

Exhibit 1016 – Part 2 Exhibit 1016 — Part 2

Dialogue structures —forms, commands and hybrids 111

reporting errors immediately may be distracting but immediate confirmation
of a coded value as a result of a validation may also be desirable. As a rule of

thumb, in cases where the input comes from a source document, validation is
deferred to the end of the form to avoid disrupting the keying process; where
there is no source document, validation is immediate.

If any errors are encountered, the dialogue does not redisplay a new blank
form; the form with the previous answers is shown with any erroneous items

indicated. In the human-human analogy, you only get a new form ifyou have

made such a complete mess of the previous one that it is simpler to start again
from scratch.

As with the Q&A and menu structures, an individual answer may represent

either selection from a list of possible replies or an arbitrary data value. It is

traditionally entered as a text string but, as we saw in Chapter 4, a selection

input may be made by scrolling round a supressed menu; this is analogous to
‘delete as appropriate’ on clerical forms.

5.2.2 Design Criteria

Forms are a natural mechanism for the entry of transaction data since a

transaction, by definition, comprises a relatively standard set of data values.

Thus, the structure is particularly appropriate where the source of the data is

an existing clerical form. In the example of Fig. 5.1, the dialogue knows in

advance precisely what data items are required since a field is defined in terms
of content, slot and attributes.

The criteria discussed in Section 4.3.2 for Q&A apply to the phrasing and

display of the individual questions on the form. Answer fields should be

clearly differentiated from the rest of the form by boxing with a particular

attribute or by delimiting them with ‘decorators’ such as the brackets in the

example of Fig. 5.1; the remainder of the screen should be protected so that
input echo is restricted to these areas. The fact that the screen contains a

number of questions imposes additional requirements which complicate the

design of the screen layout; layout considerations are discussed in Chapter 7.

It is essential that the form displayed on the screen should match any
clerical form from which information is to be taken. It need not have exactly

the same physical appearance, indeed this can result in a very cluttered screen,

but all input items must appear in the same relative order and have the same
format as the source data. The reasons for this are obvious if you consider the

input process.

112 Chapter 5

Often, all the items required cannot be displayed on a single screen but
must be broken into sections which are displayed on successive screens. It is

essential that this breakdown preserves a logicalgrouping so that related items

are not split over different screens. An existing clerical form will provide
strong clues as to where such breaks should occur; Chapter 7 provides an
example of this process.

The forms structure is highly supportive. Where a physical form provides

the source of the input, little additional support is required from the dialogue.
Since the user is required merely to transcribe the information, the screen can
be relatively full, with the questions merely terse captions. The minimum
requirement is that the user can read his input to check it.

Where there is no corresponding physical form, a user will read the screen
form to determine the input required. The screen must therefore be less full
and the questions more explanatory. Help and error messages should be
specific to a particular question and the user should be able to request help in
response to any question on the form. Support can also be provided by
including format details in the questions or answer fields, e.g.

Invoice Date (dd/mm/yy)[] or Invoice Date [/ /]

It is important not to over-format the input in such cases; the address format

No & Road []

District []

Town []

County []

admits only of a typical suburban address whereas address styles vary widely

depending on location. With one particular public utility, it is almost

impossible to book a service if you live on a farm — their computerised
booking system insists that every house has a number and will not proceed
further until the number is input!

A potential problem occurs where a clerical form contains additional fields
which are not required to be input. Such areas on the clerical document

should be clearly distinguished from those containing data to be input. A

clerical form may also contain optional items, or items which are completed

only if a given value is entered in an earlier field; ideally, these should occur
at the bottom of the form. If this is not possible, the system should

automatically skip over any question, corresponding to these optional items,

which does not require an answer and should provide confirmation that it has
done so.

Dialogue structures —forms, commands and hybrids ll3

5.2.3 Implementation

Like the menu structure, the form structure has two main stages: a single

display of the form followed by repeated requests for input until the form is
complete. The form may be complete either when the user enters a specific
form terminator or, if no such terminator is defined, when all the questions
have been answered.

A form can be defined as a set of output fields. Unlike a menu, however,

there is no single way of subdividing this set into subsidiary structures which
will define any form. There may be fields which, in some forms, perform the
role of a ‘form header’ or ‘form trailer’; there are fields in Fig. 5.2 which

obviously fulfil this role. There are other output fields which specify captions;

although these represent questions to the user, they have no significance to the

dialogue process. There are also various other outputs such as subheadings
and ‘decorators’ which define the form’s outlines. We might consider all these

output fields to be ‘background’ items which define the shape of the form.
Thus a form can be described by a data structure of the type described in

Fig. 5.3. Note that a simple boxing of the form could be accomplished merely
by adding an attribute, boxed, to the FormDIB definition; see Question P1 of

Chapter 4. Our FormFie1dListType definition allows a more flexible use of
decorators.

Fil Definition

Foreground[] [
Bold (y/n) [] Blink(y/n) [

F2 =he1P

I51!!!

Content: [

Background

Fig. 5.2. An input form.

Fcrml-‘ie1dL:lstType = array[1..MaxFomF1e1ds] of Fie1dType:
1-"ormDIBtype - record

NumberOfFormF:l.e1ds : byte:
Form1"ie1dL:l.st : FormF:Le1dListType:
and:

Fig. 5.3. A form Dialogue Information Block (FormDlB).

114 Chapter 5

The form in Fig. 5.2 can then be created by the program fragment:
with FormDIB do

begin
Formoutline:='back=hlue,fore=wbite';
TLCornet:=chr(20l); TRCorner:-chr(187);
BLCorner:=chr(200): BRCorner:-chr(18B):
horizontal:=chr(205); vertica1:=cbr(186):
bar:=": space5:=":for k:=1 to 47 do

begin
bar:-concat(bar,horizontal)7
spaces:=concat(spaces,' ');
end;

Number0fFormFie1ds:=15;
CreateFie1d(FormFieldList[1],concat(TLCorner,bar,TRCorner),

2,lO,49,FormOut11ne);
CreateFie1d(FormFie1dList[2],

concat(vertica1,‘ Field Definition
,vertica1),

3,10,49,Form0ut1ine):
CreateFie1d(FormFie1dList[3],concat(vertica1,spaces,vertica1),

4,10,49,Form0ut1ine);
createFie1d(FormFie1dL1st[4],

concat(vertica1,
' Content: [
,vertica1),

5,10,49,Form0ut1ine);

CreateFie1d(FormFie1dList[15],concat(BLcorner,bar,BRCorner),
16,1o,49,FormOut1ine):

end:

The form can be displayed on the screen by the procedure DisplayForm
illustrated in Fig. 5.4.

procedure Disp1ayForm(FormDIB:FormDIBtype);
var k : byte;
begin
clearscreeni
with FormDIB do

begin
for k:= 1 to Number0fFormFields do

Disp1ayFie1d(FormFie1dList[k]);
end:

end: (DisplayForm)

Fig. 5.4. Defining and displaying a form.

Dialogue structures — farms, commands and hybrids 115

What parameters are required to define the ‘foreground’ of the form? The

foreground represents the answers which the user supplies to the questions on
the form. The display of the questions themselves has been taken care of

implicitly in the form background; as with the menu structure, a question will
not normally be redisplayed when a particular answer is requested. There is

no possibility of implementing a form in ‘teletype’ mode. However, it is
conceivable that some indication, other than the input echo, of the current

question may be displayed. For example, the question or a subheading might
be highlighted. We will allow the possibility of an explicit question when each

answer is requested.

Thus, to process the user’s answer to the question requires the same

parameters as in the Q&A or the menu structures, ie. those parameters which
were specified in the QandA_DIB data structure. Since the values of these

parameters are likely to be different for different questions, there will be a

separate QandA_DIB for each question within the fonn. The foreground of

the form is represented by a set of QandAJ)IBs as in Fig. 5.5.

QandAListTypa - array[1..MaxQuestions] of QandA_DIBtype;
QandASet_DIBtypa - record

Numherofouestions : byte;
QandAList : QandAListType;
Currentquestion : byte;
and:

Fig. 5.5. Dialogue Information Block for form input.

In practice, there are more efficient storage mechanisms than the structures

comprising arrays of arrays of fields which we have used, e.g. arrays of

pointers or linked lists. We will continue to use array structures for list

structures in the descriptions because of their conceptual simplicity.

A ControlDIB must be initialised with values which control how the input

will be handled by the input/output processes for each Q&A step; the need for
consistency dictates that these values will be the same for all items on the

form. Additional control characters are needed to allow the user to skip over
a question, to go back to a previous question and to hand the completed form

back to the dialogue process. These values occupy three of the previously
undefined elements ofthe Contro1DIBtype data structure as illustrated in Fig.
5.6.

