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for Hanging Chain Dynamics 

Jason I. Gobat1; Mark A. Grosenbaugh2; and Michael S. Triantafyllou3 

Abstract: In this paper, we study numerically the two- and three-dimensional nonlinear dynamic response of a chain hanging under its 
own weight. Previous authors have employed the box method, a finite-difference scheme popular in cable dynamics problems, for this 
purpose. The box method has significant stability problems, however, and thus is not well suited to this highly nonlinear problem. We 
illustrate these stability problems and propose a new time integration procedure based on the generalized-a method. The new method 
exhibits superior stability properties compared to the box method and other algorithms such as backward differences and trapezoidal rule. 
Of four time integration methods tested, the generalized-a algorithm was the only method that produced a stable solution for the 
three-dimensional whirling motions of a hanging chain driven by harmonic linear horizontal motion at the top. 
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Introduction 

The dynamics of a chain hanging under its own weight is a classic 
problem in mechanics. Two of the more interesting aspects of the 
problem are the simultaneous presence of both high- and low- 
tension regimes in the chain and the unstable nature of large am- 
plitude motions. Triantafyllou and Howell (1993) and Howell and 
Triantafyllou (1993) considered both of these phenomena using a 
combination of analytic, numerical, and experimental results. 
They observed that the stability of the response in a harmonically 
driven system is strongly dependent on the frequency and ampli- 
tude of the excitation. 

The numerical model that they employed was based on a 
finite-difference scheme known as the box method. This method 
was first applied to a cable dynamics problem by Ablow and 
Schechter (1983). Because the box method is an implicit scheme, 
box method solutions for the classical cable dynamics equations 
are singular when the tension goes to zero anywhere on the cable. 
Howell and Triantafyllou (1993) removed this singularity by add- 
ing bending stiffness to the governing equations, thus providing a 
mechanism to propagate energy in the presence of zero tension 
(Burgess 1993). For small values of artificial bending stiffness 
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this modification stabilized the numerical solution with no loss of 
accuracy compared to experimental results. 

The box method is popular because it is second-order accurate 
in both space and time and is relatively easy to implement. Be- 
cause the box method preserves the frequency content of the so- 
lution across all frequencies, however, it has the disadvantage of 
relatively poor stability in its temporal discretization. In a nonlin- 
ear problem, spurious high-frequency content can cause numeri- 
cal instabilities, and thus, it is desirous that a temporal integration 
scheme should be numerically dissipative at high frequencies. 
Koh et al. (1999) addressed this shortcoming of the box method 
by replacing the box method's temporal integration scheme with 
backward differences. They preserved the box method's straight- 
forward and easy to implement spatial discretization. Backward 
differences have also been used by Chatjigeorgiou and Mavrakos 
(1999) and Chiou and Leonard (1991) in conjunction with spatial 
discretizations based on collocation and direct integration, respec- 
tively. The scheme is only first-order accurate, but is very stable 
because it has strong numerical dissipation at high frequencies. 

Another temporal integration scheme that has been used in 
cable dynamics applications is the generalized trapezoidal rule 
(Sun et al. 1994). This scheme offers controllable numerical dis- 
sipation, but is second-order accurate only in its least dissipative 
form. Thomas (1993) compared three historically popular algo- 
rithms from the structural dynamics community, Newmark, 
Houbolt, and Wilson-0, for use in mooring dynamics problems. 
His conclusion was that Houbolt was the best choice of the three. 
Other authors, however, have noted that Houbolt has an undesir- 
able amount of low-frequency dissipation (Chung and Hulbert 
1994; Hughes 1987). 

Turning to the more recent structural dynamics literature, 
Gobat and Grosenbaugh (2001) proposed replacing the box meth- 
od's temporal integration with the generalized-a method devel- 
oped for the second-order structural dynamics problem by Chung 
and Hulbert (1993). This algorithm has the advantages of control- 
lable numerical dissipation, second-order accuracy, and straight- 
forward adaptation to the first-order nonlinear cable dynamics 
problem. Through appropriate choices of parameters, the method 
can also reproduce the spectral properties of several other algo- 
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rithms including the box method, backward differences, and trap- 
ezoidal rule. This latter property makes it a particularly conve- 
nient choice for the type of comparative study undertaken herein. 

