
SKYHAWKE EX. 1014, page 1



SKYHAWKE EX. 1014, page 2



SKYHAWKE EX. 1014, page 3



Designing the User Interface

Strategies for Effective
Human—Computer Interaction

Second Edition

Ben Shneiderman

The University of Maryland

A . .
V7 Addison-Wesley Publlshmg Company

Reading, Massachusetts 0 Menlo Park, California 0 New York
Don Mills, Ontario 0 Wokingham, England - Amsterdam
Bonn 0 Sydney 0 Singapore 0 Tokyo 0 Madrid
San Juan 0 Milan - Paris



Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Addison-
Wesley was aware of avtrademark claim, the designations have been printed in initial caps
or all caps.

The programs and applications presented in this book have been included for their
instructional value. They have been tested with care, but are not guaranteed for any
particular purpose. The publisher does not offer any warranties or representations, nor
does it accept any liabilities with respect to the programs or applications.

Library of Congress Cataloging-in-Publication Data

Shneidemian, Ben.
Designing the user interface 2 strategies for effective human

-computer interaction / Ben Shneiderman. —— 2nd ed.
p. cm.

Includes bibliographical references and index.
ISBN 0-201-57286-9

1. Human-computer interaction. 2. User interfaces (Computer
systems) 3. System design. I. Title.
QA76.9.I58S47 1992
(X346-dr:20 91-35589

C11’

Chapter opener illustrations © Paul S. Hoff-man; chapter opener outlines © Teresa Casey.

Reprinted with corrections October, 1993

Copyright © 1992 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any fonn or by any means, electronic, mechanical, photocopying
recording, or otherwise, without the prior written permission of the publisher. Printed in theUnited States of America.

S673910EO959493





CHAPTER 2

Theories, Principles, and
Guidelines

We want principles, not only deVeloped—the work of the

c1oset,—but applied, which is the work of life.

Horace Mann, Thoughts, 1867



Chapter 2
2.1 Introduction

2.2 High-Level Theories
2.3 Syntactic-Semantic Model of User Knowledge
2.4 Principles: Recognize the Diversity
2.5 Eight Golden Rules of Dialog Design
2.6 Preventing Errors
2.7 Guidelines: Data Display
2.8 Guidelines: Data Entry
2.9 Prototyping and Acceptance Testing
2.10 Balance of Automation and Human Control

2.11 Adaptive Agents and User Models versus Control Panels
2.12 Legal Issues
2.13 Practitioner's Summary
2.14 Researchers Agenda

2.1 Introduction

Successful designers of interactive systems know that they can and must go
beyond intuitive judgments made hastily when a design problem emerges.
Fortunately, guidance for designers is beginning to emerge in the form of (1)

high-level theories or models, (2) middle-level principles, (3) specific and
practical guidelines, and (4) strategies for testing. The theories or models
offer a framework or language to discuss issues that are application indepen-
dent, whereas the middle-level principles are useful in weighing more

specific design alternatives. The practical guidelines provide helpful re-
minders of rules uncovered by previous designers. Early prototype evalua-
tion encourages exploration and enables iterative testing and redesign to

correct inappropriate decisions. Acceptance testing is the trial-by-fire to
determine whether a system is ready for distribution; its presence may be



2.2 High~Level Theories

seen as a challenge, but it is also a gift to designers since it establishes clear
measures of success.

In many contemporary systems, there is a grand opportunity to improve
the human interface. The cluttered displays, complex and tedious proce-

dures, inadequate command languages, inconsistent sequences of actions,
and insufficient informative feedback can generate debilitating stress and

anxiety that lead to poor performance, frequent minor and occasional
serious errors, and job dissatisfaction.

This chapter begins with a review of several theories, concentrating on the
syntactic—semantic object—action model. Section 2.4 then deals with fre-
quency of use, task profiles, and interaction styles. Eight principles of
interaction are offered in Section 2.5. Strategies for preventing errors are

described in Section 2.6. Specific guidelines for data entry and display
appear in Sections 2.7 and 2.8. Testing strategies are introduced in Section
2.9; they are covered in detail in Chapter 13. In Sections 2.10 and 2.11, we
address the difficult question of how to balance automation and human
control. Section 2.12 covers some legal issues.