Paz'ntNextField and P0intPriorField allow the user to scroll around the

questions on the form; AcceptFarm provides a facility for the user to confirm

completion of the form by pressing a specific key. If the ReadField process
receives any of these characters, it terminates immediately and returns the

116 Chapter 5

controlbtatypa - recordcantrolauttar : byte;
rubout : byte:
Echoswitch : offoni
Aceeptrield : byte:
ReqnestAhort : byte:
Requestflelp : byte:
PointNextTarget : byte;
PointPriorTarget : byte;
AcceptTarget ‘ : byte;
Polntflextfiald : byte:
PointPriorF1e1d : byte;
Acceptrorn : byte:
tesarved4 : Setofnytei
and;

Fig. 5.6. The ControlDIB with forms controls.

control character in ControlBuffer so that the dialogue process can take any

necessary action. If both PointNextField and PointPriorField are null, the
user is constrained to answer the questions in order; if AcceptForm is null, the

dialogue will assume that the form is complete when the last question in the
set has been answered.

The user also proceeds to the next question when he completes the current
one. A question can be completed in two ways: manual skip requires the user
to enter an explicit terminator character for each answer field; auto skip
proceeds to the next question as soon as the answer field slot is filled. The
ReadField process supports both these mechanisms. If ControlDIB contains
a non—nul1 value for AcceptField, this value must be entered to terminate

input —- a manual skip mechanism. If AcceptFie1d is null, the input will
terminate when answer.slot.width characters have been entered — an

autoskip mechanism.

Manual skip is to be preferred unless the vast majority of the input is of a
fixed length, in which case the need to type fill characters is minimal. What is
to be avoided at all costs is a combination of the two, i.e. where a skip to the

next field occurs either when the last input position is filled or when a skip

character is input. Users will get into the habit of typing a skip character at the
end of each input and will do so even where it is of maximum length, causing
a double skip. This inconsistency is precluded with our single ControlDIB
which controls all input throughout the form. There is another problem with

auto skip which concerns the editing of input: if the user is going to make a
typing mistake, he had better do it before the last character!

A procedure, FormlnputIV, which performs immediate validation of any
input which represents selection from a targetlist is illustrated in Appendix I.

Dialogue structures - forms, commands and hybrids

procedure FormInputDV(var QandASet_DIB:QandASet_DIBtype;
var Contro1DIB:Contro1DIBType);

var complete : booleant
begin
with controlDIB,QandAset_DIB do

begin
complete:-false;
repeat

Arbitrarynata(QandAList[currentquestion],Contro1DIB):
QandALiet[currentouestionj.ErrorF1ag:-off;
if equal(controlnuffer,RequestAbort)
or equal(controlaurfer,AcceptForm)
or ((Currentouestion=NumberofQuestions) and (AcceptForm=0)) then

complete:=true
else (test for scroll back)
if equal(contro1Buffer,PointPriorFie1d) then

if currentquestion-1 then currentquestionz-Numberofouestions
else currentquestion:=CurrentQuestion-1

else (test for scroll forward)
it equal(conttolbufter,Pointnextrield) then

it Currentouestion-Numberofouestions then currentQuestion.=l
else currentquestion:-currentQuestion+1

else (proceed to next outstanding question)
begin
while (currentquestion<-Numberofouestions)
end (QandAList[currentquestionj.ErrorF1ag=off) do

Currentquestion:=CurrentQuestion+17
if Currentouestion>Number0fQuestions than

it Acceptrorm-0 then complete:-true
else CurrentQuestion:=l;

end:
if not equal(ControlBuffer,RequestAbort) then

ControlBuffer:=0; (because it has been actioned)
until complete:
end:

end: {FormInputDV)

Fig. 5.7. Input to a form with deferred validation.

We will consider here a procedure, FormlnputDV illustrated in Fig. 5.7,

which performs deferred validation. If validation is to be deferred until the

form is completed, each input must be treated as an arbitrary data Value, i.e.

each input field is accepted via procedure ArbitraryData (Fig. 4.5).
When the Formlnput procedure returns, the user’s response to question k

will be contained in QandAlist[k].answer.content. The dialogue must then
invoke validation of each of these answers and, if an error is encountered, set

the ErrorF1ag and ErrorMessage in the QandA_DIB for QandAList[k].

This procedure is called repeatedly until all errors are eliminated as
illustrated by the following program fragment:
for k:=1 to Numberofquestions do

begin
(ensure each question is asked the first time through)
(it's an error initially since he hasn't entered anything)
QandAList[k].ErrorFlag:=on;
(but there is no error message to display)
QandAList[k].ErrorMessage.content:=' ':
end:

118 , Chapter 5

CurrentQuestion:=1;
complete : -false,-
repeat

FormInputDV(QandASat_DIB,Contro1DIB)7
if equal(Contro1Buffer,RequestAbort) then

comp1ete:=true
else

begin
NoErrors:=true:
for k:-1 to Numberofouestiona do

begin
(validate answer k
if invalid then

set ErrorF1ag:=on for QandAList[k]
set Errornessage content for QandAList[k]
if NoErrors then

NoErrors:=fa1se
CurrentQuestion:=k)

end:
if Nofirrors then comp1ete:=true;
and:

until complete;

Note that the process illustrated in Fig. 5.7 allows the user to change any of

the answers, not just those that were flagged as invalid. This reflects clerical

form filling; if you are handed back a form to correct, you can change

anything on it. By default, the dialogue will request the next outstanding
answer —- the next one with ErrorFlag set on. To ensure that all answers will

be requested the first time through, the dialogue initially sets the ErrorFlag to

‘on’ in each question.

5.2.4 Summary

Many interactive systems have a requirement for data entry via a standard

sequence of questions. The form structure suits such usage, which is common

in accounting and order processing applications. It is quicker than Question
and Answer, it can handle a wider range of inputs than menus, and it can be

used by any level of user. Most people are familiar with the concept of filling

in forms even if they claim to abhor doing it! Because it has a sequential rather
than a tree structure it is less appropriate for option selection.

Another area where form filling has been used is to specify the parameters

for querying databases. The mechanism is called Query byExample. The fields

on which the database can be searched are displayed as column headings on
a form. The user enters in each column the values on which he wishes to

search. The values input in a given column are ‘ORed’ and the columns are
‘ANDed’, so that an input of:

Dialogue structures — forms, commands and hybrids 119

would select all SECretaries in LONdon, BIRmingham or MANchester and

who are classed as having skills A or C. It eliminates the problems caused

when parentheses must be used to cater for different precedence in the logical
operators, e.g.

(grade=SEC) and ((loc=LON) or (loc=BIR) or (loc=MAN))
and ((skill=A) or (skil1=C))

Multiple choice menus are also a type of form filling. With such a menu, the

user is presented with a list ofoptions but is not restricted to a single selection;
he may make zero or more selections from it. Figure 5.8 illustrates such a

menu which is presented to the user of a Terminal Emulator package, a
program which enables a microcomputer to be used as a dumb terminal. Each

of the options on the list represents a terminal characteristic which may be set
or unset by the user. To change a characteristic, the user scrolls to the relevant

option and types ‘y’ to set it, or ‘n’ to unset it. Thus the menu illustrated in Fig.

5.8 is effectively a form with five questions, each of which expects a yes/no
answer; the questions have a default answer and so he need not answer each

explicitly. This structure is typical of multiple choice menus. Note that, as

with most forms, the user can continue to scroll around the options until he
presses the AcceptForm key, function key 1 in this case.

Terminal Configuration

Local Echo [Y]

Local Print [N]

Auto Linefeed [Y]

Auto LineWrap [N]

VTIOO Emulation [Y]

press Fl to exit

Fig. 5.8. A multichoice menu.

120 Chapter 5

5.3 The Command Language Structure

5.3.1 Features

The command language structure is almost as commonplace as the menu

structure, primarily because it has been a very common style for computer
operating systems. It is at the opposite end of the spectrum from the menu
structure. The use of the term ‘command’ reflects the parade ground analogy

upon which it is based; the user is the drill sergeant and the system the
subservient private. The private speaks only when he is spoken to. When the
drill sergeant speaks he supplies in a single command all the information
required to carry out the task he wants accomplished. This involves
identifying the task and possibly supplying any data values which the task
requires. For example

‘Halt’ — task requiring no data values

or ‘Peel me a grape’ — task and associated data values

Traditional command language dialogues operate in teletype mode. The

system says nothing except to display a constant prompt (such as the
ubiquitous ‘drive>’ of most microcomputer operating systems) to indicate its
readiness to obey. Each command is entered on a new line, and is usually
terminated by a ‘carriage return‘ or ‘enter’ character.

A>clir

A>pip h:=a:*.com
A>mode com1:9600,e,7,1,p

The private does not question an order; if told to do something stupid, he
proceeds to try to do it. Command languages basically adopt the same
approach and assume that the user knows what he is doing. There may not be
many cases of soldiers marching off a cliff because the sergeant said ‘right
wheel’ instead of ‘left wheel’ but there are many cases where, for example, a
old version of a file has overwritten a new version because the user got the

copy command wrong.

