=24 CYPRESS

EZ-USB FX
Technical Reference
Manual

EXHIBIT 2032, LG Elecs. v. Cypress Semiconductor
|PR2014-01405, U.S. Pat. 6,493,770

* Cypress Semiconductor ¢ Interface Products Division ¢
» 15050 Avenue of Science ¢ Suite 200 * San Diego, CA 92128 »

Exhibit 2032 - Page 01 of 435

Smith_doug
Text Box
EXHIBIT 2032, LG Elecs. v. Cypress Semiconductor IPR2014-01405, U.S. Pat. 6,493,770

ﬂjﬂl

vﬂ"":r

YPRESS

-
rF__&

S —
i——=
_-

Cypress Disclaimer Agreement

The information in this document is subject to
change without notice and should not be con-
strued as a commitment by Cypress Semicon-
ductor Corporation Incorporated. While
reasonable precautions have been taken,
Cypress Semiconductor Corporation assumes
no responsibility for any errors that may appear
in this document.

No part of this document may be copied or
reproduced in any form or by any means with-
out the prior written consent of Cypress Semi-
conductor Corporation.

Cypress Semiconductor products are not
designed, intended, or authorized for use as
components in systems intended for surgical
implant into the body, or other applications
intended to support or sustain life, or for any
other application in which the failure of the
Cypress Semiconductor product could create a
situation where personal injury or death may
occur. Should Buyer purchase or use Cypress
Semiconductor products for any such unin-
tended or unauthorized application, Buyer shall
indemnify and hold Cypress Semiconductor
and its officers, employees, subsidiaries, affili-

ates and distributors harmless against all
claims, costs, damages, expenses, and rea-
sonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death
associated with such unintended or unautho-
rized use, even if such claim alleges that
Cypress Semiconductor was negligent regard-
ing the design or manufacture of the part.

The acceptance of this document will be con-
strued as an acceptance of the foregoing con-
ditions.

Chapter 16, 17, and 18 of this databook con-
tain copyrighted material that is the property of
Synopsys, Inc., © 1998, ALL RIGHTS
RESERVED.

The EZ-USB FX Technical Reference Manual,
Version 1.2.

Copyright 2000, Cypress Semiconductor Cor-
poration.

All rights reserved.

Exhibit 2032 - Page 02 of 435

Table of Contents

Chapter 1. Introducing EZ-USB FX - - - - - - - = = - = = - - - - - - - - 1-1
1.1 INTFOAUCTION it e s as 11
1.2 EZ-USB FX BIOCK DIQQIamsSccotiiiiiiiiiiiiiiiieiiee et 1-2
1.3 The USB SPeCIfiCAION ..uuiiiiiiiiiiiiiieiie et 1-3
1.4 TOKENS AN PIDS ...ttt e e 1-4
1.5 HOSE IS MASTEN ...eiiiiiiiiiiitie ettt e et e e e 1-5

1.5.1 Receiving Data from the HOSEtcccooiiveeeiiiiiiiiiiieeeee 1-5
1.5.2 Sending Data t0 the HOStuuveeiiiiiiiseiie e 1-6
1.6 USB DIFECTION ..eeiiiieeiiiittiee ettt ettt e e et re e e e e 1-6
L.7 FTAIME Lo ettt aean 1-6
1.8 EZ-USB FX Transfer TYPES ..o 1-6
1.8.1 BUIK TIANSTEIS ..o 1-7
1.8.2 INEEITUPE TIANSTOIS.oveeeieieeeeeee ettt 1-7
1.8.3 1SOCAIONOUS TraNSTEISccooeiiiiieiie e 1-7
1.8.4 CONLrOl TrANSTEIS ...t 1-8
1.9 ENUMEIALION ..oeiiiiiieieiiiitiiie ettt e e e e e e e e 1-8
1,10 TRE USB COF@ .oiiiiiiiiiiitie ettt ettt e e e et ee e e e n e 1-9
1.11 EZ-USB FX MICIOPIOCESSON .uiiiiiiiieiieaaiiitie et ee e et e e e e e s nnnieeeeeaeen e 1-10
1.12 ReNUMETAtiONT™ Lot e et ee e e e e 1-11
1.13 EZ-USB FX ENAPOINTS ...uiiiiiiiiiiiiii ittt 1-11
1.13.1 EZ-USB FX BUlk ENAPOINESoovveeiaiiiiiiiiieieeeeiaaae e 1-12
1.13.2 EZ-USB FX Control Endpoint Zeroccccccuuuiecccciineeiaaeeeeae 1-12
1.13.3 EZ-USB FX Interrupt ENQPOINESccccceeeeeiiiiiiciiiiiae e 1-13
1.13.4 EZ-USB FX Isochronous EnNdpoints............c.cccccccuvccccnnnieiseeeecne. 1-13
O 1 =T U o) £ SRR 1-13
1.15 Reset and Power Managementcooouriiiiiiieieeeeni e 1-14
1,16 SIAVE FIFOS ...ttt ettt e e e 1-14
1.17 GPIF (General Programmable Interface)ccccccoviiviiiieiioniiiiiiiiieeeene 1-14
1.18 EZ-USB FX Product Familycccueviiiiiiiiiiiie e 1-15

Exhibit 2032 - Page 03 of 435

,—:.—Fﬂs__
=9/ CYPRESS

(Table of Contents)

Chapter 2. EZ-USB FX CPU- - - - - - - = = - = = = - = - - - - - - - - - 2-1
2.1 INEFOAUCTION ..ttt e et ee e e e e e 2-1

2.2 8051 ENNANCEMENTSoiiiiiiiiie ettt e e e 2-1

2.3 EZ-USB FX ENhanCementscccuuuiiiiiiiiiiiiie et 2-2

2.4 EZ-USB FX Register INterface ... 2-2

2.5 EZ-USB FX INternal RAM........oooiiiiiiiiieee et 2-3

2.6 11O POTTS it e e 2-3

2.7 INTEITUPES ..ottt e r e e e e e e e e ee e 2-4

2.8 POWET CONTIOI ettt e e e 2-5

2.0 S R S ittt e e 2-5
2.10 INTEINAI BUS ...ttt ettt e e e bbb e e e e e 2-7

2. 0L RSB et e e e e ae e e e aaene 2-7
Chapter 3. EZ-USB FX Memory - - - - - - = = = = = = = = = - - - - - - - 3-1
3.1 INEFOAUCTION .t e e e e e e 3-1

3.2 BOST MEMIOIY ..ttt e 3-2
3.2.1 About 8051 MEMOIY SPACESocevuiiieiiiiieieeeeeeeseeeee e 3-2

3.3 Expanding EZ-USB FX MEMOIYcuuiiiiiiiiiiiiiiiiiie ettt enes 3-4

3.4 CSHaNd OFE# SIgNalSuuuiiiiiiiiiiiiiiiieeeee e 3-5
Chapter 4. EZ-USB FX Input/Output - - - - - = - = = = = - = = = - - - - 4-1
4.1 INTFOTUCTION 1ottt e et e e e e e ee e e e e e 4-1

A VL@ B = o) £SO 4-2

4.3 INput/OULPUL POt REGISTEIS ..ciiiiiiiiiiiiiiee e 4-4

4.4 Port Configuration TableS ... 4-8

4.5 12C-Compatible CONrOlErccocuiiveicieieee et 4-14

4.6 8051 I12C-Compatible CONIOIEr.......c.ceeeeeeeeeeeeece e, 4-14

4.7 CONTIOI BItS ..uuiiiiieittiet e 4-16
4.7.0 START ettt 4-16

B.7.2 STOP ..ot 4-16

4.7.3 LASTRD ..ottt 4-17

4.8 STALUS BitS .o s 4-17
4.8.1 DONE ...ttt 4-17

B.8.2 ACK .o 4-17

4.8.3 BERR. ... 4-17

4.8.4 IDI1, IDO ... 4-18

ii Table of Contents

Exhibit 2032 - Page 04 of 435

ﬁh
=9/ CYPRESS

(Table of Contents)

4.9 Sending 12C-Compatible Dataccccceeeveeerereeeieeeee e, 4-18
4.10 Receiving 12C-Compatible Data..........ccccccueeveeeivieiiieecieiee e 4-18
4.11 12C-Compatible BOOt LOAUENc.ceeveeieeieeeiceeeeiceeeeeeee et 4-19
4.12 SFR AGAIESSING cooeeeieeieeeie e 4-21
4.13 SFR Control of PORTS A-E...oooiiiiiii e 4-25
Chapter 5. EZ-USB FX Enumeration & ReNumeration™ - - - - - - - - - 5-1
5.1 INIrOAUCTION coiiieee e 5-1
5.2 The Default USB DEVICEcouiiiiiiiiiiiieeeee et 5-2
5.3 USB Core Response to EPO Device REQUESTEScoovviiiiiiieiinniiiiiiieeennn 5-3
5.3.1 Port Configuration BiLSccccuuueeiiiiiiiisieieie e 5-4

5.4 FIrMWAre LOAGuuiiiiiiiiiiiiie et 5-5
5.5 ENUMEration MOUESuuviiiiiiiiii e 5-6
5.6 NO Serial EEPROMccooiiiiiiiiiiii et 5-7
5.7 Serial EEPROM Present, First Byte iSOXB4cvvviviiiiieiiiiiiieiieeiieeeieeeee 5-8
5.8 Serial EEPROM Present, First Byte iS OXB6cuuvvvvuiiiiiiiiiiiiiiieiieeeieeaee. 5-9
5.9 Configuration BYTe O......c.euuiiiiiiiiiiiiiiiiee e 5-10
5.10 RENUMETAtIONT™ L..iiiiiiiiiiii et 5-11
5.11 Multiple RENUMEratioN™o 5-13
5.12 Default DESCIIPLOT c.ociiiiiiiiieiie ettt 5-13
Chapter 6. EZ-USB FX Bulk Transfers - - - - - - = = = = = - - - - - - - 6-1
6.1 INTrOAUCTION oo 6-1
6.2 BUIK IN TranSTeIS ..ooiiiiiiiiiiiieiie e 6-4
6.3 INterrupt TranSTerS .o 6-5
6.4 EZ-USB FX BUIK IN EXGMPIE ..ccooiiiiiiiiiiiiiiee e 6-5
6.5 BUIK OUT TranSTersS ..oooiiiiiiiiiiieiie e 6-6
6.6 ENAPOINT PAITING ..eiiiiiiiiiiiiiiiiie e 6-8
6.7 Paired IN ENdPOint STALUSccooiiiiiiiiiiiiiceee e 6-8
6.8 Paired OUT ENdPOint STALUSccooviiiiiiiiiiiee et 6-9
6.9 Reusing Bulk Buffer MEMOIYoocuiiiiiiiii e 6-9
6.10 Data Toggle CONrOl.....ccueiiiiiiiii e 6-10
6.11 Polled Bulk Transfer EXamplecccooiiiiiiiiiiie e 6-11
6.12 ENUMEration NOTE ...ccooiiiiiiiiiii et 6-12
6.13 BUlk ENAPOINt INTEITUPTS ..eeveiieiiiiiiieiieee et 6-13
6.14 Interrupt Bulk Transfer EXamplecccoiiiiiiiiice e 6-14
Table of Contents iii

Exhibit 2032 - Page 05 of 435

,—:.—Fﬂs__
=9/ CYPRESS

(Table of Contents)

6.15 ENUMEration NOTE.......uiiiiiiiiiiiiiieie e 6-19
6.16 The AUTOPOINTEN ...viiiiiiiieiieieeeeee e 6-19
Chapter 7. EZ-USB FX Slave FIFOS- - - - - - - - = - = = - = - - - - - - 7-1
7.1 INEFOAUCTION .ttt e et ee e e e e e 7-1
7.1.1 8051 FIFO ACCESS...ccoeeaiiiiiiieeeeee ettt 7-2

7.1.2 External LOQiC FIFO ACCESSc.couccriiiiiiiieeeeeeee e 7-2

7.1.3 ASEL, BSEL iN 8-Bit MOQEccoooiiiiiiiiieeeee e 7-3

7.1.4 ASEL, BSEL in Double-Byte Mode...........ccccccovveviveiiiiiiiiiiiiiaaaiaaaan, 7-4

7.1.5 FIFO REQISIEIS ...ttt 7-4

7.1.6 FIFO Flags and INEITUPLSccooueeommiiiiiaaeeieiiieeie e 7-5

7.2 Slave FIFO Register DeSCIIPLIONSouiiiiiiiiiiiieieee et 7-6
7.2.1 FIFO A REAU DALQA...........ccscuriiiiiiiiieieee e 7-7

7.2.2 A-IN FIFO BYte COUNL ...ttt 7-8

7.2.3 A-IN FIFO Programmable FIag................cccccouuioiiiieeiaiiiiiiiiieee e 7-9
7.2.3.1 FilliNG FIFO.....oommiiiiiiieieee e 7-10

7.2.3.2 EMPLYING FIFOcccoooiiiieie et 7-10

7.2.3.3 A-IN FIFO Pin Programmable Flagcccccccoouvciunnncccnn.. 7-11

7.2.4 B-IN FIFO REAA DALA ...t 7-13

7.2.5 B-IN FIFO BYte COUNL ...t 7-14

7.2.6 B-IN FIFO Programmable FIag.............cccccccceomiiiciiiieeiiiiiiiiiiieee 7-15
7.2.6.1 FilliNG FIFO.....ooomiiiiiiieeeee et 7-16

7.2.6.2 EMPLYING FIFOccooiiieeie et 7-16

7.2.7 B-IN FIFO Pin Programmable Flag..............ccccccccoouuciimmmieiiniicinnn. 7-17

7.2.8 Input FIFOs A/B Toggle CTL and FIagscccovueeeeiiiicccnnnnnannn.. 7-18

7.2.9 Input FIFOs A/B Interrupt ENADIEScovviiiiiiiiriiiiiieie 7-20
7.2.10 Input FIFOs A/B Interrupt REQUESLSccoovvcuuieeeeeeiiiiirnnieaeenn 7-22
7.2.11 FIFO AWIE DALA ..ot 7-24
7.2.11.1 A-OUT FIFO Byte COUNLcccoosisiiveieaaaaeesiiiaeeae e 7-25

7.2.12 A-OUT FIFO Programmable Flag..............ccccccveevveeiiiiiiiiiiieiieee, 7-26
7.2.12.1 FilliNG FIFO......occoiiiiieeiee et 7-27

7.2.12.2 EMPLYING FIFO ...t 7-27

7.2.13 A-OUT FIFO Pin Programmable Flag................ccceceveeesciesicsninnnnn. 7-28
7.2.14 B-OUT FIFO WIIt€ DAtocccuiiiiiiiieiiieeeeeesee e 7-30
7.2.15 B-OUT FIFO BYte COUNLovveiiieieiieeeie et 7-31
7.2.16 B-OUT FIFO Programmable Flag..............cccccccvevveiiiiiiiiiiiiiieeann, 7-32
7.2.16.1 FilliNG FIFO......occcoiiiiiiiie et 7-33

7.2.16.2 EMPLYING FIFO ...t 7-33

Table of Contents

Exhibit 2032 - Page 06 of 435

,—:.—Fﬂs__
=9/ CYPRESS

(Table of Contents)

7.2.17 B-OUT FIFO Pin Programmable FIagccouccmvreeenanaenne. 7-34
7.2.18 Output FIFOs A/B Toggle CTL and FIagsccccoveeeeeeeeennne. 7-35
7.2.19 Output FIFOs A/B Interrupt Enables..................ccoccccvminiviiinienne, 7-37
7.2.20 Output FIFOs A/B Interrupt RE@QUESTS.............ccceeiiicrniiaiiaaaanne 7-39
7.2.21 FIFO A/B SEUUP ...ttt 7-40
7.2.22 FIFO A/B Control Signal PoIarities.................ccccccouucmnneeenasaenne. 7-43
7.2.23 FIFO FIAQ RESEL.........eveeeeeeeeieeeeee et 7-44

7.3 FIFO TIMINQ oottt e et e e ees 7-45
Chapter 8. General Programmable Interface (GPIF) - - - - - - - - - - - 8-1
8.1 WAL IS GPIF? .ot 8-1
8.2 Applicable Documents and TOOISccccouuiiimiiiiiiieiiieiiei e 8-2
8.3 Typical GPIF INtErfaCeueiiiiiiiiiiiie s 8-3
8.4 External GPIF CONNECTIONScoiiiiiiiiiiiieeiee et 8-4
8.4.1 The External GPIF INterfacecccccoouiiieeiiiiieiiiiieeee e 8-4
8.4.2 Connecting GPIF Signal Pins to Hardware.................cccccoceeiiivccnnnc... 8-5
8.4.3 Example GPIF Hardware INtercoONNECtcccccovecrmnneeesiiaciinen 8-5

8.5 Internal GPIF OPErationeueiiiiiiiiiiiiiee et 8-6
8.5.1 The Internal GPIF ENQGINEc.cuuveeiiiiiiiseeeie e 8-6
8.5.2 Global GPIF CONfIGQUIALIONccccuueeeiieiiesisiiee e 8-6
8.5.2.1 Data BUS WILR..............cccuummmiiiiiiiiiieiie e 8-6

8.5.2.2 Control Output MOGESccccoiiieiiiiiiieeieiesiie e 8-6

8.5.2.3 Synchronous/Asynchronous Mode.................ccccovviiiiiivcccnnnne.. 8-7

8.5.3 Programming GPIF WaVEfOIMS.............cccovcoueeeieiiiiiiiiieeieeeei 8-7
8.5.3.1 The GPIF IDLE State..........cccouuiieiiiiiiiiiiiieeeeeeaa e 8-8

8.5.3.2 Defining INtervals.............cccooiiiiiiiiiiiiiiiiieeieeesee e 8-10

8.5.3.3 Interval Waveform DesSCriptorccccceuieieaiiciiiieeieeeen 8-14

8.5.3.4 Physical Structure of the Waveform Memories........................ 8-18

8.5.4 Starting GPIF Waveform Transactionscccouuceueeeeeeessssccinnne. 8-20
8.5.4.1 Performing a Single Read Transaction..................cccccc..cccceuve. 8-20

8.5.4.2 Performing a Single Write TranSaction...............ccccoccccceeeeune. 8-22

8.5.5 GPIF FIFO TranSacClONSccccuuuieeieeeeeessieeeee e 8-22
8.5.5.1 The GPIF_PF FIAQcccuriieiieieeeeeeee e 8-22

8.5.5.2 Performing a FIFO Read Transactionc.ccceceeveevieeennnns 8-23

8.5.5.3 Performing a FIFO Write TranSaction..............ccccceeeeeecsnnnnnnns 8-23

8.5.5.4 Burst FIFO TranSactionscccuuceeeeeeeasaaiinnnneeaeeseinnnn 8-24

8.5.5.5 Waveform SelecCtorcccoouuiiioeeeiiiiiiiceeeeee e 8-25

8.5.6 Data/Trigger REQISIEISouweueeeiieiieeiiieeeeeeeeee e, 8-26

Table of Contents v

Exhibit 2032 - Page 07 of 435

,—:.—Fﬂs__
=9/ CYPRESS

(Table of Contents)

8.5.7 FIFO Operation Trigger REQISLEIScccuueeeeeeeiiiiiiiiaaaaeeeiii 8-28
8.5.8 Transaction CoUNt REQISIEISccoueeeiiieeiaeeaaiasiiie e 8-29
8.5.9 READY REQUSLEN ...t 8-30
8.5.10 CTLOUTCFG REQISHEN ...t 8-31
8.5.11 IDLE Stat€ REQISIEISccoi et 8-32
8.5.12 Address RegiSter GPIFADRLcccccccooeeiiiiiiiiiiiiieaieeeii 8-34
8.5.13 GPIF_ABORT REQISIEN ...t 8-35
Chapter 9. EZ-USB FX Endpoint Zero - - - - - - - = = - - = - - - - - - 9-1
9.1 INTFOAUCTION ..ttt e e e e e en e 9-1
9.2 Control ENAPOINT EPO.......ooiiiiiiiiiiiiie ettt e e 9-2
9.3 USB REQUESTS ...oeiiieiee ettt er e e 9-5
9.3.1 GO STALUS. ..ottt 9-6
9.3.2 SO FQALUIE......cccoeeeeees et 9-10
9.3.3 Clear FEAUIE ...t 9-12
9.3.4 GEt DESCIIPION ... 9-12
9.3.4.1 Get DeSCIIPLOr-DEVICE.............cccoeuiiieeeiiieeeseeee e 9-14

9.3.4.2 Get Descriptor-Configurationccccccoeeeeeenssscennneaaen. 9-15

9.3.4.3 Get DEeSCIIPLOr-SIIINGoovveeieiiiiiiieiieeeeeeesie e 9-15

9.3.5 S€LDESCIIPLON ...t 9-16
9.3.5.1 Set ConfiQUIAtionccccueeeeeiimeeiiiiieeeseeee e 9-19

9.3.6 Get CONFIGQUIALIONcceeeiiiiiiieiiie et 9-19
9.3.7 SELINIEITACE ... 9-20

9.3.8 GEeLINMEITACE..........cce e 9-21

9.3.9 SEEAUAIESS ...t 9-21
9.3.10 SYNC FrAmecooeeeeeeeeeeee et et aanas 9-22
9.3.11 Firmware LOAJ...............cccuuiioooriiiiiiiei et 9-23
Chapter 10. EZ-USB FX Isochronous Transfers - - - - - - - - - - - - 10-1
101 INTFOAUCTION 1ottt et e e e bbb ee e e e e e 10-1
10.2 1S0chronous IN TranSferscuuuiiiii i 10-2
J0.2.1 INHANZALON ...t 10-2
10.2.2 IN Data Transfers ..o, 10-3

10.3 1S0Cchronous OUT TranSTersS ... 10-3
10.3.1 INHANZALON ...t 10-4
10.3.2 OUT Data TranSTeruuuwiuiiieiiiiiiiiiiiiiiiiiieei e, 10-4

10.4 Setting 1ISOChronN0ouUS FIFO SiZeS.........oooiiiiiiiiiiiiiiie e 10-5

vi

Table of Contents

Exhibit 2032 - Page 08 of 435

ﬁh
=9/ CYPRESS

(Table of Contents)

10.5 Isochronous Transfer SPeed ... 10-7
10.6 Other ISOChronouUS REQISTEIS.......ccvviiiiiiiiiiiiiii e, 10-9
10.6.1 DiSADIE ISOcccoiiiieeiee e 10-9
10.6.2 Zero Byte COUNE BILSccceeeoiiiiiieiiiieeeee e 10-10

10.7 1SO IN Response With NO Dataccceeriiimimiiiiiiniiiiiieeeee e 10-10
10.8 ReStNCIONS NEAr SOFoiiiiiiiiiiiiiiiieeeee e 10-11
Chapter 11. EZ-USB FX DMA System - - - - - - = = - - - - - - - - - - 11-1
12,2 INTFOAUCTION Lottt e e et re e e e e 111
11.2 DMA Register DeSCIIPLIONS ...oiiuiiiiiiiiiee ettt 11-2
11.2.1 Source, Destination, Transfer Length Address Registers............... 11-2
11.2.2 DMA Start and Status ReQGISIENcccovcuueeeeeeiiiiiiiiiaaaeeeeie 11-6
11.2.3 DMA Synchronous Burst Enables ReQISterccccovvvueeeeeeeenne. 11-6
11.2.4 DUMMY REQGISTEN ...t 11-9

11.3 External DMA Transfers - Strobes ... 11-10
11.3.1 Selection of RD/FRD and WR/FWR DMA Strobes 11-10

11.4 Interaction of DMA Strobe Waveforms and Stretch Bits..................... 11-10
11.4.1 DMA EXEEINaAl WITLESooeeeiiieieeiie et 11-11
11.4.2 DMA EXternal REAUS.cccovuuueeeiiiiiiiiiiiaeie e 11-12
11.4.2.1 MOAES O @NG 1 ..o 11-13

11.4.2.2 MOAES 2 @NA 3 ..o 11-13

Chapter 12. EZ-USB FX Interrupts - - - - - - = = = = = - = = - - - - - 12-1
12,21 INTFOAUCTION ..ottt e et e e e e 12-1
12.2 USB COre INEITUPTS ..coiiieiiii et 12-2
12.3 RESUME INTEITUPT «oeeeeiiie et e e 12-2
12.4 USB Signaling INterrupts ...cccoiiiiiiiiiiiiiii it 12-2
12.5 SUTOK, SUDAYV INTEITUPTS .oieniiiiiei e 12-7
12.6 SOF INTEITUPT .. e e e e arenees 12-7
12.7 SUSPENT INTEITUPT ottt e e e 12-8
12.8 USB RESET INTEITUPT ...cviiiiiie et 12-8
12.9 Bulk ENAPOint INTEITUPTS ..oeeiiiiieiiieiiece et 12-8
12.10 USB AULOVECTOIS...ciiiiiiiiiiiiei ettt ee e e 12-8
12.11 AULOVECTOT COAIMNQ .uiiiiiiiiieiiiiiiiiie et 12-10
12.12 12C-Compatible INTErTUPT.....cocveviieeieeeee et 12-12
12.13 In BUIK NAK INTEITUPT...oiiiiiiiiiiiiiieee et 12-12
Table of Contents vii

Exhibit 2032 - Page 09 of 435

ﬁh
=9/ CYPRESS

(Table of Contents)

12.14 1°C-Compatible STOP Complete INterruptcccooveveveeveecerieceeeenenne 12-13
12.15 Slave FIFO INterrupt (INTA) ..o, 12-15
Chapter 13. EZ-USB FXResets - - - - - - - - - = = = = - - - - - - - - 13-1
131 INEFOAUCTION ettt e e e e e e e 13-1
13.2 EZ-USB FX Power-On Reset (POR).....coooovviiiiiiii i 13-1
13.3 Releasing the 8051 RESEL.......cuuviiiiiiiiiiiiiie e 13-3
13.3.1 RAM DOWRNIOAQ............cccooiiiaiiiiiiiie e 13-4

13.3.2 EEPROM LOAQooveiiiiiiieieiieee et 13-4

13.3.3 EXtErnal ROMoooiiiiiiiiieeeee et 13-4

13.4 8051 RESEL EffECTS c.uuiiiiiiiiiiiiiiiieiie et 13-4
13.5 USB BUS RESEL...oiiiiiiiiiiiiiiii e 13-5
13.6 EZ-USB FX DISCONMECT «.eceeiiiitiiiiie ettt 13-7
13.7 RESEE SUMMAIY ...uiiiiiieiiiiiiei et e 13-8
Chapter 14. EZ-USB FX Power Management - - - - - - - - - - - - - - 14-1
141 INEFOAUCTION L.ttt e e ettt re e e e e aee 14-1
L14.2 SUSPENT ..ottt 14-2
T14.3 RESUIME ...ttt ettt et e n e e e e e e 14-3
14.4 REMOLE WaAKEUPeiiiiiiiiieee ettt e e 14-5
Chapter 15. EZ-USB FX Registers - - - - - - = = = = - - = - - - - - - 15-1
151 INTFOAUCTION ceuiiiiiee ittt e e et ee e e e e e 15-1
15.1.1 Example RegiSter FOIMALScccouuiiiiuiriieaaiiiiaiiieeaae e 15-1

15.1.2 Other CONVENHONScccceiiiiiiieeiie et 15-2

15.2 Slave FIFO REQISTEIS ...oeiiiiiiiiiiiieiiie ettt 15-3
15.2.1 FIFO A REAUA DALAcccceiiiiiiiiiiiiee et 15-3

15.2.2 A-IN FIFO BYt€ COUNL ...t 15-3

15.2.3 A-IN FIFO Programmable FIagccccoieiiiiiiciiiiiiiiieeeiiin 15-4

15.2.4 A-IN FIFO Pin Programmable FIag............ccccccccouieiiiiniiiieiaeainne. 15-4

15.2.5 B-IN FIFO REAA DALAcosseeiieeeiassiieaeeee e 15-5

15.2.6 B-IN FIFO BYt€ COUNL ...t 15-5

15.2.7 B-IN FIFO Programmable FIagccccovoeiiiiiiceiiiiiiiieeaeeiiin 15-6

15.2.8 B-IN FIFO Pin Programmable FIag............cccccccccuuvioiiimiiiiaiancinne. 15-6

15.2.9 Input FIFOs A/B Toggle CTL and FIagsccccoovuieeieieeeacinnne. 15-7

15.2.10 Input FIFOs A/B Interrupt Enablesccccocoviiniiiieiieiinne, 15-7

15.2.11 Input FIFOs A/B Interrupt REQUESTSccoceeeiiiicinrniiiieeaiiine 15-7

viii Table of Contents

Exhibit 2032 - Page 10 of 435

ﬁh
=9/ CYPRESS

(Table of Contents)

15.2.12 FIFO A W€ DALA.cccceiiiiiiiieeeeeeeeee e 15-8
15.2.13 A-OUT FIFO BYte COUNL ... 15-8
15.2.14 A-OUT FIFO Programmable FIagcccccccooumucuueenneiisanicnnn. 15-9
15.2.15 A-OUT FIFO Pin Programmable FIagccccccovveeeiininsccnne. 15-9
15.2.16 B-OUT FIFO WIit€ DaAl@...........c..uvvviiiiiiiiiiieeieeeeeee e 15-10
15.2.17 B-OUT FIFO BYte COUNL ... 15-10
15.2.18 B-OUT FIFO Programmable FIagcccccoeeeiimiiioiinieiniiae, 15-11
15.2.19 B-OUT FIFO Pin Programmable Flagc.cccccovuueeeiiiennann. 15-11
15.2.20 Output FIFOs A/B Toggle CTL and FIags.............ccccocueeeiieeeennn. 15-12
15.2.21 Output FIFOs A/B Interrupt Enablesccccccoovvviieeeeiecnnnnn. 15-12
15.2.22 Output FIFOs A/B Interrupt REQUESLScccccvieeeiiiieiiaeeeaaa, 15-12
15.2.23 FIFO A/B SEUUP ...t 15-13
15.2.24 FIFO A/B Control Signal POIArTties.............cccoccceuieeeiciiieeiaieee, 15-13
15.2.25 FIFO FIAQ RESEL........eeeeeeeeeeeeeeeee et 15-14

15.3 Waveform SelECTOr........ui s 15-14
15.4 GPIF Done, GPIF IDLE Drive MOAeccouiiiiiiiieiiiiiiiiiee e 15-15
15.5 INACtiVe BUS, CTL STAES ...uiieeiiii it e e s 15-15
15.6 GPIF AAreSS LSBiiiiiiiiiiiiiiitt ettt 15-16
15.7 FIFO A IN TranSaction COUNTuviiiiiiiiiiiiiiice et 15-16
15.8 FIFO A OUT Transaction COUNTcceuiiiiiiiiiiiiieeenne e 15-17
15.9 FIFO A Transaction TrigOer.....cccuuuiiiiiiieeiiiiiieee e 15-17
15.10 FIFO B IN Transaction COUNTcoiiiiiiiiiiiiiiiie et 15-18
15.11 FIFO B OUT Transaction COUNtccooiiiiiiiiiiieinieiiiiiie e 15-18
15.12 FIFO B Transaction TrigOer.....ccccuuiiiieeeaiiiiieeiie et 15-19
15.13 GPIF Data H (16-bit mode ONlY) ... 15-19
15.14 Read or Write GPIF Data L and Trigger Read Transaction 15-19
15.15 Read GPIF Data L, No Read Transaction Trigger......cccccccouvvvvvrrneeeenn. 15-20
15.16 Internal READY, Sync/Async, READY Pin Statesccccocvvvvneeennn. 15-20
15.17 ADOIt GPIF CYCIES ...t 15-20
15.18 General Purpose I/F Interrupt Enable.........ccccccoooiiiiiiiiiiiiiiiecn 15-21
15.19 Generic INterrupt REQUESTuuiiiiiiieieeiieee s 15-21
15.20 Input/Output Port Registers D and E..........cccceeeviiiiiiiiiiiiiiieeeeen 15-22
15.20.1 POIt D OUIPULS ... 15-22
15.20.2 INPUL POIt D PINS ...t 15-22
15.20.3 Port D Output EN@DIE..............cccuiiieiiiiiieeeee e 15-22
15.20.4 POIt E OUIPULS........oeeeeeeeeeeeeee e 15-23

Table of Contents ix

Exhibit 2032 - Page 11 of 435

,—:.—Fﬂs__
=9/ CYPRESS

(Table of Contents)

15.20.5 INPUL POIT E PINS.....oooiiiiiiiiiieeeee ettt 15-23
15.20.6 Port E Output Enable................c.cccooeeemiiiiiiiiiiiiiiiiiieeeee 15-23
15.21 PORTSETUP ..ottt 15-24
15.22 Interface ConfiguIationcoooviiiiiiieiiie e 15-24
15.23 PORTA and PORTC Alternate Configurationsccccoeevvvveeeeeeennnne 15-27
15.23.1 Port A Alternate Configuration #2.............cccccccuiueeemvneeeeeseeeennn, 15-27
15.23.2 Port C Alternate Configuration #2ccccccuuuceemvneeeeesenessnnnn, 15-28
15.24 DMA REQISTEIS ...iiiiiiiiiiieee ettt ettt e e bbb a e e 15-31
15.24.1 Source, Destination, Transfer Length Address Registers........... 15-31
15.24.2 DMA Start and Status REQISIErcccueeeeeeeiiiiciiiiiiiiieeeii 15-32
15.24.3 DMA Synchronous Burst Enables Register...................c..c........ 15-33
15.24.4 Select 8051 A/D busses as External FIFO............c..ccccccccceveunn. 15-33
15.25 Slave FIFO INterrupt (INT4) ..o 15-34
15.25.1 Interrupt 4 AULOVECTONceeeieeeeeeieiiteeee e 15-34
15.25.2 Interrupt 4 AULOVECTONceeeeeeeeeiieiiteeee e 15-34
15.26 Waveform DeSCIIPLOIS ..ooiiiiiiiiieiee ettt 15-35
15.27 Bulk Data BUFfEIS.......oeiiiiiiiiiieee e 15-35
15.28 1sochronous Data FIFOScooiiiiiiiiiiiiiiiee et 15-37
15.29 1S0Chronous BYTE COUNTSuuiiiiiiiiiiiiiiiiiie et 15-39
15.30 CPU REQISTEIS ...ttt e e e 15-41
15.31 POrt CoNfiQUIAtiONcciviiiiiiiiiiiiiie et 15-42
15.32 Input/Output Port REQISters A - Cooceiiiiiiiiiiiiiie e 15-44
I5.32.1 OUIDULS ...ttt e e 15-44
15.32.2 PUNS ..o 15-45
15.32.3 Output ENADIEScooveeieiiiiieeeeeee e 15-46
15.33 Isochronous Control/Status RegiStersccovcuviiiiiiiiiiiiiiiiieeee e 15-47
15.34 1°C-Compatible REGISTErScoveveieceecieeceeeeeee e 15-48
15.35 INTEITUPLS ettt e e e e e e s 15-51
15.36 Endpoint 0 Control and Status RegiSters.........ccccvvvvviiiiiiiiiiieieeeeene 15-58
15.37 Endpoint 1-7 Control and Status RegiStersccccccevviiiiiiiiieeeeennne 15-60
15.38 Global USB REQISIEIScciiiiiiiiiiiiit ettt 15-65
15.39 FaSt TranSTerS ..o 15-71
15.39.1 AUTOPTRH/L ... 15-73
15.39.2 AUTODATA ...t 15-73
15.40 SETUP D@8 ..cccciiiuiiiiiiiiiee ettt ettt n e e e e 15-74
X Table of Contents

Exhibit 2032 - Page 12 of 435

,—:.—Fﬂs__
=9/ CYPRESS

(Table of Contents)

15.41 1SOChronOUS FIFO SIZESooicuiiiiiiiiieee e 15-74
Chapter 16. 8051 Introduction- - - - - - - - = = = - - = - - - - - - - - 16-1
16.1 INTrOAUCTION L.eeiiiiiiie ittt e e et ee e e e 16-1

16.2 8051 FEALUIESuieieeieieeeee et 16-2

16.3 PerformanCe OVEIVIEWcooiiuiiiiiiiiiiiiiiiiie ettt e e 16-2
16.4 Software CompatiDility ..o 16-4
16.5 803x/805x Feature COMPAriSONcciiiiiiiiiiiieee ettt e e e e e e e 16-4
16.6 8051 Core/DS80C320 DifferenCeSccovviiiiiiiiiiiie e 16-5
16.6.1 SeIIAl POITS........oooieeieeeeeee et 16-5

JB.6.2 TIMEE 2.ttt 16-5

16.6.3 Timed ACCESS PIOtECHONc.ccccuueeeiiiiiiiiiiieaae e 16-5

16.6.4 WaAtChAOG TIMEI ... 16-5

Chapter 17. 8051 Architectural Overview - - - - - - = - - = = - - - - - 17-1
17.0 INTrOAUCTION ..ottt e et e e e e 17-1
17.1.1 Memory OrganiZAtON.............cccuuuueeeeeeaiiaiiieeeieee et 17-1

17.1.1.1 REQUSLEIS ..ot 17-1

17.1.1.2 Program MEMOIYcccuummmumuieaeieeeeeiieeces e 17-3

17.1.1.3 DAta MEMOIYcoveviieseseeieeeeee e 17-3

17.1.1.4 EZ-USB FX Program/Data MEemoOryc..ccccvvueieeeenennnnne. 17-3

17.1.1.5 Accessing Data MEeMOIY.............cccovcueeeeiieasiiiiiiieaaae e 17-3

17.2.2 INSHUCHON S@L ... 17-4

17.1.3 INSHUCHON TIMUNG ... 17-8

17.2.4 CPU TIMUNG ...cviiiiiiiiaeeeeee ettt 17-9

17.1.5 Stretch Memory Cycles (Wait States)cccceeeeeecccciniiiieeeeeie 17-9

17.1.6 Dual DAta POINTEIScouuiiaiiiiieiii et 17-10

17.1.7 Special FUNCtion REQGISIEIScuuiiiiiiiiiiriiiiaaie e 17-11

Chapter 18. 8051 Hardware Description - - - - - - = - = - - - - - - - 18-1
18,1 INTrOAUCTION L.ttt e et e e e e e 18-1
18.2 TimMErS/COUNTEIS ...uiuiiiiiiiiiiiie ettt ettt ettt e e e e e e e e e eaeeaaeens 18-1
18.2.1 803x/805x COMPALIDIlILY ... 18-2

18.2.2 TiMErs O @nd 1ccuvvviiiiieieeeeeee e 18-2

18.2.2.1 MOGE O......oooeee e 18-2

18.2.2.2 MOGE L. 18-3

18.2.2.3 MOGE 2. 18-5

18.2.2.4 MOGE 3. 18-6

Table of Contents Xi

Exhibit 2032 - Page 13 of 435

,—:.—Fﬂs__
=9/ CYPRESS

(Table of Contents)

18.2.3 Timer Rate CONIIOcoovuuueeeieiiiiiiiie e 18-7
18.2.4 TIMEE 2 ...t 18-8
18.2.4.1 Timer 2 Mode CONLIOlccccueeeeieiiiiiiiiiieeeeeeeiaaeen 18-9

18.2.5 16-Bit Timer/Counter MOAEccoovcuueeeeeiaiiiiiiiiiiiaaaeeeii 18-9
18.2.5.1 6-Bit Timer/Counter Mode with Capture.................cccceoo..... 18-10

18.2.6 16-Bit Timer/Counter Mode with Auto-Reload.............................. 18-11
18.2.7 Baud Rate Generator MOdecccovoemieeeiiiiciiiiiiiiieeeii 18-12

18.3 Serial INterfacCe ... 18-13
18.3.1 803x/805x Compatibilityceueeeimeiiiiiieieeeesiiiiia e 18-14
18.3.2 MOCE ... 18-14
18.3.3 MOUE 1 ... 18-19
18.3.3.1 Mode 1 Baud RALEccceeeeiiiiiieieeaiiisiiieee e 18-19

18.3.3.2 MOdE 1 TranSIMULovuuuiiaiieiiiiieieie e 18-21

18.3.4 MOAE 1 RECEIVE ... 18-21
18.3.5 MOUE 2. 18-23
18.3.5.1 Mode 2 TranSmitccuueeieeiiiiiieiiee e 18-23

18.3.5.2 MOAE 2 RECEIVE ... 18-24

18.3.6 MOUE 3.t 18-25
18.3.7 Multiprocessor COmMmMUNICALIONS.............c...ceeeeeeiiisirniniaeaeeeeiin 18-27
18.3.8 INtEITUPL SFRS ... 18-27

18.4 INtErTUPL PrOCESSING ..uuiiiiiiiiiiiiiiiie ettt ee e e 18-30
18.4.1 INterrupt MASKINGooeeuiiiiiiiieeiie et 18-31
18.4.1.1 INterrupt PriOIIESvveeeeieieeeiieeiee e 18-31

18.4.2 Interrupt SAMPIINGccooiiiiiiiiiiiie e 18-32
18.4.3 INterrupt LALENCYc.ovveaeeeeeeeieeee e 18-33
18.4.4 Single-Step OPErationcccovuuueieeeeiiiiieeeeeeeeesiiia e 18-33

18,5 RESEL ittt e e 18-33
18.6 POWEr SAVING MOUESoooiiiiiiiiiiiiiiee et 18-34
18.6.1 1dIE MOQE ... 18-34
EZ-USB FX Register SUMMAIYcccccoeeeiuuuuiiiiieeieiiiiieaaaaeeeeiaaaae RegSum -1
Xii Table of Contents

Exhibit 2032 - Page 14 of 435

List of Figures

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 1-7.
Figure 1-8.
Figure 2-1.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.

