
Cypress Semiconductor
3901 North First Street
San Jose, CA 95134
Tel.: (800) 858-1810 (toll-free in the U.S.)
 (408) 943-2600
www.cypress.com

EZ-USB FX2

Manual

Technical Reference

Exhibit 2058 - Page 01 of 460

Smith_doug
Text Box
EXHIBIT 2058LG Elecs. v. Cypress Semiconductor IPR2014-01386, U.S. Pat. 6,012,103

Cypress Disclaimer Agreement

The information in this document is subject to
change without notice and should not be con-
strued as a commitment by Cypress Semicon-
ductor Corporation Incorporated. While
reasonable precautions have been taken,
Cypress Semiconductor Corporation assumes
no responsibility for any errors that may appear
in this document.

No part of this document may be copied or
reproduced in any form or by any means with-
out the prior written consent of Cypress Semi-
conductor Corporation.

Cypress Semiconductor products are not
designed, intended, or authorized for use as
components in systems intended for surgical
implant into the body, or other applications
intended to support or sustain life, or for any
other application in which the failure of the
Cypress Semiconductor product could create a
situation where personal injury or death may

occur. Should Buyer purchase or use Cypress
Semiconductor products for any such unin-
tended or unauthorized application, Buyer shall
indemnify and hold Cypress Semiconductor
and its officers, employees, subsidiaries, affili-
ates and distributors harmless against all
claims, costs, damages, expenses, and rea-
sonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death
associated with such unintended or unautho-
rized use, even if such claim alleges that
Cypress Semiconductor was negligent regard-
ing the design or manufacture of the product.

The acceptance of this document will be con-
strued as an acceptance of the foregoing con-
ditions.

EZ-USB FX2 Technical Reference Manual,
Version 2.1.

Copyright © 2000, 2001
Cypress Semiconductor Corporation.

All rights reserved.

List of Trademarks

Cypress, the Cypress Logo, EZ-USB, Making USB Universal, Xcelerator, and ReNumeration are
trademarks or registered trademarks of Cypress Semiconductor Corporation. Macintosh is a regis-
tered trademark of Apple Computer, Inc. Windows is a registered trademark of Microsoft Corpora-
tion. I²C is a registered trademark of Philips Electronics. All other product or company names used
in this manual may be trademarks, registered trademarks, or servicemarks of their respective own-
ers.

Exhibit 2058 - Page 02 of 460

i

Table of Contents

Chapter 1. Introducing EZ-USB FX2
 1.1 Introduction..1-1
 1.2 An Introduction to USB..1-1
 1.3 The USB Specification ..1-2
 1.4 Host Is Master ...1-3
 1.5 USB Direction..1-3
 1.6 Tokens and PIDs...1-3

 1.6.1 Receiving Data from the Host..1-5
 1.6.2 Sending Data to the Host...1-5

 1.7 USB Frames..1-5
 1.8 USB Transfer Types..1-6

 1.8.1 Bulk Transfers..1-6
 1.8.2 Interrupt Transfers ...1-6
 1.8.3 Isochronous Transfers ...1-7
 1.8.4 Control Transfers..1-7

 1.9 Enumeration ..1-8
 1.9.1 Full-Speed / High-Speed Detection ...1-8

 1.10 The Serial Interface Engine (SIE)..1-9
 1.11 ReNumeration™..1-10
 1.12 EZ-USB FX2 Architecture ...1-11
 1.13 FX2 Feature Summary ..1-13
 1.14 FX2 Integrated Microprocessor ...1-13
 1.15 FX2 Block Diagram ...1-15
 1.16 Packages...1-16

 1.16.1 56-Pin Package ...1-16
 1.16.2 100-Pin Package ...1-17
 1.16.3 128-Pin Package ...1-17
 1.16.4 Signals Available in the Three Packages ..1-17

 1.17 Package Diagrams ..1-20
 1.18 FX2 Endpoint Buffers ..1-23
 1.19 External FIFO Interface ...1-25
 1.20 EZ-USB FX2 Product Family..1-28

Chapter 2. Endpoint Zero
 2.1 Introduction..2-1
 2.2 Control Endpoint EP0..2-2
 2.3 USB Requests...2-5

 2.3.1 Get Status..2-7
 2.3.2 Set Feature ..2-10

Exhibit 2058 - Page 03 of 460

ii Table of Contents

(Table of Contents)

 2.3.3 Clear Feature ...2-11
 2.3.4 Get Descriptor ...2-12

2.3.4.1 Get Descriptor-Device..2-14
2.3.4.2 Get Descriptor-Device Qualifier ...2-15
2.3.4.3 Get Descriptor-Configuration ...2-15
2.3.4.4 Get Descriptor-String ...2-16
2.3.4.5 Get Descriptor-Other Speed Configuration..2-16

 2.3.5 Set Descriptor..2-17
2.3.5.1 Set Configuration ...2-20

 2.3.6 Get Configuration ..2-20
 2.3.7 Set Interface ..2-21
 2.3.8 Get Interface..2-22
 2.3.9 Set Address ...2-22
 2.3.10 Sync Frame ...2-23
 2.3.11 Firmware Load...2-24

Chapter 3. Enumeration and ReNumeration™
 3.1 Introduction ...3-1
 3.2 FX2 Startup Modes ...3-1
 3.3 The Default USB Device ..3-3
 3.4 EEPROM Boot-load Data Formats ...3-4

 3.4.1 No EEPROM or Invalid EEPROM...3-4
 3.4.2 Serial EEPROM Present, First Byte is 0xC0 ...3-5
 3.4.3 Serial EEPROM Present, First Byte is 0xC2 ...3-6

 3.5 EEPROM Configuration Byte ..3-8
 3.6 The RENUM Bit...3-9
 3.7 FX2 Response to Device Requests (RENUM=0)..3-10
 3.8 FX2 Vendor Request for Firmware Load ..3-11
 3.9 How the Firmware ReNumerates..3-12
 3.10 Multiple ReNumerations™ ..3-12

Chapter 4. Interrupts
 4.1 Introduction ...4-1
 4.2 SFRs ...4-2

 4.2.1 803x/805x Compatibility ..4-5
 4.3 Interrupt Processing ..4-6

 4.3.1 Interrupt Masking...4-6
4.3.1.1 Interrupt Priorities...4-7

 4.3.2 Interrupt Sampling ...4-8
 4.3.3 Interrupt Latency..4-8

 4.4 USB-Specific Interrupts...4-8
 4.4.1 Resume Interrupt...4-8
 4.4.2 USB Interrupts...4-9

4.4.2.1 SUTOK, SUDAV Interrupts ..4-12

Exhibit 2058 - Page 04 of 460

Table of Contents iii

(Table of Contents)

4.4.2.2 SOF Interrupt ...4-13
4.4.2.3 Suspend Interrupt...4-13
4.4.2.4 USB RESET Interrupt ..4-13
4.4.2.5 HISPEED Interrupt ...4-13
4.4.2.6 EP0ACK Interrupt...4-13
4.4.2.7 Endpoint Interrupts...4-14
4.4.2.8 In-Bulk-NAK (IBN) Interrupt..4-14
4.4.2.9 EPxPING Interrupt ...4-14
4.4.2.10 ERRLIMIT Interrupt ..4-15
4.4.2.11 EPxISOERR Interrupt ..4-15

 4.5 USB-Interrupt Autovectors ..4-15
 4.5.1 USB Autovector Coding ...4-17

 4.6 I²C-Compatible Bus Interrupt...4-18
 4.7 FIFO/GPIF Interrupt (INT4) ...4-19
 4.8 FIFO/GPIF-Interrupt Autovectors ..4-20

 4.8.1 FIFO/GPIF Autovector Coding...4-21

Chapter 5. Memory
 5.1 Introduction..5-1
 5.2 Internal Data RAM...5-1

 5.2.1 The Lower 128...5-2
 5.2.2 The Upper 128...5-2
 5.2.3 SFR (Special Function Register) Space..5-2

 5.3 External Program Memory and External Data Memory...5-3
 5.3.1 56- and 100-pin FX2 ..5-4
 5.3.2 128-pin FX2 ...5-4

 5.4 FX2 Memory Maps ..5-5
 5.5 “Von-Neumannizing” Off-Chip Program and Data Memory...5-8
 5.6 On-Chip Data Memory at 0xE000-0xFFFF ...5-9

Chapter 6. Power Management
 6.1 Introduction..6-1
 6.2 USB Suspend..6-3

 6.2.1 SUSPEND Register ...6-4
 6.3 Wakeup/Resume...6-4

 6.3.1 Wakeup Interrupt ...6-5
 6.4 USB Resume (Remote Wakeup) ..6-6

 6.4.1 WU2 Pin...6-6

Chapter 7. Resets
 7.1 Introduction..7-1
 7.2 Power-On Reset (POR)...7-2
 7.3 Releasing the CPU Reset ...7-3

 7.3.1 RAM Download..7-3

Exhibit 2058 - Page 05 of 460

iv Table of Contents

(Table of Contents)

 7.3.2 EEPROM Load ..7-3
 7.3.3 External ROM ..7-3

 7.4 CPU Reset Effects ..7-4
 7.5 USB Bus Reset ...7-4
 7.6 FX2 Disconnect...7-5
 7.7 Reset Summary ...7-5

Chapter 8. Access to Endpoint Buffers
 8.1 Introduction ...8-1
 8.2 FX2 Large and Small Endpoints ...8-1
 8.3 High-Speed and Full-Speed Differences...8-2
 8.4 How the CPU Configures the Endpoints ...8-3
 8.5 CPU Access to FX2 Endpoint Data...8-4
 8.6 CPU Control of FX2 Endpoints ...8-5

 8.6.1 Registers That Control EP0, EP1IN, and EP1OUT...8-5
8.6.1.1 EP0CS ...8-5
8.6.1.2 EP0BCH and EP0BCL...8-7
8.6.1.3 USBIE, USBIRQ ..8-7
8.6.1.4 EP01STAT ...8-8
8.6.1.5 EP1OUTCS..8-8
8.6.1.6 EP1OUTBC..8-9
8.6.1.7 EP1INCS..8-9
8.6.1.8 EP1INBC..8-9

 8.6.2 Registers That Control EP2, EP4, EP6, EP8..8-10
8.6.2.1 EP2468STAT ...8-10
8.6.2.2 EP2ISOINPKTS, EP4ISOINPKTS, EP6ISOINPKTS, EP8ISOINPKTS8-10
8.6.2.3 EP2CS, EP4CS, EP6CS, EP8CS..8-11
8.6.2.4 EP2BCH:L, EP4BCH:L, EP6BCH:L, EP8BCH:L..8-12

 8.6.3 Registers That Control All Endpoints...8-13
8.6.3.1 IBNIE, IBNIRQ, NAKIE, NAKIRQ...8-14
8.6.3.2 EPIE, EPIRQ..8-15
8.6.3.3 USBERRIE, USBERRIRQ, ERRCNTLIM, CLRERRCNT..................................8-16
8.6.3.4 TOGCTL ..8-16

 8.7 The Setup Data Pointer...8-17
 8.7.1 Transfer Length ...8-19
 8.7.2 Accessible Memory Spaces ..8-19

 8.8 Autopointers ..8-19

Chapter 9. Slave FIFOs
 9.1 Introduction ...9-1
 9.2 Hardware...9-2

 9.2.1 Slave FIFO Pins ..9-3
 9.2.2 FIFO Data Bus (FD) ..9-4
 9.2.3 Interface Clock (IFCLK) ...9-5

Exhibit 2058 - Page 06 of 460

Table of Contents v

(Table of Contents)

 9.2.4 FIFO Flag Pins (FLAGA, FLAGB, FLAGC, FLAGD)..9-6
 9.2.5 Control Pins (SLOE, SLRD, SLWR, PKTEND, FIFOADR[1:0]).......................................9-8
 9.2.6 Slave FIFO Chip Select (SLCS) ..9-10
 9.2.7 Implementing Synchronous Slave FIFO Writes...9-10
 9.2.8 Implementing Synchronous Slave FIFO Reads...9-13
 9.2.9 Implementing Asynchronous Slave FIFO Writes ...9-15
 9.2.10 Implementing Asynchronous Slave FIFO Reads...9-17

 9.3 Firmware ...9-19
 9.3.1 Firmware FIFO Access ..9-19
 9.3.2 EPx Memories ...9-20
 9.3.3 Slave FIFO Programmable-Level Flag (PF) ..9-21
 9.3.4 Auto-In / Auto-Out Modes..9-22
 9.3.5 CPU Access to OUT Packets, AUTOOUT = 1...9-23
 9.3.6 CPU Access to OUT Packets, AUTOOUT = 0...9-24
 9.3.7 CPU Access to IN Packets, AUTOIN = 1...9-27
 9.3.8 Access to IN Packets, AUTOIN=0 ...9-30
 9.3.9 Auto-In / Auto-Out Initialization..9-31
 9.3.10 Auto-Mode Example: Synchronous FIFO IN Data Transfers.......................................9-32
 9.3.11 Auto-Mode Example: Asynchronous FIFO IN Data Transfers9-33

 9.4 Switching Between Manual-Out and Auto-Out...9-33

Chapter 10. General Programmable Interface (GPIF)
 10.1 Introduction..10-1

 10.1.1 Typical GPIF Interface ...10-3
 10.2 Hardware...10-5

 10.2.1 The External GPIF Interface..10-5
 10.2.2 Default GPIF Pins Configuration..10-6
 10.2.3 Six Control OUT Signals ..10-7

10.2.3.1 Control Output Modes ..10-7
 10.2.4 Six Ready IN signals..10-7
 10.2.5 Nine GPIF Address OUT signals ...10-7
 10.2.6 Three GSTATE OUT signals ...10-8
 10.2.7 8/16-Bit Data Path, WORDWIDE = 1 (default) and WORDWIDE = 010-8
 10.2.8 Byte Order for 16-bit GPIF Transactions ...10-8
 10.2.9 Interface Clock (IFCLK) ...10-8
 10.2.10 Connecting GPIF Signal Pins to Hardware..10-10
 10.2.11 Example GPIF Hardware Interconnect..10-10

 10.3 Programming the GPIF Waveforms ..10-11
 10.3.1 The GPIF Registers ...10-12
 10.3.2 Programming GPIF Waveforms...10-12

10.3.2.1 The GPIF IDLE State ...10-12
10.3.2.1.1 GPIF Data Bus During IDLE...10-13
10.3.2.1.2 CTL Outputs During IDLE..10-13

10.3.2.2 Defining States...10-14

Exhibit 2058 - Page 07 of 460

vi Table of Contents

(Table of Contents)

10.3.2.2.1 Non-Decision Point (NDP) States..10-14
10.3.2.2.2 Decision Point (DP) States ..10-16

 10.3.3 Re-Executing a Task Within a DP State ..10-18
 10.3.4 State Instructions...10-21

10.3.4.1 Structure of the Waveform Descriptors ..10-25
 10.4 Firmware ...10-26

 10.4.1 Single-Read Transactions ...10-33
 10.4.2 Single-Write Transactions ...10-38
 10.4.3 FIFO-Read and FIFO-Write Transactions ...10-41

10.4.3.1 Transaction Counter ..10-41
10.4.3.2 Reading the Transaction-Count Status in a DP State....................................10-42

 10.4.4 GPIF Flag Selection ..10-42
 10.4.5 GPIF Flag Stop..10-42

10.4.5.1 Performing a FIFO-Read Transaction..10-43
 10.4.6 Firmware Access to IN packet(s), (AUTOIN=1)...10-48
 10.4.7 Firmware Access to IN Packet(s), (AUTOIN = 0) ..10-49

10.4.7.1 Performing a FIFO-Write Transaction ..10-52
 10.4.8 Firmware access to OUT packets, (AUTOOUT=1) ...10-56
 10.4.9 Firmware access to OUT packets, (AUTOOUT = 0) ...10-57
 10.4.10 Burst FIFO Transactions ...10-59

 10.5 UDMA Interface...10-63

Chapter 11. CPU Introduction
 11.1 Introduction ...11-1
 11.2 8051 Enhancements ...11-2
 11.3 Performance Overview..11-3
 11.4 Software Compatibility ..11-4
 11.5 803x/805x Feature Comparison..11-4
 11.6 FX2/DS80C320 Differences ..11-5

 11.6.1 Serial Ports ..11-5
 11.6.2 Timer 2 ..11-5
 11.6.3 Timed Access Protection...11-6
 11.6.4 Watchdog Timer ..11-6
 11.6.5 Power Fail Detection ...11-6
 11.6.6 Port I/O ..11-6
 11.6.7 Interrupts ...11-6

 11.7 EZ-USB FX2 Register Interface ..11-7
 11.8 EZ-USB FX2 Internal RAM ...11-7
 11.9 I/O Ports ..11-8
 11.10 Interrupts ...11-9
 11.11 Power Control ...11-9
 11.12 Special Function Registers (SFR)...11-10
 11.13 External Address/Data Buses ...11-11
 11.14 Reset ...11-11

Exhibit 2058 - Page 08 of 460

Table of Contents vii

(Table of Contents)

Chapter 12. Instruction Set
 12.1 Introduction..12-1

 12.1.1 Instruction Timing ..12-5
 12.1.2 Stretch Memory Cycles (Wait States) ..12-5
 12.1.3 Dual Data Pointers...12-7
 12.1.4 Special Function Registers ..12-7

Chapter 13. Input/Output
 13.1 Introduction..13-1
 13.2 I/O Ports ..13-1
 13.3 I/O Port Alternate Functions ..13-5

 13.3.1 Port A Alternate Functions...13-7
 13.3.2 Port B and Port D Alternate Functions...13-8
 13.3.3 Port C Alternate Functions...13-9
 13.3.4 Port E Alternate Functions...13-10

 13.4 I²C-Compatible Bus Controller ..13-12
 13.4.1 Interfacing to I²C Peripherals ...13-12
 13.4.2 Registers..13-13

13.4.2.1 Control Bits...13-14
13.4.2.2 Status Bits ..13-15

 13.4.3 Sending Data ...13-16
 13.4.4 Receiving Data ..13-16

 13.5 EEPROM Boot Loader ..13-17

Chapter 14. Timers/Counters and Serial Interface
 14.1 Introduction..14-1
 14.2 Timers/Counters..14-1

 14.2.1 803x/805x Compatibility...14-2
 14.2.2 Timers 0 and 1...14-2

14.2.2.1 Mode 0, 13-Bit Timer/Counter — Timer 0 and Timer 114-3
14.2.2.2 Mode 1, 16-Bit Timer/Counter — Timer 0 and Timer 114-3
14.2.2.3 Mode 2, 8-Bit Counter with Auto-Reload — Timer 0 and Timer 1....................14-5
14.2.2.4 Mode 3, Two 8-Bit Counters — Timer 0 Only ..14-6

 14.2.3 Timer Rate Control ..14-7
 14.2.4 Timer 2...14-8

14.2.4.1 Timer 2 Mode Control ..14-9
 14.2.5 Timer 2 — 16-Bit Timer/Counter Mode..14-10

14.2.5.1 Timer 2 — 16-Bit Timer/Counter Mode with Capture14-10
 14.2.6 Timer 2 — 16-Bit Timer/Counter Mode with Auto-Reload ...14-10
 14.2.7 Timer 2 — Baud Rate Generator Mode...14-11

 14.3 Serial Interface ..14-12
 14.3.1 803x/805x Compatibility...14-13
 14.3.2 High-Speed Baud Rate Generator...14-14

Exhibit 2058 - Page 09 of 460

viii Table of Contents

(Table of Contents)

 14.3.3 Mode 0...14-15
 14.3.4 Mode 1...14-20

14.3.4.1 Mode 1 Baud Rate ...14-20
14.3.4.2 Mode 1 Transmit ..14-22

 14.3.5 Mode 1 Receive...14-22
 14.3.6 Mode 2...14-24

14.3.6.1 Mode 2 Transmit ..14-24
14.3.6.2 Mode 2 Receive ...14-25

 14.3.7 Mode 3...14-26

Chapter 15. Registers
 15.1 Introduction ...15-1

 15.1.1 Example Register Formats ..15-1
 15.1.2 Other Conventions...15-2

 15.2 Special Function Registers (SFR) ...15-3
 15.3 About SFRS ..15-4
 15.4 GPIF Waveform Memories..15-13

 15.4.1 GPIF Waveform Descriptor Data...15-13
 15.5 General Configuration Registers ...15-13

 15.5.1 CPU Control and Status ..15-13
 15.5.2 Interface Configuration (Ports, GPIF, slave FIFOs)...15-14
 15.5.3 Slave FIFO FLAGA-FLAGD Pin Configuration..15-18
 15.5.4 FIFO Reset ..15-20
 15.5.5 Breakpoint, Breakpoint Address High, Breakpoint Address Low...............................15-20
 15.5.6 230 Kbaud Clock (T0, T1, T2) ...15-22
 15.5.7 Slave FIFO Interface Pins Polarity ..15-22
 15.5.8 Chip Revision ID..15-23
 15.5.9 Chip Revision Control..15-24
 15.5.10 GPIF Hold Time...15-25

 15.6 Endpoint Configuration..15-26
 15.6.1 Endpoint 1-OUT/Endpoint 1-IN Configurations ...15-26
 15.6.2 Endpoint 2, 4, 6 and 8 Configuration...15-27
 15.6.3 Endpoint 2, 4, 6 and 8/Slave FIFO Configuration..15-29
 15.6.4 Endpoint 2, 4, 6, 8 AUTOIN Packet Length (High/Low) ..15-31
 15.6.5 Endpoint 2, 4, 6, 8 /Slave FIFO Programmable-Level Flag (High/Low)15-33

15.6.5.1 IN Endpoints ..15-39
15.6.5.2 OUT Endpoints ..15-40

 15.6.6 Endpoint 2, 4, 6, 8 ISO IN Packets per Frame ..15-41
 15.6.7 Force IN Packet End ...15-41
 15.6.8 Force OUT Packet End ...15-42

 15.7 Interrupts ...15-43
 15.7.1 Endpoint 2, 4, 6, 8 Slave FIFO Flag Interrupt Enable/Request15-43
 15.7.2 IN-BULK-NAK Interrupt Enable/Request...15-45
 15.7.3 Endpoint Ping-NAK/IBN Interrupt Enable/Request..15-46

Exhibit 2058 - Page 10 of 460

Table of Contents ix

(Table of Contents)

 15.7.4 USB Interrupt Enable/Request ..15-47
 15.7.5 Endpoint Interrupt Enable/Request..15-49
 15.7.6 GPIF Interrupt Enable/Request ...15-50
 15.7.7 USB Error Interrupt Enable/Request ...15-51
 15.7.8 USB Error Counter Limit ..15-52
 15.7.9 Clear Error Count...15-52
 15.7.10 INT 2 (USB) Autovector ...15-53
 15.7.11 INT 4 (slave FIFOs & GPIF) Autovector ..15-53
 15.7.12 INT 2 and INT 4 Setup...15-54

 15.8 Input/Output Registers ..15-55
 15.8.1 I/O PORTA Alternate Configuration...15-55
 15.8.2 I/O PORTC Alternate Configuration...15-56
 15.8.3 I/O PORTE Alternate Configuration...15-56
 15.8.4 I²C Compatible Bus Control and Status...15-57
 15.8.5 I²C-Compatible Bus Data...15-59
 15.8.6 I²C-Compatible Bus Control...15-59
 15.8.7 AUTOPOINTERs 1 and 2 MOVX access ..15-60

 15.9 UDMA CRC Registers ...15-61
 15.10 USB Control ..15-63

 15.10.1 USB Control and Status...15-63
 15.10.2 Enter Suspend State..15-64
 15.10.3 Wakeup Control & Status ..15-64
 15.10.4 Data Toggle Control...15-65
 15.10.5 USB Frame Count High ...15-66
 15.10.6 USB Frame Count Low..15-67
 15.10.7 USB Microframe Count..15-67
 15.10.8 USB Function Address ..15-68

 15.11 Endpoints ..15-68
 15.11.1 Endpoint 0 (Byte Count High) ..15-68
 15.11.2 Endpoint 0 Control and Status (Byte Count Low) ..15-69
 15.11.3 Endpoint 1 OUT and IN Byte Count...15-69
 15.11.4 Endpoint 2 and 6 Byte Count High ..15-70
 15.11.5 Endpoint 4 and 8 Byte Count High ..15-70
 15.11.6 Endpoint 2, 4, 6, 8 Byte Count Low ...15-71
 15.11.7 Endpoint 0 Control and Status...15-71
 15.11.8 Endpoint 1 OUT/IN Control and Status..15-72
 15.11.9 Endpoint 2 Control and Status...15-74
 15.11.10 Endpoint 4 Control and Status...15-74
 15.11.11 Endpoint 6 Control and Status...15-75
 15.11.12 Endpoint 8 Control and Status...15-76
 15.11.13 Endpoint 2 and 4 Slave FIFO Flags...15-77
 15.11.14 Endpoint 6 and 8 Slave FIFO Flags...15-77
 15.11.15 Endpoint 2 Slave FIFO Byte Count High ...15-78
 15.11.16 Endpoint 6 Slave FIFO Total Byte Count High ..15-78

Exhibit 2058 - Page 11 of 460

x Table of Contents

(Table of Contents)

 15.11.17 Endpoint 4 and 8 Slave FIFO Byte Count High ...15-79
 15.11.18 Endpoint 2, 4, 6, 8 Slave FIFO Byte Count Low..15-79
 15.11.19 Setup Data Pointer High and Low Address ...15-80
 15.11.20 Setup Data Pointer Auto..15-81
 15.11.21 Setup Data - 8 Bytes ...15-82

 15.12 General Programmable Interface (GPIF)..15-83
 15.12.1 GPIF Waveform Selector...15-83
 15.12.2 GPIF Done and Idle Drive Mode ...15-83
 15.12.3 CTL Outputs ..15-84
 15.12.4 GPIF Address High..15-86
 15.12.5 GPIF Address Low ..15-87
 15.12.6 GPIF Flowstate Registers..15-87
 15.12.7 GPIF Transaction Count Bytes..15-95
 15.12.8 Endpoint 2, 4, 6, 8 GPIF Flag Select ...15-97
 15.12.9 Endpoint 2, 4, 6, and 8 GPIF Stop Transaction...15-98
 15.12.10 Endpoint 2, 4, 6, and 8 Slave FIFO GPIF Trigger ...15-98
 15.12.11 GPIF Data High (16-Bit Mode) ..15-99
 15.12.12 Read/Write GPIF Data LOW & Trigger Transaction..15-99
 15.12.13 Read GPIF Data LOW, No Transaction Trigger ..15-100
 15.12.14 GPIF RDY Pin Configuration ...15-100
 15.12.15 GPIF RDY Pin Status ..15-101
 15.12.16 Abort GPIF Cycles...15-101

 15.13 Endpoint Buffers..15-102
 15.13.1 EP0 IN-OUT Buffer..15-102
 15.13.2 Endpoint 1-OUT Buffer ..15-102
 15.13.3 Endpoint 1-IN Buffer ..15-103
 15.13.4 Endpoint 2/Slave FIFO Buffer..15-103
 15.13.5 512-byte Endpoint 4/Slave FIFO Buffer...15-104
 15.13.6 512/1024-byte Endpoint 6/Slave FIFO Buffer..15-104
 15.13.7 512-byte Endpoint 8/Slave FIFO Buffer...15-105

 15.14 Synchronization Delay ..15-105

Appendix A
Default Descriptors for Full Speed Mode ...Appendix - 1

Appendix B
Default Descriptors for High Speed Mode..Appendix - 11

Appendix C
FX2 Register Summary..Appendix - 23

Exhibit 2058 - Page 12 of 460

xiii

List of Figures

 Figure 1-1. USB Packets ..1-4

 Figure 1-2. Two Bulk Transfers, IN and OUT ...1-6
 Figure 1-3. An Interrupt Transfer ..1-6
 Figure 1-4. An Isochronous Transfer ..1-7

 Figure 1-5. A Control Transfer ..1-7
 Figure 1-6. What the SIE Does ...1-9
 Figure 1-7. FX2 56-pin Package Simplified Block Diagram ..1-11

 Figure 1-8. FX2 128-pin Package Simplified Block Diagram ..1-12
 Figure 1-9. FX2 Block Diagram ..1-15
 Figure 1-10. 56-pin, 100-pin, and 128-pin FX2 Packages ..1-16

 Figure 1-11. Signals for the Three FX2 Package Types ..1-19
 Figure 1-12. CY7C68013-128 TQFP Pin Assignment ..1-20
 Figure 1-13. CY7C68013-100 TQFP Pin Assignment ..1-21

 Figure 1-14. CY7C68013-56 SSOP Pin Assignment ...1-22
 Figure 1-15. FX2 Endpoint Buffers ...1-23

 Figure 1-16. FX2 FIFOs in “Slave FIFO” Mode ..1-26
 Figure 1-17. FX2 FIFOs in “GPIF Master” Mode ..1-27
 Figure 2-1. A USB Control Transfer (With Data Stage) ..2-2

 Figure 2-2. Two Interrupts Associated with EP0 CONTROL Transfers ..2-3
 Figure 2-3. Registers Associated with EP0 Control Transfers ...2-4
 Figure 2-4. Data Flow for a Get_Status Request ...2-7

 Figure 2-5. Using Setup Data Pointer (SUDPTR) for Get_Descriptor Requests2-13
 Figure 3-1. EEPROM Configuration Byte ...3-8
 Figure 3-2. USB Control and Status Register ...3-12

 Figure 4-1. USB Interrupts ..4-10
 Figure 4-2. The Order of Clearing Interrupt Requests is Important ..4-12
 Figure 4-3. SUTOK and SUDAV Interrupts ..4-12

 Figure 4-4. A Start Of Frame (SOF) Packet ...4-13
 Figure 4-5. The USB Autovector Mechanism in Action ..4-17
 Figure 4-6. I²C-Compatible Bus Interrupt-Enable Bits and Registers ...4-18

 Figure 4-7. The FIFO/GPIF Autovector Mechanism in Action ..4-22
 Figure 5-1. Internal Data RAM Organization ..5-1
 Figure 5-2. FX2 External Program/Data Memory Map, EA=0 ..5-5

 Figure 5-3. FX2 External Program/Data Memory Map, EA=1 ..5-7
 Figure 5-4. On-Chip Data Memory at 0xE000-0xFFFF ..5-9
 Figure 6-1. Suspend-Resume Control ..6-2

Exhibit 2058 - Page 13 of 460

xiv List of Figures

(List of Figures)

 Figure 6-2. USB Suspend sequence ..6-3
 Figure 6-3. FX2 Wakeup/Resume sequence ...6-4
 Figure 6-4. USB Control and Status register ..6-6

 Figure 7-1. EZ-USB FX2 Resets ..7-1
 Figure 9-1. Slave FIFOs’ Role in the FX2 System ...9-2
 Figure 9-2. FX2 Slave Mode Full-Featured Interface Pins ...9-3

 Figure 9-3. Asynchronous vs. Synchronous Timing Models ..9-3
 Figure 9-4. 8-bit Mode Slave FIFOs, WORDWIDE=0 ..9-4
 Figure 9-5. 16-bit Mode Slave FIFOs, WORDWIDE=1 ..9-5

 Figure 9-6. IFCLK Configuration ..9-6
 Figure 9-7. Satisfying Setup Timing by Inverting the IFCLK Output ...9-6
 Figure 9-8. FLAGx ..9-7

 Figure 9-9. Slave FIFO Control Pins ..9-9
 Figure 9-10. Interface Pins Example: Synchronous FIFO Writes ...9-10
 Figure 9-11. State Machine Example: Synchronous FIFO Writes ..9-11

 Figure 9-12. Timing Example: Synchronous FIFO Writes, Waveform 1 ...9-11
 Figure 9-13. Timing Example: Synchronous FIFO Writes, Waveform 2 ...9-12
 Figure 9-14. Timing Example: Synchronous FIFO Writes, Waveform 3, PKTEND Pin Illustrated9-12

 Figure 9-15. Interface Pins Example: Synchronous FIFO Reads ...9-13
 Figure 9-16. State Machine Example: Synchronous FIFO Reads ..9-13
 Figure 9-17. Timing Example: Synchronous FIFO Reads, Waveform 1 ..9-14

 Figure 9-18. Timing Example: Synchronous FIFO Reads, Waveform 2, EMPTY Flag Illustrated9-14
 Figure 9-19. Interface Pins Example: Asynchronous FIFO Writes ...9-15
 Figure 9-20. State Machine Example: Asynchronous FIFO Writes ..9-15

 Figure 9-21. Timing Example: Asynchronous FIFO Writes ..9-16
 Figure 9-22. Interface Pins Example: Asynchronous FIFO Reads ...9-17
 Figure 9-23. State Machine Example: Asynchronous FIFO Reads ..9-17

 Figure 9-24. Timing Example: Asynchronous FIFO Reads ..9-18
 Figure 9-25. EPxFIFOBUF Registers ...9-20
 Figure 9-26. EPx Memories ..9-21

 Figure 9-27. When AUTOOUT=1, OUT Packets are Automatically Committed9-22
 Figure 9-28. TD_Init Example: Configuring AUTOOUT = 1 ...9-22
 Figure 9-29. TD_Init Example: Configuring AUTOIN = 1 ...9-23

 Figure 9-30. TD_Poll Example: No Code Necessary for OUT Packets When AUTOOUT=19-23
 Figure 9-31. TD_Init Example, Configuring AUTOOUT=0 ...9-24
 Figure 9-32. Skip, Commit, or Source (AUTOOUT=0) ...9-25

 Figure 9-33. TD_Poll Example, AUTOOUT=0, Commit Packet ...9-25
 Figure 9-34. TD_Poll Example, AUTOOUT=0, Skip Packet ...9-25

 Figure 9-35. TD_Poll Example, AUTOOUT=0, Source ..9-26
 Figure 9-36. TD_Init Example, OUT Endpoint Initialization ..9-27

Exhibit 2058 - Page 14 of 460

List of Figures xv

(List of Figures)

 Figure 9-37. TD_Poll Example, AUTOIN = 1 ..9-27
 Figure 9-38. Master Writes Directly to Host, AUTOIN = 1 ..9-28
 Figure 9-39. Firmware Intervention, AUTOIN = 0 or 1 ..9-28

 Figure 9-40. TD_Poll Example: Sourcing an IN Packet ..9-29
 Figure 9-41. TD_Poll Example, AUTOIN=0, Committing a Packet via INPKTEND9-30
 Figure 9-42. TD_Poll Example, AUTOIN=0, Skipping a Packet via INPKTEND9-30

 Figure 9-43. TD_Poll Example, AUTOIN=0, Editing a Packet via EPxBCH:L9-31
 Figure 9-44. Code Example, Synchronous Slave FIFO IN Data Transfer ..9-32
 Figure 9-45. TD_Init Example, Asynchronous Slave FIFO IN Data Transfers9-33

 Figure 9-46. TD_Poll Example, Asynchronous Slave FIFO IN Data Transfers9-33
 Figure 10-1. GPIF’s Place in the FX2 System ..10-2
 Figure 10-2. Example GPIF Waveform ..10-3

 Figure 10-3. EZ-USB FX2 Interfacing to a Peripheral ..10-4
 Figure 10-4. IFCLK Configuration ...10-9
 Figure 10-5. Satisfying Setup Timing by Inverting the IFCLK Output ...10-9

 Figure 10-6. GPIF State Machine Overview ...10-11
 Figure 10-7. Non-Decision Point (NDP) States ..10-15
 Figure 10-8. One Decision Point: Wait States Inserted Until RDY0 Goes Low10-17

 Figure 10-9. One Decision Point: No Wait States Inserted:
RDY0 is Already Low at Decision Point I1 ..10-17

 Figure 10-10. Re-Executing a Task within a DP State ...10-19
 Figure 10-11. GPIFTool Setup for the Waveform of Figure 10-10 ...10-19
 Figure 10-12. A DP State Which Does NOT Re-Execute the Task ..10-20

 Figure 10-13. GPIFTool Setup for the Waveform of Figure 10-12 ...10-20
 Figure 10-14. Firmware Launches a Single-Read Waveform, WORDWIDE=010-33
 Figure 10-15. Single-Read Transaction Waveform ..10-34

 Figure 10-16. GPIFTool Setup for the Waveform of Figure 10-15 ...10-34
 Figure 10-17. Single-Read Transaction Functions ...10-36
 Figure 10-18. Initialization Code for Single-Read Transactions ...10-37

 Figure 10-19. Firmware Launches a Single-Write Waveform, WORDWIDE=010-38
 Figure 10-20. Single-Write Transaction Waveform ..10-39
 Figure 10-21. GPIFTool Setup for the Waveform of Figure 10-20 ...10-39

 Figure 10-22. Single-Write Transaction Functions ...10-40
 Figure 10-23. Initialization Code for Single-Write Transactions ...10-41
 Figure 10-24. Firmware Launches a FIFO-Read Waveform ..10-43

 Figure 10-25. Example FIFO-Read Transaction ..10-44
 Figure 10-26. FIFO-Read Transaction Waveform ..10-44
 Figure 10-27. GPIFTool Setup for the Waveform of Figure 10-26 ...10-45

 Figure 10-28. FIFO-Read Transaction Functions ...10-46
 Figure 10-29. Initialization Code for FIFO-Read Transactions ...10-47

Exhibit 2058 - Page 15 of 460

xvi List of Figures

(List of Figures)

 Figure 10-30. FIFO-Read w/ AUTOIN = 0, Committing Packets via INPKTEND w/SKIP=010-47
 Figure 10-31. FIFO-Read w/ AUTOIN = 0, Committing Packets via EPxBCL10-48
 Figure 10-32. AUTOIN=1, GPIF FIFO Read Transactions, AUTOIN = 1 ...10-48

 Figure 10-33. FIFO-Read Transaction Code, AUTOIN = 1 ..10-49
 Figure 10-34. Firmware intervention, AUTOIN = 0/1 ..10-49
 Figure 10-35. Committing a Packet by Writing INPKTEND with EPx Number (w/SKIP=0)10-50

 Figure 10-36. Skipping a Packet by Writing to INPKTEND w/SKIP=1 ...10-50
 Figure 10-37. Sourcing an IN Packet by writing to EPxBCH:L ...10-51
 Figure 10-38. Firmware Launches a FIFO-Write Waveform ..10-52

 Figure 10-39. Example FIFO-Write Transaction ...10-52
 Figure 10-40. FIFO-Write Transaction Waveform ..10-53
 Figure 10-41. GPIFTool Setup for the Waveform of Figure 10-40 ...10-53

 Figure 10-42. FIFO-Write Transaction Functions ...10-54
 Figure 10-43. Initialization Code for FIFO-Write Transactions ...10-55
 Figure 10-44. FIFO-Write w/ AUTOOUT = 0, Committing Packets via EPxBCL10-55

 Figure 10-45. CPU not in data path, AUTOOUT=1 ..10-56
 Figure 10-46. TD_Init Example: Configuring AUTOOUT = 1 ...10-56
 Figure 10-47. FIFO-Write Transaction Code, AUTOOUT = 1 ..10-56

 Figure 10-48. Firmware can Skip or Commit, AUTOOUT = 0 ..10-57
 Figure 10-49. Initialization Code for AUTOOUT = 0 ...10-57
 Figure 10-50. Committing an OUT Packet by Writing OUTPKTEND w/SKIP=010-57

 Figure 10-51. Skipping an OUT Packet by Writing OUTPKTEND w/SKIP=110-58
 Figure 10-52. Sourcing an OUT Packet (AUTOOUT = 0) ..10-58
 Figure 10-53. Ensuring that the FIFO is Clear after Power-On-Reset ..10-59

 Figure 10-54. Burst FIFO-Read Transaction Functions ...10-60
 Figure 10-55. Initialization for Burst FIFO-Read Transactions ...10-61
 Figure 10-56. Burst FIFO-Read Transaction Example, Writing INPKTEND w/SKIP=0 to Commit10-62

 Figure 10-57. Burst FIFO-Read Transaction Example, Writing EPxBCL to Commit10-63
 Figure 11-1. FX2 CPU Features ...11-1
 Figure 11-2. FX2 to Standard 8051 Timing Comparison ..11-4

 Figure 11-1. FX2 Internal Data RAM ..11-7
 Figure 13-1. FX2 I/O Pin ..13-2
 Figure 13-2. I/O Port Output-Enable Registers ..13-3

 Figure 13-3. I/O Port Data Registers ..13-4
 Figure 13-4. I/O-Pin Logic when Alternate Function is an OUTPUT ..13-5
 Figure 13-5. I/O-Pin Logic when Alternate Function is an INPUT ..13-6

 Figure 13-6. General I²C Transfer ..13-12
 Figure 13-7. Addressing an I²C Peripheral ...13-13

 Figure 13-8. I²C-Compatible Registers ...13-14
 Figure 14-1. Timer 0/1 - Modes 0 and 1 ...14-3

Exhibit 2058 - Page 16 of 460

List of Figures xvii

(List of Figures)

 Figure 14-2. Timer 0/1 - Mode 2 ...14-6
 Figure 14-3. Timer 0 - Mode 3 ..14-7
 Figure 14-4. Timer 2 - Timer/Counter with Capture ..14-10

 Figure 14-5. Timer 2 - Timer/Counter with Auto Reload ...14-11
 Figure 14-6. Timer 2 - Baud Rate Generator Mode ..14-12
 Figure 14-7. Serial Port Mode 0 Receive Timing - Low Speed Operation ..14-18

 Figure 14-8. Serial Port Mode 0 Receive Timing - High Speed Operation14-18
 Figure 14-9. Serial Port Mode 0 Transmit Timing - Low Speed Operation14-19
 Figure 14-10. Serial Port Mode 0 Transmit Timing - High Speed Operation14-19

 Figure 14-11. Serial Port 0 Mode 1 Transmit Timing ..14-23
 Figure 14-12. Serial Port 0 Mode 1 Receive Timing ...14-24
 Figure 14-13. Serial Port 0 Mode 2 Transmit Timing ..14-25

 Figure 14-14. Serial Port 0 Mode 2 Receive Timing ...14-26
 Figure 14-15. Serial Port 0 Mode 3 Transmit Timing ..14-27
 Figure 14-16. Serial Port 0 Mode 3 Receive Timing ...14-27

 Figure 15-1. Register Description Format ..15-2
 Figure 15-2. Single Instruction to Read Port B ...15-4
 Figure 15-3. Single Instruction to Write to Port C ...15-4

 Figure 15-4. Use Bit 2 to set PORTD - Single Instruction ..15-9
 Figure 15-5. Use OR to Set Bit 3 ..15-9
 Figure 15-6. GPIF Waveform Descriptor Data ...15-13

 Figure 15-7. CPU Control and Status ...15-13
 Figure 15-8. Interface Configuration (Ports, GPIF, slave FIFOs) ...15-14
 Figure 15-9. IFCLK Configuration ...15-15

 Figure 15-10. Slave FIFO FLAGA-FLAGD Pin Configuration ..15-18
 Figure 15-11. Restore FIFOs to Reset State ..15-20
 Figure 15-12. Breakpoint Control ...15-20

 Figure 15-13. Breakpoint Address High ...15-21
 Figure 15-14. Breakpoint Address Low ..15-21
 Figure 15-15. 230 Kbaud Internally Generated Reference Clock ...15-22

 Figure 15-16. Slave FIFO Interface Pins Polarity ...15-22
 Figure 15-17. Chip Revision ID ..15-23
 Figure 15-18. Chip Revision Control ..15-24

 Figure 15-19. Endpoint 1-OUT/Endpoint 1-IN Configurations ..15-26
 Figure 15-20. Endpoint 2 Configuration ..15-27
 Figure 15-21. Endpoint 4 Configuration ..15-27

 Figure 15-22. Endpoint 6 Configuration ..15-27
 Figure 15-23. Endpoint 8 Configuration ..15-27