If a command is impossible to carry out, the private may say so without

identifying the particular part which is impossible. Similarly, when further

processing of the input line is impossible, a command language structure gives
up, usually with a fairly non-specific error message, and the whole input must
be repeated. For example,

Dialogue structures —f0rms, commands and hybrids 121

A>dri a.*.com

Bad command or filename (what is invalid?)

5.3.2 Design Criteria

Like the menu structure, a command language is appropriate for Input
Control messages; it can, however, cater for a very wide range of options at

any point in the dialogue, and does not require the background tasks to be

hierarchically structured. Hence, it is appropriate to applications like

operating systems where the background tasks form a flat structure of equal
but distinct tasks, a sort of primaeval soup in which the tasks float like
croutons waiting to be speared with a command fork!

Although it can support a relatively large set of commands, in practice the
number in common usage is normally limited to reduce the load on a user’s

memory. Command language is the least supportive structure, and is

appropriate to experienced and frequent users. Initial training is necessary

before a user can use the system and he will only discover the full range of the
system’s facilities by external instruction rather than by using the system itself.

Furthermore, since the system has no way of knowing what the user wishes

to do, it is difficult to provide help facilities other than of a very general
nature.

Because of the load imposed on a user’s memory by the structure, it is
important that the command identifiers are chosen so as to have a

commonsense interpretation and to be easy to remember. Naming of the

commands, or even positioning of command keys, can provide perceptual
clues to aid memory. Thus the cursor positioning commands in WordStar
reflect their layout on the keyboard.

Q W R T ctl+E = up a line

ctl+A = word left ctl+F = word right

ctl+S = char left ctl+D = char right

Z C V ctl+X = line down

This naturalness has not always been obvious in the command dialogues

which have been implemented; it is doubtful whether many people who did
not work with DEC equipment in the 19605 would immediately associate the

PIP (standing for Peripheral Interchange Program) command of CP/M with

a copy operation. The UNIX operating system provides some even more
exotic examples.

122 Chapter 5

The daigner must guard against excess functionality resulting from an

attempt to cater for every possible combination of task requirements with a

single command line; that is, against developing a multiplicity of different
commands, often performing overlapping functions. Such attempts at

‘helpfulness’ often result in a bewildering array of command keywords and

syntaxes, most of which are seldom used and which confuse the majority of
users.

The dialogue must handle data messages. This is typically done in a
command language structure by means of compound input messages where

the command keyword (input control) is followed by a parameter list (input
data). For example:

PIP newfile=oldf1le

contains the command keyword ‘PIP’ identifying a copy task and the

parameter list ‘newfile=oldfile’ specifying that the contents of the file named
‘oldfile’ are to overwrite the contents of a file named ‘newfile’, or to create

‘newfile’ if it does not already exist. A parameter list may be expressed in one

of two formats: positional parameters or parameter keywords.

The meaning of a positional parameter value is defined by the relative

position it occupies in the command string. Thus, in the example

COPY thisfile newfile

the first parameter is the ‘source file’ (the file to be copied), and the second

parameter is the ‘destination file’ (the new file to be created). A delimiter such

as a comma, a slash or a number of spaces is used to separate one parameter
from another.

With parameter keywords, each parameter value is preceded by a

predefined identifier which specifies its meaning. Thus, in

COPY SOURCE=thisf1le DESTINATION=newfile

the kewords SOURCE and DESTINATION identify which filename is
which.

Positional parameters reduce the volume of input, but it is obviously
essential that the values are entered in their correct order. Since rather

unpleasant results can arise if you get the source file and the destination files

the wrong way round, it is unfortunate that two widely used operating

systems (CP/M and MS-DOS) use different orders in their respective copy
commands! Positional parameters become particularly trying when the
parameter list is long; some operating system commands take a dozen or

Dialogue structures — forms, commands and hybrids 123

more parameters. When parameters can be omitted by entering two

separators together at the appropriate position, this complexity is
compounded.

Parameter keywords reduce memory load in one respect since order is no

longer significant, and optional parameters can simply be omitted; it
introduces another load, however, by requiring the user to remember more

keywords, and the designer to invent ‘meaningful’ names for them. This

approach also requires more processing by the system to cater for the
recognition of keywords, and the flexible order.

In many command languages, the parameter list may also contain switches

which alter the way in which the command is interpreted. Switches normally
may occur anywhere in the parameter list and are denoted by an identifier; the

prefix ‘—’ is used in UNIX and the prefix ‘/’ in MS-DOS. Thus, in UNIX

(MS-DOS), a short form directory listing is invoked by the command

ls mydirectory (dir mydirectory /w)

and an extended directory listing with file sizes and dates by

ls -l mydirectory (dir mydirectory)

Many command languages support macros as a means of providing
increased functionality in a single input without increasing the number of

commands. A macro consists of a series of separate command strings stored
as individual lines in a text file, called a Submit file in CP/M, a Batch file in

MS-DOS and a shell script in UNIX. When the file name is entered, the

individual command strings of the macro are executed one after another, as

though they had been typed at the keyboard. Symbolic parameters may be
specified in the command lines of the macro; these are replaced by the actual
values entered as parameters of the macro when it is invoked. Thus if an MS-
DOS macro called CLG.BAT contains the lines:

pas %1.pas

link %1.obj
%l

entering the command line ‘clg myprog’, will cause the execution of

pas myprog.pas

link myprog.obj
myprog

124 Chapter 5

5.3.3 Implementation

There is an obvious similarity between a command input and form input. A

Command input can be considered as supplying a series of answers to a series
of implicit questions. Thus the input

A>copy FromFilename ToFilename

could be considered as answers to the implicit questions

command 2 copy
source : FromFileName

destination : ToFileName

Like the form, there must be some criteria for deciding that the user has

completed the input; for a command, CarriageReturn acts as the terminator.
However, unlike the form, the set of questions is not known in advance. It is

not known until the particular command has been identified or, in some cases,

which variant of the particular command. For example, the MS-DOS mode
command comes in three different flavours:

mode {integer} to set the screen mode

mode coml:{BaudRate},{Parity},{DataBits},{StopBits},{Timeout}

to configure the serial port characteristics

mode lptl:={Pl|ysical}

to assign a physical port to the screen echo

The input process for a command language is usually compared with the

parsing of a program statement by a compiler or (more accurately) an
interpreter. Although the basic syntax of an input is very rigid, there may be
several variants of a command and there is often a good deal of freedom

about things like how many, if any, spaces may appear in it. The software to

implement it is considerably more complex than that required for the other
structures. Instead of matching a single response, the dialogue process must

first split the command into its constituent parts (called tokens), and carry out

a greater number of matching operations to determine what option is
required, and what data values are being passed to which parameters.

Figure 5.9 shows possible pseudo-code to implement a Command

Language structure. GetResp0nse gets a string of characters from the

keyboard, ending with a terminator character. The ReadField process could

be used to accomplish this. GetToken gets the next token from ‘Response’. If

GetToken is applied four times to a Response of ‘PIP newfi1e=oldfile’, it will
successively return the tokens ‘PIP’, ‘newfile’, ‘=‘, and ‘oldfile’.

Dialogue structures —forms, commands and hybrids 125

repeat

Display BarePrompt

GetResponse
Matched:=true

Set ValidTokens to possible commands

while Matched and Morelnput
GetToken

Match Token against ValidTokens
if not Matched

Display ErrorMessage
else

Set ValidTokens to permitted values of next parameter
endif

endwhile

if Matched check if Complete

until Matched and Complete

Fig. 5.9. Pseudo-code for a command language structure.

5.3.4 Summary

A command language is potentially the quickest and most flexible of all
structures, and the majority of ‘natural language’ dialogues are basically

command language structures with a very extensive vocabulary. Experienced

users enjoy the feeling of controlling the system rather than being controlled

by it. However, it offers little support and even experienced users find it

difficult to utilise the full power; most are familiar only with the very limited
subset of facilities which they use regularly.

In fact many of the desirable aspects of a command language may be

mimicked with the Q&A structures and processes discussed in the preceding

sections. We will return to this topic in Chapter 9.

5.4 Hybrid Dialogues

It should now be apparent that the four basic dialogue structures are not
totally distinct but are in fact all variations of the Question and Answer
structure.

A menu structure is Question and Answer modified so that a first level help

126 Chapter 5

message, the menu, is displayed automatically before the option selection
question is asked. A form filling structure displays a sequence of questions,
the form, all at once, then asks for answers one at one time. A command

language structure, particularly where positional parameters are used, is
Question and Answer in which the user makes extensive use of ‘answer

ahead’, i.e. supplies the answers to a series of implicit questions in response to
a standard first question, the command prompt. These structures might be
referred to as:

Menu : help—ahead

Form : question-ahead
Command : answer-ahead

Recognition of this fact provides some clues as to how a computer dialogue

might adapt to different environments; we expand on this in Chapter 9. It also

provides reasonable guidelines as to where each version of the Q&A structure
might best be used.

A menu structure will be appropriate in cases where:

- the range of possible inputs is sulficiently small that they can be explicitly
displayed;

° the user needs the possible inputs to be displayed.

