y

T

"# CYPRESS

EZ-USB FX2

Technical Reference
Manual

Cypress Semiconductor

3901 North First Street

San Jose, CA 95134

Tel.: (800) 858-1810 (toll-free in the U.S.)
(408) 943-2600

WWwWW.Cypress.com EXH I BI T 2058
LG Elecs. v. Cypress Semiconductor
|PR2014-01396, U.S. Pat. 6,249,825

Exhibit 2058 - Page 01 of 460

Smith_doug
Text Box
EXHIBIT 2058
LG Elecs. v. Cypress Semiconductor IPR2014-01396, U.S. Pat. 6,249,825

Cypress Disclaimer Agreement

The information in this document is subject to
change without notice and should not be con-
strued as a commitment by Cypress Semicon-
ductor Corporation Incorporated. While
reasonable precautions have been taken,
Cypress Semiconductor Corporation assumes
no responsibility for any errors that may appear
in this document.

No part of this document may be copied or
reproduced in any form or by any means with-
out the prior written consent of Cypress Semi-
conductor Corporation.

Cypress Semiconductor products are not
designed, intended, or authorized for use as
components in systems intended for surgical
implant into the body, or other applications
intended to support or sustain life, or for any
other application in which the failure of the
Cypress Semiconductor product could create a
situation where personal injury or death may

List of Trademarks

occur. Should Buyer purchase or use Cypress
Semiconductor products for any such unin-
tended or unauthorized application, Buyer shall
indemnify and hold Cypress Semiconductor
and its officers, employees, subsidiaries, affili-
ates and distributors harmless against all
claims, costs, damages, expenses, and rea-
sonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death
associated with such unintended or unautho-
rized use, even if such claim alleges that
Cypress Semiconductor was negligent regard-
ing the design or manufacture of the product.

The acceptance of this document will be con-
strued as an acceptance of the foregoing con-
ditions.

EZ-USB FX2 Technical Reference Manual,
Version 2.1.

Copyright © 2000, 2001
Cypress Semiconductor Corporation.

All rights reserved.

Cypress, the Cypress Logo, EZ-USB, Making USB Universal, Xcelerator, and ReNumeration are

trademarks or registered trademarks of Cypress Semiconductor Corporation. Macintosh is a regis-
tered trademark of Apple Computer, Inc. Windows is a registered trademark of Microsoft Corpora-
tion. I2C is a registered trademark of Philips Electronics. All other product or company names used
in this manual may be trademarks, registered trademarks, or servicemarks of their respective own-

ers.

Exhibit 2058 - Page 02 of 460

Table of Contents

Chapter 1. Introducing EZ-USB FX2

0 R [1 oo U T (T o PR PUPPPPPPPR
1.2 AN INrOAUCEION T0 USBeiiiiiiii ittt e e e et e e nmne e nnneeennneeee
1.3 The USB SPECIICALION ...ttt e e e et e e e e e satt e e e e e e enbeeeeeeeaseeeeeeas
T.4 HOSEIS IMBSEEN ... e et e e e e e m e e e e e m e e e e e e e nn e e e e e e e eneneeee s
SR U1 B £ =Tox 1o] o PP SPPR PRSI
1.6 TOKENS AN PIDScouieiiiiiieeii ettt e e e et s et n e s nn e e e s e e anre e e e e nneeeennneeenn
1.6.1 Receiving Data from the HOSE.........coooii e
1.6.2 Sending Data to the HOST........coiiiiiiie ettt eea e
1.7 USB Frames.......ccccooviiiiiiieeeeeee e
1.8 USB Transfer TYPesS......ccccoviieeeeeriiieeiee e
1.8.1 Bulk Transfers........ccccoceevvvvinveeeninnennn
1.8.2 Interrupt Transferscccccoeeeeiiineenn.
1.8.3 Isochronous Transfers..........ccccovenn.
1.8.4 Control Transfers........cccccoeveevierennne
1.9 ENUMErAtioNccveiiiieeniiereeeee e
1.9.1 Full-Speed / High-Speed Detection
1.10 The Serial Interface ENGINE (SIE)......cciiuuuiiiiaiiiiiiie ettt a e e e e e e eineebeeeeae s
1,11 RENUMEIATIONT™ ... ittt e e e et e s e e s e e e et e e e en e e e s nnneeeneneeas
1.12 EZ-USB FX2 AIrChITECIUIEiviiiiiie ettt e
1.13 FX2 FEAIUINE SUMIMANY ...eeeiiiiiiiieiaeaiaeeeeeaae e ettt ettt eeeeeaeeeaeesaasaaaa e sn b nnr e s s s re e e e eeaereeeeaaenananan
1.14 FX2 Integrated MICIOPIOCESSOuueiieeiiitiieeeaaieee e e ettt e e e e st ee e e e abbeee e e e sne e e e e e s nbbeeeeeannbbeeeeeean
1.15 FX2 BIOCK DIBQIAIM ...ceiiiiiiiiei ettt ettt e e oo e sat et e e e e st et e e e e s e bb e e e e e s e nneeeaeeannneeeaean
B SR - Tt =T [T PR ET PP
1.16.1 56-Pin PACKAGEeeiiiiiiiiiiiii et ee e eaaeees
1.16.2 100-Pin PACKAGEeeieiiiiiiiiie ettt e enae s
1.16.3 128-Pin PACKAGEeeieiiiiiiiiiii e
1.16.4 Signals Available in the Three Packagesccccooiiiiiiiiiiiiiiee e 1-17
1.17 PACKAGE DIAGIAIMSeeiiiiiiiiiieeiiie et e ettt e ettt e e e et te e e e e s sbeeeee e e s aabeeeeeaaabeeeeeeaansbeeeeeeannbneaaaean 1-20
1.18 FX2 ENAPOINT BUFEIS ...ttt e e e et e e e e e e eiaeeeee s 1-23
1.19 External FIFO INEITACEcocciiiiiie et re e e s 1-25
1.20 EZ-USB FX2 ProducCt Family.........ccooiiiiiiiiaiiiiie ettt e et eeee s 1-28

Chapter 2. Endpoint Zero

2% N [7o o 18 ox 11 o 1S PP RRR 2-1
2.2 Control ENAPOINT EPD......ccciiitiiiiie ittt ettt a e e st e e e e e et e e e e e satbaaeeesentbaaeeesabeaeeaeas 2-2
2.3 USB REOUESESciiiiiiiiiii i i ettt ettt ee e et ee e e e e e e e e s as s s s s s bbb bbb et e s et e et eaaaaaaeeeeeessssantbtbeaeraeeeeeeens 2-5
A T R €T] = LU L PP PPPPPPPPR TSP 2-7

A T = W - 1 (0 (= PP EPPPPPPPPP TP 2-10

i

Exhibit 2058 - Page 03 of 460

%‘F CYPRESS

(Table of Contents)

Chapter 3. Enumeration and ReNumeration™

2.3.3 ClEAN FRAIUIEeei ettt ettt e s bt e e st e e s bt e e et e e e enbbe e e anee
A N T B LT ol o] (o) (PSPPI
2.3.4.1 Get DESCHPLOr-DEVICE.uuiiieiiiiiiie ettt e ettt e e e e e e snaaaeae s
2.3.4.2 Get Descriptor-Device Qualifier
2.3.4.3 Get Descriptor-Configurationoceeeeer oo eaeieee e
2.3.4.4 Get DESCHPLOM-SIIING ..oeiuieieieeieiiieie ettt ee e et e e e e et e e e s enee e e e e e anbae e e e e ennneeaaens
2.3.4.5 Get Descriptor-Other Speed Configuration
2.3.5 Set Descriptor.......cccccceeevuvvnennn.
2.3.5.1 Set Configuration
2.3.6 Get Configuration
2.3.7 SetInterfaceccccoeevvieeennn.
2.3.8 Get Interface.........
2.3.9 Set Address..........
2.3.10 Sync Frame..........
2.3.11 FIrmMWAare LOAA.oooiiiiiiiiieeii ettt e et e e

R 700 I 1)1 o To [o 1o J o USSRt
3.2 FX2 Startup Modes
3.3 The Default USB Device
3.4 EEPROM Boot-load Data Formats

3.4.1 No EEPROM or Invalid EEPROM

3.4.2 Serial EEPROM Present, First Byte is OXCO

3.4.3 Serial EEPROM Present, First Byte iS OXC2coiiiiiiiiiiieiiiiee et eeeeee e
3.5 EEPROM CONfIgUration BYLEeoiiiiiiiiiiie ettt ettt ee e e e e sataeee e e e e snneeeaeeeanes
3.6 THE RENUM Blil....coiiiiiiiieeiitiie ettt e e ettt e e e et e e e e e e bt e e e e e esatbaeeeeesabbsaeaeeeasbraeaeaaanns
3.7 FX2 Response to Device Requests (RENUMZ0)..........uuiiiiiiiieiieaiiie et
3.8 FX2 Vendor Request for FIrmware LOAMc..coiiiiiiiiieiii et
3.9 How the Firmware RENUMEIALESccciuiuiiiiiiiiiiiiee e e e e e e e e s e s e s e e e e eeeaaaea e e e e s s e s e snannennes
3.10 Multiple RENUMETALIONS™ ...ttt ettt et e e e st e e e e s anbe e e e e e s nnbbe e e e e anbaeeaaeas

Chapter 4. Interrupts

0 T i oo [1 od 1o] o KOOSR UPPOTPPPPIN
4.2 SRS ¢tttk e ettt h et e oAb bt e Rt e b et e b e e e ab e e e nae e e nanee s
4.2.1 803x/805X COMPALIDIIILYvieeeiiiiiiee ittt s e et a e e
e I 1) =T B o] B o {0 1ol L] o PP PO U SRS PPPPPPPN
4.3.1 INEITUPE MASKINGueiieie ittt e e e e s e e e e et b e e e e e e sbta e e e e e e s sntbaneas
4.3.1.1 Interrupt Priorities
4.3.2 Interrupt Sampling
4.3.3 Interrupt Latency...
4.4 USB-SPECITIC INTEITUPLS ...ttt ettt e e e e ettt e e e e e satteee e e e s enbbeeeeeeebbeeeaeaanneeaaaas
4. 4.1 RESUME INTEITUDL. ..e ittt ettt ettt e ettt e sttt e e et e sbe e e s naneeesbeeennee
A.4.2 USB INEEITUPES ...eiiiiiiitiieie ettt e e e e e e e e e e e e e e e s e s s s s s s bbb bbb e bt b beeeeeeeanaeas
4.4.2.1 SUTOK, SUDAV INEITUPLSvuviriiiiiiieiiieieieeeeeesssssisieniresersreeeeeeeeeeesssssansnsnsnsnes 4-12

Table of Contents

Exhibit 2058 - Page 04 of 460

%‘F CYPRESS

(Table of Contents)

A.4.2.2 SOF INTEITUPLuvtitieiiitieiei et e e e e e e e e e e s s s e s s bbb be e b e aeeaeaeaaeeas

4.4.2.3 Suspend Interrupt

4.4.2.4 USB RESET INEITUPL ...oiiiiiiieiei ettt e e e e e e eeeaeeas

4.4.2.5 HISPEED INEEITUPT ...ceiiiiiiieieee ettt e e e ae e e e aeeeeeas

4.4.2.6 EPOACK Interrupt.........ccuvvenee

4.4.2.7 Endpoint Interrupts................

4.4.2.8 In-Bulk-NAK (IBN) Interrupt...

4.4.2.9 EPXPING INEITUPLeeiiiiiieieieeee ettt e e e e e e e e e e e see e e e e eeaeeeas

4.4.2.10 ERRLIMIT INTEITUPL ...eeeiiieieeeeee ettt ettt e e

4.4.2.11 EPXISOERR Interrupt

4.5 USB-Interrupt AUtovectorsccoecvvvvvvnnnnns
4.5.1 USB Autovector Codingcc........

4.6 12C-Compatible Bus Interrupt
4.7 FIFO/GPIF Interrupt (INT4) .oeeevieieiiieeeiiieene
4.8 FIFO/GPIF-Interrupt Autovectors
4.8.1 FIFO/GPIF AUtOVECIOr COOING. . .eiiiiiiiiiiieeiiiiiie e e eeitte e e e et e e e e st ee e e s etaee e e e s enraeeeesanes

Chapter 5. Memory
LT A g1 10T [¥ Tt i o o PP R PR
5.2 Internal Data RAM

5.2.1 The Lower 128
5.2.2 The Upper 128
5.2.3 SFR (Special Function Register) Space...............
5.3 External Program Memory and External Data Memory
5.3.1 56- and 100-PIN FX2 .. .eiiiiiiiiiiieiie ittt ettt st n e nne e
5.3.2 128-PIN FX2 ..ottt ettt bbb b e b e
5.4 FX2 MEMOIY IMBPS ... ettt ettt ettt e e e e e e e e e e e e s e s et bbb et et e et et e eaeaaaaaeeeaasasaasnnnsnbe bt bn e e e eeseenneeeenaens
5.5 “Von-Neumannizing” Off-Chip Program and Data Memory
5.6 On-Chip Data Memory at OXEOOO-OXFFFF ...t

Chapter 6. Power Management
{28 g1 1 oo [F Tt i o] o FAN TP PP PPPRI
6.2 USB Suspend
6.2.1 SUSPEND Register

6.3 WAKEUP/RESUIMIE ... iiiiiiie e ettt e ettt e e e e ettt e e e e e st e e e e e st e et e e s sate et e e e aatbe e e e e e ssbebeaeeassaesbeeeeesnnsnres
6.3.1 WaKEUP INTEITUPL ...ttt e e e e e e et a e e e e etbraaae e e e annsnees

6.4 USB Resume (REMOLE WAKEUP)cvviieiiiiiiiee i ettt e s ettt e e e e e e tbae e e e e eatb e ae e e e staraaee e s e sneaeeeeas 6-6
L YV 1 = o PRSPPI 6-6

Chapter 7. Resets

% R [a1 (o Lo [§ [o] o F 7-1

7.2 POWEI-ON RESEE (POR)...ii ittt ettt ettt e et e e e e st e e e e e et e e e e e saabbeaeeesesbbaeeeesabaaeeaean 7-2

7.3 Releasing the CPU RESELuuiiiiiciiiii ettt e et e e e e e e e ae e e e et aa e e e e s annaees 7-3

7.3.1 RAM DOWNIOA.uuiuiriiiiiiieiiieieieeee e e ee e e e e eeee st bbb s eeeeeeeeeesaeeseaesssssssaassssssssseesnsessrnrens 7-3

Table of Contents iii

Exhibit 2058 - Page 05 of 460

%‘F CYPRESS

(Table of Contents)

7.3.2 EEPROM LOAAccuiiiiiiiiiiee ettt ettt e e e e e e e et e e e e e btaae e e e s satbaae e e s stbanaeeeeanns 7-3
7.3.3 EXIEINAI ROM ...ttt ettt e et e e e st e e e e etbeaeaeeeasnesbeeaaeans 7-3
T4 CPU RESEE EffECLS . .uuiiiii ittt e e s e e e e st e e e e st e e e e e e e sntbeeaaeans 7-4
7.5 USB BUS RESEL ...uiitiiiieiiiiiiiiiie ettt ettt et e e e e e e e e s s s s s bbbt bt e e te ettt eaeaeaaeeeaeassesannnenenenes 7-4
AT o O B T~ oo] o 1=t SRS 7-5
7.7 RESEE SUMMAIY oiiiiiiiiii ittt ee et e e e e e e e e s s s s s s bbbt b e et et eeeeeaeaeeaaaeesaaaa s asbbabtstbbeeebbbesesaenenaens 7-5

Chapter 8. Access to Endpoint Buffers

S o1 1 0o [¥ Tt i o o PRSP
8.2 FX2 Large and Small ENAPOINEScooiiiiiiiiiiai ittt et e e e e e sateeea e e s eeneeeeeeannes
8.3 High-Speed and Full-Speed DifferEnNCeS..........uieiiiiiieiie ettt e e
8.4 How the CPU Configures the ENAPOINTSoocueiiiiiieei et ee e
8.5 CPU Access t0 FX2 ENAPOINT DALA.........ueeiieiiiiiieae et ee e e satee e e e enaeeeaeeeanes
8.6 CPU Control of FX2 ENAPOINTSeiiiiiiiiiiieeeeie ettt ettt ee e e et e e e e e snneeeaaeeeanes
8.6.1 Registers That Control EPO, EP1IN, and EPLOUT........occiiiiiiiiiiiiee e
8.6.1.1 EPOCS ...ttt ettt ettt b e bt bbb e e beas
8.6.1.2 EPOBCH and EPOBCL
8.6.1.3 USBIE, USBIRQ
8.6.1.4 EPOLISTATc.eevvvvrnns
8.6.1.5 EPLOUTCS. .. .ottt ettt etttk ab e sbe et e b e e b e e nbeesaeeenneas
8.6.1.6 EPLOUTBC.cciiitieiiiiiieeie et ettt ettt ettt eie e sbe et b et e e nbeesieennneas
8.6.1.7 EP1INCS
8.6.1.8 EP1INBC
8.6.2 Registers That Control EP2, EP4, EPG, EP8........c...ooooiiiiiiiiee e
8.6.2.1 EP24BBSTAT ..oiiiiiiii ittt
8.6.2.2 EP2ISOINPKTS, EP4ISOINPKTS, EP6ISOINPKTS, EP8ISOINPKTS..............
8.6.2.3 EP2CS, EPACS, EPBCS, EPBCS........ccoiiiiiieitieiee et
8.6.2.4 EP2BCH:L, EP4BCH:L, EP6BCH:L, EP8BCH:L........cccceviiiiiiiiieieee,
8.6.3 Registers That Control All ENAPOINTS......ccoiiiiiiiiieiaiiiiiie e
8.6.3.1 IBNIE, IBNIRQ, NAKIE, NAKIRQ.......cttitirtiieitienee sttt
8.6.3.2 EPIE, EPIRQ.. .ottt e e e e
8.6.3.3 USBERRIE, USBERRIRQ, ERRCNTLIM, CLRERRCNT
8.6.3.4 TOGCTL ...
8.7 The Setup Data Pointer......
8.7.1 Transfer Length
8.7.2 Accessible Memory Spaces
RS I U [(o] oo 0] (=] £ T TP UT PP POPUPPPTN

Chapter 9. Slave FIFOs
LS g1 1 oo [F i o o EU OO PP PP PR

LS I o = 10 1T 1L PP PPPP PP
9.2.1 Slave FIFO Pins ...

9.2.2 FIFO Data Bus (FD)

9.2.3 Interface ClOCK (IFCLK)oiiiiiii ettt ee et e e et e e e e s e e e e e e e enee

iv Table of Contents

Exhibit 2058 - Page 06 of 460

%‘F CYPRESS

(Table of Contents)

9.2.4 FIFO Flag Pins (FLAGA, FLAGB, FLAGC, FLAGD).......coiiutiiiiieiiiee i 9-6
9.2.5 Control Pins (SLOE, SLRD, SLWR, PKTEND, FIFOADR[L:0])...ccciieteiniieeriieeniieeeniieeens 9-8
9.2.6 Slave FIFO Chip SeleCt (SLCS) ...uiiiiiiiiiiiiee ettt e st 9-10
9.2.7 Implementing Synchronous Slave FIFO WIES.........ccciviiie i 9-10
9.2.8 Implementing Synchronous Slave FIFO Reads...........cccccviviiiiiiiiie e 9-13
9.2.9 Implementing Asynchronous Slave FIFO WIESccccvvveiiiiiieeee e 9-15
9.2.10 Implementing Asynchronous Slave FIFO ReadS...........ccvveeiiiiivieieeiiiiee e 9-17
Lo T 110101117 L (PSP UU PR PPPR 9-19
9.3.1 FIirmMWAre FIFO ACCESSueiiiiiie ittt ettt ettt sttt e et e e e atn e e naneeenebeeas 9-19
9.3.2 EPX IMEIMOIIES ...ttt ettt ettt e e enn e e st e e e as 9-20
9.3.3 Slave FIFO Programmable-Level Flag (PF)ccovviiiiiiieee e 9-21
9.3.4 AULO-IN / AULO-OUL MOOES ...ttt e e 9-22
9.3.5 CPU Access to OUT Packets, AUTOOUT = L....ccccuviiiiiriiiieiiie e 9-23
9.3.6 CPU Access to OUT Packets, AUTOOUT = 0...cuevveiiiiiiiiiiiesiiieee e eeiiiie e siveee e 9-24
9.3.7 CPU Access to IN Packets, AUTOIN = L......ouiiiiiiiiiiieiieeee e eeeeaaans 9-27
9.3.8 Access to IN Packets, AUTOINTOcouuuiieiiiieeiee et e et e e e e e e e e eeveenaans 9-30
9.3.9 Auto-In / Auto-Out INItIAlIZALIONviiiiii e e 9-31
9.3.10 Auto-Mode Example: Synchronous FIFO IN Data Transfers..........ccccvceeeiiiviieeeecenene, 9-32
9.3.11 Auto-Mode Example: Asynchronous FIFO IN Data Transfers.........ccccceeevciiiniecennnnn. 9-33
9.4 Switching Between Manual-Out and AULO-OUL...........coueiiiiiiiiiiie et 9-33

Chapter 10. General Programmable Interface (GPIF)

020 R [o1 o T [o 1T o PR 10-1
10.1.1 Typical GPIF INTEIFACEeeiiieieiie ettt e e e 10-3

OB o F= 1 V= RSP 10-5
10.2.1 The External GPIF INtEIfACEuiiii it 10-5
10.2.2 Default GPIF Pins CoNfigUIation.............cooiiiiiiiiieaeeiiiie e 10-6
10.2.3 SiX CONLrOl OUT SIGNAISeeeiieiiiiiiieee ettt ettt e e e e e et bee e e e etaeeeaaeenneees 10-7
10.2.3.1 Control OUIPUL MOAESeeeiiiiiiiiii ettt e e e 10-7

10.2.4 Six Ready IN SIgNaIS.........uiiiiiiiiiiiie et e e e et ee e e e s eae e e s eneaenes 10-7
10.2.5 Nine GPIF Address OUT SIgNaAIScoccuviiiiiiiiiiiiiee ettt e e eiitie e e e siiavee e e saarvaee e e enanees 10-7
10.2.6 Three GSTATE OUT SigNalSuvviiiiiiiiiiiiie ettt a e e 10-8
10.2.7 8/16-Bit Data Path, WORDWIDE = 1 (default) and WORDWIDE =0c..cccccouen.e. 10-8
10.2.8 Byte Order for 16-bit GPIF TranSactioNSuuiieeiiiiiiiee et e e 10-8
10.2.9 Interface ClOCK (IFCLK) ...uuiiiiiiiiiiiie ettt e et e e e e b e e e e e e snaeee s 10-8
10.2.10 Connecting GPIF Signal Pins to Hardware.............cccveeeiiiiiiee e 10-10
10.2.11 Example GPIF Hardware INtErCONNECT.........coccvveiiiiiiiiiee i 10-10

10.3 Programming the GPIF WaVEfOIMSoiiiiiieiiiiieiiice e 10-11
10.3.1 The GPIF REGISIEIS ...vviiiiiii ettt sttt e e 10-12
10.3.2 Programming GPIF WavefOrms.........c.ouiiiiiiiiiiie e 10-12
10.3.2.1 The GPIF IDLE StAtecccuvvviiiiiiiiiei ettt siae et ee e etrae e e e e ennees 10-12

10.3.2.1.1 GPIF Data Bus DUNNG IDLEccceiiiiiiniiiiniiiciieesie e 10-13

10.3.2.1.2 CTL Outputs DUMNG IDLE........cccciiiiiiiiiiieit e 10-13

10.3.2.2 DEfINING STALES ...ccvviieiiiii ettt n 10-14

Table of Contents \Y

Exhibit 2058 - Page 07 of 460

%‘F CYPRESS

(Table of Contents)

Chapter 11. CPU Introduction

vi

10.3.2.2.1 Non-Decision Point (NDP) States.........cccceeeeviiuiieieeiiiiiieee e eciiiee e 10-14
10.3.2.2.2 Decision Point (DP) States .
10.3.3 Re-Executing a Task Within @ DP Stateccueiiiiiiiiiiiee e
10.3.4 StAte INSIIUCLIONSeeeieiei ettt e e e et e e e e st e e e e e e e nbbee e e e ennneeeaeeaenn
10.3.4.1 Structure of the Waveform DeSCHPLOrScoiieiiiieiieeiiiee et
OB 1 1V T TP
10.4.1 Single-Read TraNSACHONScceiiiiuiiiaeeaiiieiea e ettt e e et e e e e e s e eee e e e e s e sneeeeeesanreeeaaaaan
10.4.2 Single-Write TranSACIONSciiiiiiiiiiiai it e et e et ee e e e sbee e e e e s e e e e e e sanneeeaeanes
10.4.3 FIFO-Read and FIFO-Write TranSaACHONSccuuueireiiiiiiieeeeeieiiieee e e seeieee e e eieeeeee s
10.4.3.1 TranSaCtioN COUNLETcoiiiiiiiiieie et e e e et e e et e e e et e e e e annn e e e e e aneneeeas
10.4.3.2 Reading the Transaction-Count Status in a DP State
10.4.4 GPIF Flag SEIECHONcciiiiiieie et e e e e e e e arbe e e e eaes
O R e o | ol P To TR (o] o PP PPRPRT
10.4.5.1 Performing a FIFO-Read TranSaction...........cccceevieiierieeiiiiiiee e eeiiiee e
10.4.6 Firmware Access to IN packet(s), (AUTOIN=1)............
10.4.7 Firmware Access to IN Packet(s), (AUTOIN =0)
10.4.7.1 Performing a FIFO-Write Transaction..................
10.4.8 Firmware access to OUT packets, (AUTOOUT=1)
10.4.9 Firmware access to OUT packets, (AUTOOUT = 0)
10.4.10 Burst FIFO Transactions
10.5 UDMA INEEIACE. ... eee ettt ettt ettt e ettt e e e ab et e e e s be et e e e et b be e e e ean s nbeeeeeaaan

5 O [01 o T [o 1 o PSR POPPPPPN
11.2 8051 Enhancements.........
11.3 Performance Overview
11.4 Software Compatibility
11.5 803x/805x Feature Comparison...........
11.6 FX2/DS80C320 Differences................
11.6.1 Serial Ports
11.6.2 TIMEr 2 uvvvveeiiieeee e
11.6.3 Timed Access Protection........
11.6.4 Watchdog Timerc.........
11.6.5 POWET Fail DEECHONiiiiiiiiieie et e e e e e e s be e e e e e s
ST o o A 1 TP UPPRTPN
G A [01 (=T (] o € OO PO PP PO PPN
11.7 EZ-USB FX2 ReQIStEr INtEITACEcciiiiiieiiie ittt e e et ee s eestaaeae e
11.8 EZ-USB FX2 INTEINAI RAMoeiiiiiiiiiiiiieeeee ettt ettt ae e e e e eeeeeeeeeeeaseseesaasnssaarareeneeeeeees
N 1@ TN 0T 4 £ PP UPUU O OTRSPPPRPPRPRY
B KO I 01T T o £ TR UP SRR TPPTPPPN
L11.11 POWEE CONLION coeiiiiiieieeiie ettt et e e e e e e e e e e e et b bbbt e e rareeeeeeeeeeeeeeeassesesnsnnssarnresnsreneees
11.12 Special Function RegIStErS (SFR)uiiii ittt e e
11.13 External ADdreSS/Data BUSEScociviiieiiiii ittt e e ee e e e e e e e e e e s e s e s e ansannneeeeeeees
T] PSPPI

Table of Contents

Exhibit 2058 - Page 08 of 460

%‘F CYPRESS

(Table of Contents)

Chapter 12. Instruction Set

0 1 0T 18 X o o TP UT RS PUPR 12-1
2 0 T [1S3 1 0T o T I T o PSPPSR 12-5
12.1.2 Stretch Memory Cycles (Walit StateS)eeee i 12-5
12.1.3 DUl DAA POINTETS......cuieiiiiiieiirie et e e nre e s e e e e 12-7
12.1.4 Special FUNCHON REQISTEISuiiiiieiiiiiiee et ie ettt ee et e e e e e e e e e s sbe e e e e e e eneaeeeaean 12-7

Chapter 13. Input/Output

R 20 R [o1 1 0T [Tox 1 o o USSP 13-1
B 1@ T o o USSP 13-1
13.3 1/O POrt AItErNAte FUNCHONScoeieiiie ettt ee e e st e e et e e e e st e e e e s stbe e e e e ean s ensaaees 13-5
13.3.1 Port A Alternate FUNCHONSvviiiii ittt et e e e e e e 13-7
13.3.2 Port B and Port D Alternate FUNCHONS.........ccccuuiiiie i e 13-8
13.3.3 Port C Alternate FUNCHONS.......ccuiiiiiieiiiee ettt e et e e e et e e e e s eraaeeas 13-9
13.3.4 Port E Alternate FUNCLIONSccciiiiei ittt bae e e 13-10
13.4 12C-Compatible BUS CONIOIETcoiiiiiiiiiee ettt ettt e e et e st e e e s sbar e e e s e ananeees 13-12
13.4.1 Interfacing t0 12C PeriPheralScccooiuiiiiie ettt 13-12
R B B o L= T 1) (= (PSP PPPRPRPRN
13.4.2.1 Control Bits
13.4.2.2 Status Bits..........
13.4.3 Sending Data.................
13.4.4 Receiving Data
13.5 EEPROM BOOt LOAUENcvviiiiiiiiiiiee ettt e e e e e e e e e e e e s s e s st aae e e e eeaaaaaeeaeaaaeas

Chapter 14. Timers/Counters and Serial Interface

I R [o1 0T [o 1 o PSPPI
14.2 Timers/Counters
14.2.1 803x/805x Compatibility
14.2.2 TIMErs 0 and L.......coiiiiiiiiiiie ettt cite e ee e e et e e e e st ae e s e araees
14.2.2.1 Mode 0, 13-Bit Timer/Counter — Timer 0 and Timer 1
14.2.2.2 Mode 1, 16-Bit Timer/Counter — Timer 0 and Timer 1
14.2.2.3 Mode 2, 8-Bit Counter with Auto-Reload — Timer 0 and Timer 1.................... 14-5
14.2.2.4 Mode 3, Two 8-Bit Counters — Timer 0 ONlYoooiieiiiiiiiiiie e
R B I 4 1= = = L (TN @ 1 11 o Pt
S I o = PP
14.2.4.1 Timer 2 Mode Controlccccceveveeeeeen....
14.2.5 Timer 2 — 16-Bit Timer/Counter Mode
14.2.5.1 Timer 2 — 16-Bit Timer/Counter Mode with Capture
14.2.6 Timer 2 — 16-Bit Timer/Counter Mode with Auto-Reloadccoccevveiiiciiereeiiinnen,
14.2.7 Timer 2 — Baud Rate Generator MOAE.............ueeeiiiiiiieeeeiiiiiie e eeiieeee e esivareee e
14.3 Serial INterfacecccovveeeiiiiieie e
14.3.1 803x/805x Compatibility...................
14.3.2 High-Speed Baud Rate Generator

Table of Contents Vii

Exhibit 2058 - Page 09 of 460

%‘F CYPRESS

(Table of Contents)

I T T 1Y o o LN 0 PP 14-15

I J Y o o - PRSP SPPP 14-20
14.3.4.1 Mode 1 Baud RAEccceiiiiiiiiiiie ittt e e et e e e 14-20
14.3.4.2 Mode 1 Transmit

14.3.5 MOUE L RECEIVE.....ccce e e ittt e e e e e e e e e e e e e s e e e e e e e e aeeeaaeaeaeeeaaaaaan
L4.3.6 IMOUE 2.ttt e e e e ettt e e e e e eat e e e e e s eetbaeeeeseebaseeeeeeanareeeeeeaatereaaaan
14.3.6.1 Mode 2 Transmit
14.3.6.2 Mode 2 Receive
I T A Y o o LT RPN

Chapter 15. Registers

S T0 R 10T 18 o1 i oo PR PP PP PUPR PRI
15.1.1 Example RegiSter FOMMALScooiiiiiieiee et ee e
15.1.2 Other CONVENTIONS.ciiiieiiiiei it e e e e s e s e s e e s en e e e nnnnees

15.2 Special Function RegIStErs (SFR)ueiiiioi it e e a e

15.3 ADOUL SFRS ...ttt bbbkt h et e bt h bt e bt ket he e e nhe e bt ene e bt e erneene et

15.4 GPIF WaVeform MEIMOIIESuviiiiieeirieerteieeteee ettt ne e e sne e e snne e eennnee s
15.4.1 GPIF Waveform DeSCrptor DAta...........ooiueeiieiaiiiiieee e e e a e

15.5 General Configuration REJISIEISuiiiii ittt et e e e e e e e e e eeeeeeeaan

15.5.1 CPU CoNtrol @nd STALUSceeeiieieiirieeiiee e

15.5.2 Interface Configuration (Ports, GPIF, slave FIFOS)........c.ccoiiiiiiiiiiiiieee e

15.5.3 Slave FIFO FLAGA-FLAGD Pin Configuration..............cccccveeiiiiieiieniiieeee e

15.5.4 FIFO RESELeeitiiiiietiiitt ettt ettt bbbtttk et e e nr e ie e b e b e

15.5.5 Breakpoint, Breakpoint Address High, Breakpoint Address LOW...........ccccoecvveeeeennee

15.5.6 230 Kbaud ClOCK (TO, TL, T2) ..eeieeirerrieiiieeniee st aieesiee e sie e sre e e nne e

15.5.7 Slave FIFO Interface PiNS POIATLYcceeiiiiiiiiiiiiieieee e

15.5.8 Chip REVISION ID ...ttt ettt ettt st e e e st e e e e e nntbeae e e an

15.5.9 Chip REVISION CONLIOL.....iiiiiiiiiiie ettt e s e e e e s e e e enas

15.5.10 GPIF HOIA TIME . .eiiiiiiiieitie itttk nr e enee e

15.6 ENAPOiNt CONFIQUIALION.cuuuiiiee ettt e e e e st e e e et ee e e e enebnbeeeeeeaan

15.6.1 Endpoint 1-OUT/Endpoint 1-IN Configurationscccceeruieeieeiiiiiie e

15.6.2 Endpoint 2, 4, 6 and 8 Configurationoooiueiiiiiiiiiiiee e

15.6.3 Endpoint 2, 4, 6 and 8/Slave FIFO Configuration.............ccccooeiieiiiiiiniiiencenieee e

15.6.4 Endpoint 2, 4, 6, 8 AUTOIN Packet Length (High/Low)

15.6.5 Endpoint 2, 4, 6, 8 /Slave FIFO Programmable-Level Flag (High/Low)
15.6.5.1 IN ENAPOINESoeeiiiiieiiiieie ettt eenaeee e e
15.6.5.2 OUT Endpoints

15.6.6 Endpoint 2, 4, 6, 8 ISO IN Packets per Frame

15.6.7 FOrce IN PACKEt ENGooiiiiiiiiieiiie et

15.6.8 FOrce OUT PacCKet ENGccviiiiiieiiiiireie e

B A [01 (=T £ (U] o £ PP T U PO PP TRPPPPPPPINE

15.7.1 Endpoint 2, 4, 6, 8 Slave FIFO Flag Interrupt Enable/Requestccccccoevineeennn.

15.7.2 IN-BULK-NAK Interrupt ENnable/ReqUESL............ocuuiiiieiiiiiiiee e

15.7.3 Endpoint Ping-NAK/IBN Interrupt Enable/ReqUest.............cooiiiiiieieiiiiieee e

viii Table of Contents

Exhibit 2058 - Page 10 of 460

%‘F CYPRESS

(Table of Contents)

15.7.4 USB Interrupt ENABIE/REQUESTccciiiiiiiiie ettt a e
15.7.5 Endpoint Interrupt ENable/REQUEST..........cooiiiiiiiiieicciee e
15.7.6 GPIF Interrupt ENable/REQUESTcouuiiiiie ettt
15.7.7 USB Error Interrupt ENable/REQUESTccoiuiiiiiee it
15.7.8 USB Error Counter LIMit.........ccciiiiiiiiiiiieseieie et
15.7.9 Clear ErfOr COUNL.......ccuiiiiiiiie ittt nnee s
15.7.10 INT 2 (USB) AULOVECION ...uviiieeiiciiiiee e eetiee e e e ettt e e e sttt e e e stbe e e e e eenasaaaaessnnsaraaeeesnnnes
15.7.11 INT 4 (slave FIFOS & GPIF) AULOVECTONcccvveieeiiiiiiieececcieiee e esiivan e
15.7.12 INT 2.@Nnd INT 4 SEIUP....eivieiiiiiieeiee sttt st e e
15.8 INPUL/OULPUL REGISTEIS .iiiiiiiie ettt et e e e e e e ettt e e e e e sat e e e e s setb e et eessabaeaeaaeesansens
15.8.1 1/O PORTA Alternate Configuration...........couiiiiuieiieeiiiiiiiee et e e esiire e e snivree e
15.8.2 1/O PORTC Alternate Configuration.............couoiuieiriiiiiiiii et e e
15.8.3 1/O PORTE Alternate Configuration...........cciiiiiiieiieeiiiieiie e e e esiiiee e e snevaee e
15.8.4 I2C Compatible Bus Control and StatUS...........ccceeiiieiiieeeiiie e
15.8.5 PC-Compatible BUS DAta..........ceiiiiiiiiiiiiiiie ettt
15.8.6 12C-Compatible BUS CONLIOL.........cccuuiiiiiieiiiie et
15.8.7 AUTOPOINTERS 1 and 2 MOVX @CCESS ...uuvvviiiiuiiireeeiiiiiieessniriereessnsineseesssnaneesannnns
15.9 UDMA CRC REQISIEIS ..ccuttieiiiie ettt ettt sttt ettt ettt e st e st e s e s nabe e s ante e e e nnnees
15.20 USB CONLIOl ..uttiiieiiiiiiiie e ettt ettt e e et e e e e st e e e e e st et e e e asntbeeaeeeansbssaeaeeasnsasaeeeesnsens
15.10.1 USB CONtrol @nd STAtUS.......cciiiiiiiiieeieiiiieeeeesiier e e e s siee e e e essibeeeeeesssereeeeesseraeeesannen
15.10.2 ENter SUSPENT SEALE......coiuiiiiiiiieiiiie ettt
15.10.3 Wakeup CONtrol & SEATUSuvieireiiiiiie ittt siee s
15.10.4 Data TOGQIe CONIOL.....cccuviiiiiiieiiiiesiie ettt e e
15.10.5 USB Frame Count Highcocuiiiiiiiiie et
15.10.6 USB Frame COUNT LOW....ccuuiiiiiiiiieiiiiies ittt e et eee e e e e e s e s e e s s s s s sesensnanenneeees
15.10.7 USB Microframe Count..................
15.10.8 USB Function Address
15.11 ENAPOINTS ...evviiiiiieeiiiieeieceiee e
15.11.1 Endpoint 0 (Byte Count High)
15.11.2 Endpoint 0 Control and Status (Byte Count Low)
15.11.3 Endpoint 1 OUT and IN Byte Count...........ccceevvvvernneeeninnnne
15.11.4 Endpoint 2 and 6 Byte Count High
15.11.5 Endpoint 4 and 8 Byte Count Highccoooiiiiiiiiiceee e
15.11.6 Endpoint 2, 4, 6, 8 BYte COUNE LOWuuviiiiiiiiiiieeeciiiie e ciiiie e e siveeee e siveveee e e
15.11.7 Endpoint O CoNtrol and STALUS........ccoiueiiiiieeiiie et
15.11.8 Endpoint 1 OUT/IN Control and STAtUS.........cocciiiiieeeiiiee i
15.11.9 Endpoint 2 CoNntrol and STALUS........ccociieiiiieeiiie et
15.11.10 Endpoint 4 CoNtrol and SEALUS.........cuveiireeiriee et
15.11.11 Endpoint 6 COoNtrol and SEALUS.........c.ueeriieeiiiee et
15.11.12 Endpoint 8 CoNtrol and SEALUS.........c.uviiiieeiiiee et
15.11.13 Endpoint 2 and 4 Slave FIFO FIags........ccccuiiiiiiieiiiieesie e
15.11.14 Endpoint 6 and 8 Slave FIFO FIags........ccccviiiiiiieiiiie e
15.11.15 Endpoint 2 Slave FIFO Byte Count Highcccooiriiiiiiiiiec e
15.11.16 Endpoint 6 Slave FIFO Total Byte Count Highccccoiiiiriiiiiiiiecieee e

Table of Contents ¢

Exhibit 2058 - Page 11 of 460

%‘F CYPRESS

(Table of Contents)

15.12

15.13

15.14

15.11.17 Endpoint 4 and 8 Slave FIFO Byte Count Highcccccveiiiiiiiiiiiciiec e 15-79
15.11.18 Endpoint 2, 4, 6, 8 Slave FIFO Byte COUNt LOW.........cvvvieiiiiiiiieeiiiiieeeeeciiie e 15-79
15.11.19 Setup Data Pointer High and LOW AdAreSS.........cceeiiiiiiiieeiiiiiiieee e sieeeeae 15-80
15.11.20 Setup Data POINTEr AULO.......oeiiiiiiiie ettt et e e e s e eraaaae s 15-81
15.11.21 Setup Data - 8 BYLESuuiuiiiiiiiiiiiiiiiiiiie et e e 15-82
General Programmable Interface (GPIF)coooi ittt 15-83
15.12.1 GPIF Waveform SEIECION........cicuiiiiiie ittt 15-83
15.12.2 GPIF Done and Idle Drive MOGEccoouuiiiiieiiiiiieiiie sttt 15-83
15.12.3 CTL OULPULS .eouuttiiinitieeiitie sttt ettt ettt sttt e et e s b et e s asb e e sabte e s nbeeeeanneeennes 15-84
15.12.4 GPIF AAAress High........cooiiiiiiei ettt e e e e e e 15-86
15.12.5 GPIF AAreSS LOW ...eciiiiiiiiiiieiiiie ettt ettt nae et e e 15-87
15.12.6 GPIF FIOWState REQISEIS......iiiiiiiiiiiiie ettt e ettt e et e e e e siaaae e 15-87
15.12.7 GPIF Transaction COUNt BYLES.........ccieiiiuiiirieeiiiiieie s iiiies e s siiees e e s ssine e e e s sninreeasenes 15-95
15.12.8 Endpoint 2, 4, 6, 8 GPIF Flag SElECt..........cciiiiiiiiiiiee ettt 15-97
15.12.9 Endpoint 2, 4, 6, and 8 GPIF Stop TranSactioncccceveeiiiiieeieesiiiieieeessnieeee e 15-98
15.12.10 Endpoint 2, 4, 6, and 8 Slave FIFO GPIF THQQEruuuvvieiiiiiieeeeeiiiieeeesiviiea e 15-98
15.12.11 GPIF Data High (16-Bit MOGE)ceveeereceeeeeeeeeeeeeeeeseseeeenenesensenenesesenenenenenenens 15-99
15.12.12 Read/Write GPIF Data LOW & Trigger TranSaction...........cccccoeveevrieeeniieeesnneeennns 15-99
15.12.13 Read GPIF Data LOW, NO Transaction THOQErcovureerieeeiiieeenrieeniieee e 15-100
15.12.14 GPIF RDY Pin Configurationccoeiiiiiiiiiieiiiieiiiie e 15-100
15.12.15 GPIF RDY PiN STAtUScciiiieiieiiiiiieee et e e st e e e e saeae e e e e snntaanaeeesnsnenes 15-101
15.12.16 ADOIt GPIF CYCIES...ccuiiiiiiiie ettt e e 15-101
ENAPOINT BUFEIS ...ttt e s e ee 15-102
15.13.1 EPO IN-OUT BUFEI . .uuiiiiiiiiiiie ettt e et a e a e e s snniaeeeeean 15-102
15.13.2 Endpoint 1-OUT BUFEI ...ccoiiiiiiiiie it 15-102
15.13.3 ENdpoint L-IN BUFFE ..coiueiiiiieee e 15-103
15.13.4 Endpoint 2/Slave FIFO BUFfEr.........cociiiiiiiiiiiiece e 15-103
15.13.5 512-byte Endpoint 4/Slave FIFO BUFfer.........ccooiiiiiiiiiiie e 15-104
15.13.6 512/1024-byte Endpoint 6/Slave FIFO BUFfer..........ccooiiiiiiiiiiiiieie e 15-104
15.13.7 512-byte Endpoint 8/Slave FIFO BUFfer..........cooiiiiiiiiiiiiie e 15-105
SYNCHroONIZAtION DEIAYooiiiiiiiiiii e 15-105

Appendix A
Default Descriptors for Full Speed MOcceeiiiiiiii e Appendix - 1

Appendix B
Default Descriptors for High Speed Mode..........oouueiiiiiiiiiie e Appendix - 11

Appendix C
FX2 REQISIEI SUMIMAIYeiiiii ettt ettt e et e e e e ettt e e e e e sae e e e e e e e nneeeaaeaannnneaaaann Appendix - 23

Table of Contents

Exhibit 2058 - Page 12 of 460

List of Figures

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 1-7.
Figure 1-8.
Figure 1-9.

Figure 1-10.
Figure 1-11.
Figure 1-12.
Figure 1-13.
Figure 1-14.
Figure 1-15.
Figure 1-16.
Figure 1-17.

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 3-1.
Figure 3-2.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 6-1.