The analyses of the box and generalized-a methods from 
Gobat and Grosenbaugh (2001) are summarized below. The per- 
formance of the new algorithm is studied by comparison to ana- 
lytic and experimental results for the free and forced response of 
the hanging chain. Throughout the analyses, comparisons are also 
made to trapezoidal rule and backward difference solutions. 

Analysis of Box Method 

The governing equations for a cable or chain can be written as a 
system of partial differential equations of the form (Howell 1992) 

dY       dY 
M- + K-+F(Y,,,r) = 0 (1) 

where Y= vector of N-dependent variables, M and K 
= coefficient matrices, and F= force vector. The independent 
variables are s, the Lagrangian coordinate measuring length along 
the unstretched cable, and t, time. Howell and Triantafyllou 
(1993) used the box method to discretize Eq. (1). In the box 
method the discrete equations are written using what look like 
traditional backward differences in both space and time, but be- 
cause the discretization is applied on the half-grid points with 
spatial and temporal averaging of adjacent grid points, the method 
is second-order accurate. The result is a four-point average cen- 
tered around the half-grid point. 

The stability of the box method can be analyzed by consider- 
ing an equivalent linear, single degree-of-freedom system in se- 
midiscrete form. This approach separates the spatial and temporal 
discretizations into distinct procedures. For each of the n -1 spa- 
tial half-grid points between the n nodes a set of N discrete equa- 
tions is assembled. Combining these N(n -1) equations with N 
equations describing the boundary conditions yields the semidis- 
crete equation of motion for all of the dependent variables at all 
of the nodes as (Gobat and Grosenbaugh 2001) 

MY+KY+F=0 (2) 

The tilde over the matrices signifies that these are now dis- 
cretized, assembled quantities. The single degree-of-freedom, lin- 
ear, homogeneous analog of Eq. (2) is 

y + (Dy = 0 (3) 

Applying the box method's temporal discretization to Eq. (3) 
yields 

yi+yi-1 + ia(yi+yi~l) = 0 (4) 

where 

3)' + y'-i = 2 
Ar 

Rearranging Eq. (5) gives the recursion relationships 

y' = 2 
yi-yi-l 

Ar -y'-1 

Ar 
y'yW'+r'i+r1 

(5) 

(6) 

(7) 

Substituting each of the recursion relationships separately into Eq. 
(4), we can write equations for y' and y1 in matrix form as 

2-coAr 
2 + wAr 

-4 
2 + wAr 

-1 
.-,i —1 (8) 

The 2X2 matrix on the right-hand side of Eq. (8) is the am- 
plification matrix. Spectral radius p of this matrix, defined as 

p = max(|X,|,|\2|) (9) 

governs the growth or decay of the solution from one time step to 
the next (Hughes 1987). \12= eigenvalues of the amplification 
matrix. For p=£ 1, the solution will remain steady or decay and is 
said to be stable. For p> 1, the solution will grow and is said to 
be unstable. For the box method, 

2-coAr 
\,=    ,    Aj (10) 2 + wAr 

\2=-l (ID 

and the spectral radius is unity (and the scheme is stable) for all 
values of w and Ar. 

In spite of this unconditional stability, however, the box 
method has three significant problems. The first problem is illus- 
trated by considering the update equation for y' written in the 
form 

y- 
2-wAr 
2 + ioAr 

As (oAf goes to infinity this becomes 

y'=-y' 

(12) 

(13) 

This is the phenomenon known as Crank-Nicholson noise, 
whereby the high-frequency components of the solution oscillate 
with every time step. A second, related, problem is that the spec- 
tral radius is constant at unity. An artifact of the spatial discreti- 
zation process is that at some point the high-frequency (or equiva- 
lently, high-spatial wave-number) components of the solution are 
not well resolved and the numerical solution is inaccurate. For 
this reason it is desirous to have numerical dissipation in a 
scheme such that the spectral radius is less than unity for increas- 
ing values of o) Ar. The box method has no numerical dissipation. 
Finally, Hughes (1977) cites a problem with averaging schemes in 
general as applied to nonlinear problems. For the nonlinear single 
degree-of-freedom case, Eq. (4) can be written as 

y'" + y,'-1 + (üy + (ü,'"V"1 = 0 (14) 

