

Exhibit 1014 – Part 2 Exhibit 1014 — Part 2

2.4 Principles: Recognize the Diversity 67

coming these limitations is a serious challenge to the designer. Restricting
vocabulary to a small number of familiar, consistently used terms is
essential to begin developing the user's knowledge of the system. The
number of possibilities should be kept small, and the novice user should
be able to carry out a few simple tasks to build confidence, to reduce
anxiety, and to gain positive reinforcement from success. Informative
feedback about the accomplishment of each task is helpful, and construc-

tive, specific error messages should be provided when errors do occur.
Carefully designed paper manuals and step-by—step online tutorials may
be effective. Users are attempting to relate their existing knowledge to the

task objects and actions in the application, so distractions with computer
concepts and the syntax are an extra burden.

Knowledgeable intermittent users: Many people will be knowledgeable but
intermittent users of a variety of systems. They will be able to maintain

the semantic knowledge of the task and the computer concepts, but they
will have difficulty maintaining the syntactic knowledge. The burden of
memory will be lightened by simple and consistent structure in the
command language, menus, terminology, and so on, and by use of
recognition rather than recall. Consistent sequences of actions, meaning-
ful messages, and frequent prompts will all help to assure knowledgeable
intermittent users that they are performing their tasks properly. Protec-

tion from danger is necessary to support relaxed exploration of features or
attempts to invoke a partially forgotten command. These users will
benefit from online help screens to fill in missing pieces of syntactic or

computer semantic knowledge. Well-organized reference manuals will
also be useful.

Expert frequent users: The expert ”power" users are thoroughly familiar
with the syntactic and semantic aspects of the system and seek to get their
work done rapidly. They demand rapid response times, brief and less
distracting feedback, and the capacity to carry out actions with just a few
keystrokes or selections. When a sequence of three or four commands is
performed regularly, the frequent user is eager to create a macro or other
abbreviated form to reduce the number of steps. Strings of commands,

shortcuts through menus, abbreviations, and other accelerators are re-
quirements.

These characteristics of these three classes of usage must be refined for each

environment. Designing for one class is easy; designing for several is much
more difficult.

When multiple usage classes must be accommodated in one system, the
basic strategy is to permit a level-structured (some times called layered or spiral
approach) to learning. Novices can be taught a minimal subset of objects and
actions with which to get started. After gaining confidence from hands—on

Chapter 2 Theories, Principles, and Guidelines

experience, the users can progress to ever greater levels of semantic concepts
and the accompanying syntax. The learning plan should be governed by the
progress through the task semantics. For users with strong knowledge of the

task and computer semantics, rapid presentation of syntactic details is
possible.

For example, novice users of a bibliographic-search system might be
taught author or title searches first, followed by subject searches that require

Boolean combinations of queries. The progress is governed by the task
domain, not by an alphabetical list of commands that are difficult to relate to

the tasks. The level-structured approach must be carried out in the design of
not only the software, but also the user manuals, help screens, error
messages, and tutorials.

Another approach to accommodating different usage classes is to permit
user control of the density of informative feedback that the system provides.
Novices want more informative feedback to confirm their actions, whereas

frequent users want less distracting feedback. Similarly, it seems that
frequent users like displays to be more densely packed than do novices.
Finally, the pace of interaction may be varied from slow for novices to fast
for frequent users.

2.4.2 Task profiles

After carefully drawing the user profile, the developers must identify the
tasks. Task analysis has a long, but mixed, history (Bailey, 1989). Every
designer would agree that the set of tasks must be determined before design
can proceed, but too often the task analysis is done informally or implicitly.
If implementers find that another command can be added, the designer is
often tempted to include the command in the hope that some users will find
it helpful. Design or implementation convenience should not dictate system
functionality or command features.

High-level task actions can be decomposed into multiple middle—level
task actions that can be further refined into atomic actions that the user

executes with a single command, menu selection, and so on. Choosing the
most appropriate set of atomic actions is a difficult task. If the atomic actions

are too small, the users will become frustrated by the large number of actions
necessary to accomplish a higher-level task. If the atomic actions are too

large and elaborate, the users will need many such actions with special
options, or they will not be able to get exactly what they want from the
system.

The relative task frequencies will be important in shaping, for example, a
set of commands or a menu tree. Frequently performed tasks should be

simple and quick to carry out, even at the expense of lengthening some

2.4 Principles: Recognize the Diversity 69

infrequent tasks. Relative frequency of use is one of the bases for making
architectural design decisions. For example, in a text editor,

- Frequent actions might be performed by special keys, such as the four
cursor arrows, INSERT, and DELETE.

- lntermediately frequent actions might be performed by a single letter
plus CTRL, or by a selection from a pull-down menu-examples
include underscore, center, indent, subscript, or superscript.

0 Less frequent actions might require going to a command mode and
typing the command name-—for example, MOVE BLOCK or SP ELLINGCHECK.

- Infrequent actions or complex actions might require going through a
sequence of menu selections or form fillins—for example, to change the
printing format or to revise network protocol parameters.

A matrix of users and tasks can help us to sort out these issues (Figure

2.3). In each box, the designer can put a check mark to indicate that this user
carries out this task. A more precise analysis would lead to inclusion of
frequencies, instead of simple check marks.

