MI!’" u

= _ .=
Z CY

PEESS

PERFORM

MoBL-USB™ FX2LP18

Technical Reference Manual

Document # 001-11981 Rev. *B

Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709

Phone (USA): 800.858.1810
Phone (Intnl): 408.943.2600
http://lwww.cypress.com

EXHIBIT 2033
LG Elecs. v. Cypress Semiconductor

|PR2014-01386, U.S. Pat. 6,012,103

Exhibit 2033 - Page 01 of 346

Smith_doug
Text Box
EXHIBIT 2033
LG Elecs. v. Cypress Semiconductor IPR2014-01386, U.S. Pat. 6,012,103

—l ———
— =

Copyrights =3 CYPRESS

Copyrights
Copyright © 2002-2011 Cypress Semiconductor Corporation. All rights reserved.

Cypress, the Cypress Logo, MoBL-USB, Making USB Universal, Xcelerator, and ReNumeration are trademarks or registered
trademarks of Cypress Semiconductor Corporation. Macintosh is a registered trademark of Apple Computer, Inc. Windows is
a registered trademark of Microsoft Corporation. I12C is a registered trademark of Philips Electronics. SmartMedia is a trade-
mark of Toshiba Corporation. All other product or company names used in this manual may be trademarks, registered trade-
marks, or servicemarks of their respective owners.

Disclaimer

The information in this document is subject to change without notice and should not be construed as a commitment by
Cypress Semiconductor Corporation Incorporated. While reasonable precautions have been taken, Cypress Semiconductor
Corporation assumes no responsibility for any errors that may appear in this document.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of
Cypress Semiconductor Corporation.

Cypress Semiconductor products are not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the
failure of the Cypress Semiconductor product could create a situation where personal injury or death may occur. Should
Buyer purchase or use Cypress Semiconductor products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Cypress Semiconductor and its officers, employees, subsidiaries, affiliates and distributors harmless
against all claims, costs, damages, expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Cypress Semi-
conductor was negligent regarding the design or manufacture of the product.

The acceptance of this document will be construed as an acceptance of the foregoing conditions.

The MoBL-USB™ FX2LP18 Technical Reference Manual, Version 1.0 provides information for the CY7C68053.

2 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 02 of 346

Contents Overview

1. Introducing MoBL-USB™ FX2LP18

2. Endpoint Zero

3. Enumeration and ReNumeration™

4. Interrupts

5. Memory

6. Power Management

7. Resets

8. Access to Endpoint Buffers

9. Slave FIFOs

10. General Programmable Interface

11. CPU Introduction

12. Instruction Set

13. Input/Output

14. Timers/Counters and Serial Interface
15. Registers

Appendix A. Descriptors for Full-Speed Mode
Appendix B. Descriptors for High-Speed Mode

Appendix C. Device Register Summary

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 03 of 346

PERFORM

15

33

51

59

77

83

89

93

107

135

189

197

203

217

237

311

319

327

f g
== CYPRESS

PERFORM

Contents Overview

4 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 04 of 346

PERFORM

1. Introducing MoBL-USB™ FX2LP18 15
11 1o o [UTot o] o F PRSP RPRP 15
1.2 AN INIFOAUCTION 10 USB ..ottt e sttt e e s bbb e e s abb e e e e snbaaee s annaneee s 15
1.3 The USB SPECIHTICALION. . ..euiiiiiiiee e ii ettt e e e s e e e e e e e et e s s e e e e e e e e e e sssanrnnranreeaeeaeeeas 16
14 [(015 L Y = T (= O PP TP PPPTPPPRTT 16
15 U] = B =Tl o] o [PR PRPR 16
1.6 TOKENS AN PIDS ...ttt ettt e e e sttt e e e sttt e e e s anbbeeeeeanbeeeeeesabbeeesnnbeeeeeeann 17

1.6.1 Receiving Data from the HOSL..........ccciiiiiiiec e 18
1.6.2 Sending Data to the HOSE.......uuuiiiiiiiicc e 18
1.7 (0 1S] = B = 11 1 [O O P T T PP TP PO PPPPPPPPRTT 18
1.8 L8] 2 T I = T 1S3 (=T G 13/ 01T SRR 18
1.8.1 BUIK TIANSTEIS ...eeiie ittt et e e et e e e st ee e e e e 18
1.8.2 T 0=T g U] o A = 1 1S) (=] SRS 19
1.8.3 ISOCHIONOUS TIANSTEIS .. .eiiiiii it b e e e e 19
1.84 CONLIOl TrANSTEIS et e e e st e e e s snbbeeeeen e 19
1.9 L aTU] 0 T=T = Vo] o PR RPR 20
1.9.1 Full-Speed / High-Speed DeteCHIONcccvveiieiiiii it r e e e e 20
1.10 The Serial INterface ENQINEccccueiiiiiiiiiiiie et e e e rr e e e e e e e e e s s s s ereeaeeeeees 20
0 I R = = N TH g 1T 1 1T IR 21
1.12 MOBL-USB FX2LP18 ArChItECIUIEcoiuieiiiieiiiiiieee ettt st e e e e s e e s nneeee s 21
1.13 MOBL-USB FX2LP18 FEatureS SUMIMAIYccuuuuuuruunnnniaaaaieeeeaeetetereseeeanssssnnnsnnnaaaeeeaseeeeeeeeermmene 22
1.14 MoBL-USB FX2LP18 Integrated MIiCrOPrOCESSONccccuevrriieeieeeeeeeseeseassseerenereeeeeaesesansnnnsnsnneneees 23
1.15 MOBL-USB FX2LP18 BIOCK DIGQIamccceeeiiiiiiiiiiiiiieieeee e e e e e e e s e s s sstieeeeee e e s e e e e e e s ssssnsnnsnnnneeeeeaees 24
T = - Tod - T [T PR 25
1.16.1 LY T T T = o = RSP 25
1.16.2 SIgNAIS AVAIIADIE ... ——————————————— 25
O A == Tod ¢ Vo =T D= Vo | - oo I PSR 27
1.18 MOBL-USB FX2LP18 ENdPOint BUfEIS ...cciiiiie et e e e e aan e e e e 28
1.19 EXtErNal FIFO INTEITACE ...ccoiiieiie ettt sttt e e st e e e e naaeeae s 29
1.20 MOBL-USB FX2LP18 Part NUMDENvviiiiiiiiiiiiee ettt sttt e ettt e e st ee e e e snbaeee e 31
2 R I o YU g =T o TS (] YRR 32

2. Endpoint Zero 33
21 TaTugoTo [¥ o1 1 o] FUUUURR PO 33
2.2 Control ENAPOINT EPOeiiiiiiiiiiie ettt ettt ettt e e e sttt e e e et e e e e s nnbe e e e e e nneees 33
2.3 USB REOUESTS ...ttt ettt e ettt e e e e et e e st e e et e et e e e e e e sa s s rnnree e e e e s e e annae 36

231 LTS B =1 L1 1 SPRUPP 37

2.3.2 ST B T Y U] (- SPPPE 39

2.3.3 ClEAI FRALUIEo ettt e e s e s e eeeeaeaeaeeeaeseseerereees 41

234 LCTo B =TT od o] (o] PP OPPPRPTPPPPN: 41

2.3.4.1 Gt DESCIIPLOr-DEVICEeeiiiiiiiiiee ettt ettt st sb e e e 43

2.3.4.2 Get Descriptor-Device QUANTIETcueeiiiiiiiiii e 44

2.3.4.3 Get Descriptor-Configurationcceeeeeiiiiieeeeiiiiiiee e 44

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 5

Exhibit 2033 - Page 05 of 346

—_—

=—=3".-T"“""
Contents /4 CYPRESkS
2.3.4.4 Get DESCHPLOr-StNGvveeieiiiiiiie ettt e s srbeee e e 44
2.3.4.5 Get Descriptor-Other Speed Configurationccccocveeeeeiiiiiieee e 45
2.3.5 ST B LT Tod 1] o] (o ST PUPPPPPPPPPPRN 45
2.3.5.1 Set CoNfIQUIALIONccoiiuiiiiiiiiiiiie ettt rebree e e 47
2.3.6 Get CONFIGUIALION ..ottt e st e e e st e e e e sibbeeee e 47
2.3.7 Y= A [] 1T - V= PRSPPI 47
2.3.8 (1= 101 =T o = o] T PR SOTPRR 48
2.3.9 Y= A [[(=] PSR 48
2.3.10 SYNC FTAIME ..ottt e e e et e e e e e e e e e s e e e e s 49
2311 1600111V L= I = To PRSP 49
3. Enumeration and ReNumeration™ 51
3.1 [a 1ol 01 i o] o [P T T PP PUURTPRT 51
3.2 MOBL-USB FX2LP18 STAMUP .. uttteiitiiiiieiiiiiiieeisiitieeessitaeeeesssiaeeeessssberaesssssbeeaessnssbeeaessnssseeesssssees 51
3.3 The Default USB DEVICEueeiiiiiiiiaaai ittt e ettt et e e e e e e e e e s s bbb et b e e e e e e aaaeeeesaneeseeeas 52
3.4 ‘C2' EEPROM Bo0Ot-load Data FOMMALcooiiiiiiiiiiieiiieee ettt e e e e e e e e eaanes 53
3.5 EEPROM CONfIQUIAtION BYLEcieiiiiiieiiieee ettt ettt e e e e e e e e e s anbbba e e e e e e e e e e e aannnae 54
3.6 TRE RENUM Bil....iiiiiiii e ittt ettt e et e e e s ettt e e e e et e e e e s sabb e e e e e s sbaeeeeeansbeeeensbaeeeeannnees 55
3.7 MoBL-USB FX2LP18 Response to Device Requests (RENUM=0)ooiiiiiiiiiiiiiiiienans 55
3.8 MoBL-USB FX2LP18 Vendor Request for Firmware Loadeeeeiiiiiaiiiiiiiiiiiiiieieeeee e 56
3.9 How the Firmware RENUMEIALEScoooi ittt e e ee e e e e e e e e e e e aaes 57
3.10 Multiple RENUMEIAtIONS™ ittt e e e e ettt e e e e e e e e e s e e ab bt e beeeeeaaaeeesesabneaeeeas 57
4. Interrupts 59
4.1 ([0 o [N Tt 1 o] o E PRSPPI 59
4.2 ST PRSP 59
421 803X/805X COMPALIDIIILY ... —————— 62
4.3 INEEITUPE PrOCESSING .eeieeeiieiiiiteeite ettt et e e e e e et e e s et e e e e eeeeeeesssaa e ee b b e e eeeaeeeaeeeaeeanaasnnsenreeeeeesenannnnnns 62
431 INEEITUPE MASKING ... e e e e e e s e s e e e e e e e e e e e s s s nnnr e reeereaaeeeeaeaanns 62
o Tt Ot R [(=14 U o = T 1= SRS 63
4.3.2 a1 E= T (U] o A0S T=Va] o] 11 o SRR 63
4.3.3 LT =T 0 U o = = o 64
4.4 8IS 2 Sy oo Tol) (=T U o) £ 64
4.4.1 ST U0 0 =1 (= 1] 64
4.4.2 0TS R 01 (=14 U] o] £ TSP 64
4.4.2.1 SUTOK, SUDAV INEEITUPES ..eviieeiiiiiiiieeiiiiiiee s esiiiee e s eiiee e e s s snsbee e e s s snnreeae s nneees 68
4.4.2.2 SOF INTEITUPT ...uiiieeiiie e et e e e e e e e e aeb e e aees 68
4.4.2.3 SUSPEN INTEITUPL ... e e e e e e e e 68
4424 USB RESET INTEITUPL ..uvviiiiiiiiiie ettt e e seiitee et siibee e s snsbae e e s s snnnee e e s enneeas 68
4.4.2.5 HISPEED INTEITUPL.....utiiiiieiiiiiiee ettt e st e e e e 68
4.4.2.6 EPOACK INTEITUPL .oeeiiiiieiie ettt ettt sttt et e e e e snnbae e e s s snnbee e e e e nneees 68
o A = aTo [T] (= (1 o] £ 69
4.4.2.8 IN-BUIK-NAK (IBN) INTEITUPL .cevveeieiieieie e e e 69
4.4.2.9 EPXPING INTEITUPL ..ottt e e e e 69
4.4.2.10 ERRLIMIT INTEITUPL. .. .eviiie ittt ettt e e e 69
4.4.2.11 EPXISOERR INTEITUPL ...evitiiiiiiitie ittt e sttt e s ttee et ee e s s snibae e e s e snnnee e e e nnnees 69
4.5 USB-INTEITUPT AULOVECTIONS ..ottt e e et e e e e e e et e e e et et n e e e e e ee b e e e e e ebeeaban s 69
45.1 0151 = AT | (0)Y =i (o] G @0 1] o P 71
4.6 2 O S I 1 (T ¢ (U] o U UPTPPPT 72
4.7 FIFO/GPIF INEITUPL (INTA) oottt ettt e ettt e e et e e s st e e e e e nbbe e e e e nnnbaeeeennres 73
4.8 FIFO/GPIF-INtErrUPt AULOVECIOISo e et e e e e e e e e e e e e e e e e e e a e s e a e e e aaaaaaaaaaeas 74
4.8.1 FIFO/GPIF AUtOVECLOr COING .vvvvrriuiiiiiiiieieee e e e e e e ee e e e e e eeeeeeaee s e se e e e e e e aeaaaaaeeeanenes 75
6 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 06 of 346

—_—

— -

== .
= ¥ -

==# CYPRESS

Contents

5. Memory 77
5.1 a1 oo [0 ox i o] o HN TS UR TSR 77

5.2 INtErNAl DAtA RAMttt et e e e e e e e e e s e bbbt ae e e e e aae e e e e ennnbnbenaeeeas 77

5.2.1 TRE LOWEE 128.....eeeeieeiiiiiie ettt ettt et e e e e e e e e e s et bbbt e e e e e e e e e e e s e e e annnneeas 78

5.2.2 TRE UPPEE 128ttt et e e e e e e e e e s bbb b b be et e e e e e e e e e e aaaannnnbnbeeas 78

5.2.3 SFR (Special FUNction ReQISIEr) SPACEcueiiiiiiiiiiiiiiiiiee e 78

5.3 External Program Memory and External Data MEeMOIYceeiiiiiaaiiiiiiiiiiiieeie e 78

5.4 MOBL-USB FX2LP18 MEMOIY MBI ... it ei ettt e e e e e e et et e e e e e eeeaebe b a e e e e e e aeeeas 79

55 On Chip Data Memory at OXEOQOO — OXFFFF ... 81

6. Power Management 83
6.1 Yoo 18T od oo PR P TR PPRRP 83

6.2 L0 1] 2 2 1S3 o =1 T [SRR 85

6.2.1 SUSPEND REQISIEI ...ttt e e e e st e et e e e e e e s s s st r e e e e aeeae s s s e s annnsentnneneeeees 85

6.3 WaAKEUP/RESUITIE ...ttt e e e e e e e et e e e e e e e e e e aa s st ettt eeee et eeaeeeesssannsnnbeeanneeeeaeeeannensnnnnnees 86

6.3.1 RTAT = LU IR =1 1 U o PSSR 87

6.4 USB Resume (REMOE WAKEUP)ccciieiiiiiiiiieiie et e e e e e e s ss sttt e e e e e e e e e e e e s s s snnssnnrananeeneeaaeeesessnnnnes 88

6.4.1 LT o TSP R PP 88

7. Resets 89
7.1 1o o (U1t 1o o F S PSP PP PPN 89

7.2 HEAIT RESEL ..ottt ettt s ottt e s okttt e s s bbbt e e e e s bbb et e e e e nnbb e e e bbb e e e e e e nnnes 89

7.3 REIEaSING the CPU RESEL....... ittt e e s re e e e 90

7.3.1 RAM DOWNIOAU ...ttt ettt e e e sttt e e e e st e e e e s snbeneeeeane 90

7.3.2 EEPROM LOBA ...ccoiiiiiiiii ettt ettt e e s 90

7.4 CPU RESEE EffECES....eiiiiiiiiiii ettt e et e e s st e e e neees 91

7.5 USB BUS RESEL. ...ttt ettt e e e e e s e e r et e e e e e e e s e s s ee e e e e e e e nnae 91

7.6 MOBL-USB FX2LP18 DISCONNECT.......ettiiiiiiiiieiiiiiiie ettt sit e ettt e e st e e ib e e e e e nbbe e e e e e nenas 91