USB PACKELS ..uviiiiiiiiiiiiiie ettt e e e e e e e e e e e e e e ae e e e e e e e eaeaeeaeaaaaae s nenranne 1-4
Two Bulk Transfers, IN and OUTccciiiiiiiiiiiiec e satee e sataaae e e enes 1-6
AN INLEITUPE TrANSTEE oviiiiei it e e e e e e e st ee e e e anrbaeeas 1-6
AN 1SOCNIONOUS TraNSTEEviiiiiiei it e e e e annrraee s 1-7

A Control Transfer
What the SIE Does
FX2 56-pin Package Simplified Block Diagram

FX2 128-pin Package Simplified BIOCK Diagramccccceeeviuiieeeeiiiiiiie e siiieie e 1-12
FX2 BIOCK Diagramccoocuriieeeiiiiieieeesiiieee e e esiese e e siieeeaa e

56-pin, 100-pin, and 128-pin FX2 Packages

Signals for the Three FX2 Package TYPESciiiiiiiiiieeiiiiie et
CY7C68013-128 TQFP Pin ASSIGNMENTeiiiiiiiiiiiiie ettt eeee e e
CY7C68013-100 TQFP Pin ASSIGNMENTiiiiiiiiiiiiiie ettt ee e e
CY7C68013-56 SSOP Pin ASSIGNMENTcuvviiiiieiiiiiie e ceiiiiee et e e e e
FX2 ENAPOINt BUFFEIS o.oiiiiiiiiiiice ettt e e e e e
FX2 FIFOS in “Slave FIFO” MOcooiiiiiiiiiee ettt e e
FX2 FIFOS iN “GPIF MASter” MOUEccoiuieiieiiiieii ettt e e

A USB Control Transfer (With Data Stage)

Two Interrupts Associated with EPO CONTROL Transfersccccovvvveviiiiiiieneeiiiieeneeee 2-3
Registers Associated with EPO Control Transfers

Data Flow for a Get_Status REQUESTccuvviiiiiiiiiiiee et
Using Setup Data Pointer (SUDPTR) for Get_Descriptor Requestsccccoccceeeennnee. 2-13
EEPROM CoNfiguIation BYLEcc.uueiiiiiiiiiiiie ettt ettt e e e e e e 3-8
USB Control and Status REJISTENii et e e 3-12
(U] L0 =T 1 (0] o] £ PP UTPPPUR N 4-10
The Order of Clearing Interrupt Requests is Importantcccccoecverieiiiiiieeee e, 4-12
SUTOK and SUDAV INTEITUPLES ...eviiiieiieiieeiiier e ettt e e e eiittea e e s saatveee e e s staeeae s s ennraeeaesanns 4-12
A Start Of Frame (SOF) PACKELtoooiiiiiieeee e 4-13
The USB Autovector Mechanism in ACHONoooiiiiiiiraeiiieee e 4-17

[2C-Compatible Bus Interrupt-Enable Bits and Registers

The FIFO/GPIF Autovector Mechanism in Action 4-22
Internal Data RAM OrganiZationcoccceiieeiiiiiiieeeesiiieeseeesirer e e e essaeae e s s essseneaseesseneees 5-1
FX2 External Program/Data Memory Map, EA=Ocoooiiiiiiiiiie e 5-5
FX2 External Program/Data Memory Map, EA=1c.c........ 5-7
On-Chip Data Memory at OXEOQOO-OXFFFFcoouiiiiiiiiiiie e 5-9
Suspend-ResUME CONLIOLoiiiiiiiiie e e e 6-2

Xiii

Exhibit 2058 - Page 13 of 460

%‘F CYPRESS

(List of Figures)

Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 7-1.
Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.
Figure 9-5.
Figure 9-6.
Figure 9-7.
Figure 9-8.
Figure 9-9.

Figure 9-10.
Figure 9-11.
Figure 9-12.
Figure 9-13.
Figure 9-14.
Figure 9-15.
Figure 9-16.
Figure 9-17.
Figure 9-18.
Figure 9-19.
Figure 9-20.
Figure 9-21.
Figure 9-22.
Figure 9-23.
Figure 9-24.
Figure 9-25.
Figure 9-26.
Figure 9-27.
Figure 9-28.
Figure 9-29.
Figure 9-30.
Figure 9-31.
Figure 9-32.
Figure 9-33.
Figure 9-34.
Figure 9-35.
Figure 9-36.

Xiv

USB SUSPENT SEOUENCE ..eiiiiiiiiiieeeiiitiiee e e eeitte e e e e atbaae e e e sstbbaaeeesstaaaaeeesaasssseaeeassntaeseessannes
FX2 WaKeUp/RESUME SEQUEINCEcuvviieiieeiiiieeeeeesiitieeeeeasiatteeeeessssbeeaasassnseeasessssreseeeans
USB Control and StatusS FEOISTEIciiiuiiiiee i ettt e e s et e e s e e e e e s s e e e e e s sraaeeaens
EZ-USB FX2 RESELSvtviviiiiiiiiiiiiiieieeeeee

Slave FIFOs’ Role in the FX2 System
FX2 Slave Mode Full-Featured Interface PiNSccuuiiiiiiiiiiiiaceie e
Asynchronous vs. Synchronous Timing Models
8-bit Mode Slave FIFOS, WORDWIDEZOcccceiiiiiiinieiiiiieeaiiee et e e saeee e
16-bit Mode Slave FIFOS, WORDWIDESLc.cooiiiiiiiiiieeiiee ettt
IFCLK CONFIQUIATION ...ttt et e e e et e e e e e ettt e e e e e ennnneaaeeanns
Satisfying Setup Timing by Inverting the IFCLK OULPULccoiiiiiiiiiieieieee e

Slave FIFO CONLrOl PINSoiiiiiiiiiiiiiei ettt
Interface Pins Example: Synchronous FIFO Writes
State Machine Example: Synchronous FIFO Writes
Timing Example: Synchronous FIFO Writes, Waveform 1
Timing Example: Synchronous FIFO Writes, Waveform 2

Timing Example: Synchronous FIFO Writes, Waveform 3, PKTEND Pin lllustrated 9-12
Interface Pins Example: Synchronous FIFO Readsccccvveeeiiiviiieeceiiiiiie e 9-13
State Machine Example: Synchronous FIFO Readscccvvvveeiiiiiiiieee e 9-13
Timing Example: Synchronous FIFO Reads, Waveform 1ccccociiieeiiiiiiiiie s 9-14
Timing Example: Synchronous FIFO Reads, Waveform 2, EMPTY Flag lllustrated 9-14
Interface Pins Example: Asynchronous FIFO WIESeeviiiiiiiiieeeiiiiieee e

State Machine Example: Asynchronous FIFO WItESooiuiiieiiiiiiiiiie e
Timing Example: Asynchronous FIFO WIEScceiiiiiiiieieiiiiiieee et eeiie e
Interface Pins Example: Asynchronous FIFO Readsccccccevviviiiee i
State Machine Example: Asynchronous FIFO Readsccccccveiiiiiiieiiieiciieece e
Timing Example: Asynchronous FIFO Readsccooiiiiiiiiiiiiiiieee e
EPxXFIFOBUF Registers
EPX MEIMOFIES ...ttt ettt e e e ettt e e e e ettt e e e s e nbe e e e e e s nnaeeeaeensneeeaaens
When AUTOOUT=1, OUT Packets are Automatically Committed
TD_Init Example: Configuring AUTOOUT =1
TD_Init Example: Configuring AUTOIN = 1 ..oooiiiiiiiiiiie et e e
TD_Poll Example: No Code Necessary for OUT Packets When AUTOOUT=1
TD_Init Example, Configuring AUTOOUT=0eiiiiiiiiiiiieee et
Skip, Commit, or SOUrce (AUTOOUT=E0) ..eeeiiiiiiiiiieee ittt e et e e e
TD_Poll Example, AUTOOUT=0, Commit PACKetcccceeiiiiiiiiieeiiiiiiie e eiiiiiee e e
TD_Poll Example, AUTOOUT=0, SKip Packetccccceiiiieiieiiiiieee e
TD_Poll Example, AUTOOUT=0, SOUICE ...ccceeiiiiiiieeaaiiiieeaeeaiitiee e e e siieieee e e sebeeeee e e eeneeas
TD_Init Example, OUT Endpoint Initializationcccoceiiiiiiiieiiiee e

List of Figures

Exhibit 2058 - Page 14 of 460

Figure 9-37.
Figure 9-38.
Figure 9-39.
Figure 9-40.
Figure 9-41.
Figure 9-42.
Figure 9-43.
Figure 9-44.
Figure 9-45.
Figure 9-46.
Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 10-4.
Figure 10-5.
Figure 10-6.
Figure 10-7.
Figure 10-8.
Figure 10-9.

Figure 10-10.
Figure 10-11.
Figure 10-12.
Figure 10-13.
Figure 10-14.
Figure 10-15.
Figure 10-16.
Figure 10-17.
Figure 10-18.
Figure 10-19.
Figure 10-20.
Figure 10-21.
Figure 10-22.
Figure 10-23.
Figure 10-24.
Figure 10-25.
Figure 10-26.
Figure 10-27.
Figure 10-28.
Figure 10-29.

List of Figures

%‘F CYPRESS

(List of Figures)

TD_Poll Example, AUTOIN = 1 ..ouiiiiiiiiiiiiee ettt ettt ee e ettt e e s st a e e e s eaae e e e e e nnnaeee s
Master Writes Directly to HOSt, AUTOIN = 1 ..o
Firmware Intervention, AUTOIN = 0 0 L ..coocuuiiiiiiiiiiie e
TD_Poll Example: Sourcing an IN Packet
TD_Poll Example, AUTOIN=0, Committing a Packet via INPKTEND
TD_Poll Example, AUTOIN=0, Skipping a Packet via INPKTENDcccccceerriinnnennn.
TD_Poll Example, AUTOIN=0, Editing a Packet via EPXxBCH:L
Code Example, Synchronous Slave FIFO IN Data Transfercccccccvviveieeiiiiiinee s
TD_Init Example, Asynchronous Slave FIFO IN Data Transfersccccocccvvviiiinneenn.
TD_Poll Example, Asynchronous Slave FIFO IN Data Transfersccccoceeeviiiiineenn.
GPIF’s Place in the FX2 SYSEM ...ttt e e saneeea e e
Example GPIF WaVEfOIM ...t e e e e e e
EZ-USB FX2 Interfacing to a Peripheralccooviiiiiiiiiiic e
| LI Qo] o110 U] =11 o o PSPPSRI
Satisfying Setup Timing by Inverting the IFCLK Output
GPIF State Maching OVEIVIEWuuuiiiiiiiiiiia ettt ee e e e eateeee e e s eneaeeeaeeas
Non-Decision Point (NDP) StateScooiiiiiiiiiiiiiee e
One Decision Point: Wait States Inserted Until RDY0 Goes Low

One Decision Point: No Wait States Inserted:
RDYO0 is Already Low at Decision Point 11

Re-Executing a Task within @ DP Statecccciieeiiiiiiiie e
GPIFTool Setup for the Waveform of Figure 10-10
A DP State Which Does NOT Re-Execute the Task
GPIFTool Setup for the Waveform of Figure 10-12

Firmware Launches a Single-Read Waveform, WORDWIDE=0c.cceecuvveeeeernnnes 10-33
Single-Read Transaction WavefOrMm ... 10-34
GPIFTool Setup for the Waveform of Figure 10-15cccccceiiiiiiieiieiiiieice e 10-34
Single-Read Transaction FUNCLONScccuuiiiiiiiiiiiie e a e 10-36
Initialization Code for Single-Read Transactionscccccoevviviieeiiiiiieiee e 10-37
Firmware Launches a Single-Write Waveform, WORDWIDE=0ccccecuiiieeeennnnns 10-38
Single-Write Transaction Waveform ... 10-39
GPIFTool Setup for the Waveform of Figure 10-20cccccoiiiiiiieiienieee e 10-39
Single-Write Transaction FUNCHONSociiiiieiiiiiiieie et a e
Initialization Code for Single-Write Transactions

Firmware Launches a FIFO-Read Waveformcccccoiieiiiiie e
Example FIFO-Read TranSaCONccceeeiiiiiiiiiiiee it
FIFO-Read Transaction Waveform ...
GPIFTool Setup for the Waveform of Figure 10-26ccccooiiiiieiiiniiiieieeeieeee e 10-45
FIFO-Read Transaction FUNCLIONScccuiiiiiiiiiiiiie et ese e se e iiven e 10-46
Initialization Code for FIFO-Read TranSactionSccccceeeveiivieeeeiiiiieieee s cveeeee s 10-47

XV

Exhibit 2058 - Page 15 of 460

%‘F CYPRESS

(List of Figures)

Figure 10-30.
Figure 10-31.
Figure 10-32.
Figure 10-33.
Figure 10-34.
Figure 10-35.
Figure 10-36.
Figure 10-37.
Figure 10-38.
Figure 10-39.
Figure 10-40.
Figure 10-41.
Figure 10-42.
Figure 10-43.
Figure 10-44.
Figure 10-45.
Figure 10-46.
Figure 10-47.
Figure 10-48.
Figure 10-49.
Figure 10-50.
Figure 10-51.
Figure 10-52.
Figure 10-53.
Figure 10-54.
Figure 10-55.
Figure 10-56.
Figure 10-57.

Figure 11-1.
Figure 11-2.
Figure 11-1.
Figure 13-1.
Figure 13-2.
Figure 13-3.
Figure 13-4.
Figure 13-5.
Figure 13-6.
Figure 13-7.
Figure 13-8.
Figure 14-1.

Xvi

FIFO-Read w/ AUTOIN = 0, Committing Packets via INPKTEND w/SKIP=0
FIFO-Read w/ AUTOIN = 0, Committing Packets via EPXBCLcccccccoevvveveeerinnnnn.
AUTOIN=1, GPIF FIFO Read Transactions, AUTOIN = 1ccccccviiiiereniinennieeeninens
FIFO-Read Transaction Code, AUTOIN =1
Firmware intervention, AUTOIN = O/1ouniiiiiiiie et e e e et e e ea s
Committing a Packet by Writing INPKTEND with EPx Number (w/SKIP=0)
Skipping a Packet by Writing to INPKTEND w/SKIP=1
Sourcing an IN Packet by writing to0 EPXBCH:Lcccooiiiiiiiiiiiiici e
Firmware Launches a FIFO-Write Waveformcccccoiiiiiiiiiiniiiee e
Example FIFO-WTrite TranSACONc..eeiiiiiiiii e
FIFO-Write Transaction WavefOrm ...
GPIFTool Setup for the Waveform of Figure 10-40coooiiiiiiiiiiiiiieeeeeee e
FIFO-Write Transaction FUNCHONScoiiiiiiiiie et
Initialization Code for FIFO-Write TranSactionscccoceeeviieiinieeeeiieee e
FIFO-Write w/ AUTOOUT = 0, Committing Packets via EPxBCL .
CPU not in data path, AUTOOUTEL ...t
TD_Init Example: Configuring AUTOOUT = 1
FIFO-Write Transaction Code, AUTOOUT =1
Firmware can Skip or Commit, AUTOOUT =0
Initialization Code for AUTOOUT = 0 ...oiiiiiiiiiieeeiiie et
Committing an OUT Packet by Writing OUTPKTEND W/SKIP=0ccccccovviviereeninnn,
Skipping an OUT Packet by Writing OUTPKTEND W/SKIP=1cccccociiiiiiiiiieenins
Sourcing an OUT Packet (AUTOOUT = 0) .oeooiiiuiiieeeeiiiiieee e aiieeee e e e e e e eneeas
Ensuring that the FIFO is Clear after Power-On-Resetccccoooiieiiiiiiiiiieeeeeiieeenn
Burst FIFO-Read Transaction FUNCHONScccooiiiiiiiiiiiiiceiceie e
Initialization for Burst FIFO-Read TranSactionscccocceeviiiiiinieiee e
Burst FIFO-Read Transaction Example, Writing INPKTEND w/SKIP=0 to Commit
Burst FIFO-Read Transaction Example, Writing EPXBCL to Commit
FX2 CPU FEALUIESuuuiiiiiiiiiiiiieiee e

FX2 to Standard 8051 Timing Comparison
FX2 Internal Data RAM
FX2 /O PiN oo

1/O Port Output-Enable REQISLEIScciiiiiiiiiieciiei ettt
I/O POrt Data REQISLEIS ...oceiiuiiiiiee ettt e et e e e e e e e e ebbb e e e e e sabbneeeeeeaannnes
I/O-Pin Logic when Alternate Function is an OUTPUTcooiiiiiiiiiiiiiiieee e
I/O-Pin Logic when Alternate Function is an INPUT ...
GeNeral I2C TIANSTEIeiiiiiie it e e e st e e

Addressing an 12C Peripheralcooiiiiiiiiiiiie ettt e e

12C-Compatible REGISIEIScoiiiiiiiiie et

Timer 0/1 - MOAES 0 @Nd 1ooiiiiiieii ettt ee e e e eaaeeeea e e e sanenes

List of Figures

Exhibit 2058 - Page 16 of 460

Figure 14-2.
Figure 14-3.
Figure 14-4.
Figure 14-5.
Figure 14-6.
Figure 14-7.
Figure 14-8.
Figure 14-9.

Figure 14-10.
Figure 14-11.
Figure 14-12.
Figure 14-13.
Figure 14-14.
Figure 14-15.
Figure 14-16.

Figure 15-1.
Figure 15-2.
Figure 15-3.
Figure 15-4.
Figure 15-5.
Figure 15-6.
Figure 15-7.
Figure 15-8.
Figure 15-9.

Figure 15-10.
Figure 15-11.
Figure 15-12.
Figure 15-13.
Figure 15-14.
Figure 15-15.
Figure 15-16.
Figure 15-17.
Figure 15-18.
Figure 15-19.
Figure 15-20.
Figure 15-21.
Figure 15-22.
Figure 15-23.
Figure 15-24.
Figure 15-25.

List of Figures

%‘F CYPRESS

(List of Figures)

TIMEN O/L - MOE 2 .ttt sb e e e neneeas
TIMEN 0 - MOOE 3 ..ottt et b e e aie e e e ene e e snbeee s
Timer 2 - Timer/Counter With CaptUreocccviiiiiiiiiiee e
Timer 2 - Timer/Counter with Auto Reload
Timer 2 - Baud Rate Generator MOAEoocueiiiiiiiiiiiie e
Serial Port Mode 0 Receive Timing - Low Speed Operation
Serial Port Mode 0 Receive Timing - High Speed Operation
Serial Port Mode 0 Transmit Timing - Low Speed Operation
Serial Port Mode 0 Transmit Timing - High Speed Operationc.ccccccvvveeeiiivieeennn. 14-19
Serial Port 0 Mode 1 TransSmit TiMINGooueeiieeiiiiieie e e e e
Serial Port 0 Mode 1 RECEIVE TIMING ...coviiiiiiiiiiae ittt et e eieiea e eataeee e e reaeeeae s
Serial Port 0 Mode 2 TranSmit TIMINGooueeiieeiiiiieie e e e
Serial Port 0 Mode 2 RECEIVE TIMING ..vvvviiiiiiiiiee et e e eriiire e eibree e e saivaee e e s staaaaeeeas
Serial Port 0 Mode 3 Transmit TiMINGcccuvvieeiiiiiiieie e a e
Serial Port 0 Mode 3 Receive Timing
Register DescCription FOMMALeiiiiiiiiiii et e e e e e e e
Single Instruction to Read POIt Booiiiiiii et
Single Instruction to Write to Port C

Use Bit 2 to set PORTD - Single Instruction
USE OR 10 SEE B3 ..ottt sb e e e et e
GPIF Waveform DescCriptor Datacoociuuiieeiiiiiiieee ettt e siiree e e

CPU CONLrol @Nd SEALUSociieiieiieeeiiiiiee et e ettt et ea e e e staeeeee e e e sneeeeeeaaanneeeeaaan
Interface Configuration (Ports, GPIF, slave FIFOS) ..o 15-14
IFCLK CONFIQUIALION ...eiiieiiiieiiee ettt e e e e e et e e e e e ee e e e eneees
Slave FIFO FLAGA-FLAGD Pin Configurationccccoccuvevieiiiiiiiiee e sciieee e
Restore FIFOS t0 RESEE STALEeviiiiiiiiiii et
Breakpoint CONLIOlociiiiiiiiee e e e e et r e e e e sbraa e e e e e s saeees
Breakpoint ADdreSs High ...
Breakpoint ADdreSs LOWccueiiieiiiiiiiieee e

230 Kbaud Internally Generated Reference Clock
Slave FIFO Interface Pins Polarity
Chip Revision IDccccvvvveeiiiiiiinenn.
Chip Revision Control
Endpoint 1-OUT/Endpoint 1-IN Configurationsccccceeiiiiiiieeeiniiiiee e eiiieee e
ENndpoint 2 CONfIQUIALIONooiiiiiiiiieei ittt et e e e
ENndpoint 4 CoNfIQUIALIONcooiiiiiiiiiiei ittt e e e e e
ENdpoint 6 CoNfigUIationccooiiiiiieieiiiiiiii et s e e e e e e e e et e e e e enees
ENdpoint 8 CoNfiQUIAtioNcooiiiiiiieieiiiiiii e e e e e e ae et ee e e e enees
Endpoint 2, 4, 6 and 8 /Slave FIFO Configuration
Endpoint 2 and 6 AUTOIN Packet Length High ...,

XVi

Exhibit 2058 - Page 17 of 460

%‘F CYPRESS

(List of Figures)

Figure 15-26.
Figure 15-27.
Figure 15-28.
Figure 15-29.
Figure 15-30.
Figure 15-31.
Figure 15-32.
Figure 15-33.
Figure 15-34.
Figure 15-35.
Figure 15-36.
Figure 15-37.
Figure 15-38.
Figure 15-39.
Figure 15-40.
Figure 15-41.
Figure 15-42.
Figure 15-43.
Figure 15-44.
Figure 15-45.
Figure 15-46.
Figure 15-47.
Figure 15-48.
Figure 15-49.
Figure 15-50.
Figure 15-51.
Figure 15-52.
Figure 15-53.
Figure 15-54.
Figure 15-55.
Figure 15-56.
Figure 15-57.
Figure 15-58.
Figure 15-59.
Figure 15-60.
Figure 15-61.
Figure 15-62.
Figure 15-63.
Figure 15-64.
Figure 15-65.

XViii

Endpoint 4 and 8 AUTOIN Packet Length Highccccoeioiiiiiiiie e
Endpoint 2, 4, 6, 8 AUTOIN Packet Length LOWcccooiiiiiiiiiiiiie e,
Endpoint 2/Slave FIFO Programmable Flag High
Endpoint 6/Slave FIFO Programmable Flag High
Endpoint 4/Slave FIFO Programmable Flag High
Endpoint 8/Slave FIFO Programmable Flag High
Endpoint 2, 4, 6, 8/Slave FIFO Programmable Flag Low .
MaXIMUM FIFO SIZES ...couviiiiiiiiiiiie ettt bbbt
Endpoint ISO IN Packets Per Frameccooiiiiiiiiiiiiiiesce e
FOrce IN Packet BN ... e
FOrce OUT PacCKet ENGooiiiiiiiiie ettt e e et e e e e e
Endpoint 2, 4, 6, 8 Slave FIFO Flag Interrupt Enablecccooiiiini e,
Endpoint 2, 4, 6, 8 Slave FIFO Flag Interrupt REQUESLcccoviiiiiiieeeiiiiieie e,
IN-BULK-NAK INterrupt ENADIEccoiiiiiiiie ettt
IN-BULK-NAK Interrupt Request
Endpoint Ping-NAK/IBN Interrupt Enable
Endpoint Ping-NAK/IBN Interrupt REQUESTcooiiiiiiiiieiiee e 15-46
USB Interrupt Enables
USB Interrupt Requests
Endpoint INterrupt ENADIESooviiiiiiiiiiie e
Endpoint INterrupt REQUESESvviiiiiiciiiiee ettt e
GPIF INterrupt ENADIEeeeiii e e
GPIF INtErrupt REQUEST ...ttt et e e e e e e e e e e e e e rnnneees
USB Error INterrupt ENADIESoiiiiiiee et
USB Error INterrupt REQUESTcoiuiiiiiieieieie ettt
USB Error Counter @and LMteeoiiieeiiiieeie et
Clear Error CoUNt EC3:0viiiiiiiiiieie ittt srn e e naes
INT 2 (USB) AULOVECTOLeeiieeiiiiiiie ettt ettt et e et e e et e e e e ensntae e e e e enneeeeeas
INT 4 (slave FIFOs & GPIF) Autovector .
INT 2 QN0 INT 4 SEEUP -eeieeieiiiiiii ettt ettt a e e e e bee e e e e e e e ee e e e s anneeeeaaaan
I/O PORTA Alternate Configurationcccceeeeiiiiiiieesiiiiiiie e esiiieee et ee e evaaeee s
1/0 PORTC Alternate Configuration
I/O PORTE Alternate Configurationccccceeeeiiiiiiiee s esireee et evaeeee e
12C-Compatible Bus Control and Status
12C-CompPatible BUS DALAc.cooiueiiieiiiiiei ettt e e e e saneeeeeas
12C-Compatible BUS CONIOIeeiiiiiiiieie et e e
AUTOPTR1 & AUTOPTR2 MOVX access (wWhen APTREN=1)cccccevvviiriinennnnenn. 15-60
USB CONtrol @nd SEALUSeoiiieiiiiiee ittt bbb 15-63
ENter SUSPENT STALEeeeieeieiiiei ettt e e et e e e e e as 15-64
WakKeup COoNtrol & STALUSuuiiiiiiiiiiie et e et e e e e neeee e 15-64

List of Figures

Exhibit 2058 - Page 18 of 460

Figure 15-66.
Figure 15-67.
Figure 15-68.
Figure 15-69.
Figure 15-70.
Figure 15-71.
Figure 15-72.
Figure 15-73.
Figure 15-74.
Figure 15-75.
Figure 15-76.
Figure 15-77.
Figure 15-78.
Figure 15-79.
Figure 15-80.
Figure 15-81.
Figure 15-82.
Figure 15-83.
Figure 15-84.
Figure 15-85.
Figure 15-86.
Figure 15-87.
Figure 15-88.
Figure 15-89.
Figure 15-90.
Figure 15-91.
Figure 15-92.
Figure 15-93.
Figure 15-94.
Figure 15-95.
Figure 15-96.
Figure 15-97.
Figure 15-98.
Figure 15-99.

Figure 15-100.
Figure 15-101.
Figure 15-102.
Figure 15-103.
Figure 15-104.
Figure 15-105.

List of Figures

%‘F CYPRESS

(List of Figures)

(D= 1= W el [0 | [T @001 { o PP PUPRPOE
USB Frame Count HIGHooiiiiiiiii e
USB Frame COUNE LOW ...cooiuuiiiiiiiiiiieie ettt ettt et e e st e e s a s e ee s e anenes
USB Microframe Countcc........
USB FUNCHON AGAIESSiieiiie ettt ettt ettt e et ee e e e e enbe et e e e e e nneneeeeeeannnees
Endpoint O (Byte Count High) ..o
Endpoint 0 Control and Status (Byte Count Low)
Endpoint L OUT/IN BYte COUNLuviiiiiiiiiiieieeeciee ettt e e et e e e e eiatve e e e s snntaaee e e s snnnes
Endpoint 2 and 6 Byte Count Highcccuiiiiiiiiiiee e
Endpoint 4 and 5 Byte Count Highccuueiiiiiie e e
Endpoint 2, 4, 6, 8 BYte COUNE LOW ...oooiiiiiiiiiiiiiiiiie et e e
Endpoint O Control and SEAtUSoooiiiiiiiiioiiee et e e
Endpoint 1 OUT/IN Control and Statusccooiiiiiieeiiiiiiee e esiie e e eivvee e
Endpoint 2 Control and Status
Endpoint 4 Control and Status
Endpoint 6 Control and Status
Endpoint 8 Control and Status
Endpoint 2 and 4 Slave FIFO Flags
Endpoint 6 and 8 Slave FIFO Flags
Endpoint 2 Slave FIFO Total Byte Count Highcoooiiiiiiiiiiiicce e
Endpoint 6 Slave FIFO Total Byte Count Highcoooiiiiiiiiiiiic e
Endpoint 4 and 8 Slave FIFO Byte Count Highccooiiiiiiiiiiiie e
Endpoint 2, 4, 6, 8 Slave FIFO Byte Count Low
Setup Data Pointer High AddreSs BYLeeuiiiiiiiiiiiiee et
Setup Data Pointer LOW AdAress BYTEccuviiiiiiiiiiiiee et
Setup Data Pointer AUTO MOGEouiviiiiiiiiiee ettt e e e saee e e
SEtUP DALA - 8 BYLIES ..vviiiiiiiiiiiiiiiiiiie ettt aa s
GPIF Waveform Selector
GPIF Done and Idle Drive
CTL Output States in Idle
CTL OULPUL DIVE TYPE oreiiiiiiiiiiee ettt ettt e e ettt e e et ate e e s estbta e e e e e s sntaaae e e s etaaneeaann
GPIF Address High
GPIF AQAIESS LOW ..eeiiiiiiieiiit ettt ettt ettt e et e et e e nnee e nnnbeeean

GPIF Transaction COUNt BYIE3oiiiiiiiiiiie ettt e e

GPIF Transaction COUNt BYIE2ueiiiiiiiiiiiee ettt e a e e e

GPIF Transaction CoUNt BYIELeoiiiiiiiiiiie et e e e e e

GPIF Transaction CouNt BYIEOc.ueviiiiiiiiiiie ettt e s a e e e e e nes

Endpoint 2, 4, 6, 8 GPIF Flag SEIECEuvvviiiiiiiiie et

Endpoint 2, 4, 6, and 8 GPIF Stop TranSacCtionccccceeeiiiuiieeeeniiiiieeeeeiiiiee e

Endpoint 2, 4, 6, and 8 Slave FIFO GPIF TrHQQErccccuiiiaiiiiiiieeeeeiiiiie e eeiieee e 15-98

Xix

Exhibit 2058 - Page 19 of 460

%‘F CYPRESS

(List of Figures)

Figure 15-106.
Figure 15-107.
Figure 15-108.
Figure 15-109.
Figure 15-110.
Figure 15-111.
Figure 15-112.
Figure 15-113.
Figure 15-114.
Figure 15-115.
Figure 15-116.
Figure 15-117.
Figure 15-118.

XX

GPIF Data High (16-Bit MOAE)eiiiiiiiiiiiee ettt 15-99
Read/Write GPIF Data LOW & Trigger TranSactioncccccvveeviiiiiiereesiiinereeesesinens 15-99
Read GPIF Data LOW, NO Transaction THQQErccuieeeiiiuireeeeeiiiiieeeeesinveeeeesesenenes 15-100

GPIF Ready Pinsccccoeoeee
GPIF Ready Status Pins
ADOIM GPIF . e e e

EPO IN/OUT Bufferccc.ce...

EPL-OUT BUFEI ettt
EPL-IN BUFFEI et
512/1024-byte EP2/Slave FIFO BUFfErccccoiiiiiiinieiecieeieeeee e 15-103
512-byte EP4/Slave FIFO BUFfErooeiiii e 15-104
512/1024-byte EP6/Slave FIFO BUFfErcccoiiiiiiiiieiie e 15-104
512-byte EP8/SIave FIFO BUFfEIccoiiiiiii ettt 15-105

List of Figures

Exhibit 2058 - Page 20 of 460

List of Tables

Table 1-1.
Table 1-2.
Table 1-3.
Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 2-5.
Table 2-6.
Table 2-7.
Table 2-8.
Table 2-9.

Table 2-10.
Table 2-11.
Table 2-12.
Table 2-13.
Table 2-14.
Table 2-15.
Table 2-16.
Table 2-17.
Table 2-18.
Table 2-19.
Table 2-20.
Table 2-21.
Table 2-22.
Table 2-23.
Table 2-24.

Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 3-6.
Table 3-7.
Table 3-8.
Table 4-1.

USB PIDS . .t 1-3
Endpoint 2, 4, 6, and 8 Configuration Choices 1-24
EZ-USB FEX2 Familyo 1-28
The Eight BytesinaUSB SETUP Packet i, 2-5
How the Firmware Handles USB Device Requests (RENUM=1) 2-6
Get Status-Device (Remote Wakeup and Self-Powered Bits) 2-8
Get Status-Endpoint (Stall BitS) 2-8
Get Status-Interface 2-9
Set Feature-Device (Set Remote Wakeup Bit) i, 2-10
Set Feature-Endpoint (Stall) 2-10
Clear Feature-Device (Clear Remote Wakeup Bit) 2-11
Clear Feature-Endpoint (Clear Stall) i 2-12
Get DesCriptor-DeVICEot 2-14
Get Descriptor-Device Qualifier 2-15
Get Descriptor-Configuration e 2-15
Get DesCriptor-StriNgot e 2-16
Get Descriptor-Other Speed Configuration 2-16
Set Descriptor-DeviCe 2-17
Set Descriptor-Configuration e 2-17
Set DeSCrPtOr-StriNg . . . oot 2-18
Set Configuration 2-20
Get Configuration 2-20
Set Interface (Actually, Set Alternate Setting #AS for Interface #IF) 2-21
Get Interface (Actually, Get Alternate Setting #AS for interface #IF) 2-22
SYNC Frame . . e e e 2-23
Firmware Download 2-24
Firmware Uploado 2-24
Default Full-speed Alternate Settings 3-3
Default High-speed Alternate Settings i 3-3
FX2 Device Characteristics, No EEPROM / Invalid EEPROM 3-4
“COLOAd” FOMMAL . ..ottt e e e e 3-5
“C2L0oad” FOMMALottt e 3-6
How the Default USB Device Handles EPO Requests When RENUM=0 3-10
Firmware Download e 3-11
Firmware Upload 3-11
FX2 INterTUPLS . . . e 4-1

XXiii

Exhibit 2058 - Page 21 of 460

%‘F CYPRESS

(List of Tables)

Table 4-2. IERegister — SFR OXA8t e e 4-2
Table 4-3. IPRegister — SFR OXB8 e 4-3
Table 4-4. EXIFRegister — SFR OXOL o i e e 4-3
Table 4-5. EICON Register — SFR OXD8 e e 4-4
Table 4-6. EIE Register — SFR OXE8 4-4
Table 4-7. EIP Register — SFR OXF8o 4-5
Table 4-8. Summary of Interrupt Compatibility 4-5
Table 4-9. Interrupt Flags, Enables, Priority Control, and Vectors 4-7
Table 4-10. Individual USB INterrupt SOUMCESottt e e e 4-9
Table 4-11. Endpoint INterruptso 4-14
Table 4-12. FX2 JUMP INStrUCtiono e e e 4-15
Table 4-13. A Typical USB-Interrupt Jump Table 4-16
Table 4-14. Individual FIFO/GPIF INterrupt SOUICES oot it e e e 4-19
Table 4-15. FX2 JUMP INStrUCION . . . ot e e 4-20
Table 4-16. A Typical FIFO/GPIF-Interrupt Jump Table 4-21
Table 7-1. Effects of Various Resets on FX2 Resources (“—" means “no change”) 7-5
Table 8-1. Maximum Packet Sizesfor USB 1.1and 2.0 8-2
Table 8-2. Endpoint Configuration Registers 8-3
Table 8-3. Endpoint Buffers iNn RAM Space i e e 8-4
Table 8-4. Registers that control EPOand EPL e 8-5
Table 8-5. Registers that control EP2,EP4,EP6andEP8, 8-10
Table 8-6. Isochronous IN Packets per Microframe, High-Speed Only 8-11
Table 8-7. Registers that control all endpoints 8-13
Table 8-8. Registers used to control the Setup Data Pointer 8-18
Table 8-9. Registers that control the Autopointers i 8-20
Table 9-1. Registers Associated with Slave FIFO Hardware 9-2
Table 9-2. FIFO Selection via FIFOADR[L:0]ttt e 9-8
Table 9-3. Registers Associated with Slave FIFO Firmwaret 9-19
Table 10-1. Registers Associated with GPIF Hardware 10-5
Table 10-2. GPIF Pin DeSCriptioNSot e e 10-5
Table 10-3. CTLIS:0] OUtPUt MOES . ..ot e e e e e 10-7
Table 10-4. Example GPIF Hardware Interconnectt 10-10
Table 10-5. Control Outputs (CTLn) Duringthe IDLE State 10-14
Table 10-6. Waveform Descriptor AddreSSeSottt it e 10-25
Table 10-7. Waveform Descriptor O Structure 10-25
Table 10-8. Registers Associated with GPIF Firmware 10-26
Table 11-1. FX2 Speed Compared to Standard 8051 it 11-3
Table 11-2. Comparison Between FX2 and Other 803x/805x Devicesvu... 11-5
Table 11-3. Differences between FX and DS80C320 Interrupts iinan.. 11-6
Table 11-4. EZ-USB FX2 INterrUPLS . .. oottt 11-9
XXiv List of Tables

Exhibit 2058 - Page 22 of 460

Table 11-5.
Table 12-1.
Table 12-2.
Table 12-3.
Table 12-4.
Table 13-1.
Table 13-2.
Table 13-3.
Table 13-4.
Table 13-5.
Table 13-6.
Table 13-7.
Table 13-8.
Table 13-9.

Table 13-10.
Table 13-11.
Table 13-12.

Table 14-1.
Table 14-2.
Table 14-3.
Table 14-4.
Table 14-5.
Table 14-6.
Table 14-7.
Table 14-8.
Table 14-9.

Table 14-10.
Table 14-11.
Table 14-12.
Table 14-13.
Table 14-14.
Table 14-15.
Table 14-16.

Table 15-1.
Table 15-2.
Table 15-3.
Table 15-4.
Table 15-5.
Table 15-6.
Table 15-7.

List of Tables

%‘F CYPRESS

(List of Tables)
FX2 Special Function Registers (SFR) i i 11-10
Legend for Instruction SetTable 12-1
FX2 INStrUCHiON Sto e e 12-2
Data Memory Stretch Values 12-6
PSW Register - SFR OXDOt e 12-8
Register Bits Which Select Port A Alternate Functions 13-7
Port A Alternate-Function Configuration 13-7
Register Bits Which Select Port B and Port D Alternate Functions 13-8
Port B Alternate-Function Configuration i, 13-8
Port D Alternate-Function Configuration 13-8
Register Bits Which Select Port C Alternate Functions 13-9
Port C Alternate-Function Configuration 13-9
Register Bits Which Select Port E Alternate Functions 13-10
Port E Alternate-Function Configuration i, 13-10
IFCFG Selection of Port I/O Pin FUNCLIONSot 13-11
Strap Boot EEPROM Address Linesto These Values 13-17
Results of Power-On-Reset EEPROM Test 13-18
Timer/Counter Implementation Comparisont 14-2
TMOD Register — SFR OX89 i e e e e 14-4
TCON Register — SRF OX88 i e e e e 14-5
CKCON (SFR 0x8E) Timer Rate Control Bits 14-7
T2CON Register — SFR OXC8 e e e 14-9
Timer 2 Mode Control SUMMary e 14-9
Serial POt MOdesS 14-13
Serial Interface Implementation Comparisont 14-13
UART?230 Register — Address OXEB08t 14-14
Allowable Baud-Clock Combinations for Modes 1and3 14-14
SCONO Register — SFR 98h e 14-16
EICON (SFROXD8) SMODL Bitttt e e e e e e 14-16
PCON (SFR Ox87) SMODO Bit u ittt e e e e e 14-16
SCON1 Register — SFR COh e e e 14-17
Timer 1 Reload Values for Common Serial Port Mode 1 Baud Rates 14-21
Timer 2 Reload Values for Common Serial Port Mode 1 Baud Rates 14-22
FX2 Special Function Registers (SFR) 15-3
SFR and FX2 Register File Correspondencesiiiiiiiinean. 15-7
SFR Registers and External Ram Equivalent 15-12
CPU CloCK SPEEASo e 15-14
Internal FIFO/GPIF Clock FrequenCyttt e e e 15-15
Port E Alternate Functions When GSTATE=1 i .. 15-16
Ports, GPIF, Slave FIFO Select e 15-16

XXV

Exhibit 2058 - Page 23 of 460

%‘F CYPRESS

(List of Tables)

Table 15-8.
Table 15-9.

Table 15-10.
Table 15-11.
Table 15-12.
Table 15-13.
Table 15-14.
Table 15-15.
Table 15-16.
Table 15-17.
Table 15-18.
Table 15-19.
Table 15-20.

Table A-1
Table A-2
Table A-3
Table A-4
Table A-5
Table A-6
Table A-7
Table A-8
Table A-9
Table A-10
Table A-11
Table A-12
Table A-13
Table A-14
Table A-15
Table A-16
Table A-17
Table A-18
Table A-19
Table A-20
Table A-21
Table A-22
Table A-23

XXVi

IFCFG Selection of Port /O Pin Functions 15-17
FIFO Flag Pin FUNCLIONSo e e e e 15-19
FIFOADR1 FIFOADRO Pin Correspondencet e 15-19
Endpoint Type Definitions e 15-26
Endpoint Type Definitions e 15-28
Endpoint Buffering Amounts 15-28
Interpretation of PF for IN Endpoints i 15-39
IN Packets per Microframe i 15-41
CTLIS:0] OUtPUt MOES . . .t e e e e e 15-85
Control Outputs (CTLx) Duringthe IDLE State oo, 15-86
Control Outputs (CTLx) During the Flow State 15-91
Endpoint 2, 4, 6, 8 GPIF Flag Select Values 15-97
Registers Which Require a SynchronizationDelay 15-105
Default USB Device DeSCHiptort 1
Device Qualifier e 2
USB Default Configuration Descriptor i 2
USB Default Interface 0, Alternate Setting O 3
USB Default Interface 0, Alternate Setting 1 3
Endpoint Descriptor (EPL OUL)t e 3
Endpoint Descriptor (EPLin) 4
Endpoint Descriptor (EP2) 4
Endpoint Descriptor (EP4) 4
Endpoint Descriptor (EPB)t 5
Endpoint Descriptor (EP8) 5
Interface Descriptor (Alt. Setting 2) e 5
Endpoint Descriptor (EPLout) 6
Endpoint Descriptor (EP1in) 6
Endpoint Descriptor (EP2. e 6
Endpoint Descriptor (EP4) o 7
Endpoint Descriptor (EPB) 7
Endpoint Descriptor (EP8)o 7
Interface Descriptor (Alt. Setting 3) 8
Endpoint Descriptor (EPLout) 8
Endpoint Descriptor (EPLiN) e 8
Endpoint Descriptor (EP2) 9
Endpoint Descriptor (EP4) 9

List of Tables

Exhibit 2058 - Page 24 of 460

Table A-24
Table A-25

Table B-1
Table B-2
Table B-3
Table B-4
Table B-5
Table B-6
Table B-7
Table B-8
Table B-9
Table B-10
Table B-11
Table B-12
Table B-13
Table B-14
Table B-15
Table B-16
Table B-17
Table B-18
Table B-19
Table B-20
Table B-21
Table B-22
Table B-23
Table B-24
Table B-25

List of Tables

Endpoint Descriptor (EP6)
Endpoint Descriptor (EP8)

Device Descriptor.
Device Qualifier
Configuration Descriptor
Interface Descriptor (Alt. Setting 0)
Interface Descriptor (Alt. Setting 1)
Endpoint Descriptor (EP1 out)
Endpoint Descriptor (EP1 in)

Endpoint Descriptor (EP2)
Endpoint Descriptor (EP4)
Endpoint Descriptor (EP6)
Endpoint Descriptor (EP8)

Interface Descriptor (Alt. Setting 2)
Endpoint Descriptor (EP1 out)
Endpoint Descriptor (EP1 in)

Endpoint Descriptor (EP2)
Endpoint Descriptor (EP4)
Endpoint Descriptor (EP6)
Endpoint Descriptor (EP8)

Interface Descriptor (Alt. Setting 3)
Endpoint Descriptor (EP1 out)
Endpoint Descriptor (EP1 in)

Endpoint Descriptor (EP2)
Endpoint Descriptor (EP4)
Endpoint Descriptor (EP6)
Endpoint Descriptor (EP8)

Exhibit 2058 - Page 25 of 460

%‘F CYPRESS

(List of Tables)

XXVii

=97 CYPRESS

XXViii List of Tables

Exhibit 2058 - Page 26 of 460

Chapter 1 Introducing EZ-USB FX2

1.1 Introduction

The Universal Serial Bus (USB) has gained wide acceptance as the connection method of choice
for low and medium speed PC peripherals. Equally successful in the Windows and Macintosh
worlds, USB has delivered on its promises of easy attachment, an end to configuration hassles,
and true plug-and-play operation.

The second generation of the USB specification, “USB 2.0", extends the original specification to
include:

e 480 Mbits/sec signaling rate, a 40x improvement over the USB 1.1 rate of 12 Mbits/sec.
* Full backward and forward compatibility with USB 1.1 devices and cables.

e A new hub architecture that can provide multiple 12 Mbits/sec downstream ports for USB
1.1 devices.

The Cypress Semiconductor EZ-USB FX2 (often abbreviated as “FX2” in this manual) is a single-
chip USB 2.0 peripheral whose architecture is similar to that of the Cypress Semiconductor EZ-
USB FX family. Although much of the FX architecture is preserved, certain elements have been
redesigned to accommodate the higher data rates offered by USB 2.0.

This introductory chapter begins with a brief USB tutorial to put USB and FX2 terminology into con-
text. The remainder of the chapter briefly outlines the FX2 architecture.

1.2 An Introduction to USB

Like a well-designed automobile or appliance, a USB peripheral’s outward simplicity hides internal
complexity. There’s a lot going on “under the hood” of a USB device.

* A USB device can be plugged in anytime, even while the PC is turned on.

* When the PC detects that a USB device has been plugged in, it automatically interrogates
the device to learn its capabilities and requirements. From this information, the PC auto-

Chapter 1. Introducing EZ-USB FX2 Page 1-1

Exhibit 2058 - Page 27 of 460

EZ-USB FX2 Technical Reference Manual
matically loads the device’s driver into the operating system. When the device is
unplugged, the operating system automatically logs it off and unloads its driver.

» USB devices do not use DIP switches, jumpers, or configuration programs. There is never
an IRQ, DMA, memory, or 1/O conflict with a USB device.

« USB expansion hubs make the bus simultaneously available to dozens of devices.
» USB is fast enough for printers, hard disk drives, CD-quality audio, and scanners.
» With the introduction of the USB 2.0 Specification, USB supports three speeds:

- Low Speed (1.5 Mbits/sec), suitable for mice, keyboards and joysticks.
- Full Speed (12 Mbits/sec), for devices like modems, speakers and scanners.

- High Speed (480 Mbits/sec), for devices like hard disk drives, CD-ROMs, video cam-
eras, and high-resolution scanners.

The Cypress Semiconductor EZ-USB FX2 augments the EZ-USB family by supporting the high
bandwidth offered by the USB 2.0 High Speed mode. The FX2 provides a highly-integrated solu-
tion for a USB peripheral device. Like all EZ-USB devices, the FX2 offers the following features:

e Anintegrated, high-performance CPU based on the industry-standard 8051 processor.
* A soft (RAM-based) architecture that allows unlimited configuration and upgrades.

* Full USB throughput. USB devices that use EZ-USB chips are not limited by number of
endpoints, buffer sizes, or transfer speeds.

e Automatic handling of most of the USB protocol, which simplifies code and accelerates
the USB learning curve.

1.3 The USB Specification

The Universal Serial Bus Specification Version 2.0 is available on the Internet from the USB Imple-
menters Forum, Inc., at http://www.usb.org. Published in April, 2000, the USB Specification is
the work of a founding committee of seven industry heavyweights: Compag, Hewlett-Packard,
Lucent, Philips, Intel, Microsoft, and NEC. This impressive list of developers secures USB’s posi-
tion as the low- to high-speed PC connection method of the future.

A glance at the USB Specification makes it immediately apparent that USB is not nearly as simple
as the older serial or parallel ports. The USB Specification uses new terms like endpoint, isochro-
nous, and enumeration, and finds new uses for old terms like configuration, interface, and inter-
rupt. Woven into the USB fabric is a software abstraction model that deals with things such as
pipes. The USB Specification also contains information about such details as connector types and
wire colors.