 Figure 15-24. Endpoint 2, 4, 6 and 8 /Slave FIFO Configuration ...15-29
 Figure 15-25. Endpoint 2 and 6 AUTOIN Packet Length High ...15-31

Exhibit 2058 - Page 17 of 460

xviii List of Figures

(List of Figures)

 Figure 15-26. Endpoint 4 and 8 AUTOIN Packet Length High ...15-31
 Figure 15-27. Endpoint 2, 4, 6, 8 AUTOIN Packet Length Low ..15-32
 Figure 15-28. Endpoint 2/Slave FIFO Programmable Flag High ..15-33

 Figure 15-29. Endpoint 6/Slave FIFO Programmable Flag High ..15-34
 Figure 15-30. Endpoint 4/Slave FIFO Programmable Flag High ..15-36
 Figure 15-31. Endpoint 8/Slave FIFO Programmable Flag High ..15-37

 Figure 15-32. Endpoint 2, 4, 6, 8/Slave FIFO Programmable Flag Low ...15-38
 Figure 15-33. Maximum FIFO Sizes ..15-40
 Figure 15-34. Endpoint ISO IN Packets per Frame ..15-41

 Figure 15-35. Force IN Packet End ..15-41
 Figure 15-36. Force OUT Packet End ..15-42
 Figure 15-37. Endpoint 2, 4, 6, 8 Slave FIFO Flag Interrupt Enable ..15-43

 Figure 15-38. Endpoint 2, 4, 6, 8 Slave FIFO Flag Interrupt Request ..15-44
 Figure 15-39. IN-BULK-NAK Interrupt Enable ..15-45
 Figure 15-40. IN-BULK-NAK Interrupt Request ...15-45

 Figure 15-41. Endpoint Ping-NAK/IBN Interrupt Enable ..15-46
 Figure 15-42. Endpoint Ping-NAK/IBN Interrupt Request ..15-46
 Figure 15-43. USB Interrupt Enables ...15-47

 Figure 15-44. USB Interrupt Requests ...15-47
 Figure 15-45. Endpoint Interrupt Enables ..15-49
 Figure 15-46. Endpoint Interrupt Requests ..15-49

 Figure 15-47. GPIF Interrupt Enable ..15-50
 Figure 15-48. GPIF Interrupt Request ..15-50
 Figure 15-49. USB Error Interrupt Enables ..15-51

 Figure 15-50. USB Error Interrupt Request ..15-51
 Figure 15-51. USB Error Counter and Limit ...15-52
 Figure 15-52. Clear Error Count EC3:0 ..15-52

 Figure 15-53. INT 2 (USB) Autovector ...15-53
 Figure 15-54. INT 4 (slave FIFOs & GPIF) Autovector ...15-53
 Figure 15-55. INT 2 and INT 4 Setup ...15-54

 Figure 15-56. I/O PORTA Alternate Configuration ...15-55
 Figure 15-57. I/O PORTC Alternate Configuration ...15-56
 Figure 15-58. I/O PORTE Alternate Configuration ...15-56

 Figure 15-59. I²C-Compatible Bus Control and Status ...15-57
 Figure 15-60. I²C-Compatible Bus Data ...15-59
 Figure 15-61. I²C-Compatible Bus Control ...15-59

 Figure 15-62. AUTOPTR1 & AUTOPTR2 MOVX access (when APTREN=1)15-60
 Figure 15-63. USB Control and Status ...15-63

 Figure 15-64. Enter Suspend State ..15-64
 Figure 15-65. Wakeup Control & Status ...15-64

Exhibit 2058 - Page 18 of 460

List of Figures xix

(List of Figures)

 Figure 15-66. Data Toggle Control ...15-65
 Figure 15-67. USB Frame Count HIGH ..15-66
 Figure 15-68. USB Frame Count Low ..15-67

 Figure 15-69. USB Microframe Count ..15-67
 Figure 15-70. USB Function Address ...15-68
 Figure 15-71. Endpoint 0 (Byte Count High) ..15-68

 Figure 15-72. Endpoint 0 Control and Status (Byte Count Low) ..15-69
 Figure 15-73. Endpoint 1 OUT/IN Byte Count ..15-69
 Figure 15-74. Endpoint 2 and 6 Byte Count High ...15-70

 Figure 15-75. Endpoint 4 and 5 Byte Count High ...15-70
 Figure 15-76. Endpoint 2, 4, 6, 8 Byte Count Low ..15-71
 Figure 15-77. Endpoint 0 Control and Status ...15-71

 Figure 15-78. Endpoint 1 OUT/IN Control and Status ..15-72
 Figure 15-79. Endpoint 2 Control and Status ...15-74
 Figure 15-80. Endpoint 4 Control and Status ...15-74

 Figure 15-81. Endpoint 6 Control and Status ...15-75
 Figure 15-82. Endpoint 8 Control and Status ...15-76
 Figure 15-83. Endpoint 2 and 4 Slave FIFO Flags ...15-77

 Figure 15-84. Endpoint 6 and 8 Slave FIFO Flags ...15-77
 Figure 15-85. Endpoint 2 Slave FIFO Total Byte Count High ...15-78
 Figure 15-86. Endpoint 6 Slave FIFO Total Byte Count High ...15-78

 Figure 15-87. Endpoint 4 and 8 Slave FIFO Byte Count High ..15-79
 Figure 15-88. Endpoint 2, 4, 6, 8 Slave FIFO Byte Count Low ..15-79
 Figure 15-89. Setup Data Pointer High Address Byte ..15-80

 Figure 15-90. Setup Data Pointer Low Address Byte ...15-80
 Figure 15-91. Setup Data Pointer AUTO Mode ..15-81
 Figure 15-92. Setup Data - 8 Bytes ..15-82

 Figure 15-93. GPIF Waveform Selector ...15-83
 Figure 15-94. GPIF Done and Idle Drive ..15-83
 Figure 15-95. CTL Output States in Idle ...15-84

 Figure 15-96. CTL Output Drive Type ..15-84
 Figure 15-97. GPIF Address High ..15-86
 Figure 15-98. GPIF Address Low ...15-87

 Figure 15-99. GPIF Transaction Count Byte3 ..15-95
 Figure 15-100. GPIF Transaction Count Byte2 ..15-95
 Figure 15-101. GPIF Transaction Count Byte1 ..15-96

 Figure 15-102. GPIF Transaction Count Byte0 ..15-96
 Figure 15-103. Endpoint 2, 4, 6, 8 GPIF Flag Select ..15-97

 Figure 15-104. Endpoint 2, 4, 6, and 8 GPIF Stop Transaction ...15-98
 Figure 15-105. Endpoint 2, 4, 6, and 8 Slave FIFO GPIF Trigger ..15-98

Exhibit 2058 - Page 19 of 460

xx List of Figures

(List of Figures)

 Figure 15-106. GPIF Data High (16-Bit Mode) ...15-99
 Figure 15-107. Read/Write GPIF Data LOW & Trigger Transaction ..15-99
 Figure 15-108. Read GPIF Data LOW, No Transaction Trigger ...15-100

 Figure 15-109. GPIF Ready Pins ...15-100
 Figure 15-110. GPIF Ready Status Pins ..15-101
 Figure 15-111. Abort GPIF ...15-101

 Figure 15-112. EP0 IN/OUT Buffer ..15-102
 Figure 15-113. EP1-OUT Buffer ...15-102
 Figure 15-114. EP1-IN Buffer ...15-103

 Figure 15-115. 512/1024-byte EP2/Slave FIFO Buffer ..15-103
 Figure 15-116. 512-byte EP4/Slave FIFO Buffer ...15-104
 Figure 15-117. 512/1024-byte EP6/Slave FIFO Buffer ..15-104

 Figure 15-118. 512-byte EP8/Slave FIFO Buffer ...15-105

Exhibit 2058 - Page 20 of 460

xxiii

List of Tables

Table 1-1. USB PIDS . 1-3

Table 1-2. Endpoint 2, 4, 6, and 8 Configuration Choices . 1-24
Table 1-3. EZ-USB FX2 Family . 1-28
Table 2-1. The Eight Bytes in a USB SETUP Packet . 2-5

Table 2-2. How the Firmware Handles USB Device Requests (RENUM=1) 2-6
Table 2-3. Get Status-Device (Remote Wakeup and Self-Powered Bits) . 2-8
Table 2-4. Get Status-Endpoint (Stall Bits) . 2-8

Table 2-5. Get Status-Interface . 2-9
Table 2-6. Set Feature-Device (Set Remote Wakeup Bit) . 2-10
Table 2-7. Set Feature-Endpoint (Stall) . 2-10

Table 2-8. Clear Feature-Device (Clear Remote Wakeup Bit) . 2-11
Table 2-9. Clear Feature-Endpoint (Clear Stall) . 2-12
Table 2-10. Get Descriptor-Device . 2-14

Table 2-11. Get Descriptor-Device Qualifier . 2-15
Table 2-12. Get Descriptor-Configuration . 2-15

Table 2-13. Get Descriptor-String . 2-16
Table 2-14. Get Descriptor-Other Speed Configuration . 2-16
Table 2-15. Set Descriptor-Device . 2-17

Table 2-16. Set Descriptor-Configuration . 2-17
Table 2-17. Set Descriptor-String . 2-18
Table 2-18. Set Configuration . 2-20

Table 2-19. Get Configuration . 2-20
Table 2-20. Set Interface (Actually, Set Alternate Setting #AS for Interface #IF) 2-21
Table 2-21. Get Interface (Actually, Get Alternate Setting #AS for interface #IF) 2-22

Table 2-22. Sync Frame . 2-23
Table 2-23. Firmware Download . 2-24
Table 2-24. Firmware Upload . 2-24

Table 3-1. Default Full-speed Alternate Settings . 3-3
Table 3-2. Default High-speed Alternate Settings . 3-3
Table 3-3. FX2 Device Characteristics, No EEPROM / Invalid EEPROM . 3-4

Table 3-4. “C0 Load” Format . 3-5
Table 3-5. “C2 Load” Format . 3-6
Table 3-6. How the Default USB Device Handles EP0 Requests When RENUM=0 3-10

Table 3-7. Firmware Download . 3-11
Table 3-8. Firmware Upload . 3-11
Table 4-1. FX2 Interrupts . 4-1

Exhibit 2058 - Page 21 of 460

xxiv List of Tables

(List of Tables)

Table 4-2. IE Register — SFR 0xA8 . 4-2
Table 4-3. IP Register — SFR 0xB8 . 4-3
Table 4-4. EXIF Register — SFR 0x91 . 4-3

Table 4-5. EICON Register — SFR 0xD8 . 4-4
Table 4-6. EIE Register — SFR 0xE8 . 4-4
Table 4-7. EIP Register — SFR 0xF8 . 4-5

Table 4-8. Summary of Interrupt Compatibility .4-5
Table 4-9. Interrupt Flags, Enables, Priority Control, and Vectors .4-7
Table 4-10. Individual USB Interrupt Sources .4-9

Table 4-11. Endpoint Interrupts .4-14
Table 4-12. FX2 JUMP Instruction .4-15
Table 4-13. A Typical USB-Interrupt Jump Table .4-16

Table 4-14. Individual FIFO/GPIF Interrupt Sources .4-19
Table 4-15. FX2 JUMP Instruction .4-20
Table 4-16. A Typical FIFO/GPIF-Interrupt Jump Table .4-21

Table 7-1. Effects of Various Resets on FX2 Resources (“—” means “no change”)7-5
Table 8-1. Maximum Packet Sizes for USB 1.1 and 2.0 . 8-2
Table 8-2. Endpoint Configuration Registers .8-3

Table 8-3. Endpoint Buffers in RAM Space .8-4
Table 8-4. Registers that control EP0 and EP1 . 8-5
Table 8-5. Registers that control EP2,EP4,EP6 and EP8 . 8-10

Table 8-6. Isochronous IN Packets per Microframe, High-Speed Only .8-11
Table 8-7. Registers that control all endpoints . 8-13
Table 8-8. Registers used to control the Setup Data Pointer .8-18

Table 8-9. Registers that control the Autopointers .8-20
Table 9-1. Registers Associated with Slave FIFO Hardware . 9-2
Table 9-2. FIFO Selection via FIFOADR[1:0] .9-8

Table 9-3. Registers Associated with Slave FIFO Firmware .9-19
Table 10-1. Registers Associated with GPIF Hardware .10-5
Table 10-2. GPIF Pin Descriptions .10-5

Table 10-3. CTL[5:0] Output Modes . 10-7
Table 10-4. Example GPIF Hardware Interconnect .10-10
Table 10-5. Control Outputs (CTLn) During the IDLE State .10-14

Table 10-6. Waveform Descriptor Addresses .10-25
Table 10-7. Waveform Descriptor 0 Structure .10-25
Table 10-8. Registers Associated with GPIF Firmware .10-26

Table 11-1. FX2 Speed Compared to Standard 8051 .11-3
Table 11-2. Comparison Between FX2 and Other 803x/805x Devices .11-5

Table 11-3. Differences between FX and DS80C320 Interrupts .11-6
Table 11-4. EZ-USB FX2 Interrupts . 11-9

Exhibit 2058 - Page 22 of 460

List of Tables xxv

(List of Tables)

Table 11-5. FX2 Special Function Registers (SFR) . 11-10
Table 12-1. Legend for Instruction Set Table . 12-1
Table 12-2. FX2 Instruction Set . 12-2

Table 12-3. Data Memory Stretch Values . 12-6
Table 12-4. PSW Register - SFR 0xD0 . 12-8
Table 13-1. Register Bits Which Select Port A Alternate Functions . 13-7

Table 13-2. Port A Alternate-Function Configuration . 13-7
Table 13-3. Register Bits Which Select Port B and Port D Alternate Functions 13-8
Table 13-4. Port B Alternate-Function Configuration . 13-8

Table 13-5. Port D Alternate-Function Configuration . 13-8
Table 13-6. Register Bits Which Select Port C Alternate Functions . 13-9
Table 13-7. Port C Alternate-Function Configuration . 13-9

Table 13-8. Register Bits Which Select Port E Alternate Functions . 13-10
Table 13-9. Port E Alternate-Function Configuration . 13-10
Table 13-10. IFCFG Selection of Port I/O Pin Functions . 13-11

Table 13-11. Strap Boot EEPROM Address Lines to These Values . 13-17
Table 13-12. Results of Power-On-Reset EEPROM Test . 13-18
Table 14-1. Timer/Counter Implementation Comparison . 14-2

Table 14-2. TMOD Register — SFR 0x89 . 14-4
Table 14-3. TCON Register — SRF 0x88 . 14-5
Table 14-4. CKCON (SFR 0x8E) Timer Rate Control Bits . 14-7

Table 14-5. T2CON Register — SFR 0xC8 . 14-9
Table 14-6. Timer 2 Mode Control Summary . 14-9
Table 14-7. Serial Port Modes . 14-13

Table 14-8. Serial Interface Implementation Comparison . 14-13
Table 14-9. UART230 Register — Address 0xE608 . 14-14
Table 14-10. Allowable Baud-Clock Combinations for Modes 1 and 3 . 14-14

Table 14-11. SCON0 Register — SFR 98h . 14-16
Table 14-12. EICON (SFR 0xD8) SMOD1 Bit . 14-16
Table 14-13. PCON (SFR 0x87) SMOD0 Bit . 14-16

Table 14-14. SCON1 Register — SFR C0h . 14-17
Table 14-15. Timer 1 Reload Values for Common Serial Port Mode 1 Baud Rates 14-21
Table 14-16. Timer 2 Reload Values for Common Serial Port Mode 1 Baud Rates 14-22

Table 15-1. FX2 Special Function Registers (SFR) . 15-3
Table 15-2. SFR and FX2 Register File Correspondences . 15-7
Table 15-3. SFR Registers and External Ram Equivalent . 15-12

Table 15-4. CPU Clock Speeds . 15-14
Table 15-5. Internal FIFO/GPIF Clock Frequency . 15-15

Table 15-6. Port E Alternate Functions When GSTATE=1 . 15-16
Table 15-7. Ports, GPIF, Slave FIFO Select . 15-16

Exhibit 2058 - Page 23 of 460

xxvi List of Tables

(List of Tables)

Table 15-8. IFCFG Selection of Port I/O Pin Functions . 15-17
Table 15-9. FIFO Flag Pin Functions .15-19
Table 15-10. FIFOADR1 FIFOADR0 Pin Correspondence . 15-19

Table 15-11. Endpoint Type Definitions . 15-26
Table 15-12. Endpoint Type Definitions . 15-28
Table 15-13. Endpoint Buffering Amounts .15-28

Table 15-14. Interpretation of PF for IN Endpoints .15-39
Table 15-15. IN Packets per Microframe . 15-41
Table 15-16. CTL[5:0] Output Modes .15-85

Table 15-17. Control Outputs (CTLx) During the IDLE State .15-86
Table 15-18. Control Outputs (CTLx) During the Flow State .15-91
Table 15-19. Endpoint 2, 4, 6, 8 GPIF Flag Select Values . 15-97

Table 15-20. Registers Which Require a Synchronization Delay .15-105

Table A-1 Default USB Device Descriptor . 1
Table A-2 Device Qualifier . 2
Table A-3 USB Default Configuration Descriptor . 2
Table A-4 USB Default Interface 0, Alternate Setting 0 . 3
Table A-5 USB Default Interface 0, Alternate Setting 1 . 3
Table A-6 Endpoint Descriptor (EP1 out) . 3
Table A-7 Endpoint Descriptor (EP1 in) . 4
Table A-8 Endpoint Descriptor (EP2) . 4
Table A-9 Endpoint Descriptor (EP4) . 4
Table A-10 Endpoint Descriptor (EP6) . 5
Table A-11 Endpoint Descriptor (EP8) . 5
Table A-12 Interface Descriptor (Alt. Setting 2) . 5
Table A-13 Endpoint Descriptor (EP1 out) . 6
Table A-14 Endpoint Descriptor (EP1 in) . 6
Table A-15 Endpoint Descriptor (EP2. 6
Table A-16 Endpoint Descriptor (EP4) . 7
Table A-17 Endpoint Descriptor (EP6) . 7
Table A-18 Endpoint Descriptor (EP8) . 7
Table A-19 Interface Descriptor (Alt. Setting 3) . 8
Table A-20 Endpoint Descriptor (EP1 out) . 8
Table A-21 Endpoint Descriptor (EP1 in) . 8
Table A-22 Endpoint Descriptor (EP2) . 9
Table A-23 Endpoint Descriptor (EP4) . 9

Exhibit 2058 - Page 24 of 460

List of Tables xxvii

(List of Tables)

Table A-24 Endpoint Descriptor (EP6) . 9
Table A-25 Endpoint Descriptor (EP8) . 10

Table B-1 Device Descriptor. 11
Table B-2 Device Qualifier . 12
Table B-3 Configuration Descriptor . 12
Table B-4 Interface Descriptor (Alt. Setting 0) . 13
Table B-5 Interface Descriptor (Alt. Setting 1) . 13
Table B-6 Endpoint Descriptor (EP1 out) . 13
Table B-7 Endpoint Descriptor (EP1 in) . 14
Table B-8 Endpoint Descriptor (EP2) . 14
Table B-9 Endpoint Descriptor (EP4) . 14
Table B-10 Endpoint Descriptor (EP6) . 15
Table B-11 Endpoint Descriptor (EP8) . 15
Table B-12 Interface Descriptor (Alt. Setting 2) . 15
Table B-13 Endpoint Descriptor (EP1 out) . 16
Table B-14 Endpoint Descriptor (EP1 in) . 16
Table B-15 Endpoint Descriptor (EP2) . 16
Table B-16 Endpoint Descriptor (EP4) . 17
Table B-17 Endpoint Descriptor (EP6) . 17
Table B-18 Endpoint Descriptor (EP8) . 17
Table B-19 Interface Descriptor (Alt. Setting 3) . 18
Table B-20 Endpoint Descriptor (EP1 out) . 18
Table B-21 Endpoint Descriptor (EP1 in) . 18
Table B-22 Endpoint Descriptor (EP2) . 19
Table B-23 Endpoint Descriptor (EP4) . 19
Table B-24 Endpoint Descriptor (EP6) . 19
Table B-25 Endpoint Descriptor (EP8) . 20

Exhibit 2058 - Page 25 of 460

xxviii List of Tables

Exhibit 2058 - Page 26 of 460

Chapter 1. Introducing EZ-USB FX2 Page 1-1

Chapter 1 Introducing EZ-USB FX2

1.1 Introduction

The Universal Serial Bus (USB) has gained wide acceptance as the connection method of choice
for low and medium speed PC peripherals. Equally successful in the Windows and Macintosh
worlds, USB has delivered on its promises of easy attachment, an end to configuration hassles,
and true plug-and-play operation.

The second generation of the USB specification, “USB 2.0”, extends the original specification to
include:

• 480 Mbits/sec signaling rate, a 40× improvement over the USB 1.1 rate of 12 Mbits/sec.

• Full backward and forward compatibility with USB 1.1 devices and cables.

• A new hub architecture that can provide multiple 12 Mbits/sec downstream ports for USB
1.1 devices.

The Cypress Semiconductor EZ-USB FX2 (often abbreviated as “FX2” in this manual) is a single-
chip USB 2.0 peripheral whose architecture is similar to that of the Cypress Semiconductor EZ-
USB FX family. Although much of the FX architecture is preserved, certain elements have been
redesigned to accommodate the higher data rates offered by USB 2.0.

This introductory chapter begins with a brief USB tutorial to put USB and FX2 terminology into con-
text. The remainder of the chapter briefly outlines the FX2 architecture.

1.2 An Introduction to USB

Like a well-designed automobile or appliance, a USB peripheral’s outward simplicity hides internal
complexity. There’s a lot going on “under the hood” of a USB device.

• A USB device can be plugged in anytime, even while the PC is turned on.

• When the PC detects that a USB device has been plugged in, it automatically interrogates
the device to learn its capabilities and requirements. From this information, the PC auto-

Exhibit 2058 - Page 27 of 460

EZ-USB FX2 Technical Reference Manual

Page 1-2 EZ-USB FX2 Technical Reference Manual v2.1

matically loads the device’s driver into the operating system. When the device is
unplugged, the operating system automatically logs it off and unloads its driver.

• USB devices do not use DIP switches, jumpers, or configuration programs. There is never
an IRQ, DMA, memory, or I/O conflict with a USB device.

• USB expansion hubs make the bus simultaneously available to dozens of devices.

• USB is fast enough for printers, hard disk drives, CD-quality audio, and scanners.

• With the introduction of the USB 2.0 Specification, USB supports three speeds:

- Low Speed (1.5 Mbits/sec), suitable for mice, keyboards and joysticks.

- Full Speed (12 Mbits/sec), for devices like modems, speakers and scanners.

- High Speed (480 Mbits/sec), for devices like hard disk drives, CD-ROMs, video cam-
eras, and high-resolution scanners.

The Cypress Semiconductor EZ-USB FX2 augments the EZ-USB family by supporting the high
bandwidth offered by the USB 2.0 High Speed mode. The FX2 provides a highly-integrated solu-
tion for a USB peripheral device. Like all EZ-USB devices, the FX2 offers the following features:

• An integrated, high-performance CPU based on the industry-standard 8051 processor.

• A soft (RAM-based) architecture that allows unlimited configuration and upgrades.

• Full USB throughput. USB devices that use EZ-USB chips are not limited by number of
endpoints, buffer sizes, or transfer speeds.

• Automatic handling of most of the USB protocol, which simplifies code and accelerates
the USB learning curve.

1.3 The USB Specification

The Universal Serial Bus Specification Version 2.0 is available on the Internet from the USB Imple-
menters Forum, Inc., at http://www.usb.org. Published in April, 2000, the USB Specification is
the work of a founding committee of seven industry heavyweights: Compaq, Hewlett-Packard,
Lucent, Philips, Intel, Microsoft, and NEC. This impressive list of developers secures USB’s posi-
tion as the low- to high-speed PC connection method of the future.

A glance at the USB Specification makes it immediately apparent that USB is not nearly as simple
as the older serial or parallel ports. The USB Specification uses new terms like endpoint, isochro-
nous, and enumeration, and finds new uses for old terms like configuration, interface, and inter-
rupt. Woven into the USB fabric is a software abstraction model that deals with things such as
pipes. The USB Specification also contains information about such details as connector types and
wire colors.

Exhibit 2058 - Page 28 of 460

Chapter 1. Introducing EZ-USB FX2 Page 1-3

1.4 Host Is Master

This is a fundamental USB concept. There is exactly one master in a USB system: the host com-
puter. USB devices respond to host requests. USB devices cannot send information among
themselves, as they could if USB were a peer-to-peer topology.

However, there is one case where a USB device can initiate signaling without prompting from the
host. After being put into a low-power “suspend” mode by the host, a device can signal a “remote
wakeup”. This is the only case in which the USB device is the initiator; in all other cases, the host
makes device requests and the device responds to them.

There’s an excellent reason for this host-centric model. The USB architects were keenly mindful of
cost, and the best way to make low-cost peripherals is to put most of the “smarts” into the host
side, the PC. If USB had been defined as peer-to-peer, every USB device would have required
more intelligence, raising cost.

1.5 USB Direction

Because the host is always the bus master, it’s easy to remember USB direction: OUT means from
the host to the device, and IN means from the device to the host. FX2 nomenclature uses this
naming convention. For example, an endpoint that sends data to the host is an IN endpoint. This
can be confusing at first, because the FX2 sends data to the host by loading an IN endpoint buffer.
Likewise, the FX2 receives host data from an OUT endpoint buffer.

1.6 Tokens and PIDs

In this manual, you’ll read statements such as: “When the host sends an IN token…,” or “The
device responds with an ACK”. What do these terms mean?

A USB transaction consists of data packets identified by special codes called Packet IDs or PIDs.
A PID signifies what kind of packet is being transmitted. There are four PID types, shown in
Table 1-1.

Table 1-1. USB PIDS

PID Type PID Name
Token IN, OUT, SOF, SETUP

Data DATA0, DATA1, DATA2, MDATA

Handshake ACK, NAK, STALL, NYET

Special PRE, ERR, SPLIT, PING

Bold type indicates PIDs introduced with USB 2.0

Exhibit 2058 - Page 29 of 460

EZ-USB FX2 Technical Reference Manual

Page 1-4 EZ-USB FX2 Technical Reference Manual v2.1

Figure 1-1. USB Packets

Figure 1-1 illustrates a USB OUT transfer. Host traffic is shown in solid shading, while device traf-
fic is shown crosshatched. Packet 1 is an OUT token, indicated by the OUT PID. The OUT token
signifies that data from the host is about to be transmitted over the bus. Packet 2 contains data, as
indicated by the DATA1 PID. Packet 3 is a handshake packet, sent by the device using the ACK
(acknowledge) PID to signify to the host that the device received the data error-free.

Continuing with Figure 1-1, a second transaction begins with another OUT token 4, followed by
more data 5, this time using the DATA0 PID. Finally, the device again indicates success by trans-
mitting the ACK PID in a handshake packet 6.

When operating at full speed, every OUT transfer sends the OUT data, even when the device is
busy and can’t accept the data. When operating at high speed, this slightly wasteful use of USB
bandwidth is remedied by using the new “Ping” PID. The host first sends a short PING token to an
OUT endpoint, asking if there is room for OUT data in the peripheral device. Only when the PING
is answered by an ACK does the host send the OUT token and data.

There are two DATA PIDs (DATA0 and DATA1) in Figure1-1 because the USB architects took
error correction very seriously. As mentioned previously, the ACK handshake is an indication to
the host that the peripheral received data without error (the CRC portion of the packet is used to
detect errors). But what if the handshake packet itself is garbled in transmission? To detect this,
each side (host and device) maintains a data toggle bit, which is toggled between data packet
transfers. The state of this internal toggle bit is compared with the PID that arrives with the data,
either DATA0 or DATA1. When sending data, the host or device sends alternating DATA0-DATA1
PIDs. By comparing the received Data PID with the state of its own internal toggle bit, the receiver
can detect a corrupted handshake packet.

SETUP tokens are unique to CONTROL transfers. They preface eight bytes of data from which
the peripheral decodes host Device Requests.

At full speed, SOF (Start of Frame) tokens occur once per millisecond. At high speed, each frame
contains eight SOF tokens, each denoting a 125-microsecond microframe.

Four handshake PIDs indicate the status of a USB transfer:

• ACK (“Acknowledge”) means success; the data was received error-free.

• NAK (“Negative Acknowledge”) means “busy, try again.” It’s tempting to assume that NAK
means “error,” but it doesn’t; a USB device indicates an error by not responding.

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
1

Payload
Data

C
R
C
1
6

Data Packet

A
C
K

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
0

Payload
Data

C
R
C
1
6

Data Packet

A
C
K

H/S Pkt H/S Pkt

1 2 3 4 5 6

Exhibit 2058 - Page 30 of 460

Chapter 1. Introducing EZ-USB FX2 Page 1-5

• STALL means that something unforeseen went wrong (probably as a result of miscommu-
nication or lack of cooperation between the host and device software). A device sends the
STALL handshake to indicate that it doesn’t understand a device request, that something
went wrong on the peripheral end, or that the host tried to access a resource that wasn’t
there. It’s like HALT, but better, because USB provides a way to recover from a stall.

• NYET (“Not Yet”) has the same meaning as ACK — the data was received error-free —
but also indicates that the endpoint is not yet ready to receive another OUT transfer. NYET
PIDs occur only in high speed mode.

A PRE (Preamble) PID precedes a low-speed (1.5 Mbits/sec) USB transmission. The FX2 sup-
ports full-speed (12 Mbits/sec) and high-speed (480 Mbits/sec) USB transfers only.

1.6.1 Receiving Data from the Host

To send data to a USB peripheral, the host issues an OUT token followed by the data. If the periph-
eral has space for the data and accepts it without error, it returns an ACK to the host. If it is busy, it
sends a NAK. If it finds an error, it sends back nothing. For the latter two cases, the host re-sends
the data at a later time.

1.6.2 Sending Data to the Host

A USB device never spontaneously sends data to the host. Either FX2 firmware or external
logic can load data into an FX2 endpoint buffer and ‘arm’ it for transfer at any time. However, the
data is not transmitted to the host until the host issues an IN request to the FX2 endpoint. If the
host never sends the IN token, the data remains in the FX2 endpoint buffer indefinitely.

1.7 USB Frames

The USB host provides a time base to all USB devices by transmitting an SOF (“Start of Frame”)
packet every millisecond. SOF packets include an 11-bit number which increments once per
frame; the current frame number [0-2047] may be read from internal FX2 registers at any time.

At high speed (480 Mbits/sec), each one-millisecond frame is divided into eight 125-microsecond
microframes, each of which is preceded by an SOF packet. The frame number still increments only
once per millisecond, so each of those SOF packets contains the same frame number. To keep
track of the current microframe number [0-7], the FX2 provides a readable microframe counter.

The FX2 can generate an interrupt request whenever it receives an SOF (once every millisecond
at full speed, or once every 125 microseconds at high speed). This SOF interrupt can be used, for
example, to service isochronous endpoint data.

Exhibit 2058 - Page 31 of 460

EZ-USB FX2 Technical Reference Manual

Page 1-6 EZ-USB FX2 Technical Reference Manual v2.1

1.8 USB Transfer Types

USB defines four transfer types. These match the requirements of different data types delivered
over the bus.

1.8.1 Bulk Transfers

Figure 1-2. Two Bulk Transfers, IN and OUT

Bulk data is bursty, traveling in packets of 8, 16, 32 or 64 bytes at full speed or 512 bytes at high
speed. Bulk data has guaranteed accuracy, due to an automatic retry mechanism for erroneous
data. The host schedules bulk packets when there is available bus time. Bulk transfers are typi-
cally used for printer, scanner, or modem data. Bulk data has built-in flow control provided by
handshake packets.

1.8.2 Interrupt Transfers

Figure 1-3. An Interrupt Transfer

Interrupt data is like bulk data; it can have packet sizes of 1 through 64 bytes at full speed or up to
1024 bytes at high speed. Interrupt endpoints have an associated polling interval that ensures
they will be polled (receive an IN token) by the host on a regular basis.

I
N

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
1

Payload
Data

C
R
C
1
6

Data Packet

A
C
K

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
0

Payload
Data

C
R
C
1
6

Data Packet

A
C
K

H/S Pkt H/S Pkt

I
N

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
1

Payload
Data

C
R
C
1
6

Data Packet

A
C
K

H/S Pkt

Exhibit 2058 - Page 32 of 460

Chapter 1. Introducing EZ-USB FX2 Page 1-7

1.8.3 Isochronous Transfers

Figure 1-4. An Isochronous Transfer

Isochronous data is time-critical and used to stream data like audio and video. An isochronous
packet may contain up to 1023 bytes at full speed, or up to 1024 bytes at high speed.

Time of delivery is the most important requirement for isochronous data. In every USB frame, a
certain amount of USB bandwidth is allocated to isochronous transfers. To lighten the overhead,
isochronous transfers have no handshake (ACK/NAK/STALL/NYET), and no retries; error detec-
tion is limited to a 16-bit CRC.

Isochronous transfers do not use the data-toggle mechanism. Full-speed isochronous data uses
only the DATA0 PID; high-speed isochronous data uses DATA0, DATA1, DATA2 and MDATA.

In full-speed mode, only one isochronous packet can be transferred per endpoint, per frame. In
high-speed mode, up to three isochronous packets can be transferred per endpoint, per microf-
rame.

1.8.4 Control Transfers

Figure 1-5. A Control Transfer

I
N

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
0

Payload
Data

C
R
C
1
6

Data Packet

I
N

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
0

8 bytes
Setup
Data

C
R
C
1
6

Data Packet

A
C
K

H/S Pkt

S
E
T
U
P

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
1

Payload
Data

C
R
C
1
6

Data Packet

A
C
K

H/S Pkt

D
A
T
A
1

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

C
R
C
1
6

Data Pkt

A
C
K

H/S Pkt

S E T U P
Stage

D A T A
Stage

(opt ional)

S T A T U S
Stage

Exhibit 2058 - Page 33 of 460

EZ-USB FX2 Technical Reference Manual

Page 1-8 EZ-USB FX2 Technical Reference Manual v2.1

Control transfers configure and send commands to a device. Because they’re so important, they
employ the most extensive USB error checking. The host reserves a portion of each USB frame
for Control transfers.

Control transfers consist of two or three stages. The SETUP stage contains eight bytes of USB
CONTROL data. An optional DATA stage contains more data, if required. The STATUS (or “hand-
shake”) stage allows the device to indicate successful completion of a CONTROL operation.

1.9 Enumeration

Your computer is ON. You plug in a USB device, and the Windows™ cursor switches to an hour-
glass and then back to a cursor. Magically, your device is connected and its Windows™ driver is
loaded! Anyone who has installed a sound card into a PC and has had to configure countless
jumpers, drivers, and IO/Interrupt/DMA settings knows that a USB connection is miraculous.
We’ve all heard about Plug and Play, but USB delivers the real thing.

How does all this happen automatically? Inside every USB device is a table of descriptors. This
table is the sum total of the device’s requirements and capabilities. When you plug into USB, the
host goes through a sign-on sequence:

1. The host sends a Get Descriptor-Device request to address zero (all USB devices must
respond to address zero when first attached).

2. The device responds to the request by sending ID data back to the host to identify itself.

3. The host sends a Set Address request, which assigns a unique address to the just-attached
device so it may be distinguished from the other devices connected to the bus.

4. The host sends more Get Descriptor requests, asking for additional device information. From
this, it learns everything else about the device: number of endpoints, power requirements,
required bus bandwidth, what driver to load, etc.

This sign-on process is called Enumeration.

1.9.1 Full-Speed / High-Speed Detection

The USB 2.0 Specification requires that high-speed (480 Mbit/sec) devices must also be capable
of enumerating at full-speed (12 Mbit/s). In fact, all high-speed devices begin the enumeration pro-
cess in full-speed mode; devices switch to high-speed operation only after the host and device
have agreed to operate at high speed. The high-speed negotiation process occurs during USB
reset, via the “Chirp” protocol described in Chapter 7 of the USB 2.0 Specification.

When connected to a full-speed host, the FX2 will enumerate as a full-speed device. When con-
nected to a high-speed host, the FX2 automatically switches to high-speed mode.

Exhibit 2058 - Page 34 of 460

Chapter 1. Introducing EZ-USB FX2 Page 1-9

1.10 The Serial Interface Engine (SIE)

Figure 1-6. What the SIE Does

Every USB device has a Serial Interface Engine (SIE) which connects to the USB data lines (D+
and D-) and delivers data to and from the USB device. Figure 1-6 illustrates the SIE’s role: it
decodes the packet PIDs, performs error checking on the data using the transmitted CRC bits, and
delivers payload data to the USB device.

Bulk transfers are asynchronous, meaning that they include a flow control mechanism using ACK
and NAK handshake PIDs. The SIE indicates busy to the host by sending a NAK handshake
packet. When the USB device has successfully transferred the data, it commands the SIE to send
an ACK handshake packet, indicating success. If the SIE encounters an error in the data, it auto-
matically indicates no response instead of supplying a handshake PID. This instructs the host to
retransmit the data at a later time.

To send data to the host, the SIE accepts bytes and control signals from the USB device, formats it
for USB transfer, and sends it over D+ and D-. Because USB uses a self-clocking data format
(NRZI), the SIE also inserts bits at appropriate places in the bit stream to guarantee a certain num-
ber of transitions in the serial data. This is called “bit stuffing,” and is handled automatically by the
FX2’s SIE.

One of the most important features of the FX2 (and the other EZ-USB chips) family is that its con-
figuration is soft. Instead of requiring ROM or other fixed memory, it contains internal program/data

Serial
Interface
Engine
(SIE)

D+

D-

USB
Transceiver

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
1

Payload
Data

C
R
C
1
6

Data Packet

A
C
K

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
0

Payload
Data

C
R
C
1
6

Data Packet

A
C
K

H/S Pkt

Payload
Data

Payload
Data

A
C
K

H/S Pkt

Exhibit 2058 - Page 35 of 460

EZ-USB FX2 Technical Reference Manual

Page 1-10 EZ-USB FX2 Technical Reference Manual v2.1

RAM which can be loaded over the USB. This makes modifications, specification revisions, and
updates a snap.

The FX2’s “smart” SIE performs much more than the basic functions shown in Figur e1-6; it can
perform a full enumeration by itself, which allows the FX2 to connect as a USB device and down-
load code into its RAM while its CPU is held in reset. This added SIE functionality is also made
available to the FX2 programmer, to make development easier and save code and processing
time.

1.11 ReNumeration™

Because the FX2’s configuration is soft, one chip can take on the identities of multiple distinct USB
devices.

When first plugged into USB, the FX2 enumerates automatically and downloads firmware and
USB descriptor tables over the USB cable. Next, the FX2 enumerates again, this time as a device
defined by the downloaded information. This patented two-step process, called ReNumeration™,
happens instantly when the device is plugged in, with no hint that the initial download step has
occurred.

Alternately, FX2 can also load its firmware from an external EEPROM.

Chapter 3, "Enumeration and ReNumeration™" describes these processes in detail.

Exhibit 2058 - Page 36 of 460

Chapter 1. Introducing EZ-USB FX2 Page 1-11

1.12 EZ-USB FX2 Architecture

Figure 1-7. FX2 56-pin Package Simplified Block Diagram

The FX2 packs all the intelligence required by a USB peripheral interface into a compact inte-
grated circuit. As Figure 1-7 illustrates, an integrated USB transceiver connects to the USB bus
pins D+ and D-. A Serial Interface Engine (SIE) decodes and encodes the serial data and performs
error correction, bit stuffing, and the other signaling-level tasks required by USB. Ultimately, the
SIE transfers parallel data to and from the USB interface.

The FX2 SIE operates at Full Speed (12 Mbits/sec) and High Speed (480 Mbits/sec) rates. To
accommodate the increased bandwidth of USB 2.0, the FX2 endpoint FIFOs and slave FIFOs
(which interface to external logic or processors) are unified to eliminate internal data transfer times.

The CPU is an enhanced 8051 with fast execution time and added features. It uses internal RAM
for program and data storage.

The role of the CPU in a typical FX2-based USB peripheral is twofold:

• It implements the high-level USB protocol by servicing host requests over the control
endpoint (endpoint zero)

• It is available for general-purpose system use

The high-level USB protocol is not bandwidth-critical, so the FX2’s CPU is well-suited for handling
host requests over the control endpoint. However, the data rates offered by USB 2.0 are too high
for the CPU to process the USB data directly. For this reason, the CPU is not usually in the high-
bandwidth data path between endpoint FIFOs and the external interface. Instead, the CPU simply
configures the interface, then “gets out of the way” while the unified FX2 FIFOs move the data
directly between the USB and the external interface.

Serial
Interface
Engine
(SIE)

USB
Transceiver

D+
D-

USB
Connector

OUT
data

IN
data

I/O Ports

USB
Interface

Slave
FIFOs

Program &
Data
RAM

EZ-USB FX2 GPIF

16

CPU
(Enhanced

8051)

CTL RDY

Exhibit 2058 - Page 37 of 460

EZ-USB FX2 Technical Reference Manual

Page 1-12 EZ-USB FX2 Technical Reference Manual v2.1

The FIFOs can be controlled by an external master, which either supplies a clock and clock-
enable signals to operates synchronously, or strobe signals to operate asynchronously.

Alternately, the FIFOs can be controlled by an internal FX2 timing generator called the General
Programmable Interface (GPIF). The GPIF serves as an internal master, interfacing directly to the
FIFOs and generating user-programmed control signals for the interface to external logic. Addi-
tionally, the GPIF can be made to wait for external events by sampling external signals on its RDY
pins. The GPIF runs much faster than the FIFO data rate to give good programmable resolution
for the timing signals. It can be clocked from either the internal FX2 clock or an externally supplied
clock.

The FX2’s CPU is rich in features. Up to five I/O ports are available, as well as two USARTs, three
counter/timers, and an extensive interrupt system. It runs at a clock rate of up to 48 MHz and uses
four clocks per instruction cycle instead of the twelve required by a standard 8051.

The FX2 chip family uses an enhanced SIE/USB interface which simplifies FX2 code by imple-
menting much of the USB protocol. In fact, the FX2 can function as a full USB device even without
firmware.

Like all EZ-USB family chips, FX2 operates at 3.3V. This simplifies the design of bus-powered
USB devices, since the 5V power available at the USB connector (which the USB Specification
allows to be as low as 4.4V) can drive a 3.3V regulator to deliver clean, isolated power to the FX2
chip.

Figure 1-8. FX2 128-pin Package Simplified Block Diagram

FX2 is available in a 128-pin package which brings out the 8051 address bus, data bus, and con-
trol signals to allow connection of external memory and/or memory-mapped I/O. Figure 1-8 is a
block diagram for this package; Chapter 5, "Memory", gives full details of the external-memory
interface.

Serial
Interface
Engine
(SIE)

USB
Transceiver

D+
D-

USB
Connector

OUT
data

IN
data

USB
Interface

Slave
FIFOs

Program &
Data
RAM

EZ-USB FX2 GPIF

16

CTL RDY

Address Bus

Data Bus

Off-Chip
Memory

I/O Ports
CPU

(Enhanced
8051)

Exhibit 2058 - Page 38 of 460

Chapter 1. Introducing EZ-USB FX2 Page 1-13

1.13 FX2 Feature Summary

FX2 includes the following features:

• On-chip 480 Mbits/sec transceiver, PLL and SIE—the entire USB 2.0 physical layer (PHY).

• Double-, triple- and quad-buffered endpoint FIFOs accommodate the 480 MBits/sec USB
2.0 data rate.

• Built-in, enhanced 8051 running at up to 48 MHz.

- Fully featured: 256 bytes of register RAM, two USARTs, three timers, two data
pointers.

- Fast: four clocks (83.3 nanoseconds at 48 MHz) per instruction cycle.

- SFR access to control registers (including I/O ports) that require high speed.

- USB-vectored interrupts for low ISR latency.