2.4.3 Interaction styles

When the task analysis is complete and the semantics of the task objects
and actions can be identified, the designer can choose from these pri-

mary interaction styles: menu selection, form fillin, command language,
natural language, direct manipulation (Table 2.1). Chapters 3 through 5

Frequency of Task by]ob Title
Query

Query by across Add Evaluate
Iob title patient patients relations system
Nurses 0.14

Physicians 0.06
Supervisors 0.01 0.04
Appointments personnel 0.26
Medical—record maintainers 0.07 . 004
Clinical researchers 0.08

Database programmers 0.02

Figure 2.3

Hypothetical frequency—of-use data for a medical clinic information system. Queries by
patient from appointments personnel are the highest-frequency task.

Chapter 2

Table 2.1

Theories, Principles, and Guidelines

Advantages and disadvantages of the five primary interaction styles.

Interaction Style

Advantages
menu selection

shortens learning
reduces keystrokes
structures decision making
permits use of dialog-management
tools

allows easy support of error handling
form fillin

simplifies data entry
requires modest training
makes assistance convenient

permits use of form-management tools

command language
is flexible

appeals to ”power” users
supports user initiative
is convenient for creating user—definedmacros

natural language
relieves burden of learning syntax

direct manipulation
presents task concepts visually
is easy to learn
is easy to retain
allows errors to be avoided

encourages exploration
permits high subjective satisfaction

Disadvantages

imposesdanger of many menus
may slow frequent users
consumes screen space

requires rapid display rate

COI‘l5l.lI‘l'l€S SCFEEI1 SPEICC

has poor error handling
requires substantial training and
memorization

requires clarification dialog
may require more keystrokes
may not show context
is unpredictable

may be hard to program
may require graphics display and
pointing devices

explore these styles in detail; here, we give a comparative overview to
set the stage.

Menu selection In menu-selection systems, the users read a list of items,

select the one most appropriate to their task, apply the syntax to indicate
their selection, confirm the choice, initiate the action, and observe the effect.

If the terminology and meaning of the items are understandable and distinct,

then the users can accomplish their task with little learning or memorization

2.4 Principles: Recognize the Diversity

and few keystrokes. The greatest benefit may be that there is a clear structure
to decision making, since only a few choices are presented at a time. This
interaction style is appropriate for novice and intermittent users and can be
appealing to frequent users if the display and selection mechanisms are
rapid.

For designers, menu—selection systems require careful task analysis to
ensure that all functions are supported conveniently and that terminology is
chosen carefully and used consistently. Dialog-management tools to support
menu selection are an enormous benefit in ensuring consistent screen

design, Validating completeness, and supporting maintenance.

Form fillin When data entry is required, menu selection usually becomes

cumbersome, and form fillin (also called fiIl—inethe—blanks) is appropriate.

Users see a display of related fields, move a cursor among the fields, and
enter data where desired. With the form fillin interaction style, the users
must understand the field labels, know the permissible Values and the data-

entry method, and be capable of responding to error messages. Since

knowledge of the keyboard, labels, and permissible fields is required, some
training may be necessary. This interaction style is most appropriate for
knowledgeable intermittent users or frequent users. Chapter 3 provides a
thorough treatment of menus and form fillin.

Command language For frequent users, command languages provide a

strong feeling of locus of control and initiative. The users learn the syntax
and can often express complex possibilities rapidly, without having to
read distracting prompts. However, error rates are typically high, training
is necessary, and retention may be poor. Error messages and online

assistance are hard to provide because of the diversity of possibilities plus
the complexity of mapping from tasks to computer concepts and syntax.
Command languages and lengthier query or programming languages are
the domain of the expert frequent users who often derive great

satisfaction from mastering a complex set of semantics and syntax.

Chapter 4 covers command languages and natural language interaction in
depth.

Natural language The hope that computers will respond properly to
arbitrary natural-language sentences or phrases engages many researchers

and system developers, in spite of limited success thus far. Natural-language
interaction usually provides little context for issuing the next command,

frequently requires clarification dialog, and may be slower and more
cumbersome than the alternatives. Still, where users are knowledgeable

about a task domain whose scope is limited and where intermittent use

Chapter 2 Theories, Principles, and Guidelines

inhibits command-language training, there exist opportunities for natural-
language interfaces (discussed at the end of Chapter 4).

Direct manipulation When a clever designer can create a visual rep-
resentation of the world of action, the users’ tasks can be greatly simplified

because direct manipulation of the objects of interest is possible. Examples of

such systems include display editors, LOTUS 1-2-3, air-traffic control
systems, and video games. By pointing at visual representations of objects
and actions, users can carry out tasks rapidly and observe the results

immediately. Keyboard entry of commands or menu choices is replaced by
cursor-motion devices to select from a visible set of objects and actions.

Direct manipulation is appealing to novices, is easy to remember for
intermittent users, and, with careful design, can be rapid for frequent users.

Chapter 5 describes direct manipulation and its applications.
Blending several interaction styles may be appropriate when the required

tasks and users are diverse. Commands may lead the user to a form fillin

where data entry is required or menus may be used to control a direct-
manipulation environment when a suitable visualization of actions cannot
be found.

2.5 Eight Golden Rules of Dialog’Design

Later chapters cover constructive guidance for design of menu selection,
command languages, and so on. This section presents underlying principles

of design that are applicable in most interactive systems. These underlying
principles of interface design, derived heuristically from experience, should
be validated and refined:

1. Strive for consistency. This principle is the most frequently violated one,

but the benefits of adherence are large. Consistent sequences of actions
should be required in similar situations; identical terminology should be
used in prompts, menus, and help screens; and consistent commands
should be employed throughout. Exceptions, such as no echoing of
passwords or confirmation of the DELETE command, should be compre-
hensible and limited in number.

