
 
 
 
 

Exhibit 1015 – Part 5 Exhibit 1015 — Part 5



Ch. 5 Direct Manipulation 205

2'-"'§-if3l‘§E H§.53'lEEE SEED F-ELE

gssa 234?

‘Fl- E: ?=-- _._J-... ,
'H~E =6: 3nL& as %HE case 92:;

5:4!“
° HE BUTTON TD SELECT A cannnan

Figure 5.12: This electronic Rolodex or phone number card file gives users rapid
control over the card motion by a forward or backward joystick press.

Commands are displayed by moving the joystick left or right. The lively motion
of the cards appeals to many users.

movement reverses. To change an entry, the user need only move the

cursor over the field to be updated and type the correction. To delete an

entry, the user just blanks out the fields. Blank cards might be left at the

top of the file, but when the fields are filled in, proper alphabetic

placement is provided. To find all entries with a specific zip code, the

user types the zip code in the proper field and enters a question mark.

Checkbook maintenance and searching might be done in a similar

fashion. Display a checkbook register with labeled columns for check

number, date, payee, and amount. The joystick might be used to scan
earlier entries, changes could be made in place, new entries would be

made at the first blank line, and a check mark could be made to indicate
verification against a monthly report or bank statement. Searches for a



206 Designing the User Interface

particular payee could be made by filling in a blank payee field and then
typing a question mark.

Bibliographic searching has more elaborate requirements, but a basic
system could be built by first showing the user a wall of labeled catalog
index drawers. A cursor in the shape of a human hand might be moved

over to the section labeled “Author “Index” and to the drawer labeled

“F-L.” Depressing the button on the joystick or mouse would cause the
drawer to open, revealing an array of index cards with tabs offering a
finer index. By moving the cursor-finger and depressing the selection
button, the actual index cards could be made to appear. Depressing the
button while holding a card would cause a copy of the card to be made in
the user’s notebook, also represented on the screen. Entries in the

notebook might be edited to create a printed bibliography or combined
with other entries to perform set intersections or unions. Copies of
entries could be stored on user files or transmitted to colleagues by

electronic mail. It is easy to visualize many alternate approaches, so

careful design and experimental testing would be necessary to sort out the
successful comprehensible approaches from the idiosyncratic ones.

Why not do airline reservations by showing the user a map and
prompting for cursor motion to the departing and arriving cities? Then,
use a calendar to select the date and a clock to indicate the ‘me. Seat

selection is done by showing the seating plan of the plane on t e screen,

with a diagonal line to indicate an already reserved seat.

Why not do inventory by showing the aisles of the warehouse with the
appropriate number of boxes on each shelf? McDonald (1983) deals with
medical supply inventory with a visual warehouse display by combining
videodisc and computer graphics technology. ‘

Why not teach students about polynomial equations by letting them
bend the curves and watch how the coefficients change or where the

X-axis intercept occurs or how the derivative equation reacts
(Shneiderman, 1974)?

These ideas are sketches for real systems. Competent designers and

implementers must complete the sketches and fill in the details. Direct
manipulation has the power to attract users because it is comprehensible,
natural, rapid, and even enjoyable. If actions are simple, reversibility



Ch.5 DkectManmumfion 207

ensured, and retention easy, then anxiety recedes and satisfaction flows
in.

5.5 DIRECT MANIPULATION DISK OPERATING

SYSTEM (DMDOS)

This section gives a detailed description of one design project whose

goal was to develop a direct manipulation user interface for a widely used
command language. The difficulty of designing a direct manipulation

system ‘was explored in a visual ‘design for the commands in the
Microsoft ‘Disk Operating System (MS-DOS) for IBM and compatible

computers (detailed design and implemention by Osamu Iseki). The

motivations were to avoid the:

1. E1ror—prone, difficult-to-remember, and difficult—to-type

commands, such as;

dir/w c;leve12
copy a;fi1el.pas b:filel.bak

erase c:level2 filel

Need for many commands, such as: VERsi_on, VOLume

DATE, TIME, CD, MKDIR, RMDIR, Cl-l‘DI.R,

TYPE, PRINT, DELETE, and RENAME.