- Used for USB housekeeping and control, not to move high speed data.

• “Soft” operation—USB firmware can be downloaded over USB, eliminating the need for
hard-coded memory.

• Four interface FIFOs that can be internally or externally clocked. The endpoint and inter-
face FIFOs are unified to eliminate data transfer time between USB and external logic.

• General Programmable Interface (GPIF), a microcoded state machine which serves as a
timing master for ‘glueless’ interface to the FX2 FIFOs.

FX2 is a single-chip USB 2.0 peripheral solution. Unlike designs that use an external PHY, the FX2
integrates everything on one chip, eliminating costly high pin-count packages and the need to
route high-speed signals between chips.

1.14 FX2 Integrated Microprocessor

The FX2’s CPU uses on-chip RAM as program and data memory. Chapter 5, "Memory", describes
the various internal/external memory options.

The CPU communicates with the SIE using a set of registers occupying on-chip RAM addresses
0xE600-0xE6FF. These registers are grouped and described by function in individual chapters of
this reference manual and summarized in register order in Chapter 15, "Registers".

The CPU has two duties. First, it participates in the protocol defined in the Universal Serial Bus
Specification Version 2.0, “Chapter 9, USB Device Framework.” Thanks to the FX2’s “smart” SIE,

Exhibit 2058 - Page 39 of 460

EZ-USB FX2 Technical Reference Manual

Page 1-14 EZ-USB FX2 Technical Reference Manual v2.1

the firmware associated with the USB protocol is simplified, leaving code space and bandwidth
available for the CPU’s primary duty—to help implement your device. On the device side, abun-
dant input/output resources are available, including I/O ports, USARTs, and an I²C-compatible
bus master controller. These resources are described in Chapter 13, "Input/Output", and Chapter
14, "Timers/Counters and Serial Interface".

It’s important to recognize that the FX2 architecture is such that the CPU sets up and controls data
transfers, but it normally does not participate in high bandwidth transfers. It is not in the data path;
instead, the large data FIFOs that handle endpoint data connect directly to outside interfaces. To
make the interface versatile, a programmable timing generator (GPIF, General Programmable
Interface) can create user-programmed waveforms for high bandwidth transfers between the inter-
nal FIFOs and external logic.

FX2 adds eight interrupt sources to the standard 8051 interrupt system:

• INT2: USB Interrupt

• INT3: I²C-Compatible Bus Interrupt

• INT4: FIFO/GPIF Interrupt

• INT4: External Interrupt 4

• INT5: External Interrupt 5

• INT6: External Interrupt 6

• USART1: USART1 Interrupt

• WAKEUP: USB Resume Interrupt

The FX2 provides 27 individual USB-interrupt sources which share the INT2 interrupt, and 14 indi-
vidual FIFO/GPIF-interrupt sources which share the INT4 interrupt. To save the code and process-
ing time which normally would be required to identify an individual interrupt source, the FX2
provides a second level of interrupt vectoring called Autovectoring. Each INT2 and INT4 interrupt
source has its own autovector, so when an interrupt requires service, the proper ISR (interrupt ser-
vice routine) is automatically invoked. Chapter 4, "Interrupts" describes the FX2 interrupt system.

Exhibit 2058 - Page 40 of 460

Chapter 1. Introducing EZ-USB FX2 Page 1-15

1.15 FX2 Block Diagram

Figure 1-9. FX2 Block Diagram

8051
48 M Hz

8 KB
Pgm /Data

RAM

4 KB
Endpoint

RAM

port D

GPIFFIFOS

1
6

General Purpose Interface
 (e.g. ATA, EPP, etc.)

USB regs

0.5K Data
RAM

port B

p
o

rt
 A

8

7

14

p
o

rt
 E

p
o

rt
 C

8

1

16

4

Ext
Clock

D+ D-

D
a

ta
(8

)

A
d

d
r(

1
6

)

2

S
IO 2

i2
c

 c
o

m
p

a
ti

b
le

S
IO

2

PHY
Interface

24 MHz
crystal

USB
2.0

PHY

PLL

Exhibit 2058 - Page 41 of 460

EZ-USB FX2 Technical Reference Manual

Page 1-16 EZ-USB FX2 Technical Reference Manual v2.1

1.16 Packages

FX2 is available in three packages:

Figure 1-10. 56-pin, 100-pin, and 128-pin FX2 Packages

1.16.1 56-Pin Package

Twenty-four general-purpose I/O pins (ports A, B, and D) are available. Sixteen of these I/O pins
can be configured as the 16-bit data interface to the FX2’s internal high-speed 16-bit FIFOs, which
can be used to implement low cost, high-performance interfaces such as ATAPI, UTOPIA, EPP,
etc. The 56-pin package has the following:

• Three 8-bit I/O ports: PORTA, PORTB, and PORTD

• I²C-compatible bus

• An 8- or 16-bit General Programmable Interface (GPIF) multiplexed onto PORTB and
PORTD, with five non-multiplexed control signals

• Four 8- or 16-bit Slave FIFOs, with five non-multiplexed control signals and four or five
control signals multiplexed with PORTA

128
T Q F P

14x20x1.4
m m

100
T Q F P

14x20x1.4
m m

56
S S O P

8x18x2 .3
m m

Exhibit 2058 - Page 42 of 460

Chapter 1. Introducing EZ-USB FX2 Page 1-17

1.16.2 100-Pin Package

The 100-pin package adds functionality to the 56-pin package:

• Two additional 8-bit I/O ports: PORTC and PORTE

• Seven additional GPIF Control (CTL) and Ready (RDY) signals

• Nine non-multiplexed peripheral signals (two USARTs, three timer inputs, INT4, and INT5)

• Eight additional control signals multiplexed onto PORTE

• Nine GPIF address lines, multiplexed onto PORTC (eight) and PORTE (one)

• RD and WR signals which may be used as read and write strobes for PORTC

1.16.3 128-Pin Package

The 128-pin package adds the 8051 address and data buses and control signals. The RD, PSEN,
and WR strobes are standard 8051 control strobes, serving as read/write strobes for external
memory attached to the 8051 address and data buses. The FX2 encodes the CS and OE signals
to automatically exclude external access to memory spaces which exist on-chip, and optionally to
combine off-chip data- and code-memory read accesses. The 128-pin package adds the following:

• 16-bit 8051 address bus

• 8-bit 8051 data bus

• Address/data bus control signals

1.16.4 Signals Available in the Three Packages

Three interface modes are available: Ports, GPIF Master, and Slave FIFO.

Figure 1-11 shows a logical diagram of the signals available in the three packages. The signals on
the left edge of the diagram are common to all interface modes, while the signals on the right are
specific to each mode. The interface mode is software-selectable via an internal mode register.

In “Ports” mode, all the I/O pins are general-purpose I/O ports.

“GPIF master” mode uses the PORTB and PORTD pins as a 16-bit data interface to the four FX2
endpoint FIFOs EP2, EP4, EP6 and EP8. In this “master” mode, the FX2 FIFOs are controlled by
the internal GPIF, a programmable waveform generator that responds to FIFO status flags, drives
timing signals using its CTL outputs, and waits for external conditions to be true on its RDY inputs.
Note that only a subset of the GPIF signals (CTL0-2, RDY0-1) is available in the 56-pin package,
while the full set (CTL0-5, RDY0-5) is available in the 100- and 128-pin packages.

Exhibit 2058 - Page 43 of 460

EZ-USB FX2 Technical Reference Manual

Page 1-18 EZ-USB FX2 Technical Reference Manual v2.1

In the “Slave FIFO” mode, external logic or an external processor interfaces directly to the FX2
endpoint FIFOs. In this mode, the GPIF is not active, since external logic has direct FIFO control.
Therefore, the basic FIFO signals (flags, selectors, strobes) are brought out on FX2 pins. The
external master can be asynchronous or synchronous, and it may supply its own independent
clock to the FX2 interface.

The 100-pin package includes all the functionality of the 56-pin package, and brings out the two
additional I/O ports PORTC and PORTE as well as all the USART, Timer, Interrupt, and GPIF sig-
nals. The RD and WR pins function as PORTC strobes in the 100-pin package, and as expansion
memory strobes in the 128-pin package.

The 128-pin package adds 28 pins to the 100-pin package to bring out the full 8051 expansion
memory bus. This allows for the connection of external memory for applications that run at power-
on and before connection to USB. The 128-pin package also provides the foundation for the
Cypress FX2 Development Kit boards, in which code is developed using a debug monitor that
runs in external RAM.

Exhibit 2058 - Page 44 of 460

Chapter 1. Introducing EZ-USB FX2 Page 1-19

Figure 1-11. Signals for the Three FX2 Package Types

100

128

56

DPLUS
DMINUS

SCL
SDA

RESET#
WAKEUP

PD6
PD7

PD5
PD4
PD3
PD2
PD1
PD0
PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0

INT0#/PA0
INT1#/PA1

PA2
WU2/PA3

PA4
PA5
PA6
PA7

PC7/GPIFADR7
PC6/GPIFADR6
PC5/GPIFADR5
PC4/GPIFADR4
PC3/GPIFADR3
PC2/GPIFADR2
PC1/GPIFADR1
PC0/GPIFADR0

PE7/GPIFADR8
PE6/T2EX
PE5/INT6
PE4/RxD1OUT
PE3/RxD0OUT
PE2/T2OUT
PE1/T1OUT
PE0/T0OUT

D7
D6
D5
D4
D3
D2
D1
D0

RD#
WR#

CS#
OE#

A15
A14
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

BRKPNT

PSEN#

XTALIN
XTALOUT

 ↔ FD[15]

IFCLK

CLKOUT

 ↔ FD[14]
 ↔ FD[13]
 ↔ FD[12]
 ↔ FD[11]
 ↔ FD[10]
 ↔ FD[9]
 ↔ FD[8]
 ↔ FD[7]
 ↔ FD[6]
 ↔ FD[5]
 ↔ FD[4]
 ↔ FD[3]
 ↔ FD[2]
 ↔ FD[1]
 ↔ FD[0]

← SLWR

→ FLAGA
→ FLAGB
→ FLAGC

← FIFOADR0
← FIFOADR1
← PKTEND

 ← SLOE

Ports GPIF Master

RXD0
TxD0
RxD1
TxD1
INT4

INT5#
T2
T1
T0

EA

← SLRD

 ↔ FD[15]
 ↔ FD[14]
 ↔ FD[13]
 ↔ FD[12]
 ↔ FD[11]
 ↔ FD[10]
 ↔ FD[9]
 ↔ FD[8]
 ↔ FD[7]
 ↔ FD[6]
 ↔ FD[5]
 ↔ FD[4]
 ↔ FD[3]
 ↔ FD[2]
 ↔ FD[1]
 ↔ FD[0]

Slave FIFO

INT0#/PA0
INT1#/PA1
PA2
WU2/PA3
PA4
PA5
PA6
PA7

← RDY0
← RDY1

→ CTL0
→ CTL1
→ CTL2

INT0#/PA0
INT1#/PA1

WU2/PA3

PA7/FLAGD/SLCS#

→ CTL3
→ CTL4
→ CTL5

← RDY2
← RDY3
← RDY4
← RDY5

Exhibit 2058 - Page 45 of 460

EZ-USB FX2 Technical Reference Manual

Page 1-20 EZ-USB FX2 Technical Reference Manual v2.1

1.17 Package Diagrams

Figure 1-12. CY7C68013-128 TQFP Pin Assignment

6463626160595857565554535251504948474645444342414039

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

102

101

100

99

98

97

96

95

94

93

92

91

90

89

88

87

86

85

84

83

82

81

80

79

78

77

76

75

74

73

72

71

70

69

68

67

66

65

CLKOUT

VCC

GND

RDY0/*SLRD

RDY1/*SLWR

RDY2

RDY3

RDY4

RDY5

AVCC

XTALOUT

XTALIN

AGND

NC

NC

NC

VCC

DPLUS

DMINUS

GND

A11

A12

A13

A14

A15

VCC

GND

INT4

T0

T1

T2

IFCLK

RESERVED

BKPT

EA

SCL

SDA

OE

PD0/FD8

*WAKEUP

VCC

RESET

CTL5

A3

A2

A1

A0

GND

PA7/*FLAGD/SLCS

PA6/*PKTEND

PA5/FIFOADR1

PA4/FIFOADR0

D7

D6

D5

PA3/*WU2

PA2/*SLOE

PA1/INT1

PA0/INT0

VCC

GND

PC7/GPIFADR7

PC6/GPIFADR6

PC5/GPIFADR5

PC4/GPIFADR4

PC3/GPIFADR3

PC2/GPIFADR2

PC1/GPIFADR1

PC0/GPIFADR0

CTL2/*FLAGC

CTL1/*FLAGB

CTL0/*FLAGA

VCC

CTL4

CTL3

GND

P
D

1/F
D

9

P
D

2/F
D

10

P
D

3/F
D

11

IN
T

5

V
C

C

P
E

0/T
0O

U
T

P
E

1/T
1O

U
T

P
E

2/T
2O

U
T

P
E

3/R
X

D
0O

U
T

P
E

4/R
X

D
1O

U
T

P
E

5/IN
T

6

P
E

6/T
2E

X

P
E

7/G
P

IF
A

D
R

8

G
N

D

A
4

A
5

A
6

A
7

P
D

4/F
D

12

P
D

5/F
D

13

P
D

6/F
D

14

P
D

7/F
D

15

G
N

D

A
8

A
9

A
10

CY7C68013
128-pin TQFP

V
C

CD
4

D
3

D
2

D
1

D
0

G
N

D

P
B

7/F
D

7

P
B

6/F
D

6

P
B

5/F
D

5

P
B

4/F
D

4

R
xD

1

T
xD

1

R
xD

0

T
xD

0

G
N

D

V
C

C

P
B

3/F
D

3

P
B

2/F
D

2

P
B

1/F
D

1

P
B

0/F
D

0

V
C

C

C
S

W
R

R
D

P
S

E
N

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Exhibit 2058 - Page 46 of 460

Chapter 1. Introducing EZ-USB FX2 Page 1-21

Figure 1-13. CY7C68013-100 TQFP Pin Assignment

PD0/FD8
*WAKEUP

VCC
RESET

CTL5
GND

PA7/*FLAGD/SLCS
PA6/*PKTEND

PA5/FIFOADR1
PA4/FIFOADR0

PA3/*WU2
PA2/*SLOE

PA1/INT1
PA0/INT0

VCC
GND

PC7/GPIFADR7
PC6/GPIFADR6
PC5/GPIFADR5
PC4/GPIFADR4
PC3/GPIFADR3
PC2/GPIFADR2
PC1/GPIFADR1
PC0/GPIFADR0

CTL2/*FLAGC
CTL1/*FLAGB
CTL0/*FLAGA

VCC
CTL4
CTL3

P
D

1/F
D

9
P

D
2/F

D
10

P
D

3/F
D

11
IN

T
5

V
C

C
P

E
0/T

0O
U

T
P

E
1/T

1O
U

T
P

E
2/T

2O
U

T
P

E
3/R

X
D

0O
U

T
P

E
4/R

X
D

1O
U

T
P

E
5/IN

T
6

P
E

6/T
2E

X
P

E
7/G

P
IF

A
D

R
8

G
N

D
P

D
4/F

D
12

P
D

5/F
D

13
P

D
6/F

D
14

P
D

7/F
D

15
G

N
D

C
LK

O
U

T

CY7C68013
100-pin TQFP

G
N

D
V

C
C

G
N

D
P

B
7/F

D
7

P
B

6/F
D

6
P

B
5/F

D
5

P
B

4/F
D

4
R

xD
1

T
xD

1
R

xD
0

T
xD

0
G

N
D

V
C

C
P

B
3/F

D
3

P
B

2/F
D

2
P

B
1/F

D
1

P
B

0/F
D

0
V

C
C

W
R

R
D

81828384858687888990919293949596979899100

5049484746454443424140393837363534333231

VCC
GND
RDY0/*SLRD
RDY1/*SLWR
RDY2
RDY3
RDY4
RDY5
AVCC
XTALOUT
XTALIN
AGND
NC
NC
NC
VCC
DPLUS
DMINUS
GND
VCC
GND
INT4
T0
T1
T2
IFCLK
RESERVED
BKPT
SCL
SDA

80

79

78

77

76

75

74

73

72

71

70

69

68

67

66

65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Exhibit 2058 - Page 47 of 460

EZ-USB FX2 Technical Reference Manual

Page 1-22 EZ-USB FX2 Technical Reference Manual v2.1

Figure 1-14. CY7C68013-56 SSOP Pin Assignment

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

PD5/FD13
PD6/FD14
PD7/FD15
GND
CLKOUT
VCC
GND
RDY0/*SLRD
RDY1/*SLWR
AVCC
XTALOUT
XTALIN
AGND
VCC
DPLUS
DMINUS
GND
VCC
GND
IFCLK
RESERVED
SCL
SDA
VCC
PB0/FD0
PB1/FD1
PB2/FD2
PB3/FD3

56

55

54

53

52

51

50

49

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

PD4/FD12
PD3/FD11
PD2/FD10
PD1/FD9
PD0/FD8

*WAKEUP
VCC

RESET
GND

PA7/*FLAGD/SLCS
PA6/PKTEND

PA5/FIFOADR1
PA4/FIFOADR0

PA3/*WU2
PA2/*SLOE

PA1/INT1
PA0/INT0

VCC
CTL2/*FLAGC
CTL1/*FLAGB
CTL0/*FLAGA

GND
VCC
GND

PB7/FD7
PB6/FD6
PB5/FD5
PB4/FD4

CY7C68013
56-pin SSOP

Exhibit 2058 - Page 48 of 460

Chapter 1. Introducing EZ-USB FX2 Page 1-23

1.18 FX2 Endpoint Buffers

The USB Specification defines an endpoint as a source or sink of data. Since USB is a serial bus,
a device endpoint is actually a FIFO which sequentially empties or fills with USB data bytes. The
host selects a device endpoint by sending a 4-bit address and a direction bit. Therefore, USB can
uniquely address 32 endpoints, IN0 through IN15 and OUT0 through OUT15.

From the FX2’s point of view, an endpoint is a buffer full of bytes received or held for transmission
over the bus. The FX2 reads host data from an OUT endpoint buffer, and writes data for transmis-
sion to the host to an IN endpoint buffer.

FX2 contains three 64-byte endpoint buffers, plus 4 Kilobytes of buffer space that can be config-
ured various ways, as indicated by Figure 1-15. The three 64-byte buffers are common to all con-
figurations.

Figure 1-15. FX2 Endpoint Buffers

The three 64-byte buffers are designated EP0, EP1IN and EP1OUT. EP0 is the default CONTROL
endpoint, a bidirectional endpoint that uses a single 64-byte buffer for both IN and OUT data. FX2
firmware reads or fills the EP0 buffer when the (optional) data stage of a CONTROL transfer is
required.

Exhibit 2058 - Page 49 of 460

EZ-USB FX2 Technical Reference Manual

Page 1-24 EZ-USB FX2 Technical Reference Manual v2.1

The eight SETUP bytes in a CONTROL transfer do not appear in the 64-byte EP0 endpoint buffer.
Instead, to simplify programming, the FX2 automatically stores the eight SETUP bytes in a sepa-
rate buffer (SETUPDAT, at 0xE6B8-0xE6BF).

EP1IN and EP1OUT use separate 64 byte buffers. FX2 firmware can configure these endpoints as
BULK, INTERRUPT or ISOCHRONOUS. These endpoints, as well as EP0, are accessible only by
FX2 firmware. This is in contrast to the large endpoint buffers EP2, EP4, EP6 and EP8, which are
designed to move high bandwidth data directly on and off chip without firmware intervention.

Endpoints 2, 4, 6 and 8 are the large, high bandwidth, data moving endpoints. They can be config-
ured various ways to suit bandwidth requirements. The shaded boxes in Figure 1-15 enclose the
buffers to indicate double, triple, or quad buffering. Double buffering means that one packet of
data can be filling or emptying with USB data while another packet (from the same endpoint) is
being serviced by external interface logic. Triple buffering adds a third packet buffer to the pool,
which can be used by either side (USB or interface) as needed. Quad buffering adds a fourth
packet buffer. Multiple buffering can significantly improve USB bandwidth performance when the
data supplying and consuming rates are similar, but bursty; it smooths out the bursts, reducing or
eliminating the need for one side to wait for the other.

Endpoints 2, 4, 6 and 8 can be configured using the choices shown in Tab le1-2.

When the FX2 operates at full speed (12 Mbits/sec), some or all of the endpoint buffer bytes
shown in Figure 1-15 may be employed, depending on endpoint type. Regardless of the physical
buffer size, the endpoint buffer accommodates only one full-speed packet.

For example, if EP2 is used as a full-speed BULK endpoint, the maximum number of bytes (max-
PacketSize) it can accommodate is 64, even though the physical buffer size is 512 or 1024 bytes
(it makes sense, therefore, to configure full-speed BULK endpoints as 512 bytes rather than 1024,
so that fewer unused bytes are wasted). An ISOCHRONOUS full speed endpoint, on the other
hand, could fully use either a 512- or 1024-byte buffer.

Table 1-2. Endpoint 2, 4, 6, and 8 Configuration Choices

Characteristic Choices

Direction IN, OUT

Type Bulk, Interrupt, Isochronous

Buffering Double, Triple, Quad

Exhibit 2058 - Page 50 of 460

Chapter 1. Introducing EZ-USB FX2 Page 1-25

1.19 External FIFO Interface

The large data FIFOs (endpoints 2, 4, 6 and 8) in the FX2 are designed to move high speed (480
Mbits/sec) USB data on and off chip without introducing any bandwidth bottlenecks. They accom-
plish this goal by implementing the following features:

1. Direct interface with outside logic, with the FX2’s CPU out of the data path.

2. “Quantum FIFO” architecture instantaneously moves (“commits”) packets between the USB
and the FIFOs.

3. Versatile interfaces: Slave FIFO (external master) or GPIF (internal master), synchronous or
asynchronous clocking, internal or external clocks, etc.

The firmware sets switches to configure the outside FIFO interface, and then generally does not
participate in moving the data into and out of the FIFOs.

To understand the “Quantum FIFO”, it is necessary to refer to two data domains, the USB domain
and the Interface domain. Each domain is independent, allowing different clocks and logic to han-
dle its data.

The USB domain is serviced by the SIE, which receives and delivers FIFO data packets over the
two-wire USB bus. The USB domain is clocked using a reference derived from the 24 MHz crystal
attached to the FX2 chip.

The Interface domain loads and unloads the endpoint FIFOs. An external device such as a DSP or
ASIC can supply its own clock to the FIFO interface, or the FX2’s internal interface clock (IFCLK)
can be supplied to the interface.

The classic solution to the problem of reconciling two different and independent clocks is to use a
FIFO. The FX2’s FIFOs have an unusual property: They’re Quantum FIFOs, which means that
data is committed to the FIFOs in USB-size packets, rather than one byte at a time. This is invisible
to the outside interface, since it services the FIFOs just like any ordinary FIFO (i.e., by checking full
and empty flags). The only minor difference is that when an empty flag goes from 1 (empty) to 0
(not empty), the number of bytes in the FIFO jumps to a USB packet size, rather than just one
byte.

FX2 Quantum FIFOs may be moved between data domains almost instantaneously. The Quantum
nature of the FIFOs also simplifies error recovery. If endpoint data were continuously clocked into
an interface FIFO, some of the packet data might have already been clocked out by the time an
error is detected at the end of a USB packet. By switching FIFO data between the domains in
USB-packet-size blocks, each USB packet can be error-checked (and retried, if necessary) before
it’s committed to the other domain.

Figures 1-16 and 1-17 illustrate the two methods by which external logic interfaces to the endpoint
FIFOs EP2, EP4, EP6 and EP8.

Exhibit 2058 - Page 51 of 460

EZ-USB FX2 Technical Reference Manual

Page 1-26 EZ-USB FX2 Technical Reference Manual v2.1

Figure 1-16. FX2 FIFOs in “Slave FIFO” Mode

Figure 1-16 illustrates the outside-world view of the FX2 data FIFOs configured as “Slave FIFOs”.
The outside logic supplies a clock, responds to the FIFO flags, and clocks FIFO data in and out
using the strobe signals. Optionally, the outside logic may use the internal FX2 Interface Clock
(IFCLK) as its reference clock.

Three FIFO flags are shown in parentheses in Figure1-16 because they actually are called
FLAGA-FLAGD in the pin diagram (there are four flag pins). Using configuration bits, various FIFO
flags can be assigned to these general-purpose flag pins. The names shown in parentheses illus-
trate typical uses for these configurable flags. The Programmable Level Flag (PRGFLAG) can be
set to any value to indicate degrees of FIFO “fullness”. The outside interface selects one of the
four FIFOs using the FIFOADR pins, and then clocks the 16-bit FIFO data using the SLRD (Slave
Read) and SLWR (Slave Write) signals. PKTEND is used to dispatch a non-full IN packet to USB.

Synchronous

Asynchronous

SLRD
 SLW R

PKTEND

IFCLK

SLRD
 SLW R

PKTEND

FIFO

FD[15:0] Data

(OUTEMPTY)

(INFULL)

(PRGFLAG)

IFCLK

SLRD

SLW R

SLOE

PKTEND

FIFOADR1

FIFOADR0

EP8

EP6

EP4

EP2

select

Exhibit 2058 - Page 52 of 460

Chapter 1. Introducing EZ-USB FX2 Page 1-27

Figure 1-17. FX2 FIFOs in “GPIF Master” Mode

External systems that connect to the FX2 FIFOs must provide control circuitry to select FIFOs,
check flags, clock data, etc. FX2 contains a sophisticated control unit (the General Programmable
Interface, or GPIF) which can replace this external logic. In the “GPIF Master” FIFO mode,
(Figure 1-17), the GPIF reads the FIFO flags, controls the FIFO strobes, and presents a user-cus-
tomizable interface to the outside world. The GPIF runs at a very high speed (up to 48 MHz clock
rate) so that it can develop high-resolution control waveforms. It can be clocked from one of two
internal sources (30 or 48 MHz) or from an external clock.

Control (CTL) signals are programmable waveform outputs, and ready (RDY) signals are input
pins that can be tested for conditions that cause the GPIF to pause and resume operation, imple-

FIFO

FD[15:0] Data

EP8

EP6

EP4

EP2

GPIF

FLAGS

CTL

RDY

6

6

GPIFADR
9

30 MHz

48 MHz
IFCLK

IFCLK

SLRD

8051 RDY

8051 INT

select

SLW R

SLOE

SLRD

Exhibit 2058 - Page 53 of 460

EZ-USB FX2 Technical Reference Manual

Page 1-28 EZ-USB FX2 Technical Reference Manual v2.1

menting “wait states”. GPIFADR pins present a 9-bit address to the interface that may be incre-
mented as data is transferred. The 8051 INT signal is a ‘hook’ that can signal the FX2’s CPU in the
middle of a transaction; GPIF operation resumes once the CPU asserts its own 8051 RDY signal.
This ‘hook’ permits great flexibility in the generation of GPIF waveforms.

1.20 EZ-USB FX2 Product Family

The EZ-USB FX2 family is available in various pinouts to serve different system requirements and
costs.

Table 1-3. EZ-USB FX2 Family

Part Number Package Ram
ISO

Support
 I/O Bus Width Data/Address Bus

CY7C68013-56PVC 56-pin SSOP 8 KBytes Yes 24 8/16 Bits No

CY7C68013-100AC 100-pin TQFP 8 KBytes Yes 40 8/16 Bits No

CY7C68013-128AC 128-pin TQFP 8 KBytes Yes 40 8/16 Bits 8051 Address/Data Bus

Exhibit 2058 - Page 54 of 460

Chapter 2. Endpoint Zero Page 2-1

Chapter 2 Endpoint Zero

2.1 Introduction

Endpoint zero has special significance in a USB system. It is a CONTROL endpoint, and it is
required by every USB device. The USB host uses special SETUP tokens to signal transfers that
deal with device control; only CONTROL endpoints accept these special tokens.

The USB host sends a suite of standard device requests over endpoint zero. These standard
requests are fully defined in Chapter 9 of the USB Specification. This chapter describes how the
FX2 chip handles endpoint zero requests.

The FX2 provides extensive hardware support for handling endpoint-zero operations; this chapter
describes those operations and the FX2 resources that simplify the firmware which handles them.

Endpoint zero is the only CONTROL endpoint supported by the FX2. CONTROL endpoints are
bi-directional, so the FX2 provides a single 64-byte buffer, EP0BUF, which firmware handles
exactly like a bulk endpoint buffer for the data stages of a CONTROL transfer. A second 8-byte
buffer called SETUPDAT, which is unique to endpoint zero, holds data that arrives in the SETUP
stage of a CONTROL transfer. This relieves the FX2 firmware of the burden of tracking the three
CONTROL transfer phases (SETUP, DATA, and STATUS). The FX2 also generates separate inter-
rupt requests for the various transfer phases, further simplifying code.

Endpoint zero is always enabled and accessible by the USB host.

Exhibit 2058 - Page 55 of 460

EZ-USB FX2 Technical Reference Manual

Page 2-2 EZ-USB FX2 Technical Reference Manual v2.1

2.2 Control Endpoint EP0

Figure 2-1. A USB Control Transfer (With Data Stage)

Endpoint zero accepts a special SETUP packet, which contains an 8-byte data structure that pro-
vides host information about the CONTROL transaction. CONTROL transfers include a final
STATUS phase, constructed from standard PIDs (IN/OUT, DATA1, and ACK/NAK).

Some CONTROL transactions include all required data in their 8-byte SETUP Data packet. Other
CONTROL transactions require more OUT data than will fit into the eight bytes, or require IN data
from the device. These transactions use standard bulk-like transfers to move the data. Note in
Figure 2-1 that the DATA Stage looks exactly like a bulk transfer. As with BULK endpoints, the
endpoint zero byte count registers must be loaded to ACK each data transfer stage of a
CONTROL transfer.

8051 clears HSNAK bit (writes 1 to it)
or sets the STALL bit.

I
N

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
0

8 bytes
Setup
Data

C
R
C
1
6

Data Packet

A
C
K

H/S Pkt

S
E
T
U
P

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
1

Payload
Data

C
R
C
1
6

Data Packet

D
A
T
A
1

Data Pkt

A
C
K

I
N

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
0

Payload
Data

C
R
C
1
6

Data Packet

A
C
K

H/S Pkt

S
Y
N
C

N
A
K

H/S Pkt

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

C
R
C
1
6

SETUP Stage

SUTOK Interrupt
FX2 sets HSNAK=1

SUDAV Interrupt

DATA Stage

EP0-IN Interrupt EP0-IN Interrupt

STATUS Stage

D
A
T
A
1

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

C
R
C
1
6

....

H/S Pkt

Data Pkt

A
C
K

H/S Pkt

Exhibit 2058 - Page 56 of 460

Chapter 2. Endpoint Zero Page 2-3

The STATUS stage consists of an empty data packet with the opposite direction of the data stage,
or an IN if there was no data stage. This empty data packet gives the device a chance to ACK or
NAK the entire CONTROL transfer.

The HSNAK bit holds off the completion of a CONTROL transfer until the device has had time to
respond to a request. For example, if the host issues a Set_Interface Request, the FX2 firmware
performs various housekeeping chores such as adjusting internal modes and re-initializing end-
points. During this time, the host issues handshake (STATUS stage) packets to which the FX2
automatically responds with NAKs, indicating “busy.” When the firmware completes its housekeep-
ing operations, it clears the HSNAK bit (by writing 1 to it), which instructs the FX2 to ACK the
STATUS stage, terminating the transfer. This handshake prevents the host from attempting to use
an interface before it’s fully configured.

To perform an endpoint stall for the DATA or STATUS stage of an endpoint zero transfer (the
SETUP stage can never stall), firmware must set both the STALL and HSNAK bits for endpoint
zero.

Some CONTROL transfers do not have a DATA stage. Therefore, the code that processes the
SETUP data should check the length field in the SETUP data (in the 8-byte buffer at SETUPDAT)
and arm endpoint zero for the DATA phase (by loading EP0BCH:L) only if the length field is non-
zero.

Two interrupts provide notification that a SETUP packet has arrived, as shown in Figur e2-2.

Figure 2-2. Two Interrupts Associated with EP0 CONTROL Transfers

The FX2 asserts the SUTOK (Setup Token) interrupt request when it detects the SETUP token at
the beginning of a CONTROL transfer. This interrupt is normally used for debug only.

The FX2 asserts the SUDAV (Setup Data Available) interrupt request when the eight bytes of
SETUP data have been received error-free and transferred to the SETUPDAT buffer. The FX2
automatically takes care of any retries if it finds errors in the SETUP data. These two interrupt
request bits must be cleared by firmware.

Firmware responds to the SUDAV interrupt request by either directly inspecting the eight bytes at
SETUPDAT or by transferring them to a local buffer for further processing. Servicing the SETUP
data should be a high priority, since the USB Specification stipulates that CONTROL transfers

D
A
T
A
0

8 bytes
Setup
Data

C
R
C
1
6

Data Packet

A
C
K

H/S Pkt

S
E
T
U
P

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

SETUP Stage

S U T O K
Interrupt

S U D A V
Interrupt

8 RAM
bytes

S E T U P D A T

Exhibit 2058 - Page 57 of 460

EZ-USB FX2 Technical Reference Manual

Page 2-4 EZ-USB FX2 Technical Reference Manual v2.1

must always be accepted and never NAK’d. It is possible, therefore, that a CONTROL transfer
could arrive while the firmware is still servicing a previous one. In this case, the earlier CONTROL
transfer service should be aborted and the new one serviced. The SUTOK interrupt gives advance
warning that a new CONTROL transfer is about to overwrite the eight SETUPDAT bytes.

If the firmware stalls endpoint zero (by setting the STALL and HSNAK bits to 1), the FX2 automat-
ically clears the stall bit when the next SETUP token arrives.

Like all FX2 interrupt requests, the SUTOK and SUDAV bits can be directly tested and cleared by
the firmware (cleared by writing 1) even if their corresponding interrupts are disabled.

Figure 2-3 shows the FX2 registers that are associated with CONTROL transactions over EP0.

Figure 2-3. Registers Associated with EP0 Control Transfers

These registers augment those associated with normal bulk transfers over endpoint zero, which
are described in Chapter 8, "Access to Endpoint Buffers".

Two bits in the USBIE (USB Interrupt Enable) register enable the SETUP Token (SUTOK) and
SETUP Data Available interrupts. The actual interrupt-request bits are in the USBIRQ (USB Inter-
rupt Requests) register.

The FX2 transfers the eight SETUP bytes into eight bytes of RAM at SETUPDAT. A 16-bit pointer,
SUDPTRH:L, provides hardware assistance for handling CONTROL IN transfers, in particular the
Get Descriptor requests described later in this chapter.

8 Bytes of

SETUP Data
Interrupt Enable:

In itialization

SETUPDAT

Data transfer

Registers Associated with Endpoint Zero
For handling SETUP transactions

7 6 5 4 3 2 1 0EP0BCL

15 14 13 12 11 10 9 8EP0BCH

15 14 13 12 11 10 9 8SUDPTRH

7 6 5 4 3 2 1 0SUDPTRL

USBIE T D

SUDPTRCTL A

A=SDP Auto

A

USBIRQ

Interrupt Request:

T

Interrupt Control

DA

T=Setup Token

D=Setup Data

A=EP0 ACK

T=Setup Token
D=Setup Data

A=EP0 ACK

Exhibit 2058 - Page 58 of 460

Chapter 2. Endpoint Zero Page 2-5

2.3 USB Requests

The Universal Serial Bus Specification Version 2.0, Chapter 9, "USB Device Framework" defines a
set of Standard Device Requests. When the firmware is in control of endpoint zero (RENUM=1),
the FX2 handles only one of these requests (Set Address) automatically; it relies on the firmware
to support all of the others. The firmware acts on device requests by decoding the eight bytes con-
tained in the SETUP packet and available at SETUPDAT. Table2-1 defines these eight bytes.

The Byte column in the previous table shows the byte offset from SETUPDAT. The Field column
shows the different bytes in the request, where the “bm” prefix means bit-map, “b” means byte [8
bits, 0-255], and “w” means word [16 bits, 0-65535].

Table 2-2 shows the different values defined for bRequest, and how the firmware should respond
to each request. The remainder of this chapter describes each of the requests in Tabl e2-2 in
detail.

Table 2-2 applies when RENUM=1, signifying that the firmware, rather than the FX2 hardware,
handles device requests

Table 2-1. The Eight Bytes in a USB SETUP Packet

Byte Field Meaning

0 bmRequestType Request Type, Direction, and Recipient.

1 bRequest The actual request (see Tabl e2-2).

2 wValueL 16-bit value, varies according to bRequest.

3 wValueH

4 wIndexL 16-bit field, varies according to bRequest.

5 wIndexH

6 wLengthL Number of bytes to transfer if there is a data phase.

7 wLengthH

Exhibit 2058 - Page 59 of 460

EZ-USB FX2 Technical Reference Manual

Page 2-6 EZ-USB FX2 Technical Reference Manual v2.1

.

In the ReNumerated condition (RENUM=1), the FX2 passes all USB requests except Set Address
to the firmware via the SUDAV interrupt.

The FX2 implements one vendor-specific request: “Firmware Load,” 0xA0 (the bRequest value of
0xA0 is valid only if byte 0 of the request, bmRequestType, is also “x10xxxxx,” indicating a vendor-
specific request.) The load request is valid at all times, so the load feature may be used even after
ReNumeration. If your application implements vendor-specific USB requests, and you do not wish
to use the Firmware Load feature, be sure to refrain from using the bRequest value 0xA0 for your
custom requests. The Firmware Load feature is fully described in Chapter 3, "Enumeration and
ReNumeration™".

To avoid future incompatibilities, vendor requests 0xA0-0xAF are reserved by Cypress Semicon-
ductor.

Table 2-2. How the Firmware Handles USB Device Requests (RENUM=1)

bRequest Name FX2 Action Firmware Response

0x00 Get Status SUDAV Interrupt Supply RemWU, SelfPwr or Stall Bits

0x01 Clear Feature SUDAV Interrupt Clear RemWU, SelfPwr or Stall Bits

0x02 (reserved) none Stall EP0

0x03 Set Feature SUDAV Interrupt Set RemWU, SelfPwr or Stall Bits

0x04 (reserved) none Stall EP0

0x05 Set Address Update FNADDR Register none

0x06 Get Descriptor SUDAV Interrupt Supply table data over EP0-IN

0x07 Set Descriptor SUDAV Interrupt Application dependent

0x08 Get Configuration SUDAV Interrupt Send current configuration number

0x09 Set Configuration SUDAV Interrupt Change current configuration

0x0A Get Interface SUDAV Interrupt Supply alternate setting No. from RAM

0x0B Set Interface SUDAV Interrupt Change alternate setting No.

0x0C Sync Frame SUDAV Interrupt Supply a frame number over EP0-IN

Vendor Requests

0xA0 (Firmware Load) Upload / Download RAM ---

0xA1 - 0xAF SUDAV Interrupt Reserved by Cypress Semiconductor

All except 0xA0 SUDAV Interrupt Depends on application

Exhibit 2058 - Page 60 of 460

Chapter 2. Endpoint Zero Page 2-7

2.3.1 Get Status

The USB Specification defines three USB status requests. A fourth request, to an interface, is
declared in the spec as “reserved.” The four status requests are:

• Remote Wakeup (Device request)

• Self-Powered (Device request)

• Stall (Endpoint request)

• Interface request (reserved)

The FX2 automatically asserts the SUDAV interrupt to tell the firmware to decode the SETUP
packet and supply the appropriate status information.

Figure 2-4. Data Flow for a Get_Status Request

I
N

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
0

8 bytes
Setup
Data

C
R
C
1
6

Data Packet

S
E
T
U
P

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
1

2
Bytes

C
R
C
1
6

Data Packet

D
A
T
A
1

Data Pkt

A
C
K

H/S Pkt

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

C
R
C
1
6

SETUP Stage

SUTOK
Interrupt

SUDAV
Interrupt

DATA Stage

STATUS Stage

8 RAM
bytes

S E T U P D A T

IN0BUF
64-byte
Buffer

2 IN0BC

A
C
K

H/S Pkt

A
C
K

H/S Pkt

Exhibit 2058 - Page 61 of 460

EZ-USB FX2 Technical Reference Manual

Page 2-8 EZ-USB FX2 Technical Reference Manual v2.1

As Figure 2-4 illustrates, the firmware responds to the SUDAV interrupt by decoding the eight
bytes the FX2 has copied into RAM at SETUPDAT. The firmware answers a Get Status request
(bRequest=0) by loading two bytes into the EP0BUF buffer and loading the byte count register
EP0BCH:L with the value 0x0002. The FX2 then transmits these two bytes in response to an IN
token. Finally, the firmware clears the HSNAK bit (by writing 1 to it), which instructs the FX2 to
ACK the status stage of the transfer.

The following tables show the eight SETUP bytes for Get Status Requests.

Get Status-Device queries the state of two bits, “Remote Wakeup” and “Self-Powered”. The
Remote Wakeup bit indicates whether or not the device is currently enabled to request remote
wakeup (remote wakeup is explained in Chapter 6, "Power Management"). The Self-Powered bit
indicates whether or not the device is self-powered (as opposed to USB bus-powered).

The firmware returns these two bits by loading two bytes into EP0BUF, then loading a byte count
of 0x0002 into EP0BCH:L.

Each endpoint has a STALL bit in its EPxCS register. If this bit is set, any request to the endpoint
returns a STALL handshake rather than ACK or NAK. The Get Status-Endpoint request returns
the STALL state for the endpoint indicated in byte 4 of the request. Note that bit 7 of the endpoint
number EP (byte 4) specifies direction (0 = OUT, 1 = IN).

Table 2-3. Get Status-Device (Remote Wakeup and Self-Powered Bits)

Byte Field Value Meaning Firmware Response

0 bmRequestType 0x80 IN, Device

1 bRequest 0x00 “Get Status” Load two bytes into EP0BUF:

2 wValueL 0x00

3 wValueH 0x00 Byte 0 : bit 0 = Self-Powered

4 wIndexL 0x00 : bit 1 = Remote Wakeup

5 wIndexH 0x00 Byte 1 : zero

6 wLengthL 0x02 Two bytes requested

7 wLengthH 0x00

Table 2-4. Get Status-Endpoint (Stall Bits)

Byte Field Value Meaning Firmware Response

0 bmRequestType 0x82 IN, Endpoint Load two bytes into EP0BUF:

1 bRequest 0x00 “Get Status” Byte 0 : bit 0 = Stall Bit for EP(n)

2 wValueL 0x00 Byte 1 : zero

3 wValueH 0x00

4 wIndexL EP 0x00-0x08: OUT0-OUT8

5 wIndexH 0x00 0x80-0x88: IN0-IN8

6 wLengthL 0x02 Two bytes requested

7 wLengthH 0x00

Exhibit 2058 - Page 62 of 460

Chapter 2. Endpoint Zero Page 2-9

Endpoint zero is a CONTROL endpoint, which by USB definition is bi-directional. Therefore, it has
only one stall bit.

Get Status/Interface is easy: the firmware returns two zero bytes through EP0BUF and clears the
HSNAK bit (by writing 1 to it). The requested bytes are shown as “Reserved (reset to zero)” in the
USB Specification.

About STALL

The USB STALL handshake indicates that something unexpected has happened. For
instance, if the host requests an invalid alternate setting or attempts to send data to a non-
existent endpoint, the device responds with a STALL handshake over endpoint zero instead
of ACK or NAK.

Stalls are defined for all endpoint types except ISOCHRONOUS, which does not employ
handshakes. Every FX2 bulk endpoint has its own stall bit. The firmware sets the stall condi-
tion for an endpoint by setting the STALL bit in the endpoint’s EPxCS register. The host tells
the firmware to set or clear the stall condition for an endpoint using the Set Feature/Stall and
Clear Feature/Stall Requests.