 

2.2 High-Level Theories

Many theories are needed to describe the multiple aspects of interactive sys-
tems. Some theories are explanatory: They are helpful in observing behavior,

describing activity, conceiving of designs, comparing high-level concepts of
two designs, and training. Other theories are predictive: They enable design-
ers to compare proposed designs for execution time or error rates. Some
theories may focus on perceptual or cognitive subtasks (time to find an item
on a display, or time to plan the conversion of a bold-faced character to an
italic one), whereas others concentrate on motor-task performance times.
Motor-task predictions are the most well established and are accurate for
predicting keystroking or pointing times (see Fitts’ Law, Section 6.3.5). Per-
ceptual theories have been successful in predicting reading times for free
text, lists, or formatted displays. Predicting performance on complex cogni-
tive tasks (combinations of subtasks) is especially difficult because of the

many strategies that might be employed. The ratio for times to perform com-
plex task between novices and experts or between first-time and frequent
users can be as high as 100 to 1. Actually, the contrast is even more dramatic
because novices and first-time users often are unable to complete the tasks.

A taxonomy is a kind of theory. A taxonomy is the result of someone trying
to put order on a complex set of phenomena; for example, a taxonomy might
be created for input devices (direct versus indirect, linear versus rotary)



Chapter 2 Theories, Principles, and Guidelines

(Card et al., 1990), tasks (structured versus unstructured, controllable versus
immutable) (Norman, 1991), personality styles (convergent versus diver-

gent, field dependent versus independent), technical aptitudes (spatial
visualization, reasoning) (Egan, 1988), user experience levels (novice, knowl-
edgeable, expert), or user-interfaces styles (menus, form fillin, commands).
Taxonomies facilitate useful comparisons, enable education, guide design-

ers, and often indicate opportunities for novel products.
Any theory that could help designers to predict performance even for a

limited range of users, tasks, or designs would be a contribution (Card,
1989). For the moment, the field is filled with hundreds of theories compet-

ing for attention while being refined by their promoters, extended by critics,
and applied by eager and hopeful—but skeptical—designers. This develop-
ment is healthy for the emerging discipline of human—computer interaction,
but it means that practitioners must keep up with the rapid developments,
not only in software tools, but also in theories.

Another direction for theoreticians would be to try to predict subjective

satisfaction or emotional reactions. Researchers in media and advertising

have recognized the difficulty in predicting emotional reactions, so they
complement theoretical predictions with their intuitive judgments and
extensive market testing. Broader theories of small-group behavior, organi-
zational dynamics, sociology of knowledge, and technology adoption may
prove to be useful. Similarly, the methods of anthropology or social psychol-
ogy may be helpful in understanding and overcoming barriers to new
technology and resistance to change.

There may be "nothing so practical as a good theory,” but coming up with
an effective theory is often difficult. By definition, a theory, taxonomy, or
model is an abstraction of reality and therefore must be incomplete. How-

ever, a good theory should at least be understandable, produce similar
conclusions for all who use it, and help to solve specific practical problems.

2.2.1 Conceptual, semantic, syntactic, and lexical model

An appealing and easily comprehensible model is the four-level approach
that Foley and van Dam developed in the late 1970s (Foley and Wallace, 1974):

1. The conceptual level is the user's mental model of the interactive system.
Two conceptual models for text editing are line editors and screen editors.

. The semantic level describes the meanings conveyed by the user's com-

mand input and by the computer's output display.

. The syntactic level defines how the units (words) that convey semantics are
assembled into a complete sentence that instructs the computer to per-
form a certain task. '

. The lexical level deals with device dependencies and with the precise

mechanisms by which a user specifies the syntax.



r

2.2 High-Level Theories

This approach is convenient for designers because its top-down nature is
easy to explain, matches the software architecture, and allows for useful
modularity during design. Designers are expected to move from conceptual
to lexical, and to record carefully the mappings between levels.