Figure 4-10.
Figure 4-11.
Figure 4-12.
Figure 4-13.
Figure 4-14.

Figure 5-1.
Figure 5-2.
Figure 5-3.

CY7C646x3-80NC (80 pin) Simplified Block Diagramccccceeieiiieeernnnn. 1-2
CY7C646x3-128NC (128 pin) Simplified Block Diagramccccovcvieeennnnnnn. 1-3
USB PACKELS ..ttt et 1-4
Two Bulk Transfers, IN and OUToooiiiiiiiiiiie e 1-7
AN INLEITUPE TFANSTEE .o 1-7
AN 1SOChIONOUS TraNSTEI ...eoiiiiiiiie e 1-7
A CONLIOl TFANSTEE ..eiiiiiiieie s 1-8
WhaL the SIE DOES ..ottt ettt e 1-9
8051 REGISIEIS ..ottt ettt ettt ettt e e b e e s 2-3
EZ-USB FX 8-KB Memory Map - Addresses are in Hexadecimal 3-1
EZ-USB FX 4-KB Memory Map - Addresses are in Hexadecimal 3-2
Unused Bulk Endpoint Buffers (Shaded) Used as Data Memorycc.e.... 3-3
EZ-USB FX Memory Map With EA=Oooiiiiiiiiie e 3-4
EZ-USB FX Memory Map With EA=L ... 3-6
EZ-USB FX INpU/OULPUL PIN oottt 4-2
Alternate FUNction is an OUTPUTcooiiiiiiiiiiiiiiee et 4-3
Alternate Function is an INPUT ... 4-3
Output Port Configuration REJISTEISccooiiiiiiiiiiiiiiee e 4-5
PINSN REQISTEISeiiiiiiiiiiiiii ittt n e aenne e 4-6
Output Enable REQISTEISveeiiiiiiiiiee ittt 4-7
General 12C-Compatible Transfer ..o 4-14
Addressing an 12C-compatible Peripheralcccccooiiiiiiiii e, 4-15
[2C-compatible REQISEISc.uviiiiiiiiiiii et 4-16
EZ-USB FX Method, Sample COE ..ot 4-23
SFR Method, SAMPIE COUEcooiiiiiiiiiiii e 4-24
EZ-USB FX /O STTUCLUIE ...oiiiiiiiiiiiiieeit sttt 4-25
Use MOVX to Set PAO, SAMPIE COUEooviiiiiiiiiiiiiii e 4-25
Test the State of PORTC, sample COUecoocuuieiiiiiiiiiiiiiiee e 4-26
CONFIGUIALION O .o e e e 5-11
USB Control and Status REQISLENccoiiiiiiiiiiiiiie e 5-12
DISCONNECE PIN LOGIC .ottt eiitiee ettt ettt ettt e 5-12

xiif

Exhibit 2032 - Page 15 of 435

ﬁh
=9/ CYPRESS

(List of Figures)

Figure 5-4.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 6-8.
Figure 6-9.

Figure 6-10.
Figure 6-11.
Figure 6-12.
Figure 6-13.

Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 7-6.
Figure 7-7.
Figure 7-8.
Figure 7-9.

Figure 7-10.
Figure 7-11.
Figure 7-12.
Figure 7-13.
Figure 7-14.
Figure 7-15.
Figure 7-16.
Figure 7-17.
Figure 7-18.
Figure 7-19.
Figure 7-20.
Figure 7-21.

Xiv

Typical DISCONNECE CIFCUILccciiiiiiiiiiiiiie ettt ee e 5-12
Two BULK Transfers, IN and OUTcccooeiiiiiiiieiiee e 6-1
Registers Associated with Bulk ENAPOINEScueeeiiiiiiiiiiiiieieecieee e 6-3
Anatomy of @ BUlk IN Transfer ... 6-4
Anatomy of @ BUlk OUT TranSfer ..o 6-6
Bulk Endpoint Toggle CONIrOlocuueeeiiiiiiiie e 6-10
Example Code for a Simple (Polled) BULK Transferccccccovviiiiiniiiennenn. 6-12
Interrupt JUMP TabIe ..o 6-15
INTZ INEITUPE VECION ... 6-16
Interrupt Service Routine (ISR) for Endpoint 6-OUTcccccevviiiiiiiniiiineennens 6-16
Background Program Transfers Endpoint 6-OUT Data to Endpoint 6-IN 6-17
INitialization ROULINEoviiiiiiiii e 6-18
AULOPOINTET REGISIEIS ...eiiiiiiiiiie ettt 6-20
Use Of the AULOPOINTEToiiiiiiiiiii e 6-20
The Four 64-Byte Slave FIFOs Configured for 16-Bit Modeccceeeeennneee. 7-1
Slave FIFOS in 8-Bit MOUEoiiiiiiiiiie e 7-3
Double-Byte Mode with A-FIFO Selectedcccveiiiiiiiiiiiiiie e 7-4
AINDATA's Role in the FIFO A REQISIET ...cooiiiiieiiiiiiiee e 7-7
FIFO A REAA DAoeiiiiiiiiiiiii ettt 7-7
AINBC'’s Role in the FIFO A REJISIErcooiiiiiiiiiiiiee e 7-8
A-IN FIFO BYtE COUNT ...iiiiiiiieiiiiii ittt e e 7-8
AINPF’'s Role in the FIFO A REJISIETcocuuiiiiiiiiiiii it 7-9
A-IN FIFO Programmable FIagc.coccoeioiiiiiiiee e 7-9
AINPFPIN’s Role inthe FIFO A REJISLENccovuvieeiiiiieiie et 7-11
A-IN FIFO Pin Programmable FIagccccoiiiiiiiiiiiiieeeieceeeie e 7-12
BINDATA'S Role in the FIFO B REJISIENccoiuiiiiiiiiiiiiiii it 7-13
B-IN FIFO REAA DALAeeiiiiiiiiiiiiiiiiie ettt 7-13
BINBC's Role in the FIFO B REQISLEruuviiiiiiiiiieiiiiiee e 7-14
B-IN FIFO BYE COUNTviiiiiiieiiie ettt e 7-14
BINPF's Role inthe FIFO B REQISIENccoiiiiieiiiiiiiieeiiie e 7-15
B-IN FIFO Programmable FIag ... 7-15
BINPFPIN’s Role in the FIFO B REQISLErccoiiiiiiiiiiiiiieeeee e 7-17
B-IN FIFO Pin Programmable Flagccccooiiiiiiiiiiiiecce e 7-18
8051 FIFO Toggle Mode vs. Normal Mode Diagramccccceveeeeeeeeennennnns 7-18
Input FIFOs A/B Toggle CTL and Flagsccueeeeeiiiiiieiiiiiece e 7-19

List of Figures

Exhibit 2032 - Page 16 of 435

Figure 7-22.
Figure 7-23.
Figure 7-24.
Figure 7-25.
Figure 7-26.
Figure 7-27.
Figure 7-28.
Figure 7-29.
Figure 7-30.
Figure 7-31.
Figure 7-32.
Figure 7-33.
Figure 7-34.
Figure 7-35.
Figure 7-36.
Figure 7-37.
Figure 7-38.
Figure 7-39.
Figure 7-40.
Figure 7-41.
Figure 7-42.
Figure 7-43.
Figure 7-44.
Figure 7-45.
Figure 7-46.
Figure 7-47.
Figure 7-48.
Figure 7-49.
Figure 7-50.
Figure 7-51.

Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.

List of Figures

ﬁh
=9/ CYPRESS

(List of Figures)
Input FIFOs A/B Interrupt ENables ... 7-20
Input FIFOS A/B INterrupt REQUESEScocuviiiiiiiiiiiie et 7-22
AOUTDATA's Role in the FIFO A REQISLENcooiiiiiiieiiiiiiiee et 7-24
FIFO A WIIE DALA ...eiiieieiiiie ittt 7-24
AOUTBC's Role in the FIFO A REJISIENuviiiiiiiiiieiiie e 7-25
Input FIFOS A/B INterrupt REQUESEScocuiviiiiiiiiiiiiie ettt 7-25
AOUTPF’s Role in the FIFO A REJISIENcuiiiiiiiiiiieeiiie e 7-26
Input FIFOS A/B INtErrupt REQUESEScoouiiiiiiiiiiiiie it 7-26
AOUTPFPIN’s Role in the FIFO A REQISEErovviiiiiiiiiiiiee e 7-28
A-OUT FIFO Pin Programmable Flagccccoiiiiiiiiiiee e 7-29
BOUTDATA's Role in the FIFO B REQISLENcovuviiiiiiiiiieeeiiieieeeeiie e 7-30
B-OUT FIFO WILE DALA ...veeeiiiviiiieeiiiie ettt 7-30
BOUTBC's Role in the FIFO B ReQIStErceeiiiiiiiieiiiiiieeeee e 7-31
B-OUT FIFO BYte COUNL ...oeiiiiiiiiiiiiteee e 7-31
BOUTPF’s Role in the FIFO B REQISLErc..eeviiiiiiiiieeiiiieee et 7-32
B-OUT FIFO Programmable Flagcccooiiiiieiiiii e 7-32
BOUTPFPIN’s Role in the FIFO B REJISIErcccvvviiiiiiiiiieeeieiee e 7-34
B-OUT FIFO Pin Programmable Flagccccooiiiiiiiiiiee e 7-35
8051 FIFO Toggle Mode vs. Normal Mode Diagramcccocceveeerniiieeeennnnne. 7-35
Output FIFOs A/B Toggle CTL and FIagscccoeeiieiiiiiiiieciecee e 7-36
Output FIFOs A/B Interrupt ENabIescoooiiiiiiiiiiieeee e 7-37
Output FIFOs A/B INtErrupt REQUESESccoiiiiiiiieiiiiiiiee ettt 7-39
FIFO A/B SEIUP ittt ettt e e 7-40
A-IN FIFO Double-Byte MOUEeeeeeiiiiiiiiieiiiieie et 7-41
A-OUT FIFO Delay Synchronous Readscccceveiiiiiiiiniiiiiicneie e 7-42
B-OUT FIFO Double-Byte MOcceviiiiiiiiiiiie e 7-43
FIFO A/B Control Signal POlaritiescccooiiiiiiiiiiiiie e 7-43
FIFO FIag RESEL .. .eeiiiiiiiiiiie ettt 7-44
Synchronous Write/Read TIMINGccueviiiiiiiieiiiiiie e 7-45
Synchronous Double-byte Write/Readccoooiiiiiieeiiiiiiieiiiee e 7-46
GPIF's Place in the FX SYSIEMcooiiiiiiiiiie e 8-2
EZ-USB FX Interfacing to a Peripheralcccooiiiiiiiinice e 8-3
Non-Decision Point (NDP) INtErvals ... 8-11
One Decision Point: Wait States Inserted Until RDYO Goes Low 8-13

Xv

Exhibit 2032 - Page 17 of 435

ﬁh
=9/ CYPRESS

(List of Figures)

Figure 8-5.

One Decision Point: No Wait States Inserted:

RDYO is Already Low at Decision Point 11 8-13

Figure 8-6.
Figure 8-7.
Figure 8-8.
Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.
Figure 9-5.
Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 10-4.
Figure 10-5.
Figure 10-6.
Figure 10-7.
Figure 10-8.
Figure 10-9.
Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.
Figure 11-5.
Figure 11-6.
Figure 11-7.
Figure 11-8.
Figure 11-9.

Figure 11-10.
Figure 11-11.
Figure 11-12.
Figure 11-13.
Figure 11-14.

Figure 12-1.
Figure 12-2.

Xvi

REAAY REGISLENeiiiiiiii et 8-30
IDLE_CTLOUT OX7826 REQISLENeeeeieiiiiieie et 8-32
GPIF ADOIt REQISTET ...eiiiiiiiiiiei ittt 8-35
A USB Control Transfer (With Data Stage)cccoveeeeeiiiiiieenii e 9-2
Two Interrupts Associated with EPO CONTROL Transfersccccevviiiieennnne. 9-3
Registers Associated with EPO Control Transfersccoocoveiiiiiiniiiie e, 9-4
Data Flow for a Get_Status REQUESTc.eeeviiiiiiiiiiiiiieie e 9-7
Using Setup Data Pointer (SUDPTR) for Get_Descriptor Requests 9-13
EZ-USB FX Isochronous Endpoints 8-15c.cccueveeeiiiiiiieeiiiieee e 10-1
Isochronous IN ENdpoint REGISIEIScoouuieiiiiiiiiie e 10-2
ISOChroNOUS OUT REGISIEIS ..oeiiiiiiiiieeeitiieie ettt 10-4
FIFO Start AJAresSs FOIMALocuuiiiiiiiiiiiiei et 10-5
Using Assembler to Translate the FIFO Sizes to Addressescccccvveeneee. 10-7
8051 Data Transfer to Isochronous FIFO (INSDATA) W/DMAcccceeeernnen. 10-8
ISOCTL REGISIET ittt 10-9
ZBCOUT REGISEEI ...eiiiiiiiiiie ettt ettt et e e b e e 10-10
ISOIN REQISLEN ..ttt e e e 10-10
Upper Byte of the DMA SoUurce AAAreSSccuueeiiiiiiriiiiniiie e 11-2
Lower Byte of the DMA Source AAAreSSocuveeiiiriieiieiniiieie e 11-2
Upper Byte of the DMA Destination Addressccoccvviiniiiieeineiiie e 11-2
Lower Byte of the DMA Destination Addressccoccviveriiiiiein e 11-3
DMA Transfer Length (0=256 Bytes, 1=1 Byte, ... 255=255 Bytes) 11-3
DMA Start and Status REQISLENccoiiiiiiiiiiiiiiiee e 11-6
Fast Transfer Control REQISTENcooiiiiiiiiiiiiii e 11-6
Synchronous Burst ENADIES ..o 11-6
Effect of the RB Bit on DMA Mode 0 Readscccoouvvviiriiiiiiiniiiiiiee e 11-8
Effect of the RB Bit on DMA Mode 1 Readsccccccvviviiiniiiiiiiieeiie e 11-8
Effect of the WB Bit on DMA Mode 0 WHtESccevvviiiiiiiiiiiee e 11-9
DMAEXTFIFO Register. Data is “Don’t Care”.cccccveriiiiieeiiiiieee e 11-9
DMA Write Strobe Timing: 4 Modes Selected by FASTXFR[4..3]c..cccueee. 11-11
DMA Read Strobe Timing: 4 Modes Selected by FASTXFR[4..3] 11-12
USB INEEITUPES .ttt e e e e e e e e e s e s s nnannees 12-3
The Order of Clearing Interrupt Requests is Importantccccccevvviieeeinnnnee. 12-5

List of Figures

Exhibit 2032 - Page 18 of 435

Figure 12-3.
Figure 12-4.
Figure 12-5.
Figure 12-6.
Figure 12-7.
Figure 12-8.
Figure 12-9.

Figure 12-10.
Figure 12-11.
Figure 12-12.
Figure 12-13.
Figure 12-14.

Figure 13-1.
Figure 14-1.
Figure 14-2.
Figure 14-3.
Figure 14-4.
Figure 14-5.
Figure 15-1.
Figure 15-2.
Figure 15-3.
Figure 15-4.
Figure 15-5.
Figure 15-6.
Figure 15-7.
Figure 15-8.
Figure 15-9.

Figure 15-10.
Figure 15-11.
Figure 15-12.
Figure 15-13.
Figure 15-14.
Figure 15-15.
Figure 15-16.
Figure 15-17.

List of Figures

ﬁh
=9/ CYPRESS

(List of Figures)
EZ-USB FX INterrupt REGISIEIS ..ottt 12-6
SUTOK and SUDAV INtEITUPLSveeeiiiiiieeeiiie ettt ee e 12-7
A Start Of Frame (SOF) PACKEeteevviiiiiiiiiiiiiie e 12-7
The Autovector Mechanism in ACIONc..ceviiiiiiiiiinii e 12-11
12C-Compatible Interrupt Enable Bits and REGIStErscooeevvveveerereennen. 12-12
IN Bulk NAK Interrupt Request RegISterccuvveviiiiiiiieiiiiiiee e 12-13
IN Bulk NAK Interrupt Enable REQISterccoouviiiiiiiiiiie e 12-13
I2C-Compatible MOdE REQISLEN . ..oiiiiiiiiiii it 12-13
12C-Compatible Control and Status REGIStErcccoevvevvereeeereseresennnnn. 12-14
I2C-Compatible DALA ..ieiiiiiiciiee e 12-14
INTErTUPL 4 AULOVECTION ...oeviiiiiieie e 12-15
INTEITUPL 4 SEEUD ..ovieiieiiie et ee e e e e 12-15
EZ-USB FX RESELS ...ociiiiiiitiieiee ettt 13-1
Suspend-ResUME CONIOLouiiiiiiiiie e 14-1
EZ-USB FX SUSPENA SEQUENCE ...eeeiiiiiiieeeiitieiee ettt ettt nnree e 14-2
EZ-USB FX RESUME SEUUENCEoeiiiiiiiiiiitieeieie et et 14-3
EZ-USB FX RESUME INTEITUPL ...evviiieiiiiiiiiiee et 14-4
USB Control and Status REQISTETcoiiiiiiiiiiiiiiie e 14-5
Register DesCription FOMMALocuuiiiiiiiiiiie e e 15-2
FIFO A REAA DAA ...ccueieiieeiiie ettt 15-3
A-IN FIFO BYtE COUNT ..ottt 15-3
A-IN FIFO Programmable FIagcccooiiiiiiiii e 15-4
A-IN FIFO Pin Programmable FIagcccceiiiiiniiiiiieieie e 15-4
B-IN FIFO REAA DALAeeviiiiiiiiieeeiiee ettt 15-5
B-IN FIFO BYtE COUNT ..ttt e 15-5
B-IN FIFO Programmable FIagccccooiiiiiiiiiiiiieeii e 15-6
B-IN FIFO Pin Programmable Flagccccccoiiiiiiiiiiic e 15-6
Input FIFOs A/B Toggle CTL and FIagscooueeeiiiiiiiieinieee e 15-7
Input FIFOs A/B Interrupt ENablesceiiiiiiiiiiii e 15-7
Input FIFOS A/B INterrupt REQUESEScoouiiiiiiiiiiiiie et 15-7
FIFO A WIIE DALA ...oeiiieieiiiie ittt 15-8
Input FIFOS A/B INterrupt REQUESEScoouiiiiiiiiiiiiie et 15-8
Input FIFOS A/B INterrupt REQUESEScoouiiiiiiiiiiiiie ettt 15-9
A-OUT FIFO Pin Programmable Flagccccoiiiiiiiiiiii e 15-9
B-OUT FIFO W DAtAeeeiiieieiieiiiiiiiie sttt et 15-10

XVii

Exhibit 2032 - Page 19 of 435

ﬁh
=9/ CYPRESS

(List of Figures)

Figure 15-18.
Figure 15-19.
Figure 15-20.
Figure 15-21.
Figure 15-22.
Figure 15-23.
Figure 15-24.
Figure 15-25.
Figure 15-26.
Figure 15-27.
Figure 15-28.
Figure 15-29.
Figure 15-30.
Figure 15-31.
Figure 15-32.
Figure 15-33.
Figure 15-34.
Figure 15-35.
Figure 15-36.
Figure 15-37.
Figure 15-38.
Figure 15-39.
Figure 15-40.
Figure 15-41.
Figure 15-42.
Figure 15-43.
Figure 15-44.
Figure 15-45.
Figure 15-46.
Figure 15-47.
Figure 15-48.
Figure 15-49.
Figure 15-50.
Figure 15-51.
Figure 15-52.

XViii

B-OUT FIFO BYLE COUNE ...ttt 15-10
B-OUT FIFO Programmable Flagc..coooiiiiiiioiiiiieeee e 15-11
B-OUTFIFO Pin Programmable Flagcccccooviiiiiniee e 15-11
Output FIFOs A/B Toggle CTL and FIagscccccovvvieeeeniieiieiiiiee e 15-12
Output FIFOs A/B Interrupt ENablesccceeiiiiiiiiiieeee e 15-12
Output FIFOs A/B INterrupt REQUESEScooiiiiiieeeiiiiiieeeiie et 15-12
FIFO A/B SEIUP ittt ettt ettt ee e b e e 15-13
FIFO A/B Control Signal POIAritiescccoeeiiiiiiiiiiiieeee e 15-13
FIFO FIag RESELeeiiiiitiiiieii ittt et 15-14
WaVETOIM SEIECIONeeeiiiiiiieiie et 15-14
GPIF Done, GPIF IDLE Drive MOUEccuviiiiiiiiiiieeieie e 15-15
INACtiVe BUS, CTL StAteS ...cciiiiiiiiiiieiiiie ettt e 15-15
CTLOUT PIN DIIVE ..eiiiiiiiiiiie ettt ettt e 15-15
GPIF AQArESS LOW .eeiiiiiiiiiie ettt ettt ettt 15-16
FIFO A IN TranSaction COUNLccuuieeeiiiiieie et 15-16
FIFO A OUT Transaction COUNLeeviiiiiiiieeiiiieeee et 15-17
FIFO A Transaction THQOEI ...cociiiiriieeaiiieiee ettt 15-17
FIFO B IN TranSaction COUNLcuuieeriiiiiiie ettt e 15-18
FIFO B OUT Transaction COUNLceuiiiiiiiieeiiiiiieie ettt 15-18
FIFO B TraNSACHION ...c.uvviiieeiiiie ettt ettt 15-19
GPIF Data H (16-bit MOde ONlY) ...ooooiiiiiiiiie e 15-19
Read or Write GPIF Data L and Trigger Read Transactionccccccee... 15-19
Read GPIF Data L, No Read Transaction Triggerccccuvveeeerinieeeeenniinennnn 15-20
Internal READY, Sync/Async, READY Pin Statescccocevniiiiiininiiinnn, 15-20
ADOIT GPIF CYCIES it 15-20
Generic INterrupt ENADIEcoooiiiiiiii e 15-21
Generic INerrUPt REQUESTco.eviiiee et 15-21
POrt D OULPULS .. 15-22
INPUE PO D PINS oottt 15-22
Port D Output Enable REJISIEroooiiiiiiiiiiiiiiie e 15-22
POIt E QUIPULS ..o 15-23
INPUE PO E PINS oot 15-23
Port E Output Enable REgISLEreeviiiiiiiiiiiiieee e 15-23
PORTSETURP .ttt e 15-24
Interface CoNfIQUIALIONc.eeiiiiiiiiiii s 15-24

List of Figures

Exhibit 2032 - Page 20 of 435

Figure 15-53.
Figure 15-54.
Figure 15-55.
Figure 15-56.
Figure 15-57.
Figure 15-58.
Figure 15-59.
Figure 15-60.
Figure 15-61.
Figure 15-62.
Figure 15-63.
Figure 15-64.
Figure 15-65.
Figure 15-66.
Figure 15-67.
Figure 15-68.
Figure 15-69.
Figure 15-70.
Figure 15-71.
Figure 15-72.
Figure 15-73.
Figure 15-74.
Figure 15-75.
Figure 15-76.
Figure 15-77.
Figure 15-78.
Figure 15-79.
Figure 15-80.
Figure 15-81.
Figure 15-82.
Figure 15-83.
Figure 15-84.
Figure 15-85.
Figure 15-86.
Figure 15-87.

List of Figures

ﬁh
=9/ CYPRESS

(List of Figures)
Port A Alternate Configuration #2 ... 15-27
Port C Alternate Configuration #2 ..o 15-28
Upper Byte of the DMA Source AdAresscc.eeeueeeierieeeriiiiiiiieiieeeeeeaeee e 15-31
Lower Byte of the DMA Source AAAreSSoovcviiiiriiiiin e 15-31
Upper Byte of the DMA Destination AdAresscccceveeeviiniiiieiieineeneeeneenians 15-31
Lower Byte of the DMA Destination AAdresscccccovvivieeeiiiiie i 15-32
DMA Transfer Length (0=256 Bytes, 1=1 Byte, ... 255=255 Bytes) 15-32
DMA Start and Status REQISTENcicuuiiiiiiiiiii e 15-32
Synchronous Burst ENables ... 15-33
DUMMY REGISTEE ..ttt et 15-33
INTErTUPL 4 AULOVECTION ...ouveniiiiiiie e 15-34
INTEITUPL 4 SEEUD ..ovieiieiiie et ee e e e e e 15-34
Waveform DESCHPLOISoiiiiiiiiiii ittt 15-35
BUIK Data BUFFEIScoiiiiiiiii et 15-35
ISOChron0US Data FIFOSccoiiiiiiiiiiiiiie ittt 15-37
ISOChrONOUS BYE COUNTS ...oiuiiiiiiiiiiiiiit ittt 15-39
CPU Control and Status REgIStErccooiiiiiiiiiiiiiieeeei e 15-41
I/O Port Configuration RegISErSc.eeeiiiiiiiieiiiiie e 15-42
POIt A QUIPULS .o 15-44
POIt B OUIPULS .o 15-44
POIt C OQULPULS ..o 15-44
POIE A PINS ot 15-45
POIE B PINS ottt 15-45
POt C PINS ottt 15-45
Port A OULPUL ENADIE ..o 15-46
Port B OUtPUL ENADIE ... 15-46
Port C OULPUL ENADIEoeiiiie e 15-46
Isochronous OUT Endpoint Error REGISIErccueveviiiiiiieiiiiiie e 15-47
ISOchronous Control REGISLETciiiuuiiiiiiiiit e 15-47
Zero Byte COUNt REQISTENccoiiiiiiie ittt 15-48
12C-Compatible Transfer REGISIErSocceuevereeeeeereeereeeeeeeeneeeseneresinen, 15-48
I2C-Compatible MOdE REQISLEN ...eeiiiiiciiei et 15-50
INterrupt VECtor REQISTETcii ittt 15-51
IN/OUT Interrupt Request (IRQ) REQISIEISccoiiiiiiiiiiiiiieeeiiieeee e 15-51
USB Interrupt Request (IRQ) REJISLErSccoiiiiiiiiiiiiiiei e 15-52

Xix

Exhibit 2032 - Page 21 of 435

ﬁ_‘?"f“*—__?
= G

PRESS

(List of Figures)

Figure 15-88.
Figure 15-89.
Figure 15-90.
Figure 15-91.
Figure 15-92.
Figure 15-93.
Figure 15-94.
Figure 15-95.
Figure 15-96.
Figure 15-97.
Figure 15-98.
Figure 15-99.

Figure 15-100.
Figure 15-101.
Figure 15-102.
Figure 15-103.
Figure 15-104.
Figure 15-105.
Figure 15-106.
Figure 15-107.
Figure 15-108.
Figure 15-109.
Figure 15-110.

Figure 16-1.
Figure 16-2.
Figure 17-1.
Figure 17-2.
Figure 18-3.
Figure 18-4.
Figure 18-5.
Figure 18-6.
Figure 18-7.
Figure 18-8.
Figure 18-9.
Figure 18-10.

XX

IN/OUT Interrupt Enable RegiStErsScueveiiiiiiiiiiiiieiee e 15-54
USB Interrupt Enable ReQISTErccuvviiiiiiiiiii e 15-54
Breakpoint and Autovector RegISTereviiiiiiiiiiiiiiiie e 15-55
IN Bulk NAK Interrupt Request RegIStercccovviiiiiiiiiiieeeeeie e 15-56
IN Bulk NAK Interrupt Enable REQIStErccuvviiiiiiiiiiieiieiee e 15-57
IN/OUT Interrupt Enable RegIStErScueeeiiiiiiiiiiiiiieiee e 15-57
Port Configuration REQISIEISoiiuiiiiiiiiiiie et e 15-58
IN Control and Status REQISTErScccoeiiiiiiiiiiiie e 15-61
IN Byte COUNt REGISIEIS ..ottt 15-62
OUT Control and Status ReQISIErSeoiiiiiiiieiiiiiie e 15-63
OUT Byte COUNt REGISIEIS ..ccoiiiiiiiiii ittt 15-64
Setup Data Pointer High/LOW REQISLEIScccoiiiiiiiiiiiiiiiie e 15-65
USB Control and Status REQISIErScoiuueiiiiiiiiiiie e 15-66
Data Toggle Control REGISLETuuiiiiiiiiiiie ittt 15-67
USB Frame Count High/LOW REQISIErScccuiiiiiiiiiiiiiiiiie et 15-68
Function Address REQISTETcoiiuiiiiiiiiiiiii ittt 15-68
USB Endpoint Pairing REGISIENooiiiiiiiiiiiiie e 15-69
IN/OUT Valid BitS REGISIETcceiiiiiiiieeeiiee ettt 15-70
Isochronous IN/OUT Endpoint Valid Bits Registercccccvevviiiieiiiiinnnene 15-71
Fast Transfer Control REGISIErcuuuiiiiiiiiii e 15-71
AULO POINTEI REJISTEIS ..oiiiiiiiii ittt nrbe e 15-73
SETUP Data BUFfErooiiiiiiiiiiee et 15-74
SETUP Data BUFfErooiiiiiiiiiiee et 15-74
BO5L FRALIUINES ...ttt e et e e e e s 16-1
8051/Standard 8051 Timing COMPAIISONceeieiiiiiieeiiiiiiee e itiieee e e siieeeee e 16-3
Internal RAM OrganiZatiOnc.eeeeiiiiieiiiiniiieie e 17-2
CPU Timing for Single-Cycle INStruCtioncccvviiriiiiiin e 17-9
Timer 0/1 - MOdes 0 aNnd 1oouviiiiiiiie e e 18-3
TIMEr O/1 - MOOE 2 ..ottt ee e 18-6
TIMEr 0 - MOUE 3 ..ot e e 18-7
Timer 2 - Timer/Counter With Captureccccceeiiiiieeeeniieeee e 18-11
Timer 2 - Timer/Counter with Auto Reloadc.ocooeeeiiiiiiiiini e 18-12
Timer 2 - Baud Rate Generator MOUEccueeeieiiiiiie e 18-13
Serial Port Mode 0 Receive Timing - Low Speed Operationccceeenee. 18-17
Serial Port Mode 0 Receive Timing - High Speed Operationc......... 18-17

List of Figures

Exhibit 2032 - Page 22 of 435

Figure 18-11.
Figure 18-12.
Figure 18-13.
Figure 18-14.
Figure 18-15.
Figure 18-16.
Figure 18-17.
Figure 18-18.

List of Figures

:—..'TiT"'l—_
=9/ CYPRESS

(List of Figures)

Serial Port Mode O Transmit Timing - Low Speed Operationc......... 18-18
Serial Port Mode 0 Transmit Timing - High Speed Operation 18-18
Serial Port 0 Mode 1 Transmit TIMINGccoooiiiieeeariiee e 18-22
Serial Port 0 Mode 1 Receive TIMINGccueeeiiiiiiiiiiiiiiiiie e 18-23
Serial Port 0 Mode 2 Transmit TIMINGcooooriieeeeiriiee e 18-24
Serial Port 0 Mode 2 Receive TIMINGcueeviiiiiiiiiiiiiieiie e 18-25
Serial Port 0 Mode 3 Transmit TIMINGcooooriiieeeoriiiiee e 18-26
Serial Port 0 Mode 3 Receive TIMINGccueeeviiiiiiiiiiiiiiiie e 18-26

XXi

Exhibit 2032 - Page 23 of 435

XXii List of Figures

Exhibit 2032 - Page 24 of 435

List of Tables

Table 1-1. USB PIDS .. .o 1-4
Table 1-2. EZ-USB FX Family 1-15
Table 2-1. EZ-USB FXINterrupts e 2-4
Table 2-2. Added Registers and BitS 2-6
Table 4-1. Port A Configuration 4-8
Table 4-2. Port B Configuration 4-9
Table 4-3. Port C Configuration 4-11
Table 4-4. POrtD BitS .. oot 4-12
Table 4-5. PO E BitS .. .ot 4-13
Table 4-6. Strap Boot EEPROM Address Lines to These Values 4-20
Table 4-7. Results of Power-On [2C-Compatible Test 4-21
Table 4-8. EZ-USB FX Special Function Registers* 4-22
Table 5-1. EZ-USB FX Default Endpointst 5-2
Table 5-2. How the USB Core Handles EPO Requests When RENUM=0 5-3
Table 5-3. Firmware Download 5-5
Table 5-4. Firmware Upload 5-5
Table 5-5. USB Core Action at Power-Up e 5-6
Table 5-6. EZ-USB FX Device Characteristics, No Serial EEPROM 5-8
Table 5-7. EEPROM Data Formatfor “B4” Loadc.cuiuiiiiinen.... 5-8
Table 5-8. EEPROM Data Format for “B6” Loadcciiiiiien.... 5-9
Table 5-9. USB Default Device DeSCriptort 5-13
Table 5-10. USB Default Configuration Descriptor 5-14
Table 5-11. USB Default Interface 0, Alternate Setting O Descriptor 5-14
Table 5-12. USB Default Interface 0, Alternate Setting 1 Descriptor 5-15
Table 5-13. Default Interface 0, Alternate Setting 1, INT Endpoint Descriptor 5-15
Table 5-14. Default Interface 0, Alternate Setting 1, Bulk Endpoint Descriptors 5-16
Table 5-15. Default Interface 0, Alternate Setting 1, ISO Endpoint Descriptors 5-17
Table 5-16. USB Default Interface 0, Alternate Setting 2 Descriptor 5-18
Table 5-17. Default Interface 0, Alternate Setting 1, INT Endpoint Descriptor 5-18
Table 5-18. Default Interface 0, Alternate Setting 2, Bulk Endpoint Descriptors 5-19
Table 5-19. Default Interface 0, Alternate Setting 2, ISO Endpoint Descriptors 5-20

XXiii

Exhibit 2032 - Page 25 of 435

ﬁh
=9/ CYPRESS

(List of Tables)

Table 6-1. EZ-USB FX Bulk, Control, and Interrupt Endpoints 6-1
Table 6-2. Endpoint Pairing Bits (in the USB PAIR Register) 6-8
Table 6-3. EZ-USB FX Endpoint 0-7 Buffer Addresses 6-9
Table 6-4. 8051 INT2 Interrupt VECIOr e 6-13
Table 6-5. Byte Inserted by USB Core at Location 0x45 if AVEN=1 6-13
Table 7-1. Autovector for INTA* e 7-5
Table 7-2. INT4A AUTOVECTIOIS . . . ot et e e e e s 7-6
Table 7-3. Filling FIFO ... 7-10
Table 7-4. Emptying FIFO . ..o 7-11
Table 7-5. Filling FIFO ..o 7-16
Table 7-6. Emptying FIFO . ..o 7-17
Table 7-7. Filling FIFO ..o 7-27
Table 7-8. Emptying FIFO . ..o 7-28
Table 7-9. Filling FIFO ... 7-33
Table 7-10. Emptying FIFO . ..o 7-34
Table 8-1. GPIF Pin DESCHPLIONSo e e 8-4
Table 8-2. Example GPIF Hardware Interconnect, 8-5
Table 8-3. CTLOUIPUt MOOESot e e e 8-7
Table 8-4. Control Outputs (CTLn) Duringthe IDLE State 8-9
Table 8-5. Waveform Memory TYPESttt 8-18
Table 8-6. Waveform Memory DescCriptorsot 8-19
Table 8-7. Selectingthe GPIF_PFFlag i 8-23
Table 8-8. Addresses of Transaction Count Registerst .. 8-29
Table 9-1. The Eight Bytesina USB SETUP Packet 9-5
Table 9-2. How the 8051 Handles USB Device Requests (RENUM=1) 9-6
Table 9-3. Get Status-Device (Remote Wakeup and Self-Powered Bits) 9-8
Table 9-4. Get Status-Endpoint (Stall Bits) 9-8
Table 9-5. Get Status-Interface 9-10
Table 9-6. Set Feature-Device (Set Remote Wakeup Bit) 9-10
Table 9-7. Set Feature-Endpoint (Stall) 9-11
Table 9-8. Clear Feature-Device (Clear Remote Wakeup Bit) 9-12
Table 9-9. Clear Feature-Endpoint (Clear Stall) 9-12
Table 9-10. Get Descriptor-Device 9-14
Table 9-11. Get Descriptor-Configuration i 9-15
Table 9-12. Get Descriptor-String oo 9-15

XXiv

List of Tables

Exhibit 2032 - Page 26 of 435

Table 9-13.
Table 9-14.
Table 9-15.
Table 9-16.
Table 9-17.
Table 9-18.
Table 9-19.
Table 9-20.
Table 9-21.
Table 9-22.
Table 10-1.
Table 10-2.
Table 11-1.
Table 11-2.
Table 11-3.
Table 11-4.
Table 11-5.
Table 12-1.
Table 12-2.
Table 12-3.
Table 12-4.
Table 12-5.
Table 13-1.
Table 13-2.
Table 13-3.
Table 13-4.
Table 15-1.
Table 15-2.
Table 15-3.
Table 15-4.
Table 15-5.
Table 15-6.
Table 15-7.
Table 15-8.
Table 15-9.

List of Tables

ﬁh
=9/ CYPRESS

(List of Tables)
Set DesCriptor-DeVICEot 9-16
Set Descriptor-Configuration 9-16
Set DesCriptor-String oot 9-17
SetConfiguration 9-19
Get Configuration 9-19
Set Interface (Actually, Set Alternate Setting AS for Interface IF) 9-20
Get Interface (Actually, Get Alternate Setting AS for interface IF) 9-21
SYNC Frame 9-22
Firmware Download i 9-23
Firmware Upload 9-23
Isochronous Endpoint FIFO Starting Address Registers 10-6
Addresses for RD# and WR# vs. ISODISABBIt 10-9
DMA Sources and Destinations i 11-4
Legends Usedin Table 11-1t 11-5
DMA External RAM Control 11-10
Effect of Stretch Values on a Write Strobe 11-12
Effect of Stretch Values on a Write Strobe 11-13
EZ-USB EX INterrupts 12-1
8051 JUMP INSrUCHIONo 12-9
ATypical USBJump Table 12-10
Autovector for INTA* 12-15
INT4 AUTOVECIOIS o e e e e 12-16
EZ-USB FX States After Power-On Reset (POR) 13-2
EZ-USB FX States AfteraUSBBus Reset, 13-6
Effects of an EZ-USB FX Disconnect and Re-connect 13-7
Effects of Various EZ-USB FX Resets (“U” Means “Unaffected”) 13-8
Port A Alternate Functions When GSTATE=1. 15-25
Pin Configurations Based on IFCONFIG[1..0] 15-26
POrt A Bit 5 .. 15-27
Port A Bit 4 ... 15-27
POrt C Bit 7 .. 15-28
POt C BIt B ... 15-28
POort C Bit 5 ... 15-29
POrt C Bit 4 ... 15-29
POrt C Bit 3 ..o 15-29

XXV

Exhibit 2032 - Page 27 of 435

ﬁh
=9/ CYPRESS

(List of Tables)

Table 15-10. PoOrt CBit L 15-30
Table 15-11. Port CBit O 15-30
Table 15-12. Bulk Endpoint Buffer Memory Addressesc. i, 15-36
Table 15-13. Isochronous Endpoint FIFO Register Addresses 15-38
Table 15-14. Isochronous Endpoint Byte Count Register Addresses 15-40
Table 15-15. 1/O Pin Alternate FUNCLIONS e 15-43
Table 15-16. Control and Status Register Addresses for Endpoints 0-7 15-60
Table 15-17. Isochronous FIFO Start Address Registers 15-75
Table 16-1. 8051/Standard 8051 Speed Comparisoniuiuiiinninenn.. 16-3
Table 16-2. Features of 8051 Core & Common 803x/805x Configurations 16-4
Table 17-1. Legend for Instruction Set Table 17-4
Table 17-2. 8051 INSIrUCLION Set 17-5
Table 17-3. Data Memory Stretch Values 17-10
Table 17-4. Special Function Registers e 17-12
Table 17-5. Special Function Register ResetValues 17-13
Table 17-6. PSW Register - SFRDOh 17-14
Table 18-7. Timer/Counter Implementation Comparisono..... 18-2
Table 18-8. TMOD Register — SFR 89h 18-4
Table 18-9. TCON Register —SRF88h i 18-5
Table 18-10. CKCON Register —SRF8Eh. i, 18-8
Table 18-11. Timer 2 Mode Control SUMMArYo 18-9
Table 18-12. T2CON Register — SFR C8h i 18-10
Table 18-13. Serial PortModes 18-14
Table 18-14. SCONORegister — SFR98h i, 18-15
Table 18-15. SCON1Register — SFRCOh i 18-16
Table 18-16. Timer 1 Reload Values for Common Serial Port Mode 1 Baud Rates 18-20
Table 18-17. Timer 2 Reload Values for Common Serial Port Mode 1 Baud Rates 18-21
Table 18-18. IE Register — SFRA8h 18-28
Table 18-19. IP Register — SFRB8h 18-28
Table 18-20. EXIF Register —SFR 91h e 18-29
Table 18-21. EICON Register —SFRD8h 18-29
Table 18-22. EIERegister —SFR E8h 18-30
Table 18-23. EIP Register —SFR F8h 18-30
Table 18-24. Interrupt Natural Vectors and Priorities 18-31
Table 18-25. Interrupt Flags, Enables, and Priority Control 18-32
Table 18-26. PCON Register —SFR 87h i 18-34
XXVi List of Tables

Exhibit 2032 - Page 28 of 435

E
—— jr_‘z'f_
=7 C

YPRESS

Chapter 1. Introducing EZ-USB FX

1.1 Introduction

Like a well designed automobile or appliance, a USB peripheral’'s outward simplicity hides internal
complexity. There’s a lot going on “under the hood” of a USB device, which gives the user a new
level of convenience. For example:

A USB device can be plugged in anytime, even when the PC is turned on.

