The Fourier Transform and Its Applications

Second Edition

Ronald N. Bracewell

Lewis M. Terman Professor of Electrical Engineering Stanford University

MeGraw-Hill Book Company

New York St. Louis San Francisco Auckland Bogotá Düsseldorf Johannesburg London Madrid Mexico Montreal New Delhi Panama Paris São Paulo Singapore Sydney Tokyo Toronto

A
Practicins tors who Professal formative referenc publicati Requirin mathema duces thi plains it range of chapter: underst: ples of cluding the delt ems. Cr applica concen he or s as sign statisti tures ir plemer pictori forms; crete 1

The Fourier Transform and Its Applications

Copyright (C) 1978, 1965 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

$$
7890 \text { DODO } 83
$$

This book was set in Scotch Roman by Bi-Comp, Incorporated.
The editors were Julienne V. Brown and Michael Gardner;
the production supervisor was Dennis J. Conroy.
The drawings were done by J \& R Services, Inc.
R. R. Donnelley \& Sons Company was printer and binder.

Library of Congress Cataloging in Publication Data
Bracewell, Ronald Newbold, date
The Fourier transform and its applications.
(McGraw-Hill electrical and electronic engineering series)
Includes index.

1. Fourier transformations. 2. Transformations
(Mathematics) 3. Harmonic analysis. I. Title.
$\begin{array}{llll}\text { QA403.5.B7 } & 1978 \quad 515^{\prime} .723 & 77-13376\end{array}$
ISBN 0-07-007013-X

Joseph Fourier, 21 March 1768-16 May 1830. (By permission of the Bibliothèque Municipale de Grenoble.)

The customary formulas exhibiting the reversibility of the Fourier transformation are

$$
\begin{array}{ll}
F(s)=\int_{-\infty}^{\infty} f(x) e^{-i 2 \pi x s} d x & t=X \\
f(x)=\int_{-\infty}^{\infty} F(s) e^{i 2 \pi x s} d s . & f=S
\end{array}
$$

In this form, two successive transformations are made to yield the original function. The second transformation, however, is not exactly the same as the first, and where it is necessary to distinguish between these two sorts of Fourier transform, we shall say that $F(s)$ is the minus- i transform of $f(x)$ and that $f(x)$ is the plus- i transform of $F(s)$.

Writing the two successive transformations as a repeated integral, we obtain the usual statement of Fourier's integral theorem:

$$
f(x)=\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} f(x) e^{-i 2 \pi x s} d x\right] e^{i 2 \pi x s} d s
$$

s is done ct, they ote from
ilas and le notachapter.
eorem insform-
$-x$, the in with. ince the Fourier because s ormaneither,

The conditions under which this is true are given in the next section, but it must be stated at once that where $f(x)$ is discontinuous the left-hand side should be replaced by $\frac{1}{2}[f(x+)+f(x-)]$, that is, by the mean of the unequal limits of $f(x)$ as x is approached from above and below.
The factor 2π appearing in the transform formulas may be lumped with s to yield the following version (system 2):

$$
\begin{aligned}
F(s) & =\int_{-\infty}^{\infty} f(x) e^{-i z s} d x \\
f(x) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(s) e^{i z s} d s
\end{aligned}
$$

And for the sake of symmetry, authors occasionally write (system 3):

$$
\begin{aligned}
& F(s)=\frac{1}{(2 \pi)^{\frac{1}{2}}} \int_{-\infty}^{\infty} f(x) e^{-i x s} d x \\
& f(x)=\frac{1}{(2 \pi)^{\frac{1}{2}}} \int_{-\infty}^{\infty} F(s) e^{i x s} d s
\end{aligned}
$$

All three versions are in common use, but here we shall keep the 2π in the exponent (system 1). If $f(x)$ and $F(s)$ are a transform pair in system 1, then $f(x)$ and $F(s / 2 \pi)$ are a transform pair in system 2 , and $f\left[x /(2 \pi)^{1}\right]$ and $F\left[s /(2 \pi)^{\frac{1}{2}}\right]$ are a transform pair in system 3. An example of a transform pair in each of the three systems follows.

System 1		System 2		System 3	
$f(x)$	$F(s)$	$f(x)$	$F(s)$	$f(x)$	$F(s)$
$e^{-\pi x^{2}}$	$e^{-\pi \varepsilon^{2}}$	$e^{-\pi x^{2}}$	$e^{-s^{2} / 4 \pi}$	$e^{-\frac{1}{4} x^{2}}$	$e^{-\frac{3}{2} s^{2}}$

An excellent notation which may be used as an alternative to $F(s)$ is $f(s)$. Various advantages and disadvantages are found in both notations.

Fig. 18.2 A function of the continuous variable t and one way of representing it by eight sample values.

In what follows, $f(\tau)$ forms the point of departure. It will be noticed that no provision is made for cases where there is no starting point, as with a function such as $\exp \left(-t^{2}\right)$. This is in keeping with the practical character of the discrete transform, which does not contemplate data trains dating back to the indefinitely remote past. A second feature to note is that the finishing point must occur after a finite time. However, it need not come at $\tau=5$ as in Table 18.2; one might choose to let τ run on to 15 and assign values of zero to the extra samples. This is a conscious choice that must always be made. It may be important; for example, Table 18.2 does not convey the information given in the equation preceding it-that following the half-period cosine, the voltage remains zero. The table remains silent on that point, and if it is important, the necessary number of zeros would need to be appended.

By definition, $f(\tau)$ possesses a discrete Fourier transform $F(\nu)$ given by

$$
\begin{equation*}
F(\nu)=N^{-1} \sum_{\tau=0}^{N-1} f(\tau) e^{-i 2 \pi(\nu / N) \tau} \tag{1}
\end{equation*}
$$

The quantity ν / N is analogous to frequency measured in cycles per sampling interval. The correspondence of symbols may be summarized as follows:

	Time	Frequency
Continuous case t f Discrete case τ ν / N		

The symbol ν has been chosen in the discrete case, instead of f, to emphasize that the frequency integer $\dot{\nu}$ is related to frequency but is not the same as frequency f. For example, if the sampling interval is 1 second and there are eight samples $(N=8)$, then the component of frequency f will be found at $\nu=8 f$; conversely, the frequency represented by a frequency integer $\nu=1$ will be $\frac{1}{8}$ hertz.

