
USB: A neat package with a few loose ends
Quinnell, Richard A
EDN; Oct 24, 1996; 41, 22; ProQuest Central
pg.38

IPR Petition for U.S. Patent No. 6,012,103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

, ~ J hen EDN's call for hands-on pro­
VV ject ideas came in late 1995, I

chose the Universal Serial Bus (USB). At
the time, the specification was still in
draft stage as Revision 0.9, and compo­
nents were only a promise. Like most of
you, I wanted to apply an emerging
technology that looked like the next
winner. By catching the bus too soon,
however, I was in for a rough ride.

I chose the USB for its potential. The
bus can connect a standard, closed­
cover PC to industrial peripherals that
now require an add-in card or embed­
ded PC. Connecting the peripheral
device automatically configures both
the peripheral and the PC and prepares
the system to use its newly acquired
capability. Further, that connection can
supply power to run the peripheral
device (see box, "USB fundamentals").

You can use such a self-configuring,
self-powered system for numerous
applications. For example, you can add
a diagnostic monitoring port. You can
build a USB data-acquisition peripher­
al into a system without using system
resources. The system under test need
not have its own control CPU or power
source. Connecting a PC to the USB
device powers the device and allows
the user to monitor system operation,
regardless of the system's status. The
ability to perform remote diagnostics
over a telephone line, for example,
requires only the connection of a
modem-enabled PC to the diagnostic
port. The need for system-hosted com­
munications capability vanishes.

My hands-on project had two objec­
tives. The first was to build a USB
peripheral device. The second was to
use the device to "kick the tires" on the
bus. In particular, I wanted to evaluate
the bus's timing and data-bandwidth
characteristics under severe load to
learn how adaptable the USB would be
to embedded needs.

To meet these objectives, I planned
to create a data-acquisition peripheral.
Data acquisition is a typical embedded

The USB for PCs can automatically configure and

power peripherals. But, as I learned in this hands-

on project, early USB adopters may face a sub-

stantial system-level design effort. They also

need to carefully examine USB data-bandwidth

characteristics.

application-one that could easily
adapt to the USB. In addition, such a
device would give me control over the
device's data rate. That control would
allow me to test the bus under various
loads pushing the bus to its upper
limit.

Once I had my peripheral, I would be
able to measure the system's attained
bandwidth and compare it to the theo­
retical bandwidth. The USB Specifica-

My hands-on protect
had three mator compo­
nents. The IBM PC350
(left) acted as the USB
host. The other PC was
the development plat­
form for the evaluation
board In the middle.

PHOTO COURTESY USB IMPLEMENTERS FORUM
AND INTEL CORP

www.ednmag.com EDN OCTOBER 24, 1996 • 39

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

USB BAND8-0N PROJECf
tion Revision 1.0 (Reference 1) calls for
the host to allocate bandwidth for a
bulk-transfer device based on the for­
mula:

Bus time (nsec)=9107+83.54
(Floor(3 .16 7 + BitStufffime(Data_bc)))

+Host_Delay,

where BitStufffime is the increase in

USB FUNDAMENTALS

raw bit count due to coding, Data_bc is
the number of bits in the data packet,
and Host_delay is the time the host
needs between successive bus transac­
tions. For a 64-byte data packet, worst­
case bit stuffing, and minimum host
delay, the formula yields a bus time of
59.4 f.LSec. That time translates to 1.024
Mbytes/sec because the number of bus

transactions each millisecond must be
an integer.

This formula takes into account
worst-case conditions for clock rate,
signal delays, and data pattern (see
box, "USB bandwidth analysis"). It also
includes several host-system-depen­
dent unknowns. I intended to use my
peripheral to estimate these unknown

The developers of the Universal Serial Bus (USB) specification
had two objectives. One was to collect all of a PC's 1/0 ports
into one interface, providing live-insertion and automatic con­
figuration. The other was to provide sufficient bandwidth to
handle telephony applications along with typical peripherals.
The design they settled on is a four-wire, half-duplex serial bus
running at either 1.5 Mbps (low speed) or 12 Mbps (full
speed).

full-speed data include a shield; low-speed cables need not be
shielded.

USB cable connectors come in two types (Figure B). The
Type-A connector is a flattened rectangle that plugs into
downstream-port sockets on the USB host or a hub. Cables
permanently attached to a device, such as on a keyboard or
mouse, use a Type-A connector. The Type-B connector, rough­
ly square with beveled corners, plugs into upstream sockets on

From the outside, the USB appears
simple. Plugging a peripheral device
into the bus causes the PC to auto­
matically respond. The operating sys­
tem recognizes the device, loads the
appropriate drivers, and configures
the device for operation. The PC can
distinguish between identical devices
on the bus because the bus's physical
configuration ensures a unique, iden­
tifiable connection path between
device and host.

