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Chapter 9 

Imaging and Partial Subsurface Illumination 

Introduction 

In Chapter 8, we analyzed how the spatial sampling 
rate influences image quality. If data sampling is not suffi­
ciently dense, the seismic image may lose resolution and/or 
it may be affected by artifacts. 

Unfortunately, however, density of spatial sampling is 
not the only problem encountered with realistic 3D acquisi­
tion geometries. An even more common problem is irreg­
ularity of the spatial sampling. Often, irregular sampling in 
space is a product of practical constraints, examples of which 
include cable feathering in marine acquisition and surface 
obstacles in land acquisition. In other cases (e.g., with but­
ton-patch geometries), irregular sampling geometry might 
be inherent in the survey design. 

The main effect of irregular sampling geometries is 
either uneven illumination or incomplete illumination of the 
subsurface. Such partial illumination causes distortions in 
the image. In milder cases, distortions are limited to the 
image amplitudes, and they are clearly visible in depth or 
time slices. Those distortions often are called acquisition 
footprint. Figure 1 shows an example of acquisition foot­
prints in a migrated depth slice taken from a marine data set. 
On the right-hand side, horizontal striping is clearly visible, 
superimposed over the image of a complex turbidite sys­
tem with crossing channels. The horizontal striping is not 
linked to geology; it is along the direction of the sailing 
lines of the recording vessel. 

When subsurface illumination is not only uneven but is 
also incomplete, the phase of the image is distorted, and 
strong artifacts are created. At the limit, when the acquisi­
tion geometry has holes, the data are aliased, at least lo­
cally. In such cases, a distinction between the effects of 
coarse sampling (which we called aliasing in Chapter 8) 
and the effects of irregular geometries obviously is artifi­
cial. However, it helps to analyze such effects separately 
and to develop independent methods for alleviating the 
problems. 

Either uneven or incomplete illumination can be caused 
by complexity of the velocity function in the overburden, 
as well as by irregular acquisition geometries. Imaging under 
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salt edges is an example of an important task that suffers 
from partial illumination of the reflectors. The problem 
often is caused by sharp velocity-model variations that pre­
vent the seismic energy either from reaching the reflectors 
or from propagating back to the surface. Although the im­
mediate causes of partial illumination differ in the two 
cases- irregular acquisition geometry versus complex over­
burden - the final manifestation is the same: The wave­
field is not sampled sufficiently at depth for migration to 
image the reflectors without artifacts. The concepts and 
methods used to address the uneven-illumination problem 
are similar, regardless of its origin, and consequently I pres­
ent them in a unified manner. 

When illumination is uneven but without gaps, the 
image can be improved substantially by a simple normal­
ization of the imaging operator or, as it often is called, by 
an operator equalization. In this chapter, we introduce the 
basic concepts of operator equalizations, using a simple 
imaging operator- interpolation followed by partial stack­
ing - as a proxy for more corpplex imaging operators. In 
cases when uneven illumination of the reflectors relates 
mostly to irregular acquisition geometry and the velocity in 
the overburden is fairly simple, the DMO or AMO opera­
tors (Chapter 3) are normalized (Beasley and Mobley, 
1988; Canning and Gardner, 1998; Chemingui, 1999). In 
more complex situations, in which the velocity in the over­
burden is sufficiently complex to distort the wavefield or 
even to cause illumination gaps, normalization should be 
applied in the image domain after full prestack migration 
(Bloor et al., 1999; Rickett, 2003). 

Simple normalization of the imaging operators is not 
sufficient to remove imaging artifacts when illumination 
gaps are large. In such conditions, the data-modeling op­
erator- which usually is defined as the adjoint of the im­
aging operator- should be inverted by a regularized inver­
sion methodology. As is true for operator equalization, the 
methods proposed in the literature for inverting imaging 
operators can be divided. into algorithms based on partial 
prestack migration (Ronen, 1987; Ronen and Liner, 2000; 
Chemingui and Biondi, 2002) and those based on full 
prestack migration. The methods use either a Kirchhoff 
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operator (Nemeth et al., 1999; Duquet et al., 2000) or a 
wavefield-continuation operator (Prucha and Biondi, 2002; 
Kuehl and Sacchi, 2002). 