Page 1-2 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 28 of 460

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

1.4 HostIs Master

This is a fundamental USB concept. There is exactly one master in a USB system: the host com-
puter. USB devices respond to host requests. USB devices cannot send information among
themselves, as they could if USB were a peer-to-peer topology.

However, there is one case where a USB device can initiate signaling without prompting from the
host. After being put into a low-power “suspend” mode by the host, a device can signal a “remote
wakeup”. This is the only case in which the USB device is the initiator; in all other cases, the host
makes device requests and the device responds to them.

There’s an excellent reason for this host-centric model. The USB architects were keenly mindful of
cost, and the best way to make low-cost peripherals is to put most of the “smarts” into the host
side, the PC. If USB had been defined as peer-to-peer, every USB device would have required
more intelligence, raising cost.

1.5 USB Direction

Because the host is always the bus master, it's easy to remember USB direction: OUT means from
the host to the device, and IN means from the device to the host. FX2 nomenclature uses this
naming convention. For example, an endpoint that sends data to the host is an IN endpoint. This
can be confusing at first, because the FX2 sends data to the host by loading an IN endpoint buffer.
Likewise, the FX2 receives host data from an OUT endpoint buffer.

1.6 Tokens and PIDs

In this manual, you'll read statements such as: “When the host sends an IN token...,” or “The
device responds with an ACK”. What do these terms mean?

A USB transaction consists of data packets identified by special codes called Packet IDs or PIDs.
A PID signifies what kind of packet is being transmitted. There are four PID types, shown in
Table 1-1.

Table 1-1. USB PIDS

PID Type PID Name
Token IN, OUT, SOF, SETUP
Data DATAO, DATAL, DATA2, MDATA
Handshake ACK, NAK, STALL, NYET
Special PRE, ERR, SPLIT, PING

Bold type indicates PIDs introduced with USB 2.0

Chapter 1. Introducing EZ-USB FX2 Page 1-3

Exhibit 2058 - Page 29 of 460

EZ-USB FX2 Technical Reference Manual

D Cc D C
AllE|lC AllE|| C
(¢} A R A
8 p|| N|| R '_'? Payload z é ¥ 0| ~| R|||§M| Payioad || 2| |2
D|| D|| C Data D|| D|l C Data
" IIE 2 1 K T eSS A 1 K
1 6 0 6
Token Packet Data Packet /S Pk Token Packet Data Packet H/S Pk

® ©) ® O) ® O)

Figure 1-1. USB Packets

Figure 1-1 illustrates a USB OUT transfer. Host traffic is shown in solid shading, while device traf-
fic is shown crosshatched. Packet 1 is an OUT token, indicated by the OUT PID. The OUT token
signifies that data from the host is about to be transmitted over the bus. Packet 2 contains data, as
indicated by the DATAL PID. Packet 3 is a handshake packet, sent by the device using the ACK
(acknowledge) PID to signify to the host that the device received the data error-free.

Continuing with Figure 1-1, a second transaction begins with another OUT token 4, followed by
more data 5, this time using the DATAO PID. Finally, the device again indicates success by trans-
mitting the ACK PID in a handshake packet 6.

When operating at full speed, every OUT transfer sends the OUT data, even when the device is
busy and can't accept the data. When operating at high speed, this slightly wasteful use of USB
bandwidth is remedied by using the new “Ping” PID. The host first sends a short PING token to an
OUT endpoint, asking if there is room for OUT data in the peripheral device. Only when the PING
is answered by an ACK does the host send the OUT token and data.

There are two DATA PIDs (DATAO and DATAL1) in Figurel-1 because the USB architects took
error correction very seriously. As mentioned previously, the ACK handshake is an indication to
the host that the peripheral received data without error (the CRC portion of the packet is used to
detect errors). But what if the handshake packet itself is garbled in transmission? To detect this,
each side (host and device) maintains a data toggle bit, which is toggled between data packet
transfers. The state of this internal toggle bit is compared with the PID that arrives with the data,
either DATAO or DATAL. When sending data, the host or device sends alternating DATAO-DATA1
PIDs. By comparing the received Data PID with the state of its own internal toggle bit, the receiver
can detect a corrupted handshake packet.

SETUP tokens are unique to CONTROL transfers. They preface eight bytes of data from which
the peripheral decodes host Device Requests.

At full speed, SOF (Start of Frame) tokens occur once per millisecond. At high speed, each frame
contains eight SOF tokens, each denoting a 125-microsecond microframe.

Four handshake PIDs indicate the status of a USB transfer:
» ACK (“Acknowledge”) means success; the data was received error-free.

* NAK (“Negative Acknowledge”) means “busy, try again.” It's tempting to assume that NAK
means “error,” but it doesn’t; a USB device indicates an error by not responding.

Page 1-4 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 30 of 460

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

» STALL means that something unforeseen went wrong (probably as a result of miscommu-
nication or lack of cooperation between the host and device software). A device sends the
STALL handshake to indicate that it doesn’t understand a device request, that something
went wrong on the peripheral end, or that the host tried to access a resource that wasn’t
there. It's like HALT, but better, because USB provides a way to recover from a stall.

* NYET (“Not Yet") has the same meaning as ACK — the data was received error-free —
but also indicates that the endpoint is not yet ready to receive another OUT transfer. NYET
PIDs occur only in high speed mode.

A PRE (Preamble) PID precedes a low-speed (1.5 Mbits/sec) USB transmission. The FX2 sup-
ports full-speed (12 Mbits/sec) and high-speed (480 Mbits/sec) USB transfers only.

1.6.1 Receiving Data from the Host

To send data to a USB peripheral, the host issues an OUT token followed by the data. If the periph-
eral has space for the data and accepts it without error, it returns an ACK to the host. If it is busy, it
sends a NAK. If it finds an error, it sends back nothing. For the latter two cases, the host re-sends
the data at a later time.

1.6.2 Sending Data to the Host

A USB device never spontaneously sends data to the host. Either FX2 firmware or external
logic can load data into an FX2 endpoint buffer and ‘arm’ it for transfer at any time. However, the
data is not transmitted to the host until the host issues an IN request to the FX2 endpoint. If the
host never sends the IN token, the data remains in the FX2 endpoint buffer indefinitely.

1.7 USB Frames

The USB host provides a time base to all USB devices by transmitting an SOF (“Start of Frame”)
packet every millisecond. SOF packets include an 11-bit number which increments once per
frame; the current frame number [0-2047] may be read from internal FX2 registers at any time.

At high speed (480 Mbits/sec), each one-millisecond frame is divided into eight 125-microsecond
microframes, each of which is preceded by an SOF packet. The frame number still increments only
once per millisecond, so each of those SOF packets contains the same frame number. To keep
track of the current microframe number [0-7], the FX2 provides a readable microframe counter.

The FX2 can generate an interrupt request whenever it receives an SOF (once every millisecond
at full speed, or once every 125 microseconds at high speed). This SOF interrupt can be used, for
example, to service isochronous endpoint data.

Chapter 1. Introducing EZ-USB FX2 Page 1-5

Exhibit 2058 - Page 31 of 460

EZ-USB FX2 Technical Reference Manual

1.8 USB Transfer Types

USB defines four transfer types. These match the requirements of different data types delivered
over the bus.

1.8.1 Bulk Transfers

D C D C
Al E|| C
0 Payload R B © D|| N||R B Payload R A
U Data ¢ € Y D|| D|| C U Data ¢ ©
A 1 K T rllPll 5 A 1 K
1 6 0 6
Data Packet IS Pk Token Packet Data Packet /S Pk

Figure 1-2. Two Bulk Transfers, IN and OUT

Bulk data is bursty, traveling in packets of 8, 16, 32 or 64 bytes at full speed or 512 bytes at high
speed. Bulk data has guaranteed accuracy, due to an automatic retry mechanism for erroneous
data. The host schedules bulk packets when there is available bus time. Bulk transfers are typi-
cally used for printer, scanner, or modem data. Bulk data has built-in flow control provided by
handshake packets.

1.8.2 Interrupt Transfers

Payload
Data

O o >

A
(0}
K

ozm
a0OxvWO
= >»->»0
E RN el Ne)

IP

Token Packet Data Packet /S Pkt

Figure 1-3. An Interrupt Transfer

Interrupt data is like bulk data; it can have packet sizes of 1 through 64 bytes at full speed or up to
1024 bytes at high speed. Interrupt endpoints have an associated polling interval that ensures
they will be polled (receive an IN token) by the host on a regular basis.

Page 1-6 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 32 of 460

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

1.8.3 Isochronous Transfers

Al E||C 2 g
I[|D||N|IR T Payload c
N||D||D||C Data

RI|P||5 0 L

0 6
Token Packet Data Packet

Figure 1-4. An Isochronous Transfer

Isochronous data is time-critical and used to stream data like audio and video. An isochronous
packet may contain up to 1023 bytes at full speed, or up to 1024 bytes at high speed.

Time of delivery is the most important requirement for isochronous data. In every USB frame, a
certain amount of USB bandwidth is allocated to isochronous transfers. To lighten the overhead,
isochronous transfers have no handshake (ACK/NAK/STALL/NYET), and no retries; error detec-

tion is limited to a 16-bit CRC.

Isochronous transfers do not use the data-toggle mechanism. Full-speed isochronous data uses
only the DATAO PID; high-speed isochronous data uses DATAO, DATAL, DATA2 and MDATA.

In full-speed mode, only one isochronous packet can be transferred per endpoint, per frame. In
high-speed mode, up to three isochronous packets can be transferred per endpoint, per microf-

rame.

1.8.4 Control Transfers

r
J

NN D c
AllE|C
E A|l 8bytes || R A
T g g E T|| Setup C C SETUP
u A|| Data 1 K Stage
HE R of | L ’
\Token Packet) Data Packet /S Pkt
(— — —— —) 'F 'd
C
AllE|C
Il olIn|| R $ Payload 2 é DATA
NjD|iojic|ia Data . b Stage
P 6 (optional)
\Token Packet Data Packet \H/S Pkt
(— ———— (—
of AlElc[all&ll] 1a
ull PINIRI Tl e c STATUS
/ool ciialls % S
RIPISIIL]| 6 tage
Token Packet J {Data Pkt \H/S Pkt

Figure 1-5. A Control Transfer

Chapter 1. Introducing EZ-USB FX2 Page 1-7

Exhibit 2058 - Page 33 of 460

EZ-USB FX2 Technical Reference Manual

Control transfers configure and send commands to a device. Because they're so important, they
employ the most extensive USB error checking. The host reserves a portion of each USB frame
for Control transfers.

Control transfers consist of two or three stages. The SETUP stage contains eight bytes of USB
CONTROL data. An optional DATA stage contains more data, if required. The STATUS (or “hand-
shake”) stage allows the device to indicate successful completion of a CONTROL operation.

1.9 Enumeration

Your computer is ON. You plug in a USB device, and the Windows™ cursor switches to an hour-
glass and then back to a cursor. Magically, your device is connected and its Windows™ driver is
loaded! Anyone who has installed a sound card into a PC and has had to configure countless
jumpers, drivers, and 10/Interrupt/DMA settings knows that a USB connection is miraculous.
We've all heard about Plug and Play, but USB delivers the real thing.

How does all this happen automatically? Inside every USB device is a table of descriptors. This
table is the sum total of the device’s requirements and capabilities. When you plug into USB, the
host goes through a sign-on sequence:

1. The host sends a Get Descriptor-Device request to address zero (all USB devices must
respond to address zero when first attached).

2. The device responds to the request by sending ID data back to the host to identify itself.

3. The host sends a Set Address request, which assigns a unique address to the just-attached
device so it may be distinguished from the other devices connected to the bus.

4. The host sends more Get Descriptor requests, asking for additional device information. From
this, it learns everything else about the device: number of endpoints, power requirements,
required bus bandwidth, what driver to load, etc.

This sign-on process is called Enumeration.

1.9.1 Full-Speed / High-Speed Detection

The USB 2.0 Specification requires that high-speed (480 Mbit/sec) devices must also be capable
of enumerating at full-speed (12 Mbit/s). In fact, all high-speed devices begin the enumeration pro-
cess in full-speed mode; devices switch to high-speed operation only after the host and device
have agreed to operate at high speed. The high-speed negotiation process occurs during USB
reset, via the “Chirp” protocol described in Chapter 7 of the USB 2.0 Specification.

When connected to a full-speed host, the FX2 will enumerate as a full-speed device. When con-
nected to a high-speed host, the FX2 automatically switches to high-speed mode.

Page 1-8 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 34 of 460

iul ESS

1.10 The Serial Interface Engine (SIE)

[} [¢ \ c \
Al E|lC ‘ Al E| C |
OIYENIENN 2| Payload (NI] S ol n|| R Payload |BNIIIN |
u T C Cj u C (of
| D|| D|| C|ff N Data 1 Kl | D\ D|| C Data 1 K
R|| P| 5 |If 5 \ R|I PS5 6 ‘
Token Packet Data Packet H/S kt Token Packet Data Packet H/S kt
=

> y Serial
\)] Interface Payload
. Data

- <F Engine

> (SIE)

UsB
Transceiver

Figure 1-6. What the SIE Does

Every USB device has a Serial Interface Engine (SIE) which connects to the USB data lines (D+
and D-) and delivers data to and from the USB device. Figure 1-6 illustrates the SIE’s role: it
decodes the packet PIDs, performs error checking on the data using the transmitted CRC bits, and
delivers payload data to the USB device.

Bulk transfers are asynchronous, meaning that they include a flow control mechanism using ACK
and NAK handshake PIDs. The SIE indicates busy to the host by sending a NAK handshake
packet. When the USB device has successfully transferred the data, it commands the SIE to send
an ACK handshake packet, indicating success. If the SIE encounters an error in the data, it auto-
matically indicates no response instead of supplying a handshake PID. This instructs the host to
retransmit the data at a later time.

To send data to the host, the SIE accepts bytes and control signals from the USB device, formats it
for USB transfer, and sends it over D+ and D-. Because USB uses a self-clocking data format
(NRZI), the SIE also inserts bits at appropriate places in the bit stream to guarantee a certain num-
ber of transitions in the serial data. This is called “bit stuffing,” and is handled automatically by the
FX2's SIE.

One of the most important features of the FX2 (and the other EZ-USB chips) family is that its con-
figuration is soft. Instead of requiring ROM or other fixed memory, it contains internal program/data

Chapter 1. Introducing EZ-USB FX2 Page 1-9

Exhibit 2058 - Page 35 of 460

EZ-USB FX2 Technical Reference Manual

RAM which can be loaded over the USB. This makes modifications, specification revisions, and
updates a snap.

The FX2's “smart” SIE performs much more than the basic functions shown in Figur e1-6; it can
perform a full enumeration by itself, which allows the FX2 to connect as a USB device and down-
load code into its RAM while its CPU is held in reset. This added SIE functionality is also made
available to the FX2 programmer, to make development easier and save code and processing
time.

1.11 ReNumeration™

Because the FX2's configuration is soft, one chip can take on the identities of multiple distinct USB
devices.

When first plugged into USB, the FX2 enumerates automatically and downloads firmware and
USB descriptor tables over the USB cable. Next, the FX2 enumerates again, this time as a device
defined by the downloaded information. This patented two-step process, called ReNumeration™,
happens instantly when the device is plugged in, with no hint that the initial download step has
occurred.

Alternately, FX2 can also load its firmware from an external EEPROM.

Chapter 3, "Enumeration and ReNumeration™" describes these processes in detail.

Page 1-10 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 36 of 460

iul ESS

1.12 EZ-USB FX2 Architecture

\ ouT
D+ ‘ Serial | data Program &

D- Interface usB Data

Engine IN Interface RAM
USB < SIE) [¢ daa |
Connector CPU L
(Enhanced 1/O Ports)
usB 8051)
Transceiver Slave

EZ-USB FX2 FiFos GPIF

A
‘ ©
< v
CTL RDY

Figure 1-7. FX2 56-pin Package Simplified Block Diagram

The FX2 packs all the intelligence required by a USB peripheral interface into a compact inte-
grated circuit. As Figure 1-7 illustrates, an integrated USB transceiver connects to the USB bus
pins D+ and D-. A Serial Interface Engine (SIE) decodes and encodes the serial data and performs
error correction, bit stuffing, and the other signaling-level tasks required by USB. Ultimately, the
SIE transfers parallel data to and from the USB interface.

The FX2 SIE operates at Full Speed (12 Mbits/sec) and High Speed (480 Mbits/sec) rates.To
accommodate the increased bandwidth of USB 2.0, the FX2 endpoint FIFOs and slave FIFOs
(which interface to external logic or processors) are unified to eliminate internal data transfer times.

The CPU is an enhanced 8051 with fast execution time and added features. It uses internal RAM
for program and data storage.

The role of the CPU in a typical FX2-based USB peripheral is twofold:

« Itimplements the high-level USB protocol by servicing host requests over the control
endpoint (endpoint zero)

e ltis available for general-purpose system use

The high-level USB protocol is not bandwidth-critical, so the FX2's CPU is well-suited for handling
host requests over the control endpoint. However, the data rates offered by USB 2.0 are too high
for the CPU to process the USB data directly. For this reason, the CPU is not usually in the high-
bandwidth data path between endpoint FIFOs and the external interface. Instead, the CPU simply
configures the interface, then “gets out of the way” while the unified FX2 FIFOs move the data
directly between the USB and the external interface.

Chapter 1. Introducing EZ-USB FX2 Page 1-11

Exhibit 2058 - Page 37 of 460

EZ-USB FX2 Technical Reference Manual

The FIFOs can be controlled by an external master, which either supplies a clock and clock-
enable signals to operates synchronously, or strobe signals to operate asynchronously.

Alternately, the FIFOs can be controlled by an internal FX2 timing generator called the General
Programmable Interface (GPIF). The GPIF serves as an internal master, interfacing directly to the
FIFOs and generating user-programmed control signals for the interface to external logic. Addi-
tionally, the GPIF can be made to wait for external events by sampling external signals on its RDY
pins. The GPIF runs much faster than the FIFO data rate to give good programmable resolution
for the timing signals. It can be clocked from either the internal FX2 clock or an externally supplied
clock.

The FX2's CPU is rich in features. Up to five I/O ports are available, as well as two USARTS, three
counter/timers, and an extensive interrupt system. It runs at a clock rate of up to 48 MHz and uses
four clocks per instruction cycle instead of the twelve required by a standard 8051.

The FX2 chip family uses an enhanced SIE/USB interface which simplifies FX2 code by imple-
menting much of the USB protocol. In fact, the FX2 can function as a full USB device even without
firmware.

Like all EZ-USB family chips, FX2 operates at 3.3V. This simplifies the design of bus-powered
USB devices, since the 5V power available at the USB connector (which the USB Specification
allows to be as low as 4.4V) can drive a 3.3V regulator to deliver clean, isolated power to the FX2
chip.

D+ OUT# Program & 1

Serial | data
D- Interface USB Data !

USB Engine IN Interface RAM i
Connector (SIE) *data | 1/0 Ports
CPU |

(Enhanced M .
usB 8051) | Off-Chip
i Transceiver Slave —Da@ Memory
i FIFOs GPIF
| EZ-USB FX2

3 7y
©
= v
CTL RDY

Figure 1-8. FX2 128-pin Package Simplified Block Diagram

FX2 is available in a 128-pin package which brings out the 8051 address bus, data bus, and con-
trol signals to allow connection of external memory and/or memory-mapped I/O. Figure 1-8 is a
block diagram for this package; Chapter 5, "Memory", gives full details of the external-memory
interface.

Page 1-12 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 38 of 460

iul ESS

1.13 FX2 Feature Summary

FX2 includes the following features:

e On-chip 480 Mbits/sec transceiver, PLL and SIE—the entire USB 2.0 physical layer (PHY).

* Double-, triple- and quad-buffered endpoint FIFOs accommodate the 480 MBits/sec USB
2.0 data rate.

e Built-in, enhanced 8051 running at up to 48 MHz.

- Fully featured: 256 bytes of register RAM, two USARTS, three timers, two data
pointers.

- Fast: four clocks (83.3 nanoseconds at 48 MHz) per instruction cycle.

- SFR access to control registers (including I/O ports) that require high speed.
- USB-vectored interrupts for low ISR latency.

- Used for USB housekeeping and control, not to move high speed data.

* “Soft” operation—USB firmware can be downloaded over USB, eliminating the need for
hard-coded memory.

» Four interface FIFOs that can be internally or externally clocked. The endpoint and inter-
face FIFOs are unified to eliminate data transfer time between USB and external logic.

e General Programmable Interface (GPIF), a microcoded state machine which serves as a
timing master for ‘glueless’ interface to the FX2 FIFOs.

FX2 is a single-chip USB 2.0 peripheral solution. Unlike designs that use an external PHY, the FX2
integrates everything on one chip, eliminating costly high pin-count packages and the need to
route high-speed signals between chips.

1.14 FX2 Integrated Microprocessor

The FX2's CPU uses on-chip RAM as program and data memory. Chapter 5, "Memory", describes
the various internal/external memory options.

The CPU communicates with the SIE using a set of registers occupying on-chip RAM addresses
OXE600-OxE6FF. These registers are grouped and described by function in individual chapters of
this reference manual and summarized in register order in Chapter 15, "Registers".

The CPU has two duties. First, it participates in the protocol defined in the Universal Serial Bus
Specification Version 2.0, “Chapter 9, USB Device Framework.” Thanks to the FX2's “smart” SIE,

Chapter 1. Introducing EZ-USB FX2 Page 1-13

Exhibit 2058 - Page 39 of 460

EZ-USB FX2 Technical Reference Manual

the firmware associated with the USB protocol is simplified, leaving code space and bandwidth
available for the CPU’s primary duty—to help implement your device. On the device side, abun-
dant input/output resources are available, including I/O ports, USARTSs, and an 12C-compatible
bus master controller. These resources are described in Chapter 13, "Input/Output”, and Chapter
14, "Timers/Counters and Serial Interface".

It's important to recognize that the FX2 architecture is such that the CPU sets up and controls data
transfers, but it normally does not participate in high bandwidth transfers. It is not in the data path;
instead, the large data FIFOs that handle endpoint data connect directly to outside interfaces.To
make the interface versatile, a programmable timing generator (GPIF, General Programmable
Interface) can create user-programmed waveforms for high bandwidth transfers between the inter-
nal FIFOs and external logic.

FX2 adds eight interrupt sources to the standard 8051 interrupt system:

e INTZ2: USB Interrupt

e INT3: 12C-Compatible Bus Interrupt
e INT4: FIFO/GPIF Interrupt

* INT4: External Interrupt 4

* INT5: External Interrupt 5

e INT6: External Interrupt 6

e USART1: USART1 Interrupt

« WAKEUP: USB Resume Interrupt

The FX2 provides 27 individual USB-interrupt sources which share the INT2 interrupt, and 14 indi-
vidual FIFO/GPIF-interrupt sources which share the INT4 interrupt. To save the code and process-
ing time which normally would be required to identify an individual interrupt source, the FX2
provides a second level of interrupt vectoring called Autovectoring. Each INT2 and INT4 interrupt
source has its own autovector, so when an interrupt requires service, the proper ISR (interrupt ser-
vice routine) is automatically invoked. Chapter 4, "Interrupts" describes the FX2 interrupt system.

Page 1-14 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 40 of 460

%E:'ﬂ--r:l-':;ﬁ

1.15 FX2 Block Diagram

D+ D
® ®
g D
= 8
=) ©
©
UsB < e
2.0
PHY PHY O la—2—>
| —P|
Interface | |
24 MH g 2
crystalZ PLL]
[
e
©
o
£ [—2—
3
[S]
8051 i
48 MHz T
<
£ [4—8—p
4 KB L=
Endpoint 4 —
w
RAM < la—s—
USB regs aQ
0.5K Data —
0
RAM = 1
8 KB port B port D =%
Pgm/Data A
RAM
Ext 1w FIFOS | GPIF [¢—14—»
Clock I ,
v
16 T 7
4
©
i
Y

General Purpose Interface

(e.qg. ATA, EPP, etc.)

Figure 1-9. FX2 Block Diagram

Chapter 1. Introducing EZ-USB FX2

Page 1-15

Exhibit 2058 - Page 41 of 460

EZ-USB FX2 Technical Reference Manual

1.16 Packages

FX2 is available in three packages:

=0 = = = = =
= 56 = = = = =
E SSOP E = 100 = E 128 E
= = = TQFP = = TQFP =
=l 8x18x2.3 = = =
= mm = = 14x20x1.4 = = 14x20x1.4 =
= = = mm = = mm =

CTUUTUTunrororrorrrn DUUTTTTTrTourrrrroumrroy

Figure 1-10. 56-pin, 100-pin, and 128-pin FX2 Packages

1.16.1 56-Pin Package

Twenty-four general-purpose 1/O pins (ports A, B, and D) are available. Sixteen of these /O pins
can be configured as the 16-bit data interface to the FX2's internal high-speed 16-bit FIFOs, which
can be used to implement low cost, high-performance interfaces such as ATAPI, UTOPIA, EPP,
etc. The 56-pin package has the following:

» Three 8-bit I/O ports: PORTA, PORTB, and PORTD
e |2C-compatible bus

e An 8- or 16-bit General Programmable Interface (GPIF) multiplexed onto PORTB and
PORTD, with five non-multiplexed control signals

* Four 8- or 16-bit Slave FIFOs, with five non-multiplexed control signals and four or five
control signals multiplexed with PORTA

Page 1-16 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 42 of 460

iul ESS

1.16.2 100-Pin Package

The 100-pin package adds functionality to the 56-pin package:
* Two additional 8-bit /0O ports: PORTC and PORTE
e Seven additional GPIF Control (CTL) and Ready (RDY) signals
* Nine non-multiplexed peripheral signals (two USARTS, three timer inputs, INT4, and m)
» Eight additional control signals multiplexed onto PORTE
* Nine GPIF address lines, multiplexed onto PORTC (eight) and PORTE (one)

« RDand WR signals which may be used as read and write strobes for PORTC

1.16.3 128-Pin Package

The 128-pin package adds the 8051 address and data buses and control signals. The RD, PSEN,
and WR strobes are standard 8051 control strobes, serving as read/write strobes for external
memory attached to the 8051 address and data buses. The FX2 encodes the CS and OE signals
to automatically exclude external access to memory spaces which exist on-chip, and optionally to
combine off-chip data- and code-memory read accesses. The 128-pin package adds the following:

e 16-bit 8051 address bus
e 8-bit 8051 data bus

e Address/data bus control signals

1.16.4 Signals Available in the Three Packages

Three interface modes are available: Ports, GPIF Master, and Slave FIFO.

Figure 1-11 shows a logical diagram of the signals available in the three packages. The signals on
the left edge of the diagram are common to all interface modes, while the signals on the right are
specific to each mode. The interface mode is software-selectable via an internal mode register.

In “Ports” mode, all the 1/O pins are general-purpose I/O ports.

“GPIF master” mode uses the PORTB and PORTD pins as a 16-bit data interface to the four FX2
endpoint FIFOs EP2, EP4, EP6 and EPS8. In this “master” mode, the FX2 FIFOs are controlled by
the internal GPIF, a programmable waveform generator that responds to FIFO status flags, drives
timing signals using its CTL outputs, and waits for external conditions to be true on its RDY inputs.
Note that only a subset of the GPIF signals (CTLO-2, RDY0-1) is available in the 56-pin package,
while the full set (CTLO-5, RDYO0-5) is available in the 100- and 128-pin packages.

Chapter 1. Introducing EZ-USB FX2 Page 1-17

Exhibit 2058 - Page 43 of 460

EZ-USB FX2 Technical Reference Manual

In the “Slave FIFO” mode, external logic or an external processor interfaces directly to the FX2
endpoint FIFOs. In this mode, the GPIF is not active, since external logic has direct FIFO control.
Therefore, the basic FIFO signals (flags, selectors, strobes) are brought out on FX2 pins. The
external master can be asynchronous or synchronous, and it may supply its own independent
clock to the FX2 interface.

The 100-pin package includes all the functionality of the 56-pin package, and brings out the two
additional I/O ports PORTC and PORTE as well as all the USART, Timer, Interrupt, and GPIF sig-
nals. The RD and WR pins function as PORTC strobes in the 100-pin package, and as expansion
memory strobes in the 128-pin package.

The 128-pin package adds 28 pins to the 100-pin package to bring out the full 8051 expansion
memory bus. This allows for the connection of external memory for applications that run at power-
on and before connection to USB. The 128-pin package also provides the foundation for the
Cypress FX2 Development Kit boards, in which code is developed using a debug monitor that
runs in external RAM.

Page 1-18 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 44 of 460

Ports GPIF Master Slave FIFO
PD7| - FD[15] - FD[15]
PD6 | — FD[14] -~ FD[14]
PD5| . FD[13] ~ FD[13]
PD4 | - FD[12] - FD[12]
PD3| - FD[11] - FD[11]
PD2| -~ FD[10] -~ FD[10]
XTALIN PD1| - FD[9] -~ FD[9]
XTALOUT PDO| - FD[8] -~ FD[8]
PB7 | - FD[7] - FD[7]
PB6 | - FD[6] - FD[6]
DPLUS PB5| - FD[5] - FD[5]
DMINUS PB4 | . FD[4] - FD[4]
PB3 | - FD[3] -~ FD[3]
PB2 | - FD[2] -~ FD[2]
scL PBl| - FD[1] - FD[1]
SDA 56 PBO| - FD[O] -~ FD[0]
— RDYO — SLRD
RESET# — RDY1 — SLWR
WAKEUP
~ CTLO —~ FLAGA
~CcTLl _ FLAGB
IFCLK ~CTL2 ~ FLAGC
CLKOUT INTO#/PAO | INTO#/PAO INTO#/PAO
INT1#/PAL | INT1#/PAL INT1#/PAL
PA2 | PA2 — SLOE
WU2/PA3 | WU2/PA3 WU2/PA3
PA4 | PA4 — FIFOADRO
PA5 | PAS — FIFOADR1
PAG | PAG — PKTEND
PA7 | PA7 PA7IFLAGD/SLCS#
— RDY2
BRKPNT — RDY3
PC7/GPIFADR7 . SB&
PC6/GPIFADRG T ang
PC5/GPIFADR5 CTia
PC4/GPIFADR4 B
PC3/GPIFADR3 -
PC2/GPIFADR2
pC1/GPIFADRL 100 r‘%igg D
PCO/GPIFADRO RO {_—’
PE7/GPIFADRS D1 ——>
PE6/T2EX INT4 |€——
PES/INT6 INTS# |€———
PE4/RxD10UT T2 l——
PE3/RxDOOUT TL l——
PE2/T20UT 70 «——
PEL/TIOUT ===
PEO/TOOUT | RD#——>
| WR# —>
Al5 I cst—p
| Al4 I OE#—»
A13 | psEngt —>
AL2 l———
ALl
A10 D7 —>
A9 D6 [«—>
A8 D5 [¢—>
A7 128 D4 |«—»
| A6 D3 [¢—>
A5 D2 l—>
Al D1 l—>
A3 DO [«—>
A2
Al EA l———
AO

»

E

CYPRESS

Figure 1-11. Signals for the Three FX2 Package Types

Chapter 1. Introducing EZ-USB FX2 Page 1-19

Exhibit 2058 - Page 45 of 460

EZ-USB FX2 Technical Reference Manual

1.17 Package Diagrams

> >» » ®® U U U U >» >» >» > O U U U U U T T T L 2 T U T
SEEE Rt R R RIRRREGEEEE
S J 30U %§§§§Sds 549
555K n%e888g2°¢8 £ B °
[T _J cLkout P e g = A pDo/FD8 | 102
2} vcc B = 4 *wAKEUP [101]
[3 fonD vee 1007
[4_} roYO*SLRD RESET 99]
[5_J RDYL/*SLWR CTL5J 98]
[6 _jRDY2 A7]
7 _JRrDY3 A2 96]
[8 _JRrDY4 A1f 95]
9 JrDYS Ao 94]
[10 _f Avce GNDJ 93]
(1 _J XTALOUT PA7*FLAGD/SLCS | 92]
(12 || XTALIN PAGMPKTEND |91]
(13§ AGND PAS/FIFOADR1 |90]
[T&aJNC PA4/FIFOADRO | 89 |
[I5 NC D788]
[I6 I NC D6 87 |
7§ vce D5 86 |
[18 § bpLUS CY7C68013 PA3*wWU2 | 85]
[19 | bMINUS 128-pin TQFP PA2/*SLOE | 84]
[20 § GND PALINTL] 83]
[21 fA11 PAO/INTOR 82]
[22 § A12 veel a1]
[23] A13 GNDf 80]
[22 }A14 PC7/GPIFADR7 791
[25 R a1s PC6/GPIFADR6 | 78 |
[26 jvcc PC5/GPIFADR5 |77]
[27_j GND PC4/GPIFADR4 |_76]
[28 JINT4 PC3/GPIFADR3 |75]
[29 § 70 PC2/GPIFADR2 | 74]
(30 fT1 PcL/GPIFADRL 73]
I Ry PCO/GPIFADROJ 72]
(32 f IFcLk cTL2rFLAGC 71]
(33 | RESERVED cTL1FLAGB |70]
(32 | BkPT CTLOMFLAGA |69]
(35 Jen vee[68]
[36 J scL CcTL4f 67]
[37 | sba ® ® ® ® ® ® B » cTLaf 661
[38_J oE 8| < <S5%5<0x22723%5%3F0 < GNDJ65]
§3|m|8|888888%88882889%888828
Figure 1-12. CY7C68013-128 TQFP Pin Assignment
Page 1-20 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 46 of 460

%Ef‘f:--!xr{.‘-}ﬁ

IR EEERIEEEEREEREEREE

T FPE L EFEEEE

AGIQILETIDIRRXNEOO0GRRE

O "FAIT ©0Jd=ZIIJII T T T

S 9998 IR355868 229

NN ;xc”._\occc ~ O
5 oo4a44
1]vcc 3 G S PDO/FD8 | &0]
2 |GND ®© *WAKEUP |79]
3 | RDYO/*SLRD vce =]
2 | RDY1/*SLWR RESET [71
5 JRDY2 CTL5 [75
s JRDY3 GND |75]
7 |RDY4 PA7MFLAGD/SLCS |72]
s RDY5 PAG/*PKTEND | 73]
s JAVCC PAS/FIFOADRL [72]
[10 | XTALOUT PA4/FIFOADRO [71]
11 | XTALIN PA3/WU2 70
12 J AGND PA2/*SLOE |69
3 INC PAL/INT1 [Tes |
[NC PAO/INTO |57
[sNC CY7C68013 VCC [e6]
[fVvCC 100-pin TQFP GND [&5
17 | DPLUS PC7/GPIFADR7 | &4]
[| DMINUS PC6/GPIFADR6 | &3]
s J GND PC5/GPIFADR5 [62]
20 fvcc PC4/GPIFADR4 [&1]
21 JGND PC3/GPIFADR3 [&0]
(22 | INT4 PC2/GPIFADR2 | 59 |
210 PC1/GPIFADR1 | s8]
C2a 11 PCO/GPIFADRO [571
Cs 12 CTL2/*FLAGC |56]
[z | IFCLK CTL1/FLAGB | 55]
27 | RESERVED CTLOMFLAGA |57]
28 | BKPT vce 7
[z] scL CcTL4 [323
[30 | SDA cTL3 51
T UV UV TV T UV UV TV
SERS® _ 4p padd

258 000082568508 30823¢

U;UOOHNOOOUOOH OO0

1 1 2) < 2]) e) e))

Figure 1-13. CY7C68013-100 TQFP Pin Assignment

Chapter 1. Introducing EZ-USB FX2

Exhibit 2058 - Page 47 of 460

Page 1-21

EZ-USB FX2 Technical Reference Manual

SCL CY7C68013 GND
SDA B56-pin SSOP VCC

[1 | PD5/FD13 PD4/FD12 f 56]
[2 | PD6/FD14 PD3/FD11 f 55]
(3 | PD7/FD15 PD2/FD10 f 54]
(2§ GND PD1/FD9 | 53]
[5] CLKOUT PDO/FD8 [52]
6] vCC *WAKEUP [5T]
7] GND VCC | 50]
& | RDYO/*SLRD RESET [49|
9 | RDY1/*SLWR GND [28]
(10} AVCC PA7/*FLAGD/SLCS |47
(11 | XTALOUT PAG/PKTEND |26]
(12§ XTALIN PA5/FIFOADR1 45]
13] AGND PA4/FIFOADRO 44]
@] vCC PA3*WU2 [%]
15| DPLUS PA2/*SLOE |22]
[16 | DMINUS PAL/INT1 7]
7] GND PAO/INTO 40]
18] vCC VCC | 39]
[19] GND CTL2/*FLAGC | 3]
[20] IFCLK CTL1/*FLAGB 37]
[21 | RESERVED CTLO/*FLAGA |36]
[22] 35]
[23] 34]
[24] vCC GND [-33]
25§ PBO/FDO PB7/FD7 321
26] PB1/FD1 PB6/FD6 | 3T]
27| PB2/FD2 PB5/FD5 | 30|
[28] 29]

PB3/FD3 PB4/FD4

Figure 1-14. CY7C68013-56 SSOP Pin Assignment

Page 1-22 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 48 of 460

%E.‘ﬁ'!-'!ﬁ'l-’.’iﬁ

1.18 FX2 Endpoint Buffers

The USB Specification defines an endpoint as a source or sink of data. Since USB is a serial bus,
a device endpoint is actually a FIFO which sequentially empties or fills with USB data bytes. The
host selects a device endpoint by sending a 4-bit address and a direction bit. Therefore, USB can
uniquely address 32 endpoints, INO through IN15 and OUTO through OUT15.

From the FX2's point of view, an endpoint is a buffer full of bytes received or held for transmission
over the bus. The FX2 reads host data from an OUT endpoint buffer, and writes data for transmis-
sion to the host to an IN endpoint buffer.

FX2 contains three 64-byte endpoint buffers, plus 4 Kilobytes of buffer space that can be config-
ured various ways, as indicated by Figure 1-15. The three 64-byte buffers are common to all con-
figurations.

EPOINGOUT[B8] &] &] &] &] B
EPTIN BT] || B] B B B
EP1OUT[B4 _] &] &] =] B] [EF]
512 512 512
EP2 1024 1024 1024
512 512 EFZ|| =12
EF2 EFZ
512 512 512
EF4 1024 EP2|| 1024 1024
512 | 512 ‘ -
512 512 EFE -512
EPG 1024 1024 1024
512 512 512
EPG EFPG
-512 512 512 512
EPS 1024 EPR | ‘ EP2 | | 1024
512 512 | 512 ‘ | 512 |

Figure 1-15. FX2 Endpoint Buffers

The three 64-byte buffers are designated EPO, EP1IN and EP10OUT. EPO is the default CONTROL
endpoint, a bidirectional endpoint that uses a single 64-byte buffer for both IN and OUT data. FX2
firmware reads or fills the EPO buffer when the (optional) data stage of a CONTROL transfer is
required.

Chapter 1. Introducing EZ-USB FX2 Page 1-23

Exhibit 2058 - Page 49 of 460

EZ-USB FX2 Technical Reference Manual

#
The eight SETUP bytes in a CONTROL transfer do not appear in the 64-byte EPO endpoint buffer.
Instead, to simplify programming, the FX2 automatically stores the eight SETUP bytes in a sepa-

rate buffer (SETUPDAT, at OXE6B8-OXE6BF).

EP1IN and EP10UT use separate 64 byte buffers. FX2 firmware can configure these endpoints as
BULK, INTERRUPT or ISOCHRONOUS. These endpoints, as well as EPO, are accessible only by
FX2 firmware. This is in contrast to the large endpoint buffers EP2, EP4, EP6 and EP8, which are
designed to move high bandwidth data directly on and off chip without firmware intervention.

Endpoints 2, 4, 6 and 8 are the large, high bandwidth, data moving endpoints. They can be config-
ured various ways to suit bandwidth requirements. The shaded boxes in Figure 1-15 enclose the
buffers to indicate double, triple, or quad buffering. Double buffering means that one packet of
data can be filling or emptying with USB data while another packet (from the same endpoint) is
being serviced by external interface logic. Triple buffering adds a third packet buffer to the pool,
which can be used by either side (USB or interface) as needed. Quad buffering adds a fourth
packet buffer. Multiple buffering can significantly improve USB bandwidth performance when the
data supplying and consuming rates are similar, but bursty; it smooths out the bursts, reducing or
eliminating the need for one side to wait for the other.

Endpoints 2, 4, 6 and 8 can be configured using the choices shown in Tab le1-2.

Table 1-2. Endpoint 2, 4, 6, and 8 Configuration Choices

Characteristic Choices
Direction IN, OUT

Type Bulk, Interrupt, Isochronous
Buffering Double, Triple, Quad

When the FX2 operates at full speed (12 Mbits/sec), some or all of the endpoint buffer bytes
shown in Figure 1-15 may be employed, depending on endpoint type. Regardless of the physical
buffer size, the endpoint buffer accommodates only one full-speed packet.

For example, if EP2 is used as a full-speed BULK endpoint, the maximum number of bytes (max-
PacketSize) it can accommodate is 64, even though the physical buffer size is 512 or 1024 bytes
(it makes sense, therefore, to configure full-speed BULK endpoints as 512 bytes rather than 1024,
so that fewer unused bytes are wasted). An ISOCHRONOUS full speed endpoint, on the other
hand, could fully use either a 512- or 1024-byte buffer.

Page 1-24 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 50 of 460

iul ESS

1.19 External FIFO Interface

The large data FIFOs (endpoints 2, 4, 6 and 8) in the FX2 are designed to move high speed (480
Mbits/sec) USB data on and off chip without introducing any bandwidth bottlenecks. They accom-
plish this goal by implementing the following features:

1. Direct interface with outside logic, with the FX2's CPU out of the data path.

2. “Quantum FIFQO” architecture instantaneously moves (“commits”) packets between the USB
and the FIFOs.

3. Versatile interfaces: Slave FIFO (external master) or GPIF (internal master), synchronous or
asynchronous clocking, internal or external clocks, etc.

The firmware sets switches to configure the outside FIFO interface, and then generally does not
participate in moving the data into and out of the FIFOs.

To understand the “Quantum FIFO”, it is necessary to refer to two data domains, the USB domain
and the Interface domain. Each domain is independent, allowing different clocks and logic to han-
dle its data.

The USB domain is serviced by the SIE, which receives and delivers FIFO data packets over the
two-wire USB bus. The USB domain is clocked using a reference derived from the 24 MHz crystal
attached to the FX2 chip.

The Interface domain loads and unloads the endpoint FIFOs. An external device such as a DSP or
ASIC can supply its own clock to the FIFO interface, or the FX2's internal interface clock (IFCLK)
can be supplied to the interface.

The classic solution to the problem of reconciling two different and independent clocks is to use a
FIFO. The FX2’'s FIFOs have an unusual property: They're Quantum FIFOs, which means that
data is committed to the FIFOs in USB-size packets, rather than one byte at a time. This is invisible
to the outside interface, since it services the FIFOs just like any ordinary FIFO (i.e., by checking full
and empty flags). The only minor difference is that when an empty flag goes from 1 (empty) to 0
(not empty), the number of bytes in the FIFO jumps to a USB packet size, rather than just one
byte.

FX2 Quantum FIFOs may be moved between data domains almost instantaneously. The Quantum
nature of the FIFOs also simplifies error recovery. If endpoint data were continuously clocked into
an interface FIFO, some of the packet data might have already been clocked out by the time an
error is detected at the end of a USB packet. By switching FIFO data between the domains in
USB-packet-size blocks, each USB packet can be error-checked (and retried, if necessary) before
it's committed to the other domain.

Figures 1-16 and 1-17 illustrate the two methods by which external logic interfaces to the endpoint
FIFOs EP2, EP4, EP6 and EPS.

Chapter 1. Introducing EZ-USB FX2 Page 1-25

Exhibit 2058 - Page 51 of 460

EZ-USB FX2 Technical Reference Manual

EPS
EP6
EP4
EP2

FD[15:0]) Data
<¢— PKTEND
—» (INFULL) SLRD
SLWR \ 7‘
—®» (OUTEMPTY) PKTEND
FIFO > (PRGFLAG) Asynchronous
<—p |[FCLK
<¢—— SLRD
— IFCLK f:
<4— SLWR
select l¢— SLOE SLRD
4 4 SLWR \ /
PKTEND
FIFOADR1 Synchronous
FIFOADRO

Figure 1-16. FX2 FIFOs in “Slave FIFO” Mode

Figure 1-16 illustrates the outside-world view of the FX2 data FIFOs configured as “Slave FIFOs”.
The outside logic supplies a clock, responds to the FIFO flags, and clocks FIFO data in and out
using the strobe signals. Optionally, the outside logic may use the internal FX2 Interface Clock
(IFCLK) as its reference clock.

Three FIFO flags are shown in parentheses in Figurel-16 because they actually are called
FLAGA-FLAGD in the pin diagram (there are four flag pins). Using configuration bits, various FIFO
flags can be assigned to these general-purpose flag pins. The names shown in parentheses illus-
trate typical uses for these configurable flags. The Programmable Level Flag (PRGFLAG) can be
set to any value to indicate degrees of FIFO “fullness”. The outside interface selects one of the
four FIFOs using the FIFOADR pins, and then clocks the 16-bit FIFO data using the SLRD (Slave
Read) and SLWR (Slave Write) signals. PKTEND is used to dispatch a non-full IN packet to USB.

Page 1-26 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 52 of 460

%E.’T!-'!'{F.‘EE

EPS
EP6
EP4 |

EP2 /]
FD[15:0] Data

F“:O — | FLAGS
<4—| SLRD
¢— SLWR
4—] SLOE
l<¢—| SLRD
select #» CTL
R «—%—— RDY

GP”: ﬁg;»GPIFADR

8051 RDY -1
8051 INT -

A

» IFCLK
S0 Mz ’ IFCLK
48 MHz

Figure 1-17. FX2 FIFOs in “GPIF Master” Mode

External systems that connect to the FX2 FIFOs must provide control circuitry to select FIFOs,
check flags, clock data, etc. FX2 contains a sophisticated control unit (the General Programmable
Interface, or GPIF) which can replace this external logic. In the “GPIF Master” FIFO mode,
(Figure 1-17), the GPIF reads the FIFO flags, controls the FIFO strobes, and presents a user-cus-
tomizable interface to the outside world. The GPIF runs at a very high speed (up to 48 MHz clock
rate) so that it can develop high-resolution control waveforms. It can be clocked from one of two
internal sources (30 or 48 MHz) or from an external clock.