The USB's physical configuration
has a tiered-star topology (Figure A).
The PC serves as the host system and
root hub. Second-tier devices, either
peripherals or hubs, connect to the
root hub's ports. lower tiers connect
through hubs in the tier directly
above. There are no limits on the
number of lower tier connection
points a hub may offer. The specifica­
tion allows as many as five hubs in a
chain and a total of 127 devices on the
bus.

A connection between a device and
hub uses a four-wire, jacketed cable.
Two wires form a twisted pair for data
communications, the other two sup­
ply power and ground for hubs and
devices without their own power
source. Data flow in the cables may be
downstream (hub to device) or
upstream (device to hub). Power can
flow only downstream and is limited
to 500 mA at 5V. Cables intended for

40 • EDN OCTOBER 24, 1996

The USB's physical topology Is a tiered star that can accommodate flve layers and
127 devices.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

~I COVER STORY

values for my system and accurately
estimate achievable bandwidth.

The first task, therefore, was to build
a USB peripheral. Because the project
began only a few months after the spec­
ification's final approval, I had few
choices for hardware- and software­
development tools. Following the pro­
ject's genesis, more tools and improved

versions became available (Table 1), so
the choices I made represent availabili­
ty, not a comment on relative merit.

bit-stuffing and protocol hardware.
The evaluation board includes the
82930, clock circuits, USB line drivers,
external memory, and a ROM-based
reduced-instruction-set monitor
(RISM). The board also has parallel
and serial ports that I planned to use
to connect the board to an ADC mod­
ule. One serial port links the board to

I began my project by acquiring
Intel's evaluation board for its 82930
USB microcontroller. The 82930
microcontroller blends an 80251 core
with USB-specific hardware, including
FIFO buffers, clock generation, and

devices and hubs. The Type-B connector is
used only for the device end of a removable
cable, such as between a hub and a printer.
This two-connector scheme prevents a user
from accidentally creating a loop.

Simple operation, complex behavior
Although the USB appears simple overall,

its internal workings are complex. You need
to carefully examine those workings if you
intend to use the bus as a pathway into your
PC. In particular, you need to understand
how the USB operates logically and the
nature of its data transfers so you can evalu­
ate its adaptability to your intended use.

Even though the USB's physical architec­
ture has a tiered-star topology, its logical
connection is point-to-point. The host sys­
tem establishes independent communica­
tions channels, or pipes, between application

USB cable connectors come In two flavors. The flat connector Is for devices
with built-In cables. The second connector type allows detachable cables with­
out the risk of cabling mistakes.

software and individual control or data ports on peripheral
devices. Channels can carry data (stream) or control/status
(message) information. Pipes have several attributes, including
bandwidth allocation, packet size, information type (stream or
message), and direction of stream data flow.

The host establishes these pipes by assigning a unique 7-bit
address to each device on the bus, a process called "enumer­
ation." Enumeration occurs on power-up and whenever a
device attaches to the bus. During enumeration, the device
reports its configuration to the host, identifying the device's
accessible data and control pathways. Each pathway has its
own 4-bit subaddress, called an "endpoint." The address and
endpoint definitions allow the host to determine the corre­
spondence between application-software functions and
device pathways and create the necessary pipes. An applica­
tion program, thus, has a direct logical connection to a
device's data channels or control registers.

Having multiple pipes on a single half-duplex bus requires
some form of multiplexing. The USB uses time-domain multi­
plexing under control of the host system, working with 1-msec
frames as the basic time segment. The host initiates all bus
transfers, giving it control over the allocation of time within
frames to each pipe. The allocation is not static, however, but
varies from frame to frame. Specific allocation depends on the

type of information transfer the pipe must provide and
whether the application software has requested a transfer.

The USB specification recognizes four transfer types:
isochronous-data, bulk-data, control, and interrupt. Isochro­
nous-data transfers typically carry time-critical information,
such as audio, so the host must allocate time in each frame for
an isochronous stream pipe. Interrupt transfers receive time
slots every nth frame. All other transfers receive time on an as­
available basis.

To ensure that all transfer types have access to the bus, the
USB specification limits the time that the host can allocate to
transfers. Isochronous-data and interrupt transfers together
can occupy no more than 90% of available bus time. Control
transfers have the next priority, with bulk-data transfers receiv­
ing any remaining time. The host is responsible for resolving
contention among control-transfer requests and among bulk­
data-transfer requests for the time available.