 When the PC detects that a USB device has been plugged in, it automatically interrogates
the device to learn its capabilities and requirements. From this information, the PC auto-
matically loads the device’s driver into the operating system. When the device is
unplugged, the operating system automatically logs it off and unloads its driver.

* USB devices do not use DIP switches, jumpers, or configuration programs. There is never
an IRQ, DMA, MEMORY, or I/O conflict with a USB device.

» USB expansion hubs make the bus available to dozens of devices.
» USBis fast enough for printers, CD-quality audio, and scanners.

USB is defined in the Universal Serial Bus Specification Version 1.1, a 268-page document
describing in elaborate detail all aspects of a USB device. The USB Specification is available at
http://usb.org. The EZ-USB FX Technical Reference Manual describes the EZ-USB FX chip along
with USB topics that provide help in understanding the USB Specification.

The Cypress Semiconductor EZ-USB FX is a compact, integrated circuit that provides a highly
integrated solution for a USB peripheral device. Three key EZ-USB FX features are:

* The EZ-USB FX family provides a soft (RAM-based) solution that allows unlimited configu-
ration and upgrades.

e The EZ-USB FX family delivers full USB throughput. Designs that use EZ-USB FX are not
limited by number of endpoints, buffer sizes, or transfer speeds.

* The EZ-USB FX family does much of the USB housekeeping in the USB core, simplifying
code and accelerating the USB learning curve.

Chapter 1. Introducing EZ-USB FX Page 1-1

Exhibit 2032 - Page 29 of 435

EZ-USB FX Technical Reference Manual

This chapter introduces key USB concepts and terms to make reading this Technical Reference
Manual easier.

1.2 EZ-USB FX Block Diagrams

g+ Q } Serial e USB Prog:t? & 10 P;orts
. ! Interface | Interface :>
3 Engine [4—Dbytes RAM f
GND 3 (S1E) General !
3 Purpose i
UsB | UsB Microprocessor
Connector | Transceiver EZ-USB GPIF | Slave FIFOs '

16 | |

Figure 1-1. CY7C646x3-80NC (80 pin) Simplified Block Diagram

The Cypress Semiconductor EZ-USB FX chip packs the intelligence required by a USB peripheral
interface into a compact, integrated circuit. As Figure 1-1 illustrates, an integrated USB transceiver
connects to the USB bus pins D+ and D-. A Serial Interface Engine (SIE) decodes and encodes
the serial data and performs error correction, bit stuffing, and other signaling-level details required
by USB. Ultimately, the SIE transfers data bytes to and from the USB interface.

The internal microprocessor is an enhanced 8051 with fast execution time and added features. It
uses internal RAM for program and data storage, making the EZ-USB FX family a soft solution.
The USB host downloads 8051 program code and device personality into RAM over the USB bus,
and then EZ-USB FX re-connects as the custom device, as defined by the loaded code.

The EZ-USB FX family uses an enhanced SIE/USB interface (USB Core), which has the intelli-
gence to function as a full USB device, even before the 8051 runs. The enhanced core simplifies
8051 code by implementing much of the USB protocaol, itself.

EZ-USB FX chips operate at 3.3V. This simplifies the design of bus-powered USB devices, since

the 5V power available in the USB connector (USB Specification allows power to be as low as
4.4V) can drive a 3.3V regulator to deliver clean, isolated power to the EZ-USB FX chip.

Page 1-2 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 30 of 435

=7 v

+5V |
; bytes Program &
Serial PytEs USB
D+ ‘ Interface bt Interface gzt;, 10 Ports >
D- Engine RIS
(SIE)
General Address Bus
GND Purpose | External
Microprocessor 1 Memory
UsSB USB Data Bus
Connector Transceiver EZ-USB GPIF | Save FIFOS

,,,,,, e[
>

Figure 1-2. CY7C646x3-128NC (128 pin) Simplified Block Diagram

Figure 1-2illustrates the CY7C646x3-128NC, a 128-pin version of the EZ-USB FX family. In addi-
tion to the 40 I/O pins, it contains a 16-bit address bus and an 8-bit data bus for external memory
expansion. Slave interface FIFOs and a General Programmable Interface (GPIF) controller pro-
vide a flexible, high-bandwidth interface to external logic.

Also included, the DMAEXTFIFO register provides legacy support for invoking the fast transfer
mode available on the EZ-USB Series 2100. This allows data to move directly between external
logic and internal USB FIFOs. This, along with abundant endpoint resources, allows the EZ-USB
FX family to support transfer bandwidths to external logic that exceed the USB delivery/consump-
tion rate.

1.3 The USB Specification

The Universal Serial Bus Specification Version 1.1 is available on the Internet at http://usb.org.
Published in January 1998, the USB Specification is the work of a founding committee of seven
industry heavyweights: Compaq, DEC, IBM, Intel, Microsoft, NEC, and Northem Telecom. This
impressive list of developers secures USB as the low-to-medium speed PC connection method of
the future.

A glance at the USB Specification makes it immediately apparent that USB is not nearly as simple
as the customary serial or parallel port. The USB Specification uses new terms like “endpoint,” iso-
chronous,” and “enumeration,” and finds new uses for old terms like “configuration,” “interface,”
and “interrupt.” Woven into the USB fabric is a software abstraction model that deals with things
such as “pipes.” The USB Specification also contains detail about the connector types and wire

colors.

Chapter 1. Introducing EZ-USB FX Page 1-3

Exhibit 2032 - Page 31 of 435

EZ-USB FX Technical Reference Manual

1.4 Tokens and PIDs

In this manual, statements like the following appear: “When the host sends an IN token...,” or “The
device responds with an ACK.” What do these terms mean? A USB transaction consists of data
packets identified by special codes called Packet IDs or PIDs. A PID signifies what kind of packet

is being transmitted. There are four PID types, shown in Table 1-1.

Table 1-1. USB PIDs

PID Type PID Name
Token IN, OUT, SOF, SETUP
Data DATAOQ, DATAL
Handshake |ACK, NAK, STALL

Special PRE

D C D C
AllEl c AllElc
0 A A
0| n||r||[|B| Payload |/R||| A D/ N| R Payload | R
e D D[||| M clil B el DD/ c ||| Dat cll M
T [HIE A Data 1 K T il A elie! Nl «
5 6 0 6

Token Packet Data Packet HIS Pkt Token Packet Data Packet HIS Pkt

® @ ® @ ® O)

Figure 1-3. USB Packets

Figure 1-3illustrates a USB transfer. Packet 1 is an OUT token, indicated by the OUT PID. The
OUT token signifies that data from the host is about to be transmitted over the bus. Packet 2 con-
tains data, as indicated by the DATA1 PID. Packet 3 is a handshake packet, sent by the device
using the ACK (acknowledge) PID to signify to the host that the device received the data error-
free.

Continuing with Figure 1-3, a second transaction begins with another OUT token 4, followed by
more data 5, this time using the DATAO PID. Finally, the device again indicates success by trans-
mitting the ACK PID in a handshake packet 6.

Why two DATA PIDs, DATAO and DATAL1? It's because the USB architects took error correction
very seriously. As mentioned previously, the ACK handshake is an indication to the host that the
peripheral received data without error (the CRC portion of the packet is used to detect errors). But
what if the handshake packet itself is garbled in transmission? To detect this, each side (host and
device) maintains a data toggle bit, which is toggled between data packet transfers. The state of
this internal toggle bit is compared with the PID that arrives with the data, either DATAO or DATAL.
When sending data, the host or device sends alternating DATAO-DATAL PIDs. By comparing the
Data PID with the state of the internal toggle bit, the host or device can detect a corrupted hand-
shake packet.

Page 1-4 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 32 of 435

=7 v

SETUP tokens are unique to CONTROL transfers. They preface eight bytes of data from which the
peripheral decodes host Device Requests.

SOF tokens occur once per millisecond, denoting a USB frame.
There are three handshake PIDs: ACK, NAK, and STALL.

* ACK means success; the data was received error-free.

* NAK means “busy, try again.” It's tempting to assume that NAK means “error,” but it
doesn’t. A USB device indicates an error by not responding.

e STALL means that something unforeseen went wrong (probably as a result of miscommu-
nication or lack of cooperation between the software and firmware writers). A device sends
the STALL handshake to indicate that it doesn’t understand a device request, that some-
thing went wrong on the peripheral end, or that the host tried to access a resource that
wasn't there. It's like HALT, but better, because USB provides a way to recover from a
stall.

A PRE (Preamble) PID precedes a low-speed (1.5 Mbps) USB transmission. The EZ-USB FX fam-
ily supports high-speed (12 Mbps) USB transfers only. It ignores PRE packets and the resultant
low-speed transfer.

1.5 Host is Master

This is a fundamental USB concept. There is exactly one master in a USB system: the host com-
puter. USB devices respond to host requests. USB devices cannot send information between
themselves, as they could if USB were a peer-to-peer topology.

However, there is one case where a USB device can initiate signaling without prompting from the
host. After being put into a low-power suspend mode by the host, a device can signal a remote
wakeup. A Remote Wakeup is the only method in which the USB becomes the initiator. Everything
else happens because the host makes device requests, and the device responds to them.

There’s an excellent reason for this host-centric model. The USB architects were keenly mindful of
cost, and the best way to make low-cost peripherals is to put most of the smarts into the host side,
the PC. If USB had been defined as peer-to-peer, every USB device would have required more
intelligence, raising cost.

Here are two important consequences of the “host is master” concept:

1.5.1 Receiving Data from the Host

To send data to a USB peripheral, the host issues an OUT token, followed by the data. If the
peripheral has space for the data, and accepts it without error, it returns an ACK to the host. If it is

Chapter 1. Introducing EZ-USB FX Page 1-5

Exhibit 2032 - Page 33 of 435

EZ-USB FX Technical Reference Manual

busy, it sends a NAK. If it finds an error, it sends back nothing. For the latter two cases, the host re-
sends the data at a later time.

1.5.2 Sending Data to the Host

A USB device never spontaneously sends data to the host. Nevertheless, in the EZ-USB FX chip,
there’s nothing to stop the 8051 from loading data for the host into an endpoint buffer (see "EZ-
USB FX Endpoints"”, this chapter) and arming it for transfer. However, the data remains in the
buffer until the host sends an IN token to that particular endpoint. If the host never sends the IN
token, the data remains there indefinitely.

1.6 USB Direction

Once you accept that the host is the bus master, it's easy to remember USB direction: OUT means
from the host to the device, and IN means from the device to the host. EZ-USB FX nomenclature
uses this naming convention. For example, an endpoint that sends data to the host is an IN end-
point. This can be confusing at first, because the 8051 sends data by loading an IN endpoint
buffer. Keep in mind that an 8051out is an IN to the host.

1.7 Frame

The USB host provides a time base to all USB devices by transmitting a SOF (Start Of Frame)
packet every millisecond. The SOF packet includes an incrementing, 11-bit frame count. The 8051
can read this frame count from two EZ-USB FX registers. SOF-time has significance for isochro-
nous endpoints; it's the time that the ping-ponging buffers switch places. The USB core provides
the 8051 with an SOF interrupt request for servicing isochronous endpoint data.

1.8 EZ-USB FX Transfer Types

USB defines four transfer types. These match the requirements of different data types delivered
over the bus. ("EZ-USB FX Endpoints" explains how the EZ-USB FX family supports the four
transfer types.)

Page 1-6 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 34 of 435

S
=i voness

1.8.1 Bulk Transfers

D C Allell ¢ D C
0 Payload R i O D||N| R i Payload R B
J Data ¢ € Y D||D|| C v Data ¢ ¢
A 1 K T rilells A 1 K
1 6 0 6

Token Packet Data Packet H/S Pk Token Packet Data Packet H/S Pk

Figure 1-4. Two Bulk Transfers, IN and OUT

Bulk data is bursty, traveling in packets of 8, 16, 32, or 64 bytes. Bulk data has guaranteed accu-
racy, due to an automatic re-try mechanism for erroneous data. The host schedules bulk packets
when there is available bus time. Bulk transfers are typically used for printer, scanner, or modem

data. Bulk data has built-in flow control provided by handshake packets.

1.8.2 Interrupt Transfers

AllEllc 2 ¢
A R A
I||D||N||R T Payload C c
N||D||D||C Data
R|| P|| 5 A ! LS
1 6
Token Packet Data Packet IS Pk

Figure 1-5. An Interrupt Transfer

Interrupt data is like bulk data; it can have packet sizes of 1 through 64 bytes. Interrupt endpoints
have an associated polling interval that ensures they will be pinged (receive an IN token) by the
host on a regular basis.

1.8.3 Isochronous Transfers

AllEllc . c
Il|D||N||R T Payload C
N||D||D|| C Data
R||P||5 A L
0 6
Token Packet Data Packet
Figure 1-6. An Isochronous Transfer
Chapter 1. Introducing EZ-USB FX Page 1-7

Exhibit 2032 - Page 35 of 435

EZ-USB FX Technical Reference Manual

Isochronous data is time-critical and used to stream data like audio and video. Time of delivery is
the most important requirement for isochronous data. In every USB frame, a certain amount of
USB bandwidth is allocated to isochronous transfers. To lighten the overhead, isochronous trans-
fers have no handshake (ACK/NAK/STALL), and no retries. Error detection is limited to a 16-bit
CRC. Isochronous transfers do not use the data toggle mechanism. Isochronous data uses only

the DATAO PID.

1.8.4 Control Transfers

(?777\ D C\ J—

AllE|lC
= Al 8 bytes ||R A
T g g (F§ T|| Setup Cc C SETUP
u A| Data 1 K Stage
ell*IP) =) [lo o) | L) ’
\Token Packet) Data Packet /S Pkt
(—— —— — —N (— 'd

D C

AELTEI! A R||[| A DATA
I||D||N||R T Payload c c
Nj ojlojic|]i Data : M Stage

RPNz 6 (optional)
\Token Packet) Data Packet \H/S Pk
SR
ol OIMIRINIT) [ell] |e STATUS
T D||D|| C A

R||P|sl]] é S Stage
\Token Packet] [Data Pky) (H/S Pk

Figure 1-7. A Control Transfer

Control transfers configure and send commands to a device. Being mission critical, they employ
the most extensive USB error checking USB. Control transfers are delivered on a best effort basis
by the host (best effort is a six-step process defined by the Universal Serial Bus Specification Ver-
sion 1.1, “Section 5.5.4”). The host reserves a part of each USB frame time for Control transfers.

Control transfers consist of two or three stages. The SETUP stage contains eight bytes of USB
CONTROL data. An optional DATA stage contains more data, if required. The STATUS (or hand-
shake) stage allows the device to indicate successful completion of a control operation.

1.9 Enumeration

Your computer is ON. You plug in a USB device, and the Windowsy cursor switches to an hour-
glass, and then back to a cursor. Magically, your device is connected, and its Windowsy driver is
loaded! Anyone who has installed a sound card into a PC and had to configure countless jumpers,
drivers, and 10/Interrupt/DMA settings knows that a USB connection is miraculous. We've alll
heard about Plug and Play, but USB delivers the real thing.

Page 1-8 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 36 of 435

C
=7 v

How does all this happen automatically? Inside every USB device is a table of descriptors. This
table is the sum total of the device’s requirements and capabilities. When you plug into USB, the
host goes through a sign-on sequence:

1. The host sends a “Get_Descriptor/Device” request to address zero (devices must respond to
address zero when first attached).

2. The device responds to the request by sending ID data back to the host to define itself.

3. The host sends the device a Set_Address request, which gives it a unique address to distin-
guish it from the other devices connected to the bus.

4. The host sends more Get_Descriptor requests, asking more device information. From this, it
learns everything else about the device, like how many endpoints the device has, its power
requirements, what bus bandwidth it requires, and what driver to load.

This sign-on process is called Enumeration.

1.10 The USB Core

D [D C
AllE]||C Al E]||C
OIYITIEYil A1 Payload R A olymaiEsi Al Payload R A
u T c C u T c C
D||D|| C Data DD C Data
T Iy A 1 K T Il A 1 K
1 6 0 6
Token Packet Data Packet H/S Pkt Token Packet Data Packet H/S Pkt

PN

=
Data

Serial

Interface Payload
Engine e
(SIE)

A
C
USB K

Tranceiver

f
vi&v%

Figure 1-8. What the SIE Does

Every USB device has a Serial Interface Engine (SIE). The SIE connects to the USB data lines D+
and D-, and delivers bytes to and from the USB device. Figure 1-8illustrates a USB bulk transfer,
with time moving from left to right. The SIE decodes the packet PIDs, performs error checking on
the data using the transmitted CRC bits, and delivers payload data to the USB device. If the SIE

Chapter 1. Introducing EZ-USB FX Page 1-9

Exhibit 2032 - Page 37 of 435

EZ-USB FX Technical Reference Manual

encounters an error in the data, it automatically indicates no response instead of supplying a
handshake PID. This instructs the host to re-transmit the data at a later time.

Bulk transfers, such as the one illustrated in Figure 1-8, are asynchronous, meaning that they
include a flow control mechanism using ACK and NAK handshake PIDs. The SIE indicates busy to
the host by sending a NAK handshake packet. When the peripheral device has successfully trans-
ferred the data, it commands the SIE to send an ACK handshake packet, indicating success.

To send data to the host, the SIE accepts bytes and control signals from the USB device, formats
it for USB transfer, and sends it over the two-wire USB. Because the USB uses a self-clocking
data format (NRZI), the SIE also inserts bits at appropriate places in the bit stream to guarantee a
certain number of transitions in the serial data. This is called “bit stuffing,” and is handled transpar-
ently by the SIE.

One of the most important features of the EZ-USB FX family is that it is soft. Instead of requiring
ROM or other fixed memory, it contains internal program/data RAM downloaded over the USB to
give the device its unique personality. This makes modifications, specification revisions, and
updates a snap.

The EZ-USB FX family can connect as a USB device and download code into internal RAM. All
while, its internal 8051 is held in Reset. This is done by an enhanced SIE, which performs all the
work shown in Figure 1-8, and more. It contains additional logic to perform a full enumeration,
using an internal table of descriptors. It also responds to a vendor specific “Firmware Download”
device request to load its internal RAM. Additionally, the added SIE functionality is made available
to the 8051. This saves 8051 code and processing time.

N

Throughout this manual, the SIE and its enhancements are referred to as the “USB Core.”

1.11 EZ-USB FX Microprocessor

The EZ-USB FX microprocessor is an enhanced 8051 core. Use of an 8051-compatible processor
makes available immediately extensive software support tools to the EZ-USB FX designer. This
enhanced 8051 core (described in Chapter 2. "EZ-USB FX CPU", Chapter 16. "8051 Introduction”,
Chapter 17. "8051 Architectural Overview", and Chapter 18. "8051 Hardware Description") has the
following features:

» 4 clocks/cycle, compared to the 12 clocks/cycle of a standard 8051:a 10X speed improve-
ment.

e 48-MHz clock.

» DMA for 48 MB/second memory-to-memory transfers. Dual data pointers for improved
XDATA access.

e Two UARTSs.

Page 1-10 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 38 of 435

=7 v

* Three counter-timers.

» Expanded interrupt system.

» 256 bytes of internal register RAM.

» Standard 8051 instruction set—if you know the 8051, you know EZ-USB FX.

The enhanced 8051 core uses on-chip RAM as program and data memoty, giving EZ-USB FX its
soft feature. Chapter 3. "EZ-USB FX Memory" describes the various memory options.

The 8051 communicates with the SIE using a set of registers, occupying the top of the on-chip
RAM address space. These registers are grouped and described by function in individual chapters
of this reference manual and summarized in register order in Chapter 15. "EZ-USB FX Registers".

The EZ-USB 8051 has two duties. First, it participates in the protocol defined in the Universal

Serial Bus Specification Version 1.1, “Chapter 9, USB Device Framework.” Thanks to EZ-USB FX
enhancements to the SIE and USB interface, the 8051 firmware associated with USB overhead is
simplified, leaving code space and bandwidth available for the 8051’s primary duty, to help imple-
ment your device. On the device side, abundant input/output resources are available, including /1O

ports, UARTS, and an IZC—compatibIe bus master controller. These resources are described in
Chapter 4. "EZ-USB FX Input/Output”

1.12 ReNumeration™

Because the EZ-USB FX chip is soft, it can take on the identities of multiple distinct USB devices.
The first device downloads your 8051 firmware and USB descriptor tables over the USB cable
when the peripheral device is plugged in. Once downloaded, another device comes on as a totally
different USB peripheral as defined by the downloaded information. This patented two-step pro-
cess, called ReNumeration™, happens instantly when the device is plugged in, with no hint that
the initial load step has occurred.

Chapter 5. "EZ-USB FX Enumeration & ReNumeration ™" describes this feature in detail, along
with other EZ-USB FX boot (startup) modes.

1.13 EZ-USB FX Endpoints

The USB Specification defines an endpoint as a source or sink of data. Since USB is a serial bus,
a device endpoint is actually a FIFO, which sequentially empties/fills with USB bytes. The host
selects a device endpoint by sending a 4-bit address and one direction bit. Therefore, USB can
uniquely address 32 endpoints, INO through IN15 and OUTO through OUT15.

Chapter 1. Introducing EZ-USB FX Page 1-11

Exhibit 2032 - Page 39 of 435

EZ-USB FX Technical Reference Manual

From the EZ-USB FX point of view, an endpoint is a buffer full of bytes received or held for trans-
mitted over the bus. The 8051 reads endpoint data from an OUT buffer, and writes endpoint data
for transmission over USB to an IN buffer.

There are four USB endpoint types: Bulk, Control, Interrupt, and Isochronous. These endpoint
types are described in the following paragraphs:

1.13.1 EZ-USB FX Bulk Endpoints

Bulk endpoints are unidirectional—one endpoint address per direction. Therefore, endpoint 2-IN is
addressed differently than endpoint 2-OUT. Bulk endpoints use maximum packet sizes (buffer
sizes) of 8, 16, 32, or 64 bytes. EZ-USB FX provides fourteen bulk endpoints, divided into seven
IN endpoints (endpoint 1-IN through 7-IN), and seven OUT endpoints (endpoint 1-OUT through 7-
OUT). Each of the fourteen endpoints has a 64-byte buffer.

Bulk data is available to the 8051 in RAM or as FIFO data, using a special EZ-USB FX Autopointer
(Chapter 6. "EZ-USB FX Bulk Transfers").

1.13.2 EZ-USB FX Control Endpoint Zero

Control endpoints transfer mission-critical control information to and from the USB device. The
USB Specification requires every USB device to have a default CONTROL endpoint, endpoint
zero. Device enumeration, the process that the host initiates when the device is first plugged in, is
conducted over endpoint zero. The host sends all USB requests over endpoint zero.

Control endpoints are bi-directional. If you have an endpoint 0 IN CONTROL endpoint, you auto-
matically have an endpoint 0 OUT endpoint. Only Control endpoints accept SETUP PIDs.

A CONTROL transfer consists of a two or three stage sequence:

« SETUP
* DATA (If needed)
« HANDSHAKE

Eight bytes of data in the SETUP portion of the CONTROL transfer have special USB significance,
as defined in the Universal Serial Bus Specification Version 1.1, “Chapter 9.” A USB device must
respond properly to the requests described in this chapter to pass USB compliance testing
(referred to as the USB “Chapter Nine Test”).

Endpoint zero is the only CONTROL endpoint in the EZ-USB FX chip. The 8051 responds to
device requests issued by the host over endpoint zero. The USB core is significantly enhanced to
simplify the 8051 code required to service these requests. Chapter 9. "EZ-USB FX Endpoint Zero"
provides a detailed roadmap for writing compliant USB Chapter 9 8051 code.

Page 1-12 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 40 of 435

=7 v

1.13.3 EZ-USB FX Interrupt Endpoints

Interrupt endpoints are almost identical to bulk endpoints. Fourteen EZ-USB FX endpoints (EP1-
EP7, IN, and OUT) may be used as interrupt endpoints. Interrupt endpoints have a maximum
packet size 64. They contain a “polling interval” byte in their descriptor to tell the host how often to
service them. The 8051 transfers data over interrupt endpoints in exactly the same way as for bulk
endpoints. Interrupt endpoints are described in Chapter 6. "EZ-USB FX Bulk Transfers."

1.13.4 EZ-USB FX Isochronous Endpoints

Isochronous endpoints deliver high bandwidth, time critical data over USB. Isochronous endpoints
are used to stream data to devices such as audio DACs, and from devices such as video cameras.
Time of delivery is the most critical requirement, and isochronous endpoints are tailored to this
requirement. Once a device has been granted an isochronous bandwidth slot by the host, it is
guaranteed the ability to send or receive its data every frame.

EZ-USB FX contains 16 isochronous endpoints, numbered 8-15 (8IN-15IN, and 80QUT-150UT).
1,024 bytes of FIFO memory are available to the 16 endpoints, and may be divided among them.
EZ-USB FX actually contains 2,048 bytes of isochronous FIFO memory to provide double-buffer-
ing. Using double buffering, the 8051 reads OUT data from isochronous endpoint FIFOs contain-
ing data from the previous frame, while the host writes current frame data into the other buffer.
Similarly, the 8051 loads IN data into isochronous endpoint FIFOs that will be transmitted over
USB during the next frame, while the host reads current frame data from the other buffer. At every
SOF the USB FIFOs and 8051 FIFOs switch, or ping-pong.

Isochronous transfers are described in Chapter 10. "EZ-USB FX Isochronous Transfers."

1.14 Interrupts

EZ-USB FX adds seven interrupt sources to the standard 8051 interrupt system. Three of the
added interrupts are available on device pins: INT4, INT5#, and INT6. The other four are used

internally: INT2 is used for all USB interrupts, INT3 is used by the IZC-compatibIe interface, INT4 is
used by the FIFOs and GPIF, and the remaining interrupt is used for remote wakeup indication.

The USB core automatically supplies jump vectors (Autovectors) for its USB and FIFO interrupts to
save the 8051 from having to test bits to determine the source of the interrupt. Each INT2 and
INT4 interrupt source has its own vector. When an interrupt requires service, the proper ISR (inter-
rupt service routine) is automatically invoked. Chapter 12. "EZ-USB FX Interrupts" describes the
EZ-USB FX interrupt system.

Chapter 1. Introducing EZ-USB FX Page 1-13

Exhibit 2032 - Page 41 of 435

EZ-USB FX Technical Reference Manual

1.15 Reset and Power Management

The EZ-USB FX chip contains four resets:

* Power-On-Reset (POR)

* USB bus reset

» 8051 reset

» USB Disconnect/Re-connect

The functions of the various EZ-USB FX resets are described in Chapter 13. "EZ-USB FX Resets"

A USB peripheral may be put into a low power state when the host signals a suspend operation.
The USB Specification states that a bus-powered device cannot draw more than 500 QA of current
from the VBUS wire while in suspend. The EZ-USB FX chip contains logic to turn off its internal
oscillator and enter a sleep state. A special interrupt, triggered by a wakeup pin or wakeup signal-
ing on the USB bus, starts the oscillator and interrupts the 8051 to resume operation.

Low power operation is described in Chapter 14. "EZ-USB FX Power Management".

1.16 Slave FIFOs

The EZ-USB FX contains four 64-byte FIFOs to provide a flexible, high-speed interface to a vari-
ety of peripherals. These FIFOs can be slave FIFOs that accept RD/WR strobes from an external
source, or the GPIF can be their bus master. See "GPIF (General Programmable Interface)"below
for more information. Two FIFOs are provided in the IN direction, and two FIFOs transfer data in
the OUT direction.

The FIFO module allows the EZ-USB FX to perform the following functions:

e ActasaFIFO or a small RAM on a microprocessor bus
* Create a 16-bit data path

» Transfer data at speeds up to 96 MB per second (burst).

1.17 GPIF (General Programmable Interface)

The GPIF is a programmable state machine that runs at 48 MHz. It can be used to generate cus-
tom bus waveforems and control the FIFOs. It has four programs of seven steps each that execute

Page 1-14 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 42 of 435

=7 v

at 48 MHz. The GPIF program can modify the CTLO-5 lines, branch on the RDYO0-5 inputs, and
control FIFO data movement.

The GPIF is used to implement many standard interfaces available for the FX, including:
« IDE (ATAPI)
* PC parallel port (EPP)
» Utopia

The GPIF is fully described in Chapter 8. "General Programmable Interface (GPIF)."

1.18 EZ-USB FX Product Family

The EZ-USB FX family is available in various pinouts to serve different system requirements and
costs. Table 1-2 shows the feature set for each member of the EZ-USB FX family.

Table 1-2. EZ-USB FX Family

Part Number Package Ram Sulp?p?ort I/O | FIFO Width | Addr/Data Bus
CY7C64601-52NC 52-pin PQFP 4K No 16 8 Bits No
CY7C64603-52NC 52-pin PQFP 8K No 18 8 Bits No
CY7C64613-52NC 52-pin PQFP 8K Yes 18 8 Bits No
CY7C64603-80NC 80-pin PQFP 8K No 32 16 Bits No
CY7C64613-80NC 80-pin PQFP 8K Yes 32 16 Bits No
CY7C64603-128NC | 128-pin PQFP 8K No 40 16 Bits Yes
CY7C64613-128NC | 128-pin PQFP 8K Yes 40 16 Bits Yes

Chapter 1. Introducing EZ-USB FX Page 1-15

Exhibit 2032 - Page 43 of 435

EZ-USB FX Technical Reference Manual

Page 1-16 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 44 of 435

i
JII

- -~

n"ﬁ

"YPR ESS

Chapter 2. EZ-USB FX CPU

2.1 Introduction

The EZ-USB FX built-in microprocessor, an enhanced 8051 core, is fully described in Chapter 16.
"8051 Introduction" , Chapter 17. "8051 Architectural Overview"and Chapter 18. "8051 Hardware
Description."” This chapter introduces the processor, its interface to the USB core, and describes
architectural differences from a standard 8051.

2.2 8051 Enhancements

The enhanced 8051 core uses the standard 8051 instruction set. Instructions execute faster than
with the standard 8051 due to two features:

» Wasted bus cycles are eliminated. A bus cycle uses four clocks, as compared to 12 clocks
with the standard 8051.

e The 8051 runs at 24 MHz or 48 MHz.

In addition to speed improvement, the enhanced 8051 core also includes architectural enhance-
ments:

» A second data pointer

* Asecond UART

* Athird, 16-bit timer (TIMER2)

* A high-speed memory interface with a non-multiplexed 16-bit address bus
» Eight additional interrupts (INT2-INT6, WAKEUP, T2, and UART1)

* Variable MOVX timing to accommodate fast/slow RAM peripherals

» 3.3V operation.

Chapter 2. EZ-USB FX CPU Page 2--1

Exhibit 2032 - Page 45 of 435

EZ-USB FX Technical Reference Manual

2.3 EZ-USB FX Enhancements

EZ-USB FX provides additional enhancements outside the 8051. These include:
 DMA Module
* Fast external transfers (Autopointer, DMAEXTFIFO)
» Vectored USB interrupts (Autovector)
* Separate buffers for SETUP and DATA portions of a CONTROL transfer

* Breakpoint Facility.

2.4 EZ-USB FX Register Interface

The 8051 communicates with the USB core through a set of memory mapped registers. These
registers are grouped as follows:

* Endpoint buffers and FIFOs
* Slave FIFOs

+ 8051 control

* 1/O ports

» DMAEXTFIFO

« I1°C-Compatible Controller
* Interrupts

* USB Functions

- GPIF

These registers and their functions are described throughout this manual. A full description of
every register and bit appears in Chapter 15. "EZ-USB FX Registers."

Page 2-2 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 46 of 435

=7 v

2.5 EZ-USB FX Internal RAM

FF
UpE;{eiZS SFR Space
Indirect Addr Direct Addr
80
TF Lower 128
bytes
00 Direct Addr

Figure 2-1. 8051 Registers

Like the standard 8051, the EZ-USB 8051 core contains 128 bytes of register RAM at address 00-
7F, and a partially populated SFR register space at address 80-FF. An additional 128 indirectly
addressed registers (sometimes called “IDATA") are also available at address 80-FF.

All internal EZ-USB FX RAM, which includes program/data memory, bulk endpoint buffer memory,
and the EZ-USB FX register set, is addressed as add-on 8051 memory. The 8051 reads or writes
these bytes as data using the MOV X (move external) instruction. Even though the MOVX instruc-
tion implies external memory, the EZ-USB FX RAM and register set is actually inside the EZ-USB
FX chip. External memory attached to the CY7C646x3-128NC address and data busses can also
be accessed by the MOVX instruction. The USB core encodes its memory strobe and select sig-
nals (RD#, WR#, CS#, and OE#) to eliminate the need for external logic to separate the internal
and external memory spaces.

2.6 1/O Ports

A standard 8051 communicates with its 1/O ports 0-3 through four Special Function Registers
(SFRs). The USB core implements I/O ports differently than a standard 8051, as described in
Chapter 4. "EZ-USB FX Input/Output.” The USB core implements a flexible 1/0 system that is con-
trolled via SFRs or viathe EZ-USB FX register set. Although 8051 SFR bits may be used to control
the 1/O pins, their addresses and functions are different than in a standard 8051. Each EZ-USB FX
I/0 pin functions identically, having the following resources:

e Anoutput latch (OUTn). Used when the pin is an output port.

* Aregister (PINSn) that indicates the state of the I/O pins, regardless of its configuration
(input or output).

* An output enable register (OEn) that causes the 1/0 pin to be driven from the output latch.

Chapter 2. EZ-USB FX CPU Page 2-3

Exhibit 2032 - Page 47 of 435

EZ-USB FX Technical Reference Manual

Several registers control whether the pin is a port pin or a special function pin. These registers
include PORTNCFG, IFCONFIG, PORTACF2, and PORTCGPIF. See "Port Configuration Tables"
in Chapter 4. "EZ-USB FX Input/Output”.

2.7 Interrupts

All standard 8051 interrupts are supported in the enhanced 8051 core. Table 2-1 shows the exist-
ing and added 8051 interrupts, and indicates how the added ones are used.

Table 2-1. EZ-USB FX Interrupts

Standard Enhanced
8051 8051 Used As
Interrupts Interrupts
INTO Device Pin INTO#
INT1 Device Pin INT1#
Timer O Internal, Timer O
Timer 1 Internal, Timer 1
Tx0 & Rx0 Internal, UARTO
INT2 Internal, USB
INT3 Internal, 12C-compati-
ble Controller
INT4 Internal, FIFO Interrupt
INTS Device Pin, PB5/INT5#
INT6 Device Pin, PB6/INT6
WAKEUP Device Pin, USB
WAKEUP#
Tx1 & Rx1 Internal, UART1
Timer 2 Internal, Timer 2

The EZ-USB FX chip uses 8051 INT2 for 22 different USB interrupts: 17 bulk endpoints plus SOF,
Suspend, SETUP Data, SETUP Token, and USB Bus Reset.To help the 8051 determine which
interrupt is active, the USB core provides a feature called Autovectoring. The core inserts an
address byte into the low byte of the 3-byte jump instruction found at the 8051 INT2 vector
address. This second level of vectoring automatically transfers control to the appropriate USB
ISR. The Autovector mechanism, as well as the EZ-USB FX interrupt system is the subject of
Chapter 12. "EZ-USB FX Interrupts."

Page 2-4 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 48 of 435

=7 v

2.8 Power Control

The USB core implements a power-down mode that allows it to be used in USB bus-powered
devices that must draw no more than 500 QA when suspended. Power control is accomplished
using a combination of 8051 and USB core resources. The mechanism by which EZ-USB FX pow-
ers down for suspend, and then re-powers to resume operation, is described in detail in Chapter
14. "EZ-USB FX Power Management.”

EZ-USB FX responds to USB suspend using three 8051 resources: the idle mode and two inter-
rupts. A USB suspend operation is indicated by a lack of bus activity for 3 ms. The USB core
detects this, and asserts an interrupt request via the USB interrupt (8051 INT2). The ISR (Interrupt
Service Routine) turns off external sub-systems that draw power. When ready to suspend opera-
tion, the 8051 sets an SFR bit, PCON.0. This bit causes the 8051 to suspend, waiting for an inter-
rupt.

When the 8051 sets PCON.O0, a control signal from the 8051 to the USB core causes the core to
shut down the 12-MHz oscillator and internal PLL. This stops all internal clocks to allow the USB
core and 8051 to enter a very low power mode.

The suspended EZ-USB FX chip can be awakened two ways: USB bus activity may resume, or an
EZ-USB FX pin (WAKEUP#) can be asserted to activate a USB Remote Wakeup. Either event
triggers the following chain of events:

» The USB core re-starts the 12-MHz oscillator and PLL, and waits for the clocks to stabi-
lize.

* The USB core asserts a high-priority 8051 interrupt to signal a resume interrupt.

» The 8051 vectors to the resume ISR and, upon completion, resumes executing code at the
instruction following the instruction that set the PCON.0 bit to 1.

2.9 SFRs

The EZ-USB FX family was designed to keep 8051 coding as standard as possible, to allow easy
integration of existing 8051 software development tools. The added 8051 SFR registers and bits
are summarized in Table 2-2.

Chapter 2. EZ-USB FX CPU Page 2-5

Exhibit 2032 - Page 49 of 435

EZ-USB FX Technical Reference Manual

Table 2-2. Added Registers and Bits

Enhaﬁgzinents SFR Addr Function
Dual Data Pointers DPLO 0x82 Data Pointer O Low Addr
DPHO 0x83 Data Pointer 0 High Addr
DPL1 0x84 Data Pointer 1 Low Addr
DPH1 0x85 Data Pointer 1 High Addr
DPS 0x86 Data Pointer Select (LSB)
MPAGE 0x92 | Replaces standard 8051 Port 2 for indirect external data memory
addressing using RO or R1
Timer 2 T2CON.6-7 | 0xC8 Timer 2 Control
RCAP2L | OxCA T2 Capture/Reload Value L
RCAP2H | 0xCB T2 Capture/Reload Value H
T2L 0xCC T2 Count L
T2H 0xCD T2 CountH
IE.5 0xA8 ET2-Enable T2 Interrupt Bit
IP.5 0xB8 PT2-T2 Interrupt Priority Control
UART1 SCON1.0-1 | 0xCO Serial Port 1 Control
SBUF1 0xC1 Serial Port 1 Data
IE.6 0xA8 ES1-SIO1 Interrupt Enable Bit
IP.6 0xB8 PS1-SIO1 Interrupt Priority Control
EICON.7 | 0xD8 SMOD1-SIO1 Baud Rate Doubler
Interrupts
INT2-INT5 EXIF 0x91 INT2-INT5S Interrupt Flags
EIE OXE8 INT2-INT5 Interrupt Enables
EIP.0-3 OxF8 INT2-INT5 Interrupt Priority Control
INT6 EICON.3 | OxD8 INT6 Interrupt Flag
EIE.4 OxES8 INT6 Interrupt Enable
EIP.4 OxF8 INT6 Interrupt Priority Control
WAKEUP# EICON.4 0xD8 WAKEUP# Interrupt Flag
EICON.5 | OxD8 WAKEUP# Interrupt Enable
Expanded SFRs
I/O Registers IOA 0x80 Input/Output A
IOB 0x90 Input/Output B
I0C 0xA0 Input/Output C
IOD 0xBO Input/Output D
IOE 0xB1 Input/Output E
Interrupt Clears INT2CLR | OxAl Interrupt 2 Clear
INTACLR | OxA2 Interrupt 4 Clear
Enables SOEA 0xB2 Output Enable A
SOEB 0xB3 Output Enable B
SOEC 0xB4 Output Enable C
Page 2-6 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 50 of 435

S
=i voness

Enhaﬁ?:z:nents SFR Addr Function
SOED 0xB5 Output Enable D
SOEE 0xB6 Output Enable E
Idle Mode PCON.O 0x87 EZ-USB FX Power Down (Suspend)

Members of the EZ-USB FX family that supply pins to expand 8051 memory provide separate non-
multiplexed 16-bit address and 8-bit data busses. This differs from the standard 8051, which multi-
plexes eight device pins between three sources: I/O port 0, the external data bus, and the low byte
of the address bus. A standard 8051 system with external memory requires a de-multiplexing
address latch, strobed by the 8051 ALE (Address Latch Enable) pin. The external latch is not
required by the non-multiplexed EZ-USB FX chip, and no ALE signal is provided. In addition to
eliminating the customary external latch, the non-multiplexed bus saves one cycle per memory
fetch cycle, further improving 8051 performance.