Frustration of watching the directory listings scroll off of
the screen too quiclgly.

Uncertainty of not seeing the source and destination

directories while copying, comparing, or "deleting files.
After issuing a file command, many users issue a directory
display command to verify that the command was carried

out correctly.

Need to type file and directory names, except when they are

created. Once created, tile" and directory names can be

selected from the display, When the number of files is in



208 Designing the User Interface

the hundreds, it may be more convenient to type the file

name, but with only tens of files, selection by pointing is

often more rapid and accurate.

5.5.1 Design goals

In a positive way, we sought to provide a world in which the:

Task—_re]ated objects (files) and the actions (commands)

were always visible.

Users could select objects and actions by pointing instead of

typing.

Results of actions were immediately visible.

We hoped that such a design would be easy to learn and retain, rapid

in performing tasks, low in errors, and high in user satisfaction. After

many revisions and tests with hundreds of knowledgeable observers and

novices, the screen layout was determined (Figure 5.13).

5.5.2 Screen organization

The largest parts of the screen are the right and the left drive
information areas. Each area has the:

Drive name (A, B, or C).

Volume name of the disk.

[SUB—DIR/FILE], the toggle switch for changing the

listing from/to file names or subdirectory names.

[SORT] switch that allows users to set the sort condition

of the file listing to son by file name, extension, size, or
date.

[WIDE/FULL], toggle switch for changing the format of

the file listing from a single to a double column listing.



Ch. 5 Direct Manipulation 209

Directory Display Controls

DOS 2.10 06-05-1985 l2:l5.30

DK|VtA volumename worlcdisl: sue-om soar FULL

1> DMDOSSUB EAT 52 05-21-85 T JUDD TEXTFILT2) DMDOS BAT 99 0521-85 PRINT RECOVER
3) DM_DOS BAN 975 05-1|-85 ASSIGN TREE
4> DM_DOS PRM 1620 05-21-85 GRAPHICS FIND
5> DM‘_DOS TEL 5504 05-21-55 EXEZBIN LINK
5> DM_DOS MSG 15542 05-21-35 DEBUG BACK
7> DM_DOS COM 65024 05»2l—85 PROGFILT EASICA
B) DM_DOS 000 422110 05-21-85 BUF128 lC
9> DMINTR TXT 7552 0511-85 DEASE ‘l23TUTO

10> DMHELP TXT 13696 05-Z‘|-B5- - I23 FDISK

I I -more ] -more
11 File(s) 162516 bytes free 80895 bytes free

llll -l-l-l-lll

PromptandError e5sageArea _

Commands Commands Personal
requiring requiring commands
2 arguments I argument

SpecialCommands

Figure 5.13: DMDOS (Iseki & Shneiderman, 1986) performs MS-DOS functions

by arrow key or mouse movements instead of typing commands. The display
shows the source and destination directory displays that are scrollable under user
control.

Current directory name.

The listing of file names or subdirectory names in the

current directory. Each listing has a maximum of twenty

file names or ten subdirectory names.

Icons for scrolling ‘up and down the listing. The short
arrows serve for one-line scrolling and the long arrows for
five—line.



Designing the User Interface

These two large areas are independent from each other.

Below these drive information areas are command areas that are

categorized into four groups:

1. Commands requiring two arguments: COPY, COMPaI‘e,
EXECute.

Commands requiring one argument: ERASE, VIEW,
PRINT, KEY-IN, and FORMAT.

Definable personal commands (space is provided for only
five).

Special commands: MACRO, HELP, and EXIT.

The screen format contains most items users need, and it remains

visible unless a program file is executed or the contents of a file are seen

by using the [VIEW] command. Therefore, users may have less anxiety

about the correct execution of a command than working in a line—by—line
mode.

5.5.3 Functions

DMDOS functions are categorized into seven groups:

Functions automatically executed. For example, the

directory listing is always displayed on the screen. This
eliminates the need for the DIR command.

