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In the traditional mainframe-centered view of a computer
system, storage devices are coupled to the system through complex
hardware subsystems called 1/0O channels. With the dramatic
shift toward workstation-based computing, and its associated
client/server model of computation, storage facilities are now
found attached to file servers and distributed throughout the
network. In this paper, we discuss the underlying technology trends
that are leading to high-performance network-based storage,
namely advances in networks, storage devices, and I/0 controller
and server architectures. We review several commercial systems
and research prototypes that are leading to a new approach to
high-performance computing based on nenvork-attached storage.

I. INTRODUCTION

The traditional mainframe-centered model of comput-
ing can be characterized by small numbers of large-scale
mainframe computers, with shared storage devices attached
via I/O channel hardware. Today, we are experiencing a
major paradigm shift away from centralized mainframes to
a distributed model of computation based on workstations
and file servers connected via high-performance networks.

What makes this new paradigm possible is the rapid
development and acceptance of the client/server model
of computation. The client/server model is a message-
based protocol in which clicnts make requests of service
providers, which are called servers. Perhaps the most
successful application of this concept is the widespread
use of file servers in networks of computer workstations
and personal computers. Even a high-end workstation
has rather limited capabilities for data storage. A
distinguished machine on the network, customized either
by hardware, software, or both, provides a file service. It
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accepts network messages from client machines containing
open/close/read/write file requests and processes these,
transmitting the requested data back and forth across the
network.

This is in contrast to the pure distributed storage model,
in which the files are dispersed among the storage on work-
stations rather than centralized in a server. The advantages
of a distributed organization are that resources are placed
near where they are needed, leading to better performance,
and that the environment can be more autonomous because
individual machines continue to perform useful work even
in the face of network failures. While this has been the
more popular approach over the last few years, there has
emerged a growing awareness of the advantages of the
centralized view. That is, every user seces the same file
system, independent of the machine they are currently
using. The view of storage is pervasive and transparent.
Further, it is much easier to administer a centralized system,
to provide software updates and archival backups. The re-
sulting organization combines distributed processing power
with a centralized view of storage.

Admittedly, centralized storage also has its weaknesses.
A server or network failure renders the client workstations
unusable and the network represents the critical perfor-
mance bottleneck. A highly tuned remote file system on a
10 megabit (Mbit) per second Ethernet can provide perhaps
500K bytes per second to remote client applications. Sixty
8K byte I/O’s per second would fully utilize this bandwidth.
Obtaining the right balance of workstations to servers
depends on their relative processing power, the amount
of memory dedicated to file caches on workstations and
servers, the available network bandwidth, and the I/O
bandwidth of the server. It is interesting to note that today’s
servers are not I/O limited: the Ethernet bandwidth can be
fully utilized by the /O bandwidth of only two magnetic
disks!

Meanwhile, other technology developments in proces-
sors, networks, and storage systems are affecting the re-
lationship between clients and servers. It is well known
that processor performance, as measured in MIPS ratings,
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is increasing at an astonishing rate, doubling on the order of
once every 18 months to two years. The newest generation
of RISC processors has performance in the 50 to 60 MIPS
range. For example, a recent workstation announced by
the Hewlett-Packard Corporation, the HP 9000/730, has
been rated at 72 SPECMarks (1 SPECMark is roughly the
processing power of a single Digital Equipment Corporation
VAX 11/780 on a particular benchmark set). Powerful
shared memory multiprocessor systems, now available from
companies such as Silicon Graphics and Solborne, provide
well over 100 MIPS performance. One of Amdahl’s famous
laws equated one MIPS of processing power with one
megabit of 1/O per second. Obviously such processing rates
far exceed anything that can be delivered by existing server,
network, or storage architectures.

Unlike processor power, network technology evolves at
a slower rate, but when it advances, it does so in order
of magnitude steps. In the last decade we have advanced
from 3 Mbit/second Ethernet to 10 Mbit/second Ethernet.
We are now on the verge of a new generation of network
technology, based on fiber-optic interconnect, called FDDI.
This technology promises 100 Mbits per second, and at
least initially, it will move the server bottleneck from the
network to the server CPU or its storage system. With
more powerful processors available on the horizon, the
performance challenge is very likely to be in the storage
system, where a typical magnetic disk can service 30 8K
byte I/O’s per second and can sustain a data rate in the range
of 1 to 3 Mbytes per second. And even faster networks and
interconnects, in the gigabit range, are now commercially
available and will become more widespread as their costs
begin to drop [1].