. Enablefrequent users to use shortcuts. As the frequency of use increases, so
do the user's desires to reduce the number of interactions and to increase

the pace of interaction. Abbreviations, special keys, hidden commands,
and macro facilities are appreciated by frequent knowledgeable users.

Shorter response times and faster display rates are other attractions for
frequent users.

2.5 Eight Golden Rules of Dialog Design 73

. Offer informative feedback. For every operator action, there should be some

system feedback. For frequent and minor actions, the response can be
modest, whereas for infrequent and major actions, the response should be
more substantial. Visual presentation of the objects of interest provides a
convenient environment for showing changes explicitly (see discussion of
direct manipulation in Chapter 5).

. Design dialogs to yield closure. Sequences of actions should be organized
into groups with a beginning, middle, and end. The informative feedback
at the completion of a group of actions gives the operators the satisfaction

of accomplishment, a sense of relief, the signal to drop contingency plans

and options from their minds, and an indication that the way is clear to
prepare for the next group of actions.

. Offer simple error handling. As much as possible, design the system so the
user cannot make a serious error. If an error is made, the system should

detect the error and offer simple, comprehensible mechanisms for han-

dling the error. The user should not have to retype the entire command,
but rather should need to repair only the faulty part. Erroneous com-
mands should leave the system state unchanged, or the system should

give instructions about restoring the state.

. Permit easy reversal of actions. As much as possible, actions should be
reversible. This feature relieves anxiety, since the user knows that errors

can be undone; it thus encourages exploration of unfamiliar options. The
units of reversibility may be a single action, a data entry, or a complete
group of actions.

. Support internal locus of control. Experienced operators strongly desire the
sense that they are in charge of the system and that the system responds
to their actions. Surprising system actions, tedious sequences of data

entries, incapacity or difficulty in obtaining necessary information, and
the inability to produce the action desired all build anxiety and dissatis-
faction. Gaines (1981) captured part of this principle with his rule avoid

acausality and his encouragement to make users the initiators of actions
rather than the responders.

. Reduce short—term memory load. The limitation of human information

processing in short—term memory (the rule of thumb is that humans can
remember "seven plus or minus two chunks" of information) requires

that displays be kept simple, multiple page displays be consolidated,
window-motion frequency be reduced, and sufficient training time be
allotted for codes, mnemonics, and sequences of actions. Where appropri-
ate, online access to command-syntax forms, abbreviations, codes, and
other information should be provided.

These underlying principles must be interpreted, refined, and extended

for each environment. The principles presented in the ensuing sections focus

Chapter 2 Theories, Principles, and Guidelines

on increasing the productivity of users by providing simplified data-entry
procedures, comprehensible displays, and rapid informative feedback that
increase feelings of competence, mastery, and control over the system.

___:_

2.6 Preventing Errors

There is no medicine against death, and against error no rule has been found.

Sigmund Freud, (Inscription he wrote on his portrait)

Users of word processors, spreadsheets, database-query facilities, air-traffic
control systems, and other interactive systems make mistakes far more
frequently than might be expected. Card et al. (1980) reported that experi-
enced professional users of text editors and operating systems made mis-
takes or used inefficient strategies in 31 percent of the tasks assigned to
them. Brown and Gould (1987) found that even experienced authors had
some errors in almost half their spreadsheets. Other studies are beginning to
reveal the magnitude of the problem and the loss of productivity due to user
errors.

One direction for reducing the loss in productivity due to errors is to

improve the error messages provided by the computer system. Shneiderman
(1982) reported on five experiments in which changes to error messages led
to improved success at repairing the errors, lower error rates, and increased
subjective satisfaction. Superior error messages were more specific, positive
in tone, and constructive (telling the user what to do, rather than merely
reporting the problem). Rather than using vague and hostile messages, such
as SYNTAX ERROR or ILLEGAL DATA, designers were encouraged to use
informative messages, such as UNMATCHED LEFT PARENTHESIS or MENU
CHOICES ARE IN THE RANGE OF 1 TO 6.

Improved error messages, however, are only helpful medicine. A more
effective approach is to prevent the errors from occurring. This goal is more
attainable than it may seem in many systems.

The first step is to understand the nature of errors. One perspective is that
people make mistakes or ”slips” (Norman, 1983) that designers can avoid by
organizing screens and menus functionally, designing commands or menu
choices to be distinctive, and making it difficult for users to do irreversible
actions. Norman offers other guidelines such as do not have modes, offer
feedback about the state of the system, and design for consistency of
commands. Norman's analysis provides practical examples and a useful
theory.

2.6 Preventing Errors

2.6.1 Techniques for ensuring correct actions

The ensuing sections refine his analysis and describe three specific tech-

niques for reducing errors by ensuring complete and correct actions: correct
matching pairs, complete sequences, and correct commands.

Correct matching pairs A common problem is the lack of correct matching
pairs. It has many manifestations, and several simple prevention strategies.
An example is the failure to provide the right parenthesis to close an open
left parenthesis. If a bibliographic-search system allowed Boolean expres-
SiOI1S such as COMPUTERS AND (PSYCHOLOGY OR SOCIOLOGY) and the

user failed to provide the right parenthesis at the end, the system would

produce a SYNTAX ERROR message or, even better, a more meaningful
message, such as UNMATCHED LEFT PARENTHESES.