Functions executed by single object or switch selection.

Selecting an object causes some functions.

Functions executed by overtyping the selected object.

These are mainly for renaming files and changing the date
or time.

Functions executed by commands with one argument.

These commands need only a source object.

Functions executed by commands with two arguments.

These commands need source and destination objects.



Ch. 5 Direct Manipulation 211

Functions executed by personal commands. These

commands can be defined by the user and include a

sequence of operations.

7. Functions executed by special commands.

Table 5.1 shows functions in each category. These are described with

the equivalent MS~DOS commands for comparison. Since we tried to

DMDOS PC—DOS internal PC—DOS external
command category commands commands

Automatically Executed DIR SORT(onIy for filename)
or DATE(display)
Executed by Single TIME (display)Selection VERsion

VOLume name
(CHDIR)

Executed by Overtyplng RENAME
the Object MKDIR

CHDIR
DATE(Set)
TIME (set)

I-object Command [ERASE] FORMAT [FORMAT]
[ERASE] PRINT [PRINT]
[VIEW]

2~object Command COMP [COMP]
DISKCOMP [COMP]
DISKCOPY [COPY]

Addltiona|Command [EXEC]
[KEY—IN]
[HELP]
[MACRO]

not necessary in DMDOS

not implemented in (Batch command), ASSIGN, BACKUP,
DMDOS BREAK, PATH , VERIFY CI-IKDISK,

GRAPHICS, MODE,
RECOVER,
RESTORE, SYS

Table 5.1: A comparison of DMDOS (Iseki & Shneiderman, 1986) and MS-DOS

Commands showing how selection of visible objects and actions replaces typedcommands.



212 Designing the User Interface

to reduce the number of commands to the minimum, some MS-DOS

functions used infrequently have not been implemented. The most

' important commands not implemented are batch processing commands
that allow users to make their own command sequences in an executable

batch file. However, DMDOS has_ a special command [MACRO] to

make user-definable commands (see Section 5.5.5).

5.5.4 Operational principles

Operation in DMDOS is mainly based on movement of the cursor and
selection of an objector a command of interest. Cursor movement and
selection can be done by using either keyboard or mouse.

Using a keyboard. Users can use four arrow keys to move the cursor.
The cursor is moved from item to item instead of from character to

character except if it is in a selected object. Selection is done by placing
the cursor in the object of interest and pressing the RETURN key.

Using a mouse. The cursor moves character by character according to
the mouse movement. Selection is made by pressing one mouse button.

The keyboard can also be used at the same time.

The mouse is a more ‘direct’ tool to locate the cursor on the item of

interest quickly. However, two sets of‘ special keys may help users move
the cursor effectively by the keyboard. First, four corner keys adjacent to

four arrow keys allow users to make a shortcut by jumping the cursor to
the four comers of the screen. Second, the ten function keys (F1-F10)

are dedicated to moving the cursor onto the drive field or scrolling icons

of each drive and making a selection. Figure 5.14 shows the keys used
for cursor movement.

The item visited by the cursor is reverse—displayed partly or fully.
Once the item is selected, it remains highlighted until it is unselected or a
function is executed. '

As a special case of selection, multiselection of file names is permitted.
The operation of multiselection is to hold down the CTRL key while
pressing the RETURN key when selecting some file names. The



Ch. 5 Direct Manipulation

O1~I]1-1980 K31:
Help window

’I(l'.-‘yeneral In<Formaticr\>Z>
ililureclr Control Key

Move Cursor Up.
Hove Bursar toMove Cursor to

Left Drive Narue--- mF'gUp ~~- Right [WIDE] Field
Hove Cursor Left~Ae (NA) -—-Mnve Cursor Right
Move Cursor to ——- End v -—-Move Cursor to[EXIT] Command.[GDMPJ Cnmmand

Hove Cursor Down (NA:NcIt Assigned)

xselecticm
(1) Move cursor into desired object or command.
(2) Press (Return?) key or right button nf MOUSE.