The device might decide to set the stall condition on its own, too. In a routine that handles
endpoint zero device requests, for example, when an undefined or non-supported request is
decoded, the firmware should stall EP0.

Once the firmware stalls an endpoint, it should not remove the stall until the host issues a
Clear Feature/Stall Request. An exception to this rule is endpoint 0, which reports a stall con-
dition only for the current transaction and then automatically clears the stall condition. This
prevents endpoint 0, the default CONTROL endpoint, from locking out device requests.

Table 2-5. Get Status-Interface

Byte Field Value Meaning Firmware Response

0 bmRequestType 0x81 IN, Endpoint Load two bytes into EP0BUF:

1 bRequest 0x00 “Get Status” Byte 0 : zero

2 wValueL 0x00 Byte 1 : zero

3 wValueH 0x00

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL 0x02 Two bytes requested

7 wLengthH 0x00

Exhibit 2058 - Page 63 of 460

EZ-USB FX2 Technical Reference Manual

Page 2-10 EZ-USB FX2 Technical Reference Manual v2.1

2.3.2 Set Feature

Set Feature is used to enable remote wakeup or stall an endpoint. No data stage is required.

The only Set Feature/Device request presently defined in the USB Specification is to set the
remote wakeup bit. This is the same bit reported back to the host as a result of a Get Status-
Device request (Table 2-3). The host uses this bit to enable or disable remote wakeup by the
device.

The only Set Feature/Endpoint request presently defined in the USB Specification is to stall an
endpoint. The firmware should respond to this request by setting the STALL bit in the EPxCS reg-
ister for the indicated endpoint EP (byte 4 of the request). The firmware can either stall an end-
point on its own or in response to the device request. Endpoint stalls are cleared by the host Clear
Feature/Stall request.

The firmware should respond to the Set Feature/Stall request by performing the following tasks:

1. Set the STALL bit in the indicated endpoint’s EPxCS register.

2. Reset the data toggle for the indicated endpoint.

Table 2-6. Set Feature-Device (Set Remote Wakeup Bit)

Byte Field Value Meaning Firmware Response

0 bmRequestType 0x00 OUT, Device Set the Remote Wakeup Bit

1 bRequest 0x03 “Set Feature”

2 wValueL 0x01 Feature Selector:

3 wValueH 0x00 Remote Wakeup

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL 0x00

7 wLengthH 0x00

Table 2-7. Set Feature-Endpoint (Stall)

Byte Field Value Meaning Firmware Response

0 bmRequestType 0x02 OUT, Endpoint Set the STALL bit for the

1 bRequest 0x03 “Set Feature” indicated endpoint:.

2 wValueL 0x00 Feature Selector:

3 wValueH 0x00 STALL

4 wIndexL EP 0x00-0x08: OUT0-OUT8

5 wIndexH 0x00 0x80-0x88: IN0-IN8

6 wLengthL 0x00

7 wLengthH 0x00

Exhibit 2058 - Page 64 of 460

Chapter 2. Endpoint Zero Page 2-11

3. Restore the stalled endpoint to its default condition, ready to send or accept data after the stall
condition is removed by the host (via a Clear Feature/Stall request). For EP1 IN, for example,
firmware should clear the BUSY bit in the EP1CS register; for EP1OUT, firmware should load
any value into the EP1 byte-count register.

4. Clear the HSNAK bit in the EP0CS register (by writing 1 to it) to terminate the Set Feature/Stall
CONTROL transfer.

Step 3 is also required whenever the host sends a Set Interface request.

2.3.3 Clear Feature

Clear Feature is used to disable remote wakeup or to clear a stalled endpoint.

Data Toggles

The FX2 automatically maintains the endpoint toggle bits to ensure data integrity for USB
transfers. Firmware should directly manipulate these bits only for a very limited set of circum-
stances:

• Set Feature/Stall

• Set Configuration

• Set Interface

Table 2-8. Clear Feature-Device (Clear Remote Wakeup Bit)

Byte Field Value Meaning Firmware Response

0 bmRequestType 0x00 OUT, Device Clear the remote wakeup bit.

1 bRequest 0x01 “Clear Feature”

2 wValueL 0x01 Feature Selector:

3 wValueH 0x00 Remote Wakeup

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL 0x00

7 wLengthH 0x00

Exhibit 2058 - Page 65 of 460

EZ-USB FX2 Technical Reference Manual

Page 2-12 EZ-USB FX2 Technical Reference Manual v2.1

If the USB device supports remote wakeup (reported in its descriptor table when the device enu-
merates), the Clear Feature/Remote Wakeup request disables the wakeup capability.

The Clear Feature/Stall removes the stall condition from an endpoint. The firmware should
respond by clearing the STALL bit in the indicated endpoint’s EPxCS register.

2.3.4 Get Descriptor

During enumeration, the host queries a USB device to learn its capabilities and requirements
using Get Descriptor requests. Using tables of descriptors, the device sends back (over EP0-IN)
such information as what device driver to load, how many endpoints it has, its different configura-
tions, alternate settings it may use, and informative text strings about the device.

The FX2 provides a special Setup Data Pointer to simplify firmware service for Get_Descriptor
requests. The firmware loads this 16-bit pointer with the starting address of the requested descrip-
tor, clears the HSNAK bit (by writing 1 to it), and the FX2 transfers the entire descriptor.

Table 2-9. Clear Feature-Endpoint (Clear Stall)

Byte Field Value Meaning Firmware Response

0 bmRequestType 0x02 OUT, Endpoint Clear the STALL bit for the

1 bRequest 0x01 “Clear Feature” indicated endpoint.

2 wValueL 0x00 Feature Selector:

3 wValueH 0x00 STALL

4 wIndexL EP 0x00-0x08: OUT0-OUT8

5 wIndexH 0x00 0x80-0x88: IN0-IN8

6 wLengthL 0x00

7 wLengthH 0x00

Exhibit 2058 - Page 66 of 460

Chapter 2. Endpoint Zero Page 2-13

Figure 2-5. Using Setup Data Pointer (SUDPTR) for Get_Descriptor Requests

Figure 2-5 illustrates use of the Setup Data Pointer. This pointer is implemented as two registers,
SUDPTRH and SUDPTRL. Most Get Descriptor requests involve transferring more data than fits
into one packet. In the Figure 2-5 example, the descriptor data consists of 91 bytes.

The CONTROL transaction starts in the usual way, with theFX2 automatically transferring the eight
bytes from the SETUP packet into RAM at SETUPDAT, then asserting the SUDAV interrupt
request. The firmware decodes the Get Descriptor request, and responds by clearing the HSNAK
bit (by writing 1 to it), and then loading the SUDPTRH:L registers with the address of the requested
descriptor. Loading the SUDPTRL register causes the FX2 to automatically respond to two IN
transfers with 64 bytes and 27 bytes of data using SUDPTR as a base address, and then to
respond to the STATUS stage with an ACK.

The usual endpoint-zero interrupts SUDAV and EP0IN remain active during this automated trans-
fer, so firmware will normally disables these interrupts because the transfer requires no firmware
intervention.

Three types of descriptors are defined: Device, Configuration, and String.

I
N

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
0

8 bytes
Setup
Data

C
R
C
1
6

Data Packet

A
C
K

H/S Pkt

S
E
T
U
P

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
1

Payload
Data

C
R
C
1
6

Data Packet

A
C
K

I
N

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
0

Payload
Data

C
R
C
1
6

Data Packet

A
C
K

H/S Pkt

SETUP Stage

SUDAV Interrupt

DATA Stage

EP0IN
Interrupt

EP0IN
Interrupt

STATUS Stage

D
A
T
A
1

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

C
R
C
1
6

H/S Pkt

Data Pkt

A
C
K

H/S Pkt

SUDPTRH/L

64 bytes

27 bytes

8 RAM
bytes

SETUPDAT

Exhibit 2058 - Page 67 of 460

EZ-USB FX2 Technical Reference Manual

Page 2-14 EZ-USB FX2 Technical Reference Manual v2.1

2.3.4.1 Get Descriptor-Device

As illustrated in Figure 2-5, the firmware loads the 2-byte SUDPTR with the starting address of the
Device Descriptor table. When SUDPTRL is loaded, the FX2 automatically performs the following
operations:

1. Reads the requested number of bytes for the transfer from bytes 6 and 7 of the SETUP packet
(LenL and LenH in Table 2-10).

2. Reads the requested descriptor’s length field to determine the actual descriptor length.

3. Sends the smaller of (a) the requested number of bytes or (b) the actual number of bytes in
the descriptor, over EP0BUF using the Setup Data Pointer as a data table index. This consti-
tutes the second phase of the three-phase CONTROL transfer. The FX2 packetizes the data
into multiple data transfers as necessary.

4. Automatically checks for errors and re-transmits data packets if necessary.

5. Responds to the third (handshake) phase of the CONTROL transfer to terminate the opera-
tion.

The Setup Data Pointer can be used for any Get Descriptor request (e.g., Get Descriptor-String).

It can also be used for vendor-specific requests. If bytes 6 and 7 of those requests contain the
number of bytes in the transfer (see Step 1, above), the Setup Data Pointer works automatically,
as it does for Get Descriptor requests; if bytes 6 and 7 don’t contain the length of the transfer, the
length can be loaded explicitly (see the SDPAUTO paragraphs of Section 8.7, "The Setup Data
Pointer").

It is possible for the firmware to do manual CONTROL transfers by directly loading the EP0BUF
buffer with the various packets and keeping track of which SETUP phase is in effect. This is a
good USB training exercise, but not necessary due to the hardware support built into the FX2 for
CONTROL transfers.

For DATA stage transfers of fewer than 64 bytes, moving the data into the EP0BUF buffer and
then loading the EP0BCH:L registers with the byte count would be equivalent to loading the Setup

Table 2-10. Get Descriptor-Device

Byte Field Value Meaning Firmware Response

0 bmRequestType 0x80 IN, Device Set SUDPTR H:L to start of

1 bRequest 0x06 “Get Descriptor” Device Descriptor table in RAM.

2 wValueL 0x00

3 wValueH 0x01 Descriptor Type: Device

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL LenL

7 wLengthH LenH

Exhibit 2058 - Page 68 of 460

Chapter 2. Endpoint Zero Page 2-15

Data Pointer. However, this would waste bandwidth because it requires byte transfers into the
EP0BUF Buffer; using the Setup Data Pointer doesn’t.

2.3.4.2 Get Descriptor-Device Qualifier

The Device Qualifier descriptor is used only by devices capable of high-speed (480 Mbps) opera-
tion; it describes information about the device that would change if the device were operating at
the other speed (i.e., if the device is currently operating at high speed, the device qualifier returns
information about how it would operate at full speed and vice-versa).

Device Qualifier descriptors are handled just like Device descriptors; the firmware loads the appro-
priate descriptor address into SUDPTRH:L, then the FX2 does the rest.

2.3.4.3 Get Descriptor-Configuration

Table 2-11. Get Descriptor-Device Qualifier

Byte Field Value Meaning Firmware Response

0 bmRequestType 0x80 IN, Device Set SUDPTR H:L to start of

1 bRequest 0x06 “Get_Descriptor” the appropriate Device Qualifier

2 wValueL 0x00 Descriptor table in RAM.

3 wValueH 0x06 Descriptor Type: Device Quali-
fier

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL LenL

7 wLengthH LenH

Table 2-12. Get Descriptor-Configuration

Byte Field Value Meaning Firmware Response

0 bmRequestType 0x80 IN, Device Set SUDPTR H:L to start of

1 bRequest 0x06 “Get_Descriptor” Configuration Descriptor table in

2 wValueL CFG Configuration Number RAM

3 wValueH 0x02 Descriptor Type: Configuration

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL LenL

7 wLengthH LenH

Exhibit 2058 - Page 69 of 460

EZ-USB FX2 Technical Reference Manual

Page 2-16 EZ-USB FX2 Technical Reference Manual v2.1

2.3.4.4 Get Descriptor-String

Configuration and String descriptors are handled similarly to Device descriptors. The firmware
reads byte 2 of the SETUP data to determine which configuration or string is being requested,
then loads the corresponding descriptor address into SUDPTRH:L. The FX2 does the rest.

2.3.4.5 Get Descriptor-Other Speed Configuration

The Other Speed Configuration descriptor is used only by devices capable of high-speed (480
Mbps) operation; it describes the configuration(s) of the device if it were operating at the other
speed (i.e., if the device is currently operating at high speed, the Other Speed Configuration
returns information about full-speed configuration and vice-versa).

Other Speed Configuration descriptors are handled just like Configuration descriptors; the firm-
ware loads the appropriate descriptor address into SUDPTRH:L, then the FX2 does the rest.

Table 2-13. Get Descriptor-String

Byte Field Value Meaning Firmware Response

0 bmRequestType 0x80 IN, Device Set SUDPTR H:L to start of

1 bRequest 0x06 “Get_Descriptor” String Descriptor table in

2 wValueL STR String Number RAM.

3 wValueH 0x03 Descriptor Type: String

4 wIndexL 0x00 (Language ID L)

5 wIndexH 0x00 (Language ID H)

6 wLengthL LenL

7 wLengthH LenH

Table 2-14. Get Descriptor-Other Speed Configuration

Byte Field Value Meaning Firmware Response

0 bmRequestType 0x80 IN, Device Set SUDPTR H:L to start of

1 bRequest 0x06 “Get_Descriptor” Other Speed Configuration

2 wValueL CFG Other Speed
Configuration Number

Descriptor table in RAM.

3 wValueH 0x07 Descriptor Type: Other
Speed Configuration

4 wIndexL 0x00 (Language ID L)

5 wIndexH 0x00 (Language ID H)

6 wLengthL LenL

7 wLengthH LenH

Exhibit 2058 - Page 70 of 460

Chapter 2. Endpoint Zero Page 2-17

2.3.5 Set Descriptor

Table 2-15. Set Descriptor-Device

Byte Field Value Meaning Firmware Response

0 bmRequestType 0x00 OUT, Device Read device descriptor data over

1 bRequest 0x07 “Set_Descriptor” EP0BUF.

2 wValueL 0x00

3 wValueH 0x01 Descriptor Type: Device

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL LenL

7 wLengthH LenH

Table 2-16. Set Descriptor-Configuration

Byte Field Value Meaning Firmware Response

0 bmRequestType 0x00 OUT, Device Read configuration descriptor

1 bRequest 0x07 “Set_Descriptor” data over EP0BUF.

2 wValueL 0x00

3 wValueH 0x02 Descriptor Type: Configuration

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL LenL

7 wLengthH LenH

Exhibit 2058 - Page 71 of 460

EZ-USB FX2 Technical Reference Manual

Page 2-18 EZ-USB FX2 Technical Reference Manual v2.1

The firmware handles Set Descriptor requests by clearing the HSNAK bit (by writing 1 to it), then
reading descriptor data directly from the EP0BUF buffer. The FX2 keeps track of the number of
byes transferred from the host into EP0BUF, and compares this number with the length field in
bytes 6 and 7. When the proper number of bytes has been transferred, the FX2 automatically
responds to the STATUS phase, which is the third and final stage of the CONTROL transfer.

The firmware controls the flow of data in the Data Stage of a Control Transfer. After the firmware
processes each OUT packet, it writes any value into the endpoint’s byte count register to re-arm
the endpoint.

Table 2-17. Set Descriptor-String

Byte Field Value Meaning Firmware Response

0 bmRequestType 0x00 IN, Device Read string descriptor data over

1 bRequest 0x07 “Get_Descriptor” EP0BUF.

2 wValueL 0x00 String Number

3 wValueH 0x03 Descriptor Type: String

4 wIndexL 0x00 (Language ID L)

5 wIndexH 0x00 (Language ID H)

6 wLengthL LenL

7 wLengthH LenH

Exhibit 2058 - Page 72 of 460

Chapter 2. Endpoint Zero Page 2-19

Configurations, Interfaces, and Alternate Settings

A USB device has one or more configu-
rations. Only one configuration is active
at any time.

A configuration has one or more inter-
faces, all of which are concurrently
active. Multiple interfaces allow different
host-side device drivers to be associated
with different portions of a USB device.

Each interface has one or more alternate
settings. Each alternate setting has a
collection of one or more endpoints.

This structure is a software model; the FX2 takes no action when these settings change.
However, the firmware must re-initialize endpoints when the host changes configurations
or interfaces alternate settings.

As far as the firmware is concerned, a configuration is simply a byte variable that indicates
the current setting.

The host issues a Set Configuration request to select a configuration, and a Get Configura-
tion request to determine the current configuration.

Device

Config 2
Low Power

Config 1
High Power

Interface 1
audio

Interface 0
CDROM
control

Alt Setting
0

Alt Setting
1

Alt Setting
3

Interface 2
video

Interface 3
data

storage
Concur rent

One at a time

ep ep ep

One at a time

Exhibit 2058 - Page 73 of 460

EZ-USB FX2 Technical Reference Manual

Page 2-20 EZ-USB FX2 Technical Reference Manual v2.1

2.3.5.1 Set Configuration

When the host issues the Set Configuration request, the firmware saves the configuration number
(byte 2, CFG, in Tabl e2-18), performs any internal operations necessary to support the configura-
tion, and finally clears the HSNAK bit (by writing 1 to it) to terminate the Set Configuration
CONTROL transfer.

After setting a configuration, the host issues Set Interface commands to set up the various inter-
faces contained in the configuration.

2.3.6 Get Configuration

When the host issues the Get Configuration request, the firmware returns the current configuration
number. It loads the configuration number into EP0BUF, loads a byte count of one into EP0BCH:L,
and finally clears the HSHAK bit (by writing 1 to it) to terminate the Set Configuration CONTROL
transfer.

Table 2-18. Set Configuration

Byte Field Value Meaning Firmware Response

0 bmRequestType 0x00 OUT, Device Read and store CFG, change

1 bRequest 0x09 “Set Configuration” configurations in firmware.

2 wValueL CFG Configuration Number

3 wValueH 0x00

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL 0x00

7 wLengthH 0x00

Table 2-19. Get Configuration

Byte Field Value Meaning Firmware Response

0 bmRequestType 0x80 IN, Device Send CFG over EP0 after

1 bRequest 0x08 “Get Configuration” re-configuring.

2 wValueL 0x00

3 wValueH 0x00

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL 1 LenL

7 wLengthH 0 LenH

Exhibit 2058 - Page 74 of 460

Chapter 2. Endpoint Zero Page 2-21

2.3.7 Set Interface

This confusingly-named USB command actually sets alternate settings for a specified interface.

USB devices can have multiple concurrent interfaces. For example, a device may have an audio
system that supports different sample rates, and a graphic control panel that supports different lan-
guages. Each interface has a collection of endpoints. Except for endpoint 0, which each interface
uses for device control, endpoints may not be shared between interfaces.

Interfaces may report alternate settings in their descriptors. For example, the audio interface may
have setting 0, 1, and 2 for 8-KHz, 22-KHz, and 44-KHz sample rates. The panel interface may
have settings 0 and 1 for English and Spanish. The Set/Get Interface requests select among the
various alternate settings in an interface.

The firmware should respond to a Set Interface request by performing the following steps:

1. Perform the internal operation requested (such as adjusting a sampling rate).

2. Reset the data toggles for every endpoint in the interface.

3. Restore the endpoints to their default conditions, ready to send or accept data. For EP1 IN, for
example, firmware should clear the BUSY bit in the EP1CS register; for EP1OUT, firmware
should load any value into the EP1 byte-count register.

4. Clear the HSNAK bit (by writing 1 to it) to terminate the Set Interface CONTROL transfer.

Table 2-20. Set Interface (Actually, Set Alternate Setting #AS for Interface #IF)

Byte Field Value Meaning Firmware Response

0 bmRequestType 0x00 OUT, Device Read and store byte 2 (AS) for

1 bRequest 0x0B “Set Interface” Interface #IF, change setting for

2 wValueL AS Alternate Setting Number Interface #IF in firmware.

3 wValueH 0x00

4 wIndexL IF Interface Number

5 wIndexH 0x00

6 wLengthL 0x00

7 wLengthH 0x00

Exhibit 2058 - Page 75 of 460

EZ-USB FX2 Technical Reference Manual

Page 2-22 EZ-USB FX2 Technical Reference Manual v2.1

2.3.8 Get Interface

When the host issues the Get Interface request, the firmware simply returns the alternate setting
for the requested interface IF and clears the HSNAK bit (by writing 1 to it).

2.3.9 Set Address

When a USB device is first plugged in, it responds to device address 0 until the host assigns it a
unique address using the Set Address request. The FX2 copies this device address into the
FNADDR (Function Address) register, then subsequently responds only to requests to this
address. This address is in effect until the USB device is unplugged, the host issues a USB Reset,
or the host powers down.

The FNADDR register is read-only. Whenever the FX2 ReNumerates (see Chapter 3, "Enumer-
ation and ReNumeration™"), it automatically resets FNADDR to zero, allowing the device to come
back as new.

An FX2 program does not need to know the device address, because the FX2 automatically
responds only to the host-assigned FNADDR value. The device address is readable only for
debug/diagnostic purposes.

Table 2-21. Get Interface (Actually, Get Alternate Setting #AS for interface #IF)

Byte Field Value Meaning Firmware Response

0 bmRequestType 0x81 IN, Device Send AS for Interface #IF over

1 bRequest 0x0A “Get Interface” EP0.

2 wValueL 0x00

3 wValueH 0x00

4 wIndexL IF Interface Number

5 wIndexH 0x00

6 wLengthL 1 LenL

7 wLengthH 0 LenH

Exhibit 2058 - Page 76 of 460

Chapter 2. Endpoint Zero Page 2-23

2.3.10 Sync Frame

The Sync Frame request is used to establish a marker in time so the host and USB device can
synchronize multi-frame transfers over isochronous endpoints.

Suppose an isochronous transmission consists of a repeating sequence of five 300-byte packets
transmitted from host to device over EP8-OUT. Both host and device maintain sequence counters
that count repeatedly from 1 to 5 to keep track of the packets inside a transmission. To start up in
sync, both host and device need to reset their counts to “0” at the same time (in the same frame).

To get in sync, the host issues the Sync Frame request with EP=EP8OUT (0x08). The firmware
responds by loading EP0BUF with a two-byte frame count for some future time; for example, the
current frame plus 20. This marks frame “current+20” as the sync frame, during which both sides
initialize their sequence counters to “0.” The current frame count is always available in the USB-
FRAMEL and USBFRAMEH registers.

Multiple isochronous endpoints can be synchronized in this manner; the firmware can keep a sep-
arate internal sequence count for each endpoint.

Table 2-22. Sync Frame

Byte Field Value Meaning Firmware Response

0 bmRequestType 0x82 IN, Endpoint Send a frame number over EP0

1 bRequest 0x0C “Sync Frame” to synchronize endpoint #EP

2 wValueL 0x00

3 wValueH 0x00

4 wIndexL EP Endpoint number

5 wIndexH 0x00

6 wLengthL 2 LenL

7 wLengthH 0 LenH

About USB Frames

In full-speed mode (12 Mbps), the USB host issues an SOF (Start Of Frame) packet once
every millisecond. Every SOF packet contains an 11-bit (mod-2048) frame number. The firm-
ware services all isochronous transfers at SOF time, using a single SOF interrupt request
and vector. If the FX2 detects a missing or garbled SOF packet, it can use an internal counter
to generate the SOF interrupt automatically.

In high-speed (480 Mbps) mode, each frame is divided into eight 125-microsecond microf-
rames. Although the frame counter still increments only once per frame, the host issues an
SOF every microframe. The host and device always synchronize on the zero-th microframe
of the frame specified in the device’s response to the Sync Frame request; there’s no mech-
anism for synchronizing on any other microframe.

Exhibit 2058 - Page 77 of 460

EZ-USB FX2 Technical Reference Manual

Page 2-24 EZ-USB FX2 Technical Reference Manual v2.1

2.3.11 Firmware Load

The USB endpoint-zero protocol provides a mechanism for mixing vendor-specific requests with
standard device requests. Bits 6:5 of the bmRequestType field are set to 00 for a standard device
request and to 10 for a vendor request.

The FX2 responds to two endpoint-zero vendor requests, RAM Download and RAM Upload.
These requests are active whether RENUM=0 or RENUM=1.

Because bit 7 of the first byte of the SETUP packet specifies direction, only one bRequest value
(0xA0) is required for the upload and download requests. These RAM load commands are avail-
able to any USB device that uses the FX2 chip.

A host loader program will typically write 0x01 to the CPUCS register to put the FX2’s CPU into
RESET, load all or part of the FX2’s internal RAM with code, then reload the CPUCS register with
0 to take the CPU out of RESET.

Table 2-23. Firmware Download

Byte Field Value Meaning Firmware Response

0 bmRequestType 0x40 Vendor Request, OUT None required.

1 bRequest 0xA0 “Firmware Load”

2 wValueL AddrL Starting address

3 wValueH AddrH

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL LenL Number of bytes

7 wLengthH LenH

Table 2-24. Firmware Upload

Byte Field Value Meaning Firmware Response

0 bmRequestType 0xC0 Vendor Request, IN None Required.

1 bRequest 0xA0 “Firmware Load”

2 wValueL AddrL Starting address

3 wValueH AddrH

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL LenL Number of Bytes

7 wLengthH LenH

Exhibit 2058 - Page 78 of 460

Chapter 3. Enumeration and ReNumeration™ Page 3-1

Chapter 3 Enumeration and ReNumeration™

3.1 Introduction

The FX2’s configuration is soft: Code and data are stored in internal RAM, which can be loaded
from the host over the USB interface. FX2-based USB peripherals can operate without ROM,
EPROM, or FLASH memory, shortening production lead times and making firmware updates
extremely simple.

To support this soft configuration, the FX2 is capable of enumerating as a USB device without firm-
ware. This automatically-enumerated USB device (the Default USB Device) contains a set of inter-
faces and endpoints and can accept firmware downloaded from the host.

Two separate Default USB Devices actually exist, one for enumeration as a full speed (12 Mbits/
sec) device, and the other for enumeration as a high speed (480 Mbits/sec) device. The FX2 auto-
matically performs the speed-detect protocol and chooses the proper Default USB Device. The two
sets of Default USB Device descriptors are shown in Appendices A and B.

Once the Default USB Device enumerates, it downloads firmware and descriptor tables from the
host into the FX2’s on-chip RAM. The FX2 then begins executing the downloaded code, which
electrically simulates a physical disconnect/connect from the USB and causes the FX2 to enumer-
ate again as a second device, this time taking on the USB personality defined by the downloaded
code and descriptors. This patented secondary enumeration process is called “ReNumeration™.”

An FX2 register bit called RENUM controls whether device requests over endpoint zero are han-
dled by firmware or automatically by the Default USB Device. When RENUM=0, the Default USB
Device handles the requests automatically; when RENUM=1, they must be handled by firmware.

3.2 FX2 Startup Modes

When the FX2 comes out of reset, it can act in various ways to establish itself as a USB device.
FX2 power-on behavior depends on several factors:

Exhibit 2058 - Page 79 of 460

EZ-USB FX2 Technical Reference Manual

Page 3-2 EZ-USB FX2 Technical Reference Manual v2.1

1. If no off-chip memory (either on the I²C-compatible bus or on the address/data bus) is con-
nected to the FX2, it enumerates as the Default USB Device, with descriptors and VID / PID /
DID supplied by hardwired internal logic (Table 3-3). RENUM is set to 0, indicating that the
Default USB Device automatically handles device requests.

2. If an EEPROM containing custom VID / PID / DID values is attached to the FX2’s SCL and
SDA pins, FX2 also enumerates as the Default USB Device as above, but it substitutes the
VID / PID / DID values from the EEPROM for its internal values. The EEPROM must contain
the value 0xC0 in its first byte to indicate this mode to FX2, so this mode is called a “C0 Load”.
As above, RENUM is automatically set to 0, indicating that the Default USB Device automati-
cally handles device requests. A 16-byte EEPROM is sufficiently large for a C0 Load.

3. If an EEPROM containing FX2 firmware is attached to the SCL and SDA pins, the firmware is
automatically loaded from the EEPROM into the FX2’s on-chip RAM, and then the CPU is
taken out of reset to execute this boot-loaded code. In this case, the VID / PID / DID values
are encapsulated in the firmware; the RENUM bit is automatically set to 1 to indicate that the
firmware, not the Default USB Device, handles device requests. The EEPROM must contain
the value 0xC2 in its first byte to indicate this mode to FX2, so this mode is called a “C2 Load”.
Although the FX2 can perform C2 Loads from EEPROMs as large as 64KB, code can only be
downloaded to the 8K of on-chip RAM.

4. If a Flash, EPROM, or other memory is attached to the FX2’s address/data bus (128-pin pack-
age only) and a properly formatted EEPROM meeting the requirements above is not present,
and the EA pin is tied high (indicating that the FX2 starts code execution at 0x0000 from off-
chip memory), the FX2 begins executing firmware from the off-chip memory. In this case, the
VID / PID / DID values are encapsulated in the firmware; the RENUM bit is automatically set to
1 to indicate that the firmware, not internal FX2 logic, handles device requests.

Case (2) is the most frequently used mode when soft operation is desired, since the VID/PID val-
ues from EEPROM always bind the device to the appropriate host driver while allowing FX2 firm-
ware to be easily updated. In this case, the host first uses the FX2 Default USB Device to
download firmware, then the host takes the CPU out of reset so that it can execute the down-
loaded code. Section 3.8, "FX2 Vendor Request for Firmware Load" describes the USB Vendor
Request that the FX2 supports for code download and upload.

The Default USB Device is fully characterized in Appendices A and B, which list the built-in FX2
descriptor tables for full-speed and high-speed enumeration, respectively. Studying these Appen-
dices in conjunction with Tables 3-1 and 3-2 is an excellent way to learn the structure of USB
descriptors.

Exhibit 2058 - Page 80 of 460

Chapter 3. Enumeration and ReNumeration™ Page 3-3

3.3 The Default USB Device

The Default USB Device consists of a single USB configuration containing one interface (interface
0) and alternate settings 0, 1, 2 and 3. The endpoints and MaxPacketSizes reported for this device
are shown in Table 3-1 (full speed) and Table 3-2 (high speed). Note that alternate setting zero
consumes no interrupt or isochronous bandwidth, as recommended by the USB Specification.

Table 3-1. Default Full-speed Alternate Settings

Table 3-2. Default High-speed Alternate Settings

Although the physical size of the EP1 endpoint buffer is 64 bytes, it is reported as a 512-byte buffer
for high-speed alternate setting 1. This maintains compatibility with the USB 2.0 specification,
which allows only 512-byte bulk endpoints. If you use this default alternate setting (for testing, for
example), be sure to limit EP1 packet sizes to 64 bytes.

When FX2 logic establishes the Default USB Device shown in Table 3-1 or Tabl e3-2, it also sets
the various endpoint configuration bits to match the descriptor data. For example, bulk endpoints
2, 4, and 6 are implemented in the Default USB Device, so the FX2 logic sets the corresponding
EPVAL (Endpoint Valid) bits.

Chapter 8 "Access to Endpoint Buffers" contains a detailed explanation of the EPVAL bits.

Alternate Setting 0 1 2 3

ep0 64 64 64 64

ep1out 0 64 bulk 64 int 64 int

ep1in 0 64 bulk 64 int 64 int

ep2 0 64 bulk out (2x) 64 int out (2x) 64 iso out (2x)

ep4 0 64 bulk out (2x) 64 bulk out (2x) 64 bulk out (2x)

ep6 0 64 bulk in (2x) 64 int in (2x) 64 iso in (2x)

ep8 0 64 bulk in (2x) 64 bulk in (2x) 64 bulk in (2x)

Note: “0” means “not implemented”, “2x” means double buffered.

Alternate Setting 0 1 2 3

ep0 64 64 64 64

ep1out 0 512 bulk 64 int 64 int

ep1in 0 512 bulk 64 int 64 int

ep2 0 512 bulk out (2x) 512 int out (2x) 512 iso out (2x)

ep4 0 512 bulk out (2x) 512 bulk out (2x) 512 bulk out (2x)

ep6 0 512 bulk in (2x) 512 int in (2x) 512 iso in (2x)

ep8 0 512 bulk in (2x) 512 bulk in (2x) 512 bulk in (2x)

Note: “0” means “not implemented”, “2x” means double buffered.

Exhibit 2058 - Page 81 of 460

EZ-USB FX2 Technical Reference Manual

Page 3-4 EZ-USB FX2 Technical Reference Manual v2.1

3.4 EEPROM Boot-load Data Formats

This section describes three EEPROM boot-load scenarios and the EEPROM data formats that
support them. The three scenarios are:

• No EEPROM, or EEPROM with invalid boot data

• “C0” EEPROM (load custom VID / PID / DID only)

• “C2” EEPROM (load firmware to on-chip RAM)

3.4.1 No EEPROM or Invalid EEPROM

In the simplest scenario, either no serial EEPROM is present on the I ²C-compatible bus or an
EEPROM is present, but its first byte is neither 0xC0 nor 0xC2. In this case, descriptor data is sup-
plied by hardwired internal FX2 tables. The FX2 enumerates as the Default USB Device, with the
ID bytes shown in Table 3-3.

Pull-up resistors are required on the SCL/SDA pins even if no device is connected. The resistors
are required to allow FX2 logic to detect the “No EEPROM / Invalid EEPROM” condition.

The USB host queries the FX2 Default USB Device during enumeration, reads its device descrip-
tor, and uses the IDs in Table 3-3 to determine which software driver to load into the operating sys-
tem. This is a major USB feature — drivers are dynamically matched with devices and
automatically loaded when a device is plugged in.

The “No EEPROM / Invalid EEPROM” scenario is the simplest configuration, and also the most
limiting. This configuration must only be used for code development, utilizing Cypress software
tools matched to the ID values in Table 3-3; no USB peripheral based on the FX2 may use this
configuration.

Table 3-3. FX2 Device Characteristics, No EEPROM / Invalid EEPROM

Vendor ID 0x04B4 (Cypress Semiconductor/)

Product ID 0x8613 (EZ-USB FX2)

Device Release 0xXXYY (depends on revision)

Exhibit 2058 - Page 82 of 460

Chapter 3. Enumeration and ReNumeration™ Page 3-5

3.4.2 Serial EEPROM Present, First Byte is 0xC0

If, at power-on reset, the FX2 detects an EEPROM connected to its I²C-compatible bus with the
value 0xC0 at address 0, the FX2 automatically copies the Vendor ID (VID), Product ID (PID), and
Device ID (DID) from the EEPROM (Table 3-4) into internal storage. The FX2 then supplies these
EEPROM bytes to the host as part of its response to the host’s Get_Descriptor-Device request
(these six bytes replace only the VID / PID / DID bytes in the Default USB Device descriptor). This
causes a host driver matched to the VID / PID / DID values in the EEPROM to be loaded by the
host OS.

After initial enumeration, that host driver downloads FX2 firmware and USB descriptor data into the
FX2’s RAM and starts the CPU. The FX2 then ReNumerates™ as a custom device. At that point,
the host may load a new driver, bound to the just-loaded VID / PID / DID.

The eighth EEPROM byte contains configuration bits that control the following:

• I²C-compatible bus speed. Default is 100 KHz.

• Disconnect polarity. Default is for FX2 to come out of reset connected to USB.

FX2 firmware can change the I²C-compatible bus speed using control-register bits, so an
EEPROM is not required in order to override the default setting. However, the firmware cannot
modify the disconnect polarity; if it’s desired for the FX2 to come out of reset disconnected from
USB, a “C0” or “C2” EEPROM must be connected.

Section 3.5 "EEPROM Configuration Byte" contains a full description of the configurations bits.

Table 3-4. “C0 Load” Format

EEPROM Address Contents

0 0xC0

1 Vendor ID (VID) L

2 Vendor ID (VID) H

3 Product ID (PID) L

4 Product ID (PID) H

5 Device ID (DID) L

6 Device ID (DID) H

7 Configuration byte

Exhibit 2058 - Page 83 of 460

EZ-USB FX2 Technical Reference Manual

Page 3-6 EZ-USB FX2 Technical Reference Manual v2.1

3.4.3 Serial EEPROM Present, First Byte is 0xC2

If, at power-on reset, the FX2 detects an EEPROM connected to its I²C-compatible with the value
0xC2 at address 0, the FX2 loads the EEPROM data into RAM. It also sets the RENUM bit to 1,
causing device requests to be handled by the firmware instead of the Default USB Device. The
“C2 Load” EEPROM data format is shown in Table3-5.

The first byte indicates a “C2 load”, which instructs the FX2 to copy the EEPROM data into RAM.
The FX2 reads the next six bytes (VID / PID / DID) even though they aren’t used by most C2-Load
applications. The eighth byte (byte 7) is the configuration byte described in the previous section.

Table 3-5. “C2 Load” Format

EEPROM Address Contents

0 0xC2

1 Vendor ID (VID) L

2 Vendor ID (VID) H

3 Product ID (PID) L

4 Product ID (PID) H

5 Device ID (DID) L

6 Device ID (DID) H

7 Configuration byte

8 Length H

9 Length L

10 Start Address H

11 Start Address L

--- Data Block

--- Length H

--- Length L

--- Start Address H

--- Start Address L

--- Data Block

--- 0x80

--- 0x01

--- 0xE6

--- 0x00

last 00000000

Exhibit 2058 - Page 84 of 460

Chapter 3. Enumeration and ReNumeration™ Page 3-7

Bytes 1-6 of a C2 EEPROM can be loaded with VID / PID / DID bytes if it is desired at some point
to run the firmware with RENUM = 0 (i.e., FX2 logic handles device requests), using the EEPROM
VID / PID / DID rather than the development-only VID / PID / DID values shown in Table 3-3.

One or more data records follow, starting at EEPROM address 8. Each data record consists of a
10-bit Length field (0-1023) which indicates the number of bytes in the following data block, a 13-
bit Start Address (0-0x1FFF) for the data block, and the data block itself.

The last data record, which must always consist of a single-byte load of 0x00 to the CPUCS regis-
ter at 0xE600, is marked with a “1” in the most-significant bit of the Length field. Only the least-sig-
nificant bit (8051RES) of this byte is writable by the download; that bit is set to zero to bring the
CPU out of reset.

Serial EEPROM data can be loaded only into these three on-chip RAM spaces:

• Program / Data RAM at 0x0000-0x1FFF

• Data RAM at 0xE000-0xE1FF

• The CPUCS register at 0xE600 (only bit 0, 8051RES, is EEPROM-loadable).

General-Purpose Use of the I²C-Compatible Bus

The FX2’s I²C-compatible controller serves two purposes. First, as described in this chapter,
it manages the serial EEPROM interface that operates automatically at power-on to deter-
mine the enumeration method. Second, once the CPU is up and running, firmware can
access the I ²C-compatible controller for general-purpose use. This makes a wide range of
standard I ²C peripherals available to an FX2-based system.

Other I²C devices can be attached to the SCL and SDA lines as long as there is no address
conflict with the serial EEPROM described in this chapter. Chapter 13, "Input/Output"
describes the general-purpose nature of the I ²C-compatible interface.

Exhibit 2058 - Page 85 of 460

EZ-USB FX2 Technical Reference Manual

Page 3-8 EZ-USB FX2 Technical Reference Manual v2.1

3.5 EEPROM Configuration Byte

The configuration byte is valid for both EEPROM load formats (C0 and C2) and has the following
format:

Figure 3-1. EEPROM Configuration Byte

Bit 6: DISCON USB Disconnect

A USB hub or host detects attachment of a full-speed device by sensing a high level on the D+
wire. A USB device provides this high level using a 1500-ohm resistor between D+ and 3.3V (the
D+ line is normally low, pulled down by a 15 K-ohm resistor in the hub or host). The 1500-ohm
resistor is internal to the FX2.

The FX2 accomplishes ReNumeration by selectively driving or floating the 3.3V supply to its inter-
nal 1500-ohm resistor. When the supply is floated, the host no longer “sees” the FX2; it appears to
have been disconnected from the USB. When the supply is then driven, the FX2 appears to have
been newly-connected to the USB. From the host’s point of view, the FX2 can be disconnected
and re-connected to the USB, without ever physically disconnecting.

The “connect state” of FX2 is controlled by a register bit called DISCON (USBCS.3), which
defaults to 0, or “connected”. This default may be overridden by setting the DISCON bit in the
EEPROM configuration byte to 1. This bit is copied into the USBCS.3 bit before the CPU is taken
out of reset. Once the CPU is running, firmware can modify this bit.

Bit 0: 400KHz I²C-compatible bus speed

0: 100 KHz

1: 400 KHz

If 400KHZ=0, the I²C-compatible bus operates at approximately 100 KHz. If 400KHZ=1, the
I²C-compatible bus operates at approximately 400 KHz. This bit is copied to I²CCTL.0, whose
default value is 0, or “100 KHz”. Once the CPU is running, firmware can modify this bit.

Configuration

b7 b6 b5 b4 b3 b2 b1 b0

0 DISCON 0 0 0 0 0 400KHz

Exhibit 2058 - Page 86 of 460

Chapter 3. Enumeration and ReNumeration™ Page 3-9

3.6 The RENUM Bit

An FX2 control bit called “RENUM” (ReNumerated) determines whether USB device requests over
endpoint zero are handled by the Default USB Device or by FX2 firmware. At power-on reset, the
RENUM bit (USBCS.1) is zero, indicating that the Default USB Device will automatically handle
USB device requests. Once firmware has been downloaded to the FX2 and the CPU is running, it
can set RENUM=1 so that subsequent device requests will be handled by the downloaded firm-
ware and descriptor tables. Chapter 2, "Endpoint Zero" describes how the firmware handles device
requests while RENUM=1.

If a 128-pin FX2 is using off-chip code memory at 0x0000 and there is no boot EEPROM to supply
a custom Vendor ID and Product ID, the FX2 automatically sets the RENUM bit to 1 so that device
requests are always handled by the firmware and descriptor tables in the off-chip memory. The
FX2 also sets RENUM=1 after a “C2 load” if the EA pin is low. In this case, firmware execution
begins in internal RAM using the code loaded from the EEPROM, with the firmware handling all
USB requests.

Another Use for the Default USB Device

The Default USB Device is established at power-on to set up a USB device capable of down-
loading firmware into the FX2’s RAM. Another useful feature of the Default USB Device is
that FX2 code can be written to support the already-configured generic USB device. Before
bringing the CPU out of reset, the FX2 automatically enables certain endpoints and reports
them to the host via descriptors. By utilizing the Default USB Device (i.e., by keeping
RENUM=0), the firmware can, with very little code, perform meaningful USB transfers that
use these pre-configured endpoints. This accelerates the USB learning curve.

Exhibit 2058 - Page 87 of 460

EZ-USB FX2 Technical Reference Manual

Page 3-10 EZ-USB FX2 Technical Reference Manual v2.1

3.7 FX2 Response to Device Requests (RENUM=0)

Table 3-6 shows how the Default USB Device responds to endpoint zero device requests when
RENUM=0.

