
Chapter 10. General Programmable Interface (GPIF) Page 10-1

Chapter 10 General Programmable Interface (GPIF)

10.1 Introduction

The General Programmable Interface (GPIF) is an internal master to the FX2’s endpoint FIFOs. It
replaces the external “glue” logic which might otherwise be required to build an interface between
the FX2 and the outside world.

At the GPIF’s core is a programmable state machine which generates up to six “control” and nine
“address” outputs, and accepts six external and two internal “ready” inputs. Four user-defined
Waveform Descriptors control the state machine; generally (but not necessarily), one is written for
FIFO reads, one for FIFO writes, one for single-byte/word reads, and one for single-byte/word
writes.

“Read” and “Write” are from the FX2’s point of view. “Read” waveforms transfer data from the
outside world to the FX2; “Write” waveforms transfer data from the FX2 to the outside world.

FX2 firmware can assign the FIFO-read and -write waveforms to any of the four FIFOs, and the
GPIF will generate the proper strobes and handshake signals to the outside-world interface as data
is transferred into or out of that FIFO.

As with external mastering (see Chapter 9 "Slave FIFOs"), the data bus between the FIFOs and
the outside world can be either 8 or 16 bits wide.

The GPIF is not limited to simple handshaking interfaces between the FX2 and external ASICs or
microprocessors; it’s powerful enough to directly implement such protocols as ATAPI (PIO and
UDMA), IEEE 1284 (EPP Parallel Port), Utopia, etc. An FX2 can, for instance, function as a single-
chip interface between USB and an IDE hard disk drive or CompactFlash™ memory card.

This chapter provides an overview of GPIF, discusses external connections, and explains the oper-
ation of the GPIF engine. Figure 10-1 presents a block diagram illustrating GPIF’s place in the FX2
system.

GPIF waveforms are generally created with the Cypress GPIFTool utility, a Windows™-based
application which is distributed with the Cypress EZ-USB FX2 Development Kit. Although this

Exhibit 2058 - Page 191 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-2 EZ-USB FX2 Technical Reference Manual v2.1

chapter will describe the structure of the Waveform Descriptors in some detail, knowledge of that
structure is usually not necessary. The GPIFTool simply hides the complexity of the Waveform
Descriptors; it doesn’t compromise the programmer’s control over the GPIF in any way.

Figure 10-1. GPIF’s Place in the FX2 System

Figure 10-2 shows an example of a simple GPIF transaction. For this transaction, the GPIF gener-
ates an address (GPIFADR[8:0]), drives the FIFO data bus (FD[15:0]), then waits for an exter-
nally-supplied handshake signal (RDY0) to go low, after which it pulls its CTL0 output low. When
the RDY0 signal returns high, the GPIF brings its CTL0 output high, then floats the data bus.

EPxEF

FIFOADR[1:0]

Slave FIFOs

8051 Device Pins

EPxFF
EPxPF

SLOE
SLRD
SLW R

INPKTEND

IFCLK

FD[15:0]

EP4FIFOBUF
EP6FIFOBUF
EP8FIFOBUF

EP2FIFOBUF

EP8
EP6

EP4
EP2

GPIF

GPIF

8051

CTL[5:0]

RDY[5:0]

GPIFADR[8:0]

GPIFW F

8051 INTRDY

30/48MHz

CLK

5 - 48MHz

XDATA

W aveform Descriptors

W F3
W F2

W F1
W F0

GPIF DONE

XGPIFSGLDATH/L

GPIFTRIG

XGPIFSGLDATLX

GSTATE[2:0]

W ORDW IDE=1

PORT I/O

Exhibit 2058 - Page 192 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-3

Figure 10-2. Example GPIF Waveform

10.1.1 Typical GPIF Interface

The GPIF allows the EZ-USB FX2 to connect directly to external peripherals such as ASICs,
DSPs, or other digital logic that uses an 8- or 16-bit parallel interface.

The GPIF provides external pins that can operate as outputs (CTL[5:0]), inputs (RDY[5:0]), Data
bus (FD[15:0]), and Address Lines (GPIFADR[8:0]).

A Waveform Descriptor in internal RAM describes the behavior of each of the GPIF signals. The
Waveform Descriptor is loaded into the GPIF registers by the FX2 firmware during initialization,
and it is then used throughout the execution of the code to perform transactions over the GPIF
interface.

Figure 10-3 shows a block diagram of a typical interface between the EZ-USB FX2 and a periph-
eral function.

GADR[8:0]

FD[15:0]

CTL0

RDY0

S0 S1 S2 S3 S4 S5 S6

Z ZVALID

A A+1

Exhibit 2058 - Page 193 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-4 EZ-USB FX2 Technical Reference Manual v2.1

Figure 10-3. EZ-USB FX2 Interfacing to a Peripheral

The following sections detail the features available and steps needed to create an efficient GPIF
design. This includes definition of the external GPIF connections and the internal register settings,
along with FX2 firmware needed to execute data transactions over the interface.

F X 2
M a s te r
M o d e

P e rip h e ra l

G P IF A D R [8 :0]

IF C L K

F D [1 5 :0]

C T L [5 :0]

R D Y [5 :0]

G S T A T E [2 :0]

P O R T I/O

D e b u g

Exhibit 2058 - Page 194 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-5

10.2 Hardware

Table 10-1 lists the registers associated with the GPIF hardware; a detailed description of each
register may be found in Chapter 15, "Registers."

10.2.1 The External GPIF Interface

The GPIF provides many general input and output signals with which external peripherals may be
interfaced gluelessly to the FX2.

The GPIF interface signals are shown in Table 10-2.

The Control Output pins (CTL[5:0]) are usually used as strobes (enable lines), read/write lines, etc.

Table 10-1. Registers Associated with GPIF Hardware

GPIFIDLECS IFCONFIG

GPIFIDLECTL FIFORESET

GPIFCTLCFG EPxCFG

PORTCCFG EPxFIFOCFG

PORTECFG EPxAUTOINLENH/L

GPIFADRH/L EPxFIFOPFH/L

GPIFTCB3:0

GPIFWFSELECT EPxTRIG

EPxGPIFFLGSEL GPIFABORT

EPxGPIFPFSTOP XGPIFSGLDATH/LX/LNOX

GPIFREADYCFG GPIFSGLDATH/LX/NOX

GPIFREADYSTAT GPIFTRIG

Note: The “x” in these register names represents 2, 4, 6, or 8; endpoints 0 and 1
are not associated with the GPIF.

Table 10-2. GPIF Pin Descriptions

PIN IN/OUT Description
CTL[5:0] O / Hi-Z Programmable control outputs

RDY[5:0] I Sampleable ready inputs

FD[15:0] I / O / Hi-Z Bidirectional FIFO data bus

GPIFADR[8:0] O / Hi-Z Address outputs

IFCLK I / O Interface clock

GSTATE[2:0] O / Hi-Z Current GPIF State number (for debug)

Exhibit 2058 - Page 195 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-6 EZ-USB FX2 Technical Reference Manual v2.1

The Ready Input pins (RDY[5:0]) are sampled by the GPIF and can force a transaction to wait
(inserting wait states), continue, or repeat until they’re in a particular state.

The GPIF Data Bus is a collection of the FD[15:0] pins.

• An 8-bit wide GPIF interface uses pins FD[7:0].

• A 16 bit-wide GPIF interface uses pins FD[15:0].

The GPIF Address lines (GPIFADR[8:0]) can generate an incrementing address as data is trans-
ferred. If higher-order address lines are needed, other non-GPIF I/O signals (i.e., general-purpose
I/O pins) may be used.

The Interface Clock, IFCLK, can be configured to be either an input (default) or an output interface
clock for synchronous interfaces to external logic.

The GSTATE[2:0] pins are outputs which show the current GPIF State number; they are typically
used only when debugging GPIF waveforms.

10.2.2 Default GPIF Pins Configuration

The FX2 comes out of reset with its I/O pins configured in “Ports” mode, not “GPIF Master” mode.
To configure the pins for GPIF mode, the IFCFG1:0 bits in the IFCONFIG register must be set to
10 (see Table 13-10, “IFCFG Selection of Port I/O Pin Functions" for details).

Exhibit 2058 - Page 196 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-7

10.2.3 Six Control OUT Signals

The 100- and 128-pin FX2 packages bring out all six Control Output pins, CTL[5:0]. The 56-pin
package brings out three of these signals, CTL[2:0]. CTLx waveform edges can be programmed to
make transitions as often as once per IFCLK clock (once every 20.8 ns if IFCLK is running at
48MHz).

By default, these signals are driven high.

10.2.3.1 Control Output Modes

The GPIF Control pins (CTL[5:0]) have several output modes:

• CTL[3:0] can act as CMOS outputs (optionally tristatable) or open-drain outputs.

• CTL[5:4] can act as CMOS outputs or open-drain outputs.

If CTL[3:0] are configured to be tristatable, CTL[5:4] are not available.

10.2.4 Six Ready IN signals

The 100- and 128-pin FX2 packages bring out all six Ready inputs, RDY[5:0]. The 56-pin package
brings out two of these signals, RDY[1:0].

The RDY inputs can be sampled synchronously or asynchronously. When the GPIF is in asynchro-
nous mode (SAS=1), the RDY inputs are unavoidably delayed by a small amount (approximately
24 ns at 48 MHz IFCLK). In other words, when the GPIF “looks” at a RDY input, it actually “sees”
the state of that input 24 ns ago.

10.2.5 Nine GPIF Address OUT signals

Nine GPIF address lines, GPIFADR[8:0], are available. If the GPIF address lines are configured as
outputs, writing to the GPIFADRH:L registers drives these pins immediately. The GPIF engine can
then increment them under control of the Waveform Descriptors. The GPIF address lines can be
tristated by clearing the associated PORTxCFG bits and OEx bits to 0 (see Section 13.3.3, "Port C
Alternate Functions" and Section 13.3.4, "Port E Alternate Functions").

Table 10-3. CTL[5:0] Output Modes

TRICTL
(GPIFCTLCFG.7)

 GPIFCTLCFG[6:0] CTL[3:0] CTL[5:4]

0 0 CMOS, Not Tristatable CMOS, Not Tristatable

0 1 Open-Drain Open-Drain

1 X CMOS, Tristatable Not Available

Exhibit 2058 - Page 197 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-8 EZ-USB FX2 Technical Reference Manual v2.1

10.2.6 Three GSTATE OUT signals

Three GPIF State lines, GSTATE[2:0], are available as an alternate configuration of PORTE[2:0].
These default to general-purpose inputs; setting GSTATE (IFCONFIG.2) to 1 selects the alternate
configuration and overrides PORTECFG[2:0] bit settings.

The GSTATE[2:0] pins output the current GPIF State number; this feature is typically used only
while debugging GPIF waveforms.

10.2.7 8/16-Bit Data Path, WORDWIDE = 1 (default) and WORDWIDE = 0

When the FX2 is configured for GPIF Master mode, PORTB is always configured as FD[7:0].

If any of the WORDWIDE bits (EPxFIFOCFG.0) are set to 1, PORTD is automatically configured
as FD[15:8]. If all the WORDWIDE bits are cleared to 0, PORTD is available for general-purpose
I/O.

10.2.8 Byte Order for 16-bit GPIF Transactions

Data is sent over USB in packets of 8-bit bytes, not 16-bit words. When the FIFO Data bus is 16
bits wide, the first byte in every pair sent over USB is transferred over FD[7:0] and the second byte
is transferred over FD[15:8].

10.2.9 Interface Clock (IFCLK)

The GPIF interface can be clocked from either an internal or an external source. The FX2’s inter-
nal clock source can be configured to run at either 30 or 48 MHz, and it can optionally be output on
the IFCLK pin. If the FX2 is configured to use an external clock source, the IFCLK pin can be
driven at any frequency between 5 MHz and 48 MHz. On power-on reset, the FX2 defaults to the
internal source at 48 MHz, normal polarity, with the IFCLK output disabled. See Figur e10-4.

IFCONFIG.7 selects between internal and external sources: 0 = external, 1 = internal.

IFCONFIG.6 selects between the 30- and 48-MHz internal clock: 0 = 30 MHz, 1 = 48 MHz. This bit
has no effect when IFCONFIG.7 = 0.

IFCONFIG.5 is the output enable for the internal clock source: 0 = disable, 1 = enable. This bit has
no effect when IFCONFIG.7 = 0.

IFCONFIG.4 inverts the polarity of the interface clock (whether it’s internally or externally
sourced): 0 = normal, 1 = inverted. IFCLK inversion can make it easier to interface the FX2 with
certain external circuitry; Figure 10-5, for example, demonstrates the use of IFCLK inversion in
order to ensure a long-enough setup time for reading peripheral signals.

Exhibit 2058 - Page 198 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-9

When IFCLK is configured as an input, the minimum external frequency that can be applied to it is
5 MHz.

Figure 10-4. IFCLK Configuration

Figure 10-5. Satisfying Setup Timing by Inverting the IFCLK Output

0
1

30 MHz

48 MHz
0
1

0
1

1
0

Internal
IFCLK
Signal

IFCFG.7
IFCFG.4

IFCFG.6
IFCFG.4 IFCFG.5

IFCLK
Pin

Signal
Asserted

ts

Signal
Sampled

Internal IFCLK Signal

Inverted IFCLK Output

Peripheral Signal

Exhibit 2058 - Page 199 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-10 EZ-USB FX2 Technical Reference Manual v2.1

10.2.10 Connecting GPIF Signal Pins to Hardware

The first step in creating the interface between the FX2’s GPIF and an external peripheral is to
define the hardware interconnects.

1. Choose IFCLK settings. Decide whether to use an asynchronous or synchronous interface.
If synchronous, choose either the internal or external interface clock. If internal, choose either
30 or 48 MHz; if external, ensure that the frequency of the external clock is in the range 5-48
MHz.

2. Determine the proper FIFO Data Bus size. If the data bus for the interface is 8 bits wide, use
the FD[7:0] pins and set WORDWIDE=0. If the data bus for the interface is 16 bits wide, use
FD[15:0] and set WORDWIDE=1.

3. Assign the CTLx signals to the interface. Make a list of all interface signals to be driven
from the GPIF to the peripheral, and assign them to the CTL[5:0] inputs. If there are more out-
put signals than available CTL outputs, non-GPIF I/O signals must be driven manually by FX2
firmware. In this case, the CTLx outputs should be assigned only to signals that must be
driven as part of a data transaction.

4. Assign the RDYn signals to the interface. Make a list of all interface signals to be driven
from the peripheral to the GPIF, and assign them to the RDY[5:0] inputs. If there are more
input signals than available RDY inputs, non-GPIF I/O signals must be sampled manually by
FX2 firmware. In this case, the RDYn inputs should be used only for signals that must be sam-
pled as part of a data transaction.

5. Determine the proper GPIF Address connections. If the interface uses an Address Bus,
use the GPIFADR[8:0] signals for the least significant bits, and other non-GPIF I/O signals for
the most significant bits. If the address pins are not needed (as when, for instance, the periph-
eral is a FIFO) they may be left unconnected.

10.2.11 Example GPIF Hardware Interconnect

The following example illustrates the hardware connections that can be made for a standard inter-
face to a 27C256 EPROM.

The process is the same for larger, more-complicated interfaces.

Table 10-4. Example GPIF Hardware Interconnect

Step Result Connection Made
1. Choose IFCLK settings. Internal IFCLK, 48MHz, Async, GPIF. No connection.

2. Determine proper FIFO
Data Bus size.

8 bits from the EPROM. FD[7:0] to D[7:0]. Firmware
writes WORDWIDE=0.

3. Assign CTLx signals to
the interface.

CS and OE are inputs to the EPROM. CTL0 to CS.
CTL1 to OE.

4. Assign RDYn signals to
the interface.

27C256 EPROM has no
output ready/wait signals.

No connection.

5. Determine the proper
GPIFADR connections.

16 bits of address. GPIFADR[8:0] to A[8:0] and
other I/O pins to A[15:9].

Exhibit 2058 - Page 200 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-11

10.3 Programming the GPIF Waveforms

Each GPIF Waveform Descriptor can define up to 7 States. In each State, the GPIF can be pro-
grammed to:

• Drive (high or low) or float the CTL outputs

• Sample or drive the FIFO Data bus

• Increment the value on the GPIF Address bus

• Increment the pointer into the current FIFO

• Trigger a GPIFWF (GPIF Waveform) interrupt

Additionally, each State may either sample any two of the following:

• The RDYx input pins

• A FIFO flag

• The INTRDY (internal RDY) flag

• The Transaction-Count-Expired flag

then AND, OR, or XOR the two terms and branch on the result to any State

or:

• Delay a specified number [1-256] of IFCLK cycles

States which sample and branch are called “Decision Points” (DPs); States which don’t are called
“Non-Decision Points” (NDPs).

Figure 10-6. GPIF State Machine Overview

trig

(up to 7 programmable states)

and

GPIF State Machine

INTRDY bit
GPIFWF ISR

Event

Firmware Hooks

State X State Y

NDP DP

State 7

State 7

IDLE

IDLE

CPU

Y
where:

1

6

(reserved)

CPU GPIF

X = Y-1

(A LFunc B)
{AND,
OR,

XOR}

Done

Exhibit 2058 - Page 201 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-12 EZ-USB FX2 Technical Reference Manual v2.1

10.3.1 The GPIF Registers

Two blocks of registers control the GPIF state machine:

• GPIF Configuration Registers — These registers configure the general settings and
report the status of the interface. Refer to Chapter 15, "Registers," and the remainder of
this chapter for details.

• Waveform Registers — These registers are loaded with the Waveform Descriptors that
configure the GPIF state machine; there are a total of 128 bytes located at addresses
0xE400 to 0xE47F. It is strongly recommended that the GPIFTool utility be used to create
Waveform Descriptors.

GPIF transactions cannot be initiated until the Configuration Registers and Waveform Registers
are loaded by FX2 firmware.

Access to the waveform registers is only allowed while the FX2 is in GPIF mode (i.e., IFCFG1:0 =
10). The waveform registers may only be written while the GPIF engine is halted (i.e., DONE = 1).

If it’s desired to dynamically reconfigure Waveform Descriptors, this may be accomplished by writ-
ing just the bytes which change; it’s not necessary to reload the entire set of Waveform Descrip-
tors in order to modify only a few bytes.

10.3.2 Programming GPIF Waveforms

The “programs” for GPIF waveforms are the Waveform Descriptors, which are stored in the Wave-
form Registers by FX2 firmware.

The FX2 can hold up to four Waveform Descriptors, each of which can be used for one of four
types of transfers: Single Write, Single Read, FIFO Write, or FIFO Read. By default, one Wave-
form Descriptor is assigned to each transfer type, but it’s not necessary to retain that configuration;
all four Waveform Descriptors could, for instance, be configured for FIFO Write usage (see the
GPIFWFSELECT register in Chapter 15 "Registers").

Each Waveform Descriptor consists of up to seven 32-bit State Instructions that program key tran-
sition points for GPIF interface signals. There’s a one-to-one correspondence between the State
Instructions and the GPIF state-machine States. Among other things, each State Instruction
defines the state of the CTLx outputs, the state of FD[15:0], the use of the RDYn inputs, and the
behavior of GPIFADR[8:0].

Transitions from one State to another always happen on a rising edge of the IFCLK, but the GPIF
may remain in one State for many IFCLK cycles.

10.3.2.1 The GPIF IDLE State

A Waveform consists of up to seven programmable States, numbered S0 to S6, and one special
Idle State, S7. A Waveform terminates when the GPIF program branches to its Idle State.

Exhibit 2058 - Page 202 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-13

To complete a GPIF transaction, the GPIF program must branch to the IDLE State, regardless of
the State that the GPIF program is currently executing. For example, a GPIF Waveform might be
defined by a program which contained only 2 programmed States, S0 and S1. The GPIF program
would branch from S1 (or S0) to S7 when it wished to terminate.

The state of the GPIF signals during the Idle State is determined by the contents of the
GPIFIDLECS and GPIFIDLECTL registers.

Once a waveform is triggered, another waveform may not be started until the first one terminates.
Termination of a waveform is signaled through the DONE bit (GPIFIDLECS.7 or GPIFTRIG.7) or,
optionally, through the GPIFDONE interrupt.

• If DONE = 0, the GPIF is busy generating a Waveform.

• If DONE = 1, the GPIF is done (GPIF is in the Idle State) and ready for firmware to start
the next GPIF transaction.

Important: With one exception (writing to the GPIFABORT register in order to force the current
waveform to terminate) it is illegal to write to any of the GPIF-related registers (including the Wave-
form Registers) while the GPIF is busy. Doing so will cause indeterminate behavior likely to result
in data corruption.

10.3.2.1.1 GPIF Data Bus During IDLE

During the Idle State, the GPIF Data Bus (FD[15:0]) can be either driven or tristated, depending on
the setting of the IDLEDRV bit (GPIFIDLECS.0):

• If IDLEDRV = 0, the GPIF Data Bus is tristated during the Idle State.

• If IDLEDRV = 1, the GPIF Data Bus is actively driven during the Idle State, to the value last
placed on the bus by a GPIF Waveform.

10.3.2.1.2 CTL Outputs During IDLE

During the IDLE State, the state of CTL[5:0] depends on the following register bits:

• TRICTL (GPIFCTLCFG.7), as described in Section 10.2.3.1, "Control Output Modes".

• GPIFCTLCFG[5:0]

• GPIFIDLECTL[5:0].

The combination of these bits defines CTL5:0 during IDLE as follows:

• If TRICTL is 0, GPIFIDLECTL[5:0] directly represent the output states of CTL5:0 during
the IDLE State. The GPIFCTLCFG[5:0] bits determine whether the CTL5:0 outputs are
CMOS or open-drain: If GPIFCTLCFG.x = 0, CTLx is CMOS; if GPIFCTLCFG.x = 1, CTLx
is open-drain.

Exhibit 2058 - Page 203 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-14 EZ-USB FX2 Technical Reference Manual v2.1

• If TRICTL is 1, GPIFIDLECTL[7:4] are the output enables for the CTL[3:0] signals, and
GPIFIDLECTL[3:0] are the output values for CTL[3:0]. CTL4 and CTL5 are unavailable in
this mode.

Table 10-5 illustrates this relationship.

10.3.2.2 Defining States

Each Waveform is made up of a number of States, each of which is defined by a 32-bit State
Instruction. Each State can be one of two basic types: a Non-Decision Point (NDP) or a Decision
Point (DP).

For “write” waveforms, the data bus is either driven or tristated during each State. For “read” wave-
forms, the data bus is either sampled/stored or not sampled during each State.

10.3.2.2.1 Non-Decision Point (NDP) States

For NDP States, the control outputs (CTLx) are defined by the GPIF instruction to be either 1, 0, or
tristated during the entire State. NDP States have a programmable fixed duration in units of IFCLK
cycles.

Figure 10-7 illustrates the basic concept of NDP States. A write waveform is shown, and for sim-
plicity all the States are shown with equal spacing. Although there are a total of six programmable
CTL outputs, only one (CTL0) is shown in Figure 10-7.

Table 10-5. Control Outputs (CTLn) During the IDLE State

TRICTL Control Output Output State Output Enable

0

CTL0 GPIFIDLECTL.0

N/A
(CTL Outputs are always

enabled when TRICTL = 0)

CTL1 GPIFIDLECTL.1

CTL2 GPIFIDLECTL.2

CTL3 GPIFIDLECTL.3

CTL4 GPIFIDLECTL.4

CTL5 GPIFIDLECTL.5

1

CTL0 GPIFIDLECTL.0 GPIFIDLECTL.4

CTL1 GPIFIDLECTL.1 GPIFIDLECTL.5

CTL2 GPIFIDLECTL.2 GPIFIDLECTL.6

CTL3 GPIFIDLECTL.3 GPIFIDLECTL.7

CTL4 N/A
(CTL4 and CTL5 are not available when TRICTL = 1)CTL5

Exhibit 2058 - Page 204 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-15

Figure 10-7. Non-Decision Point (NDP) States

Referring to Figure 10-7:

 In State 0:
• FD[7:0] is programmed to be tristated.
• CTL0 is programmed to be driven to a logic 1.

In State 1:
• FD[7:0] is programmed to be driven.
• CTL0 is still programmed to be driven to a logic 1.

In State 2:
• FD[7:0] is programmed to be driven.
• CTL0 is programmed to be driven to a logic 0.

In State 3:
• FD[7:0] is programmed to be driven.
• CTL0 is still programmed to be driven to a logic 0.

In State 4:
• FD[7:0] is programmed to be driven.
• CTL0 is programmed to be driven to a logic 1.

In State 5:
• FD[7:0] is programmed to be tristated.
• CTL0 is still programmed to be driven to a logic 1.

In State 6:
• FD[7:0] is programmed to be tristated.
• CTL0 is still programmed to be driven to a logic 1.

GADR[8:0]

FD[15:0]

CTL0

S0 S1 S2 S3 S4 S5 S6

Z ZVALID

A

Exhibit 2058 - Page 205 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-16 EZ-USB FX2 Technical Reference Manual v2.1

Since all States in this example are coded as NDPs, the GPIF automatically branches from the
last State (S6) to the Idle State (S7). This is the State in which the GPIF waits until the next GPIF
waveform is triggered by the firmware.

States 2 and 3 in the example are identical, as are States 5 and 6. In a real application, these
would probably be combined (there’s no need to duplicate a State in order to “stretch” it, since
each NDP State can be assigned a duration in terms of IFCLK cycles). If fewer than 7 States were
defined for this waveform, the Idle State wouldn’t automatically be entered after the last pro-
grammed State; that last programmed State’s State Instruction would have to include an explicit
branch to the Idle State.

10.3.2.2.2 Decision Point (DP) States

Any State can be designated as a Decision Point (DP). A DP allows the GPIF engine to sample
two signals — each of the “two” can be the same signal, if desired — perform a boolean operation
on the sampled values, then branch to other States (or loop back on itself, remaining in the current
State) based on the result.

If a State Instruction includes a control task (advance the FIFO pointer, increment the GPIFADR
address, etc.), that task is always executed once upon entering the State, regardless of whether
the State is a DP or NDP. If the State is a DP that loops back on itself, however, it can be pro-
grammed to re-execute the control task on every loop.

With a Decision Point, the GPIF can perform simple tasks (wait until a RDY line is low before con-
tinuing to the next State, for instance). Decision point States can also perform more-complex tasks
by branching to one State if the operation on the sampled signals results in a logic 1, or to a differ-
ent State if it results in a logic 0.

In each State Instruction, the two signals to sample can be selected from any of the following:

• the six external RDY signals (RDY0-RDY5)

• one of the current FIFO’s flags (PF, EF, FF)

• the INTRDY bit in the READY register

• a “Transaction Count Expired” signal (which replaces RDY5)

The State Instruction also specifies a logic function (AND, OR, or XOR) to be applied to the two
selected signals. If it’s desired to act on the state of only one signal, the usual procedure is to
select the same signal twice and specify the logic function as AND.

The State Instruction also specifies which State to branch to if the result of the logical expression
is 0, and which State to branch to if the result of the logical expression is 1.

Below is an example waveform created using one Decision Point State (State 1); Non-Decision
Point States are used for the rest of the waveform.

Exhibit 2058 - Page 206 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-17

Figure 10-8. One Decision Point: Wait States Inserted Until RDY0 Goes Low

Figure 10-9. One Decision Point: No Wait States Inserted:
RDY0 is Already Low at Decision Point I1

In Figure 10-8 and Figure 10-9, there is a single Decision Point defined as State 1. In this example,
the input ready signal is assumed to be connected to RDY0, and the State Instruction for S1 is
configured to branch to State 2 if RDY0 is a logic 0 or to branch to State 1 (i.e., loop indefinitely) if
RDY0 is a logic 1.

GADR[8:0]

FD[15:0]

CTL0

RDY0

S0 S1 S2 S3 S4 S5 S6

Z ZVALID

A

GADR[8:0]

FD[15:0]

CTL0

RDY0

S0 S1 S2 S3 S4 S5 S6

Z ZVALID

A

Exhibit 2058 - Page 207 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-18 EZ-USB FX2 Technical Reference Manual v2.1

In Figure 10-8, the GPIF remains in S1 until the RDY0 signal goes low, then branches to S2.
Figure 10-9 illustrates the GPIF behavior when the RDY0 signal is already low when S1 is
entered: The GPIF branches to S2.

Although it appears in Figure 10-8 that the GPIF branches immediately from State 0 to State 2,
this isn’t exactly true. Even if RDY0 is already low before the GPIF enters State 1, the GPIF
spends one IFCLK cycle in State 1.

10.3.3 Re-Executing a Task Within a DP State

In the simple DP examples shown earlier in this chapter, a control task (e.g., output a word on
FD[15:0] and increment GPIFADR[8:0]) executes only once at the start of a DP State, then the
GPIF waits, sampling a RDYx input repeatedly until that input “tells” the GPIF to branch to the next
State.

The GPIF also has the capability to re-execute the control task every time the RDYx input is sam-
pled; this feature can be used to burst a large amount of data without passing through the Idle
State.

Exhibit 2058 - Page 208 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-19

Figure 10-10. Re-Executing a Task within a DP State

Figure 10-11. GPIFTool Setup for the Waveform of Figure 10-10

State 0 1 2 3 4 5 6 7
AddrMode Same Val Inc Val Same Val Same Val Same Val Same Val Same Val
DataMode Activate Activate NO Data NO Data NO Data NO Data NO Data
NextData SameData NextData SameData SameData SameData SameData SameData
Int Trig No Int No Int No Int No Int No Int No Int No Int

IF/Wait Wait 4 IF Wait 1 Wait 1 Wait 1 Wait 1 Wait 1
Term A RDY0
LFUNC AND
Term B RDY0

Branch1 Then 2
Branch0 Else 1

Re-execute Yes
CTL0 1 0 1 1 1 1 1 1
CTL1 1 1 1 1 1 1 1 1
CTL2 1 1 1 1 1 1 1 1
CTL3 1 1 1 1 1 1 1 1
CLT4 1 1 1 1 1 1 1 1
CTL5 1 1 1 1 1 1 1 1

D+3

A

D D+1 D+2

A+3A+2A+1

IFCLK

GADR[8:0]

CTL0

RDY0

FD[7:0]

DP NDPNDP

DP, using re-execute control
task feature… to loop on to

itself until terms are met

DP, transitions to
next interval when

term s are m et

Exhibit 2058 - Page 209 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-20 EZ-USB FX2 Technical Reference Manual v2.1

Figure 10-12. A DP State Which Does NOT Re-Execute the Task

Figure 10-13. GPIFTool Setup for the Waveform of Figure 10-12

State 0 1 2 3 4 5 6 7

AddrMode Same Val Inc Val Same Val Same Val Same Val Same Val Same Val

DataMode Activate Activate NO Data NO Data NO Data NO Data NO Data

NextData SameData NextData SameData SameData SameData SameData SameData

Int Trig No Int No Int No Int No Int No Int No Int No Int

IF/Wait Wait 4 IF Wait 1 Wait 1 Wait 1 Wait 1 Wait 1

Term A RDY0

LFUNC AND

Term B RDY0

Branch1 Then 2

Branch0 Else 1

Re-execute No

CTL0 1 0 1 1 1 1 1 1

CTL1 1 1 1 1 1 1 1 1

CTL2 1 1 1 1 1 1 1 1

CTL3 1 1 1 1 1 1 1 1

CLT4 1 1 1 1 1 1 1 1

CTL5 1 1 1 1 1 1 1 1

A

D D+1

A+1

IFCLK

GADR[8:0]

CTL0

RDY0

FD[7:0]

DP NDPNDP

DP, loop on to itself until terms
are m et… control tasks execute

on rising edge transition into
DP only…

DP, transitions to
next interval when

term s are m et

Exhibit 2058 - Page 210 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-21

10.3.4 State Instructions

Each State’s characteristics are defined by a 4-byte State Instruction. The four bytes are named
LENGTH / BRANCH, OPCODE, LOGIC FUNCTION, and OUTPUT.

Note that the State Instructions are interpreted differently for Decision Points (DP = 1) and Non-
Decision Points (DP = 0).

 Non-Decision Point State Instruction (DP = 0)

LENGTH / BRANCH

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Number of IFCLK cycles to stay in this State (0 = 256 cycles)

OPCODE

7 6 5 4 3 2 1 0

x x SGL GINT INCAD NEXT/
SGLCRC

DATA DP = 0

LOGIC FUNCTION

7 6 5 4 3 2 1 0

Not Used

OUTPUT (if TRICTL Bit = 1)

7 6 5 4 3 2 1 0

OE3 OE2 OE1 OE0 CTL3 CTL2 CTL1 CTL0

OUTPUT (if TRICTL Bit = 0)

7 6 5 4 3 2 1 0

x x CTL5 CTL4 CTL3 CTL2 CTL1 CTL0

Exhibit 2058 - Page 211 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-22 EZ-USB FX2 Technical Reference Manual v2.1

 Decision Point State Instruction (DP = 1)

LENGTH / BRANCH Register: This register’s interpretation depends on the DP bit:

• For DP = 0 (Non-Decision Point), this is a LENGTH field; it holds the fixed duration of this
State in IFCLK cycles. A value of 0 is interpreted as 256 IFCLK cycles.

• For DP = 1 (Decision Point), this is a BRANCH field; it specifies the State to which the
GPIF will branch:

BRANCHON1: Specifies the State to which the GPIF will branch if the logic expression
evaluates to 1.

BRANCHON0: Specifies the State to which the GPIF will branch if the logic expression
evaluates to 0.

LENGTH / BRANCH

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Re-Execute x BRANCHON1 BRANCHON1

OPCODE

7 6 5 4 3 2 1 0

x x SGL GINT INCAD NEXT/
SGLCRC

DATA DP = 1

LOGIC FUNCTION

7 6 5 4 3 2 1 0

LFUNC TERMA TERMB

OUTPUT (if TRICTL Bit = 1)

7 6 5 4 3 2 1 0

OE3 OE2 OE1 OE0 CTL3 CTL2 CTL1 CTL0

OUTPUT (if TRICTL Bit = 0)

7 6 5 4 3 2 1 0

x x CTL5 CTL4 CTL3 CTL2 CTL1 CTL0

Exhibit 2058 - Page 212 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-23

OPCODE Register: This register sets a number of State characteristics.

SGL Bit: has no effect in a Single-Read or Single-Write waveform. In a FIFO waveform, it
specifies whether a single-data transaction should occur (from/to the SGLDATAH:L or
UDMA_CRCH:L registers), even in a FIFO-Write or FIFO-Read transaction. See also “NEXT/
SGLCRC”, below.

1 = Use SGLDATAH:L or UDMA_CRCH:L.
0 = Use the FIFO.

GINT Bit: specifies whether to generate a GPIFWF interrupt during this State.

1 = Generate GPIFWF interrupt (on INT4) when this State is reached.
0 = Do not generate interrupt.

INCAD Bit: specifies whether to increment the GPIF Address lines GPIFADR[8:0].

1 = Increment the GPIFADR[8:0] bus at the beginning of this State.
0 = Do not increment the GPIFADR[8:0] signals.

NEXT/SGLCRC Bit:

If SGL = 0, specifies whether the FIFO should be advanced at the start of this State.

1 = Move the next data in the OUT FIFO to the top.
0 = Do not advance the FIFO.
The NEXT bit has no effect when the waveform is applied to an IN FIFO.

If SGL = 1, specifies whether data should be transferred to/from SGLDATAH:L or
UDMA_CRCH:L. See also “SGL Bit”, above.

1 = Use UDMA_CRCH:L.
0 = Use SGLDATAH:L.

DATA Bit: specifies whether the FIFO Data bus is to be driven, tristated, or sampled.

During a write:
1 = Drive the FIFO Data bus with the output data.
0 = Tristate (don’t drive the bus).

During a read:
1 = Sample the FIFO Data bus and store the data.
0 = Don’t sample the data bus.

DP Bit: indicates whether the State is a DP or NDP:

1 = Decision Point.
0 = Non-Decision Point.

Exhibit 2058 - Page 213 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-24 EZ-USB FX2 Technical Reference Manual v2.1

LOGIC FUNCTION Register: This register is used only in DP State Instructions. It specifies the
inputs (TERMA and TERMB) and the Logic Function (LFUNC) to apply to those inputs. The result
of the logic function determines the State to which the GPIF will branch (see also “LENGTH /
BRANCH Register”, above).

TERMA and TERMB bits:

= 000: RDY0
= 001: RDY1
= 010: RDY2
= 011: RDY3
= 100: RDY4
= 101: RDY5 (or Transaction-Count Expiration, if GPIFREADYCFG.5 = 1)
= 110: FIFO flag (PF, EF, or FF), preselected via EPxGPIFFLGSEL
= 111: INTRDY (Bit 7 of the GPIFREADYCFG register)

LFUNC bits:

= 00: A AND B
= 01: A OR B
= 10: A XOR B
= 11: A AND B

The TERMA and TERMB inputs are sampled at each rising edge of IFCLK. The logic function
is applied, then the branch is taken on the next rising edge.

This register is meaningful only for DP Instructions; when the DP bit of the OPCODE register
is cleared to 0, the contents of this register are ignored.

OUTPUT Register: This register controls the state of the 6 Control outputs (CTL5:0) during the
entire State defined by this State Instruction.

OEn Bit: If TRICTL = 1, specifies whether the corresponding CTLx output signal is tristated.

1 = Drive CTLx
0 = Tristate CTLx

CTLn Bit: specifies the state to set each CTLx signal to during this entire State.

1 = High level

If the CTLx bit in the GPIFCTLCFG register is set to 1, the output driver will be an
open-drain.

If the CTLx bit in the GPIFCTLCFG register is set to 0, the output driver will be driven
to CMOS levels.

0 = Low level

Exhibit 2058 - Page 214 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-25

10.3.4.1 Structure of the Waveform Descriptors

Up to four different Waveforms can be defined. Each Waveform Descriptor comprises up to 7 State
Instructions which are loaded into the Waveform Registers as defined in this section.

Table 10-6. Waveform Descriptor Addresses

Within each Waveform Descriptor, the State Instructions are packed as described in Table 10-7,
“Waveform Descriptor 0 Structure". Waveform Descriptor 0 is shown as an example. The other
Waveform Descriptors follow exactly the same structure but at higher XDATA addresses.

Waveform
Descriptor

Base XDATA Address

0 0xE400

1 0xE420

2 0xE440

3 0xE460

Table 10-7. Waveform Descriptor 0 Structure

XDATA
Address

 Contents

0xE400 LENGTH / BRANCH [0] (LENGTH / BRANCH field of State 0 of Waveform Program 0)

0xE401 LENGTH / BRANCH [1] (LENGTH / BRANCH field of State 1 of Waveform Program 0)

0xE402 LENGTH / BRANCH [2] (LENGTH / BRANCH field of State 2 of Waveform Program 0)

0xE403 LENGTH / BRANCH [3] (LENGTH / BRANCH field of State 3 of Waveform Program 0)

0xE404 LENGTH / BRANCH [4] (LENGTH / BRANCH field of State 4 of Waveform Program 0)

0xE405 LENGTH / BRANCH [5] (LENGTH / BRANCH field of State 5 of Waveform Program 0)

0xE406 LENGTH / BRANCH [6] (LENGTH / BRANCH field of State 6 of Waveform Program 0)

0xE407 Reserved

0xE408 OPCODE[0] (OPCODE field of State 0 of Waveform Program 0)

0xE409 OPCODE[1] (OPCODE field of State 1 of Waveform Program 0)

0xE40A OPCODE[2] (OPCODE field of State 2 of Waveform Program 0)

0xE40B OPCODE[3] (OPCODE field of State 3 of Waveform Program 0)

0xE40C OPCODE[4] (OPCODE field of State 4 of Waveform Program 0)

0xE40D OPCODE[5] (OPCODE field of State 5 of Waveform Program 0)

0xE40E OPCODE[6] (OPCODE field of State 6 of Waveform Program 0)

0xE40F Reserved

0xE410 OUTPUT[0] (OUTPUT field of State 0 of Waveform Program 0)

0xE411 OUTPUT[1] (OUTPUT field of State 1 of Waveform Program 0)

0xE412 OUTPUT[2] (OUTPUT field of State 2 of Waveform Program 0)

0xE413 OUTPUT[3] (OUTPUT field of State 3 of Waveform Program 0)

0xE414 OUTPUT[4] (OUTPUT field of State 4 of Waveform Program 0)

0xE415 OUTPUT[5] (OUTPUT field of State 5 of Waveform Program 0)

0xE416 OUTPUT[6] (OUTPUT field of State 6 of Waveform Program 0)

0xE417 Reserved

0xE418 LOGIC FUNCTION[0] (LOGIC FUNCTION field of State 0 of Waveform Program 0)

0xE419 LOGIC FUNCTION[1] (LOGIC FUNCTION field of State 1 of Waveform Program 0)

Exhibit 2058 - Page 215 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-26 EZ-USB FX2 Technical Reference Manual v2.1

10.4 Firmware

The “x” in these register names represents 2, 4, 6, or 8; endpoints 0 and 1 are not associated with
the Slave FIFOs.

The GPIFTool utility, distributed with the Cypress EZ-USB FX2 Development Kit, generates C
code which may be linked with the rest of an application’s source code. The GPIFTool output
includes the following basic GPIF framework and functions:

0xE41A LOGIC FUNCTION[2] (LOGIC FUNCTION field of State 2 of Waveform Program 0)

0xE41B LOGIC FUNCTION[3] (LOGIC FUNCTION field of State 3 of Waveform Program 0)

0xE41C LOGIC FUNCTION[4] (LOGIC FUNCTION field of State 4 of Waveform Program 0)

0xE41D LOGIC FUNCTION[5] (LOGIC FUNCTION field of State 5 of Waveform Program 0)

0xE41E LOGIC FUNCTION[6] (LOGIC FUNCTION field of State 6 of Waveform Program 0)

0xE41F Reserved

Table 10-8. Registers Associated with GPIF Firmware

GPIFTRIG (SFR) EPxCFG
GPIFSGLDATH (SFR) EPxFIFOCFG
GPIFSGLDATLX (SFR) EPxAUTOINLENH/L
GPIFSGLDATLNOX (SFR) EPxFIFOPFH/L
EPxGPIFTRIG EP2468STAT(SFR)
XGPIFSGLDATH EP24FIFOFLGS(SFR)
XGPIFSGLDATLX EP68FIFOFLGS(SFR)
XGPIFSGLDATLNOX EPxCS
GPIFABORT EPxFIFOFLGS
GPIFIE
GPIFIRQ EPxFIFOIE
GPIFTCB3 EPxFIFOIRQ
GPIFTCB2 INT2IVEC
GPIFTCB1 INT4IVEC
GPIFTC0 INTSETUP

IE (SFR)
EPxBCH/L IP (SFR)
EPxFIFOBCH/L INT2CLR(SFR)
EPxFIFOBUF INT4CLR(SFR)
INPKTEND EIE (SFR)

EXIF (SFR)

Table 10-7. Waveform Descriptor 0 Structure (Continued)

Exhibit 2058 - Page 216 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-27

TD_Init():
… … … … …
GpifInit(); // Configures GPIF from GPIFTool generated waveform data

// TODO: configure other endpoints, etc. here

// TODO: arm OUT buffer(s) here

// setup INT4 as internal source for GPIF interrupts
// using INT4CLR (SFR), automatically enabled
//INTSETUP |= 0x03; //Enable INT4 Autovectoring
// SYNCDELAY;
//GPIFIE = 0x03; // Enable GPIFDONE and GPIFWF interrupt(s)
// SYNCDELAY;
//EIE |= 0x04; // Enable INT4 ISR, EIE.2(EIEX4)=1

// TODO: configure GPIF interrupt(s) to meet your needs here
 … … … … …

void GpifInit(void)
{
 BYTE i;

 // Registers which require a synchronization delay, see section 15.14
 // FIFORESET FIFOPINPOLAR
 // INPKTEND OUTPKTEND
 // EPxBCH:L REVCTL
 // GPIFTCB3 GPIFTCB2
 // GPIFTCB1 GPIFTCB0
 // EPxFIFOPFH:L EPxAUTOINLENH:L
 // EPxFIFOCFG EPxGPIFFLGSEL
 // PINFLAGSxx EPxFIFOIRQ
 // EPxFIFOIE GPIFIRQ
 // GPIFIE GPIFADRH:L
 // UDMACRCH:L EPxGPIFTRIG
 // GPIFTRIG

 // Note: The pre-REVE EPxGPIFTCH/L register are affected, as well...
 // ...these have been replaced by GPIFTC[B3:B0] registers

 // 8051 doesn't have access to waveform memories 'til
 // the part is in GPIF mode.

 IFCONFIG = 0xCE;
 // IFCLKSRC=1 , FIFOs executes on internal clk source
 // xMHz=1 , 48MHz internal clk rate
 // IFCLKOE=0 , Don't drive IFCLK pin signal at 48MHz
 // IFCLKPOL=0 , Don't invert IFCLK pin signal from internal clk
 // ASYNC=1 , master samples asynchronous
 // GSTATE=1 , Drive GPIF states out on PORTE[2:0], debug WF
 // IFCFG[1:0]=10, FX2 in GPIF master mode

 GPIFABORT = 0xFF; // abort any waveforms pending

 GPIFREADYCFG = InitData[0];
 GPIFCTLCFG = InitData[1];
 GPIFIDLECS = InitData[2];
 GPIFIDLECTL = InitData[3];

Exhibit 2058 - Page 217 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-28 EZ-USB FX2 Technical Reference Manual v2.1

 GPIFWFSELECT = InitData[5];
 GPIFREADYSTAT = InitData[6];

 // use dual autopointer feature...
 AUTOPTRSETUP = 0x07; // inc both pointers,
 // ...warning: this introduces pdata hole(s)
 // ...at E67B (XAUTODAT1) and E67C (XAUTODAT2)

 // source
 APTR1H = MSB(&WaveData);
 APTR1L = LSB(&WaveData);

 // destination
 AUTOPTRH2 = 0xE4;
 AUTOPTRL2 = 0x00;

 // transfer
 for (i = 0x00; i < 128; i++)
 {
 EXTAUTODAT2 = EXTAUTODAT1;
 }

// Configure GPIF Address pins, output initial value,
 PORTCCFG = 0xFF; // [7:0] as alt. func. GPIFADR[7:0]
 OEC = 0xFF; // and as outputs
 PORTECFG |= 0x80; // [8] as alt. func. GPIFADR[8]
 OEC |= 0x80; // and as output

// ...OR... tri-state GPIFADR[8:0] pins
// PORTCCFG = 0x00; // [7:0] as port I/O
// OEC = 0x00; // and as inputs
// PORTECFG &= 0x7F; // [8] as port I/O
// OEC &= 0x7F; // and as input

// GPIF address pins update when GPIFADRH/L written
 SYNCDELAY; //
 GPIFADRH = 0x00; // bits[7:1] always 0
 SYNCDELAY; //
 GPIFADRL = 0x00; // point to PERIPHERAL address 0x0000
}

#ifdef TESTING_GPIF
// TODO: You may add additional code below.

void OtherInit(void)
{ // interface initialization
 // ...see TD_Init();
}

// Set Address GPIFADR[8:0] to PERIPHERAL
void Peripheral_SetAddress(WORD gaddr)
{
 SYNCDELAY; //
 GPIFADRH = gaddr >> 8;
 SYNCDELAY; //
 GPIFADRL = (BYTE)gaddr; // setup GPIF address
}

Exhibit 2058 - Page 218 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-29

// Set EP2GPIF Transaction Count
void Peripheral_SetEP2GPIFTC(WORD xfrcnt)
{
 SYNCDELAY; //
 EP2GPIFTCH = xfrcnt >> 8; // setup transaction count
 SYNCDELAY; //
 EP2GPIFTCL = (BYTE)xfrcnt;
}

// Set EP4GPIF Transaction Count
void Peripheral_SetEP4GPIFTC(WORD xfrcnt)
{
 SYNCDELAY; //
 EP4GPIFTCH = xfrcnt >> 8; // setup transaction count
 SYNCDELAY; //
 EP4GPIFTCL = (BYTE)xfrcnt;
}

// Set EP6GPIF Transaction Count
void Peripheral_SetEP6GPIFTC(WORD xfrcnt)
{
 SYNCDELAY; //
 EP6GPIFTCH = xfrcnt >> 8; // setup transaction count
 SYNCDELAY; //
 EP6GPIFTCL = (BYTE)xfrcnt;
}

// Set EP8GPIF Transaction Count
void Peripheral_SetEP8GPIFTC(WORD xfrcnt)
{
 SYNCDELAY; //
 EP8GPIFTCH = xfrcnt >> 8; // setup transaction count
 SYNCDELAY; //
 EP8GPIFTCL = (BYTE)xfrcnt;
}

#define GPIF_FLGSELPF 0
#define GPIF_FLGSELEF 1
#define GPIF_FLGSELFF 2

// Set EP2GPIF Decision Point FIFO Flag Select (PF, EF, FF)
void SetEP2GPIFFLGSEL(WORD DP_FIFOFlag)
{
 EP2GPIFFLGSEL = DP_FIFOFlag;
}

// Set EP4GPIF Decision Point FIFO Flag Select (PF, EF, FF)
void SetEP4GPIFFLGSEL(WORD DP_FIFOFlag)
{
 EP4GPIFFLGSEL = DP_FIFOFlag;
}

// Set EP6GPIF Decision Point FIFO Flag Select (PF, EF, FF)
void SetEP6GPIFFLGSEL(WORD DP_FIFOFlag)
{
 EP6GPIFFLGSEL = DP_FIFOFlag;
}

Exhibit 2058 - Page 219 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-30 EZ-USB FX2 Technical Reference Manual v2.1

// Set EP8GPIF Decision Point FIFO Flag Select (PF, EF, FF)
void SetEP8GPIFFLGSEL(WORD DP_FIFOFlag)
{
 EP8GPIFFLGSEL = DP_FIFOFlag;
}

// Set EP2GPIF Programmable Flag STOP, overrides Transaction Count
void SetEP2GPIFPFSTOP(void)
{
 EP2GPIFPFSTOP = 0x01;
}

// Set EP4GPIF Programmable Flag STOP, overrides Transaction Count
void SetEP4GPIFPFSTOP(void)
{
 EP4GPIFPFSTOP = 0x01;
}

// Set EP6GPIF Programmable Flag STOP, overrides Transaction Count
void SetEP6GPIFPFSTOP(void)
{
 EP6GPIFPFSTOP = 0x01;
}

// Set EP8GPIF Programmable Flag STOP, overrides Transaction Count
void SetEP8GPIFPFSTOP(void)
{
 EP8GPIFPFSTOP = 0x01;
}

// write single byte to PERIPHERAL, using GPIF
void Peripheral_SingleByteWrite(BYTE gdata)
{
 while(!(GPIFTRIG & 0x80)) // poll GPIFTRIG.7 Done bit
 {
 ;
 }

 XGPIFSGLDATLX = gdata; // trigger GPIF
 // ...single byte write transaction
}

// write single word to PERIPHERAL, using GPIF
void Peripheral_SingleWordWrite(WORD gdata)
{
 while(!(GPIFTRIG & 0x80)) // poll GPIFTRIG.7 Done bit
 {
 ;
 }

// using register(s) in XDATA space
 XGPIFSGLDATH = gdata >> 8;
 XGPIFSGLDATLX = gdata; // trigger GPIF
 // ...single word write transaction
}

// read single byte from PERIPHERAL, using GPIF
void Peripheral_SingleByteRead(BYTE xdata *gdata)

Exhibit 2058 - Page 220 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-31

{
 static BYTE g_data = 0x00;

 while(!(GPIFTRIG & 0x80)) // poll GPIFTRIG.7 Done bit
 {
 ;
 }

// using register(s) in XDATA space, dummy read
 g_data = XGPIFSGLDATLX; // trigger GPIF
 // ...single byte read transaction
 while(!(GPIFTRIG & 0x80)) // poll GPIFTRIG.7 Done bit
 {
 ;
 }

// using register(s) in XDATA space,
 *gdata = XGPIFSGLDATLNOX; // ...GPIF reads byte from PERIPHERAL
}

// read single word from PERIPHERAL, using GPIF
void Peripheral_SingleWordRead(WORD xdata *gdata)
{
 BYTE g_data = 0x00;

 while(!(GPIFTRIG & 0x80)) // poll GPIFTRIG.7 Done bit
 {
 ;
 }

// using register(s) in XDATA space, dummy read
 g_data = XGPIFSGLDATLX; // trigger GPIF
 // ...single word read transaction

 while(!(GPIFTRIG & 0x80)) // poll GPIFTRIG.7 Done bit
 {
 ;
 }

// using register(s) in XDATA space, GPIF reads word from PERIPHERAL
 *gdata = ((WORD)XGPIFSGLDATH << 8) | (WORD)XGPIFSGLDATLNOX;
}

#define GPIFTRIGWR 0
#define GPIFTRIGRD 4

#define GPIF_EP2 0
#define GPIF_EP4 1
#define GPIF_EP6 2
#define GPIF_EP8 3

// write byte(s)/word(s) to PERIPHERAL, using GPIF and EPxFIFO
// if EPx WORDWIDE=0 then write byte(s)
// if EPx WORDWIDE=1 then write word(s)
void Peripheral_FIFOWrite(BYTE FIFO_EpNum)
{
 while(!(GPIFTRIG & 0x80)) // poll GPIFTRIG.7 Done bit
 {

Exhibit 2058 - Page 221 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-32 EZ-USB FX2 Technical Reference Manual v2.1

 ;
 }

 // trigger FIFO write transaction(s), using SFR
 GPIFTRIG = FIFO_EpNum; // R/W=0, EP[1:0]=FIFO_EpNum for EPx write(s)
}

// read byte(s)/word(s) from PERIPHERAL, using GPIF and EPxFIFO
// if EPx WORDWIDE=0 then read byte(s)
// if EPx WORDWIDE=1 then read word(s)
void Peripheral_FIFORead(BYTE FIFO_EpNum)
{
 while(!(GPIFTRIG & 0x80)) // poll GPIFTRIG.7 GPIF Done bit
 {
 ;
 }

 // trigger FIFO read transaction(s), using SFR
 GPIFTRIG = GPIFTRIGRD | FIFO_EpNum; // R/W=1, EP[1:0]=FIFO_EpNum for EPx read(s)
}

Exhibit 2058 - Page 222 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-33

10.4.1 Single-Read Transactions

* All EPx WORDWIDE bits must be cleared to 0 for 8-bit single transactions. If any of the EPx WORDWIDE bits
are set to 1, then single transactions will be 16 bits wide.

Figure 10-14. Firmware Launches a Single-Read Waveform, WORDWIDE=0

8051 Device Pins

IFCLK

* FD[7:0]

GPIF

GPIF

8051

CTL[5:0]

RDY[5:0]

GPIFADR[8:0]

GPIFW F

8051 INTRDY

30/48MHz

CLK

5 - 48MHz

XDATA

W aveform Descriptors

W F3
W F2

W F1
W F0

GPIF DONE

XGPIFSGLDATH/L

XGPIFSGLDATLX

Exhibit 2058 - Page 223 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-34 EZ-USB FX2 Technical Reference Manual v2.1

Figure 10-15. Single-Read Transaction Waveform

Figure 10-16. GPIFTool Setup for the Waveform of Figure 10-15

State 0 1 2 3 4 5 6 7

AddrMode Same Val Same Val Same Val Same Val Same Val Same Val Same Val

DataMode No Data No Data Activate NO Data NO Data NO Data NO Data

NextData SameData SameData SameData SameData SameData SameData SameData

Int Trig No Int No Int No Int No Int No Int No Int No Int

IF/Wait Wait 4 Wait 1 Wait 1 Wait 2 Wait 1 Wait 1 Wait 1

Term A

LFUNC

Term B

Branch1

Branch0

Re-execute

CTL0 1 1 0 1 1 1 1 1

CTL1 1 1 1 1 1 1 1 1

CTL2 1 1 1 1 1 1 1 1

CTL3 1 1 1 1 1 1 1 1

CLT4 1 1 1 1 1 1 1 1

CTL5 1 1 1 1 1 1 1 1

hi-Z

0x00AB

0x80

IFCLK

GADR[8:0]

CTL0

RDY0

FD[7:0]

NDP NDP NDP
– I1

NDP
i3 i2 i1

NDP
i4

NDP

hi-Z

Exhibit 2058 - Page 224 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-35

To perform a Single-Read transaction:

1. Initialize the GPIF Configuration Registers and Waveform Descriptors.

2. Perform a dummy read of the XGPIFSGLDATLX register to start a single transaction.

3. Wait for the GPIF to indicate that the transaction is complete. When the transaction is com-
plete, the DONE bit (GPIFIDLECS.7 or GPIFTRIG.7) will be set to 1. If enabled, a GPIFDONE
interrupt will also be generated.

4. Depending on the bus width and the desire to start another transaction, the read data can be
retrieved from the XGPIFSGLDATH, XGPIFSGLDATLX, and/or the
XGPIFSGLDATLNOX register (or from the SFR-space copies of these registers):

In 16-bit mode only, the most significant byte, FD[15:8], of data is read from the
XGPIFSGLDATH register.

In 8- and 16-bit modes, the least significant byte of data is read by either:

• reading XGPIFSGLDATLX, which reads the least significant byte and starts another Sin-
gle-Read transaction.

• reading XGPIFSGLDATLNOX, which reads the least significant byte but does not start
another Single-Read transaction.

The following C program fragments (Figures 10-17 and 10-18) illustrate how to perform a Sin-
gle-Read transaction in 8-bit mode (WORDWIDE=0):

Exhibit 2058 - Page 225 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-36 EZ-USB FX2 Technical Reference Manual v2.1

Figure 10-17. Single-Read Transaction Functions

#define PERIPHCS 0x00AB
#define AOKAY 0x80
#define BURSTMODE 0x0000
#define TRISTATE 0xFFFF
#define EVER ;;

// prototypes
void GpifInit(void);

// Set Address GPIFADR[8:0] to PERIPHERAL
void Peripheral_SetAddress(WORD gaddr)
{
 if(gaddr < 512)
 { // drive GPIF address bus w/gaddr
 GPIFADRH = gaddr >> 8;
 SYNCDELAY;
 GPIFADRL = (BYTE)gaddr; // setup GPIF address
 }
 else
 { // tristate GPIFADR[8:0] pins
 PORTCCFG = 0x00; // [7:0] as port I/O
 OEC = 0x00; // and as inputs
 PORTECFG &= 0x7F; // [8] as port I/O

 OEC &= 0x7F; // and as input
 }
}

// read single byte from PERIPHERAL, using GPIF
void Peripheral_SingleByteRead(BYTE xdata *gdata)
{
 static BYTE g_data = 0x00;

 while(!(GPIFTRIG & 0x80)) // poll GPIFTRIG.7 Done bit
 {
 ;
 }

 // using register(s) in XDATA space, dummy read
 g_data = XGPIFSGLDATLX; // to trigger GPIF single byte read transaction

 while(!(GPIFTRIG & 0x80)) // poll GPIFTRIG.7 Done bit
 {
 ;
 }

 // using register(s) in XDATA space, GPIF read byte from PERIPHERAL here
 *gdata = XGPIFSGLDATLNOX;
}

Exhibit 2058 - Page 226 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-37

Figure 10-18. Initialization Code for Single-Read Transactions

void TD_Init(void)
{
 BYTE xdata periph_status;

 … … … … …
 GpifInit(); // Configures GPIF from GPIFTool generated waveform data

 // TODO: configure other endpoints, etc. here

 // TODO: arm OUT buffer(s) here

 // setup INT4 as internal source for GPIF interrupts
 // using INT4CLR (SFR), automatically enabled
 //INTSETUP |= 0x03; //Enable INT4 Autovectoring
 //SYNCDELAY;
 //GPIFIE = 0x03; // Enable GPIFDONE and GPIFWF interrupt(s)
 //SYNCDELAY;
 //EIE |= 0x04; // Enable INT4 ISR, EIE.2(EIEX4)=1

 // TODO: configure GPIF interrupt(s) to meet your needs here
 … … … … …

 // get status of peripheral function
 Peripheral_SetAddress(PERIPHCS);
 Peripheral_SingleByteRead(&periph_status);

 if(periph_status == AOKAY)
 { // set it and forget it
 Peripheral_SetAddress(BURSTMODE);
 }
 else
 {
 Peripheral_SetAddress(TRISTATE);
 Housekeeping();
 EZUSB_Discon(TRUE); // Disconnect from the bus
 for(EVER)
 { // do not xfr peripheral data
 ;
 }
 }
}

Exhibit 2058 - Page 227 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-38 EZ-USB FX2 Technical Reference Manual v2.1

10.4.2 Single-Write Transactions

* All EPx WORDWIDE bits must be cleared to zero for 8-bit single transactions. If any of the EPx WORDWIDE
bits are set to 1, then single transactions will be 16 bits wide.