1 Return to DMDOS it Next Page

Figure 5.14: This help screen from DMDOS shows cursor key movement
possibilities.

maximum number of multiselection files is ten. This function may be

used for copying several files to another drive or erasing several files at
one time. In MS-DOS, it is necessary to use such wild—card characters as

“*” and “T” to indicate the multiple files. Though this mechanism is also

allowed in DMDOS, multiselection is sometimes an easier way to

indicate a set of files.

The general principle of operation is to select an object first, called the

source object. After that, overtyping or selecting a command is effective.
Three typical operational sequences are:

Overtyping

a. Select an object of interest

b. Overtype the new name

c. Select the object again to install the new name

2. Command with one argument

a. Select an object of interest

b. Select a command



214 Designing the User Interface

c. Users might be prompted by some messages.

Answer these prompts, if any.
Then the command will be executed.

3. Command with two arguments

Select a source object

Select a command

Select a destination object

Users might be prompted by some messages.

Answer these prompts, if any.
Then the command function will be executed.

This object—first strategy is different from the order of MS-DOS’s
command syntax. After executing a command function, the most

recently selected object is still selected. Therefore, if usersneed to
execute any other command on this object, they can simply select a new

command just after the execution of the previous command.

5.5.5 Programming with the macro command

One major objective of DMDOS development was to try to implement

a programming capability based on direct manipulation. This macro
definition function corresponds to the batch command in MS—DOS. A

command defined by this function is called a personal command and can

be regarded as a small program. To maintain consistency, a personal
command can be programmed by showing an example of a sequence of

ordinary operations. Users can enter the macrodefining stage by selecting
the MACRO special command. A sequence of selections will be

recorded as a replayable operational sequence during this stage.

Each personal command can have one or two arguments like other
commands for source and destination objects. By modifying the example

of the operational sequence, these arguments can be implemented in the

personal command.



Ch. 5 Direct Manipulation 215

For example, making a personal command called “MOVE,” whose

function is to move a file (source argument) from one drive to another

(destination argument), requires these steps:

1. Select [MACRO] special command.

2. Select [De fine. . . ] macro subcommand.

3. Type the name of MOVE and press RETURN. The

macrodefining stage begins.

Show an operational example.
Select a file named FILEl.

Select [COPY] command.
Select a drive name B: .

Select F‘ILEl again.

Select [ERASE] command.

. Select [Yes] for confirmation.

Select [Macro] command again to indicate the end of the

macrodefining stage. Then the recorded operational

sequence and edit-parameter will be displayed.

Select [Source Argument] parameter for the first

object F'ILEl. Then the F‘ILEl selected at 4.d will also

be changed to the source argument automatically.

Select [Destination Argument] parameter for the

second object B: .

Select [Return to DMDOS] to indicate the end of the
modification.

This MOVE command will copy a source file to the destination drive
and erase the source file.

5.6 CONCLUSION

Novice and knowledgeable users have expressed a strong interest in

DMDOS, but field trials with real users are just beginning. There are



Desugning the Jser Interface

some performance problems that may limit use of the current version.
DMDOS takes almost 20 seconds to load on a standard PC, requires use

of one of the floppy disk drives, and consumes more than 52,000 bytes.
These problems are reduced when a hard drive is available. Since
DMDOS invokes MS-DOS functions, hardware failures produce error

messages that sometimes destroy the DMDOS screen.

On the user interface side, there is some annoyance in having to do so

much arrow key pressing, and therefore some further shortcuts should be
explored. The mouse version reduces this problem. Single—letter
alternates for some commands might further speed the work of some

frequent users. The KEY-IN feature that uses the MS-DOS console input
mechanism might be replaced by a small text editor.

Knowledgeable users often remark that they would prefer to type
commands and believe that they can work more rapidly by just typing the
commands. A field trial over several weeks would be helpful in

ascertaining actual performance.