A USB host enumerates by issuing Set_Address, Get_Descriptor, and Set_Configuration (to 1)
requests (the Set_Address and Get_Address requests are used only during enumeration). After
enumeration, the Default USB Device will respond to the following device requests from the host:

• Set or clear an endpoint stall (Set/Clear Feature_Endpoint)

• Read the stall status for an endpoint (Get_Status-Endpoint)

• Set/Read an 8-bit configuration number (Set/Get_Configuration)

• Set/Read a 2-bit interface alternate setting (Set/Get_Interface)

• Download or upload FX2 RAM

Table 3-6. How the Default USB Device Handles EP0 Requests When RENUM=0

bRequest Name FX2 Response

0x00 Get Status-Device Returns two zero bytes

0x00 Get Status-Endpoint Supplies EP Stall bit for indicated EP

0x00 Get Status-Interface Returns two zero bytes

0x01 Clear Feature-Device None

0x01 Clear Feature-Endpoint Clears Stall bit for indicated EP

0x02 (reserved) None

0x03 Set Feature-Device None

0x03 Set Feature-Endpoint Sets Stall bit for indicated EP

0x04 (reserved) None

0x05 Set Address Updates FNADD register

0x06 Get Descriptor Supplies internal table

0x07 Set Descriptor None

0x08 Get Configuration Returns internal value

0x09 Set Configuration Sets internal value

0x0A Get Interface Returns internal value (0-3)

0x0B Set Interface Sets internal value (0-3)

0x0C Sync Frame None

Vendor Requests

0xA0 Firmware Load Upload/Download RAM

0xA1-0xAF Reserved Reserved by Cypress Semiconductor

all other None

Exhibit 2058 - Page 88 of 460

Chapter 3. Enumeration and ReNumeration™ Page 3-11

3.8 FX2 Vendor Request for Firmware Load

Prior to ReNumeration, the host downloads data into the FX2’s internal RAM. The host can access
two on-chip FX2 RAM spaces — Program / Data RAM at 0x0000-0x1FFF and Data RAM at
0xE000-0xE1FF — which it can download or upload whether the CPU is in reset or running: These
two RAM spaces may also be boot-loaded by a “C2” EEPROM connected to the I²C-compatible
bus. The host may also write to the CPUCS register to put the CPU in or out of reset.

Off-chip RAM (on the 128-pin FX2’s address/data bus) cannot be uploaded or downloaded by the
host via the “Firmware Load” vendor request.

The USB Specification provides for vendor-specific requests to be sent over endpoint zero. The
FX2 uses this feature to transfer data between the host and FX2 RAM. The FX2 automatically
responds to two “Firmware Load” requests, as shown in Tabl e3-7 and Table 3-8.

Table 3-7. Firmware Download

Byte Field Value Meaning
FX2

Response

0 bmRequest 0x40 Vendor Request, OUT None required

1 bRequest 0xA0 “Firmware Load”

2 wValueL AddrL Starting Address

3 wValueH AddrH
4 wIndexL 0x00

5 wIndexH 0x00

6 wLenghtL LenL Number of Bytes

7 wLengthH LenH

Table 3-8. Firmware Upload

Byte Field Value Meaning
FX2

Response

0 bmRequest 0xC0 Vendor Request, IN None required

1 bRequest 0xA0 “Firmware Load”

2 wValueL AddrL Starting Address

3 wValueH AddrH

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL LenL Number of Bytes

7 wLengthH LenH

Exhibit 2058 - Page 89 of 460

EZ-USB FX2 Technical Reference Manual

Page 3-12 EZ-USB FX2 Technical Reference Manual v2.1

These upload and download requests are always handled by the FX2, regardless of the state of
the RENUM bit.

The bRequest value 0xA0 is reserved for this purpose. It should never be used for another vendor
request. Cypress Semiconductor also reserves bRequest values 0xA1 through 0xAF; devices
should not use these bRequest values.

A host loader program will typically write 0x01 to the CPUCS register to put the CPU into RESET,
load all or part of the FX2 RAM with firmware, then reload the CPUCS register with 0 to take the
CPU out of RESET. The CPUCS register (at 0xE600) is the only FX2 register that can be written
using the Firmware Download command.

3.9 How the Firmware ReNumerates

Two control bits in the USBCS (USB Control and Status) register control the ReNumeration™ pro-
cess: DISCON and RENUM.

Figure 3-2. USB Control and Status Register

To simulate a USB disconnect, the firmware sets DISCON to 1. To reconnect, the firmware clears
DISCON to 0.

Before reconnecting, the firmware sets or clears the RENUM bit to indicate whether the firmware
or the Default USB Device will handle device requests over endpoint zero: if RENUM=0, the
Default USB Device will handle device requests; if RENUM=1, the firmware will.

3.10 Multiple ReNumerations™

FX2 firmware can ReNumerate™ anytime. One use for this capability might be to fine tune an iso-
chronous endpoint’s bandwidth requests by trying various descriptor values and ReNumerating.

USBCS USB Control and Status E680

b7 b6 b5 b4 b3 b2 b1 b0

HSM 0 0 0 DISCON NOSYNSOF RENUM SIGRSUME

R/W R R R R/W R/W R/W R/W

0 0 0 0 0 1 0 0

Exhibit 2058 - Page 90 of 460

Chapter 4. Interrupts Page 4-1

Chapter 4 Interrupts

4.1 Introduction

The EZ-USB FX2’s interrupt architecture is an enhanced and expanded version of the standard
8051’s. The FX2 responds to the interrupts shown in Table 4-1; interrupt sources that are not
present in the standard 8051 are shown in bold type.

.

The Natural Priority column in Table 4-1 shows the FX2 interrupt priorities. As explained in Chap-
ter 14, "Timers/Counters and Serial Interface", the FX2 can assign each interrupt to a high or low
priority group. The FX2 resolves priorities within the groups using the natural priorities.

Table 4-1. FX2 Interrupts

FX2 Interrupt Source
Interrupt
Vector

Natural
Priority

IE0 INT0 Pin 0x0003 1

TF0 Timer 0 Overflow 0x000B 2

IE1 INT1 Pin 0x0013 3

TF1 Timer 1 Overflow 0x001B 4

RI_0 & TI_0 USART0 Rx & Tx 0x0023 5

TF2 Timer 2 Overflow 0x002B 6

Resume WAKEUP / WU2 Pin or USB Resume 0x0033 0

RI_1 & TI_1 USART1 Rx & Tx 0x003B 7

USBINT USB 0x0043 8

I²CINT I²C-Compatible Bus 0x004B 9

IE4 GPIF / FIFOs / INT4 Pin 0x0053 10

IE5 INT5 Pin 0x005B 11

IE6 INT6 Pin 0x0063 12

Exhibit 2058 - Page 91 of 460

EZ-USB FX2 Technical Reference Manual

Page 4-2 EZ-USB FX2 Technical Reference Manual v2.1

4.2 SFRs

The following SFRs are associated with interrupt control:

• IE - SFR 0xA8 (Table 4-2)

• IP - SFR 0xB8 (Table 4-3)

• EXIF - SFR 0x91 (Table 4-4)

• EICON - SFR 0xD8 (Table 4-5)

• EIE - SFR 0xE8 (Table 4-6)

• EIP - SFR 0xF8 (Table 4-7)

The IE and IP SFRs provide interrupt enable and priority control for the standard interrupt unit, as
with the standard 8051. Additionally, these SFRs provide control bits for the Serial Port 1 interrupt.

The EXIF, EICON, EIE and EIP Registers provide flags, enable control, and priority control.

Table 4-2. IE Register — SFR 0xA8

Bit Function

IE.7 EA - Global interrupt enable. Controls masking of all interrupts except USB wakeup
(resume). EA = 0 disables all interrupts except USB wakeup. When EA = 1, interrupts are
enabled or masked by their individual enable bits.

IE.6 ES1 - Enable Serial Port 1 interrupt. ES1 = 0 disables Serial port 1 interrupts (TI_1 and
RI_1). ES1 = 1 enables interrupts generated by the TI_1 or RI_1 flag.

IE.5 ET2 - Enable Timer 2 interrupt. ET2 = 0 disables Timer 2 interrupt (TF2). ET2=1 enables
interrupts generated by the TF2 or EXF2 flag.

IE.4 ES0 - Enable Serial Port 0 interrupt. ES0 = 0 disables Serial Port 0 interrupts (TI_0 and
RI_0). ES0=1 enables interrupts generated by the TI_0 or RI_0 flag.

IE.3 ET1 - Enable Timer 1 interrupt. ET1 = 0 disables Timer 1 interrupt (TF1). ET1=1 enables
interrupts generated by the TF1 flag.

IE.2 EX1 - Enable external interrupt 1. EX1 = 0 disables external interrupt 1 (INT1). EX1=1
enables interrupts generated by the INT1 pin.

IE.1 ET0 - Enable Timer 0 interrupt. ET0 = 0 disables Timer 0 interrupt (TF0). ET0=1 enables
interrupts generated by the TF0 flag.

IE.0 EX0 - Enable external interrupt 0. EX0 = 0 disables external interrupt 0 (INT0). EX0=1
enables interrupts generated by the INT0 pin.

Exhibit 2058 - Page 92 of 460

Chapter 4. Interrupts Page 4-3

Table 4-3. IP Register — SFR 0xB8

Bit Function

IP.7 Reserved. Read as 1.

IP.6 PS1 - Serial Port 1 interrupt priority control. PS1 = 0 sets Serial Port 1 interrupt
(TI_1 or RI_1) to low priority. PS1 = 1 sets Serial port 1 interrupt to high priority.

IP.5 PT2 - Timer 2 interrupt priority control. PT2 = 0 sets Timer 2 interrupt (TF2) to low
priority. PT2 = 1 sets Timer 2 interrupt to high priority.

IP.4 PS0 - Serial Port 0 interrupt priority control. PS0 = 0 sets Serial Port 0 interrupt
(TI_0 or RI_0) to low priority. PS0 = 1 sets Serial Port 0 interrupt to high priority.

IP.3 PT1 - Timer 1 interrupt priority control. PT1 = 0 sets Timer 1 interrupt (TF1) to low
priority. PT1 = 1 sets Timer 1 interrupt to high priority.

IP.2 PX1 - External interrupt 1 priority control. PX1 = 0 sets external interrupt 1 (INT1)
to low priority. PT1 = 1 sets external interrupt 1 to high priority.

IP.1 PT0 - Timer 0 interrupt priority control. PT0 = 0 sets Timer 0 interrupt (TF0) to low
priority. PT0 = 1 sets Timer 0 interrupt to high priority.

IP.0 PX0 - External interrupt 0 priority control. PX0 = 0 sets external interrupt 0 (INT0)
to low priority. PX0 = 1 sets external interrupt 0 to high priority.

Table 4-4. EXIF Register — SFR 0x91

Bit Function

EXIF.7 IE5 - External Interrupt 5 flag. IE5 = 1 indicates a falling edge was detected at the
INT5 pin. IE5 must be cleared by software. Setting IE5 in software generates an
interrupt, if enabled.

EXIF.6 IE4 - GPIF/FIFO/External Interrupt 4 flag. The “INT4” interrupt is internally con-
nected to the FIFO/GPIF interrupt by default; it can optionally function as Exter-
nal Interrupt 4 on the 100- and 128-pin FX2. When configured as External
Interrupt 4, IE4 indicates that a rising edge was detected at the INT4 pin. IE4
must be cleared by software. Setting IE4 in software generates an interrupt, if
enabled.

EXIF.5 I²CINT - I²C-Compatible Bus Interrupt flag. I²CINT = 1 indicates an I²C-Compati-
ble Bus interrupt. I²CINT must be cleared by software. Setting I²CINT in software
generates an interrupt, if enabled.

EXIF.4 USBINT - USB Interrupt flag. USBINT = 1 indicates an USB interrupt. USBINT
must be cleared by software. Setting USBINT in software generates an interrupt,
if enabled.

EXIF.3 Reserved. Read as 1.

EXIF.2-0 Reserved. Read as 0.

Exhibit 2058 - Page 93 of 460

EZ-USB FX2 Technical Reference Manual

Page 4-4 EZ-USB FX2 Technical Reference Manual v2.1

Table 4-5. EICON Register — SFR 0xD8

Bit Function

EICON.7 SMOD1 - Serial Port 1 baud rate doubler enable. When SMOD1 = 1, the
baud rate for Serial Port 1 is doubled.

EICON.6 Reserved. Read as 1.

EICON.5 ERESI - Enable Resume interrupt. ERESI = 0 disables the Resume inter-
rupt. ERESI = 1 enables interrupts generated by the resume event.

EICON.4 RESI - Wakeup interrupt flag. RESI = 1 indicates a false-to-true transition
was detected at the WAKEUP or WU pin, or that USB activity has resumed
from the suspended state. RESI must be cleared by software before exiting
the interrupt service routine, otherwise the interrupt will immediately be
reasserted. Setting RESI = 1 in software generates a wakeup interrupt, if
enabled.

EICON.3 INT6 - External interrupt 6. When INT6 = 1, the INT6 pin has detected a low
to high transition. INT6 must be cleared by software. Setting this bit in soft-
ware generates an INT6 interrupt, if enabled.

EICON.2-0 Reserved. Read as 0.

Table 4-6. EIE Register — SFR 0xE8

Bit Function

EIE.7-5 Reserved. Read as 1.

EIE.4 EX6 - Enable external interrupt 6. EX6 = 0 disables external interrupt 6
(INT6). EX6 = 1 enables interrupts generated by the INT6 pin.

EIE.3 EX5 - Enable external interrupt 5. EX5 = 0 disables external interrupt 5
(INT5). EX5 = 1 enables interrupts generated by the INT5 pin.

EIE.2 EX4 - Enable external interrupt 4. EX4 = 0 disables external interrupt 4
(INT4). EX4 = 1 enables interrupts generated by the INT4 pin or by the
FIFO/GPIF Interrupt.

EIE.1 EI²C - Enable I²C-Compatible Bus interrupt (I²CINT). EI²C = 0 disables the
I ²C-Compatible Bus interrupt. EI²C = 1 enables interrupts generated by the
I ²C-Compatible Bus controller.

EIE.0 EUSB - Enable USB interrupt (USBINT). EUSB = 0 disables USB interrupts.
EUSB = 1 enables interrupts generated by the USB Interface.

Exhibit 2058 - Page 94 of 460

Chapter 4. Interrupts Page 4-5

4.2.1 803x/805x Compatibility

The implementation of interrupts is similar to that of the Dallas Semiconductor DS80C320.
Table 4-8 summarizes the differences in interrupt implementation between the Intel 8051, the Dal-
las Semiconductor DS80C320, and the FX2.

Table 4-7. EIP Register — SFR 0xF8

Bit Function

EIP.7-5 Reserved. Read as 1.

EIP.4 PX6 - External interrupt 6 priority control. PX6 = 0 sets external interrupt 6 (INT6)
to low priority. PX6 = 1 sets external interrupt 6 to high priority.

EIP.3 PX5 - External interrupt 5 priority control. PX5 = 0 sets external interrupt 5 (INT5)
to low priority. PX5=1 sets external interrupt 5 to high priority.

EIP.2 PX4 - External interrupt 4 priority control. PX4 = 0 sets external interrupt 4
(INT4 / GPIF / FIFO) to low priority. PX4=1 sets external interrupt 4 to high priority.

EIP.1 PI²C - I²CINT priority control. PI²C = 0 sets I²C-Compatible Bus interrupt to low pri-
ority. PI²C=1 sets I ²C-Compatible Bus interrupt to high priority.

EIP.0 PUSB - USBINT priority control. PUSB = 0 sets USB interrupt to low priority.
PUSB=1 sets USB interrupt to high priority.

Table 4-8. Summary of Interrupt Compatibility

Feature
Intel
8051

Dallas
DS80C320

Cypress
FX2

Power Fail Interrupt Not implemented Internally generated Replaced with RESUME Interrupt

External Interrupt 0 Implemented Implemented Implemented

Timer 0 Interrupt Implemented Implemented Implemented

External Interrupt 1 Implemented Implemented Implemented

Timer 1 Interrupt Implemented Implemented Implemented

Serial Port 0 Interrupt Implemented Implemented Implemented

Timer 2 Interrupt Not implemented Implemented Implemented

Serial Port 1 Interrupt Not implemented Implemented Implemented

External Interrupt 2 Not implemented Implemented Replaced with autovectored USB
Interrupt

External Interrupt 3 Not implemented Implemented Replaced with I²C-Compatible Bus Inter-
rupt

External Interrupt 4 Not implemented Implemented Replaced by autovectored FIFO/GPIF
Interrupt. Can be configured as External
Interrupt 4 on 100- and 128-pin FX2 only.

External Interrupt 5 Not implemented Implemented Implemented

Watchdog Timer Interrupt Not implemented Internally generated Replaced with External Interrupt 6

Real-time Clock Interrupt Not implemented Implemented Not implemented

Exhibit 2058 - Page 95 of 460

EZ-USB FX2 Technical Reference Manual

Page 4-6 EZ-USB FX2 Technical Reference Manual v2.1

4.3 Interrupt Processing

When an enabled interrupt occurs, the FX2 completes the instruction it’s currently executing, then
vectors to the address of the interrupt service routine (ISR) associated with that interrupt (see
Table 4-9). The FX2 executes the ISR to completion unless another interrupt of higher priority
occurs. Each ISR ends with a RETI (return from interrupt) instruction. After executing the RETI,
the FX2 continues executing firmware at the instruction following the one which was executing
when the interrupt occurred.

The FX2 always completes the instruction in progress before servicing an interrupt. If the instruc-
tion in progress is RETI, or a write access to any of the IP, IE, EIP, or EIE SFRs, the FX2 com-
pletes one additional instruction before servicing the interrupt.

4.3.1 Interrupt Masking

The EA Bit in the IE SFR (IE.7) is a global enable for all interrupts except the RESUME (USB
wakeup) interrupt, which is always enabled. When EA = 1, each interrupt is enabled or masked by
its individual enable bit. When EA = 0, all interrupts are masked except the USB wakeup interrupt.

Table 4-9 provides a summary of interrupt sources, flags, enables, and priorities.

Exhibit 2058 - Page 96 of 460

Chapter 4. Interrupts Page 4-7

4.3.1.1 Interrupt Priorities

There are two stages of interrupt priority: assigned interrupt level and natural priority. Assigned pri-
ority is set by FX2 firmware; natural priority is as shown in Table 4-9, and is fixed.

The assigned interrupt level (highest, high, or low) takes precedence over natural priority. The
RESUME (USB wakeup) interrupt always has highest assigned priority and is the only interrupt
that can have highest assigned priority. All other interrupts can be assigned either high or low prior-
ity.

In addition to an assigned priority level (high or low), each interrupt also has a natural priority, as
listed in Table 4-9. Simultaneous interrupts with the same assigned priority level (for example, both
high) are resolved according to their natural priority. For example, if INT0 and INT1 are both
assigned high priority and both occur simultaneously, INT0 takes precedence due to its higher nat-
ural priority.

Once an interrupt is being serviced, only an interrupt of higher assigned priority level can interrupt
the service routine. That is, an ISR for a low-assigned-level interrupt can only be interrupted by a
high-assigned-level interrupt. An ISR for a high-assigned-level interrupt can only be interrupted by
the RESUME interrupt.

Table 4-9. Interrupt Flags, Enables, Priority Control, and Vectors

Interrupt Description
Interrupt

Request Flag
Interrupt
Enable

Assigned
Priority
Control

Natural
Priority

Interrupt
Vector

RESUME Resume interrupt EICON.4 EICON.5 Always
Highest

0
(highest)

0x0033

INT0 External interrupt 0 TCON.1 IE.0 IP.0 1 0x0003

TF0 Timer 0 interrupt TCON.5 IE.1 IP.1 2 0x000B

INT1 External interrupt 1 TCON.3 IE.2 IP.2 3 0x0013

TF1 Timer 1 interrupt TCON.7 IE.3 IP.3 4 0x001B

TI_0 or RI_0 Serial port 0 transmit or
receive interrupt

SCON0.1 (TI.0)
SCON0.0 (RI_0)

IE.4 IP.4 5 0x0023

TF2 or EXF2 Timer 2 interrupt T2CON.7 (TF2)
T2CON.6 (EXF2)

IE.5 IP.5 6 0x002B

TI_1 or RI_1 Serial port 1 transmit or
receive interrupt

SCON1.1 (TI_1)
SCON1.0 (RI_1)

IE.6 IP.6 7 0x003B

USBINT Autovectored USB interrupt EXIF.4 EIE.0 EIP.0 8 0x0043

I²CINT I ²C-Compatible Bus inter-
rupt

EXIT.5 EIE.1 EIP.1 9 0x004B

INT4 Autovectored FIFO / GPIF or
External interrupt 4

EXIF.6 EIE.2 EIP.2 10 0x0053

INT5 External interrupt 5 EXIF.7 EIE.3 EIP.3 11 0x005B

INT6 External interrupt 6 EICON.3 EIE.4 EIP.4 12 0x0063

Exhibit 2058 - Page 97 of 460

EZ-USB FX2 Technical Reference Manual

Page 4-8 EZ-USB FX2 Technical Reference Manual v2.1

4.3.2 Interrupt Sampling

The internal timers and serial ports generate interrupts by setting the interrupt flag bits shown in
Table 4-9. These interrupts are sampled once per instruction cycle (i.e., once every 4 CLKOUT
cycles).

INT0 and INT1 are both active low and can be programmed to be either edge-sensitive or level-
sensitive, through the IT0 and IT1 bits in the TCON SFR. When ITx = 0, INTx is level-sensitive and
the FX2 sets the IEx flag when the INTx pin is sampled low. When ITx = 1, INTx is edge-sensitive
and the FX2 sets the IEx flag when the INTx pin is sampled high then low on consecutive samples.

The remaining five interrupts (INT 4-6, USB & I ²C-Compatible Bus interrupts) are edge-sensitive
only. INT6 and INT4 are active high and INT5 is active low.

To ensure that edge-sensitive interrupts are detected, the interrupt pins should be held in each
state for a minimum of one instruction cycle (4 CLKOUT cycles). Level-sensitive interrupts are not
latched; their pins must remain asserted until the interrupt is serviced.

4.3.3 Interrupt Latency

Interrupt response time depends on the current state of the FX2. The fastest response time is 5
instruction cycles: 1 to detect the interrupt, and 4 to perform the LCALL to the ISR.

The maximum latency is 13 instruction cycles. This 13-cycle latency occurs when the FX2 is cur-
rently executing a RETI instruction followed by a MUL or DIV instruction. The 13 instruction cycles
in this case are: 1 to detect the interrupt, 3 to complete the RETI, 5 to execute the DIV or MUL, and
4 to execute the LCALL to the ISR.

This13-instruction-cycle latency excludes autovector latency for the USB and FIFO/GPIF inter-
rupts (see Sections 4.5 and 4.8). Autovectoring adds a fixed 4 instruction cycles, so the maximum
latency for an autovectored USB or FIFO/GPIF interrupt is 13 + 4 = 17 instruction cycles.

4.4 USB-Specific Interrupts

The FX2 provides 28 USB-specific interrupts. One, “Resume”, has its own dedicated interrupt; the
other 27 share the “USB” interrupt.

4.4.1 Resume Interrupt

After the FX2 has entered its idle state, it responds to an external signal on its WAKEUP/WU2 pins
or resumption of USB bus activity by restarting its oscillator and resuming firmware execution.

Chapter 6, "Power Management" describes suspend/resume signaling in detail, and presents an
example which uses the Wakeup Interrupt.

Exhibit 2058 - Page 98 of 460

Chapter 4. Interrupts Page 4-9

4.4.2 USB Interrupts

Table 4-10 shows the 27 USB requests that share the USB Interrupt. Figur e4-1 shows the USB
Interrupt logic; the bottom IRQ, EP8ISOERR, is expanded in the diagram to show the logic which
is associated with each USB interrupt request.

Table 4-10. Individual USB Interrupt Sources

Priority
INT2VEC

Value Source Notes

1 00 SUDAV SETUP Data Available

2 04 SOF Start of Frame (or microframe)

3 08 SUTOK Setup Token Received

4 0C SUSPEND USB Suspend request

5 10 USB RESET Bus reset

6 14 HISPEED Entered high speed operation

7 18 EP0ACK FX2 ACK’d the CONTROL Handshake

8 1C reserved

9 20 EP0-IN EP0-IN ready to be loaded with data

10 24 EP0-OUT EP0-OUT has USB data

11 28 EP1-IN EP1-IN ready to be loaded with data

12 2C EP1-OUT EP1-OUT has USB data

13 30 EP2 IN: buffer available. OUT: buffer has data

14 34 EP4 IN: buffer available. OUT: buffer has data

15 38 EP6 IN: buffer available. OUT: buffer has data

16 3C EP8 IN: buffer available. OUT: buffer has data

17 40 IBN IN-Bulk-NAK (any IN endpoint)

18 44 reserved

19 48 EP0PING EP0 OUT was Pinged and it NAK’d

20 4C EP1PING EP1 OUT was Pinged and it NAK’d

21 50 EP2PING EP2 OUT was Pinged and it NAK’d

22 54 EP4PING EP4 OUT was Pinged and it NAK’d

23 58 EP6PING EP6 OUT was Pinged and it NAK’d

24 5C EP8PING EP8 OUT was Pinged and it NAK’d

25 60 ERRLIMIT Bus errors exceeded the programmed limit

26 64 reserved

27 68 reserved

28 6C reserved

29 70 EP2ISOERR ISO EP2 OUT PID sequence error

30 74 EP4ISOERR ISO EP4 OUT PID sequence error

31 78 EP6ISOERR ISO EP6 OUT PID sequence error

32 7C EP8ISOERR ISO EP8 OUT PID sequence error

Exhibit 2058 - Page 99 of 460

EZ-USB FX2 Technical Reference Manual

Page 4-10 EZ-USB FX2 Technical Reference Manual v2.1

Figure 4-1. USB Interrupts

Referring to the logic inside the dotted lines, each USB interrupt source has an interrupt request
latch. IRQ bits are set automatically by the FX2; firmware clears an IRQ bit by writing a “1” to it.
The output of each latch is ANDed with an Interrupt Enable Bit and then ORed with all the other
USB Interrupt request sources.

The FX2 prioritizes the USB interrupts and constructs an Autovector, which appears in the
INT2VEC register. The interrupt vector values IV[4:0] are shown to the left of the interrupt sources
(shaded boxes); 0 is the highest priority, 31 is the lowest. If two USB interrupts occur simulta-
neously, the prioritization affects which one is first indicated in the INT2VEC register.

USB Interrupt

SUTOK

SUDAV

SOF

EIE.0

EXIF.4(rd)

EXIF.4(0)

S

R

FX2 "USB"
Interrupt

USBERRIE.7

USBERRIRQ.7 (1)

S

R USBERRIRQ.7 (rd)

EP4ISOERR

EP6ISOERR

EP8ISOERR

0 IV4 IV3 IV2 IV1 IV0 0 0INT2VEC

00

01

02

29

30

31

Interrupt Request Latch

Exhibit 2058 - Page 100 of 460

Chapter 4. Interrupts Page 4-11

If Autovectoring is enabled, the INT2VEC byte replaces the contents of address 0x0045 in the
FX2’s program memory. This causes the FX2 to automatically vector to a different address for
each USB interrupt source. This mechanism is explained in detail in Section 4.5. "USB-Interrupt
Autovectors."

Due to the OR gate in Figure 4-1, assertion of any of the individual USB interrupt sources sets the
FX2’s “main” USB Interrupt request bit (EXIF.4). This main USB interrupt is enabled by setting
EIE.0 to 1.

To clear the main USB interrupt request, firmware clears the EXIF.4 bit to 0.

After servicing a USB interrupt, FX2 firmware clears the individual USB source’s IRQ bit by setting
it to 1. If any other USB interrupts are pending, the act of clearing the IRQ bit causes the FX2 to
generate another pulse for the highest-priority pending interrupt. If more than one is pending, each
is serviced in the priority order shown in Figur e4-1, starting with SUDAV (priority 00) as the high-
est priority, and ending with EP8ISOERR (priority 31) as the lowest.

The main USB interrupt request is cleared by clearing the EXIF.4 bit to 0; each individual USB
interrupt is cleared by setting its IRQ bit to 1.

Important

It is important in any USB Interrupt Service Routine (ISR) to clear the main USB Interrupt
before clearing the individual USB interrupt request latch. This is because as soon as the
individual USB interrupt is cleared, any pending USB interrupt will immediately try to gener-
ate another main USB Interrupt. If the main USB IRQ bit has not been previously cleared, the
pending interrupt will be lost.

Exhibit 2058 - Page 101 of 460

EZ-USB FX2 Technical Reference Manual

Page 4-12 EZ-USB FX2 Technical Reference Manual v2.1

Figure 4-2 illustrates a typical USB ISR for endpoint 2-IN.

Figure 4-2. The Order of Clearing Interrupt Requests is Important

The registers associated with the individual USB interrupt sources are described in Chapter 15,
"Registers" and Section 8.6, "CPU Control of FX2 Endpoints". Each interrupt source has an
enable (IE) and a request (IRQ) bit. Firmware sets the IE bit to 1 to enable the interrupt. The FX2
sets an IRQ bit to 1 to request an interrupt, and the firmware clears an IRQ bit by writing a “1” to it.

4.4.2.1 SUTOK, SUDAV Interrupts

Figure 4-3. SUTOK and SUDAV Interrupts

USB_ISR: push dps
push dpl
push dph
push dpl1
push dph1
push acc

;
mov a,EXIF ; FIRST clear the USB (INT2) interrupt request
clr acc.4
mov EXIF,a ; Note: EXIF reg is not bit-addressable

;
mov dptr,#USBERRIRQ ; now clear the USB interrupt request
mov a,#10000000b ; use EP8ISOERR as example
movx @dptr,a

;
; (service the interrupt here)
;

pop acc
pop dph1
pop dpl1
pop dph
pop dpl
pop dps

;
reti

D
A
T
A
0

8 bytes
Setup
Data

C
R
C
1
6

Data Packet

A
C
K

H/S Pkt

S
E
T
U
P

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

SETUP Stage

SUTOK
Interrupt

SUDAV
Interrupt

Exhibit 2058 - Page 102 of 460

Chapter 4. Interrupts Page 4-13

SUTOK and SUDAV are supplied to the FX2 by CONTROL endpoint zero. The first portion of a
USB CONTROL transfer is the SETUP stage shown in Figure 4-3 (a full CONTROL transfer is
shown in Figure 2-1). When the FX2 decodes a SETUP packet, it asserts the SUTOK (SETUP
Token) Interrupt Request. After the FX2 has received the eight bytes error-free and copied them
into the eight internal registers at SETUPDAT, it asserts the SUDAV Interrupt Request.

Firmware responds to the SUDAV Interrupt by reading the eight SETUP data bytes in order to
decode the USB request (Chapter 2, "Endpoint Zero").

The SUTOK Interrupt is provided to give advance warning that the eight register bytes at
SETUPDAT are about to be overwritten. It is useful for debug and diagnostic purposes.

4.4.2.2 SOF Interrupt

Figure 4-4. A Start Of Frame (SOF) Packet

A USB Start-of-Frame Interrupt Request is asserted when the host sends a Start of Frame (SOF)
packet. SOFs occur once per millisecond in full-speed (12 Mbits/sec) mode, and once every 125
microseconds in high-speed (480 Mbits/sec) mode.

When the FX2 receives an SOF packet, it copies the eleven-bit frame number (FRNO in Figu re4-
4) into the USBFRAMEH:L registers and asserts the SOF Interrupt Request. All isochronous end-
point data is generally serviced via the SOF Interrupt.

4.4.2.3 Suspend Interrupt

If the FX2 detects a “suspend” condition from the host, it asserts the SUSP (Suspend) Interrupt
Request. A full description of Suspend-Resume signaling appears in Chapter 6, "Power Manage-
ment".

4.4.2.4 USB RESET Interrupt

The USB host signals a bus reset by driving both D+ and D- low for at least 10 ms. When the FX2
detects the onset of USB bus reset, it asserts the URES Interrupt Request.

4.4.2.5 HISPEED Interrupt

This interrupt is asserted when the host grants high-speed (480 Mbps) access to the FX2.

4.4.2.6 EP0ACK Interrupt

This interrupt is asserted when the FX2 has acknowledged the STATUS stage of a CONTROL
transfer on endpoint 0.

S
O
F

F
R
N
O

C
R
C
5

Token Pkt

Exhibit 2058 - Page 103 of 460

EZ-USB FX2 Technical Reference Manual

Page 4-14 EZ-USB FX2 Technical Reference Manual v2.1

4.4.2.7 Endpoint Interrupts

These interrupts are asserted when an endpoint requires service.

For an OUT endpoint, the interrupt request signifies that OUT data has been sent from the host,
validated by the FX2, and is in the endpoint buffer memory.

For an IN endpoint, the interrupt request signifies that the data previously loaded by the FX2 into
the IN endpoint buffer has been read and validated by the host, making the IN endpoint buffer
ready to accept new data.

4.4.2.8 In-Bulk-NAK (IBN) Interrupt

When the host sends an IN token to any IN endpoint which does not have data to send, the FX2
automatically NAKs the IN token and asserts this interrupt.

4.4.2.9 EPxPING Interrupt

These interrupts are active only during high speed (480 Mbits/sec) operation.

USB 2.0 improves the USB 1.1 bus bandwidth utilization by implementing a PING-NAK mecha-
nism for OUT transfers. When the host wishes to send OUT data to an endpoint, it first sends a
PING token to see if the endpoint is ready (i.e. if it has an empty buffer). If a buffer is not available,
the FX2 returns a NAK handshake. PING-NAK transactions continue to occur until an OUT buffer
is available, at which time the FX2 answers a PING with an ACK handshake and the host sends
the OUT data to the endpoint.

The EPxPING interrupt is asserted when the host PINGs an endpoint and the FX2 responds with
a NAK because no endpoint buffer memory is available.

Table 4-11. Endpoint Interrupts

EP0-IN EP0-IN ready to be loaded with data (BUSY bit 1-to-0)

EP0-OUT EP0-OUT has received USB data (BUSY bit 1-to-0)

EP1-IN EP1-IN ready to be loaded with data (BUSY bit 1-to-0)

EP1-OUT EP1-OUT has received USB data (BUSY bit 1-to-0)

EP2 IN: Buffer available (Empty Flag 1-to-0)
OUT: Buffer has received USB data (Empty Flag 0-to-1)

EP4 IN: Buffer available (Empty Flag 1-to-0)
OUT: Buffer has received USB data (Empty Flag 0-to-1)

EP6 IN: Buffer available (Empty Flag 1-to-0)
OUT: Buffer has received USB data (Empty Flag 0-to-1)

EP8 IN: Buffer available (Empty Flag 1-to-0)
OUT: Buffer has received USB data (Empty Flag 0-to-1)

Exhibit 2058 - Page 104 of 460

Chapter 4. Interrupts Page 4-15

4.4.2.10 ERRLIMIT Interrupt

This interrupt is asserted when the USB error-limit counter has exceeded the preset error limit
threshold. See Section 8.6.3.3 for full details.

4.4.2.11 EPxISOERR Interrupt

These interrupts are asserted when an ISO data PID is missing or arrives out of sequence, or
when an ISO packet is dropped because no buffer space is available (to receive an OUT packet)
or no data is available to be sent (from an IN buffer).

4.5 USB-Interrupt Autovectors

The main USB interrupt is shared by 27 interrupt sources. To save the code and processing time
which normally would be required to identify the individual USB interrupt source, the FX2 provides
a second level of interrupt vectoring, called Autovectoring. When a USB interrupt is asserted, the
FX2 pushes the program counter onto its stack then jumps to address 0x0043, where it expects to
find a “jump” instruction to the USB Interrupt service routine.

The FX2 jump instruction is encoded as follows:

If Autovectoring is enabled (AV2EN=1 in the INTSETUP register), the FX2 substitutes its INT2VEC
byte (see Table 4-10) for the byte at address 0x0045. Therefore, if the high byte (“page”) of a jump-
table address is preloaded at location 0x0044, the automatically-inserted INT2VEC byte at 0x0045
will direct the jump to the correct address out of the 27 addresses within the page.

As shown in Table 4-13, the jump table contains a series of jump instructions, one for each individ-
ual USB Interrupt source’s ISR.

Table 4-12. FX2 JUMP Instruction

Address Op-Code Hex Value

0x0043 LJMP 0x02

0x0044 AddrH 0xHH

0x0045 AddrL 0xLL

Exhibit 2058 - Page 105 of 460

EZ-USB FX2 Technical Reference Manual

Page 4-16 EZ-USB FX2 Technical Reference Manual v2.1

Table 4-13. A Typical USB-Interrupt Jump Table

Table Offset Instruction

0x00 LJMP SUDAV_ISR

0x04 LJMP SOF_ISR

0x08 LJMP SUTOK_ISR

0x0C LJMP SUSPEND_ISR

0x10 LJMP USBRESET_ISR

0x14 LJMP HISPEED_ISR

0x18 LJMP EP0ACK_ISR

0x1C LJMP SPARE_ISR

0x20 LJMP EP0IN _ISR

0x24 LJMP EP0OUT_ISR

0x28 LJMP EP1IN _ISR

0x2C LJMP EP1OUT_ISR

0x30 LJMP EP2_ISR

0x34 LJMP EP4_ISR

0x38 LJMP EP6_ISR

0x3C LJMP EP8_ISR

0x40 LJMP IBN_ISR

0x44 LJMP SPARE_ISR

0x48 LJMP EP0PING_ISR

0x4C LJMP EP1PING_ISR

0x50 LJMP EP2PING_ISR

0x54 LJMP EP4PING_ISR

0x58 LJMP EP6PING_ISR

0x5C LJMP EP8PING_ISR

0x60 LJMP ERRLIMIT_ISR

0x64 LJMP SPARE_ISR

0x68 LJMP SPARE_ISR

0x6C LJMP SPARE_ISR

0x70 LJMP EP2ISOERR_ISR

0x74 LJMP EP2ISOERR_ISR

0x78 LJMP EP2ISOERR_ISR

0x7C LJMP EP2ISOERR_ISR

Exhibit 2058 - Page 106 of 460

Chapter 4. Interrupts Page 4-17

4.5.1 USB Autovector Coding

To employ autovectoring for the USB interrupt:

1. Insert a jump instruction at 0x0043 to a table of jump instructions to the various USB interrupt
service routines. Make sure the jump table starts on a 0x0100-byte page boundary.

2. Code the jump table with jump instructions to each individual USB interrupt service routine.
This table has two important requirements, arising from the format of the INT2VEC Byte (zero-
based, with the 2 LSBs set to 0):

• It must begin on a page boundary (address 0xnn00)

• The jump instructions must be four bytes apart.

3. The interrupt service routines can be placed anywhere in memory.

4. Write initialization code to enable the USB interrupt (INT2) and Autovectoring.

Figure 4-5. The USB Autovector Mechanism in Action

Figure 4-5 illustrates an ISR that services endpoint 2. When endpoint 2 requires service, the FX2
asserts the USB interrupt request, vectoring to location 0x0043.

The jump instruction at this location, which was originally coded as “LJMP 0400”, becomes “LJMP
042C” because the FX2 automatically inserts 2C, the INT2VEC value for EP2 (Table 4-13).

The FX2 jumps to 0x042C, where it executes the jump instruction to the EP2 ISR, arbitrarily
located for this example at address 0x0119.

Once the FX2 vectors to 0x0043, initiation of the endpoint-specific ISR takes only eight instruction
cycles.

EP2_ISR:

USB_Jmp_Table:

LJMP

04

2C

0x0043

0x0044

0x0045

2CINT2VEC

Automatically
copied by FX2 LJMP EP2_ISR

01

19

0x042C

0x042D

0x042E

0x0400

0x0119

USB Interrupt
Vector

Exhibit 2058 - Page 107 of 460

EZ-USB FX2 Technical Reference Manual

Page 4-18 EZ-USB FX2 Technical Reference Manual v2.1

4.6 I²C-Compatible Bus Interrupt

Figure 4-6. I²C-Compatible Bus Interrupt-Enable Bits and Registers

Chapter 13, "Input/Output" describes the interface to the FX2’s I²C-Compatible Bus controller. The
FX2 uses two registers, I2CS (Control and Status) and I2DAT (Data), to transfer data over the bus.

An I²C-Compatible Bus Interrupt is asserted whenever one of the following occurs:

• The DONE Bit (I2CS.0) makes a zero-to-one transition, signalling that the bus controller is
ready for another command.

• The STOP bit (I2CS.6) makes a one-to-zero transition.

To enable the “Done” interrupt source, set EIE.1 to 1; to additionally enable the “Stop” interrupt
source, set STOPIE to 1. If both interrupts are enabled, the interrupt source may be determined by
checking the DONE and STOP Bits in the I2CS register.

To reset the Interrupt Request, write a zero to EXIF.5. Any firmware read or write to the I2DAT or
I2CS register also automatically clears the Interrupt Request.

While the I²C-Compatible Bus controller is generating the “stop” condition, it ignores accesses to
the I2CS and I2DAT registers. Firmware should therefore check the STOP Bit for zero before writ-
ing new data to I2CS or I2DAT.

EIE.1

EXIF.5(rd)

EXIF.5(0)

S

R

I2C-
Compatible

Bus
Interrupt

I2C-Compatible Bus
Interrupt Request

DONE S

R
RD or WR

I2DAT register

I2CS
0xE678

I2DAT
0xE679

START STOP LASTRD ID1 ID0 BERR ACK

D7 D6 D5 D4 D3 D2 D1 D0

DONE

Exhibit 2058 - Page 108 of 460

Chapter 4. Interrupts Page 4-19

4.7 FIFO/GPIF Interrupt (INT4)

Just as the USB Interrupt is shared among 27 individual USB-interrupt sources, the FIFO/GPIF
interrupt is shared among 14 individual FIFO/GPIF sources.

The FIFO/GPIF Interrupt, like the USB Interrupt, can employ autovectoring. Table 4-14 shows the
priority and INT4VEC values for the 14 FIFO/GPIF interrupt sources.

When FIFO/GPIF interrupt sources are asserted, the FX2 prioritizes them and constructs an
Autovector, which appears in the INT4VEC register; 0 is the highest priority, 14 is the lowest. If two
FIFO/GPIF interrupts occur simultaneously, the prioritization affects which one is first indicated in
the INT4VEC register. If Autovectoring is enabled, the INT4VEC byte replaces the contents of
address 0x0055 in the FX2’s program memory. This causes the FX2 to automatically vector to a
different address for each FIFO/GPIF interrupt source. This mechanism is explained in detail in
Section 4.8 "FIFO/GPIF-Interrupt Autovectors".

Table 4-14. Individual FIFO/GPIF Interrupt Sources

Priority
INT4VEC

Value Source Notes

1 80 EP2PF Endpoint 2 Programmable Flag

2 84 EP4PF Endpoint 4 Programmable Flag

3 88 EP6PF Endpoint 6 Programmable Flag

4 8C EP8PF Endpoint 8 Programmable Flag

5 90 EP2EF Endpoint 2 Empty Flag

6 94 EP4EF Endpoint 4 Empty Flag

7 98 EP6EF Endpoint 6 Empty Flag

8 9C EP8EF Endpoint 8 Empty Flag

9 A0 EP2FF Endpoint 2 Full Flag

10 A4 EP4FF Endpoint 4 Full Flag

11 A8 EP6FF Endpoint 6 Full Flag

12 AC EP8FF Endpoint 8 Full Flag

13 B0 GPIFDONE GPIF Operation Complete
(See Chapter 10, "General Programmable
Interface (GPIF)")

14 B4 GPIFWF GPIF Waveform
(See Chapter 10, "General Programmable
Interface (GPIF)")

Exhibit 2058 - Page 109 of 460

EZ-USB FX2 Technical Reference Manual

Page 4-20 EZ-USB FX2 Technical Reference Manual v2.1

The registers associated with the individual FIFO/GPIF interrupt sources are described in Chapter
15, "Registers" and Section 8.6, "CPU Control of FX2 Endpoints". Each interrupt source has an
enable (IE) and a request (IRQ) bit. Firmware sets the IE bit to 1 to enable the interrupt. The FX2
sets an IRQ bit to 1 to request an interrupt, and the firmware clears an IRQ bit by setting it to 1.

The main FIFO/GPIF interrupt request is cleared by clearing the EXIF.6 bit to 0; each individual
FIFO/GPIF interrupt is cleared by setting its IRQ bit to 1.

4.8 FIFO/GPIF-Interrupt Autovectors

The main FIFO/GPIF interrupt is shared by 14 interrupt sources. To save the code and processing
time which normally would be required to sort out the individual FIFO/GPIF interrupt source, the
FX2 provides a second level of interrupt vectoring, called Autovectoring. When a FIFO/GPIF inter-
rupt is asserted, the FX2 pushes the program counter onto its stack then jumps to address
0x0053, where it expects to find a “jump” instruction to the FIFO/GPIF Interrupt service routine.