7.7 RESEE SUMIMAIY ..eeiiiiiiie ittt e e e e e e e e et e e e e e e e e e s s bbb r e e e e e e e e e e s e aannens 92

8. Access to Endpoint Buffers 93
8.1 a1 oo [8ox i o] o I TSR UT PRSPPI 93

8.2 MoBL-USB FX2LP18 Large and Small ENAPOINTSuuuuiiiiiiiiiiiaaaiae it 93

8.3 High-Speed and Full-Speed Differ€nCeSuuiiiiiiiiiiia e 93

8.4 How the CPU Configures the ENAPOINTSueiiiiiiiiiiiiiiiiiiiiiii et e e e e e e e 94

8.5 CPU Access to MOBL-USB FX2LP18 ENAPOiNt Data..........ccoeeiiiiiiiiiiiiiieiiiaee et 95

8.6 CPU Control of MOBL-USB FX2LP18 ENAPOINESccciiiiiiiiiiiiiiiiiiiee e e e 96

8.6.1 Registers That Control EPO, EP1IN, and EPLIOUT ... 96

B.6.1.1 EPOCS ..ottt b e ab e e nae e aab e aeeas 96

8.6.1.2 EPOBCH @nd EPOBCLcciiiiiiiitiie ittt 97

8.6.1.3 USBIE and USBIRQ........ccciiuiiaiiiiaiiiieeitiee ettt sttt sise e sibe e e sneeas 97

B.6.1.4 EPODLSTAT ..eeiiitiie ettt ettt ettt et a ettt e e s bt e e st e e e s abbe e e sabe e e anbeeeanbeaens 98

8.6.1.5 EPLOUTECS ...ttt ittt ettt ettt ettt ekt e et e e bee e ebb e e e snb e e e snbae e eneeas 98

8.6.1.6 EPLOUTBCciitiiiiiiie ittt etee ettt sttt ettt ettt e e sbb e e e anb e e e sabaeeeneeas 98

B.6.1.7 EPLINCS ...ttt ettt ettt b bbb neeas 98

8.6.1.8 EPLINBCueiiiitiie itttk b e ene e nnb e neeas 99

8.6.2 Registers That Control EP2, EP4, EPG, EP8..........c..uuuiiiiiiiiiiiaeiiiiieeee e 99

8.6.2.1 EP24B8STAT ...ttt ittt ettt ettt ettt bt e et e e re e b e naea e 99

8.6.2.2 EP2ISOINPKTS, EP4ISOINPKTS, EP6ISOINPKTS, EP8ISOINPKTS 100

8.6.2.3 EP2CS, EPACS, EPBCS, EPBCScccoiii ittt 100

8.6.2.4 EP2BCH:L, EP4ABCH:L, EP6BCH:L, EP8BCH:L.........cccceeviiiiiiiiiiieeee. 101

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 7

Exhibit 2033 - Page 07 of 346

= s
Contents /4 CYPRESkS
8.6.3 Registers That Control All ENAPOINEScoooiiiiiiiiiiiiiie e 102
8.6.3.1 IBNIE, IBNIRQ, NAKIE, NAKIRQ.....couiiiiiiiiiiie et e 102
8.6.3.2 EPIE, EPIRQ ..ooiiiiiiii et 103
8.6.3.3 USBERRIE, USBERRIRQ, ERRCNTLIM, CLRERRCNTccvvviiiiieereennnn 103
8.6.3.4 TOGCTL wuvviiiiiiiiiie e ettt e st e e et e e e et e e e e st e e e e e e abeeaeeennsaaeaeeanees 104
8.7 The SetUP DAta POINIET ... ueiiiiiiie ettt e e e e st e e e e s b e e e annneeee s 104
8.7.1 Transfer LENGEN ... 105
8.7.2 ACCESSIDIE MEMOIY SPACESeviiiieiiiiiiee ettt ettt et e et eee e 105
8.8 F U o] oo a1 1=T = PP PP PP PP PPPPO 105
9. Slave FIFOs 107
9.1 [0 o [N L1 1o o H PO TR 107
9.2 [E= L0 L 1= PSPPSR 107
9.2.1 SIAVE FIFO PINS ..ottt ettt e e st e e s e nnbb e e e e e ennbeas 108
9.2.2 FIFO Data BUS (FD) ...vveiiiiiiiiiiee ettt sttt et e e s e e e s ennneeae s 109
9.2.3 INterface ClOCK (IFCLK) ...uuiiiiiiieeiii it e e e e e e e e e e e e s s ree e e e e e aaeeeeeas 110
9.2.4 FIFO Flag Pins (FLAGA, FLAGB, FLAGC, FLAGD)cccoiiiiiiieiiiiiiie et 111
9.2.5 Control Pins (SLOE, SLRD, SLWR, PKTEND, FIFOADR[L:0]).....cuveeeiiiieeeeeniirieeaennns 112
9.2.6 SIave FIFO Chip SEIECE. ...uuuiiiiiiie et e e e e e e e e 114
9.2.7 Implementing Synchronous Slave FIFO WILES..........uviiiiiieieiiiis e 114
9.2.8 Implementing Synchronous Slave FIFO REAAScccvvvvveeeiiiiiiiiiiiiiieeiee e 117
9.2.9 Implementing Asynchronous Slave FIFO WIAtES.........uuuiiiiiiieeei e e 119
9.2.10 Implementing Asynchronous Slave FIFO REAAScccovviiiviiiiiieiieiieeee e 121
9.3 11 0017 T = PSPPSR 122
9.3.1 FIrMWArE FIFO ACCESS. ... itiiiiie ittt ettt ettt sttt ettt e e st e e s s e e e s e nnnneeae s 122
9.3.2 EPX MEIMOTIES ...eeiii ittt ettt ettt ettt e e e sttt e e e e sabbe e e e e s snbbeeeeesnnbeeeeeeans 123
9.3.3 Slave FIFO Programmable-Level Flag.......ccccceeeiiiiiiciiieeeeeee e 124
9.34 AULO-IN / AULO-OUL MOUES....cceiiiiiiiee ittt ettt e e e e 124
9.3.5 CPU Access to OUT Packets, AUTOOUT = 1uuiiiiiiiiiiieeiiiiiee e 126
9.3.6 CPU Access to OUT Packets, AUTOOUT = 0 ...ceevviiiiiiiiiieiiiiiee e 126
9.3.7 CPU Access to IN Packets, AUTOIN = 1 ... 129
9.3.8 Access to IN Packets, AUTOINTOuuiiiiiiiiiiiee e 131
9.3.9 Auto-In / Auto-OUt INItIAITZALIONccoiiiiiiii e 132
9.3.10 Auto-Mode Example: Synchronous FIFO IN Data Transferscccccccccvveeeieeiiiiicnnnns 133
9.3.11 Auto-Mode Example: Asynchronous FIFO IN Data Transfers..........coccceeveiiiiiieieeeeeenn, 134
9.4 Switching Between Manual-Out and AULO-OUL..........ccooiiiiiieeiiiiececeeeerr e e e e e e e e e e eeeeaaaens 134
10. General Programmable Interface 135
(0 5 R Vo o o [Fod 1T o TR POOT P PPPPRTR 135
10.1.1 Typical GPIF INtEITACEooiiii i 137
O o T T (o T T TP PPRTP 138
10.2.1 The External GPIF INtEIfaCE.......ooo i 138
10.2.2 Default GPIF Pins CoNfIQUIationcc.uuiiiiiiiieiiee et 139
10.2.3 SiX CONLrOl OUT SIGNQAIS ...ttt e e e e e e e e e e s e annbeeeees 139
10.2.3.1 Control OQULPUL MOUES......cooiiiiiitieee ettt e e e e 139
10.2.4 SiIX Ready IN SIGNAIScooiiiiiieee e e e e e e e e e e 139
10.2.5 Nine GPIF Address OUT SIgNalSccuuueiiiiiiiiiiiaeeeee e ee e e 139
10.2.6 Three GSTATE OUT SIigNalS......cciiiiiiiiiieeiiiiiiee et ee e s siieee e e siiree e e s s sttaeeeessnsnaeeeesnnnes 139
10.2.7 8/16-Bit Data Path, WORDWIDE = 1 (default) and WORDWIDE = 0..........cccccceevunnue. 139
10.2.8 Byte Order for 16-bit GPIF TranSaCtiONSccuiiiiiiiiiiiiiiieeeeeeee e 140
10.2.9 INterface ClOCK (IFCLK)u ittt e e eeeaaaeeaas 140
10.2.10 Connecting GPIF Signal Pins to HArdwarecccuuiiiiiiiiiiiaeiiiieeee e 141
10.2.11 Example GPIF Hardware INtErCONNECE..........ccooiiiiiiiiiiiiiiieeeee e 141
8 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 08 of 346

T
= o &

= s
/4 CYIPRESkS Contents
10.3 Programming the GPIF WaVEfOIMSccuuiiiiiiiiiiiiee e 142
10.3.1 THE GPIF REQISIEIS ...ttt ettt 142
10.3.2 Programming GPIF WavefOrmMS.........coo it 143
10.3.2.1 The GPIF IDLE SEALEceiiiiiiiiiieiiiiiie ettt 143
10.3.2.2 DefiNiNg STAES......uiiiiiiiiiiiii ettt 144
10.3.3 Re-Executing a Task Within @ DP State...........cueiiiiiiiiiiiee e 147
10.3.4 SEALE INSIIUCTIONS .ottt ettt s et e e s enneeas 150
10.3.4.1 Structure of the Waveform DeSCrPLOrScoveiiiiiiiieiiiiiieee e 153
10.3.4.2 Terminating @ GPIF TranSfer ... 154
OB 11 41T T PP U U PP OPPPRPPP 155
10.4.1 Single-Read TranSACHONSuiiiiiiiiiie it 161
10.4.2 SiNgle-Wrte TranSACHONSeiiiiiiiiiiiei et 166
10.4.3 FIFO-Read and FIFO-Write (Burst) TranSactioNS...........ccveeeeeiiiiiieeeniiiiieee e e 170
10.4.3.1 TranSaction COUNLET........ccoiiiuiiiiieiiiiiie ettt ettt e et e e s sibe e e e e 170
10.4.3.2 Reading the Transaction-Count Status in a DP State..........cccccccevvvieeeeennnn. 170
10.4.4 GPIF Flag SEIECHON.uiiiiiiiiete e 170
10.4.5 (11 1o [RS 1 (o] « TP OUT PRI 170
10.4.5.1 Performing a FIFO-Read TranSaction............cocvveeeeiiiiieeeeiiniiieee e 171
10.4.6 Firmware Access to IN Packets, (AUTOIN=L)ccooiiiiiiiiiiiiiiee i 176
10.4.7 Firmware Access to IN Packets, (AUTOIN = 0)...cccoiiiiiiiiiiiiiieeeiiiiiee e 177
10.4.7.1 Performing a FIFO-Write TranSactionccouiviieeeiiiiiiieeeniiiieee e 179
10.4.8 Firmware Access to OUT Packets, (AUTOOUT=1) ..uuiiiiiiiiiiieeiiiiiieee e 184
10.4.9 Firmware access to OUT packets, (AUTOOUT = 0)....cceeiiiiiieeeiiiiiieeeeiiieiee e siiieeeee e 185
10.5 UDMA INLEITACEciiiiieiitie ettt e e et e e s et bt e e e et e e e e e ebbe e e e e e nnebeas 187
O I (O O C1=T =T =i o o OO OTPPRRO 187
11. CPU Introduction 189
5 R 1o o To 18 ox 1T o DU P RO PP 189
11.2 8051 ENNANCEMENTS.....ceiiiiiiieii ittt ettt et e e e e e e e s e bbbt e e e e e e e e e e e e e e e annbbbbeeeeaaaaaeaaeas 190
11.3 PerfOrManCE OVEIVIEWcoiiiiiii ittt e ettt e e e e e e e e e s s e e bb et beeteeeaaaaaeesaaaannbbabbeaaaeaaess 190
11.4 Software COMPALIDIITYooiir e e e e e e e eb e e e e e e e as 191
11.5 803Xx/805X FEAtUre COMPAIISONuuriiiiiiiiiaeeaiaiaiietet ettt e et e e e e e e s s e s aabbebeeeeeeaaaaeaeesaaaaannbbeeseeeeaaaanss 191
11.6 MOoBL-USB FX2LP18/DS80C320 DiffErENCESccccuveiieiiiieiiiiieiiiee ettt ettt sbe e 192
11.6.1 SEIIAI POIS .ttt et a e e e e e e e e bbb e e e e e e e e e as 192
11.6.2 B L0 1= TP PP 192
11.6.3 TIMEd ACCESS PrOtECLION ...t a e e e e 192
11.6.4 LVAYZ= o3 To (ol I T o 0= ST PPPUPUTRT 192
11.6.5 PoWer Fail DEIECHION.ttt e e e e e e e e e e as 192
11.6.6 o] 1 01 (O PO UP R OUPTTTOPPOPPRTN 192
11.6.7 [0 1] 10 o1 J TP PPRPPTTPTP 192
11.7 MOoBL-USB FX2LP18 RegiSter INTErfacecccuuiiieiiiiiiieieie ettt 193
11.8 MOBL-USB FX2LP18 INternNal RAM........coiiiiiiiiiii ettt ettt ettt e e s be e e saneeans 193
L N (O 3 = o ¢ T T PO PP TUUURRPPRTTPUP 193
0 O 101 = ¢ T o £ PO TP PUPPPPPPTPUPRRPPPON 194
L1120 POWEE CONLIOL. ..ttt ettt ettt e e e e e e e e e s abbb b b e bt e e e e e e e e e e e e s nnbebeeeeaaaaaaaaess 194
11.12 Special FUNCHON REGISIEISottt e e e e e e e s e e aeaaaaee e e s 195
I R T =TT TSP UP T UUURUUPRTTPUP 195
12. Instruction Set 197
0 R [1 oo (U1 1o o PO PRSPPI 197
12.1.1 T TS (0 T o T o T T 11 T SR 200
12.1.2 Stretch Memory Cycles (Wait States)cccovviiiiiiiieeccse e 200
MoBL-USB™ TRM, Document # 001-11981 Rev. *B 9

Exhibit 2033 - Page 09 of 346

Contents

—_—

— -

== .
= ¥ -

==# CYPRESS

12.1.3 (DU E N D = o 1] (=] £ TR 201

12.1.4 Special FUNCHON REQISIEISuiiiiiiiiiiiee it 201

13. Input/Output 203
R 700 R [01 {0 Yo ¥ o3 1o o SO OREPPPPRR 203
R 7 (@ B = o T £ 203
13.3 1O POrt AREINAtE FUNCHONSciiiiiiiiee ettt ettt s e e e e et e e e e e e eatae e e e s eebaeeeeesbeesannanns 206
13.3.1 Port A Alternate FUNCHIONSu.iiiiiiiiie ettt e e e ae s 207

13.3.2 Port B and Port D Alternate FUNCLONSooiiiiiiiiiiiieeceeicee et 208

13.3.3 Port C Alternate FUNCLIONSciiiiiiiii et e e e 209

13.3.4 Port E Alternate FUNCHIONSuuiiiiiiiiie et e et e e e aa e 210

R A T O = TV R @] g1 0] [=1 PO PPPRR 212
1341 Interfacing to 12C PeripheralS..........ooo e 212

13.4.2 REGISTEIS ..ttt ettt et e e e e e s e e bttt e e e e e e e e e e e e ana e b b e e eeaaaaaea e s 213
R N I O o o1 (o] I =] £ PR PUUPPRR 214

