

Exhibit 1015 – Part 3 Exhibit 1015 — Part 3

120 Designing the User Interface

was then highlighted by reverse video until the RETURN key was
pressed. Each subject worked for three minutes with each form. The
results were:

Mean tasks Preferred

completed form

Item-RETURN 14.8 4 0 subjects

Immediate response 15.5 7 7 subjects

Highlight—RETURN 15.3 3 29 subjects

Subjects worked slightly faster with the immediate response form, but the
error rate was highest. The subjective preference strongly favored the
highlighting, whichlooks very impressive to novice users.

3.8 EMBEDDED MENUS

All the menus discussed thus far might be characterized as explicit

menus in that there is an orderly enumeration of the menu items with

little extraneous information. However, in many situations the menu

items might be embedded in text or graphics and still be selectable.

In designing a textual database about people, events, and places for a

museum application, it seemed natural to allow users to retrieve detailed
information by selecting a name in context. Selectable names were

highlighted and the user could move a reverse video bar among

highlighted names by pressing the four arrow keys (Figure 3.10).

Selection was made by pressing ENTER and the user obtained a new

article plus the option of returning to the previous article. The names,

places, phrases, or foreign language words were menu items embedded in

meaningful text that informed the user and helped clarify the meaning of

the items. Subsequent implementations used mouse selection _or

touchscreens, leading to the generic term touchtext for this application of
embedded menus. '

Touchtext was also used in an implementation of online maintenance
manuals that provided diagnostic information in textual form on one

Ch. 3 Menu Selection Systems 121

lNTRODUCTl0N: STAMP UNION not 1 of 2 '

The Adele H. Stamp Union, formerly known as the Student Union, is the

cultural and social center for the University. The Union provides a variety of

services to the faculty, staff, and students. A plethora of restaurants are

available providing 5' wide choice of atmosphere and a variety of menus. The Union

is also center for entertainment. Several shops and many special services

are available, too. Union programs include concerts, exhibitions, and craft

classes. The Union is open all week from 7 M1. to 1 M1. Monday through Friday,

and until 2 /t.|"l. on weekends.

p [Select option then press RETURN]EXT PAGE

Figure 3.10: Display from the database on the Adcle H. Stamp Student Union at
the University of Maryland showing the embedded menu style of TIES. A
reverse video selector box initially covers the NEXT PAGE command. Users

move the selector box over highlighted references or commands and then select

by pressing RETURN. A touch screen version allows selection by merely
touching the highlighted reference or command.

monitor and graphics assistance on‘ a second monitor (Koved &
Shneiderman, 1986).

Embedded menus have emerged in other applications. Air traffic

control systems allow selection of airplanes in the spatial layout of flight

paths to provide more detailed information for controllers. Geographic

display systems allow selection of cities or zooming in on specific regions

to obtain more information (Herot, 1984). In these applications, the

items are icons, text, or regions in a two-dimensional layout.

Languagc—dirccted editors permit users to select programming language

constructs for expansion during the program composition process

(Teitelbaum & Reps, 1981). In a program browser at the University of

Maryland, Phil Shafer offered programmers the capability of moving the

Designing the User Interface

cursor onto a variable name or procedure invocation, pressing a function
key, and receiving the data declaration or procedure definition in a
separate window. The variable and procedure names were menu items

embedded in the context of a Pascal program.

Many spelling checkers use the embedded menu concept by
highlighting the possibly misspelled words in the context of their use.

The author of the text can move a cursor to a highlighted word and
request possible words or type in the correctly spelled word.

Embedded menus permit items togbe viewed in context and they
eliminate the need for a distracting and screen-wasting enumeration of
items. Contextual display helps keep the users focused on their tasks and

the objects of interest. Items rewritten in list form may require longer
descriptions (of the items) and increase the difficulty of making selections
because of confusion arising from cross—referencing between the menu
and the context.

3.9 FORM FILL-‘IN

Menu selection is effective in choosing an item from a list, but some
tasks are cumbersome with menus. If data entry of personal names or
numeric values is required, then keyboard typing becomes more
attractive. The keyboard may be viewed as a continuous single menu
from which multiple selections are made rapidly. When many fields of
data are necessary, the’ appropriate interaction style might be called form
fill-in. For example, the user might be ‘presented with a purchase order
form for ordering from a catalog, as in Figure 3.11. Another example of
a form using color coding is in Color Plate 1.

The form fill~in approach is attractive because the full complement of
information is visible, giving the users a feeling of being in control of the
dialog. Few instructions are necessary since this approach resembles
familiar paper forms. On the other hand, users must be familiar with

keyboards, use of the TAB key to move the cursor, error correction by
backspacing, field label meanings, permissible field contents, and use of
the ENTER key. Form fill-in must be done on displays, not hardcopy
devices, and the display device must support cursor movement.

Ch. 3 Menu Selection Systems 123

Type in the information below,

pressing TAB to move the cursor, and
press ENTER when done.

Name:

Address:

City:

Charge Number:

Catalog Catalog
Number Quantity Number Quantity

Figure 3.11: A form fill-in design for a department store.

An experimental comparison of database update by form fill-in and a

command language strategy demonstrated a significant speed advantage

for the form fi11—in style (Ogden & Boyle, 1982). Eleven of the twelve

subjects expressed a preference for the form fil1—in approach.

3.9.1 Form fill-in design guidelines

There is a paucity of empirical work on form fi1l—in, but a number of
design guidelines have emerged from practitioners (Galitz, 1980; Pakin &

Wray, 1982; Brown, 1986). Many companies offer form fi11—in creation

Designing the User Interface

FORM FILL-IN GUIDELINES
_

° Meaningful title

~ Comprehensible instructions

- Logical grouping and sequencing of fields

Visually appealing layout
Familiar field labels

Consistent terminology and abbreviations

Error correction for characters and fields

Visual templates for common fields

- Help facilities
 j___j—

Table 3.3: Form fill-in guidelines based on practical experience, but in need of
validation and clarification.

tools, such as Hewlett—Packard’s Forms 3000, IBM’s ISPF, Digital
Equipment Corporation’s FORM, Ashton-Tate’s dBASE and Lotus

Development Corporation's Symphony. Software tools simplify design,
help ensure consistency, ease maintenance, and speed implementation.
But even with excellent tools, the designer must still make many complex
decisions (Table 3.3).

The elements of form fill-in design include:

0 Meaningful title: Identify the topic and avoid computer
terminology »

Comprehensible instructions: Describe the user’s tasks in

familiar terminology. Try to be brief; but if more

information is needed, make a set of help screens available
to the novice user. In support of brevity, just decribe the

necessary action (“Type the address” or simply “address:")
and avoid pronouns (“You should type the address”) or

references to the user “The user of the form should type the
address.” Another useful rule is to use the word type for
entering information and press for special keys such as the

. TAB, ENTER, cursor movement, or Programmed Function

(PFK, PF, or F) keys. Since ENTER often refers to the

special key, avoid using it in the instructions (for example,

Ch. 3 Menu Selection Systems 125

do not use “Enter the address,” but stick to “Type the

address”) Once a grammatic style for instructions is

developed, be careful to apply that style consistently.

Logical grouping and sequencing of fields: Related fields

should be adjacent and aligned with blank space for

separation between groups. The sequencing should reflect

common patterns; for example, city followed by state

followed by zip code.

Visually appealing layout of the form: A uniform

distribution of fields is preferable to crowding one part of

the screen and leaving other parts blank. Alignment creates

a feeling of order and comprehensibility. For example, the

field labels, Name, Address, and City, were right justified

so that the data entry fields would be vertically aligned.

This allows the frequent user to concentrate on the entry

fields and ignore the labels. If working from hard copy,

the screen should match the paper form.

Familiar field labels: Common terms should be used. If

Address were replaced by Domicile, many users would
be uncertain or anxious about what to do. '

Consistent terminology and abbreviations: Prepare a list of

terms and acceptable abbreviations and diligently use the

list, making additions only after careful consideration.

Instead of varying such terms as Address, Employee

Address, ADDR., and Addr ., stick to one term, such as
Address.

Visible space and boundaries for data entry fields:
Underscores or other markers indicate the number of

characters available, so users will know when abbreviations

or other trimming strategies are needed.