2.2.2 GOMS and the keystroke-level model

Card, Moran, and Newell (1980, 1983) proposed the goals, operators, methods,
and selection rules (GOMS) model and the keystroke-level model. They postu-
lated that users formulate goals (edit document) and subgoals (insert word)

that they achieve by using methods or procedures for accomplishing each
goal (move cursor to desired location by following a sequence of arrow
keys). The operators are ”elementary perceptual, motor, or cognitive acts,
whose execution is necessary to change any aspect of the user's mental state

or to affect the task environment” (Card, et al. 1983, p. 144) (press up-arrow
key, move hand to mouse, recall file name, verify cursor is at end-of-file).
The selection rules are the control structures for choosing among the several

methods available for accomplishing a goal (delete by repeated backspace

versus delete by placing markers at beginning and end of region and
pressing delete button).

The keystroke—level model is an attempt to predict performance times for
error-free expert performance of tasks by summing up the time for keystrok-

ing, pointing, homing, drawing, thinking, and waiting for the system to
respond. These models concentrate on expert users and error-free perfor-
mance, with less emphasis on learning, problem solving, error handling,

subjective satisfaction, and retention.
Kieras and Polson (1985) built on the GOMS approach, and used produc-

tion rules to describe the conditions and actions in an interactive text editor.

The number and complexity of production rules gave accurate predictions of
learning and performance times for five text-editing operations: insert,

delete, copy, move, and transpose. Other strategies for modeling interactive-

system usage involve transition diagrams (Kieras and Polson, 1985) (Figure
2.1). These diagrams are helpful during design, for instruction, and as a
predictor of learning time, performance time, and errors.

Kieras (1988), however, complains that the Card, Moran, and Newell

presentation ”does not explain in any detail how the notation works, and it
seems somewhat clumsy to use. Furthermore, the notation has only a weak
connection to the underlying cognitive theory.” Kieras offers a refinement

with his Natural GOMS Language (NGOMSL) and an analysis method for

writing down GOMS models. He tries to clarify the situations in which the
GOMS task analyst must make a judgment call, must make assumptions
about how users view the system, must bypass a complex hard-to-analyze
task (choosing wording of a sentence, finding a bug in a program), or must
check for consistency. Applying NGOMSL to guide the process of creating



Chapter 2 Theories, Principles, and Guidelines

sAvE Doc

cum cc “EV- v on’ 5"“
MEG“ Ac ' uovs cunson(CUF30fl- CONYROU

IDELEVEJ In 5! KEY
REMOVE cn-nu

‘ ADD cu: '

‘ILLEGAL ACVION‘

mDu'I=cAucL

Emu KEY man Is NULL
no wan‘? MOVE V0 OLD PAYVERN

NON—NULL INPIJ1
nnsnu o- INFDV
MOVE YO HAHEIIN

TARGET IS NULL

DEL KEV (SELECY~
YARGEV)

NON—NuLL VARGET
DELETE YAIIGET

MOVE KEV (SELEC1- YARGET IS NULL
TARGET)

NON-NULL YAHGEY c— NULL
uncsr Em“

-1° wNERE7- MOVE TARGETM VE-CURSOR

TAfiGET¢— NULL
ENTER

INITIALIZEYAFIGE7

CURSOR-CONYROL)

MOVE TO CHARACTER



r_

2.2 High-Level Theories

Figure 2.1

This generalized transition network for the Displaywriter shows the sequence of
permissible actions. If the users begin at the EDIT state and issue a FIND
command, they follow the paths in the FIND subdiagram. (Kieras, David and
Polson, Peter, "An approach to the formal analysis of user complexity,”
International Iournal of Man-Machine Studies 22 (1985), 365-394. Used by permission
of Academic Press, Inc. [London] Limited.)

online help, Elkerton and Palmiter (1991) created method descriptions, in
which the actions necessary to accomplish a goal are broken down into steps.

They also developed selection rules, by which a user can choose among
alternative methods. For example, there may be several methods to delete
fields.