Figure 10-19. Firmware Launches a Single-Write Waveform, WORDWIDE=0

8051 Device P ins

IFCLK

* FD [7:0]

G P IF

G PIF

8051

CTL[5:0]

RDY[5:0]

G P IFADR[8:0]

G P IFW F

8051 INTRDY

30/48M Hz

CLK

5 - 48M Hz

XDATA

W aveform Descriptors

W F3
W F2

W F1
W F0

G PIF DO NE

XG PIFSG LDATH/L

XG PIFSG LDATLX

Exhibit 2058 - Page 228 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-39

Figure 10-20. Single-Write Transaction Waveform

Figure 10-21. GPIFTool Setup for the Waveform of Figur e10-20

Single-Write transactions are simpler than Single-Read transactions because no dummy-read
operation is required. To execute a Single-Write transaction:

1. Initialize the GPIF Configuration Registers and Waveform Descriptors.

2. If in 16-bit mode (WORDWIDE = 1), write the most-significant byte of the data to the
XGPIFSGLDATH register, then write the least-significant byte to the XGPIFSGLDATLX regis-

State 0 1 2 3 4 5 6 7

AddrMode Same Val Same Val Same Val Same Val Same Val Same Val Same Val

DataMode No Data No Data Activate NO Data NO Data NO Data NO Data

NextData SameData SameData SameData SameData SameData SameData SameData

Int Trig No Int No Int No Int No Int No Int No Int No Int

IF/Wait Wait 4 Wait 1 Wait 1 Wait 1 Wait 1 Wait 1 Wait 1

Term A

LFUNC

Term B

Branch1

Branch0

Re-execute

CTL0 1 1 0 1 1 1 1 1

CTL1 1 1 1 1 1 1 1 1

CTL2 1 1 1 1 1 1 1 1

CTL3 1 1 1 1 1 1 1 1

CLT4 1 1 1 1 1 1 1 1

CTL5 1 1 1 1 1 1 1 1

hi-Z

0x00AB

hi-Z 0x01

IFCLK

GADR[8:0]

CTL0

RDY0

FD[7:0]

NDP NDP NDP
– I1

NDP
i3 i2 i1

NDP
i4

NDP

Exhibit 2058 - Page 229 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-40 EZ-USB FX2 Technical Reference Manual v2.1

ter to start a Single-Write transaction.

In 8-bit mode, simply write the data to the XGPIFSGLDATLX register to start a Single-Write
transaction.

3. Wait for the GPIF to indicate that the transaction is complete. When the transaction is com-
plete, the DONE bit (GPIFIDLECS.7 or GPIFTRIG.7) will be set to 1. If enabled, a GPIFDONE
interrupt will also be generated.

The following C program fragments (Figures 10-22 and 10-23) illustrate how to perform a Sin-
gle-Write transaction in 8-bit mode (WORDWIDE=0):

Figure 10-22. Single-Write Transaction Functions

#define PERIPHCS 0x00AB
#define P_HSMODE 0x01

// prototypes
void GpifInit(void);

// Set Address GPIFADR[8:0] to PERIPHERAL
void Peripheral_SetAddress(WORD gaddr)
{
 GPIFADRH = gaddr >> 8;
 SYNCDELAY;
 GPIFADRL = (BYTE)gaddr; // setup GPIF address
}

// write single byte to PERIPHERAL, using GPIF
void Peripheral_SingleByteWrite(BYTE gdata)
{
 while(!(GPIFTRIG & 0x80)) // poll GPIFTRIG.7 Done bit
 {
 ;
 }

 XGPIFSGLDATLX = gdata; // trigger GPIF single byte write transaction
}

Exhibit 2058 - Page 230 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-41

Figure 10-23. Initialization Code for Single-Write Transactions

10.4.3 FIFO-Read and FIFO-Write Transactions

FIFO-Read and FIFO-Write waveforms transfer data to and from the FX2’s Slave FIFOs (see
Chapter 9 "Slave FIFOs"). The waveform is started by writing to EPxTRIG, where “x” represents
the FIFO (2, 4, 6, or 8) to/from which data should be transferred, or to GPIFTRIG.

A FIFO-Read or FIFO-Write waveform will generally transfer a long stream of data rather than a
single byte or word. Usually, the waveform is programmed to terminate when a FIFO flag asserts
(e.g., when an IN FIFO is full or an OUT FIFO is empty) or after a specified number of transactions.
A “transaction” is a transfer of a single byte (if WORDWIDE = 0) or word (if WORDWIDE = 1) to or
from a FIFO. Using the GPIFTool’s terminology, a transaction is either an “Active” or “Next Data”.

10.4.3.1 Transaction Counter

To use the Transaction Counter for FIFO “x”, load GPIFTCB3:0 with the desired number of transac-
tions (1 to 4,294,967,295; 0 = 4,294,967,296). When a FIFO-Read or -Write waveform is triggered
on that FIFO, the GPIF will transfer the specified number of bytes (or words, if WORDWIDE = 1)
automatically.

This mode of operation is called Long Transfer Mode; when the Transaction Counter is used in this
way, the Waveform Descriptor should branch to the Idle State after each transaction.

void TD_Init(void)
{
 … … … … …
 GpifInit(); // Configures GPIF from GPIFTool generated waveform data

 // TODO: configure other endpoints, etc. here

 // TODO: arm OUT buffer(s) here

 // setup INT4 as internal source for GPIF interrupts
 // using INT4CLR (SFR), automatically enabled
 //INTSETUP |= 0x03; //Enable INT4 Autovectoring
 //SYNCDELAY;
 //GPIFIE = 0x03; // Enable GPIFDONE and GPIFWF interrupt(s)
 //SYNCDELAY;
 //EIE |= 0x04; // Enable INT4 ISR, EIE.2(EIEX4)=1

 // TODO: configure GPIF interrupt(s) to meet your needs here
 … … … … …

 // tell peripheral we’re going into high speed xfr mode
 Peripheral_SetAddress(PERIPHCS);
 Peripheral_SingleByteWrite(P_HSMODE);
}

Exhibit 2058 - Page 231 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-42 EZ-USB FX2 Technical Reference Manual v2.1

Each time through the Idle State, the GPIF will decrement the Transaction Count; when it expires,
the waveform terminates and the DONE bit is set.

Otherwise, the GPIF re-executes the entire Waveform Descriptor. In Long Transfer Mode, the
DONE bit isn’t set until the Transaction Count expires.

While the Transaction Count is active, the GPIF checks the Full Flag (for IN FIFOs) or the Empty
Flag (for OUT FIFOs) on every pass through the Idle State. If the flag is asserted, the GPIF
pauses until the over/underflow threat is removed, then it automatically resumes. In this way, the
GPIF automatically throttles data flow in Long Transfer Mode.

The GPIFTCB3:0 registers are readable and they update as transactions occur, so the CPU can
read the Transaction Count value at any time.

10.4.3.2 Reading the Transaction-Count Status in a DP State

To sample the transaction-count status in a DP State, set GPIFREADYCFG.5 to 1 (which instructs
the FX2 to replace the RDY5 input with the transaction-count status), then launch a FIFO transac-
tion which uses a transaction count. The FX2 will set RDY5 to 1 when the transaction count
expires.

Typically, this feature is used with “re-execute” control tasks; it allows the Transaction Counter to
be used without passing through the Idle State after each transaction.

10.4.4 GPIF Flag Selection

The GPIF can examine the PF, EF, or FF (of the current FIFO) during a waveform. One of the
three flags is selected by the FS[1:0] bits in the EPxGPIFFLGSEL register; that selected flag is
called the GPIF Flag.

10.4.5 GPIF Flag Stop

When EPxGPIFPFSTOP.0 is set to 1, FIFO-Read and -Write transactions are terminated by the
assertion of the GPIF Flag. When this feature is used, it overrides the Transaction Counter; the
GPIF waveform terminates (sets DONE to 1) only when the GPIF Flag asserts.

No special programming of the Waveform Descriptors is necessary, and FIFO Waveform Descrip-
tors that transition through the Idle State on each transaction (i.e., waveforms that don’t use the
Transaction Counter) are unaffected. Automatic throttling of the FIFOs in IDLE still occurs, so
there’s no danger that the GPIF will write to a full FIFO or read from an empty FIFO.

Unless the firmware aborts the GPIF transfer by writing to the GPIFABORT register, only the GPIF
Flag assertion will terminate the waveform and set the DONE bit.

A waveform can potentially execute forever if the GPIF Flag never asserts.

Exhibit 2058 - Page 232 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-43

The GPIF Flag is tested only while transitioning through the Idle State, and it isn’t latched. If
a GPIF Flag assertion occurs in one State, and the next State is a DP which tests the GPIF Flag
and waits until it’s de-asserted before allowing the state machine to continue to the Idle State, the
GPIF will automatically branch back to State 0 as though the GPIF Flag had never been asserted.

10.4.5.1 Performing a FIFO-Read Transaction

Figure 10-24. Firmware Launches a FIFO-Read Waveform

EPxEF

FIFOADR[1:0]

Slave FIFOs

8051 Device Pins

EPxFF
EPxPF

SLOE
SLRD
SLW R

INPKTEND

IFCLK

FD[7:0]

EP4FIFOBUF
EP6FIFOBUF
EP8FIFOBUF

EP2FIFOBUF

EP8
EP6

EP4
EP2

GPIF

GPIF

8051

CTL[5:0]

RDY[5:0]

GPIFADR[8:0]

GPIFW F

8051 INTRDY

30/48MHz

CLK

5 - 48MHz

XDATA

W aveform Descriptors

W F3
W F2

W F1
W F0

GPIF DONE

GPIFTRIG

Exhibit 2058 - Page 233 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-44 EZ-USB FX2 Technical Reference Manual v2.1

Figure 10-25. Example FIFO-Read Transaction

Figure 10-26. FIFO-Read Transaction Waveform

The above waveform executes until the Transaction Counter expires (until it counts to 512, in this
example). The Transaction Counter is decremented and sampled on each pass through the Idle
State.

Each iteration of the waveform reads a data value from the FIFO Data bus into the FIFO, then dec-
rements and checks the Transaction Counter. When it expires, the DONE bit is set to 1 and the
GPIFDONE interrupt request is asserted.

i2

……

0x01 Peripheral data (Pdata)

0x01 0x02 0x03 0xFF

N N+1 N+2 512

TC=N

TC=N+1

TC=N+2

TC=512

0x02

0x03

0xFF

EPxFIFOBUF

…

…

GPIF TC

i2 i2 i2…

hi-Z

0x0000

hi-Z Pdata++

IFCLK

GADR[8:0]

CTL0

RDY0

FD[7:0]

NDP NDP NDP
– I1

NDP
i3 i2 i1

NDP
i4

NDP

Exhibit 2058 - Page 234 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-45

Figure 10-27. GPIFTool Setup for the Waveform of Figur e10-26

Typically, when performing a FIFO Read, only one “Activate” is needed in the waveform, since
each execution of “Activate” increments the internal FIFO pointer (and EPxBCH:L) automatically.

To perform a FIFO-Read Transaction:

1. In the GPIFTRIG register, set the RW bit to 1 and load EP1:0 with the appropriate value for the
FIFO which is to receive the data.

2. Program the FX2 to detect completion of the transaction. As with all GPIF Transactions, bit 7
of the GPIFTRIG register (the DONE bit) signals when the Transaction is complete.

3. Program the FX2 to commit (“pass-on”) the data from the FIFO to the endpoint. The data can
be transferred from the FIFO to the endpoint by either of the following methods:

• AUTOIN=1: CPU is not in the data path; the FX2 automatically commits data from the
FIFO Data bus to the USB.

• AUTOIN=0: Firmware must manually commit data to the USB by writing either EPxBCL or
INPKTEND (with SKIP=0).

The following C program fragments (Figures 10-28 through 10-31) illustrate how to perform a
FIFO-Read transaction in 8-bit mode (WORDWIDE = 0) with AUTOIN = 0:

State 0 1 2 3 4 5 6 7

AddrMode Same Val Same Val Same Val Same Val Same Val Same Val Same Val

DataMode No Data No Data Activate NO Data NO Data NO Data NO Data

NextData SameData SameData SameData SameData SameData SameData SameData

Int Trig No Int No Int No Int No Int No Int No Int No Int

IF/Wait Wait 4 Wait 1 Wait 1 Wait 1 Wait 1 Wait 1 Wait 1

Term A

LFUNC

Term B

Branch1

Branch0

Re-execute

CTL0 1 1 0 1 1 1 1 1

CTL1 1 1 1 1 1 1 1 1

CTL2 1 1 1 1 1 1 1 1

CTL3 1 1 1 1 1 1 1 1

CLT4 1 1 1 1 1 1 1 1

CTL5 1 1 1 1 1 1 1 1

Exhibit 2058 - Page 235 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-46 EZ-USB FX2 Technical Reference Manual v2.1

Figure 10-28. FIFO-Read Transaction Functions

#define GPIFTRIGRD 4

#define GPIF_EP2 0
#define GPIF_EP4 1
#define GPIF_EP6 2
#define GPIF_EP8 3

#define BURSTMODE 0x0000
#define HSPKTSIZE 512

… … … … …

// read(s) from PERIPHERAL, using GPIF and EPxFIFO
void Peripheral_FIFORead(BYTE FIFO_EpNum)
{
 while(!(GPIFTRIG & 0x80)) // poll GPIFTRIG.7 GPIF Done bit
 {
 ;
 }

 // trigger FIFO read transaction(s), using SFR
 GPIFTRIG = GPIFTRIGRD | FIFO_EpNum; // R/W=1, EP[1:0]=FIFO_EpNum
 // for EPx read(s)
}

// Set EP8GPIF Transaction Count
void Peripheral_SetEP8GPIFTC(WORD xfrcnt)
{
 EP8GPIFTCH = xfrcnt >> 8; // setup transaction count
 EP8GPIFTCL = (BYTE)xfrcnt;
}

… … … … …

Exhibit 2058 - Page 236 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-47

Figure 10-29. Initialization Code for FIFO-Read Transactions

Figure 10-30. FIFO-Read w/ AUTOIN = 0, Committing Packets via INPKTEND w/SKIP=0

void TD_Init(void)
{
 … … … … …
 GpifInit(); // Configures GPIF from GPIFTool generated waveform data

 // TODO: configure other endpoints, etc. here
 EP8CFG = 0xE0; // EP8 is DIR=IN, TYPE=BULK
 SYNCDELAY;
 EP8FIFOCFG = 0x04; // EP8 is AUTOOUT=0, AUTOIN=0, ZEROLEN=1, WORDWIDE=0

 // TODO: arm OUT buffer(s) here

 // setup INT4 as internal source for GPIF interrupts
 // using INT4CLR (SFR), automatically enabled
 //INTSETUP |= 0x03; //Enable INT4 Autovectoring
 //SYNCDELAY;
 //GPIFIE = 0x03; // Enable GPIFDONE and GPIFWF interrupt(s)
 //SYNCDELAY;
 //EIE |= 0x04; // Enable INT4 ISR, EIE.2(EIEX4)=1

 // TODO: configure GPIF interrupt(s) to meet your needs here
 … … … … …

 // tell peripheral we’re going into high speed xfr mode
 Peripheral_SetAddress(PERIPHCS);
 Peripheral_SingleByteWrite(P_HSMODE);

 // configure some GPIF registers
 Peripheral_SetAddress(BURSTMODE);
 Peripheral_SetEP8GPIFTC(HSPKTSIZE);
}

void TD_Poll(void)
{
 … … … … …
 if(ibn_event_flag)
 { // host is asking for EP8 data
 Peripheral_FIFORead(GPIF_EP8);
 ibn_event_flag = 0;
 }

 if(gpifdone_event_flag)
 { // GPIF currently pointing to EP8, last FIFO accessed
 if(!(EP2468STAT & 0x80))
 { // EP8F=0 when buffer available
 INPKTEND = 0x08; // Firmware commits pkt by writing 8 to INPKTEND
 gpifdone_event_flag = 0;
 }
 }
 … … … … …
}

Exhibit 2058 - Page 237 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-48 EZ-USB FX2 Technical Reference Manual v2.1

Figure 10-31. FIFO-Read w/ AUTOIN = 0, Committing Packets via EPxBCL

10.4.6 Firmware Access to IN packet(s), (AUTOIN=1)

The only difference between auto (AUTOIN=1) and manual (AUTOIN=0) modes for IN packet(s) is
the packet length feature (EPxAUTOINLENH/L).

Figure 10-32. AUTOIN=1, GPIF FIFO Read Transactions, AUTOIN = 1

void TD_Poll(void)
{
 … … … … …
 if(!(EP68FIFOFLGS & 0x10))
 { // EP8FF=0 when buffer available
 // host is taking EP8 data fast enough
 Peripheral_FIFORead(GPIF_EP8);
 }

 if(gpifdone_event_flag)
 { // GPIF currently pointing to EP8, last FIFO accessed
 if(!(EP2468STAT & 0x80))
 { // EP8F=0 when buffer available
 // modify the data
 EP8FIFOBUF[0] = 0x02; // <STX>, packet start of text msg
 EP8FIFOBUF[7] = 0x03; // <ETX>, packet end of text msg
 SYNCDELAY;
 EP8BCH = 0x00;
 SYNCDELAY;
 EP8BCL = 0x08; // pass buffer on to host
 }
 }
 … … … … …
}

Data Path

8051

USB
Host

Slave Peripheral

AUTOIN=1, Long Transfer Mode

GPIF

Exhibit 2058 - Page 238 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-49

Figure 10-33. FIFO-Read Transaction Code, AUTOIN = 1

Figure 10-34. Firmware intervention, AUTOIN = 0/1

10.4.7 Firmware Access to IN Packet(s), (AUTOIN = 0)

In manual IN mode (AUTOIN=0), the firmware has the following options:

1. It can commit (“pass-on”) packet(s) sent from the master to the host when a buffer is available,
by writing the INPKTEND register with the corresponding EPx number and SKIP=0 (see
Figure 10-35).

2. It can skip a packet by writing to INPKTEND with SKIP=1. See Figure 10-36.

3. It can source or edit a packet (i.e., write directly to EPxFIFOBUF) then write the EPxBCL. See
Figure 10-37.

TD_Init():

 EP8CFG = 0xE0; // EP8 is DIR=IN, TYPE=BULK
 SYNCDELAY;
 EP8FIFOCFG = 0x0C; // EP8 is AUTOOUT=0, AUTOIN=1, ZEROLEN=1, WORDWIDE=0
 SYNCDELAY;
 EP8AUTOINLENH = 0x02; // if AUTOIN=1, auto commit 512 byte packets
 SYNCDELAY;
 EP8AUTOINLENL = 0x00;

TD_Poll():

 // no code necessary to xfr data from master to host!
 // AUTOIN=1 and EP8AUTOINLEN=512 auto commits packets,
 // in 512 byte chunks.

8051

USB
Host Peripheral

 AUTOIN=0 or
AUTOIN=1

Slave GPIFData Path

Exhibit 2058 - Page 239 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-50 EZ-USB FX2 Technical Reference Manual v2.1

Figure 10-35. Committing a Packet by Writing INPKTEND with EPx Number (w/SKIP=0)

Figure 10-36. Skipping a Packet by Writing to INPKTEND w/SKIP=1

TD_Poll():
… … … … …
if(master_finished_longxfr())
{ // master currently points to EP8, last FIFO accessed
 if(!(EP68FIFOFLGS & 0x10))
 { // EP8FF=0 when buffer available
 INPKTEND = 0x08; // Firmware commits pkt
 // by writing #8 to INPKTEND
 release_master(EP8);
 }
}
… … … … …

TD_Poll():
… … … … …
if(master_finished_longxfr())
{ // master currently points to EP8, last FIFO accessed
 if(!(EP68FIFOFLGS & 0x10))
 { // EP8FF=0 when buffer available
 INPKTEND = 0x88; // Firmware commits pkt
 // by writing 88 to INPKTEND
 release_master(EP8);
 }
}
… … … … …

Exhibit 2058 - Page 240 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-51

Figure 10-37. Sourcing an IN Packet by writing to EPxBCH:L

TD_Poll():
… … … … …
if(source_pkt_event)
{ // 100msec background timer fired
 if(holdoff_master())
 { // signaled “busy” to master successful
 while(!(EP68FIFOFLGS & 0x20))
 { // EP8EF=0, when buffer not empty
 ; // wait ‘til host takes entire FIFO data
 }

 // Reset FIFO 8.

 FIFORESET = 0x80; // Activate NAK-All to avoid race conditions.
 SYNCDELAY;
 FIFORESET = 0x08; // Reset FIFO 8.
 SYNCDELAY;
 FIFORESET = 0x00; // Deactivate NAK-All.

 EP8FIFOBUF[0] = 0x02; // <STX>, packet start of text msg
 EP8FIFOBUF[1] = 0x06; // <ACK>
 EP8FIFOBUF[2] = 0x07; // <HEARTBEAT>
 EP8FIFOBUF[3] = 0x03; // <ETX>, packet end of text msg
 SYNCDELAY;
 EP8BCH = 0x00;
 SYNCDELAY;
 EP8BCL = 0x04; // pass src’d buffer on to host
 }
 else
 {
 history_record(EP8, BAD_MASTER);
 }
}
… … … … …

Exhibit 2058 - Page 241 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-52 EZ-USB FX2 Technical Reference Manual v2.1

10.4.7.1 Performing a FIFO-Write Transaction

Figure 10-38. Firmware Launches a FIFO-Write Waveform

Figure 10-39. Example FIFO-Write Transaction

EPxEF

FIFOADR[1:0]

Slave FIFOs

8051 Device Pins

EPxFF
EPxPF

SLOE
SLRD
SLW R

INPKTEND

IFCLK

FD[7:0]

EP4FIFOBUF
EP6FIFOBUF
EP8FIFOBUF

EP2FIFOBUF

EP8
EP6

EP4
EP2

GPIF

GPIF

8051

CTL[5:0]

RDY[5:0]

GPIFADR[8:0]

GPIF INTRDY

8051 INTRDY

30/48MHz

CLK

5 - 48MHz

XDATA

W aveform Descriptors

W F3
W F2

W F1
W F0

GPIF DONE

GPIFTRIG

i2

……

0x01 Peripheral data (Pdata)

0x01 0x02 0x03 0xFF

N N+1 N+2 512

TC=N

TC=N+1

TC=N+2

TC=512

0x02

0x03

0xFF

EPxFIFOBUF

…

…

GPIF TC

i2 i2 i2…

Exhibit 2058 - Page 242 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-53

Figure 10-40. FIFO-Write Transaction Waveform

The above waveform executes until the Transaction Counter expires (until it counts to 512, in this
example). The Transaction Counter is decremented and sampled on each pass through the Idle
State.

Each iteration of the waveform writes a data value from the FIFO to the FIFO Data bus, then dec-
rements and checks the Transaction Counter. When it expires, the DONE bit is set to 1 and the
GPIFDONE interrupt request is asserted.

Figure 10-41. GPIFTool Setup for the Waveform of Figur e10-40

State 0 1 2 3 4 5 6 7

AddrMode Same Val Same Val Same Val Same Val Same Val Same Val Same Val

DataMode No Data No Data Activate NO Data NO Data NO Data NO Data

NextData SameData SameData SameData SameData SameData SameData NextData

Int Trig No Int No Int No Int No Int No Int No Int No Int

IF/Wait Wait 4 Wait 1 Wait 1 Wait 1 Wait 1 Wait 1 Wait 1

Term A

LFUNC

Term B

Branch1

Branch0

Re-execute

CTL0 1 1 0 1 1 1 1 1

CTL1 1 1 1 1 1 1 1 1

CTL2 1 1 1 1 1 1 1 1

CTL3 1 1 1 1 1 1 1 1

CLT4 1 1 1 1 1 1 1 1

CTL5 1 1 1 1 1 1 1 1

hi-Z

0x0000

hi-Z Pdata++

IFCLK

GADR[8:0]

CTL0

RDY0

FD[7:0]

NDP NDP NDP
– I1

NDP
i3 i2 i1

NDP
i4

NDP

Exhibit 2058 - Page 243 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-54 EZ-USB FX2 Technical Reference Manual v2.1

Typically, when performing a FIFO-Write, only one “NextData” is needed in the waveform, since
each execution of “NextData” increments the FIFO pointer.

To perform a FIFO-Write Transaction:

1. In the GPIFTRIG register, set the RW bit to 0 and load EP1:0 with the appropriate value for the
FIFO which is to receive the data.

2. Program the FX2 to detect completion of the transaction. As with all GPIF Transactions, bit 7
of the GPIFTRIG register (the DONE bit) signals when the Transaction is complete.

3. Program the FX2 to commit (“pass-on”) the data from the endpoint to the FIFO. The data can
be transferred by either of the following methods:

• AUTOOUT=1: CPU is not in the data path; the FX2 automatically commits data from the
USB to the FIFO Data bus.

• AUTOOUT=0: Firmware must manually commit data to the FIFO Data bus by writing
EPxBCL.7=0 (firmware can choose to skip the current packet by writing EPxBCL.7=1).

The following C program fragments (Figures 10-42 through 10-44) illustrate how to perform a
FIFO-Read transaction in 8-bit mode (WORDWIDE = 0) with AUTOOUT = 0:

Figure 10-42. FIFO-Write Transaction Functions

#define GPIFTRIGWR 0

#define GPIF_EP2 0
#define GPIF_EP4 1
#define GPIF_EP6 2
#define GPIF_EP8 3

#define BURSTMODE 0x0000
#define HSPKTSIZE 512

… … … … …

// write byte(s) to PERIPHERAL, using GPIF and EPxFIFO
void Peripheral_FIFOWrite(BYTE FIFO_EpNum)
{
 while(!(GPIFTRIG & 0x80)) // poll GPIFTRIG.7 Done bit
 {
 ;
 }

 // trigger FIFO write transaction(s), using SFR
 GPIFTRIG = FIFO_EpNum; // R/W=0, EP[1:0]=FIFO_EpNum for EPx write(s)
}

// Set EP2GPIF Transaction Count
void Peripheral_SetEP2GPIFTC(WORD xfrcnt)
{
 EP2GPIFTCH = xfrcnt >> 8; // setup transaction count
 EP2GPIFTCL = (BYTE)xfrcnt;
}
… … … … …

Exhibit 2058 - Page 244 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-55

Figure 10-43. Initialization Code for FIFO-Write Transactions

Figure 10-44. FIFO-Write w/ AUTOOUT = 0, Committing Packets via EPxBCL

void TD_Init(void)
{
 … … … … …
 GpifInit(); // Configures GPIF from GPIFTool generated waveform data

 // TODO: configure other endpoints, etc. here
 EP2CFG = 0xA2; // EP2 is DIR=OUT, TYPE=BULK, SIZE=512, BUF=2x
 SYNCDELAY;
 EP2FIFOCFG = 0x00; // EP2 is AUTOOUT=0, AUTOIN=0, ZEROLEN=0, WORDWIDE=0
 SYNCDELAY;
 // “all” EP2 buffers automatically arm when AUTOOUT=1

 // TODO: arm OUT buffer(s) here
 EP2BCL = 0x80; // write BCL w/skip=1
 SYNCDELAY;
 EP2BCL = 0x80; // write BCL w/skip=1
 SYNCDELAY;

 // setup INT4 as internal source for GPIF interrupts
 // using INT4CLR (SFR), automatically enabled
 //INTSETUP |= 0x03; //Enable INT4 Autovectoring
 //GPIFIE = 0x03; // Enable GPIFDONE and GPIFWF interrupt(s)
 //EIE |= 0x04; // Enable INT4 ISR, EIE.2(EIEX4)=1

 // TODO: configure GPIF interrupt(s) to meet your needs here
 … … … … …

 // tell peripheral we’re going into high speed xfr mode
 Peripheral_SetAddress(PERIPHCS);
 Peripheral_SingleByteWrite(P_HSMODE);

 // configure some GPIF control registers
 Peripheral_SetAddress(BURSTMODE);
}

void TD_Poll(void)
{
 … … … … …
 if(!(EP2468STAT & 0x01))
 { // EP2EF=0 when FIFO “not” empty, host sent pkt.
 EP2BCL = 0x00; // SKIP=0, pass buffer on to master

 if(gpifdone_event_flag)
 {
 Peripheral_SetEP2GPIFTC(HSPKTSIZE);
 Peripheral_FIFOWrite(GPIF_EP2);
 gpifdone_event_flag = 0;
 }
 }
 … … … … …
}

Exhibit 2058 - Page 245 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-56 EZ-USB FX2 Technical Reference Manual v2.1

10.4.8 Firmware access to OUT packets, (AUTOOUT=1)

To achieve the maximum USB 2.0 bandwidth, the host and master are directly connected when
AOUTOOUT=1; the CPU is bypassed and the OUT FIFO is automatically committed to the host:

Figure 10-45. CPU not in data path, AUTOOUT=1

Figure 10-46. TD_Init Example: Configuring AUTOOUT = 1

Figure 10-47. FIFO-Write Transaction Code, AUTOOUT = 1

TD_Init():
… … … … …
REVCTL = 0x03; // MUST set REVCTL.0 and REVCTL.1 to 1
SYNCDELAY;
EP2CFG = 0xA2; // EP2 is DIR=OUT, TYPE=BULK, SIZE=512, BUF=2x
SYNCDELAY;
FIFORESET = 0x80; // Reset the FIFO
SYNCDELAY;
FIFORESET = 0x02;
SYNCDELAY;
FIFORESET = 0x00;
SYNCDELAY;
EP2FIFOCFG = 0x10; // EP2 is AUTOOUT=1, AUTOIN=0, ZEROLEN=0, WORDWIDE=0
SYNCDELAY;
OUTPKTEND = 0x82; // Arm both EP2 buffers to “prime the pump”
SYNCDELAY;
OUTPKTEND = 0x82;
… … … … …

TD_Poll():
… … … … …
// no code necessary to xfr data from host to master!
// AUTOOUT=1 and SIZE=0 auto commits packets,
// in 512 byte chunks.
… … … … …

Data Path

8051

USB
Host Peripheral

AUTOOUT=1, Long Transfer Mode

Slave GPIF

Exhibit 2058 - Page 246 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-57

10.4.9 Firmware access to OUT packets, (AUTOOUT = 0)

Figure 10-48. Firmware can Skip or Commit, AUTOOUT = 0

Figure 10-49. Initialization Code for AUTOOUT = 0

In manual OUT mode (AUTOOUT = 0), the firmware has the following options:

1. It can commit (“pass-on”) packet(s) sent from the host to the master when a buffer is available,
by writing the OUTPKTEND register with the SKIP bit (OUTPKTEND.7) cleared to 0 (see
Figure 10-50).

Figure 10-50. Committing an OUT Packet by Writing OUTPKTEND w/SKIP=0

TD_Init():
… … … … …
EP2CFG = 0xA2; // EP2 is DIR=OUT, TYPE=BULK, SIZE=512, BUF=2x
SYNCDELAY;
EP2FIFOCFG = 0x00; // EP2 is AUTOOUT=0, AUTOIN=0, ZEROLEN=0, WORDWIDE=0
SYNCDELAY;
// OUT endpoints do NOT come up armed
EP2BCL = 0x80; // arm first buffer by writing BC w/skip=1
SYNCDELAY;
EP2BCL = 0x80; // arm second buffer by writing BC w/skip=1
… … … … …

TD_Poll():
… … … … …
if(!(EP24FIFOFLGS & 0x02))
{ // EP2EF=0 when FIFO “not” empty, host sent pkt.
 OUTPKTEND = 0x02; // SKIP=0, pass buffer on to master
}
… … … … …

Data

8051

USB
Host Peripheral

AUTOOUT=0

skip=0

skip=1

Slave GPIF

Exhibit 2058 - Page 247 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-58 EZ-USB FX2 Technical Reference Manual v2.1

2. It can skip packet(s) sent from the host to the master by writing the EPxBCL register with the
SKIP bit (EPxBCL.7) set to 1 (see Figure 10-51).

Figure 10-51. Skipping an OUT Packet by Writing OUTPKTEND w/SKIP=1

3. It can edit the packet (or source an entire OUT packet) by writing to the FIFO buffer directly,
then writing the length of the packet to EPxBCH:L. The write to EPxBCL commits the edited
packet, so EPxBCL should be written after writing EPxBCH (Figure10-52).

In all cases, the OUT buffer automatically re-arms so it can receive the next packet.

See Section 8.6.2.4 for a detailed description of the SKIP bit.

Figure 10-52. Sourcing an OUT Packet (AUTOOUT = 0)

TD_Poll():
… … … … …
if(!(EP24FIFOFLGS & 0x02))
{ // EP2EF=0 when FIFO “not” empty, host sent pkt.
 OUTPKTEND = 0x82; // SKIP=1, do NOT pass buffer on to master
}
… … … … …

TD_Poll():
… … … … …
if(EP24FIFOFLGS & 0x02)
{
SYNCDELAY; //
FIFORESET = 0x80; // nak all OUT pkts. from host
SYNCDELAY; //
FIFORESET = 0x02; // advance all EP2 buffers to cpu domain
SYNCDELAY; //
EP2FIFOBUF[0] = 0xAA; // create newly sourced pkt. data
SYNCDELAY; //
EP2BCH = 0x00;
SYNCDELAY; //
EP2BCL = 0x01; // commit newly sourced pkt. to interface fifo

// beware of "left over" uncommitted buffers

SYNCDELAY; //
OUTPKTEND = 0x82; // skip uncommitted pkt. (second pkt.)
// note: core will not allow pkts. to get out of sequence
SYNCDELAY; //
FIFORESET = 0x00; // release "nak all"
}
… … … … …

Exhibit 2058 - Page 248 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-59

The master is not notified when a packet has been skipped by the firmware.

The OUT FIFO is not committed to the host during a power-on-reset. In its initialization routine,
therefore, the firmware should skip n packets (where n = 2, 3, or 4 depending on the buffering
depth) in order to ensure that the entire FIFO is committed to the host. See Figure 10-53.

Figure 10-53. Ensuring that the FIFO is Clear after Power-On-Reset

10.4.10 Burst FIFO Transactions

The GPIF can be configured to repeat transactions automatically, with no firmware intervention.
These “Burst” transactions (which must always be FIFO-Read or -Write transactions) may be con-
trolled by the Transaction Counter, the GPIF_PF flag, or the GPIFABORT register.

The following C program fragments (Figures 10-54 through 10-57) illustrate how to perform Burst
FIFO-Read transactions using GPIF_PF in 8-bit mode (WORDWIDE=0) and AUTOIN=0:

TD_Init():
… … … … …
EP2CFG = 0xA2; // EP2 is DIR=OUT, TYPE=BULK, SIZE=512, BUF=2x

 SYNCDELAY;
EP2FIFOCFG = 0x00; // EP2 is AUTOOUT=0, AUTOIN=0, ZEROLEN=0, WORDWIDE=0

 SYNCDELAY;
// OUT endpoints do NOT come up armed
EP2BCL = 0x80; // arm first buffer by writing BC w/skip=1

 SYNCDELAY;
EP2BCL = 0x80; // arm second buffer by writing BC w/skip=1
… … … … …

Exhibit 2058 - Page 249 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-60 EZ-USB FX2 Technical Reference Manual v2.1

Figure 10-54. Burst FIFO-Read Transaction Functions

#define GPIFTRIGRD 4

#define GPIF_EP2 0
#define GPIF_EP4 1
#define GPIF_EP6 2
#define GPIF_EP8 3

#define BURSTMODE 0x0000
#define HSPKTSIZE 512

… … … … …

// read(s) from PERIPHERAL, using GPIF and EPxFIFO
void Peripheral_FIFORead(BYTE FIFO_EpNum)
{
 while(!(GPIFTRIG & 0x80)) // poll GPIFTRIG.7 GPIF Done bit
 {
 ;
 }

 // trigger FIFO read transaction(s), using SFR
 GPIFTRIG = GPIFTRIGRD | FIFO_EpNum; // R/W=1, EP[1:0]=FIFO_EpNum
 // for EPx read(s)
}

// Set EP8GPIF Transaction Count
void Peripheral_SetEP8GPIFTC(WORD xfrcnt)
{
 EP8GPIFTCH = xfrcnt >> 8; // setup transaction count
 EP8GPIFTCL = (BYTE)xfrcnt;
}

… … … … …

Exhibit 2058 - Page 250 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-61

Figure 10-55. Initialization for Burst FIFO-Read Transactions

void TD_Init(void)
{
 … … … … …
 GpifInit(); // Configures GPIF from GPIFTool generated waveform data

 // TODO: configure other endpoints, etc. here
 EP8CFG = 0xE0; // EP8 is DIR=IN, TYPE=BULK
 SYNCDELAY;
 EP8FIFOCFG = 0x04; // EP8 is AUTOOUT=0, AUTOIN=0, ZEROLEN=1, WORDWIDE=0
 SYNCDELAY;

 // TODO: arm OUT buffer(s) here

 // setup INT4 as internal source for GPIF interrupts
 // using INT4CLR (SFR), automatically enabled
 //INTSETUP |= 0x03; //Enable INT4 Autovectoring
 //SYNCDELAY;
 //GPIFIE = 0x03; // Enable GPIFDONE and GPIFWF interrupt(s)
 //SYNCDELAY;
 //EIE |= 0x04; // Enable INT4 ISR, EIE.2(EIEX4)=1

 // TODO: configure GPIF interrupt(s) to meet your needs here
 … … … … …

 // tell peripheral we’re going into high speed xfr mode
 Peripheral_SetAddress(PERIPHCS);
 Peripheral_SingleByteWrite(P_HSMODE);

 // configure some GPIF registers
 Peripheral_SetAddress(BURSTMODE);
}

Exhibit 2058 - Page 251 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-62 EZ-USB FX2 Technical Reference Manual v2.1

Figure 10-56. Burst FIFO-Read Transaction Example, Writing INPKTEND w/SKIP=0 to Commit

void TD_Poll(void)
{
 … … … … …
 if(ibn_event_flag)
 { // host is asking for EP8 data
 Peripheral_SetEP8GPIFTC(HSPKTSIZE);
 Peripheral_FIFORead(GPIF_EP8);
 ibn_event_flag = 0;
 }

 if(gpifdone_event_flag)
 { // GPIF currently pointing to EP8, last FIFO accessed
 if(!(EP2468STAT & 0x80))
 { // EP8F=0 when buffer available
 INPKTEND = 0x08; // Firmware commits pkt
 // by writing #8 to INPKTEND
 gpifdone_event_flag = 0;
 }
 }

 // decide how GPIF transitions to DONE for FIFO Transactions
 if(gpif_pf_event_flag)
 {
 EP8GPIFPFSTOP = 0x01; // set bit0=1 to use GPIF_PF
 }
 else
 {
 EP8GPIFPFSTOP = 0x00; // set bit0=0 to use TC
 }
 … … … … …
}

Exhibit 2058 - Page 252 of 460

Chapter 10. General Programmable Interface (GPIF) Page 10-63

Figure 10-57. Burst FIFO-Read Transaction Example, Writing EPxBCL to Commit

10.5 UDMA Interface

The FX2 has additional GPIF registers specifically for implementing a UDMA (Ultra-ATA) interface.
For more information, please contact the Cypress Semiconductor Applications Department.

void TD_Poll(void)
{
 … … … … …
 if(!(EP68FIFOFLGS & 0x10))
 { // EP8FF=0 when buffer available
 // host is taking EP8 data fast enough
 Peripheral_SetEP8GPIFTC(HSPKTSIZE);
 Peripheral_FIFORead(GPIF_EP8);
 }

 if(gpifdone_event_flag)
 { // GPIF currently pointing to EP8, last FIFO accessed
 if(!(EP2468STAT & 0x80))
 { // EP8F=0 when buffer available
 // modify the data
 EP8FIFOBUF[0] = 0x02; // <STX>, packet start of text msg
 EP8FIFOBUF[7] = 0x03; // <ETX>, packet end of text msg
 SYNCDELAY;
 EP8BCH = 0x00;
 SYNCDELAY;
 EP8BCL = 0x08; // pass buffer on to host
 }
 }

 // decide how GPIF transitions to DONE for FIFO Transactions
 if(gpif_pf_event_flag)
 {
 EP8GPIFPFSTOP = 0x01; // set bit0=1 to use GPIF_PF
 }
 else
 {
 EP8GPIFPFSTOP = 0x00; // set bit0=0 to use TC
 }
 … … … … …
}

Exhibit 2058 - Page 253 of 460

EZ-USB FX2 Technical Reference Manual

Page 10-64 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 254 of 460

Chapter 11. CPU Introduction Page 11-1

Chapter 11 CPU Introduction

11.1 Introduction

The FX2’s CPU, an enhanced 8051, is fully described in Chapter 12, "Instruction Set", Chapter 13,
"Input/Output", and Chapter 14, "Timers/Counters and Serial Interface". This chapter introduces
the processor, its interface to the FX2 logic, and describes architectural differences from a stan-
dard 8051. Figure 11-1 is a block diagram of the FX2’s 8051-based CPU.

Figure 11-1. FX2 CPU Features

Crystal

Oscillator

8-bit CPU

Register
RAM

(256 bytes)

Serial Port1

Serial Port0

Timer2

Timer1

Timer0

Bus Control
Interrupt
Control

I/O Ports*

* The EZ-USB fam ily im plem ents I/O ports differently than in the standard 8051

Exhibit 2058 - Page 255 of 460

EZ-USB FX2 Technical Reference Manual

Page 11-2 EZ-USB FX2 Technical Reference Manual v2.1

11.2 8051 Enhancements

The FX2 uses the standard 8051 instruction set, so it’s supported by industry-standard 8051 com-
pilers and assemblers. Instructions execute faster on the FX2 than on the standard 8051:

• Wasted bus cycles are eliminated; an instruction cycle uses only four clocks, rather than
the standard 8051’s 12 clocks.

• The FX2’s CPU clock runs at 12MHz, 24MHz, or 48MHz —up to four times the clock
speed of the standard 8051.

In addition to speed improvements, the FX2 includes the following architectural enhancements to
the CPU:

• A second data pointer

• A second USART

• A third, 16-bit timer (TIMER2)

• A high-speed external memory interface with a non-multiplexed 16-bit address bus

• Eight additional interrupts (INT2-INT6, WAKEUP, T2, and USART1)

• Variable MOVX timing to accommodate fast and slow RAM peripherals

• Two Autopointers (auto-incrementing data pointers)

• Vectored USB and FIFO/GPIF interrupts

• Baud rate timer for 115K/230K baud USART operation

• Sleep mode with three wakeup sources

• An I²C-compatible bus controller that runs at 100 or 400 KHz

• FX2-specific SFRs

• Separate buffers for the SETUP and DATA portions of a USB CONTROL transfer

• A hardware pointer for SETUP data, plus logic to process entire CONTROL transfers
automatically

• CPU clock-rate selection of 12, 24 or 48MHz

• Breakpoint facility

• I/O Port C read and write strobes

Exhibit 2058 - Page 256 of 460

Chapter 11. CPU Introduction Page 11-3

11.3 Performance Overview

The FX2 has been designed to offer increased performance by executing instructions in a 4-clock
bus cycle, as opposed to the 12-clock bus cycle in the standard 8051 (see Figure 11-2). This short-
ened bus timing improves the instruction execution rate for most instructions by a factor of three
over the standard 8051 architectures.

Some instructions require a different number of instruction cycles on the FX2 than they do on the
standard 8051. In the standard 8051, all instructions except for MUL and DIV take one or two
instruction cycles to complete. In the FX2, instructions can take between one and five instruction
cycles to complete. However, due to the shortened bus timing of the FX2, every instruction exe-
cutes faster than on a standard 8051, and the average speed improvement over the entire instruc-
tion set is approximately 2.5×. Table 11-1 catalogs the speed improvements.

Table 11-1. FX2 Speed Compared to Standard 8051

Of the 246 FX2 opcodes...

150 execute at 3.0× standard speed

 51 execute at 1.5× standard speed

 43 execute at 2.0× standard speed

 2 execute at 2.4× standard speed

Average Improvement: 2.5×

Note: Comparison is between FX2 and standard 8051 run-
ning at the same clock frequency.

Exhibit 2058 - Page 257 of 460

EZ-USB FX2 Technical Reference Manual

Page 11-4 EZ-USB FX2 Technical Reference Manual v2.1

Figure 11-2. FX2 to Standard 8051 Timing Comparison

11.4 Software Compatibility

The FX2 is object-code-compatible with the industry-standard 8051 microcontroller. That is, object
code compiled with an industry-standard 8051 compiler or assembler executes on the FX2 and is
functionally equivalent. However, because the FX2 uses a different instruction timing than the
standard 8051, existing code with timing loops may require modification.

The FX2 instruction timing is identical to that of the Dallas Semiconductor DS80C320.

11.5 803x/805x Feature Comparison

Table 11-2 provides a feature-by-feature comparison between the FX2 and several common 803x/
805x devices.

PSEN

ALE

XTAL1

AD0-AD7

PSEN

PORT2

FX2

Standard

PORT2

Single-Byte, Single-Cycle Instruction Timing

AD0-AD7

4

12

8051

Exhibit 2058 - Page 258 of 460

Chapter 11. CPU Introduction Page 11-5

11.6 FX2/DS80C320 Differences

Although the FX2 is similar to the DS80C320 in terms of hardware features and instruction cycle
timing, there are some important differences between the FX2 and the DS80C320.

11.6.1 Serial Ports

The FX2 does not implement serial port framing-error detection and does not implement slave
address comparison for multiprocessor communications. Therefore, the FX2 also does not imple-
ment the following SFRs: SADDR0, SADDR1, SADEN0, and SADEN1.

11.6.2 Timer 2

The FX2 does not implement Timer 2 downcounting mode or the downcount enable bit (TMOD2,
Bit 0). Also, the FX2 does not implement Timer 2 output enable (T2OE) bit (TMOD2, Bit 1). There-
fore, the TMOD2 SFR is also not implemented in the FX2.

The FX2 Timer 2 overflow output is active for one clock cycle. In the DS80C320, the Timer 2 over-
flow output is a square wave with a 50% duty cycle.

Although the T2OE bit is not present in the FX2, Timer 2 output can still be enabled or disabled via
the PORTECFG.2 bit, since the T2OUT pin is multiplexed with PORTE.2.

PORTECFG.2=0 configures the pin as a general-purpose I/O pin and disabled Timer 2 output;
PORTECFG.2=1 configures the pin as the T2OUT pin and enables Timer 2 output.

Table 11-2. Comparison Between FX2 and Other 803x/805x Devices

Feature
Intel Dallas

DS80C320
Cypress

FX28031 8051 80C32 80C52

Clocks per instruction cycle 12 12 12 12 4 4

Program / Data Memory - 4 KB ROM - 8 KB ROM - 8 KB RAM

Internal RAM 128 bytes 128 bytes 256 bytes 256 bytes 256 bytes 256 bytes

Data Pointers 1 1 1 1 2 2

Serial Ports 1 1 1 1 2 2

16-bit Timers 2 2 3 3 3 3

Interrupt sources (internal and
external)

5 5 6 6 13 13

Stretch data-memory cycles no no no no yes yes

Exhibit 2058 - Page 259 of 460

EZ-USB FX2 Technical Reference Manual

Page 11-6 EZ-USB FX2 Technical Reference Manual v2.1

11.6.3 Timed Access Protection

The FX2 does not implement timed access protection and, therefore, does not implement the TA
SFR.

11.6.4 Watchdog Timer

The FX2 does not implement a watchdog timer.

11.6.5 Power Fail Detection

The FX2 does not implement a power fail detection circuit.

11.6.6 Port I/O

The FX2’s port I/O implementation is significantly different from that of the DS80C320, mainly
because of the alternate functions shared with most of the I/O pins. See Chapter 13, "Input/Out-
put".

11.6.7 Interrupts

Although the basic interrupt structure of the FX2 is similar to that of the DS80C320, five of the
interrupt sources are different:

For more information, refer to Chapter 14, "Timers/Counters and Serial Interface".

Table 11-3. Differences between FX and DS80C320 Interrupts

Interrupt
Priority

Dallas DS80C320 Cypress FX2

0 Power Fail RESUME (USB Wakeup)

8 External Interrupt 2 USB

9 External Interrupt 3 I²C-Compatible Bus

10 External Interrupt 4 GPIF/FIFOs

12 Watchdog Timer External Interrupt 6

Exhibit 2058 - Page 260 of 460

Chapter 11. CPU Introduction Page 11-7

11.7 EZ-USB FX2 Register Interface

The FX2 peripheral logic (USB, GPIF, FIFOs, etc.) is controlled via a set of memory mapped regis-
ters and buffers at addresses 0xE400 through 0xFFFF. These registers and buffers are grouped as
follows:

• GPIF Waveform Descriptor Tables

• General configuration

• Endpoint configuration

• Interrupts

• Input/Output

• USB Control

• Endpoint operation

• GPIF/FIFOs

• Endpoint buffers

These registers and their functions are described throughout this manual. A full description of
every FX2 register appears in Chapter 15, "Registers"

11.8 EZ-USB FX2 Internal RAM

Figure 11-1. FX2 Internal Data RAM

Like the standard 8051, the FX2 contains 128 bytes of Internal Data RAM at addresses 0x00-0x7F
and a partially populated SFR space at addresses 0x80-0xFF. An additional 128 indirectly-
addressed bytes of Internal Data RAM (sometimes called “IDATA”) are also available at addresses
0x80-0xFF.

Lower 128

Direct Addr

SFR Space

Direct Addr

Upper 128

Indirect Addr

0x00

0x7F
0x80

0xFF

Exhibit 2058 - Page 261 of 460

EZ-USB FX2 Technical Reference Manual

Page 11-8 EZ-USB FX2 Technical Reference Manual v2.1

All other on-chip FX2 RAM (program/data memory, endpoint buffer memory, and the FX2 control
registers) is addressed as though it were off-chip 8051 memory. FX2 firmware reads or writes
these bytes as data using the MOVX (“move external”) instruction, even though the FX2 RAM and
register set is actually inside the EZ-USB FX2 chip. Off-chip memory attached to the FX2 address
and data buses (CY7C68013-128NC only) can also be accessed by the MOVX instruction. FX2
logic encodes its memory strobe and select signals (RD, WR, CS, OE, and PSEN) to eliminate the
need for external logic to separate the on-chip and off-chip memory spaces; see Chapter 5, "Mem-
ory".

11.9 I/O Ports

The FX2 implements I/O ports differently than a standard 8051, as described in Chapter 13,
"Input/Output".

The FX2 has up to five 8-bit wide, bidirectional I/O ports. Each port is associated with a pair of reg-
isters:

• An “OEx” register, which sets the input/output direction of each of the 8 port pins
(0 = input, 1 = output).

• An “IOx” register. Values written to IOx appear on the pins configured as outputs; values
read from IOx indicate the states of the 8 pins, regardless of input/output configuration.

Most I/O pins have alternate functions which are selected using configuration registers. When an
alternate configuration is selected for an I/O pin, the corresponding OEx bit is ignored (see Section
13.2). The default (power-on reset) state of all I/O ports is: alternate configurations off, all I/O pins
configured as inputs.

Exhibit 2058 - Page 262 of 460

Chapter 11. CPU Introduction Page 11-9

11.10 Interrupts

All standard 8051 interrupts, plus additional interrupts, are supported by the FX2. Tabl e11-4 lists
the FX2 interrupts.

The FX2 uses INT2 for 27 different USB interrupts. To help determine which interrupt is active, the
FX2 provides a feature called Autovectoring, which dynamically changes the address pointed to by
the “jump” instruction at the INT2 vector address. This second level of vectoring automatically
transfers control to the appropriate USB interrupt service routine (ISR). The FX2 interrupt system,
including a full description of the Autovector mechanism, is the subject of Chapter 4, "Interrupts".

11.11 Power Control

The FX2 implements a low-power mode that allows it to be used in USB bus-powered devices
(which are required by the USB specification to draw no more than 500 µA when suspended) and
other low-power applications. The mechanism by which the FX2 enters and exits this low-power
mode is described in detail in Chapter 6, "Power Management".

Table 11-4. EZ-USB FX2 Interrupts

Standard 8051
Interrupts

Additional FX2
Interrupts

Source

INT0 Pin PA0 / INT0

INT1 Pin PA1 / INT1

Timer 0 Internal, Timer 0

Timer 1 Internal, Timer 1

Tx0 & Rx0 Internal, USART0

INT2 Internal, USB

INT3 Internal, I²C-Compatible Bus Controller

INT4 Pin INT4 (100- and 128-pin only) OR Internal, GPIF/FIFOs

INT5 Pin INT5 (100- and 128-pin only)

INT6 Pin INT6 (100- and 128-pin only)

WAKEUP Pin WAKEUP or Pin RA3/WU2

Tx1 & Rx1 Internal, USART1

Timer 2 Internal, Timer 2

Exhibit 2058 - Page 263 of 460

EZ-USB FX2 Technical Reference Manual

Page 11-10 EZ-USB FX2 Technical Reference Manual v2.1

11.12 Special Function Registers (SFR)

The FX2 was designed to keep coding as standard as possible, to allow easy integration of exist-
ing 8051 software development tools. The FX2 SFR registers are summarized in Tabl e11-5. Stan-
dard 8051 SFRs are shown in normal type and FX2-added SFRs are shown in bold type. Full
details of the SFRs can be found in Chapter 15, "Registers".

Table 11-5. FX2 Special Function Registers (SFR)

All unlabed SFRs are reserved.

x 8x 9x Ax Bx Cx Dx Ex Fx
0 IOA IOB IOC IOD SCON1 PSW ACC B

1 SP EXIF INT2CLR IOE SBUF1

2 DPL0 MPAGE INT4CLR OEA

3 DPH0 OEB

4 DPL1 OEC

5 DPH1 OED

6 DPS OEE

7 PCON

8 TCON SCON0 IE IP T2CON EICON EIE EIP

9 TMOD SBUF0

A TL0 AUTOPTRH1 EP2468STAT EP01STAT RCAP2L

B TL1 AUTOPTRL1 EP24FIFOFLGS GPIFTRIG RCAP2H

C TH0 EP68FIFOFLGS TL2

D TH1 AUTOPTRH2 GPIFSGLDATH TH2

E CKCON AUTOPTRL2 GPIFSGLDATLX

F AUTOPTRSETUP GPIFSGLDATLNOX

Exhibit 2058 - Page 264 of 460

Chapter 11. CPU Introduction Page 11-11

11.13 External Address/Data Buses

The 128-pin version of the FX2 provides external, non-multiplexed 16-bit address and 8-bit data
buses. This differs from the standard 8051, which multiplexes eight pins among three sources:
I/O port 0, the external data bus, and the low byte of the external address bus.

A standard 8051 system with external memory requires a demultiplexing address latch, strobed by
the 8051 ALE (Address Latch Enable) pin. The external latch is not required by the FX2 chip, and
no ALE signal is provided. In addition to eliminating the need for this external latch, the non-multi-
plexed FX2 bus saves one cycle per memory-fetch and allows external memory to be connected
without sacrificing I/O pins.

The FX2 is the sole master of the bus, providing read and write signals to the off-chip memory. The
address bus is output-only, and cannot be floated.

11.14 Reset

The various FX2 resets and their effects are described in Chapter 7, "Resets".

Exhibit 2058 - Page 265 of 460

EZ-USB FX2 Technical Reference Manual

Page 11-12 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 266 of 460

Chapter 12. Instruction Set Page 12-1

Chapter 12 Instruction Set

12.1 Introduction

This chapter provides a technical overview and description of the FX2’s assembly-language
instruction set.

All FX2 instructions are binary-code-compatible with the standard 8051. The FX2 instructions
affect bits, flags, and other status functions just as the 8051 instructions do. Instruction timing,
however, is different both in terms of the number of clock cycles per instruction cycle and the num-
ber of instruction cycles used by each instruction.

Table 12-2 lists the FX2 instruction set and the number of instruction cycles required to complete
each instruction. Table 12-1 defines the symbols and mnemonics used in Table 12-2.

Table 12-1. Legend for Instruction Set Table

Symbol Function

A Accumulator

Rn Register (R0–R7, in the bank selected by RS1:RS0)

direct Internal RAM location (0x00 - 0x7F in the “Lower 128”, or 0x80 - 0xFF in “SFR” space)

@Ri Internal RAM location (0x00 - 0x7F in the “Lower 128”, or 0x80 - 0xFF in the “Upper 128”)
pointed to by R0 or R1

rel Program-memory offset (-128 to +127 bytes relative to the first byte of the following
instruction). Used by conditional jumps and SJMP.

bit Bit address (0x20 - x2F in the “Lower 128,” and SFRs 0x80, 0x88,, 0xF0, 0xF8)

#data 8-bit constant (0 - 255)

#data16 16-bit constant (0 - 65535)

addr16 16-bit destination address; used by LCALL and LJMP, which branch anywhere in program
memory

addr11 11-bit destination address; used by ACALL and AJMP, which branch only within the cur-
rent 2K page of program memory (i.e., the upper 5 address bits are copied from the PC)

PC Program Counter; holds the address of the currently-executing instruction. For the pur-
poses of “ACALL”, “AJMP”, and “MOVC A,@A+PC” instructions, the PC holds the
address of the first byte of the instruction following the currently-executing instruction.

Exhibit 2058 - Page 267 of 460

EZ-USB FX2 Technical Reference Manual

Page 12-2 EZ-USB FX2 Technical Reference Manual v2.1

Table 12-2. FX2 Instruction Set

Mnemonic Description Bytes Cycles
PSW
Flags

Affected

Opcode
(Hex)

Arithmetic

ADD A, Rn Add register to A 1 1 CY OV AC 28-2F

ADD A, direct Add direct byte to A 2 2 CY OV AC 25

ADD A, @Ri Add data memory to A 1 1 CY OV AC 26-27

ADD A, #data Add immediate to A 2 2 CY OV AC 24

ADDC A, Rn Add register to A with carry 1 1 CY OV AC 38-3F

ADDC A, direct Add direct byte to A with carry 2 2 CY OV AC 35

ADDC A, @Ri Add data memory to A with carry 1 1 CY OV AC 36-37

ADDC A, #data Add immediate to A with carry 2 2 CY OV AC 34

SUBB A, Rn Subtract register from A with borrow 1 1 CY OV AC 98-9F

SUBB A, direct Subtract direct byte from A with borrow 2 2 CY OV AC 95

SUBB A, @Ri Subtract data memory from A with borrow 1 1 CY OV AC 96-97

SUBB A, #data Subtract immediate from A with borrow 2 2 CY OV AC 94

INC A Increment A 1 1 04

INC Rn Increment register 1 1 08-0F

INC direct Increment direct byte 2 2 05

INC @ Ri Increment data memory 1 1 06-07

DEC A Decrement A 1 1 14

DEC Rn Decrement Register 1 1 18-1F

DEC direct Decrement direct byte 2 2 15

DEC @Ri Decrement data memory 1 1 16-17

INC DPTR Increment data pointer 1 3 A3

MUL AB Multiply A and B (unsigned; product in B:A) 1 5 CY=0 OV A4

DIV AB Divide A by B
(unsigned; quotient in A, remainder in B)

1 5 CY=0 OV 84

DA A Decimal adjust A 1 1 CY D4

Logical

ANL, Rn AND register to A 1 1 58-5F

ANL A, direct AND direct byte to A 2 2 55

ANL A, @Ri AND data memory to A 1 1 56-57

ANL A, #data AND immediate to A 2 2 54

ANL direct, A AND A to direct byte 2 2 52

ANL direct, #data AND immediate data to direct byte 3 3 53

ORL A, Rn OR register to A 1 1 48-4F

ORL A, direct OR direct byte to A 2 2 45

ORL A, @Ri OR data memory to A 1 1 46-47

ORL A, #data OR immediate to A 2 2 44

Exhibit 2058 - Page 268 of 460

Chapter 12. Instruction Set Page 12-3

ORL direct, A OR A to direct byte 2 2 42

ORL direct, #data OR immediate data to direct byte 3 3 43

XRL A, Rn Exclusive-OR register to A 1 1 68-6F

XRL A, direct Exclusive-OR direct byte to A 2 2 65

XRL A, @Ri Exclusive-OR data memory to A 1 1 66-67

XRL A, #data Exclusive-OR immediate to A 2 2 64

XRL direct, A Exclusive-OR A to direct byte 2 2 62

XRL direct, #data Exclusive-OR immediate to direct byte 3 3 63

CLR A Clear A 1 1 E4

CPL A Complement A 1 1 F4

SWAP A Swap nibbles of a 1 1 C4

RL A Rotate A left 1 1 23

RLC A Rotate A left through carry 1 1 CY 33

RR A Rotate A right 1 1 03

RRC A Rotate A right through carry 1 1 CY 13

Data Transfer

MOV A, Rn Move register to A 1 1 E8-EF

MOV A, direct Move direct byte to A 2 2 E5

MOV A, @Ri Move data byte at Ri to A 1 1 E6-E7

MOV A, #data Move immediate to A 2 2 74

MOV Rn, A Move A to register 1 1 F8-FF

MOV Rn, direct Move direct byte to register 2 2 A8-AF

MOV Rn, #data Move immediate to register 2 2 78-7F

MOV direct, A Move A to direct byte 2 2 F5

MOV direct, Rn Move register to direct byte 2 2 88-8F

MOV direct, direct Move direct byte to direct byte 3 3 85

MOV direct, @Ri Move data byte at Ri to direct byte 2 2 86-87

MOV direct, #data Move immediate to direct byte 3 3 75

MOV @Ri, A MOV A to data memory at address Ri 1 1 F6-F7

MOV @Ri, direct Move direct byte to data memory
at address Ri

2 2 A6-A7

MOV @Ri, #data Move immediate to data memory
at address Ri

2 2 76-77

MOV DPTR, #data16 Move 16-bit immediate to data pointer 3 3 90

MOVC A, @A+DPTR Move code byte at address DPTR+A to A 1 3 93

MOVC A, @A+PC Move code byte at address PC+A to A 1 3 83

MOVX A, @Ri Move external data at address Ri to A 1 2-9* E2-E3

MOVX A, @DPTR Move external data at address DPTR to A 1 2-9* E0

Table 12-2. FX2 Instruction Set (Continued)

Mnemonic Description Bytes Cycles
PSW
Flags

Affected

Opcode
(Hex)

Exhibit 2058 - Page 269 of 460

EZ-USB FX2 Technical Reference Manual

Page 12-4 EZ-USB FX2 Technical Reference Manual v2.1

MOVX @Ri, A Move A to external data at address Ri 1 2-9* F2-F3

MOVX @DPTR, A Move A to external data at address DPTR 1 2-9* F0

PUSH direct Push direct byte onto stack 2 2 C0

POP direct Pop direct byte from stack 2 2 D0

XCH A, Rn Exchange A and register 1 1 C8-CF

XCH A, direct Exchange A and direct byte 2 2 C5

XCH A, @Ri Exchange A and data memory
at address Ri

1 1 C6-C7

XCHD A, @Ri Exchange the low-order nibbles
 of A and data memory at address Ri

1 1 D6-D7

* Number of cycles is user-selectable. See Section 12.1.2, "Stretch Memory Cycles (Wait States)".