Control (CTL) signals are programmable waveform outputs, and ready (RDY) signals are input
pins that can be tested for conditions that cause the GPIF to pause and resume operation, imple-

Chapter 1. Introducing EZ-USB FX2 Page 1-27

Exhibit 2058 - Page 53 of 460

EZ-USB FX2 Technical Reference Manual

menting “wait states”. GPIFADR pins present a 9-bit address to the interface that may be incre-
mented as data is transferred. The 8051 INT signal is a ‘hook’ that can signal the FX2’s CPU in the
middle of a transaction; GPIF operation resumes once the CPU asserts its own 8051 RDY signal.
This *hook’ permits great flexibility in the generation of GPIF waveforms.

1.20 EZ-USB FX2 Product Family

The EZ-USB FX2 family is available in various pinouts to serve different system requirements and

1/0 | Bus Width Data/Address Bus

costs.
Table 1-3. EZ-USB FX2 Family
Part Number Package Ram .
Support

CY7C68013-56PVC |56-pin SSOP | 8 KBytes Yes
CY7C68013-100AC |100-pin TQFP & 8 KBytes Yes
CY7C68013-128AC |128-pin TQFP A 8 KBytes Yes

Page 1-28

24 | 8/16 Bits No
40 | 8/16 Bits No
40 | 8/16 Bits | 8051 Address/Data Bus

EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 54 of 460

Chapter 2 Endpoint Zero

2.1 Introduction

Endpoint zero has special significance in a USB system. It is a CONTROL endpoint, and it is
required by every USB device. The USB host uses special SETUP tokens to signal transfers that
deal with device control; only CONTROL endpoints accept these special tokens.

The USB host sends a suite of standard device requests over endpoint zero. These standard
requests are fully defined in Chapter 9 of the USB Specification. This chapter describes how the
FX2 chip handles endpoint zero requests.

The FX2 provides extensive hardware support for handling endpoint-zero operations; this chapter
describes those operations and the FX2 resources that simplify the firmware which handles them.

Endpoint zero is the only CONTROL endpoint supported by the FX2. CONTROL endpoints are
bi-directional, so the FX2 provides a single 64-byte buffer, EPOBUF, which firmware handles
exactly like a bulk endpoint buffer for the data stages of a CONTROL transfer. A second 8-byte
buffer called SETUPDAT, which is unique to endpoint zero, holds data that arrives in the SETUP
stage of a CONTROL transfer. This relieves the FX2 firmware of the burden of tracking the three
CONTROL transfer phases (SETUP, DATA, and STATUS). The FX2 also generates separate inter-
rupt requests for the various transfer phases, further simplifying code.

Endpoint zero is always enabled and accessible by the USB host.

Chapter 2. Endpoint Zero Page 2-1

Exhibit 2058 - Page 55 of 460

EZ-USB FX2 Technical Reference Manual

2.2 Control Endpoint EPO

«+«—SETUP Stage —»

S AllE|| C D ¢
E A R A

D|| N|| R
T T C C

D|| D|| C
U rRlpl s A 1 K
P 0 6
Token Packe Data Packet /S Pk
L SUTOK Interrupt T—SUDAV Interrupt

FX2 sets HSNAK=1

< DATA Stage >

EEIE °ll [AEE(E <l .
I ||D|| N||R T Payload C fo I || D||N|| R T Payload c C
N|| D|| D|| C Data N| D|| D|| C Data

R|P| s[4 i |K R P| 5[4 LK

1 6 0 6
Token Packe Data Packet /S P Token Packe Data Packet /S Pk
L EPO-IN Interrupt EPO-IN Interrupt J
< STATUS Stage >
D|| C D|| C

ol Al El Sl Al RSN o A EIC| allRI|| A

D|| N|| R Y D|| N|| R
U T|| C A U T|| C C
T/ PIBIC Al 1] Nk 7| B 2l Sl || Al 1 K

R|| P|| 5 16 C R|| P|| 5 16
Token Packet) \Data P| /S Pk I Token Packe ata Pkt \H/S P

8051 clears HSNAK bit (writes 1 to it)

or sets the STALL bit.

Figure 2-1. A USB Control Transfer (With Data Stage)

Endpoint zero accepts a special SETUP packet, which contains an 8-byte data structure that pro-
vides host information about the CONTROL transaction. CONTROL transfers include a final
STATUS phase, constructed from standard PIDs (IN/OUT, DATAL, and ACK/NAK).

Some CONTROL transactions include all required data in their 8-byte SETUP Data packet. Other
CONTROL transactions require more OUT data than will fit into the eight bytes, or require IN data
from the device. These transactions use standard bulk-like transfers to move the data. Note in
Figure 2-1 that the DATA Stage looks exactly like a bulk transfer. As with BULK endpoints, the
endpoint zero byte count registers must be loaded to ACK each data transfer stage of a
CONTROL transfer.

Page 2-2 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 56 of 460

iul ESS

The STATUS stage consists of an empty data packet with the opposite direction of the data stage,
or an IN if there was no data stage. This empty data packet gives the device a chance to ACK or
NAK the entire CONTROL transfer.

The HSNAK bit holds off the completion of a CONTROL transfer until the device has had time to
respond to a request. For example, if the host issues a Set_Interface Request, the FX2 firmware
performs various housekeeping chores such as adjusting internal modes and re-initializing end-
points. During this time, the host issues handshake (STATUS stage) packets to which the FX2
automatically responds with NAKSs, indicating “busy.” When the firmware completes its housekeep-
ing operations, it clears the HSNAK bit (by writing 1 to it), which instructs the FX2 to ACK the
STATUS stage, terminating the transfer. This handshake prevents the host from attempting to use
an interface before it's fully configured.

To perform an endpoint stall for the DATA or STATUS stage of an endpoint zero transfer (the
SETUP stage can never stall), firmware must set both the STALL and HSNAK bits for endpoint
zero.

Some CONTROL transfers do not have a DATA stage. Therefore, the code that processes the
SETUP data should check the length field in the SETUP data (in the 8-byte buffer at SETUPDAT)
and arm endpoint zero for the DATA phase (by loading EPOBCH:L) only if the length field is non-
zero.

Two interrupts provide notification that a SETUP packet has arrived, as shown in Figur e2-2.

/_\
8 bytes SETUPDAT
Setup 8 RAM
Data bytes

Y sutok * supav

Interrupt Interrupt

Figure 2-2. Two Interrupts Associated with EPO CONTROL Transfers

The FX2 asserts the SUTOK (Setup Token) interrupt request when it detects the SETUP token at
the beginning of a CONTROL transfer. This interrupt is normally used for debug only.

The FX2 asserts the SUDAV (Setup Data Available) interrupt request when the eight bytes of

SETUP data have been received error-free and transferred to the SETUPDAT buffer. The FX2
automatically takes care of any retries if it finds errors in the SETUP data. These two interrupt
request bits must be cleared by firmware.

Firmware responds to the SUDAV interrupt request by either directly inspecting the eight bytes at
SETUPDAT or by transferring them to a local buffer for further processing. Servicing the SETUP
data should be a high priority, since the USB Specification stipulates that CONTROL transfers

Chapter 2. Endpoint Zero Page 2-3

Exhibit 2058 - Page 57 of 460

EZ-USB FX2 Technical Reference Manual

must always be accepted and never NAK'd. It is possible, therefore, that a CONTROL transfer
could arrive while the firmware is still servicing a previous one. In this case, the earlier CONTROL
transfer service should be aborted and the new one serviced. The SUTOK interrupt gives advance
warning that a new CONTROL transfer is about to overwrite the eight SETUPDAT bytes.

If the firmware stalls endpoint zero (by setting the STALL and HSNAK bits to 1), the FX2 automat-
ically clears the stall bit when the next SETUP token arrives.

Like all FX2 interrupt requests, the SUTOK and SUDAV bits can be directly tested and cleared by
the firmware (cleared by writing 1) even if their corresponding interrupts are disabled.

Figure 2-3 shows the FX2 registers that are associated with CONTROL transactions over EPO.

Registers Associated with Endpoint Zero
For handling SETUP transactions

Initialization Data transfer
SETUPDAT
ussie | [a] | [[r] [e] 8 Bytes of
SETUP Data
Interrupt Enable:
A=EPO ACK
T=Setup Token EPOBCH ‘15 ‘ 14 ‘ 13 ‘ 12 ‘11 ‘ 10 ‘ 9 ‘ 8 ‘

D=Setup Data

EPOBCL ‘7‘6‘5‘4‘3‘2‘1‘0‘

Interrupt Control

USBIRQ ‘ ‘A‘ ‘ ‘ ‘T‘ ‘D‘ SUDPTRH‘15‘14‘13‘12‘11‘10‘9‘8‘

Interrupt Request: SUDPTRL ‘ 7 ‘ o ‘ 5 ‘ 4 ‘ 3 ‘) ‘ . ‘ o ‘

A=EP0 ACK
T=Setup Token suoptReTL [[| | [[[[4]

D=Setup Data

A=SDP Auto

Figure 2-3. Registers Associated with EPO Control Transfers

These registers augment those associated with normal bulk transfers over endpoint zero, which
are described in Chapter 8, "Access to Endpoint Buffers".

Two bits in the USBIE (USB Interrupt Enable) register enable the SETUPToken (SUTOK) and
SETUP Data Available interrupts. The actual interrupt-request bits are in the USBIRQ (USB Inter-
rupt Requests) register.

The FX2 transfers the eight SETUP bytes into eight bytes of RAM at SETUPDAT. A 16-bit pointer,
SUDPTRH:L, provides hardware assistance for handling CONTROL IN transfers, in particular the
Get Descriptor requests described later in this chapter.

Page 2-4 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 58 of 460

iul ESS

2.3 USB Requests

The Universal Serial Bus Specification Version 2.0, Chapter 9, "USB Device Framework" defines a
set of Standard Device Requests. When the firmware is in control of endpoint zero (RENUM=1),
the FX2 handles only one of these requests (Set Address) automatically; it relies on the firmware
to support all of the others. The firmware acts on device requests by decoding the eight bytes con-
tained in the SETUP packet and available at SETUPDAT. Table2-1 defines these eight bytes.

Table 2-1. The Eight Bytes in a USB SETUP Packet

Byte Field Meaning
0 |bmRequestType | Request Type, Direction, and Recipient.
1 | bRequest The actual request (see Tabl e2-2).
2 |wValueL 16-hit value, varies according to bRequest.
3 |wValueH
4 | windexL 16-hit field, varies according to bRequest.
5 |windexH
6 |wLengthL Number of bytes to transfer if there is a data phase.
7 |wLengthH

The Byte column in the previous table shows the byte offset from SETUPDAT. The Field column
shows the different bytes in the request, where the “bm” prefix means bit-map, “b” means byte [8
bits, 0-255], and “w” means word [16 bits, 0-65535].

Table 2-2 shows the different values defined for bRequest, and how the firmware should respond
to each request. The remainder of this chapter describes each of the requests inTabl e2-2 in
detail.

NG
Table 2-2 applies when RENUM=1, signifying that the firmware, rather than the FX2 hardware,
handles device requests

Chapter 2. Endpoint Zero Page 2-5

Exhibit 2058 - Page 59 of 460

EZ-USB FX2 Technical Reference Manual

Table 2-2. How the Firmware Handles USB Device Requests (RENUM=1)

bRequest Name

0x00 Get Status

FX2 Action
SUDAV Interrupt

Firmware Response
Supply RemWU, SelfPwr or Stall Bits

0x01 Clear Feature SUDAV Interrupt Clear RemWU, SelfPwr or Stall Bits
0x02 (reserved) none Stall EPO

0x03 Set Feature SUDAV Interrupt Set RemWU, SelfPwr or Stall Bits
0x04 (reserved) none Stall EPO

0x05 Set Address
0x06 Get Descriptor SUDAV Interrupt
0x07 Set Descriptor SUDAV Interrupt
0x08 Get Configuration | SUDAV Interrupt
0x09 Set Configuration | SUDAV Interrupt
O0x0A Get Interface SUDAV Interrupt
0x0B Set Interface SUDAV Interrupt
0x0C Sync Frame SUDAV Interrupt

Update FNADDR Register | none

Supply table data over EPO-IN
Application dependent

Send current configuration number
Change current configuration

Supply alternate setting No. from RAM
Change alternate setting No.

Supply a frame number over EPO-IN
Vendor Requests
0xAOQ (Firmware Load)
O0xA1l - OXAF

All except 0XAQ

Upload / Download RAM ---
SUDAV Interrupt
SUDAV Interrupt

Reserved by Cypress Semiconductor
Depends on application

In the ReNumerated condition (RENUM=1), the FX2 passes all USB requests except Set Address
to the firmware via the SUDAV interrupt.

The FX2 implements one vendor-specific request: “Firmware Load,” 0XAO (the bRequest value of
0xAQO is valid only if byte O of the request, bmRequestType, is also “x10xxxxx,” indicating a vendor-
specific request.) The load request is valid at all times, so the load feature may be used even after
ReNumeration. If your application implements vendor-specific USB requests, and you do not wish
to use the Firmware Load feature, be sure to refrain from using the bRequest value 0xAO for your
custom requests. The Firmware Load feature is fully described in Chapter 3, "Enumeration and
ReNumeration™",

To avoid future incompatibilities, vendor requests 0xAO-OxAF are reserved by Cypress Semicon-
ductor.

Page 2-6 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 60 of 460

2.3.1 Get Status

i&'n'::-l'-:r-:e_:s

The USB Specification defines three USB status requests. A fourth request, to an interface, is
declared in the spec as “reserved.” The four status requests are:

Remote Wakeup (Device request)
Self-Powered (Device request)
Stall (Endpoint request)

Interface request (reserved)

The FX2 automatically asserts the SUDAV interrupt to tell the firmware to decode the SETUP
packet and supply the appropriate status information.

8 bytes
Setup 8 RAM
Data bytes
SUDAV
Interrupt
2
Bytes
64-byte
Buffer

SETUPDAT

INOBUF

INOBC

Figure 2-4. Data Flow for a Get_Status Request

Chapter 2. Endpoint Zero

Exhibit 2058 - Page 61 of 460

Page 2-7

EZ-USB FX2 Technical Reference Manual

As Figure 2-4 illustrates, the firmware responds to the SUDAV interrupt by decoding the eight
bytes the FX2 has copied into RAM at SETUPDAT. The firmware answers a Get Status request
(bRequest=0) by loading two bytes into the EPOBUF buffer and loading the byte count register
EPOBCH:L with the value 0x0002. The FX2 then transmits these two bytes in response to an IN
token. Finally, the firmware clears the HSNAK bit (by writing 1 to it), which instructs the FX2 to
ACK the status stage of the transfer.

The following tables show the eight SETUP bytes for Get Status Requests.

Table 2-3. Get Status-Device (Remote Wakeup and Self-Powered Bits)

Byte Field Value Meaning Firmware Response
0 | bmRequestType 0x80 | IN, Device
1 |bRequest 0x00 | “Get Status” Load two bytes into EPOBUF:
2 |wValueL 0x00
3 |wValueH 0x00 Byte 0 : bit 0 = Self-Powered
4 | windexL 0x00 : bit 1 = Remote Wakeup
5 | windexH 0x00 Byte 1 : zero
6 |wLengthL 0x02 | Two bytes requested
7 |wLengthH 0x00

Get Status-Device queries the state of two bits, “Remote Wakeup” and “Self-Powered”. The
Remote Wakeup bit indicates whether or not the device is currently enabled to request remote
wakeup (remote wakeup is explained in Chapter 6, "Power Management"). The Self-Powered bit
indicates whether or not the device is self-powered (as opposed to USB bus-powered).

The firmware returns these two bits by loading two bytes into EPOBUF, then loading a byte count
of 0x0002 into EPOBCH:L.

Table 2-4. Get Status-Endpoint (Stall Bits)

Byte Field Value Meaning Firmware Response
0 | bmRequestType 0x82 | IN, Endpoint Load two bytes into EPOBUF:
1 |bRequest 0x00 | “Get Status” Byte 0 : bit 0 = Stall Bit for EP(n)
2 |wValueL 0x00 Byte 1 : zero
3 | wValueH 0x00
4 |windexL EP 0x00-0x08: OUT0-OUT8
5 | windexH 0x00 | 0x80-0x88: INO-IN8
6 |wLengthL 0x02 | Two bytes requested
7 |wLengthH 0x00

Each endpoint has a STALL bit in its EPXCS register. If this bit is set, any request to the endpoint
returns a STALL handshake rather than ACK or NAK. The Get Status-Endpoint request returns
the STALL state for the endpoint indicated in byte 4 of the request. Note that bit 7 of the endpoint
number EP (byte 4) specifies direction (0 = OUT, 1 = IN).

Page 2-8 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 62 of 460

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

Endpoint zero is a CONTROL endpoint, which by USB definition is bi-directional. Therefore, it has
only one stall bit.

About STALL

The USB STALL handshake indicates that something unexpected has happened. For
instance, if the host requests an invalid alternate setting or attempts to send data to a non-
existent endpoint, the device responds with a STALL handshake over endpoint zero instead
of ACK or NAK.

Stalls are defined for all endpoint types except ISOCHRONOUS, which does not employ
handshakes. Every FX2 bulk endpoint has its own stall bit. The firmware sets the stall condi-
tion for an endpoint by setting the STALL bit in the endpoint's EPXCS register. The host tells
the firmware to set or clear the stall condition for an endpoint using the Set Feature/Stall and
Clear Feature/Stall Requests.

The device might decide to set the stall condition on its own, too. In a routine that handles
endpoint zero device requests, for example, when an undefined or non-supported request is
decoded, the firmware should stall EPO.

Once the firmware stalls an endpoint, it should not remove the stall until the host issues a
Clear Feature/Stall Request. An exception to this rule is endpoint 0, which reports a stall con-
dition only for the current transaction and then automatically clears the stall condition. This
prevents endpoint 0, the default CONTROL endpoint, from locking out device requests.

Table 2-5. Get Status-Interface

Byte Field Value Meaning Firmware Response
0 | bmRequestType 0x81 | IN, Endpoint Load two bytes into EPOBUF:
1 |bRequest 0x00 |“Get Status” Byte 0 : zero
2 |wValueL 0x00 Byte 1: zero
3 | wValueH 0x00
4 | windexL 0x00
5 | windexH 0x00
6 |wlLengthL 0x02 | Two bytes requested
7 |wLengthH 0x00

Get Status/Interface is easy: the firmware returns two zero bytes through EPOBUF and clears the
HSNAK bit (by writing 1 to it). The requested bytes are shown as “Reserved (reset to zero)” in the
USB Specification.

Chapter 2. Endpoint Zero Page 2-9

Exhibit 2058 - Page 63 of 460

EZ-USB FX2 Technical Reference Manual

2.3.2 Set Feature

Set Feature is used to enable remote wakeup or stall an endpoint. No data stage is required.

Table 2-6. Set Feature-Device (Set Remote Wakeup Bit)

Byte Field Value Meaning Firmware Response
0 |bmRequestType 0x00 | OUT, Device Set the Remote Wakeup Bit
1 |bRequest 0x03 | “Set Feature”
2 | wValueL 0x01 | Feature Selector:
3 | wValueH 0x00 | Remote Wakeup
4 | windexL 0x00
5 | windexH 0x00
6 |wLengthL 0x00
7 | wLengthH 0x00

The only Set Feature/Device request presently defined in the USB Specification is to set the
remote wakeup bit. This is the same bit reported back to the host as a result of a Get Status-
Device request (Table 2-3). The host uses this bit to enable or disable remote wakeup by the
device.

Table 2-7. Set Feature-Endpoint (Stall)

Byte Field Value Meaning Firmware Response
0 | bmRequestType 0x02 | OUT, Endpoint Set the STALL bit for the
1 |bRequest 0x03 | “Set Feature” indicated endpoint:.

2 | wValueL 0x00 | Feature Selector:

3 | wValueH 0x00 | STALL

4 |windexL EP 0x00-0x08: OUTO-OUTS8
5 |windexH 0x00 | 0x80-0x88: INO-IN8

6 |wLengthL 0x00

7 | wLengthH 0x00

The only Set Feature/Endpoint request presently defined in the USB Specification is to stall an
endpoint. The firmware should respond to this request by setting the STALL bit in the EPXCS reg-
ister for the indicated endpoint EP (byte 4 of the request). The firmware can either stall an end-
point on its own or in response to the device request. Endpoint stalls are cleared by the host Clear
Feature/Stall request.

The firmware should respond to the Set Feature/Stall request by performing the following tasks:

1. Setthe STALL bit in the indicated endpoint's EPXCS register.
2. Reset the data toggle for the indicated endpoint.

Page 2-10 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 64 of 460

iul ESS

3. Restore the stalled endpoint to its default condition, ready to send or accept data after the stall
condition is removed by the host (via a Clear Feature/Stall request). For EP1 IN, for example,
firmware should clear the BUSY bit in the EP1CS register; for EP1OUT, firmware should load
any value into the EP1 byte-count register.

4. Clearthe HSNAK bit in the EPOCS register (by writing 1 to it) to terminate the Set Feature/Stall
CONTROL transfer.

Step 3 is also required whenever the host sends a Set Interface request.

Data Toggles

The FX2 automatically maintains the endpoint toggle bits to ensure data integrity for USB
transfers. Firmware should directly manipulate these bits only for a very limited set of circum-
stances:

* Set Feature/Stall
» Set Configuration

* Set Interface

2.3.3 Clear Feature

Clear Feature is used to disable remote wakeup or to clear a stalled endpoint.

Table 2-8. Clear Feature-Device (Clear Remote Wakeup Bit)

Byte Field Value Meaning Firmware Response
0 |bmRequestType 0x00 | OUT, Device Clear the remote wakeup bit.
1 |bRequest 0x01 “Clear Feature”
2 | wValueL 0x01 | Feature Selector:
3 | wValueH 0x00 | Remote Wakeup
4 | windexL 0x00
5 | windexH 0x00
6 |wLengthL 0x00
7 | wLengthH 0x00
Chapter 2. Endpoint Zero Page 2-11

Exhibit 2058 - Page 65 of 460

EZ-USB FX2 Technical Reference Manual

Table 2-9. Clear Feature-Endpoint (Clear Stall)

Byte Field Value Meaning Firmware Response
0 |bmRequestType 0x02 | OUT, Endpoint Clear the STALL bit for the
1 |bRequest 0x01 | “Clear Feature” indicated endpoint.

2 | wValueL 0x00 | Feature Selector:

3 wValueH 0x00 | STALL

4 |windexL EP 0x00-0x08: OUT0-OUT8
5 | windexH 0x00 | Ox80-0x88: INO-IN8

6 |wLengthL 0x00

7 | wLengthH 0x00

If the USB device supports remote wakeup (reported in its descriptor table when the device enu-
merates), the Clear Feature/Remote Wakeup request disables the wakeup capability.

The Clear Feature/Stall removes the stall condition from an endpoint. The firmware should
respond by clearing the STALL bit in the indicated endpoint's EPXCS register.

2.3.4 Get Descriptor

During enumeration, the host queries a USB device to learn its capabilities and requirements
using Get Descriptor requests. Using tables of descriptors, the device sends back (over EPO-IN)
such information as what device driver to load, how many endpoints it has, its different configura-
tions, alternate settings it may use, and informative text strings about the device.

The FX2 provides a special Setup Data Pointer to simplify firmware service for Get_Descriptor
requests. The firmware loads this 16-bit pointer with the starting address of the requested descrip-
tor, clears the HSNAK bit (by writing 1 to it), and the FX2 transfers the entire descriptor.

Page 2-12 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 66 of 460

<«—SETUP Stage——»

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

D C
All 8bytes ||R A
Tl sewn ¢ p . SETUPDAT
A Data 1 K bytes
0 6
Token Packet Data Packet H/S Pkt
LSUDAV Interrupt
< DATA Stage >
THRIE ol [RRE It 1
D|IN|IR T Payload c C I [|D||N|| R T Payload c C
D||D|| C Data N{| D||D|| C Data
Rl (5 ||[| 4 L i¢ Rl P52 1 i¢
1 6 0 6
Token Packet Data Packet \ H/S Pkt Token Packet Data Pagket /S Pkt
EPOIN EPOIN
Interrupt Interrupt
D||C
ol Al EIl Sl || A R A ™= 64 bytes
D||N|IR
u T||C @
D||D|l C
T rRllplls All1l K
1/16 27bytes/
Token Packet ata Pkt) \H/S Pkt

Figure 2-5. Using Setup Data Pointer (SUDPTR) for Get_Descriptor Requests

Figure 2-5 illustrates use of the Setup Data Pointer. This pointer is implemented as two registers,
SUDPTRH and SUDPTRL. Most Get Descriptor requests involve transferring more data than fits
into one packet. In the Figure 2-5 example, the descriptor data consists of 91 bytes.

The CONTROL transaction starts in the usual way, with theFX2 automatically transferring the eight
bytes from the SETUP packet into RAM at SETUPDAT, then asserting the SUDAV interrupt
request. The firmware decodes the Get Descriptor request, and responds by clearing the HSNAK
bit (by writing 1 to it), and then loading the SUDPTRH:L registers with the address of the requested
descriptor. Loading the SUDPTRL register causes the FX2 to automatically respond to two IN
transfers with 64 bytes and 27 bytes of data using SUDPTR as a base address, and then to
respond to the STATUS stage with an ACK.

The usual endpoint-zero interrupts SUDAV and EPOIN remain active during this automated trans-
fer, so firmware will normally disables these interrupts because the transfer requires no firmware
intervention.

Three types of descriptors are defined: Device, Configuration, and String.

Chapter 2. Endpoint Zero Page 2-13

Exhibit 2058 - Page 67 of 460

EZ-USB FX2 Technical Reference Manual

2.3.4.1 Get Descriptor-Device

Table 2-10. Get Descriptor-Device

Byte Field Value Meaning Firmware Response
0 | bmRequestType 0x80 | IN, Device Set SUDPTR H:L to start of
1 |bRequest 0x06 “Get Descriptor” Device Descriptor table in RAM.
2 |wValueL 0x00
3 | wValueH 0x01 | Descriptor Type: Device
4 | windexL 0x00
5 | windexH 0x00
6 |wLengthL LenL
7 |wLengthH LenH

As illustrated in Figure 2-5, the firmware loads the 2-byte SUDPTR with the starting address of the
Device Descriptor table. When SUDPTRL is loaded, the FX2 automatically performs the following
operations:

1. Reads the requested number of bytes for the transfer from bytes 6 and 7 of the SETUP packet
(LenL and LenH in Table 2-10).

2. Reads the requested descriptor’s length field to determine the actual descriptor length.

3. Sends the smaller of (a) the requested number of bytes or (b) the actual number of bytes in
the descriptor, over EPOBUF using the Setup Data Pointer as a data table index. This consti-
tutes the second phase of the three-phase CONTROL transfer. The FX2 packetizes the data
into multiple data transfers as necessary.

4. Automatically checks for errors and re-transmits data packets if necessatry.

5. Responds to the third (handshake) phase of the CONTROL transfer to terminate the opera-
tion.

The Setup Data Pointer can be used for any Get Descriptor request (e.g., Get Descriptor-String).

It can also be used for vendor-specific requests. If bytes 6 and 7 of those requests contain the
number of bytes in the transfer (see Step 1, above), the Setup Data Pointer works automatically,
as it does for Get Descriptor requests; if bytes 6 and 7 don’t contain the length of the transfer, the
length can be loaded explicitly (see the SDPAUTO paragraphs of Section 8.7, "The Setup Data
Pointer").

It is possible for the firmware to do manual CONTROL transfers by directly loading the EPOBUF
buffer with the various packets and keeping track of which SETUP phase is in effect. This is a
good USB training exercise, but not necessary due to the hardware support built into the FX2 for
CONTROL transfers.

For DATA stage transfers of fewer than 64 bytes, moving the data into the EPOBUF buffer and
then loading the EPOBCH:L registers with the byte count would be equivalent to loading the Setup

Page 2-14 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 68 of 460

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

Data Pointer. However, this would waste bandwidth because it requires byte transfers into the
EPOBUF Buffer; using the Setup Data Pointer doesn't.

2.3.4.2 Get Descriptor-Device Qualifier

Table 2-11. Get Descriptor-Device Qualifier

Byte Field Value Meaning Firmware Response
0 | bmRequestType 0x80 | IN, Device Set SUDPTR H:L to start of
1 |bRequest 0x06 | “Get_Descriptor” the appropriate Device Qualifier
2 | wValueL 0x00 Descriptor table in RAM.
3 | wValueH 0x06 | Descriptor Type: Device Quali-
fier
4 | windexL 0x00
5 | windexH 0x00
6 |wLengthL LenL
7 | wLengthH LenH

The Device Qualifier descriptor is used only by devices capable of high-speed (480 Mbps) opera-
tion; it describes information about the device that would change if the device were operating at
the other speed (i.e., if the device is currently operating at high speed, the device qualifier returns
information about how it would operate at full speed and vice-versa).

Device Qualifier descriptors are handled just like Device descriptors; the firmware loads the appro-
priate descriptor address into SUDPTRH:L, then the FX2 does the rest.

2.3.4.3 Get Descriptor-Configuration

Table 2-12. Get Descriptor-Configuration

Byte Field Value Meaning Firmware Response
0 |bmRequestType 0x80 | IN, Device Set SUDPTR H:L to start of
1 |bRequest 0x06 | “Get_Descriptor” Configuration Descriptor table in
2 | wValueL CFG | Configuration Number RAM
3 | wValueH 0x02 | Descriptor Type: Configuration
4 | windexL 0x00
5 | windexH 0x00
6 |wLengthL LenL
7 | wLengthH LenH

Chapter 2. Endpoint Zero Page 2-15

Exhibit 2058 - Page 69 of 460

EZ-USB FX2 Technical Reference Manual

2.3.4.4 Get Descriptor-String

Table 2-13. Get Descriptor-String

Byte Field Value Meaning Firmware Response
0 | bmRequestType 0x80 | IN, Device Set SUDPTR H:L to start of
1 |bRequest 0x06 | “Get_Descriptor” String Descriptor table in
2 |wValueL STR | String Number RAM.

3 | wValueH 0x03 | Descriptor Type: String
4 | windexL 0x00 |(Language ID L)

5 | windexH 0x00 | (Language ID H)

6 |wLengthL LenL

7 |wLengthH LenH

Configuration and String descriptors are handled similarly to Device descriptors. The firmware
reads byte 2 of the SETUP data to determine which configuration or string is being requested,
then loads the corresponding descriptor address into SUDPTRH:L. The FX2 does the rest.

2.3.4.5 Get Descriptor-Other Speed Configuration

Table 2-14. Get Descriptor-Other Speed Configuration

Byte Field Value Meaning Firmware Response
0 |bmRequestType 0x80 | IN, Device Set SUDPTR H:L to start of
1 |bRequest 0x06 | “Get_Descriptor” Other Speed Configuration
2 |wValueL CFG | Other Speed Descriptor table in RAM.

Configuration Number
3 | wValueH 0x07 | Descriptor Type: Other
Speed Configuration
4 | windexL 0x00 |(Language ID L)
5 | windexH 0x00 | (Language ID H)
6 |wLengthL LenL
7 |wLengthH LenH

The Other Speed Configuration descriptor is used only by devices capable of high-speed (480
Mbps) operation; it describes the configuration(s) of the device if it were operating at the other
speed (i.e., if the device is currently operating at high speed, the Other Speed Configuration
returns information about full-speed configuration and vice-versa).

Other Speed Configuration descriptors are handled just like Configuration descriptors; the firm-
ware loads the appropriate descriptor address into SUDPTRH:L, then the FX2 does the rest.

Page 2-16 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 70 of 460

;HI ESS

2.3.5 Set Descriptor

Table 2-15. Set Descriptor-Device

Byte Field Value Meaning Firmware Response
0 | bmRequestType 0x00 | OUT, Device Read device descriptor data over
1 |bRequest 0x07 | “Set_Descriptor” EPOBUF.
2 |wValueL 0x00
3 |wValueH 0x01 | Descriptor Type: Device
4 | windexL 0x00
5 |windexH 0x00
6 |wLengthL LenL
7 |wLengthH LenH

Table 2-16. Set Descriptor-Configuration

Byte Field Value Meaning Firmware Response
0 | bmRequestType 0x00 | OUT, Device Read configuration descriptor
1 |bRequest 0x07 | “Set_Descriptor” data over EPOBUF.
2 |wValueL 0x00
3 | wValueH 0x02 | Descriptor Type: Configuration
4 | windexL 0x00
5 | windexH 0x00
6 |wlLengthL LenL
7 |wLengthH LenH
Chapter 2. Endpoint Zero Page 2-17

Exhibit 2058 - Page 71 of 460

EZ-USB FX2 Technical Reference Manual

Table 2-17. Set Descriptor-String

Byte Field Value Meaning Firmware Response
0 |bmRequestType 0x00 | IN, Device Read string descriptor data over
1 | bRequest 0x07 | “Get_Descriptor” EPOBUF.
2 |wValueL 0x00 | String Number
3 |wValueH 0x03 | Descriptor Type: String
4 | windexL 0x00 |(Language ID L)
5 |windexH 0x00 | (Language ID H)
6 |wLengthL LenL
7 |wLengthH LenH

The firmware handles Set Descriptor requests by clearing the HSNAK bit (by writing 1 to it), then
reading descriptor data directly from the EPOBUF buffer. The FX2 keeps track of the number of
byes transferred from the host into EPOBUF, and compares this number with the length field in
bytes 6 and 7. When the proper number of bytes has been transferred, the FX2 automatically
responds to the STATUS phase, which is the third and final stage of the CONTROL transfer.

NG
The firmware controls the flow of data in the Data Stage of a Control Transfer. After the firmware

processes each OUT packet, it writes any value into the endpoint’s byte count register to re-arm
the endpoint.

Page 2-18 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 72 of 460

iul ESS

Configurations, Interfaces, and Alternate Settings

A USB device has one or more configu-
rations. Only one configuration is active
at any time.
))) Qonfig 1 Config 2
A configuration has one or more inter- High Power Low Power
faces, all of which are concurrently
active. Multiple interfaces allow different
host-side device drivers to be associated o A
. . . . nterrace nterrace
with different portions of a USB device. CDRoOM | | Imterface 1 | | Interface 2 data
audio video
control storage
Each interface has one or more alternate /\
settings. Each alternate setting has a Alt Seting Alt Seting Alt Seting (o
collection of one or more endpoints. 0 L 3 nea atime

This structure is a software model; the FX2 takes no action when these settings change.
However, the firmware must re-initialize endpoints when the host changes configurations
or interfaces alternate settings.

As far as the firmware is concerned, a configuration is simply a byte variable that indicates
the current setting.

The host issues a Set Configuration request to select a configuration, and a Get Configura-
tion request to determine the current configuration.

Chapter 2. Endpoint Zero Page 2-19

Exhibit 2058 - Page 73 of 460

EZ-USB FX2 Technical Reference Manual

2.3.5.1 Set Configuration

Table 2-18. Set Configuration

Byte Field Value Meaning Firmware Response
0 |bmRequestType 0x00 | OUT, Device Read and store CFG, change
1 |bRequest 0x09 | “Set Configuration” configurations in firmware.
2 |wValueL CFG | Configuration Number
3 |wValueH 0x00
4 | windexL 0x00
5 |windexH 0x00
6 |wLengthL 0x00
7 |wLengthH 0x00

When the host issues the Set Configuration request, the firmware saves the configuration number
(byte 2, CFG, in Tabl e2-18), performs any internal operations necessary to support the configura-
tion, and finally clears the HSNAK bit (by writing 1 to it) to terminate the Set Configuration
CONTROL transfer.

A
After setting a configuration, the host issues Set Interface commands to set up the various inter-
faces contained in the configuration.

2.3.6 Get Configuration

Table 2-19. Get Configuration

Byte Field Value Meaning Firmware Response
0 |bmRequestType 0x80 | IN, Device Send CFG over EPO after
1 |bRequest 0x08 | “Get Configuration” | re-configuring.

2 | wValueL 0x00
3 | wValueH 0x00
4 | windexL 0x00
5 | windexH 0x00
6 |wLengthL 1 LenL
7 | wLengthH 0 LenH

When the host issues the Get Configuration request, the firmware returns the current configuration
number. It loads the configuration number into EPOBUF, loads a byte count of one into EPOBCH:L,
and finally clears the HSHAK bit (by writing 1 to it) to terminate the Set Configuration CONTROL
transfer.

Page 2-20 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 74 of 460

iul ESS

2.3.7 Set Interface

This confusingly-named USB command actually sets alternate settings for a specified interface.

USB devices can have multiple concurrent interfaces. For example, a device may have an audio
system that supports different sample rates, and a graphic control panel that supports different lan-
guages. Each interface has a collection of endpoints. Except for endpoint 0, which each interface
uses for device control, endpoints may not be shared between interfaces.

Interfaces may report alternate settings in their descriptors. For example, the audio interface may
have setting 0, 1, and 2 for 8-KHz, 22-KHz, and 44-KHz sample rates. The panel interface may
have settings 0 and 1 for English and Spanish. The Set/Get Interface requests select among the
various alternate settings in an interface.

Table 2-20. Set Interface (Actually, Set Alternate Setting #AS for Interface #1F)

Byte Field Value Meaning Firmware Response
0 |bmRequestType 0x00 | OUT, Device Read and store byte 2 (AS) for
1 |bRequest 0x0B | “Set Interface” Interface #IF, change setting for
2 |wValueL AS | Alternate Setting Number | Interface #IF in firmware.
3 |wValueH 0x00
4 | windexL IF Interface Number
5 |windexH 0x00
6 |wLengthL 0x00
7 |wLengthH 0x00

The firmware should respond to a Set Interface request by performing the following steps:

1. Perform the internal operation requested (such as adjusting a sampling rate).
2. Reset the data toggles for every endpoint in the interface.

3. Restore the endpoints to their default conditions, ready to send or accept data. For EP1 IN, for
example, firmware should clear the BUSY bit in the EP1CS register; for EP1OUT, firmware
should load any value into the EP1 byte-count register.

4. Clear the HSNAK bit (by writing 1 to it) to terminate the Set Interface CONTROL transfer.

Chapter 2. Endpoint Zero Page 2-21

Exhibit 2058 - Page 75 of 460

EZ-USB FX2 Technical Reference Manual

2.3.8 Get Interface

Table 2-21. Get Interface (Actually, Get Alternate Setting #AS for interface #IF)

Byte Field Value Meaning Firmware Response
0 | bmRequestType 0x81 | IN, Device Send AS for Interface #IF over
1 |bRequest 0x0A | “Get Interface” EPO.
2 |wValueL 0x00
3 |wValueH 0x00
4 | windexL IF Interface Number
5 |windexH 0x00
6 |wLengthL 1 LenL
7 |wLengthH 0 LenH

When the host issues the Get Interface request, the firmware simply returns the alternate setting
for the requested interface IF and clears the HSNAK bit (by writing 1 to it).

2.3.9 Set Address

When a USB device is first plugged in, it responds to device address 0 until the host assigns it a
unique address using the Set Address request. The FX2 copies this device address into the
FNADDR (Function Address) register, then subsequently responds only to requests to this
address. This address is in effect until the USB device is unplugged, the host issues a USB Reset,
or the host powers down.

The FNADDR register is read-only. Whenever the FX2 ReNumeratesld (see Chapter 3, "Enumer-
ation and ReNumeration™"), it automatically resets FNADDR to zero, allowing the device to come
back as new.

An FX2 program does not need to know the device address, because the FX2 automatically
responds only to the host-assigned FNADDR value. The device address is readable only for
debug/diagnostic purposes.

Page 2-22 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 76 of 460

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

2.3.10 Sync Frame

Table 2-22. Sync Frame

Byte Field Value Meaning Firmware Response
0 |bmRequestType 0x82 | IN, Endpoint Send a frame number over EPO
1 |bRequest 0x0C | “Sync Frame” to synchronize endpoint #EP
2 | wValueL 0x00
3 wValueH 0x00
4 | windexL EP Endpoint number
5 | windexH 0x00
6 |wLengthL 2 LenL
7 | wLengthH 0 LenH

The Sync Frame request is used to establish a marker in time so the host and USB device can
synchronize multi-frame transfers over isochronous endpoints.

Suppose an isochronous transmission consists of a repeating sequence of five 300-byte packets
transmitted from host to device over EP8-OUT. Both host and device maintain sequence counters
that count repeatedly from 1 to 5 to keep track of the packets inside a transmission. To start up in
sync, both host and device need to reset their counts to “0” at the same time (in the same frame).

To get in sync, the host issues the Sync Frame request with EP=EP8OUT (0x08). The firmware
responds by loading EPOBUF with a two-byte frame count for some future time; for example, the
current frame plus 20. This marks frame “current+20” as the sync frame, during which both sides
initialize their sequence counters to “0.” The current frame count is always available in the USB-
FRAMEL and USBFRAMEH registers.

Multiple isochronous endpoints can be synchronized in this manner; the firmware can keep a sep-
arate internal sequence count for each endpoint.

About USB Frames

In full-speed mode (12 Mbps), the USB host issues an SOF (Start Of Frame) packet once
every millisecond. Every SOF packet contains an 11-bit (mod-2048) frame number. The firm-
ware services all isochronous transfers at SOF time, using a single SOF interrupt request
and vector. If the FX2 detects a missing or garbled SOF packet, it can use an internal counter
to generate the SOF interrupt automatically.

In high-speed (480 Mbps) mode, each frame is divided into eight 125-microsecond microf-
rames. Although the frame counter still increments only once per frame, the host issues an
SOF every microframe. The host and device always synchronize on the zero-th microframe
of the frame specified in the device’s response to the Sync Frame request; there’s no mech-
anism for synchronizing on any other microframe.

Chapter 2. Endpoint Zero Page 2-23

Exhibit 2058 - Page 77 of 460

EZ-USB FX2 Technical Reference Manual

2.3.11 Firmware Load

The USB endpoint-zero protocol provides a mechanism for mixing vendor-specific requests with
standard device requests. Bits 6:5 of the bmRequestType field are set to 00 for a standard device
request and to 10 for a vendor request.

Table 2-23. Firmware Download

Byte Field Value Meaning Firmware Response

0 |bmRequestType 0x40 | Vendor Request, OUT | None required.

1 |bRequest O0xAO0 | “Firmware Load”

2 | wValueL AddrL | Starting address

3 |wValueH AddrH

4 | windexL 0x00

5 | windexH 0x00

6 |wLengthL LenL | Number of bytes

7 | wLengthH LenH

Table 2-24. Firmware Upload

Byte Field Value Meaning Firmware Response

0 |bmRequestType 0xCO | Vendor Request, IN None Required.

1 |bRequest OxXAO | “Firmware Load”

2 | wValueL AddrL | Starting address

3 | wValueH AddrH

4 |windexL 0x00

5 | windexH 0x00

6 |wLengthL LenL | Number of Bytes

7 | wLengthH LenH

The FX2 responds to two endpoint-zero vendor requests, RAM Download and RAM Upload.
These requests are active whether RENUM=0 or RENUM=1.

Because bit 7 of the first byte of the SETUP packet specifies direction, only one bRequest value
(OxAO0) is required for the upload and download requests. These RAM load commands are avail-
able to any USB device that uses the FX2 chip.

A host loader program will typically write 0x01 to the CPUCS register to put the FX2's CPU into
RESET, load all or part of the FX2's internal RAM with code, then reload the CPUCS register with
0 to take the CPU out of RESET.

Page 2-24 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 78 of 460

Chapter 3 Enumeration and ReNumeration™

3.1 Introduction

The FX2's configuration is soft: Code and data are stored in internal RAM, which can be loaded
from the host over the USB interface. FX2-based USB peripherals can operate without ROM,
EPROM, or FLASH memory, shortening production lead times and making firmware updates
extremely simple.

To support this soft configuration, the FX2 is capable of enumerating as a USB device without firm-
ware. This automatically-enumerated USB device (the Default USB Device) contains a set of inter-
faces and endpoints and can accept firmware downloaded from the host.

A

Two separate Default USB Devices actually exist, one for enumeration as a full speed (12 Mbits/
sec) device, and the other for enumeration as a high speed (480 Mbits/sec) device. The FX2 auto-
matically performs the speed-detect protocol and chooses the proper Default USB Device. The two

sets of Default USB Device descriptors are shown in Appendices A and B.

Once the Default USB Device enumerates, it downloads firmware and descriptor tables from the
host into the FX2’s on-chip RAM. The FX2 then begins executing the downloaded code, which
electrically simulates a physical disconnect/connect from the USB and causes the FX2 to enumer-
ate again as a second device, this time taking on the USB personality defined by the downloaded
code and descriptors. This patented secondary enumeration process is called “ReNumeration™.”

An FX2 register bit called RENUM controls whether device requests over endpoint zero are han-
dled by firmware or automatically by the Default USB Device. When RENUM=0, the Default USB
Device handles the requests automatically; when RENUM=1, they must be handled by firmware.

3.2 FX2 Startup Modes

When the FX2 comes out of reset, it can act in various ways to establish itself as a USB device.
FX2 power-on behavior depends on several factors:

Chapter 3. Enumeration and ReNumeration™ Page 3-1

Exhibit 2058 - Page 79 of 460

EZ-USB FX2 Technical Reference Manual

1. If no off-chip memory (either on the I12C-compatible bus or on the address/data bus) is con-
nected to the FX2, it enumerates as the Default USB Device, with descriptors and VID / PID /
DID supplied by hardwired internal logic (Table 3-3). RENUM is set to 0O, indicating that the
Default USB Device automatically handles device requests.

2. If an EEPROM containing custom VID / PID / DID values is attached to the FX2's SCL and
SDA pins, FX2 also enumerates as the Default USB Device as above, but it substitutes the
VID / PID / DID values from the EEPROM for its internal values. The EEPROM must contain
the value OxCO in its first byte to indicate this mode to FX2, so this mode is called a “CO Load".
As above, RENUM is automatically set to 0, indicating that the Default USB Device automati-
cally handles device requests. A 16-byte EEPROM is sufficiently large for a CO Load.

3. If an EEPROM containing FX2 firmware is attached to the SCL and SDA pins, the firmware is
automatically loaded from the EEPROM into the FX2's on-chip RAM, and then the CPU is
taken out of reset to execute this boot-loaded code. In this case, the VID / PID / DID values
are encapsulated in the firmware; the RENUM bit is automatically set to 1 to indicate that the
firmware, not the Default USB Device, handles device requests. The EEPROM must contain
the value OxC2 in its first byte to indicate this mode to FX2, so this mode is called a “C2 Load".
Although the FX2 can perform C2 Loads from EEPROMSs as large as 64KB, code can only be
downloaded to the 8K of on-chip RAM.

4. If a Flash, EPROM, or other memory is attached to the FX2’'s address/data bus (128-pin pack-
age only) and a properly formatted EEPROM meeting the requirements above is not present,
and the EA pin is tied high (indicating that the FX2 starts code execution at 0x0000 from off-
chip memory), the FX2 begins executing firmware from the off-chip memory. In this case, the
VID / PID / DID values are encapsulated in the firmware; the RENUM bit is automatically set to
1 to indicate that the firmware, not internal FX2 logic, handles device requests.