Method to accomplish the goal of deleting the field:

Step 1: Decide: If necessary, then accomplish the goal of selecting the
field

Step 2: Accomplish the goal of using a specific field delete method
Step 3: Report goal accomplished

Method to accomplish the goal of deleting the field:

Step 1: Decide: If necessary, then use the Browse tool to go to the card
with the field

Step 2: Choose the field tool in the Tools menu

Step 3: Note that the fields on the card an background are displayed
Step 4: Click on the field to be selected
Step 5: Report goal accomplished

Selection rule set for goal of using a specific field delete method

If you may want to paste the field somewhere else,
then choose "Cut Field” from the Edit menu

If you want to permanently delete the field,
then choose ”Clear Field" from the Edit menu

Report goal accomplished.

The empirical evaluation with 28 subjects demonstrated that the NGOMSL
version of help halved the time users took to complete information searches
in the first of four trial blocks.

2.2.3 Seven stages of action

Norman (1988) offers seven stages of action as a model of human—computer
interaction:

1. Forming the goal

2. Forming the intention



Chapter 2 Theories, Principles, and Guidelines

3. Specifying the action

4. Executing the action

5. Perceiving the system state

6. Interpreting the system state

7. Evaluating the outcome

Some of Norman's stages correspond roughly to Foley and van Dam’s

separation of concerns; that is, the user forms a conceptual intention,
reformulates it into the semantics of several commands, constructs the

required syntax, and eventually produces the lexical token by the action of
moving the mouse to select a point on the screen. Norman makes a
contribution by placing his stages in the context of cycles of action and
evaluation. This dynamic process of action distinguishes Norman’s approach
from the other models, which deal mainly with the knowledge that must be
in the users’s mind. Furthermore, the seven-stages model leads naturally to

identification of the gulf of execution (the mismatch between the users’s
intentions and the allowable actions) and the gulf of evaluation (the mismatch

between the system's representation and the users’ expectations).
This model leads Norman to suggest four principles of good design.

First, the state and the action alternatives should be visible. Second, there

should be a good conceptual model with a consistent system image. Third,
the interface should include good mappings that reveal the relationships

between stages. Fourth, the user should receive continuous feedback.
Norman places a heavy emphasis on studying errors. He describes how
errors often occur in moving from goals to intentions to actions and to
executions.

2.2.4 Consistency through grammars

An important goal for designers is a consistent user interface. However, the
definition of consistency is elusive and has multiple levels that are some-
times in conflict; also, it is sometimes advantageous to be inconsistent. The

argument for consistency is that a command language or set of actions
should be orderly, predictable, describable by a few rules, and therefore easy
to learn and retain. These overlapping concepts are conveyed by an example
that shows two kinds of inconsistency (A illustrates lack of any attempt at

consistency, and B shows consistency except for a single violation):

Consistent Inconsistent A Inconsistent B

delete/ insert character delete/ insert character delete/ insert character

de1ete/ insert word remove/bring word remove/insert word

delete/ insert line destroy/create line delete/insert line

delete/ insert paragraph kill/birth paragraph delete/insert paragraph



2.2 High-Level Theories

Each of the actions in the consistent version is the same, whereas the

actions vary for the inconsistent version A. The inconsistent action verbs are

all acceptable, but their variety suggests that they will take longer to learn,
will cause more errors, will slow down users, and will be harder for users to
remember. Inconsistent version B is somehow more malicious because there

is a single unpredictable inconsistency that stands out so dramatically that
this language is likely to be remembered for its peculiar inconsistency.

To capture these notions, Reisner (1981) proposed an action grammar to
describe two versions of a graphics-system interface. She demonstrated that
the version that had a simpler grammar was easier to learn. Payne and Green
(1986) expanded her work by addressing the multiple levels of consistency