Boolean

CLR C Clear carry 1 1 CY=0 C3

CLR bit Clear direct bit 2 2 C2

SETB C Set carry 1 1 CY=1 D3

SETB bit Set direct bit 2 2 D2

CPL C Complement carry 1 1 CY B3

CPL bit Complement direct bit 2 2 B2

ANL C, bit AND direct bit to carry 2 2 CY 82

ANL C, /bit AND inverse of direct bit to carry 2 2 CY B0

ORL C, bit OR direct bit to carry 2 2 CY 72

ORL C, /bit OR inverse of direct bit to carry 2 2 CY A0

MOV C, bit Move direct bit to carry 2 2 CY A2

MOV bit, C Move carry to direct bit 2 2 92

Branching

ACALL addr11 Absolute call to subroutine 2 3 11-F1

LCALL addr16 Long call to subroutine 3 4 12

RET Return from subroutine 1 4 22

RETI Return from interrupt 1 4 32

AJMP addr11 Absolute jump unconditional 2 3 01-E1

LJMP addr16 Long jump unconditional 3 4 02

SJMP rel Short jump (relative address) 2 3 80

JC rel Jump if carry = 1 2 3 40

JNC rel Jump if carry = 0 2 3 50

JB bit, rel Jump if direct bit = 1 3 4 20

JNB bit, rel Jump if direct bit = 0 3 4 30

JBC bit, rel Jump if direct bit = 1, then clear the bit 3 4 10

JMP @ A+DPTR Jump indirect to address DPTR+A 1 3 73

Table 12-2. FX2 Instruction Set (Continued)

Mnemonic Description Bytes Cycles
PSW
Flags

Affected

Opcode
(Hex)

Exhibit 2058 - Page 270 of 460

Chapter 12. Instruction Set Page 12-5

12.1.1 Instruction Timing

Instruction cycles in the FX2 are 4 clock cycles in length, as opposed to the 12 clock cycles per
instruction cycle in the standard 8051. For full details of the instruction-cycle timing differences
between the FX2 and the standard 8051, see Section 11.3, "Performance Overview".

In the standard 8051, all instructions except for MUL and DIV take one or two instruction cycles to
complete. In the FX2, instructions can take between one and five instruction cycles to complete.
For calculating the timing of software loops, etc., use the “Cycles” column from Table 12-2. The
“Bytes” column indicates the number of bytes occupied by each instruction.

By default, the FX2’s timer/counters run at 12 clock cycles per increment so that timer-based
events have the same timing as with the standard 8051. The timers can also be configured to run
at 4 clock cycles per increment to take advantage of the higher speed of the FX2’s CPU.

12.1.2 Stretch Memory Cycles (Wait States)

The FX2 can execute a MOVX instruction in as few as 2 instruction cycles. However, it is some-
times desirable to stretch this value (for example to access slow memory or slow memory-mapped
peripherals such as USARTs or LCDs). The FX2’s “stretch memory cycle” feature enables FX2
firmware to adjust the speed of data memory accesses (program-memory code fetches are not
affected).

JZ rel Jump if accumulator = 0 2 3 60

JNZ rel Jump if accumulator is non-zero 2 3 70

CJNE A, direct, rel Compare A to direct byte; jump if not equal 3 4 CY B5

CJNE A, #d, rel Compare A to immediate; jump if not equal 3 4 CY B4

CJNE Rn, #d, rel Compare register to immediate;
jump if not equal

3 4 CY B8-BF

CJNE @ Ri, #d, rel Compare data memory to immediate;
jump if not equal

3 4 CY B6-B7

DJNZ Rn, rel Decrement register; jump if not zero 2 3 D8-DF

DJNZ direct, rel Decrement direct byte; jump if not zero 3 4 D5

Miscellaneous

NOP No operation 1 1 00

 There is an additional reserved opcode (A5) that performs the same function as NOP.
 All mnemonics are copyright 1980, Intel Corporation.

Table 12-2. FX2 Instruction Set (Continued)

Mnemonic Description Bytes Cycles
PSW
Flags

Affected

Opcode
(Hex)

Exhibit 2058 - Page 271 of 460

EZ-USB FX2 Technical Reference Manual

Page 12-6 EZ-USB FX2 Technical Reference Manual v2.1

The three LSBs of the Clock Control Register (CKCON, at SFR location 0x8E) control the stretch
value; stretch values between zero and seven may be used. A stretch value of zero adds zero
instruction cycles, resulting in MOVX instructions which execute in two instruction cycles. A stretch
value of seven adds seven instruction cycles, resulting in MOVX instructions which execute in nine
instruction cycles. The stretch value can be changed dynamically under program control.

At power-on-reset, the stretch value defaults to one (three-cycle MOVX); for the fastest data mem-
ory access, FX2 software must explicitly set the stretch value to zero. The stretch value affects
only data memory access (not program memory).

The stretch value affects the width of the read/write strobe and all related timing. Using a higher
stretch value results in a wider read/write strobe, which allows the memory or peripheral more time
to respond.

Table 12-3 lists the data memory access speeds for stretch values zero through seven. MD2-0 are
the three LSBs of the Clock Control Register (CKCON.2-0). The strobe width timing shown is typi-
cal.

CPUCS.4:3 sets the basic clock reference for the FX2. These bits can be modified by FX2 firm-
ware at any time. At power-on-reset, CPUCS.4:3 is set to ‘00’ (12 Mhz).

Table 12-3. Data Memory Stretch Values

MD2 MD1 MD0
MOVX

Instruction
Cycles

Read/Write
Strobe Width

(Clocks)

Strobe Width
@ 12MHz

CPUCS.4:3 = 00

Strobe Width
@ 24MHz

CPUCS.4:3 = 01

Strobe Width
@ 48MHz

CPUCS.4:3 = 10

0 0 0 2 2 167 ns 83.3 ns 41.7 ns

0 0 1 3 (default) 4 333 ns 167 ns 83.3 ns

0 1 0 4 8 667 ns 333 ns 167 ns

0 1 1 5 12 1000 ns 500 ns 250 ns

1 0 0 6 16 1333 ns 667 ns 333 ns

1 0 1 7 20 1667 ns 833 ns 417 ns

1 1 0 8 24 2000 ns 1000 ns 500 ns

1 1 1 9 28 2333 ns 1167 ns 583 ns

Exhibit 2058 - Page 272 of 460

Chapter 12. Instruction Set Page 12-7

12.1.3 Dual Data Pointers

The FX2 employs dual data pointers to accelerate data memory block moves. The standard 8051
data pointer (DPTR) is a 16-bit pointer used to address external data RAM or peripherals. The FX2
maintains the standard data pointer as DPTR0 at the standard SFR locations 0x82 (DPL0) and
0x83 (DPH0); it is not necessary to modify existing code to use DPTR0.

The FX2 adds a second data pointer (DPTR1) at SFR locations 0x84 (DPL1) and 0x85 (DPH1).
The SEL bit (bit 0 of the DPTR Select Register, DPS, at SFR 0x86), selects the active pointer.
When SEL = 0, instructions that use the DPTR will use DPL0:DPH0. When SEL = 1, instructions
that use the DPTR will use DPL1:DPH1. No other bits of the DPS SFR are used.

All DPTR-related instructions use the data pointer selected by the SEL Bit. Switching between the
two data pointers by toggling the SEL bit relieves FX2 firmware from the burden of saving source
and destination addresses when doing a block move; therefore, using dual data pointers provides
significantly increased efficiency when moving large blocks of data.

The fastest way to toggle the SEL bit between the two data pointers is via the “INC DPS” instruc-
tion, which toggles bit 0 of DPS between 0 and 1.

The SFR locations related to the dual data pointers are:

0x82 DPL0 DPTR0 low byte
0x83 DPH0 DPTR0 high byte
0x84 DPL1 DPTR1 low byte
0x85 DPH1 DPTR1 high byte
0x86 DPS DPTR Select (Bit 0)

12.1.4 Special Function Registers

The four SFRs listed below are related to CPU operation and program execution. Except for the
Stack Pointer SP, each of the registers is bit addressable.

0x81 SP Stack Pointer
0xD0 PSW Program Status Word
0xE0 ACC Accumulator Register
0xF0 B B Register

Table 12-4 lists the functions of the PSW bits.

Exhibit 2058 - Page 273 of 460

EZ-USB FX2 Technical Reference Manual

Page 12-8 EZ-USB FX2 Technical Reference Manual v2.1

Table 12-4. PSW Register - SFR 0xD0

Bit Function

PSW.7 CY - Carry flag. This is the unsigned carry bit. The CY flag is set when an arithmetic operation
results in a carry from bit 7 to bit 8, and cleared otherwise. In other words, it acts as a virtual bit
8. The CY flag is cleared on multiplication and division. See the “PSW Flags Affected” column in
Table 12-2.

PSW.6 AC - Auxiliary carry flag. Set to 1 when the last arithmetic operation resulted in a carry into (dur-
ing addition) or borrow from (during subtraction) the high order nibble, otherwise cleared to 0 by
all arithmetic operations. See the “PSW Flags Affected” column in Table 12-2.

PSW.5 F0 - User flag 0. Available to FX2 firmware for general purpose.

PSW.4 RS1 - Register bank select bit 1.

PSW.3 RS0 - Register bank select bit 0.

RS1:RS0 select a register bank in internal RAM:

RS1RS0 Bank Selected
0 0 Register bank 0, addresses 0x00-0x07
0 1 Register bank 1, addresses 0x08-0x0F
1 0 Register bank 2, addresses 0x10-0x17
1 1 Register bank 3, addresses 0x18-0x1F

PSW.2 OV - Overflow flag. This is the signed carry bit. The OV flag is set when a positive sum exceeds
0x7F or a negative sum (in two’s complement notation) exceeds 0x80. After a multiply, OV = 1 if
the result of the multiply is greater than 0xFF. After a divide, OV = 1 if a divide-by-0 occurred.
See the “PSW Flags Affected” column in Table 12-2.

PSW.1 F1 - User flag 1. Available to FX2 firmware for general purpose.

PSW.0 P - Parity flag. Contains the modulo-2 sum of the 8 bits in the accumulator (i.e., set to 1 when the
accumulator contains an odd number of “1” bits, set to 0 when the accumulator contains an even
number of “1” bits).

Exhibit 2058 - Page 274 of 460

Chapter 13. Input/Output Page 13-1

Chapter 13 Input/Output

13.1 Introduction

The 56-pin FX2 package provides two input-output systems:

• A set of programmable I/O pins

• A programmable I²C-compatible bus controller

The 100- and 128-pin packages additionally provide two programmable USARTs, which are fully
described in Chapter 14, "Timers/Counters and Serial Interface."

The I/O pins may be configured either for general-purpose I/O or for alternate functions (GPIF
address and data; FIFO data; USART, timer, and interrupt signals; etc.). This chapter describes the
usage of the pins in the general-purpose configuration, and the methods by which the pins may be
configured for alternate functions.

This chapter also provides both the programming information for the I ²C-compatible interface and
the operating details of the EEPROM boot loader. The role of the boot loader is described in Chap-
ter 3, "Enumeration and ReNumeration™".

13.2 I/O Ports

The FX2’s I/O ports are implemented differently than those of a standard 8051.

The FX2 has up to five eight-pin bidirectional I/O ports, labeled A, B, C, D, and E. Individual I/O
pins are labeled Px.n, where x is the port (A, B, C, D, or E) and n is the pin number (0 to 7).

The 100- and 128-pin FX2 packages provide all five ports; the 56-pin package provides only ports
A, B, and D.

Exhibit 2058 - Page 275 of 460

EZ-USB FX2 Technical Reference Manual

Page 13-2 EZ-USB FX2 Technical Reference Manual v2.1

Each port is associated with a pair of registers:

• An OEx register (where x is A, B, C, D, or E), which sets the input/output direction of each
of the 8 pins (0 = input, 1 = output). See Figure 13-2.

• An IOx register (where x is A, B, C, D, or E). Values written to IOx appear on the pins
which are configured as outputs; values read from IOx indicate the states of the 8 pins,
regardless of input/output configuration. See Figure 13-3.

Most I/O pins have alternate functions which may be selected using configuration registers (see
Tables 13-1 through 13-9). Each alternate function is unidirectional; the FX2 “knows” whether the
function is an input or an output, so when an alternate configuration is selected for an I/O pin, the
corresponding OEx bit is ignored (see Figures 13-4 and 13-5).

The default (power-on reset) state of all I/O ports is:

• Alternate configurations off

• All I/O pins configured as inputs

Figure 13-1 shows the basic structure of an FX2 I/O pin.

Figure 13-1. FX2 I/O Pin

OEx Bit

IOx Bit I/O Pin

Read

Write

Exhibit 2058 - Page 276 of 460

Chapter 13. Input/Output Page 13-3

Figure 13-2. I/O Port Output-Enable Registers

OEA Port A Output Enable SFR 0xB2
b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

OEB Port B Output Enable SFR 0xB3
b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

OEC Port C Output Enable SFR 0xB4
b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

OED Port D Output Enable SFR 0xB5
b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

OEE Port E Output Enable SFR 0xB6
b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 277 of 460

EZ-USB FX2 Technical Reference Manual

Page 13-4 EZ-USB FX2 Technical Reference Manual v2.1

Figure 13-3. I/O Port Data Registers

IOA Port A (Bit-Addressable) SFR 0x80
b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

IOB Port B (Bit-Addressable) SFR 0x90
b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

IOC Port C (Bit-Addressable) SFR 0xA0
b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

IOD Port D (Bit-Addressable) SFR 0xB0
b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

IOE Port E SFR 0xB1
b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

Exhibit 2058 - Page 278 of 460

Chapter 13. Input/Output Page 13-5

13.3 I/O Port Alternate Functions

Each I/O pin may be configured for an alternate (i.e., non-general-purpose I/O) function. These
alternate functions are selected through various configuration registers, as described in the follow-
ing sections.

The I/O-pin logic for alternate-function outputs is slightly different than for alternate-function inputs,
as shown in Figures 13-4 (output) and 13-5 (input).

Figure 13-4. I/O-Pin Logic when Alternate Function is an OUTPUT

Figure 13-4 shows an I/O pin whose alternate function is always an output.

In Figure 13-4a, the I/O pin is configured for general-purpose I/O. In this configuration, the alter-
nate function is disconnected and the pin functions normally.

In Figure 13-4b, the I/O pin is configured as an alternate-function output. In this configuration, the
IOx/OEx output buffer is disconnected from the I/O pin, so writes to IOx and OEx have no effect on
the I/O pin. Reads from IOx, however, continue to work normally; the state of the I/O pin (and,
therefore, the state of the alternate function) is always available.

OEx Bit

IOx Bit I/O Pin

Read

Write

Alternate Function
(Output)

OEx Bit

IOx Bit I/O Pin

Read

Write

Alternate Function
(Output)

a) General-Purpose I/O Configuration b) Alternate-Function Configuration

Exhibit 2058 - Page 279 of 460

EZ-USB FX2 Technical Reference Manual

Page 13-6 EZ-USB FX2 Technical Reference Manual v2.1

Figure 13-5. I/O-Pin Logic when Alternate Function is an INPUT

Figure 13-5 shows an I/O pin whose alternate function is always an input.

In Figure 13-5a, the I/O pin is configured for general-purpose I/O. There’s an important difference
between alternate-function inputs and the alternate-function outputs shown earlier in Figure 13-4:
Alternate-function inputs are never disconnected; they’re always listening.

If the alternate function’s interrupt is enabled, signals on the I/O pin may trigger that interrupt. If the
pin is to be used only for general-purpose I/O, the alternate function’s interrupt must be disabled.

For example, suppose the PE5/INT6 pin is configured for general-purpose I/O. Since the INT6
function is an input, the pin signal is also routed to the FX2’s internal INT6 logic. If the INT6 inter-
rupt is enabled, traffic on the PE5 pin will trigger an INT6 interrupt. If this is undesirable, the INT6
interrupt should be disabled.

Of course, this side-effect can be useful in certain situations. In the case of PE5/INT6, for exam-
ple, PE5 can trigger an INT6 interrupt even if the I/O pin is configured as an output (i.e., OEE.5 =
1), so the FX2’s firmware can directly generate “external” interrupts.

In Figure 13-5b, the I/O pin is configured as an alternate-function input. Just as with alternate-
function outputs, the IOx/OEx output buffer is disconnected from the I/O pin, so writes to IOx and
OEx have no effect on the I/O pin. Reads from IOx, however, continue to work normally; the state
of the I/O pin (and, therefore, the input to the alternate function) is always available.

OEx Bit

IOx Bit I/O Pin

Read

Write

Alternate Function
(Input)

OEx Bit

IOx Bit I/O Pin

Read

Write

Alternate Function
(Input)

a) General-Purpose I/O Configuration b) Alternate-Function Configuration

Exhibit 2058 - Page 280 of 460

Chapter 13. Input/Output Page 13-7

13.3.1 Port A Alternate Functions

Alternate functions for the Port A pins are selected by bits in three registers, as shown in Tables
13-1 and 13-2.

Table 13-1. Register Bits Which Select Port A Alternate Functions

b7 b6 b5 b4 b3 b2 b1 b0

PORTACFG
(0xE670)

FLAGD SLCS1 0 0 0 0 INT1 INT0

IFCONFIG
(0xE601)

IFCLKSRC 3048MHZ IFCLKOE IFCLKPOL ASYNC GSTATE IFCFG1 IFCFG0

WAKEUPCS
(0xE682)

WU2 WU WU2POL WUPOL 0 DPEN WU2EN WUEN

Note 1: Although the SLCS alternate function is selected by bit 6 of PORTACFG, that function does not appear on
pin PA6. Instead, the SLCS function appears on pin PA7 (see Table13-2).

Table 13-2. Port A Alternate-Function Configuration

Port A Pin
Alternate
Function

Alternate Function
is Selected By...

Alternate Function
is Described in...

PA.0 INT0 PORTACFG.0 = 1 Chapter 4

PA.1 INT1 PORTACFG.1 = 1 Chapter 4

PA.2 SLOE IFCFG1:0 = 11 Chapter 9

PA.3 WU21 WU2EN = 1 Chapter 6

PA.4 FIFOADR0 IFCFG1:0 = 11 Chapter 9

PA.5 FIFOADR1 IFCFG1:0 = 11 Chapter 9

PA.6 PKTEND IFCFG1:0 = 11 Chapter 9

PA.7
FLAGD2 PORTACFG.7 = 1 Chapter 9

SLCS3 PORTACFG.6 = 1 and
IFCFG1:0 = 11

Chapter 9

Note 1: When PA.3 is configured for alternate function WU2, it continues to function as a general-purpose input pin
as well. See Section 6.4.1, "WU2 Pin" for more information.

Note 2: Although PA.7’s alternate function FLAGD is selected via the PORTACFG register, the state of the FLAGD
output is undefined unless IFCFG1:0 = 11.

Note 3: FLAGD takes priority over SLCS if PORTACFG.6 and PORTACFG.7 are both set to 1.

Exhibit 2058 - Page 281 of 460

EZ-USB FX2 Technical Reference Manual

Page 13-8 EZ-USB FX2 Technical Reference Manual v2.1

13.3.2 Port B and Port D Alternate Functions

When IFCFG1 = 1, all eight Port B pins are configured for an alternate configuration (FIFO Data
7:0).

If any of the FIFOs are set to 16-bit mode (via the WORDWIDE bits in the EPxFIFOCFG regis-
ters), all eight Port D pins are also configured for an alternate configuration (FIFO Data 15:8). See
Tables 13-3, 13-4, and 13-5.

If all WORDWIDE bits are cleared to 0 (i.e., if all four FIFOs are operating in 8-bit mode), the eight
Port D pins may be used as general-purpose I/O pins even if IFCFG1 = 1.

Table 13-3. Register Bits Which Select Port B and Port D Alternate Functions

b7 b6 b5 b4 b3 b2 b1 b0

IFCONFIG
(0xE601)

IFCLKSRC 3048MHZ IFCLKOE IFCLKPOL ASYNC GSTATE IFCFG1 IFCFG0

EP2FIFOCFG
(0xE618)

0 INFM2 OEP2 AUTOOUT AUTOIN ZEROLENIN 0 WORDWIDE

EP4FIFOCFG
(0xE619)

0 INFM4 OEP4 AUTOOUT AUTOIN ZEROLENIN 0 WORDWIDE

EP6FIFOCFG
(0xE61A)

0 INFM6 OEP6 AUTOOUT AUTOIN ZEROLENIN 0 WORDWIDE

EP8FIFOCFG
(0xE61B)

0 INFM8 OEP8 AUTOOUT AUTOIN ZEROLENIN 0 WORDWIDE

Table 13-4. Port B Alternate-Function Configuration

Port B Pin
Alternate
Function

Alternate Function
is Selected By...

Alternate Function
is Described in...

PB.7:0 FD[7:0] IFCFG1 = 1 Chapter 9

Table 13-5. Port D Alternate-Function Configuration

Port D Pin
Alternate
Function

Alternate Function
is Selected By...

Alternate Function
is Described in...

PD.7:0 FD[15:8] IFCFG1 = 1 and
any WORDWIIDE bit = 1

Chapter 9

Exhibit 2058 - Page 282 of 460

Chapter 13. Input/Output Page 13-9

13.3.3 Port C Alternate Functions

Each Port C pin may be individually configured for an alternate function by setting a bit in the
PORTCCFG register, as shown in Tables 13-6 and 13-7.

Table 13-6. Register Bits Which Select Port C Alternate Functions

b7 b6 b5 b4 b3 b2 b1 b0

PORTCCFG
(0xE671)

GPIFA7 GPIFA6 GPIFA5 GPIFA4 GPIFA3 GPIFA2 GPIFA1 GPIFA0

Table 13-7. Port C Alternate-Function Configuration

Port C Pin
Alternate
Function

Alternate Function
is Selected By...

Alternate Function
is Described in...

PC.0 GPIFA01 PORTCCFG.0 = 1 Chapter 10

PC.1 GPIFA11 PORTCCFG.1 = 1 Chapter 10

PC.2 GPIFA21 PORTCCFG.2 = 1 Chapter 10

PC.3 GPIFA31 PORTCCFG.3 = 1 Chapter 10

PC.4 GPIFA41 PORTCCFG.4 = 1 Chapter 10

PC.5 GPIFA51 PORTCCFG.5 = 1 Chapter 10

PC.6 GPIFA61 PORTCCFG.6 = 1 Chapter 10

PC.7 GPIFA71 PORTCCFG.7 = 1 Chapter 10

Note 1: Although the Port C alternate functions GPIFA0:7 are selected via the PORTCCFG register, the states of
the GPIFA0:7 outputs are undefined unless IFCFG1:0 = 10.

Exhibit 2058 - Page 283 of 460

EZ-USB FX2 Technical Reference Manual

Page 13-10 EZ-USB FX2 Technical Reference Manual v2.1

13.3.4 Port E Alternate Functions

Each Port E pin may be individually configured for an alternate function by setting a bit in the
PORTECFG register.

If the GSTATE bit in the IFCONFIG register is set to 1, the PE.2:0 pins are automatically config-
ured as GPIF Status pins GSTATE[2:0], regardless of the PORTECFG.2:0 settings. In other
words, GSTATE overrides PORTECFG.2:0. See Tables 13-8 and 13-9.

Table 13-8. Register Bits Which Select Port E Alternate Functions

b7 b6 b5 b4 b3 b2 b1 b0

PORTECFG
(0xE671)

GPIFA8 T2EX INT6 RXD1OUT RXD0OUT T2OUT T1OUT T0OUT

IFCONFIG
(0xE601)

IFCLKSRC 3048MHZ IFCLKOE IFCLKPOL ASYNC GSTATE IFCFG1 IFCFG0

Table 13-9. Port E Alternate-Function Configuration

Port E Pin
Alternate
Function

Alternate Function
is Selected By...

Alternate Function
is Described in...

PE.0 T0OUT1 PORTECFG.0 = 1 and
GSTATE = 0

Chapter 14

PE.1 T1OUT1 PORTECFG.1 = 1 and
GSTATE = 0

Chapter 14

PE.2 T2OUT1 PORTECFG.2 = 1 and
GSTATE = 0

Chapter 14

PE.3 RXD0OUT PORTECFG.3 = 1 Chapter 14

PE.4 RXD1OUT PORTECFG.4 = 1 Chapter 14

PE.5 INT6 PORTECFG.5 = 1 Chapter 4

PE.6 T2EX PORTECFG.6 = 1 Chapter 14

PE.7 GPIFA82 PORTECFG.7 = 1 Chapter 10

Note 1: If GSTATE is set to 1, these settings are overridden and PE.2:0 are all automatically configured as GPIF
Status pins (see Chapter 10).

Note 2: Although the PE.7 alternate function GPIFA8 is selected via the PORTECFG register, the state of the
GPIFA8 output is undefined unless IFCFG1:0 = 10.

Exhibit 2058 - Page 284 of 460

Chapter 13. Input/Output Page 13-11

Table 13-10. IFCFG Selection of Port I/O Pin Functions

IFCFG1:0 = 00
(Ports)

IFCFG1:0 = 10
(GPIF Master)

IFCFG1:0 = 11
(Slave FIFO)

PD7 FD[15] FD[15]

PD6 FD[14] FD[14]

PD5 FD[13] FD[13]

PD4 FD[12] FD[12]

PD3 FD[11] FD[11]

PD2 FD[10] FD[10]

PD1 FD[9] FD[9]

PD0 FD[8] FD[8]

PB7 FD[7] FD[7]

PB6 FD[6] FD[6]

PB5 FD[5] FD[5]

PB4 FD[4] FD[4]

PB3 FD[3] FD[3]

PB2 FD[2] FD[2]

PB1 FD[1] FD[1]

PB0 FD[0] FD[0]

INT0 / PA0 INT0 / PA0 INT0 / PA0

INT1 / PA1 INT1 / PA1 INT1 / PA1

PA2 PA2 SLOE

WU2 / PA3 WU2 / PA3 WU2 / PA3

PA4 PA4 FIFOADR0

PA5 PA5 FIFOADR1

PA6 PA6 PKTEND

PA7 PA7 PA7 / FLAGD / SLCS

PC7:0 PC7:0 PC7:0

PE7:0 PE7:0 PE7:0

Note: Signals shown in bold type do not change with IFCFG;
 they are shown for completeness.

Exhibit 2058 - Page 285 of 460

EZ-USB FX2 Technical Reference Manual

Page 13-12 EZ-USB FX2 Technical Reference Manual v2.1

13.4 I²C-Compatible Bus Controller

The I ²C-compatible bus controller uses the SCL (Serial Clock) and SDA (Serial Data) pins, and
performs two functions:

• General-purpose interfacing to I²C peripherals

• Boot loading from a serial EEPROM

Pullup resistors are required on the SDA and SCL lines, even if nothing is connected to the
I²C-compatible bus. Each line should be pulled up to Vcc through a 2.2K ohm resistor.

The bus frequency defaults to approximately 100 KHz for compatibility; it can be configured to run
four times faster for devices that support the higher speed.

13.4.1 Interfacing to I²C Peripherals

Figure 13-6. General I²C Transfer

Figure 13-6 illustrates the waveforms for an I ²C transfer. SCL and SDA are open-drain FX2 pins,
which must be pulled up to Vcc with external resistors. The FX2 is a bus master only, meaning that
it synchronizes data transfers by generating clock pulses on SCL. Once the master drives SCL
low, external slave devices can hold SCL low to extend clock-cycle times.

To synchronize I²C data, serial data (SDA) is permitted to change state only while SCL is low, and
must be valid while SCL is high. Two exceptions to this rule are used to generate START and
STOP conditions: a START condition is defined as a high-to-low transition on SDA while SCL is
high, and a STOP condition is defined as a low-to-high transition on SDA while SCL is high. Data
is sent MSB first. During the last bit time (clock #9 in Figur e13-6), the master floats the SDA line
to allow the slave to acknowledge the transfer by pulling SDA low.

Multiple Bus Masters — The FX2 acts only as a bus master, never as a slave. Conflicts with a second master
can be detected, however, by checking for BERR=1 (see Section 13.4.2.2, "Status
Bits").

SDA

SCL 1 2 3 4 5 6 7 8 9

D7 ACKD6 D5 D4 D3 D2 D1 D0

start stop

Exhibit 2058 - Page 286 of 460

Chapter 13. Input/Output Page 13-13

Figure 13-7. Addressing an I²C Peripheral

Each peripheral (slave) device on the I²C bus has a unique address. The first byte of an I ²C trans-
action contains the address of the desired peripheral. Figure 13-7 shows the format for this first
byte, which is sometimes called a control byte.

The FX2 sends the bit sequence shown in Figure 13-7 to select the peripheral at a particular
address, to establish the transfer direction (using R/W), and to determine if the peripheral is
present by testing for ACK.

The four most significant bits (SA3:0) are the peripheral chip’s slave address. I²C devices are pre-
assigned slave addresses by device type. Slave address 1010, for example, is assigned to
EEPROMs. The next three bits (DA2:0) usually reflect the states of the peripheral’s device address
pins. Devices with three address pins can be strapped to allow eight distinct addresses for the
same device type, which allows, for example, up to eight identical serial EEPROMs to be individu-
ally addressed.

The eighth bit (R/W) sets the direction for the ensuing data transfer (1 = master read, 0 = master
write). Most address transfers are followed by one or more data transfers, with the STOP condition
generated after the last data byte is transferred.

In Figure 13-7, a READ transfer follows the address byte (at clock 8, the master sets the R/W bit
high, indicating READ). At clock 9, the peripheral device responds to its address by asserting ACK.
At clock 10, the master floats SDA and issues SCL pulses to clock in SDA data supplied by the
slave.

13.4.2 Registers

The three registers shown in Figur e13-8 are used to conduct transfers over the I²C-compatible
bus.

Data is transferred to and from the bus through the I2DAT register. The I2CS register controls the
transfers and reports various status conditions. I2CTL configures the bus.

1 2 3 4 5 6 7 8 9

SA3 ACKSA2 SA1 SA0 DA2 DA1 DA0

start

SDA D7 D6

10 11

R/W

SCL

Exhibit 2058 - Page 287 of 460

EZ-USB FX2 Technical Reference Manual

Page 13-14 EZ-USB FX2 Technical Reference Manual v2.1

Figure 13-8. I²C-Compatible Registers

13.4.2.1 Control Bits

 START

When START = 1, the next write to I2DAT generates the START condition followed by the serial-
ized byte of data in I2DAT. The START bit is automatically cleared to 0 during the ACK interval
(clock 9 in Figure 13-6).

 STOP

When STOP = 1, a stop condition is generated. If the bus is idle when the STOP bit is set, the
STOP condition is generated immediately; otherwise, the STOP condition is generated after the
ACK phase of the current transfer. The STOP bit is automatically cleared after completing the
STOP condition.

I2CS I ²C-Compatible Bus Control and
Status

E678

b7 b6 b5 b4 b3 b2 b1 b0

START STOP LASTRD ID1 ID0 BERR ACK DONE

R/W R/W R/W R R R R R

0 0 0 x x 0 0 0

I2DAT I²C-Compatible Bus Data E679

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

I2CTL I²C-Compatible Bus Mode E67A

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 STOPE 400KHZ

 R R R R R R R/W R/W

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 288 of 460

Chapter 13. Input/Output Page 13-15

While the I²C-Compatible Bus controller is generating the “stop” condition, it ignores accesses to
the I2CS and I2DAT registers. Firmware should therefore check the STOP Bit for zero before writ-
ing new data to I2CS or I2DAT.

An interrupt request is available to signal that the STOP condition is complete.

 LASTRD

The master reads data by floating the SDA line and issuing clock pulses on the SCL line; after
every eight bits, it drives SDA low for one clock to indicate ACK. To signal the last byte of a multi-
byte transfer, the master floats SDA at ACK time to instruct the slave to stop sending.

When LASTRD = 1, the FX2 will float the SDA line after the next read transfer. The LASTRD bit is
automatically cleared at the end of the transfer (at ACK time).

Setting LASTRD does not automatically generate a STOP condition. At the end of a read transfer,
the STOP bit should also be set.

13.4.2.2 Status Bits

After a byte transfer, the FX2 updates the three status bits DONE, ACK, and BERR. If no STOP
condition was transmitted, they are updated at ACK time; if a STOP condition was transmitted,
they are updated after the STOP.

 DONE

The FX2 sets this bit whenever it completes a byte transfer. The FX2 also generates an interrupt
request when it sets the DONE bit. The DONE bit is automatically cleared when the I2DAT register
is read or written, and the interrupt request bit is automatically cleared whenever the I2CS or
I2DAT registers are read or written.

 ACK

Every ninth SCL of a write transfer, the slave indicates reception of the byte by asserting ACK. The
FX2 floats SDA during this time, samples the SDA line, and updates the ACK bit with the comple-
ment of the detected value. ACK=1 indicates acknowledge, and ACK=0 indicates not-acknowl-
edge. The ACK bit should be ignored for read transfers on the bus.

 BERR

This bit indicates a bus error. BERR=1 indicates that there was bus contention, which results when
an outside device drives the bus when it shouldn’t, or when another bus master wins arbitration
and takes control of the bus. When a bus error is detected, the current transfer is immediately can-
celled, the FX2 floats the SCL and SDA lines, and the bus controller is disabled until a STOP con-

Exhibit 2058 - Page 289 of 460

EZ-USB FX2 Technical Reference Manual

Page 13-16 EZ-USB FX2 Technical Reference Manual v2.1

dition is detected on the bus. BERR is automatically cleared when the firmware reads or writes the
I2DAT register.

Clearing the BERR bit (by accessing I2DAT) does not automatically re-enable the bus controller.
Once a bus error occurs, the bus controller remains disabled until a STOP condition is detected.

 ID1, ID0

These bits are automatically set by the boot loader to indicate the Boot EEPROM’s addressing
mode. They’re normally used only for debug purposes; for full details, see Section 13.5.

13.4.3 Sending Data

To send a multiple-byte data record, follow these steps:

1. Set START=1.

2. Write the peripheral address and direction=0 (for write) to I2DAT.

3. Wait for DONE=1*. If BERR=1 or ACK=0, go to step 7.

4. Load I2DAT with a data byte.

5. Wait for DONE=1*. If BERR=1 or ACK=0 go to step 7.

6. Repeat steps 4 and 5 for each byte until all bytes have been transferred.

7. Set STOP=1.

* If INT3 is enabled, each “Wait for DONE=1” step can be interrupt-driven and handled by an interrupt ser-
vice routine. See Chapter 4, "Interrupts" for more details.

13.4.4 Receiving Data

To read a multiple-byte data record, follow these steps:

1. Set START=1.

2. Write the peripheral address and direction=1 (for read) to I2DAT.

3. Wait for DONE=1*. If BERR=1 or ACK=0, terminate by setting STOP=1.

4. Read I2DAT and discard the data. This initiates the first burst of nine SCL pulses to clock in
the first byte from the slave.

5. Wait for DONE=1*. If BERR=1, terminate by setting STOP=1.

6. Read the data from I2DAT. This initiates another read transfer.

7. Repeat steps 5 and 6 for each byte until ready to read the second-to-last byte.

8. Before reading the second-to-last I2DAT byte, set LASTRD=1.

9. Read the data from I2DAT. With LASTRD=1, this initiates the final byte read on the bus.

10. Wait for DONE=1*. If BERR=1, terminate by setting STOP=1.

Exhibit 2058 - Page 290 of 460

Chapter 13. Input/Output Page 13-17

11. Set STOP=1.

12. Read the last byte from I2DAT immediately (the next instruction) after setting the STOP bit.
This retrieves the last data byte without initiating an extra read transaction (nine more SCL
pulses) on the I ²C-compatible bus.

* If INT3 is enabled, each “Wait for DONE=1” step can be interrupt-driven and handled by an interrupt service
routine. See Chapter 4, "Interrupts" for more details.

13.5 EEPROM Boot Loader

Whenever the FX2 is taken out of reset via the reset pin, its boot loader checks for the presence of
an EEPROM on the I ²C-compatible bus. If an EEPROM is detected, the loader reads the first
EEPROM byte to determine how to enumerate (specifically, whether to supply hard-wired ID infor-
mation or read the ID from the EEPROM). The various enumeration modes are described in Chap-
ter 3, "Enumeration and ReNumeration™".

The FX2 boot loader supports two I²C-compatible EEPROM types:

• EEPROMs with slave address 1010 that use an 8-bit internal address (e.g., 24LC00,
24LC01/B, 24LC02/B).

• EEPROMs with slave address 1010 that use a 16-bit internal address (e.g., 24AA64,
24LC128, 24AA256).

EEPROMs with densities up to 256 bytes require only a single address byte; larger EEPROMs
require two address bytes. The FX2 must determine which EEPROM type is connected — one or
two address bytes — so that it can properly read the EEPROM.

The FX2 uses the EEPROM device-address pins A2, A1, and A0 to determine whether to send
out one or two bytes of address. As shown in Table 13-11, single-byte-address EEPROMs must be
strapped to address 000, while double-byte-address EEPROMs must be strapped to address 001.

* This EEPROM does not have device-address pins

Table 13-11. Strap Boot EEPROM Address Lines to These Values

Bytes
Example
EEPROM

A2 A1 A0

16 24LC00* N/A N/A N/A

128 24LC01 0 0 0

256 24LC02 0 0 0

4K 24LC32 0 0 1

8K 24LC64 0 0 1

Exhibit 2058 - Page 291 of 460

EZ-USB FX2 Technical Reference Manual

Page 13-18 EZ-USB FX2 Technical Reference Manual v2.1

After determining whether a one- or two-byte-address EEPROM is attached, the FX2 reports its
results in the ID1 and ID0 bits, as shown in Table 13-12.

Additional EEPROM devices (with slave address of 1010) can be attached to the I ²C-compatible
bus for general-purpose use, as long as they are strapped for device addresses other than 000 or
001.

The 24LC00 EEPROM is a special case, because it responds to all eight device addresses. If a
24LC00 is used for boot loading, no other EEPROMS with device address 1010 may be used.

Table 13-12. Results of Power-On-Reset EEPROM Test

ID1 ID0 Meaning

0 0 No EEPROM detected

0 1 One-byte-address load EEPROM detected

1 0 Two-byte-address load EEPROM detected

1 1 Not used

Exhibit 2058 - Page 292 of 460

Chapter 14. Timers/Counters and Serial Interface Page 14-1

Chapter 14 Timers/Counters and Serial Interface

14.1 Introduction

The FX2’s timer/counters and serial interface are very similar to the standard 8051’s, with some dif-
ferences and enhancements. This chapter provides technical information on configuring and using
the timer/counters and serial interface.

14.2 Timers/Counters

The FX2 includes three timer/counters (Timer 0, Timer 1, and Timer 2). Each timer/counter can
operate either as a timer with a clock rate based on the FX2’s internal clock (CLKOUT) or as an
event counter clocked by the T0 pin (Timer 0), T1 pin (Timer 1), or the T2 pin (Timer 2). Timers 1
and 2 may be used for baud clock generation for the serial interface (see Section 14.3 for details of
the serial interface).

The FX2 can be configured to operate at 12, 24, or 48 MHz. In “timer” mode, the timer/counters run
at the same speed as the FX2, and they are not affected by the CLKOE and CLKINV configuration
bits (CPUCS.1 and CPUCS.2).

Each timer/counter consists of a 16-bit register that is accessible to software as two SFRs:

• Timer 0 — TH0 and TL0

• Timer 1 — TH1 and TL1

• Timer 2 — TH2 and TL2

Exhibit 2058 - Page 293 of 460

EZ-USB FX2 Technical Reference Manual

Page 14-2 EZ-USB FX2 Technical Reference Manual v2.1

14.2.1 803x/805x Compatibility

The implementation of the timers/counters is similar to that of the Dallas Semiconductor
DS80C320. Table 14-1 summarizes the differences in timer/counter implementation between the
Intel 8051, the Dallas Semiconductor DS80C320, and the FX2.

14.2.2 Timers 0 and 1

Timers 0 and 1 operate in four modes, as controlled through the TMOD SFR (Tabl e14-2) and the
TCON SFR (Table 14-3). The four modes are:

• 13-bit timer/counter (mode 0)

• 16-bit timer/counter (mode 1)

• 8-bit counter with auto-reload (mode 2)

• Two 8-bit counters (mode 3, Timer 0 only)

Table 14-1. Timer/Counter Implementation Comparison

Feature Intel 8051 Dallas DS80C320 FX2

Number of timers 2 3 3

Timer 0/1 overflow
available as output signals

No No Yes; T0OUT, T1OUT
(one CLKOUT pulse)

Timer 2 output enable n/a Yes Yes

Timer 2 down-count enable n/a Yes No

Timer 2 overflow
available as output signal

n/a Yes Yes; T2OUT (one CLKOUT
pulse)

Exhibit 2058 - Page 294 of 460

Chapter 14. Timers/Counters and Serial Interface Page 14-3

14.2.2.1 Mode 0, 13-Bit Timer/Counter — Timer 0 and Timer 1

Mode 0 operation is illustrated in Figure 14-1.

In mode 0, the timer is configured as a 13-bit counter that uses bits 0-4 of TL0 (or TL1) and all 8
bits of TH0 (or TH1). The timer enable bit (TR0/TR1) in the TCON SFR starts the timer. The C/T Bit
selects the timer/counter clock source: either CLKOUT or the T0/T1 pins.

The timer counts transitions from the selected source as long as the GATE Bit is 0, or the GATE Bit
is 1 and the corresponding interrupt pin (INT0 or INT1) is 1.

When the 13-bit count increments from 0x1FFF (all ones), the counter rolls over to all zeros, the
TF0 (or TF1) Bit is set in the TCON SFR, and the T0OUT (or T1OUT) pin goes high for one clock
cycle.

The upper 3 bits of TL0 (or TL1) are indeterminate in mode 0 and should be ignored.

Figure 14-1. Timer 0/1 - Modes 0 and 1

14.2.2.2 Mode 1, 16-Bit Timer/Counter — Timer 0 and Timer 1

In mode 1, the timer is configured as a 16-bit counter. As illustrated in Figure 14-1, all 8 bits of the
LSB Register (TL0 or TL1) are used. The counter rolls over to all zeros when the count increments
from 0xFFFF. Otherwise, mode 1 operation is the same as mode 0.

TL0 (or TL1)
0 74

Divide by 12

Divide by 4

CLKOUT

T0 (or T1) pin

TR0 (or TR1)

GATE

INT0 (or
INT1) pin

70

TF0 (or TF1) INT

TH0 (or TH1)

T0M (or T1M)

Mode 0

Mode 1

0

1 0

1

To Serial Port
(Timer 1 only)

CLK

C/ T

Exhibit 2058 - Page 295 of 460

EZ-USB FX2 Technical Reference Manual

Page 14-4 EZ-USB FX2 Technical Reference Manual v2.1

Table 14-2. TMOD Register — SFR 0x89

Bit Function

TMOD.7 GATE1 - Timer 1 gate control. When GATE1 = 1, Timer 1 will clock only when INT1 = 1 and
TR1 (TCON.6) = 1. When GATE1 = 0, Timer 1 will clock only when TR1 = 1, regardless of
the state of INT1.

TMOD.6 C/T1 - Counter/Timer select. When C/T1 = 0, Timer 1 is clocked by CLKOUT/4 or CLKOUT/
12, depending on the state of T1M (CKCON.4). When C/T1 = 1, Timer 1 is clocked by high-
to-low transitions on the T1 pin.

TMOD.5 M1 - Timer 1 mode select bit 1.

TMOD.4 M0 - Timer 1 mode select bit 0.

M1 M0 Mode
0 0 Mode 0 : 13-bit counter
0 1 Mode 1 : 16-bit counter
1 0 Mode 2 : 8-bit counter with auto-reload
1 1 Mode 3 : Timer 1 stopped

TMOD.3 GATE0 - Timer 0 gate control, When GATE0 = 1, Timer 0 will clock only when INT0 = 1 and
TR0 (TCON.4) = 1. When GATE0 = 0, Timer 0 will clock only when TR0 = 1, regardless of
the state of INT0.

TMOD.2 C/T0 - Counter/Timer select. When C/T0 = 0, Timer 0 is clocked by CLKOUT/4 or CLKOUT/
12, depending on the state of T0M (CKCON.3). When C/T0 = 1, Timer 0 is clocked by high-
to-low transitions on the T0 pin.

TMOD.1 M1 - Timer 0 mode select bit 1.

TMOD.0 M0 - Timer 0 mode select bit 0.

M1 M0 Mode
0 0 Mode 0 : 13-bit counter
0 1 Mode 1 : 16-bit counter
1 0 Mode 2 : 8-bit counter with auto-reload
1 1 Mode 3 : Two 8-bit counters

Exhibit 2058 - Page 296 of 460

Chapter 14. Timers/Counters and Serial Interface Page 14-5

14.2.2.3 Mode 2, 8-Bit Counter with Auto-Reload — Timer 0 and Timer 1

In mode 2, the timer is configured as an 8-bit counter, with automatic reload of the start value on
overflow. TL0 (or TL1) is the counter, and TH0 (or TH1) stores the reload value.

As illustrated in Figure 14-2, mode 2 counter control is the same as for mode 0 and mode 1. When
TL0/1 increments from 0xFF, the value stored in TH0/1 is reloaded into TL0/1.

Table 14-3. TCON Register — SRF 0x88

Bit Function

TCON.7 TF1 - Timer 1 overflow flag. Set to 1 when the Timer 1 count overflows; automatically
cleared when the FX2 vectors to the interrupt service routine.

TCON.6 TR1 - Timer 1 run control. 1 = Enable counting on Timer 1.

TCON.5 TF0 - Timer 0 overflow flag. Set to 1 when the Timer 0 count overflows; automatically
cleared when the FX2 vectors to the interrupt service routine.

TCON.4 TR0 - Timer 0 run control. 1 = Enable counting on Timer 0.

TCON.3 IE1 - Interrupt 1 edge detect. If external interrupt 1 is configured to be edge-sensitive
(IT1 = 1), IE1 is set when a negative edge is detected on the INT1 pin and is automat-
ically cleared when the FX2 vectors to the corresponding interrupt service routine. In
this case, IE1 can also be cleared by software. If external interrupt 1 is configured to
be level-sensitive (IT1 = 0), IE1 is set when the INT1 pin is 0 and automatically
cleared when the INT1 pin is 1. In level-sensitive mode, software cannot write to IE1.

TCON.2 IT1 - Interrupt 1 type select. INT1 is detected on falling edge when IT1 = 1; INT1 is
detected as a low level when IT1 = 0.

TCON.1 IE0 - Interrupt 0 edge detect. If external interrupt 0 is configured to be edge-sensitive
(IT0 = 1), IE0 is set when a negative edge is detected on the INT0 pin and is automat-
ically cleared when the FX2 vectors to the corresponding interrupt service routine. In
this case, IE0 can also be cleared by software. If external interrupt 0 is configured to
be level-sensitive (IT0 = 0), IE0 is set when the INT0 pin is 0 and automatically
cleared when the INT0 pin is 1. In level-sensitive mode, software cannot write to IE0.

TCON.0 IT0 - Interrupt 0 type select. INT0 is detected on falling edge when IT0 = 1; INT0 is
detected as a low level when IT0 = 0.

Exhibit 2058 - Page 297 of 460

EZ-USB FX2 Technical Reference Manual

Page 14-6 EZ-USB FX2 Technical Reference Manual v2.1

Figure 14-2. Timer 0/1 - Mode 2

14.2.2.4 Mode 3, Two 8-Bit Counters — Timer 0 Only

In mode 3, Timer 0 operates as two 8-bit counters. Selecting mode 3 for Timer 1 simply stops
Timer 1.

As shown in Figur e14-3, TL0 is configured as an 8-bit counter controlled by the normal Timer 0
control bits. TL0 can either count CLKOUT cycles (divided by 4 or by 12) or high-to-low transitions
on the T0 pin, as determined by the C/T Bit. The GATE function can be used to give counter
enable control to the INT0 pin.

TH0 functions as an independent 8-bit counter. However, TH0 can only count CLKOUT cycles
(divided by 4 or by 12). The Timer 1 control and flag bits (TR1 and TF1) are used as the control
and flag bits for TH0.

When Timer 0 is in mode 3, Timer 1 has limited usage because Timer 0 uses the Timer 1 control
bit (TR1) and interrupt flag (TF1). Timer 1 can still be used for baud rate generation and the Timer
1 count values are still available in the TL1 and TH1 Registers.

Control of Timer 1 when Timer 0 is in mode 3 is through the Timer 1 mode bits. To turn Timer 1 on,
set Timer 1 to mode 0, 1, or 2. To turn Timer 1 off, set it to mode 3. The Timer 1 C/T Bit and T1M
Bit are still available to Timer 1. Therefore, Timer 1 can count CLKOUT/4, CLKOUT/12, or high-to-
low transitions on the T1 pin. The Timer 1 GATE function is also available when Timer 0 is in
mode 3.

TL0 (or TL1)
0 7

Divide by 12

Divide by 4

T0 (or T1) pin

TR0 (or TR1)

GATE

INT0 (or
INT1) pin

70

TF0 (or TF1)

TH0 (or TH1)

T0M (or T1M)

RELOAD

INT

0

1 0

1

To Serial Port
(Timer 1 only)

CLKOUT

CLK

C/ T

Exhibit 2058 - Page 298 of 460

Chapter 14. Timers/Counters and Serial Interface Page 14-7

Figure 14-3. Timer 0 - Mode 3

14.2.3 Timer Rate Control

By default, the FX2 timers increment every 12 CLKOUT cycles, just as in the standard 8051. Using
this default rate allows existing application code with real-time dependencies, such as baud rate, to
operate properly.

Applications that require fast timing can set the timers to increment every 4 CLKOUT cycles
instead, by setting bits in the Clock Control Register (CKCON) at SFR location 0x8E. (See
Table 14-4).

Each timer’s rate can be set independently. These settings have no effect in counter mode.

Table 14-4. CKCON (SFR 0x8E) Timer Rate Control Bits

Bit Function

CKCON.5 T2M - Timer 2 clock select. When T2M = 0, Timer 2 uses CLKOUT/12 (for
compatibility with standard 8051); when T2M = 1, Timer 2 uses CLKOUT/4.
This bit has no effect when Timer 2 is configured for baud rate generation.

CKCON.4 T1M - Timer 1 clock select. When T1M = 0, Timer 1 uses CLKOUT/12 (for
compatibility with standard 8051); when T1M = 1, Timer 1 uses CLKOUT/4.

CKCON.3 T0M - Timer 0 clock select. When T0M = 0, Timer 0 uses CLKOUT/12 (for
compatibility with standard 8051); when T0M = 1, Timer 0 uses CLKOUT/4.

TL00 7

Divide by 12

Divide by 4

T0 pin

TR0

GATE

INT0 pin 70

TF0

TH0

T0M

INT

TR1

TF1 INT

0

1 0

1

CLKOUT CLK
C/ T

Exhibit 2058 - Page 299 of 460

EZ-USB FX2 Technical Reference Manual

Page 14-8 EZ-USB FX2 Technical Reference Manual v2.1

14.2.4 Timer 2

Timer 2 runs only in 16-bit mode and offers several capabilities not available with Timers 0 and 1.
The modes available for Timer 2 are:

• 16-bit timer/counter

• 16-bit timer with capture

• 16-bit timer/counter with auto-reload

• Baud rate generator

The SFRs associated with Timer 2 are:

• T2CON (SFR 0xC8) — Timer/Counter 2 Control register, (see Table 14-5).

• RCAP2L (SFR 0xCA) — Used to capture the TL2 value when Timer 2 is configured for
capture mode, or as the LSB of the 16-bit reload value when Timer 2 is configured for
auto-reload mode.

• RCAP2H (SFR 0xCB) — Used to capture the TH2 value when Timer 2 is configured for
capture mode, or as the MSB of the 16-bit reload value when Timer 2 is configured for
auto-reload mode.

• TL2 (SFR 0xCC) — Lower 8 bits of the 16-bit count.

• TH2 (SFR 0xCD) — Upper 8 bits of the 16-bit count.

Exhibit 2058 - Page 300 of 460

Chapter 14. Timers/Counters and Serial Interface Page 14-9

14.2.4.1 Timer 2 Mode Control

Table 14-6 summarizes how the T2CON bits determine the Timer 2 mode.

Table 14-5. T2CON Register — SFR 0xC8

Bit Function

T2CON.7 TF2 - Timer 2 overflow flag. Hardware will set TF2 when the Timer 2 overflows from 0xFFFF.
TF2 must be cleared to 0 by the software. TF2 will only be set to a 1 if RCLK and TCLK are
both cleared to 0. Writing a 1 to TF2 forces a Timer 2 interrupt if enabled.

T2CON.6 EXF2 - Timer 2 external flag. Hardware will set EXF2 when a reload or capture is caused by
a high-to-low transition on the T2EX pin, and EXEN2 is set. EXF2 must be cleared to 0 by
software. Writing a 1 to EXF2 forces a Timer 2 interrupt if enabled.

T2CON.5 RCLK - Receive clock flag. Determines whether Timer 1 or Timer 2 is used for Serial Port 0
timing of received data in serial mode 1 or 3. RCLK=1 selects Timer 2 overflow as the
receive clock; RCLK=0 selects Timer 1 overflow as the receive clock.

T2CON.4 TCLK - Transmit clock flag. Determines whether Timer 1 or Timer 2 is used for Serial Port 0
timing of transmit data in serial mode 1 or 3. TCLK=1 selects Timer 2 overflow as the trans-
mit clock; TCLK=0 selects Timer 1 overflow as the transmit clock.

T2CON.3 EXEN2 - Timer 2 external enable. EXEN2=1 enables capture or reload to occur as a result of
a high-to-low transition on the T2EX pin, if Timer 2 is not generating baud rates for the serial
port. EXEN2=0 causes Timer 2 to ignore all external events on the T2EX pin.

T2CON.2 TR2 - Timer 2 run control flag. TR2=1 starts Timer 2; TR2=0 stops Timer 2.

T2CON.1 C/T2 - Counter/Timer select. When C/T2 = 1, Timer 2 is clocked by high-to-low transitions on
the T2 pin.When C/T2 = 0 in modes 0, 1, or 2, Timer 2 is clocked by CLKOUT/4 or CLKOUT/
12, depending on the state of T2M (CKCON.5). When C/T2 = 0 in mode 3, Timer 2 is
clocked by CLKOUT/2, regardless of the state of CKCON.5.

T2CON.0 CP/RL2 - Capture/reload flag. When CP/RL2=1, Timer 2 captures occur on high-to-low tran-
sitions of the T2EX pin, if EXEN2 = 1. When CP/RL2 = 0, auto-reloads occur when Timer 2
overflows or when high-to-low transitions occur on the T2EX pin, if EXEN2 = 1. If either
RCLK or TCLK is set to 1, CP/RL2 will not function and Timer 2 will operate in auto-reload
mode following each overflow.

Table 14-6. Timer 2 Mode Control Summary

TR2 TCLK RCLK CP/RL2 Mode

0 X X X Timer 2 stopped

1 1 X X Baud rate generator

1 X 1 X Baud rate generator

1 0 0 0 16-bit timer/counter with auto-reload

1 0 0 1 16-bit timer/counter with capture

X = Don’t care

Exhibit 2058 - Page 301 of 460

EZ-USB FX2 Technical Reference Manual

Page 14-10 EZ-USB FX2 Technical Reference Manual v2.1

14.2.5 Timer 2 — 16-Bit Timer/Counter Mode

Figure 14-4 illustrates how Timer 2 operates in timer/counter mode with the optional capture fea-
ture. The C/T2 Bit determines whether the 16-bit counter counts CLKOUT cycles (divided by 4 or
12), or high-to-low transitions on the T2 pin. The TR2 Bit enables the counter. When the count
increments from 0xFFFF, the TF2 flag is set and the T2OUT pin goes high for one CLKOUT cycle.

14.2.5.1 Timer 2 — 16-Bit Timer/Counter Mode with Capture

The Timer 2 capture mode (Figure 14-4) is the same as the 16-bit timer/counter mode, with the
addition of the capture registers and control signals.

The CP/RL2 Bit in the T2CON SFR enables the capture feature. When CP/RL2 = 1, a high-to-low
transition on the T2EX pin when EXEN2 = 1 causes the Timer 2 value to be loaded into the cap-
ture registers RCAP2L and RCAP2H.

Figure 14-4. Timer 2 - Timer/Counter with Capture

14.2.6 Timer 2 — 16-Bit Timer/Counter Mode with Auto-Reload

When CP/RL2 = 0, Timer 2 is configured for the auto-reload mode illustrated in Figur e14-5. Con-
trol of counter input is the same as for the other 16-bit counter modes. When the count increments
from 0xFFFF, Timer 2 sets the TF2 flag and the starting value is reloaded into TL2 and TH2. Soft-
ware must preload the starting value into the RCAP2L and RCAP2H registers.

When Timer 2 is in auto-reload mode, a reload can be forced by a high-to-low transition on the
T2EX pin, if enabled by EXEN2 = 1.

0 7

Divide by 12

Divide by 4

CLKOUT

T2 pin

TR2

CLK

70

EXF2

T2M

INT

RCAP2L

TL2 TH2

RCAP2H

8 15

8 15

EXEN2

T2EX pin

CAPTURE
TF2

0

1 0

1

C/ T2

CP/RL2 = 1

Exhibit 2058 - Page 302 of 460

Chapter 14. Timers/Counters and Serial Interface Page 14-11

Figure 14-5. Timer 2 - Timer/Counter with Auto Reload

14.2.7 Timer 2 — Baud Rate Generator Mode

Setting either RCLK or TCLK to 1 configures Timer 2 to generate baud rates for Serial Port 0 in
serial mode 1 or 3. Figure 14-6 is the functional diagram for the Timer 2 baud rate generator mode.
In baud rate generator mode, Timer 2 functions in auto-reload mode. However, instead of setting
the TF2 flag, the counter overflow is used to generate a shift clock for the serial port function. As in
normal auto-reload mode, the overflow also causes the pre-loaded start value in the RCAP2L and
RCAP2H Registers to be reloaded into the TL2 and TH2 Registers.

When either TCLK = 1 or RCLK = 1, Timer 2 is forced into auto-reload operation, regardless of the
state of the CP/RL2 Bit. Timer 2 is used as the receive baud clock source when RCLK=1, and as
the transmit baud clock source when TCLK=1.

When operating as a baud rate generator, Timer 2 does not set the TF2 Bit. In this mode, a Timer
2 interrupt can only be generated by a high-to-low transition on the T2EX pin setting the EXF2 Bit,
and only if enabled by EXEN2 = 1.

The counter time base in baud rate generator mode is CLKOUT/2. To use an external clock
source, set C/T2 to 1 and apply the desired clock source to the T2 pin.

The maximum frequency for an external clock source on the T2 pin is 3 MHz.

0 7

Divide by 12

Divide by 4

CLKOUT

T2 pin

TR2

CLK

70

EXF2

T2M

INT

RCAP2L

TL2 TH2

RCAP2H

8 15

8 15

EXEN2

T2EX pin

TF2

0

1 0

1

C/ T2

CP/RL2 = 0

Exhibit 2058 - Page 303 of 460

EZ-USB FX2 Technical Reference Manual

Page 14-12 EZ-USB FX2 Technical Reference Manual v2.1

Figure 14-6. Timer 2 - Baud Rate Generator Mode

14.3 Serial Interface

The FX2 provides two serial ports. Serial Port 0 operates almost exactly as a standard 8051 serial
port; depending on the configured mode (see Table 14-7), its baud-clock source can be CLKOUT/
4 or CLKOUT/12, Timer 1, Timer 2, or the High-Speed Baud Rate Generator (see Section 14.3.2).
Serial Port 1 is identical to Serial Port 0, except that it cannot use Timer 2 as its baud rate genera-
tor.