Case (2) is the most frequently used mode when soft operation is desired, since the VID/PID val-
ues from EEPROM always bind the device to the appropriate host driver while allowing FX2 firm-
ware to be easily updated. In this case, the host first uses the FX2 Default USB Device to
download firmware, then the host takes the CPU out of reset so that it can execute the down-
loaded code. Section 3.8, "FX2 Vendor Request for Firmware Load" describes the USB Vendor
Request that the FX2 supports for code download and upload.

NG

The Default USB Device is fully characterized in Appendices A and B, which list the built-in FX2
descriptor tables for full-speed and high-speed enumeration, respectively. Studying these Appen-
dices in conjunction with Tables 3-1 and 3-2 is an excellent way to learn the structure of USB
descriptors.

Page 3-2 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 80 of 460

ié‘ﬂr-n ESS

3.3 The Default USB Device

The Default USB Device consists of a single USB configuration containing one interface (interface
0) and alternate settings 0, 1, 2 and 3. The endpoints and MaxPacketSizes reported for this device
are shown in Table 3-1 (full speed) and Table 3-2 (high speed). Note that alternate setting zero
consumes no interrupt or isochronous bandwidth, as recommended by the USB Specification.

Table 3-1. Default Full-speed Alternate Settings

Alternate Setting 0 1 2 3
ep0 64 64 64 64
eplout 0 64 bulk 64 int 64 int
eplin 0 64 bulk 64 int 64 int
ep2 0 64 bulk out (2x) 64 int out (2x) 64 iso out (2x)
ep4 0 64 bulk out (2x) 64 bulk out (2x) 64 bulk out (2x)
ep6 0 64 bulk in (2x) 64 int in (2x) 64 iso in (2x)
ep8 0 64 bulk in (2x) 64 bulk in (2x) 64 bulk in (2x)

Note: “0” means “not implemented”, “2x” means double buffered.

Table 3-2. Default High-speed Alternate Settings

Alternate Setting 0 1 2 3
ep0 64 64 64 64
eplout 0 512 bulk 64 int 64 int
eplin 0 512 bulk 64 int 64 int
ep2 0 512 bulk out (2x) 512 int out (2x) 512 iso out (2x)
ep4 0 512 bulk out (2x) 512 bulk out (2x) 512 bulk out (2x)
ep6 0 512 bulk in (2x) 512 intin (2x) 512 is0 in (2x)
ep8 0 512 bulk in (2x) 512 bulk in (2x) 512 bulk in (2x)

Note: “0” means “not implemented”, “2x” means double buffered.

#

Although the physical size of the EP1 endpoint buffer is 64 bytes, it is reported as a 512-byte buffer
for high-speed alternate setting 1. This maintains compatibility with the USB 2.0 specification,
which allows only 512-byte bulk endpoints. If you use this default alternate setting (for testing, for

example), be sure to limit EP1 packet sizes to 64 bytes.

When FX2 logic establishes the Default USB Device shown in Table 3-1 orTabl e3-2, it also sets
the various endpoint configuration bits to match the descriptor data. For example, bulk endpoints
2, 4, and 6 are implemented in the Default USB Device, so the FX2 logic sets the corresponding
EPVAL (Endpoint Valid) bits.

Chapter 8 "Access to Endpoint Buffers" contains a detailed explanation of the EPVAL bits.

Chapter 3. Enumeration and ReNumeration™ Page 3-3

Exhibit 2058 - Page 81 of 460

EZ-USB FX2 Technical Reference Manual

3.4 EEPROM Boot-load Data Formats

This section describes three EEPROM boot-load scenarios and the EEPROM data formats that
support them. The three scenarios are:

* No EEPROM, or EEPROM with invalid boot data
* “CO0"EEPROM (load custom VID / PID / DID only)

* “C2"EEPROM (load firmware to on-chip RAM)

3.4.1 No EEPROM or Invalid EEPROM

In the simplest scenario, either no serial EEPROM is present on the 12C-compatible bus or an
EEPROM is present, but its first byte is neither OxCO nor 0xC2. In this case, descriptor data is sup-
plied by hardwired internal FX2 tables. The FX2 enumerates as the Default USB Device, with the
ID bytes shown in Table 3-3.

NG
Pull-up resistors are required on the SCL/SDA pins even if no device is connected. The resistors
are required to allow FX2 logic to detect the “No EEPROM / Invalid EEPROM” condition.

Table 3-3. FX2 Device Characteristics, No EEPROM / Invalid EEPROM

Vendor ID 0x04B4 (Cypress Semiconductor/)
Product ID 0x8613 (EZ-USB FX2)

Device Release 0xXXYY (depends on revision)

The USB host queries the FX2 Default USB Device during enumeration, reads its device descrip-
tor, and uses the IDs in Table 3-3 to determine which software driver to load into the operating sys-
tem. This is a major USB feature — drivers are dynamically matched with devices and
automatically loaded when a device is plugged in.

The “No EEPROM / Invalid EEPROM” scenario is the simplest configuration, and also the most
limiting. This configuration must only be used for code development, utilizing Cypress software
tools matched to the ID values in Table 3-3; no USB peripheral based on the FX2 may use this
configuration.

Page 3-4 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 82 of 460

iul ESS

3.4.2 Serial EEPROM Present, First Byte is 0xCO

Table 3-4. “CO Load” Format

EEPROM Address Contents
0xCO

Vendor ID (VID) L
Vendor ID (VID) H
Product ID (PID) L
Product ID (PID) H
Device ID (DID) L
Device ID (DID) H
Configuration byte

N[O | W NP O

If, at power-on reset, the FX2 detects an EEPROM connected to its 12C-compatible bus with the
value OxCO at address 0, the FX2 automatically copies the Vendor ID (VID), Product ID (PID), and
Device ID (DID) from the EEPROM (Table 3-4) into internal storage. The FX2 then supplies these
EEPROM bytes to the host as part of its response to the host's Get_Descriptor-Device request
(these six bytes replace only the VID / PID / DID bytes in the Default USB Device descriptor). This
causes a host driver matched to the VID / PID / DID values in the EEPROM to be loaded by the
host OS.

After initial enumeration, that host driver downloads FX2 firmware and USB descriptor data into the
FX2's RAM and starts the CPU. The FX2 then ReNumerates™ as a custom device. At that point,
the host may load a new driver, bound to the just-loaded VID / PID / DID.

The eighth EEPROM byte contains configuration bits that control the following:

e |2C-compatible bus speed. Default is 100 KHz.
« Disconnect polarity. Default is for FX2 to come out of reset connected to USB.

FX2 firmware can change the 12C-compatible bus speed using control-register bits, so an
EEPROM is not required in order to override the default setting. However, the firmware cannot
modify the disconnect polarity; if it's desired for the FX2 to come out of reset disconnected from
USB, a “C0” or “C2” EEPROM must be connected.

NG

Section 3.5 "EEPROM Configuration Byte" contains a full description of the configurations bits.

Chapter 3. Enumeration and ReNumeration™ Page 3-5

Exhibit 2058 - Page 83 of 460

EZ-USB FX2 Technical Reference Manual

3.4.3 Serial EEPROM Present, First Byte is 0xC2

If, at power-on reset, the FX2 detects an EEPROM connected to its 12C -compatible with the value
0xC2 at address 0, the FX2 loads the EEPROM data into RAM. It also sets the RENUM bit to 1,
causing device requests to be handled by the firmware instead of the Default USB Device. The
“C2 Load” EEPROM data format is shown in Table3-5.

Table 3-5. “C2 Load” Format

EEPROM Address Contents

0xC2

Vendor ID (VID) L
Vendor ID (VID) H
Product ID (PID) L
Product ID (PID) H
Device ID (DID) L
Device ID (DID) H
Configuration byte
Length H

Length L

10 Start Address H
11 Start Address L
Data Block

O| N0 W[N] | O

Length H
Length L

—— Start Address H
Start Address L
Data Block

0x80
- 0x01
- OxE6
0x00
last 00000000

The first byte indicates a “C2 load”, which instructs the FX2 to copy the EEPROM data into RAM.
The FX2 reads the next six bytes (VID / PID / DID) even though they aren’t used by most C2-Load
applications. The eighth byte (byte 7) is the configuration byte described in the previous section.

Page 3-6 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 84 of 460

iul ESS
NG

Bytes 1-6 of a C2 EEPROM can be loaded with VID / PID / DID bytes if it is desired at some point
to run the firmware with RENUM = 0 (i.e., FX2 logic handles device requests), using the EEPROM
VID / PID / DID rather than the development-only VID / PID / DID values shown in Table 3-3.

One or more data records follow, starting at EEPROM address 8. Each data record consists of a
10-bit Length field (0-1023) which indicates the number of bytes in the following data block, a 13-
bit Start Address (0-Ox1FFF) for the data block, and the data block itself.

The last data record, which must always consist of a single-byte load of 0x00 to the CPUCS regis-
ter at OXE600, is marked with a “1” in the most-significant bit of the Length field. Only the least-sig-
nificant bit (8051RES) of this byte is writable by the download; that bit is set to zero to bring the
CPU out of reset.

NG
Serial EEPROM data can be loaded only into these three on-chip RAM spaces:

* Program / Data RAM at 0x0000-0x1FFF
» Data RAM at OxEOOO-OXE1FF
* The CPUCS register at 0XE600 (only bit 0, B051RES, is EEPROM-loadable).

General-Purpose Use of the 12C-Compatible Bus

The FX2's I2C-compatible controller serves two purposes. First, as described in this chapter,
it manages the serial EEPROM interface that operates automatically at power-on to deter-
mine the enumeration method. Second, once the CPU is up and running, firmware can
access the 12C-compatible controller for general-purpose use. This makes a wide range of
standard 12C peripherals available to an FX2-based system.

Other 12C devices can be attached to the SCL and SDA lines as long as there is no address
conflict with the serial EEPROM described in this chapter. Chapter 13, "Input/Output”
describes the general-purpose nature of the [12C-compatible interface.

Chapter 3. Enumeration and ReNumeration™ Page 3-7

Exhibit 2058 - Page 85 of 460

EZ-USB FX2 Technical Reference Manual

3.5 EEPROM Configuration Byte

The configuration byte is valid for both EEPROM load formats (CO and C2) and has the following

format:
Configuration
b7 b6 b5 b4 b3 b2 bl bo |
0 DISCON 0 0 0 0 0 400KHz |
Figure 3-1. EEPROM Configuration Byte
Bit 6: DISCON USB Disconnect

A USB hub or host detects attachment of a full-speed device by sensing a high level on the D+
wire. A USB device provides this high level using a 1500-ohm resistor between D+ and 3.3V (the
D+ line is normally low, pulled down by a 15 K-ohm resistor in the hub or host). The 1500-ohm
resistor is internal to the FX2.

The FX2 accomplishes ReNumeration by selectively driving or floating the 3.3V supply to its inter-
nal 1500-ohm resistor. When the supply is floated, the host no longer “sees” the FX2; it appears to
have been disconnected from the USB. When the supply is then driven, the FX2 appears to have
been newly-connected to the USB. From the host’s point of view, the FX2 can be disconnected

and re-connected to the USB, without ever physically disconnecting.

The “connect state” of FX2 is controlled by a register bit called DISCON (USBCS.3), which
defaults to 0, or “connected”. This default may be overridden by setting the DISCON bit in the
EEPROM configuration byte to 1. This bit is copied into the USBCS.3 bit before the CPU is taken

out of reset. Once the CPU is running, firmware can modify this bit.

Bit O:

0: 100 KHz
1: 400 KHz

400KHz

[2C-compatible bus speed

If 400KHZ=0, the 12C-compatible bus operates at approximately 100 KHz. If 400KHZ=1, the
I2C-compatible bus operates at approximately 400 KHz. This bit is copied to I2CCTL.0, whose
default value is 0, or “100 KHz". Once the CPU is running, firmware can modify this bit.

Page 3-8

Exhibit 2058 - Page 86 of 460

EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

3.6 The RENUM Bit

An FX2 control bit called “RENUM” (ReNumerated) determines whether USB device requests over
endpoint zero are handled by the Default USB Device or by FX2 firmware. At power-on reset, the
RENUM bit (USBCS.1) is zero, indicating that the Default USB Device will automatically handle
USB device requests. Once firmware has been downloaded to the FX2 and the CPU is running, it
can set RENUM=1 so that subsequent device requests will be handled by the downloaded firm-
ware and descriptor tables. Chapter 2, "Endpoint Zero" describes how the firmware handles device
requests while RENUM=L1.

If a 128-pin FX2 is using off-chip code memory at 0x0000 and there is no boot EEPROM to supply
a custom Vendor ID and Product ID, the FX2 automatically sets the RENUM bit to 1 so that device
requests are always handled by the firmware and descriptor tables in the off-chip memory. The
FX2 also sets RENUM=1 after a “C2 load” if the EA pin is low. In this case, firmware execution
begins in internal RAM using the code loaded from the EEPROM, with the firmware handling all
USB requests.

Another Use for the Default USB Device

The Default USB Device is established at power-on to set up a USB device capable of down-
loading firmware into the FX2's RAM. Another useful feature of the Default USB Device is
that FX2 code can be written to support the already-configured generic USB device. Before
bringing the CPU out of reset, the FX2 automatically enables certain endpoints and reports
them to the host via descriptors. By utilizing the Default USB Device (i.e., by keeping
RENUM=0), the firmware can, with very little code, perform meaningful USB transfers that
use these pre-configured endpoints. This accelerates the USB learning curve.

Chapter 3. Enumeration and ReNumeration™ Page 3-9

Exhibit 2058 - Page 87 of 460

EZ-USB FX2 Technical Reference Manual

3.7 FX2 Response to Device Requests (RENUM=0)

Table 3-6 shows how the Default USB Device responds to endpoint zero device requests when
RENUM=0.

Table 3-6. How the Default USB Device Handles EPO Requests When RENUM=0

bRequest Name FX2 Response
0x00 Get Status-Device Returns two zero bytes
0x00 Get Status-Endpoint Supplies EP Stall bit for indicated EP
0x00 Get Status-Interface Returns two zero bytes
0x01 Clear Feature-Device None
0x01 Clear Feature-Endpoint Clears Stall bit for indicated EP
0x02 (reserved) None
0x03 Set Feature-Device None
0x03 Set Feature-Endpoint Sets Stall bit for indicated EP
0x04 (reserved) None
0x05 Set Address Updates FNADD register
0x06 Get Descriptor Supplies internal table
0x07 Set Descriptor None
0x08 Get Configuration Returns internal value
0x09 Set Configuration Sets internal value
O0x0A Get Interface Returns internal value (0-3)
0x0B Set Interface Sets internal value (0-3)
0x0C Sync Frame None
Vendor Requests
0xAO0 Firmware Load Upload/Download RAM
0xA1-OxAF |Reserved Reserved by Cypress Semiconductor
all other None

A USB host enumerates by issuing Set_Address, Get_Descriptor, and Set_Configuration (to 1)
requests (the Set_Address and Get_Address requests are used only during enumeration). After
enumeration, the Default USB Device will respond to the following device requests from the host:

e Set or clear an endpoint stall (Set/Clear Feature_Endpoint)

» Read the stall status for an endpoint (Get_Status-Endpoint)

» Set/Read an 8-bit configuration number (Set/Get_Configuration)
» Set/Read a 2-bit interface alternate setting (Set/Get_|Interface)

e Download or upload FX2 RAM

Page 3-10 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 88 of 460

ié‘ﬂr-n ESS

3.8 FX2 Vendor Request for Firmware Load

Prior to ReNumeration, the host downloads data into the FX2's internal RAM. The host can access
two on-chip FX2 RAM spaces — Program / Data RAM at 0x0000-Ox1FFF and Data RAM at
0XEO000-OxE1FF — which it can download or upload whether the CPU is in reset or running: These
two RAM spaces may also be boot-loaded by a “C2” EEPROM connected to the 12C-compatible
bus. The host may also write to the CPUCS register to put the CPU in or out of reset.

Off-chip RAM (on the 128-pin FX2's address/data bus) cannot be uploaded or downloaded by the
host via the “Firmware Load” vendor request.

The USB Specification provides for vendor-specific requests to be sent over endpoint zero. The
FX2 uses this feature to transfer data between the host and FX2 RAM. The FX2 automatically
responds to two “Firmware Load” requests, as shown inTabl e3-7 and Table 3-8.

Table 3-7. Firmware Download

Byte Field Value Meaning Rest)i)znse
0 bmRequest | 0x40 Vendor Request, OUT | None required
1 bRequest OxAO “Firmware Load”

2 wValueL AddrL Starting Address
3 wValueH AddrH
4 windexL 0x00
5 windexH 0x00
6 wlLenghtL LenL Number of Bytes
7 wLengthH LenH
Table 3-8. Firmware Upload
Byte Field Value Meaning Resl,:g(oznse
0 bmRequest 0xCO Vendor Request, IN | None required
1 bRequest OxAO0 “Firmware Load”
2 |wValueL AddrL |Starting Address
3 |wvalueH AddrH
4 windexL 0x00
5 windexH 0x00
6 wlLengthL LenL Number of Bytes
7 |wLengthH LenH
Chapter 3. Enumeration and ReNumeration™ Page 3-11

Exhibit 2058 - Page 89 of 460

EZ-USB FX2 Technical Reference Manual

These upload and download requests are always handled by the FX2, regardless of the state of
the RENUM bit.

The bRequest value 0xAO is reserved for this purpose. It should never be used for another vendor
request. Cypress Semiconductor also reserves bRequest values 0xA1l through OxAF; devices
should not use these bRequest values.

A host loader program will typically write 0x01 to the CPUCS register to put the CPU into RESET,
load all or part of the FX2 RAM with firmware, then reload the CPUCS register with 0 to take the

CPU out of RESET. The CPUCS register (at OXE600) is the only FX2 register that can be written

using the Firmware Download command.

3.9 How the Firmware ReNumerates

Two control bits in the USBCS (USB Control and Status) register control the ReNumeration™ pro-
cess: DISCON and RENUM.

USBCS USB Control and Status E680
b7 b6 b5 b4 b3 b2 b1l b0
DISCON RENUM
R/W R R R R/W R/W R/W R/W
0 0 0 0 0 1 0 0

Figure 3-2. USB Control and Status Register

To simulate a USB disconnect, the firmware sets DISCON to 1. To reconnect, the firmware clears
DISCON to 0.

Before reconnecting, the firmware sets or clears the RENUM bit to indicate whether the firmware
or the Default USB Device will handle device requests over endpoint zero: if RENUM=0, the
Default USB Device will handle device requests; if RENUM=1, the firmware will.

3.10 Multiple ReNumerations™

FX2 firmware can ReNumerate™ anytime. One use for this capability might be to fine tune an iso-
chronous endpoint’'s bandwidth requests by trying various descriptor values and ReNumerating.

Page 3-12 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 90 of 460

Chapter 4 Interrupts

4.1 Introduction

The EZ-USB FX2's interrupt architecture is an enhanced and expanded version of the standard
8051's. The FX2 responds to the interrupts shown in Table 4-1; interrupt sources that are not
present in the standard 8051 are shown in bold type.

Table 4-1. FX2 Interrupts

Interrupt | Natural

FX2 Interrupt Source Vector Priority
IEO INTO Pin 0x0003 1
TFO Timer 0 Overflow 0x000B 2
IE1 INT1 Pin 0x0013 3
TF1 Timer 1 Overflow 0x001B 4
RI_LO&TILO USARTO Rx & Tx 0x0023 5
TF2 Timer 2 Overflow 0x002B 6
Resume WAKEUP / WU2 Pin or USB Resume | 0x0033 0
RL1&TIL1 USART1 Rx & Tx 0x003B 7
USBINT USB 0x0043 8
[2CINT [2C-Compatible Bus 0x004B 9
IE4 GPIF / FIFOs / INT4 Pin 0x0053 10
IE5 INT5 Pin 0x005B 1
IE6 INT6 Pin 0x0063 12

The Natural Priority column in Table 4-1 shows the FX2 interrupt priorities. As explained in Chap-
ter 14, "Timers/Counters and Serial Interface", the FX2 can assign each interrupt to a high or low
priority group. The FX2 resolves priorities within the groups using the natural priorities.

Chapter 4. Interrupts Page 4-1

Exhibit 2058 - Page 91 of 460

EZ-USB FX2 Technical Reference Manual

4.2 SFRs

The following SFRs are associated with interrupt control:

IE - SFR OxA8 (Table 4-2)

IP - SFR 0xB8 (Table 4-3)

EXIF - SFR 0x91 (Table 4-4)

EICON - SFR 0xD8 (Table 4-5)

EIE - SFR OXES8 (Table 4-6)

EIP - SFR OxF8 (Table 4-7)

The IE and IP SFRs provide interrupt enable and priority control for the standard interrupt unit, as
with the standard 8051. Additionally, these SFRs provide control bits for the Serial Port 1 interrupt.

The EXIF, EICON, EIE and EIP Registers provide flags, enable control, and priority control.

Bit

IE.7

IE.6

IE.5

IE.4

IE.3

IE.2

IE.1

IE.O

Page 4-2

Table 4-2. |E Register — SFR OxA8

Function

EA - Global interrupt enable. Controls masking of all interrupts except USB wakeup
(resume). EA = 0 disables all interrupts except USB wakeup. When EA = 1, interrupts are
enabled or masked by their individual enable bits.

ES1 - Enable Serial Port 1 interrupt. ES1 = 0 disables Serial port 1 interrupts (TI_1 and
RI_1). ES1 = 1 enables interrupts generated by the TI_1 or RI_1 flag.

ET2 - Enable Timer 2 interrupt. ET2 = 0 disables Timer 2 interrupt (TF2). ET2=1 enables
interrupts generated by the TF2 or EXF2 flag.

ESO - Enable Serial Port 0 interrupt. ESO = 0 disables Serial Port 0 interrupts (TI_0 and
RI_0). ES0=1 enables interrupts generated by the TI_0 or RI_0 flag.

ET1 - Enable Timer 1 interrupt. ET1 = 0 disables Timer 1 interrupt (TF1). ET1=1 enables
interrupts generated by the TF1 flag.

EX1 - Enable external interrupt 1. EX1 = 0 disables external interrupt 1 (INT1). EX1=1
enables interrupts generated by the INT1 pin.

ETO - Enable Timer O interrupt. ETO = 0 disables Timer 0 interrupt (TF0). ETO=1 enables
interrupts generated by the TFO flag.

EXO - Enable external interrupt 0. EX0 = 0 disables external interrupt O (INTO). EX0=1
enables interrupts generated by the INTO pin.

EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 92 of 460

iul ESS

Table 4-3. IP Register — SFR 0xB8

Bit Function
IP.7 Reserved. Read as 1.
IP.6 PS1 - Serial Port 1 interrupt priority control. PS1 = 0 sets Serial Port 1 interrupt

(TI_1 or RI_1) to low priority. PS1 = 1 sets Serial port 1 interrupt to high priority.

IP.5 PT2 - Timer 2 interrupt priority control. PT2 = 0 sets Timer 2 interrupt (TF2) to low
priority. PT2 = 1 sets Timer 2 interrupt to high priority.

IP.4 PSO0 - Serial Port 0 interrupt priority control. PSO = 0 sets Serial Port 0 interrupt
(T1_O or RI_O0) to low priority. PS0 = 1 sets Serial Port 0 interrupt to high priority.

IP.3 PT1 - Timer 1 interrupt priority control. PT1 = 0 sets Timer 1 interrupt (TF1) to low
priority. PT1 = 1 sets Timer 1 interrupt to high priority.

IP.2 PX1 - External interrupt 1 priority control. PX1 = 0 sets external interrupt 1 (INT1)
to low priority. PT1 = 1 sets external interrupt 1 to high priority.

IP.1 PTO - Timer 0 interrupt priority control. PTO = 0 sets Timer 0 interrupt (TFO) to low
priority. PTO = 1 sets Timer 0 interrupt to high priority.

IP.0 PXO0 - External interrupt O priority control. PX0 = 0 sets external interrupt 0 (INTO)
to low priority. PX0 = 1 sets external interrupt O to high priority.

Table 4-4. EXIF Register — SFR 0x91

Bit Function

EXIF.7 IE5 - External Interrupt 5 flag. IE5 = 1 indicates a falling edge was detected at the
INT5 pin. IE5 must be cleared by software. Setting IE5 in software generates an
interrupt, if enabled.

EXIF.6 IE4 - GPIF/FIFO/External Interrupt 4 flag. The “INT4” interrupt is internally con-
nected to the FIFO/GPIF interrupt by default; it can optionally function as Exter-
nal Interrupt 4 on the 100- and 128-pin FX2. When configured as External
Interrupt 4, IE4 indicates that a rising edge was detected at the INT4 pin. IE4
must be cleared by software. Setting IE4 in software generates an interrupt, if
enabled.

EXIF.5 I2CINT - I12C-Compatible Bus Interrupt flag. 2CINT = 1 indicates an 12C-Compati-
ble Bus interrupt. I2CINT must be cleared by software. Setting I2CINT in software
generates an interrupt, if enabled.

EXIF.4 USBINT - USB Interrupt flag. USBINT = 1 indicates an USB interrupt. USBINT
must be cleared by software. Setting USBINT in software generates an interrupt,
if enabled.

EXIF.3 Reserved. Read as 1.
EXIF.2-0 | Reserved. Read as 0.

Chapter 4. Interrupts Page 4-3

Exhibit 2058 - Page 93 of 460

EZ-USB FX2 Technical Reference Manual

Table 4-5. EICON Register — SFR 0xD8

Bit Function

EICON.7 | SMOD1 - Serial Port 1 baud rate doubler enable. When SMOD1 = 1, the
baud rate for Serial Port 1 is doubled.

EICON.6 |Reserved. Read as 1.

EICON.5 | ERESI - Enable Resume interrupt. ERESI = 0 disables the Resume inter-
rupt. ERESI = 1 enables interrupts generated by the resume event.

EICON.4 | RESI - Wakeup interrupt flag. RESI = 1 indicates a false-to-true transition
was detected at the WAKEUP or WU pin, or that USB activity has resumed
from the suspended state. RESI must be cleared by software before exiting
the interrupt service routine, otherwise the interrupt will immediately be
reasserted. Setting RESI = 1 in software generates a wakeup interrupt, if
enabled.

EICON.3 |INT6 - External interrupt 6. When INT6 = 1, the INT6 pin has detected a low
to high transition. INT6 must be cleared by software. Setting this bit in soft-
ware generates an INT6 interrupt, if enabled.

EICON.2-0 Reserved. Read as 0.

Table 4-6. EIE Register — SFR OxE8

Bit Function
EIE.7-5 Reserved. Read as 1.

EIE.4 EX6 - Enable external interrupt 6. EX6 = 0 disables external interrupt 6
(INT6). EX6 = 1 enables interrupts generated by the INT6 pin.

EIE.3 EX5 - Enable external interrupt 5. EX5 = 0 disables external interrupt 5
(INT5). EX5 = 1 enables interrupts generated by the INT5 pin.

EIE.2 EX4 - Enable external interrupt 4. EX4 = 0 disables external interrupt 4
(INT4). EX4 = 1 enables interrupts generated by the INT4 pin or by the
FIFO/GPIF Interrupt.

EIE.1 EI2C - Enable 12C-Compatible Bus interrupt (I2CINT). EI2C = 0 disables the
I2C-Compatible Bus interrupt. EI2C = 1 enables interrupts generated by the
I2C-Compatible Bus controller.

EIE.O EUSB - Enable USB interrupt (USBINT). EUSB = 0 disables USB interrupts.
EUSB = 1 enables interrupts generated by the USB Interface.

Page 4-4 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 94 of 460

iul ESS

Table 4-7. EIP Register — SFR OxF8

Bit Function
EIP.7-5 Reserved. Read as 1.

EIP.4 PX6 - External interrupt 6 priority control. PX6 = 0 sets external interrupt 6 (INT6)
to low priority. PX6 = 1 sets external interrupt 6 to high priority.

EIP.3 PX5 - External interrupt 5 priority control. PX5 = 0 sets external interrupt 5 (INT5)
to low priority. PX5=1 sets external interrupt 5 to high priority.

EIP.2 PX4 - External interrupt 4 priority control. PX4 = 0 sets external interrupt 4
(INT4 / GPIF / FIFO) to low priority. PX4=1 sets external interrupt 4 to high priority.

EIP.1 PI2C - I2CINT priority control. PI2C = 0 sets 12C-Compatible Bus interrupt to low pri-
ority. PI12C=1 sets 12C-Compatible Bus interrupt to high priority.

EIP.O PUSB - USBINT priority control. PUSB = 0 sets USB interrupt to low priority.

PUSB=1 sets USB interrupt to high priority.

4.2.1 803x/805x Compatibility

The implementation of interrupts is similar to that of the Dallas Semiconductor DS80C320.
Table 4-8 summarizes the differences in interrupt implementation between the Intel 8051, the Dal-
las Semiconductor DS80C320, and the FX2.

Table 4-8. Summary of Interrupt Compatibility

Feature Intel Dallas Cypress
8051 DS80C320 FX2

Power Fail Interrupt Not implemented | Internally generated | Replaced with RESUME Interrupt

External Interrupt O Implemented Implemented Implemented

Timer O Interrupt Implemented Implemented Implemented

External Interrupt 1 Implemented Implemented Implemented

Timer 1 Interrupt Implemented Implemented Implemented

Serial Port 0 Interrupt Implemented Implemented Implemented

Timer 2 Interrupt Not implemented | Implemented Implemented

Serial Port 1 Interrupt Not implemented | Implemented Implemented

External Interrupt 2 Not implemented | Implemented Replaced with autovectored USB
Interrupt

External Interrupt 3 Not implemented | Implemented Replaced with 12C-Compatible Bus Inter-
rupt

External Interrupt 4 Not implemented | Implemented Replaced by autovectored FIFO/GPIF
Interrupt. Can be configured as External
Interrupt 4 on 100- and 128-pin FX2 only.

External Interrupt 5 Not implemented | Implemented Implemented

Watchdog Timer Interrupt| Not implemented | Internally generated | Replaced with External Interrupt 6

Real-time Clock Interrupt| Not implemented | Implemented Not implemented

Chapter 4. Interrupts

Exhibit 2058 -

Page 95 of 460

Page 4-5

EZ-USB FX2 Technical Reference Manual

4.3 Interrupt Processing

When an enabled interrupt occurs, the FX2 completes the instruction it's currently executing, then
vectors to the address of the interrupt service routine (ISR) associated with that interrupt (see
Table 4-9). The FX2 executes the ISR to completion unless another interrupt of higher priority
occurs. Each ISR ends with a RETI (return from interrupt) instruction. After executing the RETI ,
the FX2 continues executing firmware at the instruction following the one which was executing
when the interrupt occurred.

NG
The FX2 always completes the instruction in progress before servicing an interrupt. If the instruc-

tion in progress is RETI , or a write access to any of the IP, IE, EIP, or EIE SFRs, the FX2 com-
pletes one additional instruction before servicing the interrupt.

4.3.1 Interrupt Masking

The EA Bit in the IE SFR (IE.7) is a global enable for all interrupts except the RESUME (USB
wakeup) interrupt, which is always enabled. When EA = 1, each interrupt is enabled or masked by
its individual enable bit. When EA = 0, all interrupts are masked except the USB wakeup interrupt.

Table 4-9 provides a summary of interrupt sources, flags, enables, and priorities.

Page 4-6 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 96 of 460

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

Table 4-9. Interrupt Flags, Enables, Priority Control, and Vectors

A Interrupt Interrupt Asglghed Natural | Interrupt
Interrupt Description Priority .
Request Flag Enable Priority = Vector
Control
RESUME Resume interrupt EICON.4 EICON.5 | Always 0 0x0033
Highest (highest)
INTO External interrupt O TCON.1 IE.O IP.0 1 0x0003
TFO Timer O interrupt TCON.5 IE.1 IP.1 2 0x000B
INT1 External interrupt 1 TCON.3 IE.2 IP.2 3 0x0013
TF1 Timer 1 interrupt TCON.7 IE.3 IP.3 4 0x001B
TI_O or RI_O | Serial port O transmit or SCONO0.1 (TL.O) IE.4 IP.4 5 0x0023
receive interrupt SCONO0.0 (RI_0)
TF2 or EXF2 | Timer 2 interrupt T2CON.7 (TF2) |IE.5 IP.5 6 0x002B
T2CON.6 (EXF2)
TI_1 or RI_1 | Serial port 1 transmit or SCON1.1 (TI_1) |IE.6 IP.6 7 0x003B
receive interrupt SCON1.0 (RI_1)
USBINT Autovectored USB interrupt | EXIF.4 EIE.O EIP.0 8 0x0043
12CINT I12C-Compatible Bus inter- EXIT.5 EIE.1 EIP.1 9 0x004B
rupt
INT4 Autovectored FIFO / GPIF or | EXIF.6 EIE.2 EIP.2 10 0x0053
External interrupt 4
INTS External interrupt 5 EXIF.7 EIE.3 EIP.3 11 0x005B
INT6 External interrupt 6 EICON.3 EIE.4 EIP.4 12 0x0063

4.3.1.1 Interrupt Priorities

There are two stages of interrupt priority: assigned interrupt level and natural priority. Assigned pri-
ority is set by FX2 firmware; natural priority is as shown in Table 4-9, and is fixed.

The assigned interrupt level (highest, high, or low) takes precedence over natural priority. The
RESUME (USB wakeup) interrupt always has highest assigned priority and is the only interrupt
that can have highest assigned priority. All other interrupts can be assigned either high or low prior-

ity.

In addition to an assigned priority level (high or low), each interrupt also has a natural priority, as
listed in Table 4-9. Simultaneous interrupts with the same assigned priority level (for example, both
high) are resolved according to their natural priority. For example, if INTO and INT1 are both
assigned high priority and both occur simultaneously, INTO takes precedence due to its higher nat-
ural priority.

Once an interrupt is being serviced, only an interrupt of higher assigned priority level can interrupt
the service routine. That is, an ISR for a low-assigned-level interrupt can only be interrupted by a
high-assigned-level interrupt. An ISR for a high-assigned-level interrupt can only be interrupted by
the RESUME interrupt.

Chapter 4. Interrupts Page 4-7

Exhibit 2058 - Page 97 of 460

EZ-USB FX2 Technical Reference Manual

4.3.2 Interrupt Sampling

The internal timers and serial ports generate interrupts by setting the interrupt flag bits shown in
Table 4-9. These interrupts are sampled once per instruction cycle (i.e., once every 4 CLKOUT
cycles).

INTO and INT1 are both active low and can be programmed to be either edge-sensitive or level-

sensitive, through the ITO and IT1 bits in the TCON SFR. When ITx = 0, INTx is level-sensitive and
the FX2 sets the |IEx flag when the INTX pin is sampled low. When ITx = 1, INTx is edge-sensitive
and the FX2 sets the IEx flag when the INTx pin is sampled high then low on consecutive samples.

The remaining five interrupts (INT 4-6, USB & 12C-Compatible Bus interrupts) are edge-sensitive
only. INT6 and INT4 are active high and INT5 is active low.

To ensure that edge-sensitive interrupts are detected, the interrupt pins should be held in each
state for a minimum of one instruction cycle (4 CLKOUT cycles). Level-sensitive interrupts are not
latched; their pins must remain asserted until the interrupt is serviced.

4.3.3 Interrupt Latency

Interrupt response time depends on the current state of the FX2. The fastest response time is 5
instruction cycles: 1 to detect the interrupt, and 4 to perform the LCALL to the ISR.

The maximum latency is 13 instruction cycles. This 13-cycle latency occurs when the FX2 is cur-
rently executing a RETI instruction followed by a MJUL or DI V instruction. The 13 instruction cycles
in this case are: 1 to detect the interrupt, 3 to complete the RETI , 5 to execute the DI V or MUL, and
4 to execute the LCALL to the ISR.

This13-instruction-cycle latency excludes autovector latency for the USB and FIFO/GPIF inter-
rupts (see Sections 4.5 and 4.8). Autovectoring adds a fixed 4 instruction cycles, so the maximum
latency for an autovectored USB or FIFO/GPIF interrupt is 13 + 4 = 17 instruction cycles.

4.4 USB-Specific Interrupts

The FX2 provides 28 USB-specific interrupts. One, “Resume”, has its own dedicated interrupt; the
other 27 share the “USB” interrupt.

4.4.1 Resume Interrupt

After the FX2 has entered its idle state, it responds to an external signal on its WAKEUP/WU2 pins
or resumption of USB bus activity by restarting its oscillator and resuming firmware execution.

Chapter 6, "Power Management" describes suspend/resume signaling in detail, and presents an
example which uses the Wakeup Interrupt.

Page 4-8 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 98 of 460

iul ESS

4.4.2 USB Interrupts

Table 4-10 shows the 27 USB requests that share the USB Interrupt. Figur e4-1 shows the USB
Interrupt logic; the bottom IRQ, EP8ISOERR, is expanded in the diagram to show the logic which
is associated with each USB interrupt request.

Table 4-10. Individual USB Interrupt Sources

INT2VEC
Priority Value Source Notes
1 00 SUDAV SETUP Data Available
2 04 SOF Start of Frame (or microframe)
3 08 SUTOK Setup Token Received
4 oC SUSPEND | USB Suspend request
5 10 USB RESET | Bus reset
6 14 HISPEED Entered high speed operation
7 18 EPOACK FX2 ACK'd the CONTROL Handshake
8 1C reserved
9 20 EPO-IN EPO-IN ready to be loaded with data
10 24 EPO-OUT EPO-OUT has USB data
11 28 EP1-IN EP1-IN ready to be loaded with data
12 2C EP1-OUT EP1-OUT has USB data
13 30 EP2 IN: buffer available. OUT: buffer has data
14 34 EP4 IN: buffer available. OUT: buffer has data
15 38 EP6 IN: buffer available. OUT: buffer has data
16 3C EP8 IN: buffer available. OUT: buffer has data
17 40 IBN IN-Bulk-NAK (any IN endpoint)
18 44 reserved
19 48 EPOPING EPO OUT was Pinged and it NAK'd
20 4C EP1PING EP1 OUT was Pinged and it NAK'd
21 50 EP2PING EP2 OUT was Pinged and it NAK'd
22 54 EP4PING EP4 OUT was Pinged and it NAK'd
23 58 EP6PING EP6 OUT was Pinged and it NAK'd
24 5C EP8PING EP8 OUT was Pinged and it NAK'd
25 60 ERRLIMIT Bus errors exceeded the programmed limit
26 64 reserved
27 68 reserved
28 6C reserved
29 70 EP2ISOERR | ISO EP2 OUT PID sequence error
30 74 EP4ISOERR | ISO EP4 OUT PID sequence error
31 78 EP6ISOERR | ISO EP6 OUT PID sequence error
32 7C EP8ISOERR | ISO EP8 OUT PID sequence error
Chapter 4. Interrupts Page 4-9

Exhibit 2058 - Page 99 of 460

EZ-USB FX2 Technical Reference Manual

USB Interrupt

00 [SUDAV
o1
02 [SUTOK
]
S
S
—
® —_—
—
® FX2 "USB"
S Interrupt
— >
[
I R EXIF.4(rd)
[—
EXIF.4(0)
—
—_—
—
—
—>
S
29 [EP4ISOERR
30 [EP6ISOERR

‘ USBERRIE.7
131 [EPSISOERR S
i USBERRIRQ.7 (1) R USBERRIRQ.7 (rd)] |

§ Interrupt Request Latch

—>INT2VEC

0 V4 | IV3 | IVv2 | IV1 | IVO 0 0

Figure 4-1. USB Interrupts

Referring to the logic inside the dotted lines, each USB interrupt source has an interrupt request
latch. IRQ bits are set automatically by the FX2; firmware clears an IRQ bit by writing a “1” to it.
The output of each latch is ANDed with an Interrupt Enable Bit and then ORed with all the other
USB Interrupt request sources.

The FX2 prioritizes the USB interrupts and constructs an Autovector, which appears in the
INT2VEC register. The interrupt vector values IV[4:0] are shown to the left of the interrupt sources
(shaded boxes); 0 is the highest priority, 31 is the lowest. If two USB interrupts occur simulta-
neously, the prioritization affects which one is first indicated in the INT2VEC register.

Page 4-10 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 100 of 460

iul ESS

If Autovectoring is enabled, the INT2VEC byte replaces the contents of address 0x0045 in the
FX2's program memory. This causes the FX2 to automatically vector to a different address for
each USB interrupt source. This mechanism is explained in detail in Section 4.5. "USB-Interrupt
Autovectors."

Due to the OR gate in Figure 4-1, assertion of any of the individual USB interrupt sources sets the
FX2's “main” USB Interrupt request bit (EXIF.4). This main USB interrupt is enabled by setting
EIE.O to 1.

To clear the main USB interrupt request, firmware clears the EXIF.4 bit to 0.

After servicing a USB interrupt, FX2 firmware clears the individual USB source’s IRQ bit by setting
it to 1. If any other USB interrupts are pending, the act of clearing the IRQ bit causes the FX2 to
generate another pulse for the highest-priority pending interrupt. If more than one is pending, each
is serviced in the priority order shown in Figur e4-1, starting with SUDAV (priority 00) as the high-
est priority, and ending with EP8ISOERR (priority 31) as the lowest.

#
The main USB interrupt request is cleared by clearing the EXIF.4 bit to 0; each individual USB
interrupt is cleared by setting its IRQ bit to 1.

Important

It is important in any USB Interrupt Service Routine (ISR) to clear the main USB Interrupt
before clearing the individual USB interrupt request latch. This is because as soon as the
individual USB interrupt is cleared, any pending USB interrupt will immediately try to gener-
ate another main USB Interrupt. If the main USB IRQ bit has not been previously cleared, the
pending interrupt will be lost.

Chapter 4. Interrupts Page 4-11

Exhibit 2058 - Page 101 of 460

EZ-USB FX2 Technical Reference Manual

Figure 4-2 illustrates a typical USB ISR for endpoint 2-IN.

USB | SR push

push
push
push
push
push

nov
clr

(service the

pop
pop
pop
pop
pop
pop

reti

dps
dpl
dph
dpl 1
dphl
acc

a, EXIF
acc. 4
EXIF, a

dpt r, #USBERRI RQ ;

a, #10000000b
@lptr, a

interrupt here)

acc
dphl
dpl 1
dph
dpl
dps

FIRST clear the USB (INT2) interrupt request
Note: EXIF reg is not bit-addressable

now clear the USB i nterrupt request
use EP8I SOERR as exanpl e

Figure 4-2. The Order of Clearing Interrupt Requests is Important

The registers associated with the individual USB interrupt sources are described in Chapter 15,
"Registers" and Section 8.6, "CPU Control of FX2 Endpoints". Each interrupt source has an
enable (IE) and a request (IRQ) bit. Firmware sets the IE bit to 1 to enable the interrupt. The FX2
sets an IRQ bit to 1 to request an interrupt, and the firmware clears an IRQ bit by writing a “1” to it.

4.4.2.1 SUTOK, SUDAV Interrupts

Page 4-12

<«—SETUP Stage——»

S D C
E g E g All 8bytes || R A
T ollollc T|| Setup C ©
u Rl s A Data 1 K
P 0 6
Token Packet Data Packet IS Pkt

SUTOK J SUDAV J

Interrupt

Interrupt

Figure 4-3. SUTOK and SUDAY Interrupts

EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 102 of 460

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

SUTOK and SUDAV are supplied to the FX2 by CONTROL endpoint zero. The first portion of a
USB CONTROL transfer is the SETUP stage shown in Figure 4-3 (a full CONTROL transfer is
shown in Figure 2-1). When the FX2 decodes a SETUP packet, it asserts the SUTOK (SETUP
Token) Interrupt Request. After the FX2 has received the eight bytes error-free and copied them
into the eight internal registers at SETUPDAT, it asserts the SUDAV Interrupt Request.

Firmware responds to the SUDAV Interrupt by reading the eight SETUP data bytes in order to
decode the USB request (Chapter 2, "Endpoint Zero").

The SUTOK Interrupt is provided to give advance warning that the eight register bytes at
SETUPDAT are about to be overwritten. It is useful for debug and diagnostic purposes.

4.4.2.2 SOF Interrupt

[
R
c
5

Token Pkt

Figure 4-4. A Start Of Frame (SOF) Packet

A USB Start-of-Frame Interrupt Request is asserted when the host sends a Start of Frame (SOF)
packet. SOFs occur once per millisecond in full-speed (12 Mbits/sec) mode, and once every 125
microseconds in high-speed (480 Mbits/sec) mode.

When the FX2 receives an SOF packet, it copies the eleven-bit frame number (FRNO in Figu re4-
4) into the USBFRAMEH:L registers and asserts the SOF Interrupt Request. All isochronous end-
point data is generally serviced via the SOF Interrupt.

4.4.2.3 Suspend Interrupt

If the FX2 detects a “suspend” condition from the host, it asserts the SUSP (Suspend) Interrupt
Request. A full description of Suspend-Resume signaling appears in Chapter 6, "Power Manage-
ment".

4.4.2.4 USB RESET Interrupt

The USB host signals a bus reset by driving both D+ and D- low for at least 10 ms. When the FX2
detects the onset of USB bus reset, it asserts the URES Interrupt Request.

4.4.2.5 HISPEED Interrupt

This interrupt is asserted when the host grants high-speed (480 Mbps) access to the FX2.

4.4.2.6 EPOACK Interrupt

This interrupt is asserted when the FX2 has acknowledged the STATUS stage of a CONTROL
transfer on endpoint 0.

Chapter 4. Interrupts Page 4-13

Exhibit 2058 - Page 103 of 460

EZ-USB FX2 Technical Reference Manual

4.4.2.7 Endpoint Interrupts

These interrupts are asserted when an endpoint requires service.

For an OUT endpoint, the interrupt request signifies that OUT data has been sent from the host,
validated by the FX2, and is in the endpoint buffer memory.

For an IN endpoint, the interrupt request signifies that the data previously loaded by the FX2 into
the IN endpoint buffer has been read and validated by the host, making the IN endpoint buffer
ready to accept new data.

Table 4-11. Endpoint Interrupts

EPO-IN EPO-IN ready to be loaded with data (BUSY bit 1-to-0)
EPO-OUT | EPO-OUT has received USB data (BUSY bit 1-to-0)
EP1-IN EP1-IN ready to be loaded with data (BUSY bit 1-to-0)
EP1-OUT |EP1-OUT has received USB data (BUSY bit 1-to-0)

EP2 IN: Buffer available (Empty Flag 1-to-0)

OUT: Buffer has received USB data (Empty Flag 0-to-1)
EP4 IN: Buffer available (Empty Flag 1-to-0)

OUT: Buffer has received USB data (Empty Flag 0-to-1)
EP6 IN: Buffer available (Empty Flag 1-to-0)

OUT: Buffer has received USB data (Empty Flag 0-to-1)
EPS8 IN: Buffer available (Empty Flag 1-to-0)

OUT: Buffer has received USB data (Empty Flag 0-to-1)

4.4.2.8 In-Bulk-NAK (IBN) Interrupt

When the host sends an IN token to any IN endpoint which does not have data to send, the FX2
automatically NAKs the IN token and asserts this interrupt.