(lexical, syntactic, and semantic) through a notational structure they call
task—action grammars (TAGs). They also address some aspects of complete-

ness of a language by trying to characterize a complete set of tasks; for
example, up, down, and left comprise an incomplete set of arrow-cursor
movement tasks, because right is missing. Once the full set of task—action

mappings is written down, the grammar of the command language can be
tested against it to demonstrate completeness. Of course, a designer might
leave out something from the task—action mapping and then the grammar

could not be checked accurately, but it does seem useful to have an approach

to checking for completeness and consistency. For example, a TAG defini-
tion of cursor control would have a dictionary of tasks:

move~cursor—one—character-forward [Direction = forward, Unit = char]

m0ve—cursor-one-Character—backward [Direction = backward,Unit = char]

move-cursor-one—word—forward [Direction = forward, Unit = word]

move—cursor-one-word-backward [Direction = backward,Unit = word]

Then, the high-level rule schemas that describe the syntax of the commands
are as follows:

. task [Direction, Unit] —> symbol [Direction] + letter [Unit]

. symbol [Direction = forward] —> "CTRL"

. symbol [Direction = backward] —> "ESC”

. letter [Unit = word] —> "W”

. letter [Unit = char] ——> ”C”

These schemas will generate a consistent grammar:

move cursor one character forward CTRL-C

move cursor one character backward ESC-C

move cursor one word forward CTRL-W

move cursor one word backward ESC-W



Chapter 2 Theories, Principles, and Guidelines

Payne and Green are careful to state that their notation and approach are
flexible and extensible, and they provide appealing examples in which their

approach sharpened the thinking of designers.
Reisner (1990) extends this work by defining consistency more formally,

but Grudin (1989) points out flaws in some arguments for consistency.

Certainly, consistency is subtle and has multiple levels; there are conflicting
forms of consistency, and sometimes inconsistency is a virtue (for example,

to draw attention to a dangerous operation). Nonetheless, understanding
consistency is an important goal for designers and researchers.

2.2.5 Widget-level theories

Many of the theories and predictive models that have been developed follow
an extreme reductionist approach. It is hard to accept the low level of detail,
the precise numbers that are sometimes attached to subtasks, and the

assumptions of simple summations of time periods. Furthermore, many of
the detailed models take an extremely long time to write, and many

judgment calls plus assumptions must be made, so there is little trust that
several analysts would come up with the same results.

An alternative approach is to follow the simplifications made in the

higher-level UIMSS (Chapter 14). Instead of dealing with individual buttons
and fields, why not create a model based on the widgets (interface compo-
nents) supported in the UIMS? Once a scrolling-list widget was tested to
determine user performance as a function of the number of items and the
size of the window, then future widget users would have automatic
generation of performance prediction. The prediction would have to be
derived from some declaration of the task frequencies, but the description of
the interface would emerge from the process of designing the interface.

A measure of layout appropriateness (frequently used pairs of widgets
should be adjacent, and the left-to-right sequence should be in harmony with
the task sequence description) would also be produced to guide the designer

in a possible redesign. Estimates of the perceptual and cognitive complexity

plus the motor load would be generated automatically (Sears, 1992). As
Widgets become more sophisticated and more widely used, the investment

in determining the complexity of each widget will be amortized over the
many designers and projects.

Syntactic—Semantic Model of User Knowledge

Distinctions between syntax and semantics have long been made by compiler
writers who sought to separate out the parsing of input text from the opera-
tions that were invoked by the text. Interactive system designers can benefit



FT
2.3 Syntactic—Semantic Model of User Knowledge 61

from a syntactic—semantic model of user knowledge. In outline, this explana-
tory model suggests that users have syntactic knowledge about device-de-
pendent details, and semantic knowledge about concepts. The semantic
knowledge is separated into task concepts (objects and actions) and com-
puter concepts (objects and actions) (Figure 2.2). A person can be an expert in
the computer concepts, but a novice in the task concepts, and vice versa.

The syntactic—semantic object—agtion (SSOA) model of user behavior was

originated to describe programming (Shneiderman, 1980) and has been
applied to database-manipulation facilities (Shneiderman, 1981), as well as
to direct manipulation (Shneiderman, 1983).