We feel that we succeeded in our goal to create a direct manipulation

interface for MS-DOS commands. Whether these ideas can become

successfully integrated into commercial software remains to be seen. The
6,000 lines of Turbo Pascal were written in a seven-month period by one

person (Osamu Iseki). Re—implementation should be easier and would
permit inclusion of additional features.

Several competing software products accomplish some of the goals of
DMDOS. File Command from IBM reduces the memorization and

keystroking burden by showing commands on the screen and allowing
users to press function keys to produce commands. The 1DIR package
from Bourbaki provides some features of DMDOS but shows only one
directory at a time. The Apple Macintosh desktop and the GEM Desktop
for IBM PCs offer visual representations of directories and convenient
icon movement or copying.

5.7 DIRECT MANIPULATION PROGRAMMING

Performing tasks by direct manipulation is not the only goal. It should
be possible to do programming by direct manipulation as well, for at least



Ch. 5 Direct Manipulation 217

some problems. The MACRO command of DMDOS supports a limited

form of programming, but more complex forms of programming seem

possible with direct manipulation ideas.

Robot programming is sometimes done by moving the robot arm

through a sequence of steps that are later replayed, possibly at higher

speed. This example seems to be a good candidate for generalization.

How about moving a drill press or a surgical tool through a complex

series of motions that are then repeated exactly‘? How about

programming a car by driving it once through a maze and then having the

car repeat the path? In fact, these direct manipulation programming ideas

are implemented in modest ways with automobile radios that are preset

by turning the frequency control knob and then pulling out a button.

When the button is depressed, the radio tunes to the frequency. Some

professional television camera supports allow the operator to program a

sequence of pans or zooms and then replay them smoothly when

required.

Programming of physical devices seems quite natural by direct

manipulation, but an adequate visual representation of information may

make direct manipulation programming possible in other domains.

Several word processors allow creation of macros by simply performing a

sequence of commands that are stored away for later reuse. The Wang

Decision Processing system enables the creation of “glossary” items that

can be lengthy sequences of text, special function keys such as TAB, and

control structures (Figure 5.15). The control structures can test for user

input and cursor location. Glossary items can invoke each other, leading

to complex programming possibilities. LOTUS 1-2-3, Symphony, and

Framework have rich programming languages and allow portions of

programs to be created by carrying out standard spreadsheet operations.

The result of the operations is stored in another part of the spreadsheet

and can be edited, printed, and stored in a textual form.

A delightful children’s program, Delta Drawing from Spinnaker,
enables children to move a cursor and draw on the screen by typing D to

draw one unit, R to rotate right 30 degrees, and so on. The forty

commands provide rich possibilities for drawing some kinds of screen

images. In addition, Delta Drawing allows users to save, edit, and then

invoke programs. For example, a circle can be drawn by saving the



Designing the User Interface

(g)

(—TAB-) (-TAB—) Very truly yours, (—RETURN-)
(—RETURN-) (—RETURN-)
(-TAB—) (-TAB—) J. S. Bach
(—RETURN-) (-TAB—) (-TAB—)

President (—RETURN-)

(-PROMP'I‘-)

Printout? y or n
(-EXECUTIVE-)

(-1-KEY—)

(—BACKSPACE-)

(-IF-) “y”

(-GO-TO-GL-)y I
(—END-)
(-GO-TO-GL-)n

Figure 5.15: Direct manipulation programming in the Wang Decision Processing

System. Users press labelled function keys for each token to create the program

which is stored in the glossary. .

program consisting of a D and a R. Invoking the program with the

argument, 12, then produces a rough twelve-sided circle.

A number of research projects have attempted to create direct manipu-

lation programming systems. Halbert’s Smallstar (1984) was a

programming-by—example system to enable programming of Xerox Star

actions. PICT-D (Glinert & Tanimoto, 1984) and ThinkPad (Rubin,

Golin, & Reiss, 1985) both tried to make graphical icons into a pro-

gramming language. This strategy has many of the elements of direct

manipulation.