13.4.2.2 STALUS BilS...ovuuiiiiiiiiiiiei ettt e et e e e e et e e e e ee s 214

13.4.3 SENAING DALA. ...ttt ettt e e e e e e e e e e s bbbt e et e e e e e e e e e e e e nnnbreneeas 215

13.4.4 RECEIVING DALA ..ottt e e e e e e e e et aeeeeaaaa s 215

13.5 EEPROM BOOt LOGUETuuuiieiiiiiiie ettt e ettt e e e e e et s e e e e e et e e e e e esb e e e eesasbanseeeeesrnnanns 216
14. Timers/Counters and Serial Interface 217
0 A [0 £ To [o 1o o R TSTR 217
I 101 oYY (001U 0] = (ST 217
14.2.1 803X/805X COMPALIDIIILY ... e e e e e e e e e s 217

14.2.2 TIMEIS O AN Luruiiiiiiiiieiiie e e e e e e e e e et e e e e e ae e e bbb e e e e s eaeaeaeseseeeeees 218
14.2.2.1 Mode 0, 13-Bit Timer/Counter — Timer 0 and Timer L..........ccccevvvvvvvvnrnnnnn. 218

14.2.2.2 Mode 1, 16-Bit Timer/Counter — Timer 0 and Timer L...........cccevvvvvvvvnnnnnnn. 219

14.2.2.3 Mode 2, 8-Bit Counter with Auto-Reload — Timer 0 and Timer 1 220

14.2.2.4 Mode 3, Two 8-Bit Counters — Timer 0 ONlyccceveeeevviiiiiiiiiiiiireeeeeee, 220

14.2.3 TiMeEr RAE CONLIOLcciiiiiiiiieeeeee et e s e s e e e e e aeeaaeaees 221

14.2.4 LI 1= 7S 222
14.2.4.1 Timer 2 Mode CONLIOl . ..uuuuuiiiiiiiiiieiee e e e e 222

14.2.5 Timer 2 The 6-Bit TIMer/Counter MOccooveiiiiiiieiiiiiieieeeeeeee e 223
14.2.5.1 Timer 2 The 16-Bit Timer/Counter Mode with Capture...........ccccccevveeeeeiinnnnns 223

14.2.6 Timer 2 16-Bit Timer/Counter Mode with Auto-Reload............cccccooviiiiiiiiiiiiin e, 224

14.2.7 Timer 2 Baud Rate Generator MOAEccovvviiiiiiiiieiie e 224

I Y C Ty = 1 g (=] = (oL SRR 225
14.3.1 803X/805X COMPALIDIlILY ... e e 226

14.3.2 High-Speed Baud Rate GENEIAtOrcccciviiiiii e e e e e e e e e eaeeeeaees 226

14.3.3 Y[o [T O TR 227

14.3.4 1Y/ T o [T U 230
14.3.4.1 MoOdE 1 BaUd RALEuoiiiiiiiiii e e s 230

14.3.4.2 MOAE 1 TranSMUL......uuuiiiiiiiiiiiii e e e e e e e e e e et e e e e saaaa e 232

14.3.5 MOAE L RECEIVE ... ettt e e e e e e e e e et e e e e e eaaaeeas 232

14.3.6 Y[o [T 234
14.3.6.1 MOAE 2 TranSMUL......uuuiiiiiiiiiiii e e e e e e e e et e e e e eaea s 234

14.3.6.2 MOOE 2 RECEIVEcoviiieiiee et e e e e e 234

14.3.7 Y oY [T SRR 236

10

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 10 of 346

—_—

— -

== .
= ¥ -

==# CYPRESS

15. Registers

70 R] (oo (U1 1o o FO OO PP PP PPPPR PO
15.1.1 Example Register FOrMat...........ooouuiiiiiiiiiieieeeeee e
15.1.2 Other CONVENTIONS......ccuviiiieeiiieeie ettt e e
15.2 Special Function Registers (SFR)uuiiiiiiiiiii e
15.3 ADOUL SFRS ..ttt
15.4 GPIF Waveform MEMOIIEScciiiiiiiiiiiiiiie ettt
1541 GPIF Waveform Descriptor Dataococuuviviiiiiiieiieeeee e
15.5 General Configuration REQISIEIScoiuuiiiiiiiiiiie e
155.1 CPU Control and SEATUS..........ceviiiiiiiiiie e
15.5.2 Interface Configuration (Ports, GPIF, slave FIFOS)cccccviiiiiiiiiiineen.
15.5.3 Slave FIFO FLAGA-FLAGD Pin Configurationcccccviiiieeeieeeeennnnn.
1554 FIFO RESEL ...ttt e e e e e e
1555 Breakpoint, Breakpoint Address High, Breakpoint Address Low
15.5.6 230 Kbaud Clock (TO, T1, T2) ..eeveiiiiieeeeiiiiieee e e s e s
15.5.7 Slave FIFO Interface Pins Polarity.........c.cccouiiieiiiiiiiiiiiieeeeeeeeeee
15.5.8 Chip REVISION ID ..ccciiiiiiiiee et
15.5.9 Chip ReViSioNn CONIOl ..o
155.10 GPIF HOI TiMEuiiiiiieiiiiieee ettt e e
15.6 ENdpoint CONfIQUIALIONeiiiiiiieiiie et e e e e e e e e e
15.6.1 Endpoint 1-OUT/Endpoint 1-IN Configurations..............ccccuvveeeieeieeeeennnnn.
15.6.2 Endpoint 2, 4, 6 and 8 Configurationccccccceoiiniiiniiiiiiiiieeeeeeee
15.6.3 Endpoint 2, 4, 6 and 8/Slave FIFO Configurationcoooeeiuiiiiieeneen.
15.6.4 Endpoint 2, 4, 6, 8 AUTOIN Packet Length (High/Low)............cccuuvenneeen.
15.6.5 Endpoint 2, 4, 6, 8/Slave FIFO Programmable-Level Flag (High/Low)
15.6.5.1 IN ENAPOINTS....uttiiiiiiiiiiiaaaaiiieiiie ettt a e
15.6.5.2 OUT ENAPOINTS....ceiiiiiiiiiaiiiiiiiiiiieiee et e e e e
15.6.6 Endpoint 2, 4, 6, 8 ISO IN Packets per Frame ...,
15.6.7 Force IN Packet ENd..........c..coiiiiiiiiiiiiiiieee et
15.6.8 Force OUT Packet ENd..........coooiiiiiiiiiiiiii e
R A | 1 (=11 U] o £ TP PP PP
15.71 Endpoint 2, 4, 6, 8 Slave FIFO Flag Interrupt Enable/Request
15.7.2 IN-BULK-NAK Interrupt Enable/Request.............occcuiiiiiiieiiieeeeieeiiies
15.7.3 Endpoint Ping-NAK/IBN Interrupt Enable/Request..........ccccccceveiniinnnnnnns
15.7.4 USB Interrupt Enable/Requestc.uuuiiiiiiiiiieiieeeeieeeee e
15.7.5 Endpoint Interrupt Enable/RequEeST.............uuviiiiiiiiiiiiiiiiiieeeeeeee e
15.7.6 GPIF Interrupt Enable/ReqUESToooiiiiiiiiiiiiieeeeeeee e
15.7.7 USB Error Interrupt Enable/RequeStuvieviiiiiiiiiiiiiiiieieeeeee e
15.7.8 USB Error Counter Limit..........oooiiiiiiiiiiiee e
15.7.9 Clear Error COUNL........ocuuiiiieiiiieeie ettt e
15.7.20 INT 2 (USB) AULOVECTON ...coiiiiiiiiiiiiiiiiiiee ettt e e
15.7.11 INT 4 (Slave FIFOs and GPIF) AUtOVECIOrccoiuuiiiiiiiieieee e
15.7.12 INT 2aNnd INT 4 SEUUP....ocuvrieeeiiiiiie ettt
15.8 INPU/OULPUL REGISTEIS.....eiieiiiiiiee ettt e e e e e e e e
15.8.1 1/0 PORTA Alternate Configurationcccccceveiiiiiiiiiiiiieeee e
15.8.2 /O PORTC Alternate Configuration..............ceeeiriiiniiiiiiiiiiieieeeee e
15.8.3 I/O PORTE Alternate Configuration.............ccooouiiiiiiiiiiiiiiiieiee i
15.8.4 [2C Bus Control and STAtUSeeeeeiiiiiieeeiiiiieee et ee e
15.8.5 [2C BUS DALaA ..ottt
15.8.6 [2C BUS CONIION .ottt e e
15.8.7 AUTOPOINTERS 1 and 2 MOVX ACCESS.......ccieeiiiriireeaiiiieeeeaiiieee e

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 11 of 346

Contents

11

P

Contents ¢ CYPRES\%
15.9 ECC Control and Data REQISIENScuieiiiiiiiiieiiiiiit ettt ettt e e aneeas 278
15.9.1 ECC FALUIES. ...ttt e e et e e e e e e e s e n e e e ee s 278

15.9.2 ECC IMPIEMENTALIONeeiiiiiiiiiie ettt e e e s sbnneeeeans 278

15.9.3 ECC CRECK/COIMECTeiiii ittt et e e reb e e e s e eeeeas 279
15.9.3.1 ECC CONfIQUIALIONcoiiiiiiiieiiiiiiee ettt e e 281

15.9.3.2 ECC RESEL .. .ottt e 281

15.9.3.3 ECCL BYLE Dottt ettt e e et e e e st eee e a 281

15.9.3.4 ECCLBYLE L..ciiiiiiiieiiiiiiee ettt ettt ettt e e e bb e e e s aabeeeeeea 281

15.9.3.5 ECCL BYLE 2.ttt et e e 282

15.9.3.6 ECC2 BYLE 0.ttt ettt ettt ettt e e et e e e s s e e e e 282

15.9.3.7 ECC2 BYLE L. ..iiiiiie ittt ettt e e et e e e e sibe e e e e e 282

15.9.3.8 ECC2 BYLE 2.ttt ettt ettt e e e e 282

15.10 UDMA CREC REQISIEIS ... eciiiiitiiiiiee ittt ite e rtt et e ettt e e sttt e e st e e e st b e e e s aabe e e e e s asbe e e e e annbbaeseannbeas 283
15,11 USB CONLIOL ..ttt e s et e e e et e e e e e sbb e e e e e nbb e e e e e annenas 284
15.11.1 USB CONtrol @nd SEALUSccoivriiieiiiiiieeeeeiiiee et 284
15.11.2 ENter SUSPENT SEALEvviiiiiiiiiiie ettt ettt e e e e e sbb e e e e s s narreeeesaees 284
15.11.3 Wakeup Control and SEAtUS.........cccoiiiiiiiiiiiiiie et 285
15.11.4 Data TOggle CONLIOL......coiuiiiieiiiiiiee et b e e 286
15.11.5 USB Frame Count High........cooiuiiiiiiiii et 286
15.11.6 USB Frame COUNE LOWccceiiiiiiiiiiiiiiiieit ettt e e e e e e e e e e e e e 286
15.11.7 USB MiICroffame COUNTcooiuiiiieiiiiiii ettt e e e e 287
15.11.8 USB FUNCHON AQAIESSeeiiiiiiiiiie ettt 287

15,12 ENAPOINES ..eeiiiiiiiiiieees ittt etttk e s ekttt e e e s b e et e e e b bt e e e e e a s b e et e e e ann b et e e e e e e b e e e e e nbr e e e e e ennees 287
15.12.1 Endpoint 0 (Byte CouNnt High).........ccuuiiiiiiiiiiie e 287
15.12.2 Endpoint 0 Control and Status (Byte COUNt LOW)coviuriiieiiiiiiieeeiiieee e 288
15.12.3 Endpoint 1 OUT and IN BYte COUNEcceiiiiiiiieiiiiiiie ettt 288
15.12.4 Endpoint 2 and 6 Byte Count High ..o 288
15.12.5 Endpoint 4 and 8 Byte Count Highccooiiiiiiiiiiiii e 288
15.12.6 Endpoint 2, 4, 6, 8 BYte COUNE LOWuuuiiiiiiiieeeeiiiiiiiiiiieieeeee e e e e e s s siinreeeeee e e e e e e e s nennes 289
15.12.7 Endpoint O CoNntrol and SEALUS..........cuviiiiiiiiiiiieeeiiee et 289
15.12.8 Endpoint 1 OUT/IN Control and SEatUS............cooiuiiiieiiiiiiieeeiiiieee e 290
15.12.9 Endpoint 2 CoNtrol and SEALUS..........cueiiiiiiiiiie e 291
15.12.10 Endpoint 4 CoNntrol and SEALUS...........uueieeiiiiiiiee et 291
15.12.11 Endpoint 6 CoNtrol and SEALUSccuuviieiiiiiiie et 292
15.12.12 Endpoint 8 CONtrol and STALUS.........c.uuvieiiiiiiiiee ettt 292
15.12.13 Endpoint 2 and 4 Slave FIFO FIagSoocuuiiiiiiiiiiie e 293
15.12.14 Endpoint 6 and 8 Slave FIFO FIagsoccuuiiiiiiiiiiiie e 293
15.12.15 Endpoint 2 Slave FIFO Byte Count Highoccuviiiiiiiiiiieee e 293
15.12.16 Endpoint 6 Slave FIFO Total Byte Count Highoccciiiiiiniiiii e 294
15.12.17 Endpoint 4 and 8 Slave FIFO Byte Count Highcccoiviiiiiiiiii e 294
15.12.18 Endpoint 2, 4, 6, 8 Slave FIFO Byte COUNt LOW.........ccoeviiiiiiiiiiiiiiieeiee e 294
15.12.19 Setup Data Pointer High and LOW AdAreSSoocuviiieiiiiiiiieeiiiie e 295
15.12.20 Setup Data POINTEN AULO.......oiiiiiiiiiiee ittt e et e e 295
15.12.21 Setup Data - 8 BYLES ...cooiiiiiiiiiii e 296

15.13 General Programmable INEITACEcoiuiiiiiiiiiiee e 296
15.13.1 GPIF WaVvefOorm SEIECION. ...ccciiiiiiiiee et 296
15.13.2 GPIF Done and Idle DHVE MOGEoeeiiiiiiiiieeiiieee e 297
15.13.3 CTL OULPULS ...ttt et e e e e e et e et e e e e e e s s s s n e e et e e e eeeenenanns 297
15.13.4 GPIF AdAress Highcoooiiiiiiiii e 298
15.13.5 GPIF AQAIESS LOW ..ceiiiiiiiiiieiiitie ettt ettt e e st e e et e e e e e 298
15.13.6 GPIF FIOWSIAte REQISEIS. ...ccciiiiiiiieiiiiiie ettt ee e 299
15.13.7 GPIF Transaction COUNt BYLEScoiuuiiiiiiiiiiiee ettt 304
15.13.8 Endpoint 2, 4, 6, 8 GPIF Flag SeIECt........couviiiiiiiiiiiieeeee e 305

12

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 12 of 346

==
= /4 CYPRESS Contents
15.13.9 Endpoint 2, 4, 6, and 8 GPIF Stop TranSacCtioncccovviiiiiiiiiiiiiieiieeee e 305

15.13.10 Endpoint 2, 4, 6, and 8 Slave FIFO GPIF THOQEI ..cccueeeeiiiiieeciiiiiieeieeee e 306

15.13.11 GPIF Data High (16-Bit MOUE)...........oeeuerereeeeeieeeeeeeeeeeeeeeeesesee e en s enenenens 306

15.13.12 Read/Write GPIF Data LOW and Trigger TranSaction............ooccvveeeiriiieeeeiniieeee e 306

15.13.13 Read GPIF Data LOW, NO Transaction TrHQQENcouuuurieeiiiiiieee et 306

15.13.14 GPIF RDY Pin CONfIQUIALIONcciiiiiiiiiie ittt 307

15.13.15 GPIF RDY Pin StAtUS.....ciiiiiieiiiiiiiiiiiiiieeee et e e e e e e e e e s s et rreeeeaeaaaeeeeeeas 307

15.13.16 ADOI GPIF CYCIES ...ciiiiiiiiiiee ittt e et e e e e 307

15.14 ENAPOINT BUFFEIS ...ciiiiiiiiii ittt st e e s et e e e et e e e e e annens 308
15.14.1 EPO IN-OUT BUFFEI w.ueeeiiiiiieie ettt e e e e e e e e e e e e e e e e e e e annes 308

15.14.2 ENdPOoint 1-OUT BUFFEEeeiiiiiiiiiie ettt 308

15.14.3 ENdPOoint 1-IN BUFFEE ..o 308

15.14.4 Endpoint 2/Slave FIFO BUFfEr ... 309

15.14.5 512-byte Endpoint 4/Slave FIFO BUfer.........ccooiiiiiiiii e 309

15.14.6 512/1024-byte Endpoint 6/Slave FIFO BUfer..........cccoviiiiiiiii e 309

15.14.7 512-byte Endpoint 8/Slave FIFO BUfer.........cccoiiiiiiiiiiiieee e 309

15.15 SYNCHhronNization DEIAYcc.uueiiiiiiiiiii et e e 310
Appendix A. Descriptors for Full-Speed Mode 311
Appendix B. Descriptors for High-Speed Mode 319
Appendix C. Device Register Summary 327
RS0 5 (=T RS U 0] 4= Y O 329

Index 341
MoBL-USB™ TRM, Document # 001-11981 Rev. *B 13

Exhibit 2033 - Page 13 of 346

f g
== CYPRESS

PERFORM

Contents

14 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 14 of 346

1. Introducing MoBL-USB™ FX2LP18

F— -

=—# CYPRESS

PERFORM

1.1 Introduction

The Universal Serial Bus (USB) has gained wide acceptance as the connection method of choice for PC peripherals. Equally
successful in the Windows and Macintosh worlds, USB has delivered on its promises of easy attachment, an end to configu-
ration hassles, and true plug-and-play operation.