2.3.1 Syntactic knowledge

When using a computer system, users must maintain a profusion of device-
dependent details in their human memory. These low-level syntactic details
include the knowledge of which action erases a character (delete, backspace,

CTRL-H, rightmost mouse button, crossing gesture, or ESCAPE), which
action inserts a new line after the third line of a text file (CTRL—I, INSERT

A(TlON OBJECT ACTION OBJECT

TASK COMPUTER

SEMANTIC SYNTACTIC

Figure 2.2

Syntactic—semantic model of objects and actions (SSOA model); a representation of
the user's knowledge in long—term memory. The syntactic knowledge is varied,
device dependent, acquired by rote memorization, and easily forgotten. The
semantic knowledge is separated into the computer and task domains. Within
these domains, knowledge is divided into actions and objects. Semantic knowledge
is structured, device independent, acquired by meaningful learning, and stable in
memory.



Chapter 2 Theories, Principles, and Guidelines

key, insert gesture between lines three and four, I3, I 3, or 3 I), which icon
scrolls text forward, which abbreviations are permissible, and which of the
numbered function keys produces the previous screen.

The learning, use, and retention of this knowledge is hampered by two

problems. First, these details vary across systems in an unpredictable
manner. Second, acquiring syntactic knowledge is often a struggle because
the arbitrariness of these minor design features greatly reduces the effective-

ness of paired-associate learning. Rote memorization requires repeated

rehearsals to reach competence, and retention over time is poor unless the
knowledge is applied frequently. Syntactic knowledge is usually conveyed
by example and repeated usage. Formal notations, such as Backus—Naur

form, are useful for knowledgeable computer scientists but are confusing tomost users.

A further problem with syntactic knowledge, in some cases, lies in the
difficulty of providing a hierarchical structure or even a modular structure

to cope with the complexity. For example, how is a user to remember these

details of using an electronic-mail system: press RETURN to terminate a
paragraph, CTRL-D to terminate a letter, Q to quit the electronic mail
subsystem, and logout to terminate the session. The knowledgeable com-
puter user understands these four forms of termination as commands in the

context of the full system, but the novice may be confused by four seemingly
similar situations that have radically different syntactic forms.

A final difficulty is that syntactic knowledge is system dependent. A user
who switches from one machine to another may face different keyboard
layouts, commands, function-key usage, and sequences of actions. Certainly,

there may be some overlap. For example, arithmetic expressions might be
the same in two languages; unfortunately, however, the small differences
can be the most annoying. One system uses K to keep a file and another uses
K to kill the file, or S to save versus 8 to send.

Expert frequent users can overcome these difficulties, and they are less

troubled by syntactic knowledge problems. Novices and knowledgeable
users, however, are especially troubled by syntactic irregularities. Their
burden can be lightened by use of menus (see Chapter 3), a reduction in the

arbitrariness of the keypresses, use of consistent patterns of commands,
meaningful command names and labels on keys, and fewer details that must
be memorized (see Chapter 4).

In summary, within the SSOA model, syntactic knowledge is arbitrary,
system dependent, and ill structured. It must be acquired by rote memoriza-

tion and repetition. Unless it is used regularly, it fades from memory.

2.3.2 Semantic know1edge—con-iputer concepts

Semantic knowledge in human long-term memory has two components:
computer concepts and task concepts (see Figure 2.2). Semantic knowl-



2.3 Syntactic—Semantic Model of User Knowledge 63

edge has a hierarchical structure ranging from low—level actions to
middle—level strategies to high-level goals (Shneiderman, 1980; Card et al.,

1983). This presentation enhances the earlier SSOA model and other
models by decoupling computer concepts from task concepts. This en-
hancement accommodates the two most common forms of expertness:

task experts who may be novice computer users, and computer experts
who may be new to a task. Different training materials are suggested for
task or computer experts. Novices in both domains need yet a third form
of training.

Semantic knowledge is conveyed by showing examples of use, offering a

general theory or pattern, relating the concepts to previous knowledge by
analogy, describing a concrete or abstract model, and indicating examples of
incorrect use. There is an attraction to showing incorrect use to indicate

clearly the bounds of a concept, but there is also a danger, since the learner
may confuse correct and incorrect use. Pictures are often helpful in showing
the relationships among semantic-knowledge concepts.