Ch. 5 Direct Manipulation 219

5.8 PRACTITIONER’S SUMMARY

Among interactive systems that provide equivalent functionality and
reliability, some systems emerge to dominate the competition. Often the
most appealing systems have an enjoyable user interface that offers a
natural representation of the task and commands, hence the term direct
manipulation. These systems are easy to learn, use, and retain over time.
Novices can acquire a simple subset of the commands and then progress
to more elaborate operations. Actions are rapid, incremental, reversible,
and often performed with physical actions instead of complexsyntactic
forms. The results of operations are immediately visible, and error

messages are needed less often.

Just because direct manipulation principles have been used in a system
does not ensure its success. A poor design, slow implementation, or

inadequate functionality can undermine acceptance. For some
applications, menu selection, form fill—in, or command languages may be
more appropriate. Iterative design (see Section 10.2) is especially
important in testing direct manipulation systems because the novelty of
this approach may lead to problems for designers and users.

5.9 RESEARCHER’S AGENDA

Research needs to be done to refine our understanding of the

Contribution of each feature of direct manipulation: analogical

representation, incremental operation, reversibility, physical action instead
of syntax, immediate visibility of results, graceful evolution, and graphic
form. The relative merits of competing analogical representations could

be better understood through experimental comparisons (Bewley et al.,

1983). Reversibility is easily accomplished by a generic UNDO
command, but designing natural inverses for each operation may be more
attractive. Can complex actions always be represented with direct



220 Designing the User Interface

manipulation, or is there a point at which command syntax becomes
appealing?

If researchers and designers can free themselves to think visually, then
the future of direct manipulation is promising. Tasks that could have been

performed only with tedious command or programming languages may
soon be accessible through lively, enjoyable interactive systems that
reduce learning time, speed performance, and increase satisfaction.

REFERENCES

Arnheim, Rudolf, Visual Thinking, University of California Press,
Berkeley, CA, (1972).

Bewley, William L., Roberts, Teresa L., Schroit, David, and Verplank,
William L., Human factors testing in the design of Xerox’s 8010
“Star” Office Workstation, Proc. CHI '83 Conference - Human

Factors in Computing Systems, Available from ACM Order Dept., P.
0. Box 64145, Baltimore, MD 21264, (1983), 72-77.

Bruner, James, Toward a Theory of Instruction, Harvard University
Press, Cambridge, MA, (1966).

Carroll, J. M., Learning, using and designing command paradigms,
Human Learning 1, (19823), 31-62.

Carroll, J. M., The adventure of getting to know a computer, IEEE
Computer 15, (1982b), 49-58.

Carroll, John M., and Thomas, John C., Metaphor and the cognitive
representation of computing systems, IEEE Transactions on Systems,
Man, and Cybernetics, SMC-I2, 2, (March/April 1982), 107-116.

Carroll, "J. M., Thomas, J. C., and Malhotra, A., Presentation and

representation in design problem—solving, British Journal of Psychology
71, (1980), 143-153.

Copeland, Richard W., How Children Learn Mathematics, Third Edition,
MacMiIlan, New York, (1979).

Glinert, Emphraim, and Tanimoto, Steven L., Pict: An interactive

graphical programming environment, IEEE Computer 17, 11,
(November 1984), 7-25.



Ch. 5 Direct Manipulation 221

Halbert, Daniel, Programming "by Example, Ph. D. dissertation,
Department of Electrical Engineering and Computer Systems,
University of California, Berkeley, CA, Available as Xerox Report
OSD—T8402, Palo Alto, CA, (1984).

Hatfield, Don, Personal communication and lecture at Conference on
Easier and More Productive Use of Computer Systems, Ann Arbor, MI

(1981).

Heckel, Paul, The Elements of Friendly Software Design, Warner Books,
New York, NY, (1984), 205 pages.

Herot, Christopher F., Spatial management of data, ACM Transactions on
Database Systems, Vol. 5, No. 4, (December 1980), 493513.

Herot, Christopher, Graphical user interfaces, In Vassiliou, Yannis
(Editor), Human Factors and Interactive Computer Systems, Ablex
Publishing Co., Norwood, NJ, (1984), 83—104.