This suggests that a menu should be used where a user who is

inexperienced, or who is mainly using a pointing technique, is choosing from
a limited range of values, i.e. typically in selecting a task process.

A command language structure will be appropriate in cases where:

° the number of input values is small enough to be remembered;

' a limited number of responses is sufficient both to identify the task required
and to supply its data.

This suggests usage by experienced users where there is a fairly flat
hierarchy of task processes with limited data input requirements.

A Form structure will be appropriate in cases where:

a standard sequence of inputs can be predicted

suggesting usage for the entry of transaction data.
The basic Question and Answer structure is a reasonable compromise for

various levels of user. It can be used to substitute for all of the above, but will

be particularly appropriate where:

Dialogue structures — forms, commands and hybrids 127

0 the range of input values is too great for a menu structure or too complex
for a command language;

- the next question to be asked depends on the reply to the current question.

An obvious problem with the simple classification above is that, even with

a given level of user familiarity, the data requirements in different parts of the
system will vary. If you examine the dialogue requirements of a simple ledger

system it will have aspects which are concerned with

- selecting a task process from a small set ot options, e.g. update the ledger,

print reports, maintain customer codes;
- the input of transactions, e.g. entering invoice details;
. answers to an unpredictable sequence of questions with a wide range of

possible values, e.g. in specifying selection criteria for reports.

Consequently, whilst most systems have a basic underlying Q&A, menu or
command structure, it is rarely possible to produce a dialogue for a complete

system using a single structure. Different parts of the dialogue will require
different structures depending on their particular characteristics. In other

words, most dialogues will represent a hybrid comprising several of the basic
structures.

5.5 The Spreadsheet

Two applications, the spreadsheet and word processing, reflect this hybrid

nature very well. We concentrate here on atypical spreadsheet dialogue, using

the popular package Lotus 1-2-3 as an example.
The term spreadsheet derives from the large sheets of paper, ruled into lines

and columns, which are used as working documents by accountants. The user

is not restricted to fixed screen-sized chunks of 24 X 80 character positions but

can position a screen sized ‘window’ anywhere over a much larger area. In
Lotus 1-2-3, the spreadsheet can have a maximum area of 2048 lines by 256

columns, with each column consisting of several character positions. Both
rows and columns are labelled:

rows 2 1- 2048

columns : A,B,,Z,AA,AB,,IV

A cell is identified by a column and row identifier (for example GFI7).

Each cell can hold a number, or a string of characters. The width of the cells

Chapter 5

Prompt 6 Default Aria Status Ana

new
Manage Area 6 command Mom:

Form Area§7a"6Z4'5G3f..G:5:ao-nanUnboun-
C14: +C8+C9+Cl0+C1l+C12

A C D E F G H
1985 1986 1987 1988 1989 1990

Sales 1126.77
cost at sales 300.77

826. 00

Warehousing 15.29
Distribution 20.10
selling 31.45
Advertising 48.76
Administration 25.98

0m40uAuMH
142 . 18

operating Profit
Financing Costs

can be varied. When a spreadsheet is invoked the screen is divided into several

distinct areas, as illustrated in Fig. 5.10. In the top left-hand corner of the

screen is a prompt requesting the contents of the current cell and a prompt of
this type is preserved through the interaction, a basic Question and Answer

structure. In response to this prompt the user may enter:

0 a numeric value in various formats;
° a text string;

Dialogue structures — forms, commands and hybrids 129

- a formula such as +B1+ABS(B2) meaning the sum of B1 and the absolute
value of B2.

In Fig. 5.11, the formula +C8+C9+Cl0+C11+Cl2 has been entered for

Cell C14. The computer calculates 15.29+20.70+3l.45+48.76+25.98 (the
contents of cells C8..C12 respectively), and enters the answer 142.18 in C14.

If we were to change the value of C9, the system remembers that C14 is

dependent on C9 and changes its value accordingly.
The user may override the prompt with a command by entering a ‘/’

character which will cause a menu bar of possible commands to appear, as

shown in Fig. 5.12. Selection from the menu can be accomplished by scrolling

through the menu with the cursor control keys and selecting with the return

key; the current option is highlighted in inverse video and a description of its
features appears on the line below. The user may also select by keying in the

unique first character of the option name as an identifier.
Some of the commands require the user to specify a range of cells to which

the command is to be applied. For example you may specify an output format

such as ‘currency’ (two decimal places) which is to apply to a group of cells.
This can be done either by listing the range of cells in answer to the prompt,

or by ‘painting’ the area with the cursor control keys, i.e. by direct pointing
(Fig. 5.13).

There is also a pure command language structure using function keys. You

can skip to a particular cell on the spreadsheet directly by depressing function
C3: (F2) 1126.77
Worksheet Range Copy Move File Erint Graph Data Quit
Format, I.abe1-Prefix, Erase, Name, Justify, Protect, Unpmtect, Input

A B C D E F G H
1985 1986 1987 1988 1989 1990

Sal 1126.77 1183.11 1242.27 1304.38 1369.60 1438.08
Cost of sales 300.77 315.81 331.60 348.18 365.59 383.87

Gross Profit 826.00 867.30 910.67 956.20 1004.01 1054.21

Warvehmsin; 15.29 15.29 15.29 15.29 15.29 15.29
Distritution 20.70 20.70 20.70 20.70 20.70 20.70
Selling 31.45 31.45 31.45 31.45 31.45 31.45
Adveftisixlg 48.76 48.76 48.76 48.76 48.76 48.76Administration 25.98 25.98 25.98 25.98 25.98 25.93I-4)-'K;‘)-‘I-'\D(D\lG\UIl>l:-DIQI-‘4>la-ID-‘O Cperatingiixpenses 142.18 142.18 142.18 142.18 142.18 142.18

'35 Profit 683.82 725.12 768.49 814.02 861.83 912. 03P\l F2'.nancing Costs 457.90 457.90 457.90 457.90 457.90 457.90

P)‘ \.DU3 Profit before Tax 225.92 267.22 310.59 356.12 403.93 454.13
to O

Chapter 5

H19: (P2) +1116-H17
linear range to format: c3..I-[19

A B C D E F G H
1985 1985 1987 1988 1939 1990

sales 1126.77 1183.11 1242.27 1304.38 1369.60 1435.08
Cost or Sales 331.50

WarehousingDistribution
Selling
AdvertisingAdministrationHHr-'HHr-'D-'|0aI~ImUIou~r- mule-um»-O operating Profit:
Financing costs

I-4|-'|-‘ nnmxl

Fig. 5.13.

C3: (P2) 1126.77 EDIT
mber address to go to: D12

A B C D E F G H
1985 1986 1987 1983 1939 1990

Sales 1125.77 1133.11 1242.27 1304.33 1369.50 1438.08
cost of Sales 300.77 315.31 331.50 343.13 355.59 333.37

Gross Profit 826.00 867.30 910.67 956.20 1004.01 1054.21

Warehousing 15.29 15.29 15.29 15.29 15.29 15.29
Distribution 20.70 20.70 20.70 20.70 20.70 20.70
Selling 31.45 31.45 31.45 31.45 31.45 31.45
Advertising 43.76 43.75 43.75 43.76 43.75 43.76
Administmticn 25. 98 25 . 93 25. 98 25 . 93 25 . 93 25 . 93O-‘P-‘ED-‘I-‘\D®~lGiU|-Pb-lb)!-‘‘UPO Operating Expenses 142 . 18 142 . 18 142 . 18 142 . 18 142 . 18 142 . 13

E5‘: opemting Profit 683.82 725.12 763.49 314.02 351.33 912.0:
Fi.nanc:l.rgcosts 457.90 457.90 457.90 457.90 457.90 457.90

REEL‘: Profit before Tax 225.92 267.22 310.59 356.12 403.93 454.13
I0 0

Fig. 5.14.

key F5 followed by the identifier of the target cell. If necessary, the ‘window’
is moved so that it now includes this cell (Fig. 5.14).

Lotus 1-2-3 was developed in the late 1970s and its dialogue structure is

now considered a little old-fashioned; also, a consequence of trying to display
as much of the spreadsheet data as possible on a single screen tends to be a

somewhat cluttered layout. However, such packages illustrate many princi-
ples of good dialogue design. The spreadsheet approach is a natural

mechanism for the types of application (such as financial analysis) at which it

Dialogue structures - forms, commands and hybrids 131

is aimed because it is familiar to its prospective users. Spreadsheets typically

form an integrated suite of packages with simple business graphics and file
handling, all using a consistent approach and with data easily transferred from
one to the other. Different dialogue structures have been built around the

basic Question and Answer structure to reflect differing input data require-
ments, and those features of the hardware for which the package is intended

are utilised to minimise the input effort. There is some flexibility in the

structure to cater for differing user levels so that where an inexperienced user

may well use scroll menus, the experienced user can execute his desired action
directly by entering a command string made up of the option identifier. There
is no reason why similar features should not be provided in any computer
system.