4.4.2.9 EPXPING Interrupt

These interrupts are active only during high speed (480 Mbits/sec) operation.

USB 2.0 improves the USB 1.1 bus bandwidth utilization by implementing a PING-NAK mecha-
nism for OUT transfers. When the host wishes to send OUT data to an endpoint, it first sends a
PING token to see if the endpoint is ready (i.e. if it has an empty buffer). If a buffer is not available,
the FX2 returns a NAK handshake. PING-NAK transactions continue to occur until an OUT buffer
is available, at which time the FX2 answers a PING with an ACK handshake and the host sends
the OUT data to the endpoint.

The EPXPING interrupt is asserted when the host PINGs an endpoint and the FX2 responds with
a NAK because no endpoint buffer memory is available.

Page 4-14 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 104 of 460

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

This interrupt is asserted when the USB error-limit counter has exceeded the preset error limit
threshold. See Section 8.6.3.3 for full details.

4.4.2.10 ERRLIMIT Interrupt

4.4.2.11 EPXISOERR Interrupt

These interrupts are asserted when an ISO data PID is missing or arrives out of sequence, or
when an ISO packet is dropped because no buffer space is available (to receive an OUT packet)
or no data is available to be sent (from an IN buffer).

4.5 USB-Interrupt Autovectors

The main USB interrupt is shared by 27 interrupt sources. To save the code and processing time
which normally would be required to identify the individual USB interrupt source, the FX2 provides
a second level of interrupt vectoring, called Autovectoring. When a USB interrupt is asserted, the
FX2 pushes the program counter onto its stack then jumps to address 0x0043, where it expects to
find a “jump” instruction to the USB Interrupt service routine.

The FX2 jump instruction is encoded as follows:

Table 4-12. FX2 JUMP Instruction

Address | Op-Code Hex Value

0x0043 LIMP 0x02
0x0044 AddrH OxHH
0x0045 AddrL OxLL

If Autovectoring is enabled (AV2EN=1 in the INTSETUP register), the FX2 substitutes its INT2VEC
byte (see Table 4-10) for the byte at address 0x0045. Therefore, if the high byte (“page”) of a jump-
table address is preloaded at location 0x0044, the automatically-inserted INT2VEC byte at 0x0045
will direct the jump to the correct address out of the 27 addresses within the page.

As shown in Table 4-13, the jump table contains a series of jump instructions, one for each individ-
ual USB Interrupt source’s ISR.

Chapter 4. Interrupts Page 4-15

Exhibit 2058 - Page 105 of 460

EZ-USB FX2 Technical Reference Manual

Table 4-13. A Typical USB-Interrupt Jump Table

Table Offset Instruction
0x00 LIMP SUDAV_ISR
0x04 LIMP SOF_ISR
0x08 LIMP SUTOK_ISR
0x0C LIMP SUSPEND_ISR
0x10 LIMP USBRESET_ISR
0x14 LIMP HISPEED_ISR
0x18 LIMP EPOACK_ISR
0x1C LIMP SPARE_ISR
0x20 LIJMP EPOIN _ISR
0x24 LIMP EPOOUT_ISR
0x28 LIJMP EP1IN _ISR
0x2C LIMP EP10OUT_ISR
0x30 LIMP EP2_ISR
0x34 LIMP EP4_ISR
0x38 LIJMP EP6_ISR
0x3C LIMP EP8_ISR
0x40 LIMP IBN_ISR
0x44 LIMP SPARE_ISR
0x48 LIJMP EPOPING_ISR
0x4C LIMP EP1PING_ISR
0x50 LIMP EP2PING_ISR
0x54 LIMP EP4PING_ISR
0x58 LIMP EP6PING_ISR
0x5C LIMP EP8PING_ISR
0x60 LIMP ERRLIMIT_ISR
0x64 LIMP SPARE_ISR
0x68 LIMP SPARE_ISR
0x6C LIMP SPARE_ISR
0x70 LIMP EP2ISOERR_ISR
0x74 LIMP EP2ISOERR_ISR
0x78 LIMP EP2ISOERR_ISR
0x7C LIMP EP2ISOERR_ISR

Page 4-16 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 106 of 460

4.5.1 USB Autovector Coding

To employ autovectoring for the USB interrupt:

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

1. Insert a jump instruction at 0x0043 to a table of jump instructions to the various USB interrupt
service routines. Make sure the jump table starts on a 0x0100-byte page boundary.

2. Code the jump table with jump instructions to each individual USB interrupt service routine.
This table has two important requirements, arising from the format of the INT2VEC Byte (zero-
based, with the 2 LSBs set to 0):

* It must begin on a page boundary (address 0xnn00)

e The jump instructions must be four bytes apart.

3. The interrupt service routines can be placed anywhere in memory.
4. Write initialization code to enable the USB interrupt (INT2) and Autovectoring.

0x0043
0x0044
0x0045

INT2VEC

USB Interrupt
Vector

LIMP

04

2C
1

A

Automatically

2C

0x0400

0x042C LIMP EP2_ISR

copied by FX2

0x042D
0x042E

USB_Jmp_Table:

01

19

0x0119

Figure 4-5. The USB Autovector Mechanism in Action

EP2_ISR:

Figure 4-5 illustrates an ISR that services endpoint 2. When endpoint 2 requires service, the FX2
asserts the USB interrupt request, vectoring to location 0x0043.

The jump instruction at this location, which was originally coded as “LJMP 0400”, becomes “LIMP
042C” because the FX2 automatically inserts 2C, the INT2VEC value for EP2 (Table 4-13).

The FX2 jumps to 0x042C, where it executes the jump instruction to the EP2 ISR, arbitrarily
located for this example at address 0x0119.

Once the FX2 vectors to 0x0043, initiation of the endpoint-specific ISR takes only eight instruction

cycles.

Chapter 4. Interrupts

Exhibit 2058 - Page 107 of 460

Page 4-17

EZ-USB FX2 Technical Reference Manual

4.6 12C-Compatible Bus Interrupt

12C-
Compatible
e 1 ofs S R

RD or WR Interrupt

]
I2DAT register R R EXIF.5(rd)

I2C-Compatible Bus

Interrupt Request EXIF.5(0)

12CS | rprr STOP | LASTRD ID1 IDO BERR ACK DONE
OXE678
I2DAT D7 D6 D5 D4 D3 D2 D1 DO
OXE679

Figure 4-6. 12C-Compatible Bus Interrupt-Enable Bits and Registers

Chapter 13, "Input/Output” describes the interface to the FX2's 12C-Compatible Bus controller. The
FX2 uses two registers, 12CS (Control and Status) and I2DAT (Data), to transfer data over the bus.

An I2C-Compatible Bus Interrupt is asserted whenever one of the following occurs:

» The DONE Bit (12CS.0) makes a zero-to-one transition, signalling that the bus controller is
ready for another command.
* The STOP bit (12CS.6) makes a one-to-zero transition.

To enable the “Done” interrupt source, set EIE.1 to 1; to additionally enable the “Stop” interrupt
source, set STOPIE to 1. If both interrupts are enabled, the interrupt source may be determined by
checking the DONE and STOP Bits in the 12CS register.

To reset the Interrupt Request, write a zero to EXIF.5. Any firmware read or write to the I2DAT or
I2CS register also automatically clears the Interrupt Request.

NG
While the I2C-Compatible Bus controller is generating the “stop” condition, it ignores accesses to
the 12CS and I2DAT registers. Firmware should therefore check the STOP Bit for zero before writ-

ing new data to 12CS or 12DAT.

Page 4-18 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 108 of 460

iul ESS

4.7 FIFO/GPIF Interrupt (INT4)

Just as the USB Interrupt is shared among 27 individual USB-interrupt sources, the FIFO/GPIF
interrupt is shared among 14 individual FIFO/GPIF sources.

The FIFO/GPIF Interrupt, like the USB Interrupt, can employ autovectoring. Table 4-14 shows the
priority and INT4VEC values for the 14 FIFO/GPIF interrupt sources.

Table 4-14. Individual FIFO/GPIF Interrupt Sources

INT4VEC
Priority Value Source Notes
1 80 EP2PF Endpoint 2 Programmable Flag
2 84 EP4PF Endpoint 4 Programmable Flag
3 88 EP6PF Endpoint 6 Programmable Flag
4 8C EP8PF Endpoint 8 Programmable Flag
5 90 EP2EF Endpoint 2 Empty Flag
6 94 EP4EF Endpoint 4 Empty Flag
7 98 EPGEF Endpoint 6 Empty Flag
8 9C EPSEF Endpoint 8 Empty Flag
9 AO EP2FF Endpoint 2 Full Flag
10 A4 EP4FF Endpoint 4 Full Flag
11 A8 EP6FF Endpoint 6 Full Flag
12 AC EP8FF Endpoint 8 Full Flag
13 BO GPIFDONE | GPIF Operation Complete

(See Chapter 10, "General Programmable
Interface (GPIF)")

14 B4 GPIFWF GPIF Waveform
(See Chapter 10, "General Programmable
Interface (GPIF)")

When FIFO/GPIF interrupt sources are asserted, the FX2 prioritizes them and constructs an
Autovector, which appears in the INT4VEC register; 0 is the highest priority, 14 is the lowest. If two
FIFO/GPIF interrupts occur simultaneously, the prioritization affects which one is first indicated in
the INT4VEC register. If Autovectoring is enabled, the INT4VEC byte replaces the contents of
address 0x0055 in the FX2’'s program memory. This causes the FX2 to automatically vector to a
different address for each FIFO/GPIF interrupt source. This mechanism is explained in detail in
Section 4.8 "FIFO/GPIF-Interrupt Autovectors".

Chapter 4. Interrupts Page 4-19

Exhibit 2058 - Page 109 of 460

EZ-USB FX2 Technical Reference Manual

Important

It is important in any FIFO/GPIF Interrupt Service Routine (ISR) to clear the main INT4 Inter-
rupt before clearing the individual FIFO/GPIF interrupt request latch. This is because as
soon as the individual FIFO/GPIF interrupt is cleared, any pending FIFO/GPIF interrupt will
immediately try to generate another main FIFO/GPIF Interrupt. If the main INT4 IRQ bit has
not been previously cleared, the pending interrupt will be lost.

The registers associated with the individual FIFO/GPIF interrupt sources are described in Chapter
15, "Registers" and Section 8.6, "CPU Control of FX2 Endpoints". Each interrupt source has an
enable (IE) and a request (IRQ) bit. Firmware sets the IE bit to 1 to enable the interrupt. The FX2
sets an IRQ bit to 1 to request an interrupt, and the firmware clears an IRQ bit by setting it to 1.

NG
The main FIFO/GPIF interrupt request is cleared by clearing the EXIF.6 bit to 0; each individual
FIFO/GPIF interrupt is cleared by setting its IRQ bit to 1.

4.8 FIFO/GPIF-Interrupt Autovectors

The main FIFO/GPIF interrupt is shared by 14 interrupt sources.To save the code and processing
time which normally would be required to sort out the individual FIFO/GPIF interrupt source, the
FX2 provides a second level of interrupt vectoring, called Autovectoring. When a FIFO/GPIF inter-
rupt is asserted, the FX2 pushes the program counter onto its stack then jumps to address
0x0053, where it expects to find a “jump” instruction to the FIFO/GPIF Interrupt service routine.

The FX2 jump instruction is encoded as follows:

Table 4-15. FX2 JUMP Instruction

Address | Op-Code | Hex Value

0x0053 LIMP 0x02
0x0054 | AddrH OxHH
0x0055 AddrL OxLL

If Autovectoring is enabled (AV4EN=L1 in the INTSETUP register), the FX2 substitutes its
INT4VEC byte (see Table 4-14) for the byte at address 0x0055. Therefore, if the high byte (“page”)
of a jump-table address is preloaded at location 0x0054, the automatically-inserted INT4VEC byte
at 0x0055 will direct the jump to the correct address out of the 14 addresses within the page.

Page 4-20 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 110 of 460

iul ESS

As shown in Table 4-16, the jump table contains a series of jump instructions, one for each individ-
ual FIFO/GPIF Interrupt source’s ISR.

Table 4-16. A Typical FIFO/GPIF-Interrupt Jump Table

Table Offset Instruction
0x80 LIMP EP2PF_ISR
0x84 LIMP EP4PF_ISR
0x88 LIMP EP6PF_ISR
0x8C LIMP EP8PF_ISR
0x90 LIMP EP2EF_ISR
0x94 LIMP EP4EF_ISR
0x98 LIMP EPG6EF_ISR
0x9C LIJMP EP8EF_ISR
OxAO0 LIMP EP2FF_ISR
0xA4 LIMP EP4FF_ISR
OxA8 LIMP EP6FF_ISR
OxAC LIMP EP8FF_ISR
0xBO LIMP GPIFDONE_ISR
0xB4 LIMP GPIFWF_ISR

4.8.1 FIFO/GPIF Autovector Coding

To employ autovectoring for the FIFO/GPIF interrupt, perform the following steps:

1. Insert a jump instruction at 0x0053 to a table of jump instructions to the various FIFO/GPIF
interrupt service routines. Make sure the jump table starts at a 0x0100-byte page boundary
plus 0x80.

2. Code the jump table with jump instructions to each individual FIFO/GPIF interrupt service rou-
tine. This table has two important requirements, arising from the format of the INT4VEC byte
(Ox80-based, with the 2 LSBs set to 0); the two requirements are the following:

e It must begin on a page boundary + 0x80 (address 0xnn80).
e The jump instructions must be four bytes apart.

3. Place the interrupt service routines anywhere in memory.

4. Write initialization code to enable the FIFO/GPIF interrupt (INT4) and Autovectoring.

Chapter 4. Interrupts Page 4-21

Exhibit 2058 - Page 111 of 460

EZ-USB FX2 Technical Reference Manual

FIFO/GPIF
Interrupt
Vector FIFO_GPIF_Jmp_Table:
0x0053 LIMP 0x0480
0x0054 04
0x0055 A
X \ EP4FF_ISR
Automatically
copied by FX2 0x04A4 LIMP EP4FF_ISR
/ 0x0321,
INT4VEC A | Ox04AS5 01
Ox04A6 19

Figure 4-7. The FIFO/GPIF Autovector Mechanism in Action

Figure 4-7 illustrates an ISR that services EP4’s Full Flag. When EP4 goes full, the FX2 asserts
the FIFO/GPIF interrupt request, vectoring to location 0x0053.

The jump instruction at this location, which was originally coded as “LIJMP 0480", becomes “LIMP
04A4” because the FX2 automatically inserts A4, the INT4VEC value for EP4AFF (Table 4-13).

The FX2 jumps to 0x04A4, where it executes the jump instruction to the EP4FF ISR, arbitrarily
located for this example at address 0x0321.

Once the FX2 vectors to 0x0053, initiation of the endpoint-specific ISR takes only eight instruction
cycles.

Page 4-22 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 112 of 460

Chapter 5

Memory

5.1 Introduction

Memory organization in the FX2 is similar, but not identical, to that of the standard 8051. There are
three distinct memory areas: Internal Data Memory, External Data Memory, and External Program
Memory. As will be explained below, “External” memory is hot necessarily external to the FX2 chip.

5.2 Internal Data RAM

As shown in Figure 5-1, the FX2's Internal Data RAM is divided into three distinct regions: the
“Lower 128", the “Upper 128", and “SFR Space”. The Lower 128 and Upper 128 are general-pur-
pose RAM; the SFR Space contains FX2 control and status registers.

Lower 128
0x7 Indirect addressing only
General- OxFF X OxFF
Purpose
0x30 Upper 128 SFR Space
X
Ox2H 78 N
_ 0x80 N 0x80
Register Bit-Addressable OX7F
Bank Select RAM
(PSW.4:3) Lower 128 Direct addressing
ox2q@___---- O only
I ool RORT (Bank 3) \
10 %’)‘(117 RO-R7 (Bank 2) 0x00
0 OXOH Ro-R7 (Bank 1) Direct or indirect addressing
0x0
0x0
0 oxod RO-R7 (Bank 0)

Chapter 5. Memory

Figure 5-1. Internal Data RAM Organization

Exhibit 2058 - Page 113 of 460

Page 5-1

EZ-USB FX2 Technical Reference Manual

5.2.1 The Lower 128

The Lower 128 occupies Internal Data RAM locations 0x00-0x7F. All of the Lower 128 may be
accessed as general-purpose RAM, using either direct or indirect addressing (for more information
on the FX2 addressing modes, see Chapter 12 "Instruction Set").

Two segments of the Lower 128 may additionally be accessed in other ways.

* Locations 0x00-0x1F comprise four banks of 8 registers each, numbered RO through R7.
The current bank is selected via the “register-select” bits (RS1:RS0) in the PSW special-
function register; code which references registers RO-R7 will access them only in the cur-
rently-selected bank.

e Locations 0x20-0x2F are bit-addressable. Each of the 128 bits in this segment may be
individually addressed, either by its bit address (0x00 to Ox7F) or by reference to the byte
which contains it (0x20.0 to 0x2F.7).

5.2.2 The Upper 128

The Upper 128 occupies Internal Data RAM locations 0x80-0xFF; all 128 bytes may be accessed
as general-purpose RAM, but only by using indirect addressing (for more information on the FX2
addressing modes, see Chapter 12 "Instruction Set").

Since the FX2's stack is internally accessed using indirect addressing, it's a good idea to put the
stack in the Upper 128; this frees the more-efficiently-accessed Lower 128 for General-Purpose
use.

5.2.3 SFR (Special Function Register) Space

The SFR Space, like the Upper 128, is accessed at Internal Data RAM locations 0x80-0OxFF. The
FX2 keeps SFR Space separate from the Upper 128 by using different addressing modes to
access the two regions: SFRs may only be accessed using direct addressing, and the Upper 128
may only be accessed using indirect addressing.

The SFR Space contains FX2 control and status registers; an overview is in Section 11.12, "Spe-
cial Function Registers (SFR)", and a full description of all the SFRs is in Chapter 15 "Registers".

The sixteen SFRs at locations 0x80, 0x88,, OxF0, OxF8 are bit-addressable. Each of the 128
bits in these registers may be individually addressed, either by its bit address (0x80 to OxFF) or by
reference to the byte which contains it (e.g., 0x80.0, 0xC8.7, etc.).

Page 5-2 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 114 of 460

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

5.3 External Program Memory and External Data Memory

The standard 8051 employs a Harvard architecture for its External memory; the program and data
memories are physically separate. The FX2 uses a modified version of this memory model; off-
chip program and data memories are separate, but the on-chip program and data memories are
unified in a Von Neumann architecture. This allows the FX2's on-chip RAM to be loaded from an
external source (USB or EEPROM, see Chapter 3 "Enumeration and ReNumeration™"), then
used as program memory.

Standard 8051

The standard 8051 has separate address spaces for program and data memory; it can address
64K of read-only program memory at addresses 0x0000-OxFFFF, and another 64K of read/write
data memory, also at addresses 0x0000-OxFFFF. The standard 8051 keeps the two memory
spaces separate by using different bus signals to access them; the read strobe for program mem-
ory is PSEN (Program Store Enable), and the read and write strobes for data memory are RD and
WR. The 8051 generates PSEN strobes for instruction fetches and for the MOVC (move code
memory into the accumulator) instruction; it generates RD and WR strobes for all data-memory
accesses. In a standard 8051 application, an external 64K ROM chip (enabled by the 8051's
PSEN signal) might be used for program memory and an external 64K RAM chip (enabled by the
8051's RD and WR signals) might be used for data memory.

In the standard 8051, all program memory is read-only.
FX2

The FX2 has 8K of on-chip RAM (the “Main RAM”) at addresses 0x0000-0x1FFF, and 512 bytes of
on-chip RAM (the “Scratch RAM”) at addresses OXE0Q00-OXE1FFF. Although this RAM is physically
located inside the chip, it's addressed by FX2 firmware as External memory, just as though it were
in an external RAM chip.

Some systems use only this on-chip RAM, with no off-chip memory. In those systems, the RD and
PSEN strobes are automatically combined for accesses to addresses below 0x2000, so the Main
RAM is accessible as both data and program memory. The RD and PSEN strobes are not com-
bined for the Scratch RAM; Scratch RAM is accessible as data memory only.

Although it's technically accurate to say that the Main RAM data memory is writable while the Main
RAM program memory is not, it's a distinction without a difference. The Main RAM is accessible
both as program memory and data memory, so writing to Main RAM data memory is equivalent to
writing to Main RAM program memory at the same address.

The Scratch RAM is never accessible as program memory.

The FX2 also reserves 7.5K (OXE200-0xFFFF) of the data-memory address space for control/sta-
tus registers and endpoint buffers (see Section 5.6, "On-Chip Data Memory at OXE0O00-OxFFFF").

Chapter 5. Memory Page 5-3

Exhibit 2058 - Page 115 of 460

EZ-USB FX2 Technical Reference Manual

Note that only the data-memory space is reserved; program memory in the 0XEO00-OxFFFF range
is not reserved, so the 128-pin FX2 can access off-chip program memory in that range.

5.3.1 56- and 100-pin FX2

The 56- and 100-pin FX2 chips have no facility for adding off-chip program or data memory. There-
fore, the Main RAM must serve as both program and data memory. To accomplish this, the FX2
reads the Main RAM using the logical OR of the PSEN and RD strobes. It is the responsibility of
the system designer to ensure that the program- and data-memory spaces do not overlap; with
most C compilers, this is done by using linker directives that place the code and data modules into
separate areas.

5.3.2 128-pin FX2

It is possible to add off-chip program and data memory to the 128-pin FX2; the organization of that
memory depends on the state of the EA (External Access) pin.

EA=0

The Main RAM is accessible both as program and data memory, just as in the 56- and 100-pin
FX2.

To avoid conflict with the Main RAM, the pins which control access to off-chip memory (the RD,
WR, CS, OE, and PSEN pins) are inactive whenever the FX2 accesses addresses 0x0000-
Ox1FFF. This allows a 64K memory chip (data and/or program) to be added without requiring addi-
tional external logic to inhibit access to the lower 8K of that chip. Note that the PSEN and RD sig-
nals are available on separate pins, so the program and data spaces outside the FX2 are not

combined as they are inside the FX2.

When code in the range 0x0000-0x1FFF is fetched from the on-chip RAM, the PSEN pin is not
asserted; when code is fetched from program memory in the range 0x2000-OxFFFF, the PSEN pin
is asserted.

EA=1

All program memory is off-chip; all on-chip RAM, including the Main RAM, is data memaory only.
The FX2 reads all on-chip RAM using only the RD strobe; the combining of RD and PSEN is dis-
abled, so the on-chip RAM becomes data memory only. All program memory is off-chip; accesses
to the lower 8K of off-chip program memory are not inhibited.

Any code fetch will assert the PSEN pin.

After a power-on-reset, the FX2 immediately begins executing code at address 0x0000 in the off-

chip program memory, rather than waiting for an EEPROM load or USB code download to com-
plete (see Chapter 7 "Resets" for a full description of the FX2 resets).

Page 5-4 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 116 of 460

iul ESS

5.4 FX2 Memory Maps

Inside FX2 Outside FX2
data memory code memory
[——— - — 1
FFFF 7.5 Kilobytes | |
USB regs and | (OK to populate |
4K EP buffers | unused data |
Data (RD,WR) I memory here-- I
E200 I RD/WR strobes |
0.5 Kbytes RAM | arenotactive) |
E000 | P2t (RD,WR) [56 KBytes
External
Code
48 KBytes Memory
External (PSEN)
Data
Memory
(RD,WR)
1FFF | | | |
8 Kilobytes | (OK to populate | | (OK to populate I
RAI\)I/ | unused data I |unused program |
Code & Data I memory here-- | | memory here-- |
(PSEN,RD,WR)* I RD/WR strobes | I PSEN strobe is |
Y | arenotactive) | I not active) I
0000 e I e I

EA=0
* SUDPTR, USB upload/download, EEPROM boot access

Figure 5-2. FX2 External Program/Data Memory Map, EA=0

Figure 5-2 illustrates the memory map of the 128-pin FX2 with off-chip program and data memory.

WA
The 56- and 100-pin FX2 chips cannot access off-chip memory; the entire memory map for those
chips is illustrated on the left side of Figur e5-2, in the “Inside FX2" column.

Chapter 5. Memory Page 5-5

Exhibit 2058 - Page 117 of 460

EZ-USB FX2 Technical Reference Manual

On-chip FX2 memory consists of three RAM regions:

e 0x0000-0x1FFF (Main RAM)

* OxEOO00-OXE1FF (Scratch RAM)

* OxE200-OxFFFF (Registers/Buffers)
The 8K “Main RAM” occupies code-memory (PSEN) and data-memory (RD/WR) addresses
0x0000-0x1FFF.
The 512-byte “Scratch RAM” occupies data-memory (RD/WR) addresses OXEQ00-OXE1FF.

7.5K of control/status registers and endpoint buffers occupy data-memory (RD/WR) addresses
OXE200-0xFFFF.

When off-chip memory is connected to the FX2, it fills in the gaps not occupied by on-chip FX2
RAM. Since the lower 8K of memory is occupied by on-chip program/data memory and the upper
8K is occupied by on-chip data memory, the off-chip memory cannot be active in these regions.
Nevertheless, it's still safe to populate those regions with off-chip memory, as the following para-
graphs explain.

The middle column of Figure 5-2 indicates FX2 data memory (activated by the RD and WR
strobes) and the right-most column indicates FX2 code memory (activated by PSEN).

The “middle” 48K of the data-memory space may be filled with off-chip memory, since it does not
conflict with the upper and lower 8K of on-chip FX2 data memory. To allow a 64K RAM to be con-
nected to the FX2, the FX2 gates its RD and WR strobes to exclude the top and bottom 8K for off-
chip accesses. Therefore, a 64K RAM can be connected to FX2, and the top and bottom 8K of it
are automatically disabled.

Likewise, when a 64K code memory (PSEN strobe) is attached to the FX2 (when EA = 0), the
lower 8K is automatically excluded for off-chip code fetches, avoiding conflict with the on-chip
code memory inside FX2.

#
The asterisks in Figures 5-2 and 5-3 indicate memory regions that may be accessed using three
special FX2 resources:

» Setup Data Pointer (see Section 8.7)
« Upload or download via USB (see Section 3.8)

» Code boot from an 12C-compatible EEPROM (see Section 13.5 and Section 3.4)

Page 5-6 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 118 of 460

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

Inside FX2 Outside FX2
data memory code memory
——————— 1
FFFF 7.5 Kilobytes |r |
USB regs and | (OK to populate I
4K EP buffers | unused data I
Data (RD,WR) memory here-- I
E200 : RD/WR strobes |
0.5 Kbytes RAM | arenotactive) |
E000 Data (RD,WR) I
48 KBytes 64 KBytes
External External
Data Code
Memory Memory
(RD,WR) (PSEN)
1FFF | |
8 Kilobytes | (OuKnLOSS;ZL;ItZte :
EQ:\:\ : memory here-- |
RD/WR strobes |
(RD,WR)* I s
| are not active) |
0000 e |

EA=1
* SUDPTR, USB upload/download, EEPROM boot access

Figure 5-3. FX2 External Program/Data Memory Map, EA=1

Figure 5-3 illustrates the 128-pin FX2 memory map when the EA pin is tied high. The only differ-
ence from Figure 5-2 is that the Main RAM is data memory only, instead of combined code/data
memory. This allows an off-chip code memory to contain all of the FX2 firmware. In this configura-
tion, the FX2 can begin executing code from off-chip memory immediately after power-on-reset.

NG
FX2 code execution begins at address 0x0000, where the reset vector is located.

Off-chip data memory is partially disabled just as in Figure 5-2, ensuring that off-chip data memory
does not conflict with on-chip data RAM.

Chapter 5. Memory Page 5-7

Exhibit 2058 - Page 119 of 460

EZ-USB FX2 Technical Reference Manual

#

Be careful to check the access time of external Flash or other code memory in this mode. The FX2
can stretch its RD and WR strobes to compensate for slow data memories, but it does not have
the capability to stretch its PSEN signal to allow for slow code memories. At 48 MHz, an external
code-memory chip must have an access time of approximately 44 ns or shorter (access-time
parameters are given in the CY7C68013 data sheet).

5.5 *“Von-Neumannizing” Off-Chip Program and Data Memory

The 128-pin FX2 package provides a 16-bit address bus, an 8-bit data bus, and memory control
signals PSEN, RD, and WR. These signals are used to expand the FX2's External Program and/or
External Data memory.

As described in the previous section, the FX2 gates the RD and WR signals to exclude selection
of off-chip data memory in the range occupied by the on-chip memory. The PSEN signal is also
available on a pin for connection to off-chip code memory.

In some systems, it may be desirable to combine off-chip program and data memory, just as the
FX2 combines its on-chip program/data Main RAM. These systems must logically OR the PSEN
and RD strobes to qualify the off-chip memory’s chip enable and output enable signals. To save
the external logic which would normally be needed, FX2 provides two additional control signals,
CS and OE. The equations for these active-low signals are:

CS =RD + WR + PSEN
OE = RD + PSEN

Because the RD, WR, and PSEN signals are already qualified by the addresses allocated to off-
chip memory, the added strobes CS and OE strobes are active only when the FX2 accesses off-
chip memory.

Page 5-8 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 120 of 460

iul ESS

5.6 On-Chip Data Memory at OXxEOQOO-OxFFFF

FFFF
FC0O
FBFF
F800
F7FF
F400
F3FF
F000
EFFF

EP8 Buffer (1024)

EP6 Buffer (1024)

EP4 Buffer (1024)

EP2 Buffer (1024)

RESERVED (2048)

E800
E7FF
E7CO
E7BF
E780
E77F
E740
E73F
E700
E6FF
E600
E5FF
E480
EA7F
E400
E3FF

EP1IN (64)

EP10UT (64)

EPO IN/OUT (64)

UNAVAILABLE (64)

Registers (256)

RESERVED (384)

GPIF waveforms (128)

RESERVED (512)
E200
E1FF

8051 data (512)
E000

Figure 5-4. On-Chip Data Memory at OXEOOO-OxFFFF

Figure 5-4 shows the memory map for on-chip data RAM at OXE000-OxFFFF.

512 bytes of Scratch RAM is available at 0XEO00-OXE1FF. This is data RAM only; code cannot be
run from it. The 128 bytes at 0XE400-OxE47F hold the four waveform descriptors for the GPIF,
described in Chapter 10. The shaded area from OXE600-OXE6FF contains FX2 control and status
registers.

Memory blocks 0xE200-0xE3FF, 0XE480-0xE5FF, OxE700-0xE73F, and OXE800-OxEFFF) are
reserved; they must not be used for data storage.

The remaining RAM contains the endpoint buffers. These buffers are accessible either as addres-
sable data RAM (via the ‘MOVX’ instruction) or as a FIFO (via the Autopointer, described in Sec-
tion 8.8).

Chapter 5. Memory Page 5-9

Exhibit 2058 - Page 121 of 460

EZ-USB FX2 Technical Reference Manual

Page 5-10 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 122 of 460

Chapter 6 Power Management

6.1

Introduction

The USB host can suspend a device to put it into a power-down mode. When the USB signals a
SUSPEND operation, the FX2 goes through a sequence of steps to allow the firmware first to turn
off external power-consuming subsystems, and then to enter a low-power mode by turning off the
FX2's oscillator. Once suspended, the FX2 is awakened either by resumption of USB bus activity
or by assertion of one of its two WAKEUP pins (provided that they're enabled). This chapter
describes the suspend-resume mechanism.

It is important to understand the distinction between ‘suspend’, ‘resume’, ‘idle’, and ‘wakeup’.

SUSPEND is a request—indicated by a 3-millisecond “J” state on the USB bus—from the
USB host/hub to the device. This request is usually sent by the host when it enters a low-
power “suspended” state. USB devices are required to enter a low power state in response
to this request.

The FX2 also provides a register called SUSPEND; writing any value to it will allow the
FX2 to enter the suspended state even when a SUSPEND condition doesn’t exist on the
bus.

RESUME is a signal from the device to the host, requesting that the host be taken out of its
low-power “suspended” mode. RESUME can be signaled only by a USB device that has
reported (via its Configuration Descriptor) that it supports this “remote wakeup” feature,
and only if the host has enabled remote wakeup from that device.

Idle is an FX2 low-power state. FX2 firmware initiates this mode by setting bit 0 of the
PCON (Power Control) register.To meet the stringent USB suspend current specification,
the FX2's oscillator must be stopped; after the PCON.O bit is set, the oscillator will stop if a)
a SUSPEND condition exists on the bus or the SUSPEND register has been written to,
and b) the two WAKEUP pins are either disabled or false. The FX2 exits the Idle state
when it receives a Wakeup Interrupt.

Wakeup is the mechanism which restarts the FX2 oscillator and asserts an interrupt to
force the FX2 to exit the Idle state and resume code execution. The FX2 recognizes three
wakeup sources: one from the USB itself (when bus activity resumes) and two from device
pins (WAKEUP and WU2).

Chapter 6. Power Management Page 6-1

Exhibit 2058 - Page 123 of 460

EZ-USB FX2 Technical Reference Manual

The FX2 enters and exits its Idle state independent of USB activity; in other words, the FX2 can
enter the Idle state at any time, even when not connected to USB. The Idle state is “hooked into”
the USB SUSPEND-RESUME mechanism using interrupts. An interrupt is automatically gener-
ated when the USB goes inactive for 3 milliseconds; FX2 firmware may respond to that interrupt
by entering the Idle state to reduce power. If the FX2 is in the Idle state, a Wakeup Interrupt is
generated when one of the three Wakeup sources is asserted; the FX2 responds to that interrupt
by exiting the Idle state and resuming code execution.

Once the FX2 is awake, its firmware may send a USB RESUME request by setting the SIGR-
SUME bit in the USBCS register (at OXE680). Before sending the RESUME request, the device
must have: a) reported remote-wakeup capability in its Configuration Descriptor, and b) been
given permission (via a Set Feature-Remote Wakeup request from the host) to use that remote-
wakeup capability. To be compliant with the USB Specification, firmware should wait 5 millisec-
onds after the wakeup interrupt, set the SIGRSUME bit, wait 10-15 milliseconds, then clear it.

Figure 6-1 illustrates the FX2 logic that implements USB suspend and resume. These operations
are explained in the next sections.

24 MHz

DPEN D
USB RESUME
WUEN
W:D“POL) START —p~

WAKEUP pin — STOP —p Oscillator
WU2POL
WU2 pin v
PLL
Restart)
Delay
divider
[} » CLKOUT
v
—PCON.0—
Signal
8051
—"RESUME" INT —p —» Resume
(USBCS.0)
Resume
Suspend
USB] 1
No USB activity "SUSPEND"
for 3 msec.
Interrupt
Write any value to
SUSPEND register
(0XE681)
Figure 6-1. Suspend-Resume Control
Page 6-2 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 124 of 460

iul ESS

6.2 USB Suspend

24 MHz
__STOP—p Oscillator
PLL
divider
[CLKOUT
— PCON.0—
Signal
8051 |—» Resume
(USBCS.0)

A
. usB
No USB activity "SUSPEND"
for 3 msec.
Interrupt

Write any value to
SUSPEND register
(OxE681)

Figure 6-2. USB Suspend sequence

A USB device recognizes a SUSPEND request as three milliseconds of the bus-idle (“J") state.
When the FX2 detects this condition, it asserts the USB interrupt (INT2) and the SUSPEND inter-
rupt autovector (vector #3).

If the CPU is in reset when a SUSPEND condition is detected on the bus, the FX2 will automati-
cally turn off its oscillators (and keep the CPU in reset) until an enabled wakeup source is
asserted.

NG
The bus-idle (“J") state is not equivalent to the disconnected-from-USB state; the “J” state means
that the voltage on D+ is higher than that on D-.

Chapter 6. Power Management Page 6-3

Exhibit 2058 - Page 125 of 460

EZ-USB FX2 Technical Reference Manual

FX2 firmware responds to the SUSPEND interrupt by taking the following actions:

1. Perform any necessary housekeeping such as shutting off external power-consuming devices.
2. Set bit 0 of the PCON register.

These actions put the FX2 into a low power ‘suspend’ state, as required by the USB Specification.

6.2.1 SUSPEND Register

FX2 firmware can force the chip into its low-power mode at any time, even without detecting a
3-millisecond “J” state on the USB bus. This “unconditional suspend” functionality is useful in
applications which require the FX2 to enter its low-power mode even while disconnected from the
USB bus.

To force the FX2 unconditionally to enter its low-power mode, firmware simply writes any value to
the SUSPEND register (at 0XE681) before setting the PCON.O0 bit.

6.3 Wakeup/Resume

24 MHz

DPEN I:I
USB RESUME
WUEN
ﬁD:D START > Oscillator
WAKEUP pin WU2EN
wu2POL
WU2 pin

PLL
Restart
Delay \A
divider
v
Signal
L—"WAKEUP" INT—» 8051 > Resume
(USBCS.0)
Figure 6-3. FX2 Wakeup/Resume sequence
Page 6-4 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 126 of 460

%Ef‘f:--!xr{.‘-}ﬁ

Once in the low-power mode, there are three ways to wake up the FX2:

» USB activity on the FX2's DPLUS pin
» Assertion of the WAKEUP pin
» Assertion of the WU2 (“Wakeup 27) pin

These three wakeup sources may be individually enabled by setting the DPEN, WUEN, and
WUZ2EN bits in the Wakeup Control register.

WAKEUPCS Wakeup Control & Status E682
b7 b6 b5 b4 b3 b2 bl b0
Wu2 WU WU2POL | WUPOL 0 DPEN WUZ2EN WUEN
R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 1 0 1

The polarities of the wakeup pins are set using the WUPOL and WU2POL bits; 0 is active low and
1 is active high.

Three bits in the WAKEUP register enable the three wakeup sources. DPEN stands for “DPLUS
Enable” (DPLUS is one of the USB data lines; the other is DMINUS).

WUEN (Wakeup Enable) enables the WAKEUP pin, and WU2EN (Wakeup 2 Enable) enables the
WU2 pin.

When the FX2 chip detects activity on DPLUS while DPEN is true, or a false-to-true transition on
WAKEUP or WU2 while WUEN or WUZ2EN is true, it asserts the “wakeup” interrupt.

The status bits WU and WU?2 indicate which of the wakeup pins caused the wakeup event. Assert-
ing the wakeup pin (according to its programmed polarity) sets the corresponding bit. If the wakeup
was caused by resumption of USB DPLUS activity, neither of these bits is set, leading to the con-

clusion that the third source, a USB bus reset, caused the wakeup event. FX2 firmware clears the
WU and WU?2 flags by writing “1” to them.

6.3.1 Wakeup Interrupt

When a wakeup event occurs, the FX2 restarts its oscillator and, after the PLL stabilizes, it gener-
ates an interrupt request. This applies whether or not the FX2 is connected to the USB. The
Wakeup Interrupt is a dedicated interrupt, and is not shared by USBINT like most of the other indi-
vidual USB interrupts.

The Wakeup Interrupt vector is at 0x33, and has the highest interrupt priority. It is enabled by
EICON.5, and its IRQ flag is at EICON.4 (EICON is SFR 0xD8).

Chapter 6. Power Management Page 6-5

Exhibit 2058 - Page 127 of 460

EZ-USB FX2 Technical Reference Manual

The Wakeup Interrupt Service Routine clears the interrupt request flag (using the ‘bit clear’ instruc-
tion, i.e. ‘clr EICON.4’), and then executes a ‘reti’ (return from interrupt) instruction. This causes
the FX2 to continue program execution at the instruction following the one that set PCON.O to ini-
tiate the power-down operation.

About the Wakeup Interrupt

The FX2 enters its idle state when it sets PCON.O to 1. Although a standard 8051 exits the
idle state when any interrupt occurs, the FX2 supports only the Wakeup Interrupt to exit the
idle state.

A
If PCON.O is set when no Suspend condition exists (i.e., the USB is not signaling “Suspend”, and
firmware hasn't written to the SUSPEND register), the Wakeup Interrupt will fire immediately.

6.4 USB Resume (Remote Wakeup)

USBCS USB Control and Status 7FD6
| b7 b6 b5 b4 b3 b2 b1 bo |
I - - - SIGRSUMEI

Figure 6-4. USB Control and Status register

Firmware sets the SIGRSUME bit to send a remote-wakeup request to the host. To be compliant
with the USB Specification, the firmware should wait 5 milliseconds after the wakeup interrupt, set
the SIGRSUME bit, wait 10-15 milliseconds, then clear it.

NG
Holding either WAKEUP pin in its active state (as determined by the programmed polarity) inhibits
the FX2 chip from turning off its oscillator in order to enter the ‘suspend’ state.

The Default USB Device does not support remote wakeup. This fact is reported at enumeration
time in byte 7 of the built-in Configuration Descriptor (see Appendices A and B).

6.4.1 WU2 Pin

The WU2 function shares the general-purpose I/O pin PA3. Unlike other multi-purpose 1/0O pins
that use configuration registers (PORTACFG, PORTBCFG and PORTCCFG) to select alternate

Page 6-6 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 128 of 460

iul ESS

functions, the PA3 and WU2 functions are simultaneously active. However, the WU2 function has
no effect unless enabled (by setting the WU2EN bit to 1). If WU2 is used as a wakeup pin, make
sure to set PA3 as an input (OEA.3=0, the default state) to prevent PA3 from also driving the pin.

The dual nature of the PA3/WU2 pin allows the FX2 to enter the low-power mode, then periodically
awaken itself. This is done by connecting an RC network to the PA3/WU2 pin; if the WU2 pin is set
to the default polarity (active-high), the resistor is connected to 3.3V and the capacitor is con-
nected to ground.

The firmware then performs the following steps:

Set W2POL to 1 for active-high polarity on the WU2 pin.
Set WUZ2EN to 1 to enable Wakeup 2.
Enable the wakeup interrupt by setting EICON.5=1.

Set PA3 to 0, then set OEA.3 to 1. This enables the PA3 output and drives the PA3/WU2 pin to

ground, discharging the capacitor.

5. Set OEA.3to 0. This floats the PA3/WU2 pin, allowing the resistor to begin charging the
capacitor.

6. Write any value to the SUSPEND register, so the FX2 will unconditionally stop the oscillator

when the firmware sets PCON.0.

7. Set PCON.O to 1. This commands the FX2 to enter the Idle state.

A owbdpR

After the capacitor charges to a logic high level, the wakeup interrupt triggers via the WU2 pin.

8. Inthe Wakeup interrupt service routine, clear EICON.4 (the wakeup interrupt request flag),
then execute a ‘reti’ instruction. This resumes program execution at the instruction following
the instruction in step 7.

9. At this point, the firmware can check for any tasks to perform; if none are required, it can then
re-enter the Idle state starting at step 4.

By selecting a long time constant for the RC network attached to the WU2 pin, the FX2 chip can
operate at extremely low average power, since the on/off (active/suspend) duty-cycle is very short.

Chapter 6. Power Management Page 6-7

Exhibit 2058 - Page 129 of 460

EZ-USB FX2 Technical Reference Manual

Page 6-8 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 130 of 460

Chapter 7 Resets

7.1 Introduction

The FX2 chip has two internal resets:
Power-On Reset (POR), controlled by the RESET pin, which puts the FX2 in a known

State.

CPU Reset, controlled by the FX2's USB Core logic. The CPU Reset is always asserted
(i.e., the CPU is always held in reset) while the FX2's RESET pin is asserted.

Additionally, the USB Specification defines a USB Bus Reset, which is a condition on the bus initi-
ated by the USB host in order to put every device’'s USB functions in a known state.

This chapter describes the effects of these three resets.

RES
CPU
Vcc
CPUCS.0
(1 at PWR ON)
RESET RES
USB Core 12, 24,
17\ or 48
[USB Bus | MHz
i Reset 1
f XIN 48 MHz
24 . p <1 72,
— Oscillator —»{ PLL .
MHz —L or -4 v
XOUT CLKOUT

Figure 7-1. EZ-USB FX2 Resets

Chapter 7. Resets Page 7-1

Exhibit 2058 - Page 131 of 460

EZ-USB FX2 Technical Reference Manual

7.2 Power-On Reset (POR)

An active-low input pin (RESET) resets the FX2 chip. Note that the term “Power-Qn Reset”
refers to a reset initiated either by application of power or by assertion of the RESET pin.

The RESET pin is normally connected to an external R-C network in order to ensure that, when
power is first applied, the FX2 is held in reset until the operating parameters (Vcc voltage, crystal
frequency, PLL frequency, etc.) stabilize. The recommended values for the R-C network are a 10K
resistor to Vcc and a 1 pF capacitor to GND (see Figure 7-1). External logic can force a POR at
any time by pulling the RESET pin low.

Whenever the RESET pin is asserted, the USB Core holds the CPU in reset.

The CLKOUT pin, crystal oscillator, and PLL are active as soon as power is applied. Once the
CPU is out of reset, firmware may clear a control bit (CLKOE, CPUCS.1) to inhibit the CLKOUT
output pin for EMI-sensitive applications that do not need this signal.

The CLKOUT signal is active while RESET is low. When RESET returns high, the activity on the
CLKOUT pin depends on whether or not the FX2 is in the low-power “suspend” state; if it is, CLK-
OUT stops. Resumption of USB bus activity or assertion of the WAKEUP or WU2 pin (if enabled)
restarts the CLKOUT signal.

The oscillator and PLL are unaffected by the state of the RESET pin.

Power-on default values for all FX2 register bits are shown in Chapter 15, "Registers". At power-
on reset:

« Endpoint data buffers and byte counts are uninitialized.

 The CPU clock speed is set to 12 MHz, the CPU is held in reset, and the CLKOUT pin is
active.

« All port pins are configured as general-purpose input pins.
« USB interrupts are disabled and USB interrupt requests are cleared.

« Bulk IN and OUT endpoints are unarmed, and their stall bits are cleared. The FX2 will
NAK IN and OUT tokens while the CPU is reset.

» Endpoint toggle bits are cleared to 0.

« The RENUM bitis cleared to 0. This means that the Default USB Device, not the firmware,
will respond to USB device requests.

* The USB Function Address register is cleared to zero.
» The endpoints are configured for the Default USB Device.
e Interrupt autovectoring is turned off.

« Configuration Zero, Alternate Setting Zero is in effect.

Page 7-2 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 132 of 460

iul ESS

7.3 Releasing the CPU Reset

Register bit CPUCS.0 resets the CPU. This bit is set to 1 at power-on, initially holding the CPU in
reset. There are three ways that the CPUCS.0 bit can be cleared to 0, releasing the CPU from
reset:

« By the host, as the final step of a RAM download.

» Automatically, at the end of an EEPROM load (assuming the EEPROM is correctly pro-
grammed).