The latest generation of the USB specification, ‘USB 2.0,” extends the original specification to include:

m A new ‘high-speed’ 480 Mbps signaling rate, a 40x improvement over USB 1.1's ‘full- speed’ rate of 12 Mbps.

m Full backward and forward compatibility with USB 1.1 devices and cables.

m A new hub architecture that can provide multiple 12 Mbps downstream ports for USB 1.1 devices.

The Cypress Semiconductor MoBL-USB FX2LP18 offers single-chip USB 2.0 peripherals whose architecture has been

designed to accommodate the higher data rates offered by USB 2.0. The MoBL-USB FX2LP18 device (CY7C68053) sup-
ports both full-speed and high-speed modes.

This introductory chapter begins with a brief USB tutorial to put USB and MoBL-USB FX2LP18 terminology into context. The
remainder of the chapter briefly outlines the chip architecture.

1.2 An Introduction to USB

Like a well-designed automobile or appliance, a USB peripheral’s outward simplicity hides internal complexity. There’s a lot
going on ‘under the hood’ of a USB device.

m A USB device can be plugged in anytime, even while the PC is turned on.

m When the PC detects that a USB device has been plugged in, it automatically interrogates the device to learn its capabili-
ties and requirements. From this information, the PC automatically loads the device’s driver into the operating system.
When the device is unplugged, the operating system automatically logs it off and unloads its driver.

m USB devices do not use DIP switches, jumpers, or configuration programs. There is never an IRQ, DMA, memory, or 10
conflict with a USB device.

m USB expansion hubs make the bus simultaneously available to dozens of devices.

USB is fast enough for printers, hard disk drives, CD-quality audio, and scanners.
m USB supports three speeds:

o Low-Speed (1.5 Mbps) suitable for mice, keyboards and joysticks.

0 Full-Speed (12 Mbps) for devices like modems, speakers and scanners.

a High-Speed (480 Mbps) for devices like hard disk drives, CD-ROMs, video cameras, and high-resolution scanners.
The Cypress Semiconductor MoBL-USB FX2LP18 supports the high bandwidth offered by the USB 2.0 High-Speed mode.
The MoBL-USB FX2LP18 provides a highly-integrated solution for a USB peripheral device and offers the following features:
m An integrated, high-performance CPU based on the industry-standard 8051 processor.

m A soft (RAM-based) architecture that allows unlimited configuration and upgrades.

m Full USB throughput. USB devices that use MoBL-USB FX2LP18 chips are not limited by number of endpoints, buffer
sizes, or transfer speeds.

m Automatic handling of most of the USB protocol, which simplifies code and accelerates the USB learning curve.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 15

Exhibit 2033 - Page 15 of 346

—l ———
— =

Introducing MoBL-USB™ FX2LP18 - CYDRF%

1.3 The USB Specification

The Universal Serial Bus Specification Version 2.0 is available on the Internet from the USB Implementers Forum, Inc., at
http://www.usb.org. Published in April, 2000, the USB Specification is the work of a founding committee of seven industry
heavyweights: Compaq, Hewlett-Packard, Lucent, Philips, Intel, Microsoft, and NEC. This impressive list of developers
secures USB’s position as the low- to high-speed PC connection method of the future.

A glance at the USB Specification makes it immediately apparent that USB is not nearly as simple as the older serial or paral-
lel ports. The USB Specification uses new terms like endpoint, isochronous, and enumeration, and finds new uses for old
terms like configuration, interface, and interrupt. Woven into the USB fabric is a software abstraction model that deals with
things such as pipes. The USB Specification also contains information about such details as connector types and wire colors.

1.4 Host Is Master

This is a fundamental USB concept. There is exactly one master in a USB system: the host computer. USB devices respond
to host requests. USB devices cannot send information among themselves, as they could if USB were a peer-to-peer topol-

ogy.
However, there is one case where a USB device can initiate signaling without prompting from the host. After being put into a

low-power ‘suspend’ mode by the host, a device can signal a ‘remote wakeup’. This is the only case in which the USB device
is the initiator; in all other cases, the host makes device requests and the device responds to them.

There’s an excellent reason for this host-centric model. The USB architects were keenly mindful of cost and the best way to
make low-cost peripherals is to put most of the ‘smarts’ into the host side, the PC. If USB had been defined as peer-to-peer,
every USB device would have required more intelligence, raising cost.

1.5 USB Direction

Because the host is always the bus master, it is easy to remember USB direction: OUT means from the host to the device and
IN means from the device to the host. MoBL-USB FX2LP18 nomenclature uses this naming convention. For example, an
endpoint that sends data to the host is an IN endpoint. This can be confusing at first because the MoBL-USB FX2LP18 sends
data to the host by loading an IN endpoint buffer. Likewise, it receives host data from an OUT endpoint buffer.

16 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 16 of 346

http://www.usb.org

= it

==# CYPRESS Introducing MoBL-USB™ FX2LP18

PERFC

1.6 Tokens and PIDs

In this manual, you'll read statements such as: “When the host sends an IN token...,” or “The device responds with an ACK”.
What do these terms mean?

A USB transaction consists of data packets identified by special codes called Packet IDs or PIDs. A PID signifies what kind of
packet is being transmitted. There are four PID types shown in Table 1-1.

Table 1-1. USB PIDs

PID Type PID Name
Token IN, OUT, SOF, SETUP
Data DATAO, DATA1, DATA2, MDATA
Handshake ACK, NAK, STALL, NYET
Special PRE, ERR, SPLIT, PING

Bold type indicates PIDs introduced with USB 2.0

Figure 1-1. USB Packets

D C) c
AllE| C AllE|lC
o] A R A
M o||n| r|[|EM| Payload R R D|| N|| R Payload
| D[c|| | Dat ¢ \ | ol o|| c||| N Data ¢ \
ata
"I A 1 K el BN 1| |k
1 6 0 6
Token Packet Data Packet H/S Pk Token Packet Data Packet H/S Pk

® ® ® O, ® ®

Figure 1-1 illustrates a USB OUT transfer. Host traffic is shown in solid shading; device traffic is shown crosshatched. Packet
1is an OUT token indicated by the OUT PID. The OUT token signifies that data from the host is about to be transmitted over
the bus. Packet 2 contains data as indicated by the DATAL PID. Packet 3 is a handshake packet sent by the device using the
ACK (acknowledge) PID to signify to the host that the device received the data error-free.

Continuing with Figure 1-1, a second transaction begins with another OUT token 4 followed by more data 5, this time using
the DATAO PID. Finally, the device again indicates success by transmitting the ACK PID in a handshake packet 6.

When operating at full-speed, every OUT transfer sends the OUT data, even when the device is busy and cannot accept the
data. When operating at high-speed, this slightly wasteful use of USB bandwidth is remedied by using the new ‘Ping’ PID. The
host first sends a short PING token to an OUT endpoint, asking if there is room for OUT data in the peripheral device. Only
when the PING is answered by an ACK does the host send the OUT token and data.

There are two DATA PIDs (DATAO and DATA1) in Figure 1-1 because the USB architects took error correction very seriously.
As mentioned previously, the ACK handshake is an indication to the host that the peripheral received data without error (the
CRC portion of the packet is used to detect errors). But what if the handshake packet itself is garbled in transmission? To
detect this, each side (host and device) maintains a ‘data toggle’ bit, which is toggled between data packet transfers. The
state of this internal toggle bit is compared with the PID that arrives with the data, either DATAO or DATAL. When sending
data, the host or device sends alternating DATAO-DATAL PIDs. By comparing the received Data PID with the state of its own
internal toggle bit, the receiver can detect a corrupted handshake packet.

SETUP tokens are unique to CONTROL transfers. They preface eight bytes of data from which the peripheral decodes host
Device Requests.

At full-speed, SOF (Start of Frame) tokens occur once per millisecond. At high-speed, each frame contains eight SOF tokens,
each denoting a 125-microsecond microframe.

Four handshake PIDs indicate the status of a USB transfer:
m ACK (Acknowledge) means ‘success’; the data was received error-free.

m NAK (Negative Acknowledge) means ‘busy, try again.’ It's tempting to assume that NAK means ‘error,” but it does not; a
USB device indicates an error by not responding.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 17

Exhibit 2033 - Page 17 of 346

— e

Introducing MoBL-USB™ FX2LP18 =3 CY”HFS%

m STALL means that something unforeseen went wrong (probably as a result of miscommunication or lack of cooperation
between the host and device software). A device sends the STALL handshake to indicate that it does not understand a
device request, that something went wrong on the peripheral end, or that the host tried to access a resource that was not
there. It's like HALT, but better, because USB provides a way to recover from a stall.

m NYET (Not Yet) has the same meaning as ACK — the data was received error-free — but also indicates that the endpoint
is not yet ready to receive another OUT transfer. NYET PIDs occur only in high-speed mode.

A PRE (Preamble) PID precedes a low-speed (1.5 Mbps) USB transmission. The MoBL-USB FX2LP18 supports full-speed
(12 Mbps) and high-speed (480 Mbps) USB transfers only.

16.1 Receiving Data from the Host

To send data to a USB peripheral, the host issues an OUT token followed by the data. If the peripheral has space for the data
and accepts it without error, it returns an ACK to the host. If it is busy, it sends a NAK. If it finds an error, it sends back nothing.
For the latter two cases, the host re-sends the data at a later time.

1.6.2 Sending Data to the Host

A USB device never spontaneously sends data to the host. Either MoBL-USB FX2LP18 firmware or external logic can
load data into an endpoint buffer and ‘arm’ it for transfer at any time. However, the data is not transmitted to the host until the
host issues an IN request to the endpoint. If the host never sends the IN token, the data remains in the endpoint buffer indefi-
nitely.

1.7 USB Frames

The USB host provides a time base to all USB devices by transmitting a start-of-frame (SOF) packet every millisecond. SOF
packets include an 11-bit number which increments once per frame; the current frame number [0-2047] may be read from
internal MoBL-USB FX2LP18 registers at any time.

At high-speed (480 Mbps), each one-millisecond frame is divided into eight 125-microsecond micro-frames, each of which is
preceded by an SOF packet. The frame number still increments only once per millisecond, so each of those SOF packets
contains the same frame number. To keep track of the current microframe number [0-7], the MoBL-USB FX2LP18 provides a
readable microframe counter.

The MoBL-USB FX2LP18 can generate an interrupt request whenever it receives an SOF (once every millisecond at full-
speed, or once every 125 microseconds at high-speed). This SOF interrupt can be used, for example, to service isochronous
endpoint data.

1.8 USB Transfer Types
USB defines four transfer types. These match the requirements of different data types delivered over the bus.

1.8.1 Bulk Transfers
Figure 1-2. Two Bulk Transfers, IN and OUT

IR all Fa ol A Elc| I R A
D|| N|| R T Payload c c u D|| N| R T Payload c c
D|| D|| C A Data D|| D|| C Data
R| P 5 L X TRl Pl s [IA L X
1 6 0 6
Token Packet Data Packet /S Pk Token Packet Data Packet /S Pk

Bulk data is bursty, traveling in packets of 8, 16, 32 or 64 bytes at full-speed or 512 bytes at high- speed. Bulk data has guar-
anteed accuracy, due to an automatic retry mechanism for erroneous data. The host schedules bulk packets when there is
available bus time. Bulk transfers are typically used for printer, scanner, or modem data. Bulk data has built-in flow control
provided by handshake packets.

18 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 18 of 346

— e

== CYPRESS

1.8.2 Interrupt Transfers
Figure 1-3. An Interrupt Transfer
E /E'\) Payload g i
E Z Data lc E
1 6
Token Packet Data Packet H/S Pk

Introducing MoBL-USB™ FX2LP18

Interrupt data is like bulk data; it can have packet sizes of 1 through 64 bytes at full-speed or up to 1024 bytes at high-speed.
Interrupt endpoints have an associated polling interval that ensures they will be polled (receive an IN token) by the host on a

regular basis.

1.8.3 Isochronous Transfers
Figure 1-4. An Isochronous Transfer

All E|| C 2

D|| N|| R T Payload

D|| D|| C A Data

R| P|| 5 0

o 0O0XTO

Token Packet Data Packet

Isochronous data is time-critical and used to stream data like audio and video. An isochronous packet may contain up to 1023
bytes at full-speed, or up to 1024 bytes at high-speed.
Time of delivery is the most important requirement for isochronous data. In every USB frame, a certain amount of USB band-
width is allocated to isochronous transfers. To lighten the overhead, isochronous transfers have no handshake (ACK/NAK/
STALL/NYET), and no retries; error detection is limited to a 16-bit CRC.

Isochronous transfers do not use the data-toggle mechanism. Full-speed isochronous data uses only the DATAO PID; high-
speed isochronous data uses DATAOQ, DATAL, DATA2 and MDATA.
In full-speed mode, only one isochronous packet can be transferred per endpoint, per frame. In high-speed mode, up to three
isochronous packets can be transferred per endpoint, per microframe. For more details, refer to the Isochronous Transfers
discussion in Chapter 5 of the USB specification.

1.8.4 Control Transfers
Figure 1-5. A Control Transfer
(75777‘) C\ —
E 3 E‘ g Al 8bytes||R A
T ol ol ¢ T|| Setup ||C (o]
U rll Pl 5 A Data || 1 K
I 6 L |
_Token Packet) Data Packet) \H/S Pki
(—— ——) (— 'd
Aleldl|iR <l
I || D|| N|| R T Payload c c
N|| D|| D|| C Data
R/ P54 L S
000 6
_Token Packet) _ Data Packet \H/S Pk
(: — (B
C
o Al EI Sl|Iallr|[| [a
D||N|IR
U T||C ©
D||D||C
T rilell s Alll K
00 | | S 1 S
Token Packet) \Data Pki /S Pk

SETUP
Stage

DATA
Stage
(optional)

STATUS
Stage

Control transfers configure and send commands to a device. Because they are so important, they employ the most extensive
USB error checking. The host reserves a portion of each USB frame for Control transfers.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 19 of 346

19

—l ———
— =

Introducing MoBL-USB™ FX2LP18 - CYDRF%

Control transfers consist of two or three stages. The SETUP stage contains eight bytes of USB CONTROL data. An optional
DATA stage contains more data, if required. The STATUS (or handshake) stage allows the device to indicate successful com-
pletion of a CONTROL operation.

