.

A TKS includes a summary of all the knowledge a person possesses
about a task and gives the task analyst the opportunity to label the
identified knowledge. One significant advantage of modelling knowledge
in this way is that links to knowledge required by similar tasks can be
made. Through making such links commonalities between task
knowledge may be identified, either by within-role relations or
alternatively by identifying common task elements, for example objects,
actions and/or plans. For example, a computer system and its user
interface might be required to support several types of tasks both within
and between roles. The summary TKS identifies what the common
properties of knowledge across a variety of tasks are, and thus what the
common requirements of the system might be.

Within a summary TKS there are goal-oriented and taxonomic
substructures and procedures. The next section describes the
construction and properties of goal-oriented substructures. Figure 5.1 is
a summary TKS for the architectural task ‘design the room layout of a
house’.

Construction of a goal-oriented substructure

Planning activity involves satisfying a set of goals and subgoals by a
prespecified sequence of procedures of actions upon objects. Therefore,
plans are inherent in goal-oriented substructures. A goal-oriented
substructure can be represented by a network of structured goal nodes
which direct sequences of events which unfold over time, and eventually
satisfy subgoal nodes. Goal nodes can vary in hierarchical level. An
assumption made here is that goals and subgoals can be represented by
nodes with links between them. Nodes can be treated as conditions, as
states or as desired states (subgoals). Subgoals can also be
hetirarchically and concurrently related to each other.

The goal-oriented substructure ‘calls up’ appropriate knowledge from

 

SKYHAWKE EX. 1017. page 73



SKYHAWKE Ex. 1017, page 74

I---—

KNOWLEDGE ANALYSIS OF TASKS 135

 

 Concept: Task of house room layout 

 
 

Specific plan, .
e.g., 5-bedroom, 3- /( \-.~
bathroom house on/' Sjmifar task
steep 5'0“ _./ (office design)

I 5’ ‘ Similar task
PLAN (executed in) -——-> (kitchen layout)
goa|—oriented substructure

incorporates
_ Procedures ehTaxonomic substructure:

(actions upon objects) categories of
generic actions and
generic objects

Objects Actions

Objects and actions differ Plan/sketch Move
in representativeness and Symbols Draw
centrality. Pen Position

Figure 5.1 Task knowledge structure for the ‘design the house room

layout’ task

the taxonomic substructure by the use of procedures. Associated with

subtasks are sets of procedures which have to be executed in order to

achieve subgoals directly or indirectly. It should be noted that any

subgoal may give rise to further planning activity and subsequent

subgoals and thus be indirectly related to a procedure set. Figure 5.2 is

a subpart of a goal-oriented substructure for the room layout task.

Task procedures

Task procedures define the ordering of action object combinations in

the execution of a given subgoal. The procedure contains sequence,

iteration, and other control information which affects the execution of a

subgoal. Task procedures are collected together in a procedure set

(rather like a macro procedure). Task procedures are executable

behaviours. The procedures can be modelled by production rules, by

psuedocode or alternatively by frame-based representations as in

Johnson et al. (1988) and Keane and Johnson (1987). Each task plan

ultimately requires an appropriate procedure set before it can be

realized in actual behaviour. Task procedures are the process by which
the taxonomic substructure is activated.
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1 State:
architect is

able to design
house layouts

 

  
 
 

 
  

 
2 Goal:
architect
wants [0

design a house
layout

5 State: _,»"
client wants '

house designing
 

  
  
 

4 Subgoal:
check if

financially
feasible

 
 3 Subgoal:

prepare general -
outline

 
Subtask = prepare general outline (PGO)

(strategy 1)

  
  

 

Procedures for PGO—strategy 1 : — —> Production rules
for setting up
client for briefing 1 Set up client for briefing.

2 Consider client requirements.
3 Note requirements.
4 Check planning level.

IF (there is a phone
number for the client
in the files) THEN
(ring up client to
make appointment). OR
IF (there is no phone
number) THEN (check
files for an address).
IF (there is an
address) THEN (write
to client to make an

appointment).

Taxonomic substructure
of actions and objects.
and task rules

Figure 5:2 Subpart of a goal—oriented substructure of the
architectural task

Not only may the task be decomposed in different ways; there may
also be a choice between a number of different strategies which are

context-dependent competing sets of procedures. One set of procedures

may be more appropriate than other sets. Strategy appropriateness will
be affected by contextual information and the circumstances under
which the task is to be executed. Single procedures in a given strategy

may differ in how central they are to the task as a whole. Some

procedures will be so central to the task that a failure to execute will
result in the task being unsuccessful.
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l; Superordinate task category—house room layout

Basic level category object. ‘PLAN’

Is a member of . . . superordinate task category.
‘house room layout’

ls used in 1. Redraw rough sketch as outline plan.
procedures . . . 2. Move bathroom symbols to check

I for door opening.

ls related to Sketch—follows

task objects by . . . More detailed plan——precedes. primes

Is associated Draw
with actions . . . Redraw. change

Has features . . Can represent objects
Can be drawn on paper
Can be two-dimensional
Occur throughout tasks

Is a typical instance . . . A ‘PLAN’ for a three bedroomsemi-detached house.