Convenient cursor movement: A simple and visible

mechanism is needed for moving the cursor, such as a TAB

key or cursor movement arrows.

Designing the User Interface

Error correction for individual characters and entire fields:

A backspace key and overtyping should be allowed to

enable easy repairs or changes to entire fields.

Error messages for unacceptable values: If users enter an

unacceptable value, the error message should appear on

completion of the field. The message should indicate

permissible values of the field, for example, if the zip code‘
is entered as 28K2l or 2380, the message might indicate
that “Zip codes should have 5 digits.”

Optional fields should be marked: The word optional or

other indicators should be visible. Optional fields should

follow required fields, whenever possible.

Explanatory messages for fields: If possible, explanatory

information about a field or its values should appear in a

standard position, such as in a window on the bottom,
whenever the cursor is in the field.

Completion signal: It should be’ clear to the users what to

do when they are finished filling in the fields. Generally,

designers should avoid automatic completion when the last

field is filled, because users may wish to go back and
review or alter field entries.

These considerations may seem obvious, but often forms designers

omit the title or have unnecessary computer file names, strange codes,
unintelligible instructions, unintuitive groupings of fields, cluttered

layouts, obscure field labels, inconsistent abbreviations or field formats,

awkward cursor movement, confusing error correction procedures, hostile

error messages, and no obvious way to signal completion.

Detailed design rules should reflect local terminology and

abbreviations; field sequences familiar to the users; the width and height
of the display device; highlighting features such as reverse video,
underscoring, intensity levels, color, and fonts; the cursor movement

keys; and coding of fields.

Ch. 3 Menu Selection Systems

3.9.2 Coded fields

Columns of information require special treatment for data entry and for

display-. Alphabetic fields are customarily left justified on entry and on
display. Numeric fields may be left justified on entry but then become

right justified on display. When possible, avoid entry and display of
leftmost zeroes in numeric fields. Numeric fields with decimal points

should line up on the decimal points. ,

Special attention should be paid to such common fields as:

' Telephone numbers: Offer a form to indicate the subfields:

Phone: L

Be alert to such special cases as addition of extensions or the need for

nonstandard formats for foreign numbers.

° Social Security numbersi 'l‘he pattern for Social Security
numbers should appear on the screen as:

Social Security Number:

When the user has typed the first three digits, the cursor should jump
to the leftmost position of the two-digit field.

' Times: Even though the twe'nty—four hour ‘clock is
convenient, ‘many people find it confusing and prefer A.M.
or P.M. designations. The form might appear as:

(9:45 AM or PM)

Seconds may or ‘may not be included, adding to the
variety of necessary formats.

Ddtes: This is one of the nastiest problems for which no
good solution exists. Different formats for dates are

Designing the User Interface

appropriate for different tasks, and European rules differ
from American rules. It may take a generation until an
acceptable standard emerges.

When presenting coded fields, the instructions might
show an example of correct entry, for example:

Date: _ _/_ _/_ _ (O4/22/86 indicates April 22, 1986)

For many people, examples are more comprehensible than
an abstract description, such as MM/DD/YY.

Dollar amounts (‘or other currency): The dollar sign should

appear on the screen, and users then type only the amount.

If a large volume of whole dollar amounts are to be

entered, the user might be presented with a field such as:

Deposit amount: $

with the cursor to the left of the. decimal point. As the user
types numbers, they shift left. To enter an occasional cents

amount, the user must type the decimal point to reach the

00 field for overtyping.

_Other considerations in form fill-in design include dealing with

multiscreen forms, mixing menus with forms, the role of graphics,
relationship to paper forms, use of pointing devices, use of color,

handling of special cases, and integration of a word processor to allow
remarks.

3.10 PRACTITIONER’S SUMMARY

Begin by understanding the semantic structure of your application

within the vast range of menu selection situations. Concentrate on
organizing the sequence of menus to match the user’s tasks, ensure that

Ch. 3 Menu Selection Systems 129

each menu is a meaningful semantic unit, and create items that are

distinctive and comprehensible. If some users make frequent use of the

system, then typeahead, shortcut, or macro strategies should be allowed.

Permit simple traversals to the previously displayed menu and to the main

menu. Finally, be sure to conduct human factors tests and involve
human factors specialists in the design process (Savage et al., 1982).

When the system is implemented, collect usage data, error statistics, and

subjective reactions to guide refinement.

Whenever possible, use a menu builder/driver system to produce and

display the menus. Commercial menu creation systems are available and

should be used to reduce implementation time, ensure consistent layout
and instructions, and simplify maintenance.

3.11 RESEARCHER’S AGENDA

Experimental research could help refine the design guidelines
concerning semantic organization and sequencing in single and‘ linear

sequences of menus. How can differing communities of users be

satisfied with a common semantic organization when their information
needs are very different? Should users be allowed to tailor the structure
of the menus or is the advantage greater in compelling everyone to use

the same structure and terminology?

Should a tree structure be preserved even if some redundancy is
introduced? How can networks be made safe?

Research opportunities abound. Depth versus breadth tradeoffs under

differing conditions need to be studied to provide guidance for designers.
Layout strategies, wording of instructions, phrasing of menu items, use of

color, response time, and display rate are all excellent candidates for

experimentation. Exciting possibilities are becoming available with larger

screens, multiple displays, and novel selection devices.

Implementers would benefit fromthe development of software tools to
support menu system creation, management, usage statistics gathering,

130 Designing the User Interface

and evolutionary refinement. Portability of “rrienu-ware” could be
enhanced to facilitate transfer across systems.

REFERENCES

Billingsley, P. A., Navigation through hierarchical menu structures: Does
it help to have a map‘? Proc. Human Factors Society, 26th Annual
Meeting, (1982), 103-107. I

Brown, C. Marlin, Human-Computer Interface Design Guidelines, Ablex

Publishing Company, Norwood, NJ, (1986).

Brown, James W., Controlling the complexity ‘of menu networks,

Communications of the ACM 25, 7, (July 1982), 412-418

Card, Stuart K., User, perceptual mechanisms in the search of computer

command menus, Proc. Human Factors in Computer Systems, (March
1982), 190-196.

Clauer, Calvin Kingsley, An experimental evaluation of hierarchical

decision-making for information retrieval, IBM Research Report RJ
1093, (September 15, 1972), 83 pages.

Doughty, Roger K., and Kelso, John, An evaluation of menu width and

depth on user_perfoi'rnance, Unpublished project paper done with Prof.
James Foley, George Washington University, Washington, DC (i984).

Dray, S. M., Ogden, W. G., and Vestewig, R. E., Measuring

perfdrrnance with a meriu—selection huinan-computer interface, Proc.
Human Factors Society, 25th Annual Meeting, (1981), 746-748.

Galitz, Wilbert 0., Human Factors in Ofiice Automation, Life Office

Managment Assn., Atlanta, GA, (1980).

Herot, Christopher F., Graphical user interfaces, in Vassiliou, Y.

(Editor), Human Factors and Interactive Computer Systems, Ablex

Publishers, Norwood, NJ, (1984), 83-103.

Hiltz, Starr Roxanne, and Turoff, Murray, The evolution of user behavior

in a computerized conferencing system, Communications of the ACM
24, 11, (November 1981), 739-751.

Ch. 3 Menu Selection Systems 131

Kiger, John 1., The depth/breadth trade—off in the design of menu-driven
user interfaces, International Journal of Man-Machine Studies 20,

(1984), 201-213.

Koved, Lawrence, and Shneiderman, Ben, Embedded menus: Menu
selection in context, Communications of the ACM 29, (1986) ,
312-318.

Landauer, T. K., and Nachbar, D. W., Selection from alphabetic and
numeric menu trees using a touch screen: Breadth, depth, and width,
Proc. Human Factors in Computing Systems (April 1985), ACM
SIGCHI, New York, 73—78.

Laverson, Alan, Norman, Kent, and Shneiderman, Ben, An evaluation of
jump—ahead techniques for frequent menu users, University of
Maryland Computer Science Technical Report 1591, (December 1985).

Lee, E., and Latremouille, S., Evaluation of tree structured organization
of information on Telidon, Telidon Behavioral Research I, Department
of Communications, Ottawa, Canada, (1980). S

Liebelt, Linda S., McDonald, James E., Stone, Jim D., and Karat, John,
The effect of organization on learning menu access, Proc. Human
Factors Society, 26th Annual Meeting, (1982), 546-550.