The update equation for y', Eq. (12), becomes 

'2-co'_1Ar\ 
2 + w'Ar 

(15) 

and the stability becomes conditional as parameter o> changes 
with time. The practice suggested by Hughes (1977) for avoiding 
this problem is to use an averaged value of to, i.e., 

f+y i-i + 
w' + w'" 

(y' + y'-I) = 0 (16) 

Generalized-a Method 

Given the stability problems associated with the box method, 
Gobat and Grosenbaugh (2001) proposed replacing the temporal 
integration  with  Chung  and  Hulbert's  (1993)  generalized-a 
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Table 1. Algorithms Included in Generalized-a Method 

Algorithm 

Box method 
Backward differences 
Generalized trapezoidal 
Comwell and Malkus 
WBZ-a 

til] 
l y-a 
2 + a 

a* 1st order problem 

Ablow and Schechter (1983) 
Koh et al. (1999) 
Sun et al. (1994) 

Cornwell and Malkus (1992) 

2nd order problem 

Newmark (1959) 
Hilber et al. (1977) 
Wood et al. (1981) 

method. The generalized-a method is a reasonably complete fam- 
ily of algorithms that is second-order accurate, has controllable 
numerical dissipation, and offers a clear approach to coefficient 
averaging for the nonlinear problem. Following Chung and Hul- 
bert's development of the generalized-a method for second-order 
equations, semidiscrete Eq. (2) becomes 

(l-aJMY' + anM
i-1 + (l-at)KYi + aiKY'-1 

+ (l-ai)F'' + atF'-1 = 0 (17) 

The difference equation is the same as for the generalized trap- 
ezoidal rule (Hughes 1987), 

Y' = Y;-1 + Af[(l--y)Y''-I + 7Y''] (18) 

The three parameter family of algorithms given by Eqs. (17) and 
(18) defines the generalized-a method for the first-order semidis- 
crete problem. The method is second-order accurate if 

«m-at+7=2- (19) 

From the eigenvalues of the amplification matrix, the stability 
requirement is 

:2       7^2 (20) 

Requiring second-order accuracy according to Eq. (19) and forc- 
ing the eigenvalues of the amplification matrix to be equal as 
oi&t—»o° to prevent bifurcation, yields formulas for a* and am as 
a function of X°° only 

X°°-l 

3X°°+1 
:2XC0-2 

(21) 

This yields a second-order accurate algorithm in which the only 
parameter is the eigenvalue (or spectral radius) at infinity. 

Algorithms that can be obtained through various choices of 
ak, a.m, y, and X°° are listed in Table 1. Spectral radii of some of 
these algorithms are shown in Fig. 1. Note that taking X°° 
e[0,l) as the basis for the spectral radius results in a different set 
of algorithms than \" e [ -1,0]. For p°°= 1 the only option is the 
negative eigenvalue and this results in the box method. A nondis- 
sipative algorithm with X°°= +1 cannot be achieved. 

In applying the generalized-a method to the nonlinear problem 

we must choose the time point at which we will evaluate M, K, 

and F. A natural choice, consistent with the practice suggested by 
Hughes (1977) for nonlinear first-order problems and exemplified 
by Eq. (16), is provided by the temporal averaging of terms that is 
already a part of the method. At time step i Eq. (17) becomes 

1.0 

0.9 
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Q. 
0.7 

CO 
3 0.6 
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CO 

o 
© 
Q. 
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Fig. 1. Spectral radii of generalized-a family algorithms 
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(1 - a JM''_a'»Y,'+ amM'-a'"Y'-l + (1 - a^Kr^Y'' 