I

1

Subordinate category level: a particular type of ‘PLAN'. or specific
‘PLAN’. for example, a ‘PLAN’ of a bathroom

Figure 5.3 Taxonomic substructure for the architectural task
illustrating the basic—|evel object ‘PLAN’, and its relations to the
superordinate category levels

Construction of a taxonomic substructure

The taxonomic substructure contains knowledge about generic actions
and objects and the relationships between them. The taxonomic
substructure has three levels of abstraction (see Rosch et al., 1976) but
is not a static hierarchy.

The top level of the taxonomic substructure is the superordinate task
category. In Figure 5.3 the superordinate category for the architectural
example is ‘house room layout’. The basic level of the taxonomic
substructure contains the objects and their associated actions which
constitute the superordinate task category. The basic level task category
represents knowledge including the following:

0 in which task procedures a category member is used;

0 which other task objects a category member is related to, and what
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that relationship is (i.e., whether the category member primes,

precedes, follows or is carried out in conjunction with other task

objects);

0 which actions are associated with a category member;

0 what features or properties a category member possesses;

0 the usual circumstances under which a particular category member

occurs (for example, whereabouts in the task the category member is

manipulated);

0 central and typical objects and actions.

Other features of knowledge may also be included at the basic level.
The bottom level of the taxonomic substructure is the subordinate

task category which contains a particular type of the object represented

at the basic level. The hierarchy is shown in Figure 5.3 using the

example of a ‘plan’ (i.e., sketch plan) as the basic level category object
from the architectural domain task.

5.5 Summary features of KAT

The KAT methodology presented here relies on category theory,

general knowledge structures and other aspects of cognitive psychology

to provide the rationale for making design recommendations and

improving design usability. We believe that existing user knowledge will

be maximized, leading to quicker learning, potentially fewer errors and

easier task execution if the design of the system represents the task

components which have been argued as forming a part of a TKS model.

If representation of all task components is not possible then the most

representative and central actions and objects which have been

identified should be represented. A prediction here is that the usability

of the system will decrease proportionally to the number of

representative and/or central objects or actions not represented to the
user at the interface.

Moreover, the user interface design should support the usual

sequence for carrying out the task(s) as a default while allowing

sequential flexibility by supporting the different, previously identified

strategies, which are employed by task performers in usual
circumstances of task execution.

5.6 Making design recommendations

from KAT and TKSs

The TKS model contains useful information which can be used to

influence the design of a computer system. Consider the design of a
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computer—based messaging system to support the common task of

‘arranging a meeting’. This is a task common to architects, managers,

secretaries and other job-roles. The manner in which the TKS model

may influence design relies upon the overriding assumption that a

computer system will be easier to use if the users are able to transfer

some of their existing task knowledge to the newly created environment.

This assumption underpins the use of metaphors suchias ‘desktops’ or
‘forms’, in which the system design attempts to retain some identifiable

links with a user’s assumed extant knowledge about real desktops and

paper-based forms.

However, it is clear that a metaphor is only one mechanism by which

transfer of extant knowledge might be facilitated; furthermore, the way

in which a metaphor might function is itself the subject of some debate.

Moreover, not all aspects of a person’s extant knowledge will be

relevant or transferable to the new environment. For example, the

knowledge of how to dial and use a telephone may have little relevance

in supporting communication by a textual computer-based messaging

system. Nevertheless, the knowledge a person utilizes in asking

questions, making requests, or providing answers would be applicable
to both the old and new environments for communication and could

(should) be supported in the new environment.

5.6.1 The TKS design support hierarchy

The TKS model identifies the conceptual knowledge structures which a

person is assumed to access when carrying out any task. Having

constructed a TKS model the analyst has identified a number of

important properties of user’s task knowledge of benefit to the system

designer. At the highest level the TKS shows the relations between tasks

and roles. This information provides the designer with a view as to the

different kinds of tasks the system will support by virtue of common

task/role properties, and also how different roles might expect to have

access to the same task functions and to those task functions specific to

particular roles. Task role information is also of use to designers who

may be concerned with configuring a system to suit the needs of a

particular organization, since it shows the task/role match of the

organization.

The next level of the TKS represents an overall summary of the plan,

the procedures, and the objects and actions people associate with a

particular task. This information may be of interest to the designer in so

much as it provides an overview of particular contexts in which specific

procedures might be used. It could also be used to provide the user with

a summary representation of how the designer expects a task to be
carried out.

At the next level of representation the TKS model identifies a

person’s knowledge about the identified goal of the task and the plans
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