McDonald, James E., Stone, Jim D., and Liebelt, Linda S., Searching
for items in menus: The effects of organization and type of target,
Proc. Human Factors Society, 27th Annual Meeting, (1983), 834-837.

McEwen, S. A., An investigation of user search performance on a
Telidon information retrieval system, Telidon Behavioral Research 2,

Ottawa, Canada, (May 1981).

Mantei, Marilyn, Disorientation behavior in person—computer interaction,
Ph. D. Dissertation, University of Southern California (August 1982).

Martin, James, Viewdata and the Information Society, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, (1982), 293 pages.

Miller, Dwight, P., The depth/breadth tradeoff in hierarchical computer
menus, Proc. Human Factors Society, 25th Annual Meeting, (1981),
296-300.

Murray, Robert P., and Abrahamson, David S., The effect of system
response delay and delay variability on inexperienced videotex users,
Behaviour and Information Technology 2, 3, (1983), 237-251.

132 Designing the User Interface

Ogden, William C., and Boyle, James M., Evaluating human—computer
dialog styles: Command vs. forrn/fill-in for report modification, Proc.

Human Factors Society, 26th Annual Meeting, Human Factors Society,
Santa Monica, CA, (1982), 542-545.

Pakin, Sherwin E., and Wray, Paul, Designing screens for people to use
easily, Data Management, (July 1982), 36-41.

Parton, Diana, Huffman, Keith, Pridgen, Patty, Norman, Kent, and

Shneiderman, Ben, Learning a menu selection tree: Training methods

compared, Behaviour and Information Technology 4, 2, (1985), 81-91.

Perlman, Gary, Making the right choices with menus, INTERACT '84,

First IFIP International Conference on Human—Computer Interaction,
North—Holland, Amsterdam (September 1984), 291-295.

Price, Lynne A., Design of command menus for CAD systems, Proc.
ACM—IEEE I9tlz Design Automation Conference, (June 1982),
453-459.

Robertson, G., McCracken, D., and Newell, A., The ZOG approach to

man—machine communication, International Journal of Man—Machine
Studies 14, (1981), 461-488.

Savage, Ricky E., Habinek, James K., and Bamhatt, Thomas W., The

design, simulation, and evaluation of a menu driven user interface,

Proc. Human Factors in Computer Systems, (1982), 36-40.

Shneiderman, Ben, Direct manipulation: A step beyond programming
languages, IEEE Computer 16, 8, (August 1983).

Somberg, Benjamin, and Picardi, Maria C., Locus of information

familiarity effect in the search of computer menus, Proc. Human

Factors Society, 27th Annual Meeting, (1983), 826-830.

Teitelbaum, Richard C., and Granda, Richard, The effects of positional
constancy on searching menus for information, Proc. CHI ’83, Human

Factors in Computing Systems, Available from ACM, Baltimore, MD
(1983), 150-153.

Teitelbaum, T., and Reps, T., The Cornell program synthesizer: A

syntax—directed programming environment, Communications of the
ACM 24, 9, (September 1981), 563-573.

Tombaugh, Jo W., and McEwen, Scott A., Comparison of two
information retrieval methods on Videotex: Tree—structure versus

Ch. 3 Menu Selection Systems 133

alphabetic directory, Proc. Human Factors in Computer Systems,
(1982), 106-110.

Young, R. M., and Hull, A., Cognitive aspects of the selection of
Viewdata options by casual users, Pathways to the Information Society,
Proc. 6th International Conference on Computer Communication,

London, (September 1982), 571-576.

CHAPTER 4

COMMAND LANGUAGES

I soon felt that the forms of ordinary language were far too diffuse....I

was not long in deciding that the most favorable path to pursue was to

have recourse to the language of signs. lt then became necessary to

contrive a notation which ought. if possible, to be at once simple and

expressive, easily understood at the commencement, and capable of being
readily retained in the memory.

Charles Babbage, “On a method of expressing by signs the action of

machinery,” 1826

1363 Designing the User Interface

4. 1 TNTRODUCTION

The history of written language is rich and varied. Early tally marks
and pictographs on ' cave walls existed for millenia "before precise
notations for numbers or other concepts appeared. The Egyptian
hieroglyphs of 5,000 years ago were a tremendous advance because

standard notations facilitated communication across space and time.
Eventually, languages with a small alphabet and rules of word and

sentence formation dominated because of the relative ease of learning,
writing, and reading. In addition to these natural languages, special
languages for mathematics, music, and chemistry emerged because they
facilitated communication and problem ‘solving. In the twentieth century,
novel notations were created for such diverse domains as dance, knitting,
higher forms of mathematics, logic, and DNA molecules.

The basic goals of language design are:

precision

compactness

ease in writing‘ and reading

speed in learning

simplicity to reduce errors

ease of retention over time.

Higher level goals include:

a close correspondence between reality and the notation

convenience in carrying out manipulations relevant to the
users’ tasks

compatibility with existing notations

flexibility to accommodate novice and expert users

expressiveness to encourage creativity

visual appeal.

Constraints on a language include:

Ch. 4 Command Languages 137

the capacity for human beings to record the notation

a good match with the recording and the display media
(e. g., clay tablets, paper, printing presses)

the convenience in speaking (vocalizing).

Successful languages evolve to serve the goals within the constraints.

The printing press was a remarkable stimulus to language development
because it made widespread dissemination of written work possible. The
computer is another remarkable stimulus to language development, not
only because widespread dissemination through networks is possible, but
also because the computer is a tool to manipulate languages and because
languages are a tool for manipulating computers. '

The computer has had only a modest influence on spoken natural

languages, compared to its enormous impact as a stimulus to the
development of numerous new formal written languages. Early
computers were meant to do mathematical computations, so the first
programming languages‘ had a strong mathematical flavor. But computers

were quickly found to be effective manipulators of logical expressions,
business data, graphics, and text. Increasingly, computers are used to
operate on the ‘real world: directing robots, issuing dollar bills at bank
terminals, controlling manufacturing, ‘and guiding spacecraft. These
newer applications encourage language designers to find convenient
notations to direct the computer while preserving the needs of people to
use the language for communication and problem solving.

Therefore, effective computer languages must not only represent the
users’ tasks and satisfy the human needs for communication but must also

be in harmony with mechanisms for recording, manipulating, and

displaying these languages in a computer.

Computer programming languages that were developed in the 19605
and early 1970s_, suchyas FORTRAN, COBOL, ALGOL, PL/I, or Pascal,
were designed for use in a noninteractive computer environment.
Programmers would compose hundreds or thousands of lines of code,
carefully check them over, and then compile or interpret by computer to
produce a desired result. Incremental programming was one of the

design considerations in BASIC and such advanced languages as LISP,

Designing the User Interface

APL, or PROLOG. Programmers in these languages were expected to

build smaller pieces online and interactively execute and test them. Still
the common goal was to create a large program that was preserved,

studied, extended, and modified.

Database query languages developed in the mid to late 1970s, such as

SQL or QUEL, emphasized shorter segments of code (three to twenty

lines) that could be written at a terminal and immediately executed. The

goal of the user was more to create _a result than a program.

Command languages, which originated with operating systems

commands, are distinguished by their immediacy and by their impact on
devices or information; Users issue a command and watch what happens.
If the result is correct, the next command is issued; if not, some other

strategy is adopted. The commands are brief and their existence is

transitory. Of course, command histories are sometimes kept and macros
are created in some command languages, but the essence of command

languages is their ephemeral nature and the fact that they produce an
immediate result on some object of interest.

Command languages are distinguished from menu selection systems by

the fact that the users of command languages must recall notation and
initiate action." Menu selection users receive instructions and must only

recognize andchoose among a limited set of visible alternatives; they

respond more than initiate. Command language users are often called on

to accomplish remarkable feats of memorization and typing. For

example, does it make sense to type the UNIX command:

GREP ~V “S13, FILEA > FILEB

in order to delete blank lines from a file? Similarly, to get printout on

unlined paper with the IBM 3800 laser printer, a user at one installation

was instructed to type‘

CP TAG DEV E VTSO LOCAL 2 OPTCD=J F'=387l X=GBl2

The puzzled user was greeted with a shrug of the shoulders and the

equally cryptic comment that “sometimes logic doesn’t come into play,

it’s just getting the job done.” This style of work may have been
acceptable in the past, but user communities and their expectations are

Ch. 4 Command Languages 139

changing. The empirical studies described in this chapter are beginning

to clarify guidelines for many command language design issues.