1.9 Enumeration

Your computer is ON. You plug in a USB device, and the Windows™ cursor switches to an hourglass and then back to a cur-
sor. Magically, your device is connected and its Windows driver is loaded. Anyone who has installed a sound card into a PC
and has had to configure countless jumpers, drivers, and 10/Interrupt/DMA settings knows that a USB connection is miracu-
lous. We've all heard about Plug and Play, but USB delivers the real thing.

How does all this happen automatically? Inside every USB device is a table of descriptors. This table is the sum total of the
device’s requirements and capabilities. When you plug into USB, the host goes through a sign-on sequence:

1. The host sends a Get Descriptor-Device request to address zero (all USB devices must respond to address zero when
first attached).

2. The device responds to the request by sending ID data back to the host to identify itself.

3. The host sends a Set Address request, which assigns a unique address to the just-attached device so it may be distin-
guished from the other devices connected to the bus.

4. The host sends more Get Descriptor requests, asking for additional device information. From this, it learns everything else
about the device: number of endpoints, power requirements, required bus bandwidth, what driver to load, and so on.

This sign-on process is called ‘Enumeration’.

1.9.1 Full-Speed / High-Speed Detection

The USB Specification requires that high-speed (480 Mbps) devices must also be capable of enumerating at full-speed (12
Mbps). In fact, all high-speed devices begin the enumeration process in full-speed mode; devices switch to high-speed oper-
ation only after the host and device have agreed to operate at high-speed. The high-speed negotiation process occurs during
USB reset, via the ‘Chirp’ protocol described in Chapter 7 of the USB Specification.

When connected to a full-speed host, the MoBL-USB FX2LP18 will enumerate as a full-speed device. When connected to a
high-speed host, the chip automatically switches to high-speed mode. It does not support the low-speed mode (1.5 Mbps).

1.10 The Serial Interface Engine

Figure 1-6. What the SIE Does

D C D
AllE|| C
D N|| R ? Payload [N Al payload
[T
B3| D|| D|| C{f IS Data 1 A Data
R||P|| 5||| % 6 3
Token Packet Data Packet H/S Pkt Token Packet Data Packet
A
Payload
Data
o DE Serial
\) Interface Payload
. Data
D % Engine
> (SIE)
UsB
Transceiver
20 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 20 of 346

-

ﬁYDHFS% Introducing MoBL-USB™ FX2LP18

Every USB device has a Serial Interface Engine (SIE) which connects to the USB data lines (D+ and D-) and delivers data to
and from the USB device. Figure 1-6 illustrates the SIE’s role: it decodes the packet PIDs, performs error checking on the
data using the transmitted CRC bits, and delivers payload data to the USB device.

Bulk transfers are ‘asynchronous,” meaning that they include a flow control mechanism using ACK and NAK handshake PIDs.
The SIE indicates busy to the host by sending a NAK handshake packet. When the USB device has successfully transferred
the data, it commands the SIE to send an ACK handshake packet, indicating success. If the SIE encounters an error in the
data, it automatically indicates no response instead of supplying a handshake PID. This instructs the host to retransmit the
data at a later time.

To send data to the host, the SIE accepts bytes and control signals from the USB device, formats it for USB transfer, and
sends it over D+ and D-. Because USB uses a self-clocking data format (NRZI), the SIE also inserts bits at appropriate places
in the bit stream to guarantee a certain number of transitions in the serial data. This is called ‘bit stuffing,” and is handled auto-
matically by the MoBL-USB FX2LP18'’s SIE.

One of the most important features of the MoBL-USB FX2LP18 is that its configuration is soft. Instead of requiring ROM or
other fixed memory, it contains internal program/data RAM which can be loaded over the USB. This makes modifications,
specification revisions, and updates a snap.

The MoBL-USB FX2LP18's ‘smart’ SIE performs much more than the basic functions shown in Figure 1-6; it can perform a
full enumeration by itself, which allows it to connect as a USB device and download code into its RAM while its CPU is held in
reset. This added SIE functionality is also made available to the programmer, to make development easier and save code and
processing time.

1.11 ReNumeration™

Because the MoBL-USB FX2LP18's configuration is ‘soft,” one chip can take on the identities of multiple distinct USB devices.

When first plugged into USB, the MoBL-USB FX2LP18 enumerates automatically and downloads firmware and USB descrip-
tor tables over the USB cable. Next, it enumerates again, this time as a device defined by the downloaded information. This
patented two-step process, called ReNumeration™, happens instantly when the device is plugged in, with no hint to the user
that the initial download step has occurred.

Alternately, it can also load its firmware from an external EEPROM.

The Enumeration and ReNumeration™ chapter on page 51 describes these processes in detail.

1.12 MoBL-USB FX2LP18 Architecture

Figure 1-7. MoBL-USB FX2LP18 56-pin Package Simplified Block Diagram

\ out
D+ ‘ Serial data Program &

D- Interface usB Data

Engine IN Interface RAM
usB (SIE) data
Connector CPU o
(Enhanced 1/0 Ports)
usB 8051)

Transceiver Slave
FIFOs GPIE
MoBL-USB -
lo |
—
D v
CTL RDY

The MoBL-USB FX2LP18 packs all the intelligence required by a USB peripheral interface into a compact integrated circuit.
As Figure 1-7 illustrates, an integrated USB transceiver connects to the USB bus pins D+ and D-. A Serial Interface Engine
(SIE) decodes and encodes the serial data and performs error correction, bit stuffing, and the other signaling-level tasks
required by USB. Ultimately, the SIE transfers parallel data to and from the USB interface.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 21

Exhibit 2033 - Page 21 of 346

— sy T

Introducing MoBL-USB™ FX2LP18 =/ C“Y”HFS%

The MoBL-USB FX2LP18 SIE operates at Full-Speed (12 Mbps) and High-Speed (480 Mbps) rates. To accommodate the
increased bandwidth of USB 2.0, the MoBL-USB FX2LP18 endpoint FIFOs and slave FIFOs (which interface to external logic
or processors) are unified to eliminate internal data transfer times.

The CPU is an enhanced 8051 with fast execution time and added features. It uses internal RAM for program and data stor-
age.

The role of the CPU in a typical MoBL-USB FX2LP18-based USB peripheral is two fold:

m It implements the high-level USB protocol by servicing host requests over the control endpoint (endpoint zero)

m Itis available for general-purpose system use

The high-level USB protocol is not bandwidth-critical, so the MoBL-USB FX2LP18's CPU is well-suited for handling host
requests over the control endpoint. However, the data rates offered by USB are too high for the CPU to process the USB data
directly. For this reason, the CPU is not usually in the high-bandwidth data path between endpoint FIFOs and the external

interface. Note Instead, the CPU simply configures the interface, then ‘gets out of the way’ while the unified MoBL-USB
FX2LP18 FIFOs move the data directly between the USB and the external interface.

The FIFOs can be controlled by an external master, which either supplies a clock and clock-enable signals to operate syn-
chronously, or strobe signals to operate asynchronously.

Alternately, the FIFOs can be controlled by an internal MoBL-USB FX2LP18 timing generator called the General Programma-
ble Interface (GPIF). The GPIF serves as an ‘internal’ master, interfacing directly to the FIFOs and generating user-pro-
grammed control signals for the interface to external logic. Additionally, the GPIF can be made to wait for external events by
sampling external signals on its RDY pins. The GPIF runs much faster than the FIFO data rate to give good programmable
resolution for the timing signals. It can be clocked from either the internal MoBL-USB FX2LP18 clock or an externally supplied
clock.

The MoBL-USB FX2LP18's CPU is rich in features. Up to five IO ports are available, as well as two USARTS, three counter/
timers, and an extensive interrupt system. It runs at a clock rate of up to 48 MHz and uses four clocks per instruction cycle
instead of the twelve required by a standard 8051.

The MoBL-USB FX2LP18 chip uses an enhanced SIE/USB interface which simplifies code by implementing much of the USB
protocol. In fact, the MoBL-USB FX2LP18 can function as a full USB device even without firmware.

All MoBL-USB FX2LP18 chips can operate at a variable 10 voltage from 1.8V to 3.3V. The core operates at 1.8V. The PHY
and the oscillator operate at 3.3V. The variable 10 voltage makes the MoBL-USB FX2LP18 ideal for applications like cell
phones, PDAs, MP3 Players, and others.

1.13 MoBL-USB FX2LP18 Features Summary

The MoBL-USB FX2LP18 chips include the following features:
m Low power consumption enabling bus-powered designs.
m An on-chip 480 Mbps transceiver, a PLL and SIE—the entire USB physical layer (PHY).
m Double-, triple- and quad-buffered endpoint FIFOs accommodate the 480 Mbps USB data rate.
m Built-in, enhanced 8051 running at up to 48 MHz.
o Fully featured: 256 bytes of register RAM, two USARTS, three timers, two data pointers.
o Fast: four clocks (83.3 nanoseconds at 48 MHz) per instruction cycle.
7 SFR access to control registers (including 10 ports) that require high speed.
o USB-vectored interrupts for low ISR latency.
o Used for USB housekeeping and control, not to move high speed data.
m ‘Soft’ operation—USB firmware can be downloaded over USB, eliminating the need for hard-coded memory.

m Four interface FIFOs that can be internally or externally clocked. The endpoint and interface FIFOs are unified to eliminate
data transfer time between USB and external logic.

m General Programmable Interface (GPIF), a microcoded state machine which serves as a timing master for ‘glueless’ inter-
face to the MoBL-USB FX2LP18 FIFOs.

m 1.8V core operation, 1.8V-3.3V 10 operation

m ECC Generation based on the SmartMedia™ standard.

22 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 22 of 346

il

==# CYPRESS Introducing MoBL-USB™ FX2LP18

The MoBL-USB FX2LP18 offers single-chip USB 2.0 peripheral solutions. Unlike designs that use an external PHY, the
MoBL-USB FX2LP18 integrates everything on one chip, eliminating costly high pin-count packages and the need to route
high-speed signals between chips.

1.14 MoBL-USB FX2LP18 Integrated Microprocessor

The MoBL-USB FX2LP18's CPU uses on-chip RAM as program and data memory. The Memory chapter on page 77,
describes the various internal/external memory options.

The CPU communicates with the SIE using a set of registers occupying on-chip RAM addresses OXE500-0XxE6FF. These reg-
isters are grouped and described by function in individual chapters of this reference manual and summarized in register order.
See chapter “Registers” on page 237.

The CPU has two duties. First, it participates in the protocol defined in the Universal Serial Bus Specification Version 2.0,
Chapter 9, USB Device Framework. Thanks to the MoBL-USB FX2LP18's ‘smart’ SIE, the firmware associated with the USB
protocol is simplified, leaving code space and bandwidth available for the CPU’s primary duty—to help implement your
device. On the device side, abundant input/output resources are available, including 10 ports, USARTSs, and an 12C bus mas-
ter controller. These resources are described in the Input/Output chapter on page 203, and the Timers/Counters and Serial
Interface chapter on page 217.

It's important to recognize that the MoBL-USB FX2LP18 architecture is such that the CPU sets up and controls data transfers,
but it normally does not participate in high bandwidth transfers. It is not in the data path; instead, the large data FIFOs that
handle endpoint data connect directly to outside interfaces. To make the interface versatile, a programmable timing generator
(GPIF, General Programmable Interface) can create user-programmed waveforms for high bandwidth transfers between the
internal FIFOs and external logic.

The MoBL-USB FX2LP18 chips add eight interrupt sources to the standard 8051 interrupt system:

INT2: USB Interrupt

INT3: 12C Bus Interrupt

INT4: FIFO/GPIF Interrupt

INT4: External Interrupt 4

INT5: External Interrupt 5

INT6: External Interrupt 6

USART1: USART1 Interrupt

WAKEUP: USB Resume Interrupt

The MoBL-USB FX2LP18 chips provide 27 individual USB-interrupt sources which share the INT2 interrupt, and 14 individual
FIFO/GPIF-interrupt sources which share the INT4 interrupt. To save the code and processing time which normally would be
required to identify an individual interrupt source, the MoBL-USB FX2LP18 provides a second level of interrupt vectoring
called Autovectoring. Each INT2 and INT4 interrupt source has its own autovector, so when an interrupt requires service, the
proper ISR (interrupt service routine) is automatically invoked. The Interrupts chapter on page 59 describes the MoBL-USB
FX2LP18 interrupt system.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 23

Exhibit 2033 - Page 23 of 346

Introducing MoBL-USB™ FX2LP18 —

1.15 MoBL-USB FX2LP18 Block Diagram

Figure 1-8. MoBL-USB FX2LP18 Block Diagram

D+ D-
® ®
USB
2.0
PHY PHY O |a—2—
< P Interface)
24 MHz ST O la—2—p
Crystal —
8 <+—2—p
8051 L]
48 MHz =]
£ |4—8—»
4KB =
Endpoint *— —
1]
RAM £ |[4—8—p
USB regs o
0.5K Data —
RAM ©
5 [—1—p
16 KB Port B || Port D g
Pgm/Data A
RAM
Ext 1 " FIFOS | GPIF |¢—14—»
Clock B ,
v
16 T 7
4
(o]
—
A J
General Programmable Interface
(e.g. ATA, EPP, etc.)
24 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 24 of 346

-

ﬁYDHFS% Introducing MoBL-USB™ FX2LP18

1.16 Package

MoBL-USB FX2LP18 is currently available in one 56-pin VFBGA package. It can be made available as a 100-pin package
option (VFBGA, TQFP, and so on). For more information, contact Cypress Sales.

Figure 1-9. 56-pin VFBGA Package

56-pin VFBGA
5x5x1
mm

O OO0
O 0o|0
0O O|0
[eXe]lo)

00000000
0|0 0 O 0 0 0|0
olc0 00000
00000000

[e)[eXe}
(o] [oe]
0|0 O
[e][eXe}

1.16.1 56-Pin Package

Twenty-four general-purpose 10 pins (ports A, B, and D) are available. Sixteen of these IO pins can be configured as the 16-
bit data interface to the MoBL-USB FX2LP18's internal high-speed 16-bit FIFOs, which can be used to implement low cost,
high-performance interfaces such as ATAPI, UTOPIA, EPP, and so on. The 56-pin package has the following:

m Three 8-bit 10 ports: PORTA, PORTB, and PORTD
m °C™ bus

m An 8- or 16-bit General Programmable Interface (GPIF) multiplexed onto PORTB and PORTD, with five non-multiplexed
control signals

m Four 8- or 16-bit Slave FIFOs, with five non-multiplexed control signals and four or five control signals multiplexed with
PORTA

A 100-pin package (currently not available) would provide the following additional functionalities:

Two additional 8-bit IO ports: PORTC and PORTE

Seven additional GPIF Control (CTL) and Ready (RDY) signals

Nine non-multiplexed peripheral signals (two USARTSs, three timer inputs, INT4, and INT5#)

Eight additional control signals multiplexed onto PORTE

Nine GPIF address lines, multiplexed onto PORTC (eight) and PORTE (one)

RD# and WR# signals which may be used as read and write strobes for PORTC

1.16.2 Signals Available
Three interface modes are available: Ports, GPIF Master, and Slave FIFO.

Figure 1-10 shows a logical diagram of the signals available. The signals on the left edge of the diagram are common to all
interface modes, while the signals on the right are specific to each mode. The interface mode is software-selectable via an
internal mode register.

In ‘Ports’ mode, all the 10 pins are general-purpose 10 ports.

‘GPIF master’ mode uses the PORTB and PORTD pins as a 16-bit data interface to the four endpoint FIFOs EP2, EP4, EPS6,
and EP8. In this ‘master’ mode the FIFOs are controlled by the internal GPIF, a programmable waveform generator that
responds to FIFO status flags, drives timing signals using its CTL outputs and waits for external conditions to be true on its
RDY inputs. Note that only a subset of the GPIF signals (CTL0-2, RDY0-1) are available in the 56-pin package.