Each serial port can operate in synchronous or asynchronous mode. In synchronous mode, the
FX2 generates the serial clock and the serial port operates in half-duplex mode. In asynchronous
mode, the serial port operates in full-duplex mode. In all modes, the FX2 double-buffers the incom-
ing data so that a byte of incoming data can be received while firmware is reading the previously-
received byte.

Each serial port can operate in one of four modes, as outlined in Tabl e14-7.

Divide
by 2

T2 pin

TR2

0

1

CLK

CLKOUT
C/ T2

Divide
by 16

Divide
by 16

RX
CLOCK

TX
CLOCK

TCLK

0

0

1

Divide
by 2

01

1

TL2 TH2

EXF2 TIMER 2 INTERRUPT

EXEN2

T2EX pin

TIMER 1 OVERFLOW

0 7

70

RCAP2L RCAP2H

8 15

8 15

SMOD0

RCLK

Exhibit 2058 - Page 304 of 460

Chapter 14. Timers/Counters and Serial Interface Page 14-13

The registers associated with the serial ports are as follows. (Registers PCON and EICON also
include some functionality which is not part of the Serial Interface).

• PCON (SFR 0x87) — Bit 7, Serial Port 0 rate control SMOD0 (Table 14-13).

• SCON0 (SFR 0x98) — Serial Port 0 control (Table 14-11).

• SBUF0 (SFR 0x99) — Serial Port 0 transmit/receive buffer.

• EICON (SFR 0xD8) — Bit 7, Serial Port 1 rate control SMOD1 (Table 14-12).

• SCON1 (SFR 0xC0) — Serial Port 1 control (Table 14-14).

• SBUF1 (SFR 0xC1) — Serial Port 1 transmit/receive buffer.

• T2CON (SFR 0xC8) — Baud clock source for modes 1 and 3 (RCLK and TCLK in
Table 14-5).

• UART230 (0xE608) — High-Speed Baud Rate Generator enable (see Section 14.3.2,
"High-Speed Baud Rate Generator").

14.3.1 803x/805x Compatibility

The implementation of the serial interface is similar to that of the Dallas Semiconductor,
DS80C320. Table 14-8 summarizes the differences in serial interface implementation between the
Intel 8051, the Dallas Semiconductor DS80C320, and the FX2.

Table 14-7. Serial Port Modes

Mode
Sync /
Async

Baud-Clock Source
Data
Bits

Start /
Stop

9th Bit
Function

0 Sync CLKOUT/4 or CLKOUT/12 8 None None

1 Async Timer 1 (Ports 0 and 1),
Timer 2 (Port 0 only), or
High-Speed Baud Rate Generator (Ports 0 and 1)

8 1 start, 1 stop None

2 Async CLKOUT/32 or CLKOUT/64 9 1 start, 1 stop 0, 1, or parity

3 Async Timer 1 (Ports 0 and 1),
Timer 2 (Port 0 only), or
High-Speed Baud Rate Generator (Ports 0 and 1)

9 1 start, 1 stop 0, 1, or parity

 Note: The High-Speed Baud Rate Generator provides 115.2K or 230.4K baud rates (see Section 14.3.2).

Table 14-8. Serial Interface Implementation Comparison

Feature Intel 8051 Dallas DS80C320 FX2

Number of serial ports 1 2 2

Framing error detection not implemented implemented not implemented

Slave address comparison for
multiprocessor communication

not implemented implemented not implemented

Exhibit 2058 - Page 305 of 460

EZ-USB FX2 Technical Reference Manual

Page 14-14 EZ-USB FX2 Technical Reference Manual v2.1

14.3.2 High-Speed Baud Rate Generator

The FX2 incorporates a high-speed baud rate generator which can provide 115.2K and 230.4K
baud rates for either or both serial ports, regardless of the FX2’s internal clock frequency (12, 24,
or 48 MHz).

The high-speed baud rate generator is enabled for Serial Port 0 by setting UART230.0 to 1; it’s
enabled for Serial Port 1 by setting UART230.1 to 1.

When enabled, the high-speed baud rate generator defaults to 115.2K baud. To select 230.4K
baud for Serial Port 0, set SMOD0 (PCON.7) to 1; for Serial Port 1, set SMOD1 (EICON.7) to 1.

When the High-Speed Baud Rate Generator is enabled for either serial port, neither port may use
Timer 1 as its baud-clock source. Therefore, the allowable combinations of baud-clock sources for
Modes 1 and 3 are:

Table 14-9. UART230 Register — Address 0xE608

Bit Function

UART230.7:2 Reserved

UART230.1 230UART1 - Enable high-speed baud rate generator for serial port 1. When 230UART1
= 1, a 115.2K baud (if SMOD1 = 0) or 230.4K baud (if SMOD1 = 1) clock is provided to
serial port 1. When 230UART1 = 0, serial port 1’s baud clock is provided by one of the
sources shown in Tabl e14-7.

UART230.0 230UART0 - Enable high-speed baud rate generator for serial port 0. When 230UART0
= 1, a 115.2K baud (if SMOD0 = 0) or 230.4K baud (if SMOD0 = 1) clock is provided to
serial port 0. When 230UART1 = 0, serial port 0’s baud clock is provided by one of the
sources shown in Tabl e14-7.

Table 14-10. Allowable Baud-Clock Combinations for Modes 1 and 3

Port 0 Port 1

Timer 1 Timer 1

Timer 2 Timer 1

Timer 2 High-Speed Baud Rate Generator

High-Speed Baud Rate Generator High-Speed Baud Rate Generator

Exhibit 2058 - Page 306 of 460

Chapter 14. Timers/Counters and Serial Interface Page 14-15

14.3.3 Mode 0

Serial mode 0 provides synchronous, half-duplex serial communication. For Serial Port 0, serial
data output occurs on the RXD0OUT pin, serial data is received on the RXD0 pin, and the TXD0
pin provides the shift clock for both transmit and receive. For Serial Port 1, the corresponding pins
are RXD1OUT, RXD1, and TXD1.

The serial mode 0 baud rate is either CLKOUT/12 or CLKOUT/4, depending on the state of the
SM2_0 bit (or SM2_1 for Serial Port 1). When SM2_0 = 0, the baud rate is CLKOUT/12, when
SM2_0 = 1, the baud rate is CLKOUT/4.

Mode 0 operation is identical to the standard 8051. Data transmission begins when an instruction
writes to the SBUF0 (or SBUF1) SFR. The USART shifts the data, LSB first, at the selected baud
rate, until the 8-bit value has been shifted out.

Mode 0 data reception begins when the REN_0 (or REN_1) bit is set and the RI_0 (or RI_1) bit is
cleared in the corresponding SCON SFR. The shift clock is activated and the USART shifts data,
LSB first, in on each rising edge of the shift clock until 8 bits have been received. One CLKOUT
cycle after the 8th bit is shifted in, the RI_0 (or RI_1) bit is set and reception stops until the software
clears the RI bit.

Figure 14-7 through Figure 14-10 illustrate Serial Port Mode 0 transmit and receive timing for both
low-speed (CLKOUT/12) and high-speed (CLKOUT/4) operation. The figures show Port 0 signal
names, RXD0, RXD0OUT, and TXD0. The timing is the same for Port 1 signals RXD1, RXD1OUT,
and TXD1, respectively.

Exhibit 2058 - Page 307 of 460

EZ-USB FX2 Technical Reference Manual

Page 14-16 EZ-USB FX2 Technical Reference Manual v2.1

Table 14-11. SCON0 Register — SFR 98h

Bit Function

SCON0.7 SM0_0 - Serial Port 0 mode bit 0.

SCON0.6 SM1_0 - Serial Port 0 mode bit 1, decoded as:
SM0_0 SM1_0 Mode

0 0 0

0 1 1

1 0 2

1 1 3

SCON0.5 SM2_0 - Multiprocessor communication enable. In modes 2 and 3, this bit enables the mul-
tiprocessor communication feature. If SM2_0 = 1 in mode 2 or 3, then RI_0 will not be acti-
vated if the received 9th bit is 0.

If SM2_0=1 in mode 1, then RI_0 will only be activated if a valid stop is received. In mode
0, SM2_0 establishes the baud rate: when SM2_0=0, the baud rate is CLKOUT/12; when
SM2_0=1, the baud rate is CLKOUT/4.

SCON0.4 REN_0 - Receive enable. When REN_0=1, reception is enabled.

SCON0.3 TB8_0 - Defines the state of the 9th data bit transmitted in modes 2 and 3.

SCON0.2 RB8_0 - In modes 2 and 3, RB8_0 indicates the state of the 9th bit received. In mode 1,
RB8_0 indicates the state of the received stop bit. In mode 0, RB8_0 is not used.

SCON0.1 TI_0 - Transmit interrupt flag. Indicates that the transmit data word has been shifted out. In
mode 0, TI_0 is set at the end of the 8th data bit. In all other modes, TI_0 is set when the
stop bit is placed on the TXD0 pin. TI_0 must be cleared by firmware.

SCON0.0 RI_0 - Receive interrupt flag. Indicates that serial data word has been received. In mode 0,
RI_0 is set at the end of the 8th data bit. In mode 1, RI_0 is set after the last sample of the
incoming stop bit, subject to the state of SM2_0. In modes 2 and 3, RI_0 is set at the end of
the last sample of RB8_0. RI_0 must be cleared by firmware.

Table 14-12. EICON (SFR 0xD8) SMOD1 Bit

Bit Function

EICON.7 SMOD1 - Serial Port 1 baud rate doubler enable. When SMOD1 = 1 the baud rate for Serial
Port is doubled.

Table 14-13. PCON (SFR 0x87) SMOD0 Bit

Bit Function

PCON.7 SMOD0 - Serial Port 0 baud rate double enable. When SMOD0 = 1, the baud rate for Serial
Port 0 is doubled.

Exhibit 2058 - Page 308 of 460

Chapter 14. Timers/Counters and Serial Interface Page 14-17

Table 14-14. SCON1 Register — SFR C0h

Bit Function

SCON1.7 SM0_1 - Serial Port 1 mode bit 0.

SCON1.6 SM1_1 - Serial Port 1 mode bit 1, decoded as:
SM0_1 SM1_1 Mode

0 0 0

0 1 1

1 0 2

1 1 3

SCON1.5 SM2_1 - Multiprocessor communication enable. In modes 2 and 3, this bit enables the
multiprocessor communication feature. If SM2_1 = 1 in mode 2 or 3, then RI_1 will not be
activated if the received 9th bit is 0.

If SM2_1=1 in mode 1, then RI_1 will only be activated if a valid stop is received. In mode
0, SM2_1 establishes the baud rate: when SM2_1=0, the baud rate is CLKOUT/12; when
SM2_1=1, the baud rate is CLKOUT/4.

SCON1.4 REN_1 - Receive enable. When REN_1=1, reception is enabled.

SCON1.3 TB8_1 - Defines the state of the 9th data bit transmitted in modes 2 and 3.

SCON1.2 RB8_1 - In modes 2 and 3, RB8_1 indicates the state of the 9th bit received. In mode 1,
RB8_1 indicates the state of the received stop bit. In mode 0, RB8_1 is not used.

SCON1.1 TI_1 - Transmit interrupt flag. Indicates that the transmit data word has been shifted out. In
mode 0, TI_1 is set at the end of the 8th data bit. In all other modes, TI_1 is set when the
stop bit is placed on the TXD1 pin. TI_1 must be cleared by the software.

SCON1.0 RI_1 - Receive interrupt flag. Indicates that serial data word has been received. In mode 0,
RI_1 is set at the end of the 8th data bit. In mode 1, RI_1 is set after the last sample of the
incoming stop bit, subject to the state of SM2_1. In modes 2 and 3, RI_1 is set at the end
of the last sample of RB8_1. RI_1 must be cleared by the software.

Exhibit 2058 - Page 309 of 460

EZ-USB FX2 Technical Reference Manual

Page 14-18 EZ-USB FX2 Technical Reference Manual v2.1

Figure 14-7. Serial Port Mode 0 Receive Timing - Low Speed Operation

Figure 14-8. Serial Port Mode 0 Receive Timing - High Speed Operation

At both low and high speed in Mode 0, data on RXD0 is sampled two CLKOUT cycles before the
rising clock edge on TXD0.

CLKOUT

D0 D1 D2 D3 D4 D5 D6 D7

RI

TXD0

RXD0

RXD0OUT

TI

D0 D1 D2 D3 D4 D5 D6 D7

CLKOUT

RI

TXD0

RXD0

RXD0OUT

TI

Exhibit 2058 - Page 310 of 460

Chapter 14. Timers/Counters and Serial Interface Page 14-19

Figure 14-9. Serial Port Mode 0 Transmit Timing - Low Speed Operation

Figure 14-10. Serial Port Mode 0 Transmit Timing - High Speed Operation

CLKOUT

RI

TXD0

RXD0

RXD0OUT

TI

D0 D1 D2 D3 D4 D5 D6 D7

D0 D1 D2 D3 D4 D5 D6 D7

CLKOUT

RI

TXD0

RXD0

RXD0OUT

TI

Exhibit 2058 - Page 311 of 460

EZ-USB FX2 Technical Reference Manual

Page 14-20 EZ-USB FX2 Technical Reference Manual v2.1

14.3.4 Mode 1

Mode 1 provides standard asynchronous, full-duplex communication, using a total of 10 bits: 1
start bit, 8 data bits, and 1 stop bit. For receive operations, the stop bit is stored in RB8_0 (or
RB8_1). Data bits are received and transmitted LSB first.

Mode 1 operation is identical to that of the standard 8051 when Timer 1 uses CLKOUT/12,
(T1M=0, the default).

14.3.4.1 Mode 1 Baud Rate

The mode 1 baud rate is a function of timer overflow. Serial Port 0 can use either Timer 1 or Timer
2 to generate baud rates. Serial Port 1 can only use Timer 1. The two serial ports can run at the
same baud rate if they both use Timer 1, or different baud rates if Serial Port 0 uses Timer 2 and
Serial Port 1 uses Timer 1.

Each time the timer increments from its maximum count (0xFF for Timer 1 or 0xFFFF for Timer 2),
a clock is sent to the baud rate circuit. That clock is then divided by 16 to generate the baud rate.

When using Timer 1, the SMOD0 (or SMOD1) Bit selects whether or not to divide the Timer 1 roll-
over rate by 2. Therefore, when using Timer 1, the baud rate is determined by the equation:

When using Timer 2, the baud rate is determined by the equation:

To use Timer 1 as the baud rate generator, it is generally best to use Timer 1 mode 2 (8-bit counter
with auto-reload), although any counter mode can be used. In mode 2, the Timer 1 reload value is
stored in the TH1 register, which makes the complete formula for Timer 1:

To derive the required TH1 value from a known baud rate when T1M=0, use the equation:

× Timer 1 OverflowBaud Rate =
32

2
SMODx

Timer 2 Overflow
Baud Rate =

16

×Baud Rate =
32

2
SMODx

(12 - 8 × T1M) × (256 - TH1)

CLKOUT

×
TH1 =

2
SMODx

CLKOUT

384 × Baud Rate
256 -

Exhibit 2058 - Page 312 of 460

Chapter 14. Timers/Counters and Serial Interface Page 14-21

To derive the required TH1 value from a known baud rate when T1M=1, use the equation:

Very low serial port baud rates may be achieved with Timer 1 by enabling the Timer 1 interrupt,
configuring Timer 1 to mode 1, and using the Timer 1 interrupt to initiate a 16-bit software reload.

Table 14-15 lists sample reload values for a variety of common serial port baud rates, using Timer
1 operating in mode 2 (TMOD.5:4=10) with a CLKOUT/4 clock source (T1M=1) and the full timer
rollover (SMOD1=1).

More accurate baud rates may be achieved by using Timer 2 as the baud rate generator. To use
Timer 2 as the baud rate generator, configure Timer 2 in auto-reload mode and set the TCLK and/
or RCLK bits in the T2CON SFR. TCLK selects Timer 2 as the baud rate generator for the trans-
mitter; RCLK selects Timer 2 as the baud rate generator for the receiver. The 16-bit reload value
for Timer 2 is stored in the RCAP2L and RCA2H SFRs, which makes the equation for the Timer 2
baud rate:

Table 14-15. Timer 1 Reload Values for Common Serial Port Mode 1 Baud Rates

Nominal
Rate

CLKOUT = 12 MHz CLKOUT = 24 MHz CLKOUT = 48 MHz

TH1
Reload
Value

Actual
Rate

Error
TH1

Reload
Value

Actual
Rate

Error
TH1

Reload
Value

Actual
Rate

Error

57600 FD 62500 +8.50% F9 53571 -6.99% F3 57692 +0.16%

38400 FB 37500 -2.34% F6 37500 -2.34% EC 37500 -2.34%

28800 F9 26786 -6.99% F3 28846 +0.16% E6 28846 +0.16%

19200 F6 18750 -2.34% EC 18750 -2.34% D9 19230 +0.16%

9600 EC 9375 -2.34% D9 9615 +0.16% B2 9615 +0.16%

4800 D9 4807 +0.16% B2 4807 +0.16% 64 4807 +0.16%

2400 B2 2403 +0.16% 64 2403 +0.16% — — —

Settings: SMOD=1, C/T=0, Timer1 Mode=2, T1M=1
Note: Using rates that are off by 2% or more will not work in all systems.

x
TH1 =

2
SMODx

CLKOUT

128 x Baud Rate
256 -

Baud Rate =
32 × (65536 - 256×RCAP2H + RCAP2L)

CLKOUT

Exhibit 2058 - Page 313 of 460

EZ-USB FX2 Technical Reference Manual

Page 14-22 EZ-USB FX2 Technical Reference Manual v2.1

To derive the required RCAP2H and RCAP2L values from a known baud rate, use the equation:

When either RCLK or TCLK is set, the TF2 flag is not set on a Timer 2 rollover and the T2EX
reload trigger is disabled.

Table 14-16 lists sample RCAP2H:L reload values for a variety of common serial baud rates.

14.3.4.2 Mode 1 Transmit

Figure 14-11 illustrates the mode 1 transmit timing. In mode 1, the USART begins transmitting
after the first rollover of the divide-by-16 counter after the software writes to the SBUF0 (or
SBUF1) register. The USART transmits data on the TXD0 (or TXD1) pin in the following order:
start bit, 8 data bits (LSB first), stop bit. The TI_0 (or TI_1) bit is set 2 CLKOUT cycles after the
stop bit is transmitted.

14.3.5 Mode 1 Receive

Figure 14-12 illustrates the mode 1 receive timing. Reception begins at the falling edge of a start
bit received on the RXD0 (or RXD1) pin, when enabled by the REN_0 (or REN_1) Bit. For this pur-
pose, the RXD0 (or RXD1) pin is sampled 16 times per bit for any baud rate. When a falling edge

Table 14-16. Timer 2 Reload Values for Common Serial Port Mode 1 Baud Rates

Nominal Rate

CLKOUT = 12 MHz CLKOUT = 24 MHz CLKOUT = 48 MHz

RCAP2H:L
Reload
Value

Actual
Rate

Error
RCAP2H:L

Reload
Value

Actual
Rate

Error
RCAP2H:L

Reload
Value

Actual
Rate

Error

57600 FFF9 53571 -6.99% FFF3 57692 +0.16% FFE6 57692 +0.16%

38400 FFF6 37500 -2.34% FFEC 37500 -2.34% FFD9 38461 +0.16%

28800 FFF3 28846 +0.16% FFE6 28846 +0.16% FFCC 28846 +0.16%

19200 FFEC 18750 -2.34% FFD9 19230 +0.16% FFB2 19230 +0.16%

9600 FFD9 9615 +0.16% FFB2 9615 +0.16% FF64 9615 +0.16%

4800 FFB2 4807 +0.16% FF64 4807 +0.16% FEC8 4807 +0.16%

2400 FF64 2403 +0.16% FEC8 2403 +0.16% FD90 2403 +0.16%

Note: using rates that are off by 2.3% or more will not work in all systems.

RCAP2H:L = CLKOUT

32 × Baud Rate
65536 -

Exhibit 2058 - Page 314 of 460

Chapter 14. Timers/Counters and Serial Interface Page 14-23

of a start bit is detected, the divide-by-16 counter used to generate the receive clock is reset to
align the counter rollover to the bit boundaries.

For noise rejection, the serial port establishes the content of each received bit by a majority deci-
sion of 3 consecutive samples in the middle of each bit time. For the start bit, if the falling edge on
the RXD0 (or RXD1) pin is not verified by a majority decision of 3 consecutive samples (low), then
the serial port stops reception and waits for another falling edge on the RXD0 (or RXD1) pin.

At the middle of the stop bit time, the serial port checks for the following conditions:

• RI_0 (or RI_1) = 0

• If SM2_0 (or SM2_1) = 1, the state of the stop bit is 1
(If SM2_0 (or SM2_1) = 0, the state of the stop bit doesn’t matter.

If the above conditions are met, the serial port then writes the received byte to the SBUF0 (or
SBUF1) Register, loads the stop bit into RB8_0 (or RB8_1), and sets the RI_0 (or RI_1) Bit. If the
above conditions are not met, the received data is lost, the SBUF Register and RB8 Bit are not
loaded, and the RI Bit is not set.

After the middle of the stop bit time, the serial port waits for another high-to-low transition on the
(RXD0 or RXD1) pin.

Figure 14-11. Serial Port 0 Mode 1 Transmit Timing

Write to
SBUF0

RI_0

TXD0

RXD0

RXD0OUT

SHIFT

TX CLK

TI_0

D0 D1 D2 D3 D4 D5 D6 D7 STOPSTART

Exhibit 2058 - Page 315 of 460

EZ-USB FX2 Technical Reference Manual

Page 14-24 EZ-USB FX2 Technical Reference Manual v2.1

Figure 14-12. Serial Port 0 Mode 1 Receive Timing

14.3.6 Mode 2

Mode 2 provides asynchronous, full-duplex communication, using a total of 11 bits: 1 start bit, 8
data bits, a programmable 9th bit, and 1 stop bit. The data bits are transmitted and received LSB
first. For transmission, the 9th bit is determined by the value in TB8_0 (or TB8_1). To use the 9th
bit as a parity bit, move the value of the P bit (SFR PSW.0) to TB8_0 (or TB8_1).

The Mode 2 baud rate is either CLKOUT/32 or CLKOUT/64, as determined by the SMOD0 (or
SMOD1) bit. The formula for the mode 2 baud rate is:

Mode 2 operation is identical to the standard 8051.

14.3.6.1 Mode 2 Transmit

Figure 14-13 illustrates the mode 2 transmit timing. Transmission begins after the first rollover of
the divide-by-16 counter following a software write to SBUF0 (or SBUF1). The USART shifts data
out on the TXD0 (or TXD1) pin in the following order: start bit, data bits (LSB first), 9th bit, stop bit.
The TI_0 (or TI_1) Bit is set when the stop bit is placed on the TXD0 (or TXD1) pin.

RI_0

TXD0

RXD0

RXD0OUT
SHIFT

RX CLK

TI_0

D0 D1 D2 D3 D4 D5 D6 D7 STOPSTART

Bit detector
sampling

×
Baud Rate =

2
SMODx

CLKOUT

64

Exhibit 2058 - Page 316 of 460

Chapter 14. Timers/Counters and Serial Interface Page 14-25

14.3.6.2 Mode 2 Receive

Figure 14-14 illustrates the mode 2 receive timing. Reception begins at the falling edge of a start
bit received on the RXD0 (or RXD1) pin, when enabled by the REN_0 (or REN_1) Bit. For this pur-
pose, the RXD0 (or RXD1) pin is sampled 16 times per bit for any baud rate. When a falling edge
of a start bit is detected, the divide-by-16 counter used to generate the receive clock is reset to
align the counter rollover to the bit boundaries.

For noise rejection, the serial port establishes the content of each received bit by a majority deci-
sion of 3 consecutive samples in the middle of each bit time. For the start bit, if the falling edge on
the RXD0 (or RXD1) pin is not verified by a majority decision of 3 consecutive samples (low), then
the serial port stops reception and waits for another falling edge on the RXD0 (or RXD1) pin.

At the middle of the stop bit time, the serial port checks for the following conditions:

• RI_0 (or RI_1) = 0

• If SM2_0 (or SM2_1) = 1, the state of the stop bit is 1.
(If SM2_0 (or SM2_1) = 0, the state of the stop bit doesn’t matter.)

If the above conditions are met, the serial port then writes the received byte to the SBUF0 (or
SBUF1) Register, loads the stop bit into RB8_0 (or RB8_1), and sets the RI_0 (or RI_1) Bit. If the
above conditions are not met, the received data is lost, the SBUF Register and RB8 Bit are not
loaded, and the RI Bit is not set. After the middle of the stop bit time, the serial port waits for
another high-to-low transition on the RXD0 (or RXD1) pin.

Figure 14-13. Serial Port 0 Mode 2 Transmit Timing

RI_0

TXD0

RXD0

RXD0OUT

SHIFT

TX CLK

TI_0

D0 D1 D2 D3 D4 D5 D6 D7 STOPSTART

Write to
SBUF0

TB8

Exhibit 2058 - Page 317 of 460

EZ-USB FX2 Technical Reference Manual

Page 14-26 EZ-USB FX2 Technical Reference Manual v2.1

Figure 14-14. Serial Port 0 Mode 2 Receive Timing

14.3.7 Mode 3

Mode 3 provides asynchronous, full-duplex communication, using a total of 11 bits: 1 start bit, 8
data bits, a programmable 9th bit, and 1 stop bit. The data bits are transmitted and received LSB
first.

The mode 3 transmit and operations are identical to mode 2. The mode 3 baud rate generation is
identical to mode 1. That is, mode 3 is a combination of mode 2 protocol and mode 1 baud rate.
Figure 14-15 illustrates the mode 3 transmit timing. Figure 14-16 illustrates the mode 3 receive
timing.

Mode 3 operation is identical to that of the standard 8051 when Timer 1 uses CLKOUT/12,
(T1M=0, the default).

RI_0

TXD0

RXD0

RXD0OUT

SHIFT

RX CLK

TI_0

D0 D1 D2 D3 D4 D5 D6 D7 STOPSTART RB8

Bit detector
sampling

Exhibit 2058 - Page 318 of 460

Chapter 14. Timers/Counters and Serial Interface Page 14-27

Figure 14-15. Serial Port 0 Mode 3 Transmit Timing

Figure 14-16. Serial Port 0 Mode 3 Receive Timing

RI_0

TXD0

RXD0

RXD0OUT

SHIFT

TX CLK

TI_0

D0 D1 D2 D3 D4 D5 D6 D7 STOPSTART

Write to
SBUF0

TB8

RI_0

TXD0

RXD0

RXD0OUT

SHIFT

RX CLK

TI_0

D 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7 STO PS TA RT R B 8

Bit detector
sampling

Exhibit 2058 - Page 319 of 460

EZ-USB FX2 Technical Reference Manual

Page 14-28 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 320 of 460

Chapter 15. Registers Page 15-1

Chapter 15 Registers

15.1 Introduction

This section describes the EZ-USB FX2 registers in the order they appear in the EZ-USB FX2
memory map, see Figure 5-4. The registers are named according to the following conventions.

Most registers deal with endpoints. The general register format is DDDnFFF, where:

DDD is endpoint direction, IN or OUT with respect to the USB host.

n is the endpoint number, where:

• “ISO” indicates isochronous endpoints as a group.

FFF is the function, where:

• CS is a control and status register

• IRQ is an Interrupt Request bit

• IE is an Interrupt Enable bit

• BC, BCL, and BCH are byte count registers. BC is used for single byte counts, and
BCH/BCL are used as the high and low bytes of 16-bit byte counts.

• DATA is a single-register access to a FIFO.

• BUF is the start address of a buffer.

15.1.1 Example Register Formats

• EP1INBC is the Endpoint 1 IN byte count.

Exhibit 2058 - Page 321 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-2 EZ-USB FX2 Technical Reference Manual v2.1

15.1.2 Other Conventions

USB Indicates a global (not endpoint-specific) USB function.

ADDR Is an address.

VAL Means valid.

FRAME Is a frame count.

PTR Is an address pointer.

Figure 15-1. Register Description Format

Figure 15-1 illustrates the register description format used in this chapter.

• The top line shows the register name, functional description, and address in the EZ-USB
FX2 memory.

• The second line shows the bit position in the register.

• The third line shows the name of each bit in the register.

• The fourth line shows CPU accessibility: R(ead), W(rite), or R/W.

• The fifth line shows the default value. These values apply after a Power-On-Reset (POR).

Register Name Register Function Address

b7 b6 b5 b4 b3 b2 b1 b0

bitname bitname bitname bitname bitname bitname bitname bitname

R, W access R, W access R, W access R, W access R, W access R, W access R, W access R, W access

Default val Default val Default val Default val Default val Default val Default val Default val

Exhibit 2058 - Page 322 of 460

Chapter 15. Registers Page 15-3

15.2 Special Function Registers (SFR)

FX2 implements many control registers as SFRs (Special Function Registers). These SFRs are
shown in Table 15-1. Bold type indicates SFRs which are not in the standard 8051, but are
included in the FX2.

Table 15-1. FX2 Special Function Registers (SFR)

All unlabeled SFRs are reserved.

x 8x 9x Ax Bx Cx Dx Ex Fx

0 IOA IOB IOC IOD SCON1 PSW ACC B

1 SP EXIF INT2CLR IOE SBUF1

2 DPL0 MPAGE INT4CLR OEA

3 DPH0 OEB

4 DPL1 OEC

5 DPH1 OED

6 DPS OEE

7 PCON

8 TCON SCON0 IE IP T2CON EICON EIE EIP

9 TMOD SBUF0

A TL0 AUTOPTRH1 EP2468STAT EP01STAT RCAP2L

B TL1 AUTOPTRL1 EP24FIFOFLGS GPIFTRIG RCAP2H

C TH0 EP68FIFOFLGS TL2

D TH1 AUTOPTRH2 GPIFSGL-
DATH

TH2

E CKCON AUTOPTRL2 GPIFSGL-
DATLX

F AUTOPTR-
SETUP

GPIFSGL-
DATLNOX

Exhibit 2058 - Page 323 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-4 EZ-USB FX2 Technical Reference Manual v2.1

15.3 About SFRS

Because the SFRs are directly-addressable internal registers, firmware can access them quickly,
without the overhead of loading the data pointer and performing a MOVX instruction. For example,
the firmware reads the FX2 Port B pins using a single instruction, as shown in Figure 15-2.

Figure 15-2. Single Instruction to Read Port B

Similarly, firmware writes the value 0x55 to Port C using only one MOV instruction, as shown in
Figure 15-3.

Figure 15-3. Single Instruction to Write to Port C

SFRs in Table 15-1 rows 0 and 8 are bit-addressable; individual bits of the registers may be effi-
ciently set, cleared, or toggled using special bit-addressing instructions (e.g., setb IOB.2 sets bit 2
of the IOB register).

mov a,IOB

mov IOC,#55h

IOA Port A (bit addressable) SFR 0x80

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

Exhibit 2058 - Page 324 of 460

Chapter 15. Registers Page 15-5

IOB Port B (bit addressable) SFR 0x90

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

AUTOPTRH1 Autopointer 1 Address HIGH SFR 0x9A

b7 b6 b5 b4 b3 b2 b1 b0

A15 A14 A13 A12 A11 A10 A9 A8

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

AUTOPTRL1 Autopointer 1 Address LOW SFR 0x9B

b7 b6 b5 b4 b3 b2 b1 b0

A7 A6 A5 A4 A3 A2 A1 A0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

AUTOPTRH2 Autopointer 2 Address HIGH SFR 0x9D

b7 b6 b5 b4 b3 b2 b1 b0

A15 A14 A13 A12 A11 A10 A9 A8

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 325 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-6 EZ-USB FX2 Technical Reference Manual v2.1

Writing any value to INT2CLR or INT4CLR clears the INT2 or INT4 interrupt request bit for the
INT2/INT4 interrupt currently being serviced.

Writing to one of these registers has the same effect as clearing the appropriate interrupt request
bit in the FX2 external register space. For example, suppose the EP2 Empty Flag interrupt is
asserted. The FX2 automatically sets bit 1 of the EP2FIFOIRQ register (in External Data memory
space, at 0xE651), and asserts the INT4 interrupt request.

Using autovectoring, the FX2 automatically calls (vectors to) the EP2_FIFO_EMPTY 2 Interrupt
Service Routine (ISR). The first task in the ISR is to clear the interrupt request bit, EP2FIFOIRQ.1.

AUTOPTRL2 Autopointer 2 Address LOW SFR 0x9E

b7 b6 b5 b4 b3 b2 b1 b0

A7 A6 A5 A4 A3 A2 A1 A0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

IOC Port C (bit addressable) SFR 0xA0

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

INT2CLR Interrupt 2 Clear SFR 0xA1

b7 b6 b5 b4 b3 b2 b1 b0

x x x x x x x x

W W W W W W W W

x x x x x x x x

INT4CLR Interrupt 4 Clear SFR 0xA2

b7 b6 b5 b4 b3 b2 b1 b0

x x x x x x x x

W W W W W W W W

x x x x x x x x

Exhibit 2058 - Page 326 of 460

Chapter 15. Registers Page 15-7

The firmware can do this either by accessing the EP2FIFOIRQ register (at 0xE651) and writing a 1
to bit 1, or simply by writing any value to INT4CLR. The first method requires the use of the data
pointer, which must be saved and restored along with the accumulator in an ISR. The second
method is much faster and does not require saving the data pointer, so it is preferred.

The bits in EP2468STAT correspond to Endpoint Status bits in the FX2 register file, as follows:

The Endpoint status bits represent the Packet Status.

EP2468STAT Endpoint(s) 2,4,6,8 Status Flags SFR 0xAA

b7 b6 b5 b4 b3 b2 b1 b0

EP8F EP8E EP6F EP6E EP4F EP4E EP2F EP2E

R R R R R R R R

0 1 0 1 1 0 1 0

Table 15-2. SFR and FX2 Register File Correspondences

Bit EPSTAT SFR FX2 Register.Bit
FX2 Register
File address

7 EP8 Full flag EP8CS.3 E6A6

6 EP8 Empty flag EP8CS.2 E6A6

5 EP6 Full flag EP6CS.3 E6A5

4 EP6 Empty flag EP6CS.2 E6A5

3 EP4 Full flag EP4CS.3 E6A4

2 EP4 Empty flag EP4CS.2 E6A4

1 EP2 Full flag EP2CS.3 E6A3

0 EP2 Empty flag EP2CS.2 E6A3

Exhibit 2058 - Page 327 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-8 EZ-USB FX2 Technical Reference Manual v2.1

FX2 provides two identical autopointers. They are similar to the internal “DPTR” data pointers, but
with an additional feature: each can automatically increment after every memory access. Using
one or both of the autopointers, FX2 firmware can perform very fast block memory transfers.

The AUTOPTRSETUP register is configured as follows:

• Set APTRnINC=0 to freeze the address pointer, APTRnINC=1 to automatically increment
it for every read or write of an XAUTODATn register. This bit defaults to 1, enabling the
auto-increment feature.

• To enable the autopointer, set APTREN=1. Enabling the Autopointers has one side-effect:
Any code access (an instruction fetch, for instance) from addresses 0xE67B and 0xE67C
will return the AUTODATA values, rather than the code-memory values at these two
addresses. This introduces a two-byte “hole” in the code memory.

The firmware then writes a 16-bit address to AUTOPTRHn/Ln. Then, for every read or write of an
XAUTODATn register, the address pointer automatically increments (if APTRnINC=1).

EP24FIFOFLGS Endpoint(s) 2, 4 Slave FIFO
Status Flags

SFR 0xAB

b7 b6 b5 b4 b3 b2 b1 b0

0 EP4PF EP4EF EP4FF 0 EP2PF EP2EF EP2FF

R R R R R R R R

0 0 1 0 0 0 1 0

EP68FIFOFLGS Endpoint(s) 6, 8 Slave FIFO
Status Flags

SFR 0xAC

b7 b6 b5 b4 b3 b2 b1 b0

0 EP8PF EP8EF EP8FF 0 EP6PF EP6EF EP6FF

R R R R R R R R

0 1 1 0 0 1 1 0

AUTOPTRSETUP Autopointer(s) 1 & 2 Setup SFR 0xAF

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 APTR2INC APTR1INC APTREN

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 1 1 0

Exhibit 2058 - Page 328 of 460

Chapter 15. Registers Page 15-9

FX2 I/O ports PORTA-PORTD appear as bit-addressable SFRS. Reading a register or bit returns
the logic level of the port pin that’s two CLKOUT-clocks old. Writing a register bit writes the port
latch. Whether or not the port latch value appears on the I/O pin depends on the state of the pin’s
OE (Output Enable) bit. The I/O pins may also be assigned alternate function values, in which case
the IOx and OEx bit values are overridden on a bit-by-bit basis.

IOD is bit-addressable; see Figure 15-4.

Figure 15-4. Use Bit 2 to set PORTD - Single Instruction

IO port PORTE is also accessed using an SFR, but unlike the PORTA-PORTD SFRs, it is not bit-
addressable; see Figure 15-5.

Figure 15-5. Use OR to Set Bit 3

IOD Port D (bit addressable) SFR 0xB0

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

setb IOD.2 ; set bit 2 of IOD SFR

IOE Port E SFR 0xB1

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

mov a,IOE
or a,#00001000b ; set bit 3
mov IOE,a

Exhibit 2058 - Page 329 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-10 EZ-USB FX2 Technical Reference Manual v2.1

OEA Port A Output Enable SFR 0xB2

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

OEB Port B Output Enable SFR 0xB3

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

OEC Port C Output Enable SFR 0xB4

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 330 of 460

Chapter 15. Registers Page 15-11

The bits in 0EA - 0EE turn on the output buffers for the five IO Ports PORTA-PORTE. Setting a bit
to 1 turns on the output buffer, setting it to 0 turns the buffer off.

OED Port D Output Enable SFR 0xB5

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

OEE Port E Output Enable SFR 0xB6

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

EP01STAT Endpoint 0 and 1 Status SFR 0xBA

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 EP1INBSY EP1OUTBSY EP0BSY

R R R R R R R R

0 0 0 0 0 0 0 0

GPIFTRIG
see Section 15.14

Endpoint 2,4,6,8 GPIF Slave
FIFO Trigger

SFR 0xBB

b7 b6 b5 b4 b3 b2 b1 b0

DONE 0 0 0 0 R/W EP1 EP0

R/W R R R R R/W R/W R/W

1 0 0 0 0 x x x

Exhibit 2058 - Page 331 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-12 EZ-USB FX2 Technical Reference Manual v2.1

Most of these SFR registers are also accessible in external RAM space, at the addresses shown
in Table 15-3.

GPIFSGLDATH GPIF Data HIGH (16-bit mode only) SFR 0xBD

b7 b6 b5 b4 b3 b2 b1 b0

D15 D14 D13 D12 D11 D10 D9 D8

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

GPIFSGLDATLX GPIF Data LOW w/Trigger SFR 0xBE

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

GPIFSGLDATLNOX GPIF Data LOW w/No
Trigger

SFR 0xBF

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R R R R R R R R

x x x x x x x x

Table 15-3. SFR Registers and External Ram Equivalent

SFR Register Name Hex External Ram Register Address and Name
EP2468STAT AA E6A3-E6A6 EPxCS

EP24FIFOFLGS AB E6A7-E6AA EPxFIFOFLGS

EP68FIFOFLGS AC

EP01STAT BA E6A0-E6A2 EP0CS, EP1OUTCS, EP1INCS

GPIFTRIG BB E6D4, E6DC, E6E4, E6EC EPxGPIFTRIG

GPIFSGLDATH BD E6F0 XGPIFSGLDATH

GPIFSGLDATLX BE E6F1 XGPIFSGLDATLX

GPIFSGLDATLNOX BF E6F2 XGPIFSGLDATLNOX

Exhibit 2058 - Page 332 of 460

Chapter 15. Registers Page 15-13

15.4 GPIF Waveform Memories

15.4.1 GPIF Waveform Descriptor Data

*Accessible only when IFCFG1:0 = 10.

Figure 15-6. GPIF Waveform Descriptor Data

The four GPIF waveform descriptor tables are stored in this space. See Chapter 10 "General Pro-
grammable Interface (GPIF)" for details.

15.5 General Configuration Registers

15.5.1 CPU Control and Status

Figure 15-7. CPU Control and Status

Bit 5 PORTCSTB PORTC access generates RD and WR strobes

The 100- and 128-pin FX2 packages have two output pins, RD and WR, that can be used to
synchronize data transfers on I/O PORTC. When PORTCSTB=1, this feature is enabled. Any
read of PORTC activates a RD strobe, and any write to PORTC activates a WR strobe.

WAVEDATA GPIF Waveform Descriptor 0, 1, 2, 3
Data

E400-E47F*

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

 x x x x x x x x

CPUCS CPU Control and Status E600

b7 b6 b5 b4 b3 b2 b1 b0

0 0 PORTCSTB CLKSPD1 CLKSPD0 CLKINV CLKOE 0

R R R/W R/W R/W R/W R/W R

0 0 0 0 0 0 1 0

Exhibit 2058 - Page 333 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-14 EZ-USB FX2 Technical Reference Manual v2.1

The RD and WR strobes are asserted for two CLKOUT cycles; the WR strobe asserts two
CLKOUT cycles after the PORTC pins are updated.

If a design uses the 128-pin FX2 and connects off-chip memory to the address and data
buses, this bit should be set to zero. This is because the RD and WR pins are also the stan-
dard strobes used to read and write off-chip memory, so normal reads/writes to I/O Port C
would disrupt normal accesses to that memory.

Bit 4-3 CLKSPD1:0 CPU Clock Speed

These bits set the CPU clock speed. At power-on-reset, these bits default to 00 (12 MHz).
Firmware may modify these bits at any time.

Bit 2 CLKINV Invert CLKOUT Signal

CLKINV=0: CLKOUT signal not inverted (as shown in all timing diagrams).

CLKINV=1: CLKOUT signal inverted.

Bit 1 CLKOE Drive CLKOUT Pin

CLKOE=1: CLKOUT pin driven.

CLKOE=0: CLKOUT pin floats.

15.5.2 Interface Configuration (Ports, GPIF, slave FIFOs)

Figure 15-8. Interface Configuration (Ports, GPIF, slave FIFOs)

Table 15-4. CPU Clock Speeds

CLKSPD1 CLKSPD0 CPU Clock
0 0 12 MHz (Default)

0 1 24 MHz

1 0 48 MHz

1 1 Reserved

IFCONFIG Interface Configuration(Ports, GPIF,
slave FIFOs)

E601

b7 b6 b5 b4 b3 b2 b1 b0

IFCLKSRC 3048MHZ IFCLKOE IFCLKPOL ASYNC GSTATE IFCFG1 IFCFG0

R/W R/W R/W R/W R/W R/W R/W R/W

1 1 0 0 0 0 0 0

Exhibit 2058 - Page 334 of 460

Chapter 15. Registers Page 15-15

Bit 7 IFCLKSRC FIFO/GPIF Clock Source

This bit selects the clock source for both the FIFOS and GPIF. If IFCLKSRC=0, the external
clock on the IFCLK pin is selected. If IFCLKSRC=1 (default), an internal 30- or 48-MHz
(default) clock is used.

Bit 6 3048MHZ Internal FIFO/GPIF Clock Frequency

This bit selects the internal FIFO & GPIF clock frequency.

Bit 5 IFCLKOE IFCLK pin output enable

0=Tri-state

1=Drive

Bit 4 IFCLKPOL Invert the IFCLK signal

This bit indicates that the IFCLK signal is inverted.

When IFCLKPOL=0, the clock has the polarity shown in all the timing diagrams in this manual.
When IFCLKPOL=1, the clock is inverted.

Figure 15-9. IFCLK Configuration

Table 15-5. Internal FIFO/GPIF Clock Frequency

3048MHZ FIFO & GPIF Clock
0 30 MHz

1 48 MHz(default)

0
1

30 MHz

48 MHz
0
1

0
1

1
0

Internal
IFCLK
Signal

IFCFG.7
IFCFG.4

IFCFG.6
IFCFG.4 IFCFG.5

IFCLK
Pin

Exhibit 2058 - Page 335 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-16 EZ-USB FX2 Technical Reference Manual v2.1

Bit 3 ASYNC FIFO/GPIF Asynchronous Mode

When ASYNC=0, the FIFO/GPIF operate synchronously: a clock is supplied either internally
or externally on the IFCLK pin; the FIFO control signals function as read and write enable sig-
nals for the clock signal.

When ASYNC=1, the FIFO/GPIF operate asynchronously: no clock signal input to IFCLK is
required; the FIFO control signals function directly as read and write strobes.

Bit 2 GSTATE Drive GSTATE [2:0] on PORTE [2:0]

When GSTATE=1, three bits in Port E take on the signals shown in Table 15-6. The GSTATE
bits, which indicate GPIF states, are used for diagnostic purposes.

Bit 1-0 IFCFG1:0 Select Interface Mode (Ports, GPIF, or Slave FIFO)

These bits control the following FX2 interface signals, as shown in Tabl e15-8.

Table 15-6. Port E Alternate Functions When GSTATE=1

IO Pin Alternate Function

PE0 GSTATE[0]

PE1 GSTATE[1]

PE2 GSTATE[2]

Table 15-7. Ports, GPIF, Slave FIFO Select

IFCFG1 IFCFG0 Configuration
0 0 Ports

0 1 Reserved

1 0 GPIF Interface (internal
master)

1 1 Slave FIFO Interface
(external master)

Exhibit 2058 - Page 336 of 460

Chapter 15. Registers Page 15-17

Table 15-8. IFCFG Selection of Port I/O Pin Functions

IFCFG1:0 = 00
(Ports)

IFCFG1:0 = 10
(GPIF Master)

IFCFG1:0 = 11
(Slave FIFO)

PD7 FD[15] FD[15]

PD6 FD[14] FD[14]

PD5 FD[13] FD[13]

PD4 FD[12] FD[12]

PD3 FD[11] FD[11]

PD2 FD[10] FD[10]

PD1 FD[9] FD[9]

PD0 FD[8] FD[8]

PB7 FD[7] FD[7]

PB6 FD[6] FD[6]

PB5 FD[5] FD[5]

PB4 FD[4] FD[4]

PB3 FD[3] FD[3]

PB2 FD[2] FD[2]

PB1 FD[1] FD[1]

PB0 FD[0] FD[0]

INT0 / PA0 INT0 / PA0 INT0 / PA0

INT1 / PA1 INT1 / PA1 INT1 / PA1

PA2 PA2 SLOE

WU2 / PA3 WU2 / PA3 WU2 / PA3

PA4 PA4 FIFOADR0

PA5 PA5 FIFOADR1

PA6 PA6 PKTEND

PA7 PA7 PA7 / FLAGD / SLCS

PC7:0 PC7:0 PC7:0

PE7:0 PE7:0 PE7:0

Note: Signals shown in bold type do not change with IFCFG;
 they are shown for completeness.

Exhibit 2058 - Page 337 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-18 EZ-USB FX2 Technical Reference Manual v2.1

15.5.3 Slave FIFO FLAGA-FLAGD Pin Configuration

Figure 15-10. Slave FIFO FLAGA-FLAGD Pin Configuration

FX2 has four FIFO flag output pins, FLAGA, FLAGB, FLAGC and FLAGD. These flags can be pro-
grammed to represent various FIFO flags using four select bits for each FIFO. The PINFLAGSAB
register controls the FLAGA and FLAGB signals, and the PINFLAGSCD register controls the
FLAGC and FLAGD signal. The 4-bit coding for all four flags is the same, as shown in Table 15-9.
In the “FLAGx” notation, “x” can be A, B, C or D.

PINFLAGSAB
see Section 15.14

Slave FIFO FLAGA and FLAGB Pin
Configuration

E602

b7 b6 b5 b4 b3 b2 b1 b0

FLAGB3 FLAGB2 FLAGB1 FLAGB0 FLAGA3 FLAGA2 FLAGA1 FLAGA0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PINFLAGSCD
see Section 15.14

Slave FIFO FLAGC and FLAGD Pin
Configuration

E603

b7 b6 b5 b4 b3 b2 b1 b0

FLAGD3 FLAGD2 FLAGD1 FLAGD0 FLAGC3 FLAGC2 FLAGC1 FLAGC0

R/W R/W R/W R/W R/W R/W R/W R/W

0 1 0 0 0 0 0 0

Exhibit 2058 - Page 338 of 460

Chapter 15. Registers Page 15-19

NOTE: FLAGD defaults to EP2PF (fixed flag).

For the default (0000) selection, the four FIFO flags are indexed as shown in the first table entry.
The input pins FIFOADR1 and FIFOADR0 select to which of the four FIFOs the flags correspond.
These pins are decoded as follows:

Table 15-10. FIFOADR1 FIFOADR0 Pin Correspondence

For example, if FLAGA[3:0]=0000 and the FIFO address pins are driven to [01], then FLAGA is the
EP4-Programmable Flag, FLAGB is the EP4-Full Flag, and FLAGC is the EP4-Empty Flag, and
FLAGD defaults as PA7. Set PORTACFG.7 = 1 to use FLAGD which by default is EP2PF(fixed
flag).

The other (non-zero) values of FLAGx[3:0] allow the designer to independently configure the four
flag outputs FLAGA-FLAGD to correspond to any flag—Programmable, Full, or Empty—from any
of the four endpoint FIFOS. This allows each flag to be assigned to any of the four FIFOS, includ-
ing those not currently selected by the FIFOADDR pins. For example, external logic could be filling
the EP2IN FIFO with data while also checking the full flag for the EP4OUT FIFO.

Table 15-9. FIFO Flag Pin Functions

FLAGx3 FLAGx2 FLAGx1 FLAGx0 Pin Function

0 0 0 0
FLAGA=PF, FLAGB=FF, FLAGC=EF,
FLAGD=EP2PF (Actual FIFO is selected
by FIFOADR[0,1] pins)

0 0 0 1

0 0 1 0 Reserved

0 0 1 1

0 1 0 0 EP2 PF

0 1 0 1 EP4 PF

0 1 1 0 EP6 PF

0 1 1 1 EP8 PF

1 0 0 0 EP2 EF

1 0 0 1 EP4 EF

1 0 1 0 EP6 EF

1 0 1 1 EP8 EF

1 1 0 0 EP2 FF

1 1 0 1 EP4 FF

1 1 1 0 EP6 FF

1 1 1 1 EP8 FF

FIFOADR1 pin FIFOADR0 pin Selected FIFO
0 0 EP2

0 1 EP4

1 0 EP6

1 1 EP8

Exhibit 2058 - Page 339 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-20 EZ-USB FX2 Technical Reference Manual v2.1

15.5.4 FIFO Reset

Figure 15-11. Restore FIFOs to Reset State

Write 0x80 to this register to NAK all transfers from the host, then write 0x02, 0x04, 0x06, or 0x08
to reset an individual FIFO (i.e., to restore endpoint FIFO flags and byte counts to their default
states), then write 0x00 to restore normal operation.

Bit 3-0 EP3:0 Endpoint

By writing the desired enpoint number (2,4,6,8), FX2 logic resets the individual endpoint.

15.5.5 Breakpoint, Breakpoint Address High, Breakpoint Address Low

Figure 15-12. Breakpoint Control

Bit 3 Break Enable Breakpoint

The BREAK bit is set when the CPU address bus matches the address held in the bit break-
point address registers (0xE606/07). The BKPT pin reflects the state of this bit. Write a “1” to
the BREAK bit to clear it. It is not necessary to clear the BREAK bit if the pulse mode bit
(BPPULSE) is set.

FIFORESET
see Section 15.14

Restore FIFOs to Default State E604

b7 b6 b5 b4 b3 b2 b1 b0

NAKALL 0 0 0 EP3 EP2 EP1 EP0

W W W W W W W W

x x x x x x x x

BREAKPT Breakpoint Control E605

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 BREAK BPPULSE BPEN 0

R R R R R/W R/W R/W R

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 340 of 460

Chapter 15. Registers Page 15-21

Bit 2 BPPULSE Breakpoint Pulse Mode

Set this bit to “1” to pulse the BREAK bit (and BKPT pin) high for 8 CLKOUT cycles when the
8051 address bus matches the address held in the breakpoint address registers. When this bit
is set to “0”, the BREAK bit (and BKPT pin) remains high until it is cleared by firmware.

Bit 1 BPEN Breakpoint Enable

If this bit is “1”, a BREAK signal is generated whenever the 16-bit address lines match the
value in the Breakpoint Address Registers (BPADDRH:L). The behavior of the BREAK bit and
associated BKPT pin signal is either latched or pulsed, depending on the state of the
BPPULSE bit.

Figure 15-13. Breakpoint Address High

Figure 15-14. Breakpoint Address Low

Bit 15-0 A15:0 High and Low Breakpoint Address

When the current 16-bit address (code or XDATA) matches the BPADDRH/BPADDRL
address, a breakpoint event occurs. The BPPULSE and BPEN bits in the BREAKPT register
control the action taken on a breakpoint event.

BPADDRH Breakpoint Address High E606

b7 b6 b5 b4 b3 b2 b1 b0

A15 A14 A13 A12 A11 A10 A9 A8

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

BPADDRL Breakpoint Address Low E607

b7 b6 b5 b4 b3 b2 b1 b0

A7 A6 A5 A4 A3 A2 A1 A0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

Exhibit 2058 - Page 341 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-22 EZ-USB FX2 Technical Reference Manual v2.1

15.5.6 230 Kbaud Clock (T0, T1, T2)

Figure 15-15. 230 Kbaud Internally Generated Reference Clock

Bit 1- 0 230UARTx Set 230 KBaud Operation

Setting these bits to 1 overrides the timer inputs to the USARTs, and USART0 and USART1
will use the 230 KBaud clock rate. This mode provides the correct frequency to the USART
regardless of the CPU clock frequency (12, 24, or 48 MHz).

15.5.7 Slave FIFO Interface Pins Polarity

Figure 15-16. Slave FIFO Interface Pins Polarity

Bit 5 PKTEND FIFO Packet End Polarity

This bit selects the polarity of the PKTEND FIFO input pin. 0 selects the polarity shown in the
data sheet (active low). 1 selects active high.

Bit 4 SLOE FIFO Output Enable Polarity

This bit selects the polarity of the SLOE FIFO input pin. 0 selects the polarity shown in the
data sheet (active low). 1 selects active high.

UART230 230 KBaud clock for T1 E608

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 230UART1 230UART0

R R R R R R R/W R/W

0 0 0 0 0 0 0 0

FIFOPINPOLAR
see Section 15.14

Slave FIFO Interface Pins Polarity E609

b7 b6 b5 b4 b3 b2 b1 b0

0 0 PKTEND SLOE SLRD SLWR EF FF

R R R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 342 of 460

Chapter 15. Registers Page 15-23

Bit 3 SLRD FIFO Read Polarity

This bit selects the polarity of the SLRD FIFO input pin. 0 selects the polarity shown in the data
sheet (active low). 1 selects active high.

Bit 2 SLWR FIFO Write Polarity

This bit selects the polarity of the SLWR FIFO input pin. 0 selects the polarity shown in the
data sheet (active low). 1 selects active high.

Bit 1 EF Empty Flag Polarity

This bit selects the polarity of the SLWR FIFO output pin. 0 selects the polarity shown in the
data sheet (active low). 1 selects active high.

Bit 0 FF Full Flag Polarity

This bit selects the polarity of the SLWR FIFO output pin. 0 selects the polarity shown in the
data sheet (active low). 1 selects active high.

15.5.8 Chip Revision ID

Figure 15-17. Chip Revision ID

Bit 7-0 RV7:0 Chip Revision Number

These register bits define the silicon revision. Consult individual Cypress Semiconductor data
sheets for values.

REVID Chip Revision ID E60A

b7 b6 b5 b4 b3 b2 b1 b0

RV7 RV6 RV5 RV4 RV3 RV2 RV1 RV0

R R R R R R R R

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 343 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-24 EZ-USB FX2 Technical Reference Manual v2.1

15.5.9 Chip Revision Control

Figure 15-18. Chip Revision Control

DYN_OUT and ENH_PKT default to 0 on POR.
Cypress highly recommends setting both bits to 1.

Bit 1 DYN_OUT Disable Auto-Arming at the 0-1 transition of AUTOOUT

When DYN_OUT=0, the core automatically arms the endpoints when AUTOOUT is switched
from 0 to 1. This means that firmware must reset the endpoint (and risk losing endpoint data)
when switching between Auto-Out mode and Manual-Out mode.

When DYN_OUT=1, the core disables auto-arming of the endpoints when AUTOOUT transi-
tions from 0 to 1. This feature allows CPU intervention when switching between AUTO and
Manual mode without having to reset the endpoint.

Note: When DYN_OUT=1 and AUTOOUT=1, the CPU is responsible for “priming the
pump” by initially arming the endpoints (OUTPKTEND w/SKIP=1 to pass packets to host).

Bit 0 ENH_PKT Enhanced Packet Handling

When ENH_PKT=0, the CPU can neither source OUT packets nor skip IN packets; it has only
the following capabilities:

• OUT packets: Skip or Commit

• IN packets: Commit or Edit/Source

When ENH_PKT=1, the CPU has additional capabilities:

• OUT packets: Skip, Commit, or Edit/Source

• IN packets: Skip, Commit, or Edit/Source

REVCTL
See Section 15.14

Chip Revision Control E60B

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 DYN_OUT ENH_PKT

R R R R R R R/W R/W

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 344 of 460

Chapter 15. Registers Page 15-25

15.5.10 GPIF Hold Time

For any transaction where the GPIF writes data onto FD[15:0], this register determines how long
the data is held. Valid choices are 0, ½ or 1 IFCLK cycle. This register applies to any data written
by the GPIF to FD[15:0], whether through a flow state or not.

For non-flow states, the hold amount is really just a delay of the normal (non-held) presentation of
FD[15:0] by the amount specified in HOLDTIME[1:0].

For flow states in which the GPIF is the master on the bus (FLOWSTB.SLAVE = 0), the hold
amount is with respect to the activating edge (see FLOW_MASTERSTB_EDGE) of Master Strobe
(which will be a CTL pin in this case).

For flow states in which the GPIF is the slave on the bus (FLOWSTB.SLAVE = 1), the hold amount
is really just a delay of the normal (non-held) presentation of FD[15:0] by the amount specified in
HOLDTIME[1:0] in reaction to the activating edge of Master Strobe (which will be a RDY pin in this
case). Note the hold amount is NOT directly with respect to the activating edge of Master Strobe in
this case. It is with respect to when the data would normally come out in response to Master Strobe
including any latency to synchronize Master Strobe.

In all cases, the data will be held for the desired amount even if the ensuing GPIF state calls for the
data bus to be tristated. In other words the FD[15:0] output enable will be held by the same amount
as the data itself.

Bits 1-0 HOLDTIME[1:0] GPIF Hold Time

00 = 0 IFCLK cycles

01 = ½ IFCLK cycle

10 = 1 IFCLK cycle

11 = Reserved

GPIFHOLDTIME E60C

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 HOLDTIME[1:0]

R R R R R R RW RW

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 345 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-26 EZ-USB FX2 Technical Reference Manual v2.1

15.6 Endpoint Configuration

15.6.1 Endpoint 1-OUT/Endpoint 1-IN Configurations

Figure 15-19. Endpoint 1-OUT/Endpoint 1-IN Configurations

Bit 7 VALID Activate an Endpoint

Set VALID=1 to activate an endpoint, and VALID=0 to de-activate it. All FX2 endpoints default
to VALID. An endpoint whose VALID bit is 0 does not respond to any USB traffic.

Bit 5-4 TYPE1:0 Defines the Endpoint Type

These bits define the endpoint type, as shown in the table below.

Table 15-11. Endpoint Type Definitions

EP1OUTCFG Endpoint 1-OUT Configuration E610
EP1INCFG Endpoint 1-IN Configuration E611

b7 b6 b5 b4 b3 b2 b1 b0

VALID 0 TYPE1 TYPE0 0 0 0 0

R/W R R/W R/W R R R R

1 0 1 0 0 0 0 0

TYPE1 TYPE0 Endpoint Type
0 0 Invalid

0 1 Invalid

1 0 BULK (default)

1 1 INTERRUPT

Exhibit 2058 - Page 346 of 460

Chapter 15. Registers Page 15-27

15.6.2 Endpoint 2, 4, 6 and 8 Configuration

Figure 15-20. Endpoint 2 Configuration

Figure 15-21. Endpoint 4 Configuration

Figure 15-22. Endpoint 6 Configuration

Figure 15-23. Endpoint 8 Configuration

EP2CFG Endpoint 2 Configuration E612

b7 b6 b5 b4 b3 b2 b1 b0

VALID DIR TYPE1 TYPE0 SIZE 0 BUF1 BUF0

R/W R/W R/W R/W R/W R R/W R/W

1 0 1 0 0 0 1 0

EP4CFG Endpoint 4 Configuration E613

b7 b6 b5 b4 b3 b2 b1 b0

VALID DIR TYPE1 TYPE0 0 0 0 0

R/W R/W R/W R/W R R R R

1 0 1 0 0 0 0 0

EP6CFG Endpoint 6 Configuration E614

b7 b6 b5 b4 b3 b2 b1 b0

VALID DIR TYPE1 TYPE0 SIZE 0 BUF1 BUF0

R/W R/W R/W R/W R/W R R/W R/W

1 1 1 0 0 0 1 0

EP8CFG Endpoint 8 Configuration E615

b7 b6 b5 b4 b3 b2 b1 b0

VALID DIR TYPE1 TYPE0 0 0 0 0

R/W R/W R/W R/W R R R R

1 1 1 0 0 0 0 0

Exhibit 2058 - Page 347 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-28 EZ-USB FX2 Technical Reference Manual v2.1

These registers configure the large, data-handling FX2 endpoints.