5.6 Implementing a Hybrid Structure

The implementation of a structure like a spreadsheet should not appear too

daunting in light of the dialogue processes which we have developed.
Each cell is a field and the spreadsheet is an array of fields, as in a Form.

There is an obvious complication in that the number of cells is, in general, too

large to display on a single screen; we will consider how this can be overcome

in Chapter 10. There is also the complication that a cell may contain, as in the

example of Fig. 5.10, not the actual content but an expression specifying how
the content may be calculated. If, however, we drop these two requirements,

the processes can provide the facilities required.
There is a QandA__DIB for the basic Q&A structure which requests the

content of the current cell. As the user moves around the spreadsheet, the

content of the question will change to contain the identifier of the current cell:

ChangeFieldContent(QandADIB.question ,CurrentCellID);

The input will be treated as an arbitrary data value to be validated against a

set of templates:

a numeric value

a text string

a ‘/’ indicating that the command menu is to be displayed.

There will be a series of MenuDIBs and associated QandAJ3IBs to

represent the bar menus. The processes which we have defined so far allow the
user to select from these menus either by scrolling or by keying an identifier.

132 Chapter 5

However, this selection mechanism is predefined by the SelectionBy identifier
in the QandAJ)IB, whereas the example of Fig. 5.11 allows the user to do
either. In other words, we need

SelectionBy = (id,scroll,position,key)

where ‘key’ indicates the input via the keyboard of either an identifier or a
scrolling control.

The facilities illustrated in Figs. 5.13 and 5.14 require a slight extension. In
the ControlDlB, we defined a number of standard control values which may
be input in response to any question; these values include the abort and help
request characters and the accept and pointing controls. In the spreadsheet
there are additional standard responses, such as the function key commands;
these differ from the other controls in that they are specific to a particular
application rather than applicable to any dialogue. We can cater for this
facility by extending ControlDlB to include these application control values.
This is the final element which was reserved in the previous definition of
ControlDlB. The generalised ControlDlB now becomes as illustrated in Fig.
5.15.

Whenever an input process receives a control value, it terminates
immediately and returns the value to the dialogue via the ControlBuffer of
ControlDlB so that it can take whatever action is necessary. These control
values are defined by the control set, comprising

ControlSet:=Application Control +

[RequestAbort,RequestHe1p,
PointNextTarget,PointPriorTarget,AcceptTarget,
PointNextField,PointPriorField,AcceptForm]

contro1DIBtypa - recordControlsutfer : byte;
rubout: : byte:
Echoswitch : orton;
Acccptriald : byte;
Requesthbort : byte:
Request-Jlelp : byte;Pointrlextwargat : byte:
PointPr1or'I.‘arget : byte:
Accept-.'I‘arget : byte:Polntnextriald : byte;
PointPr1orFie1d : byte:
Acceptrorn : byte;

Apglicationcontrol : Setotsyte:en 7

Fig. 5.15. The general ControlDlB.

Dialogue structures — forms, commands and hybrids 133

procedure ReadF1eld(var fie1d:Fie1dType;DataSet:SatofByte;
var contro1DIB:controlblatype)r

var key byte:
Controlset Setotnytez
Editset Setotaytez
filter setotflyte;complete boolean:

begin
with Contro1DIB,£1e1d do

begin
D1splayPie1d(tie1d):
Controlset:=App1lcatlonContro1+

[RequestAbort,Requestfielp,
Po1ntNextTarget,PolntPr1orTarget,AcceptTarget,
PointNextFie1d.PolntP:1orFle1d,AcceptForm]:if s1ot.w1dth-0 then

(control characters only)
Controlfluffer:-GetFl1terKey(wa1t,NoEcho,controlset)else

(both control and data)begin
controlset:-contro1set+[AcceptF1eld]7Editsetzsfruboutjz

filter:-contro1set+Dataset; (nothing to edit)it attributes.justification-right then
CursorTo(s1ot.tow,s1ot.co1+s1ot.width-1)else

CursorTo(s1ot.row,s1ot.co1):complete:-false;
key:-Getrilterxey(wa1t,NoEcho,filter):
if key in Contrclsec then complete:-true

else content:-"; (clear answer field)while (not complete) do.,,beqin

if key in Editset then de1ete(contont,1ength(content),1)
else content:-concat(content,chr(key)):

if Echoswitch-on then D1sp1ayFie1d(fie1d);
if (1ength(content)=s1ot.v1dth) and (AcceptF1eld=o) thancomp1ete:—trueelse

begin
CursarTo(a1ot.row,Justit1edCo1(field));if 1ength(content)-0 then

filter:=Contro1Sec+DataSet (nothing to edit)else it 1ength(content)-s1ot.w1dth then
filter:-Contro1set+Editset (ignore excess data)else

filter:-Contra1set+DataSet+Editset; (allow any)key:-GetF11terKey(Hait,NoEcho,£11ter)7
if key in Controlset then complete:-true:end;

end:
if key-Acceptrield then

Controlaurter:-0 (because it has been actioned)else
if key in Conttolset then

contro1Buffer:=keyelse

Contro1Buf£er:=0; (slot full and AcceptFie1d=o)end:
end;

end: (ReadFie1d)

Fig. 5.16. A generalised keyboard input process.

Thus the generalised keyboard input process, ReadField, introduced in
Chapter 3 can be implemented by the procedure of Fig. 5.16. This procedure
repeatedly takes characters from the keyboard until

134 Chapter 5

either a key representing a value in ControlSet is entered, or
if no AeeeptField terminator has been specified, the result field content has
been filled.

Data characters specified in the DataSet filter are stored in the content of

the result field and, if echoing is specified, are displayed according to the slot
and attributes defined by the result field. The content of the result field is

edited with the ‘rubout’ key. On completion of ReadField, the result field

holds any text characters which have been entered, and the keycode of the
control character which caused termination is returned in ControlBuffer.

The function JustifiedCol determines the required cursor position based on

the field justification and the number of characters already entered. Appendix
G contains details of a suitable function.

Since ReadField can cater either for the input of a text string or the input
ofcontrol characters we can utilise it to handle selection either by an identifier

or by scrolling within a procedure (described in Appendix H) of the form:

procedure ChooseByKey(var QandA_DIB:QandA_DIBtype;
var Contro1DIB:Contro1DIBtype);

In order to implement selection from the bar menu of Fig. 5.12, we must
define a ControlDIB which contains control values both for keyed identifiers
and for scrolling, and an appropriate QandA_DIB:

with Contro1DIB do
begin
rubout:-0) (no editing)
Echoswitch:-off;
AcceptFie1d:=cR; (we require a Carriage Return)
PointNextTarget:-Cursorkight; (keycode 205)
PointPriorTarget:-CursorLeft; (keycode 203)
AcceptTarget:-CR; (keycode 13)end;

with QandA_DIB do
begin
CreateFie1d(question,",o,0,o,")7 (a null question)
CreateFie1d(answer,' ',0,0,1,")1 (a 1 character input field)
InvertPie1d(answar); (defining target highlight as inverse)
£i1ter:=[o:d('w'),ord('r'),ord('c'),... ord('q')];
Errorrlag:-off;
CreateFia1d(firrorxessage,",0,0,o,"); (no error message)NumberDfTargets:-9;
CreataFie1d(TnrqetList[1],‘w',2,1,1,");
CreateFie1d(TargetLiat[2],'r',2,12,1,"):
CreateFie1d(TargetList[3],'c',2,19,l,").

CreateFie1d(TarqetL1st[9],'q',2,57,l," '
selectionay:-key;
CurrentTarget:-1;
end:

Dialogue structures —f0rms, commands and hybrids 135

Processing of the input can then be accomplished with the statement:

ChooseByKey(QandA_DIB,Contro1D1B);

which will return the ordinal of the option chosen in CurrentTarget and its

target name in answencontent, regardless of whether it was chosen by
scrolling or by keying the identifier.

5.7 Mode and Modeless Operation

In some hybrid dialogues, the same input message may be interpreted

differently according to an internal setting within the dialogue. Such
dialogles have different modes of operation; the mode determines the context

in which the input is interpreted. A modeless dialogue is one in which any

given input will always be interpreted in the same way.

Consider a word processing package. A user who is editing a piece of text

may wish a phrase to be inserted at a particular point, or he may wish the same

phrase to replace an existing phrase located at that point. Common
implementations of this define two modes of operation for the editor: an
insert mode and a replace mode. In the former, any character entered at the

keyboard will be interpreted as a request to insert that character immediately

prior to the current cursor position; in the latter, the same character will be
interpreted as a request to overwrite the current cursor position with that
character.