Command languages may consist of single commands or have complex

syntax (Section 4.2). The language may have only a few operations or

thousands. Commands may have a hierarchical structure or permit

concatentation to form variations (Section 4.3). A typical form is a verb

followed by a noun object with qualifiers or arguments for the verb or
noun. Abbreviations may be permitted (Section 4.5). Feedback may be

generated for acceptable commands and error messages (see Section 8.1)

may result from unacceptable forms or typos. Command language

systems may offer the user brief prompts or they may be close to menu

selection systems (Section 4.6). Finally, natural language interaction can

be considered as a complex form of command language (Section 4.7).

4.2 FUNCTIONALITY TO SUPPORT USERS’ TASKS

People use computers and command language systems to accomplish

tasks. The most common application of command languages is for text

editing; other applications include operating systems control,

bibliographic retrieval, database manipulation, electronic mail, financial

management, airline or hotel reservations, inventory, manufacturing

process control, and adventure games.

The critical determinant of success is the functionality of the system.
People will use a computer system if it gives them powers not otherwise

available. If the power is attractive enough, people will use a system

despite its poor user interface. Therefore, the first step for the designer is
to determine the functionality of the system by assessing the user task
domain.

A common design error is excess functionality. In a misguided effort

to add features, options, and commands, the designer can overwhelm the

user. Excess functionality means more code to maintain, potentially

more bugs, possibly slower execution, and more help screens, error

messages, and user manuals (see Chapter 9). For the user, excess

functionality slows learning, increases the chance of error, and adds the

confusion of longer manuals, more help screens, and less specific error

140 Designing the User Interface

messages. On the other hand, insufficient functionality leaves the user

frustrated because an apparent function is not supported. For instance,

the system might require the user to copy the contents of the screen by
hand because there is no simple print command or to reorder the output
because there is no sort command.

Evidence of excessive functionality comes from a study of 17
secretaries at a scientific research center who used IBM’s XEDIT editor

for a median of 18 months for 50 to 360 minutes per day (Rosson, 1983).
Their usage of XEDIT commands was monitored for five days. The
average number of commands used was 26 per user with a maximum of

34; the number of commands was correlated with experience (r=.49).
XEDIT has 141 commands, so even the most experienced user dealt with

less than a quarter of the commands. Users did not appear to employ
idiosyncratic subsets of the language but added commands to their

repertoire in an orderly and similar pattern.

Careful task analysis might result in a table of user communities and

tasks with each entry indicating expected frequency of use. The high
volume tasks should be made easy to carry out, and then the designer
must decide which communities of users are the prime audience for the

system. ‘Users may differ in their position in an organization, their

knowledge of computers, or their frequency of system usage. One
difficulty in carrying out such a task analysis is predicting who the users
might be and what tasks they need to accomplish.

Inventing and supplying new functions are the major goals of many
designers. They know that marketplace acceptance is often determined

by the availability of functions that the competition does not provide.
Word processor designers continue to add such functions as boldface,
footnotes, dual windows, mail merge, or spelling checks to entice

customers. A feature analysis list (Figure 4.1) can be very helpful in
comparing designs and in discovering novel functions (Roberts, 1980).

At an early stage, the destructive operations such as deleting objects or
changing formats should be carefully evaluated to ensure that they are
reversible or at least protected from accidental invocation. Designers
should also identify error conditions and prepare error messages. A
transition diagram showing how each command takes the user to another

state is a highly beneficial aid to design, as well as to eventual training of

Ch. 4 Command Languages 141

TEXT EDITOR FEATURE LIST

Estimated time to install

(15 minutes to two hours)
Number of diskettes provided
(1 to 7)

Right to make copies
On—screen tutorial
Textbook tutorial

Textbook reference guide
Online help
Meaningful error messages

Spelling checker built in
to word processor

Thesaurus built in to word
processor

Mail merge
Automatic table of contents

generation
Automatic index generation

Menu, command, or function
key driven

Save block

Block defined by highlight
or markers

Maximum size for block

operation
Document size limit

Capacity to edit more
than one file

Can rename disk files

Can copy disk filcs
Can show disk directory

What you see is what you get
Preview print fonnat

Editing allowed during
printing

Print part of file
Can chain documents
for printing

Can queue documents
for printing

Automatic page numbering
Print multiple copies
Automatic file save

Save file without exiting
Automatic backup file
Can create file without
embedded codes

Subscript!superscript
Italics

Underscoring
Boldface

Multiple fonts
Multiple font sizes
Left and right justification
Centering
Tabbing
Proportional spacing
Multiple column output
Footnotes
Endnotes

Line spacing options
Number of printers supported

Characters per line range
(78-455)

Lines per screen
Can change screen colors
Can redefine key functions
Can specify macros

Automatic hyphenization
Can switch from insert to
overwrite modes

Automatic indentation

Multiple indents/outdents
Change case command
Ruler line can be displayed
to show tabs

Display column, line,
and page number

Headers and footers
‘Math functions
Sort functions

Move cursor by character,
word, sentence, paragraph

Move cursor by screen
Move cursor to left or

right ends of line
Move cursor to top or
bottom of screen

Move cursor to top or
bottom of document

Delete by character, word,
line, sentence, or

paragraph
Delete to end of document
Undelete

Search forward and backward

Search by patterns
Can ignore case in searching
Leave and locate markers

Copy/move
Copy/move by columns

Figure 4.1: Feature list for word processors distilled from Roberts (1980) and
Wiswell, Phil, Word processing: The latest word, PC Magazine, (August 20,
1985), 110-134.

142 Designing the User Interface

xn2Pvxr__', .1“? I2. ' ‘~__.
. ‘.RE°“.T _

IREPUET

LREPORT

'DA_NU;1lx.[tx’,]i.. _
u _
"1:-11-::'._wyxnoo““>C)' '

_ ‘-_\;'::,5EJ\;3:ILE(:‘.i‘I) ‘ '.x \ at r-.1 9|-IAIINSG _;-{'1_ §nar'.|::n.2:Ix.____ X‘ - U\ ' - .- . ' '-~

" ‘g':-h"(\'-Cb" ""-1"‘ ssrrenmz f °W“'m5G1pur."n::n.1q-n -._ Lgl - — -

E; LEI Lsrwiz aHAI'l‘NSC- }.-"
owmmsc_; — ,-'\

:.-r__.
A1LX..“3"‘

‘Ix .- -'- in _
'\=_'}'

Figure 4.2: This transition diagram indicates user inputs with an “i” and

computer outputs with an “o”. This is a relatively simple diagram showing only

a portion of the system. Complete transition diagrams may take many pages.
(Courtesy of Robert J. K. Jacob, Naval Research Laboratory, Washington, DC)

users (Figure 4.2). If the diagram gets too complicated, it may signal the
need to redesign the system.

Major considerations for expert users are the possibilities of tailoring

the language to suit personal work styles and creating named macros to

permit several operations to be carried out with a single command.

Macro facilities allow extensions that the designers could not foresee or

that are beneficial to only a small fragment of the user community. A
macro facility can be a full programming language that might include

specification of . arguments, conditionals, iteration, integers, strings, and

screen manipulation primitives, plus library and editing tools.

Well-developed macro facilities are one of the strong attractions of
command languages.

Ch. 4 Command Languages

4.3 COMMAND ORGANIZATION STRATEGIES

Several strategies for command organization have emerged, but
guidelines for choosing among these are only beginning to he discussed.