Bit 7 VALID Activate an Endpoint

Set VALID=1 to activate an endpoint, and VALID=0 to de-activate it. All FX2 endpoints default
to valid. An endpoint whose VALID bit is 0 does not respond to any USB traffic.

Bit 6 DIR Sets Endpoint Direction

0 = OUT, 1 = IN

Bit 5-4 TYPE Defines the Endpoint Type

These bits define the endpoint type, as shown in the table below. The TYPE bits apply to all of
the large-endpoint configuration registers.

Table 15-12. Endpoint Type Definitions

Bit 3 SIZE Sets Size of Endpoint Buffer

0 = 512 bytes, 1 = 1024 bytes

Endpoints 4 and 8 can only be 512 bytes. Endpoints 2 and 6 are selectable.

Bit 1-0 BUF Buffering Type/Amount

The amount of endpoint buffering is presented in Table 15-13.

Table 15-13. Endpoint Buffering Amounts

TYPE1 TYPE0 Endpoint Type
0 0 Invalid

0 1 ISOCHRONOUS

1 0 BULK (default)

1 1 INTERRUPT

BUF1 BUF0 Buffering
0 0 Quad

0 1 Invalid

1 0 Double

1 1 Triple

Exhibit 2058 - Page 348 of 460

Chapter 15. Registers Page 15-29

15.6.3 Endpoint 2, 4, 6 and 8/Slave FIFO Configuration

Figure 15-24. Endpoint 2, 4, 6 and 8 /Slave FIFO Configuration

Bit 6 INFM1 IN Full Minus One

When a FIFO configuration register’s ‘INEARLY’ or INFM bit is set to 1, the FIFO flags for that
endpoint become valid one sample earlier than when the FULL condition occurs. These bits
take effect only when the FIFOS are operating synchronously—according to an internally- or
externally-supplied clock. Having the FIFO flag indications a clock early simplifies some syn-
chronous interfaces (applies only to IN endpoints).

Bit 5 OEP1 OUT Empty Plus One

When a FIFO configuration register’s ‘OUTEARLY’ or OEP1 bit is set to 1, the FIFO flags for
that endpoint become valid one sample earlier than when the EMPTY condition occurs. These
bits take effect only when the FIFOS are operating synchronously—according to an internally-
or externally-supplied clock. Having the FIFO flag indications a clock early simplifies some
synchronous interfaces (applies only to OUT endpoints).

Bit 4 AUTOOUT Instantaneous Connection to Endpoint FIFO

This bit applies only to OUT endpoints.

When AUTOOUT=1, as soon as a buffer fills with USB data, the buffer is automatically and
instantaneously committed to the endpoint FIFO bypassing the CPU. The endpoint FIFO flags
and buffer counts immediately indicate the change in FIFO status. Refer to the description of
the DYN_OUT bit in Section 15.5.9.

EP2FIFOCFG
see Section 15.14

Endpoint 2/Slave FIFO Configuration E618

EP4FIFOCFG
see Section 15.14

Endpoint 4/Slave FIFO Configuration E619

EP6FIFOCFG
see Section 15.14

Endpoint 6/Slave FIFO Configuration E61A

EP8FIFOCFG
see Section 15.14

Endpoint 8/Slave FIFO Configuration E61B

b7 b6 b5 b4 b3 b2 b1 b0

0 INFM1 OEP1 AUTOOUT AUTOIN ZEROLENIN 0 WORDWIDE

R R/W R/W R/W R/W R/W R R/W

0 0 0 0 0 1 0 1

Exhibit 2058 - Page 349 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-30 EZ-USB FX2 Technical Reference Manual v2.1

When AUTOOUT=0, as soon as a buffer fills with USB data, an endpoint interrupt is asserted.
The connection of the buffer to the endpoint FIFO is under control of the firmware, rather than
automatically being connected. Using this method, the firmware can inspect the data in OUT
packets, and based on what it finds, choose to include that packet in the endpoint FIFO or not.
The firmware can even modify the packet data, and then commit it to the endpoint FIFO. Refer
to Enhanced Packet Handling in Section 15.5.9.

The SKIP bit (in the EPxBCL registers) chooses between skipping and committing packet
data. Refer to OUTPKTEND in Section 15.6.8.

Bit 3 AUTOIN Auto Commit to SIE

This bit applies only to IN endpoints.

FX2 has EPxAUTOINLEN registers that allow the firmware to configure endpoints to sizes
smaller than the physical memory sizes used to implement the endpoint buffers (512 or 1024
bytes). For example, suppose the firmware configures the EP2 buffer to be 1024 bytes, and
then sets up EP2 as a 760-byte endpoint by setting EP2AUTOINLEN=760 (this must match
the wMaxPacketSize value in the endpoint descriptor). This makes EP2 appear to be a 760-
byte endpoint to the USB host, even though EP2’s physical buffer is 1024 bytes.

When AUTOIN=1, FX2 automatically packetizes and dispatches IN packets according to the
packet length value it finds in the EPxAUTOINLEN registers. In this example, the GPIF (or an
external master, if the FX2 is in Slave FIFO mode) could load the EP2 buffer with 950 bytes,
which the FX2 logic would then automatically send as two packets, of 760 and 190 bytes.
Refer to Enhanced Packet Handling in Section 15.5.9.

When AUTOIN=0, each packet has to initially be manually committed to SIE, (prime the
pump). See Section 15.5.9, "Chip Revision Control".

Bit 2 ZEROLENIN Enable Zero-length IN Packets

When this flag is '1', a zero length packet will be sent when PKTEND is activated and there are
no bytes in the current packet. If this flag is '0', zero length packets will not be sent on
PKTEND.

Bit 0 WORDWIDE Select Byte/Word FIFOs on PORTB/D Pins

This bit selects byte or word FIFOS on the PORTB and PORTD pins. The WORD bit applies
“for IFCFG=11 or 10”.

The OR of all 4 WORDWIDE bits is what causes PORTD to be PORTD or FD[15:8]. The indi-
vidual WORDWIDE bits indicate how data will be passed for each individual endpoint.

Exhibit 2058 - Page 350 of 460

Chapter 15. Registers Page 15-31

15.6.4 Endpoint 2, 4, 6, 8 AUTOIN Packet Length (High/Low)

Figure 15-25. Endpoint 2 and 6 AUTOIN Packet Length High

Bit 2-0 PL10:8 Packet Length High

High three bits of Packet Length.

Figure 15-26. Endpoint 4 and 8 AUTOIN Packet Length High

Bit 1-0 PL9:8 Packet Length High

High two bits of Packet Length.

EP2AUTOINLENH
see Section 15.14

Endpoint 2 AUTOIN Packet Length
HIGH

E620

EP6AUTOINLENH
see Section 15.14

Endpoint 6 AUTOIN Packet Length
HIGH

E624

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 PL10 PL9 PL8

R R R R R R/W R/W R/W

0 0 0 0 0 0 1 0

EP4AUTOINLENH
see Section 15.14

Endpoint 4 AUTOIN Packet Length
HIGH

E622

EP8AUTOINLENH
see Section 15.14

Endpoint 8 AUTOIN Packet Length
HIGH

E626

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 PL9 PL8

R R R R R R R/W R/W

0 0 0 0 0 0 1 0

Exhibit 2058 - Page 351 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-32 EZ-USB FX2 Technical Reference Manual v2.1

Figure 15-27. Endpoint 2, 4, 6, 8 AUTOIN Packet Length Low

Bit 7-0 PL7:0 Packet Length Low

Low eight bits of packet length.

These registers can be used to set smaller packet sizes than the physical buffer size (refer to
the previously described EPxCFG registers). The default packet size is 512 bytes for all end-
points. Note that EP2 and EP6 can have maximum sizes of 1024 bytes, and EP4 and EP8 can
have maximum sizes of 512 bytes, to be consistent with the endpoint structure.

EP2AUTOINLENL
see Section 15.14

Endpoint 2 AUTOIN Packet Length
LOW

E621

EP4AUTOINLENL
see Section 15.14

Endpoint 4 AUTOIN Packet Length
LOW

E623

EP6AUTOINLENL
see Section 15.14

Endpoint 6 AUTOIN Packet Length
LOW

E625

EP8AUTOINLENL
see Section 15.14

Endpoint 8 AUTOIN Packet Length
LOW

E627

b7 b6 b5 b4 b3 b2 b1 b0

PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 352 of 460

Chapter 15. Registers Page 15-33

15.6.5 Endpoint 2, 4, 6, 8 /Slave FIFO Programmable-Level Flag (High/Low)

Figure 15-28. Endpoint 2/Slave FIFO Programmable Flag High

EP2FIFOPFH
see Section 15.14

Endpoint 2/Slave FIFO Programmable-Level
Flag HIGH

[HIGH SPEED (480 Mbit/Sec) Mode and
FULL-SPEED (12 Mbit/Sec) Iso Mode]

E630

b7 b6 b5 b4 b3 b2 b1 b0

DECIS PKTSTAT IN: PKTS[2]
OUT:PFC12

IN: PKTS[1]
OUT:PFC11

IN: PKTS[0]
OUT:PFC10

0 PFC9 PFC8

R/W R/W R/W R/W R/W R R/W R/W

1 0 0 0 1 0 0 0

EP2FIFOPFH
see Section 15.14

Endpoint 2/Slave FIFO Programmable-Level
Flag HIGH

[FULL SPEED (12 Mbit/Sec) Non-Iso Mode]

E630

b7 b6 b5 b4 b3 b2 b1 b0

DECIS PKTSTAT OUT:PFC12 OUT:PFC11 OUT:PFC10 0 PFC9 IN: PKTS[2]
OUT:PFC8

R/W R/W R/W R/W R/W R R/W R/W

1 0 0 0 1 0 0 0

Exhibit 2058 - Page 353 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-34 EZ-USB FX2 Technical Reference Manual v2.1

Figure 15-29. Endpoint 6/Slave FIFO Programmable Flag High

These registers control the point at which the programmable flag (PF) is asserted for each of the
four endpoint FIFOs. The EPxFIFOPFH:L fields are interpreted differently for OUT and IN end-
points.

The threshold point for the programmable-level flag (PF) is configured as follows:

Each FIFO’s programmable-level flag (PF) asserts when the FIFO reaches a user-defined fullness
threshold. That threshold is configured as follows:

1. For OUT packets: The threshold is stored in PFC12:0. The PF is asserted when the number of
bytes in the entire FIFO is less than/equal to (DECIS=0) or greater than/equal to (DECIS=1)
the threshold.

2. For IN packets, with PKTSTAT = 1: The threshold is stored in PFC9:0. The PF is asserted
when the number of bytes written into the current, not-yet-committed packet in the FIFO is
less than/equal to (DECIS=0) or greater than/equal to (DECIS=1) the threshold.

3. For IN packets, with PKTSTAT = 0: The threshold is stored in two parts: PKTS2:0 holds the
number of committed packets, and PFC9:0 holds the number of bytes in the current, not-yet-
committed packet. The PF is asserted when the FIFO is at or less full than (DECIS=0), or at or
more full than (DECIS=1), the threshold.

EP6FIFOPFH
see Section 15.14

Endpoint 6/Slave FIFO Programmable-Level
Flag HIGH

[HIGH SPEED (480 Mbit/Sec) Mode and
FULL-SPEED (12 Mbit/Sec) Iso Mode]

E634

b7 b6 b5 b4 b3 b2 b1 b0

DECIS PKTSTAT IN: PKTS[2]
OUT:PFC12

IN: PKTS[1]
OUT:PFC11

IN: PKTS[0]
OUT:PFC10

0 PFC9 PFC8

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 1 0 0 0

EP6FIFOPFH
see Section 15.14

Endpoint 6/Slave FIFO Programmable-Level
Flag HIGH

[FULL SPEED (12 Mbit/Sec) Non-Iso Mode]

E634

b7 b6 b5 b4 b3 b2 b1 b0

DECIS PKTSTAT OUT:PFC12 OUT:PFC11 OUT:PFC10 0 PFC9 IN: PKTS[2]
OUT:PFC8

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 1 0 0 0

Exhibit 2058 - Page 354 of 460

Chapter 15. Registers Page 15-35

By default, FLAGA is the Programmable-Level Flag (PF) for the endpoint currently pointed to by
the FIFOADR[1:0] pins. For EP2 and EP4, the default endpoint configuration is BULK, OUT, 512,
2x, and the PF pin asserts when the entire FIFO has greater than/equal to 512 bytes. For EP6 and
EP8, the default endpoint configuration is BULK, IN, 512, 2x, and the PF pin asserts when the
entire FIFO has less than/equal to 512 bytes.

In other words, the default-configuration PFs for EP2 and EP4 assert when the FIFOs are half-full,
and the default-configuration PFs for EP6 and EP8 assert when those FIFOs are half-empty.

In the first example below, bits 5-3 have data that is required to complete the transfer. In the sec-
ond example, bits 5-3 do not matter - those bits are don’t cares because PKTSTAT=1:

Example 1:

Assume a Bulk IN transfer over Endpoint 2 and PKTSTAT=0:

EP2FIFOPFH = 0001 0000

• b6=0 (or PKTSTAT=0): this indicates that the transfer will include packets (as defined
by bits 5, 4, and 3) plus bytes (the sum in the flag low register)

• b5b4b3=010 binary (or 2 decimal): this indicates the number of packets to expect dur-
ing the transfer (in this case, two packets…)

EP2FIFOPFL = 0011 0010

• …plus 50 bytes in the currently filling packet
(the sum of the binary bits in the EP2FIFOPFL register is 2 +16 + 32 = 50 decimal)

DECIS=0, thus PF activates when less than 2 PKTS+50 bytes.

Example 2:

To perform an IN transfer of a number over the same endpoint, set PKTSTAT=1 and write a value
into the EP2FIFOPFL register:

EP2FIFOPFH = 01xxx000

EP2FIFOPFL = 75

Setting PKTSTAT=1 causes the PF decision to be based on the byte count alone, ignoring the
packet count. This mode is valuable for double-buffered endpoints, where only the byte count of
the currently-filling packet is important.

DECIS=0, thus PF activates when less than 75 bytes in the current PKTS.

Bit 1-0 PFC9:8 PF Threshold

Bits 1-0 of EP2FIFOPFH are bits 9-8 of the byte count register.

Exhibit 2058 - Page 355 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-36 EZ-USB FX2 Technical Reference Manual v2.1

Figure 15-30. Endpoint 4/Slave FIFO Programmable Flag High

EP4FIFOPFH
see Section 15.14

Endpoint 4/Slave FIFO Programmable-Level
Flag HIGH

[HIGH SPEED (480 Mbit/Sec) Mode and
FULL-SPEED (12 Mbit/Sec) Iso Mode]

E632

b7 b6 b5 b4 b3 b2 b1 b0

DECIS PKTSTAT 0 IN: PKTS[1]
OUT:PFC10

IN: PKTS[0]
OUT:PFC9

0 0 PFC8

R/W R/W R R/W R/W R R R/W

1 0 0 0 1 0 0 0

EP4FIFOPFH
see Section 15.14

Endpoint 4/Slave FIFO Programmable-Level
Flag HIGH

[FULL SPEED (12 Mbit/Sec) Non-Iso Mode]

E632

b7 b6 b5 b4 b3 b2 b1 b0

DECIS PKTSTAT 0 OUT:PFC10 OUT:PFC9 0 0 PFC8

R/W R/W R R/W R/W R R R/W

1 0 0 0 1 0 0 0

Exhibit 2058 - Page 356 of 460

Chapter 15. Registers Page 15-37

.

Figure 15-31. Endpoint 8/Slave FIFO Programmable Flag High

Refer to the discussion for EP2PF.

Bit 7 DECIS PF Polarity

See EP2FIFOPFH and EP6FIFOPFH Register definition.

Bit 6 PKSTAT Packet Status

See EP2FIFOPFH and EP6FIFOPFH Register definition.

Bit 4-3 PKTS1:0 / PFC10:9 PF Threshold

See EP2FIFOPFH and EP6FIFOPFH Register definition.

Bit 0 PFC8 PF Threshold

See EP2FIFOPFH and EP6FIFOPFH Register definition.

EP8FIFOPFH
see Section 15.14

Endpoint 8/Slave FIFO Programmable-Level
Flag HIGH

[HIGH SPEED (480 Mbit/Sec) Mode and
FULL-SPEED (12 Mbit/Sec) Iso Mode]

E636

b7 b6 b5 b4 b3 b2 b1 b0

DECIS PKTSTAT 0 IN: PKTS[1]
OUT:PFC10

IN: PKTS[0]
OUT:PFC9

0 0 PFC8

R/W R/W R R/W R/W R R R/W

0 0 0 0 1 0 0 0

EP8FIFOPFH
see Section 15.14

Endpoint 8/Slave FIFO Programmable-Level
Flag HIGH

[FULL SPEED (12 Mbit/Sec) Non-Iso Mode]

E636

b7 b6 b5 b4 b3 b2 b1 b0

DECIS PKTSTAT 0 OUT:PFC10 OUT:PFC9 0 0 PFC8

R/W R/W R R/W R/W R R R/W

0 0 0 0 1 0 0 0

Exhibit 2058 - Page 357 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-38 EZ-USB FX2 Technical Reference Manual v2.1

Figure 15-32. Endpoint 2, 4, 6, 8/Slave FIFO Programmable Flag Low

Bit 7-0 PFC7:0 PF Threshold

This register contains the current packet bytes to be transferred when the EPxFIFOPFH regis-
ter requires data.

Bits 9:8 of the byte count are in bits 1:0 of EP2FIFOPFH/EP6FIFOPFH.

Bit 8 of the byte count is bit 0 of EP4FIFOPFH/EP8FIFOPFH.

EP2FIFOPFL
see Section 15.14

Endpoint 2/Slave FIFO Prog. Flag LOW E631

EP4FIFOPFL
see Section 15.14

Endpoint 4/Slave FIFO Prog. Flag LOW E633

EP6FIFOPFL
see Section 15.14

Endpoint 6/Slave FIFO Prog. Flag LOW E635

EP8FIFOPFL
see Section 15.14

Endpoint 8/Slave FIFO Prog. Flag LOW
[HIGH SPEED (480 Mbit/Sec) Mode and
FULL-SPEED (12 Mbit/Sec) Iso Mode]

E637

b7 b6 b5 b4 b3 b2 b1 b0

PFC7 PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 PFC0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

EP2FIFOPFL
see Section 15.14

Endpoint 2/Slave FIFO Prog. Flag LOW E631

EP4FIFOPFL
see Section 15.14

Endpoint 4/Slave FIFO Prog. Flag LOW E633

EP6FIFOPFL
see Section 15.14

Endpoint 6/Slave FIFO Prog. Flag LOW E635

EP8FIFOPFL
see Section 15.14

Endpoint 8/Slave FIFO Prog. Flag LOW
[FULL SPEED (12 Mbit/Sec) Non-Iso Mode]

E637

b7 b6 b5 b4 b3 b2 b1 b0

IN: PKTS[1]
OUT:PFC7

IN: PKTS[0]
OUT:PFC6

PFC5 PFC4 PFC3 PFC2 PFC1 PFC0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 358 of 460

Chapter 15. Registers Page 15-39

15.6.5.1 IN Endpoints

For IN endpoints, the Trigger registers can apply to either the full FIFO, comprising multiple pack-
ets, or only to the current packet being filled. The PKTSTAT bit controls this choice:

Table 15-14. Interpretation of PF for IN Endpoints

Example 1:

The following is an example of how you might use the first case.

Assume a Bulk IN transfer over Endpoint 2. For Bulk transfers, the FX2 packet buffer size is 512
bytes. Assume you have reported a MaxPacketSize value of 100 bytes per packet, and you have
configured the endpoint for triple-buffering. This means that whenever 100 bytes are loaded into a
packet buffer, the FX2 logic commits that packet buffer to the USB interface, essentially adding
100 bytes to the “USB-side” FIFO.

You want to notify the external logic that is filling the endpoint FIFO under two conditions:

• Two of the three packet buffers are full (committed to sending over USB, but not yet sent).

• The current packet buffer is half-full.

In other words, all available IN endpoint buffer space is almost full. You accomplish this by setting:

EP2FIFOPFH = 0001 0000

• b6: PKTSTAT=0 to include packets plus bytes

• b5b4b3=2: two packets…

EP2FIFOPFL = 0011 0010

• …plus 50 bytes in the currently filling packet

PKTSTAT PF applies to: EPxFIFOPFH:L format
0 PKTS + Current packet bytes PKTS[] PBC[]

1 Current packet bytes only PBC[]

Exhibit 2058 - Page 359 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-40 EZ-USB FX2 Technical Reference Manual v2.1

Example 2:

If you want the PF to inform the outside interface (the logic that is filling the IN FIFO) whenever the
current packet is 75% full, set PKTSTAT=1, and load a packet byte count of 75:

EP2FIFOPFH = 11xxx000

EP2FIFOPFHL = 75

Setting PKTSTAT=1 causes the PF decision to be based on the byte count alone, ignoring the
packet count. This mode is valuable for double-buffered endpoints, where only the byte count of
the currently-filling packet is important.

15.6.5.2 OUT Endpoints

For OUT endpoints, the PF flag applies to the total number of bytes in the multi-packet FIFO, with
no packet count field. Instead of representing byte counts in two segments, a packet count and a
byte count for the currently emptying packet, the byte Trigger values indicate total bytes available
in the FIFO. Note the discontinuity between PBC10 and PBC9.

Notice that the packet byte counts differ in the upper PBC bits because the endpoints support dif-
ferent FIFO sizes: The EP2 FIFO can be a maximum of 4096 bytes long, the EP6 FIFO can be a
maximum of 2048 bytes long, and the EP4 and EP8 FIFOS can be a maximum of 1024 bytes long.
The diagram below shows examples of the maximum FIFO sizes.

Figure 15-33. Maximum FIFO Sizes

512

512

512

512

E P 2

E P 4
512

512

512

512

E P 2

512

512

512

512

E P 6

E P 8
512

512

512

512

E P 6

512

512

512

512

E P 2

512

512E P 6

1024

1024

E P 2

1024

1024

E P 6

1024

1024

E P 2

1024

1024

1024

E P 2

1024

1024

512

512

E P 8
512

512

E P 8

Exhibit 2058 - Page 360 of 460

Chapter 15. Registers Page 15-41

15.6.6 Endpoint 2, 4, 6, 8 ISO IN Packets per Frame

Figure 15-34. Endpoint ISO IN Packets per Frame

Bit 1-0 INPPF1:0 IN Packets per Frame

For ISOCHRONOUS IN endpoints only, these bits determine the number of packets per micro-
frame (high speed mode).

Table 15-15. IN Packets per Microframe

15.6.7 Force IN Packet End

Figure 15-35. Force IN Packet End

EP2ISOINPKTS Endpoint 2 (if ISO) IN Packets Per Frame E640
EP4ISOINPKTS Endpoint 4 (if ISO) IN Packets Per Frame E641
EP6ISOINPKTS Endpoint 6 (if ISO) IN Packets Per Frame E642
EP8ISOINPKTS Endpoint 8 (if ISO) IN Packets Per Frame E643

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 INPPF1 INPPF0

R R R R R R R/W R/W

0 0 0 0 0 0 0 1

INPPF1 INPPF0 Packets
0 0 Invalid

0 1 1

1 0 2

1 1 3

INPKTEND
see Section 15.5.9
see Section 15.14

Force IN Packet End E648

b7 b6 b5 b4 b3 b2 b1 b0

SKIP 0 0 0 EP3 EP2 EP1 EP0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

Exhibit 2058 - Page 361 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-42 EZ-USB FX2 Technical Reference Manual v2.1

Bit 7 SKIP Skip Packet

When ENH_PKT (REVCTL.0) is set to 1, setting this bit to a “1“ will skip the IN packet. Clear-
ing this bit to 0 automatically ‘dispatches’ an IN buffer.

Bit 3-0 EP3:0 Endpoint Number

Duplicates the function of the PKTEND pin. This feature is used only for IN transfers.

By writing the desired endpoint number (2, 4, 6 or 8), FX2 logic automatically ‘dispatches’ an
IN buffer, for example, it commits the packet to the USB logic, and writes the accumulated
byte count to the endpoint’s byte count register, thus “arming” the IN transfer.

15.6.8 Force OUT Packet End

Figure 15-36. Force OUT Packet End

Bit 7 SKIP Skip Packet

When ENH_PKT (REVCTL.0) is set to 1, setting this bit to a “1“ will skip the OUT packet.
Clearing this bit to 0 automatically ‘dispatches’ an OUT buffer.

Bits 3:0 EP3:0 Endpoint Number

Replaces the function of EPxBCL.7=1 (Skip). This feature is for OUT transfers. By writing the
desired endpoint number (2, 4, 6, or 8), FX2 logic automatically skips or commits an OUT
packet (depends on the SKIP bit settings).

Note: This register has no effect if REVCTL.0=0.

OUTPKTEND
see Section 15.5.9
see Section 15.14

Force OUT Packet End E649

b7 b6 b5 b4 b3 b2 b1 b0

SKIP 0 0 0 EP3 EP2 EP1 EP0

W W W W W W W W

x x x x x x x x

Exhibit 2058 - Page 362 of 460

Chapter 15. Registers Page 15-43

15.7 Interrupts

15.7.1 Endpoint 2, 4, 6, 8 Slave FIFO Flag Interrupt Enable/Request

Figure 15-37. Endpoint 2, 4, 6, 8 Slave FIFO Flag Interrupt Enable

The Interrupt Registers control all the FX2 Interrupt Enables (IE) and Interrupt requests (IRQ).
Interrupt enables and request bits for endpoint FIFO: Programmable Flag (PF), Empty Flag (EF),
and Full Flag (FF).

To enable any of these interrupts, INTSETUP.1 (INT4SRC) and INTSETUP.0 must be ‘1’.

Bit 3 EDGEPF Firing Edge Programmable Flag

When EDGEPF=0, the interrupt fires on the rising edge of the programmable flag.

When EDGEPF=1, the interrupt fires on the falling edge of the programmable flag.

Note: In order for the CPU to vector to the appropriate interrupt service routine, PF must
be set to a “1“ and INTSETUP.0=1 (AV4EN) and INTSETUP.1=1 (INT4SRC). Refer to Sec-
tion 15.7.12

Bit 2 PF Programmable Flag

When this bit is '1', the programmable flag interrupt is enabled on INT4. When this bit is '0' the
programmable flag interrupt is disabled.

EP2FIFOIE
see Section 15.14

EP2 Slave FIFO Flag Interrupt Enable (INT4) E650

EP4FIFOIE
see Section 15.14

EP4 Slave FIFO Flag Interrupt Enable (INT4) E652

EP6FIFOIE
see Section 15.14

EP6 Slave FIFO Flag Interrupt Enable (INT4) E654

EP8FIFOIE
see Section 15.14

EP8 Slave FIFO Flag Interrupt Enable (INT4) E656

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 EDGEPF PF EF FF

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 363 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-44 EZ-USB FX2 Technical Reference Manual v2.1

Bit 1 EF Empty Flag

When this bit is '1', the empty flag interrupt is enabled on INT4. When this bit is '0' the empty
flag interrupt is disabled.

Bit 0 FF Full Flag

When this bit is '1', the full flag interrupt is enabled on INT4. When this bit is '0' the full flag
interrupt is disabled.

Figure 15-38. Endpoint 2, 4, 6, 8 Slave FIFO Flag Interrupt Request

Interrupt enables and request bits for endpoint FIFO: Programmable Flag (PF), Empty Flag (EF),
and Full Flag (FF).

Bit 2 PF Programmable Flag

FX2 sets PF to 1 to indicate a “programmable flag” interrupt request. The interrupt source is
available in the interrupt vector register IVEC4.

Bit 1 EF Empty Flag

FX2 sets EF to 1 to indicate an “empty flag” interrupt request. The interrupt source is available
in the interrupt vector register IVEC4.

EP2FIFOIRQ
see Section 15.14

EP2 Slave FIFO Flag Interrupt Request (INT4) E651

EP4FIFOIRQ
see Section 15.14

EP4 Slave FIFO Flag Interrupt Request (INT4) E653

EP6FIFOIRQ
see Section 15.14

EP6 Slave FIFO Flag Interrupt Request (INT4) E655

EP8FIFOIRQ
see Section 15.14

EP8 Slave FIFO Flag Interrupt Request (INT4) E657

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 PF EF FF

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 364 of 460

Chapter 15. Registers Page 15-45

Bit 0 FF Full Flag

FX2 sets FF to 1 to indicate a “full flag” interrupt request. The interrupt source is available in
the interrupt vector register IVEC4.

Do not clear an IRQ Bit by reading an IRQ Register, ORing its contents with a bit mask, and writing
back the IRQ Register. This will clear ALL pending interrupts. Instead, simply write the bit mask
value (with a “1” in the bit position of the IRQ you want to clear) directly to the IRQ Register.

15.7.2 IN-BULK-NAK Interrupt Enable/Request

Figure 15-39. IN-BULK-NAK Interrupt Enable

Figure 15-40. IN-BULK-NAK Interrupt Request

Bit 5-0 EP[8,6,4,2,1,0] Endpoint-Specific Interrupt Enable

These interrupts occur when the host sends an IN token to a Bulk-IN endpoint which has not
been loaded with data and armed for USB transfer. In this case the FX2 SIE automatically
NAKs the IN token and sets the IBNIRQ bit for the endpoint.

Set IE=1 to enable the interrupt, and IE=0 to disable it.

An IRQ bit is set to 1 to indicate an interrupt request. The interrupt source is available in the
interrupt vector register IVEC2. The firmware clears an IRQ bit by writing a 1 to it.

IBNIE IN-BULK-NAK Interrupt Enable (INT2) E658

b7 b6 b5 b4 b3 b2 b1 b0

0 0 EP8 EP6 EP4 EP2 EP1 EP0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

IBNIRQ IN-BULK-NAK Interrupt Request (INT2) E659

b7 b6 b5 b4 b3 b2 b1 b0

0 0 EP8 EP6 EP4 EP2 EP1 EP0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 365 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-46 EZ-USB FX2 Technical Reference Manual v2.1

Do not clear an IRQ bit by reading an IRQ Register, ORing its contents with a bit mask, and writ-
ing back the IRQ Register. This will clear ALL pending interrupts. Instead, simply write the bit mask
value (with a “1” in the bit position of the IRQ you want to clear) directly to the IRQ Register.

15.7.3 Endpoint Ping-NAK/IBN Interrupt Enable/Request

Figure 15-41. Endpoint Ping-NAK/IBN Interrupt Enable

Figure 15-42. Endpoint Ping-NAK/IBN Interrupt Request

Bit 7-2 EP[8,6,4,2,1,0] Ping-NAK INT Enable/Request

These registers are active only during high speed (480 Mbits/sec) operation.

USB 2.0 improves the USB 1.1 bus bandwidth utilization by implementing a PING-NAK mech-
anism for OUT transfers. When the host wishes to send OUT data to an endpoint, it first sends
a PING token to see if the endpoint is ready, i.e. it has an empty buffer. If a buffer is not avail-
able, the SIE returns a NAK handshake. PING-NAK transactions continue to occur until an
OUT buffer is available, at which time the FX2 SIE answers a PING with an ACK handshake.
Then the host sends the OUT data to the endpoint.

The OUT Ping NAK interrupt indicates that the host is trying to send OUT data, but the SIE
responded with a NAK because no endpoint buffer memory is available. The firmware may
wish to use this interrupt to free up an OUT endpoint buffer.

NAKIE Endpoint Ping-NAK/IBN Interrupt Enable (INT2) E65A

b7 b6 b5 b4 b3 b2 b1 b0

EP8 EP6 EP4 EP2 EP1 EP0 0 IBN

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

NAKIRQ Endpoint Ping-NAK/IBN Interrupt Request (INT2) E65B

b7 b6 b5 b4 b3 b2 b1 b0

EP8 EP6 EP4 EP2 EP1 EP0 0 IBN

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 366 of 460

Chapter 15. Registers Page 15-47

Bit 0 IBN IBN INT Enable/Request

This bit is automatically set when any of the IN bulk endpoints responds to an IN token with a
NAK. This interrupt occurs when the host sends an IN token to a bulk IN endpoint which has
not yet been armed. Individual enables and requests (per endpoint) are controlled by the
IBNIE and IBNIRQ Registers. Write a “1” to this bit to clear the interrupt request.

The IBN INT only fires on a 0-to-1 transition of an “OR” condition of all IBN sources that are
enabled.

The firmware clears an IRQ bit by writing a 1 to it.

Do not clear an IRQ bit by reading an IRQ Register, ORing its contents with a bit mask, and writing
back the IRQ Register. This will clear ALL pending interrupts. Instead, simply write the bit mask
value (with a “1” in the bit position of the IRQ you want to clear) directly to the IRQ Register.

15.7.4 USB Interrupt Enable/Request

Figure 15-43. USB Interrupt Enables

Figure 15-44. USB Interrupt Requests

Bit 6 EP0ACK EndPoint 0 Acknowledge

Status stage completed

USBIE USB Interrupt Enables (INT2) E65C

b7 b6 b5 b4 b3 b2 b1 b0

0 EP0ACK HSGRANT URES SUSP SUTOK SOF SUDAV

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

USBIRQ USB Interrupt Requests (INT2) E65D

b7 b6 b5 b4 b3 b2 b1 b0

0 EP0ACK HSGRANT URES SUSP SUTOK SOF SUDAV

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 367 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-48 EZ-USB FX2 Technical Reference Manual v2.1

Bit 5 HSGRANT Grant High Speed Access

The FX2 SIE sets this bit when it has been granted high speed (480 Mbits/sec) access to
USB.

Bit 4 URES USB Reset Interrupt Request

The USB signals a bus reset by driving both D+ and D- low for at least 10 milliseconds. When
the USB core detects the onset of USB bus reset, it activates the URES Interrupt Request.
The USB core sets this bit to “1” when it detects a USB bus reset. Write a “1” to this bit to clear
the interrupt request.

Bit 3 SUSP Suspend Interrupt Request

If the EZ-USB FX2 detects 3 ms of no bus activity, it activates the SUSP (Suspend) Interrupt
Request. The USB core sets this bit to “1” when it detects USB SUSPEND signaling (no bus
activity for 3 ms). Write a “1” to this bit to clear the interrupt request.

Bit 2 SUTOK Setup Token

The USB core sets this bit to “1” when it receives a SETUP token. Write a “1” to this bit to clear
the interrupt request.

Bit 1 SOF Start of Frame

The USB core sets this bit to “1” when it receives a SOF packet. Write a “1” to this bit to clear
the interrupt request.

Bit 0 SUDAV SETUP Data Available Interrupt Request

The USB core sets this bit to “1” when it has transferred the eight data bytes from an endpoint
zero SETUP packet into internal registers (at SETUPDAT). Write a “1” to this bit to clear the
interrupt request.

Do not clear an IRQ bit by reading an IRQ Register, ORing its contents with a bit mask, and writ-
ing back the IRQ Register. This will clear ALL pending interrupts. Instead, simply write the bit mask
value (with a “1” in the bit position of the IRQ you want to clear) directly to the IRQ Register.

Exhibit 2058 - Page 368 of 460

Chapter 15. Registers Page 15-49

15.7.5 Endpoint Interrupt Enable/Request

Figure 15-45. Endpoint Interrupt Enables

Figure 15-46. Endpoint Interrupt Requests

These Endpoint interrupt enable/request registers indicate the pending interrupts for each bulk
endpoint. For IN endpoints, the interrupt asserts when the host takes a packet from the endpoint;
for OUT endpoints, the interrupt asserts when the host supplies a packet to the endpoint.

The IRQ bits function independently of the Interrupt Enable (IE) bits, so interrupt requests are held
whether or not the interrupts are enabled.

Do not clear an IRQ bit by reading an IRQ Register, ORing its contents with a bit mask, and writing
back the IRQ Register. This will clear ALL pending interrupts. Instead, simply write the bit mask
value (with a “1” in the bit position of the IRQ you want to clear) directly to the IRQ Register.

EPIE Endpoint Interrupt Enables (INT2) E65E

b7 b6 b5 b4 b3 b2 b1 b0

EP8 EP6 EP4 EP2 EP1OUT EP1IN EP0OUT EP0IN

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

EPIRQ Endpoint Interrupt Requests (INT2) E65F

b7 b6 b5 b4 b3 b2 b1 b0

EP8 EP6 EP4 EP2 EP1OUT EP1IN EP0OUT EP0IN

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 369 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-50 EZ-USB FX2 Technical Reference Manual v2.1

15.7.6 GPIF Interrupt Enable/Request

Figure 15-47. GPIF Interrupt Enable

Figure 15-48. GPIF Interrupt Request

Bit 1 GPIFWF FIFO Read/Write Waveform

GPIF-to-firmware “hook” in Waveform, when waveform descriptor is programmed to assert the
GPIFWF interrupt.

Bit 0 GPIFDONE GPIF Idle State

0 = Transaction in progress.

1 = Transaction Done (GPIF is idle, hence GPIF is ready for next Transaction). Fires IRQ4 if
enabled.

The firmware clears an interrupt request bit by writing a “1” to it.

Do not clear an IRQ bit by reading an IRQ Register, ORing its contents with a bit mask, and writ-
ing back the IRQ Register. This will clear ALL pending interrupts. Instead, simply write the bit mask
value (with a “1” in the bit position of the IRQ you want to clear) directly to the IRQ Register.

GPIFIE
see Section 15.14

GPIF Interrupt Enable (INT4) E660

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 GPIFWF GPIFDONE

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

GPIFIRQ
see Section 15.14

GPIF Interrupt Request (INT4) E661

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 GPIFWF GPIFDONE

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 370 of 460

Chapter 15. Registers Page 15-51

15.7.7 USB Error Interrupt Enable/Request

Figure 15-49. USB Error Interrupt Enables

Figure 15-50. USB Error Interrupt Request

Bit 7-4 ISOEP[8,6,4,2] ISO Error Packet

The ISO EP Flag is set when:

• ISO OUT data PIDs arrive out of sequence (applies to high speed only).

• An ISO OUT packet was dropped because no buffer space was available for an OUT
packet (in either full- or high-speed modes).

Bit 0 ERRLIMIT Error Limit

ERRLIMIT counts USB bus errors—CRC, bit stuff, etc., and triggers the interrupt when the
programmed limit (0-15) is reached.

The firmware clears an interrupt request bit by writing a “1” to it. (See the following Note).

Do not clear an IRQ bit by reading an IRQ Register, ORing its contents with a bit mask, and writing
back the IRQ Register. This will clear ALL pending interrupts. Instead, simply write the bit mask
value (with a “1” in the bit position of the IRQ you want to clear) directly to the IRQ Register.

USBERRIE USB Error Interrupt Enables (INT2) E662

b7 b6 b5 b4 b3 b2 b1 b0

ISOEP8 ISOEP6 ISOEP4 ISOEP2 0 0 0 ERRLIMIT

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

USBERRIRQ USB Error Interrupt Request (INT2) E663

b7 b6 b5 b4 b3 b2 b1 b0

ISOEP8 ISOEP6 ISOEP4 ISOEP2 0 0 0 ERRLIMIT

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 371 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-52 EZ-USB FX2 Technical Reference Manual v2.1

15.7.8 USB Error Counter Limit

Figure 15-51. USB Error Counter and Limit

Bit 7-4 EC3:0 USB Error Count

Error count has a maximum value of 15.

Bit 3-0 LIMIT3:0 Error Count Limit

USB bus error count and limit. The firmware can enable the interrupt to cause an interrupt
when the limit is reached. The default limit count is 4.

15.7.9 Clear Error Count

Figure 15-52. Clear Error Count EC3:0

Write 0xFF to this register to clear the EC (Error Count) bits in the ERRCNTLIM Register.

ERRCNTLIM USB Error Counter and Limit E664

b7 b6 b5 b4 b3 b2 b1 b0

EC3 EC2 EC1 EC0 LIMIT3 LIMIT2 LIMIT1 LIMIT0

R R R R R/W R/W R/W R/W

x x x x 0 1 0 0

CLRERRCNT Clear Error Count EC3:0 E665

b7 b6 b5 b4 b3 b2 b1 b0

x x x x x x x x

W W W W W W W W

x x x x x x x x

Exhibit 2058 - Page 372 of 460

Chapter 15. Registers Page 15-53

15.7.10 INT 2 (USB) Autovector

Figure 15-53. INT 2 (USB) Autovector

Bit 6-2 I2V4:0 INT 2 Autovector

To save the code and processing time required to sort out which USB interrupt occurred, the
USB core provides a second level of interrupt vectoring, called Autovectoring. When the CPU
takes a USB interrupt, it pushes the program counter onto its stack, and then executes a jump
to address 43, where it expects to find a jump instruction to the INT2 service routine.

I2V indicates the source of an interrupt from the USB Core. When the USB core generates an
INT2 (USB) Interrupt Request, it updates INT2IVEC to indicate the source of the interrupt. The
interrupt sources are encoded on I2V4:0.

15.7.11 INT 4 (slave FIFOs & GPIF) Autovector

Figure 15-54. INT 4 (slave FIFOs & GPIF) Autovector

Bit 5-2 I4V3:0 INT 4 Autovector

To save the code and processing time required to sort out which FIFO interrupt occurred, the
USB core provides a second level of interrupt vectoring, called Autovectoring. When the CPU
takes a USB interrupt, it pushes the program counter onto its stack, and then executes a jump
to address 53, where it expects to find a jump instruction to the INT4 service routine.

INT2IVEC INTERRUPT 2 (USB) Autovector E666

b7 b6 b5 b4 b3 b2 b1 b0

0 I2V4 I2V3 I2V2 I2V1 I2V0 0 0

R R R R R R R R

0 0 0 0 0 0 0 0

INT4IVEC Interrupt 4 (slave FIFOs & GPIF) Autovector E667

b7 b6 b5 b4 b3 b2 b1 b0

1 0 I4V3 I4V2 I4V1 I4V0 0 0

R R R R R R R R

1 0 0 0 0 0 0 0

Exhibit 2058 - Page 373 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-54 EZ-USB FX2 Technical Reference Manual v2.1

I4V indicates the source of an interrupt from the USB Core. When the USB core generates an
INT4 (FIFO/GPIF) Interrupt Request, it updates INT4IVEC to indicate the source of the inter-
rupt. The interrupt sources are encoded on I2V3:0.

15.7.12 INT 2 and INT 4 Setup

Figure 15-55. INT 2 and INT 4 Setup

Bit 3 AV2EN INT2 Autovector Enable

To streamline the code that deals with the USB interrupts, this bit enables autovectoring on
INT2.

Bit 1 INT4SRC INT 4 Source

If 0, INT4 is supplied by the pin. If INT4SRC = 1:INT4 supplied internally from FIFO/GPIF
sources.

Bit 0 AV4EN INT4 Autovector Enable

To streamline the 8051 code that deals with the FIFO interrupts, this bit enables autovectoring
on INT4.

INTSETUP INT 2 & INT 4 Setup E668

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 AV2EN 0 INT4SRC AV4EN

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 374 of 460

Chapter 15. Registers Page 15-55

15.8 Input/Output Registers

15.8.1 I/O PORTA Alternate Configuration

Figure 15-56. I/O PORTA Alternate Configuration

Note: Bit 3 is the WU2EN bit in the Wakeup register.

The PORTxCFG register selects alternate functions for the PORTx pins.

Bit 7 FLAGD FlagD Alternate Configuration

If IFCFG1:0=11, setting this bit to '1' configures the PA7 pin as FLAGD, a programmable FIFO
flag.

Bit 6 SLCS SLCS Alternate Configuration

If IFCFG1:0=11, setting this bit to '1' configures the PA7 pin as SLCS, the slave-FIFO chip-
select.

Bit 1-0 INT1:0 Interrupts Enabled for Alternate Configuration

Setting these bits to '1' configures these PORTA pins as the INT1 or INT0 pins.

Note: Bits PORTACFG.7 and PORTACFG.6 both affect pin PA7. If both bits are set, FLAGD takes
precedence.

PORTACFG I/O PORTA Alternate Configuration E670

b7 b6 b5 b4 b3 b2 b1 b0

FLAGD SLCS 0 0 0 0 INT1 INT0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 375 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-56 EZ-USB FX2 Technical Reference Manual v2.1

15.8.2 I/O PORTC Alternate Configuration

Figure 15-57. I/O PORTC Alternate Configuration

Bit 7-0 GPIFA7:0 Enable GPIF Address Pins

Set these pins to “1” to configure this port to output the lower address of enabled GPIF
address pins. Additional bit set in PORTECFG, bit 7.

Set these pins to “0” to configure this as Port C.

15.8.3 I/O PORTE Alternate Configuration

Figure 15-58. I/O PORTE Alternate Configuration

Bit 7 GPIFA8 Enable GPIF Address Pin

GPIF address bit 8 pin. Set these pin to “1” to configure this port to output the high address of
enabled GPIF address pins.

Set these pin to “0” to configure this as Port E.

Bit 6 T2EX Timer 2 Counter

Timer/Counter 2 Capture/Reload Input.

PORTCCFG I/O PORTC Alternate Configuration E671

b7 b6 b5 b4 b3 b2 b1 b0

GPIFA7 GPIFA6 GPIFA5 GPIFA4 GPIFA3 GPIFA2 GPIFA1 GPIFA0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PORTECFG I/O PORTE Alternate Configuration E672

b7 b6 b5 b4 b3 b2 b1 b0

GPIFA8 T2EX INT6 RXD1OUT RXD0OUT T2OUT T1OUT T0OUT

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 376 of 460

Chapter 15. Registers Page 15-57

Bit 5 INT6 INT6 Interrupt Request

Setting this bit to '1' configures this Port E pin as INT6.

Bit 4 RXD1OUT Mode 0: USART1 Synchronous Data Output

Mode 0: USART1 Synchronous Data Output.

Bit 3 RXD0OUT Mode 0: USART0 Synchronous Data Output

Mode 0: USART0 Synchronous Data Output.

Bit 2-0 T2OUT, T1OUT, T0OUT Serial Data

Serial mode 0 provides synchronous, half-duplex serial communication. For Serial Port 0,
serial data output occurs on the RXD0OUT pin, serial data is received on the RXD0 pin, and
the TXD0 pin provides the shift clock for both transmit and receive. Mode 0: Clock Output
Modes 1-3: Serial Port 0 Data Output.

15.8.4 I²C Compatible Bus Control and Status

Figure 15-59. I²C-Compatible Bus Control and Status

Bit 7 START Signal START Condition

Set the START bit to “1” to prepare a bus transfer. If START=1, the next write to I2DAT will
generate the start condition followed by the serialized byte of data in I2DAT. The firmware
loads byte data into I2DAT after setting the START bit. The bus controller clears the START bit
during the ACK interval.

Bit 6 STOP Signal STOP Condition

Set STOP=1 to terminate a bus transfer. The bus controller clears the STOP bit after complet-
ing the STOP condition. If the firmware sets the STOP bit during a byte transfer, the STOP
condition will be generated immediately following the ACK phase of the byte transfer. If no byte
transfer is occurring when the STOP bit is set, the STOP condition will be carried out immedi-
ately on the bus. Data should not be written to I2CS or I2DAT until the STOP bit returns low.

I2CS I²C-Compatible Bus
Control and Status

E678

b7 b6 b5 b4 b3 b2 b1 b0

START STOP LASTRD ID1 ID0 BERR ACK DONE

R/W R/W R/W R R R R R

0 0 0 x x 0 0 0

Exhibit 2058 - Page 377 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-58 EZ-USB FX2 Technical Reference Manual v2.1

Bit 5 LASTRD Last Data Read

To read data over the I²C compatible bus, a bus master floats the SDA line and issues clock
pulses on the SCL line. After every eight bits, the master drives SDA low for one clock to indi-
cate ACK. To signal the last byte of the read transfer, the master floats SDA at ACK time to
instruct the slave to stop sending. This is controlled by setting LastRD=1 before reading the
last byte of a read transfer. The bus controller clears the LastRD bit at the end of the transfer
(at ACK time).

Bit 4-3 ID1:0 Boot EEPROM ID

These bits are set by the boot loader to indicate whether an 8-bit address or 16-bit address
EEPROM at slave address 000 or 001 was detected at power-on. Normally, they are used for
debug purposes only.

Bit 2 BERR Bus Error

This bit indicates a bus error. BERR=1 indicates that there was bus contention, which results
when an outside device drives the bus low when it should not, or when another bus master
wins arbitration, taking control of the bus. BERR is cleared when the IDATA register is read or
written.

Bit 1 ACK Acknowledge Bit

Every ninth SCL or a write transfer the slave indicates reception of the byte by asserting ACK.
The bus controller floats SDA during this time, samples the SDA line, and updates the ACK bit
with the complement of the detected value. ACK=1 indicates acknowledge, and ACK=0 indi-
cates not-acknowledge. The USB core updates the ACK bit at the same time it sets DONE=1.
The ACK bit should be ignored for read transfers on the bus.

Bit 0 DONE Transfer DONE

The bus controller sets this bit whenever it completes a byte transfer, right after the ACK
stage. The controller also generates an Interrupt Request (INT3) when it sets the DONE bit.
The bus controller automatically clears the DONE bit and the Interrupt Request bit whenever
theI2DAT register is read or written.

Exhibit 2058 - Page 378 of 460

Chapter 15. Registers Page 15-59

15.8.5 I²C-Compatible Bus Data

Figure 15-60. I²C-Compatible Bus Data

Bit 7-0 Data Data Bits

Eight bits of data; triggers bus transactions.

15.8.6 I²C-Compatible Bus Control

Figure 15-61. I²C-Compatible Bus Control

Bit 1 STOPIE STOP Interrupt Enable Bit

The STOP bit Interrupt Request is activated when the STOP bit makes a 1-0 transition. To
enable this interrupt, set the STOPIE bit in the I²CMODE Register. The firmware determines
the interrupt source by checking the DONE and STOP bits in the I2CS Register.

I2DAT I²C-Compatible Bus Data E679

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

I2CTL I²C-Compatible Bus Control E67A

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 STOPIE 400KHZ

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 379 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-60 EZ-USB FX2 Technical Reference Manual v2.1

Bit 0 400KHZ High-speed I²C Compatible Bus

For I²C-compatible peripherals that support it, the I²C-compatible bus can run at 400 KHz. For
compatibility, the bus powers-up at the 100-KHz frequency. If 400KHZ=0, the I²C-compatible
bus operates at approximately 100 KHz. If 400KHZ=1, the I²C-compatible bus operates at
approximately 400 KHz. This bit is copied to the I²CCTL register bit 0, which is read-write to
the firmware. Thus the I²C-compatible bus speed is initially set by the EEPROM bit, and may
be changed subsequently by firmware.

15.8.7 AUTOPOINTERs 1 and 2 MOVX access

Figure 15-62. AUTOPTR1 & AUTOPTR2 MOVX access (when APTREN=1)

Bit 7-0 Data AUTODATAx

Data read or written to the xAUTODATn register accesses the memory addressed by the
AUTOPTRHn/Ln registers, and optionally increments the address after the read or write.

XAUTODAT1 AUTOPTR1 MOVX access E67B
XAUTODAT2 AUTOPTR2 MOVX access E67C

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

Exhibit 2058 - Page 380 of 460

Chapter 15. Registers Page 15-61

15.9 UDMA CRC Registers

For complete Flowstate / UDMA information, please contact the Cypress Semiconductor Applica-
tions Department.

These two registers are strictly for debug purposes. The CRC represented by these registers is
calculated based on the rules defined in the ATAPI specification for UDMA transfers. It is calcu-
lated automatically by the GPIF as data is transferred on FD[15:0].

These registers will return the live calculation of the CRC at any point in the transfer, but will be
reset to the seed value of 0x4ABA upon the GPIF entering the IDLE state. These registers are writ-
able; thus the currently calculated CRC including the seed value can be overwritten at any time.

UDMACRCH
see Section 15.14

E67D

b7 b6 b5 b4 b3 b2 b1 b0

CRC[15:8]

RW RW RW RW RW RW RW RW

0 1 0 0 1 0 1 0

UDMACRCL
see Section 15.14

E67E

b7 b6 b5 b4 b3 b2 b1 b0

CRC[7:0]

RW RW RW RW RW RW RW RW

1 0 1 1 1 0 1 0

Exhibit 2058 - Page 381 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-62 EZ-USB FX2 Technical Reference Manual v2.1

This register only applies to UDMA IN transactions that are host terminated. Otherwise, this
register can be completely ignored.

This register covers a very specific and potentially nonexistent (from a typical system implementa-
tion standpoint*) UDMA CRC situation. However rare the situation may be, it is still allowed by the
ATAPI specification and thus must be considered and solved by this register.

The ATAPI specification says that if the host (in this case the GPIF) terminates a UDMA IN trans-
action, that the device (e.g., the disk drive) is allowed to send up to 3 more words after the host
deactivates the HDMARDY signal. These “dribble” words may not be of interest to the host and
thus may be discarded. However, CRC must still be calculated on them since the host and the
device must compare and match the CRC at the end of the transaction to consider the transfer
error-free.

The GPIF normally only calculates CRC on words that are written into the FIFO (and not dis-
carded). This poses a problem since in this case some words will be discarded but still must be
included in the CRC calculation. This register gives a way to have the GPIF calculate CRC on the
extra discarded words as well.

The user would program this register in the following way. The QENABLE bit would be set to 1.
The QSIGNAL[2:0] field would be programmed to select the CTL pin that coincides with the UDMA
STOP signal. The QSTATE bit would be programmed to be 0. This would instruct the GPIF to cal-
culate CRC on any DSTROBE edges from the device when STOP=0, which solves the problem.

Bit 7 QENABLE

This bit enables the CRC qualifier feature, and thus the other bits in this register.

Bit 3 QSTATE

This bit says what state the CRC qualifier signal (selected by QSIGNAL[2:0] below) must be in
to allow CRC to be calculated on words being written into the GPIF.

Bits 2-0 QSIGNAL[2:0]

These bits select which of the CTL[5:0] pins is the CRC qualifier signal.

* - A typical UDMA system will have the device, instead of the host, terminate UDMA IN trans-
fers thus completely avoiding this situation.

UDMACRCQUALIFIER E67F

b7 b6 b5 b4 b3 b2 b1 b0

QENABLE 0 0 0 QSTATE QSIGNAL[2:0]

RW R R R RW RW RW RW

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 382 of 460

Chapter 15. Registers Page 15-63

15.10 USB Control

15.10.1 USB Control and Status

Figure 15-63. USB Control and Status

Bit 7 HSM High Speed Mode

If HSM=1, the SIE is operating in High Speed Mode, 480 bits/sec. 0-1 transition of this bit
causes a HSGRANT interrupt request.

Bit 3 DISCON Signal a Disconnect on the DISCON Pin

DISCON is one of the EZ-USB FX2 control bits in the USBCS (USB Control and Status) Reg-
ister that control the ReNumeration process. Setting this bit to “1” will disconnect from the USB
bus by removing the internal 1.5 K pull-up resistor from the D+. A boot EEPROM may be used
to default this bit to 1 at startup time. This bit will also reset several registers. See Chapter 7
"Resets" for details.

Bit 2 NOSYNSOF Disable Synthesizing Missing SOFs

If set to 1, disable synthesizing missing SOFs.

Bit 1 RENUM Renumerate

This bit controls whether USB device requests are handled by firmware or automatically by the
FX2. When RENUM=0, the USB core handles all device requests. When RENUM=1, the firm-
ware handles all device requests except Set_Address. Set RENUM=1 during a bus disconnect
to transfer USB control to the firmware. The FX2 automatically sets RENUM=1 under two con-
ditions:

1. Completion of a “C2” boot load

2. When external memory is used (EA=1) and no boot EEPROM is used.

USBCS USB Control and Status E680

b7 b6 b5 b4 b3 b2 b1 b0

HSM 0 0 0 DISCON NOSYNSOF RENUM SIGRSUME

R R R R R/W R/W R/W R/W

x 0 0 0 0 0 0 0

Exhibit 2058 - Page 383 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-64 EZ-USB FX2 Technical Reference Manual v2.1

Bit 0 SIGRSUME Signal Remote Device Resume

Set SIGRSUME=1 to drive the “K” state onto the USB bus. This should be done only by a
device that is capable of remote wakeup, and then only during the SUSPEND state. To signal
RESUME, set SIGRSUME=1, waits 10-15 ms, then sets SIGRSUME=0.

15.10.2 Enter Suspend State

Figure 15-64. Enter Suspend State

Bit 7-0 Suspend Enable Suspend
Regardless of Bus State

Write 0xFF to prepare the chip for standby without having to wait for a Bus Suspend.

15.10.3 Wakeup Control & Status

Figure 15-65. Wakeup Control & Status

FX2 has two pins that can be activated by external logic to take FX2 out of standby. These pins
are called WAKEUP and WU2.

Bit 7 WU2 Wakeup Initiated from WU2 Pin

The FX2 sets this status bit to1 when wakeup was initiated by the WU2 pin. Write a 1 to this bit
to clear it.

SUSPEND Put Chip into SUSPEND State E681

b7 b6 b5 b4 b3 b2 b1 b0

x x x x x x x x

W W W W W W W W

x x x x x x x x

WAKEUPCS Wakeup Control & Status E682

b7 b6 b5 b4 b3 b2 b1 b0

WU2 WU WU2POL WUPOL 0 DPEN WU2EN WUEN

R/W R/W R/W R/W R R/W R/W R/W

x x 0 0 0 1 0 1

Exhibit 2058 - Page 384 of 460

Chapter 15. Registers Page 15-65

Bit 6 WU Wakeup Initiated from WU Pin

The FX2 sets this bit to1 when wakeup was initiated by the WU pin. Write a 1 to this bit to clear
it.

Bit 5 WU2POL Polarity of WU2 Pin

Polarity of the WU2 input pin. 0 = active low, 1 = active high.

Bit 4 WUPOL Polarity of WU Pin

Polarity of the WU input pin. 0 = active low, 1 = active high.

Bit 2 DPEN Enable/Disable DPLUS Wakeup

Activity on the USB DPLUS signal normally initiates a USB wakeup sequence.

0=Disable
1=Enable

Bit 1 WU2EN Enable WU2 Wakeup

WU2EN =1: enable wakeup from WU2 pin.

Bit 0 WUEN Enable WU Wakeup

WUEN=1: enable wakeup from the WAKEUP pin.

15.10.4 Data Toggle Control

Figure 15-66. Data Toggle Control

Bit 7 Q Data Toggle Value

Q=0 indicates DATA0 and Q=1 indicates DATA1, for the endpoint selected by the I/O and
EP3:0 bits. Write the endpoint select bits (IO and EP3:0), before reading this value.

TOGCTL Data Toggle Control E683

b7 b6 b5 b4 b3 b2 b1 b0

Q S R IO EP3 EP2 EP1 EP0

R R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 385 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-66 EZ-USB FX2 Technical Reference Manual v2.1

Bit 6 S Set Data Toggle to DATA1

After selecting the desired endpoint by writing the endpoint select bits (IO and EP3:0), set S=1
to set the data toggle to DATA1. The endpoint selection bits should not be changed while this
bit is written.

Bit 5 R Set Data Toggle to DATA0

Set R=1 to set the data toggle to DATA0. The endpoint selection bits should not be changed
while this bit is written.

Bit 4 IO Select IN or OUT Endpoint

Set this bit to select an endpoint direction prior to setting its R or S bit. IO=0 selects an OUT
endpoint, IO=1 selects an IN endpoint.

Bit 3-0 EP3:0 Select Endpoint

Set these bits to select an endpoint prior to setting its R or S bit. Valid values are 0, 1, 2, 4, 6,
and 8.

15.10.5 USB Frame Count High

Figure 15-67. USB Frame Count HIGH

Bit 2-0 FC10:8 High Bits for USB Frame Count

Every millisecond the host sends a SOF token indicating “Start Of Frame,” along with an 11-bit
incrementing frame count. The EZ-USB FX2 copies the frame count into these registers at
every SOF. One use of the frame count is to respond to the USB SYNC_FRAME Request. If
the USB core detects a missing or garbled SOF, it generates an internal SOF and increments
USBFRAMEL-USBRAMEH.

USBFRAMEH USB Frame Count HIGH E684

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 FC10 FC9 FC8

R R R R R R R R

0 0 0 0 0 x x x

Exhibit 2058 - Page 386 of 460

Chapter 15. Registers Page 15-67

15.10.6 USB Frame Count Low

Figure 15-68. USB Frame Count Low

Bit 7-0 FC7:0 Low Byte for USB Frame Count

Every millisecond the host sends a SOF token indicating “Start Of Frame,” along with an 11-bit
incrementing frame count. The EZ-USB FX2 copies the frame count into these registers at
every SOF. One use of the frame count is to respond to the USB SYNC_FRAME Request. If
the USB core detects a missing or garbled SOF, it generates an internal SOF and increments
USBFRAMEL-USBRAMEH.