Another error is failure to include the closing quotation mark (”) to close

a string in BASIC. The command 1 0 PRINT “HELLO” is in error if the
rightmost quotation mark is missing.

Similarly, a @B or other marker is required to indicate the end of boldface,
italic, or underscored text in word processors. If the text file contains
@BThis i s boldface@B, then the three words between the @B markers

appear in boldface on the printer. If the rightmost @B is missing, then the
remainder of the file is printed in boldface.

A final example is omitting termination of a centering command in a text
formatter. Some text formatters have a pair of commands—such as . ON
CENTER and . OFF CENTER—-surrounding lines of text to be centered. The
omission of the latter command causes the entire file to be centered.

In each of these cases, a matching pair of markers is necessary for

operation to be complete and correct. The omission of the closing marker can
be prevented by use of an editor, preferably screen-oriented, that puts both
the beginning and ending components of the pair on the screen in one action.
For example, typing a left parenthesis generates a left and right parenthesis

and puts the cursor in between to allow creation of the contents. An attempt
to delete one of the parentheses will cause the matching parenthesis (and
possibly the contents as well) to be deleted. Thus, the text can never be in a
syntactically incorrect form.

Some people find this rigid approach to be too restrictive and may prefer
a milder form of protection. When the user types a left parenthesis, the

screen displays in the lower-left corner a message indicating the need for a
right parenthesis, until that character is typed.

Another approach is to replace the requirement for the ending marker.
Many microcomputer versions of BASIC do not require an ending quotation

mark to terminate a string; they use a carriage return to signal the closing of
a string. Variants of this theme occur in line-oriented text editors that allow
omission of the final / in a CHANGE/OLD STRING/NEW sTRING/ com-

Chapter 2 Theories, Principles, and Guidelines

mand. Many versions of LISP offer a special character, usually a right square
bracket (]), to terminate all open parentheses.

In each of these cases, the designers have recognized a frequently

occurring error and have found a way to eliminate the error situation.

Complete sequences Sometimes, an action requires several steps or
commands to reach completion. Since people may forget to complete every

step of an action, designers attempt to offer a sequence of steps as a single
action. In an automobile, the driver does not have to set two switches to

signal a left turn. A single switch causes both turn-signal lights (front and
rear) on the left side of the car to flash. When a pilot lowers the landing gear,

hundreds of steps and checks are invoked automatically.
This same concept can be applied to interactive uses of computers. For

example, the sequence of dialing up, setting communication parameters,
logging on, and loading files is frequently executed by many users. Fortu~
nately, most communications-software packages enable users to specify
these processes once, and then to execute them by simply selecting the
appropriate name.

Programming—language loop constructs require a WHILE—DO—BE‘.GIN—
END or FoR—NEXT structure, but sometimes users forget to put the complete

structure in, or they delete one component but not the other components.
One solution would be for users to indicate that they want a loop, and for the

system to supply the complete and correct syntax, which would be filled in
by the user. This approach reduces typing and the possibility of making a
typographical error or a slip, such as the omission of one component.
Conditional constructs require an IF—THEN—ELsE or CASI-:—OF—END struc-

ture; but again, users may forget a component when creating or deleting.
Users of a text editor should be able to indicate that section titles are to be

centered, set in upper-case letters, and underlined, without having to issue a
series of commands each time they enter a section title. Then, if a change is

made in style-—for example, to eliminate underlining—a single command
would guarantee that all section titles were revised consistently.

As a final example, air traffic controllers may formulate plans to change
the altitude of a plane from 14,000 feet to 18,000 feet in two steps; after
raising the plane to 16,000 feet, however, the controller may get distracted
and fail to complete the action. The controller should be able to record the

plan and then have the computer prompt for completion.
The notion of complete sequences of actions may be difficult to imple-

ment, because users may need to issue atomic actions as well as complete

sequences. In this case, users should be allowed to define sequences of their
own—the macro or subroutine concept should be available at every level of
usage.

2.6 Preventing Errors 77

Designers can gather information about potential complete sequences by
studying sequences of commands actually issued and the pattern of errors
that people actually make.

Correct commands Industrial designers recognize that successful products
must be safe and must prevent the user from making incorrect use of the
product. Airplane engines cannot be put into reverse until the landing gear

have touched down, and cars cannot be put into reverse while traveling
forward at faster than 5 miles per hour. Many simpler cameras prevent
double exposures (even though the photographer may want to expose a
frame twice), and appliances have interlocks to prevent tampering while the

power is on (even though expert users occasionally need to perform
diagnoses).

The same principles can be applied to interactive systems. Consider these

typical errors made by the users of computer systems: They invoke corn-
mands that are not available, type menu selection choices that are not

permitted, request files that do not exist, or enter data values that are not
acceptable. These errors are often caused by annoying typographic errors,
such as using an incorrect command abbreviation; pressing a pair of keys,
rather than a desired single key; misspelling a file name; or making a minor
error such as omitting, inserting, or transposing characters. Error messages

range from the annoyingly brief ? or WHAT ?, to the vague UNRECOGNI ZED
COMMAND or SYNTAX ERROR, to the condemning BAD FILE NAME or
ILLEGAL COMMAND. The brief ? is suitable for expert users who have made
a trivial error and can recognize it when they see the command line on the
screen. But if an expert has ventured to use a new command and has
misunderstood its operation, then the brief message is not helpful.