Iterative inversion is expensive, especially when a full 
prestack-migration operator is inverted. In this chapter, I 
present a noniterative method for regularizing the model 
space. It improves the quality of the reconstructed data 
without the computational cost of an iterative inversion. 
However, when there are large acquisition gaps or when the 
complexity of the overburden is responsible for incomplete 
illumination of the reflectors, expensive iterative regular­
ized inversion is unavoidable. At the end of this chapter, we 
discuss some potential applications of iterative inversion. 

Equalization of imaging operators 

To explore the methods used to equalize imaging op­
erators, I employ interpolation followed by partial stacking 
as a proxy of more complex imaging operators. As a proxy, 
interpolation has the advantage of being simple, easy to 
understand, and easy to manipulate analytically. Its analy­
sis will lead us to discuss fundamental issues regarding 
spatial interpolation of seismic traces and normalization, or 
equalization, of imaging operators. The lessons we learn by 
using interpolation are applicable to the equalization of 
several imaging operators. 

Stacking is the operation of averaging seismic traces 
by summation. It is an effective way to reduce the size of 
data sets and to enhance reflections while attenuating 
noise. To avoid attenuating the signal along with the noise, 
the reflections need to be coherent among the traces that 
are being stacked. To increase trace coherency, we can 
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Figure 1 . Example of acquisition footprint in a migrated 
depth slice. The horizontal stripes are related to the acquisi­
tion sail lines. Notice that the stripes bend when the reflectors 
start to dip in the vicinity of the salt (xm ~ 5500 m). 

apply simple normal moveout (NMO) before stacking, or a 
partial-prestack-migration operator such as DMO or AMO 
(Chapter 3). 

Global stacking of all the traces recorded at the same 
midpoint location, regardless of their offset and azimuth, is 
the most common type of stacking. Partial stacking aver­
ages only those traces with their offset and azimuth within 
a given range. Partial stacking is useful if we want to pre­
serve differences among traces when those differences are 
functions of the trace offset and azimuth and thus we must 
avoid global averaging. AVO studies are a useful applica­
tion of partial stacking. Partial stacking also is useful when 
simple transformations, such as NMO, are not sufficient to 
correct for the differences in time delays among traces with 
very different offsets and azimuths. Such a situation is com­
mon when velocity variations cause nonhyperbolic move­
outs in the data. Because data redundancy is low in partial 
stacking, the results of partial stacking are more likely to be 
affected by artifacts related to irregular acquisition geom­
etries than are the results of global stacking. Thus, in this 
section, I will focus my analysis on partial stacking, but the 
methods I present here obviously can be applied to global 
stacking operators too. 

To start our analysis, I define a simple linear model 
that links the recorded traces (at arbitrary midpoint loca­
tions) to the stacked volume (defined on a regular grid). 
Each data trace is the result of interpolating the stacked 
traces and is equal to the weighted sum of the neighboring 
stacked traces. The interpolation weights are functions of 
the distance between the midpoint location of the model 
trace and the midpoint location of the data trace. The sum 
of all the weights corresponding to one data trace usually is 
equal to one. Because the weights are independent of time 
along the seismic traces, for notational simplicity, we col­
lapse the time axis and consider each element di of the data 
space (recorded data) d and each element mj of the model 
space m (stacked volume) as representing a whole trace. 
The relationship between data and model is linear and can 
be expressed as 

di = L.j lij mj, subject to the constraint Lj lu = 1. (9.1) 

In matrix notation, equation 9.1 becomes 

d=Lm. (9.2) 

The simplest and crudest spatial interpolation is a near­
est-neighborhood interpolation. For example, if we have 
three model traces and four data traces and we use a simple 
nearest-neighborhood interpolator, equation 9.2 becomes 
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