A unifying concept, model, or metaphor is an aid to learning, ‘problem

solving, and retention (Carroll & Thomas, 1982). In electronic mail
circles, lively discussions can be started, over the metaphoric merits of
such task-related objects as file drawers, folders, documents, memos,

notes, letters, or messages. The debates continue about the appropriate

task domain actions (CREATE, EDIT, COPY, MOVE}, DELETE) and

the choice of an actionpair LOAD/SAVE (too much in the computer
domain), READ/WRITE ‘(acceptable for letters but awkward for file

drawers), or OPEN/CLOSE (acceptable for folders but awkward for

notes). , I ‘

Similarly, debate continues over whether the commands should

manipulate lines, as in program editors and older line-oriented editors, or
words, sentences,_and paragraphs, as in new ‘word processors. Choosing

one strategy over another is helpful. Designers who fail to choose and
attempt to support every possibility risk overwhelming the users while

missing the opportunity to optimize for one strategy. Designers often err
by choosing a metaphor closer to the computer domain rather than the

user’s task domain. "Of course, metaphors can mislead the user, but
careful design can reap the benefits while reducing the detriments. I ’

Having adopted _a concept, model, or metaphor for operations, the

designer must now ghoose a strategy for the command structure. Mixed
strategies are possible, but leaming, problem solving, and retention may
be aided by limiting the complexity. ‘

4.3.1 Simple command list

Each command is chosen to carry out a single task, and the number of

commands matches the number of tasks. With a small number of tasks,
this approach can produce a system that is simple to learn and use. With
a large number of commands, there is danger of confusion. The V1

editor on UNIX systems offers many commands while attempting to keep

144 Designing the User Interface

VI COMMANDS TO MOVE THE CURSOR

Moving within a window

go to home position (upper left)

go to middle line

CR) next line (carriage return)
+ next line

H

L go to last line
M

l

— previous line

CTRL—P previous line in same column

CTRL—N next line in same column

(l_..F') next line in same column (line feed)

Moving within a line

0 go to start of line

8 go to end of line

go right one space

go left one space

go left one space
forward one word
backward one word

end (rightmost) character of a word
forward one sentence '

backward one sentence

forward one paragraph

backward one paragraph‘
blank out a delimited word

backwards blank out a delimited word
go to the end of a delimited word

Finding a character

fx find the character x going forward
Fx find the character x going backward
‘bx go up to x going forward
T); go up to x going backward

Ch, 4 Command Languages 145

Scrolling the window

CTRL—F go forward one screen

CTRL——'B go backward one screen

CTRL—D go forward one half screen

CTRL—U go backward one half screen
G go to line

/pat go to line with pattern forward
pat go to line with pattern backward

Figure 4.3: The profusion of commands in vi may enable expert users to get

tasks done with just a few actions, but the number of commands can be
overwhelming to novice and intermittent users.

the number of keystrokes low. This results in complex strategies
employing single letters, shifted single letters, and CTRL key plus single
letters (Figure 4.3). Furthermore, some commands stand alone, whereas
others must be combined in often irregular patterns.

4.3.2 Command plus arguments

Each command (COPY, DELETE, PRINT, . . .) is followed by one
or more arguments (FILEA, FILEB, FILEC, . . .) that indicate

objects to be manipulated.

copy FILEA,FILEB
DELETE FILEA

PRINT FILEA,FILEB,FILEC

Commands may be separated from the arguments by a blank or other

delimiter, and the arguments may have blanks or delimiters between them

(Schneider et al., 1984). Keyword labels for arguments may be helpful
to some users; for example;

COPY FROM =.F‘I_LEA T0 =FILEB

146 Designing the User Intertace

The labels require extra typing and increase chances of a typo, but

readability is improved and order dependence is eliminated.

4.3.3 Command plus options and arguments

Commands may have options (3 , HQ, . . .) to indicate special cases.
For example

PRINT/5,l'lQ FILEJA
PRINT (3,!-IQ) FILEA

PRINT FILEA —3,HQ

may produce three copies of FILEA at the printer in the headquarters
building. As the number of options grows, the complexity can become
overwhelming and the error messages less specific. The arguments may
also have "options, such as version numbers, privacy keys,’ or disk
addresses. I

The number of arguments, number of options, and the permissible
syntactic forms can grow very rapidly. One airline reservations system
uses the following command to locate availability of flight on August 21,

from Washington’s National Airport (DCA) to New York’s La Guardia

Airport (LGA) around 3:00 P.M,:

AOBZIDCALGAOSOOP

Even with substantial training, error rates can be high with this
approach, but frequent users seem to manage and even appreciate the
compact form of this type" of command. ‘

UNIX is a widely used command language system in spite of the

complexity of the command formats (see Figure 4,4) that have been
severely criticized (Norman, 1981). gHere again, users will master
complexity to benefit from the rich functionality in a system. "Error rates
with actual use of UNIX commands ranged from 3 percent to 53 percent

(Kraut et al., 1983; Hanson et al., 1984). Even common commands

generated high syntactic error rates: mv (18 percent), cp (30 percent), and
awk (34 percent). Still, there is a certain attraction to the complexity

Ch. 4 Command Languages

 __j__j_

at 2A Friday timehog
at 2:00 a.m. Friday, run program

awk '{ptint $1 + $2)'fiie1
print sum al iirst two lieids of each line

cat - n tiIe1
print specified file to terminal, number output linescatiIle1>>t|ie2
append tlle1 to end of tile!

cc tiie.c
compile C program, executable in toutco lusrilib
change working directory to specified one

chrnod g +rw ti|e1 ti|e2
change mode of files, adding group read and write accesschmod 600 file
change mode of file, allow only read and write by owner

cpliie11iie2
make .9 copy oi tiIo1 named tila2

cp — r dir /tmp
recursively copy dlr and its subdireclorios to Ilmpdill —|dir1dir2
summarize differences between tiles in am and cm

W? fiie.f
compile Fortran program, executable in Loni

t77 — 0 file file!‘ tlIe.o
compile Fartran program, link with lIlI.o, executable in tile

rind $HOME —name ‘it-‘ -exec rm {) \;
remove files with names beginning with a pound sign

finger name
look up iniorrnation on user's Iagin or real name

grep '[Pp]hone‘ file
print all lines in file containing Phone or phone

grep —i main -
print names of files in current directory containing rlulnhead -6 file
print Iirst six lines oi tile

kill — 9 0
send a KILL signal to processes started since logln

In —s iiIe1 ii|e2 limp
make symbolic links to files in specified directory

ipq iob user
report print spooier status of user's [ob

ipr — in tile
paginate file and spool it to the line printer

is
print a list or the flies in the current directoryis — R ibin
list files in specified directory and its subclirectories

mail molly iracey < iile
send a liie to specified users as mail

man spell
print Unix user's manual page lor a command

rnkdir /Impimyjunk
make a new directorymore + 50 file
view file by screenfui, starting at line 50

mv lilei tiie2 itmp
move files to specified directory

ntoft tile ; more
preview formatted iiia an terminal

pc iile.p
compile Pascal program, executable in I.out

pr Me i Ipr

paginate a file with default header, spool outputps
print long listing of current processes, PiD's and status

owd
print current working directory

rlogin puter2
iogin on remote computerirn iiie
remove (delete) a file

rm ~ i junk[O -9]
remove lites iunkfl lunkfl, confirming firstsort +3 -4 tile
print tile snrled only on fourth ileld

stty everything
print all stty option settings

stty raw; prog; stty —raw
set terminal to run mode, run a program, and restore mode

style — p tile
print sentences in file containing a passive verbvi file
edit iiie using lull screen editorw
list who’: logged in. and what they're doing

Figure 4.4: Examples of common UNIX commands with brief explanations.
(Courtesy of Specialized Systems Consultants, Inc., Seattle WA)

among a portion of the potential user community. There is satisfaction in

overcoming the difficulties and becoming one of the inner circle (“gurus”

and “wizards”) who are knowledgeable about system features—command
language macho.

4.3.4 Hierarchical command structure

The full set of commands is organized into a tree structure, like a

menu tree. The first level might be the command action, the second

Designing the User interface

might be an object argument, and the third might be a destination
argument:

Action Object Destination

CREATE File File

DISPLAY Process Local printer

REMOVE Directory Screen

COPY Laser printer

MOVE

If a hierarchical structure can be found for a set of tasks, it offers a

meaningful structure to a large number of commands. In this case, 5 x 3
x 4 = 60 tasks can be carried out with only five command names and

one rule of formation. Another advantage is that a command menu

approach can be developed to aid the novice or intermittent user, as was
done in VisiCalc and Lotus 1-2-3.