Whoever made the mistake and whatever were its causes, users must

interrupt their planning to deal with correcting the problem—-and with their
frustration in not getting what they wanted. As long as a command must be
made up of a series of keystrokes on a keyboard, there is a substantial chance
of making an error in entering the sequence of keypresses. Some keypressing
sequences are more error-prone than others—-especially those that require
shifting or unfamiliar patterns. Reducing the number of keypresses can help,
but it may place a. greater burden on learning and memory, since an entry
with reduced keystrokes; for example, RM may be more difficult to remem-
ber than the full command name, REMOVE (see Chapter 4).

Some systems offer automatic command completion that allows the user

to type just a few letters of a meaningful command. The user may request
the computer to complete the command by pressing the space bar, or the
computer may complete it as soon as the input is sufficient to distinguish the
command from others. Automatic command completion can save key-

Chapter 2 Theories, Principles, and Guidelines

strokes and is appreciated by many users, but it can also be disruptive
because the user must consider how many characters to type for each
command, and must verify that the computer has made the completion that
was intended.

Another approach is to have the computer offer the permissible com-
mands, menu choices, or file names on the screen, and to let the user select
with a pointing device. This approach is effective if the screen has ample
space, the display rate is rapid, and the pointing device is fast and accurate.
When the list grows too long to fit on the available screen space, some
approach to hierarchical decomposition must be used.

Imagine that the 20 commands of an operating system were constantly dis-
played on the screen. After users select the P RINT command (or icon), the sys-
tem automatically offers the list of 30 files for selection. Users can make two
lightpen, touchscreen, or mouse selections in less time and with higher accu-
racy than they could by typing the command PRINT JAN—JUNE-EXPENSE S.

In principle, a programmer needs to type a variable name only once. After
it has been typed, the programmer can select it, thus eliminating the chance
of a misspelling and an UNDECLARED VARIABLE message.

It is not always easy to convert a complex command into a small number
of selections and thus to reduce errors. Pointing at long lists can be visually
demanding and annoying if users are competent typists.

__

2.7 Guidelines: Data Display

Guidelines for display of data are being developed by many organizations.
A guidelines document can help by promoting consistency among multiple
designers, recording practical experience, incorporating the results of em-
pirical studies, and offering useful rules of thumb (see Chapters 8 and 13).
The creation of a guidelines document engages the design community in a
lively discussion of input or output formats, command sequences, terminol-
ogy, and hardware devices (Rubinstein and Hersh, 1984; Brown, 1988;
Galitz, 1989). Inspirations for design guidelines can also be taken from
graphics designers (Tufte, 1983, 1990).

2.7.1 Organizing the display

Smith and Mosier (1986) offer five high—level objectives for data display:

1. Consistency of data display: This principle is frequently violated, but
violations are easy to repair. During the design process, the terminology,

2.7 Guidelines: Data Display 79

abbreviations, formats, and so on should all be standardized and con-

trolled by use of a written (or computer-managed) dictionary of these
items.

. Efficient information assimilation by the user: The format should be familiar

to the operator, and should be related to the tasks required to be
performed with these data. This objective is served by rules for neat
columns of data, left justificationifor alphanumeric data, right justification
of integers, lining up of decimal points, proper spacing, use of compre-
hensible labels, and appropriate use of coded values.

. Minimal memory load on user: Users should not be required to remember
information from one screen for use on another screen. Tasks should be

arranged such that completion occurs with few commands, minimizing
the chance of forgetting to perform a step. Labels and common formats
should be provided for novice or intermittent users.

. Compatibility of data display with data entry: The format of displayed
information should be linked clearly to the format of we data entry.

. Flexibility for user control of data display: Users should be able to get the
information from the display in the form most Convenient for the task on
which they are working.

This compact set of high-level objectives is a useful starting point, but
each project needs to expand these into application—specific and hardware-
dependent standards and practices. For example, these detailed comments
for control—room design come from a report from the Electric Power
Research Institute (Lockheed, 1981):

- Be consistent in labeling and graphic conventions.
- Standardize abbreviations.

- Use consistent format in all displays (headers, footers, paging, menus,
and so on).

- Present a page number on each display page, and allow actions to call
up a page via entry of a page number.

- Present data only if they assist the operator.

- Present information graphically, where appropriate, using widths of

lines, positions of markers on scales, and other techniques that relieve
the need to read and interpret alphanumeric data.

0 Present digital values only when knowledge of numerical value is
actually necessary and useful.

- Use high-resolution monitors, and maintain them to provide maximum
display quality.

Chapter 2 Theories, Principles, and Guidelines

Design a display in monochromatic form, using spacing and arrange-
ment for organization, and then judiciously add color where it will aid
the operator.

0 Involve operators in the development of new displays and procedures.

Chapter 8 further discusses data-display issues.

2.7.2 Getting the user’s attention \,

Since substantial information may be presented to users for the normal

performance of their work, exceptional conditions or time-dependent infor-
mation must be presented so as to attract attention. Multiple techniques exist
for attention getting:

Intensity: Use two levels only.

Marking: Underline, enclose in a box, point to with an arrow, or use an
indicator such as an asterisk, bullet, dash, or an X.

Size: Use up to four sizes.

Choice of fonts: Use up to three fonts.

Inverse video: Use inverse coloring.

Blinking: Use blinking displays (2 to 4 hertz).

Color: Use up to four standard colors, with additional colors reserved for
occasional use.

Color blinking: Use changes in color (blinking from one color to another).