2.10 Internal Bus

The typical 8051 user must choose between using Port 0 as a memory expansion port or as an 1/0
port. The CY7C646x3-128NC provides a separate I/0 system with its own control registers (in
external memory space), and provides the I/O port signals on dedicated (not shared) pins. This
allows the external data bus to expand memory without sacrificing 1/0 pins.

The 8051 is the sole master of the memory expansion bus. It provides read and write signals to
external memory. The address bus is output-only.

The DMAEXTFIFO register provides legacy support for invoking the fast transfer mode available
on the EZ-USB Series 2100. Refer to "Dummy Register"in Chapter 11. "EZ-USB FX DMA System"
for more information about this register.

2.11 Reset

The internal 8051 RESET signal is not directly controlled by the EZ-USB FX RESET pin. Instead, it
is controlled by an EZ-USB FX register bit accessible to the USB host. When the EZ-USB FX chip
is powered, the 8051 is held in reset. Using the default USB device (enumerated by the USB core),
the host downloads code into RAM. Finally, the host clears an EZ-USB FX register bit that takes
the 8051 out of reset.

The EZ-USB FX family also operates with external non-volatile memory, in which case the 8051
exits the reset state automatically at power-on. The various EZ-USB FX resets and their effects
are described in Chapter 13. "EZ-USB FX Resets."

Chapter 2. EZ-USB FX CPU Page 2-7

Exhibit 2032 - Page 51 of 435

EZ-USB FX Technical Reference Manual

Page 2-8 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 52 of 435

__h?_

L

-
-
—]
—_——

= 4 CYPF{ ESS

Chapter 3. EZ-USB FX Memory

3.1 Introduction

EZ-USB FX devices divide RAM into two regions: one for code and data, and the other for USB
buffers and control registers.

7FFF

7800

27FF

2000
1FFF

1B40

1B3F

0000

Registers/Bulk Buffers

! Data (RD/WR) RAM
] If ISODISAB=1

USB Control Registers
(192 bytes)

Registers/Bulk Buffers

16 x 64-byte
Bulk Endpoint Buffers
(1,024 bytes)

Data (RD/WR) RAM
Code(PSEN) RAM if
EA=0
(6,976 bytes)

Control Registers
(832 Bytes)

1FFF/TFFF

1F40/7F40
1F3F/7F3F

1B40/7B40
7B3F

7800

Figure 3-1. EZ-USB FX 8-KB Memory Map - Addresses are in Hexadecimal

Chapter 3. EZ-USB FX Memory

Exhibit 2032 - Page 53 of 435

Page 3-1

EZ-USB FX Technical Reference Manual

FFF USB Control Registers TFRF
Registers/Bulk Buffers (192 bytes) 7F40
7800 7F3F
16 x 64-byte
Bulk Endpoint Buffers
(1,024 bytes)

7B40
7B3F

Control Registers
OFFF (832 bytes)
Code(PSEN) and
Data (RD/WR) RAM 7800
(4,096 bytes)

0000

Figure 3-2. EZ-USB FX 4-KB Memory Map - Addresses are in Hexadecimal

3.2 8051 Memory

Figure 3-1 illustrates the two internal EZ-USB FX RAM regions. 6,976 bytes of general-purpose

RAM occupy addresses 0x0000-0x1B3F. This RAM is loadable by the USB core or IZC—compati—
ble bus EEPROM, and contains 8051 code and data.

The EZ-USB FX EA (External Access) pin controls the placement of the bottom segment of code
(PSEN) memory — inside (EA=0) or outside (EA=1) the EZ-USB FX chip. If the EA pinis tied low,
the USB core internally ORs the two 8051 read signals PSEN and RD for this region, so that code
and data share the 0x0000-0x1B3F memory space. If EA=1, all code (PSEN) memory is external.

3.2.1 About 8051 Memory Spaces

The 8051 partitions its memory spaces into code memory and data memory. The 8051 reads
code memory using the signal PSEN# (Program Store Enable), reads data memory using the sig-
nal RD# (Data Read), and writes data memory using the signal WR# (Data Write). The 8051
MOVX (move external) instruction generates RD# or WR# strobes.

On EZ-USB FX, PSEN# is a dedicated pin, while the RD# and WR# signals share pins with two 10
port signals: PC7/RD and PC6/WR. Therefore, if expanded memory is used, the port pins PC7
and PC6 are not available to the system.

1,024 bytes of RAM at 0x7B40-0x7F3F implement the sixteen bulk endpoint buffers. 192 addi-

tional bytes at 0x7F40-0x7FFF contain the USB control registers. The 8051 reads and writes this
memory using the MOVX instruction. In the 8-KB RAM version of EZ-USB FX, the 1,024 bulk end-
point buffer bytes at 0x7B40-0x7F3F also appear at 0xX1B40-0Ox1F3F. This aliasing allows unused

Page 3-2 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 54 of 435

C
=7 v

bulk endpoint buffer memory to be added contiguously to the data memory, as illustrated Figure 3-
3. The memory space at 0x1B40-Ox1FFF should not be used.

Even though the 8051 can access EZ-USB FX endpoint buffers at either 0x1B40 or 0x7B40, write
the firmware to access this memory only at 0x7B40-0x7FFF to maintain compatibility with future
versions of EZ-USB FX that contain more than 8 KB of RAM. Future versions will have the bulk
buffer space at 0x7B40-0x7F3F, only.

1F40
1F00 EPOIN
1ECO EPOOUT
1E80 EP1IN
1E40 EP10UT
1E00 EP2IN
1DC0 EP20UT
1D80 EP3IN
1D40 EP30UT
1D00 EP4IN
1CCo EP40UT
1C80 EP5IN
140 EP50UT
1C00 EP6IN
1BCO EPO6UT
1B80 EP7IN
1B40 EPO70UT
1B3F
Code/Data
RAM
0000

Figure 3-3. Unused Bulk Endpoint Buffers (Shaded) Used as Data Memory

In the example shown in Figure 3-3, only endpoints 0-IN through 3-IN are used for the USB func-
tion, so the data RAM (shaded) can be extended to Ox1D7F.

If an application uses none of the 16 EZ-USB FX isochronous endpoints, the 8051 can set the
ISODISAB bit in the ISOCTL register to disable all 16 isochronous endpoints and make the 2-KB of
isochronous FIFO RAM available as 8051 data RAM at 0x2000-0x27FF. 8051 code cannot run
in this memory region.

Setting ISODISAB=1 is an all or nothing choice, as all 16 isochronous endpoints are disabled. An
application that sets this bit must never attempt to transfer data over an isochronous endpoint.

The memory map figures in the remainder of this chapter assume that ISODISAB=0, the default
(and normal) case.

Chapter 3. EZ-USB FX Memory Page 3-3

Exhibit 2032 - Page 55 of 435

EZ-USB FX Technical Reference Manual

3.3 Expanding EZ-USB FX Memory

The 128-pin EZ-USB FX package provides a 16-bit address bus, an 8-bit bus, and memory control
signals PSEN#, RD#, and WR#. These signals are used to expand EZ-USB FX memory.

Inside EZ-USB Outside EZ-USB

FFFF

External

Data
Memory
(RD,WR)
External
Code

i
7800 Registers(RD,WR) (Note 1)

External

Data

Memory

(RD, WR)
2000
1FFF
1F3F Unused Bulk Buffers
1B40 (IZD,WR) (Note 1)

Code & Data
(Note 2)

0000 (PSEN,RD,WR)

Note 1: OK to populate data memory here--RD#, WR#, CS# and OE# pins are inactive.
Note 2: OK to populate code memory here--no PSEN# strobe is generated.

Figure 3-4. EZ-USB FX Memory Map with EA=0

Figure 3-4 shows that when EA=0, the code/data memory is internal at 0x0000-0x1B40. External
code memory can be added from 0x0000-OxFFFF, but it appears in the memory map only at
0x1B40-OxFFFF. Addressing external code memory at 0x0000-0x1B3F when EA=0 causes the
USB core to inhibit the #PSEN strobe. This allows program memory to be added from 0x0000-
OxFFFF without requiring decoding to disable it between 0x0000 and Ox1B3F.

Page 3-4 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 56 of 435

=7 v

The internal block at 0x7B40-0x7FFF (labeled “Registers”) contains the bulk buffer memory and
EZ-USB FX control registers. As previously mentioned, they are aliased at 0x1B40-0x1FFF to
allow adding unused bulk buffer RAM to general-purpose memory. 8051 code should access this
memory only at the 0x7B40-0x7BFF addresses. External RAM may be added from 0x0000 to
OXFFFF, but the regions shown by Note 1 in Figure 3-4 are ignored; no external strobes or select
signals are generated when the 8051 executes a MOVX instruction that addresses these regions.

3.4 CS# and OE# Signals

The USB core gates the standard 8051 RD# and WR# signals to exclude selection of external
memory that exists internal to the EZ-USB FX part. The PSEN# signal is also available on a pin
for connection to external code memory.

Some 8051 systems implement external memory that is used as both data and program memory.
These systems must logically OR the PSEN# and RD# signals to qualify the chip enable and out-
put enable signals of the external memory. To save this logic, the USB core provides two addi-
tional control signals, CS# and OE#. The equations for these signals are as follows:

* CS# goes low when RD#, WR#, or PSEN# goes low.
* OE# goes low when RD# or PSEN# goes low.

Because the RD#, WR#, and PSEN# signals are already qualified by the addresses allocated to
external memory, these strobes are active only when external memory is accessed.

Chapter 3. EZ-USB FX Memory Page 3-5

Exhibit 2032 - Page 57 of 435

EZ-USB FX Technical Reference Manual

- Inside EZ-USB Outside EZ-USB
External
Data
Memory
(RD,WR)
External
8000 Mi?ndoery
Registers(RD,WR Note 1
7840 gisters(RD, WR) (Note 1) een)
External
Data
Memory
(RD, WR)
2000
LFFF
1F3F Unused Bulk Buffers
1840 (RD,WR) (Note 1)
Data (RD,WR)
0000

Note 1: OK to populate data memory here--RD#, WR#, CS# and OE# are inactive.
Figure 3-5. EZ-USB FX Memory Map with EA=1

When EA=1 (Figure 3-5), all code (PSEN) memory is external. All internal EZ-USB FX RAM is
data memory. This gives the user over 6-KB of general-purpose RAM, accessible by the MOVX
instruction.

NG

Figure 3-4 and Figure 3-5 assume that the EZ-USB FX chip uses isochronous endpoints, and
therefore that the ISODISAB bit (ISOCTL.0) is LO. If ISODISAB=1, additional data RAM appears
internally at 0x2000-0x27FF, and the RD#, WR#, CS#, and OE# signals are modified to exclude
this memory space from external data memory.

Page 3-6 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 58 of 435

E
—— jr_‘z'f_
=7 C

YPRESS

Chapter 4. EZ-USB FX Input/Output

4.1 Introduction

The EZ-USB FX chip provides two input-output systems:
» A set of programmable I/O pins

« A programmable 1°C-compatible Controller

This chapter describes the programmable I/O pins, and shows how they are shared by a variety of
8051 and EZ-USB FX alternate functions, such as UART and timer and interrupt signals. This

chapter provides both the programming information for the 8051 1°C-compatible interface, and the

operating details of the I2C—compatible boot loader. The role of the boot loader is described in
Chapter 5. "EZ-USB FX Enumeration & ReNumeration™".

The I2C—compatible controller uses the SCL and SDA pins, and performs two functions:

» General-purpose 8051 use
» Boot loading from an EEPROM.
A

Pullup resistors are required on the SDA and SCL lines, even if nothing is connected to the 1°C-
compatible bus. Each line should be pulled-up to Vcc through a 2.2K ohm resistor.

Chapter 4. EZ-USB FX Input/Output Page 4-1

Exhibit 2032 - Page 59 of 435

EZ-USB FX Technical Reference Manual

4.2 1I/O Ports

o |

ouT rog

PINS I

Figure 4-1. EZ-USB FX Input/Output Pin

The EZ-USB FX implements its general purpose 1/O ports differently than a standard 8051. Most
of the port I/O bits (PINSn and OUTn) are available in bit addressable SFR space or in XDATA
space. The OEn bits are also available via SFR registers or XDATA space. See Figure 4-6 for
more information.

Figure 4-1 shows the basic structure of an EZ-USB FX /O pin. Forty I/O pins are grouped into five
8-bit ports: PORTA, PORTB, PORTC, PORTD, and PORTE. The CY7C646x3-128NC brings out
all five port pins. The CY7C646x3-80NC brings out all port pins for PORTA, PORTB, PORTC, and
PORTD. The CY7C646x3-52NC brings out two PORTA pins and all pins of PORTB and PORTC.
The 8051 accesses I/O pins using the three control bits shown in Figure 4-1: OE, OUT, and PINS.
The OUT bit writes output data to a register. The OE bit turns on the output buffer. The PINS bit
indicates the state of the pin. Section 4.12, "SFR Addressing" explains how this basic structure is
enhanced to add SFR access to the I/O pins.

A

If you are using a small package version of EZ-USB FX, it is important to recognize that I/O ports
exist inside the part that are not pinned out. Because 1/O ports power-up as inputs, the 8051 code
should initialize all of the unused ports as outputs to prevent floating internal nodes. Also, users of
the 52-pin package should set IFCONFIG.7 (register 784A.7) to 1 to drive other internal nodes to
their lowest power states.

To configure a pin as an input, the 8051 sets OE=0 to turn off the output buffer. To configure a pin
as an output, the 8051 sets OE=1 to turn on the output buffer, and writes data to the OUT register.
The PINS bit reflects the actual pin value, regardless of the value of OE.

A fourth control bit (in PORTACFG, PORTBCFG, PORTCCFG registers) determines whether a
port pin is general-purpose Input/Output (GP10), as shown in Figure 4-1, or connected to an alter-
nate 8051 or EZ-USB FX function. Each bit of PORTA, PORTB, and PORTC has a corresponding
control bitin PORTACFG, PORTBCFG, and PORTCCEFG, respectively. Figure 4-1 shows the reg-
isters and bits associated with the I/O ports shown in Table 4-1 through Table 4-4.

Page 4-2 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 60 of 435

=7 v

Depending on whether the alternate function is an input or output, the 1/O logic is slightly different,
as shown in Figure 4-2 (output) and Figure 4-3 (input).

Alternate Function Output H(| Alternate Function Output ‘—[>7
OE
L
ouT reg {ﬁ‘ ouT reg ‘
pins | < P | <

PORTCFG=0 (port) PORTCFG=1 (alternate function)

&

Figure 4-2. Alternate Function is an OUTPUT

In Figure 4-2, when PORTCFG=0, the I/O port is selected. In this case the alternate function
(shaded) is disconnected and the pin functions exactly as shown in

Figure 4-1. When PORTCFG=1, the alternate function is connected to the I/O pin and the output
register and buffer are disconnected. Note that the 8051 can still read the state of the pin, and thus
the alternate function value.

Alternate Function Input 0—<F ‘ Alternate Function Input Mﬁ
[oE | L OE X I
L
outT reg {ﬁ— ouT reg @
PINS <l| PINS <]I

PORTCFG=0 (port) PORTCFG=1 (alternate function)

&

Figure 4-3. Alternate Function is an INPUT

In Figure 4-3, when PORTCFG=0, the I/O port is selected. This is the general I/O port shown in
Figure 4-1, with one important difference—the alternate function is always listening. Whether the
port pin is set for output or input, the pin signal also drives the alternate function. 8051 firmware
should ensure that if the alternate function is not used (if the pin is GPIO only), the alternate input
function is disabled in the 8051 Special Function Register (SFR) space.

For example, suppose the PB6/INT6 pin is configured for PB6. The pin signal is also routed to
INT6. If INT6 is not used by the application, it should not be enabled. Alternatively, enabling INT6
could be useful, allowing 1/0 bit PB6 to trigger an interrupt.

Chapter 4. EZ-USB FX Input/Output Page 4-3

Exhibit 2032 - Page 61 of 435

EZ-USB FX Technical Reference Manual

When PORTXCFG=1, the alternate function is selected. The output register and buffer are discon-
nected. The PINS bit can still read the pin, and thus the input to the alternate function.

4.3 Input/Output Port Registers

The port control bits (OUT, OE, and PINS) are contained in the six registers shown in Figures Fig-
ure 4-4 through Figure 4-6. Section 4.12, "SFR Addressing” explains how this basic structure is
enhanced to add SFR access to the I/O pins.

The OUTNn registers provide the data that drives the port pin when OE=1 and the pin is configured
for port output. If the port pin is selected as an input (OE=0), the value stored in the corresponding
OUTn bit is stored in an output latch but not used.

The OE registers control the output enables on the tri-state drivers connected to the port pins,
unless the corresponding PORTNCFG bit is set to a “1.” When a PORTnCFG bit is settoa “1”, the
value of the corresponding OE bit has no effect upon the port pin or the alternate function input.

When the corresponding PORTNCFG bit is “0” and OE="1", the corresponding value of OUTn is
output to the pin.

When the corresponding PORTNCFG bit is “0” and OE="0", the corresponding value of OUTn is
not output to the pin; it is tri-stated.

Page 4-4 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 62 of 435

=7 v

OUTA Port A Outputs 7F96
b7 b6 b5 b4 b3 b2 b1 b
OUTA7 OUTAG OUTAS OUTA4 OUTAS OUTA2 OUTAL OUTAO
RIW RIW RIW RIW RIW RIW RIW RIW
X X X X X X X X
OuUTB Port B Outputs 7F97
b7 b6 b5 b4 b3 b2 b1 b0
ouTB7 ouTB6 OuUTB5 ouTB4 ouTB3 ouTB2 ouTB1 OuUTBO
RIW RIW RIW RIW RIW RIW RIW RIW
X X X X X X X X
OuUTC Port C Outputs 7F98
b7 b6 b5 b4 b3 b2 b1 b0
OouTC7 OUTC6 OUTC5 OouTC4 OUTC3 OouTC2 OUTC1 OUTCO
RIW RIW RIW RIW RIW RIW RIW RIW
X X X X X X X X
OUTD Port D Outputs 7841
b7 b6 b5 b4 b3 b2 b1 b0
OuTD7 OUTD6 OUTD5 OuUTD4 OuUTD3 OuUTD2 OuTD1 OuUTDO
RIW RIW RIW RIW RIW RIW RIW RIW
X X X X X X X X
OUTE Port E Outputs 7845
b7 b6 b5 b4 b3 b2 b1 b0
OUTE7Y OUTE6 OUTES OUTE4 OUTE3 OUTE2 OUTE1 OUTEO
RIW RIW RIW RIW RIW RIW RIW RIW
X X X X X X X X
Figure 4-4. Output Port Configuration Registers
Chapter 4. EZ-USB FX Input/Output Page 4-5

Exhibit 2032 - Page 63 of 435

EZ-USB FX Technical Reference Manual

PINSA Port A Pins 7F99
b7 b6 b5 b4 b3 b2 bl b0
PINA7 PINAG6 PINAS PINA4 PINA3 PINA2 PINA1 PINAO
R R R R R R R R
X X X X X X X X
PINSB Port B Pins 7TF9A
b7 b6 b5 b4 b3 b2 bl b0
PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINBO
R R R R R R R R
X X X X X X X X
PINSC Port C Pins 7F9B
b7 b6 b5 b4 b3 b2 bl b0
PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINCO
R R R R R R R R
X X X X X X X X
PINSD Port D Pins 7842
b7 b6 b5 b4 b3 b2 bl b0
PIND7 PINDG6 PIND5 PIND4 PIND3 PIND2 PIND1 PINDO
R R R R R R R R
X X X X X X X X
PINSE Port E Pins 7846
b7 b6 b5 b4 b3 b2 bl b0
PINE7 PINE6 PINES PINE4 PINE3 PINE2 PINE1 PINEO
R R R R R R R R
X X X X X X X X
Figure 4-5. PINSn Registers
Page 4-6

EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 64 of 435

=7 v

The PINSn registers contain the current value of the port pins, whether they are selected as 1/0
ports or as alternate functions.

OEA Port A Output Enable 7F9C
b7 b6 b5 b4 b3 b2 b1 bo
OEA7 OEAG6 OEAS5 OEA4 OEA3 OEA2 OEA1 OEAO0
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
OEB Port B Output Enable 7F9D
b7 b6 b5 b4 b3 b2 b1 bo
OEB7 OEB6 OEB5 OEB4 OEB3 OEB2 OEB1 OEBO
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
OEC Port C Output Enable 7F9E
b7 b6 b5 b4 b3 b2 b1 bo
OEC7 OEC6 OEC5 OEC4 OEC3 OEC2 OEC1 OECO
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
OED Port D Output Enable 7843
b7 b6 b5 b4 b3 b2 b1 bo
OED7 OED6 OED5 OED4 OED3 OED2 OED1 OEDO
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
OEE Port E Output Enable 7847
b7 b6 b5 b4 b3 b2 b1 bo
OEE7 OEE6 OEE5 OEE4 OEE3 OEE2 OEE1 OEEO
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Figure 4-6. Output Enable Registers
Chapter 4. EZ-USB FX Input/Output Page 4-7

Exhibit 2032 - Page 65 of 435

EZ-USB FX Technical Reference Manual

EZ-USB FX ports A, B, and C have individually selectable, alternate functions for each port pin.
Alternate functions, such as UART TxD and RxD, are selected on a pin-by-pin basis for these
ports using control bits in registers PORTACFG, PORTBCFG, and PORTCCFG.

Although ports D and E can be used for purposes other than I/O pins, they do not have corre-
sponding, alternate function configuration registers like ports A-C (see Section 15.23, "PORTA
and PORTC Alternate Configurations"). Instead, their alternate functions are selected in 8-bit
groups using a single-interface configuration register called IFCONFIG (see Section 15.22, "Inter-
face Configuration"). Two bits, IF[1..0], select four configurations for ports D and E.

4.4 Port Configuration Tables

Page 4-8

Table 4-1. Port A Configuration

PORTA Bit 0
IFCONFIG.3=0 IFCONFIG.3=1
PORT- PORT-
ACFG.0=0 ACFG.0=1
Port pin PAO TOout GSTATEJ(]
I/0 0] @)
PORTA Bit 1
IFCONFIG.3=0 IFCONFIG.3=1
PORT- PORT-
ACFG.1=0 ACFG.1=1
Port pin PAl Tlout GSTATE[1]
I/0 0] 0]
PORTA Bit 2
IFCONFIG.3=0 IFCONFIG.3=1
PORT- PORT-
ACFG.2=0 ACFG.2=1
Port pin PA2 OE# GSTATE[2]
I/0 0] 0]
PORTA Bit 3
PORT- PORTACFG.3=1
ACFG.3=0
Port pin PA3 CS#
I/0 0]

EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 66 of 435

Table 4-1. Port A Configuration

S
=i voness

PORTA Bit 4
PORT- PORTACFG.4=1
ACFG.4=0
PORTACF2.4=0 PORTACF2.4=1
IFCON- IFCON-
FIG[1..0]=10 FIG[1..0]=11
Port pin PA4 FWR# RDY4 SLWR
I/0 0] I I
PORTA Bit 5
PORT- PORTACFG.5=1
ACFG.5=0
PORTACF2.5=0 PORTACF2.5=1
IFCON- IFCON-
FIG[1..0]=10 FIG[1..0]=11
Port pin PA5S FRD# RDY5 SLRD
I/0 0] I I
PORTA Bit 6
PORT- PORTACFG.6=1
ACFG.6=0
Port pin PAG6 RxDOout
I/0 0]
PORTA Bit 7
PORT- PORTACFG.7=1
ACFG.7=0
Port pin PA7 RxDlout
I/0 0]
Table 4-2. Port B Configuration
PORTB Bit 0
IFCONFIG[1..0]=00 IFCON- IFCON- IFCON-
FIG[1..0]=01 FIG[1..0]=10 FIG[1..0]=11
PORTB- PORTB-
CFG.0=0 CFG.0=1
Port pin PBO T2 D[0] GDA[0] AFI[0]
I/0 I I/0 I/0 I/0
PORTB Bit 1
IFCONFIG[1..0]=00 IFCON- IFCON- IFCON-
FIG[1..0]=01 FIG[1..0]=10 FIG[1..0]=11
PORTB- PORTB-
CFG.1=0 CFG.1=1
Port pin PB1 T2EX D[1] GDA[]] AFI[1]
I/0 I I/0 I/0 I/0

Chapter 4. EZ-USB FX Input/Output

Exhibit 2032 - Page 67 of 435

Page 4-9

EZ-USB FX Technical Reference Manual

Table 4-2. Port B Configuration

PORTB Bit 2
IFCONFIG[1..0]=00 IFCON- IFCON- IFCON-
FIG[1..0]=01 FIG[1..0]=10 FIG[1..0]=11
PORTB- PORTB-
CFG.2=0 CFG.2=1
Port pin PB2 RxD1 D[2] GDA[2] AFI[2]
/0 | /0 /0 /0
PORTB Bit 3
IFCONFIG[1..0]=00 IFCON- IFCON- IFCON-
FIG[1..0]=01 FIG[1..0]=10 FIG[1..0]=11
PORTB- PORTB-
CFG.3=0 CFG.3=1
Port pin PB3 TxD1 D[3] GDA[3] AFI[3]
/0 o) /0 /0 /0
PORTB Bit 4
IFCONFIG[1..0]=00 IFCON- IFCON- IFCON-
FIG[1..0]=01 FIG[1..0]=10 FIG[1..0]=11
PORTB- PORTB-
CFG.4=0 CFG.4=1
Port pin PB4 INT4 D[4] GDA[4] AFI[4]
/0 | /0 /0 /0
PORTB Bit 5
IFCONFIG[1..0]=00 IFCON- IFCON- IFCON-
FIG[1..0]=01 FIG[1..0]=10 FIG[1..0]=11
PORTB- PORTB-
CFG.5=0 CFG.5=1
Port pin PB5 INT5# D[5] GDA[5] AFI[5]
/0 | /0 /0 /0
PORTB Bit 6
IFCONFIG[1..0]=00 IFCON- IFCON- IFCON-
FIG[1..0]=01 FIG[1..0]=10 FIG[1..0]=11
PORTB- PORTB-
CFG.6=0 CFG.6=1
Port pin PB6 INT6 D[6] GDA[6] AFI[6]
/0 | /0 /0 /0
PORTB Bit 7
IFCONFIG[1..0]=00 IFCON- IFCON- IFCON-
FIG[1..0]=01 FIG[1..0]=10 FIG[1..0]=11
PORTB- PORTB-
CFG.7=0 CFG.7=1
Port pin PB7 T20UT D[7] GDA[7] AFI[7]
/0 o) /0 /0 /0

Page 4-10

Exhibit 2032 - Page 68 of 435

EZ-USB FX Technical Reference Manual v1.2

Table 4-3. Port C Configuration

S
=i voness

PORTC Bit 0
PORTC- PORTCCFG.0=1
CFG.0=0
PORTCCF2.0=0 PORTCCF2.0=1
IFCON- 00, 01, 11 not
FIG[1..0]=10 valid
Port pin PCO RxDO RDYO X
I/0 | |
PORTC Bit 1
PORTC- PORTCCFG.1=1
CFG.1=0
PORTCCF2.1=0 PORTCCF2.1=1
IFCON- 00, 01, 11 not
FIG[1..0]=10 valid
Port pin PC1 TxDO RDY1 X
I/O ¢} I
PORTC Bit 2
PORTC- PORTCCFG.2=1
CFG.2=0
Port pin PC3 INTO#
I/0 I
PORTC Bit 3
PORTC- PORTCCFG.3=1
CFG.3=0
PORTCCF2.3=0 PORTCCF2.3=1
IFCON- 00, 01, 11 not
FIG[1..0]=10 valid
Port pin PC3 INT1# RDY3 X
I/0 | |
PORTC Bit 4
PORTC- PORTCCFG.4=1
CFG.4=0
PORTCCF2.4=0 PORTCCF2.4=1
IFCON- 00, 01, 11 not
FIG[1..0]=10 valid
Port pin PC4 TO CTL1 X
I/0 I O

Chapter 4. EZ-USB FX Input/Output

Exhibit 2032 - Page 69 of 435

Page 4-11

EZ-USB FX Technical Reference Manual

Table 4-3. Port C Configuration

PORTC Bit 5
PORTC- PORTCCFG.5=1
CFG.5=0
PORTCCF2.5=0 PORTCCF2.5=1
IFCON- 00, 01, 11 not
FIG[1..0]=10 valid
Port pin PC5 T1 CTL3 X
I/0 I O
PORTC Bit 6
PORTC- PORTCCFG.6=1
CFG.6=0
PORTCCF2.6=0 PORTCCF2.6=1
IFCON- 00, 01, 11 not
FIG[1..0]=10 valid
Port pin PC6 WR# CTL4 X
I/0 O O
PORTC Bit 7
PORTC- PORTCCFG.7=1
CFG.7=0
PORTCCF2.7=0 PORTCCF2.7=1
IFCON- 00, 01, 11 not
FIG[1..0]=10 valid
Port pin PC7 RD# CTL5 X
I/0 O O

Table 4-4. Port D Bits

PORTD Bits [7..0]

IFCON- IFCON- IFCONFIG[1..0]=10 IFCONFIG[1..0]=11
FIG[1..0]=00 FIG[1..0]=01

IFCONFIG.2=0 | IFCONFIG.2=1 | IFCONFIG.2=0 | IFCONFIG.2=1
Port pins Port pins Port pins GDBJ[7..0] Port pins BFI[7..0]
PD[7..0] PD[7..0] PDI[7..0] PDI[7..0]
I/0 I/0 I/0 I/0 I/0 I/0
Page 4-12 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 70 of 435

Table 4-5. Port E Bits

=7 v

Port E Bit 0
IFCONFIG[1..0]=00, 01 IFCONFIG[1..0]=10 IFCONFIG[1..0]=11
Port pin PE[0] adr0 BOUTFLAG
I/0 o) o
Port E Bit 1
IFCONFIG[1..0]=00, 01 IFCONFIG[1..0]=10 IFCONFIG[1..0]=11
Port pin PE[1] adrl AINFULL
I/0 0] o
Port E Bit 2
IFCONFIG[1..0]=00, 01 IFCONFIG[1..0]=10 IFCONFIG[1..0]=11
Port pin PE[2] adr2 BINFULL
I/0 0] o
Port E Bit 3
IFCONFIG[1..0]=00, 01 IFCONFIG[1..0]=10 IFCONFIG[1..0]=11
Port pin PE[3] adr3 AOUTEMTY
I/0 0] o
Port E Bit 4
IFCONFIG[1..0]=00, 01 IFCONFIG[1..0]=10 IFCONFIG[1..0]=11
Port pin PE[4] adr4 BOUTEMTY
I/0 0] o
Port E Bit 5
IFCONFIG[1..0]=00, 01 IFCONFIG[1..0]=10 IFCONFIG[1..0]=11
Port pin PE[5] CTL3 Port pin PE[5]
I/0 o I/0
Port E Bit 6
IFCONFIG[1..0]=00, 01 IFCONFIG[1..0]=10 IFCONFIG[1..0]=11
Port pin PE[6] CTL4 Port pin PE[6]
I/0 o I/0
Port E Bit 7
IFCONFIG[1..0]=00, 01 IFCONFIG[1..0]=10 IFCONFIG[1..0]=11
Port pin PE[7] CTL5 Port pin PE[7]
I/0 o] I/0

Chapter 4. EZ-USB FX Input/Output

Exhibit 2032 - Page 71 of 435

Page 4-13

EZ-USB FX Technical Reference Manual

4.5 PC-Compatible Controller

The USB core contains an 12C-compatible controller for boot loading and general-purpose 12C-
compatible bus interface. This controller uses the SCL (Serial Clock) and SDA (Serial Data) pins.
I2C-compatible controller describes how the boot load operates at power-on to read the contents
of an external serial EEPROM to determine the initial EZ-USB FX configuration. The boot loader
operates automatically, while the 8051 is held in reset. The last section of this chapter describes
the operating details of the boot loader.

After the boot sequence completes and the 8051 is brought out of reset, the general-purpose 1%C-

compatible controller is available to the 8051 for interface to external 12C-compatible devices,
such as other EEPROMS, 1/O chips, audio/video control chips, etc.

For 12C-compatible peripherals that support it, the EZ-USB FX 12C-compatible bus can run at 400
KHz. For compatibility, the EZ-USB FX powers-up at the 100-KHz frequency.

4.6 8051 PC-Compatible Controller

start stop
SDA D7><Ds><05><o4><o3><02><01XDOXAW

SCL 1 2 3 4 5 6 7 8 9

Figure 4-7. General I°C-Compatible Transfer

Figure 4-7 illustrates the waveforms for an IZC—compatibIe transfer. SCL and SDA are open-drain
EZ-USB FX pins, which must be pulled up to Vcc with external resistors. The EZ-USB FX chip is

an 12C-compatible bus master only, meaning that it synchronizes data transfers by generating
clock pulses on SCL by driving low. Once the master drives SCL low, external slave devices can
also drive SCL low to extend clock cycle times.

To synchronize 12C-compatible data, serial data (SDA) is permitted to change state only while SCL
is low, and must be valid while SCL is high. Two exceptions to this rule are used to generate
START and STOP conditions. A START condition is defined as SDA going low, while SCL is high,
and a STOP condition is defined as SDA going high, while SCL is high. Data is sent MSB first.
During the last bit time (clock #9 in Figure 4-7), the master (EZ-USB FX) floats the SDA line to
allow the slave to acknowledge the transfer by pulling SDA low.

Page 4-14 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 72 of 435

C
=7 v

Multiple 1°C-Compatible Bus Masters — The EZ-USB FX chip acts only as an I1>C-com-
patible bus master, never a slave. However, the 8051 can detect a second master by
checking for BERR=1 (Section 4.8, "Status Bits").

start
SDA SA3 >< SA2 >< SAL >< SAO >< DA2 >< DAl >< DAO RW \ ACK D7 | D6
SCL 1 2 3 4 5 6 7 8 9 10 11

Figure 4-8. Addressing an P C-compatible Peripheral

The first byte of an 1°C-compatible bus transaction contains the address of the desired peripheral.
Figure 4-8 shows the format for this first byte, which is sometimes called a control byte.

A master sends the bit sequence shown in Figure 4-8 after sending a START condition. The mas-

ter uses this 9-bit sequence to select an 12C-compatible peripheral at a particular address, to
establish the transfer direction (using R/W#), and to determine if the peripheral is present by test-
ing for ACK#.

The four most significant bits SA3-SAO are the peripheral chip’s slave address. 12C-compatible
devices are pre-assigned slave addresses by device type. For example, slave address 1010 is

assigned to EEPROMS. The three bits DA2-DAO usually reflect the states of 12C-compatible
device address pins. Devices with three address pins can be strapped to allow eight distinct
addresses for the same device type. The eighth bit (R/W#) sets the direction for the ensuing data
transfer, 1 for master read, and O for master write. Most address transfers are followed by one or
more data transfers, with the STOP condition generated after the last data byte is transferred.

In Figure 4-8, a READ transfer follows the address byte (at clock 8, the master sets the R/W# bit
high, indicating READ). At clock 9, the peripheral device responds to its address by asserting ACK.
At clock 10, the master floats SDA and issues SCL pulses to clock in SDA data supplied by this

slave.

Assuming the 12-MHz crystal used by the EZ-USB FX family, the SCL frequency is 90.9 KHz, giv-

ing an 1°C-compatible transfer rate of 11 microseconds per bit. Operation at four times this rate is
available by setting a bit in the boot EEPROM. See Section 5.9, "Configuration Byte 0" for details.

Chapter 4. EZ-USB FX Input/Output Page 4-15

Exhibit 2032 - Page 73 of 435

EZ-USB FX Technical Reference Manual

12CS I2C-Compatible Control and Status 7FAS
b7 b6 b5 ba b3 b2 b1 bo
START STOP LASTRD ID1 IDO BERR ACK DONE
RIW RIW RIW R R R R R
0 0 0 P P 0 0 0
I2DAT I°C-Compatible Data 7FAB
b7 b6 b5 b4 b3 b2 b1 bo
D7 D6 D5 D4 D3 D2 D1 DO
RIW RIW RIW RIW RIW RIW RIW RIW
X X X X X X X X

Figure 4-9. PC-compatible Registers

The 8051 uses the two registers shown in Figure 4-9 to conduct IZC-compatibIe transfers. The
8051 transfers data to and from the 1°C-compatible bus by writing and reading thel 2DAT register.

The I2CS register controls IZC-compatibIe transfers and reports various status conditions. The
three control bits are START, STOP, and LASTRD. The remaining bits are status bits. Writing to a
status bit has no effect.

4.7 Control Bits

4.7.1 START

The 8051 sets the START bit to 1 to prepare an IZC-compatibIe bus transfer. If START=1, the next
8051 load to I2DAT generates the start condition followed by the serialized byte of data in I2DAT.

The 8051 loads data in the format shown in Figure 4-7 after setting the START bit. The 1°C-com-
patible controller clears the START bit during the ACK interval (clock 9 in Figure 4-7).

4.7.2 STOP

The 8051 sets STOP=1 to terminate an 1°C-compatible bus transfer. The I2C-compatible controller
clears the STOP bit after completing the STOP condition. If the 8051 sets the STOP bit during a
byte transfer, the STOP condition generates immediately following the ACK phase of the byte
transfer. If no byte transfer is occurring when the STOP bit is set, the STOP condition is carried out
immediately on the bus. Data should not be written to 12CS or I2DAT until the STOP bit returns
low. In most versions of CY7C646x3-128NC, an interrupt request is available to signal that STOP
bit transmission is complete.

Page 4-16 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 74 of 435

=7 v

4.7.3 LASTRD

To read data over the I2C—compatible bus, an IZC—compatibIe master floats the SDA line and
issues clock pulses on the SCL line. After every eight bits, the master drives SDA low for one clock
to indicate ACK. To signal the last byte of the read transfer, the master floats SDA at ACK time to
instruct the slave to stop sending. This is controlled by the 8051 by setting LASTRD=1 before

reading the last byte of a read transfer. The 1°C-compatible controller clears the LASTRD bit at the
end of the transfer (at ACK time).

\a
Setting LASTRD does not automatically generate a STOP condition. The 8051 should also set the
STOP bit at the end of a read transfer.

4.8 Status Bits

After a byte transfer, the I2C—compatible controller updates the three status bits BERR, ACK, and
DONE. If no STOP condition was transmitted, they are updated at ACK time. If a STOP condition
was transmitted they are updated after the STOP condition is transmitted.

4.8.1 DONE

The 1?C-compatible controller sets this bit whenever it completes a byte transfer, right after the
ACK stage. The controller also generates an 1°C-compatible interrupt request (8051 INT3) when it
sets the DONE bit. The IZC—compatibIe controller clears the DONE bit when the 8051 reads or

writes the I2DAT register, and it clears the IZC—compatibIe interrupt request bit whenever the 8051
reads or writes the 12CS or I2DAT register.