Several help systems allow a hierarchical command to retrieve text
about subsystems and their commands. For example, to get help on the
editor command for deleting lines in a document, the user might type:

HELP EDIT DELETE LINES

Of course, the difficulty comes in knowing what keywords are

available. Users can type the first few elements of the command and
then receive a menu of items. '

Many word processors use a hierarchical command structure for the
numerous commands that they support. For example, Figure 4.5 shows
the command structure for FinalWord. '

4.4 THE BENEFITS OF STRUCTURE

Human learning, problem solving, and memory are greatly facilitated

by meaningful structure. If command languages are we1l—designed, users

Ch. 4 Command Languages

__

M§ne§_:_QIBe:!Buffers
CapitalizationFiles
Help
Layput
Miscellaneous
Regions
Set
Windows
2 7 exit menu

§a££e:§_Ueng
Delete buffer
List buffers
Previous buffer

Qaeisalizasien Menu
Clear highl‘ ng
Flip highlightingLowercase

Eile§_Uaug
Backup and save File
Directory editFind file
Read file

Be12_d§nu
Explain key
Help about

Le2au£_D§na
Advanced printCenter line
Fill paragraph
Justify paragraphLeft flush line

Ui§§ellaue9u§_menu
Abnrt printing
Center point
Display refreshExit editor
Global replace

B§QiQD§_U§D!
Append ta KILLS
Copy to marker
Delete to marker
Indent

Fill mode an/nff
Highlight on/off
indent column
Line length

!ina2u§_DenuGrow window
Move other
One windnw

Switch buffer
2 — exit menu

Set highlighting
Uppercase -
Z - exit menu

Save file
Write file
2 - exit menu

Remove help buffer2 - exit menu

Print
Right flush line
Unjustify paragraph
Verify advanced print2 ~ exit menu

Line count
Query replace
Report position
2 - exit menu

Outdent
Set marker
Undelete

Overwrite mode on/off
Report values
Tab interval
2 A exit menu

Switch windows
Twu windows
2 - exit menu

______.__

Figure 4.5: The tree structure of menus in the Finalword word processor (Mark
of the Unicorn). For example, by typing CTRL-X F W, the user can write the

file out to the disk. The menus are shown if the user pauses for more than three
seconds between the three keypresses.

can recognize the structure and easily encode it in their semantic

knowledge storage. For example, if users can uniformly edit such objects

as characters, words, sentences, paragraphs, chapters, and documents,

this meaningful pattern is easy to leam, apply, and recall. On the other

hand, if they must overtype a character, change a word, revise a

Designing the User Interface

sentence, replace a paragraph, substitute a chapter, and alter a document,
then the challenge grows substantially, no matter how elegant the syntax

(Scapin, 1982).

Meaningful structure is beneficial for task concepts, computer

concepts, and syntactic details of command languages. Yet, many
sytems fail to provide a meaningful structure. One widely used operating
system displays various information as a result of forms of the LIST,
QUERY, HELP, and TYPE commands, and moves objects as a result of
the PRINT, TYPE, SPOOL, PUNCH, SEND, COPY, or MOVE
commands. Defaults are inconsistent for different features, four different

abbreviations for PRINT and LINECOUNT are required, binary choices

vary between YES/NO and ON/OFF‘, and function key usage is
inconsistent. These flaws emerge from multiple uncoordinated design

groups and insufficient attention by the managers, especially as features
are added over time.

An explicit list of design conventions can be an aid to designers and
managers. Exceptions may be permitted, but only after thoughtful
discussions. Users can learn systems with inconsistencies, but more

slowly and with greater chance of making mistakes. One difficulty is

that there may be conflicting design conventions.

4.4.1 Consistent argument ordering

Choices among conventions can sometimes be resolved by

experimentation with alternatives (Barnard et al., 1981). A command
language with six functions, each requiring two arguments, was

developed for decoding messages. One argument was always a message
identification number and the other argument was a file number, code

number, digit, and so on. In normal English usage, the message
identification would sometimes be the direct object of an explanatory

sentence, such as SAVE the MESSAGE ID with this REFERENCE

NUMBER. So, one rule of consistent command formation was to follow

English usage. The second consistency rule was to have the message
identification always as the first or always as the second argument. This

resulted in four possible command groups:

Ch.4 Conunand Languages 151

DIRECT OBJECT ARGUMENT FIRST DIRECT OBJECT ARGUMENT SECOND

SEARCH file noymessage id SEARCH message id,file no

TRIM message id,segment size TRIM segment size,message id
REPLACE message id,code no REPLACE code no,message id
INVERT group size,message id INVERT message id,group size
DELETE digit,message id DELETE message id,digit
SAVE message id,reference no SAVE reference no,message id

CONSISTENT ARGUMENT FIRST CQNSISTENT ARGUMENT SECOND

SEARCH message id,file no SEARCH file no,message id
TRIM message id,segment size TRIM segment size,message id
REPLACE message id,code no REPLACE code no.message id
INVERT message id,group size INVERT" group size{message id
DELETE message id,digit DELETE digit,message id
SAVE message id,reference no SAVE referenoe no,message id

Forty—eight female subjects used one of these systems for an hour to

decode messages. Actually, half the subjects had variant command
names, such as SELECT instead of SEARCH, but this manipulation was
a minor effect. Time to perform tasks decreased during the ten trials, but
the speed—up was consistent ‘across command styles. The results strongly
favored using consistent argument positions rather than the consistent
direct object position, suggesting that English language rules of formation
were not as effective as the simpler positional rule. The shortest task
times, fewest help requests, and fewest‘ errors occurred with the
consistent argument first. These’ results lead ' to the conjecture that
command languages should allow users to express the simple,’ familiar, or
well—understood features first,‘ and then allow users to consider the more

varying aspects. ‘ A . ’

Fo1low-up studies by the same group (Barnard et al., 1981; Barnard et
al., 1982) replicated the results about positional consistency and pursued
several related issues. One frequent design consideration is whether the
command verb or the object of interest should come first. Command first
form would be DISPLAY FILE or INSERT LIST; the object first
form would be FILE DISPLAY or LIST INSERT. The evidence

Supports the command first strategy used in most languages and the
principle that there is a fixed order. Allowing users therfreedom to put

152 Designing the User Interface

the command and object in either order generated more requests for help

than fixing the order. Subjects pressed PF keys to initiate commands and
select objects, so a further replication is necessary to validate the result if

they had to remember and type commands. Mitigating factors may be

the relative number of commands and objects and the familiarity the user
has with each. 4 '

Finally, pilot studies by Jim Foley at George Washington University

suggest that object first may be more appropriate when using selection by

pointing on graphic displays. Different thinking patterns may be engaged
in using visually oriented (right brain) interfaces" than in using

syntax-oriented command notations (left brain). The object first approach
also fits conveniently with the strategy of leaving an object selected (and
highlighted) after an action is complete, so that if the same object is used

inthe next action, it is already selected. L

4.4.2 Symbols versus keywords

Further evidence that command structure affects performance comes
from a comparison of fifteen commands in a commercially used

symbol—oriented' text editor and revised commands that had a more
keyword-oriented style (Ledgard et al., 1980). Here are three sample
commands:

Symbol editor Keyword editor

FIND:/TOOTH/;—-1 BACKWARD TO "TOOTH"
LIST-;lO LIST l0 LINES _

RS:/KO/,/OK/;* CHANGE ALL “KO" T0 “OK"

The revised commands performed the same functions. Single letter

abbreviations (L;l0 or L 10 L) were permitted in both editors so the
number of keystrokes was approximately the same. The difference in the

revised commands was that keywords ‘were used in an intuitively
meaningful way, but there were no standard rules of formation. Eight

subjects at three levels of text editor experience used both versions in this
counterbalanced order within—subjects design.

Ch. 4 Command Languages 153

Percentage of _ Percentage of
, Task Completed Erroneous Commands

. .

Symbol Keyword Symbol Keyword

Inexperienced users 28 42 19 11

Familiar users 43 62 18 6.4

Experienced ‘users 74 84 9 .9 5 .6

Table 4.1: Impact of revised text editor commandsion three levels of users
(Ledgard et al., 1980)

The results (Table 4.1) clearly favored the keyword editor, indicating

that command formation rules do make a difference. Unfortunately, no

specific guidelines emerge except to avoid using unfamiliar symbols for

new users of text editors, even if they are experienced with other text

editors. It_ is interesting that the difference in percentage of task

completed between the symbol and keyword editor was small for the

experienced users. One conjecture, supported in other studies, is that

experienced computer users develop skill in dealing with strange notations

and therefore are less effected by syntactic variations.