To keep up with the advances in processors and networks,
storage systems are also experiencing rapid improvements.
Magnetic disks have been doubling in storage capacity
once every three years. As disk form factors shrink from
14 inch to 3.5 inch and below, the disks can be made
to spin faster, thus increasing the sequential transfer rate.
Unfortunately, the random I/O rate is improving only very
slowly, owing to mechanically limited positioning delays.
Since I/O and data rates are primarily disk actuator limited,
a new storage system approach called disk arrays addresses
this problem by replacing a small number of large-format
disks by a very large number of small-format disks. Disk
arrays maintain the high capacity of the storage system,
while enormously increasing the system’s disk actuators
and thus the aggregate I/0 and data rate.

The confluence of developments in processors, networks,
and storage offers the possibility of extending the client/
server model so effectively used in workstation environ-
ments to higher performance environments, which inte-
grate supercomputer, near supercomputers, workstations,
and storage services on a very high performance network.
The technology is rapidly reaching the point where it is
possible to think in terms of diskless supercomputers in
much the same way as we think about diskless workstations.
Thus, the network is emerging as the future “backplane”
of high-performance svstems. The challenge is to develon
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the new hardware and software architectures that will be
suitable for this world of network-based storage.

The emphasis of this paper is on the integration of storage
and network services, and the challenges of managing
the complex storage hierarchy of the future: file caches,
on-line disk storage, near-line data libraries, and off-line
archives. We specifically ignore existing mainframe /O
architectures, as these are well described elsewhere (for
example, in [2]). The rest of this paper is organized as
follows. In the next three sections, we will review the recent
advances in interconnect, storage devices, and distributed
software, to better understand the underlying changes in
network, storage, and software technologies. Section V con-
tains detailed case studies of commercially available high-
performance networks, storage servers, and file servers, as
well as a prototype high-performance network-attached /O
controller being developed at the University of California,
Berkeley. Our summary, conclusions, and suggestions for
future research are found in Section VI

II. INTERCONNECT TRENDS

A. Networks, Channels, and Backplanes

Interconnect is a generic term for the “glue” that inter-
faces the components of a computer system. Interconnect
consists of high-speed hardware interfaces and the asso-
ciated logical protocols. The former consists of physical
wires or control registers. The latter may be interpreted
by either hardware or software. From the viewpoint of
the storage system, interconnect can be classified as high-
speed networks, processor-to-storage channels, or system
backplanes that provide ports to a memory system through
direct memory access techniques.

Networks, channels, and backplanes differ in terms of
the interconnection distances they can support, the band-
width and latencies they can achieve, and the fundamental
assumptions about the inherent unreliability of data trans-
mission. While no statement we can make is universally
true, in general, backplanes can be characterized by parallel
wide data paths and centralized arbitration, and are oriented
toward read/write “memory mapped” operations. That is,
access to control registers is treated identically to memory
word access. Networks, on the other hand, provide serial
data, distributed arbitration, and support more message-
oriented protocols. The latter require a more complex
handshake, usually involving the exchange of high-level
request and acknowledgment messages. Channels fall be-
tween the two extremes, consisting of wide data paths
of medium distance and often incorporating simplified
versions of networklike protocols.

These considerations are summarized in Table 1.
Networks typically span more than 1 km, sustain
10 Mbit/second (Ethernet) to 100 Mbit/second (FDDI)
and beyond, experience latencies measured in several
milliseconds (ms), and the network medium itself is
considered to be inherently unreliable. Networks include
extensive data inteeritv features within their protocols.
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Table 1 Comparison of Network, Channel, and Backplane Attributes Application Detailed information about the data being exchanged
Presentation Data representation
Network Channel Backplane T Qedon M of ions b pr
Distance >1000 m 10-100 m 1m Transport Delivery of packet sequences
Network Format of individual packets
Bandwidth 10-100 Mb/s  40-1000 Mb/s 320-1000+ Link Access to and control of transmission medium
Mo Physical Medium of transmission
Latency high (>ms) medium low (<us)
. . . Fig. 1. Seven-layer ISO protocol model. The physical layer
Reliability low medium high describes the actual transmission medium, be it coax cable, fiber
Extensive Byte Parity Byte Parity optics, or a parallel backplane. The link layer describes how
CRC stations gain access to the medium. This layer deals with the

The comparison is based upon the interconnection distance, trans-
mission bandwidth, transmission latency, inherent reliability, and typical
techniques for improving data integrity.

including CRC checksums at the packet and message levels,
and the explicit acknowledgment of received packets.