482 ACK

Every ninth SCL of a write transfer, the slave indicates reception of the byte by asserting ACK. The

I2C—compatible controller floats SDA during this time, samples the SDA line, and updates the ACK
bit with the complement of the detected value. ACK=1 indicates acknowledge, and ACK=0 indi-

cates not-acknowledge. The IZC—compatibIe controller updates the ACK bit at the same time it sets
DONE=1. The ACK bit should be ignored for read transfers on the bus.

4.8.3 BERR

This bit indicates an 12C-compatible bus error. BERR=1 indicates that there was bus contention,
which results when an outside device drives the bus LO when it shouldn’t, or when another bus

Chapter 4. EZ-USB FX Input/Output Page 4-17

Exhibit 2032 - Page 75 of 435

EZ-USB FX Technical Reference Manual

master wins arbitration, taking control of the bus. BERR is cleared when the 8051 reads or writes
the I2DAT register.

4.8.4 ID1, IDO

These bits are set by the boot loader (Section4.11, "I2C-Compatible Boot Loader") to indicate
whether an 8-bit address or 16-bit address EEPROM at slave address 000 or 001 was detected at
power-on. They are normally used only for debug purposes.Table 4-7 shows the encoding for
these bits.

4.9 Sending FC-Compatible Data

To send a multiple byte data record over the IZC—compatibIe bus, follow these steps:

Set the START bit.

Write the peripheral address and direction=0 (for write) to I2DAT.

Wait for DONE=1*. If BERR=1 or ACK=0, go to step 7.

Load I2DAT with a data byte.

Wait for DONE=1*. If BERR=1 or ACK=0 go to step 7.

Repeat steps 4 and 5 for each byte until all bytes have been transferred.
Set STOP=1.

* If the IZC-compatibIe interrupt (8051 INT3) is enabled, each “Wait for DONE=1" step can be interrupt
driven, and handled by an interrupt service routine. See Chapter 12. "EZ-USB FX Interrupts" for more

details regarding the 1°C-compatible interrupt.

No o prwDdhPRE

4.10 Receiving PC-Compatible Data

To read a multiple-byte data record, follow these steps:

Set the START bit.
Write the peripheral address and direction=1 (for read) to 12DAT.
Wait for DONE=1*. If BERR=1 or ACK=0, terminate by setting STOP=1.

Read I2DAT and discard the data. This initiates the first burst of nine SCL pulses to clock in
the first byte from the slave.

Wait for DONE=1*. If BERR=1, terminate by setting STOP=1.

Read the data from I2DAT. This initiates another read transfer.

Repeat steps 5 and 6 for each byte until ready to read the second-to-last byte.
Before reading the second-to-last I2DAT byte, set LASTRD=1.

P wDNPRE

® N o o

Page 4-18 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 76 of 435

=7 v

9. Read the data from I2DAT. With LASTRD=1, this initiates the final byte read on the 1°C-com-
patible bus.

10. Wait for DONE=1*. If BERR=1, terminate by setting STOP=1.
11. Set STOP=1.

12. Read the last byte from I2DAT immediately (the next instruction) after setting the STOP bit.
This retrieves the last data byte without initiating an extra read transaction (nine more SCL
pulses) on the IZC-compatibIe bus.

* If the IZC-compatibIe interrupt (8051 INT3) is enabled, each “Wait for DONE=1" step can be interrupt-

driven, and handled by an interrupt service routing. See Chapter 12. "EZ-USB FX Interrupts" for more
details regarding the 1°C-compatible interrupt.

4.11 PC-Compatible Boot Loader

When the EZ-USB FX chip comes out of reset, the EZ-USB FX boot loader checks for the pres-
ence of an EEPROM on its 1°C-compatible bus. If an EEPROM is detected, the loader reads the
first EEPROM byte to determine how to enumerate (specifically, whether to supply ID information
from the USB core or from the EEPROM). The various enumeration modes are described in Chap-
ter 5. "EZ-USB FX Enumeration & ReNumeration ™",

Prior to reading the first EEPROM byte, the boot loader must set to zero an address counter inside
the EEPROM. It does this by sending a control byte (write) to select the EEPROM, followed by a
zero address to set the internal EEPROM address pointer to zero. Then, it issues a control byte
(read), and reads the first EEPROM byte.

The EZ-USB FX boot loader supports two I2C—compatible EEPROM types:

« EEPROMSs with address A[7..4]=1010 that use an 8-bit address, (example: 24LCO00,
24L.C01/B, 24L.C02/B).

 EEPROMSs with address A[7..4]=1010 that use a 16-bit address, (example: 24AA64,
241.C128, 24AA256).

EEPROMSs with densities up to 256 bytes require loading a single address byte. Larger EEPROMs
require loading two address bytes.

The EZ-USB FX 12C-compatible controller needs to determine which EEPROM type is con-
nected—one or two address bytes—so that it can properly reset the EEPROM address pointer to
zero before reading the EEPROM. For the single-byte address part, it must send a single zero byte
of address, and for the two-byte address part it must send two zero bytes of address.

Because there is no direct way to detect which EEPROM type—single or double address—is con-

nected, the I°C-compatible controller uses the EEPROM address pins A2, A1, and A0 to deter-
mine whether to send out one or two bytes of address. This algorithm requires that the EEPROM

Chapter 4. EZ-USB FX Input/Output Page 4-19

Exhibit 2032 - Page 77 of 435

EZ-USB FX Technical Reference Manual

address lines are strapped as shown in Table 4-6. Single-byte-address EEPROMSs are strapped to
address 000 and double-byte-address EEPROMSs are strapped to address 001.

Table 4-6. Strap Boot EEPROM Address Lines to These Values

Example
EEPROM

16 24L.CO0* N/A N/A N/A
128 24L.C01
256 24L.C02
4K 24L.C32
8K 24L.C64

Bytes A2 Al AO

o| O] o] ©
o| O] o] ©
| k| Ol O

* This EEPROM does not have address pins

The IZC-compatibIe controller performs a three-step test at power-on to determine whether a one-
byte-address or a two-byte-address EEPROM is attached. This test proceeds as follows:

1. The 1°C-compatible controller sends out a “read current address” command to 1°C-compatible
sub-address 000 (10100001). If no ACK is returned, the controller proceeds to step 2. If ACK
is returned, the one-byte-address device is indicated. The controller discards the data and
proceeds to step 3.

2. The 1°C-compatible controller sends out a “read current address” command to I°C-compatible
sub-address 001 (10100011). If ACK is returned, the two-byte-address device is indicated.
The controller discards the data and proceeds to step 3. If no ACK is returned, the controller
assumes that a valid EEPROM is not connected, assumes the “No Serial EEPROM” mode,
and terminates the boot load.

3. The IZC-compatibIe controller resets the EEPROM address pointer to zero (using the appro-
priate number of address bytes), then reads the first EEPROM byte. If it does not read OxB4 or
0xB6, the controller assumes the “No Serial EEPROM” mode. If it reads either 0xB4 or 0xB6,
the controller copies the next six bytes into internal storage. If it reads 0xB6, it proceeds to
load the EEPROM contents into internal RAM.

The results of this power-on test are reported in the ID1 and IDO bits, as shown in
Table 4-7.

Page 4-20 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 78 of 435

=7 v

Table 4-7. Results of Power-On 12C-Compatible Test

ID1 IDO Meaning
0 0 No EEPROM detected
0 1 One-byte-address load EEPROM detected
1 0 Two-byte-address load EEPROM detected
1 1 Not used

Other EEPROM devices (with device address of 1010) can be attached to the I2C—compatible bus
for general purpose 8051 use, as long as they are strapped for address other than 000 or 001. If a
241.C00 EEPROM is used, no other EEPROMS with device address 1010 may be used because

the 24L.COO0 responds to all eight sub-addresses.

4.12 SFR Addressing

The 8051 architecture includes a directly-addressable bank of registers from 0x80-0xFF, called
Special Function Registers or SFRs. These registers control various 8051 peripheral functions
such as the timers, interrupts, and UARTS. Because they are directly addressable, they allow quick
transfer of bytes in and out of the 8051 accumulator.

A portion of the 8051 SFR space is bit-addressable. The 8051 architecture assigns 256 bit
addresses to individual bits in certain registers, including SFR registers with addresses ending in 0
or 8. The advantage of bit addressing is that special bit manipulation instructions can set, test, or
toggle individual bits without dealing with bytes—reading a byte, modifying one bit, or writing back
the byte. This bit manipulation is especially useful for I/O, when a single I/O pin needs attention.

The EZ-USB FX preserves the 1/0 architecture used in EZ-USB Series 2100, where I/O is con-
trolled using memory mapped registers in external RAM space.To allow quick access to the 1/O
control registers, EZ-USB FX also maps the 1/O control registers into SFR registers. In addition,
four of the 1/0 control registers are bit-addressable.

Chapter 4. EZ-USB FX Input/Output Page 4-21

Exhibit 2032 - Page 79 of 435

EZ-USB FX Technical Reference Manual

Table 4-8. EZ-USB FX Special Function Registers*

80 90 A0 BO Co DO EO FO
0 I0A I0B I0C IOD SCON1 PSW ACC B
1 SP EXIF INT2CLR IOE SBUF1
2 DPLO MPAGE | INT4CLR | SOEA
3 DPHO SOEB
4 DPL1 SOEC
5 DPH1 SOED
6 DPS SOEE
7 PCON
8 TCON | SCONO IE P T2CON | EICON EIE EIP
9 TMOD | SBUFO
A TLO RCAP2L
B TL1 RCAP2H
Cc THO TL2
D TH1 TH2
E CKCON
F

* 8051 enhancements appear in bold. EZ-USB FX SFRs are shaded. Bit-addressable registers (rows 0
and 8) are highlighted.

In the standard 8051, ports 0-3 are addressed using SFRs 80, 90, A0, and BO. Because these
ports are notimplemented in EZ-USB FX, the SFRs are available. The EZ-USB FX chip maps the
input-output data for four of its I/O ports, A-D, into these registers. Also, the 1/O register for PORT
E and the port output enable registers are mapped into non-bit-addressable SFRs as shown in
Table 4-8.

INT2CLR and INTACLR are dummy registers (no data) that provide a fast method for clearing

IRQ2 and IRQ4 flags. The 8051 writes any value to these registers to clear the IRQ2 or IRQ4 inter-
rupt request flags.

A
INTZ2 is used for all USB interrupts. INT4 is used for all slave FIFO and GPIF interrupts.
Two enable bits turn on the SFR interrupt clearing:

* INT2 SFR clearing is enabled by setting USBBAV.4=1.

* INT4 SFR clearing is enabled by setting INTASETUP.2=1.

Page 4-22 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 80 of 435

o
=

YORESS

The two code examples (Figure 4-10 and Figure 4-11) illustrate the speed advantage gained by
using the INT2CLR SFR to clear a pending USB interrupt request for endpoint 6 OUT. The first
example uses the EZ-USB FX method, and the second example uses the new SFR method to

clear an interrupt request for bulk endpoint EP60OUT.

EP6OUT_I| SR_A:
push dps
push dpl
push dph
push dpl 1
push dphl
push acc
nmov a, EXI F
clr acc. 4
nmov EXIF, a
nmv dptr, #OUT071 RQ
nov a, #01000000b
movXx @iptr, a

Do interrupt

pop acc
pop dphl
pop dpl 1
pop dph
pop dp!
pop dps

reti

processi ng here —set fl ags,

; clear INT2 (USB) IRQ flag

; clear QUT6 IRQ bit by witing 1

what ever. ..

Figure 4-10. EZ-USB FX Method, sample code

Because the OUT6 interrupt request bit is in the memory-mapped register OUTO07IRQ, the 8051
clears it using the data pointer and a MOVX instruction. Because this is an interrupt service rou-
tine, all registers used by the ISR must be saved and restored. It is not known at the time of the
interrupt which data pointer is in use, so both of them along with the data pointer select register

“dps” are pushed and later restored (popped).

Next, the INT2 request bit is cleared in EXIF.4. It is important to clear INT2 before clearing the indi-
vidual source of the interrupt—in this example EP60OUT. (This is explained in Chapter 12. "EZ-USB
FX Interrupts”). Finally, the data pointer is set to OUTO07IRQ, and the bit corresponding to OUT6 is
set, and written to OUTOIRQ. Writing a “1” clears the OUT®6 interrupt request.

Chapter 4. EZ-USB FX Input/Output

Exhibit 2032 - Page 81 of 435

Page 4-23

EZ-USB FX Technical Reference Manual

init: mov X
nmovx
setb
nmovx

EP6OUT_| SR_B:

pop
reti

dptr, #USBBAV

a, @lptr
acc. 4
@iptr, a

acc

a, EXI F
acc. 4
EXI F, a

INT2CLR, a

Do interrupt processing here

acc

enabl e the SFR-clearing feature
for INT2

clear INT2 (USB) IRQ flag

use whatever value is in acc

Figure 4-11. SFR Method, sample code

The “init” routine should be included in general initialization code, and is executed only once. Set-
ting bit 4 of USBBAV enables the SFR clearing feature for INT2 (but not INT4).

The ISR clears the INT2 request bit in EXIF.4, as before. But now, only one instruction is required
to clear the endpoint 6-OUT IRQ, due to the fact that the SFR is directly addressable.

There are two important points about this operation:

The data in acc is don’t care, because the act of writing INT2CLR, and not the data written, actu-
ally clears the IRQ. Second, the particular USB interrupt cleared by this instruction is the one cur-
rently pending (the interrupt source is displayed in the INT2IVEC register).

Page 4-24

EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 82 of 435

S
=i voness

4.13 SFR Control of PORTs A-E

OE

ouT ‘
Enab

output register

hit set
/| PORTSETUP.0
1
Contes De——9

PINS I

Figure 4-12. EZ-USB FX I/O Structure

Figure 4-12 shows a block diagram of the EZ-USB FX I/O structure. The signals in rectangles, OE,
OUT, and PINS, represent the memory mapped register bits that access 1/0 bits using 8051 MOVX
instructions. The ovals represent access via the SFRs. The 8051 sets a single bit, PORTSETUP.O0,
to enable SFR access to all of the I/0 pins.

When PORTSETUP.0=1, both I/O access methods operate simultaneously. Both the MOVX
method and SFR addressing method can be used to set the state of an output pin. To elaborate,
the following code example setsPAO using a MOVX instruction, clears it using a bit clear instruc-
tion, and then toggles it using a bit toggle instruction.

nov dpt r, #OUTA ; set PAO the old way

nmovx a, @lptr ; get value of OUTA register
sethb acc.0 ; set bit O

mov X @iptr, a ; wite it back

clrb 10A. 0 ; clear PAO bit the new way

cpl 10A. 0 ; conpl enent PAO bit the new way

Figure 4-13. Use MOVX to Set PAO, sample code

Chapter 4. EZ-USB FX Input/Output Page 4-25

Exhibit 2032 - Page 83 of 435

EZ-USB FX Technical Reference Manual

This simple example illustrates two important points. First, both the old (MOVX) and new (SFR)
methods can be used on the same 1/O bits. Second, the SFR method is much more efficient,
because setting the bit using the MOVX takes nine cycles and seven bytes, while a bit set, clear,
or toggle instruction takes two cycles and two bytes. In practice, there is no reason to use the first
method in EZ-USB FX except for backward compatibility; the example is meant to illustrate that
each method can be used independently.

The data registers for 1/0 ports A, B, C, and D are mapped into SFRs that are bit-addressable
(0Ox80, 0x90, 0xA0, and 0xBO, respectively). Because the 8051 uses the rest of the SFRs, the
remaining EZ-USB FX 1/O registers (PORTE data and the output enables) are mapped into SFRs
that are not bit-addressable. This still gives faster access to these I/O bits because direct address-
ing takes less time and fewer bytes than MOVX addressing, using the data pointer.

Although not shown in Figure 4-13, the output enables are also registered in exactly the same
manner as the data register, and the SFR access is enabled using the PORTSETUP.0 bit.

The 8051 can read the state of a pin at any time by:

» Reading a PINS register using a MOVX instruction, or

» Reading the corresponding SFR register or bit.
For the bit-addressable registers IOA, I0OB, I0C, or 10D, the bit test instructions (jb, jnb) may be
used on individual input pins. Bit test instructions may not be used with IOE (at 0xB1) because itis
not bit-addressable. However, SFR access is still faster for the IOE register than MOVX access.

The 8051 can read an I/O pin using SFRs, regardless of the state of the PORTSETUP.O bit.

The following example code tests the state of PORTC bit 2, and jumps to two different routines
depending on the result.

checkbi t: ib I0C. 2, process_the_one ; junp if bit set
jmp process_the_zero ; it's low

Figure 4-14. Test the State of PORTC, sample code

Page 4-26 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 84 of 435

—mm =
-='_—_“-_=..-

,'_..-:

CYPH ESS

W

Chapter 5. EZ-USB FX Enumeration & ReNumeration™

5.1 Introduction

The EZ-USB FX chip is soft. 8051 code and data is stored in internal RAM, which is loaded from
the host using the USB interface. Peripheral devices that use the EZ-USB FX chip can operate
without ROM, EPROM, or FLASH memory, shortening production lead times and making firmware
updates a breeze.

To support the soft feature, the EZ-USB FX chip enumerates automatically as a USB device with-
out firmware, so the USB interface itself can download 8051 code and descriptor tables. The USB
core performs this initial (power-on) enumeration and code download while the 8051 is held in
RESET. This initial USB device, which supports code download, is called the “Default USB
Device.”

After the code descriptor tables have been downloaded from the host to EZ-USB FX RAM, the
8051 is brought out of reset and begins executing the device code. The EZ-USB FX device enu-
merates again, this time as the loaded device. This patented enumeration process is called “ReNu-
meration™.” The EZ-USB FX chip accomplishes ReNumeration™ by electrically simulating a
physical disconnection and re-connection to the USB.

An EZ-USB FX control bit called “RENUM” (ReNumerated) determines which entity, the core or the
8051, handles device requests over endpoint zero. At power-on, the RENUM bit (USBCS.1) is
zero, indicating that the USB core automatically handles device requests. Once the 8051 is run-
ning, it can set RENUM to 1 to indicate that user 8051 code handles subsequent device requests
using its downloaded firmware. Chapter 9. "EZ-USB FX Endpoint Zero" describes how the 8051
handles device requests while RENUM=1.

It is also possible for the 8051 to run with RENUM=0 and have the USB core handle certain end-
point zero requests. (See Info Box below).

This chapter deals with the various EZ-USB FX startup modes, and describes the default USB
device that is created at initial enumeration.

Chapter 5. EZ-USB FX Enumeration & ReNumeration™ Page 5-1

Exhibit 2032 - Page 85 of 435

EZ-USB FX Technical Reference Manual

Another Use for the Default USB Device

The Default USB Device is established at power-on to set up a USB device capable of down-
loading firmware into EZ-USB FX RAM. Another useful feature of the EZ-USB FX default
device is that 8051 code can be written to support the already-configured Generic USB
device. Before bringing the 8051 out of reset, the USB core enables certain endpoints and
reports them to the host via descriptors. By utilizing the USB default machine (by keeping
RENUM=0), the 8051 can, with very little code, perform meaningful USB transfers that use
these default endpoints. This accelerates the USB learning curve. To see an example of how
little code is actually necessary, take a look at Section 6.11. "Polled Bulk Transfer Example."

5.2 The Default USB Device

The Default USB Device consists of a single USB configuration containing one interface (interface
0) with three alternate settings, 0, 1, and 2. The endpoints reported for this device are shown in
Table 5-1. Note that alternate setting zero consumes no interrupt or isochronous bandwidth, as
recommended by the USB Specification.

Table 5-1. EZ-USB FX Default Endpoints

Endpoint | Type Alternate Setting
o | 1 | 2
Maximum Packet Size
(Bytes)

0 CTL 64 64 64
1-IN INT 0 16 64
2-IN BULK 0 64 64

2-0UT BULK 0 64 64
4-IN BULK 0 64 64
4-OUT BULK 0 64 64
6-IN BULK 0 64 64
6-OUT BULK 0 64 64
8-IN ISO 0 16 256
8-OUT ISO 0 16 256
9-IN ISO 0 16 16
9-OUT ISO 0 16 16
10-IN ISO 0 16 16
10 OUT ISO 0 16 16
Page 5-2 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 86 of 435

S
=i voness

For the purpose of downloading 8051 code, the Default USB Device requires only CONTROL end-
point zero. Nevertheless, the USB default machine is enhanced to support other endpoints as
shown in Figure 5-2 (note the alternate settings 1 and 2). This enhancement is provided to allow
the developer to get a head start generating USB traffic and learning the USB system. All the
descriptors are handled automatically by the USB core, so the developer can immediately start
writing code to transfer data over USB using these pre-configured endpoints.

When the USB core establishes the Default USB Device, it also sets the proper endpoint configu-
ration bits to match the descriptor data supplied by the USB core. For example, bulk endpoints 2,
4, and 6 are implemented in the Default USB Device, so the USB core sets the corresponding
EPVAL bits. Chapter 6. "EZ-USB FX Bulk Transfers"contains a detailed explanation of the EPVAL
bits.

Tables 5-9 through 5-13 show the various descriptors returned to the host by the USB core when
RENUM=0. These tables describe the USB endpoints defined in Table 5-1, along with other USB
details. These tables should help you understand the structure of USB descriptors.

5.3 USB Core Response to EPO Device Requests

Table 5-2 shows how the USB core responds to endpoint zero requests when RENUM=0.

Table 5-2. How the USB Core Handles EPO Requests When RENUM=0

bRequest Name Action: RENUM=0
0x00 Get Status/Device Returns two zero bytes
0x00 Get Status/Endpoint Supplies EP Stall bit for indicated EP
0x00 Get Status/Interface Returns two zero bytes
0x01 Clear Feature/Device None
0x01 Clear Feature/Endpoint | Clears Stall bit for indicated EP
0x02 (reserved) None
0x03 Set Feature/Device None
0x03 Set Feature/Endpoint Sets Stall bit for indicated EP
0x04 (reserved) None
0x05 Set Address Updates FNADD register
0x06 Get Descriptor Supplies internal table
0x07 Set Descriptor None
0x08 Get Configuration Returns internal value
0x09 Set Configuration Sets internal value
O0x0A Get Interface Returns internal value (0-3)
0x0B Set Interface Sets internal value (0-3)

Chapter 5. EZ-USB FX Enumeration and ReNumeration Page 5-3

Exhibit 2032 - Page 87 of 435

EZ-USB FX Technical Reference Manual

Table 5-2. How the USB Core Handles EPO Requests When RENUM=0

bRequest Name Action: RENUM=0
0x0C Sync Frame None
Vendor Requests
0xA0 Firmware Load Upload/Download RAM
O0xAl- |Reserved Reserved by Cypress Semiconductor
OxAF
all other None

The USB host enumerates by issuing:

e Set Address
* Get_Descriptor
* Set_Configuration (to 1)
As shown in Table 5-2, after enumeration, the USB core responds to the following host requests:
e Setor clear an endpoint stall (Set/Clear Feature_Endpoint).
* Read the stall status for an endpoint (Get_Status_Endpoint).
* Set/Read an 8-bit configuration number (Set/Get_Configuration).
* Set/Read a 2-bit interface alternate setting (Set/Get_Interface).

» Download or upload 8051 RAM.

5.3.1 Port Configuration Bits

To ensure proper operation of the default Keil Monitor, which uses SIO-1 (RXD1 and TXD1), never
change the following Port Config bits from “1”:

« PORTBCFG bits 2 (RXD1) and 3 (TXD1).

To ensure the 8051 processor can access the external SRAM (including the Keil Monitor), do not
change the following bits from “1”:

« PORTCCFG bits 6 (WR#) and 7 (RD#).

To ensure that no bits are unintentionally changed, all writes to the PORTXCFG registers should
use a read-modify-write series of instructions.

Page 5-4 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 88 of 435

S
=i voness

5.4 Firmware Load

The USB Specification provides for vendor-specific requests to be sent over CONTROL endpoint
zero. The EZ-USB FX chip uses this feature to transfer data between the host and EZ-USB FX
RAM. The USB core responds to two “Firmware Load” requests, as shown in Tables 5-3 and 5-4.

Table 5-3. Firmware Download

Byte Field Value Meaning Reggiise
0 |bmRequest | 0x40 |Vendor Request, OUT re,\cﬂ;id
1 |bRequest OxAO |“Firmware Load”

2 |wValueL AddrL | Starting Address
3 |wValueH AddrH
4 |windexL 0x00
5 |windexH 0x00
6 |wLenghtL LenL |Number of Bytes
7 |wLengthH LenH
Table 5-4. Firmware Upload

Byte Field Value Meaning Reggiise
0 |bmRequest 0xCO |Vendor Request, IN re,\cﬂ;id
1 |bRequest O0xAO |“Firmware Load”

2 |wValueL AddrL |Starting Address
3 |wValueH AddrH
4 |windexL 0x00
5 |windexH 0x00
6 |wLengthL LenL |Number of Bytes
7 |wLengthH LenH

These requests are always handled by the USB core (RENUM=0 or 1). The bRequest value 0xA0
is reserved by the EZ-USB FX chip. It should never be used for a vendor request. Cypress Semi-
conductor also reserves bRequest values 0xA1 through OxAF. Your system should not use these

bRequest values.

Chapter 5. EZ-USB FX Enumeration and ReNumeration Page 5-5

Exhibit 2032 - Page 89 of 435

EZ-USB FX Technical Reference Manual

A host loader program typically writes 0x01 to the CPUCS register to put the 8051 into RESET,
loads all or part of the EZ-USB FX RAM with 8051 code, and finally reloads the CPUCS register
with 0 to take the 8051 out of RESET. The CPUCS register is the only USB register that can be
written using the Firmware Download command.

Firmware loads are restricted to internal EZ-USB FX memory.

When RENUM=1 at Power-On

At power-on, the RENUM bit is normally set to zero so that the EZ-USB FX to handle device
requests over CONTROL endpoint zero. This allows the core to download 8051 firmware and
then reconnect as the target device.

At power-on, the USB core checks the IZC-compatib/e bus for the presence of an EEPROM.
If it finds one, and the first byte of the EEPROM is 0xB6, the core copies the contents of the

EEPROM into internal RAM, sets the RENUM bit to 1, and un-RESETS the 8051. The 8051

wakes up ready to run the firmware in RAM. The required data format for this load module is
described in Section 5.8. "Serial EEPROM Present, First Byte is OxB6".

5.5 Enumeration Modes

When the EZ-USB FX chip comes out of RESET, the USB core decides how to enumerate based

on the contents of an external EEPROM on its IZC-compatibIe bus. Table 5-5 shows the choices.
In Table 5-5, PID means Product ID, VID means Version ID, and DID means Device ID.

Table 5-5. USB Core Action at Power-Up

First EEPROM byte USB Core Action

Not 0xB4 or 0xB6 Supplies descriptors, PID/VID/DID from USB
Core. Sets RENUM=0.

0xB4 Supplies descriptors from USB core, PID/VID/
DID from EEPROM. Sets RENUM=0.

0xB6 Loads EEPROM into EZ-USB FX RAM. Sets
RENUM=1; therefore 8051 supplies descrip-
tors, PID/VID/DID.

If no EEPROM is present, or if one is present but the first byte is neither OxB4 nor 0xB6, the USB
core enumerates using internally stored descriptor data, which contains the Cypress Semiconduc-
tor VID, PID, and DID. These ID bytes cause the host operating system to load a Cypress Semi-

Page 5-6 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 90 of 435

=7 v

conductor device driver. The USB core also establishes the Default USB device. This mode is only
used for code development and debug.

If a serial EEPROM is attached to the 12C-compatible bus and its first byte is 0xB4, the USB core
enumerates with the same internally stored descriptor data as for the no-EEPROM case, but with
one difference. It supplies the PID/VID/DID data from six bytes in the external EEPROM rather
than from the USB core. The custom VID/PID/DID in the EEPROM causes the host operating sys-
tem to load a device driver that is matched to the EEPROM VID/PID/DID. This EZ-USB FX operat-
ing mode provides a soft USB device using ReNumeration™

If a serial EEPROM is attached to the 12C-compatible bus and its first byte is 0xB6, the USB core
transfers the contents of the EEPROM into internal RAM. The USB core also sets the RENUM bit
to 1 to indicate that the 8051 (and not the USB core) responds to device requests over CONTROL
endpoint zero (see the Info Box on page 5-6). Therefore, all descriptor data, including VID/DID/PID
values, are supplied by the 8051 firmware. The last byte loaded from the EEPROM (to the CPUCS
register) releases the 8051 reset signal, allowing the EZ-USB FX chip to come up as a fully, cus-
tom device with firmware in RAM.

The following sections discuss these enumeration methods in detail.

The Other Half of the I°C-Compatible Story

The EZ-USB FX IZC-compatible controller serves two purposes. First, as described in this
chapter, it manages the serial EEPROM interface that operates automatically at power-on to
determine the enumeration method. Second, once the 8051 is up and running, the 8051 can

access the IZC-compatibIe controller for general-purpose use. This makes a wide range of
standard IZC-compatible peripherals available to an EZ-USB FX system.

Other I>C-compatible devices can be attached to the SCL and SDA lines of the I>C-compati-
ble bus as long as there is no address conflict with the serial EEPROM described in this
chapter. Chapter 4. "EZ-USB FX Input/Output” describes the general-purpose nature of the

I>C-compatible interface.

5.6 No Serial EEPROM

In the simplest scenario, no serial EEPROM is present on the I2C—compatible bus or an EEPROM
is present, but its first byte is not 0xB4 or 0xB6. In this case, descriptor data is supplied by a table
internal to the USB core. The EZ-USB FX chip comes on as the USB Default Device, with the 1D
bytes shown in Table 5-6.

&
Pullup resistors are required on SCL/SDA, even if no device is connected. The resistors are
required to allow EZ-USB FX to detect the “no-EEPROM?” condition.

Chapter 5. EZ-USB FX Enumeration and ReNumeration Page 5-7

Exhibit 2032 - Page 91 of 435

EZ-USB FX Technical Reference Manual

Table 5-6. EZ-USB FX Device Characteristics, No Serial EEPROM

0x0547 (Cypress Semiconductor/
Anchor Chips)

Product ID 0x2235 (EZ-USB FX)

Vendor ID

Device OXXXYY (depends on revision)
Release

The USB host queries the device during enumeration, reads the device descriptor, and uses the
bytes described in Table 5-6 to determine which software driver to load into the operating system.
This is a major USB feature — drivers are dynamically matched with devices and automatically
loaded when a device is plugged in.

The “no EEPROM?” scenario is the simplest configuration, and also the most limiting. This mode is

used only for code development, utilizing Cypress software tools matched to the ID values in Table
5-6.

Reminder

The USB core uses the data in Table 5-6 for enumeration only if the RENUM bit is zero. If
RENUM=1, enumeration data is supplied by 8051 code.

5.7 Serial EEPROM Present, First Byte is 0xB4

Table 5-7. EEPROM Data Format for “B4” Load

EEPROM
Address

0 0xB4

Vendor ID (VID) L
Vendor ID (VID) H
Product ID (PID) L
Product ID (PID) H
Device ID (DID) L
Device ID (DID) H
Config 0

Reserved (set to 0x00)

Contents

0| N| O] O] A W[N] P

Page 5-8 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 92 of 435

S
=i voness

If at power-on, the USB core detects an EEPROM connected to its 12C-compatible port with the
value 0xB4 at address 0, the USB core copies the Vendor ID (VID), Product ID (PID), and Device
ID (DID) from the EEPROM (Table 5-7) into internal storage. The USB core then supplies these
bytes to the host as part of the Get_Descriptor-Device request. (These six bytes replace only the
VID/PID/DID bytes in the default USB device descriptor.) This causes a driver matched to the VID/
PID/DID values in the EEPROM, instead of those in the USB core, to be loaded into the OS.

After initial enumeration, the driver downloads 8051 code and USB descriptor data into EZ-USB
FX RAM and starts the 8051. The code then ReNumerates™ and comes on as the fully, custom
device.

A recommended EEPROM for this application is the Microchip 24LCO00, a small (5-pin SOT pack-
age) inexpensive 16-byte serial EEPROM. A 24LC01 (128 bytes) or 24LC02 (256 bytes) may be
substituted for the 24LCO00, but as with the 24LCO00, only the first nine bytes are used.

5.8 Serial EEPROM Present, First Byte is 0xB6

If at power-on, the USB core detects an EEPROM connected to its I2C—compatible port with the
value 0xB6 at address 0, the USB core loads the EEPROM data into EZ-USB FX RAM. It also sets
the RENUM bit to 1, causing device requests to be fielded by the 8051 instead of the USB core.
The EEPROM data format is shown in Table 5-8.

Table 5-8. EEPROM Data Format for “B6” Load

EEPROM
Address

0 0xB6

1* Vendor ID (VID) L
2* Vendor ID (VID) H
3* Product ID (PID) L
4* Product ID (PID) H
5* Device ID (DID) L
6* Device ID (DID) H
Config 0

Reserved (set to
0x00)

9 Length H
10 Length L
11 StartAddr H
12 StartAddr L
Data block

Contents

Chapter 5. EZ-USB FX Enumeration and ReNumeration Page 5-9

Exhibit 2032 - Page 93 of 435

EZ-USB FX Technical Reference Manual

Table 5-8. EEPROM Data Format for “B6” Load

EEPROM
Address

Length H
Length L
StartAddr H
StartAddr L
Data block

Contents

0x80
0x01
Ox7F
0x92

Last 00000000

* |gnored — see Info Box below.

The first byte tells the USB core to copy EEPROM data into RAM. The next six bytes are ignored
(See the Info Box below).

One or more data records follow, starting at EEPROM address 9. The maximum value of Length H
is 0x03, allowing a maximum of 1,023 bytes per record. Each data record consists of a length, a
starting address, and a block of data bytes. The last data record must have the MSB of its Length
H byte set to 1. The last data record consists of a single-byte load to the CPUCS register at
0x7F92. Only the LSB of this byte is significant—8051RES (CPUCS.0) is set to zero to bring the
8051 out of reset.

Serial EEPROM data can be loaded into two EZ-USB FX RAM spaces only.

e 8051 program/data RAM at 0x0000-0x1B3F.
* The CPUCS register at 0x7F92 (only bit 0, 8051 RESET, is host-loadable).

VID/PID/DID in a “B6” EEPROM

Bytes 1-6 of a B6 EEPROM can be loaded with VID/PID/DID bytes if it is desired at some
point to run the 8051 program with RENUM=0 (USB core handles device requests), using the
EEPROM VID/PID/DID rather than the Cypress Semiconductor values built into the USB
core.

5.9 Configuration Byte 0

The first configuration byte, Config 0, is valid for both EEPROM load formats; B4 and B6.

Page 5-10 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 94 of 435

S
=i voness

Config 0

| b7 b6 b5 b4 b3 b2 b1 bo |

I 0 0 0 0 0 48MHZ CLKINV 400KHZ I

Figure 5-1. Configuration O

Bit 2: 48MHZ 24- or 48-MHz clock

If 48MHZ=1, the 8051 operates at a clock rate of 48 MHz, and the CLKOUT pin is a 48-MHz
square wave. If 48MHZ=0 the 8051 operates at a clock rate of 24 MHz, and the CLKOUT pin is
a 24-MHz square wave. This bit is copied to the CPUCS Register (Bit 3, “24/48"), which is
read-only to the 8051. Thus the 8051 clock rate is fixed at 24 or 48 MHz at boot time according
to the EEPROM contents, and cannot be changed subsequently by the 8051.

If no EEPROM is present the default value is zero, selecting 24-MHz operation.

Bit 1: CLKINV Invert CLKOUT signal

If CLKINV=0, the CLKOUT signal is not inverted (as shown in all timing diagrams in this man-
ual). If CLKINV=1, the CLKOUT signal is inverted. This bit is copied to the CPUCS Register Bit
2, which is read-only to the 8051. Thus, the CLKOUT polarity is set to invert or non-invert at
boot time according to the EEPROM contents, and cannot be changed subsequently by the
8051.

If no EEPROM is present the default value is zero, selecting non-inverting operation.

Bit O: 400KHZ High-speed I°C-compatible Bus

If 400KHZ=0, the IZC—compatibIe bus operates at approximately 100 KHz. If 400KHZ=1, the
12C-compatible bus operates at approximately 400 KHz. This bit is copied to the I2CCTL regis-

ter bit 0, which is read-write to the 8051. Thus the I°C-compatible bus speed is initially set by
the EEPROM bit, and may be changed subsequently by the 8051.

&
When the EZ-USB FX comes out of RESET, the IZC-compatib/e bus operates at 100 KHz mode,
ensuring that a 100 KHz device can be used as the boot EEPROM.

5.10 ReNumeration™

Three EZ-USB FX control bits in the USBCS (USB Control and Status) Register control the ReNu-
meration™ process: DISCON, DISCOE, and RENUM.

Chapter 5. EZ-USB FX Enumeration and ReNumeration Page 5-11

Exhibit 2032 - Page 95 of 435

EZ-USB FX Technical Reference Manual

USBCS USB Control and Status 7FD6

b7 b6 b5 b4 b3 b2 bl b0

- - - DISCON DISCOE RENUM

R/IW R R R R/IW R/IW R/IW R/IW
0 0 0 0 0 1 0 0

Figure 5-2. USB Control and Status Register

—»| Internal Logic

DI SCON DI SCON#
pin

DI SCCE

Figure 5-3. Disconnect Pin Logic

The logic for the DISCON and DISCOE bits is shown in Figure 5-3. To simulate a USB disconnect,
the 8051 writes the value 00001010 to USBCS. This floats the DISCON# pin, and provides an
internal DISCON=1 signal to the USB core that causes it to perform disconnect housekeeping.

To re-connect to USB, the 8051 writes the value 00000110 to USBCS. This presents a logic HI to
the DISCON# pin, enables the output buffer, and sets the RENUM bit HI to indicate that the 8051
(and not the USB core) is now in control for USB transfers. This arrangement allows connecting
the 1,500-ohm resistor directly between the DISCON# pin and the USB D+ line (Figure 5-4).

DISCON#

EZ-USB

1500

[
=
[

VCC

D+
GND

USB-B

I lbwl\J

Figure 5-4. Typical Disconnect Circuit

Page 5-12 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 96 of 435

S
=i voness

5.11 Multiple ReNumeration™

The 8051 can ReNumerate™ anytime. One use for this capability might be to fine tune an isochro-
nous endpoint’'s bandwidth requests by trying various descriptor values and ReNumerating.

5.12 Default Descriptor

Tables 5-9 through 5-19 show the descriptor data built into the USB core. The tables are presented
in the order that the bytes are stored.

Table 5-9. USB Default Device Descriptor

Offset Field Description Value
0 bLength Length of this Descriptor = 18 bytes 12H
1 bDescriptorType Descriptor Type = Device 01H
2 bcdUSB (L) USB Specification Version 1.10 (L) 10H
3 bcdUSB (H) USB Specification Version 1.10 (H) 01H
4 bDeviceClass Device Class (FF is Vendor-Specific) FFH
5 bDeviceSubClass Device Sub-Class (FF is Vendor-Specific) FFH
6 bDeviceProtocol Device Protocol (FF is Vendor-Specific) FFH
7 bMaxPacketSize0 Maximum Packet Size for EPO = 64 bytes 40H
8 idVendor (L) Vendor ID (L) Cypress Semiconductor = 0547H 47H
9 idVendor (H) Vendor ID (H) O5H
10 |idProduct (L) Product ID (L) EZ-USB FX = 2235H 35H
11 idProduct (H) Product ID (H) 22H
12 | bcdDevice (L) Device Release Number (BCD,L) (see individual data sheet) xxH
13 | bcdDevice (H) Device Release Number (BCD,H) (see individual data sheet) | YYH
14 |iManufacturer Manufacturer Index String = None OOH
15 iProduct Product Index String = None O0H
16 iSerialNumber Serial Number Index String = None 00H
17 | bNumConfigurations | Number of Configurations in this Interface = 1 O01H

The Device Descriptor specifies a MaxPacketSize of 64 bytes for endpoint 0, contains Cypress

Semiconductor Vendor, Product and Release Number IDs, and uses no string indices. Release
Number IDs (XX and YY) are found in individual Cypress Semiconductor data sheets. The USB
core returns this information response to a “Get_Descriptor/Device” host request.