In the ‘Slave FIFO' mode, external logic or an external processor interfaces directly to the MoBL-USB FX2LP18 endpoint
FIFOs. In this mode, the GPIF is not active since external logic has direct FIFO control. Therefore, the basic FIFO signals
(flags, selectors, strobes) are brought out on MoBL-USB FX2LP18 pins. The external master can be asynchronous or syn-
chronous and it may supply its own independent clock to the MoBL-USB FX2LP18 interface.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 25

Exhibit 2033 - Page 25 of 346

CYPRESS

PERFORM

Introducing MoBL-USB™ FX2LP18

Figure 1-10. Signals for the MoBL-USB FX2LP18 Package

Ports GPIF Master Slave FIFO
PD7 | <> FD[15] <> FD[15]
PD6 | <> FD[14] < FD[14]
PD5 | <> FD[13] <> FD[13]
PD4 | <> FD[12] <> FD[12]
PD3 | <> FD[11] < FD[11]
PD2 | <> FD[10] < FD[10]
—— % XTALIN PD1 | > FD[9] <> FD[9]
<«——— XTALOUT PDO | <> FD[8] : FD[8]
PB7 | <> FD[7] FD[7]
—» RESET# PB6 | <> FD[6] < FD[g]
—» WAKEUP# PB5 | <> FD[5] <> FD[5]
PB4 | <> FD[4] <> FD[4]
<«— scL PB3 | <> FD[3] <> FD[3]
56 PB2 | <> FD[2] < FD[2]
<«—> SDA PB1 | <> FD[1] < FD[1]
PBO | <> FD[0] < FD[0]
<«—>» IFCLK < RDYO < SLRD
<«——1 CLKOUT < RDY1 < SLWR
<—» DPLUS — CTLO — FLAGA
<«—> DMINUS — CTL1 — FLAGB
— CTL2 — FLAGC
INTO#/PAO | INTO#/PAO INTO#/PAO
INT1#/PAL | INT1#/PAL INT1#/PA1
PA2 | PA2 < SLOE
WU2/PA3 | WU2/PA3 WU2/PA3
PA4 | PA4 < FIFOADRO
PA5 | PA5 < FIFOADR1
PA6 | PA6G < PKTEND
PA7 | PA7 PA7/FLAGD/SLCS#
« RDY2
<~ RDY3
< RDY4
100 <« RDY5
— CTL3
<«——|BKPT — CTL4
— CTL5
<«——> | PORTC7/GPIFADRY
<«——> | PORTC6/GPIFADR6
<«——>| PORTC5/GPIFADR5
<«——> | PORTC4/GPIFADR4 RxDO |€——
<«—>| PORTC3/GPIFADR3 TXDO |——>
<«——>| PORTC2/GPIFADR2 RxD1 |€—
<«——>» | PORTC1/GPIFADR1 ™@i — 5
<«——>| PORTCO/GPIFADRO INT4 |
<«——> | PE7/GPIFADRS INTS# |€——
—Ens el —
<—»| PE4/RXD10UT T ——
<«——> | PE3/RXDOOUT D —
<«—»| PE2/T20UT
<«—>» | PEL/TIOUT RD# ———>
<«——> | PEO/TOOUT WRY ——»
26 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 26 of 346

.I|
1
—

o
:
e

(¥p]
o

1.17

Figure 1-11.

Package Diagram

Introducing MoBL-USB™ FX2LP18

CY7C68053 56-pin VFBGA Pin Assignment

Exhibit 2033 - Page 27 of 346

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

27

Introducing MoBL-USB™ FX2LP18 %!EYPRESS

PERFORM

1.18 MoBL-USB FX2LP18 Endpoint Buffers

The USB Specification defines an endpoint as a source or sink of data. Since USB is a serial bus, a device endpoint is actu-
ally a FIFO which sequentially empties or fills with USB data bytes. The host selects a device endpoint by sending a 4-bit
address and a direction bit. Therefore, USB can uniquely address 32 endpoints, INO through IN15 and OUTO through OUT15.

From the MoBL-USB FX2LP18'’s point of view, an endpoint is a buffer full of bytes received or held for transmission over the
bus. The MoBL-USB FX2LP18 reads host data from an OUT endpoint buffer and writes data for transmission to the host to an
IN endpoint buffer.

MoBL-USB FX2LP18 contains three 64-byte endpoint buffers plus 4 KB of buffer space that can be configured 12 ways, as
indicated in Figure 1-12. The three 64-byte buffers are common to all configurations.

Figure 1-12. MoBL-USB FX2LP18 Endpoint Buffers

EPOIN&GOUT[64 | ' [64 |'[64 | ![64 | '[64 |'[64 |1 [64] '[64 ' [64]'[64]!'[64]'[64]
EP1IN[64 || [ea]l [ea] I[ea]|[6a]![Ba]|[6a]![6a] | [6a] |68 2] | [54]
EPlOUT|64|||64|||64|||64|||64|||64|||64|||64|||64|||64|||64|||64|

| | | |
EP2 EP2
s12] | [s12] ! [512]] | | | |
— —
s12)| | [[512]| | [[522]] | | | 1024 | [[2024 1024
| | | | |
EP4EP4EP4 | | |
S12f 5Ll fst2 1024f| fl1024 1024
siol| | [s22]] | [522]] | | I 512 |
S— S—
@| | | | | |
| | I | | |
512 | 512| | | | 512I 1024
—
s12|| ' 512 510] ' [[1024
— | | I | | |
Sy | | e | . | i
512 512 52 ' 024 512
si2| | 512l ! | | | s1z] | 512
= | | | | |
1, 2 3 4 5 . 6 8 . 9 1

The three 64-byte buffers are designated EPO, EP1IN, and EP1OUT. EPO is the default CONTROL endpoint, a bi-directional
endpoint that uses a single 64-byte buffer for both IN and OUT data. Firmware reads or fills the EPO buffer when the (optional)
data stage of a CONTROL transfer is required.

Note The eight SETUP bytes in a CONTROL transfer do not appear in the 64-byte EPO endpoint buffer. Instead, to simplify
programming, the MoBL-USB FX2LP18 automatically stores the eight SETUP bytes in a separate buffer (SETUPDAT, at
OxE6B8-0XE6BF).

EP1IN and EP10OUT use separate 64 byte buffers. MoBL-USB FX2LP18 firmware can configure these endpoints as BULK or
INTERRUPT. These endpoints, as well as EPO, are accessible only by firmware. This is in contrast to the large endpoint buff-
ers EP2, EP4, EP6, and EP8 which are designed to move high bandwidth data directly on and off the chip without firmware
intervention.

Endpoints 2, 4, 6, and 8 are the large, high bandwidth, data moving endpoints. They can be configured various ways to suit
bandwidth requirements. The shaded boxes in Figure 1-12 enclose the buffers to indicate double, triple, or quad buffering.
Double buffering means that one packet of data can be filling or emptying with USB data while another packet (from the same
endpoint) is being serviced by external interface logic. Triple buffering adds a third packet buffer to the pool, which can be
used by either side (USB or interface) as needed. Quad buffering adds a fourth packet buffer. Multiple buffering can signifi-
cantly improve USB bandwidth performance when the data supplying and consuming rates are similar, but bursty; it smooths
out the bursts, reducing or eliminating the need for one side to wait for the other.

28 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 28 of 346

= it

=
A

YPHF% Introducing MoBL-USB™ FX2LP18

Endpoints 2, 4, 6, and 8 can be configured using the choices shown in Table 1-2.

Table 1-2. Endpoint 2, 4, 6, and 8 Configuration Choices

Characteristic Choices
Direction IN, OUT
Type Bulk, Interrupt, Isochronous
Buffering Double, Triple, Quad

When the MoBL-USB FX2LP18 operates at full-speed (12 Mbps), some or all of the endpoint buffer bytes shown in
Figure 1-12 may be employed, depending on endpoint type. Note Regardless of the physical buffer size, each endpoint buffer
accommodates only one full-speed packet.

For example, if EP2 is used as a full-speed BULK endpoint, the maximum number of bytes (maxPacketSize) it can accommo-
date is 64 even though the physical buffer size is 512 or 1024 bytes (it makes sense, therefore, to configure full-speed BULK
endpoints as 512 bytes rather than 1024, so that fewer unused bytes are wasted). An ISOCHRONOUS full-speed endpoint,
on the other hand, could fully use either a 512- or 1024-byte buffer.

1.19 External FIFO Interface

The large data FIFOs (endpoints 2, 4, 6, and 8) in the MoBL-USB FX2LP18 are designed to move high speed (480 Mbps)
USB data on and off the chip without introducing any bandwidth bottlenecks. They accomplish this goal by implementing the
following features:

1. Interfaces directly with outside logic, with the MoBL-USB FX2LP18’s CPU out of the data path.

2. ‘Quantum FIFQO’ architecture instantaneously moves (commits) packets between the USB and the FIFOs.

3. Versatile interfaces: Slave FIFO (external master) or GPIF (internal master), synchronous or asynchronous clocking, inter-
nal or external clocks, and so on.

The firmware sets switches to configure the outside FIFO interface and then generally does not participate in moving the data
into and out of the FIFOs.

To understand the ‘Quantum FIFO’ it is necessary to refer to two data domains, the USB domain and the Interface domain.
Each domain is independent allowing different clocks and logic to handle its data.

The USB domain is serviced by the SIE which receives and delivers FIFO data packets over the two-wire USB bus. The USB
domain is clocked using a reference derived from the 24 MHz crystal attached to the MoBL-USB FX2LP18 chip.

The Interface domain loads and unloads the endpoint FIFOs. An external device such as a DSP or ASIC can supply its own
clock to the FIFO interface or the MoBL-USB FX2LP18'’s internal interface clock (IFCLK) can be supplied to the interface.

The classic solution to the problem of reconciling two different and independent clocks is to use a FIFO. The MoBL-USB
FX2LP18's FIFOs have an unusual property: They're Quantum FIFOs, which means that data is committed to the FIFOs in
USB-size packets, rather than one byte at a time. This is invisible to the outside interface since it services the FIFOs just like
any ordinary FIFO (that is, by checking full and empty flags). The only minor difference is that when an empty flag goes from
‘1’ (empty) to ‘0’ (not empty), the number of bytes in the FIFO jumps to a USB packet size, rather than just one byte.

MoBL-USB FX2LP18 Quantum FIFOs may be moved between data domains almost instantaneously. The Quantum nature of
the FIFOs also simplifies error recovery. If endpoint data were continuously clocked into an interface FIFO, some of the
packet data might have already been clocked out by the time an error is detected at the end of a USB packet. By switching
FIFO data between the domains in USB-packet-size blocks, each USB packet can be error-checked (and retried, if neces-
sary) before it's committed to the other domain.

Figure 1-13 on page 30 and Figure 1-14 on page 31 illustrate the two methods by which external logic interfaces to the end-
point FIFOs EP2, EP4, EP6, and EPS.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 29

Exhibit 2033 - Page 29 of 346

Introducing MoBL-USB™ FX2LP18 =/ CY”HFS%

Figure 1-13. MoBL-USB FX2LP18 FIFOs in Slave FIFO Mode

EP8
EP6
EP4
EP2

FD[15:0]) Data
<¢— PKTEND
——» (INFULL) SLRD
SLWR
> (OUTEMPTY) perenm —_7‘—
F”:O ——» (PRGFLAG) Asynchronous

q——Pp [FCLK
¢—— SLRD
_— IFCLK 1:
l¢— SLWR
select ¢— SLOE SLRD
K y SLWR \ /
PKTEND

FIFOADR1 Synchronous
FIFOADRO

Figure 1-13 illustrates the outside-world view of the MoBL-USB FX2LP18 data FIFOs configured as Slave FIFOs. The outside
logic supplies a clock, responds to the FIFO flags, and clocks FIFO data in and out using the strobe signals. Optionally, the
outside logic may use the internal MoBL-USB FX2LP18 Interface Clock (IFCLK) as its reference clock.

Three FIFO flags are shown in parentheses in Figure 1-13 because they actually are called FLAGA-FLAGD in the pin dia-
gram (there are four flag pins). Using configuration bits, various FIFO flags can be assigned to these general-purpose flag
pins. The names shown in parentheses illustrate typical uses for these configurable flags. The Programmable Level Flag
(PRGFLAG) can be set to any value to indicate degrees of FIFO ‘fullness’. The outside interface selects one of the four FIFOs
using the FIFOADR pins, and then clocks the 16-bit FIFO data using the SLRD (Slave Read) and SLWR (Slave Write) sig-
nals. PKTEND is used to dispatch a short (less than max packet size) IN packet to USB.

30 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 30 of 346

==# CYPRESS Introducing MoBL-USB™ FX2LP18

Figure 1-14. MoBL-USB FX2LP18 FIFOs in GPIF Master Mode

EP8
EP6
EP4

EP2 /]
FD[15:0] Data

F”:O — | FLAGS

¢— SLRD
¢—| SLWR
o ¢—| SLOE
o ¢— SLRD
o select #’ CTL
/ 1 «—~—— RDY
G P”: #»GPIFADR
8051 RDY -
8051 INT -

p [FCLK

30 Mniz ’ IFCLK
48 MHz

External systems that connect to the MoBL-USB FX2LP18 FIFOs must provide control circuitry to select FIFOs, check flags,
clock data, and so on. The MoBL-USB FX2LP18 contains a sophisticated control unit (the General Programmable Interface,
or GPIF) which can replace this external logic. In the GPIF Master FIFO mode (Figure 1-14), the GPIF reads the FIFO flags,
controls the FIFO strobes, and presents a user-customizable interface to the outside world. The GPIF runs at a very high
speed (up to 48 MHz clock rate) so that it can develop high-resolution control waveforms. It can be clocked from one of two

internal sources (30 or 48 MHz) or from an external clock.

Control (CTL) signals are programmable waveform outputs, and ready (RDY) signals are input pins that can be tested for
conditions that cause the GPIF to pause and resume operation, implementing ‘wait states.” GPIFADR pins present a 9-bit
address to the interface that may be incremented as data is transferred. The 8051 INT signal is a ‘hook’ that can signal the
MoBL-USB FX2LP18's CPU in the middle of a transaction; GPIF operation resumes once the CPU asserts its own 8051 RDY

signal. This ‘hook’ permits great flexibility in the generation of GPIF waveforms.

1.20 MoBL-USB FX2LP18 Part Number

Table 1-3. MoBL-USB FX2LP18 Part Number (Full-speed and High-speed)
RAM ISO Support 110

Yes 24

Part Number Package

56 VFBGA — Lead-Free 16 kBytes

CY7C68053-56BAXI

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 31

Exhibit 2033 - Page 31 of 346

Introducing MoBL-USB™ FX2LP18 ;E!EYPRF% >
1.21 Document History
This section is a chronicle of the MoBL-USB™ FX2LP18 Technical Reference Manual.

MoBL-USB™ FX2LP18 Technical Reference Manual History

Release Date Version Originator Description of Change

01/05/2007 - ARI Th|s_|s a ne.vy manual.l Version 1.0 was printed and released without going through doc control. This is
version 1.1; it has an index.

Added bit 7 functionality to section 3.5 EEPROM Configuration Byte.
Fixed typo in section 9.2.4 (FLAG-FLAGC to FLAGA-FLAGC)
Updated Bit 2 BERR Description in Section 13.4.2.1 and 15.8.4.

09/30/10 *A DSG .) . .
Updated Note in section 8.4. Added Note in section 15.6.2.
Updated Bit 3 AUTOIN Description in section 15.6.3.
Added Contents Overview.
01/18/2011 *B DSG Sunset ECN - No content change
32 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 32 of 346

2. Endpoint Zero

= =
=2 CYPRESS

PERFORM

2.1 Introduction

Endpoint zero has special significance in a USB system. It is a CONTROL endpoint and it is required by every USB device.
The USB host uses special SETUP tokens to signal transfers that deal with device control; only CONTROL endpoints accept
these special tokens.