4.4.3 Hierarchicalness and congruence

Carroll (1982) altered two design variables to produce four versionsof

a sixteen—con'1mand language for controlling airobot (Table 4.2).

Commands could be hierarchical (verb—object—qualifér) or nonhierarchical

(Verb only) and congruent (for example, ADVANCE/RETREAT or
RIGHT/LEFT) or non-congruent (G0/BACK or TURN/LEFT). Carroll

uses congruent to refer to meaningful paris of opposites. Hierarchical
structure and congruence (symmetry might be a better term) have been

Shown to be advantageous in psycholinguistic experiments. Thirty—two
undergraduate subjects studied one of the four command sets in a written

manual, gave subjective ratings, and then carried out paper and pencil
tasks.

Designing the User Interface

CONGRUENT NONCONGRUENT

llierzicliical Nohhierarchical Hierachical Nonhierarchical

MOVE ROBOT FORWARD ADVANCE MOVE ROBOT FORWARD GO
MQVE ROBOT BACKWARD RETREAT -CHANGE ROBOT BACKWARD BACK
MOVE ROBOT RIGHT RIGHT CHANGE ROBOT RIGHT TURN

MOVE ROBOT LEFT LEFT MOVE ROBOT LEFT LEFT
MOVE ROBOT UP STRAIGHTEN CHANGE ROBOT UP . UP ’
MOVE ROBOT DOWN BEND MOVE ROBOT DOWN BEND

MOVE ARM FORWARD P_USl_-I CHANGE ARM FORWARD POKE
MOVE ARM BACKWARD PULL MOVE ARM BACKWARD PULL
MOVE ARM RIGHT SWING OUT CHANGE ARM RIGHT PIVOT
MOVE ARM LEFT SWING IN MOVE ARM LEFT . SWEEP
MOVE ARM U_P RAIs_E MOVE ARM UP REACH
MOVE ARM DOWN LOWER CHANGE ARM DOWN DOWN
CHANGE ARM OPEN RELEASE CHANGE ARM OPEN UNHOOK
CHANGE ARM CLOSE TAKE MOVE ARM CLOSE GRAB
CHANGE ARM RIGHT SCREW MOVE ARM RIGHT SCREW
CHANGE ARM LEFI‘ UNSCREW CHANGE ARM LEFT TWIST

Subjective Ratings (1 = Best, 5 = Worst)

L86 1.63

Test 1

14.88 14.63

Problem 1 Errors

0.50

Problem 1 Omissions =
2.00 2.50 4.75 4.15

Table 4.2: Command sets‘ and partial results from Carroll (1982).

Subjective ratings prior to perforrning. tasks showed disapproval Of the
nonhierarchical noncongruent form with the highest rating for the
nonhierarchical congruent form. Memory and problem—solving tasks
showed that congruent forms were clearly superior and the hierarchical

forms were superior for several dependent measures. Error rates were
dramatically lower for the congruent hierarchical forms.

Ch. 4 Command Languages 155

This study assessed performance of new users of a small command

language. Congruence helped subjects remember the natural pairs of

concepts and terms. The hierarchical structure enabled subjects to master

' 16 commands with only one rule of formation and 12 keywords. With a

larger command set, say 60 or 160 commands, the advantage of

hierarchical structure should increase, assuming that a hierarchical
structure could be found to accommodate the full set of commands.

Another conjecture is that retention will be facilitated by the hierarchical

structure and congruence.

Carroll’s study was conducted during a half-day period; with a week of

regular use, it is probable that differences would be substantially reduced.

However, with intermittent use or under stress, the hierarchical congruent

form might again prove superior. An online experiment might have been

more realistic and would have brought out differences in command length

that would have been a disadvantage to the hierarchical forms because of

the greater number of keystrokes required. However, the hierarchical

forms could all be replaced with three first-letter abbreviations (for

example, MAL for MOVE ARM LEFT), thereby providing an advantage

even in keystroke counts.

4.4.4 Consistency, congruence, and mnemonicity

An elegant demonstration of the importance of structuring principles

comes from a study of four command languages for text editing (Green &

Payne, 1984). Language L4 (Figure 4.6) is a subset of the commercial

word processor based on EMACS, but it uses several conflicting

organizing principles. Language L3 is simplified by using only the

CTRL key, and it uses congruence and mnemonic naming where

possible. Language L2 uses CTRL to mean forward and META for

backwards, but mnemonicity is sacrificed. Language L1 uses the same

meaningful structure for CTRL and META, congruent pairs, and

mnemonicity.

Forty undergraduate subjects with no word processing experience were

given twelve minutes to study one of the four languages (Figure 4.6).

Then they were asked to recall and write on paper as many of the

Designing the User Interface

L 1 L2 L3 L4

move pointer forward a paragraph CTRL—[CTRL—A CTRL-] META-]
move pointer backward a paragraph META—[META-A CTRL—[META~[
move pointer forward a sentence CTRL-S CTRL—B CTRL—) META-E
move pointer backward a sentence META-S META-B CTRL-(META-A
view next screen CTRL-V CTRL—C CTRL-V CTRL-V

view previous screen META-V META-C CTRL—/\ META~V
move pointer to next line CTRL-< CTRLAD CTRL—N CTRL—N
move pointer to previous line META-< META-D CTRL-P CTRL-P
move pointer forward a word CTRL—W CTRL-E CTRL—} META-F
move pointer backward a word META-W META-E CTRL»{ META-B
redisplay screen CTRL-R "CTRL—F CTRL—Y CTRL—L
undo last command META-G META—G CTRL—U CTRL-G
kill sentence forward CTRL»Z CTRL-H CTRl_—S META-K
kill line CTRL-K CTRL-I CTRL-K CTRL-K
delete character forward CTRL-D CTRL-] CTRL-D CTRL-D
delete character backward META-D META—J CTRL—DEL CTRL—DEL
delete word forward CTRL—DEL CTRL-K CTRL-X META-D
delete word backward META-D META-K CTRL-W META-DEL

move pointer forward a character CTRL—C CTRL-L CTRL—F CTRL—F
move pointer backward a character META-C META—L CTRL—B CTRL-B
move pointer to end of file CTRL—F CTRL-M CTRL—> META—>
move pointer to beginning of file META-F META—M CTRL-< META—<
move pointer to end of line CTRL—L CTRL—N CTRL—Z CTRL-E
move pointer to beginning of line META—L META-N CTRL—A CTRL-A
forward string search CTRL-X. CTRL-O CTRL-S CTRL—S
reverse string search META—X META-0 CTRL-R CTRL-R______.:

Figure 4.6: The four languages used in die study. (Green and Payne, “Organization and
learnability in computer languages,” International Journal of Man-Machine Studies [1984]
21, 7-18. Used by permission of Academic Press Inc. [London] Limited.)

commands as possible. This was followed by presentation of the
command descriptions with the request to write down the associated

command syntax. The free recall and prompted recall tasks were both

repeated. The results showed a statistically significant difference (p <
.001) for languages, with L4 having the worst performance. The best

performance was attained with L1 having the most structure. An online
test would have been a useful follow-up to demonstrate the advantage in

practice and over a longer period of time.

Ch. 4 Command Languages 157

In summary, sources of structure that have proven advantageous
include:

positional consistency

grammatical consistency

congruent pairing
hierarchical form.

In addition, as discussed in the next section, a mixture of

meaningfulness, mnemonicity, and distinctiveness is helpful.

One remaining form of structure is visual or perceptual form.
Up—arrow or down-arrow are highly suggestive of function, as are

characters such as n'ght- and left—angle-bracket, the plus sign, or

ampersand. WORDSTAR takes advantage of a perceptual clue embedded

in the QWERTY keyboard layout:

E

X

CTRL—E moves the cursor up one line, CTRL—X moves the cursor

down one line, CTRL—S moves the cursor one character left, CTRL—D

moves the cursor one character right, CTRL—A moves the cursor one

word left, and CTRL-F moves the cursor one word right. Other word

processors use a similar principle with the CTRL-W, A, S, and Z keys or

the CTRL-I, J, K, and M keys.