Chapter 5. EZ-USB FX Enumeration and ReNumeration Page 5-13

Exhibit 2032 - Page 97 of 435

EZ-USB FX Technical Reference Manual

Table 5-10. USB Default Configuration Descriptor

Offset Field Description Value
0 bLength Length of this Descriptor = 9 bytes 09H
1 bDescriptorType Descriptor Type = Configuration 02H
2 wTotalLength (L) Total Length (L) Including Interface and Endpoint Descriptors DAH
3 wTotalLength (H) Total Length (H) 00H
4 bNuminterfaces Number of Interfaces in this Configuration 01H
5 bConfigurationValue Configuration Value Used by Set_Configuration Request to 01H

Select this Configuration
6 iConfiguration Index of String Describing this Configuration = None O00H
bmAttributes Attributes - Bus-Powered, No Wakeup 80H
MaxPower Maximum Power - 100 mA 32H

The configuration descriptor includes a total length field (offset 2-3) that encompasses all interface
and endpoint descriptors that follow the configuration descriptor. This configuration describes a
single interface (offset 4). The host selects this configuration by issuing a Set_Configuration
requests specifying configuration #1 (offset 5).

Table 5-11. USB Default Interface 0, Alternate Setting 0 Descriptor

Offset Field Description Value
0 bLength Length of the Interface Descriptor 09H
1 bDescriptorType Descriptor Type = Interface 04H
2 binterfaceNumber Zero-based Index of this Interface =0 OO0H
3 bAlternateSetting Alternate Setting Value =0 OO0H
4 bNumEndpoints Number of Endpoints in this Interface (Not Counting EPO) =0 | O0H
5 binterfaceClass Interface Class = Vendor Specific FFH
6 binterfaceSubClass Interface Sub-class = Vendor Specific FFH
7 binterfaceProtocol Interface Protocol = Vendor Specific FFH
8 iinterface Index to String Descriptor for this Interface = None O00H

Interface 0, Alternate Setting 0 describes endpoint 0 only. This setting consumes zero band-
width. The interface has no string index.

Page 5-14

EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 98 of 435

=/cw

RESS
Table 5-12. USB Default Interface 0O, Alternate Setting 1 Descriptor
Offset Field Description Value
0 bLength Length of the Interface Descriptor 09H
1 bDescriptorType Descriptor Type = Interface 04H
2 binterfaceNumber Zero-based Index of this Interface =0 00H
3 bAlternateSetting Alternate Setting Value = 1 01H
4 bNumEndpoints Number of Endpoints in this Interface (Not Counting EPO) =13 | ODH
5 binterfaceClass Interface Class = Vendor Specific FFH
6 binterfaceSubClass Interface Sub-class = Vendor Specific FFH
7 binterfaceProtocol Interface Protocol = Vendor Specific FFH
8 iinterface Index to String Descriptor for this Interface = None O0OH

Interface 0, Alternate Setting 1 has thirteen endpoints, whose individual descriptors follow the
interface descriptor. The alternate settings have no string indices.

Table 5-13. Default Interface 0, Alternate Setting 1, INT Endpoint Descriptor

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = IN1 81H
3 bmAttributes XFR Type = INT 03H
4 wMaxPacketSize (L) Maximum Packet Size = 16 Bytes 10H
5 wMaxPacketSize (H) |Maximum Packet Size - High 00H
6 binterval Polling Interval in Milliseconds = 10 ms OAH

Interface O, Alternate Setting 1 has one interrupt endpoint, IN1, which has a maximum packet
size of 16 and a polling interval of 10 ms.

Chapter 5. EZ-USB FX Enumeration and ReNumeration

Exhibit 2032 - Page 99 of 435

Page 5-15

EZ-USB FX Technical Reference Manual

Table 5-14. Default Interface O, Alternate Setting 1, Bulk Endpoint Descriptors

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor O7H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address =IN2 82H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) |Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 binterval Polling Interval in Milliseconds 00H
0 bLength Length of this Endpoint Descriptor O7H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address =OUT2 02H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) |Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 binterval Polling Interval in Milliseconds 00H
0 bLength Length of this Endpoint Descriptor O07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address =IN4 84H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) |Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 binterval Polling Interval in Milliseconds 00H
0 bLength Length of this Endpoint Descriptor O07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = OUT4 04H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) |Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 binterval Polling Interval in Milliseconds 00H
0 bLength Length of this Endpoint Descriptor O07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address =IN6 86H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) | Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 binterval Polling Interval in Milliseconds 00H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = OUT6 06H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) |Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 binterval Polling Interval in Milliseconds 00H

Page 5-16

EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 100 of 435

S
=i voness

Interface O, Alternate Setting 1 has six bulk endpoints with max packet sizes of 64 bytes. Even
numbered endpoints were chosen to allow endpoint pairing. For more on endpoint pairing, see
Chapter 6. "EZ-USB FX Bulk Transfers".

Table 5-15. Default Interface 0, Alternate Setting 1, ISO Endpoint Descriptors

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor O07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address =IN8 88H
3 bmAttributes XFR Type = 1SO 01H
4 wMaxPacketSize (L) | Maximum Packet Size = 16 Bytes 10H
5 wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 binterval Polling Interval in Milliseconds (1 for iso) 01H
0 bLength Length of this Endpoint Descriptor O07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address =OUT8 08H
3 bmAttributes XFR Type = 1SO 01H
4 wMaxPacketSize (L) | Maximum Packet Size = 16 Bytes 10H
5 wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 binterval Polling Interval in Milliseconds (1 for iso) 01H
0 bLength Length of this Endpoint Descriptor O07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address =IN9 89H
3 bmAttributes XFR Type = 1SO 01H
4 wMaxPacketSize (L) | Maximum Packet Size = 16 Bytes 10H
5 wMaxPacketSize (H) | Maximum Packet Size - High O00H
6 binterval Polling Interval in Milliseconds (1 for iso) 01H
0 bLength Length of this Endpoint Descriptor O07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address =OUT9 09H
3 bmAttributes XFR Type = 1SO 01H
4 wMaxPacketSize (L) | Maximum Packet Size = 16 Bytes 10H
5 wMaxPacketSize (H) | Maximum Packet Size - High O00H
6 binterval Polling Interval in Milliseconds (1 for iso) 01H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address =IN10 8AH
3 bmAttributes XFR Type = 1SO 01H
4 wMaxPacketSize (L) | Maximum Packet Size = 16 Bytes 10H
5 wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 binterval Polling Interval in Milliseconds (1 for iso) 01H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address =OUT10 OAH
3 bmAttributes XFR Type = 1SO 01H
4 wMaxPacketSize (L) | Maximum Packet Size = 16 Bytes 10H
5 wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 binterval Polling Interval in Milliseconds (1 for iso) 01H

Chapter 5. EZ-USB FX Enumeration and ReNumeration Page 5-17

Exhibit 2032 - Page 101 of 435

EZ-USB FX Technical Reference Manual

Interface 0, Alternate Setting 1 has six isochronous endpoints with maximum packet sizes of 16

bytes. This is a low bandwidth setting.

Table 5-16. USB Default Interface 0, Alternate Setting 2 Descriptor

Offset Field Description Value
0 bLength Length of the Interface Descriptor 09H
1 bDescriptor Type | Descriptor Type = Interface 04H
2 binterfaceNum- | Zero-based Index of this Interface = 0 OOH
ber
bAlternateSetting | Alternate Setting Value =2 02H
bNumEndpoints | Number of Endpoints in this Interface (Not Counting | ODH
EPO) =13

binterfaceClass |Interface Class = Vendor Specific FFH
binterfaceSub- Interface Sub-class = Vendor Specific FFH
Class

7 binterfaceProto- |Interface Protocol = Vendor Specific FFH
col

8 ilnterface Index to String Descriptor for this Interface = None | OO0H

Interface 0, Alternate Setting 2 has thirteen endpoints, whose individual descriptors follow the

interface descriptor. Alternate Setting 2 differs from Alternate Setting 1 in the maximum packet
sizes of its interrupt endpoint and two of its isochronous endpoints (EP8IN and EP8OUT).

Table 5-17. Default Interface O, Alternate Setting 1, INT Endpoint Descriptor

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = IN1 81H
3 bmAttributes XFR Type = INT 03H
4 wMaxPacketSize (L) Maximum Packet Size =64 Bytes 40H
5 wMaxPacketSize (H) Maximum Packet Size - High OOH
6 binterval Polling Interval in Milliseconds = 10 ms OAH

Alternate Setting 2 for the Interrupt 1-IN increases the maximum packet size for the interrupt

endpoint to 64.

Page 5-18

EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 102 of 435

S
=i voness

Table 5-18. Default Interface 0, Alternate Setting 2, Bulk Endpoint Descriptors

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor O07H
1 bDescriptor Type Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address =IN2 82H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 binterval Polling Interval in Milliseconds O00H
0 bLength Length of this Endpoint Descriptor O07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address =0OUT2 02H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 binterval Polling Interval in Milliseconds 00H
0 bLength Length of this Endpoint Descriptor O07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address =IN4 84H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 binterval Polling Interval in Milliseconds 00H
0 bLength Length of this Endpoint Descriptor O07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address =0OUT4 04H
3 bmAttributes XFR Type =1SO 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 binterval Polling Interval in Milliseconds O00H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address =IN6 86H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 binterval Polling Interval in Milliseconds O00H
0 bLength Length of this Endpoint Descriptor O07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address =OUT6 06H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 binterval Polling Interval in Milliseconds O00H

Chapter 5. EZ-USB FX Enumeration and ReNumeration Page 5-19

Exhibit 2032 - Page 103 of 435

EZ-USB FX Technical Reference Manual

The bulk endpoints for Alternate Setting 2 are identical to Alternate Setting 1.

Table 5-19. Default Interface 0, Alternate Setting 2, ISO Endpoint Descriptors

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address =IN8 88H
3 bmAttributes XFR Type =1SO 01H
4 wMaxPacketSize (L) | Maximum Packet Size = 256 Bytes 00H
5 wMaxPacketSize (H) | Maximum Packet Size - High 01H
6 binterval Polling Interval in Milliseconds (1 for iso) 01H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address =OUT8 08H
3 bmAttributes XFR Type =1SO 01H
4 wMaxPacketSize (L) | Maximum Packet Size = 256 Bytes 00H
5 wMaxPacketSize (H) | Maximum Packet Size - High 01H
6 binterval Polling Interval in Milliseconds (1 for iso) 01H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address =IN9 89H
3 bmAttributes XFR Type =1SO 01H
4 wMaxPacketSize (L) | Maximum Packet Size = 16 Bytes 10H
5 wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 binterval Polling Interval in Milliseconds (1 for iso) 01H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address =OUT9 09H
3 bmAttributes XFR Type =1SO 01H
4 wMaxPacketSize (L) | Maximum Packet Size = 16 Bytes 10H
5 wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 binterval Polling Interval in Milliseconds (1 for iso) 01H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address =IN10 8AH
3 bmAttributes XFR Type =1SO 01H
4 wMaxPacketSize (L) | Maximum Packet Size = 16 Bytes 10H
5 wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 binterval Polling Interval in Milliseconds (1 for iso) 01H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address =OUT10 OAH
3 bmAttributes XFR Type =1SO 01H
4 wMaxPacketSize (L) | Maximum Packet Size = 16 Bytes 10H
5 wMaxPacketSize (H) | Maximum Packet Size - High 00H
6 binterval Polling Interval in Milliseconds (1 for iso) 01H

Page 5-20 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 104 of 435

=
= e

The only differences between Alternate Settings 1 and 2 are the maximum packet sizes for EP8IN
and EP8OUT. This is a high-bandwidth setting.

Chapter 5. EZ-USB FX Enumeration and ReNumeration Page 5-21

Exhibit 2032 - Page 105 of 435

EZ-USB FX Technical Reference Manual

Page 5-22 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 106 of 435

—mm =
——m?.

- x

-
—]
—_——

= 4 CYPF{ ESS

Chapter 6. EZ-USB FX Bulk Transfers

6.1 Introduction

Ellc g A AllE|C 2 g
NI R EVIDED C C M D|IN|IR T EVIDED C
D||C DELE M D|[D|| C DELE
Pll5 L S RI|P||5 s L
6 1 6
Token Packet Data Packet H/S Pkt Token Packet Data Packet

Figure 6-1. Two BULK Transfers, IN and OUT

EZ-USB FX provides sixteen endpoints for BULK, CONTROL, and INTERRUPT transfers, num-
bered 0-7 as shown in Table 6-1 This chapter describes BULK and INTERRUPT transfers. INTER-
RUPT transfers are a special case of BULK transfers. EZ-USB FX CONTROL endpoint zero is
described in Chapter 9. "EZ-USB FX Endpoint Zero".

Table 6-1. EZ-USB FX Bulk, Control, and Interrupt Endpoints

Endpoint | Direction Type Size
0 Bidir Control | 64/64
1 IN Bulk/Int 64
1 ouT Bulk/Int 64
2 IN Bulk/Int 64
2 ouT Bulk/Int 64
3 IN Bulk/Int 64
3 ouT Bulk/Int 64
4 IN Bulk/Int 64
4 ouT Bulk/Int 64
5 IN Bulk/Int 64
5 ouT Bulk/Int 64
6 IN Bulk/Int 64
6 ouT Bulk/Int 64
7 IN Bulk/Int 64
7 ouT Bulk/Int 64

The USB Specification allows maximum packet sizes of 8, 16, 32, or 64 bytes for bulk data, and 1 -
64 bytes for interrupt data. EZ-USB FX provides the maximum 64 bytes of buffer space for each of

Chapter 6. EZ-USB FX Bulk Transfers Page 6-1

Exhibit 2032 - Page 107 of 435

EZ-USB FX Technical Reference Manual

its sixteen endpoints: 0-7 IN and 0-7 OUT. Six of the bulk endpoints, 2-IN, 4-IN, 6-IN, 2-OUT, 4-
OUT, and 6-OUT may be paired with the next consecutively numbered endpoint to provide double-
buffering. This allows one data packet to be serviced by the 8051, while another is in transit over
USB. Six endpoint pairing bits (USBPAIR Register) control double-buffering.

The 8051 sets fourteen endpoint valid bits (INO7VAL, OUTO7VAL Registers) at initialization time to
tell the USB core which endpoints are active. The default CONTROL endpoint zero is always
valid.

Bulk data appears in RAM. Each bulk endpoint has a reserved 64-byte RAM space, a 7-bit count
register, and a 2-bit control and status (CS) register. The 8051 can read one bit of the CS Register
to determine endpoint busy, and write the other to force an endpoint STALL condition.

NG
The 8051 should never read or write an endpoint buffer or byte count register while the
endpoint’s busy bit is set.

When an endpoint becomes ready for 8051 service, the USB core sets an interrupt request bit.
The EZ-USB FX vectored interrupt system separates the interrupt requests by endpoint to auto-
matically transfer control to the ISR (Interrupt Service Routine) for the endpoint requiring service.
Chapter 12. "EZ-USB FX Interrupts” fully describes this mechanism.

Figure 6-2 illustrates the registers and bits associated with bulk transfers.

Page 6-2 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 108 of 435

=
=i voness

Registers Associated with a Bulk IN endpoint
(EP2IN shown as example)

Initialization

INO7VAL [7 [6 [s [« [a]2]1]0]
Endpoint Valid (1=valid)

067 | 045 | 023 | 67 | 45 i23

USBPAR\

Endpoint Pairing (1=paired)

INO7IEN [7 [6 [s [« [a]2[1]o]
Interrupt Enable (1=enabled)

Data transfer

IN2BUF
64 Byte
Endpoint
Buffer
IN2BC | |
Byte Count

Busy and Stall

IN2CS |

[2]5]

Control & Status

Interrupt Control

INO7IRQ [7 |6 [s [« |3]2]1]0]

Interrupt Request (write 1 to clear)

Registers Associated with a Bulk OUT endpoint
(EP40OUT shown as example)

Data transfer

Initialization

OUTO7VAL |7 [6[s [«]s]z]1]0]
Endpoint Valid (1=valid)

USBPAR\

067

045

023

i67

i45

i23

Endpoint Pairing (1=paired)

OUTO7IEN‘7‘6‘5‘4‘3‘2‘1‘0‘
Interrupt Enable (1=enabled)

OUT4BUF
64 Byte
Endpoint
Buffer
OUT4BC| |
Byte Count

Busy and Stall

[2]5]

ouT4CS |

Control & Status

Interrupt Control

ouTo7IRQ 7|6 s [efs]2]1]0]

Interrupt Request (write 1 to clear)

Figure 6-2. Registers Associated with Bulk Endpoints

Chapter 6. EZ-USB FX Bulk Transfers

Exhibit 2032 - Page 109 of 435

Page 6-3

EZ-USB FX Technical Reference Manual

6.2 Bulk IN Transfers

o © ® © 6
HoH

H D D
AllE|lC 2 g " AllE] C
L|lo|INJI R[] Payload . A L o|[N||IR NP
N/ DD cll, Data 1 ¥ Nl pliD| c /|: 0
RIPIS| G 6 RI[P|5 ' -
Token Packet Data Packet H/S Pkt Token Packet JIH/S Pk |'I|
! 8
(INnBC loaded) EPnIN Interrupt, INNnBSY=0 3
o
11
® s © @ al
H D H D H B
T
allElelll | AllE]C 2 g T
I|ID|IN| R I||D|IN| R T Payload A A g
Nipl|ollcl|| [A Ni D[D]l C A Data ‘ C 5
RI|P|5 K R PS5 K z
0 6
Token Packet /S Pkt T Token Packet Data Packet H/S Pkt
Load INnBC EPnIN Interrupt, INnBSY:OJA

Figure 6-3. Anatomy of a Bulk IN Transfer

USB bulk IN data travels from device to host. The host requests an IN transfer by issuing an IN
token to the USB core, which responds with data when it is ready. The 8051 indicates ready by
loading the endpoint’s byte count register. If the USB core receives an IN token for an endpoint
that is not ready, it responds to the IN token with a NAK handshake.

In the bulk IN transfer illustrated in Figure 6-3, the 8051 has previously loaded an endpoint buffer
with a data packet, and then loaded the endpoint’s byte count register with the number of bytes in
the packet to arm the next IN transfer. This sets the endpoint’s BUSY Bit. The host issues an IN
token (1), to which the USB core responds by transmitting the data in the IN endpoint buffer (2).
When the host issues an ACK (3), indicating that the data has been received error-free, the USB
core clears the endpoint's BUSY Bit and sets its interrupt request bit. This notifies the 8051 that
the endpoint buffer is empty. If this is a multi-packet transfer, the host then issues another IN token
to get the next packet.

If the second IN token (4) arrives before the 8051 has had time to fill the endpoint buffer, the EZ
USB core issues a NAK handshake, indicating busy (5). The host continues to send IN tokens (4)
and (7) until the data is ready. Eventually, the 8051 fills the endpoint buffer with data, and then

Page 6-4 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 110 of 435

=7 v

loads the endpoint’s byte count register (INNBC) with the number of bytes in the packet (6). Load-
ing the byte count re-arms the given endpoint. When the next IN token arrives (7) the USB core
transfers the next data packet (8).

6.3 Interrupt Transfers

Interrupt transfers are handled just like bulk transfers.

The only difference between a bulk endpoint and an interrupt endpoint exists in the endpoint
descriptor, where the endpoint is identified as type interrupt, and a polling interval is specified. The
polling interval determines how often the USB host issues IN/OUT tokens to the interrupt endpoint.

6.4 EZ-USB FX Bulk IN Example

Suppose 220 bytes are to be transferred to the host using endpoint 6-IN. Further assume that
MaxPacketSize of 64 bytes for endpoint 6-IN has been reported to the host during enumeration.
Because the total transfer size exceeds the maximum packet size, the 8051 divides the 220-byte
transfer into four transfers of 64, 64, 64, and 28 bytes.

After loading the first 64 bytes into IN6BUF (at Ox7C00), the 8051 loads the byte count register
IN6BC with the value 64. Writing the byte count register instructs the EZ-USB core to respond to
the next host IN token by transmitting the 64 bytes in the buffer. Until the byte count register is
loaded to arm the IN transfer, any IN tokens issued by the host are answered by EZ-USB FX with
NAK (Not-Acknowledge) tokens, telling the USB host that the endpoint is not yet ready with data.
The host continues to issue IN tokens to endpoint 6-IN until data is ready for transfer—whereupon
the USB core replaces NAKs with valid data.

When the 8051 initiates an IN transfer by loading the endpoint’s byte count register, the EZ-USB
core sets a busy bit to instruct the 8051 to hold off loading IN6BUF until the USB transfer is fin-
ished. When the IN transfer is complete and successfully acknowledged, the EZ-USB core resets
the endpoint 6-IN busy bit and generates an endpoint 6-IN interrupt request. If the endpoint 6-IN
interrupt is enabled, program control automatically vectors to the data transfer routine for further
action (Autovectoring is enabled by setting AVEN=1. Refer to Chapter 12. "EZ-USB FX Inter-
rupts").

The 8051 now loads the next 64 bytes into IN6BUF and then loads the EPINBC Register with 64
for the next two transfers. For the last portion of the transfer, the 8051 loads the final 28 bytes into
IN6BUF, and loads IN6BC with 28. This completes the transfer.

Chapter 6. EZ-USB FX Bulk Transfers Page 6-5

Exhibit 2032 - Page 111 of 435

EZ-USB FX Technical Reference Manual

Initialization

When the EZ-USB FX chip comes out of RESET, or when the USB host issues a bus reset,
the EZ-USB core unarms IN endpoint 1-7 by setting their busy bits to 0. Any IN transfer
requests are NAKd until the 8051 loads the appropriate INXBC Register(s). The endpoint
valid bits are not affected by an 8051 reset or a USB reset. Chapter 13. "EZ-USB FX Resets"
describes the various reset conditions in detail.

The EZ-USB core takes care of USB housekeeping chores, such as handshake verification. When
an endpoint 6-IN interrupt occurs, the user is assured that the data loaded by the 8051 into the
endpoint buffer was received error-free by the host. The EZ-USB core automatically checks the
handshake information from the host and re-transmits the data, if the host indicates an error by not
ACKing.

6.5 Bulk OUT Transfers

USB bulk OUT data travels from host to device. The host requests an OUT transfer by issuing an
OUT token to EZ-USB FX, followed by a packet of data. The USB core then responds with an
ACK, if it correctly received the data. If the endpoint buffer is not ready to accept data, the USB
core discards the host's OUT data and returns a NAK token, indicating “not ready.” In response,
the host continues to send OUT tokens and data to the endpoint until the USB core responds with
an ACK.

H H D H H D
D C D C
AllE| C AllE||C
0 D||N|| R A Payload R A © D||N||R R} Payload R N
u T C © u T C A
D||D| C Data D||D| C Data
T rilpll 5 A 1 K T rllpll5 A 1 K .o
1 6 0 6 7]
Token Packet Data Packet /S Pkt Token Packet Data Packet H/S Pkt é
(Og(;?ggc;\)/a—ijd, EPnOUT Interrupt, 3
- OUTnBSY=0 cD%
1]
o
® ® ® @ ® g
H H D H H D I
T
D C D C
AllE||C AllE|| C @
0 D||N|IR A Payload R N © D||N|IR A Payload R R %
u T C A u T C © zZ
D||D|C Data D||D| C Data
T rllpll s A 1 K T rllpll 5 A 1 K
0 6 0 6
Token Packet Data Packet /S Pkt T Token Packet Data Packet H/S Pkt
Load OUTnBC (any value), EPnOUTIntecrupt, 1
causes OUTnBSY=1 OUTnBSY=0
Figure 6-4. Anatomy of a Bulk OUT Transfer
Page 6-6 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 112 of 435

=7 v

Each EZ-USB FX bulk OUT endpoint has a byte count register, which serves two purposes. The
8051 reads the byte count register to determine how many bytes were received during the last
OUT transfer from the host. The 8051 writes the byte count register (with any value) to tell the
USB core that is has finished reading bytes from the buffer, making the buffer available to accept
the next OUT transfer. The OUT endpoints come up (after reset) armed, so the byte count register
writes are required only for OUT transfers after the first one.

In the bulk OUT transfer illustrated in Figure 6-4, the 8051 has previously loaded the endpoint’s
byte count register with any value to arm receipt of the next OUT transfer. Loading the byte count
register causes the EZ-USB core to set the OUT endpoint’s busy bit to 1, indicating that the 8051
should not use the endpoint’s buffer.

The host issues an OUT token (1), followed by a packet of data (2), which the USB core acknowl-
edges, clears the endpoint’s busy bit and generates an interrupt request (3). This notifies the 8051
that the endpoint buffer contains valid USB data. The 8051 reads the endpoint’s byte count register
to find out how many bytes were sent in the packet, and transfers that many bytes out of the end-
point buffer.

In a multi-packet transfer, the host then issues another OUT token (4) along with the next data
packet (5). If the 8051 has not finished emptying the endpoint buffer, the EZ-USB FX host issues a
NAK, indicating busy (6). The data at (5) is shaded to indicate that the USB core discards it, and
does not over-write the data in the endpoint’s OUT buffer.

The host continues to send OUT tokens (4, 5, and 6) that are greeted by NAKs until the buffer is
ready. Eventually, the 8051 empties the endpoint buffer data, and then loads the endpoint’s byte
count register (7) with any value to re-arm the USB core. Once armed and when the next OUT
token arrives (8) the USB core accepts the next data packet (9).

Initializing OUT Endpoints

When the EZ-USB FX chip comes out of reset, or when the USB host issues a bus reset, the
USB core arms OUT endpoints 1-7 by setting their busy bits to 1. Therefore, they are initially
ready to accept one OUT transfer from the host. Subsequent OUT transfers are NAKd until
the appropriate OUTnBC Register is loaded to re-arm the endpoint.

The EZ-USB core takes care of USB housekeeping chores such as CRC checks and data toggle
PIDs. When an endpoint 6-OUT interrupt occurs and the busy bit is cleared, the user is assured
that the data in the endpoint buffer was received error-free from the host. The USB core automati-
cally checks for errors, and requests the host to re-transmit data if it detects any errors using the
built-in USB error checking mechanisms (CRC checks and data toggles).

Chapter 6. EZ-USB FX Bulk Transfers Page 6-7

Exhibit 2032 - Page 113 of 435

EZ-USB FX Technical Reference Manual

6.6 Endpoint Pairing

Table 6-2. Endpoint Pairing Bits (in the USB PAIR Register)

Bit 5 4 3 2 1 0
Name PR60OUT | PR4OUT | PR20OUT | PR6IN PR4IN PR2IN
Paired 6 OUT 4 OUT 20UT 6 IN 4 IN 2IN
Endpoints 7 OUT 50UT 30UT 7IN 5IN 3IN

The 8051 sets endpoint pairing bits to 1 to enable double-buffering of the bulk endpoint buffers.
With double-buffering enabled, the 8051 can operate on one data packet while another is being
transferred over USB. The endpoint busy and interrupt request bits function identically, so the
8051 code requires little code modification to support double-buffering.

When an endpoint is paired, the 8051 uses only the even-numbered endpoint of the pair. The
8051 should not use the paired odd endpoint. For example, suppose it is desired to use endpoint
2-IN as a double-buffered endpoint. This pairs the IN2BUF and IN3BUF buffers, although the
8051 accesses the IN2BUF buffer only. The 8051 sets PR2IN=1 (in the USBPAIR Register) to
enable pairing; sets IN2VAL=1 (in the INO7VAL Register) to make the endpoint valid; and then
uses the IN2BUF buffer for all data transfers. The 8051 should not write the IN3VAL Bit, enable
IN3 interrupts, access the EP3IN buffer, or load the IN3BC byte count register.

6.7 Paired IN Endpoint Status

INNBSY=1 indicates that both endpoint buffers are in use, and the 8051 should not load new IN
data into the endpoint buffer. When INNnBSY=0, either one or both of the buffers is available for
loading by the 8051. The 8051 can keep an internal count that increments on EPnIN interrupts
and decrements on byte count loads to determine whether one or two buffers are free. Or, the
8051 can simply check for INNnBSY=0 after loading a buffer (and loading its byte count register to
re-arm the endpoint) to determine if the other buffer is free.

A
If an IN endpoint is paired and it is desired to clear the busy bit for that endpoint, do the
following: (a) write any value to the even endpoint’s byte count register twice, and (b) clear
the busy bit for both endpoints in the pair. This is the only code difference between paired

and unpaired use of an IN endpoint.

A bulk IN endpoint interrupt request is generated whenever a packet is successfully transmitted

over USB. The interrupt request is independent of the busy bit. If both buffers are filled and one is
sent, the busy bit transitions from 1 to 0. If one buffer is filled and then sent, the busy bit starts and
remains at 0. In either case, an interrupt request is generated to tell the 8051 that a buffer is free.

Page 6-8 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 114 of 435

=7 v

6.8 Paired OUT Endpoint Status

OUTnBSY=1 indicates that both endpoint buffers are empty, and no data is available to the 8051.
When OUTnBSY=0, either one or both of the buffers holds USB OUT data. The 8051 can keep an
internal count that increments on EPnOUT interrupts and decrements on byte count loads to deter-
mine whether one or two buffers contain data. Or, the 8051 can simply check for OUTnBSY=0
after unloading a buffer (and loading its byte count register to re-arm the endpoint) to determine if
the other buffer contains data.

6.9 Reusing Bulk Buffer Memory

Table 6-3. EZ-USB FX Endpoint 0-7 Buffer Addresses

Bl Address Mirrored
Buffer
INOBUF 7FO00-7F3F 1FO00-1F3F
OUTOBUF 7ECO-7EFF | 1ECO-1EFF
IN1IBUF 7E80-7EBF 1E80-1EBF
OUT1BUF TEA40-7ETF 1E40-1E7F
IN2BUF 7EO00-7E3F 1E00-1E3F
OUT2BUF 7DCO-7DFF | 1DCO-1DFF
IN3BUF 7D80-7DBF | 1D80-1DBF
OUT3BUF 7D40-7D7F 1D40-1D7F
INABUF 7D00-7D3F 1D00-1D3F
OUT4BUF 7CCO-7CFF | 1CCO-1CFF
INSBUF 7C80-7CBF | 1C80-1CBF
OUT5BUF 7C40-7C7F | 1C40-1C7F
IN6BUF 7C00-7C3F | 1C00-1C3F
OUT6BUF 7BCO-7BFF | 1BCO-1BFF
IN7BUF 7B80-7BBF 1B80-1BBF
OUT7BUF 7B40-7B7F 1B40-1B7F

Table 6-3 shows the RAM locations for the sixteen 64-byte buffers for endpoints 0-7 IN andOUT.
These buffers are positioned at the bottom of the EZ-USB FX register space so that any buffers not
used for endpoints can be reclaimed as general purpose data RAM. The top of memory for the 8-
KB EZ-USB FX part is at 0x1B3F. However, if the endpoints are allocated in ascending order, start-
ing with the lowest numbered endpoints, the higher numbered unused endpoints can effectively
move the top of memory to utilize the unused endpoint buffer RAM as data memory. For example,
an application that uses endpoint 1-IN, 2-IN/OUT (paired), 4-IN and 4-OUT can use 0x1B40-
O0x1CBF as data memory. Chapter 3. "EZ-USB FX Memory" provides full details of the EZ-USB FX
memory map.

Chapter 6. EZ-USB FX Bulk Transfers Page 6-9

Exhibit 2032 - Page 115 of 435

EZ-USB FX Technical Reference Manual

NG
Uploads or Downloads to unused bulk memory can be done only at the Mirrored (low)
addresses shown in Table 6-3.

6.10 Data Toggle Control

The EZ-USB core automatically maintains the data toggle bits during bulk, control and interrupt
transfers. As explained in Chapter 1. "Introducing EZ-USB FX", the toggle bits are used to detect
certain transmission errors so that erroneous data can be re-sent.

In certain circumstances, the host resets its data toggle to “DATAQ™:
» After sending a Clear_Feature: Endpoint Stall request to an endpoint.
» After setting a new interface.
» After selecting a new alternate setting.

In these cases, the 8051 can directly clear the data toggle for each of the bulk/interrupt/control
endpoints, using the TOGCTL Register (Figure 6-5).

TOGCTL Data Toggle Control 7FD7
b7 b6 b5 b4 b3 b2 bl b0
Q S R 10 0 EP2 EP1 EPO
R RIW RIW RIW RIW RIW RIW RIW
X X X X X X X

Figure 6-5. Bulk Endpoint Toggle Control

The I/O bit selects the endpoint direction (1=IN, 0=0UT), and the EP2-EP1-EPO Bits select the
endpoint number. The Q Bit, which is read-only, indicates the state of the data toggle for the
selected endpoint. Writing R=1 sets the data toggle to DATAO, and writing S=1 sets the data toggle
to DATAL.

&
Currently, there appears to be no reason to set a data toggle to DATAL. The S Bit is pro-
vided for generality.

Page 6-10 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 116 of 435

S
=7 v

To clear an endpoint’s data toggle, the 8051 performs the following sequence:

1. Selects the endpoint by writing the value 000DOEEE binary to the TOGCTL Register, where D
is the direction and EEE is the endpoint number.

2. Clears the toggle bit by writing the value 001DOEEE binary to the TOGCTL Register.

After Step 1, the 8051 may read the state of the data toggle by reading the TOGCTL Register
checking Bit 7.

6.11 Polled Bulk Transfer Example

The following code sample illustrates the EZ-USB FX registers used for a simple bulk transfer. In
this example, 8051 Register R1 keeps track of the number of endpoint 2-IN transfers and Register
R2 keeps track of the number of endpoint 2-OUT transfers (mod-256). Every endpoint 2-IN trans-
fer consists of 64 bytes of a decrementing count, with the first byte replaced by the number of IN
transfers and the second byte replaced by the number of OUT transfers.

1 start: nov SP, #STACK- 1 ; set stack
2 nmv dpt r, #1 N2BUF ; fill EP2IN buffer with
3 nmv r7,#64 ; decrenenting counter
4 fill: nmv a, r7
5 MoV X @iptr, a
6 inc dptr
7 dj nz r7,fill
8
9 nmov ri, #0 ; rlis INtoken counter
10 nmv r2, #0 ; r2 is OUT token counter
11 nmv dptr, #1 N2BC ; Point to EP2 Byte Count Register
12 nmv a, #40h ; 64-byte transfer
13 nmvx @iptr, a ; armthe IN2 transfer
14 ;
15 | oop: nmv dptr, #1 N2CS ; poll the EP2-1N Status
16 novx a, @lptr
17 jnb acc. 1, servicel N2 ; not busy--service endpoint
18 nmv dptr, #0OUT2CS
19 mov X a, @lptr
20 ib acc. 1,1 oop ; EP2QUT is busy--keep | ooping
21 ;
22 serviceOUT2:
23 inc r2 ; OUT packet counter
24 nmov dpt r, #OUT2BC ; load byte count Register to re-arm
25 novx @iptr, a ; (any val ue)
26 sj np | oop
27 ;
28 servicel N2:
29 inc rl ; I N packet counter
30 nmv dpt r, #1 N2BUF ; update the first data byte
31 nmv a, ri ; in EP2IN buffer
32 mov X @iptr, a
33 inc dptr ; second byte in buffer
Chapter 6. EZ-USB FX Bulk Transfers Page 6-11

Exhibit 2032 - Page 117 of 435

EZ-USB FX Technical Reference Manual

34 nmov a, r2 ; get nunber of OUT packets

35 MoV X @iptr, a

36 nmv dptr, #1 N2BC ; point to EP2IN Byte Count Register
37 mv a, #40h

38 nmovx @iptr, a ; load bc=64 to re-arm I N2

39 sj np | oop

40

41 END

Figure 6-6. Example Code for a Simple (Polled) BULK Transfer

The code at lines 2-7 fills the endpoint 2-IN buffer with 64 bytes of a decrementing count. Two 8-bit
counts are initialized to zero at lines 9 and 10. An endpoint 2-IN transfer is armed at lines 11-13,
which load the endpoint 2-IN byte count register IN2BC with 64. Then, the program enters a poll-
ing loop at lines 15-20, where it checks two flags for endpoint 2 servicing. Lines 15-17 check the
endpoint 2-IN busy bit in IN2CS Bit 1. Lines 18-20 check the endpoint 2-OUT busy bit in OUT2CS
Bit 1. When busy=1, the EZ-USB core is currently using the endpoint buffers, and the 8051 should
not access them. When busy=0, new data is ready for service by the 8051.

For both IN and OUT endpoints, the busy bit is set when the EZ-USB core is using the buffers, and
cleared by loading the endpoint’s byte count register. The byte count value is meaningful for IN
transfers because it tells the USB core how many bytes to transfer in response to the next IN
token. The 8051 can load any byte count OUT transfers, because only the act of loading the regis-
ter is significant—loading OUTNBC arms the OUT transfer and sets the endpoint’s busy bit.

When an OUT packet arrives in OUT2BUF, the service routine at lines 22-26 increments R2, loads
the byte count (any value) into OUT2BC to re-arm the endpoint (lines 24-25), and jumps back to
the polling routine. This program does not use OUT2BUF data. It simply counts the number of
endpoint 2-OUT transfers.

When endpoint 2-IN is ready for the 8051 to load another packet into IN2BUF, the polling loop
jumps to the endpoint 2-IN service routine at lines 28-39. First, R1 is incremented (line 29). The
data pointer is set to IN2BUF at line 30, and Register R1 is loaded into the first byte of the buffer
(lines 31-32). The data pointer is advanced to the second byte of IN2BUF at line 33, and Register
R2 is loaded into the buffer (lines 34-35). Finally, the byte count 40H (64 decimal bytes) is loaded
into the byte count Register IN2BC to arm the next IN transfer at lines 36-38, and the routine
returns the polling loop.

6.12 Enumeration Note

The code in the example listed above is complete, and it runs on the EZ-USB FX chip. You may be
wondering about the missing step, which reports the endpoint characteristics to the host during the
enumeration process. The reason this code runs without any enumeration code is that the EZ-
USB FX chip comes on as a fully-functional USB device with certain endpoints already configured
and reported to the host. Endpoint 2 is included in this default configuration. The full default config-
uration is described in Chapter 5. "EZ-USB FX Enumeration & ReNumeration™".

Page 6-12 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 118 of 435

S
=i voness

6.13 Bulk Endpoint Interrupts

All USB interrupts activate the 8051 INT 2 interrupt. If enabled, INT2 interrupts cause the 8051 to
push the current program counter onto the stack, and then execute a jump to location 0x43, where
the programmer has inserted a jump instruction to the interrupt service routine (ISR). If the AVEN
(Autovector Enable) bit is set, the USB core inserts a special byte at location 0x45, which directs
the jump instruction to a table of jump instructions that transfer control the endpoint-specific ISR.

Table 6-4. 8051 INT2 Interrupt Vector

Location | Op-Code | Instruction
0x43 02 LIMP
0x44 AddrH
0x45 AddrL*

*Replaced by EZ-USB Core if AVEN=1.

The byte inserted by the EZ-USB core at address 0x45 depends on which bulk endpoint requires
service. Table 6-5 shows all INT2 vectors, with the bulk endpoint vectors shaded.

Table 6-5. Byte Inserted by USB Core at Location 0x45 if AVEN=1

Inserted Byte at
Interrupt 0x45
SUDAV 0x00
SOF 0x04
SUTOK 0x08
SUSPEND 0x0C
USBRES 0x10
Reserved 0x14
EPO-IN 0x18
EPO-OUT 0x1C
EP1-IN 0x20
EP10OUT 0x24
EP2IN 0x28
EP20UT 0x2C
EP3-IN 0x30
EP3-OUT 0x34
EP4-IN 0x38
EP4-OUT 0x3C
EP5-IN 0x40
EP5-OUT 0x44
EP6-IN 0x48
EP6-OUT 0x4C
EP7-IN 0x50
EP7-OUT 0x54

The vector values are four bytes apart. This allows the programmer to build a jump table to each of
the interrupt service routines. Note that the jump table must begin on a page (256 byte) boundary

Chapter 6. EZ-USB FX Bulk Transfers Page 6-13

Exhibit 2032 - Page 119 of 435

EZ-USB FX Technical Reference Manual

because the first vector starts at 00. If Autovectoring is not used (AVEN=0), the IVEC Register
may be directly inspected to determine the USB interrupt source. (See Section 12.11. "Autovector
Coding").

Each bulk endpoint interrupt has an associated interrupt enable bit (in INO7IEN and OUTO7IEN),
and an interrupt request bit (in INO7IRQ and OUTO07IRQ). These IRQ bits can be cleared by writ-
ing to the INT2CLR SFR Register.

NG
Any USB ISR should clear the 8051 INTZ2 interrupt request bit before clearing any of the
EZ-USB FX endpoint IRQ bits, to avoid losing interrupts. Interrupts are discussed in more

detail in Chapter 12. "EZ-USB FX Interrupts”

Individual interrupt request bits are cleared by writing “1” to them to simplify code. For
example, to clear the endpoint 2-IN IRQ, simply write “0000100” to INO7IRQ. This will not
disturb the other interrupt request bits. Do not read the contents of INO7IRQ, logical-OR
the contents with 01, and write it back. This clears all other pending interrupts because
you are writing “1”s to them.