Computer concepts include objects and actions at high and low levels. For
example, a central set of computer-object concepts deals with storage. Users
come to understand the high-level concept that computers store information.

The concept of stored information can be refined into the object concepts of
the directory and the files of information. In turn, the directory object is
refined into a set of directory entries that each have a name, length, date of
creation, owner, access control, and so on. Each file is an object that has a

lower-level structure consisting of lines, fields, characters, fonts, pointers,

binary numbers, and so on.
The computer actions also are decomposable into lower-level actions. The

high-level actions or goals, such as creating a text data file, may require load,
insertion, and save actions. The rnidlevel action of saving a file is refined into

the actions of storing a file and backup file on one of many disks, of applying
access-control rights, of overwriting previous versions, of assigning a name
to the file, and so on. Then, there are many low-level details about

permissible file types or sizes, error conditions such as shortage of storage
space, or responses to hardware or software errors. Finally, there is the low-
level action of issuing a specific command, carried out by the syntactic detail

of pressing the RETURN key.
These computer concepts were designed by highly trained experts in the

hope that they were logical, or at least ”made sense” to the designers.
Unfortunately, the logic may be a complex product of underlying hardware,
software, or performance constraints, or it might be just poorly chosen. Users
are often confronted with computer concepts that they have great difficulty

absorbing; but we have reason to hope that designers are improving and
computer-literacy training is raising knowledge levels. For example, the
action terminating a command by pressing RETURN is more and more
widely known.



Chapter 2 Theories, Principles, and Guidelines

Users can learn computer concepts by seeing a demonstration of com-

mands, hearing an explanation of features, or conducting trial-and—error
sessions. A common practice is to create a model of concepts—abstract,
concrete, or analogical—to convey the computer action. For example, with
the file-saving concept, an instructor might draw a picture of a disk drive
and a directory to show where the file goes and how the directory references

the file. Alternatively, the instructor might make a library analogy or
metaphor and describe how the card catalog acts as a directory for books
saved in the library.

Since semantic knowledge about computer concepts has a logical struc-

ture and since it can be anchored to familiar concepts, we expect it to be

relatively stable in memory. If you remember the high-level concept of
saving a file, you will be able to conclude that the file must have a name, a

size, and a storage location. The linkage to other objects and the potential for
a visual presentation support the memorability of this knowledge.

These computer concepts were once novel, and were known to only a
small number of scientists, engineers, and data—processing professionals.

Now, these concepts are taught at the elementary-school level, argued over
during coffee breaks in the office, and exchanged in the aisles of corporate
jets. When educators talk of computer literacy, part of their plans cover these
computer concepts.

In summary, according to the SSOA model, users must acquire semantic
knowledge about computer concepts. These concepts are organized hierar-

chically, are acquired by meaningful learning or analogy, are independent of
the syntactic details, should be transferable across different computer sys-
tems, and are relatively stable in memory. Computer concepts can be
usefully subdivided into objects and actions.

2.3.3 Semantic knowledge——-task concepts

The primary method that people use to deal with large and complex
problems is to decompose them into several smaller problems in a hierarchi-
cal manner until each subproblem is manageable. Thus, a book is decom-

posed into the task objects of chapters, the chapters into sections, the sections
into paragraphs, and the paragraphs into sentences. Each sentence is
approximately one unit of thought for both the author and the reader. Most

designed objects have similar decompositions: computer programs, build-
ings, television sets, cities, paintings, and plays, for example. Some objects
are more neatly and easily decomposed than are others; some objects are
easier to understand than are others.

Similarly, task actions can be decomposed into smaller actions. A con-

struction plan can be reduced to a series of steps; a baseball game has
innings, outs, and pitches; and a business letter comprises an address, date,
addressee, body, signature, and so on.