15.10.7 USB Microframe Count

Figure 15-69. USB Microframe Count

Bit 2-0 MF2:0 Last Occurring Microframe

MICROFRAME contains a count 0-7 which indicates which of the 8 125-microsecond microf-
rames last occurred. This register is active only when FX2 is operating at high speed (480
Mbits/sec).

USBFRAMEL USB Frame Count LOW E685

b7 b6 b5 b4 b3 b2 b1 b0

FC7 FC6 FC5 FC4 FC3 FC2 FC1 FC0

R R R R R R R R

x x x x x x x x

MICROFRAME USB Microframe Count, 0-7 E686

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 MF2 MF1 MF0

R R R R R R R R

0 0 0 0 0 x x x

Exhibit 2058 - Page 387 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-68 EZ-USB FX2 Technical Reference Manual v2.1

15.10.8 USB Function Address

Figure 15-70. USB Function Address

Bit 6-0 FA6:0 USB Function Address

During the USB enumeration process, the host sends a device a unique 7-bit address, which
the USB core copies into this register. There is normally no reason for the CPU to know its
USB device address because the USB Core automatically responds only to its assigned
address.

15.11 Endpoints

15.11.1 Endpoint 0 (Byte Count High)

Figure 15-71. Endpoint 0 (Byte Count High)

Bit 7-0 BC15:8 High Order Byte Count

Even though the EP0 buffer is only 64 bytes, the EP0 byte count is expanded to 16 bits to
allow using the SUDPTR with a custom length, instead of USB-dictated length (from Setup
Data Packet and number of requested bytes). The byte count bits in parentheses apply only
when SDPAUTO (SUDPTRCTL.0) = 0.

FNADDR USB Function Address E687

b7 b6 b5 b4 b3 b2 b1 b0

0 FA6 FA5 FA4 FA3 FA2 FA1 FA0

R R R R R R R R

0 0 0 0 0 0 0 0

EP0BCH Endpoint 0 Byte Count HIGH E68A

b7 b6 b5 b4 b3 b2 b1 b0

(BC15) (BC14) (BC13) (BC12) (BC11) (BC10) (BC9) (BC8)

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

Exhibit 2058 - Page 388 of 460

Chapter 15. Registers Page 15-69

The SIE normally determines how many bytes to send over EP0 in response to a device
request by taking the smaller of (a) the wLength field in the SETUP packet, and (b) the number
of bytes available for transfer (byte count).

15.11.2 Endpoint 0 Control and Status (Byte Count Low)

Figure 15-72. Endpoint 0 Control and Status (Byte Count Low)

Bit 7-0 BC7:0 Low Order Byte Count

Even though the EP0 buffer is only 64 bytes, the EP0 byte count is expanded to 16 bits to
allow using the SUDPTR with a custom length, instead of USB-dictated length (from Setup
Data Packet and number of requested bytes). The byte count bits in parentheses apply only
when SDPAUTO (SUDPTRCTL.0) = 0.

15.11.3 Endpoint 1 OUT and IN Byte Count

Figure 15-73. Endpoint 1 OUT/IN Byte Count

Bit 7-0 BC6:0 Endpoint 1 IN/OUT Byte Count

EP0BCL Endpoint 0 Byte Count Low E68B

b7 b6 b5 b4 b3 b2 b1 b0

(BC7) BC6 BC5 BC4 BC3 BC2 BC1 BC0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

EP1OUTBC Endpoint 1 OUT Byte Count E68D
EP1INBC Endpoint 1 IN Byte Count E68F

b7 b6 b5 b4 b3 b2 b1 b0

0 BC6 BC5 BC4 BC3 BC2 BC1 BC0

R/W R/W R/W R/W R/W R/W R/W R/W

0 x x x x x x x

Exhibit 2058 - Page 389 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-70 EZ-USB FX2 Technical Reference Manual v2.1

15.11.4 Endpoint 2 and 6 Byte Count High

Figure 15-74. Endpoint 2 and 6 Byte Count High

Bit 1-0 BC9:8 Endpoint 2, 6 Byte Count High

EP2 and EP6 can be either 512 or 1024 bytes. These are the high 2 bits of the byte-count.

15.11.5 Endpoint 4 and 8 Byte Count High

Figure 15-75. Endpoint 4 and 5 Byte Count High

Bit 0 BC8 Endpoint 4, 8 Byte Count High

EP4 and EP8 can be 512 bytes only. This is the most significant bit of the byte-count.

EP2BCH
see Section 15.14

Endpoint 2 Byte Count HIGH E690

EP6BCH
see Section 15.14

Endpoint 6 Byte Count HIGH E698

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 BC10 BC9 BC8

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 x x x

EP4BCH
see Section 15.14

Endpoint 4 Byte Count HIGH E694

EP8BCH
see Section 15.14

Endpoint 8 Byte Count HIGH E69C

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 BC9 BC8

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 x x

Exhibit 2058 - Page 390 of 460

Chapter 15. Registers Page 15-71

15.11.6 Endpoint 2, 4, 6, 8 Byte Count Low

Figure 15-76. Endpoint 2, 4, 6, 8 Byte Count Low

Bit 7-0 BC7:0 Byte Count

Low byte count for Endpoints 2, 4, 6, and 8.

15.11.7 Endpoint 0 Control and Status

Figure 15-77. Endpoint 0 Control and Status

Bit 7 HSNAK Hand Shake w/ NAK

The STATUS stage consists of an empty data packet with the opposite direction of the data
stage, or an IN if there was no data stage. This empty data packet gives the device a chance
to ACK, NAK, or STALL the entire CONTROL transfer. Write a “1” to the NAK (handshake
NAK) bit to clear it and instruct the USB core to ACK the STATUS stage. The HSNAK bit holds

EP2BCL
see Section 15.14

Endpoint 2 Byte Count LOW E691

EP4BCL
see Section 15.14

Endpoint 4 Byte Count LOW E695

EP6BCL
see Section 15.14

Endpoint 6 Byte Count LOW E699

EP8BCL
see Section 15.14

Endpoint 8 Byte Count LOW E69D

b7 b6 b5 b4 b3 b2 b1 b0

BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

EP0CS Endpoint 0 Control and Status E6A0

b7 b6 b5 b4 b3 b2 b1 b0

HSNAK 0 0 0 0 0 BUSY STALL

R/W R/W R/W R/W R/W R/W R R/W

1 0 0 0 0 0 0 0

Exhibit 2058 - Page 391 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-72 EZ-USB FX2 Technical Reference Manual v2.1

off completing the CONTROL transfer until the device has had time to respond to a
request.Clear the HSNAK bit (by writing “1” to it) to instruct the USB core to ACK the status
stage of the transfer.

Bit 1 BUSY EP0 Buffer Busy

BUSY is a read-only bit that is automatically cleared when a SETUP token arrives. The BUSY
bit is set by writing a byte count to EP0BCL.

Bit 0 STALL EP0 Stalled

STALL is a read/write bit that is automatically cleared when a SETUP token arrives. The
STALL bit is set by writing a “1” to the register bit.

While STALL=1, the USB core sends the STALL PID for any IN or OUT token. This can occur
in either the data or handshake phase of the CONTROL transfer.

To indicate an endpoint stall on endpoint zero, set both STALL and HSNAK bits. Setting the STALL
bit alone causes endpoint zero to NAK forever because the host keeps the control transfer pend-
ing.

15.11.8 Endpoint 1 OUT/IN Control and Status

Figure 15-78. Endpoint 1 OUT/IN Control and Status

Bit 1 BUSY OUT/IN Endpoint Busy

The BUSY bit indicates the status of the endpoint’s OUT Buffer EP1OUTBUF. The USB core
sets BUSY=0 when the host data is available in the OUT buffer. The firmware sets BUSY=1 by
loading the endpoint’s byte count register.

When BUSY=1, endpoint RAM data is invalid—the endpoint buffer has been emptied by the
firmware and is waiting for new OUT data from the host, or it is the process of being loaded
over the USB. BUSY=0 when the USB OUT transfer is complete and endpoint RAM data in

EP1OUTCS Endpoint 1 OUT Control and Status E6A1
EP1INCS Endpoint 1 IN Control and Status E6A2

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 BUSY STALL

R/W R/W R/W R/W R/W R/W R R/W

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 392 of 460

Chapter 15. Registers Page 15-73

EP1OUTBUF is available for the firmware to read. USB OUT tokens for the endpoint are
NAK’d while BUSY=1 (the firmware is still reading data from the OUT endpoint).

A 1-to-0 transition of BUSY (indicating that the firmware can access the buffer) generates an
interrupt request for the OUT endpoint. After the firmware reads the data from the OUT end-
point buffer, it loads the endpoint’s byte count register with any value to re-arm the endpoint,
which automatically sets BUSY=1. This enables the OUT transfer of data from the host in
response to the next OUT token. The CPU should never read endpoint data while BUSY=1.

The BUSY bit, also indicates the status of the endpoint’s IN Buffer EP1INBUF. The USB core
sets BUSY=0 when the endpoint’s IN buffer is empty and ready for loading by the firmware.
The firmware sets BUSY=1 by loading the endpoint’s byte count register.

When BUSY=1, the firmware should not write data to an IN endpoint buffer, because the end-
point FIFO could be in the act of transferring data to the host over the USB. BUSY=0 when the
USB IN transfer is complete and endpoint RAM data is available for firmware access. USB IN
tokens for the endpoint are NAK’d while BUSY=0 (the firmware is still loading data into the
endpoint buffer).

A 1-to-0 transition of BUSY (indicating that the firmware can access the buffer) generates an
interrupt request for the IN endpoint. After the firmware writes the data to be transferred to the
IN endpoint buffer, it loads the endpoint’s byte count register with the number of bytes to trans-
fer, which automatically sets BUSY=1. This enables the IN transfer of data to the host in
response to the next IN token. Again, the CPU should never load endpoint data while
BUSY=1.

The firmware writes a “1” to an IN endpoint busy bit to disarm a previously armed endpoint.
(This sets BUSY=0.) The firmware should do this only after a USB bus reset, or when the host
selects a new interface or alternate setting that uses the endpoint. This prevents stale data
from a previous setting from being accepted by the host’s first IN transfer that uses the new
setting.

Bit 0 STALL OUT/IN Endpoint Stalled

Each bulk endpoint (IN or OUT) has a STALL bit in its Control and Status Register (bit 0). If the
CPU sets this bit, any requests to the endpoint return a STALL handshake rather than ACK or
NAK. The Get Status-Endpoint Request returns the STALL state for the endpoint indicated in
byte 4 of the request. Note that bit 7 of the endpoint number EP (byte 4) specifies direction.

Exhibit 2058 - Page 393 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-74 EZ-USB FX2 Technical Reference Manual v2.1

15.11.9 Endpoint 2 Control and Status

Figure 15-79. Endpoint 2 Control and Status

Bit 6-4 NPAK2:0 Number of Packets in FIFO

The number of packets in the FIFO. 0-4 Packets.

Bit 3 FULL Endpoint FIFO Full

This bit is set to “1” to indicate that the Endpoint FIFO is full.

Bit 2 EMPTY Endpoint FIFO Empty

This bit is set to “1” to indicate that the Endpoint FIFO is empty.

Bit 0 STALL ENDPOINT STALL

Set this bit to “1” to stall an endpoint, and to “0” to clear a stall.

When the stall bit is “1,” the USB core returns a STALL handshake for all requests to the end-
point. This notifies the host that something unexpected has happened.

15.11.10 Endpoint 4 Control and Status

Figure 15-80. Endpoint 4 Control and Status

EP2CS Endpoint 2 Control and Status E6A3

b7 b6 b5 b4 b3 b2 b1 b0

0 NPAK2 NPAK1 NPAK0 FULL EMPTY 0 STALL

R R R R R R R R/W

0 0 1 0 1 0 0 0

EP4CS Endpoint 4 Control and Status E6A4

b7 b6 b5 b4 b3 b2 b1 b0

0 0 NPAK1 NPAK0 FULL EMPTY 0 STALL

R R R R R R R R/W

0 0 1 0 1 0 0 0

Exhibit 2058 - Page 394 of 460

Chapter 15. Registers Page 15-75

Bit 5-4 NPAK1:0 Number of Packets in FIFO

The number of packets in the FIFO. 0-2 Packets.

Bit 3 FULL Endpoint FIFO Full

This bit is set to “1” to indicate that the Endpoint FIFO is full.

Bit 2 EMPTY Endpoint FIFO Empty

This bit is set to “1” to indicate that the Endpoint FIFO is empty.

Bit 0 STALL ENDPOINT STALL

Set this bit to “1” to stall an endpoint, and to “0” to clear a stall.

When the stall bit is “1,” the USB core returns a STALL handshake for all requests to the end-
point. This notifies the host that something unexpected has happened.

15.11.11 Endpoint 6 Control and Status

Figure 15-81. Endpoint 6 Control and Status

Bit 6-4 NPAK2:0 Number of Packets in FIFO

The number of packets in the FIFO. 0-4 Packets.

Bit 3 FULL Endpoint FIFO Full

This bit is set to “1” to indicate that the Endpoint FIFO is full.

Bit 2 EMPTY Endpoint FIFO Empty

This bit is set to “1” to indicate that the Endpoint FIFO is empty.

Bit 0 STALL ENDPOINT STALL

Set this bit to “1” to stall an endpoint, and to “0” to clear a stall.

When the stall bit is “1,” the USB core returns a STALL handshake for all requests to the end-
point. This notifies the host that something unexpected has happened.

EP6CS Endpoint 6 Control and Status E6A5

b7 b6 b5 b4 b3 b2 b1 b0

0 NPAK2 NPAK1 NPAK0 FULL EMPTY 0 STALL

R R R R R R R R/W

0 0 0 0 0 1 0 0

Exhibit 2058 - Page 395 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-76 EZ-USB FX2 Technical Reference Manual v2.1

15.11.12 Endpoint 8 Control and Status

Figure 15-82. Endpoint 8 Control and Status

Bit 5-4 NPAK1:0 Number of Packets in FIFO

The number of packets in the FIFO. 0-2 Packets.

Bit 3 FULL Endpoint FIFO Full

This bit is set to “1” to indicate that the Endpoint FIFO is full.

Bit 2 EMPTY Endpoint FIFO Empty

This bit is set to “1” to indicate that the Endpoint FIFO is empty.

Bit 0 STALL ENDPOINT STALL

Set this bit to “1” to stall an endpoint, and to “0” to clear a stall.

When the stall bit is “1,” the USB core returns a STALL handshake for all requests to the end-
point. This notifies the host that something unexpected has happened.

EP8CS Endpoint 8 Control and Status E6A6

b7 b6 b5 b4 b3 b2 b1 b0

0 0 NPAK1 NPAK0 FULL EMPTY 0 STALL

R R R R R R R R/W

0 0 0 0 0 1 0 0

Exhibit 2058 - Page 396 of 460

Chapter 15. Registers Page 15-77

15.11.13 Endpoint 2 and 4 Slave FIFO Flags

Figure 15-83. Endpoint 2 and 4 Slave FIFO Flags

Bit 2 PF Programmable Flag

State of the EP2/EP4 Programmable Flag.

Bit 1 EF Empty Flag

State of the EP2/EP4 Empty Flag.

Bit 0 FF Full Flag

State of the EP2/EP4 Full Flag.

FIFOPINPOLAR settings do not affect the behavior of these bits.

15.11.14 Endpoint 6 and 8 Slave FIFO Flags

Figure 15-84. Endpoint 6 and 8 Slave FIFO Flags

EP2FIFOFLGS Endpoint 2 Slave FIFO Flags E6A7
EP4FIFOFLGS Endpoint 4 Slave FIFO Flags E6A8

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 PF EF FF

R R R R R R R R

0 0 0 0 0 0 1 0

EP6FIFOFLGS Endpoint 6 Slave FIFO Flags E6A9
EP8FIFOFLGS Endpoint 8 Slave FIFO Flags E6AA

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 PF EF FF

R R R R R R R R

0 0 0 0 0 1 1 0

Exhibit 2058 - Page 397 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-78 EZ-USB FX2 Technical Reference Manual v2.1

Bit 2 PF Programmable Flag

State of the EP6/EP8 Programmable Flag.

The default value is different from EP2FIFOFLGS.PF and EP4FIFOFLGS.PF.

Bit 1 EF Empty Flag

State of the EP6/EP8 Empty Flag.

Bit 0 FF Full Flag

State of the EP6/EP8 Full Flag.

FIFOPINPOLAR settings do not affect the behavior of these bits.

15.11.15 Endpoint 2 Slave FIFO Byte Count High

Figure 15-85. Endpoint 2 Slave FIFO Total Byte Count High

Bit 4-0 BC12:8 Byte Count High

Total number of bytes in Endpoint FIFO. Maximum of 4096 bytes.

15.11.16 Endpoint 6 Slave FIFO Total Byte Count High

Figure 15-86. Endpoint 6 Slave FIFO Total Byte Count High

EP2FIFOBCH Endpoint 2 Slave FIFO Total Byte Count HIGH E6AB

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 BC12 BC11 BC10 BC9 BC8

R R R R R R R R

0 0 0 0 0 0 0 0

EP6FIFOBCH Endpoint 6 Slave FIFO Total Byte Count HIGH E6AF

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 BC11 BC10 BC9 BC8

R R R R R R R R

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 398 of 460

Chapter 15. Registers Page 15-79

Bit 3-0 BC11:8 Byte Count High

Total number of bytes in Endpoint FIFO. Maximum of 2048 bytes.

15.11.17 Endpoint 4 and 8 Slave FIFO Byte Count High

Figure 15-87. Endpoint 4 and 8 Slave FIFO Byte Count High

Bit 2-0 BC10:8 Byte Count High

Total number of bytes in Endpoint FIFO. Maximum of 1024 bytes.

15.11.18 Endpoint 2, 4, 6, 8 Slave FIFO Byte Count Low

Figure 15-88. Endpoint 2, 4, 6, 8 Slave FIFO Byte Count Low

Bit 7-0 BC7:0 Byte Count High

Low byte for number of bytes in Endpoint FIFO.

EP4FIFOBCH Endpoint 4 Slave FIFO Total Byte Count HIGH E6AD
EP8FIFOBCH Endpoint 8 Slave FIFO Total Byte Count HIGH E6B1

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 BC10 BC9 BC8

R R R R R R R R

0 0 0 0 0 0 0 0

EP2FIFOBCL Endpoint 2 Slave FIFO Total Byte Count LOW E6AC
EP4FIFOBCL Endpoint 4 Slave FIFO Total Byte Count LOW E6AE
EP6FIFOBCL Endpoint 6 Slave FIFO Total Byte Count LOW E6B0
EP8FIFOBCL Endpoint 8 Slave FIFO Total Byte Count LOW E6B2

b7 b6 b5 b4 b3 b2 b1 b0

BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0

R R R R R R R R

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 399 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-80 EZ-USB FX2 Technical Reference Manual v2.1

15.11.19 Setup Data Pointer High and Low Address

Figure 15-89. Setup Data Pointer High Address Byte

Figure 15-90. Setup Data Pointer Low Address Byte

Bit 15-0 A15:0 Setup Data Pointer

This buffer is used as a target or source by the Setup Data Pointer and it must be WORD (2-
byte) aligned. This 16-bit pointer, SUDPTRH:L provides hardware assistance for handling
CONTROL IN transfers.

When the firmware loads SUDPTRL, the SIE automatically responds to IN commands with the
appropriate data. If SDPAUTO=1, the length field is taken from the packet or descriptor. If
SDPAUTO=0, SUDPTRL triggers a send to the host and the length is taken from the EP0BCH
and EP0BCL bytes.

SUDPTRH Setup Data Pointer High Address Byte E6B3

b7 b6 b5 b4 b3 b2 b1 b0

A15 A14 A13 A12 A11 A10 A9 A8

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

SUDPTRL Setup Data Pointer Low Address Byte E6B4

b7 b6 b5 b4 b3 b2 b1 b0

A7 A6 A5 A4 A3 A2 A1 A0

R/W R/W R/W R/W R/W R/W R/W R

x x x x x x x 0

Exhibit 2058 - Page 400 of 460

Chapter 15. Registers Page 15-81

15.11.20 Setup Data Pointer Auto

Figure 15-91. Setup Data Pointer AUTO Mode

Bit 0 SDPAUTO Setup Data Pointer Auto Mode

To send a block of data using the Setup Data Pointer, the block’s starting address is loaded into
SUDPTRH:L. The block length must previously have been set; the method for accomplishing this
depends on the state of the SDPAUTO bit:

• SDPAUTO = 0 (Manual Mode): Used for general-purpose block transfers. Firmware
writes the block length to EP0BCH:L.

• SDPAUTO = 1 (Auto Mode): Used for sending Device, Configuration, String, Device
Qualifier, and Other Speed Configuration descriptors only. The block length is automati-
cally read from the “length” field of the descriptor itself; no explicit loading of EP0BCH:L is
necessary.

Writing to SUDPTRL starts the transfer; the FX2 automatically sends the entire block, packetizing
as necessary.

When SDPAUTO = 0, writing to EP0BCH:L only sets the block length; it does not arm the transfer
(the transfer is armed by writing to SUDPTRL). Therefore, before performing an EP0 transfer
which does not use the Setup Data Pointer (i.e., one which is meant to be armed by writing to
EP0BCL), SDPAUTO must be set to 1.

SUDPTRCTL Setup Data Pointer AUTO Mode E6B5

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 SDPAUTO

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 1

Exhibit 2058 - Page 401 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-82 EZ-USB FX2 Technical Reference Manual v2.1

15.11.21 Setup Data - 8 Bytes

Figure 15-92. Setup Data - 8 Bytes

The setup data bytes are defined as follows:

SETUPDAT[0] = bmRequestType

SETUPDAT[1] = bmRequest

SETUPDAT[2:3] = wValue

SETUPDAT[4:5] = wIndex

SETUPDAT[6:7] = wLength

This buffer contains the 8 bytes of SETUP packet data from the most recently received CONTROL
transfer.

The data in SETUPBUF is valid when the SUDAV (Setup Data Available) Interrupt Request bit is
set.

SETUPDAT 8 Bytes of Setup Data E6B8-E6BF

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R R R R R R R R

x x x x x x x x

Exhibit 2058 - Page 402 of 460

Chapter 15. Registers Page 15-83

15.12 General Programmable Interface (GPIF)

15.12.1 GPIF Waveform Selector

Figure 15-93. GPIF Waveform Selector

Bit 7-6 SINGLEWR1:0 Single Write Waveform Index

Index to the Waveform Program to run when a “Single Write” is triggered by the firmware.

Bit 5-4 SINGLERD1:0 Single Read Waveform Index

Index to the Waveform Program to run when a “Single Read” is triggered by the firmware.

Bit 3-2 FIFOWR1:0 FIFO Write Waveform Index

Index to the Waveform Program to run when a “FIFO Write” is triggered by the firmware.

Bit 1-0 FIFORD1:0 FIFO Read Waveform Index

Index to the Waveform Program to run when a “FIFO Read” is triggered by the firmware.
Select waveform 0 [00], 1 [01], 2 [10] or 3 [11].

15.12.2 GPIF Done and Idle Drive Mode

Figure 15-94. GPIF Done and Idle Drive

GPIFWFSELECT Waveform Selector E6C0

b7 b6 b5 b4 b3 b2 b1 b0

SINGLEWR1 SINGLEWR0 SINGLERD1 SINGLERD0 FIFOWR1 FIFOWR0 FIFORD1 FIFORD0

R/W R/W R/W R/W R/W R/W R/W R/W

1 1 1 0 0 1 0 0

GPIFIDLECS GPIF Done, GPIF Idle Drive Mode E6C1

b7 b6 b5 b4 b3 b2 b1 b0

DONE 0 0 0 0 0 0 IDLEDRV

R/W R/W R/W R/W R/W R/W R/W R/W

1 0 0 0 0 0 0 0

Exhibit 2058 - Page 403 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-84 EZ-USB FX2 Technical Reference Manual v2.1

Bit 7 DONE GPIF Idle State

0 = Transaction in progress.
1 = Transaction Done (GPIF is idle, hence GPIF is ready for next Transaction). Fires IRQ4 if

enabled.

Bit 0 IDLEDRV Set Data Bus when GPIF Idle

When the GPIF is idle:

0 = Tri-state the Data Bus.
1 = Drive the Data Bus.

15.12.3 CTL Outputs

Figure 15-95. CTL Output States in Idle

Bit 7-4 CTLOE3:0 CTL Output Enables
Bit 5-0 CTL5:0 CTL Output States

See GPIFCTLCFG, below.

Figure 15-96. CTL Output Drive Type

Bit 7 TRICTL Number Active Outputs/Tristating
Bit 5-0 CTL5:0 CTL Output Drive Type

GPIFIDLECTL CTL Output States in Idle E6C2

b7 b6 b5 b4 b3 b2 b1 b0

0/
CTLOE3

0/
CTLOE2

CTL5/
CTLOE1

CTL4/
CTLOE0

CTL3 CTL2 CTL1 CTL0

R/W R/W R/W R/W R/W R/W R/W R/W

1 1 1 1 1 1 1 1

GPIFCTLCFG CTL Output Drive Type E6C3

b7 b6 b5 b4 b3 b2 b1 b0

TRICTL 0 CTL5 CTL4 CTL3 CTL2 CTL1 CTL0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 404 of 460

Chapter 15. Registers Page 15-85

The GPIF Control pins (CTL[5:0]) have several output modes:

• CTL[3:0] can act as CMOS outputs (optionally tristatable) or open-drain outputs.

• CTL[5:4] can act as CMOS outputs or open-drain outputs.
If CTL[3:0] are configured to be tristatable, CTL[5:4] are not available.

During the IDLE State, the state of CTL[5:0] depends on the following register bits:

• TRICTL (GPIFCTLCFG.7).

• GPIFCTLCFG[5:0]

• GPIFIDLECTL[5:0].

The combination of these bits defines CTL5:0 during IDLE as follows:

• If TRICTL is 0, GPIFIDLECTL[5:0] directly represent the output states of CTL5:0 during
the IDLE State. The GPIFCTLCFG[5:0] bits determine whether the CTL5:0 outputs are
CMOS or open-drain: If GPIFCTLCFG.x = 0, CTLx is CMOS; if GPIFCTLCFG.x = 1, CTLx
is open-drain.

• If TRICTL is 1, GPIFIDLECTL[7:4] are the output enables for the CTL[3:0] signals, and
GPIFIDLECTL[3:0] are the output values for CTL[3:0]. CTL4 and CTL5 are unavailable in
this mode.

Table 15-16. CTL[5:0] Output Modes

TRICTL
(GPIFCTLCFG.7)

 GPIFCTLCFG[6:0] CTL[3:0] CTL[5:4]

0 0 CMOS, Not Tristatable CMOS, Not Tristatable

0 1 Open-Drain Open-Drain

1 X CMOS, Tristatable Not Available

Exhibit 2058 - Page 405 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-86 EZ-USB FX2 Technical Reference Manual v2.1

Table 15-17 illustrates this relationship.

15.12.4 GPIF Address High

Figure 15-97. GPIF Address High

Bit 0 GPIF A8 High Bit of GPIF Address

See GPIFADDRL.

Table 15-17. Control Outputs (CTLx) During the IDLE State

TRICTL Control Output Output State Output Enable

0

CTL0 GPIFIDLECTL.0

N/A
(CTL Outputs are always

enabled when TRICTL = 0)

CTL1 GPIFIDLECTL.1

CTL2 GPIFIDLECTL.2

CTL3 GPIFIDLECTL.3

CTL4 GPIFIDLECTL.4

CTL5 GPIFIDLECTL.5

1

CTL0 GPIFIDLECTL.0 GPIFIDLECTL.4

CTL1 GPIFIDLECTL.1 GPIFIDLECTL.5

CTL2 GPIFIDLECTL.2 GPIFIDLECTL.6

CTL3 GPIFIDLECTL.3 GPIFIDLECTL.7

CTL4 N/A
(CTL4 and CTL5 are not available when TRICTL = 1)CTL5

GPIFADRH
see Section 15.14

GPIF Address High E6C4

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 GPIFA8

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 406 of 460

Chapter 15. Registers Page 15-87

15.12.5 GPIF Address Low

Figure 15-98. GPIF Address Low

Bit 7-0 GPIFA7:0 Lower 8 bits of GPIF Address

Data written to this register immediately appears as the bus address on the ADR[7:0] pins.

15.12.6 GPIF Flowstate Registers

For complete Flowstate / UDMA information, please contact the Cypress Semiconductor Applica-
tions Department.

Any one (and only one) of the seven GPIF states in a waveform can be programmed to be the flow
state. This register defines which state, if any, in the next invoked GPIF waveform will be the flow
state.

Bit 7 FSE Global Flow State Enable

Global enable for the flow state. When it is disabled all flow state registers are don’t care and
the next waveform invocation will not cause a flow state to be used.

Bit 2-0 FS[2:0] Flow State Selection

Defines which GPIF state is the flow state. Valid values are 0-6.\

GPIFADRL
see Section 15.14

GPIF Address Low E6C5

b7 b6 b5 b4 b3 b2 b1 b0

GPIFA7 GPIFA6 GPIFA5 GPIFA4 GPIFA3 GPIFA2 GPIFA1 GPIFA0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

FLOWSTATE E6C6

b7 b6 b5 b4 b3 b2 b1 b0

FSE 0 0 0 0 FS[2:0]

0 0 0 0 0 0 0 0

RW R R R R RW RW RW

Exhibit 2058 - Page 407 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-88 EZ-USB FX2 Technical Reference Manual v2.1

The bit definitions for this register are analogous to the bit definitions in the RDY LOGIC opcode in
a waveform descriptor. Except, instead of controlling the branching for a decision point, it controls
the freezing or flowing of data on the bus in a flow state.

The user defines the states of CTL[5:0] for when the flow logic equals 0 and 1 (see
FLOWEQ0_CTL and FLOWEQ1_CTL). This is useful in activating or deactivating protocol ready
signals to hold off an external master (where the GPIF is acting like a slave) in response to internal
FIFO flags warning of an impending underflow or overflow situation.

In the case where the GPIF is the master, then the user also defines whether Master Strobe (a
CTL pin in this case; see FLOWSTB) toggles (reads or writes data on the bus) when the flow logic
evaluates to a 1 or a 0. This is useful for the GPIF to consider protocol ready signals from the
slave as well as FIFO flags to decide when to clock data out of or into the FIFOs and when to
freeze the data flow instead.

It should be noted that this flow logic does not replace the decision point logic defined in a wave-
form descriptor. The decision point logic in a waveform descriptor is still used to decide when to
branch out of the flow state. The decision point logic can use an entirely different pair of ready sig-
nals than the flow logic in making its decisions.

Bits 7-6 LFUNC[1:0] Flow State Logic Function

00 = A AND B
01 = A OR B
10 = A XOR B
11 = !A AND B

Since the flow logic decision can be based on the output being a 1 or a 0, NAND, NOR, XNOR
and !(!A AND B) operations can be achieved as well. Note that !(!A AND B) is the same as (A
OR !B).

FLOWLOGIC E6C7

b7 b6 b5 b4 b3 b2 b1 b0

LFUNC[1:0] TERMA[2:0] TERMB[2:0]

0 0 0 0 0 0 0 0

RW RW RW RW RW RW RW RW

Exhibit 2058 - Page 408 of 460

Chapter 15. Registers Page 15-89

Bits 5-3 TERMA[2:0] Flow State Logic-Function Arguments
Bits 2-0 TERMB[2:0]

0 = RDY[0]
1 = RDY[1]
2 = RDY[2]
3 = RDY[3]
4 = RDY[4]
5 = RDY[5] or TC-Expiration (depending on GPIF_READYCFG.5)
6 = FIFO Flag (PF, EF, or FF depending on GPIF_EPxFLAGSEL)
7 = 8051 RDY (GPIF_READYCFG.7)

FLOWEQ0CTL defines the state of the CTL5:0 pins when the output of the flow logic equals 0;
FLOWEQ1CTL defines the state when the logic output equals 1. During a flow state, the CTL
opcode in the waveform descriptor is completely ignored and the behavior of the CTL[5:0] pins are
defined by these two registers instead.

CTLOEx Bit: If TRICTL = 1, CTL5:4 are unused and CTLOE3:0 specifies whether the corre-
sponding CTL3:0 output signals are tristated.

1 = Drive CTLx
0 = Tristate CTLx

FLOWEQ0CTL E6C8

b7 b6 b5 b4 b3 b2 b1 b0

CTLOE3 CTLOE2 CTLOE1/
CTL5

CTLOE0/
CTL4

CTL3 CTL2 CTL1 CTL0

0 0 0 0 0 0 0 0

RW RW RW RW RW RW RW RW

FLOWEQ1CTL E6C9

b7 b6 b5 b4 b3 b2 b1 b0

CTLOE3 CTLOE2 CTLOE1/
CTL5

CTLOE0/
CTL4

CTL3 CTL2 CTL1 CTL0

0 0 0 0 0 0 0 0

RW RW RW RW RW RW RW RW

Exhibit 2058 - Page 409 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-90 EZ-USB FX2 Technical Reference Manual v2.1

CTLx Bit: specifies the state to set each CTLx signal to during this entire State.

1 = High level

If the CTLx bit in the GPIFCTLCFG register is set to 1, the output driver will be an
open-drain.

If the CTLx bit in the GPIFCTLCFG register is set to 0, the output driver will be driven
to CMOS levels.

0 = Low level

defined by FLOWEQxCTL and these bits, instead:

• TRICTL (GPIFCTLCFG.7), as described in Section 10.2.3.1, "Control Output Modes".

• GPIFCTLCFG[5:0].

The combination of these bits defines CTL5:0 during a Flow State as follows:

• If TRICTL is 0, FLOWEQxCTL[5:0] directly represent the output states of CTL5:0 during
the Flow State. The GPIFCTLCFG[5:0] bits determine whether the CTL5:0 outputs are
CMOS or open-drain: If GPIFCTLCFG.x = 0, CTLx is CMOS; if GPIFCTLCFG.x = 1, CTLx
is open-drain.

• If TRICTL is 1, FLOWEQxCTL[7:4] are the output enables for the CTL[3:0] signals, and
FLOWEQxCTL[3:0] are the output values for CTL[3:0]. CTL4 and CTL5 are unavailable in
this mode.

Table 15-17 illustrates this relationship.

Exhibit 2058 - Page 410 of 460

Chapter 15. Registers Page 15-91

* - based on suggested FLOW_LOGIC settings.

This register defines the Master Strobe that causes data to be read or written during a flow state.

For transactions where GPIF is the slave on the bus, the Master Strobe will be one of the RDY[5:0]
pins. This includes external masters that can either write data into GPIF (e.g., UDMA IN) or read
data out of GPIF.

For transactions where GPIF is the master on the bus, the Master Strobe will be one of the
CTL[5:0] pins. This includes cases where the GPIF writes data out to a slave (e.g., UDMA OUT) or
reads data from a slave.

Bit 7 SLAVE

0: GPIF is the master of the bus transaction. This means that one of the CTL[5:0] pins will be
the Master Strobe and the particular one is selected by MSTB[2:0].

Table 15-18. Control Outputs (CTLx) During the Flow State

TRICTL Control Output Output State
Drive Type

(0 = CMOS,
1 = Open-Drain)

Output Enable

0

CTL0 FLOWEQxCTL.0 GPIFCTLCFG.0

N/A
(CTL Outputs are always

enabled when TRICTL = 0)

CTL1 FLOWEQxCTL.1 GPIFCTLCFG.0

CTL2 FLOWEQxCTL.2 GPIFCTLCFG.0

CTL3 FLOWEQxCTL.3 GPIFCTLCFG.0

CTL4 FLOWEQxCTL.4 GPIFCTLCFG.0

CTL5 FLOWEQxCTL.5 GPIFCTLCFG.0

1

CTL0 FLOWEQxCTL.0
N/A

(CTL Outputs are
always tristatable

CMOS when
TRICTL = 1)

FLOWEQxCTL.4

CTL1 FLOWEQxCTL.1 FLOWEQxCTL.5

CTL2 FLOWEQxCTL.2 FLOWEQxCTL.6

CTL3 FLOWEQxCTL.3 FLOWEQxCTL.7

CTL4 N/A
(CTL4 and CTL5 are not available when TRICTL = 1)CTL5

FLOWSTB E6CB

b7 b6 b5 b4 b3 b2 b1 b0

SLAVE RDYASYNC CTLTOGL SUSTAIN 0 MSTB[2:0]

0 0 1 0 0 0 0 0

RW RW RW RW R RW RW RW

Exhibit 2058 - Page 411 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-92 EZ-USB FX2 Technical Reference Manual v2.1

1: GPIF is the slave of the bus transaction. This means that one of the RDY[5:0] pins will be
the Master Strobe and the particular one is selected by MSTB[2:0].

Bit 6 RDYASYNC

If SLAVE is 0 then this bit is ignored, otherwise:

0: Master Strobe (which is a RDY pin in this case) is asynchronous to IFCLK.

1: Master Strobe (which is a RDY pin in this case) is synchronous to IFCLK.

Bit 5 CTLTOGL

If SLAVE is 1 then this bit is ignored. Otherwise, this bit defines which state of the flow logic
(see FLOWLOGIC) causes Master Strobe (which will be a CTL pin in this case) to toggle. For
example, if this bit is set to 1, then if the output of the flow logic equals 1 then Master Strobe
will toggle causing data to flow on the bus. If in the same example the output of the flow logic
equals 0 then Master Strobe will freeze causing data flow to halt on the bus.

Bit 4 SUSTAIN

If SLAVE is 1 then this bit is ignored.

Upon exiting a flow state in which SLAVE is 0, Master Strobe (which is a CTL pin in this case) will
normally go back to adhering to the CTL opcodes defined in the waveform descriptor.

Bit 2-0 MSTB[2:0]

If SLAVE is 0 then these bits will select which CTL[5:0] pin is the Master Strobe. If SLAVE is 1
then these bits will select which RDY[5:0] pin is the Master Strobe.

For flow state transactions that meet the following criteria:

1. The interface is asynchronous.

2. GPIF is acting like a slave (FLOWSTB.SLAVE = 1), and thus Master Strobe is a RDY
pin.

3. data is being written into the GPIF.

FLOWHOLDOFF E6CA

b7 b6 b5 b4 b3 b2 b1 b0

HOPERIOD[3:0] HOSTATE HOCTL[2:0]

RW RW RW RW RW RW RW RW

0 0 0 1 0 0 1 0

Exhibit 2058 - Page 412 of 460

Chapter 15. Registers Page 15-93

4. the rate at which data is being written in exceeds 96 MB/s for a word-wide data bus or
48 MB/s for a byte-wide data bus.

Bits 7-4 HOPERIOD[3:0]

Defines how many IFCLK cycles to assert not ready (HOCTL) to the external master in order
to allow the synchronization interface to catch up.

Bit 3 HOSTATE

Defines what the state of the HOCTL signal should be in to assert not ready.

Bits 2-0 HOCTL[2:0]

Defines which of the six CTL[5:0] pins will be the HOCTL signal which asserts not ready to the
external master when the synchronization detects a potential overflow coming. It should coin-
cide with the CTL[5:0] pin that is picked as the “not ready” signal for the (macro-level) endpoint
FIFO overflow protection.

This register defines whether the Master Strobe (see FLOWSTB) causes data to read or written on
either the falling edge, the rising edge, or both (double-edge).

Bit 1 FALLING

0: data is not transferred on the falling edge of Master Strobe

1: data is transferred on the falling edge of Master Strobe

Bit 0 RISING

0: data is not transferred on the rising edge of Master Strobe

1: data is transferred on the rising edge of Master Strobe

To cause data to transfer on both edges of Master Strobe, set both bits to 1

FLOWSTBEDGE E6CC

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 FALLING RISING

R R R R R R R/W RW

0 0 0 0 0 0 0 1

Exhibit 2058 - Page 413 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-94 EZ-USB FX2 Technical Reference Manual v2.1

If the flow state is such that the GPIF is the master on the bus (FLOWSTB.SLAVE = 0) then Mas-
ter Strobe will be one of the CTL[5:0] pins (see FLOWSTB). While in the flow state, if the flow logic
(see FLOWLOGIC) evaluates in such a way that Master Strobe should toggle (see
FLOWSTB.CTLTOGL), then this register defines the frequency at which it will toggle.

More precisely, this register defines the half period of the Master Strobe toggling frequency. Fur-
ther, to give the user a high degree of resolution this Master Strobe half period is defined in terms
of half IFCLK periods. Therefore, if IFCLK is running at 48 MHz, this gives a resolution of 10.8 nS.

Bits 7-0 D7:0 Master Strobe Half-Period

Number of half IFCLK periods that define the half period of Master Strobe (if it is a CTL pin).
Value must be at least 2, meaning that the minimum half period for Master Strobe is one full
IFCLK cycle.

For any transaction where the GPIF writes data onto FD[15:0], this register determines how long
the data is held. Valid choices are 0, ½ or 1 IFCLK cycle. This register applies to any data written
by the GPIF to FD[15:0], whether through a flow state or not.

For non-flow states, the hold amount is really just a delay of the normal (non-held) presentation of
FD[15:0] by the amount specified in HOLDTIME[1:0].

For flow states in which the GPIF is the master on the bus (FLOWSTB.SLAVE = 0), the hold
amount is with respect to the activating edge (see FLOW_MASTERSTB_EDGE) of Master Strobe
(which will be a CTL pin in this case).

For flow states in which the GPIF is the slave on the bus (FLOWSTB.SLAVE = 1), the hold amount
is really just a delay of the normal (non-held) presentation of FD[15:0] by the amount specified in
HOLDTIME[1:0] in reaction to the activating edge of Master Strobe (which will be a RDY pin in this
case). Note the hold amount is NOT directly with respect to the activating edge of Master Strobe in

FLOWSTBHPERIOD E6CD

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

RW RW RW RW RW RW RW RW

0 0 0 0 0 0 1 0

GPIFHOLDTIME E60C

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 HOLDTIME[1:0]

R R R R R R RW RW

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 414 of 460

Chapter 15. Registers Page 15-95

this case. It is with respect to when the data would normally come out in response to Master Strobe
including any latency to synchronize Master Strobe.

In all cases, the data will be held for the desired amount even if the ensuing GPIF state calls for the
data bus to be tristated. In other words the FD[15:0] output enable will be held by the same amount
as the data itself.

Bits 1-0 HOLDTIME[1:0] GPIF Hold Time

00 = 0 IFCLK cycles

01 = ½ IFCLK cycle

10 = 1 IFCLK cycle

11 = Reserved

15.12.7 GPIF Transaction Count Bytes

Figure 15-99. GPIF Transaction Count Byte3

Bit 7-0 TC31:24 GPIF Transaction Count

Refer to Bit 0 of this register.

Figure 15-100. GPIF Transaction Count Byte2

GPIFTCB3
see Section 15.14

GPIF Transaction Count Byte3 E6CE

b7 b6 b5 b4 b3 b2 b1 b0

TC31 TC30 TC29 TC28 TC27 TC26 TC25 TC24

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

GPIFTCB2
see Section 15.14

GPIF Transaction Count Byte2 E6CF

b7 b6 b5 b4 b3 b2 b1 b0

TC23 TC22 TC21 TC20 TC19 TC18 TC17 TC16

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 415 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-96 EZ-USB FX2 Technical Reference Manual v2.1

Bit 7-0 TC16:23 GPIF Transaction Count

Refer to Bit 0 of this register.

Figure 15-101. GPIF Transaction Count Byte1

Bit 7-0 TC8:15 GPIF Transaction Count

Refer to Bit 0 of this register.

Figure 15-102. GPIF Transaction Count Byte0

Bit 7-0 TC7:0 GPIF Transaction Count

 Registers GPIFTCB3, GPIFTCB2, GPIFTCB1, and GPIFTCB0 represent the live update of GPIF
transactions.

GPIFTCB1
see Section 15.14

GPIF Transaction Count Byte1 E6D0

b7 b6 b5 b4 b3 b2 b1 b0

TC15 TC14 TC13 TC12 TC11 TC10 TC9 TC8

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

GPIFTCB0
see Section 15.14

GPIF Transaction Count Byte0 E6D1

b7 b6 b5 b4 b3 b2 b1 b0

TC7 TC6 TC5 TC4 TC3 TC2 TC1 TC0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 1

Exhibit 2058 - Page 416 of 460

Chapter 15. Registers Page 15-97

15.12.8 Endpoint 2, 4, 6, 8 GPIF Flag Select

Figure 15-103. Endpoint 2, 4, 6, 8 GPIF Flag Select

Bit 1-0 FS1:0 GPIF Flag Select

Table 15-19. Endpoint 2, 4, 6, 8 GPIF Flag Select Values

Only one FIFO flag at a time may be made available to the GPIF as a control input. The FS1:FS0
bits select which flag is made available.

EP2GPIFFLGSEL
see Section 15.14

Endpoint 2 GPIF Flag Select E6D2

EP4GPIFFLGSEL
see Section 15.14

Endpoint 4 GPIF Flag Select E6DA

EP6GPIFFLGSEL
see Section 15.14

Endpoint 6 GPIF Flag Select E6E2

EP8GPIFFLGSEL
see Section 15.14

Endpoint 8 GPIF Flag Select E6EA

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 FS1 FS0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

FS1 FS0 Flag
0 0 Programmable

0 1 Empty

1 0 Full

1 1 Reserved

Exhibit 2058 - Page 417 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-98 EZ-USB FX2 Technical Reference Manual v2.1

15.12.9 Endpoint 2, 4, 6, and 8 GPIF Stop Transaction

Figure 15-104. Endpoint 2, 4, 6, and 8 GPIF Stop Transaction

Bit 0 EP[2,4,6,8]PF Stop on Endpoint Programmable Flag

1= GPIF transitions to “DONE” state when the flag selected by EPxGPIFFLGSEL is asserted.
0= When transaction count has been met.

15.12.10 Endpoint 2, 4, 6, and 8 Slave FIFO GPIF Trigger

Figure 15-105. Endpoint 2, 4, 6, and 8 Slave FIFO GPIF Trigger

Write 0xFF to this register to initiate a GPIF write. Read from this register to initiate a GPIF read.

EP2GPIFPFSTOP Endpoint 2 GPIF Stop Transaction E6D3
EP4GPIFPFSTOP Endpoint 4 GPIF Stop Transaction E6DB
EP6GPIFPFSTOP Endpoint 6 GPIF Stop Transaction E6E3
EP8GPIFPFSTOP Endpoint 8 GPIF Stop Transaction E6EB

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 FIFO[2,4,6,8]
FLAG

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

EP2GPIFTRIG
see Section 15.14

Endpoint 2 Slave FIFO GPIF Trigger E6D4

EP4GPIFTRIG
see Section 15.14

Endpoint 4 Slave FIFO GPIF Trigger E6DC

EP6GPIFTRIG
see Section 15.14

Endpoint 6 Slave FIFO GPIF Trigger E6E4

EP8GPIFTRIG
see Section 15.14

Endpoint 8 Slave FIFO GPIF Trigger E6EC

b7 b6 b5 b4 b3 b2 b1 b0

x x x x x x x x

W W W W W W W W

x x x x x x x x

Exhibit 2058 - Page 418 of 460

Chapter 15. Registers Page 15-99

15.12.11 GPIF Data High (16-Bit Mode)

Figure 15-106. GPIF Data High (16-Bit Mode)

Bit 7-0 D15:8 GPIF Data High

Contains the data written to or read from the FD15:8 (PORTD) pins using the GPIF waveform.

15.12.12 Read/Write GPIF Data LOW & Trigger Transaction

Figure 15-107. Read/Write GPIF Data LOW & Trigger Transaction

Bit 7-0 D7:0 GPIF Data Low /Trigger GPIF Transaction

Contains the data written to or read from the FD7:0 (PORTB) pins. Reading or writing low-byte
triggers a GPIF transaction.

XGPIFSGLDATH GPIF Data HIGH (16-bit mode) E6F0

b7 b6 b5 b4 b3 b2 b1 b0

D15 D14 D13 D12 D11 D10 D9 D8

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

XGPIFSGLDATLX Read/Write GPIF Data LOW & Trigger
Transaction

E6F1

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

Exhibit 2058 - Page 419 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-100 EZ-USB FX2 Technical Reference Manual v2.1

15.12.13 Read GPIF Data LOW, No Transaction Trigger

Figure 15-108. Read GPIF Data LOW, No Transaction Trigger

Bit 7-0 D7:0 GPIF Data Low /Don’t Trigger GPIF Transaction

Contains the data written to or read from the FD7:0 (PORTB) pins. Read or write low byte
does not trigger GPIF transaction.

15.12.14 GPIF RDY Pin Configuration

Figure 15-109. GPIF Ready Pins

Bit 7 INTRDY Force Ready Condition

Internal RDY. Functions as a sixth RDY input, controlled by the firmware instead of a RDY pin.

Bit 6 SAS RDY Signal Connection to GPIF Input Logic

Synchronous/Asynchronous RDY signals. This bit controls how the RDY signals connect to
the GPIF input logic.

If the internal IFCLK is used to clock the GPIF, the RDY signals can make transitions in an
asynchronous manner, i.e. not referenced to the internal clock. Setting SAS=1 causes the
RDY inputs to pass through two flip-flops for synchronization purposes.

XGPIFSGLDATLNOX Read GPIF Data LOW, No Transaction
 Trigger

E6F2

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R R R R R R R R

x x x x x x x x

GPIFREADYCFG GPIF RDY Pin Configuration E6F3

b7 b6 b5 b4 b3 b2 b1 b0

INTRDY SAS TCXRDY5 0 0 0 0 0

R/W R/W R/W R R R R R

0 0 0 0 0 0 0 0

Exhibit 2058 - Page 420 of 460

Chapter 15. Registers Page 15-101

If the RDY signals are synchronized to IFCLK, and obey the setup and hold times with respect
to this clock, the user can set SAS=0, which causes the RDY signals to pass through a single
flip-flop.

Bit 5 TCXRDY5 TC Expiration Replaces RDY5

To use the transaction count expiration signal as a ready input to a waveform, set this bit to 1.
Setting this bit will take the place of the pin RDY5 in the decision point of the waveform. The
default value of the bit is zero (in other words, the RDY5 from the pin prevails).

15.12.15 GPIF RDY Pin Status

Figure 15-110. GPIF Ready Status Pins

Bit 5-0 RDY5:0 Current State of Ready Pins

RDYx. Instantaneous states of the RDY pins. The current state of the RDY[5:0] pins, sampled
at each rising edge of the GPIF clock.

15.12.16 Abort GPIF Cycles

Figure 15-111. Abort GPIF

Write 0xFF to immediately abort a GPIF transaction and transition to the Idle State.

GPIFREADYSTAT GPIF RDY Pin Status E6F4

b7 b6 b5 b4 b3 b2 b1 b0

0 0 RDY5 RDY4 RDY3 RDY2 RDY1 RDY0

R R R R R R R R

0 0 x x x x x x

GPIFABORT Abort GPIF E6F5

b7 b6 b5 b4 b3 b2 b1 b0

x x x x x x x x

W W W W W W W W

x x x x x x x x

Exhibit 2058 - Page 421 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-102 EZ-USB FX2 Technical Reference Manual v2.1

15.13 Endpoint Buffers

15.13.1 EP0 IN-OUT Buffer

Figure 15-112. EP0 IN/OUT Buffer

Bit 7-0 D7:0 EP0 Data

EP0 Data buffer (IN/OUT). 64 bytes.

15.13.2 Endpoint 1-OUT Buffer

Figure 15-113. EP1-OUT Buffer

Bit 7-0 D7:0 EP1-Out Data

EP1-Out Data buffer. 64 bytes.

EP0BUF EP0 IN/OUT Buffer E740-E77F

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

EP1OUTBUF EP1-OUT Buffer E780-E7BF

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

Exhibit 2058 - Page 422 of 460

Chapter 15. Registers Page 15-103

15.13.3 Endpoint 1-IN Buffer

Figure 15-114. EP1-IN Buffer

Bit 7-0 D7:0 EP1-IN Buffer

EP1-IN Data buffer. 64 bytes.

15.13.4 Endpoint 2/Slave FIFO Buffer

Figure 15-115. 512/1024-byte EP2/Slave FIFO Buffer

Bit 7-0 D7:0 EP2 Data

512/1024-byte EP2 buffer.

EP1INBUF EP1-IN Buffer E7C0-E7FF

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

EP2FIFOBUF 512/1024-byte EP2/Slave FIFO Buffer F000-F3FF

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

Exhibit 2058 - Page 423 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-104 EZ-USB FX2 Technical Reference Manual v2.1

15.13.5 512-byte Endpoint 4/Slave FIFO Buffer

Figure 15-116. 512-byte EP4/Slave FIFO Buffer

Bit 7-0 D7:0 EP4 Data

512-byte EP4 buffer.

15.13.6 512/1024-byte Endpoint 6/Slave FIFO Buffer

Figure 15-117. 512/1024-byte EP6/Slave FIFO Buffer

Bit 7-0 D7:0 EP6 Data

512/1024-byte EP6 buffer.

EP4FIFOBUF 512-byte EP4/Slave FIFO Buffer F400-F5FF

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

EP6FIFOBUF 512/1024-byte EP6/Slave FIFO Buffer F800-FBFF

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

Exhibit 2058 - Page 424 of 460

Chapter 15. Registers Page 15-105

15.13.7 512-byte Endpoint 8/Slave FIFO Buffer

Figure 15-118. 512-byte EP8/Slave FIFO Buffer

Bit 7-0 D7:0 EP8 Data

512-byte EP8 buffer.

15.14 Synchronization Delay

Under certain conditions, some read and write accesses to FX2 registers must be separated by a
synchronization delay. The delay is necessary only under the following conditions:

• Between a write to any register in the 0xE600-0xE6FF range and a write to one of the reg-
isters in Table 15-20.

• Between a write to one of the registers in Tabl e15-20 and a read from any register in the
0xE600-0xE6FF range.

EP8FIFOBUF 512-byte EP8/Slave FIFO Buffer FC00-FDFF

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

X X X X X X X X

Table 15-20. Registers Which Require a Synchronization Delay

FIFORESET FIFOPINPOLAR

INPKTEND EPxBCH:L

EPxFIFOPFH:L EPxAUTOINLENH:L

EPxFIFOCFG EPxGPIFFLGSEL

PINFLAGSAB PINFLAGSCD

EPxFIFOIE EPxFIFOIRQ

GPIFIE GPIFIRQ

UDMACRCH:L GPIFADRH:L

GPIFTRIG EPxGPIFTRIG

OUTPKTEND REVCTL

GPIFTCB3 GPIFTCB2

GPIFTCB1 GPIFTCB0

Exhibit 2058 - Page 425 of 460

EZ-USB FX2 Technical Reference Manual

Page 15-106 EZ-USB FX2 Technical Reference Manual v2.1

The minimum delay length is a function of the IFCLK and CLKOUT (CPU Clock) frequencies, and
is determined by the equation:

The required delay length is smallest when the CPU is running at its slowest speed (12 MHz, 83.2
ns/cycle) and IFCLK is running at its fastest speed (48 MHz, 20.8 ns/cycle). Under those condi-
tions, the minimum required delay is:

The longest delay is required when the CPU is running at its fastest speed (48MHz, 20.8 ns/cycle)
and IFCLK is running much slower (e.g., 5.2 MHz, 192 ns/cycle):

The most-typical FX2 configuration, IFCLK and CLKOUT both running at 48 MHz, requires a mini-
mum delay of:

The Frameworks fimware supplied with the EZ-USB FX2 Development Kit includes a macro,
called SYNCDELAY, which implements the synchronization delay. The macro is in the file
fx2sdly.h.

Minimum Sync Delay, in CPU cycles 1.5
IFCLK Period

CLKOUT Period
--- 1+

 ×= Note:
 n means “round n upward”

1.5
20.8
83.2
---------- 1+

 × 1.5 1.25()× 1.875 2 CPU Cycles= = =

1.5
192
20.8
---------- 1+

 × 1.5 10.23()× 15.3 16 CPU Cycles= = =

1.5
20.8
20.8
---------- 1+

 × 1.5 2()× 3 3 CPU Cycles= = =

Exhibit 2058 - Page 426 of 460

Appendix A A - 1

Appendix A
Default Descriptors for Full Speed Mode

Tables A-1 through A-25 show the descriptor data built into the FX2 logic. The tables are presented
in the order that the bytes are stored.

The Device Descriptor specifies a MaxPacketSize of 64 bytes for endpoint 0, contains Cypress
Semiconductor Vendor, Product and Release Number IDs, and uses no string indices. Release
Number IDs (XX and YY) are found in individual Cypress Semiconductor data sheets. The FX2
logic returns this information response to a “Get_Descriptor/Device” host request.

Table A-1 Default USB Device Descriptor

Offset Field Description Value

0 bLength Length of this Descriptor = 18 bytes 12H

1 bDescriptorType Descriptor Type = Device 01H

2 bcdUSB (L) USB Specification Version 2.00 (L) 00H

3 bcdUSB (H) USB Specification Version 2.00 (H) 02H

4 bDeviceClass Device Class (FF is Vendor-Specific) FFH

5 bDeviceSubClass Device Sub-class (FF is Vendor-Specific) FFH

6 bDeviceProtocol Device Protocol (FF is Vendor-Specific) FFH

7 bMaxPacketSize0 Maximum Packet Size for EP0 = 64 bytes 40H

8 idVendor (L) Vendor ID (L) Cypress Semi = 04B4H B4H

9 idVendor (H) Vendor ID (H) 04H

10 idProduct (L) Product ID (L) EZ-USB = 8613H 13H

11 idProduct (H) Product ID (H) 86H

12 bcdDevice (L) Device Release Number (BCD,L) (see individual data sheet) xxH

13 bcdDevice (H) Device Release Number (BCD,H) (see individual data sheet) xxH

14 iManufacturer Manufacturer Index String = None 00H

15 iProduct Product Index String = None 00H

16 iSerialNumber Serial number Index String = None 00H

17 bNumConfigurations Number of Configurations in this Interface = 1 01H

Exhibit 2058 - Page 427 of 460

EZ-USB FX2 Technical Reference Manual

A - 2 EZ-USB FX2 Technical Reference Manual v2.1

The configuration descriptor includes a total length field (offset 2-3) that encompasses all interface
and endpoint descriptors that follow the configuration descriptor. This configuration describes a
single interface (offset 4). The host selects this configuration by issuing a Set_Configuration
requests specifying configuration #1 (offset 5).