+ aArK
/-a*Y''-, + (l-at)F + atF"'-1 = 0 

where the averaged coefficient matrices are defined as 

M''-a" = (l-aJMf + amM''_1 

K''-at=(l-ai)K
,' + atK''-1 

(22) 

(23) 

(24) 

This scheme has been implemented in a computer program for 
two- and three-dimensional simulations of cable dynamics (Gobat 
and Grosenbaugh 2000). At each time step, Eq. (22) is solved 
using a Newton-Raphson procedure. The solution from the pre- 
vious time step (or the static solution at the initial time step) 
serves as the initial guess in the nonlinear iterations. Because of 
this, the ultimate success of the solution is dependent on both the 
stability of the time integration and on the ability of the nonlinear 
solver to converge on a solution at time step i given an initial 
guess based on the solution at time step i— 1. To improve conver- 
gence the program implements an adaptive time stepping scheme 
whereby the time step (the distance between the guess at i -1 and 
the solution at i) is reduced by factors of 10 at any spots where 
the solver is not successful. A practical limit of four orders of 
magnitude below the base-line time step is set to prevent the 
solution from proceeding in the face of a physical or numerical 
instability unrelated to the nonlinear solution procedure (e.g., 
Crank-Nicholson noise). 

All of the numerical solutions that follow were obtained using 
this program. Thus, the box method, trapezoidal rule, and back- 
ward difference results, while spectrally equivalent to previous 
implementations, may be more stable than previous solutions be- 
cause of the coefficient averaging scheme in Eq. (22). For clarity, 
spectrally equivalent historical names are retained in discussions 
of comparative algorithm performance that follow. 

Application to Hanging Chain Problem 

The performance of the different algorithms that can be imple- 
mented with the generalized-a family is studied by considering 
the free and forced response of the hanging chain shown in Fig. 2. 
In the free-response problem, we apply a small initial displace- 
ment to the chain and then at time f = 0, release it. The dynamic 
response of the chain for t >0 can be calculated analytically for 
the small motions that result. In the forced response problem we 
impose a sinusoidally varying horizontal displacement to the top 
of the chain and analyze the forced response. This latter problem 
was studied both numerically and experimentally by Howell and 
Triantafyllou (1993). 

Free Response to Initial Displacement 

For small motions and an inextensible chain, the equation of mo- 
tion is 

m 
d 

Is 
dq 

(25) 

where m = mass per length of the chain, q = transverse displace- 
ment of the chain, g = acceleration due to gravity, and 5 
= independent coordinate along the chain with s = 0 at the free 
end. Assuming a harmonic solution of the form 

q(s,t) = q{s)[A coswf+B sin oaf] 

the mode shapes; q(s), are (Triantafyllou et al. 1986) 
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(26) 

Q(0 

Fig. 2. Definitions for hanging chains problems 

q(s) = CiJ0\2a^lS-j+c2Y0\^2<*  yg ■£ (27) 

where J0 and YQ= zero-order Bessel functions of the first and 
second kind, respectively. The requirement that the solution be 
finite at s = 0 leads to the elimination of the Y0 term and the 
requirement that q(L) = 0 leads to the natural frequencies, o>. 
They are given by the roots of 

Jn\ 2<>> 
$- 

(28) 

The complete response is given as the sum of the response in all 
modes: 

q(s,t)=^ J0 2con\/- [Ancoswf + ß„sinw/]     (29) 
n = 1        \ o / 

The coefficients A„ and B„ are determined from the initial 
displacement, q0(s), and velocity, q0(s). Given qQ(s) = 0, we can 
immediately determine that B„ = 0. To determine A„ we first write 

q{sfi)-- = 2 AnJ0 2w„y- =4o(* 0 (30) 

Multiplying both sides by J0(2d>n\[s/g), integrating from s = 0 to 
s = L, and making use of the fact that 

j   Jo\2i*n^
S-jJ0\[2umy]S-jds = 0    fox n^m     (31) 

yields the following equation for A„ : 

j\0(s)J0[2<*nyJ-\ 
An = ; ^— 

ds 

J0\  2lD„ 

(32) 
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