2.4 Principles: Recognize the Diversity

In writing a business letter using computer software, users have to
integrate smoothly the three forms of knowledge. They must have the high-
level concept of writing (task action) a letter (task object), recognize that the
letter will be stored as a file (computer object), and know the details of the
save command (computer action and syntactic knowledge). Users must be
fluent with the middle-level concept of composing a sentence and must
recognize the mechanism for beginning, writing, and ending a sentence.
Finally, users must know the proper low-level details of spelling each word
(task), comprehend the motion of the cursor on the screen (computer
concept), and know which keys to press for each letter (syntactic knowl-
edge). The goal of minimizing syntactic knowledge and computer concepts
while presenting a visual representation of the task objects and actions is the
heart of the direct-manipulation approach to design (see Chapter 5).

Integrating the three forms of knowledge, the objects and actions, and the
multiple levels of semantic knowledge is a substantial challenge that re-
quires great motivation and concentration. Educational materials that facili-
tate the acquisition of this knowledge are difficult to design, especially
because of the diversity of background knowledge and motivation levels of
typical learners. The SSOA model of user knowledge can provide a guide to
educational designers by highlighting the different kinds of knowledge that
users need to acquire (see Chapter 12).

Designers of interactive systems can apply the SSOA model to system-
atize their efforts. Where possible, the semantics of the task objects should be
made explicit and the user's task actions should be laid out clearly. Then, the
computer objects and actions can be identified, leaving the syntactic details
to be worked out later. In this way, designs appear to be more comprehen-
sible to users and more independent of specific hardware.

 

2.4 Principles: Recognize the Diversity

The remarkable diversity of human abilities, backgrounds, cognitive styles,

and personalities challenges the interactive-system designer. When multi-
plied by the wide range of situations, tasks, and frequencies of use, the set of
possibilities becomes enormous. The designer can respond by choosing from
a spectrum of interaction styles.

A preschooler playing a graphic computer game is a long way from a ref-
erence librarian doing bibliographic searches for anxious and hurried pa-
trons. Similarly, a professional programmer using a new operating system is
a long way from a highly trained and experienced air—traffic controller. Fi-
nally, a student learning a computer—assisted instruction lesson is a long way
from a hotel reservations clerk serving customers for many hours per day.



Chapter 2 Theories, Principles, and Guidelines

These sketches highlight the differences in users’ background knowledge,
training in the use of the system, frequency of use, and goals, as well as in the
impact of a user error. No single design could satisfy all these users and
situations, so before beginning a design, we must make the characterization

of the users and the situation as precise and complete as possible.

2.4.1 Usage profiles

”Know the user” was the first principle in Hansen's (1971) list of user-

engineering principles. It is a simple idea, but a difficult goal and, unfortu-
nately, an often-undervalued goal. N0 one would argue against this
principle, but many designers assume that they understand the users and
users‘ tasks. Successful designers are aware that other people learn, think,
and solve problems in very different ways (Section 1.5). Some users really do
have an easier time with tables than graphs, with words instead of numbers,
with slower rather than faster display rates, or with a rigid structure rather
than an open-ended form.

It is difficult for most designers to know whether Boolean expressions are
too difficult a concept for library patrons at a junior college, fourth graders
learning programming, or professional controllers of electric power utilities.

All design should begin with an understanding of the intended users,
including profiles of their age, gender, physical abilities, education, cultural
or ethnic background, training, motivation, goals, and personality. There are
often several communities of users for a system, so the design effort is
multiplied. In addition to these profiles, users might be tested for such skills
as comprehension of Boolean expressions, knowledge of set theory, fluency
in a foreign language, or skills in human relationships. Other tests might
cover such task-specific abilities as knowledge of airport city codes,
stockbrokerage terminology, insurance-claims concepts, or map icons.

The process of knowing the user is never ending, because there is so much
to know and because the users keep changing. Every step in understanding
the users and in recognizing them as individuals whose outlook is different

from the designer's own is likely to be a step closer to a successful design.
For example, a generic separation into novice or first-time, knowledge-

able intermittent, and expert frequent users might lead to these differing
design goals:

Novice or first-time users: The first user community is assumed to have no
syntactic knowledge about using the system and probably little semantic
knowledge of computer issues. Whereas first—time users know the task

semantics, novices have shallow knowledge of the task and both may
arrive with anxiety about using computers that inhibits learning. Over-