 The FX2 jump instruction is encoded as follows:

If Autovectoring is enabled (AV4EN=1 in the INTSETUP register), the FX2 substitutes its
INT4VEC byte (see Table 4-14) for the byte at address 0x0055. Therefore, if the high byte (“page”)
of a jump-table address is preloaded at location 0x0054, the automatically-inserted INT4VEC byte
at 0x0055 will direct the jump to the correct address out of the 14 addresses within the page.

Important

It is important in any FIFO/GPIF Interrupt Service Routine (ISR) to clear the main INT4 Inter-
rupt before clearing the individual FIFO/GPIF interrupt request latch. This is because as
soon as the individual FIFO/GPIF interrupt is cleared, any pending FIFO/GPIF interrupt will
immediately try to generate another main FIFO/GPIF Interrupt. If the main INT4 IRQ bit has
not been previously cleared, the pending interrupt will be lost.

Table 4-15. FX2 JUMP Instruction

Address Op-Code Hex Value

0x0053 LJMP 0x02

0x0054 AddrH 0xHH

0x0055 AddrL 0xLL

Exhibit 2058 - Page 110 of 460

Chapter 4. Interrupts Page 4-21

As shown in Table 4-16, the jump table contains a series of jump instructions, one for each individ-
ual FIFO/GPIF Interrupt source’s ISR.

4.8.1 FIFO/GPIF Autovector Coding

To employ autovectoring for the FIFO/GPIF interrupt, perform the following steps:

1. Insert a jump instruction at 0x0053 to a table of jump instructions to the various FIFO/GPIF
interrupt service routines. Make sure the jump table starts at a 0x0100-byte page boundary
plus 0x80.

2. Code the jump table with jump instructions to each individual FIFO/GPIF interrupt service rou-
tine. This table has two important requirements, arising from the format of the INT4VEC byte
(0x80-based, with the 2 LSBs set to 0); the two requirements are the following:

• It must begin on a page boundary + 0x80 (address 0xnn80).

• The jump instructions must be four bytes apart.

3. Place the interrupt service routines anywhere in memory.

4. Write initialization code to enable the FIFO/GPIF interrupt (INT4) and Autovectoring.

Table 4-16. A Typical FIFO/GPIF-Interrupt Jump Table

Table Offset Instruction

0x80 LJMP EP2PF_ISR

0x84 LJMP EP4PF_ISR

0x88 LJMP EP6PF_ISR

0x8C LJMP EP8PF_ISR

0x90 LJMP EP2EF_ISR

0x94 LJMP EP4EF_ISR

0x98 LJMP EP6EF_ISR

0x9C LJMP EP8EF_ISR

0xA0 LJMP EP2FF_ISR

0xA4 LJMP EP4FF_ISR

0xA8 LJMP EP6FF_ISR

0xAC LJMP EP8FF_ISR

0xB0 LJMP GPIFDONE_ISR

0xB4 LJMP GPIFWF_ISR

Exhibit 2058 - Page 111 of 460

EZ-USB FX2 Technical Reference Manual

Page 4-22 EZ-USB FX2 Technical Reference Manual v2.1

Figure 4-7. The FIFO/GPIF Autovector Mechanism in Action

Figure 4-7 illustrates an ISR that services EP4’s Full Flag. When EP4 goes full, the FX2 asserts
the FIFO/GPIF interrupt request, vectoring to location 0x0053.

The jump instruction at this location, which was originally coded as “LJMP 0480”, becomes “LJMP
04A4” because the FX2 automatically inserts A4, the INT4VEC value for EP4FF (Table 4-13).

The FX2 jumps to 0x04A4, where it executes the jump instruction to the EP4FF ISR, arbitrarily
located for this example at address 0x0321.

Once the FX2 vectors to 0x0053, initiation of the endpoint-specific ISR takes only eight instruction
cycles.

EP4FF_ISR

FIFO_GPIF_Jmp_Table:

LJMP

04

A4

0x0053

0x0054

0x0055

A4INT4VEC

Automatically
copied by FX2 LJMP EP4FF_ISR

01

19

0x04A4

0x04A5

0x04A6

0x0480

0x0321

FIFO/GPIF
Interrupt
Vector

Exhibit 2058 - Page 112 of 460

Chapter 5. Memory Page 5-1

Chapter 5 Memory

5.1 Introduction

Memory organization in the FX2 is similar, but not identical, to that of the standard 8051. There are
three distinct memory areas: Internal Data Memory, External Data Memory, and External Program
Memory. As will be explained below, “External” memory is not necessarily external to the FX2 chip.

5.2 Internal Data RAM

As shown in Figure 5-1, the FX2’s Internal Data RAM is divided into three distinct regions: the
“Lower 128”, the “Upper 128”, and “SFR Space”. The Lower 128 and Upper 128 are general-pur-
pose RAM; the SFR Space contains FX2 control and status registers.

Figure 5-1. Internal Data RAM Organization

0x00

0xFF

0x7F
0x80

Lower 128

Upper 128 SFR Space

0xFF

0x80

Lower 128

0x00 R0-R7 (Bank 0)
0x07
0x08

R0-R7 (Bank 1)0x0F
0x10

R0-R7 (Bank 2)

R0-R7 (Bank 3)

0x17
0x18
0x1F
0x20

0x2F
0x30

0x7F

00

778

. . . .

Bit-Addressable
RAM

General-
Purpose

Direct or indirect addressing

Indirect addressing only

Direct addressing
only

0

0

10

11

Register
Bank Select
(PSW.4:3)

Exhibit 2058 - Page 113 of 460

EZ-USB FX2 Technical Reference Manual

Page 5-2 EZ-USB FX2 Technical Reference Manual v2.1

5.2.1 The Lower 128

The Lower 128 occupies Internal Data RAM locations 0x00-0x7F. All of the Lower 128 may be
accessed as general-purpose RAM, using either direct or indirect addressing (for more information
on the FX2 addressing modes, see Chapter 12 "Instruction Set").

Two segments of the Lower 128 may additionally be accessed in other ways.

• Locations 0x00-0x1F comprise four banks of 8 registers each, numbered R0 through R7.
The current bank is selected via the “register-select” bits (RS1:RS0) in the PSW special-
function register; code which references registers R0-R7 will access them only in the cur-
rently-selected bank.

• Locations 0x20-0x2F are bit-addressable. Each of the 128 bits in this segment may be
individually addressed, either by its bit address (0x00 to 0x7F) or by reference to the byte
which contains it (0x20.0 to 0x2F.7).

5.2.2 The Upper 128

The Upper 128 occupies Internal Data RAM locations 0x80-0xFF; all 128 bytes may be accessed
as general-purpose RAM, but only by using indirect addressing (for more information on the FX2
addressing modes, see Chapter 12 "Instruction Set").

Since the FX2’s stack is internally accessed using indirect addressing, it’s a good idea to put the
stack in the Upper 128; this frees the more-efficiently-accessed Lower 128 for General-Purpose
use.

5.2.3 SFR (Special Function Register) Space

The SFR Space, like the Upper 128, is accessed at Internal Data RAM locations 0x80-0xFF. The
FX2 keeps SFR Space separate from the Upper 128 by using different addressing modes to
access the two regions: SFRs may only be accessed using direct addressing, and the Upper 128
may only be accessed using indirect addressing.

The SFR Space contains FX2 control and status registers; an overview is in Section 11.12, "Spe-
cial Function Registers (SFR)", and a full description of all the SFRs is in Chapter 15 "Registers".

The sixteen SFRs at locations 0x80, 0x88,, 0xF0, 0xF8 are bit-addressable. Each of the 128
bits in these registers may be individually addressed, either by its bit address (0x80 to 0xFF) or by
reference to the byte which contains it (e.g., 0x80.0, 0xC8.7, etc.).

Exhibit 2058 - Page 114 of 460

Chapter 5. Memory Page 5-3

5.3 External Program Memory and External Data Memory

The standard 8051 employs a Harvard architecture for its External memory; the program and data
memories are physically separate. The FX2 uses a modified version of this memory model; off-
chip program and data memories are separate, but the on-chip program and data memories are
unified in a Von Neumann architecture. This allows the FX2’s on-chip RAM to be loaded from an
external source (USB or EEPROM, see Chapter 3 "Enumeration and ReNumeration™"), then
used as program memory.

 Standard 8051

The standard 8051 has separate address spaces for program and data memory; it can address
64K of read-only program memory at addresses 0x0000-0xFFFF, and another 64K of read/write
data memory, also at addresses 0x0000-0xFFFF. The standard 8051 keeps the two memory
spaces separate by using different bus signals to access them; the read strobe for program mem-
ory is PSEN (Program Store Enable), and the read and write strobes for data memory are RD and
WR. The 8051 generates PSEN strobes for instruction fetches and for the MOVC (move code
memory into the accumulator) instruction; it generates RD and WR strobes for all data-memory
accesses. In a standard 8051 application, an external 64K ROM chip (enabled by the 8051’s
PSEN signal) might be used for program memory and an external 64K RAM chip (enabled by the
8051’s RD and WR signals) might be used for data memory.

In the standard 8051, all program memory is read-only.

 FX2

The FX2 has 8K of on-chip RAM (the “Main RAM”) at addresses 0x0000-0x1FFF, and 512 bytes of
on-chip RAM (the “Scratch RAM”) at addresses 0xE000-0xE1FFF. Although this RAM is physically
located inside the chip, it’s addressed by FX2 firmware as External memory, just as though it were
in an external RAM chip.

Some systems use only this on-chip RAM, with no off-chip memory. In those systems, the RD and
PSEN strobes are automatically combined for accesses to addresses below 0x2000, so the Main
RAM is accessible as both data and program memory. The RD and PSEN strobes are not com-
bined for the Scratch RAM; Scratch RAM is accessible as data memory only.

Although it’s technically accurate to say that the Main RAM data memory is writable while the Main
RAM program memory is not, it’s a distinction without a difference. The Main RAM is accessible
both as program memory and data memory, so writing to Main RAM data memory is equivalent to
writing to Main RAM program memory at the same address.

The Scratch RAM is never accessible as program memory.

The FX2 also reserves 7.5K (0xE200-0xFFFF) of the data-memory address space for control/sta-
tus registers and endpoint buffers (see Section 5.6, "On-Chip Data Memory at 0xE000-0xFFFF").

Exhibit 2058 - Page 115 of 460

EZ-USB FX2 Technical Reference Manual

Page 5-4 EZ-USB FX2 Technical Reference Manual v2.1

Note that only the data-memory space is reserved; program memory in the 0xE000-0xFFFF range
is not reserved, so the 128-pin FX2 can access off-chip program memory in that range.

5.3.1 56- and 100-pin FX2

The 56- and 100-pin FX2 chips have no facility for adding off-chip program or data memory. There-
fore, the Main RAM must serve as both program and data memory. To accomplish this, the FX2
reads the Main RAM using the logical OR of the PSEN and RD strobes. It is the responsibility of
the system designer to ensure that the program- and data-memory spaces do not overlap; with
most C compilers, this is done by using linker directives that place the code and data modules into
separate areas.

5.3.2 128-pin FX2

It is possible to add off-chip program and data memory to the 128-pin FX2; the organization of that
memory depends on the state of the EA (External Access) pin.

 EA = 0

The Main RAM is accessible both as program and data memory, just as in the 56- and 100-pin
FX2.

To avoid conflict with the Main RAM, the pins which control access to off-chip memory (the RD,
WR, CS, OE, and PSEN pins) are inactive whenever the FX2 accesses addresses 0x0000-
0x1FFF. This allows a 64K memory chip (data and/or program) to be added without requiring addi-
tional external logic to inhibit access to the lower 8K of that chip. Note that the PSEN and RD sig-
nals are available on separate pins, so the program and data spaces outside the FX2 are not
combined as they are inside the FX2.

When code in the range 0x0000-0x1FFF is fetched from the on-chip RAM, the PSEN pin is not
asserted; when code is fetched from program memory in the range 0x2000-0xFFFF, the PSEN pin
is asserted.

 EA = 1

All program memory is off-chip; all on-chip RAM, including the Main RAM, is data memory only.

The FX2 reads all on-chip RAM using only the RD strobe; the combining of RD and PSEN is dis-
abled, so the on-chip RAM becomes data memory only. All program memory is off-chip; accesses
to the lower 8K of off-chip program memory are not inhibited.

Any code fetch will assert the PSEN pin.

After a power-on-reset, the FX2 immediately begins executing code at address 0x0000 in the off-
chip program memory, rather than waiting for an EEPROM load or USB code download to com-
plete (see Chapter 7 "Resets" for a full description of the FX2 resets).

Exhibit 2058 - Page 116 of 460

Chapter 5. Memory Page 5-5

5.4 FX2 Memory Maps

Figure 5-2. FX2 External Program/Data Memory Map, EA=0

Figure 5-2 illustrates the memory map of the 128-pin FX2 with off-chip program and data memory.

The 56- and 100-pin FX2 chips cannot access off-chip memory; the entire memory map for those
chips is illustrated on the left side of Figur e5-2, in the “Inside FX2” column.

7.5 Kilobytes
USB regs and
4K EP buffers
Data (RD,W R)

0.5 Kbytes RAM
Data (RD,W R)*

8 Kilobytes
RAM

Code & Data
(PSEN,RD,W R)*

E000

E200

1FFF

0000

FFFF

48 KBytes
External

Data
Mem ory

(RD,W R)

56 KBytes
External

Code
Mem ory
(PSEN)

(O K to populate
unused data

m em ory here--
RD/W R strobes
are not active)

Inside FX2 O utside FX2

EA=0

* SUDPTR, USB upload/download, EEPROM boot access

(O K to populate
unused data

m em ory here--
RD/W R strobes
are not active)

(O K to populate
unused program
m em ory here--
PSEN strobe is

not active)

data m em ory code m em ory

Exhibit 2058 - Page 117 of 460

EZ-USB FX2 Technical Reference Manual

Page 5-6 EZ-USB FX2 Technical Reference Manual v2.1

On-chip FX2 memory consists of three RAM regions:

• 0x0000-0x1FFF (Main RAM)

• 0xE000-0xE1FF (Scratch RAM)

• 0xE200-0xFFFF (Registers/Buffers)

The 8K “Main RAM” occupies code-memory (PSEN) and data-memory (RD/WR) addresses
0x0000-0x1FFF.

The 512-byte “Scratch RAM” occupies data-memory (RD/WR) addresses 0xE000-0xE1FF.

7.5K of control/status registers and endpoint buffers occupy data-memory (RD/WR) addresses
0xE200-0xFFFF.

When off-chip memory is connected to the FX2, it fills in the gaps not occupied by on-chip FX2
RAM. Since the lower 8K of memory is occupied by on-chip program/data memory and the upper
8K is occupied by on-chip data memory, the off-chip memory cannot be active in these regions.
Nevertheless, it’s still safe to populate those regions with off-chip memory, as the following para-
graphs explain.

The middle column of Figure 5-2 indicates FX2 data memory (activated by the RD and WR
strobes) and the right-most column indicates FX2 code memory (activated by PSEN).

The “middle” 48K of the data-memory space may be filled with off-chip memory, since it does not
conflict with the upper and lower 8K of on-chip FX2 data memory. To allow a 64K RAM to be con-
nected to the FX2, the FX2 gates its RD and WR strobes to exclude the top and bottom 8K for off-
chip accesses. Therefore, a 64K RAM can be connected to FX2, and the top and bottom 8K of it
are automatically disabled.

Likewise, when a 64K code memory (PSEN strobe) is attached to the FX2 (when EA = 0), the
lower 8K is automatically excluded for off-chip code fetches, avoiding conflict with the on-chip
code memory inside FX2.

The asterisks in Figures 5-2 and 5-3 indicate memory regions that may be accessed using three
special FX2 resources:

• Setup Data Pointer (see Section 8.7)

• Upload or download via USB (see Section 3.8)

• Code boot from an I²C-compatible EEPROM (see Section 13.5 and Section 3.4)

Exhibit 2058 - Page 118 of 460

Chapter 5. Memory Page 5-7

Figure 5-3. FX2 External Program/Data Memory Map, EA=1

Figure 5-3 illustrates the 128-pin FX2 memory map when the EA pin is tied high. The only differ-
ence from Figure 5-2 is that the Main RAM is data memory only, instead of combined code/data
memory. This allows an off-chip code memory to contain all of the FX2 firmware. In this configura-
tion, the FX2 can begin executing code from off-chip memory immediately after power-on-reset.

FX2 code execution begins at address 0x0000, where the reset vector is located.

Off-chip data memory is partially disabled just as in Figure 5-2, ensuring that off-chip data memory
does not conflict with on-chip data RAM.

7.5 Kilobytes
USB regs and
4K EP buffers
Data (RD,W R)

0.5 Kbytes RAM
Data (RD,W R)*

8 Kilobytes
RAM
Data

(RD,W R)*

E000

E200

1FFF

0000

FFFF

48 KBytes
External

Data
Mem ory

(RD,W R)

64 KBytes
External

Code
Mem ory
(PSEN)

Inside FX2 O utside FX2

EA=1

(O K to populate
unused data

m em ory here--
RD/W R strobes
are not active)

(O K to populate
unused data

m em ory here--
RD/W R strobes
are not active)

* SUDPTR, USB upload/download, EEPROM boot access

data m em ory code m em ory

Exhibit 2058 - Page 119 of 460

EZ-USB FX2 Technical Reference Manual

Page 5-8 EZ-USB FX2 Technical Reference Manual v2.1

Be careful to check the access time of external Flash or other code memory in this mode. The FX2
can stretch its RD and WR strobes to compensate for slow data memories, but it does not have
the capability to stretch its PSEN signal to allow for slow code memories. At 48 MHz, an external
code-memory chip must have an access time of approximately 44 ns or shorter (access-time
parameters are given in the CY7C68013 data sheet).

5.5 “Von-Neumannizing” Off-Chip Program and Data Memory

The 128-pin FX2 package provides a 16-bit address bus, an 8-bit data bus, and memory control
signals PSEN, RD, and WR. These signals are used to expand the FX2’s External Program and/or
External Data memory.

As described in the previous section, the FX2 gates the RD and WR signals to exclude selection
of off-chip data memory in the range occupied by the on-chip memory. The PSEN signal is also
available on a pin for connection to off-chip code memory.

In some systems, it may be desirable to combine off-chip program and data memory, just as the
FX2 combines its on-chip program/data Main RAM. These systems must logically OR the PSEN
and RD strobes to qualify the off-chip memory’s chip enable and output enable signals. To save
the external logic which would normally be needed, FX2 provides two additional control signals,
CS and OE. The equations for these active-low signals are:

CS = RD + WR + PSEN

OE = RD + PSEN

Because the RD, WR, and PSEN signals are already qualified by the addresses allocated to off-
chip memory, the added strobes CS and OE strobes are active only when the FX2 accesses off-
chip memory.

Exhibit 2058 - Page 120 of 460

Chapter 5. Memory Page 5-9

5.6 On-Chip Data Memory at 0xE000-0xFFFF

Figure 5-4. On-Chip Data Memory at 0xE000-0xFFFF

Figure 5-4 shows the memory map for on-chip data RAM at 0xE000-0xFFFF.

512 bytes of Scratch RAM is available at 0xE000-0xE1FF. This is data RAM only; code cannot be
run from it. The 128 bytes at 0xE400-0xE47F hold the four waveform descriptors for the GPIF,
described in Chapter 10. The shaded area from 0xE600-0xE6FF contains FX2 control and status
registers.

Memory blocks 0xE200-0xE3FF, 0xE480-0xE5FF, 0xE700-0xE73F, and 0xE800-0xEFFF) are
reserved; they must not be used for data storage.

The remaining RAM contains the endpoint buffers. These buffers are accessible either as addres-
sable data RAM (via the ‘MOVX’ instruction) or as a FIFO (via the Autopointer, described in Sec-
tion 8.8).

EP2 Buffer (1024)

8051 data (512)

EP1IN (64)

Registers (256)

 GPIF waveform s (128)

RESERVED (2048)

FFFF

F000

EFFF

E800

E7FF

E7C0

E77F

EP1OUT (64)

EP0 IN/OUT (64)

UNAVAILABLE (64)

RESERVED (384)

RESERVED (512)

E780

E740

E73F

E700

E6FF

E600

E5FF

E480

E47F

E400

E3FF

E200

E1FF

E000

E7BF

EP4 Buffer (1024)

EP6 Buffer (1024)

EP8 Buffer (1024)

FBFF

F7FF

F3FF

F400

F800

FC00

Exhibit 2058 - Page 121 of 460

EZ-USB FX2 Technical Reference Manual

Page 5-10 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 122 of 460

Chapter 6. Power Management Page 6-1

Chapter 6 Power Management

6.1 Introduction

The USB host can suspend a device to put it into a power-down mode. When the USB signals a
SUSPEND operation, the FX2 goes through a sequence of steps to allow the firmware first to turn
off external power-consuming subsystems, and then to enter a low-power mode by turning off the
FX2’s oscillator. Once suspended, the FX2 is awakened either by resumption of USB bus activity
or by assertion of one of its two WAKEUP pins (provided that they’re enabled). This chapter
describes the suspend-resume mechanism.

It is important to understand the distinction between ‘suspend’, ‘resume’, ‘idle’, and ‘wakeup’.

• SUSPEND is a request—indicated by a 3-millisecond “J” state on the USB bus—from the
USB host/hub to the device. This request is usually sent by the host when it enters a low-
power “suspended” state. USB devices are required to enter a low power state in response
to this request.

The FX2 also provides a register called SUSPEND; writing any value to it will allow the
FX2 to enter the suspended state even when a SUSPEND condition doesn’t exist on the
bus.

• RESUME is a signal from the device to the host, requesting that the host be taken out of its
low-power “suspended” mode. RESUME can be signaled only by a USB device that has
reported (via its Configuration Descriptor) that it supports this “remote wakeup” feature,
and only if the host has enabled remote wakeup from that device.

• Idle is an FX2 low-power state. FX2 firmware initiates this mode by setting bit 0 of the
PCON (Power Control) register. To meet the stringent USB suspend current specification,
the FX2’s oscillator must be stopped; after the PCON.0 bit is set, the oscillator will stop if a)
a SUSPEND condition exists on the bus or the SUSPEND register has been written to,
and b) the two WAKEUP pins are either disabled or false. The FX2 exits the Idle state
when it receives a Wakeup Interrupt.

• Wakeup is the mechanism which restarts the FX2 oscillator and asserts an interrupt to
force the FX2 to exit the Idle state and resume code execution. The FX2 recognizes three
wakeup sources: one from the USB itself (when bus activity resumes) and two from device
pins (WAKEUP and WU2).

Exhibit 2058 - Page 123 of 460

EZ-USB FX2 Technical Reference Manual

Page 6-2 EZ-USB FX2 Technical Reference Manual v2.1

The FX2 enters and exits its Idle state independent of USB activity; in other words, the FX2 can
enter the Idle state at any time, even when not connected to USB. The Idle state is “hooked into”
the USB SUSPEND-RESUME mechanism using interrupts. An interrupt is automatically gener-
ated when the USB goes inactive for 3 milliseconds; FX2 firmware may respond to that interrupt
by entering the Idle state to reduce power. If the FX2 is in the Idle state, a Wakeup Interrupt is
generated when one of the three Wakeup sources is asserted; the FX2 responds to that interrupt
by exiting the Idle state and resuming code execution.

Once the FX2 is awake, its firmware may send a USB RESUME request by setting the SIGR-
SUME bit in the USBCS register (at 0xE680). Before sending the RESUME request, the device
must have: a) reported remote-wakeup capability in its Configuration Descriptor, and b) been
given permission (via a Set Feature-Remote Wakeup request from the host) to use that remote-
wakeup capability. To be compliant with the USB Specification, firmware should wait 5 millisec-
onds after the wakeup interrupt, set the SIGRSUME bit, wait 10-15 milliseconds, then clear it.

Figure 6-1 illustrates the FX2 logic that implements USB suspend and resume. These operations
are explained in the next sections.

Figure 6-1. Suspend-Resume Control

PLL

Oscillator

divider

8051

CLKOUT

24 MHz

START

USB RESUM E

W AKEUP pin

PCON.0

STOP

USB
"SUSPEND"

Interrupt

No USB activity
for 3 m sec.

"RESUME" INT
Signal

Resum e
(USBCS.0)

Restart
Delay

W U2 pin

DPEN

W UEN

W U2EN

W UPO L

W U2PO L

W rite any value to
SUSPEND register

(0xE681)

Resum e

Suspend

Exhibit 2058 - Page 124 of 460

Chapter 6. Power Management Page 6-3

6.2 USB Suspend

Figure 6-2. USB Suspend sequence

A USB device recognizes a SUSPEND request as three milliseconds of the bus-idle (“J”) state.
When the FX2 detects this condition, it asserts the USB interrupt (INT2) and the SUSPEND inter-
rupt autovector (vector #3).

If the CPU is in reset when a SUSPEND condition is detected on the bus, the FX2 will automati-
cally turn off its oscillators (and keep the CPU in reset) until an enabled wakeup source is
asserted.

The bus-idle (“J”) state is not equivalent to the disconnected-from-USB state; the “J” state means
that the voltage on D+ is higher than that on D-.

PLL

Oscillator

divider

8051

CLKOUT

24 MHz

PCON.0

STOP

USB
"SUSPEND"

Interrupt

No USB activity
for 3 msec.

Signal
Resume

(USBCS.0)

Write any value to
SUSPEND register

(0xE681)

Exhibit 2058 - Page 125 of 460

EZ-USB FX2 Technical Reference Manual

Page 6-4 EZ-USB FX2 Technical Reference Manual v2.1

FX2 firmware responds to the SUSPEND interrupt by taking the following actions:

1. Perform any necessary housekeeping such as shutting off external power-consuming devices.

2. Set bit 0 of the PCON register.

These actions put the FX2 into a low power ‘suspend’ state, as required by the USB Specification.

6.2.1 SUSPEND Register

FX2 firmware can force the chip into its low-power mode at any time, even without detecting a
3-millisecond “J” state on the USB bus. This “unconditional suspend” functionality is useful in
applications which require the FX2 to enter its low-power mode even while disconnected from the
USB bus.

To force the FX2 unconditionally to enter its low-power mode, firmware simply writes any value to
the SUSPEND register (at 0xE681) before setting the PCON.0 bit.

6.3 Wakeup/Resume

Figure 6-3. FX2 Wakeup/Resume sequence

PLL

O scillator

divider

8051

CLKO UT

24 M Hz

START

USB RESUM E

W AKEUP pin

"W AKEUP" INT
Signal

Resum e
(USBCS.0)

Restart
Delay

W U2 pin

D PEN

W U EN

W U 2EN

W U PO L

W U 2PO L

Exhibit 2058 - Page 126 of 460

Chapter 6. Power Management Page 6-5

Once in the low-power mode, there are three ways to wake up the FX2:

• USB activity on the FX2’s DPLUS pin

• Assertion of the WAKEUP pin

• Assertion of the WU2 (“Wakeup 2”) pin

These three wakeup sources may be individually enabled by setting the DPEN, WUEN, and
WU2EN bits in the Wakeup Control register.

The polarities of the wakeup pins are set using the WUPOL and WU2POL bits; 0 is active low and
1 is active high.

Three bits in the WAKEUP register enable the three wakeup sources. DPEN stands for “DPLUS
Enable” (DPLUS is one of the USB data lines; the other is DMINUS).

WUEN (Wakeup Enable) enables the WAKEUP pin, and WU2EN (Wakeup 2 Enable) enables the
WU2 pin.

When the FX2 chip detects activity on DPLUS while DPEN is true, or a false-to-true transition on
WAKEUP or WU2 while WUEN or WU2EN is true, it asserts the “wakeup” interrupt.

The status bits WU and WU2 indicate which of the wakeup pins caused the wakeup event. Assert-
ing the wakeup pin (according to its programmed polarity) sets the corresponding bit. If the wakeup
was caused by resumption of USB DPLUS activity, neither of these bits is set, leading to the con-
clusion that the third source, a USB bus reset, caused the wakeup event. FX2 firmware clears the
WU and WU2 flags by writing “1” to them.

6.3.1 Wakeup Interrupt

When a wakeup event occurs, the FX2 restarts its oscillator and, after the PLL stabilizes, it gener-
ates an interrupt request. This applies whether or not the FX2 is connected to the USB. The
Wakeup Interrupt is a dedicated interrupt, and is not shared by USBINT like most of the other indi-
vidual USB interrupts.

The Wakeup Interrupt vector is at 0x33, and has the highest interrupt priority. It is enabled by
EICON.5, and its IRQ flag is at EICON.4 (EICON is SFR 0xD8).

WAKEUPCS Wakeup Control & Status E682

b7 b6 b5 b4 b3 b2 b1 b0

WU2 WU WU2POL WUPOL 0 DPEN WU2EN WUEN

R/W R/W R/W R/W R R/W R/W R/W

0 0 0 0 0 1 0 1

Exhibit 2058 - Page 127 of 460

EZ-USB FX2 Technical Reference Manual

Page 6-6 EZ-USB FX2 Technical Reference Manual v2.1

The Wakeup Interrupt Service Routine clears the interrupt request flag (using the ‘bit clear’ instruc-
tion, i.e. ‘clr EICON.4’), and then executes a ‘reti’ (return from interrupt) instruction. This causes
the FX2 to continue program execution at the instruction following the one that set PCON.0 to ini-
tiate the power-down operation.

If PCON.0 is set when no Suspend condition exists (i.e., the USB is not signaling “Suspend”, and
firmware hasn’t written to the SUSPEND register), the Wakeup Interrupt will fire immediately.

6.4 USB Resume (Remote Wakeup)

Figure 6-4. USB Control and Status register

Firmware sets the SIGRSUME bit to send a remote-wakeup request to the host. To be compliant
with the USB Specification, the firmware should wait 5 milliseconds after the wakeup interrupt, set
the SIGRSUME bit, wait 10-15 milliseconds, then clear it.

Holding either WAKEUP pin in its active state (as determined by the programmed polarity) inhibits
the FX2 chip from turning off its oscillator in order to enter the ‘suspend’ state.

The Default USB Device does not support remote wakeup. This fact is reported at enumeration
time in byte 7 of the built-in Configuration Descriptor (see Appendices A and B).

6.4.1 WU2 Pin

The WU2 function shares the general-purpose I/O pin PA3. Unlike other multi-purpose I/O pins
that use configuration registers (PORTACFG, PORTBCFG and PORTCCFG) to select alternate

About the Wakeup Interrupt

The FX2 enters its idle state when it sets PCON.0 to 1. Although a standard 8051 exits the
idle state when any interrupt occurs, the FX2 supports only the Wakeup Interrupt to exit the
idle state.

USBCS USB Control and Status 7FD6

b7 b6 b5 b4 b3 b2 b1 b0

HSM - - - DISCON NOSYNSOF RENUM SIGRSUME

Exhibit 2058 - Page 128 of 460

Chapter 6. Power Management Page 6-7

functions, the PA3 and WU2 functions are simultaneously active. However, the WU2 function has
no effect unless enabled (by setting the WU2EN bit to 1). If WU2 is used as a wakeup pin, make
sure to set PA3 as an input (OEA.3=0, the default state) to prevent PA3 from also driving the pin.

The dual nature of the PA3/WU2 pin allows the FX2 to enter the low-power mode, then periodically
awaken itself. This is done by connecting an RC network to the PA3/WU2 pin; if the WU2 pin is set
to the default polarity (active-high), the resistor is connected to 3.3V and the capacitor is con-
nected to ground.

The firmware then performs the following steps:

1. Set W2POL to 1 for active-high polarity on the WU2 pin.

2. Set WU2EN to 1 to enable Wakeup 2.

3. Enable the wakeup interrupt by setting EICON.5=1.

4. Set PA3 to 0, then set OEA.3 to 1. This enables the PA3 output and drives the PA3/WU2 pin to
ground, discharging the capacitor.

5. Set OEA.3 to 0. This floats the PA3/WU2 pin, allowing the resistor to begin charging the
capacitor.

6. Write any value to the SUSPEND register, so the FX2 will unconditionally stop the oscillator
when the firmware sets PCON.0.

7. Set PCON.0 to 1. This commands the FX2 to enter the Idle state.

After the capacitor charges to a logic high level, the wakeup interrupt triggers via the WU2 pin.

8. In the Wakeup interrupt service routine, clear EICON.4 (the wakeup interrupt request flag),
then execute a ‘reti’ instruction. This resumes program execution at the instruction following
the instruction in step 7.

9. At this point, the firmware can check for any tasks to perform; if none are required, it can then
re-enter the Idle state starting at step 4.

By selecting a long time constant for the RC network attached to the WU2 pin, the FX2 chip can
operate at extremely low average power, since the on/off (active/suspend) duty-cycle is very short.

Exhibit 2058 - Page 129 of 460

EZ-USB FX2 Technical Reference Manual

Page 6-8 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 130 of 460

Chapter 7. Resets Page 7-1

Chapter 7 Resets

7.1 Introduction

The FX2 chip has two internal resets:

• Power-On Reset (POR), controlled by the RESET pin, which puts the FX2 in a known
state.

• CPU Reset, controlled by the FX2’s USB Core logic. The CPU Reset is always asserted
(i.e., the CPU is always held in reset) while the FX2’s RESET pin is asserted.

Additionally, the USB Specification defines a USB Bus Reset, which is a condition on the bus initi-
ated by the USB host in order to put every device’s USB functions in a known state.

This chapter describes the effects of these three resets.

Figure 7-1. EZ-USB FX2 Resets

RESET RES

USB Core

CPU

RES

CPUCS.0
(1 at PWR ON)

Oscillator

XIN

XOUT

PLL ÷1, ÷2,
or ÷4

24
 MHz

CLKOUT

12, 24,
or 48
MHz

48 MHz

USB Bus
Reset

Vcc

Exhibit 2058 - Page 131 of 460

EZ-USB FX2 Technical Reference Manual

Page 7-2 EZ-USB FX2 Technical Reference Manual v2.1

7.2 Power-On Reset (POR)

An active-low input pin (RESET) resets the FX2 chip. Note that the term “Power-On Reset”
refers to a reset initiated either by application of power or by assertion of the RESET pin.

The RESET pin is normally connected to an external R-C network in order to ensure that, when
power is first applied, the FX2 is held in reset until the operating parameters (Vcc voltage, crystal
frequency, PLL frequency, etc.) stabilize. The recommended values for the R-C network are a 10K
resistor to Vcc and a 1 µF capacitor to GND (see Figure 7-1). External logic can force a POR at
any time by pulling the RESET pin low.

Whenever the RESET pin is asserted, the USB Core holds the CPU in reset.

The CLKOUT pin, crystal oscillator, and PLL are active as soon as power is applied. Once the
CPU is out of reset, firmware may clear a control bit (CLKOE, CPUCS.1) to inhibit the CLKOUT
output pin for EMI-sensitive applications that do not need this signal.

The CLKOUT signal is active while RESET is low. When RESET returns high, the activity on the
CLKOUT pin depends on whether or not the FX2 is in the low-power “suspend” state; if it is, CLK-
OUT stops. Resumption of USB bus activity or assertion of the WAKEUP or WU2 pin (if enabled)
restarts the CLKOUT signal.

The oscillator and PLL are unaffected by the state of the RESET pin.

Power-on default values for all FX2 register bits are shown in Chapter 15, "Registers". At power-
on reset:

• Endpoint data buffers and byte counts are uninitialized.

• The CPU clock speed is set to 12 MHz, the CPU is held in reset, and the CLKOUT pin is
active.

• All port pins are configured as general-purpose input pins.

• USB interrupts are disabled and USB interrupt requests are cleared.

• Bulk IN and OUT endpoints are unarmed, and their stall bits are cleared. The FX2 will
NAK IN and OUT tokens while the CPU is reset.

• Endpoint toggle bits are cleared to 0.

• The RENUM bit is cleared to 0. This means that the Default USB Device, not the firmware,
will respond to USB device requests.

• The USB Function Address register is cleared to zero.

• The endpoints are configured for the Default USB Device.

• Interrupt autovectoring is turned off.

• Configuration Zero, Alternate Setting Zero is in effect.

Exhibit 2058 - Page 132 of 460

Chapter 7. Resets Page 7-3

7.3 Releasing the CPU Reset

Register bit CPUCS.0 resets the CPU. This bit is set to 1 at power-on, initially holding the CPU in
reset. There are three ways that the CPUCS.0 bit can be cleared to 0, releasing the CPU from
reset:

• By the host, as the final step of a RAM download.

• Automatically, at the end of an EEPROM load (assuming the EEPROM is correctly pro-
grammed).

• Automatically, when external ROM is used (EA=1) and no “C0” or “C2” EEPROM is
present.

FX2 firmware cannot put the CPU into reset by setting CPUCS.0 to 1; to the firmware, that bit is
read-only.

7.3.1 RAM Download

Once enumerated, the host can download code into the FX2 RAM using the “Firmware Load” ven-
dor request (Chapter 2, "Endpoint Zero"). The last packet loaded writes 0x00 to the CPUCS regis-
ter, which releases the CPU from reset.

7.3.2 EEPROM Load

Chapter 3, "Enumeration and ReNumeration™" describes the EEPROM boot loads in detail. At
power-on, the FX2 checks for the presence of an EEPROM on its I ²C-compatible bus. If found, it
reads the first EEPROM byte. If it reads 0xC2 as the first byte, the FX2 downloads firmware from
the EEPROM into internal RAM. The last operation in a “C2” Load writes 0x00 to the CPUCS reg-
ister, which releases the CPU from reset.

After a “C2” Load, the FX2 sets the RENUM bit to 1, so the firmware will be responsible for
responding to USB device requests.

7.3.3 External ROM

The 128-pin FX2 can use off-chip program memory containing FX2 code and USB device descrip-
tors, which include the VID/DID/PID bytes. Because such a system does not require an I²C-com-
patible EEPROM to supply the VID/DID/PID, the FX2 automatically releases the CPU from reset
when:

• The EA pin is pulled high (indicating off-chip code memory), and

Exhibit 2058 - Page 133 of 460

EZ-USB FX2 Technical Reference Manual

Page 7-4 EZ-USB FX2 Technical Reference Manual v2.1

• No “C0/C2” EEPROM is detected on the I²C-compatible bus.

Under these conditions, the FX2 also sets the RENUM bit to 1, so the firmware will be responsible
for responding to USB device requests.

7.4 CPU Reset Effects

The USB host may reset the CPU at any time by downloading the value 0x01 to the CPUCS regis-
ter. The host might do this, for example, in preparation for loading code overlays, effectively mag-
nifying the size of the internal FX2 RAM. For such applications, it is important to know the state of
the FX2 chip during and after a CPU reset. In this section, this particular reset is called a “CPU
Reset,” and should not be confused with the POR described in Section 7.2, "Power-On Reset
(POR)." This discussion applies only to the condition in which the FX2 chip is powered, and the
CPU is reset by the host setting the CPUCS.0 bit to 1.

The basic USB device configuration remains intact through a CPU reset. Endpoints keep their
configuration, the USB Function Address remains the same, and the I/O ports retain their configu-
rations and values. Stalled endpoints remain stalled, data toggles don’t change, and the RENUM
bit is unaffected. The only effects of a CPU reset are as follows:

• USB (INT2) interrupts are disabled, but pending interrupt requests remain pending.

• When the CPU comes out of reset, pending interrupts are kept pending, but disabled. This
gives the firmware writer the choice of acting on pre-reset USB events, or ignoring them
by clearing the pending interrupt(s) before enabling INT2.

• The breakpoint condition (BREAKPT.3) is cleared.

• While the CPU is in reset, the FX2 will enter the Suspend state automatically if a “sus-
pend” condition is detected on the bus.

7.5 USB Bus Reset

The host signals a USB Bus Reset by driving an SE0 state (both D+ and D- data lines low) for a
minimum of 10 ms. The FX2 senses this condition, requests the USB Interrupt (INT2), and sup-
plies the interrupt vector for a USB Reset. After a USB bus reset, the following occurs:

• Toggle bits are cleared to 0.

• The device address is reset to zero.

• If the Default USB Device is active, the USB configuration and alternate settings are reset
to zero.

• The FX2 will renegotiate with the host for high-speed (480 Mbps) mode.

Exhibit 2058 - Page 134 of 460

Chapter 7. Resets Page 7-5

Note that the RENUM bit is unchanged after a USB bus reset. Therefore, if a device has ReNu-
merated™ and loaded a new personality, it retains the new personality through a USB bus reset.

7.6 FX2 Disconnect

Although not strictly a “reset,” the disconnect-reconnect sequence used for ReNumeration™
affects the FX2 in ways similar to the other resets. When the FX2 simulates a disconnect-recon-
nect, the following occurs:

• Endpoint STALL bits are cleared.

• Data toggles are reset to 0.

• The Function Address is reset to zero.

• If the Default USB Device is active, the USB configuration and alternate settings are reset
to zero.

7.7 Reset Summary

Table 7-1. Effects of Various Resets on FX2 Resources (“—” means “no change”)

RESET Pin CPU Reset USB Bus Reset Disconnect

CPU Reset Reset n/a — —

IN Endpoints Unarm — — —

OUT Endpoints Unarm — — —

Breakpoint 0 0 — —

Stall Bits 0 — — 0

Interrupt Enables 0 0 — —

Interrupt Requests 0 — — —

CLKOUT Active — — —

CPU Clock Speed 12 MHz — — —

Data Toggles 0 — 0 0

Function Address 0 — 0 0

Default USB Device
Configuration

0 — 0 0

Default USB Device
Alternate Setting

0 — 0 0

RENUM Bit 0 — — —

Exhibit 2058 - Page 135 of 460

EZ-USB FX2 Technical Reference Manual

Page 7-6 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 136 of 460

Chapter 8. Access to Endpoint Buffers Page 8-1

Chapter 8 Access to Endpoint Buffers

8.1 Introduction

USB data enters and exits FX2 via endpoint buffers. In order to keep up with the high-speed 480
megabit/second transfer rates, external logic usually reads and writes this data by direct connec-
tion to the endpoint FIFOs without any participation by the FX2’s CPU.

Chapter 9, "Slave FIFOs" and Chapter 10, "General Programmable Interface (GPIF)" give details
about how external logic directly connects to the large endpoint FIFOs.

When an application requires the CPU to process the data as it flows between external logic and
the USB — or when there is no external logic — firmware can access the endpoint buffers either as
blocks of RAM or (using a special auto-incrementing pointer) as a FIFO.

Even when external logic or the built-in General Programmable Interface (GPIF) is handling high-
bandwidth data transfers through the four large endpoint FIFOs without any CPU intervention, the
firmware has certain responsibilities:

• Configure the endpoints.

• Respond to host requests on CONTROL endpoint zero.

• Control and monitor GPIF activity.

• Handle all application-specific tasks using its USARTs, counter-timers, interrupts, I/O pins,
etc.

8.2 FX2 Large and Small Endpoints

FX2 endpoint buffers are divided into “small” and “large” groups. EP0 and EP1 are small, 64-byte
endpoints which are accessible only by the CPU; they can’t be connected directly to external logic.

EP2, EP4, EP6 and EP8 are large, configurable endpoints designed to meet the high-bandwidth
requirements of USB 2.0. Although data normally flows through the large endpoint buffers under

Exhibit 2058 - Page 137 of 460

EZ-USB FX2 Technical Reference Manual

Page 8-2 EZ-USB FX2 Technical Reference Manual v2.1

control of the FIFO interfaces described in Chapters 9 and 10, the CPU can access the large end-
points if necessary.

8.3 High-Speed and Full-Speed Differences

FX2 operates at both full speed (12 Mbps) and high speed (480 Mbps). The data-payload-size and
transfer-speed requirements differ between the two modes. FX2 architecture is optimized for high
speed transfers:

• Instead of many small endpoint buffers, FX2 provides a reduced number of large buffers.