6.14 Interrupt Bulk Transfer Example

This following simple (but fully-functional) example illustrates the bulk transfer mechanism using
interrupts. In the example program, BULK endpoint 6 is used to loop data back to the host. Data
sent by the host over endpoint 6-OUT is sent back over endpoint 6-IN.

Page 6-14 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 120 of 435

=
= e

1. Setup the jump table.

CSEG AT 300H ; any page boundary
USB_Junp_Tabl e:

I'jnp SUDAV_I SR ; SETUP Data Avail abl e

db 0 ; make a 4-byte entry

I'jmp SOF_I SR ; SOF

db 0

I'jmp SUTOK_I SR ; SETUP Data Loading

db 0

Ijmp SUSP_I SR ; G obal Suspend

db 0

Ijm URES_I| SR ; USB Reset

db 0

I'jnp I BN_I SR

db 0

I'jnp EPOI N_I SR

db 0

I'jnp EPOOUT_I SR

db 0

I'jnp EP1l N_I SR

db 0

I'jnp EP10UT_I SR

db 0

I'jnp EP2I N_I SR

db 0

I'jnp EP20UT_I SR

db 0

I'jnp EP3I N_I SR

db 0

Ijnp EP30QUT_I SR

db 0

I'jnp EP41 N_I SR

db 0

I'jnp EP40OUT_I SR

db 0

I'jnp EP5I N_I SR

db 0

I'jnp EP50UT_I SR

db 0

Ijm EP61 N_I SR ; Used by this exanple

db 0

ljmp EP6QUT_I SR ; Used by this exanple

db 0

I'jnp EP7I N_I SR

db 0

I'jnp EP7OUT_| SR

db 0

Figure 6-7. Interrupt Jump Table

This table contains all of the USB interrupts, even though only the jumps for endpoint 6 are
used for the example. It is convenient to include this table in any USB application that uses
interrupts. Be sure to locate this table on a page boundary.

Chapter 6. EZ-USB FX Bulk Transfers Page 6-15

Exhibit 2032 - Page 121 of 435

EZ-USB FX Technical Reference Manual

2. Write the INT2 interrupt vector.

org 43h ; int2 is the USB vector
Ijm USB_Junp_Tabl e ; Autovector will replace byte 45

Figure 6-8. INTZ2 Interrupt Vector

3. Write the interrupt service routine.

Put it anywhere in memory and the jump table in step 1 will automatically jump to it.

push acc
nmov a, EXIF ; clear INT2 (USB) IRQ flag
clr acc. 4

mv EXI F, a
nmov I NT2CLR, a ; use whatever value is in acc

setb got_EP6- DATA
Do Interrupt processing here —set flags, whatever .
spend tinme here or not
pop acc
reti

Figure 6-9. Interrupt Service Routine (ISR) for Endpoint 6-OUT

In this example, the ISR simply sets the 8051 flag “got_EP6_data” to indicate to the back-
ground program that the endpoint requires service.

Page 6-16 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 122 of 435

4. Write the endpoint 6 transfer program.

C
=7 v

1 1loop: jnb got _EP6_dat a, | oop

2 clr got _EP6_dat a

3

4 ; The user sent bytes to OUT6 endpoint using the USB Contro
5 ; Find out how nany bytes were sent.

6 -

7 nmv dptr, #OUT6BC

8 nmvx a, @ptr

9 nmv r7,a

10 nmov r6, a

11

12 Transfer the bytes received on the OUT6
13 ; buffer. Nunmber of bytes in r6 and r7
14 ;

15 nmov dpt r, #OUT6BUF

16 inc dps

17 nov dptr, #1 N6BUF

18 inc dps

19 transfer: novx a, @ptr get
20 inc dptr

21 inc dps

22 novx @lptr, a put
23 inc dptr

24 inc dps

25 dj nz r7,transfer

26

27 Load the byte count into | N6BC.

28

29 nmv dptr, #1 N6BC

30 nmov a, re

31 nmvx @lptr, a

32

33 Load any byte count into OUT6BC.

34 ;

35 nmov dpt r, #OUT6BC

36 nmvx @iptr, a

37 sj np | oop

clear nmy flag

Panel

point to OUT6 byte count
get the val ue

stash the byte count
save here al so

register

endpoint to the | N6 endpoint

first data pointer points to EP20UT buffer
sel ect the second data pointer

second data pointer points to EP2IN buffer
back to first data pointer

QUT byte

bunmp the pointer

second data pointer

into I N buffer

bunmp the pointer

first data pointer

This arnms in IN transfer

get other saved copy of byte count
this arms the IN transfer

This arns the next OUT transfer

use whatever is in acc

start checking for another OUT6 packet

Figure 6-10. Background Program Transfers Endpoint 6-OUT Data to Endpoint 6-IN

The main program loop tests the “got_ EP6_data” flag, waiting until it is set by the endpoint 6
OUT interrupt service routine in Figure 6-10. This indicates that a new data packet has arrived
in OUT6BUF. Then the service routine is entered, where the flag is cleared in line 2. The num-
ber of bytes received in OUT6BUF is retrieved from the OUT6BC Register (Endpoint 6 Byte
Count) and saved in Registers R6 and R7 in lines 7-10.

The dual data pointers are initialized to the source (OUT6BUF) and destination (IN6BUF) buff-
ers for the data transfer in lines 15-18. These labels represent the start of the 64-byte buffers
for endpoint 6-OUT and endpoint 6-IN, respectively. Each byte is read from the OUT6BUF

buffer and written to the IN6BUF buffer in lines 19-25. The saved value of OUT6BC is used as
a loop counter in R7 to transfer the exact number of bytes that were received over endpoint 6-

OUT.

Chapter 6. EZ-USB FX Bulk Transfers

Page 6-17

Exhibit 2032 - Page 123 of 435

EZ-USB FX Technical Reference Manual

When the transfer is complete, the program loads the endpoint 6-IN byte count Register
IN6BC with the number of loaded bytes (from R6) to arm the next endpoint 6-IN transfer in
lines 29-31. Finally, the 8051 loads any value into the endpoint 6 OUT byte count Register
OUT6BC to arm the next OUT transfer in lines 35-36. Then the program loops back to check
for more endpoint 6-OUT data.

&

DMA cannot be used for this Loopback since the source and destination would be in the
same RAM block.

5. Initialize the endpoints and enable the interrupts.
start: nov SP, #STACK- 1 ; set stack
Enabl e USB i nterrupts and Autovector
nmov dpt r, #USBBAV ; enabl e Autovector
mov X a, @lptr
setb acc.0 ; AVEN bit is bit O
mov X @iptr, a
mov X dpt r, #USBBAV
mov X a, @ptr
sethb acc. 4 ; enable the SFR-clearing feature
mov X @iptr, a ; for INT2
nmov dpt r, #0UT071 EN ; "EPO-7 OUT int enables’ Register
nov a, #01000000b ; set bit 6 for EP6OUT interrupt enable
nmvx @iptr, a ; enabl e EP6OUT i nterrupt
Enabl e I NT2 and 8051 gl obal interrupts
sethb ex2 ; enable int2 (USB interrupt)
sethb EA ; enable 8051 interrupts
clr got _EP6_dat a ; clear ny flag
Figure 6-11. |Initialization Routine
The initialization routine sets the stack pointer, and enables the EZ-USB FX Autovector by set-
ting USBBAV.0 to 1. Then it enables the endpoint 6-OUT interrupt, all USB interrupts (INT2),
and the 8051 global interrupt (EA) and finally clears the flag indicating that endpoint 6-OUT
requires service.
Once this structure is put into place, it is quite easy to service any or all of the bulk endpoints.
To add service for endpoint 2-IN, for example, simply write an endpoint 2-IN interrupt service
routine with starting address EP2IN_ISR (to match the address in the jump table in step 1),
and add its valid and interrupt enable bits to the “init” routine.
Page 6-18 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 124 of 435

=7 v

6.15 Enumeration Note

The code in the previous example is complete, and runs on the EZ-USB FX chip. You may be won-
dering about the missing step, which reports the endpoint characteristics to the host during the
enumeration process. The reason this code runs without any enumeration code is that the EZ-USB
FX chip comes on as a fully-functional USB device with certain endpoints already configured and
reported to the host. Endpoint 6 is included in this default configuration. The full default configura-
tion is described in Chapter 5. "EZ-USB FX Enumeration & ReNumeration ™".

Portions of the above code are not necessary for the default configuration (such as setting the
endpoint valid bits), but the code is included to illustrate all of the EZ-USB FX registers used for
bulk transfers

6.16 The Autopointer

Bulk endpoint data is available in 64-byte buffers in EZ-USB FX RAM. In some cases it is prefera-
ble to access bulk data as a FIFO register rather than as a RAM. The EZ-USB core provides a
special data pointer that automatically increments when data is transferred. Using this Autopointer,
the 8051 can access any contiguous block of internal EZ-USB FX RAM or off-chip memory as a
FIFO.

AUTOPTRH Autopointer Address High 7FE3
b7 b6 b5 b4 b3 b2 bl b0
A15 Al4 A13 A12 All A10 A9 A8
RIW RIW RIW RIW RIW RIW RIW RIW
X X X X X X X X
AUTOPTRL Autopointer Address Low 7FE4
b7 b6 b5 b4 b3 b2 bl b0
A7 A6 A5 A4 A3 A2 Al A0
RIW RIW RIW RIW RIW RIW RIW RIW
X X X X X X X X
Chapter 6. EZ-USB FX Bulk Transfers Page 6-19

Exhibit 2032 - Page 125 of 435

EZ-USB FX Technical Reference Manual

AUTODATA Autopointer Data 7FE5
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
RIW RIW RIW RIW RIW RIW RIW RIW
X X X X X X X X

Figure 6-12. Autopointer Registers

The 8051 first loads AUTOPTRH and AUTOPTRL with a RAM address (for example the address
of a bulk endpoint buffer). Then, as the 8051 reads or writes data to the data Register AUTO-
DATA, the address is supplied by AUTOPTRH/L, which automatically increments after every read
or write to the AUTODATA Register. The AUTOPTRH/L Registers may be written or read at any-
time. These registers maintain the current pointer address, so the 8051 can read them to deter-
mine where the next byte will be read or written.

The 8051 code example in Figure 6-13 uses the Autopointer to transfer a block of eight data bytes
from the endpoint 4 OUT buffer to internal 8051 memory.

Init: nmov dpt r, #AUTOPTRH
nov a, #H GH(QUT4BUF)
MoV X @iptr, a
nmv dptr, #AUTOPTRL
nmov a, #LOW OUT4BUF)
movXx @iptr, a
nmv dpt r, #AUTODATA
nov r0, #80H
nmov r2, #8

Hi gh portion of OUT4BUF buffer
Load AUTOPTRH

Low portion of OUT4BUF buffer address
Load AUTOPTRL
point to the ‘fifo' Register

; store data in upper 128 bytes of 8051 RAM
| oop counter

I oop: novx

a, @lptr ; get a ‘fifo' byte
nov @0, a ; store it
inc ro bunp destination pointer

; (NOTE: no ‘inc dptr’ required here)
; do it eight tines

dj nz r2,1oop

Figure 6-13. Use of the Autopointer

As the comment in the second to last line indicates, the Autopointer saves an “inc dptr” instruction
that would be necessary if one of the 8051 data pointers were used to access the OUT4BUF RAM
data. This improves the transfer time.

A
The Autopointer works only with internal program/data RAM. It does not work with mem-
ory outside the chip, or with internal RAM that is made available when ISODISAB=1. See

Section 10.6.1. "Disable 1SO" for a description of the ISODISAB bit.

Page 6-20 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 126 of 435

=
= e

The EZ-USB FX chip should never be a speed bottleneck in a USB system since it can DMA Data
at 24Mhz. It also gives the 8051 ample time for other processing duties between endpoint buffer
loads.

The Autopointer can be used to quickly move data anywhere in RAM, not just the bulk endpoint
buffers. For example, it can be used to good effect in an application that calls for transferring a
block of data into RAM, processing the data, and then transferring the data to a bulk endpoint
buffer.

Chapter 6. EZ-USB FX Bulk Transfers Page 6-21

Exhibit 2032 - Page 127 of 435

EZ-USB FX Technical Reference Manual

Page 6-22 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 128 of 435

|
)

¥ =

ﬂ1
Y

== CYPRESS
Chapter 7. EZ-USB FX Slave FIFOs
7.1 Introduction
e I
8051 Registers Slave FIFOS Device Pins
| ASEL
sel
Aout
AOUTDATA > ‘ < AFI[7..0] (PORTB pins)
o L AOE
sel |
Ain -
‘
A
| BSEL
sel
Bout
BOUTDATA > ‘ < BFI[7..0] (PORTD pins)
i L BOE
sel |
Bin -
~ '
A
SLRD
SLWR
XCLK
_ J

Figure 7-1. The Four 64-Byte Slave FIFOs Configured for 16-Bit Mode

Figure 7-1 illustrates the four slave FIFOs in EZ-USB FX. The slave FIFOs, each 64 bytes in
length, serve as general-purpose buffers between external logic and 8051 registers. They are
called “slave” FIFOs because the outside logic can supply the timing signals. The FIFOs are

Chapter 7. EZ-USB FX Slave FIFOs Page 7-1

Exhibit 2032 - Page 129 of 435

EZ-USB FX Technical Reference Manual

grouped into identical A and B pairs, each pair having an IN and OUT FIFO. Figure 7-1 illustrates
16-bit mode, in which outside logic can read or write data either independently or simultaneously
from/to the two 8-bit FIFOs.

7.1.1 8051 FIFO Access

The 8051 accesses the slave FIFOs using four registers in XDATA memory: AOUTDATA, AIN-
DATA, BOUTDATA, and BINDATA. These registers can be read and written by 8051 code (using
the MOVX instruction), or they can serve as sources and destinations for the DMA mechanism,
built into the EZ-USB FX. Section 7.2. "Slave FIFO Register Descriptions” describes these regis-
ters in detail.

7.1.2 External Logic FIFO Access

External logic can access the slave FIFOs either asynchronously or synchronously:

* Asynchronous—SLRD and SLWR pins are read and write strobes.
* Synchronous—SLRD and SLWR pins are enables for the XCLK clock pin.

External logic accesses the FIFOs through two 8-bit data buses, which double as general-purpose
I/O ports PORTB and PORTD. When used for FIFO access, the data buses are bi-directional, with
output drivers controlled by the AOE and BOE pins.

Two FIFO select signals, ASEL and BSEL, are used to select the FIFO in two modes that use both
FIFOs: 8-bit mode, and double-byte mode. These modes and the role of the ASEL and BSEL pins
are illustrated in Figure 7-2 and Figure 7-3.

Page 7-2 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 130 of 435

=i voness

7.1.3 ASEL, BSEL in 8-Bit Mode

- I
CS 4 ASEL
> Aout
Y AFI[7..0] (PORTB pins)
—— AOE
- CS
Ain

CcS BSEL
> Bout .
—)(—%—PD[?..O] (PORTD pins)

or

CS GDB[7..0] for GPIF

XCLK
SLRD
SLWR

Figure 7-2. Slave FIFOs in 8-Bit Mode

In 8-bit mode, data from the PORTB pins can be read/written from either the A or B FIFOs, as
selected by the ASEL and BSEL pins. In 8-bit mode, the input/output port or GPIF data is available
on the PORTD pins.

Chapter 7. EZ-USB FX Slave FIFOs Page 7-3

Exhibit 2032 - Page 131 of 435

EZ-USB FX Technical Reference Manual

7.1.4 ASEL, BSEL in Double-Byte Mode

4 N

ﬂcs ASEL
Aout .
R AFI[7..O] (PORTB pins)

—— AOE
- CS
Ain
< M

B {C BFI[7..0] (PORTD pins)
BOE

BSEL "LO"

Figure 7-3. Double-Byte Mode with A-FIFO Selected

Figure 7-3illustrates double-byte mode. For this illustration, signals ASEL, BSEL, AOE, and BOE
are programmed to be active high polarity. In this mode, the ASEL and BSEL pins determine
which of the FIFO pairs, A or B, accept or transmit interleaved byte data, as follows:

» The IN FIFO receives 16-bit data as double bytes, interleaved from PORTB first and then
from PORTD. The data interleaving is automatic, with two bytes written to the FIFO per
external write strobe. The interleave order input from the ports is the same whether the
destination FIFO is A-IN or B-IN.

* The OUT FIFO transmits two bytes, the first to PORTB and the second to PORTD, per
external read strobe. The interleave order output to the ports is the same whether the
source FIFO is A-OUT or B-OUT.

7.1.5 FIFO Registers

The 8051 accesses a variety of control and status registers to control the slave FIFO operation.
These registers perform the following functions:

« Data registers give the 8051/DMA access to IN FIFO and OUT FIFO data.

Page 7-4 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 132 of 435

=7 v

* Byte Count registers indicate the number of bytes in each FIFO.
» Flag bits indicate FIFO full, empty, and a programmable level.

* Mode bits control the various FIFO modes.

7.1.6 FIFO Flags and Interrupts

The slave FIFOs have two independent sets of flags, internal and external. The 8051 can directly
test the internal flags, or these flags can automatically create 8051 interrupts using INT4. The
external flags are available as device pins, to be used by external logic. Two independent sets of
programmable flags allow different FIFO fullness levels to be set for internal and external use.

The internal FIFO flags are connected to the 8051 interrupt system using INT4. To streamline the

8051 code that deals with these interrupts, the 8051 INT4 vector locations have a special property
when a mode bit called “AV4AEN” (Autovector 4 Enable) is set. Referring toTable 7-1, when a FIFO
flag interrupt occurs with AV4EN=1, internal logic replaces the third byte of the jump instruction at

location 0x55 with a different address for each FIFO interrupt source.

Table 7-1. Autovector for INT4*

8051 Addr | Instruction Notes
0x53 LIMP Loc 53-55 are the INT4 Interrupt Vector.
0x54 AddrH
0x55 * AddrL EZ-USB FX logic replaces this byte when
AV4EN=1.

* (Table 7-2 shows bytes inserted at address 55H)

To set up autovectoring, the user places an LIMP instruction at location 0x53. This jumps to a
table of instructions that jump to the various FIFO ISRs. Then, every FIFO interrupt automatically
vectors to the individual interrupt service routines for the particular FIFO flags. The autovector
mechanism saves the 8051 from having to check for the source of each interrupt shared on INT4.

The FIFO interrupts that share INT4 are shown in Table 7-2. The last three are not FIFO-related,
and are described in other chapters. The bytes inserted by the EZ-USB FX logic (the low-address
byte of the LIMP instruction) are separated by four to allow four bytes per LIMP instruction in the
jump table. (An 8051 LIMP instruction requires three bytes).

Note that the bytes inserted for the INT4 autovector start at 0x80, rather than 0x00. This is
because another EZ-USB FX autovector, for INT2 (used for all USB interrupts), uses jump table
offsets from 0x00 to 0x57. The autovector jump table must start on a page boundary (8051
address XX00). Therefore, separating the two groups of jumps allows a single page of 8051 mem-
ory to be used for both INT2 and INT4 jump tables. The INT2 jump table can start at 0x00, and the
INT4 jump table can start at 0x80, both in the same page.

Chapter 7. EZ-USB FX Slave FIFOs Page 7-5

Exhibit 2032 - Page 133 of 435

EZ-USB FX Technical Reference Manual

Table 7-2. INT4 Autovectors
I\\//;E: Bytaetlg)s(ggted Source Meaning
0x40 0x80 AINPF | A-IN FIFO Programmable Flag
0x44 0x84 BINPF B-IN FIFO Programmable Flag
0x48 0x88 AOUTPF | A-OUT FIFO Programmable Flag
0x4C 0x8C BOUTPF |B-OUT FIFO Programmable Flag
0x50 0x90 AINEF | A-IN FIFO Empty Flag
0x54 0x94 BINEF |B-IN FIFO Empty Flag
0x58 0x98 AOUTEF |A-OUT FIFO Empty Flag
0x5C 0x9C BOUTEF |B-OUT FIFO Empty Flag
0x60 0xAO0 AINFF A-IN FIFO Full Flag
0x64 0xA4 BINFF B-IN FIFO Full Flag
0x68 OxA8 AOUTFF |A-OUT FIFO Full Flag
0x6C OxAC BOUTFF |B-OUT FIFO Full Flag
0x70 0xBO GPIF- See Chapter 8. "General Programmable
DONE Interface (GPIF)"
0x74 0xB4 GPIFWF | See Chapter 8. "General Programmable
Interface (GPIF)"
0x78 0xB8 DMADONE | See Chapter 8. "General Programmable
Interface (GPIF)"

The first column shows the value in the IVEC4 Register for each FIFO interrupt source.

If two or more INT4 interrupt requests occur simultaneously, they are serviced in the order shown
in Table 7-2, with AINPF having the highest priority and DMADONE the lowest. Interrupt requests

remain pending while a higher level interrupt is serviced.

7.2 Slave FIFO Register Descriptions

In the following FIFO diagrams, the 8051-access side is on the left, and the external pins are on

the right.

Page 7-6

EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 134 of 435

=7 v

7.2.1 FIFO A Read Data

AOUTPF
AOUTPF I——) AOQUTEF AOUTPFPIN
AOUTFF

VV$ i

[ABOUTTF J
AOUTEMTY

AOUTDATA Aout —?—O—AFI[I.O] (PORTB)
Y AOE
AOUTBC |
-AINBC , ABPOLAR
AINDATA Ain ¢

AOUTFLAG

»
>
»
>

| » AINFULL
[RBINTH] * » AINFLAG
A AINFF |

AINEF
AINPF I——> AINPF AINPFPIN

Figure 7-4. AINDATA’s Role in the FIFO A Register

AINDATA FIFO A Read Data 7800
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R R R R R R R R
X X X X X X X X

Figure 7-5. FIFO A Read Data

Each time the 8051 reads a byte from this register, the A-IN FIFO advances to the next byte in the
FIFO, and the AINBC (byte count) decrements. Reading this register when there is one byte
remaining in the A-IN FIFO sets the A-IN FIFO Empty Flag (AINEF, in ABINCS.4). This causes an
interrupt request on INT4 (Table 7-2). Reading this register when the A-IN FIFO is empty returns
indeterminate data and has no effect on the FIFO flags byte counts.

Chapter 7. EZ-USB FX Slave FIFOs Page 7-7

Exhibit 2032 - Page 135 of 435

EZ-USB FX Technical Reference Manual

7.2.2 A-IN FIFO Byte Count

AOUTPF
AOUTPF I——) AOQUTEF AOUTPFPIN
AOUTFF

VV$ i

[ABOUTTF J
AOUTEMTY

AOUTDATA Aout —?—O—AFI[I.O] (PORTB)
Y AOE
AOUTBC |
-AINBC , ABPOLAR
AINDATA Ain ¢

AOUTFLAG

»
>
»
' o

| » AINFULL
[RBINTF] £ » AINFLAG
A AINFF I

AINEF
AINPF I——> AINPF AINPFPIN

Figure 7-6. AINBC's Role in the FIFO A Register

AINBC A-IN FIFO Byte Count 7801
b7 b6 b5 b4 b3 b2 bl b0
0 D6 D5 D4 D3 D2 D1 DO
R
0 0 0 0 0 0 0 0

Figure 7-7. A-IN FIFO Byte Count

This count reflects the number of bytes remaining in the A-IN FIFO. Valid byte counts are 0-64.
Every byte written by outside logic increments this count, and every 8051 read of AINDATA decre-
ments this count. If AINBC is zero, an 8051 read of AINDATA returns indeterminate data and
results in the byte count in AINBC remaining at zero. Data bytes should never be written to the
FIFO from outside logic when the AINFULL flag is HI.

Page 7-8 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 136 of 435

7.2.3 A-IN FIFO Programmable Flag

AOUTPF
AOUTPF I——> AOQUTEF
AOUTFF

AINPF I——>

YY

[

AOUTDATA

V¢

ABOUTTF J

AOUTPFPIN

v

=7 v

AOUTFLAG

Aout

—?—o—AFW..O] (PORTB)
AOE

»
' o
»
' o

AOUTEMTY

AOUTBC
AINBC

AINDATA

(

AB

Ain

A AINFF
AINEF
AINPF

A

ABPOLAR

» AINFULL
» AINFLAG

A

AINPFPIN

Figure 7-8. AINPF’s Role in the FIFO A Register

AINPF A-IN FIFO Programmable Flag 7802
b7 b6 b5 b4 b3 b2 bl b0
LTGT D6 D5 D4 D3 D2 D1 DO
R/W R/W RIW RIW RIW R/W R/W RIW
0 0 1 0 0 0 0 0

Figure 7-9. A-IN FIFO Programmable Flag

This register controls the sense and value for the internal A-IN FIFO programmable flag. This flag
is testable by the 8051.

N

Another register, AINPFPIN (Section 7.2.3.3. "A-IN FIFO Pin Programmable Flag") corre-
sponds to an A-IN FIFO programmable flag that drives an output pin, not an internal flag

bit.

Chapter 7. EZ-USB FX Slave FIFOs

Exhibit 2032 - Page 137 of 435

Page 7-9

EZ-USB FX Technical Reference Manual

The 8051 tests the internal FIFO programmable flag by reading the AINPF Bit in ABINCS.5. This
flag can also be enabled to cause an interrupt request on INT4(Table 7-2) when it makes a zero-
to-one transition. The default value of the AINPF Register indicates half-empty.

Bit 7: LTGT Less-than, Greater-than flag

If LTGT=0, the AINPF flag goes true, if the number of bytes in the FIFO is less than or equal to
the programmed value in D[6..0].

If LTGT=1, the AINPF flag goes true, if the number of bytes in the FIFO is greater than or
equal to the value programmed into D[6..0].

Bit 6-0: PFVAL Programmable Flag Value

This value, along with the LTGT Bit, determines when the programmable flag for the A-IN
FIFO becomes active. The 8051 programs this register to indicate various degrees of A-IN
FIFO fullness to suit the application. The following two sections show the interaction of the
LTGT Bit and the programmed value for two cases, a filling FIFO and an emptying FIFO.

7.2.3.1 Filling FIFO

When a FIFO is filling with data, it is useful to generate an 8051 interrupt when a programmed
level is reached. Because the interrupt request is triggered on a zero-to-one transition of the pro-
grammable flag AINPF, the LTGT Bit should be set to “1.”In Table 7-3, D[6..0] is set to 48 bytes
and the LTGT Bitis set to “1.” When the FIFO reaches 48 bytes, the AINPF Bit goes high, generat-
ing an interrupt request.

Table 7-3. Filling FIFO

Bytes
LTGT | D[6..0] | in | AINPF

FIFO

1 48 45 0

1 48 46 0

1 48 47 0

1 48 48 1

1 48 49 1

1 48 50 1

7.2.3.2 Emptying FIFO

When a FIFO is being emptied of data, the LTGT Bit should be set to “0,” so the zero-to-one tran-
sition of the AINPF flag (and therefore the interrupt request) occurs when the byte count descends
to below the programmed value.In Table 7-4, D[6..0] is set to 48 bytes, and when the FIFO goes
from 49 bytes to 48 bytes, the AINPF Bit goes high, generating an interrupt request.

Page 7-10 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 138 of 435

=i voness

Table 7-4. Emptying FIFO

Bytes
LTGT |D[6.0] | in |AINPF
FIFO
0 48 51 0
0 48 50 0
0 48 49 0
0 48 48 1
0 48 47 1
0 48 46 1
7.2.3.3 A-IN FIFO Pin Programmable Flag
AOUTPF
AOUTPF |——> AOUTEF
AOUTFF

VV$ i

[ABOUTTF J
AOUTEMTY

AOUTDATA Aout —?—Q—AFI[I.O] (PORTB)
* AOE
AOUTBC |
-AINBC ABPOLAR
AINDATA Ain 4—
* » AINFLAG

l » AINFULL
[AB
AINFF |

AINEF
AINPF I——> AINPF AINPFPIN

Figure 7-10. AINPFPIN'’s Role in the FIFO A Register

AOUTFLAG

»
>
»
>

=
T
—/

Chapter 7. EZ-USB FX Slave FIFOs Page 7-11

Exhibit 2032 - Page 139 of 435

EZ-USB FX Technical Reference Manual

AINPFPIN A-IN FIFO Pin Programmable Flag 7803
b7 b6 b5 b4 b3 b2 bl b0
LTGT D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Figure 7-11. A-IN FIFO Pin Programmable Flag

This register controls the sense and value for the A-IN FIFO Programmable Flag that appears on
the AINFLAG pin. This pin is used by external logic to regulate external writes to the A-IN FIFO.
The AINPFPIN Register is programmed with the same data format as the previous register,
AINPF. The only operational difference is that the flag drives a hardware pin rather than existing as

an internal register bit.

Having separate programmable flags allows the 8051 and external logic to have independent
gauges of FIFO fullness. It may be desirable, for example, for one side (8051 or external logic) to

have advance notice over the other side about a FIFO becoming full or empty.

The default value of the AINPFPIN Register indicates empty.

Page 7-12

Exhibit 2032 - Page 140 of 435

EZ-USB FX Technical Reference Manual v1.2

7.2.4 B-IN FIFO Read Data

BOUTPF —— —)p

BOUTDATA

BOUTPF

BOUTEF

BOUTFF

—

)

BOUTPFPIN

v

»
' o
»
' o

Bout

?._

=i voness

BOUTFLAG
BOUTEMTY

BFI[7..0] (PORTD)

BOE

BOUTBC
BINBC

BINDATA

BINPF -— >

Bin

ABINT

)

A

BINFF

BINEF

BINPF

A

BINPFPIN

»
>
»
>

A

ABPOLAR

BINFULL
BINFLAG

Figure 7-12. BINDATA’s Role in the FIFO B Register

BINDATA B-IN FIFO Read Data 7805
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R R R R R R R R
X X X X X X X X

Figure 7-13. B-IN FIFO Read Data

Each time the 8051 reads a byte from this register, the B-IN FIFO advances to the next byte in the
FIFO, and the BINBC (byte count) decrements. Reading this register when there is one byte
remaining in the FIFO sets the B-IN FIFO Empty Flag (BINEF, in ABINCS.1), which causes an
INT4 request. Reading this register when the B-IN FIFO is empty returns indeterminate data and
has no effect on the FIFO flags or byte count.

Chapter 7. EZ-USB FX Slave FIFOs

Exhibit 2032 - Page 141 of 435

Page 7-13

EZ-USB FX Technical Reference Manual

7.2.5 B-IN FIFO Byte Count

BOUTPF
BOUTPF — — —p BOUTEF BOUTPFPIN
BOUTFF

VV¢ i

[ABOUTTF J
BOUTEMTY

BOUTDATA Bout —?—Q—BFI[I.O] (PORTD)
Y BOE
BOUTBC |
-BINBC) ABPOLAR
BINDATA Bin —1
(ABINTF J
BINFF T

BINEF
BINPF ——> BINPF BINPFPIN

Figure 7-14. BINBC'’s Role in the FIFO B Register

BOUTFLAG

»
>
»
>

» BINFULL
» BINFLAG

BINBC B-IN FIFO Byte Count 7806
b7 b6 b5 b4 b3 b2 bl b0
0 D6 D5 D4 D3 D2 D1 DO
R
0 0 0 0 0 0 0 0

Figure 7-15. B-IN FIFO Byte Count

This count reflects the number of bytes remaining in the B-IN FIFO. Valid byte counts are 0-64.
Every byte written by outside logic increments this count, and every 8051 read of BINDATA decre-
ments this count. If BINBC is zero, an 8051 read of BINDATA returns indeterminate data. This
results in the byte count in BINBC to remain at zero. Data bytes should never be written to the
FIFO from outside logic when the BINFULL flag is HI.

Page 7-14 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 142 of 435

7.2.6 B-IN FIFO Programmable Flag

BOUTPF —— P

BOUTPF

BOUTEF

BOUTFF

—

[

Y
TF j

BOUTDATA

BOUTPFPIN

v

Bout

»
' o
»
' o

?._

=i voness

BOUTFLAG
BOUTEMTY

BFI[7..0] (PORTD)

+ BOE
l
(oo]
» BINFULL
[rBINTA J % » BINFLAG
A BINFF
BINEF
Figure 7-16. BINPF’s Role in the FIFO B Register
BINPF B-IN FIFO Programmable Flag 7807
b7 b6 b5 b4 b3 b2 bl b0
LTGT D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W RIW RIW RIW R/W
0 0 1 0 0 0 0 0

This register controls the sense and value for the internal B-IN FIFO programmable flag.

&

Figure 7-17. B-IN FIFO Programmable Flag

Another register, BINPFPIN (Section 7.2.7. "B-IN FIFO Pin Programmable Flag") corre-
sponds to a B-IN FIFO programmable flag that drives an output pin, not an internal flag bit.

Chapter 7. EZ-USB FX Slave FIFOs

Exhibit 2032 - Page 143 of 435

Page 7-15

EZ-USB FX Technical Reference Manual

The 8051 tests the internal FIFO programmable flag by reading the BINPF Bit in ABINCS.2. This
flag can also be enabled to cause an interrupt request on INT4(Table 7-2) when it makes a zero-
to-one transition. The default value of the BINPF Register indicates half-empty.

Bit 7: LTGT Less-than, Greater-than flag

If LTGT=0, the BINPF flag goes true if the number of bytes in the FIFO is less than or equal to
the programmed value in D[6..0].

If LTGT=1, the BINPF flag goes true if the number of bytes in the FIFO is greater than or equal
to the value programmed into D[6..0].

Bit 6-0: PFVAL Programmable Flag Value

This value, along with the LTGT Bit, determines when the programmable flag for the B-FIFO
becomes active. The 8051 programs this register to indicate various degrees of B-FIFO full-
ness to suit the application. The following two sections in this chapter show the interaction of
the LTGT Bit and the programmed value for two cases, a filling FIFO and an emptying FIFO.

7.2.6.1 Filling FIFO

When a FIFO is filling with data, it is useful to generate an 8051 interrupt when a programmed
level is reached. Because the interrupt request is triggered on a zero-to-one transition of the pro-
grammable flag BINPF, the LTGT Bit should be set to “1.”In Table 7-5, D[6..0] is set to 48 bytes
and the LTGT Bitis set to “1.” When the FIFO reaches 48 bytes, the BINPF Bit goes high, generat-
ing an interrupt request.

Table 7-5. Filling FIFO

Bytes
LTGT | D[6..0] | in | BINPF

FIFO

1 48 45 0

1 48 46 0

1 48 47 0

1 48 48 1

1 48 49 1

1 48 50 1

7.2.6.2 Emptying FIFO

When a FIFO is being emptied of data, the LTGT Bit should be set to “0,” so the zero-to-one tran-
sition of the BINPF flag (therefore, the interrupt request) occurs when the byte count descends to
below the programmed value. In Table 7-6, D[6..0] is set to 48 bytes, and when the FIFO goes
from 49 bytes to 48 bytes, the BINPF Bit goes high, generating an interrupt request.

Page 7-16 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 144 of 435

S
=i voness

Table 7-6. Emptying FIFO

Bytes
LTGT |D[6..0] | in BINPF
FIFO
0 48 51 0
0 48 50 0
0 48 49 0
0 48 48 1
0 48 47 1
0 48 46 1
7.2.7 B-IN FIFO Pin Programmable Flag
BOUTPF
BOUTFF
|
Y v
[ABOUTTE J » BOUTFLAG
| » BOUTEMTY

BOUTDATA Bout —?—O—BFI[I.O] (PORTD)
Y BOE
BOUTBC |
-BINBC (ABPOLAR
BINDATA Bin ¢——

| » BINFULL
[rBINTA J % » BINFLAG
A BINFF |

BINEF
BINPF -—— BINPF BINPFPIN

Figure 7-18. BINPFPIN'’s Role in the FIFO B Register

Chapter 7. EZ-USB FX Slave FIFOs Page 7-17

Exhibit 2032 - Page 145 of 435

EZ-USB FX Technical Reference Manual

BINPFPIN B-IN FIFO Pin Programmable Flag 7808
b7 b6 b5 b4 b3 b2 bl b0
LTGT D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Figure 7-19. B-IN FIFO Pin Programmable Flag

This register controls the sense and value for the B-IN FIFO Programmable Flag that appears on
the BINFLAG pin. This pin is used by external logic to regulate external writes to the B-IN FIFO.
The BINPFPIN Register is programmed with the same data format as the previous register,
BINPF. The only operational difference is that the flag drives a hardware pin rather than existing as
an internal register bit.

Having separate programmable flags allows the 8051 and external logic to have independent
gauges of FIFO fullness. It may be desirable, for example, for one side (8051 or external logic) to
have advance notice over the other side about a FIFO becoming full or empty.

The default value of the BINPFPIN Register indicates empty.

7.2.8 Input FIFOs A/B Toggle CTL and Flags

ABOUTTF

AOUTDATA

Aout>

Ain

BOUTDATA]

(a) Normal Mode (b) 8051 FIFO Toggle Mode

AINDATA

BOUTDATA

BINDATA

Aeh

Figure 7-20. 8051 FIFOToggle Mode vs. Normal Mode Diagram

Page 7-18 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 146 of 435

S
=i voness

ABINCS Input FIFOs A/B Toggle CTL and Flags 780A
b7 b6 b5 b4 b3 b2 bl b0
INTOG INSEL AINPF AINEF AINFF BINPF BINEF BINFF
RIW RIW R R R R R R
0 1 1 1 0 1 1 0
Figure 7-21. Input FIFOs A/BToggle CTL and Flags

Bit 7: INTOG Enable Input FIFO Toggle

A special FIFO toggle mode switches automatically between the A-IN and B-IN FIFOs each
time the 8051 reads data from the AINDATA Register. The toggle mechanism works only for

programmed 8051 transfers, not DMA transfers.

When INTOG=0, the A-IN and B-IN FIFOs operate in Normal Mode, as illustrated in diagram
(a) in Figure 7-20 on the previous page.

When INTOG=1, the FIFOs operate in Toggle Mode, as illustrated in diagram (b) in Figure 7-
20. The selected FIFO switches between the A-IN and B-IN FIFOs after every 8051 read of the
AINDATA Register. The selected FIFO is indicated by the INSEL Bit (Bit 6).

Bit 6:

If INTOG=1 when enabling the Toggle Mode:

INSEL

Input Toggle Select

* This bit selects IN FIFO A or B when the 8051 reads the AINDATA Register. When
INSEL=0, the B-IN FIFO is read. When INSEL=1, the A-IN FIFO is read. When INTOG=1,
this bit complements automatically (toggles) after every 8051 read of AINDATA. This has
the effect of automatically toggling between the A-IN and B-IN FIFOs for successive reads
of AINDATA.

* The 8051 can directly write this bit to select manually the A-IN or B-IN FIFO. More com-
monly, the Toggle Mode will be used since it allows 16-bit transfers using the 8051 without
requiring the 8051 to switch between the FIFOs.

If INTOG=0 when enabling the Toggle Mode:

* The INSEL Bit has no effect.

Bit 5:

AINPF

A-IN FIFO Programmable Flag

AINPF=1 when the A-IN FIFO byte count satisfies the conditions programmed into the pro-
grammable FIFO flag register AINPF; otherwise, AINPF=0. A zero-to-one transition of this flag
sets the interrupt request bit AINPFIR.

Chapter 7. EZ-USB FX Slave FIFOs

Exhibit 2032 - Page 147 of 435

Page 7-19

EZ-USB FX Technical Reference Manual

Bit 4: AINEF A-IN FIFO Empty Flag

AINEF=1 when the A-IN FIFO is empty; otherwise, AINEF=0. The flag goes active after the

8051 or DMA system reads the last byte in the A-IN FIFO. A zero-to-one transition of this flag
sets the interrupt request bit AINEFIR.

AINFF=1 when the A-IN FIFO is full; otherwise, AINFF=0. The flag goes active after external
logic writes the 64th byte into the A-IN FIFO. A zero-to-one transition of this flag sets the inter-
rupt request bit AINFFIR.

Bit 2:

BINPF B-IN FIFO Programmable Flag

BINPF=1 when the number of bytes in the B-IN FIFO satisfies the requirements programmed
into the BINPF Register; otherwise, BINPF=0. A zero-to-one transition of this flag sets the
interrupt request bit BINPFIR.

Bit 1:

BINEF B-IN FIFO Empty Flag

BINEF=1 when the B-IN FIFO is empty; otherwise, BINEF=0. The flag goes active after the
8051 or DMA system reads the last byte in the B-IN FIFO. A zero-to-one transition of this flag
sets the interrupt request bit BINEFIR.