» Automatically, when external ROM is used (EA=1) and no “C0” or “C2" EEPROM is
present.

NG
FX2 firmware cannot put the CPU into reset by setting CPUCS.0 to 1; to the firmware, that bit is
read-only.

7.3.1 RAM Download

Once enumerated, the host can download code into the FX2 RAM using the “Firmware Load” ven-
dor request (Chapter 2, "Endpoint Zero"). The last packet loaded writes 0x00 to the CPUCS regis-
ter, which releases the CPU from reset.

7.3.2 EEPROM Load

Chapter 3, "Enumeration and ReNumeration™" describes the EEPROM boot loads in detail. At
power-on, the FX2 checks for the presence of an EEPROM on its |12C-compatible bus. If found, it
reads the first EEPROM byte. If it reads 0xC2 as the first byte, the FX2 downloads firmware from
the EEPROM into internal RAM. The last operation in a “C2” Load writes 0x00 to the CPUCS reg-
ister, which releases the CPU from reset.

After a “C2" Load, the FX2 sets the RENUM bit to 1, so the firmware will be responsible for
responding to USB device requests.

7.3.3 External ROM

The 128-pin FX2 can use off-chip program memory containing FX2 code and USB device descrip-
tors, which include the VID/DID/PID bytes. Because such a system does not require an 12C-com-
patible EEPROM to supply the VID/DID/PID, the FX2 automatically releases the CPU from reset
when:

» The EA pin is pulled high (indicating off-chip code memory), and

Chapter 7. Resets Page 7-3

Exhibit 2058 - Page 133 of 460

EZ-USB FX2 Technical Reference Manual

* No “C0/C2" EEPROM is detected on the 12C-compatible bus.

Under these conditions, the FX2 also sets the RENUM bit to 1, so the firmware will be responsible
for responding to USB device requests.

7.4 CPU Reset Effects

The USB host may reset the CPU at any time by downloading the value 0x01 to the CPUCS regis-
ter. The host might do this, for example, in preparation for loading code overlays, effectively mag-
nifying the size of the internal FX2 RAM. For such applications, it is important to know the state of
the FX2 chip during and after a CPU reset. In this section, this particular reset is called a “CPU
Reset,” and should not be confused with the POR described in Section 7.2, "Power-On Reset
(POR)." This discussion applies only to the condition in which the FX2 chip is powered, and the
CPU is reset by the host setting the CPUCS.0 bit to 1.

The basic USB device configuration remains intact through a CPU reset. Endpoints keep their
configuration, the USB Function Address remains the same, and the 1/O ports retain their configu-
rations and values. Stalled endpoints remain stalled, data toggles don’t change, and the RENUM
bit is unaffected. The only effects of a CPU reset are as follows:

« USB (INT2) interrupts are disabled, but pending interrupt requests remain pending.

* When the CPU comes out of reset, pending interrupts are kept pending, but disabled. This
gives the firmware writer the choice of acting on pre-reset USB events, or ignoring them
by clearing the pending interrupt(s) before enabling INT2.

* The breakpoint condition (BREAKPT.3) is cleared.

« While the CPU is in reset, the FX2 will enter the Suspend state automatically if a “sus-
pend” condition is detected on the bus.

7.5 USB Bus Reset

The host signals a USB Bus Reset by driving an SEO state (both D+ and D- data lines low) for a
minimum of 10 ms. The FX2 senses this condition, requests the USB Interrupt (INT2), and sup-
plies the interrupt vector for a USB Reset. After a USB bus reset, the following occurs:

» Toggle bits are cleared to 0.
* The device address is reset to zero.

« If the Default USB Device is active, the USB configuration and alternate settings are reset
to zero.

» The FX2 will renegotiate with the host for high-speed (480 Mbps) mode.

Page 7-4 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 134 of 460

iul ESS

Note that the RENUM bit is unchanged after a USB bus reset. Therefore, if a device has ReNu-
merated™ and loaded a new personality, it retains the new personality through a USB bus reset.

7.6 FX2 Disconnect

Although not strictly a “reset,” the disconnect-reconnect sequence used for ReNumeration™
affects the FX2 in ways similar to the other resets. When the FX2 simulates a disconnect-recon-
nect, the following occurs:

» Endpoint STALL bits are cleared.
« Data toggles are reset to 0.
* The Function Address is reset to zero.

» If the Default USB Device is active, the USB configuration and alternate settings are reset
to zero.

7.7 Reset Summary

Table 7-1. Effects of Various Resets on FX2 Resources (“—" means “no change”)

RESET Pin | CPU Reset | USB Bus Reset Disconnect

CPU Reset Reset n/a — —
IN Endpoints Unarm — — —
OUT Endpoints Unarm — — —
Breakpoint 0 0 — —
Stall Bits 0 — — 0
Interrupt Enables 0 0 — —
Interrupt Requests 0 — — —
CLKOUT Active — — —
CPU Clock Speed 12 MHz — — —
Data Toggles 0 — 0 0
Function Address 0 — 0 0
Default USB Device 0 — 0 0
Configuration

Default USB Device 0 — 0 0
Alternate Setting

RENUM Bit 0 — — —

Chapter 7. Resets Page 7-5

Exhibit 2058 - Page 135 of 460

EZ-USB FX2 Technical Reference Manual

Page 7-6 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 136 of 460

Chapter 8 Access to Endpoint Buffers

8.1 Introduction

USB data enters and exits FX2 via endpoint buffers. In order to keep up with the high-speed 480
megabit/second transfer rates, external logic usually reads and writes this data by direct connec-
tion to the endpoint FIFOs without any participation by the FX2's CPU.

NG
Chapter 9, "Slave FIFOs" and Chapter 10, "General Programmable Interface (GPIF)" give details
about how external logic directly connects to the large endpoint FIFOs.

When an application requires the CPU to process the data as it flows between external logic and
the USB — or when there is no external logic — firmware can access the endpoint buffers either as
blocks of RAM or (using a special auto-incrementing pointer) as a FIFO.

Even when external logic or the built-in General Programmable Interface (GPIF) is handling high-
bandwidth data transfers through the four large endpoint FIFOs without any CPU intervention, the
firmware has certain responsibilities:

» Configure the endpoints.
» Respond to host requests on CONTROL endpoint zero.
e Control and monitor GPIF activity.

» Handle all application-specific tasks using its USARTSs, counter-timers, interrupts, I/O pins,
etc.

8.2 FX2 Large and Small Endpoints

FX2 endpoint buffers are divided into “small” and “large” groups. EPO and EP1 are small, 64-byte
endpoints which are accessible only by the CPU; they can’t be connected directly to external logic.

EP2, EP4, EP6 and EP8 are large, configurable endpoints designed to meet the high-bandwidth
requirements of USB 2.0. Although data normally flows through the large endpoint buffers under

Chapter 8. Access to Endpoint Buffers Page 8-1

Exhibit 2058 - Page 137 of 460

EZ-USB FX2 Technical Reference Manual

control of the FIFO interfaces described in Chapters 9 and 10, the CPU can access the large end-
points if necessary.

8.3 High-Speed and Full-Speed Differences

FX2 operates at both full speed (12 Mbps) and high speed (480 Mbps). The data-payload-size and
transfer-speed requirements differ between the two modes. FX2 architecture is optimized for high
speed transfers:

* Instead of many small endpoint buffers, FX2 provides a reduced number of large buffers.
» FX2 provides double, triple or quad buffering on its large endpoints (EP2, 4, 6, and 8).

* The CPU need not participate in high-bandwidth transfers. Instead, dedicated FX2 logic
and unified endpoint/interface FIFOs move data on and off the chip at USB 2.0 rates with-
out any CPU intervention.

FX2 endpoint buffers appear to have different sizes depending on whether the FX2 is operating at
full or high speed. This is due to the difference in maximum packet sizes allowed by the USB spec-
ification for the two modes, as illustrated by Table 8-1.

Table 8-1. Maximum Packet Sizes for USB 1.1 and 2.0

Transfer Type Max Packet Size
usB 1.1 USB 2.0

CONTROL (EPO only) 8,16,32,64 64

BULK 8,16,32,64 512
INTERRUPT 1-64 1-1024
ISOCHRONOUS 1-1023 1-1024

Although the EP2, EP4, EP6 and EP8 buffers are physically large, they appear as smaller buffers
when the FX2 is operating at full speed to account for the smaller maximum packet sizes.

When operating at high speed, firmware can configure the large endpoints’ size, type, and buffer-

ing; when operating at full speed, type and buffering are configurable but the maximum packet
size is always fixed at 64 bytes for the non-isochronous types.

Page 8-2 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 138 of 460

ié‘ﬂr-n ESS

8.4 How the CPU Configures the Endpoints

Endpoints are configured via the six registers shown in Table 8-2.

Table 8-2. Endpoint Configuration Registers

Address Name Configurable Parameters
OxE610 EP1OUTCFG | valid, type (always OUT, 64 bytes, single-buffered)
OxE611 EP1INCFG valid, typel (always IN, 64 bytes, single-buffered)
O0xE612 EP2CFG valid, direction, type, size, buffering
OxE613 EPACFG valid, direction, type (always 512 double-buffered)
OxE614 EP6CFG valid, direction, type, size, buffering
OXE615 EP8CFG valid, direction, type (always 512 double-buffered)

Note 1: For EP1, “type” may be set to Interrupt or Bulk only.

WA

Chapter 15 gives full bit-level details for all registers.

Endpoint 0 does not require a configuration register since it is fixed as valid, INOUT, CONTROL,
64 bytes, single-buffered. EPO uses a single 64-byte buffer both for IN and OUT transfers. EP1
uses separate 64 byte buffers for IN and OUT transfers.

Endpoints 2, 4, 6 and 8 handle the high bandwidth USB 2.0 transfers. Endpoints EP2 and EP6 are
the most flexible endpoints, as they are configurable for size (512 or 1024 bytes) and depth of buff-
ering (double, triple, or quad). Endpoints EP4 and EP8 are fixed at 512 bytes, double-buffered.

The bits in these registers control the following:

* Valid. Set to 1 (default) to enable the endpoint. A non-valid endpoint does not respond to
host IN or OUT packets.

* Type. Two bits, TYPE1:0 (bits 5 and 4) set the endpoint type:

— 00 =invalid

01 = ISOCHRONOUS (EP2,4,6,8 only)

10 = BULK (default)
— 11 = INTERRUPT
« Direction. 1 =1IN, 0 = OUT.
« Buffering. EP2 and EP6 only. Two bits, BUF1:0 control the depth of buffering:

— 00 =quad

Chapter 8. Access to Endpoint Buffers Page 8-3

Exhibit 2058 - Page 139 of 460

EZ-USB FX2 Technical Reference Manual

— 01 =invalid
— 10 =double (default)
— 11 =triple

“Buffering” refers to the number of RAM blocks available to the endpoint. With double buffering,
for example, USB data can fill or empty an endpoint buffer at the same time that another packet
from the same endpoint fills or empties from the external logic. This technique maximizes perfor-
mance by saving each side, USB and external-logic interface, from waiting for the other side. Mul-
tiple buffering is most effective when the providing and consuming rates are comparable but
bursty (as is the case with USB and many other interfaces, such as disk drives). Assigning more
RAM blocks (triple and quad buffering) provides more “smoothing” of the bursty data rates. A sim-
ple way to determine the appropriate buffering depth is to start with the minimum, then increase it
until no NAKs appear on the USB side and no wait states appear on the interface side.

8.5 CPU Access to FX2 Endpoint Data

Endpoint data is visible to the CPU at the addresses shown in Table 8-3. Whenever the application
calls for endpoint buffers smaller than the physical buffer sizes shown in Tabl e8-3, the CPU
accesses the endpoint data starting from the lowest address in the buffer. For example, if EP2 has
a reported MaxPacketSize of 512 bytes, the CPU accesses the data in the lower portion of the
EP2 buffer (i.e., from OxFO0O to OxF1FF). Similarly, if the FX2 is operating in full speed mode
(which dictates a maximum Bulk packet size of only 64 bytes), only the lower 64 bytes of the end-
point (i.e., 0OxFO00-0xFO3F for EP2) will be used for Bulk data.

Table 8-3. Endpoint Buffers in RAM Space

Name Address Size (bytes)
EPOBUF OXE740-OXE77F 64
EP1OUTBUF OxE780-0XE7BF 64
EP1INBUF OXE7CO-OXE7FF 64
EP2FIFOBUF 0xF000-OxF3FF 1024
EP4FIFOBUF 0xF400-0xF5FF 512
EP6FIFOBUF 0xF800-0xFBFF 1024
EP8FIFOBUF 0xFCO00-0xFDFF 512

NG
EPOBUEF is for the (optional) data stage of a CONTROL transfer. The eight bytes of data from the
CONTROL packet appear in a separate FX2 RAM buffer called SETUPDAT, at OXE6B8-0XEGBF.

The CPU can only access the “active” buffer of a multiple-buffered endpoint. In other words, firm-
ware must treat a quad-buffered 512-byte endpoint as being only 512 bytes wide, even though the
guad-buffered endpoint actually occupies 2048 bytes of RAM. Also, when EP2 and EP6 are con-
figured such that EP4 and/or EP8 are unavailable, the firmware must never attempt to access the
buffers corresponding to those unavailable endpoints.

Page 8-4 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 140 of 460

iul ESS

For example, if EP2 is configured for triple-buffered 1024-byte operation, the firmware should
access EP2 only at 0xFO00-0xF3FF. The firmware should not access the EP4 or EP6 buffers in
this configuration, since they don't exist (the RAM space which they would normally occupy is used
to implement the EP2 triple-buffering).

8.6 CPU Control of FX2 Endpoints

From the CPU’s point of view, the “small” and “large” endpoints operate slightly differently, due to
the multiple-packet buffering scheme used by the large endpoints.

The CPU uses internal registers to control the flow of endpoint data. Since the small endpoints
EPO and EP1 are programmed differently than the large endpoints EP2, EP4, EP6, and EPS8,
these registers fall into three categories:

» Reqgisters that apply to the small endpoints (EPO, EP1IN, and EP10UT)
» Registers that apply to the large endpoints (EP2, EP4, EP6, and EP8)

* Reqgisters that apply to both sets of endpoints

8.6.1 Registers That Control EPO, EP1IN, and EP10OUT

Table 8-4. Registers that control EPO and EP1

Address Name Function
OXE6AO0 EPOCS EPO HSNAK, Busy, Stall
OXE68A EPOBCH EPO Byte Count (MSB)
OxE68B EPOBCL EPO Byte Count (LSB)
OXE65C USBIE EPO Interrupt Enables
OXE65D USBIRQ EPO Interrupt Requests
SFR OxBA EPOL1STAT Endpoint 0 and 1 Status
OXE6A1 EP10OUTCS EP10OUT Busy, Stall
OXE68D EP10OUTBC EP10OUT Byte Count
OXEBA2 EP1INCS EP1IN Busy, Stall
OXE68F EP1INBC EP1IN Byte Count

8.6.1.1 EPOCS

Firmware uses this register to coordinate CONTROL transfers over endpoint 0. The EPOCS regis-

ter contains three bits: HSNAK, BUSY and STALL.

Chapter 8. Access to Endpoint Buffers

Exhibit 2058 - Page 141 of 460

EZ-USB FX2 Technical Reference Manual

HSNAK

HSNAK is automatically set to 1 whenever the SETUP token of a CONTROL transfer arrives. The
FX2 logic automatically NAKs the STATUS (handshake) stage of the CONTROL transfer until the
firmware clears the HSNAK bit by writing “1” to it. This mechanism gives the firmware a chance to
hold off subsequent transfers until it completes the actions required by the CONTROL transfer.

NG

Firmware must clear the HSNAK bit after servicing every CONTROL transfer.
BUSY

The read-only BUSY bit is relevant only for the data stage of a CONTROL transfer. BUSY=1 indi-
cates that the endpoint is currently being serviced by USB, so firmware should not access the end-
point data.

BUSY is automatically cleared to O whenever the SETUP token of a CONTROL transfer arrives.
The BUSY bit is set to 1 under different conditions for IN and OUT transfers.

For IN transfers, FX2 logic will NAK all INO tokens until the firmware has “armed” EPO for IN trans-
fers by writing to the EPOBCH:L Byte Count register, which sets BUSY=1 to indicate that firmware
should not access the data. Once the endpoint data is sent and acknowledged, BUSY is automat-
ically cleared to 0 and the EPOIN interrupt request bit is asserted. After BUSY is automatically
cleared to 0, the firmware may refill the EPOIN buffer.

For OUT transfers, FX2 logic will NAK all OUTO tokens until the firmware has “armed” EPO for
OUT transfers by writing any value to the EPOBCL register. BUSY is automatically set to 1 when
the firmware writes to EPOBCL, and BUSY is automatically cleared to 0 after the data has been
correctly received and ACK’d. When BUSY transitions to zero, the FX2 also generates an
EPOOUT interrupt request.

NG
The FX2's autovectored interrupt system automatically transfers control to the appropriate ISR
(Interrupt Service Routine) for the endpoint requiring service. Chapter 4, "Interrupts"” describes this

mechanism.
STALL

Set STALL=1 to instruct the FX2 to return the STALL response to a CONTROL transfer. This is
generally done when the firmware does not recognize an incoming USB request. According to the
USB spec, endpoint zero must always accept transfers, so STALL is automatically cleared to O
whenever a SETUP token arrives. If it's desired to stall a transfer and also clear HSNAK to 0 (by
writing a 1 to it), the firmware should set STALL=1 first, in order to ensure that the STALL bit is set
before the “acknowledge” phase of the CONTROL transfer can complete.

Page 8-6 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 142 of 460

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

These are the byte count registers for bytes sent as the optional data stage of a CONTROL trans-
fer. Although the EPO buffer is only 64 bytes wide, the byte count registers are 16 bits wide to allow
using the Setup Data Pointer to send USB IN data records that consist of multiple packets.

8.6.1.2 EPOBCH and EPOBCL

To use the Setup Data Pointer in its most-general mode, firmware clears the SUDPTR AUTO bit
and writes the address of a data block into the Setup Data Pointer, then loads the EPOBCH:L reg-
isters with the total number of bytes to transfer. The FX2 automatically transfers the entire block,
partitioning the data into MaxPacketSlze packets as necessary.

A

The Setup Data Pointer is the subject of Section 8.7.

For IN transfers without using the Setup Data Pointer, firmware loads data into EPOBUF, then
writes the number of bytes to transfer into EPOBCH and EPOBCL. The packet is armed for IN
transfer when the firmware writes to EPOBCL, so EPOBCH should always be loaded first. These
transfers are always 64 bytes or less, so EPOBCH must be loaded with 0 (and EPOBCL must be in
the range [0-64]). EPOBCH will hold that zero value until firmware overwrites it.

For EPO OUT transfers, the byte count registers indicate the number of bytes received in EPOBUF.
Byte counts for EPO OUT transfers are always 64 or fewer, so EPOBCH is always zero after an
OUT transfer. To re-arm the EPO buffer for a future OUT transfer, the firmware simply writes any
value to EPOBCL.

NG
The EPOBCH register must be initialized on reset, since its power-on-reset state is undefined.

8.6.1.3 USBIE, USBIRQ

Three interrupts — SUTOK, SUDAV, and EPOACK — are used to manage CONTROL transfers
over endpoint zero. The individual enables for these three interrupt sources are in the USBIE reg-
ister, and the interrupt-request flags are in the USBIRQ register.

Each of the three interrupts signals the completion of a different stage of a CONTROL transfer.

e« SUTOK (“Setup Token") asserts when FX2 receives the SETUP token.

* SUDAV (“Setup Data Available”) asserts when FX2 logic has loaded the eight bytes from
the SETUP stage into the 8-byte buffer at SETUPDAT.

 EPOACK (“Endpoint Zero Acknowledge”) asserts when the handshake stage has com-
pleted.

The SUTOK interrupt is not normally used; it is provided for debug and diagnostic purposes. Firm-
ware generally services the CONTROL transfer by responding to the SUDAV interrupt, since this
interrupt fires only after the 8 setup bytes are available for examination in the SETUPDAT buffer.

Chapter 8. Access to Endpoint Buffers Page 8-7

Exhibit 2058 - Page 143 of 460

EZ-USB FX2 Technical Reference Manual

8.6.1.4 EPO1STAT

The BUSY bits in EPOCS, EP10UTCS, and EP1INCS (described later in this chapter) are repli-
cated in this SFR; they are provided here in order to allow faster access (via the MOV instruction
rather than MOVX) to those bits.

Three status bits are provided in the EPO1STAT register; the status bits are the following:

* EPI1INBSY: 1= EP1IN is busy
+ EP1OUTBSY: 1 = EP10OUT is busy

e« EPOBSY: 1= EPOis busy

8.6.1.5 EP10OUTCS

This register is used to coordinate BULK or INTERRUPT transfers over EP10OUT. The
EP10OUTCS register contains two bits, BUSY and STALL.

BUSY

This bit indicates when the firmware can read data from the Endpoint 1 OUT buffer. BUSY=1
means that the SIE “owns” the buffer, so firmware should not read (or write) the buffer. BUSY=0
means that the firmware may read from (or write to) the buffer. A 1-to-0 BUSY transition asserts
the EP1OUT interrupt request, signaling that new EP10OUT data is available.

BUSY is automatically cleared to O after the FX2 verifies the OUT data for accuracy and ACKs the
transfer. If a transmission error occurs, the FX2 automatically retries the transfer; error recovery is
transparent to the firmware.

Firmware arms the endpoint for OUT transfers by writing any value to the byte count register
EP10OUTBC, which automatically sets BUSY=1.

At power-on (or whenever a 0-to-1 transition occurs on the RESET pin), the BUSY bit is set to 0,
so the FX2 will NAK all EP10OUT transfers until the firmware arms EP10OUT by writing any value to
EP10OUTBC.

N

EZ-USB / EZ-USB FX Programmers:

The power-on state of all FX2 endpoint BUSY bhits is zero, in contrast to EZ-USB and EZ-USB FX,
whose BUSY bits for OUT endpoints default to one. This means that FX2 firmware must arm OUT
endpoints prior to using them (EZ-USB and EZ-USB FX accept one OUT transfer before the OUT
endpoint must be armed).

Page 8-8 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 144 of 460

iul ESS

Firmware sets STALL=1 to instruct the FX2 to return the STALL PID (instead of ACK or NAK) in
response to an EP10OUT transfer. The FX2 will continue to respond to EP10OUT transfers with the
STALL PID until the firmware clears this bit.

STALL

8.6.1.6 EP10OUTBC

Firmware may read this 7-bit register to determine the number of bytes (0-64) in EP1OUTBUF.
Firmware writes any value to EP1IOUTBC to arm an EP10OUT transfer.

8.6.1.7 EP1INCS

This register is used to coordinate BULK or INTERRUPT transfers over EP1IN. The EP1INCS reg-
ister contains two bits, BUSY and STALL.

BUSY

This bit indicates when the firmware can load data into the Endpoint 1 IN buffer. BUSY=1 means
that the SIE “owns” the buffer, so firmware should not write (or read) the buffer. BUSY=0 means
that the firmware may write data into (or read from) the buffer. A 1-to-0 BUSY transition asserts the
EP1IN interrupt request, signaling that the EP1IN buffer is free and ready to be loaded with new
data.

The firmware schedules an IN transfer by loading up to 64 bytes of data into EP1INBUF, then writ-
ing the byte count register EP1INBC with the number of bytes loaded (0-64). Writing the byte count
register automatically sets BUSY=1, indicating that the transfer over USB is pending. After the FX2
subsequently receives an IN token, sends the data, and successfully receives an ACK from the
host, BUSY is automatically cleared to 0 to indicate that the buffer is ready to accept more data.
This generates the EP1IN interrupt request, which signals that the buffer is again available.

At power-on, or whenever a 0-to-1 transition occurs on the RESET pin, the BUSY bit is set to 0,
meaning that the FX2 will NAK all EP1IN transfers until the firmware arms the endpoint by writing
the number of bytes to transfer into the EP1INBC register.

STALL
Firmware sets STALL=1 to instruct the FX2 to return the STALL PID (instead of ACK or NAK) in

response to an EP1IN transfer. The FX2 will continue to respond to EP1IN transfers with the
STALL PID until the firmware clears this bit.

8.6.1.8 EP1INBC

Firmware arms an IN transfer by loading this 7-bit register with the number of bytes (0-64) it has
previously loaded into EP1INBUF.

Chapter 8. Access to Endpoint Buffers Page 8-9

Exhibit 2058 - Page 145 of 460

EZ-USB FX2 Technical Reference Manual

8.6.2 Registers That Control EP2, EP4, EP6, EP8

In order to achieve the high transfer bandwidths required by USB 2.0’s high-speed mode,
the FX2's CPU should not participate in transfers to and from the “large” endpoints.
Instead, those endpoints are usually connected directly to external logic (see Chapter 9 and Chap-
ter 10 for details).

Some applications, however, may require the firmware to have at least some small amount of con-
trol over the large endpoints. For those applications, the FX2 provides the registers shown in
Table 8-5.

Table 8-5. Registers that control EP2,EP4,EP6 and EP8

Address Name Function
SFR OxAA | EP2468STAT EP2, 4, 6, 8 empty/full
OxE648 INPKTEND force end of IN packet
0xE640 EP2ISOINPKTS ISO IN packets per frame or microframe
OXE6A3 EP2CS npak, full, empty, stall
0xE690 EP2BCH byte count (H)
OxE691 EP2BCL byte count (L)
OxE641 EP4ISOINPKTS ISO IN packets per frame or microframe
OxXE6A4 EP4CS npak, full, empty, stall
OxE694 EP4BCH byte count (H)
OxE695 EP4BCL byte count (L)
OxE642 EPG6ISOINPKTS ISO IN packets per frame/microframe
OXE6A5 EP6CS npak, full, empty, stall
OxE698 EP6BCH byte count (H)
OxE699 EP6BCL byte count (L)
OxE643 EP8ISOINPKTS ISO IN packets per frame/microframe
OXE6A6 EP8CS npak, full, empty, stall
OxE69C EP8BCH byte count (H)
OxE69D EP8BCL byte count (L)

8.6.2.1 EP2468STAT

The Endpoint Full and Endpoint Empty status bits (described below, in Section 8.6.2.3) are repli-
cated here in order to allow faster access by the firmware.

8.6.2.2 EP2ISOINPKTS, EP4ISOINPKTS, EP6ISOINPKTS, EP8ISOINPKTS

For high-speed (480 Mbps) ISOCHRONOUS IN endpoints only, the INPPF1 and INPPFO bits in
each of these registers determine the number of packets per microframe.

Page 8-10 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 146 of 460

iul ESS

These registers do not affect full-speed (12 Mbps) operation; full-speed isochronous transfers are
always fixed at one packet per frame.

Table 8-6. Isochronous IN Packets per Microframe, High-Speed Only

INPPF1 INPPFO Packets
0 0 Invalid
0 1 1
1 0 2
1 1 3

8.6.2.3 EP2CS, EPACS, EP6CS, EP8CS

Because the four large FX2 endpoints offer double, triple or quad buffering, a single BUSY bit is
not sufficient to convey the state of these endpoint buffers. Therefore, these endpoints have multi-
ple bits (NPAK, FULL, EMPTY) that can be inspected in order to determine the state of the end-
point buffers.

#
Multiple-buffered endpoint data must be read or written only at the buffer addresses given in
Table 8-3. The FX2 automatically switches the multiple buffers in and out of the single addressable

buffer space.
NPAK[2:0] (EP2, EP6) and NPAK[1:0] (EP4, EPS8)
NPAK values have different interpretations for IN and OUT endpoints:

« OUT Endpoints: NPAK indicates the number of packets received over USB and ready for
the firmware to read.

« IN Endpoints: NPAK indicates the number of IN packets committed to USB (i.e., loaded
and armed for USB transfer), and thus unavailable to the firmware.

The NPAK fields differ in size to account for the depth of buffering available to the endpoints. Only
double buffering is available for EP4 and EP8 (two NPAK bits), and up to quad buffering is avail-
able for EP2 and EP6 (three NPAK bits).

FULL

While FULL and EMPTY apply to transfers in both directions, “FULL” is more useful for IN trans-
fers. It has the same meaning as “BUSY”, but applies to multiple-buffered IN endpoints. FULL=1
means that all buffers are committed to USB, and none are available for firmware access.

For IN transfers, FULL=1 means that all buffers are committed to USB, so firmware should not

load the endpoint buffer with any more data. When FULL=1, NPAK will hold 2, 3 or 4, depending
on the buffering depth (double, triple or quad). This indicates that all buffers are in use by the USB

Chapter 8. Access to Endpoint Buffers Page 8-11

Exhibit 2058 - Page 147 of 460

EZ-USB FX2 Technical Reference Manual

transfer logic. As soon as one buffer becomes available, FULL will be cleared to 0 and NPAK will
decrement by one, indicating that all but one of the buffers are committed to USB (i.e., one is avail-
able for firmware access). As IN buffers are transferred over USB, NPAK decrements to indicate
the number still pending, until all are sent and NPAK=0.

EMPTY

While FULL and EMPTY apply to transfers in both directions, EMPTY is more useful for OUT
transfers. EMPTY=1 means that the buffers are empty; all received packets (2, 3, or 4, depending
on the buffering depth) have been serviced.

STALL

Firmware sets STALL=1 to instruct the FX2 to return the STALL PID (instead of ACK or NAK) in
response to an IN or OUT transfer. The FX2 will continue to respond to IN or OUT transfers with
the STALL PID until the firmware clears this bit.

8.6.2.4 EP2BCH:L, EP4ABCH:L, EP6BCH:L, EP8BCH:L

Endpoints EP2 and EP6 have 11-bit byte count registers to account for their maximum buffer sizes
of 1024 bytes. Endpoints EP4 and EP8 have 10-bit byte count registers to account for their maxi-
mum buffer sizes of 512 bytes.

The byte count registers function similarly to the EPO and EP1 byte count registers:

« For an IN transfer, the firmware loads the byte count registers to arm the endpoint (if
EPxBCH must be loaded, it should be loaded first, since the endpoint is armed when
EPxBCL is loaded).

« For an OUT transfer, the firmware reads the byte count registers to determine the number
of bytes in the buffer, then writes any value to the low byte count register to re-arm the
endpoint. See the “Skip” section, below, for further details.

SKIP

Normally, the CPU interface and outside-logic interface to the endpoint FIFOs are independent,
with separate sets of control bits for each interface. The AUTOOUT mode and the SKIP bit imple-
ment an “overlap” between these two domains. A brief introduction to the AUTOOUT mode is
given below; full details appear in Chapter 9, "Slave FIFOs."

When outside logic is connected to the interface FIFOs, the normal data flow is for the FX2 auto-
matically to commit OUT data packets to the outside interface FIFO as they become available.
This ensures an uninterrupted flow of OUT data from the host to the outside world, and preserves
the high bandwidth required by high speed mode.

In some cases, it may be desirable to insert a “hook” into this data flow, so that -- rather than the
FX2 automatically committing the packets to the outside interface as they are received over USB,
firmware receives an interrupt for every received OUT packet, then has the option to either commit

Page 8-12 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 148 of 460

iul ESS

the packet to the outside interface (the “output FIFO"), or discard it. The firmware might, for exam-
ple, inspect a packet header to make this skip/commit decision.

To enable this “hook”, the AUTOOUT bit is cleared to 0. If AUTOOUT = 0 and an OUT endpoint is
re-armed by writing to its low byte-count register, the actual value written to the register becomes

significant:

» If the SKIP bit (bit 7 of each EPXBCL register) is cleared to 0, the packet will be committed
to the output FIFO and thereby made available to the FIFO’s master (either external logic
or the internal GPIF).

» If the SKIP bit is set to 1, the just-received OUT packet will not be committed to the output
FIFO for transfer to the external logic; instead, the packet will be ignored, its buffer will
immediately be made available for the next OUT packet, and the output FIFO (and exter-
nal logic) will never even “know” that it arrived.

NG

The AUTOOUT bit appears in bit 4 of the Endpoint FIFO Configuration Registers EP2FIFOCFG,
EP4FIFOCFG, EP6FIFOCFG and EP8FIFOCFG.

8.6.3 Registers That Control All Endpoints

Table 8-7. Registers that control all endpoints

OxE658 IBNIE IN-BULK-NAK individual interrupt enables

OxE659 IBNIRQ IN-BULK-NAK individual interrupt requests
OXE65A NAKIE PING plus combined IBN-interrupt enable

OXE65B NAKIRQ PING plus combined IBN-interrupt request
OXE65C USBIE SUTOK, SUDAV, EP0-ACK, SOF interrupt enables
OXE65D USBIRQ SUTOK, SUDAYV, EP0-ACK, and SOF interrupt requests
OXE65E EPIE Endpoint interrupt enables

OXE65F EPIRQ Endpoint interrupt requests

OxE662 USBERRIE USB error interrupt enables

OxE663 USBERRIE USB error interrupt requests

OXE664 ERRCNTLIM USB error counter and limit

OxE665 CLRERRCNT Clear error count

OxE683 TOGCTL EPO/EP1 data toggle

Chapter 8. Access to Endpoint Buffers

Exhibit 2058 - Page 149 of 460

Page 8-13

EZ-USB FX2 Technical Reference Manual

8.6.3.1 IBNIE, IBNIRQ, NAKIE, NAKIRQ

These registers contain the interrupt-enable and interrupt-request bits for two endpoint conditions,
IN-BULK-NAK and PING.

IN-BULK-NAK (IBN)

When the host requests an IN packet from an FX2 BULK endpoint, the endpoint NAKs (returns the
NAK PID) until the endpoint buffer is filled with data and armed for transfer, at which point the FX2
answers the IN request with data.

Until the endpoint is armed, a flood of IN-NAKs can tie up bus bandwidth. Therefore, if the IN end-
points aren’t always kept full and armed, it may be useful to know when the host is “knocking at
the door”, requesting IN data.

The IN-BULK-NAK (IBN) interrupt provides this notification. The IBN interrupt fires whenever a
BULK endpoint NAKs an IN request. The IBNIE/IBNIRQ registers contain individual enable and
request bits per endpoint, and the NAKIE/NAKIRQ registers each contain a single bit, IBN, that is
the OR’d combination of the individual bits in IBNIE/IBNIRQ, respectively.

Firmware enables an interrupt by setting the enable bit high, and clears an interrupt request bit by
writing a 1 to it.

A

The FX2 interrupt system is described in detail in Chapter 4, "Interrupts."”

The IBNIE register contains an individual interrupt-enable bit for each endpoint: EPO, EP1, EP2,
EP4, EP6 and EP8. These bits are valid only if the endpoint is configured as a BULK or INTER-
RUPT endpoint. The IBNIRQ register similarly contains individual interrupt request bits for the 6
endpoints.

The IBN interrupt-service routine should take the following actions, in the order shown:

1. Clear the USB (INT2) interrupt request (by writing O to it).
2. Inspect the endpoint bits in IBNIRQ to determine which IN endpoint just NAK'd.

3. Take the required action (set a flag, arm the endpoint, etc.), then clear the individual IBN bit in
IBNIRQ for the serviced endpoint (by writing 1 to it).

4. Repeat steps (2) and (3) for any other endpoints that require IBN service, until all IRQ bits are
cleared.

5. Clear the IBN bit in the NAKIRQ register (by writing 1 to it).

WA
Because the IBN bit represents the OR’d combination of the individual IBN interrupt requests, it
will not “fire” again until all individual IBN interrupt requests have been serviced and cleared.

Page 8-14 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 150 of 460

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

PING is the “flip side” of IBN; it's used for high speed (480 Mbits/sec) BULK OUT transfers.

PING

When operating at full speed (USB 1.1 spec), every host OUT transfer consists of the OUT PID
and the endpoint data, even if the endpoint is NAKing (not ready). While the endpoint is not ready,
the host repeatedly sends all the OUT data; if it's repeatedly NAK'd, bus bandwidth is wasted.

USB 2.0 introduced a new mechanism, called PING, that makes better use of bus bandwidth for
“unready” BULK OUT endpoints.

At high speed (USB 2.0 spec), the host can “ping” a BULK OUT endpoint to determine if it is ready
to accept data, holding off the OUT data transfer until it can actually be accepted. The host sends
a PING token, and the FX2 responds with:

* An ACK to indicate that there is space in the OUT endpoint buffer
A NAK to indicate “not ready, try later”.

The PING interrupts indicate that an FX2 BULK OUT endpoint returned a NAK in response to a
PING.

N

PING only applies at high speed (480 Mbits/sec).

Unlike the IBN bits, which are combined into a single IBN interrupt for all endpoints, each BULK
OUT endpoint has a separate interrupt (EPOPING, EP1PING, EP2PING,, EP8PING). Interrupt-
enables for the individual interrupts are in the NAKIE register; the interrupt-requests are in the
NAKIRQ register.

The interrupt service routine for the PING interrupts should perform the following steps, in the
order shown:

1. Clear the INT2 interrupt request.
2. Take the action for the requesting endpoint.
3. Clear the appropriate EPxPING bit for the endpoint.

8.6.3.2 EPIE, EPIRQ

These registers are used to manage interrupts from the FX2 endpoints. In general, an interrupt
request is asserted whenever the following occurs:

* An IN endpoint buffer becomes available for the CPU to load.

e An OUT endpoint has new data for the CPU to read.

Chapter 8. Access to Endpoint Buffers Page 8-15

Exhibit 2058 - Page 151 of 460

EZ-USB FX2 Technical Reference Manual

For the small endpoints (EPO and EP1IN/OUT), these conditions are synonymous with the end-
point BUSY bit making a 1-to-0 transition (busy to not-busy). As with all FX2 interrupts, this one is
enabled by writing a “1” to its enable bit, and the interrupt flag by writing a “1” to it.

NG

Do not attempt to clear an IRQ bit by reading the IRQ register, ORing its contents with a bit mask
(e.g. 00010000), then writing the contents back to the register. Since a “1” clears an IRQ bit, this

clears all the asserted IRQ bits rather than just the desired one. Instead, simply write a single “1”

(e.g., 00010000) to the register.

8.6.3.3 USBERRIE, USBERRIRQ, ERRCNTLIM, CLRERRCNT

These registers are used to monitor the “health” of the USB connection between the FX2 and the
host.

USBERRIE

This register contains the interrupt-enable bits for the “Isochronous Endpoint Error” interrupts and
the “USB Error Limit” interrupt.

An “Isochronous Endpoint Error” occurs when the FX2 detects a PID sequencing error for a high-
bandwidth, high-speed 1SO endpoint.

USBERRIRQ

This register contains the interrupt flags for the “Isochronous Endpoint Error” interrupts and the
“USB Error Limit” interrupt.

ERRCNTLIM

FX2 firmware sets the USB error limit to any value from 1 to 15 by writing that value to the lower
nibble of this register; when that many USB errors (CRC errors, Invalid PIDs, garbled packets,
etc.) have occurred, the “USB Error Limit” interrupt flag will be set. At power-on-reset, the error
limit defaults to 4 (0100 binary).

The upper nibble of this register contains the current USB error count.

CLRERRCNT

Writing any value to this register clears the error count in the upper nibble of ERRCNTLIM. The
lower nibble of ERRCNTLIM is not affected.

8.6.3.4 TOGCTL

As described in Chapter 1, "Introducing EZ-USB FX2" the host and device maintain a data toggle
bit, which is toggled between data packet transfers. There are certain times when the firmware
must reset an endpoint’s data toggle bit to O:

Page 8-16 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 152 of 460

%Ef‘f:--!xr{.‘-}ﬁ

» After a configuration changes (i.e., after the host issues a Set Configuration request).

» After an interface’s alternate setting changes (i.e., after the host issues a Set Interface
request).

» After the host sends a Clear Feature - Endpoint Stall request to an endpoint.

For the first two, the firmware must clear the data toggle bits for all endpoints contained in the
affected interfaces. For the third, only one endpoint’s data toggle bit is cleared.

The TOGCTL register contains bits to set or clear an endpoint data toggle bit, as well as to read
the current state of a toggle bit.

#

At this writing, there is no known reason for firmware to set an endpoint toggle to “1". Also, since

the FX2 handles all data toggle management, normally there is no reason to know the state of a

data toggle. These capabilities are included in the TOGCTL register for completeness and debug

purposes.

TOGCTL Data Toggle Control E683
b7 b6 b5 b4 b3 b2 bl b0
Q s R 10 EP3 EP2 EP1 EPO
R R/W R/W R/W R/W R/W R/W R/W
X X X X X X X

A two-step process is employed to clear an endpoint data toggle bit to 0. First, writes the TOGCTL
register with an endpoint address (EP3:EPO) plus a direction bit (I0). Then, keeping the endpoint
and direction bits the same, write a “1” to the R (reset) bit. For example, to clear the data toggle for
EP6 configured as an “IN” endpoint, write the following values sequentially to TOGCTL.:

« 00010110

+ 00110110

8.7 The Setup Data Pointer

The USB host sends device requests using CONTROL transfers over endpoint 0. Some requests
require the FX2 to return data over EP0O. During enumeration, for example, the host issues Get
Descriptor requests that ask for the device’s capabilities and requirements. The returned data can
span many packets, so it must be partitioned into packet-sized blocks, then the blocks must be
sent at the appropriate times (i.e., when the EPO buffer becomes ready).

Chapter 8. Access to Endpoint Buffers Page 8-17

Exhibit 2058 - Page 153 of 460

EZ-USB FX2 Technical Reference Manual

The Setup Data Pointer automates this process of returning IN data over EPO, simplifying the firm-
ware.

NG

For the Setup Data Pointer to work properly, EP0’'s MaxPacketSize must be set to 64.

Table 8-8 lists the registers which configure the Setup Data Pointer.

Table 8-8. Registers used to control the Setup Data Pointer

Address Register Name Function
OxE6B3 SUDPTRH High address
OxE6B4 SUDPTRL Low address
OXE6B5 SUDPTRCTL SDPAUTO hit

To send a block of data, the block’s starting address is loaded into SUDPTRH:L. The block length
must previously have been set; the method for accomplishing this depends on the state of the
SDPAUTO bit:

e« SDPAUTO =0 (Manual Mode): Used for general-purpose block transfers. Firmware
writes the block length to EPOBCH:L.

e SDPAUTO =1 (Auto Mode): Used for sending Device, Configuration, String, Device
Qualifier, and Other Speed Configuration descriptors only. The block length is automati-
cally read from the “length” field of the descriptor itself; no explicit loading of EPOBCH:L is
necessary.

Writing to SUDPTRL starts the transfer; the FX2 automatically sends the entire block, packetizing
as necessary.

For example, to answer a Get Descriptor - Device request, firmware sets SDPAUTO = 1, then
loads the address of the device descriptor into SUDPTRH:L. The FX2 then automatically loads the
EPO data buffer with the required number of packets and transfers them to the host.

To command the FX2 to ACK the status (handshake) packet, the firmware clears the HSNAK bit
(by writing 1 to it) before starting the Setup Data Pointer transfer.

If the firmware needs to know when the transaction is complete (i.e., sent and acknowledged), it
can enable the EPOACK interrupt before starting the Setup Data Pointer transfer.

A

When SDPAUTO = 0, writing to EPOBCH:L only sets the block length; it does not arm the transfer
(the transfer is armed by writing to SUDPTRL). Therefore, before performing an EPO transfer
which does not use the Setup Data Pointer (i.e., one which is meant to be armed by writing to

EPOBCL), SDPAUTO must be setto 1.

Page 8-18 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 154 of 460

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

8.7.1 Transfer Length

When the host makes any EPOIN request, the FX2 respects the following two length fields:

» the requested number of bytes (from the last two bytes of the SETUP packet received
from the host)

« the available number of bytes, supplied either as a length field in the actual descriptor
(SDPAUTO=1) or in EPOBCH:L (SDPAUTO=0)

In accordance with the USB Specification, the FX2 sends the smaller of these two length fields.

8.7.2 Accessible Memory Spaces

The Setup Data Pointer can access data in either of two RAM spaces:

e On-chip Main RAM (8 KB at 0x0000-0x1FFF)
e On-chip Scratch RAM (512 bytes at OXEOOO-OxE1FF)

N

The Setup Data Pointer cannot be used to access off-chip memory at any address.

8.8 Autopointers

Endpoint data is available to the CPU in RAM buffers (see Table 8-3). In some cases, it is faster for
the firmware to access endpoint data as though it were in a FIFO register. The FX2 provides two
special data pointers, called “Autopointers”, that automatically increment after each byte transfer.
Using the Autopointers, firmware can access contiguous blocks of on- or off-chip data memory as
a FIFO.

Each Autopointer is controlled by a 16-bit address register (AUTOPTRNH:L), a data register (XAU-
TODATN), and a control bit (APTRnINC). An additional control bit, APTREN, enables both Auto-
pointers.

A read from (or write to) an Autopointer data register actually accesses the address pointed to by
the corresponding Autopointer address register, which increments on every data-register access.
To read or write a contiguous block of memory (for example, an endpoint buffer) using an Auto-
pointer, load the Autopointer’s address register with the starting address of the block, then repeat-
edly read or write the Autopointer’s data register.

The AUTOPTRnNH:L registers may be written or read at any time to determine the current Auto-
pointer address.

Chapter 8. Access to Endpoint Buffers Page 8-19

Exhibit 2058 - Page 155 of 460

EZ-USB FX2 Technical Reference Manual

Most of the Autopointer registers are in SFR Space for quick access; the data registers are avail-
able only in External Data space.

Table 8-9. Registers that control the Autopointers

Address Register Name Function

SFR OxAF AUTOPTRSETUP Increment/freeze, off-chip access enable
SFR Ox9A AUTOPTR1H Address high

SFR 0x9B AUTOPTRI1L Address low

OxE67B XAUTODAT1 Data

SFR 0x9D AUTOPTR2H Address high

SFR 0x9E AUTOPTR2L Address low

OxE67C XAUTODAT2 Data

The Autopointers are configured using three bits in the AUTOPTRSETUP register: one bit
(APTREN) enables both autopointers, and two bits (one for each Autopointer, called APTR1INC
and APTR2INC, respectively) control whether or not the address increments for every Autodata

access.

Enabling the Autopointers has one side-effect: Any code access (an instruction fetch, for instance)
from addresses OXE67B and OxE67C will return the AUTODATA values, rather than the code-
memory values at these two addresses. This introduces a two-byte “hole” in the code memory.

NG

There is no two-byte hole in the data memory at OXE67B:E67C; the hole only appears in the pro-

gram memory.

Page 8-20

EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 156 of 460

Chapter 9 Slave FIFOs

9.1 Introduction

Although some FX2-based devices may use the FX2's CPU to process USB data directly (see
Chapter 8 "Access to Endpoint Buffers"), most will use the FX2 simply as a conduit between the
USB and external data-processing logic (e.g., an ASIC or DSP, or the IDE controller on a hard disk
drive).