• FX2 provides double, triple or quad buffering on its large endpoints (EP2, 4, 6, and 8).

• The CPU need not participate in high-bandwidth transfers. Instead, dedicated FX2 logic
and unified endpoint/interface FIFOs move data on and off the chip at USB 2.0 rates with-
out any CPU intervention.

FX2 endpoint buffers appear to have different sizes depending on whether the FX2 is operating at
full or high speed. This is due to the difference in maximum packet sizes allowed by the USB spec-
ification for the two modes, as illustrated by Table 8-1.

Although the EP2, EP4, EP6 and EP8 buffers are physically large, they appear as smaller buffers
when the FX2 is operating at full speed to account for the smaller maximum packet sizes.

When operating at high speed, firmware can configure the large endpoints’ size, type, and buffer-
ing; when operating at full speed, type and buffering are configurable but the maximum packet
size is always fixed at 64 bytes for the non-isochronous types.

Table 8-1. Maximum Packet Sizes for USB 1.1 and 2.0

Transfer Type Max Packet Size

USB 1.1 USB 2.0

CONTROL (EP0 only) 8,16,32,64 64

BULK 8,16,32,64 512

INTERRUPT 1-64 1-1024

ISOCHRONOUS 1-1023 1-1024

Exhibit 2058 - Page 138 of 460

Chapter 8. Access to Endpoint Buffers Page 8-3

8.4 How the CPU Configures the Endpoints

Endpoints are configured via the six registers shown in Table 8-2.

Chapter 15 gives full bit-level details for all registers.

Endpoint 0 does not require a configuration register since it is fixed as valid, IN/OUT, CONTROL,
64 bytes, single-buffered. EP0 uses a single 64-byte buffer both for IN and OUT transfers. EP1
uses separate 64 byte buffers for IN and OUT transfers.

Endpoints 2, 4, 6 and 8 handle the high bandwidth USB 2.0 transfers. Endpoints EP2 and EP6 are
the most flexible endpoints, as they are configurable for size (512 or 1024 bytes) and depth of buff-
ering (double, triple, or quad). Endpoints EP4 and EP8 are fixed at 512 bytes, double-buffered.

The bits in these registers control the following:

• Valid. Set to 1 (default) to enable the endpoint. A non-valid endpoint does not respond to
host IN or OUT packets.

• Type. Two bits, TYPE1:0 (bits 5 and 4) set the endpoint type:

– 00 = invalid

– 01 = ISOCHRONOUS (EP2,4,6,8 only)

– 10 = BULK (default)

– 11 = INTERRUPT

• Direction. 1 = IN, 0 = OUT.

• Buffering. EP2 and EP6 only. Two bits, BUF1:0 control the depth of buffering:

– 00 = quad

Table 8-2. Endpoint Configuration Registers

Address Name Configurable Parameters

0xE610 EP1OUTCFG valid, type1 (always OUT, 64 bytes, single-buffered)

0xE611 EP1INCFG valid, type1 (always IN, 64 bytes, single-buffered)

0xE612 EP2CFG valid, direction, type, size, buffering

0xE613 EP4CFG valid, direction, type (always 512 double-buffered)

0xE614 EP6CFG valid, direction, type, size, buffering

0xE615 EP8CFG valid, direction, type (always 512 double-buffered)

Note 1: For EP1, “type” may be set to Interrupt or Bulk only.

Exhibit 2058 - Page 139 of 460

EZ-USB FX2 Technical Reference Manual

Page 8-4 EZ-USB FX2 Technical Reference Manual v2.1

– 01 = invalid

– 10 = double (default)

– 11 = triple

“Buffering” refers to the number of RAM blocks available to the endpoint. With double buffering,
for example, USB data can fill or empty an endpoint buffer at the same time that another packet
from the same endpoint fills or empties from the external logic. This technique maximizes perfor-
mance by saving each side, USB and external-logic interface, from waiting for the other side. Mul-
tiple buffering is most effective when the providing and consuming rates are comparable but
bursty (as is the case with USB and many other interfaces, such as disk drives). Assigning more
RAM blocks (triple and quad buffering) provides more “smoothing” of the bursty data rates. A sim-
ple way to determine the appropriate buffering depth is to start with the minimum, then increase it
until no NAKs appear on the USB side and no wait states appear on the interface side.

8.5 CPU Access to FX2 Endpoint Data

Endpoint data is visible to the CPU at the addresses shown in Table 8-3. Whenever the application
calls for endpoint buffers smaller than the physical buffer sizes shown in Tabl e8-3, the CPU
accesses the endpoint data starting from the lowest address in the buffer. For example, if EP2 has
a reported MaxPacketSize of 512 bytes, the CPU accesses the data in the lower portion of the
EP2 buffer (i.e., from 0xF000 to 0xF1FF). Similarly, if the FX2 is operating in full speed mode
(which dictates a maximum Bulk packet size of only 64 bytes), only the lower 64 bytes of the end-
point (i.e., 0xF000-0xF03F for EP2) will be used for Bulk data.

EP0BUF is for the (optional) data stage of a CONTROL transfer. The eight bytes of data from the
CONTROL packet appear in a separate FX2 RAM buffer called SETUPDAT, at 0xE6B8-0xE6BF.

The CPU can only access the “active” buffer of a multiple-buffered endpoint. In other words, firm-
ware must treat a quad-buffered 512-byte endpoint as being only 512 bytes wide, even though the
quad-buffered endpoint actually occupies 2048 bytes of RAM. Also, when EP2 and EP6 are con-
figured such that EP4 and/or EP8 are unavailable, the firmware must never attempt to access the
buffers corresponding to those unavailable endpoints.

Table 8-3. Endpoint Buffers in RAM Space

Name Address Size (bytes)

EPOBUF 0xE740-0xE77F 64

EP1OUTBUF 0xE780-0xE7BF 64

EP1INBUF 0xE7C0-0xE7FF 64

EP2FIFOBUF 0xF000-0xF3FF 1024

EP4FIFOBUF 0xF400-0xF5FF 512

EP6FIFOBUF 0xF800-0xFBFF 1024

EP8FIFOBUF 0xFC00-0xFDFF 512

Exhibit 2058 - Page 140 of 460

Chapter 8. Access to Endpoint Buffers Page 8-5

For example, if EP2 is configured for triple-buffered 1024-byte operation, the firmware should
access EP2 only at 0xF000-0xF3FF. The firmware should not access the EP4 or EP6 buffers in
this configuration, since they don’t exist (the RAM space which they would normally occupy is used
to implement the EP2 triple-buffering).

8.6 CPU Control of FX2 Endpoints

From the CPU’s point of view, the “small” and “large” endpoints operate slightly differently, due to
the multiple-packet buffering scheme used by the large endpoints.

The CPU uses internal registers to control the flow of endpoint data. Since the small endpoints
EP0 and EP1 are programmed differently than the large endpoints EP2, EP4, EP6, and EP8,
these registers fall into three categories:

• Registers that apply to the small endpoints (EP0, EP1IN, and EP1OUT)

• Registers that apply to the large endpoints (EP2, EP4, EP6, and EP8)

• Registers that apply to both sets of endpoints

8.6.1 Registers That Control EP0, EP1IN, and EP1OUT

8.6.1.1 EP0CS

Firmware uses this register to coordinate CONTROL transfers over endpoint 0. The EP0CS regis-
ter contains three bits: HSNAK, BUSY and STALL.

Table 8-4. Registers that control EP0 and EP1

Address Name Function

0xE6A0 EP0CS EP0 HSNAK, Busy, Stall

0xE68A
0xE68B

EP0BCH
EP0BCL

EP0 Byte Count (MSB)
EP0 Byte Count (LSB)

0xE65C
0xE65D

USBIE
USBIRQ

EP0 Interrupt Enables
EP0 Interrupt Requests

SFR 0xBA EP01STAT Endpoint 0 and 1 Status

0xE6A1 EP1OUTCS EP1OUT Busy, Stall

0xE68D EP1OUTBC EP1OUT Byte Count

0xE6A2 EP1INCS EP1IN Busy, Stall

0xE68F EP1INBC EP1IN Byte Count

Exhibit 2058 - Page 141 of 460

EZ-USB FX2 Technical Reference Manual

Page 8-6 EZ-USB FX2 Technical Reference Manual v2.1

HSNAK

HSNAK is automatically set to 1 whenever the SETUP token of a CONTROL transfer arrives. The
FX2 logic automatically NAKs the STATUS (handshake) stage of the CONTROL transfer until the
firmware clears the HSNAK bit by writing “1” to it. This mechanism gives the firmware a chance to
hold off subsequent transfers until it completes the actions required by the CONTROL transfer.

Firmware must clear the HSNAK bit after servicing every CONTROL transfer.

BUSY

The read-only BUSY bit is relevant only for the data stage of a CONTROL transfer. BUSY=1 indi-
cates that the endpoint is currently being serviced by USB, so firmware should not access the end-
point data.

BUSY is automatically cleared to 0 whenever the SETUP token of a CONTROL transfer arrives.
The BUSY bit is set to 1 under different conditions for IN and OUT transfers.

For IN transfers, FX2 logic will NAK all IN0 tokens until the firmware has “armed” EP0 for IN trans-
fers by writing to the EP0BCH:L Byte Count register, which sets BUSY=1 to indicate that firmware
should not access the data. Once the endpoint data is sent and acknowledged, BUSY is automat-
ically cleared to 0 and the EP0IN interrupt request bit is asserted. After BUSY is automatically
cleared to 0, the firmware may refill the EP0IN buffer.

For OUT transfers, FX2 logic will NAK all OUT0 tokens until the firmware has “armed” EP0 for
OUT transfers by writing any value to the EP0BCL register. BUSY is automatically set to 1 when
the firmware writes to EP0BCL, and BUSY is automatically cleared to 0 after the data has been
correctly received and ACK’d. When BUSY transitions to zero, the FX2 also generates an
EP0OUT interrupt request.

The FX2’s autovectored interrupt system automatically transfers control to the appropriate ISR
(Interrupt Service Routine) for the endpoint requiring service. Chapter 4, "Interrupts" describes this
mechanism.

STALL

Set STALL=1 to instruct the FX2 to return the STALL response to a CONTROL transfer. This is
generally done when the firmware does not recognize an incoming USB request. According to the
USB spec, endpoint zero must always accept transfers, so STALL is automatically cleared to 0
whenever a SETUP token arrives. If it’s desired to stall a transfer and also clear HSNAK to 0 (by
writing a 1 to it), the firmware should set STALL=1 first, in order to ensure that the STALL bit is set
before the “acknowledge” phase of the CONTROL transfer can complete.

Exhibit 2058 - Page 142 of 460

Chapter 8. Access to Endpoint Buffers Page 8-7

8.6.1.2 EP0BCH and EP0BCL

These are the byte count registers for bytes sent as the optional data stage of a CONTROL trans-
fer. Although the EP0 buffer is only 64 bytes wide, the byte count registers are 16 bits wide to allow
using the Setup Data Pointer to send USB IN data records that consist of multiple packets.

To use the Setup Data Pointer in its most-general mode, firmware clears the SUDPTR AUTO bit
and writes the address of a data block into the Setup Data Pointer, then loads the EP0BCH:L reg-
isters with the total number of bytes to transfer. The FX2 automatically transfers the entire block,
partitioning the data into MaxPacketSIze packets as necessary.

The Setup Data Pointer is the subject of Section 8.7.

For IN transfers without using the Setup Data Pointer, firmware loads data into EP0BUF, then
writes the number of bytes to transfer into EP0BCH and EP0BCL. The packet is armed for IN
transfer when the firmware writes to EP0BCL, so EP0BCH should always be loaded first. These
transfers are always 64 bytes or less, so EP0BCH must be loaded with 0 (and EP0BCL must be in
the range [0-64]). EP0BCH will hold that zero value until firmware overwrites it.

For EP0 OUT transfers, the byte count registers indicate the number of bytes received in EP0BUF.
Byte counts for EP0 OUT transfers are always 64 or fewer, so EP0BCH is always zero after an
OUT transfer. To re-arm the EP0 buffer for a future OUT transfer, the firmware simply writes any
value to EP0BCL.

The EP0BCH register must be initialized on reset, since its power-on-reset state is undefined.

8.6.1.3 USBIE, USBIRQ

Three interrupts — SUTOK, SUDAV, and EP0ACK — are used to manage CONTROL transfers
over endpoint zero. The individual enables for these three interrupt sources are in the USBIE reg-
ister, and the interrupt-request flags are in the USBIRQ register.

Each of the three interrupts signals the completion of a different stage of a CONTROL transfer.

• SUTOK (“Setup Token”) asserts when FX2 receives the SETUP token.

• SUDAV (“Setup Data Available”) asserts when FX2 logic has loaded the eight bytes from
the SETUP stage into the 8-byte buffer at SETUPDAT.

• EP0ACK (“Endpoint Zero Acknowledge”) asserts when the handshake stage has com-
pleted.

The SUTOK interrupt is not normally used; it is provided for debug and diagnostic purposes. Firm-
ware generally services the CONTROL transfer by responding to the SUDAV interrupt, since this
interrupt fires only after the 8 setup bytes are available for examination in the SETUPDAT buffer.

Exhibit 2058 - Page 143 of 460

EZ-USB FX2 Technical Reference Manual

Page 8-8 EZ-USB FX2 Technical Reference Manual v2.1

8.6.1.4 EP01STAT

The BUSY bits in EP0CS, EP1OUTCS, and EP1INCS (described later in this chapter) are repli-
cated in this SFR; they are provided here in order to allow faster access (via the MOV instruction
rather than MOVX) to those bits.

Three status bits are provided in the EP01STAT register; the status bits are the following:

• EP1INBSY: 1 = EP1IN is busy

• EP1OUTBSY: 1 = EP1OUT is busy

• EP0BSY: 1 = EP0 is busy

8.6.1.5 EP1OUTCS

This register is used to coordinate BULK or INTERRUPT transfers over EP1OUT. The
EP1OUTCS register contains two bits, BUSY and STALL.

BUSY

This bit indicates when the firmware can read data from the Endpoint 1 OUT buffer. BUSY=1
means that the SIE “owns” the buffer, so firmware should not read (or write) the buffer. BUSY=0
means that the firmware may read from (or write to) the buffer. A 1-to-0 BUSY transition asserts
the EP1OUT interrupt request, signaling that new EP1OUT data is available.

BUSY is automatically cleared to 0 after the FX2 verifies the OUT data for accuracy and ACKs the
transfer. If a transmission error occurs, the FX2 automatically retries the transfer; error recovery is
transparent to the firmware.

Firmware arms the endpoint for OUT transfers by writing any value to the byte count register
EP1OUTBC, which automatically sets BUSY=1.

At power-on (or whenever a 0-to-1 transition occurs on the RESET pin), the BUSY bit is set to 0,
so the FX2 will NAK all EP1OUT transfers until the firmware arms EP1OUT by writing any value to
EP1OUTBC.

EZ-USB / EZ-USB FX Programmers:

The power-on state of all FX2 endpoint BUSY bits is zero, in contrast to EZ-USB and EZ-USB FX,
whose BUSY bits for OUT endpoints default to one. This means that FX2 firmware must arm OUT
endpoints prior to using them (EZ-USB and EZ-USB FX accept one OUT transfer before the OUT
endpoint must be armed).

Exhibit 2058 - Page 144 of 460

Chapter 8. Access to Endpoint Buffers Page 8-9

STALL

Firmware sets STALL=1 to instruct the FX2 to return the STALL PID (instead of ACK or NAK) in
response to an EP1OUT transfer. The FX2 will continue to respond to EP1OUT transfers with the
STALL PID until the firmware clears this bit.

8.6.1.6 EP1OUTBC

Firmware may read this 7-bit register to determine the number of bytes (0-64) in EP1OUTBUF.

Firmware writes any value to EP1OUTBC to arm an EP1OUT transfer.

8.6.1.7 EP1INCS

This register is used to coordinate BULK or INTERRUPT transfers over EP1IN. The EP1INCS reg-
ister contains two bits, BUSY and STALL.

BUSY

This bit indicates when the firmware can load data into the Endpoint 1 IN buffer. BUSY=1 means
that the SIE “owns” the buffer, so firmware should not write (or read) the buffer. BUSY=0 means
that the firmware may write data into (or read from) the buffer. A 1-to-0 BUSY transition asserts the
EP1IN interrupt request, signaling that the EP1IN buffer is free and ready to be loaded with new
data.

The firmware schedules an IN transfer by loading up to 64 bytes of data into EP1INBUF, then writ-
ing the byte count register EP1INBC with the number of bytes loaded (0-64). Writing the byte count
register automatically sets BUSY=1, indicating that the transfer over USB is pending. After the FX2
subsequently receives an IN token, sends the data, and successfully receives an ACK from the
host, BUSY is automatically cleared to 0 to indicate that the buffer is ready to accept more data.
This generates the EP1IN interrupt request, which signals that the buffer is again available.

At power-on, or whenever a 0-to-1 transition occurs on the RESET pin, the BUSY bit is set to 0,
meaning that the FX2 will NAK all EP1IN transfers until the firmware arms the endpoint by writing
the number of bytes to transfer into the EP1INBC register.

STALL

Firmware sets STALL=1 to instruct the FX2 to return the STALL PID (instead of ACK or NAK) in
response to an EP1IN transfer. The FX2 will continue to respond to EP1IN transfers with the
STALL PID until the firmware clears this bit.

8.6.1.8 EP1INBC

Firmware arms an IN transfer by loading this 7-bit register with the number of bytes (0-64) it has
previously loaded into EP1INBUF.

Exhibit 2058 - Page 145 of 460

EZ-USB FX2 Technical Reference Manual

Page 8-10 EZ-USB FX2 Technical Reference Manual v2.1

8.6.2 Registers That Control EP2, EP4, EP6, EP8

In order to achieve the high transfer bandwidths required by USB 2.0’s high-speed mode,
the FX2’s CPU should not participate in transfers to and from the “large” endpoints.
Instead, those endpoints are usually connected directly to external logic (see Chapter 9 and Chap-
ter 10 for details).

Some applications, however, may require the firmware to have at least some small amount of con-
trol over the large endpoints. For those applications, the FX2 provides the registers shown in
Table 8-5.

8.6.2.1 EP2468STAT

The Endpoint Full and Endpoint Empty status bits (described below, in Section 8.6.2.3) are repli-
cated here in order to allow faster access by the firmware.

8.6.2.2 EP2ISOINPKTS, EP4ISOINPKTS, EP6ISOINPKTS, EP8ISOINPKTS

For high-speed (480 Mbps) ISOCHRONOUS IN endpoints only, the INPPF1 and INPPF0 bits in
each of these registers determine the number of packets per microframe.

Table 8-5. Registers that control EP2,EP4,EP6 and EP8

Address Name Function

SFR 0xAA EP2468STAT EP2, 4, 6, 8 empty/full

0xE648 INPKTEND force end of IN packet

0xE640 EP2ISOINPKTS ISO IN packets per frame or microframe

0xE6A3 EP2CS npak, full, empty, stall

0xE690 EP2BCH byte count (H)

0xE691 EP2BCL byte count (L)

0xE641 EP4ISOINPKTS ISO IN packets per frame or microframe

0xE6A4 EP4CS npak, full, empty, stall

0xE694 EP4BCH byte count (H)

0xE695 EP4BCL byte count (L)

0xE642 EP6ISOINPKTS ISO IN packets per frame/microframe

0xE6A5 EP6CS npak, full, empty, stall

0xE698 EP6BCH byte count (H)

0xE699 EP6BCL byte count (L)

0xE643 EP8ISOINPKTS ISO IN packets per frame/microframe

0xE6A6 EP8CS npak, full, empty, stall

0xE69C EP8BCH byte count (H)

0xE69D EP8BCL byte count (L)

Exhibit 2058 - Page 146 of 460

Chapter 8. Access to Endpoint Buffers Page 8-11

These registers do not affect full-speed (12 Mbps) operation; full-speed isochronous transfers are
always fixed at one packet per frame.

Table 8-6. Isochronous IN Packets per Microframe, High-Speed Only

8.6.2.3 EP2CS, EP4CS, EP6CS, EP8CS

Because the four large FX2 endpoints offer double, triple or quad buffering, a single BUSY bit is
not sufficient to convey the state of these endpoint buffers. Therefore, these endpoints have multi-
ple bits (NPAK, FULL, EMPTY) that can be inspected in order to determine the state of the end-
point buffers.

Multiple-buffered endpoint data must be read or written only at the buffer addresses given in
Table 8-3. The FX2 automatically switches the multiple buffers in and out of the single addressable
buffer space.

NPAK[2:0] (EP2, EP6) and NPAK[1:0] (EP4, EP8)

NPAK values have different interpretations for IN and OUT endpoints:

• OUT Endpoints: NPAK indicates the number of packets received over USB and ready for
the firmware to read.

• IN Endpoints: NPAK indicates the number of IN packets committed to USB (i.e., loaded
and armed for USB transfer), and thus unavailable to the firmware.

The NPAK fields differ in size to account for the depth of buffering available to the endpoints. Only
double buffering is available for EP4 and EP8 (two NPAK bits), and up to quad buffering is avail-
able for EP2 and EP6 (three NPAK bits).

FULL

While FULL and EMPTY apply to transfers in both directions, “FULL” is more useful for IN trans-
fers. It has the same meaning as “BUSY”, but applies to multiple-buffered IN endpoints. FULL=1
means that all buffers are committed to USB, and none are available for firmware access.

For IN transfers, FULL=1 means that all buffers are committed to USB, so firmware should not
load the endpoint buffer with any more data. When FULL=1, NPAK will hold 2, 3 or 4, depending
on the buffering depth (double, triple or quad). This indicates that all buffers are in use by the USB

INPPF1 INPPF0 Packets
0 0 Invalid

0 1 1

1 0 2

1 1 3

Exhibit 2058 - Page 147 of 460

EZ-USB FX2 Technical Reference Manual

Page 8-12 EZ-USB FX2 Technical Reference Manual v2.1

transfer logic. As soon as one buffer becomes available, FULL will be cleared to 0 and NPAK will
decrement by one, indicating that all but one of the buffers are committed to USB (i.e., one is avail-
able for firmware access). As IN buffers are transferred over USB, NPAK decrements to indicate
the number still pending, until all are sent and NPAK=0.

EMPTY

While FULL and EMPTY apply to transfers in both directions, EMPTY is more useful for OUT
transfers. EMPTY=1 means that the buffers are empty; all received packets (2, 3, or 4, depending
on the buffering depth) have been serviced.

STALL

Firmware sets STALL=1 to instruct the FX2 to return the STALL PID (instead of ACK or NAK) in
response to an IN or OUT transfer. The FX2 will continue to respond to IN or OUT transfers with
the STALL PID until the firmware clears this bit.

8.6.2.4 EP2BCH:L, EP4BCH:L, EP6BCH:L, EP8BCH:L

Endpoints EP2 and EP6 have 11-bit byte count registers to account for their maximum buffer sizes
of 1024 bytes. Endpoints EP4 and EP8 have 10-bit byte count registers to account for their maxi-
mum buffer sizes of 512 bytes.

The byte count registers function similarly to the EP0 and EP1 byte count registers:

• For an IN transfer, the firmware loads the byte count registers to arm the endpoint (if
EPxBCH must be loaded, it should be loaded first, since the endpoint is armed when
EPxBCL is loaded).

• For an OUT transfer, the firmware reads the byte count registers to determine the number
of bytes in the buffer, then writes any value to the low byte count register to re-arm the
endpoint. See the “Skip” section, below, for further details.

SKIP

Normally, the CPU interface and outside-logic interface to the endpoint FIFOs are independent,
with separate sets of control bits for each interface. The AUTOOUT mode and the SKIP bit imple-
ment an “overlap” between these two domains. A brief introduction to the AUTOOUT mode is
given below; full details appear in Chapter 9, "Slave FIFOs."

When outside logic is connected to the interface FIFOs, the normal data flow is for the FX2 auto-
matically to commit OUT data packets to the outside interface FIFO as they become available.
This ensures an uninterrupted flow of OUT data from the host to the outside world, and preserves
the high bandwidth required by high speed mode.

In some cases, it may be desirable to insert a “hook” into this data flow, so that -- rather than the
FX2 automatically committing the packets to the outside interface as they are received over USB,
firmware receives an interrupt for every received OUT packet, then has the option to either commit

Exhibit 2058 - Page 148 of 460

Chapter 8. Access to Endpoint Buffers Page 8-13

the packet to the outside interface (the “output FIFO”), or discard it. The firmware might, for exam-
ple, inspect a packet header to make this skip/commit decision.

To enable this “hook”, the AUTOOUT bit is cleared to 0. If AUTOOUT = 0 and an OUT endpoint is
re-armed by writing to its low byte-count register, the actual value written to the register becomes
significant:

• If the SKIP bit (bit 7 of each EPxBCL register) is cleared to 0, the packet will be committed
to the output FIFO and thereby made available to the FIFO’s master (either external logic
or the internal GPIF).

• If the SKIP bit is set to 1, the just-received OUT packet will not be committed to the output
FIFO for transfer to the external logic; instead, the packet will be ignored, its buffer will
immediately be made available for the next OUT packet, and the output FIFO (and exter-
nal logic) will never even “know” that it arrived.

The AUTOOUT bit appears in bit 4 of the Endpoint FIFO Configuration Registers EP2FIFOCFG,
EP4FIFOCFG, EP6FIFOCFG and EP8FIFOCFG.

8.6.3 Registers That Control All Endpoints

Table 8-7. Registers that control all endpoints

0xE658 IBNIE IN-BULK-NAK individual interrupt enables

0xE659 IBNIRQ IN-BULK-NAK individual interrupt requests

0xE65A NAKIE PING plus combined IBN-interrupt enable

0xE65B NAKIRQ PING plus combined IBN-interrupt request

0xE65C USBIE SUTOK, SUDAV, EP0-ACK, SOF interrupt enables

0xE65D USBIRQ SUTOK, SUDAV, EP0-ACK, and SOF interrupt requests

0xE65E EPIE Endpoint interrupt enables

0xE65F EPIRQ Endpoint interrupt requests

0xE662 USBERRIE USB error interrupt enables

0xE663 USBERRIE USB error interrupt requests

0xE664 ERRCNTLIM USB error counter and limit

0xE665 CLRERRCNT Clear error count

0xE683 TOGCTL EP0/EP1 data toggle

Exhibit 2058 - Page 149 of 460

EZ-USB FX2 Technical Reference Manual

Page 8-14 EZ-USB FX2 Technical Reference Manual v2.1

8.6.3.1 IBNIE, IBNIRQ, NAKIE, NAKIRQ

These registers contain the interrupt-enable and interrupt-request bits for two endpoint conditions,
IN-BULK-NAK and PING.

IN-BULK-NAK (IBN)

When the host requests an IN packet from an FX2 BULK endpoint, the endpoint NAKs (returns the
NAK PID) until the endpoint buffer is filled with data and armed for transfer, at which point the FX2
answers the IN request with data.

Until the endpoint is armed, a flood of IN-NAKs can tie up bus bandwidth. Therefore, if the IN end-
points aren’t always kept full and armed, it may be useful to know when the host is “knocking at
the door”, requesting IN data.

The IN-BULK-NAK (IBN) interrupt provides this notification. The IBN interrupt fires whenever a
BULK endpoint NAKs an IN request. The IBNIE/IBNIRQ registers contain individual enable and
request bits per endpoint, and the NAKIE/NAKIRQ registers each contain a single bit, IBN, that is
the OR’d combination of the individual bits in IBNIE/IBNIRQ, respectively.

Firmware enables an interrupt by setting the enable bit high, and clears an interrupt request bit by
writing a 1 to it.

The FX2 interrupt system is described in detail in Chapter 4, "Interrupts."

The IBNIE register contains an individual interrupt-enable bit for each endpoint: EP0, EP1, EP2,
EP4, EP6 and EP8. These bits are valid only if the endpoint is configured as a BULK or INTER-
RUPT endpoint. The IBNIRQ register similarly contains individual interrupt request bits for the 6
endpoints.

The IBN interrupt-service routine should take the following actions, in the order shown:

1. Clear the USB (INT2) interrupt request (by writing 0 to it).

2. Inspect the endpoint bits in IBNIRQ to determine which IN endpoint just NAK’d.

3. Take the required action (set a flag, arm the endpoint, etc.), then clear the individual IBN bit in
IBNIRQ for the serviced endpoint (by writing 1 to it).

4. Repeat steps (2) and (3) for any other endpoints that require IBN service, until all IRQ bits are
cleared.

5. Clear the IBN bit in the NAKIRQ register (by writing 1 to it).

Because the IBN bit represents the OR’d combination of the individual IBN interrupt requests, it
will not “fire” again until all individual IBN interrupt requests have been serviced and cleared.

Exhibit 2058 - Page 150 of 460

Chapter 8. Access to Endpoint Buffers Page 8-15

PING

PING is the “flip side” of IBN; it’s used for high speed (480 Mbits/sec) BULK OUT transfers.

When operating at full speed (USB 1.1 spec), every host OUT transfer consists of the OUT PID
and the endpoint data, even if the endpoint is NAKing (not ready). While the endpoint is not ready,
the host repeatedly sends all the OUT data; if it’s repeatedly NAK’d, bus bandwidth is wasted.

USB 2.0 introduced a new mechanism, called PING, that makes better use of bus bandwidth for
“unready” BULK OUT endpoints.

At high speed (USB 2.0 spec), the host can “ping” a BULK OUT endpoint to determine if it is ready
to accept data, holding off the OUT data transfer until it can actually be accepted. The host sends
a PING token, and the FX2 responds with:

• An ACK to indicate that there is space in the OUT endpoint buffer

• A NAK to indicate “not ready, try later”.

The PING interrupts indicate that an FX2 BULK OUT endpoint returned a NAK in response to a
PING.

PING only applies at high speed (480 Mbits/sec).

Unlike the IBN bits, which are combined into a single IBN interrupt for all endpoints, each BULK
OUT endpoint has a separate interrupt (EP0PING, EP1PING, EP2PING,, EP8PING). Interrupt-
enables for the individual interrupts are in the NAKIE register; the interrupt-requests are in the
NAKIRQ register.

The interrupt service routine for the PING interrupts should perform the following steps, in the
order shown:

1. Clear the INT2 interrupt request.

2. Take the action for the requesting endpoint.

3. Clear the appropriate EPxPING bit for the endpoint.

8.6.3.2 EPIE, EPIRQ

These registers are used to manage interrupts from the FX2 endpoints. In general, an interrupt
request is asserted whenever the following occurs:

• An IN endpoint buffer becomes available for the CPU to load.

• An OUT endpoint has new data for the CPU to read.

Exhibit 2058 - Page 151 of 460

EZ-USB FX2 Technical Reference Manual

Page 8-16 EZ-USB FX2 Technical Reference Manual v2.1

For the small endpoints (EP0 and EP1IN/OUT), these conditions are synonymous with the end-
point BUSY bit making a 1-to-0 transition (busy to not-busy). As with all FX2 interrupts, this one is
enabled by writing a “1” to its enable bit, and the interrupt flag by writing a “1” to it.

Do not attempt to clear an IRQ bit by reading the IRQ register, ORing its contents with a bit mask
(e.g. 00010000), then writing the contents back to the register. Since a “1” clears an IRQ bit, this
clears all the asserted IRQ bits rather than just the desired one. Instead, simply write a single “1”
(e.g., 00010000) to the register.

8.6.3.3 USBERRIE, USBERRIRQ, ERRCNTLIM, CLRERRCNT

These registers are used to monitor the “health” of the USB connection between the FX2 and the
host.

USBERRIE

This register contains the interrupt-enable bits for the “Isochronous Endpoint Error” interrupts and
the “USB Error Limit” interrupt.

An “Isochronous Endpoint Error” occurs when the FX2 detects a PID sequencing error for a high-
bandwidth, high-speed ISO endpoint.

USBERRIRQ

This register contains the interrupt flags for the “Isochronous Endpoint Error” interrupts and the
“USB Error Limit” interrupt.

ERRCNTLIM

FX2 firmware sets the USB error limit to any value from 1 to 15 by writing that value to the lower
nibble of this register; when that many USB errors (CRC errors, Invalid PIDs, garbled packets,
etc.) have occurred, the “USB Error Limit” interrupt flag will be set. At power-on-reset, the error
limit defaults to 4 (0100 binary).

The upper nibble of this register contains the current USB error count.

CLRERRCNT

Writing any value to this register clears the error count in the upper nibble of ERRCNTLIM. The
lower nibble of ERRCNTLIM is not affected.

8.6.3.4 TOGCTL

As described in Chapter 1, "Introducing EZ-USB FX2" the host and device maintain a data toggle
bit, which is toggled between data packet transfers. There are certain times when the firmware
must reset an endpoint’s data toggle bit to 0:

Exhibit 2058 - Page 152 of 460

Chapter 8. Access to Endpoint Buffers Page 8-17

• After a configuration changes (i.e., after the host issues a Set Configuration request).

• After an interface’s alternate setting changes (i.e., after the host issues a Set Interface
request).

• After the host sends a Clear Feature - Endpoint Stall request to an endpoint.

For the first two, the firmware must clear the data toggle bits for all endpoints contained in the
affected interfaces. For the third, only one endpoint’s data toggle bit is cleared.

The TOGCTL register contains bits to set or clear an endpoint data toggle bit, as well as to read
the current state of a toggle bit.

At this writing, there is no known reason for firmware to set an endpoint toggle to “1”. Also, since
the FX2 handles all data toggle management, normally there is no reason to know the state of a
data toggle. These capabilities are included in the TOGCTL register for completeness and debug
purposes.

A two-step process is employed to clear an endpoint data toggle bit to 0. First, writes the TOGCTL
register with an endpoint address (EP3:EP0) plus a direction bit (IO). Then, keeping the endpoint
and direction bits the same, write a “1” to the R (reset) bit. For example, to clear the data toggle for
EP6 configured as an “IN” endpoint, write the following values sequentially to TOGCTL:

• 00010110

• 00110110

8.7 The Setup Data Pointer

The USB host sends device requests using CONTROL transfers over endpoint 0. Some requests
require the FX2 to return data over EP0. During enumeration, for example, the host issues Get
Descriptor requests that ask for the device’s capabilities and requirements. The returned data can
span many packets, so it must be partitioned into packet-sized blocks, then the blocks must be
sent at the appropriate times (i.e., when the EP0 buffer becomes ready).

TOGCTL Data Toggle Control E683

b7 b6 b5 b4 b3 b2 b1 b0

Q S R IO EP3 EP2 EP1 EP0

R R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

Exhibit 2058 - Page 153 of 460

EZ-USB FX2 Technical Reference Manual

Page 8-18 EZ-USB FX2 Technical Reference Manual v2.1

The Setup Data Pointer automates this process of returning IN data over EP0, simplifying the firm-
ware.

For the Setup Data Pointer to work properly, EP0’s MaxPacketSize must be set to 64.

Table 8-8 lists the registers which configure the Setup Data Pointer.

To send a block of data, the block’s starting address is loaded into SUDPTRH:L. The block length
must previously have been set; the method for accomplishing this depends on the state of the
SDPAUTO bit:

• SDPAUTO = 0 (Manual Mode): Used for general-purpose block transfers. Firmware
writes the block length to EP0BCH:L.

• SDPAUTO = 1 (Auto Mode): Used for sending Device, Configuration, String, Device
Qualifier, and Other Speed Configuration descriptors only. The block length is automati-
cally read from the “length” field of the descriptor itself; no explicit loading of EP0BCH:L is
necessary.

Writing to SUDPTRL starts the transfer; the FX2 automatically sends the entire block, packetizing
as necessary.

For example, to answer a Get Descriptor - Device request, firmware sets SDPAUTO = 1, then
loads the address of the device descriptor into SUDPTRH:L. The FX2 then automatically loads the
EP0 data buffer with the required number of packets and transfers them to the host.

To command the FX2 to ACK the status (handshake) packet, the firmware clears the HSNAK bit
(by writing 1 to it) before starting the Setup Data Pointer transfer.

If the firmware needs to know when the transaction is complete (i.e., sent and acknowledged), it
can enable the EP0ACK interrupt before starting the Setup Data Pointer transfer.

When SDPAUTO = 0, writing to EP0BCH:L only sets the block length; it does not arm the transfer
(the transfer is armed by writing to SUDPTRL). Therefore, before performing an EP0 transfer
which does not use the Setup Data Pointer (i.e., one which is meant to be armed by writing to
EP0BCL), SDPAUTO must be set to 1.

Table 8-8. Registers used to control the Setup Data Pointer

Address Register Name Function

0xE6B3 SUDPTRH High address

0xE6B4 SUDPTRL Low address

0xE6B5 SUDPTRCTL SDPAUTO bit

Exhibit 2058 - Page 154 of 460

Chapter 8. Access to Endpoint Buffers Page 8-19

8.7.1 Transfer Length

When the host makes any EP0IN request, the FX2 respects the following two length fields:

• the requested number of bytes (from the last two bytes of the SETUP packet received
from the host)

• the available number of bytes, supplied either as a length field in the actual descriptor
(SDPAUTO=1) or in EP0BCH:L (SDPAUTO=0)

In accordance with the USB Specification, the FX2 sends the smaller of these two length fields.

8.7.2 Accessible Memory Spaces

The Setup Data Pointer can access data in either of two RAM spaces:

• On-chip Main RAM (8 KB at 0x0000-0x1FFF)

• On-chip Scratch RAM (512 bytes at 0xE000-0xE1FF)

The Setup Data Pointer cannot be used to access off-chip memory at any address.

8.8 Autopointers

Endpoint data is available to the CPU in RAM buffers (see Table 8-3). In some cases, it is faster for
the firmware to access endpoint data as though it were in a FIFO register. The FX2 provides two
special data pointers, called “Autopointers”, that automatically increment after each byte transfer.
Using the Autopointers, firmware can access contiguous blocks of on- or off-chip data memory as
a FIFO.

Each Autopointer is controlled by a 16-bit address register (AUTOPTRnH:L), a data register (XAU-
TODATn), and a control bit (APTRnINC). An additional control bit, APTREN, enables both Auto-
pointers.

A read from (or write to) an Autopointer data register actually accesses the address pointed to by
the corresponding Autopointer address register, which increments on every data-register access.
To read or write a contiguous block of memory (for example, an endpoint buffer) using an Auto-
pointer, load the Autopointer’s address register with the starting address of the block, then repeat-
edly read or write the Autopointer’s data register.

The AUTOPTRnH:L registers may be written or read at any time to determine the current Auto-
pointer address.

Exhibit 2058 - Page 155 of 460

EZ-USB FX2 Technical Reference Manual

Page 8-20 EZ-USB FX2 Technical Reference Manual v2.1

Most of the Autopointer registers are in SFR Space for quick access; the data registers are avail-
able only in External Data space.

The Autopointers are configured using three bits in the AUTOPTRSETUP register: one bit
(APTREN) enables both autopointers, and two bits (one for each Autopointer, called APTR1INC
and APTR2INC, respectively) control whether or not the address increments for every Autodata
access.

Enabling the Autopointers has one side-effect: Any code access (an instruction fetch, for instance)
from addresses 0xE67B and 0xE67C will return the AUTODATA values, rather than the code-
memory values at these two addresses. This introduces a two-byte “hole” in the code memory.

There is no two-byte hole in the data memory at 0xE67B:E67C; the hole only appears in the pro-
gram memory.

Table 8-9. Registers that control the Autopointers

Address Register Name Function

SFR 0xAF AUTOPTRSETUP Increment/freeze, off-chip access enable

SFR 0x9A AUTOPTR1H Address high

SFR 0x9B AUTOPTR1L Address low

0xE67B XAUTODAT1 Data

SFR 0x9D AUTOPTR2H Address high

SFR 0x9E AUTOPTR2L Address low

0xE67C XAUTODAT2 Data

Exhibit 2058 - Page 156 of 460

Chapter 9. Slave FIFOs Page 9-1

Chapter 9 Slave FIFOs

9.1 Introduction

Although some FX2-based devices may use the FX2’s CPU to process USB data directly (see
Chapter 8 "Access to Endpoint Buffers"), most will use the FX2 simply as a conduit between the
USB and external data-processing logic (e.g., an ASIC or DSP, or the IDE controller on a hard disk
drive).

In devices with external data-processing logic, USB data flows between the host and that external
logic — usually without any participation by the FX2’s CPU — through the FX2’s internal endpoint
FIFOs. To the external logic, these endpoint FIFOs look like most others; they provide the usual
timing signals, handshake lines (full, empty, programmable-level), read and write strobes, output
enable, etc.

These FIFO signals must, of course, be controlled by a FIFO “master”. The FX2’s General Pro-
grammable Interface (GPIF) can act as an internal master when the FX2 is connected to external
logic which doesn’t include a standard FIFO interface, or the FIFOs can be controlled by an exter-
nal master. While its FIFOs are controlled by an external master, the FX2 is said to be in “Slave
FIFO” mode.

Chapter 10, "General Programmable Interface (GPIF)," discusses the internal-master GPIF. This
chapter provides details on the interface — both hardware and software — between the FX2’s
slave FIFOs and an external master.

Exhibit 2058 - Page 157 of 460

EZ-USB FX2 Technical Reference Manual

Page 9-2 EZ-USB FX2 Technical Reference Manual v2.1

9.2 Hardware

Figure 9-1 illustrates the four slave FIFOs. The figure shows the FIFOs operating in 16-bit mode,
although they can also be configured for 8-bit operation.

Figure 9-1. Slave FIFOs’ Role in the FX2 System

Table 9-1 lists the registers associated with the slave-FIFO hardware. The registers are fully
described in Chapter 15, "Registers."

Table 9-1. Registers Associated with Slave FIFO Hardware

IFCONFIG EPxFIFOPFH/L

PINFLAGAB PORTACFG

PINFLAGCD INPKTEND

FIFORESET EPxFLAGIE

FIFOPINPOLAR EPxFLAGIRQ

EPxCFG EPxFIFOBCH:L

EPxFIFOCFG EPxFLAGS

EPxAUTOINLENH:L EPxBUF

EP8

EP6

EP4

EP2

Slave FIFOsCPU Device Pins

FD[15:0]

IFCLK

30/48MHz

5 - 48MHz

FLAGA
FLAGB
FLAGC

FLAGD / SLCS#

SLOE
SLRD
SLW R

FIFOADR[1:0]

PKTEND

PORT I /O

Slave FIFOs
W ORLDW IDE = 1

CPU

INPKTEND

EPxFIFOBUF

EPxBCH:L

EPx - EF, FF, PF

where: x =
2, 4, 6, or 8

Exhibit 2058 - Page 158 of 460

Chapter 9. Slave FIFOs Page 9-3

9.2.1 Slave FIFO Pins

The FX2 comes out of reset with its I/O pins configured in “Ports” mode, not “Slave FIFO” mode. To
configure the pins for Slave FIFO mode, the IFCFG1:0 bits in the IFCONFIG register must be set
to 11 (see Table 13-10, “IFCFG Selection of Port I/O Pin Functions" for details). When
IFCFG1:0 = 11, the Slave FIFO interface pins are presented to the external master, as shown in
Figure 9-2.

Figure 9-2. FX2 Slave Mode Full-Featured Interface Pins

External logic accesses the FIFOs through an 8- or 16-bit-wide data bus, FD. The data bus is bidi-
rectional, with its output drivers controlled by the SLOE pin.

The FIFOADR[1:0] pins select which of the four FIFOs is connected to the FD bus.

In asynchronous mode (IFCONFIG.3 = 1), SLRD and SLWR are read and write strobes; in syn-
chronous mode (IFCONFIG.3 = 0), SLRD and SLWR are enables for the IFCLK clock pin.