The host reserves bus bandwidth for isochronous and inter­
rupt transfers during device enumeration. If a transfer needs
more bandwidth than is available, however, the host does not
finish that device's enumeration. This inaction effectively
denies the device access to the bus.

Reservation of bandwidth does not allocate bus time but
(continued on pg 42)

EDN OCTOBER 24, 1996 • 41
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

USB HANDS-ON PROJECT
the development system.

The evaluation board is
part of a peripheral develop­
er's kit available from Intel.
The original kit comprised
the evaluation board, a host
system, driver software, and
sample application software.
Unfortunately, no host sys­
tems were available for me to
borrow, so I had to locate my
own USB-ready PC. The sam­
ple software was specific to
the Intel host system, so I
couldn't adapt it to my pro­
ject.

debugger and because its
crippled-for-demo state was
sufficient to meet my antici­
pated development needs.

I also needed tools for
developing device drivers
and application software
under Windows 95. This
requirement, in turn, re­
quired that I obtain a copy of
the Windows NT Driver
Developer's Kit from
Microsoft. I was able to
obtain several sample dri­
vers but could not get what I
needed to run Windows NT
and develop the custom dri­
vers that my project would
require.

Too little, too late

The first USB host systems
to enter production were the
IBM PC 300 series PCs. I bor­
rowed a PC 350 from IBM. It
has two USB ports on the
back panel and BIOS exten­
sions that support the USB.
To be completely ready as a
USB host, however, the sys­
tem needed an updated ver­
sion of Windows 95. The

Deciphering the USB's activity with a basic logic analyzer
would be a nightmare. Fortunately, bus-analysis tools, such as
the CATC USB Detective, are available.

At this point, I had to re­
evaluate my approach to the
project. Given my limited
resources and a six-week
deadline, I faced an impossi­
ble development effort. The

commercially available ver-
sion would not recognize the USB port
or run USB device drivers. I obtained
from Microsoft a beta version of the lat­
est Windows 95 OEM release for my
system, along with some USB loop­
back test drivers.

To turn the evaluation board into a

peripheral device, I would have to pro­
gram the 82930. For that task, I needed
software-development tools. The eval­
uation board came with demonstration
tools from Keil Software, Production
Languages Corp (PLC), and Tasking. I
chose the Tasking software for its

pieces of this puzzle were all
too new and had raw edges. These
pieces weren't going to go together
very well, and I had few tools at my dis­
posal that would let me trim the pieces
to fit. And, I was missing a few pieces.

Figure 1 helps illustrate the effort I
faced. Of the six major blocks in a USB

USB FUNDAMENTALS (oontinued)

merely tracks anticipated demand. The host system allocates
time within a frame only if the application software has
requested time. An audio CD device, for example, may have
50 kbytes/sec reserved on the USB, but the host doesn't allo­
cate time if the CD is not playing. Any reserved, but unused,
bus time becomes available for bulk-data transfers.

The mix of transfer types offers design trade-offs among
data rate, latency, and data integrity. Isochronous data trans­
fers have a guaranteed data rate and bounded latency. They
receive time every frame, although a given transfer's position
within the frame may vary. The drawback to isochronous
transfer is that the data is not guaranteed. If data loss or error
occurs, the USB does not resend isochronous data. Isochro­
nous transfers can have data packets as long as 1 023 bytes
and must always run at full speed.

Interrupt transfers also have a guaranteed data rate and
bounded latency but may run at full or low speed. Every n
frames, the host queries a device through its interrupt-stream

42 • EON OCTOBER 24, 1996

pipe. If the device has interrupt information, it returns a sin­
gle data packet as long as 64 bytes. If an error occurs in trans­
mission, the device resends the information at the next query.

Bulk data and control transfers have no guarantees on their
data rate, although control transfers have the first claim to
1 0% of the bus bandwidth. Errors in bulk data and control
transfers prompt a retry. If several transfer requests are pend­
ing for the same pipe, the retry occurs before the pending
transfers. Bulk- and control-data packets can be as long as 64
bytes and may run at full or low speed.

Understanding these trade-offs and the underlying logic of
the USB's operation should allow you to estimate how well the
bus can meet its intended application's interface needs. For
more detailed design work, you need a copy of the specifica­
tion. It is available for $35 from the USB Implementer's Forum,
JF2-51, 2111 NE 25th Ave, Hillsboro, OR, 97124. You can also
download it free from the USB home page, http:/ I
www.teleport.com/-usb.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