The USB host sends a suite of standard device requests over endpoint zero. These standard requests are fully defined in
Chapter 9 of the USB Specification. This chapter describes how the MoBL-USB FX2LP18 chip handles endpoint zero
requests.

The MoBL-USB FX2LP18 provides extensive hardware support for handling endpoint-zero operations; this chapter describes
those operations and the resources that simplify the firmware that handles them.

Endpoint zero is the only CONTROL endpoint supported by the MoBL-USB FX2LP18. CONTROL endpoints are bi-direc-
tional, so the MoBL-USB FX2LP18 provides a single 64 byte buffer, EPOBUF, which firmware handles exactly like a bulk end-
point buffer for the data stages of a CONTROL transfer. A second 8 byte buffer called SETUPDAT, which is unique to
endpoint zero, holds data that arrives in the SETUP stage of a CONTROL transfer. This relieves the MoBL-USB FX2LP18
firmware of the burden of tracking the three CONTROL transfer phases (SETUP, DATA, and STATUS). The MoBL-USB
FX2LP18 also generates separate interrupt requests for the various transfer phases, further simplifying code.

Endpoint zero is always enabled and accessible by the USB host.

2.2 Control Endpoint EPO

Endpoint zero accepts a special SETUP packet, which contains an 8 byte data structure that provides host information about
the CONTROL transaction. CONTROL transfers include a final STATUS phase, constructed from standard PIDs (IN/OUT,
DATAL, and ACK/NAK).

Some CONTROL transactions include all required data in their 8 byte SETUP Data packet. Other CONTROL transactions
require more OUT data than will fit into the eight bytes, or require IN data from the device. These transactions use standard
bulk-like transfers to move the data. Note in Figure 2-1 on page 34 that the DATA Stage looks exactly like a bulk transfer. As
with BULK endpoints, the endpoint zero byte count registers must be loaded to ACK each data transfer stage of a CONTROL
transfer.

The STATUS stage consists of an empty data packet with the opposite direction of the data stage, or an IN if there was no
data stage. This empty data packet gives the device a chance to ACK or NAK the entire CONTROL transfer.

The HSNAK bit holds off the completion of a CONTROL transfer until the device has had time to respond to a request. For
example, if the host issues a Set_Interface Request, the MoBL-USB FX2LP18 firmware performs various housekeeping
chores such as adjusting internal modes and re-initializing endpoints. During this time, the host issues handshake (STATUS
stage) packets to which the MoBL-USB FX2LP18 automatically responds with NAKSs, indicating ‘busy.” When the firmware
completes its housekeeping operations, it clears the HSNAK bit (by writing 1 to it), which instructs the MoBL-USB FX2LP18 to
ACK the STATUS stage, terminating the transfer. This handshake prevents the host from attempting to use an interface
before it's fully configured.

To perform an endpoint stall for the DATA or STATUS stage of an endpoint zero transfer (the SETUP stage can never stall),
firmware must set both the STALL and HSNAK bits for endpoint zero.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 33

Exhibit 2033 - Page 33 of 346

Y”F RESS

r":)t,.

Endpoint Zero

Figure 2-1. A USB Control Transfer (With Data Stage)

«+«— SETUP Stage———»

S D C

E Al E|C A|| 8bytes/|R A
D|| N|| R

T bl bl ¢ T Setup ||C C

U Rl pls A Data ||1 K

P 0 6

Token Packe Data Packet H/S Pk

L SUTOK Interrupt L SUDAV Interrupt
MoBL- USB sets HSNAK=1

v

DATA Stage

A

BRI <lll EEIE <l &
I || D||N||R T Payload c c D|| N|| R T Payload c fo
N|| D|| D|| C A Data D||D||C A Data
R P|/5 Lil K R/ P||5 i
1 6 0 6
Token Packe Data Packet /ISP Token Packet Data Packet /S P
L EPO- IN Interrupt EPO- IN Interrupt
< STATUS Stage >
D||lC D||C
ol AlEIIC||lallrI|]S|IN ATEICIHIAl R [A
D||N|IR Y D|IN|IR
U T/|C A T|IC @
D||D|IC N D D| C
TRl pls|[[[AL||c|® plls| |22 K
1||6 1|6
Token Packet) Data P Token Packet) Data P /S P

8051 clears HSNAK bit (writes 1 to it)
or sets the STALL bit.

Some CONTROL transfers do not have a DATA stage. Therefore, the code that processes the SETUP data should check the
length field in the SETUP data (in the 8 byte buffer at SETUPDAT) and arm endpoint zero for the DATA phase (by loading
EPOBCH:L) only if the length field is non-zero.

Two interrupts provide notification that a SETUP packet has arrived, as shown in Figure 2-2.
Figure 2-2. Two Interrupts Associated with EPO CONTROL Transfers

SETUP Stage———

°)

S D
E g E g A 8 bytes| R A SETUPDAT
T blplc T Setup | C © 8 RAM
Upo ool Al pata |1 K bytes
P 0 6
Token Packet Data Packet H/S Pkt
L SUTOK SUDAV
Interrupt Interrupt

The MoBL-USB FX2LP18 asserts the SUTOK (Setup Token) interrupt request when it detects the SETUP token at the begin-
ning of a CONTROL transfer. This interrupt is normally used for debug only.

The MoBL-USB FX2LP18 asserts the SUDAV (Setup Data Available) interrupt request when the eight bytes of SETUP data
have been received error-free and transferred to the SETUPDAT buffer. The MoBL-USB FX2LP18 automatically takes care of
any retries if it finds errors in the SETUP data. These two interrupt request bits must be cleared by firmware.

34 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 34 of 346

-

ﬁYDHF% Endpoint Zero

Firmware responds to the SUDAV interrupt request by either directly inspecting the eight bytes at SETUPDAT or by transfer-
ring them to a local buffer for further processing. Servicing the SETUP data should be a high priority, since the USB Specifica-
tion stipulates that CONTROL transfers must always be accepted and never NAK'd. It is possible, therefore, that a
CONTROL transfer could arrive while the firmware is still servicing a previous one. In this case, the earlier CONTROL transfer
service should be aborted and the new one serviced. The SUTOK interrupt gives advance warning that a new CONTROL
transfer is about to overwrite the eight SETUPDAT bytes.

If the firmware stalls endpoint zero (by setting the STALL and HSNAK bits to 1), the MoBL-USB FX2LP18 automatically clears
the stall bit when the next SETUP token arrives.

Like all MoBL-USB FX2LP18 interrupt requests, the SUTOK and SUDAV bits can be directly tested and cleared by the firm-
ware (cleared by writing 1) even if their corresponding interrupts are disabled. Figure 2-3 shows the MoBL-USB FX2LP18
registers that are associated with CONTROL transactions over EPO.

Figure 2-3. Registers Associated with EPO Control Transfers

Registers Associated with Endpoint Zero
For handling SETUP transactions

Initialization Data transfer
SETUPDAT ¢
vswe [Tal 1 [Tl To] e
Interrupt Enable:
A=EPO ACK
T=Setup Token EPOBCH ‘ 15 ‘ 14 ‘ 13 ‘ 12 ‘ 11 ‘ 10 ‘ 9 ‘ 8 ‘

D=Setup Data

EPOBCL ‘7‘6‘5‘4‘3‘2‘1‘0‘

— Interrupt Control ————

USBIRQ‘ ‘A‘ ‘ ‘ ‘T‘ ‘D‘ SUDPTRH‘15‘14‘13‘12‘11‘10‘9‘8‘

Interrupt Request: SUDPTRL ‘ = ‘ 2 ‘ 5 ‘ A ‘ 3 ‘ 2 ‘ 1 ‘ 0 ‘

A=EP0 ACK
T=Setup Token suoptReTL | [[| | [[[a]

D=Setup Data

A=SDP Auto

These registers augment those associated with normal bulk transfers, which are described in the Access to Endpoint
Buffers chapter on page 93.

Two bits in the USBIE (USB Interrupt Enable) register enable the SETUP Token (SUTOK) and SETUP Data Available inter-
rupts. The actual interrupt request bits are in the USBIRQ (USB Interrupt Requests) register.

The MoBL-USB FX2LP18 transfers the eight SETUP bytes into eight bytes of RAM at SETUPDAT. A 16 bit pointer, SUDP-
TRH:L, provides hardware assistance for handling CONTROL IN transfers, in particular the Get Descriptor requests
described later in this chapter.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 35

Exhibit 2033 - Page 35 of 346

S/ CYPRES

RFORM

Endpoint Zero

2.3 USB Requests

The Universal Serial Bus Specification Version 2.0, Chapter 9, USB Device Framework defines a set of Standard Device
Requests. When the firmware is in control of endpoint zero (RENUM=1), the MoBL-USB FX2LP18 handles only one of these
requests (Set Address) automatically; it relies on the firmware to support all of the others. The firmware acts on device
requests by decoding the eight bytes contained in the SETUP packet and available at SETUPDAT. Table 2-1 defines these
eight bytes.

Table 2-1. The Eight Bytes in a USB SETUP Packet

Byte | Field Meaning
0 bmRequestType Request Type, Direction, and Recipient.
1 bRequest The actual request (see Table 2-2).
2 wValueL 16-bit value, varies according to bRequest.
3 wValueH
4 windexL 16-bit field, varies according to bRequest.
5 windexH
6 wLengthL Number of bytes to transfer if there is a data phase.
7 wlLengthH

The Byte column in the previous table shows the byte offset from SETUPDAT. The Field column shows the different bytes in
the request, where the ‘bm’ prefix means bit-map, ‘b’ means byte [8 bits, 0-255], and ‘w’ means word [16 bits, 0-65535].

Table 2-2 shows the different values defined for bRequest, and how the firmware should respond to each request. The
remainder of this chapter describes each of the requests in Table 2-2 in detail.

Note Table 2-2 applies when RENUM=1, signifying that the firmware, rather than the MoBL-USB FX2LP18 hardware, han-
dles device requests.

Table 2-2. How the Firmware Handles USB Device Requests (RENUM=1)

bRequest Name MoBL-USB FX2LP18 Action Firmware Response
0x00 Get Status SUDAV Interrupt Supply RemWU, SelfPwr or Stall Bits
0x01 Clear Feature SUDAV Interrupt Clear RemWU, SelfPwr or Stall Bits
0x02 (reserved) none Stall EPO
0x03 Set Feature SUDAV Interrupt Set RemWU, SelfPwr or Stall Bits
0x04 (reserved) none Stall EPO
0x05 Set Address Update FNADDR Register none
0x06 Get Descriptor SUDAV Interrupt Supply table data over EPO-IN
0x07 Set Descriptor SUDAV Interrupt Application dependent
0x08 Get Configuration SUDAV Interrupt Send current configuration number
0x09 Set Configuration SUDAV Interrupt Change current configuration
O0x0A Get Interface SUDAV Interrupt Supply alternate setting No. from RAM
0x0B Set Interface SUDAV Interrupt Change alternate setting No.
0x0C Sync Frame SUDAV Interrupt Supply a frame number over EPO-IN
Vendor Requests
0xAO (Firmware Load) Upload / Download on-chip RAM ---
O0xAl - OXAF SUDAV Interrupt Reserved by Cypress Semiconductor
All except OXAO SUDAV Interrupt Application dependent

In the ReNumerated condition (RENUM=1), the MoBL-USB FX2LP18 passes all USB requests except Set Address to the
firmware via the SUDAV interrupt.

The MoBL-USB FX2LP18 implements one vendor specific request: ‘Firmware Load,” OXAO (the bRequest value of 0xAO is
valid only if byte 0 of the request, bmRequestType, is also ‘x10xxxxx," indicating a vendor-specific request.) The OxAQ firm-
ware load request may be used even after ReNumeration, but is only valid while the 8051 is held in reset. If your application

36 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 36 of 346

= it

CYPHF.%L? Endpoint Zero

PERFC

implements vendor-specific USB requests, and you do not wish to use the Firmware Load feature, be sure to refrain from
using the bRequest value 0xAO for your custom requests. The Firmware Load feature is fully described in the Enumeration
and ReNumeration™ chapter on page 51.

To avoid future incompatibilities, vendor requests 0XxA0-OXAF are reserved by Cypress Semiconductor.

2.3.1 Get Status

The USB Specification defines three USB status requests. A fourth request, to an interface, is declared in the specification as
‘reserved.’ The four status requests are:

m Remote Wakeup (Device request)

m Self-Powered (Device request)

m Stall (Endpoint request)

m Interface request (reserved)

The MoBL-USB FX2LP18 automatically asserts the SUDAV interrupt to tell the firmware to decode the SETUP packet and
supply the appropriate status information.

Figure 2-4. Data Flow for a Get_Status Request

SETUP Stage

S D
- | Boyees A SETUPDAT
T T Setup © 8 RAM
u A Data K bytes
P 0
Token Packet Data Packet H/S Pkt
SUDAV
Interrupt
DATA Stage

D
| A A

T C
N A K

1
Token Packet Data Packe H/S Pkt

INOBUF
64-byte
STATUS Stage Buffer

D
(e} A A
u T c INOBC
T A K

1

Token Packet) \Data Pkt \H/S Pkt

As Figure 2-4 illustrates, the firmware responds to the SUDAV interrupt by decoding the eight bytes the MoBL-USB FX2LP18
has copied into RAM at SETUPDAT. The firmware answers a Get Status request (bRequest=0) by loading two bytes into the
EPOBUF buffer and loading the byte count register EPOBCH:L with the value 0x0002. The MoBL-USB FX2LP18 then trans-
mits these two bytes in response to an IN token. Finally, the firmware clears the HSNAK bit (by writing 1 to it), which instructs
the MoBL-USB FX2LP18 to ACK the status stage of the transfer.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 37

Exhibit 2033 - Page 37 of 346

‘im

Endpoint Zero == C‘J{PRF%%

RFC

if

(1

The following tables show the eight SETUP bytes for Get Status Requests.

Table 2-3. Get Status-Device (Remote Wakeup and Self-Powered Bits)

Byte Field Value Meaning Firmware Response
0 bmRequestType 0x80 IN, Device
1 bRequest 0x00 ‘Get Status’ Load two bytes into EPOBUF:
2 wValueL 0x00
3 wValueH 0x00 Byte 0: bit 0 = Self-Powered
4 windexL 0x00 : bit 1 = Remote Wakeup
5 windexH 0x00 Byte 1: zero
6 wLengthL 0x02 Two bytes requested
7 wLengthH 0x00

Get Status-Device queries the state of two bits, ‘Remote Wakeup’ and ‘Self-Powered’. The Remote Wakeup bit indicates
whether or not the device is currently enabled to request remote wakeup (remote wakeup is explained in the Power
Management chapter on page 83). The Self-Powered bit indicates whether or not the device is self-powered (as opposed to
USB bus-powered).

The firmware returns these two bits by loading two bytes into EPOBUF, then loading a byte count of 0x0002 into EPOBCH:L.

Table 2-4. Get Status-Endpoint (Stall Bits)

Byte Field Value Meaning Firmware Response
0 bmRequestType 0x82 IN, Endpoint Load two bytes into EPOBUF:
1 bRequest 0x00 ‘Get Status’ Byte 0: bit 0 = Stall Bit for EP(n)
2 wValueL 0x00 Byte 1: zero
3 wValueH 0x00
4 windexL EP 0x00-0x08: OUTO-OUT8
5 windexH 0x00 0x80-0x88: INO-IN8
6 wLengthL 0x02 Two bytes requested
7 wLengthH 0x00

Each endpoint has a STALL bit in its EPXCS register. If this bit is set, any request to the endpoint returns a STALL handshake
rather than ACK or NAK. The Get Status-Endpoint request returns the STALL state for the endpoint indicated in byte 4 of the
request. Note that bit 7 of the endpoint number EP (byte 4) specifies direction (0 = OUT, 1 = IN).