Channels span small 10’s of meters, transmit at anywhere
from 4.5 Mbytes/second (IBM channel interfaces) to 100
Mbytes/second (HiPPI channels), incur latencies of under
100 ps per transfer, and have medium reliability. Byte
parity at the individual transfer word is usually supported,
although packet-level check-summing might also be sup-
ported.

Backplanes are about 1 m in length, transfer from 40
(VME) to over 100 (FutureBus) MBytes/second, incur sub
us latencies, and the interconnect is considered to be
highly reliable. Backplanes typically support byte parity,
although some backplanes (unfortunately) dispense with
parity altogether.

In the remainder of this section, we will look at each
of the three kinds of interconnect, network, channel, and
backplane, in more detail.

B. Communications Networks and Network Controllers

An excellent overview of networking technology can be
found in [3]. For a futuristic view, see [4] and [5]. The
decade of the 1980’s has seen a slow maturation of network
technology, but the 1990’s promise much more rapid devel-
opments. Today, 10 Mbit/second Ethernets are pervasive,
with many environments advancing to the next generation
of 100 Mbit/second networks based on the FDDI (Fiber
Distributed Data Interface) standard [6]. FDDI provides
higher bandwidth, longer distances, and reduced error rates,
largely because of the introduction of fiber optics for data
transmission. Unfortunately cost, especially for replacing
the existing copper wire network with fiber, coupled with
disappointing transmission latencies, has slowed the accep-
tance of these higher speed networks. The latency problems
have more to do with FDDI’s protocols, which are based on
a token passing arbitration scheme, than anything intrinsic
in fiber-optic technology.

A network system is decomposed into multiple protocol
layers, from the application interface down to the method
of physical communication of bits on the network. Fig-
ure 1 summarizes the popular seven-layer ISO protocol
model. The phvsical and link levels are closelv tied to the
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protocols for arbitrating for and obtaining grant permission to the
media. The network layer defines the format of data packets to
be transmitted over the media, including destination and sender
information as well as any check sums. The transport layer is
responsible for the reliable delivery of packets. The session layer
establishes communication between the sending program and the
receiving program. The presentation layer determines the detailed
formats of the data embedded within packets. The application layer
has the responsibility of understanding how these data should be
interpreted within an applications context.

underlying transport medium, and deal with the physical
attachment to the network and the method of acquiring
access to it. The network, transport, and session levels
focus on the detailed formats of communications packets
and the methods for transmitting them from one program
to another. The presentation and applications layers define
the formats of the data embedded within the packets and
the application-specific semantics of that data.

A number of performance measurements of network
transmission services point out that the significant over-
head is not protocol interpretation (approximately 10% of
instructions are spent in interpreting the network headers).
The culprits are memory system overheads arising from
data movement and operating system overheads related to
context switches and data copying [7]-[10]. We will see
this again and again in the sections to follow.

The network controller is the collection of hardware
and firmware that implements the interface between the
network and the host processor. It is typically implemented
on a small printed circuit board, and contains its own
processor, memory mapped control registers, interface to
the network, and small memory to hold messages being
transmitted and received. The on-board processor, usually
in conjunction with VLSI components within the network
interface, implements the physical and link-level protocols
of the network.

The interaction between the network controller and the
host’s memory is depicted in Fig. 2. Lists of blocks
containing packets to be sent and packets that have been
received are maintained in the host processor’s memory.
The locations of buffers for these blocks are made known
to the network controller, and it will copy packets to and
from the request/receive block areas using direct memory
access (DMA) techniques. This means that the copy of data
across the peripheral bus is under the control of the network
controller, and does not require the intervention of the host

processor. The controller will interrupt the host whenever
a_mescaoe _has heen received or cent
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Fig. 2. Network controller/processor memory interaction. The
figure describes the interaction between the network controller
and the memory of the network node. The controller contains
an on-board microprocessor, various memory-mapped control reg-
isters through which service requests can be made and status
checked, a physical interface to the network media, and a buffer
memory to hold request and receive blocks. These contain network
messages to be transmitted or which have been received respec-
tively. A list of pending requests and messages already received
resides in the host processor’s memory. Direct memory operations
(DMA’s), under the control of the node processor, copy these
blocks 10 and from this memory.