Many packages take this concept of modes much further. A word

processor may have two operating modes, edit mode or command mode; a
user can usually change from one mode to another by entering a special

control character. In edit mode, an input string ‘smyfile’ will be interpreted as

a string of characters to be included in the text at the current position. In
command mode, it might be interpreted as a request to quit the word

processor and save the current text in a file called ‘myfile’.
The obvious advantage of having different modes of operation is that

natural identifiers can be used to invoke special control actions. For example,

a command can be invoked by an easily memorised keyword like ‘save’

instead of an obscure, but unique, key sequence or function key; the mode

provides a context which renders uniqueness unnecessary. However, it does

not require much imagination to appreciate the dangers of this approach. The

user must always ensure that he is in the correct mode for the operation he
wishes to carry out. It is not unknown for users of such packages

136 Chapter 5

inadvertently to delete a file by entering an ‘unfortunate’ text string whilst in
command mode; the number of users who failed to save a file by inserting a

string of the form ‘shisfile’ into the text of the file is legion!

Not surprisingly, all experimental evidence confirms that modeless

operation is much to be preferred. Where there is no satisfactory alternative
to different dialogue modes (the insert/replace option in text editing is a

typical example) the current mode should always be clearly indicated in a
status display.

5.8 Input Events — Handling Input from Several Input
Processors

So far we have only considered cases where the dialogue process knows at any

point from which processor the input will arise. The answer to a question will
either come from the keyboard Via one of the procedures ChooseById,

ChooseByScroll or ChooseByKey, or it will come from a separate pointing
device via the procedure Cho0seByPosition. Suppose, however, that the user

may select an answer using direct pointing or may request help by pressing a
function key on the keyboard. Which input driver process should the dialogue

process call?
In such a case, there are a number of input events (actions on some input

processor) which can occur. The dialogue process needs to know when an
event has occurred and what type of event it is. We will consider the case

where the user’s response to a ‘question’ may come either from the keyboard
or from a two-button mouse operating in real mouse mode like that described

in Chapter 3; the method is readily extensible to other devices. We assume the
existence of the following additional functions in the keyboard and mouse

driver processes:

function KeyboardEvent:boolean;externaI;
function PointerEvent:boolean;extemal;

These return true if an activity has occurred on the device and false otherwise.

The next question to consider is what is meant by an ‘activity’ or event on the
device.

An event might be triggered on the keyboard by the depression of any key.

As we saw in Chapter 3, this will typically cause a keycode value to be stored

in the keyboard buffer; thus, a keyboard event has occurred if and only if
there is something in the keyboard buffer. With most operating systems, low

Dialogue structures — forms, commands and hybrids 137

level routines can be provided to inspect this buffer and determine whether it

is empty or not. In fact, many operating systems permit a more selective
definition of events. An event may be defined as the depression of one of a

given subset of keys, i.e. there is a procedure

procedure Del'meKeyboardEvent(f1lter:SetOfByte);extema|;

such that the function KeyboardEvent returns true only if the user has pressed

a key which produces a keycode value in filter. Thus the filter should be

defined as the set of keys to which the ReadField process is sensitive:

EventFilter:= QandADIB.filter +

[rubout,AcceptField,RequestAbort,RequestHelp,

PointNextTarget,PointPriorTarget,AcceptTarget,
PointNextField,PointPriorFie1d,AcceptForm] +

ApplicationContro1

i.e. {data characters for a keyed answer} + {Contro1DIB input control values}

+ {any application-specific control values in ControlDIB}

An event might be triggered on the mouse by a movement in a given
direction, or by the press or release of a particular button. Again, it is usually

possible to define by software which activities or combination of activities

trigger an event. For our purposes, it will be sufficient to define a pointer event
as triggered by a movement in any direction or a press of any button.

We can now develop routines to test for an input event and return its value

to the dialogue process. As with the keyboard processes described in Chapter

3, the dialogue process may wait for an input event to occur, or merely check

whether one has occurred. Suitable functions are illustrated in Fig. 5.17. Note
that the ordering of the conditional statements means that pointing events

take priority over keyboard events; a keyboard event will be reported only

after all outstanding pointer events have been reported.

The function, WaitInputEvent, can be used to develop a generalised

dialogue process which caters for input from either the keyboard or a pointing
device, and for selection by identifier, scrolling or pointing. This Choose

process, illustrated in Fig. 5.18, consolidates all the procedures — Choose-

Byld, ChooseByScro11, ChooseByPosition and ChooseByKey — which we
have developed so far.

The Choose procedure insists that the user select a valid target; it will
terminate only when a non-zero CurrentTarget has been picked either

implicitly or explicitly. With scrolling, only valid targets can be picked but a

138 Chapter 5

type Selact1onType - (id,scro11,position,key,any);
InputEventType - (nu11,kayboard,pointer)

funition TestInputEvent(se1ector:se1ectionType):InputEventType:beg n
if ((se1ector-any) or (selector-position)) and Pointerfivent than

Tastlnputfivent:-pointerelse

if (se1ector<>position) and Keyboardfivent thenTestInputEvent:-keyboard
else Testlnputfiventz-null;
end; (TestInputEvent)

function Wa1tInputEvent(se1ector:Se1ectionType):InputEventType;
var event : InputEventType;
beginevent:-null;
repeat

event:-TastInputBvent(selector):
until event<>nu11;
WaitInputEvent:-event)
end: (waitlnputfivent)

Fig. 5.17. Checking for an input event.

user may key an unmatched identifier or may press a mouse button when not
pointing at any target. Usually, the dialogue will require that the user select
one of the targets; however, some systems which use direct pointing interpret
the selection of no target as a request to exit. The minor changes necessary to
support this facility are left to the reader.

As a final step, the generalised dialogue input process, Q&A, of Fig. 4.16
can be modified to incorporate the general selection process. This procedure,
ilustrated in Fig. 5.19, provides a general input process which can be used with
any of the Q&A or menu structured dialogues we have examined, or with any
individual question and answer step within a form dialogue structure and will
handle any type of input message from the keyboard or from a pointing
device.

5.9 Summary

Both the form and the command language structure request a set of answers
from the user.

The form structure displays a series of questions and requests the user to
supply answers for each; most form dialogues permit the user considerable
flexibility in choosing which question to answer next and in editing previous
answers. It is a natural and supportive mechanism for the entry of transaction
data regardless of whether or not it is based on an existing clerical form.

Dialogue structures —forms, commands and hybrids 139

procedure Choose(var QandA_DIB:QandA_DIBtype7var Contro1DIB:Controlbratype):
var Cursorwas ' Offon:

complete boolean:
event InputEventType:
PriorTargat : byte:
row,col byte;

begin
with QandA_DIB,Contrb1DIB do

begin
CursorWas:=TestCursor;
if (CurrentTarget>-1) and (CurrentTarget<=NumbarotTarqets) then

begin
answer.content:=TargetList[CurrentTarget].content:
Highlightriald(TargetList[CurrentTarget],answer.attributes);
end;

if filter=[] then SwltchCursor(off)i
Disp1ayFie1d(question);
CursorAt(row,co1):
PointerTo(row,co1):
complete:-false:
repeat

if Errorflag-on then Disp1ayFie1d(Errormessage):
ErrorF1ag:=off:
if Controlbuffer-O than (otherwise there is already something)

begin
event:-waitInputEvent(selectionby);
HideFie1d(ErrorHessage);
HideField(HelpMessage);
if event-pointer then

ReadPo1nter(row,col,ControlBuffer)else
ReadField(answer,f11ter,ControlDIB):

end:
if equal(ControlBuffer,RequestAbort) then

completezutrue
else

begin
PriorTarget:=CurrentTarget;
if event=pointer then

(***I* absolute pointing *****)
begin
CurrentTarget:-HatchPoaition(row,col,TargetList,

Number0fTargats);
CursorTo(row,co1);
if (CurrentTarget<>0) and (AcceptTarget=O) then

complete:-true:end
else (event=keyboard)

begin
if ControlBuffer=0 then

(***** matching keyed data *****)
begin
currentTarget:=MatchString(answer.content,TargetList,

Number0fTargets);
if CurrentTarget<>0 then comp1ete:=true

else ErrorF1ag:-on;end
else
if (CurrentTarget<>O)
and ((Controlfiuffer-PointNextTarget)
or (ControlBuffer-PointPriorTarget)) then

(***** relative pointing *****)
begin
if Controlbuffer-PointNextTarget then

Fig. 5.18. A generalised dialogue selection process.

Chapter 5

if PriorTarget=Number0fTargets then CurrentTarget:=1
else CurrentTarget:=PriorTarget+lelse

if PriorTarget=l then CurrentTarget:=NumberOfTargets
else CurrentTarget:=PriorTarget-1;

ControlBuffer:=O: (because it has been actioned}
(do nothing in the case of AcceptTarget=O)
end: '

end:
if PriorTarget<>currentTarget then

begin
if PriorTarget<>0 then Disp1ayField(TargetList[PriorTarget])7
if CurrantTarget<>0 then

begin
HighlightField(TargetList[CurrentTarget],

answer.attributes);
CursorAt(row,col);
PointerTo(row,co1):
end;

end:
(not complete) and (ControlBuffer<>0) then
begin
if ControlBuf£er=AcceptTargat then

begin
complete:=true:
ControlBuffer:=0; (because it has been actioned)
end

else
if ControlBuffer=RequestHe1p then

begin
DisplayField(Helpxessage);
ControlBuffer:=0; (because it has been actioned)end

else
if ControlBuffer in ApplicationContro1+[PointNextFie1d,

PointPriorFie1d,AcceptForm] then
complete:=true;

end:
CurrentTarget<>o then
begin
answer.content:=TargetList[CurrentTarget].content:
DisplayFie1d(answer); (update the display on the screen)end

else
answer.content:-";

end:
if not complete than ControlBuffer:=0:

until complete;
if CurrentTarget<>o then

begin
DisplayFie1d(TargetList[CurrentTarget]):
answer.content:=TargetList[CurrentTarget].content;end:

if CutsorWas=on then SwitchCursor(on):
end:

end; {Choose}

Fig. 5.18. (can!.)