Hollan, J. D., Hutchins, E. L., and Weitzman, L., STEAMER: An
interactive inspectable simu1ation—based training system, AI Magazine,
(Summer 1984), 15427.

Hutchins, Edwin L., Hollan, James D., and Norman, Don A., Direct
manipulation interfaces, In Norman, Don A., and Draper, Stephen W.
(Editors), User Centered System Design: New Perspectives on
Human—Computer Interaction, Lawrence Erlbaum Associates,
Hillsdale, NJ, (1986).

Iseki, Osamu and Shneiderman, Ben, Applying direct manipulation
concepts: Direct Manipulation Disk Operating System (DMDOS),
Software Engineering Notes 11 , 2, (March 1986).

MacDonald, Alan, Visual Programming, Datamation 28, 11, (October
1982), 132-140.

McDonald, Nancy, Multi—media approach to user interface, In Vassiliou,
Yannis (Editor), Human Factors in Interactive Computer Systems,
Ablex Publishing Co., Norwood, NJ, (1983).

McKim, Robert H., Experiences in Visual Thinking, Brooks/Cole
Publishing Company, Monterey, CA, (1972).

Malone, Thomas W., What makes computer games fun?, BYTE 6, 12,
(December 1981), 258-277.

Montessori, Maria, The Montessori Method, Schocken, New York,
(1964).



222 Designing the User Interface

Nelson, Ted, Interactive systems and the design of virtuality, Creative
Computing Vol. 6, No. 11, (November 1980), 56 ff., and Vol. 6, No.
12, (December 1980), 94 ff.

Papert, Seymour, Mindstorms: Children, Computers, and Powerful Ideas,
Basic Books, Inc., New York, NY, (1980).

Polya, G., How to Solve It, Doubleday, New York, (1957).

Roberts, Teresa L., Evaluation of Computer Text Editors, Ph. D.

dissertation, Stanford University, Available from University
Microfilms, Ann Arbor, MI, Order Number AAD 80-11699, (1980).

Rubin, Robert V., Golin, Eric J., and Reiss, Steven P., Thinkpad: a

graphics system for programming by demonstrations, IEEE Software
Vol. 2, No. 2, (March 1985), 73-79.

Rutkowski, Chris, An introduction to the Human Applications Standard

Computer Interface, Part 1: Theory and principles, BYTE 7, 11,
(October 1982), 291-310.

Schild, W., Power, L. R., and Karnaugh, M., PICTUREWORLD: A

concept for future office systems, IBM Research Report RC 8384,
Yorktown Heights, NY, (July 30, 1980). _ -

Shneiderman, Ben, A computer graphics system for polynomials, The
Mathematics Teacher, Vol. 67, No. 2, (1974), 111-113.

Shneiderman, Ben, Control flow and data structure documentation: Two

Experiments, Communications of the ACM, Vol. 25, No. 1, (January
1982), 55-63.

Shneiderman, Ben, Mayer, R., McKay, D., and Heller, P., Experimental

investigations of the utility of detailed flowcharts in programming,
Communications of the ACM, Vol. 20, (1977), 373-381.

Smith, Cranfield, Irby, Charles, Kimball, Ralph, Verplank, Bill, and

Harslem, Eric, Designing the Star user interface, BYTE, Vol. 7, No. 4,
(April 1982), 242-282.

Thimbleby, Harold, What you see is what you have got? Unpublished
paper, University of York, England, (1982).

Wertheimer, M., Productive Thinking, Harper and Row, New York,
(1959).

Yedwab, Laura, Herot, Christopher F., and Rosenberg, Ronni L., The

automated desk, Sigsmall Newsletter 7, 2, (October 1981), 102-108.



Ch. 5 Direct Manipulation 223

Zloof, M. M., Office—by-Example: A business language that unifies data

and word processing and electronic mail, IBM Systems Journal 21, 3,
(1982), 272-304.

Zloof, M. M., Query—by—Example, Proceedings of the National Computer

Conference, AFIPS Press, Montvale, NJ (1975).