While this presents a particularly clean interface between
the network controller and the operating system, it points
out some of the intrinsic memory system latencies that
reduce network performance. Consider a message that will
be transmitted to the network. First the contents of the
message are created within a user application. A call to the
operating system results in a process switch and a data copy
from the user’s address space to the operating system’s area.
A protocol-specific network header is then appended to the
data to form a packaged network message. This must be
copied one more time, to place the message into a request
block that can be accessed by the network controller. The
final copy is the DMA operation that moves the message
within the request block to memory within the network
controller.

Data integrity is the aspect of system reliability concerned
with the transmission of correct data and the explicit
flagging of incorrect data. An overriding consideration of
network protocols is their concern with reliable transmis-
sion. Because of the distances involved and the complexity
of the transmission path, network transmission is inherently
lossy. The solution is to append check-sum protection bits
to all network packets and to include explicit acknowledg-
ment as part of the network protocols. For example, if the
check sum computed at the receiving end does not match
the transmitted check sum, the receiver sends a negative
acknowledgment to the sender.

C. Channel Architectures

Channels provide the logical and physical pathways
between I/O controllers and storage devices. They are
medium-distance interconnect that carry signals in parallel,
usually with some parity technique to provide data integrity.
ln thls subsecuon, we wnll descnbe three altematlve
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interface), HIPPI (high-performance parallel interface), and
FCS (fibre channel standard).

1) Small Computer System Interface SCSI is the channel
interface most frequently encountered in small form factor
(5.25 in diameter and smaller) disk drives, as well as a
wide variety of peripherals such as tape drives, optical disk
readers, and image scanners. SCSI treats peripheral devices
in a largely device-independent fashion. For example, a disk
drive is viewed as a linear byte stream,; its detailed structure
in terms of sectors, tracks, and cylinders is not visible
through the SCSI interface. A SCSI channel can support
up to eight devices sharing a common bus with an 8-bit-
wide data path. In SCSI terminology, the 1/O controller
counts as one of these devices, and is called the host bus
adapter (HBA). Burst transfers at 4 to 5 Mbytes/s are widely
available today. In SCSI terminology, a device that requests
service from another device is called the master or the
initiator. The device that is providing the service is called
the slave or the target.

SCSI provides a high-level message-based protocol for
communications between initiators and targets. While this
makes it possible to mix widely different kinds on devices
on the same channel, it does lead to relatively high over-
heads. The protocol has been designed to allow initiators
to manage multiple simultaneous operations. Targets are
intelligent in the sense that they explicitly notify the initiator
when they are ready to transmit data or when they need to
throttle a transfer.

It is worthwhile to examine the SCSI protocol in some
detail, to clearly distinguish what it does from the kinds of
messages exchanged on a computer network. The SCSI pro-
tocol proceeds in a series of phases, which we summarize
below:

* Bus Free: No device currently has the bus allocated.

* Arbitration: Initiators arbitrate for access to the bus. A
device's physical address determines its priority.

* Selection: The initiator informs the target that it will
participate in an I/O operation.

* Reselection: The target informs the initiator that an
outstanding operation is to be resumed. For example,
an operation could have been previously suspended
because the 1/0 device had to obtain more data.

* Command: Command bytes are written to the target by
the initiator. The target begins executing the operation.

» Data Transfer: The protocol supports two forms of the
data transfer phase, Data In and Data Out. The former
refers to the movement of data from the target to the
initiator. In the latter, data move from the initiator to
the target.

» Message: The message phase also comes in two forms,
Message In and Message Out. Message In consists of
several alternatives. Identify identifies the reselected
target. Save Data Pointer saves the place in the current
data transfer if the target is about to disconnect. Restore
Data Pointer restores this pointer. Disconnect notifies
the initiator that the targetis about to give up the data

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

‘Command Sety;
Arbitration
Sclection
Message Out (Identify)
Cormmand
[Disconnect to seek/All bufter]
Message In (Disconnect)
-~ Bus Free - - 1f no disconnect is necded
Arbitration
Reselection
Message In (Tdentify)
Data Transfer
Data In
Completion
Disconnect to fill buffer Command Completion
Message In (Save Data Pr) Status
Message In (Disconnect) Message In (Command Complete)
- - Bus Free - -
Arbitration
Reselection
Message In (Identify)
Message In (Restore Data Pir)
-«  J

Fig. 3. SCSI phase transitions on a read. The basic phase se-
quencing for a read (from disk) operation is shown. First the
initiator sets up the read command and sends it to the I/O device.
The target device disconnects from the SCSI bus to perform a seek
and to begin to fill its internal buffer. It then transfers the data to
the initiator. This may be interspersed with additional disconnects,
as the transfer gets ahead of the internal buffering. A command
complete message terminates the operation. This figure is adapted
from [40].