Table A-2 Device Qualifier

Offset Field Description Value

0 bLength Length of this Descriptor = 10 bytes 0AH

1 bDescriptorType Descriptor Type = Device Qualifier 06H

2 bcdUSB (L) USB Specification Version 2.00 (L) 00H

3 bcdUSB (H) USB Specification Version 2.00 (H) 02H

4 bDeviceClass Device Class (FF is Vendor-Specific) FFH

5 bDeviceSubClass Device Sub-class (FF is Vendor-Specific) FFH

6 bDeviceProtocol Device Protocol (FF is Vendor-Specific) FFH

7 bMaxPacketSize0 Maximum Packet Size for other speed = 64 bytes 40H

8 bNumConfigurations Number of other Configurations = 1 01H

9 bReserved Must be set to zero 00H

Table A-3 USB Default Configuration Descriptor

Offset Field Description Value

0 bLength Length of this Descriptor = 9 bytes 09H

1 bDescriptorType Descriptor Type = Configuration 02H

2 wTotalLength (L) Total Length (L) Including Interface and Endpoint Descriptors
(171 total)

ABH

3 wTotalLength (H) Total Length (H) 00H

4 bNumInterfaces Number of Interfaces in this Configuration 01H

5 bConfigurationValue Configuration Value Used by Set_Configuration Request to
Select this interface

01H

6 iConfiguration Index of String Describing this Configuration = None 00H

7 bmAttributes Attributes - Bus-Powered, No Wakeup 80H

8 MaxPower Maximum Power - 100 mA 32H

Exhibit 2058 - Page 428 of 460

Appendix A A - 3

Table A-4 USB Default Interface 0, Alternate Setting 0

Offset Field Description Value

0 bLength Length of the Interface Descriptor 09H

1 bDescriptorType Descriptor Type = Interface 04H

2 bInterfaceNumber Zero based index of this interface = 0 00H

3 bAlternateSetting Alternate Setting Value = 0 00H

4 bNumEndpoints Number of endpoints in this interface (not counting EP0) = 0 00H

5 bInterfaceClass Interface Class = Vendor Specific FFH

6 bInterfaceSubClass Interface Sub-class = Vendor Specific FFH

7 bInterfaceProtocol Interface Protocol = Vendor Specific FFH

8 iInterface Index to string descriptor for this interface = None 00H

Table A-5 USB Default Interface 0, Alternate Setting 1

Offset Field Description Value

0 bLength Length of this Interface Descriptor 09H

1 bDescriptorType Descriptor Type = Interface 04H

2 bInterfaceNumber Zero based index of this interface = 0 00H

3 bAlternateSetting Alternate Setting Value = 1 01H

4 bNumEndpoints Number of endpoints in this interface (not counting EP0) = 6 06H

5 bInterfaceClass Interface Class = Vendor Specific FFH

6 bInterfaceSubClass Interface Sub-class = Vendor Specific FFH

7 bInterfaceProtocol Interface Protocol = Vendor Specific FFH

8 iInterface Index to string descriptor for this interface = None 00H

Table A-6 Endpoint Descriptor (EP1 out)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint direction (1 is in) and address = OUT1 01H

3 bmAttributes XFR Type = BULK 02H

4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H

5 WMaxPacketSize (H) Maximum Packet Size - High 00H

6 bInterval Polling Interval in Milliseconds (1 for iso) 00H

Exhibit 2058 - Page 429 of 460

EZ-USB FX2 Technical Reference Manual

A - 4 EZ-USB FX2 Technical Reference Manual v2.1

Table A-7 Endpoint Descriptor (EP1 in)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = IN1 81H

3 bmAttributes XFR Type = BULK 02H

4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H

5 WMaxPacketSize (H) Maximum Packet Size - High 00H

6 bInterval Polling Interval in Milliseconds (1 for iso) 00H

Table A-8 Endpoint Descriptor (EP2)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT2 02H

3 bmAttributes XFR Type = BULK 02H

4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H

5 WMaxPacketSize (H) Maximum Packet Size - High 00H

6 bInterval Polling Interval in Milliseconds (1 for iso) 00H

Table A-9 Endpoint Descriptor (EP4)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT4 04H

3 bmAttributes XFR Type = BULK 02H

4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H

5 WMaxPacketSize (H) Maximum Packet Size - High 00H

6 bInterval Polling Interval in Milliseconds (1 for iso) 00H

Exhibit 2058 - Page 430 of 460

Appendix A A - 5

Table A-10 Endpoint Descriptor (EP6)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = IN6 86H

3 bmAttributes XFR Type = BULK 02H

4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H

5 WMaxPacketSize (H) Maximum Packet Size - High 00H

6 bInterval Polling Interval in Milliseconds (1 for iso) 00H

Table A-11 Endpoint Descriptor (EP8)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = IN8 88H

3 bmAttributes XFR Type = BULK 02H

4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H

5 WMaxPacketSize (H) Maximum Packet Size - High 00H

6 bInterval Polling Interval in Milliseconds (1 for iso) 00H

Table A-12 Interface Descriptor (Alt. Setting 2)

Offset Field Description Value

0 bLength Length of the Interface Descriptor 09H

1 bDescriptorType Descriptor Type = Interface 04H

2 bInterfaceNumber Zero based index of this interface = 0 00H

3 bAlternateSetting Alternate Setting Value = 2 02H

4 bNumEndpoints Number of endpoints in this interface (not counting EP0) = 6 06H

5 bInterfaceClass Interface Class = Vendor Specific FFH

6 bInterfaceSubClass Interface Sub-class = Vendor Specific FFH

7 bInterfaceProtocol Interface Protocol = Vendor Specific FFH

8 iInterface Index to string descriptor for this interface = None 00H

Exhibit 2058 - Page 431 of 460

EZ-USB FX2 Technical Reference Manual

A - 6 EZ-USB FX2 Technical Reference Manual v2.1

Table A-13 Endpoint Descriptor (EP1 out)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT1 01H

3 bmAttributes XFR Type = INT 03H

4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H

5 WMaxPacketSize (H) Maximum Packet Size - High 00H

6 bInterval Polling Interval in Milliseconds (1 for iso) 0AH

Table A-14 Endpoint Descriptor (EP1 in)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = IN1 81H

3 bmAttributes XFR Type = INT 03H

4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H

5 WMaxPacketSize (H) Maximum Packet Size - High 00H

6 bInterval Polling Interval in Milliseconds (1 for iso) 0AH

Table A-15 Endpoint Descriptor (EP2

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT2 02H

3 bmAttributes XFR Type = INT 03H

4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H

5 WMaxPacketSize (H) Maximum Packet Size - High 00H

6 bInterval Polling Interval in Milliseconds (1 for iso) 0AH

Exhibit 2058 - Page 432 of 460

Appendix A A - 7

Table A-16 Endpoint Descriptor (EP4)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT4 04H

3 bmAttributes XFR Type = BULK 02H

4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H

5 WMaxPacketSize (H) Maximum Packet Size - High 00H

6 bInterval Polling Interval in Milliseconds (1 for iso) 00H

Table A-17 Endpoint Descriptor (EP6)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = IN6 86H

3 bmAttributes XFR Type = INT 03H

4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H

5 WMaxPacketSize (H) Maximum Packet Size - High 00H

6 bInterval Polling Interval in Milliseconds (1 for iso) 0AH

Table A-18 Endpoint Descriptor (EP8)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = IN8 88H

3 bmAttributes XFR Type = BULK 02H

4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H

5 WMaxPacketSize (H) Maximum Packet Size - High 00H

6 bInterval Polling Interval in Milliseconds (1 for iso) 00H

Exhibit 2058 - Page 433 of 460

EZ-USB FX2 Technical Reference Manual

A - 8 EZ-USB FX2 Technical Reference Manual v2.1

Table A-19 Interface Descriptor (Alt. Setting 3)

Offset Field Description Value

0 bLength Length of the Interface Descriptor 09H

1 bDescriptorType Descriptor Type = Interface 04H

2 bInterfaceNumber Zero based index of this interface = 0 00H

3 bAlternateSetting Alternate Setting Value = 3 03H

4 bNumEndpoints Number of endpoints in this interface (not counting EP0) = 6 06H

5 bInterfaceClass Interface Class = Vendor Specific FFH

6 bInterfaceSubClass Interface Sub-class = Vendor Specific FFH

7 bInterfaceProtocol Interface Protocol = Vendor Specific FFH

8 iInterface Index to string descriptor for this interface = None 00H

Table A-20 Endpoint Descriptor (EP1 out)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT1 01H

3 bmAttributes XFR Type = INT 03H

4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H

5 WMaxPacketSize (H) Maximum Packet Size - High 00H

6 bInterval Polling Interval in Milliseconds (1 for iso) 0AH

Table A-21 Endpoint Descriptor (EP1 in)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = IN1 81H

3 bmAttributes XFR Type = INT 03H

4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H

5 WMaxPacketSize (H) Maximum Packet Size - High 00H

6 bInterval Polling Interval in Milliseconds (1 for iso) 0AH

Exhibit 2058 - Page 434 of 460

Appendix A A - 9

Table A-22 Endpoint Descriptor (EP2)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT2 02H

3 bmAttributes XFR Type = ISO, No Synchronization, Data endpoint 01H

4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H

5 WMaxPacketSize (H) Maximum Packet Size - High 00H

6 bInterval Polling Interval in Milliseconds (1 for iso) 01H

Table A-23 Endpoint Descriptor (EP4)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT4 04H

3 bmAttributes XFR Type = BULK 02H

4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H

5 WMaxPacketSize (H) Maximum Packet Size - High 00H

6 bInterval Polling Interval in Milliseconds (1 for iso) 00H

Table A-24 Endpoint Descriptor (EP6)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = IN6 86H

3 bmAttributes XFR Type = ISO, No Synchronization, Data Endpoint 01H

4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H

5 WMaxPacketSize (H) Maximum Packet Size - High 00H

6 bInterval Polling Interval in Milliseconds (1 for iso) 01H

Exhibit 2058 - Page 435 of 460

EZ-USB FX2 Technical Reference Manual

A - 10 EZ-USB FX2 Technical Reference Manual v2.1

Table A-25 Endpoint Descriptor (EP8)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = IN8 88H

3 bmAttributes XFR Type = BULK 02H

4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H

5 WMaxPacketSize (H) Maximum Packet Size - High 00H

6 bInterval Polling Interval in Milliseconds (1 for iso) 00H

Exhibit 2058 - Page 436 of 460

Appendix B B - 11

Appendix B
Default Descriptors for High Speed Mode

Tables B-1 through B-25 show the descriptor data built into the FX2 logic. The tables are presented
in the order that the bytes are stored.

The Device Descriptor specifies a MaxPacketSize of 64 bytes for endpoint 0, contains Cypress
Semiconductor Vendor, Product and Release Number IDs, and uses no string indices. Release
Number IDs (XX and YY) are found in individual Cypress Semiconductor data sheets. The FX2
logic returns this information response to a “Get_Descriptor/Device” host request.

Table B-1 Device Descriptor

Offset Field Description Value

0 bLength Length of this Descriptor = 18 bytes 12H

1 bDescriptorType Descriptor Type = Device 01H

2 bcdUSB (L) USB Specification Version 2.00 (L) 00H

3 bcdUSB (H) USB Specification Version 2.00 (H) 02H

4 bDeviceClass Device Class (FF is Vendor-Specific) FFH

5 bDeviceSubClass Device Sub-class (FF is Vendor-Specific) FFH

6 bDeviceProtocol Device Protocol (FF is Vendor-Specific) FFH

7 bMaxPacketSize0 Maximum Packet Size for EP0 = 64 bytes 40H

8 idVendor (L) Vendor ID (L) Cypress Semi = 04B4H B4H

9 idVendor (H) Vendor ID (H) 04H

10 idProduct (L) Product ID (L) EZ-USB = 8613H 13H

11 idProduct (H) Product ID (H) 86H

12 bcdDevice (L) Device Release Number (BCD,L) (see individual data sheet) xxH

13 bcdDevice (H) Device Release Number (BCD,H) (see individual data sheet) xxH

14 iManufacturer Manufacturer Index String = None 00H

15 iProduct Product Index String = None 00H

16 iSerialNumber Serial Number Index String = None 00H

17 bNumConfigurations Number of Configurations in this Interface = 1 01H

Exhibit 2058 - Page 437 of 460

EZ-USB FX2 Technical Reference Manual

B - 12 EZ-USB FX2 Technical Reference Manual v2.1

Table B-2 Device Qualifier

Offset Field Description Value

0 bLength Length of this Descriptor = 10 bytes 0AH

1 bDescriptorType Descriptor Type = Device Qualifier 06H

2 bcdUSB (L) USB Specification Version 2.00 (L) 00H

3 bcdUSB (H) USB Specification Version 2.00 (H) 02H

4 bDeviceClass Device Class (FF is vendor-specific) FFH

5 bDeviceSubClass Device Sub-class (FF is vendor-specific) FFH

6 bDeviceProtocol Device Protocol (FF is vendor-specific) FFH

7 bMaxPacketSize0 Maximum Packet Size for other speed = 64 bytes 40H

8 bNumConfigurations Number of other Configurations = 1 01H

9 bReserved Must be set to Zero 00H

Table B-3 Configuration Descriptor

Offset Field Description Value

0 bLength Length of this Descriptor = 9 bytes 09H

1 bDescriptorType Descriptor Type = Configuration 02H

2 wTotalLength (L) Total length (L) including Interface and Endpoint descriptors
(171 total)

ABH

3 wTotalLength (H) Total Length (H) 00H

4 bNumInterfaces Number of Interfaces in this Configuration 01H

5 bConfigurationValue Configuration value used by Set_Configuration Request to
select this interface

01H

6 iConfiguration Index of String Describing this Configuration = None 00H

7 bmAttributes Attributes - Bus Powered, No Wakeup 80H

8 MaxPower Maximum Power - 100 ma 32H

Exhibit 2058 - Page 438 of 460

Appendix B B - 13

Table B-4 Interface Descriptor (Alt. Setting 0)

Offset Field Description Value

0 bLength Length of the Interface Descriptor 09H

1 bDescriptorType Descriptor Type = Interface 04H

2 bInterfaceNumber Zero based index of this interface = 0 00H

3 bAlternateSetting Alternate Setting Value = 0 00H

4 bNumEndpoints Number of endpoints in this interface (not counting EP0) = 0 00H

5 bInterfaceClass Interface Class = Vendor Specific FFH

6 bInterfaceSubClass Interface Sub-class = Vendor Specific FFH

7 bInterfaceProtocol Interface Protocol = Vendor Specific FFH

8 iInterface Index to string descriptor for this interface = None 00H

Table B-5 Interface Descriptor (Alt. Setting 1)

Offset Field Description Value

0 bLength Length of the Interface Descriptor 09H

1 bDescriptorType Descriptor Type = Interface 04H

2 bInterfaceNumber Zero based index of this interface = 0 00H

3 bAlternateSetting Alternate Setting Value = 1 01H

4 bNumEndpoints Number of endpoints in this interface (not counting EP0) = 6 06H

5 bInterfaceClass Interface Class = Vendor Specific FFH

6 bInterfaceSubClass Interface Sub-class = Vendor Specific FFH

7 bInterfaceProtocol Interface Protocol = Vendor Specific FFH

8 iInterface Index to string descriptor for this interface = None 00H

Table B-6 Endpoint Descriptor (EP1 out)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT1 01H

3 bmAttributes XFR Type = BULK 02H

4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes 00H

5 WMaxPacketSize (H) Maximum Packet Size - High 02H

6 bInterval Polling Interval in Milliseconds (1 for iso) 00H

Exhibit 2058 - Page 439 of 460

EZ-USB FX2 Technical Reference Manual

B - 14 EZ-USB FX2 Technical Reference Manual v2.1

Table B-7 Endpoint Descriptor (EP1 in)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = IN1 81H

3 bmAttributes XFR Type = BULK 02H

4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes 00H

5 WMaxPacketSize (H) Maximum Packet Size - High 02H

6 bInterval Polling Interval in Milliseconds (1 for iso) 00H

Table B-8 Endpoint Descriptor (EP2)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT2 02H

3 bmAttributes XFR Type = BULK 02H

4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes 00H

5 WMaxPacketSize (H) Maximum Packet Size - High 02H

6 bInterval Polling Interval in Milliseconds (1 for iso) 00H

Table B-9 Endpoint Descriptor (EP4)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT4 04H

3 bmAttributes XFR Type = BULK 02H

4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes 00H

5 WMaxPacketSize (H) Maximum Packet Size - High 02H

6 bInterval Polling Interval in Milliseconds (1 for iso) 00H

Exhibit 2058 - Page 440 of 460

Appendix B B - 15

Table B-10 Endpoint Descriptor (EP6)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = IN6 86H

3 bmAttributes XFR Type = BULK 02H

4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes 00H

5 WMaxPacketSize (H) Maximum Packet Size - High 02H

6 bInterval Polling Interval in Milliseconds (1 for iso) 00H

Table B-11 Endpoint Descriptor (EP8)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = IN8 88H

3 bmAttributes XFR Type = BULK 02H

4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes 00H

5 WMaxPacketSize (H) Maximum Packet Size - High 02H

6 bInterval Polling Interval in Milliseconds (1 for iso) 00H

Table B-12 Interface Descriptor (Alt. Setting 2)

Offset Field Description Value

0 bLength Length of the Interface Descriptor 09H

1 bDescriptorType Descriptor Type = Interface 04H

2 bInterfaceNumber Zero based index of this interface = 0 00H

3 bAlternateSetting Alternate Setting Value = 2 02H

4 bNumEndpoints Number of endpoints in this interface (not counting EP0) = 6 06H

5 bInterfaceClass Interface Class = Vendor Specific FFH

6 bInterfaceSubClass Interface Sub-class = Vendor Specific FFH

7 bInterfaceProtocol Interface Protocol = Vendor Specific FFH

8 iInterface Index to string descriptor for this interface = None 00H

Exhibit 2058 - Page 441 of 460

EZ-USB FX2 Technical Reference Manual

B - 16 EZ-USB FX2 Technical Reference Manual v2.1

Table B-13 Endpoint Descriptor (EP1 out)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT1 01H

3 bmAttributes XFR Type = INT 03H

4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H

5 WMaxPacketSize (H) Maximum Packet Size - High 00H

6 bInterval Polling Interval in Milliseconds (1 for iso) 01H

Table B-14 Endpoint Descriptor (EP1 in)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = IN1 81H

3 bmAttributes XFR Type = INT 03H

4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H

5 WMaxPacketSize (H) Maximum Packet Size - High 00H

6 bInterval Polling Interval in Milliseconds (1 for iso) 01H

Table B-15 Endpoint Descriptor (EP2)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT2 02H

3 bmAttributes XFR Type = INT 03H

4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes 00H

5 WMaxPacketSize (H) Maximum Packet Size - High 02H

6 bInterval Polling Interval in Milliseconds (1 for iso) 01H

Exhibit 2058 - Page 442 of 460

Appendix B B - 17

Table B-16 Endpoint Descriptor (EP4)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT4 04H

3 bmAttributes XFR Type = BULK 02H

4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes 00H

5 WMaxPacketSize (H) Maximum Packet Size - High 02H

6 bInterval Polling Interval in Milliseconds (1 for iso) 00H

Table B-17 Endpoint Descriptor (EP6)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = IN6 86H

3 bmAttributes XFR Type = INT 03H

4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes 00H

5 WMaxPacketSize (H) Maximum Packet Size - High 02H

6 bInterval Polling Interval in Milliseconds (1 for iso) 01H

Table B-18 Endpoint Descriptor (EP8)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = IN8 88H

3 bmAttributes XFR Type = BULK 02H

4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes 00H

5 WMaxPacketSize (H) Maximum Packet Size - High 02H

6 bInterval Polling Interval in Milliseconds (1 for iso) 00H

Exhibit 2058 - Page 443 of 460

EZ-USB FX2 Technical Reference Manual

B - 18 EZ-USB FX2 Technical Reference Manual v2.1

Table B-19 Interface Descriptor (Alt. Setting 3)

Offset Field Description Value

0 bLength Length of the Interface Descriptor 09H

1 bDescriptorType Descriptor Type = Interface 04H

2 bInterfaceNumber Zero based index of this interface = 0 00H

3 bAlternateSetting Alternate Setting Value = 3 03H

4 bNumEndpoints Number of endpoints in this interface (not counting EP0) = 6 06H

5 bInterfaceClass Interface Class = Vendor Specific FFH

6 bInterfaceSubClass Interface Sub-class = Vendor Specific FFH

7 bInterfaceProtocol Interface Protocol = Vendor Specific FFH

8 iInterface Index to string descriptor for this interface = None 00H

Table B-20 Endpoint Descriptor (EP1 out)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT1 01H

3 bmAttributes XFR Type = INT 03H

4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H

5 WMaxPacketSize (H) Maximum Packet Size - High 00H

6 bInterval Polling Interval in Milliseconds (1 for iso) 01H

Table B-21 Endpoint Descriptor (EP1 in)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = IN1 81H

3 bmAttributes XFR Type = INT 03H

4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H

5 WMaxPacketSize (H) Maximum Packet Size - High 00H

6 bInterval Polling Interval in Milliseconds (1 for iso) 01H

Exhibit 2058 - Page 444 of 460

Appendix B B - 19

Table B-22 Endpoint Descriptor (EP2)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT2 02H

3 bmAttributes XFR Type = ISO, No Synchronization, Data endpoint 01H

4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes 00H

5 WMaxPacketSize (H) Maximum Packet Size - High 02H

6 bInterval Polling Interval in Milliseconds (1 for iso) 01H

Table B-23 Endpoint Descriptor (EP4)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT4 04H

3 bmAttributes XFR Type = BULK 02H

4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes 00H

5 WMaxPacketSize (H) Maximum Packet Size - High 02H

6 bInterval Polling Interval in Milliseconds (1 for iso) 00H

Table B-24 Endpoint Descriptor (EP6)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = IN6 86H

3 bmAttributes XFR Type = ISO, No Synchronization, Data endpoint 01H

4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes 00H

5 WMaxPacketSize (H) Maximum Packet Size - High 02H

6 bInterval Polling Interval in Milliseconds (1 for iso) 01H

Exhibit 2058 - Page 445 of 460

EZ-USB FX2 Technical Reference Manual

B - 20 EZ-USB FX2 Technical Reference Manual v2.1

Table B-25 Endpoint Descriptor (EP8)

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and address = IN8 88H

3 bmAttributes XFR Type = BULK 02H

4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes 00H

5 WMaxPacketSize (H) Maximum Packet Size - High 02H

6 bInterval Polling Interval in Milliseconds (1 for iso) 00H

Exhibit 2058 - Page 446 of 460

Appendix C C - 21

Appendix C
FX2 Register Summary

The following table is a summary of all the EZ-USB FX2 Registers.

In the “b7-b0” columns, bit positions that contain a 0 or a 1 cannot be written to and, when read,
always return the value shown (0 or 1). Bit positions that contain “-” are available but unused.

The “Default” column shows each register’s power-on-reset value (“x” indicates “undefined”).

The “Access” column indicates each register’s read/write accessibility.

Exhibit 2058 - Page 447 of 460

EZ-USB FX2 Technical Reference Manual

C - 22 EZ-USB FX2 Technical Reference Manual v2.1

Exhibit 2058 - Page 448 of 460

E
Z

-U
S

B
 F

X
2

T
ec

hn
ic

al
 R

ef
er

en
ce

 M
an

ua
l v

2.
1

A
pp

en
di

x
C

 -
23

E
Z

-U
S

B
 F

X
2

R
eg

is
te

rs
 &

 B
u

ff
er

s

R
eg

is
te

r
S

u
m

m
ar

y
H

ex
S

iz
e

N
am

e
D

es
cr

ip
ti

o
n

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

D
ef

au
lt

A
cc

es
s

N
o

te
s

G
P

IF
 W

av
ef

o
rm

 M
em

o
ri

es

E
40

0
12

8
W

A
V

E
D

A
TA

G
P

IF
 W

av
ef

or
m

 D
es

cr
ip

to
r 0

, 1
,

2,
 3

 d
at

a
D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0
xx

xx
xx

xx
R

W
as

so
ci

at
ed

 /
po

in
te

d
to

 b
y

G
P

IF
W

F
S

E
LE

C
T

E
48

0
38

4
re

se
rv

ed

G
E

N
E

R
A

L
 C

O
N

F
IG

U
R

A
T

IO
N

E
60

0
1

C
P

U
C

S
C

P
U

 C
on

tr
ol

 &
 S

ta
tu

s
0

0
P

O
R

T
C

S
T

B
C

LK
S

P
D

1
C

LK
S

P
D

0
C

LK
IN

V
C

LK
O

E
80

51
R

E
S

00
00

00
10

rr
bb

bb
br

P
O

R
T

C
S

T
B

=
1:

 re
ad

s/
w

rit
es

to

 P
O

R
T

C
 g

en
er

at
e

R
D

an

d
W

R

st
ro

be
s

C
L

K
S

P
D

1:
0=

80
51

 c
lo

ck

sp
ee

d:
 0

0=
12

, 0
1-

24
, 1

0=
48

,
11

=
X

C
L

K
IN

V
=

1
to

 in
ve

rt
 C

LK
O

U
T

si

gn
al

C
L

K
O

E
=

1
to

 d
riv

e
C

LK
O

U
T

pi

n
80

51
R

E
S

=
1

to
 r

es
et

 8
05

1

E
60

1
1

IF
C

O
N

F
IG

In
te

rf
ac

e
C

on
fig

ur
at

io
n

(P
or

ts
,

G
P

IF
, s

la
ve

 F
IF

O
s)

IF
C

LK
S

R
C

30
48

M
H

Z
IF

C
LK

O
E

IF
C

LK
P

O
L

A
S

Y
N

C
G

S
TA

T
E

IF
C

F
G

1
IF

C
F

G
0

11
00

00
00

R
W

IF
C

L
K

S
R

C
: F

IF
O

/G
P

IF

C
lo

ck
 S

ou
rc

e:
 0

:e
xt

er
na

l
 (

IF
G

C
LK

 p
in

);
1:

in
te

rn
al

30
48

M
H

Z
: I

nt
er

na
l F

IF
O

/
G

P
IF

 c
lo

ck
 fr

eq
: 0

=
30

 M
H

z,

1=
48

 M
H

z
IF

C
L

K
O

E
: F

IF
O

/G
P

IF
 C

lo
ck

O

ut
pu

t E
na

bl
e

(o
n

IF
C

LK
 p

in
)

IF
C

L
K

P
O

L:
 F

IF
O

/G
P

IF

cl
oc

k
po

la
rit

y
(o

n
IF

C
LK

 p
in

)
A

S
Y

N
C

: 1
=

F
IF

O
s/

G
P

IF
 u

se

in
te

rn
al

 c
lo

ck
 (

30
/4

8)
; 0

=
us

e
ex

te
rn

al
 IF

C
LK

G
S

TA
T

E
: 1

: d
riv

e
G

S
TA

T
E

[0
:2

] o
n

P
O

R
T

E
[0

:2
]

IF
C

F
G

[1
:0

]:
 0

0:
 p

or
ts

;
01

: r
es

er
ve

d;
 1

0:
 G

P
IF

;
11

: S
la

ve
 F

IF
O

 (
ex

t m
as

te
r)

E
60

2
1

P
IN

F
LA

G
S

A
B

se
e

S
ec

ti
o

n
 1

5.
14

S
la

ve
 F

IF
O

 F
LA

G
A

 a
nd

 F
LA

G
B

P

in
 C

on
fig

ur
at

io
n

F
LA

G
B

3
F

LA
G

B
2

F
LA

G
B

1
F

LA
G

B
0

F
LA

G
A

3
F

LA
G

A
2

F
LA

G
A

1
F

LA
G

A
0

00
00

00
00

R
W

F
L

A
G

x[
3:

0]
 w

he
re

x=

A
,B

,C
 o

r
D

 F
IF

O
 F

la
g:

00
00

: P
F

 fo
r

F
IF

O
 s

el
ec

te
d

by
 F

IF
O

A
D

R
[1

:0
] p

in
s.

00
01

-0
01

1:
 r

es
er

ve
d

01
00

: E
P

2
P

F,
 0

10
1:

 E
P

4P
F,

01

10
: E

P
6P

F,
 0

11
1:

 E
P

8
P

F
10

00
: E

P
2

E
F,

 1
00

1:
 E

P
4E

F,

10
10

: E
P

6E
F,

 1
01

1:
 E

P
8

E
F

11
00

: E
P

2
F

F,
 1

10
1:

 E
P

4F
F,

11

10
: E

P
6F

F,
 1

11
1:

 E
P

8F
F

E
60

3
1

P
IN

F
LA

G
S

C
D

se
e

S
ec

ti
o

n
 1

5.
14

S
la

ve
 F

IF
O

 F
LA

G
C

 a
nd

 F
LA

G
D

P

in
 C

on
fig

ur
at

io
n

F
LA

G
D

3
F

LA
G

D
2

F
LA

G
D

1
F

LA
G

D
0

F
LA

G
C

3
F

LA
G

C
2

F
LA

G
C

1
F

LA
G

C
0

01
00

00
00

R
W

E
60

4
1

F
IF

O
R

E
S

E
T

se
e

S
ec

ti
o

n
 1

5.
14

R
es

to
re

 F
IF

O
S

 to
 d

ef
au

lt
st

at
e

N
A

K
A

LL
0

0
0

E
P

3
E

P
2

E
P

1
E

P
0

xx
xx

xx
xx

W
S

et
 fl

ag
s

an
d

by
te

 c
ou

nt
s

to

de
fa

ul
t v

al
ue

s;
 w

rit
e

0x
80

 to

N
A

K
 a

ll
tr

an
sf

er
s,

 th
en

 w
rit

e
F

IF
O

 n
um

be
r,

th
en

 w
rit

e
0x

00
 to

 r
es

to
re

 n
or

m
al

 o
pe

r-
at

io
n

E
60

5
1

B
R

E
A

K
P

T
B

re
ak

po
in

t C
on

tr
ol

0
0

0
0

B
R

E
A

K
B

P
P

U
LS

E
B

P
E

N
0

00
00

00
00

rr
rr

bb
br

E
60

6
1

B
P

A
D

D
R

H
B

re
ak

po
in

t A
dd

re
ss

 H
A

15
A

14
A

13
A

12
A

11
A

10
A

9
A

8
xx

xx
xx

xx
R

W

E
60

7
1

B
P

A
D

D
R

L
B

re
ak

po
in

t A
dd

re
ss

 L
A

7
A

6
A

5
A

4
A

3
A

2
A

1
A

0
xx

xx
xx

xx
R

W

Exhibit 2058 - Page 449 of 460

E
Z

-U
S

B
 F

X
2

T
ec

hn
ic

al
 R

ef
er

en
ce

 M
an

ua
l v

2.
1

A
pp

en
di

x
C

 -
24

E
Z

-U
S

B
 F

X
2

R
eg

is
te

rs
 &

 B
u

ff
er

s

E
60

8
1

U
A

R
T

23
0

23
0

K
ba

ud
 in

te
rn

al
ly

 g
en

er
at

ed

re
f.

cl
oc

k
0

0
0

0
0

0
23

0U
A

R
T

1
23

0U
A

R
T

0
00

00
00

00
rr

rr
rr

bb
If

"1
",

 o
ve

rr
id

es
 ti

m
er

 in
pu

ts

to
 U

A
R

T.
 2

30
 r

at
e

va
lid

 fo
r

an
y

C
P

U
 c

lo
ck

 r
at

e.

E
60

9
1

F
IF

O
P

IN
P

O
LA

R
se

e
S

ec
ti

o
n

 1
5.

14
sl

av
e

F
IF

O
 In

te
rf

ac
e

pi
ns

 p
ol

ar
-

ity
0

0
P

K
T

E
N

D
S

LO
E

S
LR

D
S

LW
R

E
F

F
F

00
00

00
00

rr
bb

bb
bb

0=
ac

tiv
e

lo
w

, 1
=

ac
tiv

e
hi

gh

E
60

A
1

R
E

V
ID

C
hi

p
R

ev
is

io
n

rv
7

rv
6

rv
5

rv
4

rv
3

rv
2

rv
1

rv
0

S
ee

D
at

as
he

et
R

C
hi

p
re

vi
si

on
 n

um
be

r

E
60

B
1

R
E

V
C

T
L

C
hi

p
R

ev
is

io
n

C
on

tr
ol

0
0

0
0

0
0

dy
n_

ou
t

en
h_

pk
t

00
00

00
00

rr
rr

rr
bb

U
D

M
A

E
60

C
1

G
P

IF
H

O
LD

T
IM

E
M

S
T

B
 H

ol
d

T
im

e
(f

or
 U

D
M

A
)

0
0

0
0

0
0

H
O

LD
T

IM
E

1
H

O
LD

T
IM

E
0

00
00

00
00

rr
rr

rr
bb

3
re

se
rv

ed

E
N

D
P

O
IN

T
 C

O
N

F
IG

U
R

A
T

IO
N

T
Y

P
E

[0
0]

 =
 il

le
ga

l;
01

=
IS

O
,

10
=

B
U

LK
, 1

1=
IN

T.

di
r=

0:
O

U
T;

 d
ir=

1:
IN

B
U

F
1:

0:
 0

0=
qu

ad
, 0

1=
ill

e-
ga

l,
10

=
do

ub
le

, 1
1=

tr
ip

le
S

IZ
E

=
0:

 5
12

 b
yt

es
, S

IZ
E

=
1:

10

24
 b

yt
es

E
61

0
1

E
P

1O
U

T
C

F
G

E
nd

po
in

t 1
-O

U
T

 C
on

fig
ur

at
io

n
V

A
LI

D
0

T
Y

P
E

1
T

Y
P

E
0

0
0

0
0

10
10

00
00

br
bb

rr
rr

de
fa

ul
t:

B
U

LK
 O

U
T

 6
4

E
61

1
1

E
P

1I
N

C
F

G
E

nd
po

in
t 1

-I
N

 C
on

fig
ur

at
io

n
V

A
LI

D
0

T
Y

P
E

1
T

Y
P

E
0

0
0

0
0

10
10

00
00

br
bb

rr
rr

de
fa

ul
t:

B
U

LK
 O

U
T

 6
4

E
61

2
1

E
P

2C
F

G
E

nd
po

in
t 2

 C
on

fig
ur

at
io

n
V

A
LI

D
D

IR
T

Y
P

E
1

T
Y

P
E

0
S

IZ
E

0
B

U
F

1
B

U
F

0
10

10
00

10
bb

bb
br

bb
de

fa
ul

t:
B

U
LK

 O
U

T
 5

12
 d

ou
-

bl
e

bu
ffe

re
d

E
61

3
1

E
P

4C
F

G
E

nd
po

in
t 4

 C
on

fig
ur

at
io

n
V

A
LI

D
D

IR
T

Y
P

E
1

T
Y

P
E

0
0

0
0

0
10

10
00

00
bb

bb
rr

rr
de

fa
ul

t:
B

U
LK

 O
U

T
 (5

12
 d

ou
-

bl
e

bu
ffe

re
d

on
ly

 c
ho

ic
e)

E
61

4
1

E
P

6C
F

G
E

nd
po

in
t 6

 C
on

fig
ur

at
io

n
V

A
LI

D
D

IR
T

Y
P

E
1

T
Y

P
E

0
S

IZ
E

0
B

U
F

1
B

U
F

0
11

10
00

10
bb

bb
br

bb
de

fa
ul

t:
B

U
LK

 IN
 5

12
 d

ou
bl

e
bu

ffe
re

d

E
61

5
1

E
P

8C
F

G
E

nd
po

in
t 8

 C
on

fig
ur

at
io

n
V

A
LI

D
D

IR
T

Y
P

E
1

T
Y

P
E

0
0

0
0

0
11

10
00

00
bb

bb
rr

rr
de

fa
ul

t:
B

U
LK

 IN
 (5

12
 d

ou
bl

e
bu

ffe
re

d
on

ly
 c

ho
ic

e)

2
re

se
rv

ed

E
61

8
1

E
P

2F
IF

O
C

F
G

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 2
 /

sl
av

e
F

IF
O

 c
on

fig
-

ur
at

io
n

0
IN

F
M

1
O

E
P

1
A

U
T

O
O

U
T

A
U

T
O

IN
Z

E
R

O
LE

N
IN

0
W

O
R

D
W

ID
E

00
00

01
01

rb
bb

bb
rb

IN
F

M
1

(I
n

F
U

LL
 fl

ag
 m

in
us

1)

: 0
=

no
rm

al
, 1

=
fla

gs
 a

ct
iv

e
on

e
by

te
 e

ar
ly

O
E

P
1

(O
ut

 E
M

P
T

Y
 fl

ag
 p

lu
s

1)
: 0

=
no

rm
al

, 1
=

fla
gs

 a
ct

iv
e

on
e

by
te

 e
ar

ly
A

U
TO

O
U

T
=

1-
-v

al
id

 O
U

T

pa
ck

et
 a

ut
om

at
ic

al
ly

 b
e-

co
m

es
 p

ar
t o

f O
U

T
 F

IF
O

A
U

TO
O

U
T

=
0-

-8
05

1
de

ci
de

s
if

to
 c

om
m

it
da

ta
 to

 th
e

O
U

T

F
IF

O
A

U
TO

IN
=

1-
-S

IE
 p

ac
ke

tiz
es

/
di

sp
at

ch
es

 IN
-F

IF
O

 d
at

a
us

-
in

g
 E

P
xA

U
T

O
IN

LE
N

A
U

TO
IN

=
0-

-8
05

1
di

sp
at

ch
-

es
 a

n
IN

 p
ac

ke
t b

y
w

rit
in

g
by

te
 c

ou
nt

W
O

R
D

W
ID

E
=

1:

P
B

=
F

D
[0

:7
],

P
D

=
F

D
[8

:1
5]

;
=

1:
 P

B
=

F
D

[0
:7

],
P

D
=

P
D

Z
E

R
O

L
E

N
IN

: 0
=

di
sa

bl
e;

1=

se
nd

 z
er

o
le

n
pk

t o
n

P
K

T
E

N
D

 -
 If

 a
ny

 o
f t

he
 fo

ur

W
O

R
D

W
ID

E
 b

its
=

1,
 c

or
e

co
nf

ig
ur

es
 P

D
 a

s
F

D
15

:8

E
61

9
1

E
P

4F
IF

O
C

F
G

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 4
 /

sl
av

e
F

IF
O

 c
on

fig
-

ur
at

io
n

0
IN

F
M

1
O

E
P

1
A

U
T

O
O

U
T

A
U

T
O

IN
Z

E
R

O
LE

N
IN

0
W

O
R

D
W

ID
E

00
00

01
01

rb
bb

bb
rb

E
61

A
1

E
P

6F
IF

O
C

F
G

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 6
 /

sl
av

e
F

IF
O

 c
on

fig
-

ur
at

io
n

0
IN

F
M

1
O

E
P

1
A

U
T

O
O

U
T

A
U

T
O

IN
Z

E
R

O
LE

N
IN

0
W

O
R

D
W

ID
E

00
00

01
01

rb
bb

bb
rb

E
61

B
1

E
P

8F
IF

O
C

F
G

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 8
 /

sl
av

e
F

IF
O

 c
on

fig
-

ur
at

io
n

0
IN

F
M

1
O

E
P

1
A

U
T

O
O

U
T

A
U

T
O

IN
Z

E
R

O
LE

N
IN

0
W

O
R

D
W

ID
E

00
00

01
01

rb
bb

bb
rb

4
re

se
rv

ed

H
ex

S
iz

e
N

am
e

D
es

cr
ip

ti
o

n
b

7
b

6
b

5
b

4
b

3
b

2
b

1
b

0
D

ef
au

lt
A

cc
es

s
N

o
te

s

Exhibit 2058 - Page 450 of 460

E
Z

-U
S

B
 F

X
2

T
ec

hn
ic

al
 R

ef
er

en
ce

 M
an

ua
l v

2.
1

A
pp

en
di

x
C

 -
25

E
Z

-U
S

B
 F

X
2

R
eg

is
te

rs
 &

 B
u

ff
er

s

E
62

0
1

E
P

2A
U

T
O

IN
LE

N
H

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 2
 A

U
T

O
IN

 P
ac

ke
t

Le
ng

th
 H

0
0

0
0

0
P

L1
0

P
L9

P
L8

00
00

00
10

rr
rr

rb
bb

D
ef

au
lt

is
 5

12
 b

yt
e

pa
ck

et
s;

ca

n
se

t s
m

al
le

r
IN

 p
ac

ke
ts

.
S

IE
 d

iv
id

es
 IN

-F
IF

O
 d

at
a

in
to

th

is
-le

ng
th

 p
ac

ke
ts

 w
he

n
A

U
T

O
IN

=
1.

 W
he

n
A

U
T

O
IN

=
0,

 8
05

1
lo

ad
s

a
by

te
 c

ou
nt

 fo
r

ev
er

y
pa

ck
et

(in

 E
P

xB
C

H
/L

).
E

P
2,

6
ca

n
ha

ve
 1

02
4

m
ax

by

te
s,

E
P

4,
8

ca
n

ha
ve

 5
12

 m
ax

by

te
s.

th
es

e
re

gi
st

er
s

on
ly

 u
se

d
fo

r
A

U
T

O
IN

E
62

1
1

E
P

2A
U

T
O

IN
LE

N
L

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 2
 A

U
T

O
IN

 P
ac

ke
t

Le
ng

th
 L

P
L7

P
L6

P
L5

P
L4

P
L3

P
L2

P
L1

P
L0

00
00

00
00

R
W

E
62

2
1

E
P

4A
U

T
O

IN
LE

N
H

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 4
 A

U
T

O
IN

 P
ac

ke
t

Le
ng

th
 H

0
0

0
0

0
0

P
L9

P
L8

00
00

00
10

rr
rr

rr
bb

E
62

3
1

E
P

4A
U

T
O

IN
LE

N
L

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 4
 A

U
T

O
IN

 P
ac

ke
t

Le
ng

th
 L

P
L7

P
L6

P
L5

P
L4

P
L3

P
L2

P
L1

P
L0

00
00

00
00

R
W

E
62

4
1

E
P

6A
U

T
O

IN
LE

N
H

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 6
 A

U
T

O
IN

 P
ac

ke
t

Le
ng

th
 H

0
0

0
0

0
P

L1
0

P
L9

P
L8

00
00

00
10

rr
rr

rb
bb

E
62

5
1

E
P

6A
U

T
O

IN
LE

N
L

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 6
 A

U
T

O
IN

 P
ac

ke
t

Le
ng

th
 L

P
L7

P
L6

P
L5

P
L4

P
L3

P
L2

P
L1

P
L0

00
00

00
00

R
W

E
62

6
1

E
P

8A
U

T
O

IN
LE

N
H

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 8
 A

U
T

O
IN

 P
ac

ke
t

Le
ng

th
 H

0
0

0
0

0
0

P
L9

P
L8

00
00

00
10

rr
rr

rr
bb

E
62

7
1

E
P

8A
U

T
O

IN
LE

N
L

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 8
 A

U
T

O
IN

 P
ac

ke
t

Le
ng

th
 L

P
L7

P
L6

P
L5

P
L4

P
L3

P
L2

P
L1

P
L0

00
00

00
00

R
W

8
re

se
rv

ed

E
63

0
H

.S
.

1
E

P
2F

IF
O

P
F

H
se

e
S

ec
ti

o
n

 1
5.

14
E

nd
po

in
t 2

 /
sl

av
e

F
IF

O
 P

ro
-

gr
am

m
ab

le
 F

la
g

H
D

E
C

IS
P

K
T

S
TA

T
IN

:P
K

T
S

[2
]

O
U

T:
P

F
C

12
IN

:P
K

T
S

[1
]

O
U

T:
P

F
C

11
IN

:P
K

T
S

[0
]

O
U

T:
P

F
C

10
0

P
F

C
9

P
F

C
8

10
00

10
00

bb
bb

br
bb

D
E

C
IS

: P
F

 d
ec

is
io

n
bi

t.

0:
 P

F
=

1
w

he
n

B
C

 <
=

 P
F

;
1:

 P
F

=
1

w
he

n
B

C
 >

=
 P

F
P

K
T

S
TA

T
=

0-
-P

F
 a

nd
 B

C
 r

e-
fe

r t
o

fu
ll

F
IF

O
; =

1:
 P

F
/B

C
 re

-
fe

r
to

 c
ur

re
nt

 p
ac

ke
t (

IN
)

(O
U

T
)

P
F

/B
C

 r
ef

er
 to

 fu
ll

F
IF

O

E
63

0
F.

S
.

1
E

P
2F

IF
O

P
F

H
se

e
S

ec
ti

o
n

 1
5.

14
E

nd
po

in
t 2

 /
sl

av
e

F
IF

O
 P

ro
-

gr
am

m
ab

le
 F

la
g

H
D

E
C

IS
P

K
T

S
TA

T
O

U
T:

P
F

C
12

O
U

T:
P

F
C

11
O

U
T:

P
F

C
10

0
P

F
C

9
IN

:P
K

T
S

[2
]

O
U

T:
P

F
C

8
10

00
10

00
bb

bb
br

bb

E
63

1
H

.S
.

1
E

P
2F

IF
O

P
F

L
se

e
S

ec
ti

o
n

 1
5.

14
E

nd
po

in
t 2

 /
sl

av
e

F
IF

O
 P

ro
-

gr
am

m
ab

le
 F

la
g

L
P

F
C

7
P

F
C

6
P

F
C

5
P

F
C

4
P

F
C

3
P

F
C

2
P

F
C

1
P

F
C

0
00

00
00

00
R

W

E
63

1
F.

S
1

E
P

2F
IF

O
P

F
L

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 2
 /

sl
av

e
F

IF
O

 P
ro

-
gr

am
m

ab
le

 F
la

g
L

IN
:P

K
T

S
[1

]
O

U
T:

P
F

C
7

IN
:P

K
T

S
[0

]
O

U
T:

P
F

C
6

P
F

C
5

P
F

C
4

P
F

C
3

P
F

C
2

P
F

C
1

P
F

C
0

00
00

00
00

R
W

E
63

2
H

.S
.

1
E

P
4F

IF
O

P
F

H
se

e
S

ec
ti

o
n

 1
5.

14
E

nd
po

in
t 4

 /
sl

av
e

F
IF

O
 P

ro
-

gr
am

m
ab

le
 F

la
g

H
D

E
C

IS
P

K
T

S
TA

T
0

IN
: P

K
T

S
[1

]
O

U
T:

P
F

C
10

IN
: P

K
T

S
[0

]
O

U
T:

P
F

C
9

0
0

P
F

C
8

10
00

10
00

bb
rb

br
rb

m
ax

 1
02

4

E
63

2
F.

S
1

E
P

4F
IF

O
P

F
H

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 4
 /

sl
av

e
F

IF
O

 P
ro

-
gr

am
m

ab
le

 F
la

g
H

D
E

C
IS

P
K

T
S

TA
T

0
O

U
T:

P
F

C
10

O
U

T:
P

F
C

9
0

0
P

F
C

8
10

00
10

00
bb

rb
br

rb
m

ax
 1

02
4

E
63

3
H

.S
.

1
E

P
4F

IF
O

P
F

L
se

e
S

ec
ti

o
n

 1
5.

14
E

nd
po

in
t 4

 /
sl

av
e

F
IF

O
 P

ro
-

gr
am

m
ab

le
 F

la
g

L
P

F
C

7
P

F
C

6
P

F
C

5
P

F
C

4
P

F
C

3
P

F
C

2
P

F
C

1
P

F
C

0
00

00
00

00
R

W

E
63

3
F.

S
1

E
P

4F
IF

O
P

F
L

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 4
 /

sl
av

e
F

IF
O

 P
ro

-
gr

am
m

ab
le

 F
la

g
L

IN
: P

K
T

S
[1

]
O

U
T:

P
F

C
7

IN
: P

K
T

S
[0

]
O

U
T:

P
F

C
6

P
F

C
5

P
F

C
4

P
F

C
3

P
F

C
2

P
F

C
1

P
F

C
0

00
00

00
00

R
W

E
63

4
H

.S
.

1
E

P
6F

IF
O

P
F

H
se

e
S

ec
ti

o
n

 1
5.

14
E

nd
po

in
t 6

 /
sl

av
e

F
IF

O
 P

ro
-

gr
am

m
ab

le
 F

la
g

H
D

E
C

IS
P

K
T

S
TA

T
IN

:P
K

T
S

[2
]

O
U

T:
P

F
C

12
IN

:P
K

T
S

[1
]

O
U

T:
P

F
C

11
IN

:P
K

T
S

[0
]

O
U

T:
P

F
C

10
0

P
F

C
9

P
F

C
8

00
00

10
00

bb
bb

br
bb

m
ax

 2
04

8

E
63

4
F.

S
1

E
P

6F
IF

O
P

F
H

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 6
 /

sl
av

e
F

IF
O

 P
ro

-
gr

am
m

ab
le

 F
la

g
H

D
E

C
IS

P
K

T
S

TA
T

O
U

T:
P

F
C

12
O

U
T:

P
F

C
11

O
U

T:
P

F
C

10
0

P
F

C
9

IN
:P

K
T

S
[2

]
O

U
T:

P
F

C
8

00
00

10
00

bb
bb

br
bb

m
ax

 2
04

8

E
63

5
H

.S
.

1
E

P
6F

IF
O

P
F

L
se

e
S

ec
ti

o
n

 1
5.

14
E

nd
po

in
t 6

 /
sl

av
e

F
IF

O
 P

ro
-

gr
am

m
ab

le
 F

la
g

L
P

F
C

7
P

F
C

6
P

F
C

5
P

F
C

4
P

F
C

3
P

F
C

2
P

F
C

1
P

F
C

0
00

00
00

00
R

W

E
63

5
F.

S
1

E
P

6F
IF

O
P

F
L

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 6
 /

sl
av

e
F

IF
O

 P
ro

-
gr

am
m

ab
le

 F
la

g
L

IN
:P

K
T

S
[1

]
O

U
T:

P
F

C
7

IN
:P

K
T

S
[0

]
O

U
T:

P
F

C
6

P
F

C
5

P
F

C
4

P
F

C
3

P
F

C
2

P
F

C
1

P
F

C
0

00
00

00
00

R
W

E
63

6
H

.S
.

1
E

P
8F

IF
O

P
F

H
se

e
S

ec
ti

o
n

 1
5.

14
E

nd
po

in
t 8

 /
sl

av
e

F
IF

O
 P

ro
-

gr
am

m
ab

le
 F

la
g

H
D

E
C

IS
P

K
T

S
TA

T
0

IN
: P

K
T

S
[1

]
O

U
T:

P
F

C
10

IN
: P

K
T

S
[0

]
O

U
T:

P
F

C
9

0
0

P
F

C
8

00
00

10
00

bb
rb

br
rb

m
ax

 1
02

4

E
63

6
F.

S
1

E
P

8F
IF

O
P

F
H

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 8
 /

sl
av

e
F

IF
O

 P
ro

-
gr

am
m

ab
le

 F
la

g
H

D
E

C
IS

P
K

T
S

TA
T

0
O

U
T:

P
F

C
10

O
U

T:
P

F
C

9
0

0
P

F
C

8
00

00
10

00
bb

rb
br

rb
m

ax
 1

02
4

E
63

7
H

.S
.

1
E

P
8F

IF
O

P
F

L
se

e
S

ec
ti

o
n

 1
5.

14
E

nd
po

in
t 8

 /
sl

av
e

F
IF

O
 P

ro
-

gr
am

m
ab

le
 F

la
g

L
P

F
C

7
P

F
C

6
P

F
C

5
P

F
C

4
P

F
C

3
P

F
C

2
P

F
C

1
P

F
C

0
00

00
00

00
R

W

E
63

7
F.

S
1

E
P

8F
IF

O
P

F
L

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 8
 /

sl
av

e
F

IF
O

 P
ro

-
gr

am
m

ab
le

 F
la

g
L

IN
: P

K
T

S
[1

]
O

U
T:

P
F

C
7

IN
: P

K
T

S
[0

]
O

U
T:

P
F

C
6

P
F

C
5

P
F

C
4

P
F

C
3

P
F

C
2

P
F

C
1

P
F

C
0

00
00

00
00

R
W

8
re

se
rv

ed

H
ex

S
iz

e
N

am
e

D
es

cr
ip

ti
o

n
b

7
b

6
b

5
b

4
b

3
b

2
b

1
b

0
D

ef
au

lt
A

cc
es

s
N

o
te

s

Exhibit 2058 - Page 451 of 460

E
Z

-U
S

B
 F

X
2

T
ec

hn
ic

al
 R

ef
er

en
ce

 M
an

ua
l v

2.
1

A
pp

en
di

x
C

 -
26

E
Z

-U
S

B
 F

X
2

R
eg

is
te

rs
 &

 B
u

ff
er

s

E
64

0
1

E
P

2I
S

O
IN

P
K

T
S

E
P

2
(if

 IS
O

)
IN

 P
ac

ke
ts

 p
er

fr

am
e

(1
-3

)
0

0
0

0
0

0
IN

P
P

F
1

IN
P

P
F

0
00

00
00

01
rr

rr
rr

bb
IN

P
P

F
1:

0:
 0

0=
ill

eg
al

,
01

=
1

pe
r

fr
am

e,
 1

0=
2

pe
r

fr
am

e,
 1

1=
3

pe
r

fr
am

e

E
64

1
1

E
P

4I
S

O
IN

P
K

T
S

E
P

4
(if

 IS
O

)
IN

 P
ac

ke
ts

 p
er

fr

am
e

(1
-3

)
0

0
0

0
0

0
IN

P
P

F
1

IN
P

P
F

0
00

00
00

01
rr

rr
rr

bb

E
64

2
1

E
P

6I
S

O
IN

P
K

T
S

E
P

6
(if

 IS
O

)
IN

 P
ac

ke
ts

 p
er

fr

am
e

(1
-3

)
0

0
0

0
0

0
IN

P
P

F
1

IN
P

P
F

0
00

00
00

01
rr

rr
rr

bb

E
64

3
1

E
P

8I
S

O
IN

P
K

T
S

E
P

8
(if

 IS
O

)
IN

 P
ac

ke
ts

 p
er

fr

am
e

(1
-3

)
0

0
0

0
0

0
IN

P
P

F
1

IN
P

P
F

0
00

00
00

01
rr

rr
rr

bb

4
re

se
rv

ed

E
64

8
1

IN
P

K
T

E
N

D
se

e
S

ec
ti

o
n

 1
5.

14
F

or
ce

 IN
 P

ac
ke

t E
nd

S
ki

p
0

0
0

E
P

3
E

P
2

E
P

1
E

P
0

xx
xx

xx
xx

W
S

am
e

fu
nc

tio
n

as
 s

la
ve

 in
te

r-
fa

ce
 P

K
T

E
N

D
 p

in
, b

ut
 8

05
1

co
nt

ro
ls

 d
is

pa
tc

h
of

 IN
,

Ty
pi

ca
lly

 u
se

d
af

te
r

a
G

P
IF

F

IF
O

 tr
an

sa
ct

io
n

co
m

pl
et

es

to
 s

en
d

ja
gg

ed
 e

dg
e

pk
t,

us
er

 n
ee

ds
 to

 c
he

ck
 s

ta
tu

s
of

F

IF
O

 fu
ll

fla
g

fo
r

av
ai

la
bl

e
bu

ffe
r

be
fo

re
 d

oi
ng

 P
K

T
E

N
D

E
64

9
7

O
U

T
P

K
T

E
N

D
F

or
ce

 o
ut

 P
ac

ke
t E

nd
S

ki
p

0
0

0
E

P
3

E
P

2
E

P
1

E
P

0
xx

xx
xx

xx
W

R
E

V
C

T
L.

0=
1

to
 e

na
bl

e
th

is

fe
at

ur
e

IN
T

E
R

R
U

P
T

S

E
65

0
1

E
P

2F
IF

O
IE

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 2
 s

la
ve

 F
IF

O
 F

la
g

In
-

te
rr

up
t E

na
bl

e
0

0
0

0
E

D
G

E
P

F
P

F
E

F
F

F
00

00
00

00
R

W
E

D
G

E
P

F
=

0;
 R

is
in

g
ed

ge
E

D
G

E
P

F
=

1;
 F

al
lin

g
ed

ge

E
65

1
1

E
P

2F
IF

O
IR

Q
se

e
S

ec
ti

o
n

 1
5.

14
E

nd
po

in
t 2

 s
la

ve
 F

IF
O

 F
la

g
In

-
te

rr
up

t R
eq

ue
st

0
0

0
0

0
P

F
E

F
F

F
00

00
00

00
R

W

E
65

2
1

E
P

4F
IF

O
IE

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 4
 s

la
ve

 F
IF

O
 F

la
g

In
-

te
rr

up
t E

na
bl

e
0

0
0

0
E

D
G

E
P

F
P

F
E

F
F

F
00

00
00

00
R

W

E
65

3
1

E
P

4F
IF

O
IR

Q
se

e
S

ec
ti

o
n

 1
5.

14
E

nd
po

in
t 4

 s
la

ve
 F

IF
O

 F
la

g
In

-
te

rr
up

t R
eq

ue
st

0
0

0
0

0
P

F
E

F
F

F
00

00
00

00
R

W

E
65

4
1

E
P

6F
IF

O
IE

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 6
 s

la
ve

 F
IF

O
 F

la
g

In
-

te
rr

up
t E

na
bl

e
0

0
0

0
E

D
G

E
P

F
P

F
E

F
F

F
00

00
00

00
R

W

E
65

5
1

E
P

6F
IF

O
IR

Q
se

e
S

ec
ti

o
n

 1
5.

14
E

nd
po

in
t 6

 s
la

ve
 F

IF
O

 F
la

g
In

-
te

rr
up

t R
eq

ue
st

0
0

0
0

0
P

F
E

F
F

F
00

00
00

00
R

W

E
65

6
1

E
P

8F
IF

O
IE

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 8
 s

la
ve

 F
IF

O
 F

la
g

In
-

te
rr

up
t E

na
bl

e
0

0
0

0
E

D
G

E
P

F
P

F
E

F
F

F
00

00
00

00
R

W

E
65

7
1

E
P

8F
IF

O
IR

Q
se

e
S

ec
ti

o
n

 1
5.

14
E

nd
po

in
t 8

 s
la

ve
 F

IF
O

 F
la

g
In

-
te

rr
up

t R
eq

ue
st

0
0

0
0

0
P

F
E

F
F

F
00

00
00

00
R

W

E
65

8
1

IB
N

IE
IN

-B
U

LK
-N

A
K

 In
te

rr
up

t E
na

bl
e

0
0

E
P

8
E

P
6

E
P

4
E

P
2

E
P

1
E

P
0

00
00

00
00

R
W

E
65

9
1

IB
N

IR
Q

IN
-B

U
LK

-N
A

K
 in

te
rr

up
t R

e-
qu

es
t

0
0

E
P

8
E

P
6

E
P

4
E

P
2

E
P

1
E

P
0

00
00

00
00

R
W

1
=

 c
le

ar
 re

qu
es

t,
0=

 n
o

ef
fe

ct

E
65

A
1

N
A

K
IE

E
nd

po
in

t P
in

g-
N

A
K

 /
IB

N
 In

te
r-

ru
pt

 E
na

bl
e

E
P

8
E

P
6

E
P

4
E

P
2

E
P

1
E

P
0

0
IB

N
00

00
00

00
R

W
O

U
T

 e
nd

po
in

t w
as

 p
in

ge
d

an
d

N
A

K
'd

E
65

B
1

N
A

K
IR

Q
E

nd
po

in
t P

in
g-

N
A

K
 /

IB
N

 In
te

r-
ru

pt
 R

eq
ue

st
E

P
8

E
P

6
E

P
4

E
P

2
E

P
1

E
P

0
0

IB
N

00
00

00
00

R
W

E
65

C
1

U
S

B
IE

U
S

B
 In

t E
na

bl
es

0
E

P
0A

C
K

H
S

G
R

A
N

T
U

R
E

S
S

U
S

P
S

U
T

O
K

S
O

F
S

U
D

A
V

00
00

00
00

R
W

E
65

D
1

U
S

B
IR

Q
U

S
B

 In
te

rr
up

t R
eq

ue
st

s
0

E
P

0A
C

K
H

S
G

R
A

N
T

U
R

E
S

S
U

S
P

S
U

T
O

K
S

O
F

S
U

D
A

V
00

00
00

00
R

W
1

=
 c

le
ar

 re
qu

es
t,

0=
 n

o
ef

fe
ct

E
65

E
1

E
P

IE
E

nd
po

in
t I

nt
er

ru
pt

 E
na

bl
es

E
P

8
E

P
6

E
P

4
E

P
2

E
P

1O
U

T
E

P
1I

N
E

P
0O

U
T

E
P

0I
N

00
00

00
00

R
W

E
65

F
1

E
P

IR
Q

E
nd

po
in

t I
nt

er
ru

pt
 R

eq
ue

st
s

E
P

8
E

P
6

E
P

4
E

P
2

E
P

1O
U

T
E

P
1I

N
E

P
0O

U
T

E
P

0I
N

00
00

00
00

R
W

1
=

 c
le

ar
 re

qu
es

t,
0=

 n
o

ef
fe

ct

H
ex

S
iz

e
N

am
e

D
es

cr
ip

ti
o

n
b

7
b

6
b

5
b

4
b

3
b

2
b

1
b

0
D

ef
au

lt
A

cc
es

s
N

o
te

s

Exhibit 2058 - Page 452 of 460

E
Z

-U
S

B
 F

X
2

T
ec

hn
ic

al
 R

ef
er

en
ce

 M
an

ua
l v

2.
1

A
pp

en
di

x
C

 -
27

E
Z

-U
S

B
 F

X
2

R
eg

is
te

rs
 &

 B
u

ff
er

s

E
66

0
1

G
P

IF
IE

se
e

S
ec

ti
o

n
 1

5.
14

G
P

IF
 In

te
rr

up
t E

na
bl

e
0

0
0

0
0

0
G

P
IF

W
F

G
P

IF
D

O
N

E
00

00
00

00
R

W
W

F
--

80
51

 "
ho

ok
"

in
 w

av
e-

fo
rm

, D
O

N
E

-r
et

ur
ne

d
to

ID

LE
 s

ta
te

E
66

1
1

G
P

IF
IR

Q
se

e
S

ec
ti

o
n

 1
5.