Dialogue structures — forms, commands and hybrids l4l

_procedure QandA(var QandA_DIB:QandA_DIBtype:
var Contro1DI8:Contro1DIBtype):

begin
if QandADIB.Numberotrargetsuo then

Arbitrarynata(QandA_DIB,Contro1DIB)else
case QandA_DIB.Se1ectionBy of

id : ChooseByID(QandA_DIB,contro1DIB):
scroll : chooseayscroll(QandA_DIB,Contro1DIB):
position: ChooseByPos1tion(QandA_DIB,Contro1DIB);
key : choosesyxey(QandA_DIB,Contro1DIB):any : begin

{define the input events for each device}
Choosa(QandA_DIB,Contro1DIB):and:

and; (case)
and; (QandA)

Fig. 5.19. A generalised dialogue input process.

The command language structure assumes an experienced user and

requires, in response to a standard prompt, the input of a series of answers
specifying both a task and its associated data values. The nature of data items

required (the format of the command parameters) will typically not be known
to the dialogue until after the task has been identified.

All four traditional dialogue structures are variants of the basic Question
and Answer structure:

Menu = Q&A with help-ahead
Form = Q&A with question-ahead
Command = Q&A with answer-ahead

In general, no single structure can serve for the whole dialogue of a system;
different areas of the system will have characteristics which suit different

structures. Although most dialogues have an underlying structure which

defines their style, they are usually hybrids consisting of a combination of the
basic structures.

In modeless operation, an input will always be interpreted in the same way.

Some dialogues support different modes of operation; each mode represents

a different context and hence a potentially different interpretation of any
input.

The commonality between the structures means that such hybrid structures
can be implemented with abstractions based on two data structures:

142 Chapter 5

' A ControlDIB specifying parameters which control the operation of the
input process.

* A QandA_DIB specifying parameters which define the interaction for a
particular question and response.

A handler for input events, which occur when an activity takes place on an
input processor, enables the dialogue process to accept inputs from several
input devices without knowing in advance which will provide the input.

This means that it is possible to develop a single dialogue process which can
handle a variety of different input mechanisms in a variety of different
dialogue structures, and from a variety of input devices. This process provides
a strong base for ensuring both consistency and flexibility in a dialogue.

The dialogue structure is a major factor in determining its naturalness,
consistency, non—redundancy, supportiveness and flexibility. However, these
factors are influenced not only by the structure in which the system requests

information from and presents information to a user, but also by the content

of the messages exchanged. We consider this aspect in the next chapter.

Discussion Exercises

D1. In Chapter 2 you were asked to discuss the type of dialogue structure
which is best suited the Mailsale application described in Appendix A. A form

filling structure would be the normal approach. Should the form filling use
immediate or deferred validation? Should it use manual skip or auto skip? Is

it necessary for the clerk to be able to edit previous answers on the form?
D2. In a form filling dialogue, the questions on the form are predetermined
and normally an answer is requested for each question. However, it is possible
that the answer to a question will cause some later questions to be suppressed
because they are now irrelevant. The forms procedures developed in the
chapter do not cater for this; suggest what changes are necessary for it to be
accommodated.

Programming Exercises

Pl. Implement the library of Q&A routines and the library of MCI routines
described in Appendices G and H.

P2. Develop a program which will accept the following data via a form,
with immediate validation

Dialogue structures — farms, commands and hybrids 143

Passenger Name []
Destination []

Date [/ /]

Time [.]

Passenger name can be up to 20 alphabetic characters long. Destination can

be any of Calais, Boulogne, Dieppe, Oustreham, Cherbourg or Le Havre; this

field is selected via a suppressed menu. Date is in the format dd/mm/yy with

today as the default. Time is in 24-hour format but leading zeros can be
omitted.

P3. Develop a procedure to output the following boxed menu

dwarf: happy

and allow the user to select from it either by keying the identifier of an option

or by scrolling around the menu of options. If the user keys an identifier, it is
echoed in the menu header; the default selection is ‘happy’. The procedure
will return the ordinal of the chosen dwarf.

P4. Develop a menu design aid program to assist in the design of scroll

menus. The program will allow for a menu header field up to 30 characters in

length and a maximum 10 menu items up to 15 characters long; all fields in
the menu will have the same attributes.

The program will first request the user to specify these attributes. It will
then draw a form which contains blank fields for the header and 10 menu

items of maximum length; this will be centred in the middle of the screen. The
user will overwrite these fields with the relevant contents; the size of the menu

fields displayed will be amended to reflect the length of the contents.

The position of the header or the target items can be changed by pointing

at the corresponding field and selecting it, moving the cursor to the desired
position and selecting it again.

144 Chapter 5

Further Reading

Gittings I. (1985) Query Languages, Edward Arnold.
Kraut R.E. et al. (1984) ‘Command Use and Interface Design’, Rosenberg J.

‘A Featural Approach to Command Names’, both in Janda A. (Ed)
Human Factors in Computing Systems, North Holland.

Landauer T.K. et al. (1983) ‘Natural Command Names and Initial Learning:

A Study of Text Editing terms’, C0mm.ACM, 26, 7.

Shneiderman B. (1986) Designing the User Interface, Addison Wesley.
Smith S. and Mosier J. L. (1984) Design Guidelinesfor User Interface Software,

MITRE Corporation.

Zloof M.M. (1982) ‘Office—by-example: A Business Language that Unifies
Data and Word Processing and Electronic Mail’, IBM Systems J., 21, 3.

Chapter 7

Screen formatting

7.1 Introduction

We saw in Chapter 4 that effective interaction between user and system
requires a dialogue which is:

natural
consistent

non-redundant

supportive
flexible.

These criteria apply not only to the basic structure of the dialogue and to
the content of the displayed messages, but equally to how they physically
appear on the screen. The physical appearance of the screen depends on what
message fields are displayed and on the choice of slot and of attributes for
each of these.

The design process for any screen may be summarised as follows:

decide what information, i.e. what fields, will appear on the screen
decide the basicformat of this information

decide where it is to appear on the screen, i.e. the slot for each field

decide what highlighting is required, i.e. what attributes are necessary for
each field

develop a draft screen layout

evaluate the effectiveness of the layout

and repeat the process until both _you and the prospective users are satisfied
with the results.

We will illustrate this process by considering a design for a form filling
input screen based on the document in Fig. 7.1. This covers most of the

principles common to all screen design.

Chapter 7

CAR FERRY RESERVATION FORM

Pcfiliode

‘*°"°"°'*‘ nuuaumu-can-up
couL:r/cammmclunuasrrt """"'°‘

,..,..g,.,,,..,,,.-..;,.,.r bun-yuan-zu séoiueauuaaiurn cuuuvrnuiauuvuzmsinmn
Eflaihtal jClad‘ Guile Wand!

Dean-m-mush ueunuunumsauawn AaaalvdiaulpasnmsuannvbuplneHannah-Iummmrurvnusamswvnan

Fig. 7.1. Ferry reservation document.

7.2 General Guidelines for Screen Layouts

The clerical form illustrated in Fig. 7.1 is used for booking a ferry reservation.
The booking clerk in a travel agency will either complete, or ask the customer

to complete, a copy of the form. The clerk will then enter the relevant details,
using a standard VDU and keyboard, into the feny operator’s computer
booking system and wait for the booking to be confirmed. Although at first
sight it may seem as though there is duplication of effort in completing the
form rather than keying the customers answers directly into the system, it is
often quicker and more accurate to do this where information such as name

and address or registration numbers, which are susceptible to mishearing or
misspelling, are involved.