Out has just one form: Identify. This is used to identify
the requesting initiator and its intended target.

« Status: Just before command completion, the target
sends a status message to the initiator.

To better understand the sequencing among the phases,
see Fig. 3. This illustrates the phase transitions for a typical
SCSI read operation. The sequencing of an I/O operation
actually begins when the host’s operating system establishes
data and status blocks within its memory. Next, it issues an
I/0O command to the HBA, passing it pointers to command,
status, and data blocks, as well as the SCSI address of
the target device. These are staged from host memory to
device-specific queues within the HBA’s memory using
direct memory access techniques.

Now the I/O operation can begin in earnest. The HBA
arbitrates for and wins control of the SCSI bus. It then
indicates the target device it wishes to communicate with
during the selection phase. The target responds by iden-
tifying itself during a following message out phase. Now
the actual command, such as “read a sequence of bytes,”
is transmitted to the device.

We assume that the target device is a disk. If the disk
must first seek before it can obtain the requested data,
it will disconnect from the bus. It sends a disconnect
message to the initiator, which in turn gives up the bus.
Note that the HBA can communicate with other devices on
the SCSI channel, initiating additional I/O operations. Now
the device will seek to the appropriate track and will begin
to fill its internal buffer with data. At this point, it needs
to reestablish communications with the HBA. The device
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the reselection phase, and identifies itself to the initiator to
reestablish communications.

The data transfer phase can now begin. Data are
transferred one byte at a time using a simple re-
quest/acknowledgment protocol between the target and the
initiator. This continues until the need for a disconnect
arises again, such as when the target’s buffer is emptied,
or perhaps the command has completed. If it is the first
case, the data pointer must first be saved within the HBA,
so we can restart the transfer at a later time. Once the
data transfer pointer has been saved, the target sequences
through a disconnect, as described above.

When the disk is once again ready to transfer, it rear-
bitrates for the bus and identifies the initiator with which
to reconnect. This is followed by a restore data pointer
message to reestablish the current position within the data
transfer. The data transfer phase can now continue where
it left off.

The command completion phase is entered once the
data transfer is finished. The target device sends a status
message to the initiator, describing any errors that may have
been encountered during the operation. The final command
completion message completes the I/O operation.

The SCSI protocol specification is currently undergoing
a major revision for higher performance. In the so-called
SCSI-1, the basic clock rate on the channel is 10 MHz. In
the new SCSI-2, “fast SCSI” increases the clock rate to 20
MHz, doubling the channel’s bandwidth from 5 Mbyte/s
to 10 Mbyte/s. Recently announced high-performance disk
drives support fast SCSI. The revised specification also
supports an alternative method of doubling the channel
bandwidth, called wide SCSI. This provides a 16-bit data
path on the channel rather than SCSI-1’s 8-bit width. By
combining wide and fast SCSI-2, the channel bandwidth
quadruples to 20 Mbyte/s. Some manufacturers of high-
performance disk controllers have begun to use SCSI-2 to
interface their controllers to a computer host.

2) High-Performance Parallel Interface  The high per-
formance parallel interface, HIPPI, was originally devel-
oped at the Los Alamos National Laboratory in the mid
1980’s as a high-speed unidirectional (simplex) point-to-
point interface between supercomputers [11]. Thus, two-
way communications requires two HIPPI channels, one for
commands and write data (the write channel) and one for
status and read data (the read channel). Data are transmitted
at a nominal rate of 800 Mbit/s (32-bit-wide data path) or
1600 Mbit/s (64-bit-wide data path) in each direction.

The physical interface of the HIPPI channel was stan-
dardized in the late 1980’s. Its data transfer protocol was
designed to be extremely simple and fast. The source of
the transfer must first assert a request signal to gain access
to the channel. A connection signal grants the channel
to the source. However, the source cannot send until the
destination asserts ready. This provides a simple flow
control mechanism.

The minimum unit of data transfer is the burst. A burst
consists of 1 to 256 words (the width is determined by
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