Figure 9-3. Asynchronous vs. Synchronous Timing Models

FX2
Slave
Mode

EXT.
Master

FLAGA

FLAGB

FLAGC

IFCLK

FLAGD / SLCS#

SLO E

SLRD

SLRW R

PKTEND

FD[15:0]

FIFO ADR[1:0]

Asynchronous

SLRD
SLWR

Synchronous

SLRD
SLWR

IFCLK

Exhibit 2058 - Page 159 of 460

EZ-USB FX2 Technical Reference Manual

Page 9-4 EZ-USB FX2 Technical Reference Manual v2.1

9.2.2 FIFO Data Bus (FD)

The FIFO data bus, FD[x:0], can be either 8 or 16 bits wide. The width is selected via each FIFO’s
WORDWIDE bit, (EPxFIFOCFG.0):

• WORDWIDE=0: 8-bit mode. FD[7:0] replaces Port B. See Figure 9-4.

• WORDWIDE=1: 16-bit mode. FD[15:8] replaces Port D and FD[7:0] replaces Port B. See
Figure 9-5.

At power-on reset, the FIFO data bus defaults to 16-bit mode (WORDWIDE = 1) for all FIFOs.

In either mode, the FIFOADR[1:0] pins select which of the four FIFOs is internally connected to the
FD pins.

If all of the FIFOs are configured for 8-bit mode, Port D remains available for use as general-pur-
pose I/O. If any FIFO is configured for 16-bit mode, Port D is unavailable for use as general-pur-
pose I/O regardless of which FIFO is currently selected via the FIFOADR[1:0] pins.

Figure 9-4. 8-bit Mode Slave FIFOs, WORDWIDE=0

30/48MHz

FLAGA

FIFOADR[1:0]

Slave FIFOsFX2 Registers Device Pins

FLAGB
FLAGC
FLAGD/SLCS#

SLOE
SLRD
SLW R
PKTEND

FD[7:0]

EP4FIFOBUF
EP6FIFOBUF
EP8FIFOBUF

EP2FIFOBUF

EP8
EP6

EP4
EP2

IFCLK

5 - 48MHz

Exhibit 2058 - Page 160 of 460

Chapter 9. Slave FIFOs Page 9-5

Figure 9-5. 16-bit Mode Slave FIFOs, WORDWIDE=1

9.2.3 Interface Clock (IFCLK)

The slave FIFO interface can be clocked from either an internal or an external source. The FX2’s
internal clock source can be configured to run at either 30 or 48 MHz, and it can optionally be out-
put on the IFCLK pin. If the FX2 is configured to use an external clock source, the IFCLK pin can
be driven at any frequency between 5 MHz and 48 MHz. On power-on reset, the FX2 defaults to
the internal source at 48 MHz, normal polarity, with the IFCLK output disabled. See Figur e9-6.

IFCONFIG.7 selects between internal and external sources: 0 = external, 1 = internal.

IFCONFIG.6 selects between the 30- and 48-MHz internal clock: 0 = 30 MHz, 1 = 48 MHz. This bit
has no effect when IFCONFIG.7 = 0.

IFCONFIG.5 is the output enable for the internal clock source: 0 = disable, 1 = enable. This bit has
no effect when IFCONFIG.7 = 0.

IFCONFIG.4 inverts the polarity of the interface clock (whether it’s internal or external): 0 = normal,
1 = inverted. IFCLK inversion can make it easier to interface the FX2 with certain external circuitry;
Figure 9-7, for example, demonstrates the use of IFCLK inversion in order to ensure a long-
enough setup time for reading the FX2’s FIFO flags.

When IFCLK is configured as an input, the minimum frequency that can be applied to it is 5 MHz.

30/48MHz

FLAGA

FIFOADR[1:0]

Slave FIFOsFX2 Registers Device Pins

FLAGB
FLAGC
FLAGD/SLCS#

SLOE
SLRD
SLW R
PKTEND

FD[15:0]

EP4FIFOBUF
EP6FIFOBUF
EP8FIFOBUF

EP2FIFOBUF

EP8
EP6

EP4
EP2

IFCLK

5 - 48MHz

Exhibit 2058 - Page 161 of 460

EZ-USB FX2 Technical Reference Manual

Page 9-6 EZ-USB FX2 Technical Reference Manual v2.1

Figure 9-6. IFCLK Configuration

Figure 9-7. Satisfying Setup Timing by Inverting the IFCLK Output

9.2.4 FIFO Flag Pins (FLAGA, FLAGB, FLAGC, FLAGD)

Four pins — FLAGA, FLAGB, FLAGC, and FLAGD — report the status of the FX2’s FIFOs; in
addition to the usual “FIFO full” and “FIFO empty” signals, there is also a signal which indicates
that a FIFO has filled to a user-programmable level. The external master typically monitors the
“empty” flag of OUT endpoints and the “full” flag of IN endpoints; the “programmable-level” flag is

0
1

30 MHz

48 MHz
0
1

0
1

1
0

Internal
IFCLK
Signal

IFCFG.7
IFCFG.4

IFCFG.6
IFCFG.4 IFCFG.5

IFCLK
Pin

FX2
Asserts

Flag ts

Master
Samples

Flag

Internal IFCLK Signal

Inverted IFCLK Output

FIFO Flag

Exhibit 2058 - Page 162 of 460

Chapter 9. Slave FIFOs Page 9-7

equally useful for either type of endpoint (it can, for instance, give advance warning that an OUT
endpoint is almost empty or that an IN endpoint is almost full).

The FLAGA, FLAGB, and FLAGC pins can operate in either of two modes: Indexed or Fixed, as
selected via the PINFLAGSAB and PINFLAGSCD registers. The FLAGD pin operates in Fixed
mode only. Each pin is configured independently; some pins can be in Fixed mode while others are
in Indexed mode. See Chapter 15, "Registers," for complete details.

Flag pins configured for Indexed mode report the status of the FIFO currently selected by the
FIFOADR[1:0] pins. When configured for Indexed mode, FLAGA reports the “programmable-level”
status, FLAGB reports the “full” status, and FLAGC reports the “empty” status.

Flag pins configured for Fixed mode report one of the three conditions for a specific FIFO, regard-
less of the state of the FIFOADR[1:0] pins. The condition and FIFO are user-selectable. For exam-
ple, FLAGA could be configured to report FIFO2’s “empty” status, FLAGB to report FIFO4’s
“empty” status, FLAGC to report FIFO4’s “programmable level” status, and FLAGD to report
FIFO6’s “full” status.

The polarity of the “empty” and “full” flag pins defaults to active-low but may be inverted via the
FIFOPINPOLAR register.

At power-on reset, the FIFO flags are configured for Indexed operation.

Figure 9-8. FLAGx

FLAGA

FIFOADR[1:0]

Slave FIFOs FX2 Registers Device Pins

FLAGB
FLAGC

SLOE
SLRD
SLWR
PKTEND

FD[15:0]

EP4FIFOBUF
EP6FIFOBUF
EP8FIFOBUF

EP2FIFOBUF

EP8
EP6

EP4
EP2

IFCLK

30/48MHz

5 - 48MHz

FLAGD/SLCS#

Exhibit 2058 - Page 163 of 460

EZ-USB FX2 Technical Reference Manual

Page 9-8 EZ-USB FX2 Technical Reference Manual v2.1

9.2.5 Control Pins (SLOE, SLRD, SLWR, PKTEND, FIFOADR[1:0])

The Slave FIFO “control” pins are SLOE (Output Enable), SLRD (Read), SLWR (Write), PKTEND
(Packet End), and FIFOADR[1:0] (FIFO Select). “Read” and “Write” are from the external master’s
point of view; the external master reads from OUT endpoints and writes to IN endpoints. See
Figure 9-9.

 Read — SLOE and SLRD:

In synchronous mode (IFCONFIG.3 = 0), the FIFO pointer is incremented on each rising edge of
IFCLK while SLRD is asserted. In asynchronous mode (IFCONFIG.3 = 1), the FIFO pointer is
incremented on each asserted-to-deasserted transition of SLRD.

The SLOE pin enables the FD outputs.

By default, SLOE and SLRD are active-low; their polarities can be changed via the
FIFOPINPOLAR register.

 Write — SLWR:

In synchronous mode (IFCONFIG.3 = 0), data on the FD bus is written to the FIFO (and the FIFO
pointer is incremented) on each rising edge of IFCLK while SLWR is asserted. In asynchronous
mode (IFCONFIG.3 = 1), data on the FD bus is written to the FIFO (and the FIFO pointer is incre-
mented) on each asserted-to-deasserted transition of SLWR.

By default, SLWR is active-low; its polarity can be changed via the FIFOPINPOLAR register.

 FIFOADR[1:0]:

The FIFOADR[1:0] pins select which of the four FIFOs is connected to the FD bus (and, if the
FIFO flags are operating in Indexed mode, they select which FIFO’s flags are presented on the
FLAGx pins):

Table 9-2. FIFO Selection via FIFOADR[1:0]

FIFOADR[1:0]
Selected

FIFO
00 EP2

01 EP4

10 EP6

11 EP8

Exhibit 2058 - Page 164 of 460

Chapter 9. Slave FIFOs Page 9-9

 PKTEND:

An external master asserts the PKTEND pin to commit an IN packet to USB regardless of the
packet’s length. PKTEND is usually used when the master wishes to send a “short” packet (i.e., a
packet smaller than the size specified in the EPxAUTOINLENH:L registers).

For example: Assume that EP4AUTOINLENH:L is set to the default of 512 bytes. If AUTOIN = 1,
the external master can stream data to FIFO4 continuously, and (absent any bottlenecks in the
data path) the FX2 will automatically commit a packet to USB whenever the FIFO fills with 512
bytes. If the master wants to send a stream of data whose length is not a multiple of 512, the last
packet will not be automatically committed to USB because it’s smaller than 512 bytes. To commit
that last packet, the master can do one of two things: It can pad the packet with dummy data in
order to make it exactly 512 bytes long, or it can write the short packet to the FIFO then assert the
PKTEND pin.

If the FIFO is configured to allow zero-length packets (EPxFIFOCFG.2 = 1), asserting the
PKTEND pin when the FIFO is empty will commit a zero-length packet.

By default, PKTEND is active-low; its polarity can be changed via the FIFOPINPOLAR register.

The PKTEND pin must not be asserted unless a buffer is available, even if only a zero-length
packet is being committed. The “full” flag may be used to determine whether a buffer is available.

Figure 9-9. Slave FIFO Control Pins

FLAGA

FIFOADR[1:0]

Slave FIFOs FX2 Registers Device Pins

FLAGB
FLAGC
FLAGD/SLCS#

SLOE
SLRD
SLWR
PKTEND

FD[15:0]

EP4FIFOBUF
EP6FIFOBUF
EP8FIFOBUF

EP2FIFOBUF

EP8
EP6

EP4
EP2

IFCLK

30/48MHz

5 - 48MHz

Exhibit 2058 - Page 165 of 460

EZ-USB FX2 Technical Reference Manual

Page 9-10 EZ-USB FX2 Technical Reference Manual v2.1

9.2.6 Slave FIFO Chip Select (SLCS)

The “Slave FIFO Chip Select” pin (SLCS) is an alternate function of pin PA7; it’s enabled via the
PORTACFG.6 bit (see Section 13.3.1, "Port A Alternate Functions").

The SLCS pin allows external logic to effectively remove the FX2 from the FIFO Data bus, in order
to, for example, share that bus among multiple slave devices.

While the SLCS pin is pulled high by external logic, the FX2 floats its FD[x:0] pins and ignores the
SLOE, SLRD, SLWR, and PKTEND pins.

9.2.7 Implementing Synchronous Slave FIFO Writes

Figure 9-10. Interface Pins Example: Synchronous FIFO Writes

Typically, the sequence of events for the external master is:

IDLE: When write event occurs, transition to State 1.

STATE 1: Point to IN FIFO, assert FIFOADR[1:0], transition to State 2.

STATE 2: If FIFO-Full flag is false (FIFO not full), transition to State 3 else remain in State 2.

STATE 3: Drive data on the bus, assert SLWR for one IFCLK, transition to State 4.

STATE 4: If more data to write, transition to State 2 else transition to IDLE.

IFCLK

FLAGB

FLAGC

SLWR

PKTEND

FIFOADR[1:0]

FD[15:0]

FX2
Slave
Mode

EXT.
Master

FULL

EMPTY

5-48MHz

Exhibit 2058 - Page 166 of 460

Chapter 9. Slave FIFOs Page 9-11

Figure 9-11. State Machine Example: Synchronous FIFO Writes

Figure 9-12. Timing Example: Synchronous FIFO Writes, Waveform 1

State 3

State 2

State 4

Done Launch

Full

State 1

IFCLK

FADDR0

FADDR1

FLAGB - FULL

FLAGC - EMPTY

SLW R

FD[15:0]

PKTEND

N N+1

EP8 Not Em ptyMaster Selects EP8

Z

Exhibit 2058 - Page 167 of 460

EZ-USB FX2 Technical Reference Manual

Page 9-12 EZ-USB FX2 Technical Reference Manual v2.1

Figure 9-13. Timing Example: Synchronous FIFO Writes, Waveform 2

Figure 9-14. Timing Example: Synchronous FIFO Writes, Waveform 3, PKTEND Pin Illustrated

IFCLK

FADDR0

FADDR1

FLAGB - FULL

FLAGC - EMPTY

SLW R

FD[15:0]

PKTEND

510 511 512

Core Auto

Com m its Pkt

AUTOIN=1

IFCLK

FADDR0

FADDR1

FLAGB - FULL

FLAGC - EMPTY

SLW R

FD[15:0]

PKTEND

815 816 N

Data Not
W ritten

Master Manually
Com m its Short Pkt

Exhibit 2058 - Page 168 of 460

Chapter 9. Slave FIFOs Page 9-13

9.2.8 Implementing Synchronous Slave FIFO Reads

Figure 9-15. Interface Pins Example: Synchronous FIFO Reads

Typically, the sequence of events for the external master is:

IDLE: When read event occurs, transition to State 1.

STATE 1: Point to OUT FIFO, assert FIFOADR[1:0], transition to State 2.

STATE 2: Assert SLOE. If FIFO-Empty flag is false (FIFO not empty), transition to State 3 else
remain in State 2.

STATE 3: Sample data on the bus, increment pointer by asserting SLRD for one IFCLK, de-assert
SLOE, transition to State 4.

STATE 4: If more data to read, transition to State 2 else transition to IDLE.

Figure 9-16. State Machine Example: Synchronous FIFO Reads

IFCLK

FLAGB

FLAGC

SLRD

FIFOADR[1:0]

FD[15:0]

FX2
Slave
Mode

EXT.
Master

FULL

EMPTY

5-48MHz

SLOE

State 3

State 2

State 4

Done Launch

Empty

State 1

Exhibit 2058 - Page 169 of 460

EZ-USB FX2 Technical Reference Manual

Page 9-14 EZ-USB FX2 Technical Reference Manual v2.1

Figure 9-17. Timing Example: Synchronous FIFO Reads, Waveform 1

Figure 9-18. Timing Example: Synchronous FIFO Reads, Waveform 2, EMPTY Flag Illustrated

IFCLK

FADDR0

FADDR1

FLAGB - FULL

FLAGC - EMPTY

SLRD

FD[15:0]

SLOE

Z N N+1

Selects EP2
Asserts SLOE then

Reads First Byte
in FIFO

Increm ents to Next
Byte in FIFO

IFCLK

FADDR0

FADDR1

FLAGB - FULL

FLAGC - EMPTY

SLRD

FD[15:0]

SLOE

1023 1024 Z

Reads 1023 Byte
in FIFO

Reads Last Byte in
FIFO

EP2 Em pty

Exhibit 2058 - Page 170 of 460

Chapter 9. Slave FIFOs Page 9-15

9.2.9 Implementing Asynchronous Slave FIFO Writes

Figure 9-19. Interface Pins Example: Asynchronous FIFO Writes

Typically, the sequence of events for the external master is:

IDLE: When write event occurs, transition to State 1.

STATE 1: Point to IN FIFO, assert FIFOADR[1:0], transition to State 2.

STATE 2: If FIFO-Full flag is false (FIFO not full), transition to State 3 else remain in State 2.

STATE 3: Drive data on the bus, increment pointer by asserting then de-asserting SLWR, transition
to State 4.

STATE 4: If more data to write, transition to State 2 else transition to IDLE.

Figure 9-20. State Machine Example: Asynchronous FIFO Writes

FLAGB

FLAGC

SLW R

PKTEND

FIFOADR[1:0]

FD[15:0]FX2
Slave
Mode

EXT.
Master

FULL

EMPTY

State 3

State 2

State 4

Done Launch

Full

State 1

Exhibit 2058 - Page 171 of 460

EZ-USB FX2 Technical Reference Manual

Page 9-16 EZ-USB FX2 Technical Reference Manual v2.1

Figure 9-21. Timing Example: Asynchronous FIFO Writes

IFCLK

FADDR0

FADDR1

FLAGB - FULL

FLAGC - EMPTY

SLW R

FD[15:0]

PKTEND

Z N N+1

Exhibit 2058 - Page 172 of 460

Chapter 9. Slave FIFOs Page 9-17

9.2.10 Implementing Asynchronous Slave FIFO Reads

Figure 9-22. Interface Pins Example: Asynchronous FIFO Reads

Typically, the sequence of events for the external master is:

IDLE: When read event occurs, transition to State 1.

STATE 1: Point to OUT FIFO, assert FIFOADR[1:0], transition to State 2.

STATE 2: If Empty flag is false (FIFO not empty), transition to State 3 else remain in State 2.

STATE 3: Assert SLOE, assert SLRD, sample data on the bus, de-assert SLRD (increment
pointer), de-assert SLOE, transition to State 4.

STATE 4: If more data to read, transition to State 2 else transition to IDLE.

.

Figure 9-23. State Machine Example: Asynchronous FIFO Reads

FLAGB

FLAGC

SLRD

FIFOADR[1:0]

FD[15:0]

FX2
Slave
Mode

EXT.
Master

FULL

EMPTY

SLOE

State 3

State 2

State 4

Done Launch

Empty

State 1

Exhibit 2058 - Page 173 of 460

EZ-USB FX2 Technical Reference Manual

Page 9-18 EZ-USB FX2 Technical Reference Manual v2.1

Figure 9-24. Timing Example: Asynchronous FIFO Reads

IFCLK

FADDR0

FADDR1

FLAGB - FULL

FLAGC - EMPTY

SLRD

FD[15:0]

SLOE

Z N N+1

Exhibit 2058 - Page 174 of 460

Chapter 9. Slave FIFOs Page 9-19

9.3 Firmware

This section describes the interface between FX2 firmware and the FIFOs. More information is
available in Chapter 8, "Access to Endpoint Buffers."

9.3.1 Firmware FIFO Access

FX2 firmware can access the slave FIFOs using four registers in XDATA memory: EP2FIFOBUF,
EP4FIFOBUF, EP6FIFOBUF, and EP8FIFOBUF. These registers can be read and written directly
(using the MOVX instruction), or they can serve as sources and destinations for the dual Auto-
pointer mechanism built into the EZ-USB FX2 (see Section 8.8. "Autopointers").

Additionally, there are a number of FIFO control and status registers: Byte Count registers indicate
the number of bytes in each FIFO; flag bits indicate FIFO fullness, mode bits control the various
FIFO modes, etc.

This chapter focuses on the registers and bits which are specific to slave-FIFO operation; for a
fuller description of all the FIFO registers, see Chapter 8 "Access to Endpoint Buffers" and Chapter
15, "Registers."

For proper operation as described in this chapter, FX2 firmware must set the DYN_OUT and
ENH_PKT bits (REVCTL.0 and REVCTL.1) to 1.

Table 9-3. Registers Associated with Slave FIFO Firmware

EPxCFG INPKTEND
EPxFIFOCFG EPxFIFOIE
EPxAUTOINLENH/L EPxFIFOIRQ
EPxFIFOPFH:L INT2IVEC
EP2468STAT INT4IVEC
EP24FIFOFLGS INTSETUP
EP68FIFOFLGS IE
EPxCS IP
EPxFIFOFLGS INT2CLR
EPxBCH:L INT4CLR
EPxFIFOBCH:L EIE
EPxFIFOBUF EXIF
REVCTL (bits 0 and 1 must be initialized to 1 for operation as described in this chapter)

Exhibit 2058 - Page 175 of 460

EZ-USB FX2 Technical Reference Manual

Page 9-20 EZ-USB FX2 Technical Reference Manual v2.1

Figure 9-25. EPxFIFOBUF Registers

9.3.2 EPx Memories

The slave FIFOs connect external logic to the FX2’s four endpoint memories (EP2, EP4, EP6, and
EP8). These endpoint memories have the following programmable features:

1. Type can be either BULK, INTERRUPT, or ISOCHRONOUS.

2. Direction can be either IN or OUT.

3. For EP2 and EP6, size can be either 512 or 1024 bytes. EP4 and EP8 are fixed at 512 bytes.

4. Buffering can be 2x, 3x, or 4x for EP2 and EP6. EP4 and EP8 are fixed at 2x.

5. FX2 automatically commits endpoint data to and from the slave FIFO interface (AUTOIN=1,
AUTOOUT=1).

At power-on-reset, these endpoint memories are configured as follows:

1. EP2 - Bulk OUT, 512 bytes/packet, 2x buffered.

2. EP4 - Bulk OUT, 512 bytes/packet, 2x buffered.

3. EP6 - Bulk IN, 512 bytes/packet, 2x buffered.

4. EP8 - Bulk IN, 512 bytes/packet, 2x buffered.

FLAGA

FIFOADR[1:0]

Slave FIFOs FX2 Registers Device Pins

FLAGB
FLAGC
FLAGD/SLCS#

SLOE
SLRD
SLWR
PKTEND

FD[15:0]

EP4FIFOBUF
EP6FIFOBUF
EP8FIFOBUF

EP2FIFOBUF

EP8
EP6

EP4
EP2

IFCLK

30/48MHz

5 - 48MHz

Exhibit 2058 - Page 176 of 460

Chapter 9. Slave FIFOs Page 9-21

Figure 9-26. EPx Memories

9.3.3 Slave FIFO Programmable-Level Flag (PF)

Each FIFO’s programmable-level flag (PF) asserts when the FIFO reaches a user-defined fullness
threshold. That threshold is configured as follows:

1. For OUT packets: The threshold is stored in PFC12:0. The PF is asserted when the number of
bytes in the entire FIFO is less than/equal to (DECIS=0) or greater than/equal to (DECIS=1)
the threshold.

2. For IN packets, with PKTSTAT = 1: The threshold is stored in PFC9:0. The PF is asserted
when the number of bytes written into the current packet in the FIFO is less than/equal to
(DECIS=0) or greater than/equal to (DECIS=1) the threshold.

3. For IN packets, with PKTSTAT = 0: The threshold is stored in two parts: PKTS2:0 holds the
number of committed packets, and PFC9:0 holds the number of bytes in the current packet.
The PF is asserted when the FIFO is at or less full than (DECIS=0), or at or more full than
(DECIS=1), the threshold.

By default, FLAGA is the Programmable-Level Flag (PF) for the endpoint currently pointed to by
the FIFOADR[1:0] pins. For EP2 and EP4, the default endpoint configuration is BULK, OUT, 512,
2x, and the PF pin asserts when the entire FIFO has greater than/equal to 512 bytes. For EP6 and
EP8, the default endpoint configuration is BULK, IN, 512, 2x, and the PF pin asserts when the
entire FIFO has less than/equal to 512 bytes.

In other words, the default-configuration PFs for EP2 and EP4 assert when the FIFOs are half-full,
and the default-configuration PFs for EP6 and EP8 assert when those FIFOs are half-empty.

See Chapter 15, "Registers," for full details.

FLAGA

FIFOADR[1:0]

Slave FIFOs 8051 Registers Device Pins

FLAGB
FLAGC
FLAGD/SLCS#

SLOE
SLRD
SLWR
PKTEND

FD[15:0]

EP4FIFOBUF
EP6FIFOBUF
EP8FIFOBUF

EP2FIFOBUF

EP8
EP6

EP4
EP2

IFCLK

30/48MHz

5 - 48MHz

Exhibit 2058 - Page 177 of 460

EZ-USB FX2 Technical Reference Manual

Page 9-22 EZ-USB FX2 Technical Reference Manual v2.1

9.3.4 Auto-In / Auto-Out Modes

The FX2 FIFOs can be configured to commit packets to/from USB automatically. For IN endpoints,
Auto-In Mode allows the external logic to stream data into a FIFO continuously, with no need for it
or the FX2 firmware to packetize the data or explicitly signal the FX2 to send it to the host. For
OUT endpoints, Auto-Out Mode allows the host to continuously fill a FIFO, with no need for the
external logic or FX2 firmware to handshake each incoming packet, arm the endpoint buffers, etc.
See Figure 9-27.

Figure 9-27. When AUTOOUT=1, OUT Packets are Automatically Committed

To configure an IN endpoint FIFO for Auto Mode, set the AUTOIN bit in the appropriate
EPxFIFOCFG register to 1. To configure an OUT endpoint FIFO for Auto Mode, set the AUTOOUT
bit in the appropriate EPxFIFOCFG register to 1. See Figures 9-28 and 9-29.

At power-on reset, all FIFOs default to Manual Mode (i.e., AUTOIN = 0 and AUTOOUT = 0).

Figure 9-28. TD_Init Example: Configuring AUTOOUT = 1

TD_Init():
… … … … …
REVCTL = 0x03; // MUST set REVCTL.0 and REVCTL.1 to 1
SYNCDELAY;
EP2CFG = 0xA2; // EP2 is DIR=OUT, TYPE=BULK, SIZE=512, BUF=2x
SYNCDELAY;
FIFORESET = 0x80; // Reset the FIFO
SYNCDELAY;
FIFORESET = 0x02;
SYNCDELAY;
FIFORESET = 0x00;
SYNCDELAY;
EP2FIFOCFG = 0x10; // EP2 is AUTOOUT=1, AUTOIN=0, ZEROLEN=0, WORDWIDE=0
SYNCDELAY;
OUTPKTEND = 0x82; // Arm both EP2 buffers to “prime the pump”
SYNCDELAY;
OUTPKTEND = 0x82;
… … … … …

AUTOOUT=1

Data Path

CPU

USB
Host

Slave
M aster

Exhibit 2058 - Page 178 of 460

Chapter 9. Slave FIFOs Page 9-23

Figure 9-29. TD_Init Example: Configuring AUTOIN = 1

9.3.5 CPU Access to OUT Packets, AUTOOUT = 1

The FX2’s CPU is not in the host-to-master data path when AUTOOUT = 1. To achieve the maxi-
mum USB 2.0 bandwidth, the host and master are directly connected, bypassing the CPU.
Figure 9-30 shows that, in Auto-Out mode, data from the host is automatically committed to the
FIFOs with no firmware intervention.

Figure 9-30. TD_Poll Example: No Code Necessary for OUT Packets When AUTOOUT=1

TD_Init():
… … … … …
REVCTL = 0x03; // MUST set REVCTL.0 and REVCTL.1 to 1
SYNCDELAY;
SYNCDELAY;
EP8CFG = 0xE0; // EP8 is DIR=IN, TYPE=BULK
SYNCDELAY;
FIFORESET = 0x80; // Reset the FIFO
SYNCDELAY;
FIFORESET = 0x08;
SYNCDELAY;
FIFORESET = 0x00;
SYNCDELAY;
EP8FIFOCFG = 0x0C; // EP8 is AUTOOUT=0, AUTOIN=1, ZEROLEN=1, WORDWIDE=0
SYNCDELAY;
EP8AUTOINLENH = 0x02; // Auto-commit 512-byte packets
SYNCDELAY;
EP8AUTOINLENL = 0x00;
… … … … …

TD_Poll():
… … … … …
// no code necessary to xfr data from host to master!
// AUTOOUT=1 and SIZE=0 auto-commits packets
// in 512 byte chunks.
… … … … …

Exhibit 2058 - Page 179 of 460

EZ-USB FX2 Technical Reference Manual

Page 9-24 EZ-USB FX2 Technical Reference Manual v2.1

9.3.6 CPU Access to OUT Packets, AUTOOUT = 0

In some systems, it may be desirable to allow the FX2’s CPU to participate in the transfer of data
between the host and the slave FIFOs. To configure a FIFO for this “Manual-Out” mode, the
AUTOOUT bit in the appropriate EPxFIFOCFG register must be cleared to 0 (see Figure 9-31).

Figure 9-31. TD_Init Example, Configuring AUTOOUT=0

As Illustrated in Figure 9-32, FX2 firmware can do one of three things when the FX2 is in Manual-
Out mode and a packet is received from the host:

1. It can commit (pass to the FIFOs) the packet by writing OUTPKTEND with SKIP=0 (Figur e9-
33).

2. It can skip (discard) the packet by writing OUTPKTEND with SKIP=1 (Figur e9-34).

3. It can edit the packet (or source an entire OUT packet) by writing to the FIFO buffer directly,
then writing the length of the packet to EPxBCH:L. The write to EPxBCL commits the edited
packet, so EPxBCL should be written after writing EPxBCH (Figure9-35).

In all cases, the OUT buffer automatically re-arms so it can receive the next packet.

See Section 8.6.2.4 for a detailed description of the SKIP bit.

TD_Init():
… … … … …
REVCTL = 0x03; // MUST set REVCTL.0 and REVCTL.1 to 1
SYNCDELAY;
EP2CFG = 0xA2; // EP2 is DIR=OUT, TYPE=BULK, SIZE=512, BUF=2x
SYNCDELAY;
FIFORESET = 0x80; // Reset the FIFO
SYNCDELAY;
FIFORESET = 0x02;
SYNCDELAY;
FIFORESET = 0x00;
SYNCDELAY;
EP2FIFOCFG = 0x00; // EP2 is AUTOOUT=0, AUTOIN=0, ZEROLEN=0, WORDWIDE=0
SYNCDELAY;
OUTPKTEND = 0x82; // Arm both EP2 buffers to “prime the pump”
SYNCDELAY;
OUTPKTEND = 0x82;
… … … … …

Exhibit 2058 - Page 180 of 460

Chapter 9. Slave FIFOs Page 9-25

Figure 9-32. Skip, Commit, or Source (AUTOOUT=0)

Figure 9-33. TD_Poll Example, AUTOOUT=0, Commit Packet

Figure 9-34. TD_Poll Example, AUTOOUT=0, Skip Packet

TD_Poll():
… … … … …
if(!(EP2468STAT & 0x01))
{ // EP2EF=0 when FIFO NOT empty, host sent packet
 OUTPKTEND = 0x02; // SKIP=0, pass buffer on to master
}
… … … … …

TD_Poll():
… … … … …
if(!(EP2468STAT & 0x01))
{ // EP2EF=0 when FIFO NOT empty, host sent packet
 OUTPKTEND = 0x82; // SKIP=1, do NOT pass buffer on to master
}
… … … … …

CPU

USB Slave
Master

skip = 0

skip = 1

DataHost

AUTOOUT = 0

EPxBCH:L

Exhibit 2058 - Page 181 of 460

EZ-USB FX2 Technical Reference Manual

Page 9-26 EZ-USB FX2 Technical Reference Manual v2.1

Figure 9-35. TD_Poll Example, AUTOOUT=0, Source

If an uncommitted packet is in an OUT endpoint buffer when the FX2 is reset, that packet is not
automatically committed to the master. To ensure that no uncommitted packets are in the endpoint
buffers after a reset, the FX2 firmware’s “endpoint initialization” routine should skip 2, 3, or 4 pack-
ets (depending on the buffering depth selected for the FIFO) by writing OUTPKTEND with
SKIP=1. See Figure 9-36.

TD_Poll():
… … … … …
if(EP24FIFOFLGS & 0x02)
{
SYNCDELAY; //
FIFORESET = 0x80; // nak all OUT pkts. from host
SYNCDELAY; //
FIFORESET = 0x02; // advance all EP2 buffers to cpu domain
SYNCDELAY; //
EP2FIFOBUF[0] = 0xAA; // create newly sourced pkt. data
SYNCDELAY; //
EP2BCH = 0x00;
SYNCDELAY; //
EP2BCL = 0x01; // commit newly sourced pkt. to interface fifo

// beware of "left over" uncommitted buffers

SYNCDELAY; //
OUTPKTEND = 0x82; // skip uncommitted pkt. (second pkt.)
// note: core will not allow pkts. to get out of sequence
SYNCDELAY; //
FIFORESET = 0x00; // release "nak all"
}
… … … … …

Exhibit 2058 - Page 182 of 460

Chapter 9. Slave FIFOs Page 9-27

Figure 9-36. TD_Init Example, OUT Endpoint Initialization

9.3.7 CPU Access to IN Packets, AUTOIN = 1

Auto-In mode is similar to Auto-Out mode: When an IN FIFO is configured for Auto-In mode (by
setting its AUTOIN bit to 1), data from the master is automatically packetized and committed to
USB without any CPU intervention (see Figure 9-37).

Figure 9-37. TD_Poll Example, AUTOIN = 1

Auto-In mode differs in one important way from Auto-Out mode: In Auto-Out mode, data (excluding
data in short packets) is always auto-committed in 512- or 1024-byte packets; in Auto-In mode, the
auto-commit packet size may be set to any non-zero value (with the single restriction, of course,
that the packet size must be less than or equal to the size of the endpoint buffer). Each FIFO’s
Auto-In packet size is stored in its EPxAUTOINLENH:L register pair.

To source an IN packet, FX2 firmware can temporarily halt the flow of data from the external mas-
ter (via a signal on a general-purpose I/O pin, typically), wait for an endpoint buffer to become
available, create a new packet by writing directly to that buffer, then commit the packet to USB and
release the external master. In this way, the firmware can insert its own packets in the data stream.
See Figure 9-38, which illustrates data flowing directly between the master and the host, and
Figure 9-39, which shows the firmware sourcing an IN packet. A firmware example appears in
Figure 9-40.

TD_Init():
… … … … …
REVCTL = 0x03; // MUST set REVCTL.0 and REVCTL.1 to 1
SYNCDELAY;
SYNCDELAY;
EP2CFG = 0xA2; // EP2 is DIR=OUT, TYPE=BULK, SIZE=512, BUF=2x
SYNCDELAY;
EP2FIFOCFG = 0x00; // EP2 is AUTOOUT=0, AUTOIN=0, ZEROLEN=0, WORDWIDE=0

// OUT endpoints do NOT come up armed
SYNCDELAY;
OUTPKTEND = 0x82; // arm first buffer by writing OUTPKTEND w/skip=1
SYNCDELAY;
OUTPKTEND = 0x82; // arm second buffer by writing OUTPKTEND w/skip=1
… … … … …

TD_Poll():
… … … … …
// no code necessary to xfr data from master to host!
// AUTOIN=1 and EP8AUTOINLEN=512 auto commits packets
// in 512 byte chunks.
… … … … …

Exhibit 2058 - Page 183 of 460

EZ-USB FX2 Technical Reference Manual

Page 9-28 EZ-USB FX2 Technical Reference Manual v2.1

Figure 9-38. Master Writes Directly to Host, AUTOIN = 1

Figure 9-39. Firmware Intervention, AUTOIN = 0 or 1

Data Path

CPU

USB
Host

Slave
Master

AUTOIN=1

BusyI/O

CPU

USB
Host

Slave
Master

 AUTOIN=0 or
AUTOIN=1

BusyI/O

Data Path

Exhibit 2058 - Page 184 of 460

Chapter 9. Slave FIFOs Page 9-29

Figure 9-40. TD_Poll Example: Sourcing an IN Packet

TD_Poll():
… … … … …
if(source_pkt_event)
{ // 100-msec background timer fired
 if(holdoff_master())
 { // signaled “busy” to master successful
 while(!(EP68FIFOFLGS & 0x20))
 { // EP8EF=0, when buffer not empty
 ; // wait ‘til host takes entire FIFO data
 }

 FIFORESET = 0x80; // initiate the “source packet” sequence
 SYNCDELAY;
 FIFORESET = 0x06;
 SYNCDELAY;
 FIFORESET = 0x00;

 EP8FIFOBUF[0] = 0x02; // <STX>, packet start of text msg
 EP8FIFOBUF[1] = 0x06; // <ACK>
 EP8FIFOBUF[2] = 0x07; // <HEARTBEAT>
 EP8FIFOBUF[3] = 0x03; // <ETX>, packet end of text msg

 SYNCDELAY;
 EP8BCH = 0x00;
 SYNCDELAY;
 EP8BCL = 0x04; // pass newly-sourced buffer on to host
 }
 else
 {
 history_record(EP8, BAD_MASTER);
 }
}
… … … … …

Exhibit 2058 - Page 185 of 460

EZ-USB FX2 Technical Reference Manual

Page 9-30 EZ-USB FX2 Technical Reference Manual v2.1

9.3.8 Access to IN Packets, AUTOIN=0

In some systems, it may be desirable to allow the FX2’s CPU to participate in every data-transfer
between the external master and the host. To configure a FIFO for this “Manual-In” mode, the
AUTOIN bit in the appropriate EPxFIFOCFG register must be cleared to 0.

In Manual-In mode, FX2 firmware can commit, skip, or edit packets sent by the external master,
and it may also source packets directly. To commit a packet, firmware writes the endpoint number
(with SKIP=0) to the INPKTEND register. To skip a packet, firmware writes the endpoint number
with SKIP=1 to the INPKTEND register. To edit or source a packet, firmware writes to the FIFO
buffer, then writes the packet length to EPxBCH and EPxBCl (in that order).

Figure 9-41. TD_Poll Example, AUTOIN=0, Committing a Packet via INPKTEND

Figure 9-42. TD_Poll Example, AUTOIN=0, Skipping a Packet via INPKTEND

TD_Poll():
… … … … …
if(master_finished_longxfr())
{ // master currently points to EP8, pins FIFOADR[1:0]=11
 if(!(EP68FIFOFLGS & 0x10))
 { // EP8FF=0 when buffer available
 INPKTEND = 0x08; // firmware commits EP8 packet
 // by writing 8 to INPKTEND
 release_master(EP8);
 }
}
… … … … …

TD_Poll():
… … … … …
if(master_finished_longxfr())
{ // master currently points to EP8, pins FIFOADR[1:0]=11
 if(!(EP68FIFOFLGS & 0x10))
 { // EP8FF=0 when buffer available
 INPKTEND = 0x88; // firmware skips EP8 packet
 // by writing 0x88 to INPKTEND
 release_master(EP8);
 }
}
… … … … …

Exhibit 2058 - Page 186 of 460

Chapter 9. Slave FIFOs Page 9-31

Figure 9-43. TD_Poll Example, AUTOIN=0, Editing a Packet via EPxBCH:L

9.3.9 Auto-In / Auto-Out Initialization

 Enabling Auto-In transfers between slave FIFO and endpoint

Typically, a FIFO is configured for Auto-In mode as follows:

1. Configure bits IFCONFIG[7:4] to define the behavior of the interface clock.

2. Set bits IFCFG1:0=11.

3. Reset the FIFOs.

4. Set bit EPxFIFOCFG.3=1.

5. Set the size via the EPxAUTOINLENH:L registers.

 Enabling Auto-Out transfers between endpoint and slave FIFO

Typically, a FIFO is configured for Auto-Out mode as follows:

1. Configure bits IFCONFIG[7:4] to define the behavior of the interface clock.

2. Set bits IFCFG1:0=11.

3. Reset the FIFOs.

4. Set bit EPxFIFOCFG.4=1.

TD_Poll():
… … … … …
if(master_finished_xfr())
{ // modify the data
 EP8FIFOBUF[0] = 0x02; // <STX>, packet start of text msg
 EP8FIFOBUF[7] = 0x03; // <ETX>, packet end of text msg
 SYNCDELAY;
 EP8BCH = 0x00;
 SYNCDELAY;
 EP8BCL = 0x08; // pass buffer on to host
}
… … … … …

Exhibit 2058 - Page 187 of 460

EZ-USB FX2 Technical Reference Manual

Page 9-32 EZ-USB FX2 Technical Reference Manual v2.1

9.3.10 Auto-Mode Example: Synchronous FIFO IN Data Transfers

Figure 9-44. Code Example, Synchronous Slave FIFO IN Data Transfer

TD_Init():
REVCTL = 0x03; // MUST set REVCTL.0 and REVCTL.1 to 1
SYNCDELAY;
FIFORESET = 0x80; // reset all FIFOs
SYNCDELAY;
FIFORESET = 0x02;
SYNCDELAY;
FIFORESET = 0x04;
SYNCDELAY;
FIFORESET = 0x06;
SYNCDELAY;
FIFORESET = 0x08;
SYNCDELAY;
FIFORESET = 0x00;
SYNCDELAY; // this defines the external interface to be the following:
IFCONFIG = 0x43; // use IFCLK pin driven by external logic (5MHz to 48MHz)
 // use slave FIFO interface pins driven sync by external master
EP8FIFOCFG = 0x0C; // this lets the FX2 auto commit IN packets, gives the
 // ability to send zero length packets,
 // and sets the slave FIFO data interface to 8-bits
EP8CFG = 0xE0; // sets EP8 valid for IN's
 // and defines the endpoint for 512 byte packets, 2x buffered
PINFLAGSAB = 0x00; // defines FLAGA as prog-level flag, pointed to by FIFOADR[1:0]
SYNCDELAY; // FLAGB as full flag, as pointed to by FIFOADR[1:0]
PINFLAGSCD = 0x00; // FLAGC as empty flag, as pointed to by FIFOADR[1:0]
 // won't generally need FLAGD

PORTACFG = 0x00; // used PA7/FLAGD as a port pin, not as a FIFO flag
FIFOPINPOLAR = 0x00; // set all slave FIFO interface pins as active low

SYNCDELAY;
EP8AUTOINLENH = 0x02; // you can define these as you wish,
SYNCDELAY; // to have the FX2 automatically limit IN's
EP8AUTOINLENL = 0x00;

SYNCDELAY;
EP8FIFOPFH = 0x82; // you can define the programmable flag (FLAGA)
SYNCDELAY; // to be active at the level you wish
EP8FIFOPFL = 0x00;

SYNCDELAY; // out endpoints do not POR (power-on reset) armed
EP2BCL = 0x80; // since the defaults are double buffered we must
SYNCDELAY; // write dummy byte counts twice
EP2BCL = 0x80; // arm EP2OUT & EP4OUT by writing to the byte count w/skip.
SYNCDELAY;
EP4BCL = 0x80;
SYNCDELAY;
EP4BCL = 0x80;

TD_Poll():
// nothing! The FX2 is doing all the work of transferring packets
// from the external master sync interface to the endpoint buffer...

Exhibit 2058 - Page 188 of 460

Chapter 9. Slave FIFOs Page 9-33

9.3.11 Auto-Mode Example: Asynchronous FIFO IN Data Transfers

The initialization code is exactly the same as for the synchronous-transfer example in Section
9.3.10, but with IFCLK configured for internal use at a rate of 48 MHz and the ASYNC bit set to 1.
Figure 9-45 shows the one-line modification that’s needed.

Figure 9-45. TD_Init Example, Asynchronous Slave FIFO IN Data Transfers

Code to perform the transfers is, as before, unnecessary; as Figure 9-46 illustrates.

Figure 9-46. TD_Poll Example, Asynchronous Slave FIFO IN Data Transfers

9.4 Switching Between Manual-Out and Auto-Out

Because OUT endpoints are not automatically armed when the FX2 enters Auto-Out mode, the
firmware can safely switch the FX2 between Manual-Out and Auto-Out modes without any need to
flush or reset the FIFOs.

TD_Init(): // slight modification from our synchronous firmware example
IFCONFIG = 0xCB;
// this defines the external interface as follows:
// use internal IFCLK (48MHz)
// use slave FIFO interface pins asynchronously to external master

TD_Poll():
// nothing! The FX2 is doing all the work of transferring packets
// from the external master async interface to the endpoint buffer…

Exhibit 2058 - Page 189 of 460

EZ-USB FX2 Technical Reference Manual

Page 9-34 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 190 of 460