In devices with external data-processing logic, USB data flows between the host and that external
logic — usually without any participation by the FX2's CPU — through the FX2's internal endpoint
FIFOs. To the external logic, these endpoint FIFOs look like most others; they provide the usual
timing signals, handshake lines (full, empty, programmable-level), read and write strobes, output
enable, etc.

These FIFO signals must, of course, be controlled by a FIFO “master”. The FX2's General Pro-
grammable Interface (GPIF) can act as an internal master when the FX2 is connected to external
logic which doesn’t include a standard FIFO interface, or the FIFOs can be controlled by an exter-
nal master. While its FIFOs are controlled by an external master, the FX2 is said to be in “Slave
FIFO” mode.

Chapter 10, "General Programmable Interface (GPIF)," discusses the internal-master GPIF. This
chapter provides details on the interface — both hardware and software — between the FX2's
slave FIFOs and an external master.

Chapter 9. Slave FIFOs Page 9-1

Exhibit 2058 - Page 157 of 460

EZ-USB FX2 Technical Reference Manual

9.2 Hardware

Figure 9-1 illustrates the four slave FIFOs. The figure shows the FIFOs operating in 16-bit mode,
although they can also be configured for 8-bit operation.

CPU Slave FIFOs Device Pins
FD[15:0]

30/48MHz

IFCLK 5 - 48MHz

where: x = y r
2,4,6,0r8 FLAGA
Slave FIFOs FLAGB

WORLDWIDE =1 FLAGC -

—

o EPXFIFOBUF FLAGD / SLCS#
Ll

FP2 SLOE

| 4EPX - EF, FF, PF EP4

- £r6 SLRD

@ EPXBCH:L | EP8 - SLWR

CPU
A

FIFOADRJ[1:0]
PKTEND

INPKTEND

PORTI/O
-—

Figure 9-1. Slave FIFOs’ Role in the FX2 System

Table 9-1 lists the registers associated with the slave-FIFO hardware. The registers are fully
described in Chapter 15, "Registers."

Table 9-1. Registers Associated with Slave FIFO Hardware

IFCONFIG EPXFIFOPFH/L
PINFLAGAB PORTACFG
PINFLAGCD INPKTEND
FIFORESET EPXFLAGIE
FIFOPINPOLAR EPXFLAGIRQ
EPXCFG EPXFIFOBCH:L
EPxFIFOCFG EPXFLAGS
EPXAUTOINLENH:L EPxBUF

Page 9-2 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 158 of 460

ié‘ﬂr-n ESS

9.2.1 Slave FIFO Pins

The FX2 comes out of reset with its I/O pins configured in “Ports” mode, not “Slave FIFO” mode. To
configure the pins for Slave FIFO mode, the IFCFG1:0 bits in the IFCONFIG register must be set
to 11 (see Table 13-10, “IFCFG Selection of Port I/O Pin Functions" for details). When

IFCFG1:0 = 11, the Slave FIFO interface pins are presented to the external master, as shown in
Figure 9-2.

IFCLK

FLAGA

FLAGB

FLAGC

FX2 FLAGD /| SLCS# EXT.
Slave
Mode SLOE Master
(0]
< SLRD

SLRWR

PKTEND

FD[15:0]

FIFOADR[1:0]

Figure 9-2. FX2 Slave Mode Full-Featured Interface Pins

External logic accesses the FIFOs through an 8- or 16-bit-wide data bus, FD. The data bus is bidi-
rectional, with its output drivers controlled by the SLOE pin.

The FIFOADRJ[1:0] pins select which of the four FIFOs is connected to the FD bus.

In asynchronous mode (IFCONFIG.3 = 1), SLRD and SLWR are read and write strobes; in syn-
chronous mode (IFCONFIG.3 = 0), SLRD and SLWR are enables for the IFCLK clock pin.

IFCLK

SLRD SLRD
SLWR \ ; SLWR \ /

Asynchronous Synchronous

Figure 9-3. Asynchronous vs. Synchronous Timing Models

Chapter 9. Slave FIFOs Page 9-3

Exhibit 2058 - Page 159 of 460

EZ-USB FX2 Technical Reference Manual

9.2.2 FIFO Data Bus (FD)

The FIFO data bus, FD[x:0], can be either 8 or 16 bits wide. The width is selected via each FIFO’s
WORDWIDE bit, (EPxFIFOCFG.0):

« WORDWIDE=0: 8-bit mode. FD[7:0] replaces Port B. See Figure 9-4.

« WORDWIDE=1: 16-hit mode. FD[15:8] replaces Port D and FD[7:0] replaces Port B. See
Figure 9-5.

At power-on reset, the FIFO data bus defaults to 16-bit mode (WORDWIDE = 1) for all FIFOs.

In either mode, the FIFOADR[1:0] pins select which of the four FIFOs is internally connected to the
FD pins.

NG
If all of the FIFOs are configured for 8-bit mode, Port D remains available for use as general-pur-

pose I/O. If any FIFO is configured for 16-bit mode, Port D is unavailable for use as general-pur-
pose /O regardless of which FIFO is currently selected via the FIFOADR][1:0] pins.

FX2 Registers Slave FIFOs Device Pins

30/48MHz

IFCLK

5-48MHz

FIFOADRI[1:0]

A 4

FLAGA
FLAGB
EP2FIFOBUF EP2 FLAGC >

EP4FIFOBUF O EP4 'FLAGD/SLCS#’
EP6FIFOBUF EP6

EP8FIFOBUF EP8 SLOE

SLRD
SLWR
PKTEND

FD[7:0] >

Figure 9-4. 8-bit Mode Slave FIFOs, WORDWIDE=0

Page 9-4 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 160 of 460

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

FX2 Registers Slave FIFOs Device Pins

30/48MHz

IFCLK

5-48MHz

FIFOADRI[1:0]

FLAGA

FLAGB
EP2FIFOBUF | EP2 | FLAGC >
EP4FIFOBUF EP4 FLAGD/SLCS#
EP6FIFOBUF g EP6 < >
EP8FIFOBUF EP8 SLOE
SLRD

SLWR
PKTEND

FD[15:0] >

Figure 9-5. 16-bit Mode Slave FIFOs, WORDWIDE=1

9.2.3 Interface Clock (IFCLK)

The slave FIFO interface can be clocked from either an internal or an external source. The FX2's
internal clock source can be configured to run at either 30 or 48 MHz, and it can optionally be out-
put on the IFCLK pin. If the FX2 is configured to use an external clock source, the IFCLK pin can
be driven at any frequency between 5 MHz and 48 MHz. On power-on reset, the FX2 defaults to
the internal source at 48 MHz, normal polarity, with the IFCLK output disabled. See Figur €9-6.

IFCONFIG.7 selects between internal and external sources: 0 = external, 1 = internal.

IFCONFIG.6 selects between the 30- and 48-MHz internal clock: 0 = 30 MHz, 1 = 48 MHz. This bit
has no effect when IFCONFIG.7 = 0.

IFCONFIG.5 is the output enable for the internal clock source: 0 = disable, 1 = enable. This bit has
no effect when IFCONFIG.7 = 0.

IFCONFIG.4 inverts the polarity of the interface clock (whether it's internal or external): 0 = normal,
1 =inverted. IFCLK inversion can make it easier to interface the FX2 with certain external circuitry;
Figure 9-7, for example, demonstrates the use of IFCLK inversion in order to ensure a long-
enough setup time for reading the FX2's FIFO flags.

N

When IFCLK is configured as an input, the minimum frequency that can be applied to it is 5 MHz.

Chapter 9. Slave FIFOs Page 9-5

Exhibit 2058 - Page 161 of 460

EZ-USB FX2 Technical Reference Manual

IFCFG.6
IFCFG.4 IFCFG.5

30 MHz — %}
48 MHz — 1 0

>o—1 |

. IFCLK
IFCFG.7 Pin
IFCFG.4
Internal 1
IFCLK <—ri 0 <]

Signal 1 O<}

Figure 9-6. IFCLK Configuration

Internal IFCLK Signal ﬂ ﬂ
Inverted IFCLK Output ‘ ‘ ﬂ
FIFO Flag
FX2 Master
Asserts Samples
Flag ki Flag

Figure 9-7. Satisfying Setup Timing by Inverting the IFCLK Output

9.2.4 FIFO Flag Pins (FLAGA, FLAGB, FLAGC, FLAGD)

Four pins — FLAGA, FLAGB, FLAGC, and FLAGD — report the status of the FX2's FIFOs; in
addition to the usual “FIFO full” and “FIFO empty” signals, there is also a signal which indicates
that a FIFO has filled to a user-programmable level. The external master typically monitors the
“empty” flag of OUT endpoints and the “full” flag of IN endpoints; the “programmable-level” flag is

Page 9-6 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 162 of 460

%Ef‘f:--!xr{.‘-}ﬁ

equally useful for either type of endpoint (it can, for instance, give advance warning that an OUT
endpoint is almost empty or that an IN endpoint is almost full).

The FLAGA, FLAGB, and FLAGC pins can operate in either of two modes: Indexed or Fixed, as
selected via the PINFLAGSAB and PINFLAGSCD registers. The FLAGD pin operates in Fixed
mode only. Each pin is configured independently; some pins can be in Fixed mode while others are
in Indexed mode. See Chapter 15, "Registers," for complete details.

Flag pins configured for Indexed mode report the status of the FIFO currently selected by the
FIFOADR][1:0] pins. When configured for Indexed mode, FLAGA reports the “programmable-level”
status, FLAGB reports the “full” status, and FLAGC reports the “empty” status.

Flag pins configured for Fixed mode report one of the three conditions for a specific FIFO, regard-
less of the state of the FIFOADR][1:0] pins. The condition and FIFO are user-selectable. For exam-
ple, FLAGA could be configured to report FIFO2's “empty” status, FLAGB to report FIFO4's
“empty” status, FLAGC to report FIFO4's “programmable level” status, and FLAGD to report
FIFOG6's “full” status.

The polarity of the “empty” and “full” flag pins defaults to active-low but may be inverted via the
FIFOPINPOLAR register.

At power-on reset, the FIFO flags are configured for Indexed operation.

FX2 Registers Slave FIFOs Device Pins

30/48MHz

IFCLK
5- 48MHz

FIFOADR[1:0]

FLAGA

FLAGB
EP2FIFOBUF EP2 |__FLAGC >
EP4FIFOBUF [EP4 | <FLAGD/SLCS#

EP6FIFOBUF H EP6 >
EP8FIFOBUF EP8 SLOE
SLRD

? SLWR
PKTEND

FD[15:0] >

Figure 9-8. FLAGX

Chapter 9. Slave FIFOs Page 9-7

Exhibit 2058 - Page 163 of 460

EZ-USB FX2 Technical Reference Manual

9.2.5 Control Pins (SLOE, SLRD, SLWR, PKTEND, FIFOADR[1:0])

The Slave FIFO “control” pins are SLOE (Output Enable), SLRD (Read), SLWR (Write), PKTEND
(Packet End), and FIFOADR[1:0] (FIFO Select). “Read” and “Write” are from the external master’s
point of view; the external master reads from OUT endpoints and writes to IN endpoints. See
Figure 9-9.

Read — SLOE and SLRD:

In synchronous mode (IFCONFIG.3 = 0), the FIFO pointer is incremented on each rising edge of
IFCLK while SLRD is asserted. In asynchronous mode (IFCONFIG.3 = 1), the FIFO pointer is
incremented on each asserted-to-deasserted transition of SLRD.

The SLOE pin enables the FD outputs.

By default, SLOE and SLRD are active-low; their polarities can be changed via the
FIFOPINPOLAR register.

Write — SLWR:

In synchronous mode (IFCONFIG.3 = 0), data on the FD bus is written to the FIFO (and the FIFO
pointer is incremented) on each rising edge of IFCLK while SLWR is asserted. In asynchronous
mode (IFCONFIG.3 = 1), data on the FD bus is written to the FIFO (and the FIFO pointer is incre-
mented) on each asserted-to-deasserted transition of SLWR.

By default, SLWR is active-low; its polarity can be changed via the FIFOPINPOLAR register.
FIFOADR[1:0]:

The FIFOADRJ1:0] pins select which of the four FIFOs is connected to the FD bus (and, if the
FIFO flags are operating in Indexed mode, they select which FIFO's flags are presented on the
FLAGX pins):

Table 9-2. FIFO Selection via FIFOADR[1:0]

Selected
FIFOADR[1:0] s
00 EP2
01 EP4
10 EP6
11 EP8
Page 9-8 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 164 of 460

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

PKTEND:

An external master asserts the PKTEND pin to commit an IN packet to USB regardless of the
packet’s length. PKTEND is usually used when the master wishes to send a “short” packet (i.e., a
packet smaller than the size specified in the EPXAUTOINLENH:L registers).

For example: Assume that EPAAUTOINLENH:L is set to the default of 512 bytes. If AUTOIN =1,
the external master can stream data to FIFO4 continuously, and (absent any bottlenecks in the
data path) the FX2 will automatically commit a packet to USB whenever the FIFO fills with 512
bytes. If the master wants to send a stream of data whose length is not a multiple of 512, the last
packet will not be automatically committed to USB because it's smaller than 512 bytes. To commit
that last packet, the master can do one of two things: It can pad the packet with dummy data in
order to make it exactly 512 bytes long, or it can write the short packet to the FIFO then assert the
PKTEND pin.

If the FIFO is configured to allow zero-length packets (EPxFIFOCFG.2 = 1), asserting the
PKTEND pin when the FIFO is empty will commit a zero-length packet.

By default, PKTEND is active-low; its polarity can be changed via the FIFOPINPOLAR register.
NG

The PKTEND pin must not be asserted unless a buffer is available, even if only a zero-length
packet is being committed. The “full” flag may be used to determine whether a buffer is available.

FX2 Registers Slave FIFOs Device Pins

30/48MHz

IFCLK
5 - 48MHz

FIFOADR[1:0]

FLAGA
FLAGB
EP2FIFOBUF EP2 FLAGC

EP4FIFOBUF O EP4 lFLAGD/SLCS#r
EP6FIFOBUF EP6

EP8SFIFOBUF EP8 SLOE
SLRD

? SLWR
PKTEND

FD[15:0] >

Figure 9-9. Slave FIFO Control Pins

Chapter 9. Slave FIFOs Page 9-9

Exhibit 2058 - Page 165 of 460

EZ-USB FX2 Technical Reference Manual

9.2.6 Slave FIFO Chip Select (SLCS)

The “Slave FIFO Chip Select” pin (SLCS) is an alternate function of pin PA7; it's enabled via the
PORTACFG.6 hit (see Section 13.3.1, "Port A Alternate Functions").

The SLCS pin allows external logic to effectively remove the FX2 from the FIFO Data bus, in order
to, for example, share that bus among multiple slave devices.

While the SLCS pin is pulled high by external logic, the FX2 floats its FD[x:0] pins and ignores the
SLOE, SLRD, SLWR, and PKTEND pins.

9.2.7 Implementing Synchronous Slave FIFO Writes

< IFCLK 5-48MHz
¢ FIFOADRIL0]
FLAGB FULL >
FX2 ¢ SLWR EXT.
Slave ¢ FD[150] | Mager
Mode
¢ PKTEND

Figure 9-10. Interface Pins Example: Synchronous FIFO Writes

Typically, the sequence of events for the external master is:

IDLE: When write event occurs, transition to State 1.

STATE 1: Point to IN FIFO, assert FIFOADR[1:0], transition to State 2.

STATE 2: If FIFO-Full flag is false (FIFO not full), transition to State 3 else remain in State 2.
STATE 3: Drive data on the bus, assertSLWR for one IFCLK, transition to State 4.

STATE 4: If more data to write, transition to State 2 else transition to IDLE.

Page 9-10 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 166 of 460

%E.’T!-'!'{F.‘EE

Figure 9-11. State Machine Example: Synchronous FIFO Writes

IFCLK | | ﬂ | | | ﬂ | | | ﬂ |

FADDRO

FADDR1 E

FLAGB - FULL_Master Selects EP8 EP8 Not Empty

FLAGC -EMPTY

SLWR

FD[15:0] z | N | N+1

PKTEND

Figure 9-12. Timing Example: Synchronous FIFO Writes, Waveform 1

Chapter 9. Slave FIFOs Page 9-11

Exhibit 2058 - Page 167 of 460

EZ-USB FX2 Technical Reference Manual

LA L) LA L LA |

FADDRO

FADDR1 CoreAuto
— Commits Pkt

FLAGB —FULL_ AUTOIN=1

FLAGC -EMPTY

SLWR

FD[15:0] 510 I 511 I 512

PKTEND

Figure 9-13. Timing Example: Synchronous FIFO Writes, Waveform 2

IFCLK | | ﬂ | | | ﬂ | | | ﬂ |

FADDRO
FADDR1

FLAGB - FULL

Y

Data Not
W ritten

FLAGC -EMPTY

SLWR

FD[15:0] 815 | / 816 I N

PKTEND

Master Manually
Commits Short Pkt

Figure 9-14. Timing Example: Synchronous FIFO Writes, Waveform 3, PKTEND Pin Illustrated

Page 9-12 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 168 of 460

iul ESS

9.2.8 Implementing Synchronous Slave FIFO Reads

IFCLK

5-48MHz

N
g¢— FIFOADRI1:0]

FLAGC EMPTY >
FX2 < SHOF EXT.
Slave < SLRD Master
Mode

FD[15:0])

Figure 9-15. Interface Pins Example: Synchronous FIFO Reads

Typically, the sequence of events for the external master is:
IDLE: When read event occurs, transition to State 1.
STATE 1: Point to OUT FIFO, assert FIFOADRJ[1:0], transition to State 2.

STATE 2: Assert SLOE. If FIFO-Empty flag is false (FIFO not empty), transition to State 3 else
remain in State 2.

STATE 3: Sample data on the bus, increment pointer by asserting SLRD for one IFCLK, de-assert
SLOE, transition to State 4.

STATE 4: If more data to read, transition to State 2 else transition to IDLE.

Figure 9-16. State Machine Example: Synchronous FIFO Reads

Chapter 9. Slave FIFOs Page 9-13

Exhibit 2058 - Page 169 of 460

EZ-USB FX2 Technical Reference Manual

IFCLK | |ﬂ |ﬂ |ﬂ |ﬂ |ﬂ |

FADDRO

FADDR1

FLAGB -FULL Selects EP2
- Asserts SLOE then

Reads First Byte Increments to Next B
in FIFO

Byte in FIFO

SLOE: K. A/.
SLRD; I—li

FD[15:0] z | N |

FLAGC -EMPTY

N+1

Figure 9-17. Timing Example: Synchronous FIFO Reads, Waveform 1

IFCLK | |ﬂ |ﬂ |ﬂ |ﬂ |ﬂ |

FADDRO

FADDR1

FLAGB - FULL EP2 Empty

FLAGC -EMPTY |

Reads 1023 Byte Reads Last Byte in

SLOE in FIFO FIFO
SLRD

FD[15:0] 1023 I 1024 I

Figure 9-18. Timing Example: Synchronous FIFO Reads, Waveform 2, EMPTY Flag lllustrated

Page 9-14 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 170 of 460

iul ESS

9.2.9 Implementing Asynchronous Slave FIFO Writes

| §—F!FOADR[1:0]
FLAGB FULL >
¢ SLWR
SIT;(VZe g¢— FDI15:0] EXT.
¢— PKTEND Master
Mode

Figure 9-19. Interface Pins Example: Asynchronous FIFO Writes

Typically, the sequence of events for the external master is:

IDLE: When write event occurs, transition to State 1.

STATE 1: Point to IN FIFO, assert FIFOADR[1:0], transition to State 2.

STATE 2: If FIFO-Full flag is false (FIFO not full), transition to State 3 else remain in State 2.

STATE 3: Drive data on the bus, increment pointer by asserting then de-asserting SLWR, transition
to State 4.

STATE 4: If more data to write, transition to State 2 else transition to IDLE.

Figure 9-20. State Machine Example: Asynchronous FIFO Writes

Chapter 9. Slave FIFOs Page 9-15

Exhibit 2058 - Page 171 of 460

EZ-USB FX2 Technical Reference Manual

IFCLK

FADDRO

FADDR1

FLAGB - FULL

FLAGC -EMPTY

SLWR

FD[15:0]

PKTEND

Figure 9-21. Timing Example: Asynchronous FIFO Writes

Page 9-16

EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 172 of 460

iul ESS

9.2.10 Implementing Asynchronous Slave FIFO Reads

<_FIFOADR[1:O]_
FLAGB
EMPTY >
> SLOE
FX2 < SLRD EXT.
Slave FD[15:0] ! Master
Mode

Figure 9-22. Interface Pins Example: Asynchronous FIFO Reads

Typically, the sequence of events for the external master is:

IDLE: When read event occurs, transition to State 1.

STATE 1: Point to OUT FIFO, assert FIFOADRJ[1:0], transition to State 2.

STATE 2: If Empty flag is false (FIFO not empty), transition to State 3 else remain in State 2.

STATE 3: Assert SLOE, assert SLRD, sample data on the bus, de-assert SLRD (increment
pointer), de-assert SLOE, transition to State 4.

STATE 4: If more data to read, transition to State 2 else transition to IDLE.

Launch

State 1 State 4

Figure 9-23. State Machine Example: Asynchronous FIFO Reads

Chapter 9. Slave FIFOs Page 9-17

Exhibit 2058 - Page 173 of 460

EZ-USB FX2 Technical Reference Manual

IFCLK

FADDRO
FADDR1

FLAGB -FULL

FLAGC -EMPTY

SLOE |
SLRD |
FD[15:0] z | N | v

Figure 9-24. Timing Example: Asynchronous FIFO Reads

Page 9-18 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 174 of 460

iul ESS

9.3 Firmware

This section describes the interface between FX2 firmware and the FIFOs. More information is
available in Chapter 8, "Access to Endpoint Buffers."

Table 9-3. Registers Associated with Slave FIFO Firmware

EPXCFG INPKTEND
EPXFIFOCFG EPXFIFOIE
EPXAUTOINLENH/L EPXFIFOIRQ
EPXFIFOPFH:L INT2IVEC
EP2468STAT INT4IVEC
EP24FIFOFLGS INTSETUP
EP68FIFOFLGS IE

EPXCS IP
EPXFIFOFLGS INT2CLR
EPXBCH:L INTACLR
EPXFIFOBCH:L EIE
EPXFIFOBUF EXIF
REVCTL (bits 0 and 1 must be initialized to 1 for operation as described in this chapter)

9.3.1 Firmware FIFO Access

FX2 firmware can access the slave FIFOs using four registers in XDATA memory: EP2FIFOBUF,
EP4FIFOBUF, EP6FIFOBUF, and EPBFIFOBUF. These registers can be read and written directly
(using the MOVX instruction), or they can serve as sources and destinations for the dual Auto-
pointer mechanism built into the EZ-USB FX2 (see Section 8.8. "Autopointers").

Additionally, there are a number of FIFO control and status registers: Byte Count registers indicate
the number of bytes in each FIFO; flag bits indicate FIFO fullness, mode bits control the various
FIFO modes, etc.

This chapter focuses on the registers and bits which are specific to slave-FIFO operation; for a
fuller description of all the FIFO registers, see Chapter 8 "Access to Endpoint Buffers" and Chapter
15, "Registers."

N
For proper operation as described in this chapter, FX2 firmware must set the DYN_OUT and
ENH_PKT bits (REVCTL.0 and REVCTL.1) to 1.

Chapter 9. Slave FIFOs Page 9-19

Exhibit 2058 - Page 175 of 460

EZ-USB FX2 Technical Reference Manual

FX2 Registers Slave FIFOs Device Pins

30/48MHz

IFCLK
5- 48MHz

FIFOADR[1:0]

A 4

FLAGA

FLAGB
EP2FIFOBUF EP2 | FLAGC >
EP4FIFOBUF [EP4 FLAGD/SLCS#

EP6FIFOBUF B EP6 < >

EP8FIFOBUF EP8 SLOE
SLRD

SLWR
PKTEND

FD[15:0] >

Figure 9-25. EPXFIFOBUF Registers

9.3.2 EPx Memories

The slave FIFOs connect external logic to the FX2's four endpoint memories (EP2, EP4, EP6, and
EP8). These endpoint memories have the following programmable features:

Type can be either BULK, INTERRUPT, or ISOCHRONOUS.

Direction can be either IN or OUT.

For EP2 and EPS6, size can be either 512 or 1024 bytes. EP4 and EP8 are fixed at 512 bytes.
Buffering can be 2x, 3x, or 4x for EP2 and EP6. EP4 and EP8 are fixed at 2x.

FX2 automatically commits endpoint data to and from the slave FIFO interface (AUTOIN=1,
AUTOOUT=1).

a s wbd e

At power-on-reset, these endpoint memories are configured as follows:

1. EP2 - Bulk OUT, 512 bytes/packet, 2x buffered.

2. EP4 - Bulk OUT, 512 bytes/packet, 2x buffered.

3. EP6 - Bulk IN, 512 bytes/packet, 2x buffered.

4. EPS8 - Bulk IN, 512 bytes/packet, 2x buffered.

Page 9-20 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 176 of 460

%Ef‘f:--!xr{.‘-}ﬁ

8051 Registers Slave FIFOs Device Pins

30/48MHz

IFCLK
5- 48MHz

FIFOADR[1:0]

FLAGA
FLAGB

EP2FIFOBUF EP2 | FLAGC >
EP4FIFOBUF O [EP4 | FLAGD/SLCS#
EP6FIFOBUF EP6 < >

EP8SFIFOBUF EP8 SLOE
SLRD

? SLWR
PKTEND

FD[15:0] >

Figure 9-26. EPx Memories

9.3.3 Slave FIFO Programmable-Level Flag (PF)

Each FIFO’s programmable-level flag (PF) asserts when the FIFO reaches a user-defined fullness
threshold. That threshold is configured as follows:

1. For OUT packets: The threshold is stored in PFC12:0. The PF is asserted when the number of
bytes in the entire FIFO is less than/equal to (DECIS=0) or greater than/equal to (DECIS=1)
the threshold.

2. For IN packets, with PKTSTAT = 1: The threshold is stored in PFC9:0. The PF is asserted
when the number of bytes written into the current packet in the FIFO is less than/equal to
(DECIS=0) or greater than/equal to (DECIS=1) the threshold.

3. For IN packets, with PKTSTAT = 0: The threshold is stored in two parts: PKTS2:0 holds the
number of committed packets, and PFC9:0 holds the number of bytes in the current packet.
The PF is asserted when the FIFO is at or less full than (DECIS=0), or at or more full than
(DECIS=1), the threshold.

By default, FLAGA is the Programmable-Level Flag (PF) for the endpoint currently pointed to by
the FIFOADR[1:0] pins. For EP2 and EP4, the default endpoint configuration is BULK, OUT, 512,
2%, and the PF pin asserts when the entire FIFO has greater than/equal to 512 bytes. For EP6 and
EP8, the default endpoint configuration is BULK, IN, 512, 2x, and the PF pin asserts when the
entire FIFO has less than/equal to 512 bytes.

In other words, the default-configuration PFs for EP2 and EP4 assert when the FIFOs are half-full,
and the default-configuration PFs for EP6 and EP8 assert when those FIFOs are half-empty.

See Chapter 15, "Registers," for full details.

Chapter 9. Slave FIFOs Page 9-21

Exhibit 2058 - Page 177 of 460

EZ-USB FX2 Technical Reference Manual

9.3.4 Auto-In/ Auto-Out Modes

The FX2 FIFOs can be configured to commit packets to/from USB automatically. For IN endpoints,
Auto-In Mode allows the external logic to stream data into a FIFO continuously, with no need for it
or the FX2 firmware to packetize the data or explicitly signal the FX2 to send it to the host. For
OUT endpoints, Auto-Out Mode allows the host to continuously fill a FIFO, with no need for the
external logic or FX2 firmware to handshake each incoming packet, arm the endpoint buffers, etc.
See Figure 9-27.

CPU

Host ——Jp USB Data Path > sjave —PMaster

AUTOOUT=1

Figure 9-27. When AUTOOUT=1, OUT Packets are Automatically Committed

To configure an IN endpoint FIFO for Auto Mode, set the AUTOIN bit in the appropriate
EPXFIFOCFG register to 1. To configure an OUT endpoint FIFO for Auto Mode, set the AUTOOUT
bit in the appropriate EPXFIFOCFG register to 1. See Figures 9-28 and 9-29.

At power-on reset, all FIFOs default to Manual Mode (i.e., AUTOIN = 0 and AUTOOUT = 0).

TD Init():

REVCTL = 0x03; /1 MJUST set REVCTL.0 and REVCTL.1 to 1
SYNCDELAY;

EP2CFG = 0xAZ2; /1 EP2 is DI R=QUT, TYPE=BULK, SIZE=512, BUF=2x
SYNCDELAY;

FI FORESET = 0x80; /] Reset the FIFO

SYNCDELAY;
Fl FORESET
SYNCDELAY;
FI FORESET
SYNCDELAY;
EP2FI FOCFG = 0x10; /1 EP2 is AUTOOUT=1, AUTO N=0, ZERCLEN=0, WORDW DE=0
SYNCDELAY;

QUTPKTEND = 0x82; /1 Armboth EP2 buffers to “prime the punp”
SYNCDELAY;

QUTPKTEND = 0x82;

0x02;

0x00;

Figure 9-28. TD_Init Example: Configuring AUTOOUT =1

Page 9-22 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 178 of 460

iul ESS

TD Init():

REVCTL = 0x03; /!l MJST set REVCTL.0 and REVCTL.1 to 1
SYNCDELAY;

SYNCDELAY;

EP8CFG = O0OxEO; /1 EP8 is DI R=IN, TYPE=BULK

SYNCDELAY;

FI FORESET = 0x80; /! Reset the FI FO

SYNCDELAY;
FI FORESET
SYNCDELAY;
FI FORESET
SYNCDELAY;
EP8FI FOCFG = 0x0C; /1l EP8 is AUTOOUT=0, AUTO N=1, ZEROLEN=1, WORDW DE=0
SYNCDELAY;
EPSAUTO NLENH
SYNCDELAY;
EPSAUTO NLENL

0x08;

0x00;

0x02; // Auto-commit 512-byte packets

0x00;

Figure 9-29. TD_Init Example: Configuring AUTOIN =1

9.3.5 CPU Access to OUT Packets, AUTOOUT =1

The FX2's CPU is not in the host-to-master data path when AUTOOUT = 1.To achieve the maxi-
mum USB 2.0 bandwidth, the host and master are directly connected, bypassing the CPU.
Figure 9-30 shows that, in Auto-Out mode, data from the host is automatically committed to the
FIFOs with no firmware intervention.

TD_Pol 1 ():

/1l no code necessary to xfr data from host to naster!
/1 AUTOOUT=1 and S|l ZE=0 auto-commits packets
/1 in 512 byte chunks.

Figure 9-30. TD_Poll Example: No Code Necessary for OUT Packets When AUTOOUT=1

Chapter 9. Slave FIFOs Page 9-23

Exhibit 2058 - Page 179 of 460

EZ-USB FX2 Technical Reference Manual

9.3.6 CPU Access to OUT Packets, AUTOOUT =0

In some systems, it may be desirable to allow the FX2's CPU to participate in the transfer of data
between the host and the slave FIFOs. To configure a FIFO for this “Manual-Out” mode, the
AUTOOUT bit in the appropriate EPXFIFOCFG register must be cleared to 0 (see Figure 9-31).

TD Init():

REVCTL = 0x03; /] MJST set REVCTL.0 and REVCTL.1 to 1
SYNCDELAY;

EP2CFG = OxAZ2; /1 EP2 is DI R=OUT, TYPE=BULK, SIZE=512, BUF=2x
SYNCDELAY;

FI FORESET = 0x80; /!l Reset the FIFO

SYNCDELAY;

FI FORESET = 0x02;

SYNCDELAY;

FI FORESET = 0x00:;

SYNCDELAY;

EP2FI FOCFG = 0x00; /1 EP2 is AUTOOUT=0, AUTO N=0, ZEROLEN=0, WORDW DE=0
SYNCDELAY;

QUTPKTEND = 0x82; /1 Armboth EP2 buffers to “prime the punp”
SYNCDELAY;

OUTPKTEND = 0x82;

Figure 9-31. TD_Init Example, Configuring AUTOOUT=0

As lllustrated in Figure 9-32, FX2 firmware can do one of three things when the FX2 is in Manual-
Out mode and a packet is received from the host:

1.

It can commit (pass to the FIFOs) the packet by writing OUTPKTEND with SKIP=0 (Figur e9-
33).

It can skip (discard) the packet by writing OUTPKTEND with SKIP=1 (Figur €9-34).

It can edit the packet (or source an entire OUT packet) by writing to the FIFO buffer directly,

then writing the length of the packet to EPXBCH:L. The write to EPxBCL commits the edited
packet, so EPxBCL should be written after writing EPXxBCH (Figure9-35).

In all cases, the OUT buffer automatically re-arms so it can receive the next packet.

See Section 8.6.2.4 for a detailed description of the SKIP bit.

Page 9-24 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 180 of 460

igﬁ'?ltﬁ&iﬁ

EPxBCH:L
CPU
skip =0
Host — Data —®Master
UsB \t : Slave
skip=1

AUTOOUT =0

Figure 9-32. Skip, Commit, or Source (AUTOOUT=0)

TD Pol I ():

if(!(EP2468STAT & 0x01))
{ Il EP2EF=0 when FI FO NOT enpty, host sent packet
QUTPKTEND = 0x02; // SKIP=0, pass buffer on to naster

}

Figure 9-33. TD_Poll Example, AUTOOUT=0, Commit Packet

TD_Pol 1 ():

if(!'(EP2468STAT & 0x01))
{ I/l EP2EF=0 when FI FO NOT enpty, host sent packet
QUTPKTEND = 0x82; // SKIP=1, do NOT pass buffer on to master

}

Figure 9-34. TD_Poll Example, AUTOOUT=0, Skip Packet

Chapter 9. Slave FIFOs Page 9-25

Exhibit 2058 - Page 181 of 460

EZ-USB FX2 Technical Reference Manual

TD Pol I ():

i f(EP24FI FOFLGS & 0x02)

{

SYNCDELAY; /1

FI FORESET = 0x80; /1 nak all QUT pkts. from host
SYNCDELAY; /1

FI FORESET = 0x02; /1 advance all EP2 buffers to cpu domain
SYNCDELAY; /1

EP2FI FOBUF[0] = OxAA; /1l create newly sourced pkt. data
SYNCDELAY; /1

EP2BCH = 0x00;

SYNCDELAY; /1

EP2BCL = 0x01; /1l commit newly sourced pkt. to interface fifo

/1l beware of "left over" unconmitted buffers

SYNCDELAY; I

QUTPKTEND = 0x82; /1 skip uncommitted pkt. (second pkt.)
/1 note: core will not allow pkts. to get out of sequence
SYNCDELAY; I

FI FORESET = 0x00; /'l release "nak all"

}

Figure 9-35. TD_Poll Example, AUTOOUT=0, Source

NG

If an uncommitted packet is in an OUT endpoint buffer when the FX2 is reset, that packet is not
automatically committed to the master. To ensure that no uncommitted packets are in the endpoint
buffers after a reset, the FX2 firmware’s “endpoint initialization” routine should skip 2, 3, or 4 pack-
ets (depending on the buffering depth selected for the FIFO) by writing OUTPKTEND with
SKIP=1. See Figure 9-36.

Page 9-26 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 182 of 460

iul ESS

TD Init():

REVCTL = 0x03; /1 MJST set REVCTL.O0 and REVCTL.1 to 1

SYNCDELAY;

SYNCDELAY;

EP2CFG = OxAZ2; /1 EP2 is DIR=QUT, TYPE=BULK, SIZE=512, BUF=2x
SYNCDELAY;

EP2FI FOCFG = 0x00; // EP2 is AUTOOUT=0, AUTO N=0, ZERCLEN=0, WORDW DE=0

/1 QUT endpoints do NOT cone up arned
SYNCDELAY;
OUTPKTEND
SYNCDELAY;
QUTPKTEND = 0x82; // arm second buffer by witing OUTPKTEND w ski p=1

0x82; /1 armfirst buffer by witing OQUTPKTEND w ski p=1

Figure 9-36. TD_Init Example, OUT Endpoint Initialization

9.3.7 CPU Access to IN Packets, AUTOIN =1

Auto-In mode is similar to Auto-Out mode: When an IN FIFO is configured for Auto-In mode (by
setting its AUTOIN bit to 1), data from the master is automatically packetized and committed to
USB without any CPU intervention (see Figure 9-37).

TD Pol | ():

/1 no code necessary to xfr data fromnmaster to host!
/1 AUTO N=1 and EPS8AUTO NLEN=512 auto commits packets
/1 in 512 byte chunks.

Figure 9-37. TD_Poll Example, AUTOIN =1

Auto-In mode differs in one important way from Auto-Out mode: In Auto-Out mode, data (excluding
data in short packets) is always auto-committed in 512- or 1024-byte packets; in Auto-In mode, the
auto-commit packet size may be set to any non-zero value (with the single restriction, of course,
that the packet size must be less than or equal to the size of the endpoint buffer). Each FIFO'’s
Auto-In packet size is stored in its EPXAUTOINLENH:L register pair.

To source an IN packet, FX2 firmware can temporarily halt the flow of data from the external mas-
ter (via a signal on a general-purpose 1/O pin, typically), wait for an endpoint buffer to become
available, create a new packet by writing directly to that buffer, then commit the packet to USB and
release the external master. In this way, the firmware can insert its own packets in the data stream.
See Figure 9-38, which illustrates data flowing directly between the master and the host, and
Figure 9-39, which shows the firmware sourcing an IN packet. A firmware example appears in
Figure 9-40.

Chapter 9. Slave FIFOs Page 9-27

Exhibit 2058 - Page 183 of 460

EZ-USB FX2 Technical Reference Manual

Page 9-28

USB

I/0 | Busy
CPU
v
Data Path Slave 4—Master
AUTOIN=1

Figure 9-38. Master Writes Directly to Host, AUTOIN = 1

Host

USB

1/0 | Busy
CPU i
Data Path Slave Master

AUTOIN=0 or

AUTOIN=1

Figure 9-39. Firmware Intervention, AUTOIN =0 or 1

EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 184 of 460

ié‘ﬂr-n ESS

TD Pol I ():

i f(source_pkt_event)
{ [// 100-nmsec background tiner fired
i f(holdoff_master())
{ I/ signaled “busy” to master successful
while(!'(EP68FI FOFLGS & 0x20))
{ // EP8BEF=0, when buffer not enpty
o /]l wait ‘til host takes entire FIFO data

}
FI FORESET = 0x80; // initiate the “source packet” sequence
SYNCDELAY;
FI FORESET = 0xO06;
SYNCDELAY;
FI FORESET = 0x00;
EPSFI FOBUF[0] = 0x02; // <STX>, packet start of text nsg
EP8FI FOBUF[1] = 0x06; [/ <ACK>
EP8FI FOBUF[2] = 0x07; [/ <HEARTBEAT>
EP8FI FOBUF[3] = 0x03; // <ETX>, packet end of text msg
SYNCDELAY;
EP8BCH = 0x00;
SYNCDELAY;
EP8BCL = 0x04; // pass new y-sourced buffer on to host

}

el se

{
hi story_record(EP8, BAD MASTER);

}

}
Figure 9-40. TD_Poll Example: Sourcing an IN Packet
Chapter 9. Slave FIFOs Page 9-29

Exhibit 2058 - Page 185 of 460

EZ-USB FX2 Technical Reference Manual

9.3.8 Access to IN Packets, AUTOIN=0

In some systems, it may be desirable to allow the FX2's CPU to participate in every data-transfer
between the external master and the host. To configure a FIFO for this “Manual-In” mode, the
AUTOIN bit in the appropriate EPxFIFOCFG register must be cleared to 0.

In Manual-In mode, FX2 firmware can commit, skip, or edit packets sent by the external master,
and it may also source packets directly. To commit a packet, firmware writes the endpoint number
(with SKIP=0) to the INPKTEND register. To skip a packet, firmware writes the endpoint number
with SKIP=1 to the INPKTEND register. To edit or source a packet, firmware writes to the FIFO
buffer, then writes the packet length to EPXxBCH and EPxBCI (in that order).

Page 9-30

TD_Pol 1 ():

if(master_finished_longxfr())
{ // master currently points to EP8, pins FlIFOADR[1: 0] =11
if(!(EPB8FI FOFLGS & 0x10))
{ Il EP8FF=0 when buffer avail able
I NPKTEND = 0x08; // firmwvare commts EP8 packet
/1 by witing 8 to | NPKTEND
rel ease_master(EP8);
}
}

Figure 9-41. TD_Poll Example, AUTOIN=0, Committing a Packet via INPKTEND

TD_Pol 1 ():

if(master_finished_longxfr())
{ // master currently points to EP8, pins FlIFOADR[1: 0] =11
if(!(EP68FI FOFLGS & 0x10))
{ Il EP8FF=0 when buffer avail able
I NPKTEND = 0x88; // firmwnare skips EP8 packet
/1 by witing 0x88 to | NPKTEND
rel ease_master(EP8);
}
}

Figure 9-42. TD_Poll Example, AUTOIN=0, Skipping a Packet via INPKTEND

EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 186 of 460

ié‘ﬂr-n ESS

TD Pol I ():

if(master_finished_xfr())

{ I/ nodify the data
EP8FI FOBUF[0] 0x02; // <STX>, packet start of text nsg
EP8FI FOBUF[7] 0x03; // <ETX>, packet end of text nsg
SYNCDELAY;
EP8BCH = 0x00;
SYNCDELAY;
EP8BCL = 0x08; // pass buffer on to host

Figure 9-43. TD_Poll Example, AUTOIN=0, Editing a Packet via EPXxBCH:L

9.3.9 Auto-In/ Auto-Out Initialization
Enabling Auto-In transfers between slave FIFO and endpoint

Typically, a FIFO is configured for Auto-In mode as follows:

Configure bits IFCONFIG[7:4] to define the behavior of the interface clock.
Set bits IFCFG1:0=11.

Reset the FIFOs.

Set bit EPXFIFOCFG.3=1.

Set the size via the EPXAUTOINLENH:L registers.

a s wbdPRE

Enabling Auto-Out transfers between endpoint and slave FIFO

Typically, a FIFO is configured for Auto-Out mode as follows:

Configure bits IFCONFIG[7:4] to define the behavior of the interface clock.
Set bits IFCFG1:0=11.

Reset the FIFOs.

Set bit EPXFIFOCFG.4=1.

A ownbdpR

Chapter 9. Slave FIFOs Page 9-31

Exhibit 2058 - Page 187 of 460

EZ-USB FX2 Technical Reference Manual

9.3.10 Auto-Mode Example: Synchronous FIFO IN Data Transfers

TD Init():

REVCTL = 0xO03; /1 MJUST set REVCTL.0 and REVCTL.1 to 1
SYNCDELAY;

FI FORESET = 0x80; // reset all FIFGCs

SYNCDELAY;

FI FORESET = 0x02;

SYNCDELAY;

FI FORESET = 0x04;

SYNCDELAY;

FI FORESET = 0x06;

SYNCDELAY;

FI FORESET = 0x08;

SYNCDELAY;

FI FORESET = 0xO00;

SYNCDELAY; /'l this defines the external interface to be the follow ng:

| FCONFI G = 0x43; /'l use I FCLK pin driven by external logic (5Miz to 48MHz)

/1 use slave FIFOinterface pins driven sync by external naster
EP8FI FOCFG = 0x0C; // this lets the FX2 auto commt IN packets, gives the

/1 ability to send zero | ength packets,

// and sets the slave FIFO data interface to 8-bits
EP8CFG = 0xEO; Il sets EP8 valid for INs

/1 and defines the endpoint for 512 byte packets, 2x buffered
Pl NFLAGSAB = 0x00; // defines FLAGA as prog-level flag, pointed to by FI FOADR[1: 0]
SYNCDELAY; /1l FLAGB as full flag, as pointed to by FIFQOADR[1: 0]
Pl NFLAGSCD = 0x00; // FLAGC as enpty flag, as pointed to by FlIFOADR] 1: 0]

/1 won't generally need FLAGD

PORTACFG = 0x00; /1 used PA7/FLAGD as a port pin, not as a FIFO fl ag
FI FOPI NPOLAR = 0x00; // set all slave FIFO interface pins as active |low

SYNCDELAY;

EPSBAUTO NLENH = 0x02; // you can define these as you w sh,

SYNCDELAY; /1 to have the FX2 automatically limt INs
EPSAUTO NLENL = 0xO00;

SYNCDELAY;

EP8FI FOPFH = 0x82; // you can define the progranmable flag (FLAGA)
SYNCDELAY; /!l to be active at the level you wi sh

EP8FI FOPFL = 0x00;

SYNCDELAY; /1 out endpoints do not POR (power-on reset) arned
EP2BCL = 0x80; /'l since the defaults are double buffered we nust
SYNCDELAY; /1 write dummy byte counts twice

EP2BCL = 0x80; // arm EP20QUT & EPAQUT by witing to the byte count w skip.
SYNCDELAY;

EPABCL = 0x80;

SYNCDELAY;

EP4BCL = 0x80;

TD_Pol I ():
/1 nothing! The FX2 is doing all the work of transferring packets
/1 fromthe external naster sync interface to the endpoint buffer...

Figure 9-44. Code Example, Synchronous Slave FIFO IN Data Transfer

Page 9-32 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 188 of 460

iul ESS

9.3.11 Auto-Mode Example: Asynchronous FIFO IN Data Transfers

The initialization code is exactly the same as for the synchronous-transfer example in Section
9.3.10, but with IFCLK configured for internal use at a rate of 48 MHz and the ASYNC bit set to 1.
Figure 9-45 shows the one-line modification that’'s needed.

TD Init(): // slight nodification fromour synchronous firmare exanple
| FCONFI G = 0xCB;

/1 this defines the external interface as follows:

/1 use internal |FCLK (48VMHz)

/1 use slave FIFO interface pins asynchronously to external naster

Figure 9-45. TD_Init Example, Asynchronous Slave FIFO IN Data Transfers

Code to perform the transfers is, as before, unnecessary; as Figure 9-46 illustrates.

TD_Pol | ():
/1 nothing! The FX2 is doing all the work of transferring packets
/1 fromthe external master async interface to the endpoint buffer...

Figure 9-46. TD_Poll Example, Asynchronous Slave FIFO IN Data Transfers

9.4 Switching Between Manual-Out and Auto-Out

Because OUT endpoints are not automatically armed when the FX2 enters Auto-Out mode, the
firmware can safely switch the FX2 between Manual-Out and Auto-Out modes without any need to
flush or reset the FIFOs.

Chapter 9. Slave FIFOs Page 9-33

Exhibit 2058 - Page 189 of 460

EZ-USB FX2 Technical Reference Manual

Page 9-34 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 190 of 460