Screen formatting

-E AR FERRY RESERVATION
DUTHARD vovAEE INWRRD VOYAGE RESERVED ACCOMMODATION

tsr CHOICE FROM PRT ro DIP FRDN CHE TD usv CABIN our oav IN NIGHT1305 B6D5¢b - 232$ Bbfl521- 'fiTH5/CHTS In 2F
2ND CHOICE FROM PRT ro DIP rnon or? T0 PRT u RECLIN a m
CONFIRMED 1325 855595 mans esasza LUE CLASS sears m
NAHE AND ADDRESS ~ VEHICLE DETAILS t . KA. BLENKINSQ‘ REGND LAC939L ‘
gaoacss 47 ACACIA AVENUE OVERALL LENGTH 3.5M HEIGHT N

CARAVAN/TRAILER CARAVANOVERALL LENGTH 3.on HEIGHT Y
HDTDRCYCLE REGND
P-s NGERS: NG.ADULT5 4 NO.CHlLDREN
INSURANCE '.
HOLIDAY VEHICLE COVER C/Y EXTENSION

N V Y
CAR MAKE VAUXHRLL HUDEL CRVALIER GL5
DATE UF RETURN
HINT R SFl' '

Figure 7.2 A poor screen layout

Examine the screen layout in Fig. 7.2 which displays a completed input

screen for a particular booking. Hopefully, most readers will feel that a

number of improvements are possible in this layout which represents a slavish

following of the actual clerical document in Fig. 7.1. Although existing

clerical input and output documents provide many pointers to the desired
format (the relative order of screen input and source document should be the

same), they do not eliminate the need for a conscious process ofscreen design.
The layout should be such that the user can scan the screen in a logical

order and can easily:

extract the information which he is seeking;

identify related groups of information;

distinguish exceptional items (such as error or warning messages);
determine what action (if any) is necessary on his part to continue with the
task.

A user will find it very difficult to manage any of these with the layout of Fig.

7.2. We will attempt to produce a more satifactory layout by following the

design process.

7.3 What Information Should be Displayed on the Screen?

Non-redundancy implies that the layout Contains only the information which
is relevant to the user at that point in the dialogue. The fact that other

175 Chapter 7

information is available, or is stored together with the necessary information,

or that there is room for more information on the screen is not significant. The
user’s need is the deciding factor and the designer must understand the user’s

task in sufficient detail to assess the information required to support it.

The layout in Fig. 7.2 contains superfluous information. The first and

second choice voyages on the form in Fig. 7.1 are presumably intended for the
case where the user is not present at the time the booking is made; there is no

reason for displaying both on the output, when a particular booking has been
made. The clerk will presumably input the first choice; if this is not accepted,
then the first choice details are irrelevant and the second choice details can be

entered in their place.

A similar argument applies to the layout of a menu. A menu should only

list options, which the user can select, regardless of whether it is a traditional
menu or a command bar of the type described for spreadsheets in Chapter 5.

This is a common failing of many existing packages. In Prestel, a user is
presented with a menu of all the possible options even though some choices

are restricted to a subset of particular users, and many hybrid dialogues

display the same command menu throughout, regardless of whether a given

command is available at that point. In both cases, options which are

unavailable may be indicated by some highlighting attribute.

Although the screen should not swamp the user with superfluous
information, it is equally important to display all the information relevant to

the user at that point. A user should not be expected to remember information

from one screen so as to be able to process the information on a later screen.

If all the items from a clerical document will not fit on a single screen, certain

items may need to be repeated on all screens to preserve continuity. Thus, if

a clerk is required to refer continually to a customer’s name while undertaking
a set of transactions which occupy several related screens, the customer name

should appear in a consistent position on all the screens.

As well as deciding which individual items of information are required, the

designer must consider how these items relate to each other. A logical group,
a set of infonnation which must be viewed as a composite entity in order to

achieve the task purposes, should not be split across a screen boundary.

Obviously, there can be no fixed rules for deciding what comprises a logical
group; this will depend on the nature of the application. A number of data

items may be logically related because they describe the same aspect of a task,

because they occur from the same source, and so forth. A designer who
understands the nature of the user’s task and of the data which is involved

should not find this a major problem. Very often, the format of existing

Screen formatting 177

clerical inputs and outputs will provide strong clues to the groupings.
At first sight there appear to be six main logical groupings of the

information in Fig. 7.1:

l. the voyage 4. customer name and address
2. reserved accommodation 5. campsite reservation

3. vehicles and passengers 6. insurances

The first two of these can be subdivided into an outward and an inward

passage. The ferry company seems to assume that the same vehicles and
number of passengers will be involved in each direction!

As a result of this process, the designer should be able to produce, for a

particular task, a list of the required data items in their dependent groups, and
to indicate whether these are optional(O) or mandatory(X). This is illustrated

in Fig. 7.3, in which dependencies are denoted by indentation; thus

registration number, length, height and caravan details are all dependent on
a car being booked.

Thus the user must specify all the items in the ‘Voyage Group’. No vehicles

need be specified in a booking but there must be at least one adult passenger;

there need be no child passengers. A car is specified by the input of a
registration number; if no car is specified, there is no requirement for the input

of the vehicle length and height, or for details of caravan or trailer. There is

no need to distinguish between caravans and other types of trailer.
If accommodation can only be reserved on certain routes, there may seem

little point in displaying these fields for routes on which it is inapplicable. We

could choose to suppress the display of this information unless the user inputs
a route on which it is applicable. However, accommodation may not be
reserved even if it is available. As we saw in Chapter 5, this suppression or

automatic skipping of input fields is not very compatible with the question-
ahead nature of form filling and is desirable only if it refiects how the user

would naturally scan the form. It may be better to provide a consistent input
mechanism by always displaying these items.

There would seem to be little requirement for instructions on how to

complete the form in our example. There will obviously be a requirement to
confirm that the details are correct; it may be necessary to allow space for

messages explaining how a user can edit the form if they are not.

Chapter 7

(1 group for Outward sailing and 1 for Inward)
From Port X

To Port X
On Date X

At Time X

Accommodation (1 group for Outward sailing and 1 for Inward)
Cabin

Type
Berths/Couchettes — Male

— Female

Seats — Reclining
— Club Class

Vehicles and Passengers
Car

Registration

Length

Over 1.83 m high
Caravan

Length

Over 1.83 m high OO
Motorcycle

Registration
Solo/Combination

Passengers
No. of Adults

No. of Children
Customer Name and Address

Name

Address (X 3 lines)

Post Code and Telephone Number
Campsite Reservation
Insurances

Holiday Cover (yes/no)

Vehicle Cover (yes/no)
Trailer Extension (yes/no)
Car Make
Car Model

Date of Return

Age

Winter Sports
Fig. 7.3 Listing the items for the display.

OOOOOOOOOO><><O><OO

Screen formatting

7.4 How Should the Information be Displayed?

Having decided what items are necessary for the task, the next step is to decide
the format in which they should appear. This provides the designer both with

‘an indication of the slot size and of any special attributes which are desirable
for each field.

Naturalness implies that the information is presented in immediately usable
form. The user should not be required to manipulate the information, e.g. by

looking up codes, or by computing row or column subtotals outside the

system. Figure 7.2 does not confirm the input of a port code with a port name;
this may be acceptable in this particular example, given the limited number of

ferry ports. Dates and times should be formatted to normal conventions, not,
as in Fig. 7.2, displayed in internal system representation. The designer should
consider whether a textual presentation is immediately usable; for example,

an impression of a sales trend is gained much better from a graph than from
a table of figures.

The use of normal upper and lower case conventions improves the

readability of text. Road signs display place names in both upper and lower

case: the shape Birmingham conveys much more than the shape ‘BIR-
MINGHAM’. The example in Fig. 7.2. was obviously produced by an old-

fashioned programmer who even thinks in upper case! Accountants are

accustomed to recognising as negative values which are enclosed in brackets

or displayed in red, rather than preceded by a minus sign.

Caption fields identify the meaning of individual input and output data
fields. They should clearly indicate the content of the corresponding data field
and be well differentiated from the data values. This can be accomplished

with the guidelines in Fig. 7.4.

Figure 72 contains a number of examples of the misuse of captions. Some
data fields (notably the sailing times and dates) have no captions. Several

seem needlessly verbose (CHALET/CARAVAN/CAMPING SITE) whilst

others are arbitrarily abbreviated (RECLIN). Some captions fail to convey

the meaning of the data field: HEIGHT YES is meaningless. Furthermore, it
is almost impossible to distinguish between captions and the data values they

are supposed to identify; captions appear alongside most data fields but
above them in the Insurance section.

As a result of this process, the designer will be able to extend the list in Fig.

7.3 to include provisional lengths for the various input fields and provisional
caption fields; this is illustrated in Fig. 7.5.

180 Chapter 7

Caption names as brief as possible but without arbitrary abbreviation.

Captions distinguished from data fields by emphasising data values with any
combination of

punctuation, decorators or case e.g.
Date: 6 May 86 or Date [6 May 86] or date 6 MAY 86

‘weaker’ attributes in the caption e.g.
Date 6 May 86

Captions positioned in a natural and consistent physical relationship to the
corresponding data field

on the same line and to the left for single occurrence fields, e.g.

Invoice Number: [123456]
Invoice Date 2 [25/01/86]

as column headings above the corresponding data field for multiple
occurrence fields, e.g.

Part Number Description Stock Level

123456 widget 750

234567 sprodget bucket 23

376890 something else again 7

for heading information common to a number of items, such as a logically
related group, centred above the group of fields

Nominal Account Allocation

Cost Centre Account No.
123 12345
126 12345

999 99000

Fig. 7.4 Guidelines for captions.