Audio: Use soft tones for regular positive feedback, harsh sounds for rare
emergency conditions.

A few words of caution are necessary. There is a danger in creating

cluttered displays by ovcrusing these techniques. Novices need simple,

logically organized, and well-labeled displays that guide their actions.
Expert operators do not need extensive labels on fields; subtle highlighting
or positional presentation is sufficient. Display formats must be tested with
users for comprehensibility.

Similarly highlighted items will be perceived as being related. Color cod-
ing is especially powerful in linking related items, but this use makes it more
difficult to cluster items across color codes. Operator control over highlight-

ing—-for example, allowing the operator in an air-traffic control environment
to assign orange to images of aircraft above 18,000 feet—may provide a useful
resolution to concerns about personal preferences. Highlighting can be ac-

complished by increased intensity, blinking, or other methods.
Audio tones can provide informative feedback about progress, such as the

clicks in keyboards or ringing sounds in telephones. Alarms for emergency
conditions do alert operators rapidly, but a mechanism to suppress alarms

must be provided. Testing is necessary to ensure that operators can distin-

2.8 Guidelines: Data Entry 31

guish among alarm levels. Prerecorded or synthesized voice messages are an
intriguing alternative, but since they may interfere with communications
among operators, they should be used cautiously.

2.8 Guidelines: Data Entry

Data-entry tasks can occupy a substantial fraction of the operator's time and
are the source of frustrating and potentially dangerous errors. Smith and
Mosier (1986) offer five high-level objectives for data entry:

1. Consistency of data-entry transactions: Similar sequences of actions should
be used under all conditions; similar delimiters, abbreviations, and so on
should be used.

2. Minimal input actions by user: Fewer input actions mean greater operator

productivity and, usually, fewer chances for error. Making a choice by a
single keystroke, mouse selection, or finger press, rather than by typing in a
lengthy string of characters, is potentially advantageous. Selecting from
a list of choices eliminates the need for memorization, structures the deci-

sion-making task, and eliminates the possibility of typographic errors.
However, if the operators must move their hands from a keyboard to a
separate input device, the advantage is defeated, because home-row posi-
tion is lost. Experienced operators often prefer to type six to eight charac-
ters, instead of moving to a lightpen, joystick, or other selection device.

A second aspect of this guideline is that redundant data entry should
be avoided. It is annoying for an operator to enter the same information in
two locations, since the double entry is perceived as a waste of effort and

an opportunity for error. When the same information is required in two
places, the system should copy the information for the operator, who still
has the option of overriding by retyping.

3. Minimal memory load on user: When doing data entry, the operator should
not be required to remember lengthy lists of codes and complex syntactic
command strings.

. Compatibility of data entry with data display: The format of data entry
information should be linked closely to the format of displayed informa-
tion.

. Flexibility for user control of data entry: Experienced data entry operators
may prefer to enter information in a sequence they can control. For
example, on some occasions in an air-traffic control environment, the
arrival time is the prime field in the controller's mind; on other occasions,
the altitude is the prime field. Flexibility should be used cautiously, since

it goes against the consistency principle.

Chapter 2 Theories, Principles, and Guidelines

2.9 Prototyping and Acceptance Testing

A critical component of clear thinking about interactive system design is the
replacement of the vague and misleading notion of ”user friendliness" with
the five measurable quality criteria:

- Time to learn

I Speed of performance

0 Rate of errors by users
- Retention over time

I Subjective satisfaction

Once the decision about the relative importance of each of the human-

factors quality criteria has been made, specific measurable objectives should
be established to inform customers and users and to guide designers and

implementers. The acceptance test plan for a system should be included in
the requirements document and should be written before the design is
made. Hardware and software test plans are regularly included in require-

ments documents; extending the principle to hurnan—interface development
is natural (Chapter 13).

The requirements document for a word-processing system might include
this acceptance test:

The subjects will be 35 secretaries hired from an employment agency. They
have no word—processing experience, but have typing skills in the range of 35
to 50 words per minute. They will be given 45 minutes of training on the basic
features. At least 30 of the 35 secretaries should be able to complete, within 30

minutes, 80 percent of the typing and editing tasks in the enclosed benchmark
test correctly.

Another testable requirement for the same system might be this:

After 4 half-days of regular use of the system, 25 of these 35 secretaries should
be able to carry out, within 20 minutes, the advanced editing tasks in the
second benchmark test, and should make fewer than six errors.

This second acceptance test captures performance after regular use. The
choice of the benchmark tests is critical and is highly system dependent.

The test materials and procedures must also be refined by pilot testing
before use.

2.10 Balance of Automation and Human Control

A third item in the acceptance test plan might focus on retention:

After 2 weeks, at least 15 of the test subjects should be recalled, and should
perform the third benchmark test. In 40 minutes, at least 10 of the subjects
should be able to complete 75 percent of the tasks correctly.

Such performance tests constitute the definition of ”user friendly” for this

system. By having an explicit definition, both the managers and the design-
ers will gain a clearer understanding of the system goals and whether they
have succeeded. The presence of a precise acceptance test plan will force

greater attention to human—factors issues during the design, and will ensure
that pilot studies are run to determine whether the project can meet the test
plan goals.

In a programming-workstation project, this early requirement for perfor-
mance helped shape the nature of the interface:

New professional programmers should be able to sign on,.to create a short
program, and to execute that program against a stored test data set, without
assistance and within 10 minutes.