14
G

P
IF

 In
te

rr
up

t R
eq

ue
st

0
0

0
0

0
0

G
P

IF
W

F
G

P
IF

D
O

N
E

00
00

00
00

R
W

W
rit

e
"1

"
to

 c
le

ar

E
66

2
1

U
S

B
E

R
R

IE
U

S
B

 E
rr

or
 In

te
rr

up
t E

na
bl

es
IS

O
E

P
8

IS
O

E
P

6
IS

O
E

P
4

IS
O

E
P

2
0

0
0

E
R

R
LI

M
IT

00
00

00
00

R
W

IS
O

 e
nd

po
in

t e
rr

or
: P

ID
 s

e-
qu

en
ce

 e
rr

or
 o

r
dr

op
pe

d
pa

ck
et

 (
no

 a
va

ila
bl

e
bu

ffe
r)

E
66

3
1

U
S

B
E

R
R

IR
Q

U
S

B
 E

rr
or

 In
te

rr
up

t R
eq

ue
st

s
IS

O
E

P
8

IS
O

E
P

6
IS

O
E

P
4

IS
O

E
P

2
0

0
0

E
R

R
LI

M
IT

00
00

00
00

R
W

E
66

4
1

E
R

R
C

N
T

LI
M

U
S

B
 E

rr
or

 c
ou

nt
er

 a
nd

 li
m

it
E

C
3

E
C

2
E

C
1

E
C

0
LI

M
IT

3
LI

M
IT

2
LI

M
IT

1
LI

M
IT

0
xx

xx
01

00
rr

rr
bb

bb
D

ef
au

lt
lim

it
co

un
t i

s
4

E
66

5
1

C
LR

E
R

R
C

N
T

C
le

ar
 E

rr
or

 C
ou

nt
er

 E
C

3:
0

x
x

x
x

x
x

x
x

xx
xx

xx
xx

W

E
66

6
1

IN
T

2I
V

E
C

In
te

rr
up

t 2
 (

U
S

B
)

A
ut

ov
ec

to
r

0
I2

V
4

I2
V

3
I2

V
2

I2
V

1
I2

V
0

0
0

00
00

00
00

R

E
66

7
1

IN
T

4I
V

E
C

In
te

rr
up

t 4
 (s

la
ve

 F
IF

O
 &

 G
P

IF
)

A
ut

ov
ec

to
r

1
0

I4
V

3
I4

V
2

I4
V

1
I4

V
0

0
0

10
00

00
00

R

E
66

8
1

IN
T

S
E

T
U

P
In

te
rr

up
t 2

&
4

S
et

up
0

0
0

0
A

V
2E

N
0

IN
T

4S
R

C
A

V
4E

N
00

00
00

00
R

W
IN

T
4I

N
=

0:
 IN

T
4

fr
om

 p
in

; 1
:

IN
T

4
fr

om
 F

IF
O

/G
P

IF
 in

te
r-

ru
pt

s

E
66

9
7

re
se

rv
ed

IN
P

U
T

 /
O

U
T

P
U

T

E
67

0
1

P
O

R
TA

C
F

G
I/O

 P
O

R
TA

 A
lte

rn
at

e
C

on
fig

ur
a-

tio
n

F
LA

G
D

S
LC

S
0

0
0

0
IN

T
1

IN
T

0
00

00
00

00
R

W

E
67

1
1

P
O

R
T

C
C

F
G

I/O
 P

O
R

T
C

 A
lte

rn
at

e
C

on
fig

u-
ra

tio
n

G
P

IF
A

7
G

P
IF

A
6

G
P

IF
A

5
G

P
IF

A
4

G
P

IF
A

3
G

P
IF

A
2

G
P

IF
A

1
G

P
IF

A
0

00
00

00
00

R
W

E
67

2
1

P
O

R
T

E
C

F
G

I/O
 P

O
R

T
E

 A
lte

rn
at

e
C

on
fig

ur
a-

tio
n

G
P

IF
A

8
T

2E
X

IN
T

6
R

X
D

1O
U

T
R

X
D

0O
U

T
T

2O
U

T
T

1O
U

T
T

0O
U

T
00

00
00

00
R

W
G

S
TA

T
E

 b
it

=
1

ov
er

rid
es

 b
its

2:

0.

E
67

3
5

re
se

rv
ed

E
67

8
1

I2
C

S
I²

C
-C

om
pa

tib
le

 B
us

C
on

tr
ol

 &
 S

ta
tu

s
S

TA
R

T
S

T
O

P
LA

S
T

R
D

ID
1

ID
0

B
E

R
R

A
C

K
D

O
N

E
00

0x
x0

00
bb

br
rr

rr

E
67

9
1

I2
D

A
T

I²
C

-C
om

pa
tib

le
 B

us
D

at
a

d7
d6

d5
d4

d3
d2

d1
d0

xx
xx

xx
xx

R
W

E
67

A
1

I2
C

T
L

I²
C

-C
om

pa
tib

le
 B

us
C

on
tr

ol
0

0
0

0
0

0
S

T
O

P
IE

40
0K

H
Z

00
00

00
00

R
W

E
67

B
1

X
A

U
T

O
D

A
T

1
A

ut
op

tr
1

M
O

V
X

 a
cc

es
s,

 w
he

n
A

P
T

R
E

N
=

1
D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0
xx

xx
xx

xx
R

W
A

U
T

O
P

T
R

S
E

T
U

P
 b

it
A

P
T

R
E

N
=

1:
 o

ff-
ch

ip
 a

cc
es

s
us

e
th

is
 r

eg
 -

 c
od

e-
sp

ac
e

ho
le

 a
t t

hi
s

lo
ca

tio
n

A
U

T
O

P
T

R
S

E
T

U
P

 b
it

A
P

T
R

E
N

=
0:

 o
n-

ch
ip

 a
cc

es
s

us
e

du
pl

ic
at

e
S

F
R

 @
 9

C
 ,

no

co
de

-s
pa

ce
 h

ol
e

E
67

C
1

X
A

U
T

O
D

A
T

2
A

ut
op

tr
2

M
O

V
X

 a
cc

es
s,

 w
he

n
A

P
T

R
E

N
=

1
D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0
xx

xx
xx

xx
R

W

U
D

M
A

 C
R

C

E
67

D
1

U
D

M
A

C
R

C
H

se
e

S
ec

ti
o

n
 1

5.
14

U
D

M
A

 C
R

C
 M

S
B

C
R

C
15

C
R

C
14

C
R

C
13

C
R

C
12

C
R

C
11

C
R

C
10

C
R

C
9

C
R

C
8

01
00

10
10

R
W

E
67

E
1

U
D

M
A

C
R

C
L

se
e

S
ec

ti
o

n
 1

5.
14

U
D

M
A

 C
R

C
 L

S
B

C
R

C
7

C
R

C
6

C
R

C
5

C
R

C
4

C
R

C
3

C
R

C
2

C
R

C
1

C
R

C
0

10
11

10
10

R
W

E
67

F
1

U
D

M
A

C
R

C
-

Q
U

A
LI

F
IE

R
U

D
M

A
 C

R
C

 Q
ua

lif
ie

r
Q

E
N

A
B

LE
0

0
0

Q
S

TA
T

E
Q

S
IG

N
A

L2
Q

S
IG

N
A

L1
Q

S
IG

N
A

L0
00

00
00

00
br

rr
bb

bb

U
S

B
 C

O
N

T
R

O
L

E
68

0
1

U
S

B
C

S
U

S
B

 C
on

tr
ol

 &
 S

ta
tu

s
H

S
M

0
0

0
D

IS
C

O
N

N
O

S
Y

N
S

O
F

R
E

N
U

M
S

IG
R

S
U

M
E

x0
00

00
00

rr
rr

bb
bb

E
68

1
1

S
U

S
P

E
N

D
P

ut
 c

hi
p

in
to

 s
us

pe
nd

x
x

x
x

x
x

x
x

xx
xx

xx
xx

W
W

rit
e

0x
F

F
 to

 s
us

pe
nd

H
ex

S
iz

e
N

am
e

D
es

cr
ip

ti
o

n
b

7
b

6
b

5
b

4
b

3
b

2
b

1
b

0
D

ef
au

lt
A

cc
es

s
N

o
te

s

Exhibit 2058 - Page 453 of 460

E
Z

-U
S

B
 F

X
2

T
ec

hn
ic

al
 R

ef
er

en
ce

 M
an

ua
l v

2.
1

A
pp

en
di

x
C

 -
28

E
Z

-U
S

B
 F

X
2

R
eg

is
te

rs
 &

 B
u

ff
er

s

E
68

2
1

W
A

K
E

U
P

C
S

W
ak

eu
p

C
on

tr
ol

 &
 S

ta
tu

s
W

U
2

W
U

W
U

2P
O

L
W

U
P

O
L

0
D

P
E

N
W

U
2E

N
W

U
E

N
xx

00
01

01
bb

bb
rb

bb

E
68

3
1

T
O

G
C

T
L

To
gg

le
 C

on
tr

ol
Q

S
R

IO
E

P
3

E
P

2
E

P
1

E
P

0
00

00
00

00
rb

bb
bb

bb

E
68

4
1

U
S

B
F

R
A

M
E

H
U

S
B

 F
ra

m
e

co
un

t H
0

0
0

0
0

F
C

10
F

C
9

F
C

8
00

00
0x

xx
R

E
68

5
1

U
S

B
F

R
A

M
E

L
U

S
B

 F
ra

m
e

co
un

t L
F

C
7

F
C

6
F

C
5

F
C

4
F

C
3

F
C

2
F

C
1

F
C

0
xx

xx
xx

xx
R

E
68

6
1

M
IC

R
O

F
R

A
M

E
M

ic
ro

fr
am

e
co

un
t,

0-
7

0
0

0
0

0
M

F
2

M
F

1
M

F
0

00
00

0x
xx

R

E
68

7
1

F
N

A
D

D
R

U
S

B
 F

un
ct

io
n

ad
dr

es
s

0
FA

6
FA

5
FA

4
FA

3
FA

2
FA

1
FA

0
00

00
00

00
R

E
68

8
2

re
se

rv
ed

E
N

D
P

O
IN

T
S

E
68

A
1

E
P

0B
C

H
E

nd
po

in
t 0

 B
yt

e
C

ou
nt

 H
(B

C
15

)
(B

C
14

)
(B

C
13

)
(B

C
12

)
(B

C
11

)
(B

C
10

)
(B

C
9)

(B
C

8)
xx

xx
xx

xx
R

W
E

ve
n

th
ou

gh
 th

e
E

P
0

bu
ffe

r i
s

on
ly

 6
4

by
te

s,
 th

e
E

P
0

by
te

co

un
t i

s
ex

pa
nd

ed
to

 1
6-

bi
ts

 to
 a

llo
w

 u
si

ng
 th

e
A

ut
op

tr
 w

ith
 a

 c
us

to
m

 le
ng

th
,

in
st

ea
d

of
 U

S
B

-
di

ct
at

ed
 le

ng
th

 (
fr

om
 S

et
up

D

at
a

P
ac

ke
t a

nd
 n

um
be

r
of

re

qu
es

te
d

by
te

s)
.

T
he

 b
yt

e
co

un
t b

its
 in

 p
ar

en
-

th
es

es
 a

pp
ly

 o
nl

y
w

he
n

S
D

-
P

A
U

T
O

 =
 0

E
68

B
1

E
P

0B
C

L
E

nd
po

in
t 0

 B
yt

e
C

ou
nt

 L
(B

C
7)

B
C

6
B

C
5

B
C

4
B

C
3

B
C

2
B

C
1

B
C

0
xx

xx
xx

xx
R

W

E
68

C
1

re
se

rv
ed

E
68

D
1

E
P

1O
U

T
B

C
E

nd
po

in
t 1

 O
U

T
 B

yt
e

C
ou

nt
0

B
C

6
B

C
5

B
C

4
B

C
3

B
C

2
B

C
1

B
C

0
0x

xx
xx

xx
R

W

E
68

E
1

re
se

rv
ed

E
68

F
1

E
P

1I
N

B
C

E
nd

po
in

t 1
 IN

 B
yt

e
C

ou
nt

0
B

C
6

B
C

5
B

C
4

B
C

3
B

C
2

B
C

1
B

C
0

0x
xx

xx
xx

R
W

E
69

0
1

E
P

2B
C

H
se

e
S

ec
ti

o
n

 1
5.

14
E

nd
po

in
t 2

 B
yt

e
C

ou
nt

 H
0

0
0

0
0

B
C

10
B

C
9

B
C

8
00

00
0x

xx
R

W
E

P
2,

6
ca

n
be

 5
12

 o
r

10
24

E
P

4,
8

ar
e

51
2

on
ly

E
69

1
1

E
P

2B
C

L
se

e
S

ec
ti

o
n

 1
5.

14
E

nd
po

in
t 2

 B
yt

e
C

ou
nt

 L
B

C
7

B
C

6
B

C
5

B
C

4
B

C
3

B
C

2
B

C
1

B
C

0
xx

xx
xx

xx
R

W

E
69

2
2

re
se

rv
ed

E
69

4
1

E
P

4B
C

H
se

e
S

ec
ti

o
n

 1
5.

14
E

nd
po

in
t 4

 B
yt

e
C

ou
nt

 H
0

0
0

0
0

0
B

C
9

B
C

8
00

00
00

xx
R

W

E
69

5
1

E
P

4B
C

L
se

e
S

ec
ti

o
n

 1
5.

14
E

nd
po

in
t 4

 B
yt

e
C

ou
nt

 L
B

C
7

B
C

6
B

C
5

B
C

4
B

C
3

B
C

2
B

C
1

B
C

0
xx

xx
xx

xx
R

W

E
69

6
2

re
se

rv
ed

E
69

8
1

E
P

6B
C

H
se

e
S

ec
ti

o
n

 1
5.

14
E

nd
po

in
t 6

 B
yt

e
C

ou
nt

 H
0

0
0

0
0

B
C

10
B

C
9

B
C

8
00

00
0x

xx
R

W

E
69

9
1

E
P

6B
C

L
se

e
S

ec
ti

o
n

 1
5.

14
E

nd
po

in
t 6

 B
yt

e
C

ou
nt

 L
B

C
7

B
C

6
B

C
5

B
C

4
B

C
3

B
C

2
B

C
1

B
C

0
xx

xx
xx

xx
R

W

E
69

A
2

re
se

rv
ed

E
69

C
1

E
P

8B
C

H
se

e
S

ec
ti

o
n

 1
5.

14
E

nd
po

in
t 8

 B
yt

e
C

ou
nt

 H
0

0
0

0
0

0
B

C
9

B
C

8
00

00
00

xx
R

W

E
69

D
1

E
P

8B
C

L
se

e
S

ec
ti

o
n

 1
5.

14
E

nd
po

in
t 8

 B
yt

e
C

ou
nt

 L
B

C
7

B
C

6
B

C
5

B
C

4
B

C
3

B
C

2
B

C
1

B
C

0
xx

xx
xx

xx
R

W

E
69

E
2

re
se

rv
ed

E
6A

0
1

E
P

0C
S

E
nd

po
in

t 0
 C

on
tr

ol
 a

nd
 S

ta
tu

s
H

S
N

A
K

0
0

0
0

0
B

U
S

Y
S

TA
LL

10
00

00
00

bb
bb

bb
rb

E
6A

1
1

E
P

1O
U

T
C

S
E

nd
po

in
t 1

 O
U

T
 C

on
tr

ol
 a

nd

S
ta

tu
s

0
0

0
0

0
0

B
U

S
Y

S
TA

LL
00

00
00

00
bb

bb
bb

rb

E
6A

2
1

E
P

1I
N

C
S

E
nd

po
in

t 1
 IN

 C
on

tr
ol

 a
nd

 S
ta

-
tu

s
0

0
0

0
0

0
B

U
S

Y
S

TA
LL

00
00

00
00

bb
bb

bb
rb

H
ex

S
iz

e
N

am
e

D
es

cr
ip

ti
o

n
b

7
b

6
b

5
b

4
b

3
b

2
b

1
b

0
D

ef
au

lt
A

cc
es

s
N

o
te

s

Exhibit 2058 - Page 454 of 460

E
Z

-U
S

B
 F

X
2

T
ec

hn
ic

al
 R

ef
er

en
ce

 M
an

ua
l v

2.
1

A
pp

en
di

x
C

 -
29

E
Z

-U
S

B
 F

X
2

R
eg

is
te

rs
 &

 B
u

ff
er

s

E
6A

3
1

E
P

2C
S

E
nd

po
in

t 2
 C

on
tr

ol
 a

nd
 S

ta
tu

s
0

N
P

A
K

2
N

P
A

K
1

N
P

A
K

0
F

U
LL

E
M

P
T

Y
0

S
TA

LL
00

10
10

00
rr

rr
rr

rb
N

P
A

K
2:

0=
nu

m
be

r o
f p

ac
ke

ts

in
 th

e
F

IF
O

, 0
-4

.
N

P
A

K
1:

0=
nu

m
be

r o
f p

ac
ke

ts

in
 th

e
F

IF
O

, 0
-2

"
O

U
T:

 P
ac

ke
ts

 r
ec

ei
ve

d
fr

om

U
S

B
.

IN
: P

ac
ke

ts
 lo

ad
ed

 a
nd

ar

m
ed

.
F

U
LL

 /
E

M
P

T
Y

 s
ta

tu
s

bi
ts

 d
u-

pl
ic

at
ed

 in
 S

F
R

 s
pa

ce
,

E
P

24
68

S
TA

T

E
6A

4
1

E
P

4C
S

E
nd

po
in

t 4
 C

on
tr

ol
 a

nd
 S

ta
tu

s
0

0
N

P
A

K
1

N
P

A
K

0
F

U
LL

E
M

P
T

Y
0

S
TA

LL
00

10
10

00
rr

rr
rr

rb

E
6A

5
1

E
P

6C
S

E
nd

po
in

t 6
 C

on
tr

ol
 a

nd
 S

ta
tu

s
0

N
P

A
K

2
N

P
A

K
1

N
P

A
K

0
F

U
LL

E
M

P
T

Y
0

S
TA

LL
00

00
01

00
rr

rr
rr

rb

E
6A

6
1

E
P

8C
S

E
nd

po
in

t 8
 C

on
tr

ol
 a

nd
 S

ta
tu

s
0

0
N

P
A

K
1

N
P

A
K

0
F

U
LL

E
M

P
T

Y
0

S
TA

LL
00

00
01

00
rr

rr
rr

rb

E
6A

7
1

E
P

2F
IF

O
F

LG
S

E
nd

po
in

t 2
 s

la
ve

 F
IF

O
 F

la
gs

0
0

0
0

0
P

F
E

F
F

F
00

00
00

10
R

N
ot

 a
ffe

ct
ed

 b
y

F
IF

O
P

IN
P

O
-

LA
R

 b
its

.
du

pl
ic

at
ed

 in
 S

F
R

 s
pa

ce
,

E
P

24
F

IF
O

F
LG

S
 a

nd

E
P

68
F

IF
O

F
LG

S

E
6A

8
1

E
P

4F
IF

O
F

LG
S

E
nd

po
in

t 4
 s

la
ve

 F
IF

O
 F

la
gs

0
0

0
0

0
P

F
E

F
F

F
00

00
00

10
R

E
6A

9
1

E
P

6F
IF

O
F

LG
S

E
nd

po
in

t 6
 s

la
ve

 F
IF

O
 F

la
gs

0
0

0
0

0
P

F
E

F
F

F
00

00
01

10
R

E
6A

A
1

E
P

8F
IF

O
F

LG
S

E
nd

po
in

t 8
 s

la
ve

 F
IF

O
 F

la
gs

0
0

0
0

0
P

F
E

F
F

F
00

00
01

10
R

E
6A

B
1

E
P

2F
IF

O
B

C
H

E
nd

po
in

t 2
 s

la
ve

 F
IF

O
 to

ta
l b

yt
e

co
un

t H
0

0
0

B
C

12
B

C
11

B
C

10
B

C
9

B
C

8
00

00
00

00
R

O
U

T:
 fu

ll
by

te
 c

ou
nt

; I
N

: b
yt

es

in
 c

ur
re

nt
 p

ac
ke

t
E

P
2

m
ax

 4
09

6
E

P
$

m
ax

 1
02

4
E

P
6

m
ax

 2
04

8
E

P
*

m
ax

 1
02

4

E
6A

C
1

E
P

2F
IF

O
B

C
L

E
nd

po
in

t 2
 s

la
ve

 F
IF

O
 to

ta
l b

yt
e

co
un

t L
B

C
7

B
C

6
B

C
5

B
C

4
B

C
3

B
C

2
B

C
1

B
C

0
00

00
00

00
R

E
6A

D
1

E
P

4F
IF

O
B

C
H

E
nd

po
in

t 4
 s

la
ve

 F
IF

O
 to

ta
l b

yt
e

co
un

t H
0

0
0

0
0

B
C

10
B

C
9

B
C

8
00

00
00

00
R

E
6A

E
1

E
P

4F
IF

O
B

C
L

E
nd

po
in

t 4
 s

la
ve

 F
IF

O
 to

ta
l b

yt
e

co
un

t L
B

C
7

B
C

6
B

C
5

B
C

4
B

C
3

B
C

2
B

C
1

B
C

0
00

00
00

00
R

E
6A

F
1

E
P

6F
IF

O
B

C
H

E
nd

po
in

t 6
 s

la
ve

 F
IF

O
 to

ta
l b

yt
e

co
un

t H
0

0
0

0
B

C
11

B
C

10
B

C
9

B
C

8
00

00
00

00
R

E
6B

0
1

E
P

6F
IF

O
B

C
L

E
nd

po
in

t 6
 s

la
ve

 F
IF

O
 to

ta
l b

yt
e

co
un

t L
B

C
7

B
C

6
B

C
5

B
C

4
B

C
3

B
C

2
B

C
1

B
C

0
00

00
00

00
R

E
6B

1
1

E
P

8F
IF

O
B

C
H

E
nd

po
in

t 8
 s

la
ve

 F
IF

O
 to

ta
l b

yt
e

co
un

t H
0

0
0

0
0

B
C

10
B

C
9

B
C

8
00

00
00

00
R

E
6B

2
1

E
P

8F
IF

O
B

C
L

E
nd

po
in

t 8
 s

la
ve

 F
IF

O
 to

ta
l b

yt
e

co
un

t L
B

C
7

B
C

6
B

C
5

B
C

4
B

C
3

B
C

2
B

C
1

B
C

0
00

00
00

00
R

E
6B

3
1

S
U

D
P

T
R

H
S

et
up

 D
at

a
P

oi
nt

er
 h

ig
h

ad
-

dr
es

s
by

te
A

15
A

14
A

13
A

12
A

11
A

10
A

9
A

8
xx

xx
xx

xx
R

W

E
6B

4
1

S
U

D
P

T
R

L
S

et
up

 D
at

a
P

oi
nt

er
 lo

w
 a

dd
re

ss

by
te

A
7

A
6

A
5

A
4

A
3

A
2

A
1

0
xx

xx
xx

x0
bb

bb
bb

br
M

us
t b

e
w

or
d-

al
ig

ne
d

(i.
e.

,
m

us
t p

oi
nt

 to
 e

ve
n-

nu
m

be
re

d
ad

dr
es

se
s)

E
6B

5
1

S
U

D
P

T
R

C
T

L
S

et
up

 D
at

a
P

oi
nt

er
 A

ut
o

M
od

e
0

0
0

0
0

0
0

S
D

P
A

U
T

O
00

00
00

01
R

W
C

le
ar

 b
0

to
 s

up
pl

y
S

U
D

P
T

R

le
ng

th
 (

ov
er

rid
e

U
S

B
 le

ng
th

)

2
re

se
rv

ed

E
6B

8
8

S
E

T
U

P
B

U
F

8
by

te
s

of
 S

E
T

U
P

 d
at

a
D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0
xx

xx
xx

xx
R

S
E

T
U

P
D

A
T

[0
] =

 b

m
R

eq
ue

st
Ty

pe
D

7:
 D

at
a

T
ra

ns
fe

r
D

ire
ct

io
n;

0=

ho
st

-t
o-

de
vi

ce
, 1

=
de

vi
ce

-
to

-h
os

t
D

6…
5

Ty
pe

; 0
=

st
an

da
rd

,
1=

cl
as

s,
 2

=
ve

nd
or

, 3
=

re
-

se
rv

ed
D

4…
0

R
ec

ip
ie

nt
; 0

=
de

vi
ce

,
1=

in
te

rf
ac

e,
 2

=
en

dp
oi

nt
,

3=
ot

he
r,

4…
31

=
re

se
rv

ed

S
E

T
U

P
D

A
T

[1
] =

 b
m

R
eq

ue
st

sp
ec

ifi
c

re
qu

es
t

S
E

T
U

P
D

A
T

[2
:3

] =
 w

V
al

ue
w

or
d-

si
ze

d
fie

ld
 th

at
 v

ar
ie

s
ac

co
rd

in
g

to
 r

eq
ue

st

H
ex

S
iz

e
N

am
e

D
es

cr
ip

ti
o

n
b

7
b

6
b

5
b

4
b

3
b

2
b

1
b

0
D

ef
au

lt
A

cc
es

s
N

o
te

s

Exhibit 2058 - Page 455 of 460

E
Z

-U
S

B
 F

X
2

T
ec

hn
ic

al
 R

ef
er

en
ce

 M
an

ua
l v

2.
1

A
pp

en
di

x
C

 -
30

E
Z

-U
S

B
 F

X
2

R
eg

is
te

rs
 &

 B
u

ff
er

s

S
E

T
U

P
D

A
T

[4
:5

] =
 w

In
de

x
w

or
d-

si
ze

d
fie

ld
 th

at
 v

ar
ie

s
ac

co
rd

in
g

to
 r

eq
ue

st
; t

yp
.

us
ed

 to
 p

as
s

an
 in

de
x

or
 o

ff-
se

t

S
E

T
U

P
D

A
T

[6
:7

] =
 w

Le
ng

th
nu

m
be

r o
f b

yt
es

 to
 tr

an
sf

er
 if

th

er
e

is
 a

 d
at

a
st

ag
e

G
P

IF

E
6C

0
1

G
P

IF
W

F
S

E
LE

C
T

W
av

ef
or

m
 S

el
ec

to
r

S
IN

G
LE

W
R

1
S

IN
G

LE
W

R
0

S
IN

G
LE

R
D

1
S

IN
G

LE
R

D
0

F
IF

O
W

R
1

F
IF

O
W

R
0

F
IF

O
R

D
1

F
IF

O
R

D
0

11
10

01
00

R
W

S
el

ec
t w

av
ef

or
m

E
6C

1
1

G
P

IF
ID

LE
C

S
G

P
IF

 D
on

e,
 G

P
IF

 ID
LE

 d
riv

e
m

od
e

D
O

N
E

0
0

0
0

0
0

ID
LE

D
R

V
10

00
00

00
R

W
D

O
N

E
=

1:
 G

P
IF

 d
on

e
(I

R
Q

4)
.

ID
LE

D
R

V
=

1:
 d

riv
e

bu
s,

 0
:T

S
D

O
N

E
 d

up
lic

at
ed

 in
 S

F
R

sp

ac
e,

 G
P

IF
T

R
IG

 b
it

7
E

6C
2

1
G

P
IF

ID
LE

C
T

L
In

ac
tiv

e
B

us
, C

T
L

st
at

es
0

0
C

T
L5

C
T

L4
C

T
L3

C
T

L2
C

T
L1

C
T

L0
11

11
11

11
R

W

E
6C

3
1

G
P

IF
C

T
LC

F
G

C
T

L
D

riv
e

Ty
pe

T
R

IC
T

L
0

C
T

L5
C

T
L4

C
T

L3
C

T
L2

C
T

L1
C

T
L0

00
00

00
00

R
W

0=
C

M
O

S
, 1

=
op

en
 d

rn
.

E
6C

4
1

G
P

IF
A

D
R

H
se

e
S

ec
ti

o
n

 1
5.

14
G

P
IF

 A
dd

re
ss

 H
0

0
0

0
0

0
0

G
P

IF
A

8
00

00
00

00
R

W
G

P
IF

A
D

R
H

/L
 a

ct
iv

e
im

m
ed

i-
at

el
y

w
he

n
w

rit
te

n
to

E
6C

5
1

G
P

IF
A

D
R

L
se

e
S

ec
ti

o
n

 1
5.

14
G

P
IF

 A
dd

re
ss

 L
G

P
IF

A
7

G
P

IF
A

6
G

P
IF

A
5

G
P

IF
A

4
G

P
IF

A
3

G
P

IF
A

2
G

P
IF

A
1

G
P

IF
A

0
00

00
00

00
R

W

F
L

O
W

S
TA

T
E

E
6C

6
1

F
LO

W
S

TA
T

E
F

lo
w

st
at

e
E

na
bl

e
an

d
S

el
ec

to
r

F
S

E
0

0
0

0
F

S
2

F
S

1
F

S
0

00
00

00
00

br
rr

rb
bb

E
6C

7
1

F
LO

W
LO

G
IC

F
lo

w
st

at
e

Lo
gi

c
LF

U
N

C
1

LF
U

N
C

0
T

E
R

M
A

2
T

E
R

M
A

1
T

E
R

M
A

0
T

E
R

M
B

2
T

E
R

M
B

1
T

E
R

M
B

0
00

00
00

00
R

W

E
6C

8
1

F
LO

W
E

Q
0C

T
L

C
T

L-
P

in
 S

ta
te

s
in

 F
lo

w
st

at
e

(w
he

n
Lo

gi
c

=
 0

)
C

T
L0

E
3

C
T

L0
E

2
C

T
L0

E
1/

C
T

L5
C

T
L0

E
0/

C
T

L4
C

T
L3

C
T

L2
C

T
L1

C
T

L0
00

00
00

00
R

W

E
6C

9
1

F
LO

W
E

Q
1C

T
L

C
T

L-
P

in
 S

ta
te

s
in

 F
lo

w
st

at
e

(w
he

n
Lo

gi
c

=
 1

)
C

T
L0

E
3

C
T

L0
E

2
C

T
L0

E
1/

C
T

L5
C

T
L0

E
0/

C
T

L4
C

T
L3

C
T

L2
C

T
L1

C
T

L0
00

00
00

00
R

W

E
6C

A
1

F
LO

W
H

O
LD

O
F

F
H

ol
do

ff
C

on
fig

ur
at

io
n

H
O

P
E

R
IO

D
3

H
O

P
E

R
IO

D
2

H
O

P
E

R
IO

D
1

H
O

P
E

R
IO

D
0

H
O

S
TA

T
E

H
O

C
T

L2
H

O
C

T
L1

H
O

C
T

L0
00

01
00

10
R

W

E
6C

B
1

F
LO

W
S

T
B

F
lo

w
st

at
e

S
tr

ob
e

C
on

fig
ur

at
io

n
S

LA
V

E
R

D
Y

A
S

Y
N

C
C

T
LT

O
G

L
S

U
S

TA
IN

0
M

S
T

B
2

M
S

T
B

1
M

S
T

B
0

00
10

00
00

R
W

E
6C

C
1

F
LO

W
S

T
B

E
D

G
E

F
lo

w
st

at
e

R
is

in
g/

F
al

lin
g

E
dg

e
C

on
fig

ur
at

io
n

0
0

0
0

0
0

FA
LL

IN
G

R
IS

IN
G

00
00

00
01

rr
rr

rr
bb

E
6C

D
1

F
LO

W
S

T
B

P
E

R
IO

D
M

as
te

r-
S

tr
ob

e
H

al
f-

P
er

io
d

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

00
00

00
10

R
W

In
 u

ni
ts

 o
f I

F
C

LK
/2

.
M

us
t b

e
>

=
 2

E
6C

E
1

G
P

IF
T

C
B

3
G

P
IF

 T
ra

ns
ac

tio
n

C
ou

nt
 B

yt
e3

T
C

31
T

C
30

T
C

29
T

C
28

T
C

27
T

C
26

T
C

25
T

C
24

00
00

00
00

R
W

R
ea

di
ng

 th
es

e
re

gi
st

er
s

gi
ve

yo

u
th

e
liv

e
T

ra
ns

ac
tio

n
C

ou
nt

.
D

ef
au

lt=
1

E
6C

F
1

G
P

IF
T

C
B

2
G

P
IF

 T
ra

ns
ac

tio
n

C
ou

nt
 B

yt
e2

T
C

23
T

C
22

T
C

21
T

C
20

T
C

19
T

C
18

T
C

17
T

C
16

00
00

00
00

R
W

E
6D

0
1

G
P

IF
T

C
B

1
G

P
IF

 T
ra

ns
ac

tio
n

C
ou

nt
 B

yt
e1

T
C

15
T

C
14

T
C

13
T

C
12

T
C

11
T

C
10

T
C

9
T

C
8

00
00

00
00

R
W

E
6D

1
1

G
P

IF
T

C
B

0
G

P
IF

 T
ra

ns
ac

tio
n

C
ou

nt
 B

yt
e0

T
C

7
T

C
6

T
C

5
T

C
4

T
C

3
T

C
2

T
C

1
T

C
0

00
00

00
01

R
W

2
re

se
rv

ed
00

00
00

00
R

W

re
se

rv
ed

re
se

rv
ed

E
6D

2
1

E
P

2G
P

IF
F

LG
S

E
L

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 2
 G

P
IF

 F
la

g
se

le
ct

0
0

0
0

0
0

F
S

1
F

S
0

00
00

00
00

R
W

00
: P

ro
gr

am
m

ab
le

 fl
ag

;
01

: E
m

pt
y,

 1
0:

 F
ul

l,
11

: r
es

er
ve

d

E
6D

3
1

E
P

2G
P

IF
P

F
S

T
O

P
E

nd
po

in
t 2

 G
P

IF
 s

to
p

tr
an

sa
c-

tio
n

on
 p

ro
g.

 fl
ag

0
0

0
0

0
0

0
F

IF
O

2F
LA

G
00

00
00

00
R

W
1=

ov
er

rid
e

T
C

 v
al

ue
, s

to
p

on

F
IF

O
 P

ro
g.

 F
la

g.

E
6D

4
1

E
P

2G
P

IF
T

R
IG

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 2
 G

P
IF

 T
rig

ge
r

x
x

x
x

x
x

x
x

xx
xx

xx
xx

W
S

ta
rt

 G
P

IF
 tr

an
sa

ct
io

ns
, d

u-
pl

ic
at

ed
 in

 S
F

R
 -

 G
P

IF
T

R
IG

3
re

se
rv

ed

re
se

rv
ed

re
se

rv
ed

H
ex

S
iz

e
N

am
e

D
es

cr
ip

ti
o

n
b

7
b

6
b

5
b

4
b

3
b

2
b

1
b

0
D

ef
au

lt
A

cc
es

s
N

o
te

s

Exhibit 2058 - Page 456 of 460

E
Z

-U
S

B
 F

X
2

T
ec

hn
ic

al
 R

ef
er

en
ce

 M
an

ua
l v

2.
1

A
pp

en
di

x
C

 -
31

E
Z

-U
S

B
 F

X
2

R
eg

is
te

rs
 &

 B
u

ff
er

s

E
6D

A
1

E
P

4G
P

IF
F

LG
S

E
L

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 4
 G

P
IF

 F
la

g
se

le
ct

0
0

0
0

0
0

F
S

1
F

S
0

00
00

00
00

R
W

00
: P

ro
gr

am
m

ab
le

-L
ev

el
;

01
: E

m
pt

y,
 1

0:
 F

ul
l,

11
: r

es
er

ve
d

E
6D

B
1

E
P

4G
P

IF
P

F
S

T
O

P
E

nd
po

in
t 4

 G
P

IF
 s

to
p

tr
an

sa
c-

tio
n

on
 G

P
IF

 F
la

g
0

0
0

0
0

0
0

F
IF

O
4F

LA
G

00
00

00
00

R
W

E
6D

C
1

E
P

4G
P

IF
T

R
IG

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 4
 G

P
IF

 T
rig

ge
r

x
x

x
x

x
x

x
x

xx
xx

xx
xx

W
S

ta
rt

 G
P

IF
 tr

an
sa

ct
io

ns
, d

u-
pl

ic
at

ed
 in

 S
F

R
 -

 G
P

IF
T

R
IG

3
re

se
rv

ed

re
se

rv
ed

re
se

rv
ed

E
6E

2
1

E
P

6G
P

IF
F

LG
S

E
L

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 6
 G

P
IF

 F
la

g
se

le
ct

0
0

0
0

0
0

F
S

1
F

S
0

00
00

00
00

R
W

00
: P

ro
gr

am
m

ab
le

 fl
ag

;
01

: E
m

pt
y,

 1
0:

 F
ul

l,
11

: r
es

er
ve

d
(P

F
)

E
6E

3
1

E
P

6G
P

IF
P

F
S

T
O

P
E

nd
po

in
t 6

 G
P

IF
 s

to
p

tr
an

sa
c-

tio
n

on
 p

ro
g.

 fl
ag

0
0

0
0

0
0

0
F

IF
O

6F
LA

G
00

00
00

00
R

W

E
6E

4
1

E
P

6G
P

IF
T

R
IG

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 6
 G

P
IF

 T
rig

ge
r

x
x

x
x

x
x

x
x

xx
xx

xx
xx

W
S

ta
rt

 G
P

IF
 tr

an
sa

ct
io

ns
, d

u-
pl

ic
at

ed
 in

 S
F

R
 -

 G
P

IF
T

R
IG

3
re

se
rv

ed

re
se

rv
ed

re
se

rv
ed

E
6E

A
1

E
P

8G
P

IF
F

LG
S

E
L

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 8
 G

P
IF

 F
la

g
se

le
ct

0
0

0
0

0
0

F
S

1
F

S
0

00
00

00
00

R
W

00
: P

ro
gr

am
m

ab
le

 fl
ag

;
01

: E
m

pt
y,

 1
0:

 F
ul

l,
11

: r
es

er
ve

d
(P

F
)

E
6E

B
1

E
P

8G
P

IF
P

F
S

T
O

P
E

nd
po

in
t 8

 G
P

IF
 s

to
p

tr
an

sa
c-

tio
n

on
 p

ro
g.

 fl
ag

0
0

0
0

0
0

0
F

IF
O

8F
LA

G
00

00
00

00
R

W

E
6E

C
1

E
P

8G
P

IF
T

R
IG

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 8
 G

P
IF

 T
rig

ge
r

x
x

x
x

x
x

x
x

xx
xx

xx
xx

W
S

ta
rt

 G
P

IF
 tr

an
sa

ct
io

ns
, d

u-
pl

ic
at

ed
 in

 S
F

R
 -

 G
P

IF
T

R
IG

3
re

se
rv

ed

E
6F

0
1

X
G

P
IF

S
G

LD
A

T
H

G
P

IF
 D

at
a

H
 (

16
-b

it
m

od
e

on
ly

)
D

15
D

14
D

13
D

12
D

11
D

10
D

9
D

8
xx

xx
xx

xx
R

W
du

pl
ic

at
ed

 in
 S

F
R

 s
pa

ce
,

S
G

LD
A

T
H

 /
S

G
LD

A
T

LX
 /

S
G

LD
A

T
LN

O
X

E
6F

1
1

X
G

P
IF

S
G

LD
A

T
LX

R
ea

d/
W

rit
e

G
P

IF
 D

at
a

L
&

 tr
ig

-
ge

r
tr

an
sa

ct
io

n
D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0
xx

xx
xx

xx
R

W
80

51
re

ad
 o

r
w

rit
e

tr
ig

ge
rs

G

P
IF

 tr
an

sa
ct

io
n

E
6F

2
1

X
G

P
IF

S
G

LD
A

T
L-

N
O

X
R

ea
d

G
P

IF
 D

at
a

L,
 n

o
tr

an
sa

c-
tio

n
tr

ig
ge

r
D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0
xx

xx
xx

xx
R

80
51

 r
ea

ds
 d

at
a

w
/o

 G
P

IF

tr
an

sa
ct

io
n

tr
ig

. (
e.

g.
 la

st

by
te

)

E
6F

3
1

G
P

IF
R

E
A

D
Y

C
F

G
In

te
rn

al
 R

D
Y

,S
yn

c/
A

sy
nc

, R
D

Y

pi
n

st
at

es
IN

T
R

D
Y

S
A

S
T

C
X

R
D

Y
5

0
0

0
0

0
00

00
00

00
bb

br
rr

rr
IN

T
R

D
Y

 is
 8

05
1

're
ad

y'
, l

ik
e

R
D

Y
n

pi
ns

. R
D

Y
n

in
di

ca
te

pi

n
st

at
es

S
A

S
=

1:
 s

yn
ch

ro
no

us
,

0:
as

yn
ch

ro
no

us
 (

2-
flo

ps
)

R
D

Y
n

in
pu

ts
.

E
6F

4
1

G
P

IF
R

E
A

D
Y

S
TA

T
G

P
IF

 R
ea

dy
 S

ta
tu

s
0

0
R

D
Y

5
R

D
Y

4
R

D
Y

3
R

D
Y

2
R

D
Y

1
R

D
Y

0
00

xx
xx

xx
R

R
D

Y
n

in
di

ca
te

 p
in

 s
ta

te
s

E
6F

5
1

G
P

IF
A

B
O

R
T

A
bo

rt
 G

P
IF

 W
av

ef
or

m
s

x
x

x
x

x
x

x
x

xx
xx

xx
xx

W
G

o
To

 G
P

IF
 ID

LE
 s

ta
te

.
D

at
a

is
 d

on
’t

ca
re

.

E
6F

6
2

re
se

rv
ed

E
N

D
P

O
IN

T
 B

U
F

F
E

R
S

E
74

0
64

E
P

0B
U

F
E

P
0-

IN
/-

O
U

T
 b

uf
fe

r
D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0
xx

xx
xx

xx
R

W

E
78

0
64

E
P

10
U

T
B

U
F

E
P

1-
O

U
T

 b
uf

fe
r

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

xx
xx

xx
xx

R
W

E
7C

0
64

E
P

1I
N

B
U

F
E

P
1-

IN
 b

uf
fe

r
D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0
xx

xx
xx

xx
R

W

H
ex

S
iz

e
N

am
e

D
es

cr
ip

ti
o

n
b

7
b

6
b

5
b

4
b

3
b

2
b

1
b

0
D

ef
au

lt
A

cc
es

s
N

o
te

s

Exhibit 2058 - Page 457 of 460

E
Z

-U
S

B
 F

X
2

T
ec

hn
ic

al
 R

ef
er

en
ce

 M
an

ua
l v

2.
1

A
pp

en
di

x
C

 -
32

E
Z

-U
S

B
 F

X
2

R
eg

is
te

rs
 &

 B
u

ff
er

s

20
48

re
se

rv
ed

R
W

F
00

0
10

24
E

P
2F

IF
O

B
U

F
51

2/
10

24
-b

yt
e

E
P

 2
 /

sl
av

e
F

IF
O

 b
uf

fe
r

(I
N

 o
r

O
U

T
)

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

xx
xx

xx
xx

R
W

F
or

 5
12

 u
se

 o
nl

y
0x

F
00

0-
0x

F
1F

F

F
40

0
51

2
E

P
4F

IF
O

B
U

F
51

2
by

te
 E

P
 4

 /
sl

av
e

F
IF

O
 b

uf
f-

er
 (

IN
 o

r
O

U
T

)
D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0
xx

xx
xx

xx
R

W

F
60

0
51

2
re

se
rv

ed

F
80

0
10

24
E

P
6F

IF
O

B
U

F
51

2/
10

24
-b

yt
e

E
P

 6
 /

sl
av

e
F

IF
O

 b
uf

fe
r

(I
N

 o
r

O
U

T
)

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

xx
xx

xx
xx

R
W

F
or

 5
12

 u
se

 o
nl

y
0x

F
80

0-
0x

F
9F

F

F
C

00
51

2
E

P
8F

IF
O

B
U

F
51

2
by

te
 E

P
 8

 /
sl

av
e

F
IF

O
 b

uf
f-

er
 (

IN
 o

r
O

U
T

)
D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0
xx

xx
xx

xx
R

W

F
E

00
51

2
re

se
rv

ed

xx
xx

I²
C

 C
o

m
pa

ti
b

le
 C

o
n

fi
g

u
ra

ti
o

n
 B

yt
e

0
D

IS
C

O
N

0
0

0
0

0
40

0K
H

Z
xx

xx
xx

xx
n/

a

00
00

00
00

If
no

E

P
R

O
M

de

te
ct

ed

D
IS

C
O

N
=

co
pi

ed
 in

to
 D

IS
-

C
O

N
 b

it
(U

S
B

C
S

.3
)

fo
r

po
w

-
er

-o
n

U
S

B
 c

on
ne

ct
 s

ta
te

40
0K

H
Z

=
1

fo
r

40
0

K
H

z
I²

C

co
m

pa
tib

le
 b

us
 o

pe
ra

tio
n

N
O

T
E

: i
f n

o
E

E
P

R
O

M
 is

 c
on

-
ne

ct
ed

 a
ll

bi
ts

 d
ef

au
lt

to
 r

eg
-

is
te

r
de

fa
ul

t v
al

ue
s.

S
p

ec
ia

l F
u

n
ct

io
n

 R
eg

is
te

rs
 (

S
F

R
s)

80
1

IO
A

(1
)

P
or

t A
 (

bi
t a

dd
re

ss
ab

le
)

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

xx
xx

xx
xx

R
W

81
1

S
P

S
ta

ck
 P

oi
nt

er
D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0
00

00
01

11
R

W

82
1

D
P

L0
D

at
a

P
oi

nt
er

 0
 L

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

00
00

00
00

R
W

83
1

D
P

H
0

D
at

a
P

oi
nt

er
 0

 H
A

15
A

14
A

13
A

12
A

11
A

10
A

9
A

8
00

00
00

00
R

W

84
1

D
P

L1
(1

)
D

at
a

P
oi

nt
er

 1
 L

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

00
00

00
00

R
W

85
1

D
P

H
1(1

)
D

at
a

P
oi

nt
er

 1
 H

A
15

A
14

A
13

A
12

A
11

A
10

A
9

A
8

00
00

00
00

R
W

86
1

D
P

S
(1

)
D

at
a

P
oi

nt
er

 0
/1

 s
el

ec
t

0
0

0
0

0
0

0
S

E
L

00
00

00
00

R
W

87
1

P
C

O
N

P
ow

er
 C

on
tr

ol
S

M
O

D
0

x
1

1
G

F
1

G
F

0
S

T
O

P
ID

LE
00

11
00

00
R

W

88
1

T
C

O
N

T
im

er
/C

ou
nt

er
 C

on
tr

ol
 (

bi
t a

d-
dr

es
sa

bl
e)

T
F

1
T

R
1

T
F

0
T

R
0

IE
1

IT
1

IE
0

IT
0

00
00

00
00

R
W

89
1

T
M

O
D

T
im

er
/C

ou
nt

er
 M

od
e

C
on

tr
ol

G
A

T
E

C
T

M
1

M
0

G
A

T
E

C
T

M
1

M
0

00
00

00
00

R
W

8A
1

T
L0

T
im

er
 0

 r
el

oa
d

L
D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0
00

00
00

00
R

W

8B
1

T
L1

T
im

er
 1

 r
el

oa
d

L
D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0
00

00
00

00
R

W

8C
1

T
H

0
T

im
er

 0
 r

el
oa

d
H

D
15

D
14

D
13

D
12

D
11

D
10

D
9

D
8

00
00

00
00

R
W

8D
1

T
H

1
T

im
er

 1
 r

el
oa

d
H

D
15

D
14

D
13

D
12

D
11

D
10

D
9

D
8

00
00

00
00

R
W

8E
1

C
K

C
O

N
(1

)
C

lo
ck

 C
on

tr
ol

x
x

T
2M

T
1M

T
0M

M
D

2
M

D
1

M
D

0
00

00
00

01
R

W
M

O
V

X
 =

 3
 in

st
r.

cy
cl

es
 (

de
-

fa
ul

t)

8F
1

re
se

rv
ed

90
1

IO
B

(1
)

P
or

t B
 (

bi
t a

dd
re

ss
ab

le
)

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

xx
xx

xx
xx

R
W

91
1

E
X

IF
(1

)
E

xt
er

na
l I

nt
er

ru
pt

 F
la

g(
s)

IE
5

IE
4

I²
C

IN
T

U
S

B
N

T
1

0
0

0
00

00
10

00
R

W

H
ex

S
iz

e
N

am
e

D
es

cr
ip

ti
o

n
b

7
b

6
b

5
b

4
b

3
b

2
b

1
b

0
D

ef
au

lt
A

cc
es

s
N

o
te

s

Exhibit 2058 - Page 458 of 460

E
Z

-U
S

B
 F

X
2

T
ec

hn
ic

al
 R

ef
er

en
ce

 M
an

ua
l v

2.
1

A
pp

en
di

x
C

 -
33

E
Z

-U
S

B
 F

X
2

R
eg

is
te

rs
 &

 B
u

ff
er

s

92
1

M
P

A
G

E
(1

)
U

pp
er

 A
dd

r B
yt

e
of

 M
O

V
X

 u
si

ng

@
R

0
/ @

R
1

A
15

A
14

A
13

A
12

A
11

A
10

A
9

A
8

00
00

00
00

R
W

us
ed

 w
ith

 th
e

in
di

re
ct

 a
d-

dr
es

si
ng

 in
st

uc
tio

n(
s)

, i
e.

M

O
V

X
 @

R
0,

A
 _

w
he

re

M
P

A
G

E
 =

 u
pp

er
 a

dd
r

by
te

an

d
R

0
co

nt
ai

ns
 lo

w
er

 a
dd

r
by

te
 _

an
 a

pp
. e

xa
m

pl
e

w
ou

ld
 b

e
to

 c
op

y
E

P
1

ou
t/i

n
da

ta
 to

 a
 b

uf
fe

r

93
5

re
se

rv
ed

98
1

S
C

O
N

0
S

er
ia

l P
or

t 0
 C

on
tr

ol
 (b

it
ad

dr
es

-
sa

bl
e)

S
M

0_
0

S
M

1_
0

S
M

2_
0

R
E

N
_0

T
B

8_
0

R
B

8_
0

T
I_

0
R

I_
0

00
00

00
00

R
W

99
1

S
B

U
F

0
S

er
ia

l P
or

t 0
 D

at
a

B
uf

fe
r

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

00
00

00
00

R
W

9A
1

A
U

T
O

P
T

R
H

1(1
)

A
ut

op
oi

nt
er

 1
 A

dd
re

ss
 H

A
15

A
14

A
13

A
12

A
11

A
10

A
9

A
8

00
00

00
00

R
W

9B
1

A
U

T
O

P
T

R
L1

(1
)

A
ut

op
oi

nt
er

 1
 A

dd
re

ss
 L

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

00
00

00
00

R
W

9C
1

re
se

rv
ed

9D
1

A
U

T
O

P
T

R
H

2(1
)

A
ut

op
oi

nt
er

 2
 A

dd
re

ss
 H

A
15

A
14

A
13

A
12

A
11

A
10

A
9

A
8

00
00

00
00

R
W

9E
1

A
U

T
O

P
T

R
L2

(1
)

A
ut

op
oi

nt
er

 2
 A

dd
re

ss
 L

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

00
00

00
00

R
W

9F
1

re
se

rv
ed

A
0

1
IO

C
(1

)
P

or
t C

 (
bi

t a
dd

re
ss

ab
le

)
D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0
xx

xx
xx

xx
R

W

A
1

1
IN

T
2C

LR
(1

)
In

te
rr

up
t 2

 c
le

ar
x

x
x

x
x

x
x

x
xx

xx
xx

xx
W

A
2

1
IN

T
4C

LR
(1

)
In

te
rr

up
t 4

 c
le

ar
x

x
x

x
x

x
x

x
xx

xx
xx

xx
W

A
3

5
re

se
rv

ed

A
8

1
IE

In
te

rr
up

t E
na

bl
e

(b
it

ad
dr

es
s-

ab
le

)
E

A
E

S
1

E
T

2
E

S
0

E
T

1
E

X
1

E
T

0
E

X
0

00
00

00
00

R
W

A
9

1
re

se
rv

ed

A
A

1
E

P
24

68
S

TA
T

(1
)

E
nd

po
in

t 2
,4

,6
,8

 s
ta

tu
s

fla
gs

E
P

8F
E

P
8E

E
P

6F
E

P
6E

E
P

4F
E

P
4E

E
P

2F
E

P
2E

01
01

10
10

R
C

he
ck

 E
m

pt
y/

F
ul

l s
ta

tu
s

of

E
P

 2
,4

,6
,8

 u
si

ng
 M

O
V

A
B

1
E

P
24

F
IF

O
F

LG
S

(1
)

E
nd

po
in

t 2
,4

 s
la

ve
 F

IF
O

 s
ta

tu
s

fla
gs

0
E

P
4P

F
E

P
4E

F
E

P
4F

F
0

E
P

2P
F

E
P

2E
F

E
P

2F
F

00
10

00
10

R
C

he
ck

 P
rg

/E
m

pt
y/

F
ul

l s
ta

tu
s

of
 E

P
 2

,4
 s

la
ve

 F
IF

O
 u

si
ng

M

O
V

 in
st

r.

A
C

1
E

P
68

F
IF

O
F

LG
S

(1
)

E
nd

po
in

t 6
,8

 s
la

ve
 F

IF
O

 s
ta

tu
s

fla
gs

0
E

P
8P

F
E

P
8E

F
E

P
8F

F
0

E
P

6P
F

E
P

6E
F

E
P

6F
F

01
10

01
10

R
C

he
ck

 P
rg

/E
m

pt
y/

F
ul

l s
ta

tu
s

of
 E

P
 6

,8
 s

la
ve

 F
IF

O
 u

si
ng

M

O
V

 in
st

r.

A
D

2
re

se
rv

ed

A
F

1
A

U
T

O
P

T
R

S
E

T
U

P
(1

)
A

ut
op

oi
nt

er
 1

&
2

S
et

up
0

0
0

0
0

A
P

T
R

2I
N

C
A

P
T

R
1I

N
C

A
P

T
R

E
N

00
00

01
10

R
W

A
P

T
R

xI
N

C
=

1
in

c
au

to
po

in
t-

er
(s

);
 A

P
T

R
xI

N
C

=
0

fr
ee

ze

au
to

po
in

te
r(

s)

A
P

T
R

E
N

=
1

R
D

/W
R

 s
to

be
s

as
se

rt
ed

 w
he

n
us

in
g

M
O

V
X

ve

rs
io

n

B
0

1
IO

D
(1

)
P

or
t D

 (
bi

t a
dd

re
ss

ab
le

)
D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0
xx

xx
xx

xx
R

W

B
1

1
IO

E
(1

)
P

or
t E

 (
N

O
T

 b
it

ad
dr

es
sa

bl
e)

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

xx
xx

xx
xx

R
W

B
2

1
O

E
A

(1
)

P
or

t A
 O

ut
pu

t E
na

bl
e

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

00
00

00
00

R
W

B
3

1
O

E
B

(1
)

P
or

t B
 O

ut
pu

t E
na

bl
e

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

00
00

00
00

R
W

B
4

1
O

E
C

(1
)

P
or

t C
 O

ut
pu

t E
na

bl
e

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

00
00

00
00

R
W

B
5

1
O

E
D

(1
)

P
or

t D
 O

ut
pu

t E
na

bl
e

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

00
00

00
00

R
W

B
6

1
O

E
E

(1
)

P
or

t E
 O

ut
pu

t E
na

bl
e

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

00
00

00
00

R
W

B
7

1
re

se
rv

ed

H
ex

S
iz

e
N

am
e

D
es

cr
ip

ti
o

n
b

7
b

6
b

5
b

4
b

3
b

2
b

1
b

0
D

ef
au

lt
A

cc
es

s
N

o
te

s

Exhibit 2058 - Page 459 of 460

E
Z

-U
S

B
 F

X
2

T
ec

hn
ic

al
 R

ef
er

en
ce

 M
an

ua
l v

2.
1

A
pp

en
di

x
C

 -
34

E
Z

-U
S

B
 F

X
2

R
eg

is
te

rs
 &

 B
u

ff
er

s

B
8

1
IP

In
te

rr
up

t P
rio

rit
y

(b
it

ad
dr

es
s-

ab
le

)
1

P
S

1
P

T
2

P
S

0
P

T
1

P
X

1
P

T
0

P
X

0
10

00
00

00
R

W

B
9

1
re

se
rv

ed

B
A

1
E

P
01

S
TA

T
(1

)
E

nd
po

in
t 0

&
1

S
ta

tu
s

0
0

0
0

0
E

P
1I

N
B

S
Y

E
P

1O
U

T
B

S
Y

E
P

0B
S

Y
00

00
00

00
R

C
he

ck
 E

P
0

&
 E

P
1

st
at

us
 u

s-
in

g
M

O
V

 in
st

r.

B
B

1
G

P
IF

T
R

IG
(1

)

se
e

S
ec

ti
o

n
 1

5.
14

E
nd

po
in

t 2
,4

,6
,8

 G
P

IF
 s

la
ve

F

IF
O

 T
rig

ge
r

D
O

N
E

0
0

0
0

R
W

E
P

1
E

P
0

10
00

0x
xx

br
rr

rb
bb

R
W

=
1

re
ad

s,
 R

W
=

0
w

rit
es

;
E

P
[1

:0
] =

 0
0

E
P

2,
 =

 0
1

E
P

4,

=
 1

0
E

P
6,

 =
 1

1
E

P
8

B
C

1
re

se
rv

ed

B
D

1
G

P
IF

S
G

LD
A

T
H

(1
)

G
P

IF
 D

at
a

H
 (

16
-b

it
m

od
e

on
ly

)
D

15
D

14
D

13
D

12
D

11
D

10
D

9
D

8
xx

xx
xx

xx
R

W
ef

fic
ie

nt
 v

er
si

on
(s

)
of

 th
ei

r
M

O
V

X
 b

ud
di

es

B
E

1
G

P
IF

S
G

LD
A

T
LX

(1
)

G
P

IF
 D

at
a

L
w

/ T
rig

ge
r

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

xx
xx

xx
xx

R
W

B
F

1
G

P
IF

S
G

LD
A

T
LN

O
X

(1

)
G

P
IF

 D
at

a
L

w
/ N

o
T

rig
ge

r
D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0
xx

xx
xx

xx
R

no
te

 R
E

A
D

 o
nl

y,
 th

is
 s

ho
ul

d
he

lp
 y

ou
 d

ec
id

e
w

he
n

to
 a

p-
pr

op
ria

te
ly

 u
se

 it

C
0

1
S

C
O

N
1(1

)
S

er
ia

l P
or

t 1
 C

on
tr

ol
 (b

it
ad

dr
es

-
sa

bl
e)

S
M

0_
1

S
M

1_
1

S
M

2_
1

R
E

N
_1

T
B

8_
1

R
B

8_
1

T
I_

1
R

I_
1

00
00

00
00

R
W

C
1

1
S

B
U

F
1(1

)
S

er
ia

l P
or

t 1
 D

at
a

B
uf

fe
r

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

00
00

00
00

R
W

C
2

6
re

se
rv

ed

C
8

1
T

2C
O

N
T

im
er

/C
ou

nt
er

 2
 C

on
tr

ol
 (

bi
t a

d-
dr

es
sa

bl
e)

T
F

2
E

X
F

2
R

C
LK

T
C

LK
E

X
E

N
2

T
R

2
C

T
2

C
P

R
L2

00
00

00
00

R
W

C
9

1
re

se
rv

ed

C
A

1
R

C
A

P
2L

C
ap

tu
re

 fo
r

T
im

er
 2

, a
ut

o-
re

-
lo

ad
, u

p-
co

un
te

r
D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0
00

00
00

00
R

W

C
B

1
R

C
A

P
2H

C
ap

tu
re

 fo
r

T
im

er
 2

, a
ut

o-
re

-
lo

ad
, u

p-
co

un
te

r
D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0
00

00
00

00
R

W

C
C

1
T

L2
T

im
er

 2
 r

el
oa

d
L

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

00
00

00
00

R
W

C
D

1
T

H
2

T
im

er
 2

 r
el

oa
d

H
D

15
D

14
D

13
D

12
D

11
D

10
D

9
D

8
00

00
00

00
R

W

C
E

2
re

se
rv

ed

D
0

1
P

S
W

P
ro

gr
am

 S
ta

tu
s

W
or

d
(b

it
ad

-
dr

es
sa

bl
e)

C
Y

A
C

F
0

R
S

1
R

S
0

O
V

F
1

P
00

00
00

00
R

W

D
1

7
re

se
rv

ed

D
8

1
E

IC
O

N
(1

)
E

xt
er

na
l I

nt
er

ru
pt

 C
on

tr
ol

S
M

O
D

1
1

E
R

E
S

I
R

E
S

I
IN

T
6

0
0

0
01

00
00

00
R

W
R

E
S

I -
 r

ef
le

ct
s

D
+

/ W
U

 /
W

U
2

sr
c

w
hi

le
 S

U
S

P
E

N
D

(P

C
O

N
.1

),
 c

lo
ck

s
of

f

D
9

7
re

se
rv

ed

E
0

1
A

C
C

A
cc

um
ul

at
or

 (
bi

t a
dd

re
ss

ab
le

)
D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0
00

00
00

00
R

W

E
1

7
re

se
rv

ed

E
8

1
E

IE
(1

)
E

xt
er

na
l I

nt
er

ru
pt

 E
na

bl
e(

s)
1

1
1

E
X

6
E

X
5

E
X

4
E

I²
C

E
U

S
B

11
10

00
00

R
W

E
9

7
re

se
rv

ed

F
0

1
B

B
 (

bi
t a

dd
re

ss
ab

le
)

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

00
00

00
00

R
W

F
1

7
re

se
rv

ed

F
8

1
E

IP
(1

)
E

xt
er

na
l I

nt
er

ru
pt

 P
rio

rit
y

C
on

-
tr

ol
1

1
1

P
X

6
P

X
5

P
X

4
P

I²
C

P
U

S
B

11
10

00
00

R
W

F
9

7
re

se
rv

ed

 (1
)

S
F

R
s

no
t p

ar
t o

f t
he

 s
ta

nd
ar

d
80

51
 a

rc
hi

te
ct

ur
e.

H
ex

S
iz

e
N

am
e

D
es

cr
ip

ti
o

n
b

7
b

6
b

5
b

4
b

3
b

2
b

1
b

0
D

ef
au

lt
A

cc
es

s
N

o
te

s

Exhibit 2058 - Page 460 of 460