4.5 NAMING AND ABBREVIATIONS

In discussing command language names, Michael L. Schneider (1984)

takes a delightful quote from Shakespeare’s Romeo and Juliet: "A rose by

any other name would smell as sweet.” As Schneider points out, the

lively debates in design circles suggest that this concept does not apply to

command language names. Indeed, the command names are the most

158 Designing the User Interface

visible part of a system and are likely to provoke complaints from

disgruntled users.

Critics (Norman, 1981, for example) focus on the strange names in

UNIX,‘such as MKDIR (make directory), CD (change directory), LS (list
directory), RM (remove file), and PWD (print working directory); or in

IBM’s CMS, such as S0 (temporarily suspend recording of trace

information), LKED (link edit), NUCXMAP (identify nucleus extensions),

and GENDIRT (generate directory). Part of the concern is the

inconsistent abbreviation strategies that sometimes take the first few

letters, first few consonants, first and last letter, or first letter of each

word in a phrase. Worse still are abbreviations with no perceivable
pattern.

4.5.1 Specificity versus generality

Names are important for leaming, problem solving, and retention over

time. With only a few names, a command set is relatively easy to

master; but with hundreds of names the choice of meaningful, organized
sets of names becomes more important. Similar results were found for

programming tasks in which variable name choices were less important in

small modules with from ten to twenty names than in longer modules
with dozens or hundreds of names.

In a word processing training session (Landauer et al., 1983), 121

students learned one of three command sets containing only three

commands: Old (delete, append, substitute), a new supposedly improved

set (omit, add, change), and a random set designed to be confusing

(allege, cipher, and deliberate). Task performance times were essentially
the same across the three command sets, although subjective ratings

indicated a preference for the old set. The random names were highly
distinctive and the mismatch with function may have been so

disconcerting as to become memorable. These results apply only to small
command sets.

With larger command sets, the names do make a difference, especially
if they support congruence or some other meaningful structure. One

naming rule debate revolves around the question of specificity Versus J

Ch. 4 Command Languages

generality (Rosenberg, 1982). Specific terms can be more descriptive,
and if they are more distinctive, they may be more memorable. General
terins may be more familiar and therefore easier to accept. Two weeks
after a training’ session with twelve commands, subjects were more likely
to recall and recognize the meaning of specific commands than general
commands (l3arn'ard et al., 1982). _

In a paper-andapencil test, 84 subjects studied one of seven sets of
eight commands (Black & Moran, 1982). Two. of the eight commands-
the commands for inserting and deleting text~a're shown here in all
seven versions:

Infrequent, discriminating insert delete
Frequent, discriminating add remove
Infrequent, nondiscriminating amble perceive
Frequent, nondiscriminating words walk View
General (freduent, nondiscri-

minating) words alter correct
Nondiscriminating nonwords

(nonsense) GAC MIK
Disoriminating nonwords (icons) abc—adbc abc—ac

The “infrequent, discriminatiiig” command set resulted in faster
learning and superior recall than did other command sets. The general
words performed worst on all three measures. The nonsense words did
surprisingly well, supporting the possibility that with small command
sets, distinctive names are helpful even if they are not meaningful.

4.5.2 Abbreviation strategies

Even though command names ‘should be meaningful for human
learning, problem-solving, and retention, they must satisfy another
important criterion. They must be in harmony with the mechanism for
expressing the commands to the computer. The traditional and widely
used command entry mechanism is the keyboard. This means that
commands should use brief and kinesthetically easy codes. Commands

requiring shifted keys or CTRL keys, special characters, or difficult
sequences are likely to have higher error rates; For text editing, when

160 Designing the User Interface

many commands are applied and speed is appreciated, single-letter

approaches are very attractive. Overall, brevity is a worthy goal since it
can speed entry and possibly reduce error rates. Many word processor

designers have pursued this approach even when mnemonicity was
sacrificed, thereby making it difficult for novice and intermittent users.

In less demanding applications, designers have used longer command

abbreviations, hoping that the gains in recognizability were appreciated

over the reduction in key strokes. Novice users may actually prefer

typing the full name of a command because they have a greater

confidence in its success (Landauer et al., 1983). Novices who were

required to use full command names before being taught two—letter
abbreviations made fewer errors with the abbreviations than those who

were taught the abbreviations from the start and than those who could
create their own abbreviations (Grudin & Barnard, 1985).

The phenomenon of preferring the full name at first appeared in our

study of bibliographic retrieval with the Library of Congr'ess’s SCORPIO
system. Novices preferred typing the full name, such as BROWSE or

SELECT, rather than the traditional four letter abbreviations BRWS or

SLCT, or the single letter abbreviations B or S. After five to seven uses

of the command, their confidence increased and they attempted the

‘single-letter abbreviations. A designer of a text adventure game
recognized this principle and instructs novice users to type EAST,

WEST, NORTH, or SOUTH; after five full-length commands, the system

informs the user about the single—letter abbreviations. A related report
comes from some users of IBM’s CMS, who find that the minimal length

abbreviations are too difficult to learn and they stick with the full form of
the command.

With experience and frequent use, abbreviations become attractive and

even necessary to satisfy the “power” user. Efforts have been made to
find optimal abbreviation strategies. Several studies support the notion

that abbreviation should be made by a consistent strategy (Ehrenreich &
Porcu, 1982; Benbasat & Wand, 1984; Schneider, 1984). Potential

strategies are:

1. Simple truncation: use the first, second, third, etc. letters of

each command. "This strategy requires that each command

Ch 4 Command Languages 161

be distinguishable by the leading string of characters.
Abbreviations can be all of the same length or of different

lengths.

Vowel drop with simple truncation: eliminate vowels and
use some of what remains. If the first letter is a vowel it

may or may not be retained. H, Y, and W may or may not
be considered as vowels.

First and last letter: since the first and last letters are highly

visible, use them; for example ST for SORT.

First letter "of each word in a phrase: this popular technique

often fits with a hierarchical design plan.

Standard abbreviations from other contexts: familiar
abbreviations such as QTY for QUANTITY, XTALK for

CROSSTALK (a software package), PRT for PRINT, or
BAK for BACKUP.

Phonics: focus attention on the sound; for example XQT for
execute.

Truncation appears to" be the most effective mechanism overall, but it

has its problems. Conflicting abbreviations appear often, and decoding of

an unfamiliar abbreviation is not as good as with vowel dropping
(Schneider, 1984).

4.5.3 Guidelines for using abbreviations

Ehrenreich and Porcu (1982) offer this compromise set of guidelines:

1. A simple, primary rule should be used to generate
abbreviations for most items and a- simple secondary rule

used for those items where there is a conflict.
Abbreviations generated by the secondaiy rule should have

a marker (e.g., an asterisk) incorporated in them.

The number of words abbreviated by the secondary rule

should be kept to a minimum.

162 Designing the User Interface

Users should be familiar with the rules used to generate
abbreviations.

Truncation is an easy rule for users to work with, but it

may also prodiice a large number of identical abbreviations

for different words. 1
Fixed length abbreviations are preferable to variable length
ones. _ A

Abbreviations should not be designed to incorporate endings
'(e.g., ING, 1__:D, sj.
Unless there is a critical space problem, abbreviations
should not be used in messages generated by the computer

and read by the user.

Abbreviations are an important part of system design and -they are

appreciated by experienced_ users. Abbreviations aremore likely to be
used if users are confident in their knowledge of the abbreviations ‘and if

the benefit is rnorethan a savings of one to two characters (Benbasat &
Wand, 1984). _The appearance of new input devices and strategies (for
example, selecting by pointing) will change the criteria for abbreviations}
Each situation has its idiosyncrasies and should be carefully evaluated by

the designer, applying empirical tests where necessary.

4.6 COMMAND MENUS

’To relieve the burden of memorization of Commands, some designers
offer users brief prompts of available commands. The online version of

the Official Airline Guide uses such prompts as:

ENTER 4-,L#,X#,S#,R#,M,RF(#=LINE NUMBER)

This prompt is to remind users of the commands related to fares that
have been displayed and the related flight schedules

+ move forward one screen

L# limitations on airfares