Specific goals in acceptance tests are useful, but competent test managers
will notice and record anecdotal evidence, such as suggestions from partici-

pants, subjective reactions of displeasure or satisfaction, their own com-
ments, and exceptional performance (both good and bad) by individuals.
The precision of the acceptance test provides an environment in which
unexpected events are most noticeable.

2.10 Balance of Automation and Human Control

The principles in the previous sections are in harmony with the goal of
simplifying the user's task——eliminating human actions when no judgment
is required. The users can then avoid the annoyance of handling routine,
tedious, and error-prone tasks, and can concentrate on critical decisions,
planning, and coping with unexpected situations. The computers should be
used to keep track of and retrieve large volumes of data, to follow preset
patterns, and to carry out complex mathematical or logical operations (Table
2.2 provides a detailed comparison of human and machine capabilities).

The degree of automation will increase over the years as procedures
become more standardized, hardware reliability increases, and software

Chapter 2

Table 2.2

Theories, Principles, and Guidelines

Relative capabilities of humans and machines. (Compiled from Brown (1988);
McCormick, E. I., Human Factors Engineering, McCraw-Hill, New York (1970),
20-21; and Estes, W. I(., Is human memory obsolete? American Scientist 68 (1980),
62-69.)

Humans Generally Better

Sense low level stimuli
Detect stimuli in noisy background

Recognize constant patterns in varying
situations

Sense unusual and unexpected events

Remember principles and strategies

Retrieve pertinent details without a
priori connection

Draw on experience and adapt deci-
sions to situation

Select alternatives if original approach
fails

Reason inductively: generalize from
observations

Act in unanticipated emergencies and
novel situations

Apply principles to solve varied
problems

Make subjective evaluations
Develop new solutions
Concentrate on important tasks when

overload occurs

Adapt physical response to changes insituation

Machines Generally Better

Sense stimuli outside human’s range

Count or measure physical quantities
Store quantities of coded information

accurately
Monitor prespecified events, especially

infrequent
Make rapid and consistent responses to

input signals
Recall quantities of detailed information

accurately

Process quantitative data in
prespecified ways

Reason deductively: infer from a

general principle
Perform repetitive preprogrammed

actions reliably

Exert great, highly controlled physical
force

Perform several activities simulta-

neously
Maintain operations under heavy

information load

Maintain performance over extended
periods of time

verification and validation improves. With routine tasks, automation is
preferred, since the potential for error may be reduced. However, I believe
that there will always be a critical human role because the real world is an
"open system” (there is a nondenumerable number of unpredictable events
and system failures). By contrast, computers constitute a ”closed system”
(there is only a denumerable number of predictable normal and failure

2.10 Balance of Automation and Human Control 85

situations that can be accommodated in hardware and software). Human

judgment is necessary for the unpredictable events in which some action
must be taken to preserve safety, avoid expensive failures, or increase
product quality.

For example, in air—traffic control, common actions include changes to

altitude, heading, or speed. These actions are well understood and are
potentially autornatable by a scheduling and route-allocation algorithm, but
the controllers must be present to deal with the highly variable and

unpredictable emergency situations. An automated system might deal
successfully with high volumes of traffic, but what would happen if the
airport manager closed two runways because of turbulent weather? The
controllers would have to reroute planes quickly. Now suppose one pilot

called in to request special clearance to land because of a failed engine, while

a second pilot reported a passenger with a potential heart attack. Human
judgment is necessary to decide which plane should land first and how
much costly and risky diversion of normal traffic is appropriate. Air-traffic
controllers cannot just jump suddenly into the emergency; they must be

intensely involved in the situation to make an informed, rapid, and optimal
decision. In short, the real—world situation is so complex that it is impossible

to anticipate and program for every contingency; human judgment and
values are necessary in the decision-making process.

Another example of the complexity of real—world situations in air-traffic
control emerges from an incident on an Air Canada Boeing 727. The jet had
a fire on board, and the controller cleared other traffic from the flight paths

and began to guide the plane in for a landing. The smoke was so bad that the

pilot had trouble reading his instruments. Then, the onboard transponder
burned out, so the air-traffic controller could no longer read the plane's

altitude from the situation display. In spite of these multiple failures, the
controller and the pilot managed to bring down the plane quickly enough to

save the lives of many——but not all—of the passengers. A computer could
not have been programmed to deal with this unexpected series of events.

The goal of system design in many applications is to give operators
sufficient information about current status and activities that, when inter-

vention is necessary, they have the knowledge and the capacity to perform

correctly, even under partial failures. Increasingly, the human role will be to
respond to unanticipated situations, equipment failure, improper human
performance, and incomplete or erroneous data (Eason, 1980; Sheridan,
1988).

The entire system must be designed and tested, not only for normal
situations, but also for as wide a range of anomalous situations as can be

anticipated. An extensive set of test conditions might be included as part of
the requirements document. Operators need to have enough information
that they can take responsibility for their actions.

Chapter 2 Theories, Principles, and Guidelines

Beyond performance of productive decision-making tasks and handling
of failures, the role of the human operator will be to improve the design of
the system. In complex systems, an opportunity always exists for improve-
ment, so systems that lend themselves to refinement will evolve via con-
tinual incremental redesign by the operator.