Bit O:

BINFF B-IN FIFO Full Flag

BINFF=1 when the B-IN FIFO is full. The flag goes valid after external logic writes the 64th
byte into the B-IN FIFO. A zero-to-one transition of this flag sets the interrupt request bit BINF-
FIR.

7.2.9 Input FIFOs A/B Interrupt Enables

ABINIE Input FIFOs A/B Interrupt Enables 780B
b7 b6 b5 b4 b3 b2 bl b0
0 0 AINPFIE | AINEFIE | AINFFIE | BINPFIE | BINEFIE | BINFFIE
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Figure 7-22. Input FIFOs A/B Interrupt Enables
Bit 5: AINPFIE A-IN FIFO Programmable Flag Interrupt Enable

The 8051 sets AINPFIE=1 to enable an INT4 interrupt when the AINPFIR interrupt request bit
makes a zero-to-one transition. This transition indicates that the A-IN FIFO byte count has sat-
isfied the fullness level programmed into the programmable FIFO flag register AINPF. The

Page 7-20 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 148 of 435

=7 v

8051 clears AINPFIE to prevent the associated interrupt request bit from causing an INT4
interrupt.

Bit 4: AINEFIE A-IN FIFO Empty Interrupt Enable

The 8051 sets AINEFIE=1 to enable an INT4 interrupt when the AINEFIR interrupt request bit
makes a zero-to-one transition. This indicates an A-IN FIFO byte count of zero. The 8051
clears AINEFIE to prevent the associated interrupt request bit from causing an INT4 interrupt.

Bit 3: AINFFIE A-IN FIFO Bull Interrupt Enable

The 8051 sets AINFFIE=1 to enable an INT4 interrupt when the AINFFIR interrupt request bit
makes a zero-to-one transition. This indicates an A-IN FIFO byte count of 64. The 8051 clears
AINFFIE to prevent the associated interrupt request bit from causing an INT4 interrupt.

Bit 2: BINPFIE B-IN FIFO Programmable Flag Interrupt Enable

The 8051 sets BINPFIE=1 to enable an INT4 interrupt when the BINPFIR interrupt request bit
makes a zero-to-one transition. This transition indicates that the B-IN FIFO byte count has sat-
isfied the fullness level programmed into the programmable FIFO flag register BINPF. The
8051 clears BINPFIE to prevent the associated interrupt request bit from causing an INT4
interrupt.

Bit 1: BINEFIE B-IN FIFO Empty Interrupt Enable
The 8051 sets BINEFIE=1 to enable an INT4 interrupt when the BINEFIR interrupt request bit

makes a zero-to-one transition. This indicates a B-IN FIFO byte count of zero. The 8051 clears
BINEFIE to prevent the associated interrupt request bit from causing an INT4 interrupt.

Bit O: BINFFIE B-IN FIFO Full Interrupt Enable
The 8051 sets BINFFIE=1 to enable an INT4 interrupt when the BINFFIR interrupt request bit

makes a zero-to-one transition. This indicates a B-IN FIFO byte count of 64. The 8051 clears
BINFFIE to prevent the associated interrupt request bit from causing an INT4 interrupt.

Chapter 7. EZ-USB FX Slave FIFOs Page 7-21

Exhibit 2032 - Page 149 of 435

EZ-USB FX Technical Reference Manual

7.2.10 Input FIFOs A/B Interrupt Requests

ABINIRQ Input FIFOs A/B Interrupt Requests 780C
b7 b6 b5 b4 b3 b2 b1 b0
0 0 AINPFIR | AINEFIR | AINFFIR | BINPFIR | BINEFIR | BINFFIR
RIW RIW RIW RIW RIW RIW RIW RIW
X X X X X X X X
Figure 7-23. Input FIFOs A/B Interrupt Requests
Bit 5: AINPFIR A-IN FIFO Programmable Flag Interrupt Request

AINPFIR makes a zero-to-one transition when the A-IN FIFO byte count satisfies the required
condition programmed into the programmable FIFO flag register AINPF. If enabled by the AIN-
PFIE Bit, this transition causes an INT4 interrupt request.

The 8051 writes a “1” to this bit to clear the interrupt request. The 8051 should clear the 8051
INT4 Bit (EXIF.6) before clearing the AINPFIR Bit in the interrupt service routine to guarantee
that pending INT4 interrupts will be recognized.

Bit 4: AINEFIR A-IN FIFO Empty Interrupt Request

AINEFIR makes a zero-to-one transition when the A-IN FIFO byte count reaches zero (FIFO

empty). If enabled by the AINEFIE Bit, this transition causes an INT4 interrupt request.

The 8051 writes “1” to this bit to clear the interrupt request. The 8051 should clear the 8051
INT4 Bit (EXIF.6) before clearing the AINEFIR Bit in the interrupt service routine to guarantee
that pending INT4 interrupts will be recognized.

Bit 3: AINFFIR A-IN FIFO Full Interrupt Request

AINFFIR makes a zero-to-one transition when the A-IN FIFO byte count reaches 64 (FIFO

full). If enabled by the AINFFIE Bit, this transition causes an INT4 interrupt request.

The 8051 writes a “1” to this bit to clear the interrupt request. The 8051 should clear the 8051
INT4 Bit (EXIF.6) before clearing the AINFFIR Bit in the interrupt service routine to guarantee
that pending INT4 interrupts will be recognized.
Bit 2: BINPFIR B-IN FIFO Programmable Flag Interrupt Request
BINPFIR makes a zero-to-one transition when the B-IN FIFO byte count satisfies the required
condition programmed into the programmable FIFO flag register BINPF. If enabled by the BIN-
PFIE Bit, this transition causes an INT4 interrupt request.

Page 7-22 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 150 of 435

C
=7 v

The 8051 writes a “1” to this bit to clear the interrupt request. The 8051 should clear the 8051
INT4 Bit (EXIF.6) before clearing the BINPFIR Bit in the interrupt service routine to guarantee
that pending INT4 interrupts will be recognized.

Bit 1: BINEFIR B-IN FIFO Empty Interrupt Request

BINEFIR makes a zero-to-one transition when the B-IN FIFO byte count reaches zero (FIFO
empty). If enabled by the BINEFIE Bit, this transition causes an INT4 interrupt request.

The 8051 writes a “1” to this bit to clear the interrupt request. The 8051 should clear the 8051
INT4 Bit (EXIF.6) before clearing the BINEFIR Bit in the interrupt service routine to guarantee
that pending INT4 interrupts will be recognized.

Bit O: BINFFIR B-IN FIFO Full Interrupt Request

BINFFIR makes a zero-to-one transition when the B-IN FIFO byte count reaches 64 (FIFO
full). If enabled by the BINFFIE Bit, this transition causes an INT4 interrupt request.

The 8051 writes a “1” to this bit to clear the interrupt request. The 8051 should clear the 8051
INT4 Bit (EXIF.6) before clearing the BINFFIR Bit in the interrupt service routine to guarantee
that pending INT4 interrupts will be recognized.

Chapter 7. EZ-USB FX Slave FIFOs Page 7-23

Exhibit 2032 - Page 151 of 435

EZ-USB FX Technical Reference Manual

7.2.11 FIFO A Write Data

AOUTPF

AOUTPF I——) AQUTEF AOUTPFPIN
AOUTFF
I
vv; v
AOUTFLAG

A -
[ABJJTTF J 4
| » AOUTEMTY

AOUTDATA Aout —?—O—AFI[I.O] (PORTB)
Y AOE
AOUTBC |
-AINBC E ABPOLAR
AINDATA Ain — |

l » AINFULL
[AB

X » AINFLAG
AINEF
AINPF I——> AINPF AINPFPIN

AINFF |
Figure 7-24. AOUTDATA’s Role in the FIFO A Register

=
T
—/

AOUTDATA FIFO A Write Data 780E
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
W W W W W W W W
X X X X X X X X

Figure 7-25. FIFO A Write Data

Each time the 8051/DMA writes a byte to this register, the A-OUT FIFO advances to the next open
position in the FIFO and the AOUTBC (byte count) increments. Writing this register when there are
63 bytes remaining in the A-OUT FIFO sets the A-FIFO Full Flag (AOUTFF, in ABOUTCS.3),
which causes an INT4 request. Writing this register when the A-OUT FIFO is full (64 bytes) does
not update the FIFO or byte count, and has no effect on the FIFO flags or byte count.

Page 7-24 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 152 of 435

7.2.11.1 A-OUT FIFO Byte Count

AOUTPF
AOUTPF I——> AOQUTEF
AOUTFF

AOUTDATA

YY

[

V¢

ABOUTTF J

AOUTPFPIN

v

=i voness

» AOUTFLAG

Aout

?._

» AOUTEMTY

AOUTBC
AINBC

AINDATA

AINPF F——)

AE

Ain

A AINFF
AINEF
AINPF

*

ABPOLAR

» AINFULL
» AINFLAG

A

AINPFPIN

Figure 7-26. AOUTBC'’s Role in the FIFO A Register

AFI[7..0] (PORTB)

AOE

AOUTBC A-OUT FIFO Byte Count 780F
b7 b6 b5 b4 b3 b2 bl b0
0 D6 D5 D4 D3 D2 D1 DO
R R R R R R R R
0 0 0 0 0 0 0 0

Figure 7-27. Input FIFOs A/B Interrupt Requests

This count reflects the number of bytes remaining in the A-OUT FIFO. Valid byte counts are 0-64.
When non-zero, every byte read by outside logic decrements this count, and every 8051 write of

AOUTDATA increments this count. If AOUTBC is zero, reading a data byte by outside logic returns
indeterminate data and results in the byte count in AOUTBC remaining at zero.

Chapter 7. EZ-USB FX Slave FIFOs

Exhibit 2032 - Page 153 of 435

Page 7-25

EZ-USB FX Technical Reference Manual

7.2.12 A-OUT FIFO Programmable Flag

AOUTPF
AOUTPF I——> AOUTEF
AOUTFF

\ 4

A

[

AB

OUTTF j

AOUTDATA

V¢

AOUTPFPIN

v

AOUTFLAG

Aout

?._

»
>
»
>

AOUTEMTY

AFI[7..0] (PORTB)

* AOE
l
(Cee Je—
[» AINFULL
ABINTF J
» AINFLAG
A AINFF T
AINEF
Figure 7-28. AOUTPF'’s Role in the FIFO A Register
AOUTPF A-OUT FIFO Programmable Flag 7810
b7 b6 b5 b4 b3 b2 bl b0
LTGT D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
1 0 1 0 0 0 0 0

Figure 7-29. Input FIFOs A/B Interrupt Requests

This register controls the sense and value for the internal A-OUT FIFO Programmable Flag. The
internal flag may be tested by the 8051 and/or enabled to cause an INT4 interrupt request. The
default value of the AOUTPF Register indicates a half-full condition.

The 8051 tests the internal FIFO programmable flag by reading the AOUTPF Bit in ABOUTCS.5

(Register at 0x7818).

Page 7-26

EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 154 of 435

7 Cvrress
Bit 7: LTGT Less-than, Greater-than flag

If LTGT=0, the AOUTPF flag goes true if the number of bytes in the FIFO is less than or equal
to the programmed value in D[6..0].

If LTGT=1, the AOUTPF flag goes true if the number of bytes in the FIFO is greater than or
equal to the value programmed into D[6..0].

Bit 6-0: PFVAL Programmable Flag Value

This value, along with the LTGT Bit, determines when the programmable flag for the A-OUT
FIFO becomes active. The 8051 programs this register to indicate various degrees of A-OUT
FIFO fullness to suit the application. The following two sections in this chapter show the inter-
action of the LTGT Bit and the programmed value for two cases, a filling FIFO and an emptying
FIFO.

7.2.12.1 Filling FIFO

When a FIFQO is filling with data, it is useful to generate an 8051 interrupt when a programmed level
is reached. Because the interrupt request is triggered on a zero-to-one transition of the program-
mable flag AOUTPF, the LTGT Bit should be setto “1.” In Table 7-7, D[6..0] is set for 48 bytes,
and the LTGT Bitis set to “1.” When the FIFO reaches 48 bytes, the AINPF Bit goes high, generat-
ing an interrupt request.

Table 7-7. Filling FIFO

Bytes
LTGT |D[6.0]| in |AOQUTPF

FIFO

1 48 45 0

1 48 46 0

1 48 47 0

1 48 48 1

1 48 49 1

1 48 50 1

7.2.12.2 Emptying FIFO

When a FIFO is being emptied of data, the LTGT Bit should be set to “0,” so that the zero-to-one
transition of the PF flag (therefore, the interrupt request) occurs when the byte count descends to
below the programmed value. In Table 7-8, D[6..0] is set to 48 bytes, and when the FIFO goes from
49 bytes to 48 bytes, the AOUTPF Bit goes high, generating an interrupt request.

Chapter 7. EZ-USB FX Slave FIFOs Page 7-27

Exhibit 2032 - Page 155 of 435

EZ-USB FX Technical Reference Manual

Table 7-8. Emptying FIFO

Bytes
LTGT |D[6.0] | in |AOUTPF
FIFO
0 48 51 0
0 48 50 0
0 48 49 0
0 48 48 1
0 48 47 1
0 48 46 1
7.2.13 A-OUT FIFO Pin Programmable Flag
AOUTPF
AOUTPF |——> AOUTEF
AOUTFF

VV$ i

[ABOUTTF J
AOUTEMTY

AOUTDATA Aout —?—Q—AFI[I.O] (PORTB)
* AOE
AOUTBC |
-AINBC ABPOLAR
AINDATA Ain 4—
* » AINFLAG

l » AINFULL
[AB
AINFF |

AINEF
AINPF I——> AINPF AINPFPIN

Figure 7-30. AOUTPFPIN’s Role in the FIFO A Register

AOUTFLAG

»
>
»
>

=
T
—/

Page 7-28 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 156 of 435

S
=i voness

AOUTPFPIN A-OUT FIFO Pin Programmable Flag 7811
b7 b6 b5 b4 b3 b2 bl b0
LTGT D6 D5 D4 D3 D2 D1 DO
RIW RIW RIW RIW RIW RIW RIW RIW
1 1 0 0 0 0 0 0

Figure 7-31. A-OUT FIFO Pin Programmable Flag

This register controls the sense and value for the A-OUT FIFO Programmable Flag that appears
on the AOUTFLAG pin. This pin is used by external logic to regulate external reads from the A-
OUT FIFO. The AOUTPFPIN Register is programmed with the same data format as the previous
register, AOUTPF. The only operational difference is that the flag drives a hardware pin, rather

than existing as an internal register bit.

Having separate programmable flags allows the 8051 and external logic to have independent
gauges of FIFO fullness. It may be desirable, for example, for one side (8051 or external logic) to

have advance notice over the other side about a FIFO becoming full or empty.

The default value of the AOUTPFPIN Register indicates full (bytes in FIFO greater than or equal to

64.

Chapter 7. EZ-USB FX Slave FIFOs

Exhibit 2032 - Page 157 of 435

Page 7-29

EZ-USB FX Technical Reference Manual

7.2.14 B-OUT FIFO Write Data

BOUTPF
BOUTPF — — —p BOUTEF BOUTPFPIN
BOUTFF

VV¢ i

[ABOUTTF J
BOUTEMTY

Bout —?—O—BFI[I.O] (PORTD)

BOUTFLAG

»
>
»
>

* BOE
l
(oo Je—
l » BINFULL
[ABINTF J * » BINFLAG
BINFF |
BINEF
———> BINPF BINPFPIN
Figure 7-32. BOUTDATA’s Role in the FIFO B Register
BOUTDATA B-OUT FIFO Write Data 7813
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
w w w w w w w w
X X X X X X X X

Figure 7-33. B-OUT FIFO Write Data

Each time the 8051/DMA writes a byte to this register, the B-OUT FIFO advances to the next open
position in the FIFO and the BOUTBC (Byte count) increments. Writing this register when there
are 63 bytes remaining in the B-OUT FIFO sets the B-FIFO Full Flag (BOUTFF, in ABOUTCS.0).
This causes an INT4 interrupt request. Writing this register when the B-OUT FIFO is full (64 bytes)
does not update the FIFO or byte count, and has no effect on the FIFO flags or byte count.

Page 7-30 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 158 of 435

=7 v

7.2.15 B-OUT FIFO Byte Count

BOUTPF
BOUTPF ———)p BOUTEF BOUTPFPIN
BOUTFF
|
VV£ +
A -
[ABD”TF J » BOUTFLAG
| » BOUTEMTY

BOUTDATA Bout —?—O—BFI[I.O] (PORTD)
% BOE
BOUTBC |
-BINBC E ABPOLAR
BINDATA Bin =
(ABINTF J

BINFULL

»
' o
»
>

BINFLAG
*

BINFF |

BINEF
BINPF ——> BINPF BINPFPIN

Figure 7-34. BOUTBC'’s Role in the FIFO B Register

BOUTBC B-OUT FIFO Byte Count 7814
b7 b6 b5 b4 b3 b2 bl b0
0 D6 D5 D4 D3 D2 D1 DO
R
0 0 0 0 0 0 0 0

Figure 7-35. B-OUT FIFO Byte Count

This count reflects the number of bytes remaining in the B-OUT FIFO. Valid byte counts are 0-64.
When non-zero, every byte read by outside logic decrements this count, and every 8051 write of

BOUTDATA increments this count. If BOUTBC is zero, reading a data byte by outside logic returns
indeterminate data and results in the byte count in BOUTBC remaining at zero.

Chapter 7. EZ-USB FX Slave FIFOs Page 7-31

Exhibit 2032 - Page 159 of 435

EZ-USB FX Technical Reference Manual

7.2.16 B-OUT FIFO Programmable Flag

BOUTPF
BOUTPF —— =) BOUTEF BOUTPFPIN
BOUTFF

VV¢ i

[ABOUTTF J
BOUTEMTY

BOUTDATA Bout —?—O—BFI[I.O] (PORTD)
X BOE
BOUTBC |
-BINBC) ABPOLAR
BINDATA Bin ¢
(ABINTF J

| » BINFULL
»
>

» BOUTFLAG
A -
>

BINFLAG

*
BINFF |

BINEF
BINPF ——> BINPF BINPFPIN

Figure 7-36. BOUTPF's Role in the FIFO B Register

BOUTPF B-OUT FIFO Programmable Flag 7815
b7 b6 b5 b4 b3 b2 bl b0
LTGT D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
1 0 1 0 0 0 0 0

Figure 7-37. B-OUT FIFO Programmable Flag

This register controls the sense and value for the internal B-OUT FIFO Programmable Flag. The
internal flag may be tested by the 8051, and/or enabled to cause an INT4 interrupt request. The
default value of the BOUTPF Register indicates a half-full condition.

The 8051 tests the internal FIFO programmable flag by reading the BOUTPF Bit in ABOUTCS.2.

Page 7-32 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 160 of 435

7 Cvrress
Bit 7: LTGT Less-than, Greater-than flag

If LTGT=0, the BOUTPF flag goes true if the number of bytes in the FIFO is less than or equal
to the programmed value in D[6..0].

If LTGT=1, the BOUTPF flag goes true if the number of bytes in the FIFO is greater than or
equal to the value programmed into D[6..0].

Bit 6-0: PFVAL Programmable Flag Value

This value, along with the LTGT Bit, determines when the programmable flag for the B-FIFO
becomes active. The 8051 programs this register to indicate various degrees of B-FIFO full-
ness to suit the application. The following two sections of this chapter show the interaction of
the LTGT Bit and the programmed value for two cases, afilling FIFO and an emptying FIFO.

7.2.16.1 Filling FIFO

When a FIFQO is filling with data, it is useful to generate an 8051 interrupt when a programmed level
is reached. Because the interrupt request is triggered on a zero-to-one transition of the program-
mable flag BOUTPF, the LTGT Bit should be set to “1.” In Table 7-9, D[6..0] is set for 48 bytes and
the LTGT Bit is set to “1.” When the FIFO reaches 48 bytes, the BOUTPF Bit goes high, generating
an interrupt request.

Table 7-9. Filling FIFO

Bytes
LTGT |D[6.0]| in |BOUTPF

FIFO

1 48 45 0

1 48 46 0

1 48 47 0

1 48 48 1

1 48 49 1

1 48 50 1

7.2.16.2 Emptying FIFO

When a FIFO is being emptied of data, the LTGT Bit should be set to “0,” so the zero-to-one transi-
tion of the BOUTPF flag (therefore, the interrupt request) occurs when the byte count descends to
below the programmed value. In Table 7-10, D[6..0] is set to 48 bytes. When the FIFO goes from
49 bytes to 48 bytes, the BOUTPF Bit goes high, generating an interrupt request.

Chapter 7. EZ-USB FX Slave FIFOs Page 7-33

Exhibit 2032 - Page 161 of 435

EZ-USB FX Technical Reference Manual

Table 7-10. Emptying FIFO

Bytes
LTGT | D[6.0] | in |BOUTPF
FIFO
0 48 51 0
0 48 50 0
0 48 49 0
0 48 48 1
0 48 47 1
0 48 46 1
7.2.17 B-OUT FIFO Pin Programmable Flag
BOUTPF
BOUTFF

VV¢ i

[ABOUTTF J
BOUTEMTY

BOUTDATA Bout —?—O—BFI[I.O] (PORTD)
+ BOE
BOUTBC |
-BINBC ABPOLAR
BINDATA Bin ¢

| » BINFULL
[i J * » BINFLAG

BINFF |

BINEF
BINPF s BINPF BINPFPIN

Figure 7-38. BOUTPFPIN’s Role in the FIFO B Register

BOUTFLAG

»
>
»
>

—
T

Page 7-34 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 162 of 435

=7 v

BOUTPFPIN B-OUT FIFO Pin Programmable Flag 7816
b7 b6 b5 b4 b3 b2 bl b0
LTGT D6 D5 D4 D3 D2 D1 DO
RIW RIW RIW RIW RIW RIW RIW RIW
1 1 0 0 0 0 0 0

Figure 7-39. B-OUT FIFO Pin Programmable Flag

This register controls the sense and value for the B-OUT FIFO Programmable Flag that appears
on the BOUTFLAG pin. This pin is used by external logic to regulate external reads from the B-
OUT FIFO. The BOUTPFPIN Register is programmed with the same data format as the previous
register, BOUTPF. The only operational difference is that the flag drives a hardware pin rather than

existing as an internal register bit.

Having separate, programmable flags allows the 8051 and external logic to have independent
gauges of FIFO fullness. It may be desirable, for example, for one side (8051 or external logic) to

have advance notice over the other side about a FIFO becoming full or empty.

The default value of the BOUTPFPIN Register indicates full.

7.2.18 Output FIFOs A/B Toggle CTL and Flags

AOUTDATA

AINDATA

BOUTDATA

BINDATA

Aeh

ABOUTTF

Aout>

BOUTDATA

BINDATA

Ain

(a) Normal Mode

Figure 7-40. 8051 FIFOToggle Mode vs. Normal Mode Diagram

Chapter 7. EZ-USB FX Slave FIFOs

(b) 8051 FIFO Toggle Mode

Exhibit 2032 - Page 163 of 435

Page 7-35

EZ-USB FX Technical Reference Manual

ABOUTCS Output FIFOs A/B Toggle CTL and Flags 7818
b7 b6 b5 b4 b3 b2 b1 bo
OUTTOG | OUTSEL | AOUTPF | AOUTEF | AOUTFF | BOUTPF | BOUTEF | BOUTFF
RIW RIW RIW RIW RIW RIW RIW RIW
0 1 0 1 0 0 1 0
Figure 7-41. Output FIFOs A/BToggle CTL and Flags

Bit 7: OUTTOG Enable Output FIFO Toggle

A special FIFO toggle mode switches automatically between the A-OUT and B-OUT FIFOs
each time the 8051 writes data to the AOUTDATA Register. The toggle mechanism works only
for programmed 8051 transfers, not DMA transfers.

When OUTTOG=0, the A-OUT and B-OUT FIFOs operate in Normal Mode, as shown by dia-

gram (a) in Figure 7-40 on the previous page.

When OUTTOG=1, the FIFOs operate inToggle Mode, as shown by diagram (b) in Figure 7-
40. The selected FIFO switches between the A-OUT and B-OUT FIFOs after every 8051 write
to the AOUTDATA Register. The selected FIFO is indicated by the OUTSEL Bit (Bit 6).

Bit 6:

If OUTTOG=1 when enabling theToggle Mode:

OUTSEL

Input Toggle Select

e This bit selects OUT FIFO A or B when the 8051 writes to the AOUTDATA Register. When
OUTSEL=0, the B-OUT FIFO is written. When OUTSEL=1, the A-OUT FIFO is written.
When OUTTOG=1, this bit complements automatically (toggles) after every 8051 write to
AOUTDATA. This has the effect of automatically toggling between the A-OUT and B-OUT
FIFOs for successive 8051 writes to AOUTDATA.

* The 8051 can directly write this bit to select manually the A-OUT or B-OUT FIFO. More
commonly, the Toggle Mode is used, since it allows 16-bit transfers using the 8051 without
requiring the 8051 to switch between the FIFOs.

If OUTTOG=0 when enabling theToggle Mode:

» The OUTSEL Bit has no effect.

Bit 5:

AOUTPF

A-OUT FIFO Programmable Flag

AOUTPF=1 when the number of bytes in the A-OUT FIFO satisfies the requirements pro-
grammed into the AOUTPF Register; otherwise, AOUTPF=0. This bit may be tested by the

Page 7-36

Exhibit 2032 - Page 164 of 435

EZ-USB FX Technical Reference Manual v1.2

S
=i voness

8051and/or used to generate an interrupt request. A zero-to-one transition of this flag sets the
interrupt request bit AOUTPFIR.

Bit 4: AOUTEF A-OUT FIFO Empty Flag

AOUTEF=1 when the A-OUT FIFO is empty; otherwise, AOUTEF=0. The flag goes valid after
external logic reads the last byte in the A-OUT FIFO. This bit may be tested by the 8051, and/
or used to generate an interrupt request. A zero-to-one transition of this flag sets the interrupt
request bit AOUTEFIR.

Bit 3: AOUTFF A-OUT FIFO Full Flag
AOUTFF=1 when the A-OUT FIFO is full; otherwise, AOUTFF=0. The flag goes valid after the
8051/DMA writes the 64th byte into the A-OUT FIFO. A zero-to-one transition of this flag sets
the interrupt request bit AOUTFFIR.

Bit 2: BOUTPF B-OUT FIFO Programmable Flag
BOUTPF=1 when the number of bytes in the B-OUT FIFO satisfies the requirements pro-
grammed into the BOUTPF Register; otherwise, BOUTPF=0. A zero-to-one transition of this
flag sets the interrupt request bit BOUTPFIR.

Bit 1: BOUTEF B-OUT FIFO Empty Flag
BOUTEF=1 when the B-OUT FIFO is empty; otherwise, BOUTEF=0. The flag goes valid after
external logic reads the last byte in the B-OUT FIFO. A zero-to-one transition of this flag sets
the interrupt request bit BOUTEFIR.

Bit O: BOUTFF B-OUT FIFO Full Flag
BOUTFF=1 when the B-OUT FIFO is full; otherwise, BOUTFF=0. The flag goes valid after the

8051/DMA writes the 64th byte into the B-OUT FIFO. A zero-to-one transition of this flag sets
the interrupt request bit BOUTFFIR.

7.2.19 Output FIFOs A/B Interrupt Enables

ABOUTIE Input FIFOs A/B Interrupt Enables 7819
b7 b6 b5 b4 b3 b2 bl b0
0 0 AOUTPFIE | AOUTEFIE | AOUTFFIE | BOUTPFIE | BOUTEFIE | BOUTFFIE
R/W R/W R/W R/W R/W RIW RIW RIW
0 0 0 0 0 0 0 0

Figure 7-42. Output FIFOs A/B Interrupt Enables

Chapter 7. EZ-USB FX Slave FIFOs Page 7-37

Exhibit 2032 - Page 165 of 435

EZ-USB FX Technical Reference Manual

Bit 5: AOUTPFIE A-OUT FIFO Programmable Flag Interrupt Enable

The 8051 sets AOUTPFIE=1 to enable an INT4 interrupt when the AOUTPFIR interrupt
request bit makes a zero-to-one transition. This transition indicates that the A-OUT FIFO byte
count has satisfied the fullness level programmed into the programmable FIFO flag register
AOUTPF.

Bit 4: AOQOUTEFIE A-OUT FIFO Empty Interrupt Enable
The 8051 sets AOUTEFIE=1 to enable an INT4 interrupt when the AOUTEFIR interrupt
request bit makes a zero-to-one transition. This indicates an A-OUT FIFO byte count of zero
(FIFO empty).

Bit 3: AOUTFFIE A-OUT FIFO Bull Interrupt Enable
The 8051 sets AOUTFFIE=1 to enable an INT4 interrupt when the AOUTFFIR interrupt
request bit makes a zero-to-one transition. This indicates an A-OUT FIFO byte count of 64
(FIFO full).

Bit 2: BOUTPFIE B-OUT FIFO Programmable Flag Interrupt Enable
The 8051 sets BOUTPFIE=1 to enable an INT4 interrupt when the BOUTPFIR interrupt
request bit makes a zero-to-one transition. This indicates a B-OUT FIFO byte count has satis-
fied the fullness level programmed into the programmable FIFO flag register BOUTPF.

Bit 1: BOUTEFIE B-OUT FIFO Empty Interrupt Enable
The 8051 sets BOUTEFIE=1 to enable an INT4 interrupt when the BOUTEFIR interrupt
request bit makes a zero-to-one transition. This indicates a B-OUT FIFO byte count of zero
(FIFO empty).

Bit O: BOUTFFIE B-OUT FIFO Full Interrupt Enable
The 8051 sets BOUTFFIE=1 to enable an INT4 interrupt when the BOUTFFIR interrupt

request bit makes a zero-to-one transition. This indicates a B-OUT FIFO byte count of 64
(FIFO full).

Page 7-38 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 166 of 435

7.2.20 Output FIFOs A/B Interrupt Requests

S
=i voness

ABOUTIRQ Output FIFOs A/B Interrupt Requests 781A
b7 b6 b5 b4 b3 b2 b1 bO
0 0 AOUTPFIR | AOUTEFIR | AOUTFFIR | BOUTPFIR | BOUTEFIR | BOUTFFIR
R/W R/W RIW RIW RIW RIW RIW R/W
X X X X X X X X
Figure 7-43. Output FIFOs A/B Interrupt Requests
Bit 5:

AOUTPFIR A-OUT FIFO Programmable Flag Interrupt Request

AOUTPFIR makes a zero-to-one transition when the A-OUT FIFO byte count satisfies the

required condition programmed into the programmable FIFO flag register AOUTPF. If enabled
by the AOUTPFIE Bit, this transition causes an INT4 interrupt request.

The 8051 writes a “1” to this bit to clear the interrupt request. The 8051 should clear the 8051
INT4 Bit (EXIF.6) before clearing the AOUTPFIR Bit in the interrupt service routine to guaran-
tee that pending INT4 interrupts will be recognized.

Bit 4:

AOUTEFIR A-OUT FIFO Empty Interrupt Request

AOUTEFIR makes a zero-to-one transition when the A-OUT FIFO byte count reaches zero

(FIFO empty). If enabled by the AOUTEFIE Bit, this transition causes an INT4 interrupt
request.

The 8051 writes “1” to this bit to clear the interrupt request. The 8051 should clear the 8051
INT4 Bit (EXIF.6) before clearing the AOUTEFIR Bit in the interrupt service routine to guaran-
tee that pending INT4 interrupts will be recognized.

Bit 3:

AOUTFFIR A-OUT FIFO Full Interrupt Request

AOUTFFIR makes a zero-to-one transition when the A-OUT FIFO byte count reaches 64
(FIFO full). If enabled by the AOUTFFIE Bit, this transition causes an INT4 interrupt request.

The 8051 writes a “1” to this bit to clear the interrupt request. The 8051 should clear the 8051
INT4 Bit (EXIF.6) before clearing the AOUTFFIR Bit in the interrupt service routine to guaran-
tee that pending INT4 interrupts will be recognized.

Chapter 7. EZ-USB FX Slave FIFOs Page 7-39

Exhibit 2032 - Page 167 of 435

EZ-USB FX Technical Reference Manual

Bit 2: BOUTPFIR B-OUT FIFO Programmable Flag Interrupt Request
BOUTPFIR makes a zero-to-one transition when the B-OUT FIFO byte count satisfies the
required condition programmed into the programmable FIFO flag register BOUTPF. If enabled

by the BOUTPFIE Bit, this transition causes an INT4 interrupt request.

The 8051 writes a “1” to this bit to clear the interrupt request. The 8051 should clear the 8051
INT4 Bit (EXIF.6) before clearing the BOUTPFIR Bit in the interrupt service routine to guaran-
tee that pending INT4 interrupts will be recognized.
Bit 1: BOUTEFIR B-OUT FIFO Empty Interrupt Request
BOUTEFIR makes a zero-to-one transition when the B-OUT FIFO byte count reaches zero
(FIFO empty). If enabled by the BOUTEFIE Bit, this transition causes an INT4 interrupt
request.

The 8051 writes a “1” to this bit to clear the interrupt request. The 8051 should clear the 8051
INT4 Bit (EXIF.6) before clearing the BOUTEFIR Bit in the interrupt service routine to guaran-
tee that pending INT4 interrupts will be recognized.

Bit O: BOUTFFIR B-OUT FIFO Full Interrupt Request

BOUTFFIR makes a zero-to-one transition when the B-OUT FIFO byte count reaches 64 (FIFO

full). If enabled by the BOUTFFIE Bit, this transition causes an INT4 interrupt request.

The 8051 writes a “1” to this bit to clear the interrupt request. The 8051 should clear the 8051 INT4
Bit (EXIF.6) before clearing the BOUTFFIR Bit in the interrupt service routine to guarantee that
pending INT4 interrupts will be recognized.

7.2.21 FIFO A/B Setup

ABSETUP FIFO A/B Setup 781C
b7 b6 b5 b4 b3 b2 bl b0
0 0 ASYNC DBLIN 0 ouTDLY 0 DBLOUT
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Figure 7-44. FIFO A/B Setup
Bit 5: ASYNC Select SYNC/ASYNC Slave FIFO Clocking

The ASYNC Bit controls how external logic synchronizes accesses to the A and B FIFOs.

Page 7-40

Exhibit 2032 - Page 168 of 435

EZ-USB FX Technical Reference Manual v1.2

S
=i voness

When the 8051 sets ASYNC=1, the A and B FIFOs operate asynchronously, whereby the
SLRD (Slave FIFO-READ) and SLWR (Slave FIFO-WRITE) pins are used as direct read and
write strobes.

When the 8051 sets ASYNC=0, the A and B FIFOs operate synchronously, whereby the SLRD
and SLWR pins are used as enable signals for the externally supplied FIFO clock XCLK. The
polarity of the enables, active-high or active-ow, is controlled by the ABPOLAR Register (Sec-
tion 7.2.22. "FIFO A/B Control Signal Polarities").

ASEL=1
AOE=LO

AFI[7..0] (PORTB pins)

CS

—t BFI[7..0] (PORTD pins)
BOE=LO
BSEL LO

XCLK
SLWR

Figure 7-45. A-IN FIFO Double-Byte Mode

Bit 4: DBLIN Enable IN Double-Byte Mode

The 8051 sets DBLIN=1 to turn on the IN-FIFO double-byte mode. Figure 7-45 illustrates the
double-byte mode for the A-IN FIFO. The B-IN FIFO may also use this mode, in which case
the outside logic sets ASEL=0 and BSEL=1. For this illustration, signals ASEL, BSEL, AOE,
and BOE are programmed to be active high polarity.

In double-byte mode, external logic writes 16 bits of data into the A-IN or B-IN FIFO each time
it asserts the SLWR signal. The double-byte mode automatically writes two bytes for every
SLWR pulse in ASYNC mode or two bytes for every clock pulse in SYNC mode. The bytes are
taken from PORTD and PORTB, in that order. This provides a very efficient mechanism for
transferring 16-bit data into the 8-bit slave FIFOs.

If synchronous clocking is used in double-byte mode, consecutive writes must be separated by
at least one XCLK period to give the internal logic time to write both bytes into the FIFO. This
clocking restriction applies only to the double-byte mode. In normal operation, one byte per
clock can be loaded into a slave IN-FIFO.

Chapter 7. EZ-USB FX Slave FIFOs Page 7-41

Exhibit 2032 - Page 169 of 435

EZ-USB FX Technical Reference Manual

OUTDLY=0

OUTDLY=1

XCLK

ASEL

SLRD

AOE \

_/\
/

v

v
p[7.0] — N)

N+1 N2

Figure 7-46. A-OUT FIFO Delay Synchronous Reads

Bit 2: OuUTDLY Delay Synchronous Reads

The OUTDLY Bit affects only synchronous reads of a slave FIFO. When OUTDLY=0, output
data is valid on the clock edge that corresponds to the SLRD signal being valid. When OUT-

DLY=1, the output data is valid one clock later.

Figure 7-46 shows two synchronous reads of the A-OUT FIFO, with the OUTDLY Bit first
equal to 0, then equal to 1. For this example, the SLRD, AOE, and ASEL signals are pro-

grammed to be active low.

Page 7-42

EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 170 of 435

sout
Bout

Bit O:

Figure 7-47. B-OUT FIFO Double-Byte Mode

DBLOUT

Enable FIFO-OUT Double-Byte Mode

BSEL=HI
AFI[7..0] (PORTB pins)
AOE=HI

LO

=7 v

BFI[7..0] (PORTD pins)

BOE=HI

XCLK
SLRD

The 8051 sets DBLOUT=L1 to turn on the OUT-FIFO double-byte mode. Figure 7-47 illustrates the
double-byte mode for the B-OUT FIFO. The A-OUT FIFO may also use this mode, in which case
the outside logic sets ASEL=1 and BSEL=0. For this illustration, signals ASEL, BSEL, AOE, and
BOE are programmed to be active high polarity.

The double-byte mode automatically provides two FIFO bytes on PORTDand PORTB, in that
order, for every SLRD pulse in ASYNC mode or two bytes for every clock pulse in SYNC mode.
This provides a very efficient mechanism for transferring 16-bit data out of the 8-bit slave FIFOs.

In SYNC mode, consecutive reads must be separated by at least one XCLK period, to give the
internal logic time to retrieve both bytes from the FIFO.

7.2.22 FIFO A/B Control Signal Polarities

ABPOLAR FIFO A/B Control Signal Polarities 781D
b7 b6 b5 b4 b3 b2 bl b0
0 0 BOE AOE SLRD SLWR ASEL BSEL
R/W R/W R/W RIW RIW R/W R/W RIW
0 0 0 0 0 0 0 0
Figure 7-48. FIFO A/B Control Signal Polarities
Chapter 7. EZ-USB FX Slave FIFOs Page 7-43

Exhibit 2032 - Page 171 of 435

EZ-USB FX Technical Reference Manual

These bits define the pin polarities for the indicated signals. The 8051 sets a bit LOW for active
low, and HlI for active high. The default setting for all FIFO A/B control signals is active low polarity.

7.2.23 FIFO Flag Reset

ABFLUSH Reset All FIFO Flags 781E
b7 b6 b5 b4 b3 b2 bl b0
X X X X X X X X
w w w w w w w w
X X X X X X X X

Figure 7-49. FIFO Flag Reset

The 8051 writes any value to this register to reset the FIFO byte counts to zero, effectively flushing

the FIFOs. Consequently, the byte counts are set to zero, the empty flags are set, and the full
flags are cleared.

Reading this register returns indeterminate data.

Page 7-44 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 172 of 435

=7 v

7.3 FIFO Timing

Synchronous Write

AL T N N o
aseLs N\ |/ 0\
stwre N\ /\
OEA# /
AFITT. 0]
AINFULL [

* Data 4 is the 64th byte; data 5 is not written

—
—

Synchronous Read (OUTDLY = 0)

aseLs _ /\
stRo# — ___/ \
OEA# \
AFIT.0) — x X 1y 2 X 3 f 4
AOUTEMTY [

Figure 7-50. Synchronous Write/Read Timing

Chapter 7. EZ-USB FX Slave FIFOs Page 7-45

Exhibit 2032 - Page 173 of 435

EZ-USB FX Technical Reference Manual

Synchronous Double-byte Write

xeew f L Lt [f
aseL N\ / N
sStwr — __ /7 NI

OEA# /

AFI7.01 x YL X LY X
BFI[7..0] X YHX X) x

Synchronous Double-byte Read

XCLK f 1 S B B

ASEL

SLRD

OEA#

~\
AFI7.0] — X | L) L
—

BFI[7..0] X X H \H

Figure 7-51. Synchronous Double-byte Write/Read

Page 7-46 EZ-USB FX Technical Reference Manual v1.2

Exhibit 2032 - Page 174 of 435