2.11 Adaptive Agents and User Models versus Control
Panels

The balance of automation and human control also emerges as an issue in

systems for home and office automation. Many designers promote the
notion of anthropomorphic agents that would wisely carry out the users’s
intents and anticipate needs (Norcio, 1989). These scenarios often show a
responsive, butlerlike human being to represent the agent (a bow—tied,
helpful young man in Apple Computer's 1987 video on the Knowledge
Navigator), or refer to the agent on a first—name basis (such as Sue or Bob in
Hewlett—Packard's 1990 video on computing in 1995). Others have described
“knowbots,” agents that traverse networks and scan large databases seeking
information that the user might find interesting.

These fantasies are appealing; most people are attracted to the idea that a
powerful functionary is continuously carrying out their tasks and watching
out for their needs. The wish to create an agent that knows people's likes and

dislikes, makes proper inferences, responds to novel situations, and per-
forms competently with little guidance is strong for some designers. How-
ever, human-human interaction is not necessarily a good model for
human—computer interaction. Many users have a strong desire to be in
control and to have a sense of mastery over the system, so that they can

derive feelings of accomplishment. Users usually seek predictable systerrm
and shy away from complex unpredictable behavior. Simple task domain
concepts should mask the underlying computational complexity, in the
same way that turning on an automobile ignition is simple to the user but
invokes complex algorithms in the engine-control computer. These algo-
rithms may adapt to varying engine temperatures or air pressures, but the
action at the user-interface level remains unchanged.

A variant of the agent scenario, which does not include an anthropomor-
phic realization, is that the computer employs a ”user model" to guide an
adaptive system. For example, several proposals suggest that, as users make
menu selections more rapidly, indicating proficiency, advanced menu items
or a command—line interface can be introduced. Automatic adaptations have

been proposed for response time, length of messages, density of feedback,
content of menus, order of menu items (see Section 3.3 for evidence against

2.11 Adaptive Agents and User Models versus Control Panels 87

this strategy), type of feedback (graphic or tabular), and content of help
screens. Advocates point to video games that increase the speed or number
of dangers as users progress though stages of the game. However, games are
quite different from most work situations, where users have external goals
and motivations to accomplish their tasks. There is much discussion of user

models, but little empirical evidence of their efficacy.
There are some opportunities to tailor system responses as a function of

context, but unexpected behavior is a serious negative side effect that
discourages use. If adaptive systems make surprising changes, users must
pause to see what has changed. Then, they may become anxious because

they may not be able to predict the next change, to interpret what has

happened, or to restore the system to the previous state. The agent metaphor
and ”active, adaptive, intelligent” systems seem to be more attractive to

designers who believe that they are creating something lifelike and even
magical, than they are to users who may feel anxious and unable to control
the system.

An alternative to agents and user models may be to expand the control-
panel metaphor. Current control panels are used to set physical parameters,

such as the speed of cursor blinking, rate of mouse tracking, or loudness of
a speaker, and to establish personal preferences such as time, date formats,
placement and format of menus, or color schemes (Figure 2.4 and 2.5). Some
software packages allow users to set parameters such as the speed in games

or the usage level as in HyperCard (from browsing to editing buttons to
writing scripts and creating graphics). Users start at level 1, and can then

choose when to progress to higher levels. Often, users are content remaining
experts at level 1 of a complex system, rather than dealing with the
uncertainties of higher levels. More elaborate control panels exist in style

Control Panel

Control panel from the ' Rate of insertion

Apple Macintosh with i P°‘"" 3"““‘“9scrolling list of specific
controls. (Copyright Apple Desktop pane.-,.
Computer, lnc., Cupertino,
CA. Used with _
permission.) ' T‘”‘° ®

1 12:24: I 3 PM

Li
Date

10/19/91

O U" Speaker
(9 Off Volume

Figure 2.4

Chapter 2 Theories, Principles, and Guidelines

:w< 5* Q--3553 <:-9“. =-9 M’ W W ’$:-$55: :3 ah
..,, §g’»$. ma‘as><9$ $o_=-=

2"z- -

,5 ,3 Q, -533 f *2: 43- :.-. 3:. sea 95 5-0 :9.-9§. s__«-515$ $5 z__2< egg .3-s m: :0 $ -:4-«so:
- x .=5"><<‘_3 33. gs ;‘9=-as-"9' we %~=' '3 at e~:._w.° s‘

§ :s sh? -om» «=.W.§w='~§ es. . . - .
- 's-F’;1?8%:¢,.M‘.f°3-£4‘-ska"-§= vs" '?as2':-2‘: 4

-2-=;-.o035--Ce-3o&9ao'y£¢’oc:-'-'-.-.o.,‘w¢‘...-.¢-.. eweeet ":3";-era.

.3":-’«,:x'~;g.t"’%$§.e.-‘$53’ 252'‘

Icons ' " '

loonspncingz l _’ J
Sizing Grid g

gr».
‘fig. ’%‘.-3?‘ xvi_~.

gimnulavily:
floniar Width:

am‘.§5g'l§§':_~v

Control panel from Microsoft Windows graphical environment version 3.0. (Screen
shot ©1985-1991 Microsoft Corporation. Reprinted with permission from Microsoft
Corporation, Redmond, WA.)

sheets of word processors, specification boxes of query facilities, and
scheduling software that carries out processes at regular intervals or when
triggered by other processes.

Computer control panels, like cruise-control mechanisms in automobiles,
are designed to convey the sense of control that users seem to expect. Increas-

ingly, complex processes are specified by direct-manipulation programming
(see Chapter 5) or by dialog-box specifications in graphical user interfaces.
An effective design enables users to have a comprehensible task domain

model of what the system does, and to make multiple choices rapidly.