Endpoint zero is a CONTROL endpoint, which by USB definition is bi-directional. Therefore, it has only one stall bit.

About STALL

The USB STALL handshake indicates that something unexpected has happened. For instance, if the host requests an
invalid alternate setting or attempts to send data to a non-existent endpoint, the device responds with a STALL handshake
over endpoint zero instead of ACK or NAK.

Stalls are defined for all endpoint types except ISOCHRONOUS, which does not employ handshakes. Every MoBL-USB
FX2LP18 bulk endpoint has its own stall bit. The firmware sets the stall condition for an endpoint by setting the STALL bit in
the endpoint's EPXCS register. The host tells the firmware to set or clear the stall condition for an endpoint using the Set
Feature/Stall and Clear Feature/Stall Requests.

The device might decide to set the stall condition on its own, too. In a routine that handles endpoint zero device requests, for
example, when an undefined or non-supported request is decoded, the firmware should stall EPO.

Once the firmware stalls an endpoint, it should not remove the stall until the host issues a Clear Feature/Stall Request. An
exception to this rule is endpoint O, which reports a stall condition only for the current transaction and then automatically
clears the stall condition. This prevents endpoint 0, the default CONTROL endpoint, from locking out device requests.

38 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 38 of 346

%!EYPRF‘S Endpoint Zero

PERFORM

Table 2-5. Get Status-Interface

Byte Field Value Meaning Firmware Response
0 bmRequestType 0x81 IN, Endpoint Load two bytes into EPOBUF:
1 bRequest 0x00 ‘Get Status’ Byte 0: zero
2 wValueL 0x00 Byte 1: zero
3 wValueH 0x00
4 windexL 0x00
5 windexH 0x00
6 wLengthL 0x02 Two bytes requested
7 wLengthH 0x00

Get Status/Interface is easy: the firmware returns two zero bytes through EPOBUF and clears the HSNAK bit (by writing 1 to
it). The requested bytes are shown as ‘Reserved (reset to zero)' in the USB Specification.

2.3.2 Set Feature

Set Feature is used to enable remote wakeup, stall an endpoint, or put the device into a specific test mode. No data stage is
required.

Table 2-6. Set Feature-Device (Set Remote Wakeup Bit)

Byte Field Value Meaning Firmware Response
0 bmRequestType 0x00 OUT, Device Set the Remote Wakeup Bit
1 bRequest 0x03 ‘Set Feature’
2 wValueL 0x01 Feature Selector:
3 wValueH 0x00 Remote Wakeup
4 windexL 0x00
5 windexH 0x00
6 wLengthL 0x00
7 wLengthH 0x00

This Set Feature/Device request sets the remote wakeup bit. This is the same bit reported back to the host as a result of a
Get Status-Device request (Table 2-3 on page 38). The host uses this bit to enable or disable remote wakeup by the device.

Table 2-7. Set Feature-Device (Set TEST_MODE Feature)

Byte Field Value Meaning Firmware Response
0 bmRequestType 0x00 OUT, Device ACK handshake phase
1 bRequest 0x03 ‘Set Feature’
2 wValueL 0x02 Feature Selector:
3 wValueH 0x00 TEST_MODE
4 windexL 0x00
5 windexH oxnn nn = specific test mode
6 wLengthL 0x00
7 wLengthH 0x00

This Set Feature/Device request sets the TEST_MODE feature. This request puts the device into a specific test mode, and
power to the device must be cycled in order to exit test mode. The MoBL-USB FX2LP18 SIE handles this request automati-
cally, but the firmware is responsible for acknowledging the handshake phase.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 39

Exhibit 2033 - Page 39 of 346

‘im

=5 CYPRESS

RFC

if

(1

Endpoint Zero

Table 2-8. Set Feature-Endpoint (Stall)

Byte Field Value Meaning Firmware Response
0 bmRequestType 0x02 OUT, Endpoint Set the STALL bit for the
1 bRequest 0x03 ‘Set Feature’ indicated endpoint:.
2 wValueL 0x00 Feature Selector:
3 wValueH 0x00 STALL
4 windexL EP 0x00-0x08: OUT0-OUT8
5 windexH 0x00 0x80-0x88: INO-IN8
6 wLengthL 0x00
7 wLengthH 0x00

The only Set Feature/Endpoint request presently defined in the USB Specification is to stall an endpoint. The firmware should
respond to this request by setting the STALL bit in the EPXCS register for the indicated endpoint EP (byte 4 of the request).
The firmware can either stall an endpoint on its own or in response to the device request. Endpoint stalls are cleared by the
host Clear Feature/Stall request.

The firmware should respond to the Set Feature/Stall request by performing the following tasks:

1. Setthe STALL bit in the indicated endpoint’'s EPXCS register.

2. Reset the data toggle for the indicated endpoint.

3. Restore the stalled endpoint to its default condition, ready to send or accept data after the stall condition is removed by the
host (via a Clear Feature/Stall request). For EP1 IN, for example, firmware should clear the BUSY bit in the EP1CS regis-
ter; for EP10UT, firmware should load any value into the EP1 byte-count register.

4. Clear the HSNAK bit in the EPOCS register (by writing 1 to it) to terminate the Set Feature/Stall CONTROL transfer.

Step 3 is also required whenever the host sends a ‘Set Interface’ request.

Data Toggles
The MoBL-USB FX2LP18 automatically maintains the endpoint toggle bits to ensure data integrity for USB transfers. Firm-
ware should directly manipulate these bits only for a very limited set of circumstances:

m Set Feature/Stall
m Set Configuration
m Set Interface

40 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 40 of 346

Eg‘!&j{pﬁﬁ_g S Endpoint Zero
2.3.3 Clear Feature

Clear Feature is used to disable remote wakeup or to clear a stalled endpoint.

Table 2-9. Clear Feature-Device (Clear Remote Wakeup Bit)

Byte Field Value Meaning Firmware Response
0 bmRequestType 0x00 OUT, Device Clear the remote wakeup bit.
1 bRequest 0x01 ‘Clear Feature’
2 wValueL 0x01 Feature Selector:
3 wValueH 0x00 Remote Wakeup
4 windexL 0x00
5 windexH 0x00
6 wLengthL 0x00
7 wLengthH 0x00

Table 2-10. Clear Feature-Endpoint (Clear Stall)

Byte Field Value Meaning Firmware Response
0 bmRequestType 0x02 OUT, Endpoint Clear the STALL bit for the
1 bRequest 0x01 ‘Clear Feature’ indicated endpoint.
2 wValueL 0x00 Feature Selector:
3 wValueH 0x00 STALL
4 windexL EP 0x00-0x08: OUT0-OUT8
5 windexH 0x00 0x80-0x88: INO-IN8
6 wLengthL 0x00
7 wLengthH 0x00

If the USB device supports remote wakeup (reported in its descriptor table when the device enumerates), the Clear Feature/
Remote Wakeup request disables the wakeup capability.

The Clear Feature/Stall removes the stall condition from an endpoint. The firmware should respond by clearing the STALL bit
in the indicated endpoint’'s EPXCS register.

234 Get Descriptor

During enumeration, the host queries a USB device to learn its capabilities and requirements using Get Descriptor requests.
Using tables of descriptors, the device sends back (over EPO-IN) such information as what device driver to load, how many
endpoints it has, its different configurations, alternate settings it may use, and informative text strings about the device.

The MoBL-USB FX2LP18 provides a special Setup Data Pointer to simplify firmware service for Get_Descriptor requests.
The firmware loads this 16 bit pointer with the starting address of the requested descriptor, clears the HSNAK bit (by writing 1
to it), and the MoBL-USB FX2LP18 transfers the entire descriptor.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 41

Exhibit 2033 - Page 41 of 346

Endpoint Zero

Figure 2-5. Using Setup Data Pointer (SUDPTR) for Get_Descriptor Requests

<+«—SETUP Stage——»

— e

</ CYPRESS

S allell ¢ D C
= N a SETUPDAT
U DI b| ¢ A E?;tjzf 1 K 8 RAM
bytes
p R|| P|| 5 0 6 yt
Token Packet Data Packet H/S Pkt
T;SUDAV Interrupt
< DATA Stage >
AllE|lC 2 g N AllElC 2 (r;; A
I || D|| N|| R T Payload c c I || D|| N|| R T Payload c c
N|| D|| D|| C Data N|| D|| D|| C Data
rl[P||5]||[A L K rl[P| 5[A L K
1 6 0 6
Token Packet Data Packet \ H/S Pkt Token Packet Data Pafket /S Pkt
EPOIN EPOIN
Interrupt Interrupt
D|| C
oll Al Bl Sl] a R A ™= 64 bytes
D|| N|| R
u T||C C
D|| D|| C
T rll pll 5 Alll K
1(/6 27 bytes/

Data Pky \H/S Pk

Token Packet

Figure 2-5 illustrates use of the Setup Data Pointer. This pointer is implemented as two registers, SUDPTRH and SUDPTRL.
The base address of SUDPTRH:L must be word-aligned. Most Get Descriptor requests involve transferring more data than
fits into one packet. In the Figure 2-5 example, the descriptor data consists of 91 bytes.

The CONTROL transaction starts in the usual way, with the MoBL-USB FX2LP18 automatically transferring the eight bytes
from the SETUP packet into RAM at SETUPDAT, then asserting the SUDAV interrupt request. The firmware decodes the Get
Descriptor request, and responds by clearing the HSNAK bit (by writing 1 to it), and then loading the SUDPTRH:L registers
with the address of the requested descriptor. Loading the SUDPTRL register causes the MoBL-USB FX2LP18 to automati-
cally respond to two IN transfers with 64 bytes and 27 bytes of data using SUDPTRH:L as a base address, and then to

respond to the STATUS stage with an ACK.

The usual endpoint-zero interrupts SUDAV and EPOIN remain active during this automated transfer, so firmware will normally
disables these interrupts because the transfer requires no firmware intervention.

Three types of descriptors are defined: Device, Configuration, and String.

42 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 42 of 346

= ¢ CYPHF%% Endpoint Zero

PERFC

it

iy,

2341 Get Descriptor-Device

Table 2-11. Get Descriptor-Device

Byte Field Value Meaning Firmware Response
0 bmRequestType 0x80 IN, Device Set SUDPTR H:L to start of
1 bRequest 0x06 ‘Get Descriptor’ Device Descriptor table in RAM.
2 wValueL 0x00
3 wValueH 0x01 Descriptor Type: Device
4 windexL 0x00
5 windexH 0x00
6 wLengthL LenL
7 wLengthH LenH

As illustrated in Figure 2-5 on page 42, the firmware loads the 2 byte SUDPTRH:L with the starting address of the Device
Descriptor table. The start address needs to be word-aligned. When SUDPTRL is loaded, the MoBL-USB FX2LP18 automat-
ically performs the following operations:

1. Reads the requested number of bytes for the transfer from bytes 6 and 7 of the SETUP packet (LenL and LenH in
Table 2-11).

2. Reads the requested descriptor’s length field to determine the actual descriptor length.

Sends the smaller of (a) the requested number of bytes or (b) the actual number of bytes in the descriptor, over EPOBUF
using the Setup Data Pointer as a data table index. This constitutes the second phase of the three-phase CONTROL
transfer. The MoBL-USB FX2LP18 packetizes the data into multiple data transfers as necessary.

4. Automatically checks for errors and re-transmits data packets if necessary.

5. Responds to the third (handshake) phase of the CONTROL transfer to terminate the operation.
The Setup Data Pointer can be used for any Get Descriptor request (for example, Get Descriptor-String).

It can also be used for vendor-specific requests. If bytes 6 and 7 of those requests contain the number of bytes in the transfer
(see Step 1, above), the Setup Data Pointer works automatically, as it does for Get Descriptor requests; if bytes 6 and 7 do
not contain the length of the transfer, the length can be loaded explicitly (see the SDPAUTO paragraphs of section 8.7 The
Setup Data Pointer on page 104).

It is possible for the firmware to do manual CONTROL transfers by directly loading the EPOBUF buffer with the various pack-
ets and keeping track of which SETUP phase is in effect. This is a good USB training exercise, but not necessary due to the
hardware support built into the MoBL-USB FX2LP18 for CONTROL transfers.

For DATA stage transfers of fewer than 64 bytes, moving the data into the EPOBUF buffer and then loading the EPOBCH:L
registers with the byte count would be equivalent to loading the Setup Data Pointer. However, this would waste bandwidth
because it requires byte transfers into the EPOBUF Buffer; using the Setup Data Pointer does not.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 43

Exhibit 2033 - Page 43 of 346

Endpoint Zero %!EYPRF,S

PERFORM

2.34.2 Get Descriptor-Device Qualifier

Table 2-12. Get Descriptor-Device Qualifier

Byte Field Value Meaning Firmware Response
0 bmRequestType 0x80 IN, Device Set SUDPTR H:L to start of
1 bRequest 0x06 ‘Get Descriptor’ the appropriate Device Qualifier
2 wValueL 0x00 Descriptor table in RAM.
3 wValueH 0x06 Descriptor Type: Device Qualifier
4 windexL 0x00
5 windexH 0x00
6 wlLengthL LenL
7 wLengthH LenH

The Device Qualifier descriptor is used only by devices capable of high-speed (480 Mbps) operation; it describes information
about the device that would change if the device were operating at the other speed (for example, if the device is currently
operating at high speed, the device qualifier returns information about how it would operate at full-speed and vice-versa).

Device Qualifier descriptors are handled just like Device descriptors; the firmware loads the appropriate descriptor address
(must be word-aligned) into SUDPTRH:L, then the MoBL-USB FX2LP18 does the rest.

2.3.4.3 Get Descriptor-Configuration

Table 2-13. Get Descriptor-Configuration

Byte Field Value Meaning Firmware Response
0 bmRequestType 0x80 IN, Device Set SUDPTR H:L to start of
1 bRequest 0x06 ‘Get Descriptor’ Configuration Descriptor table in
2 wValueL CFG Configuration Number RAM
3 wValueH 0x02 Descriptor Type: Configuration
4 windexL 0x00
5 windexH 0x00
6 wLengthL LenL
7 wLengthH LenH

2.3.4.4 Get Descriptor-String

Table 2-14. Get Descriptor-String

Byte Field Value Meaning Firmware Response
0 bmRequestType 0x80 IN, Device Set SUDPTR H:L to start of
1 bRequest 0x06 ‘Get Descriptor’ String Descriptor table in
2 wValueL STR String Number RAM.
3 wValueH 0x03 Descriptor Type: String
4 windexL 0x00 (Language ID L)
5 windexH 0x00 (Language ID H)
6 wLengthL LenL
7 wLengthH LenH

Configuration and String descriptors are handled similarly to Device descriptors. The firmware reads byte 2 of the SETUP
data to determine which configuration or string is being requested, then loads the corresponding descriptor address (must be
word-aligned) into SUDPTRH:L. The MoBL-USB FX2LP18 does the rest.

44 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 44 of 346

S7 CvrRESS

2.3.45

PERFORM

Get Descriptor-Other Speed Configuration

Table 2-15. Get Descriptor-Other Speed Configuration

Byte Field Value Meaning Firmware Response
0 bmRequestType 0x80 IN, Device Set SUDPTR H:L to start of
1 bRequest 0x06 ‘Get Descriptor’ Other Speed Configuration
2 wValueL CFG (c:);ﬁirglsjirjaet?c?n Number Descriptor table in RAM.
3 wValueH 0x07 E;jrcartiip(;rc])r Type: Other Speed Con-
4 windexL 0x00 (Language ID L)
5 windexH 0x00 (Language ID H)
6 wLengthL LenL
7 wLengthH LenH

Endpoint Zero

The Other Speed Configuration descriptor is used only by devices capable of high-speed (480 Mbps) operation; it describes
the configurations of the device if it were operating at the other speed (for example, if the device is currently operating at high

speed, the Other Speed Configuration returns information about full-speed configuration and vice-versa).

Other Speed Configuration descriptors are handled just like Configuration descriptors; the firmware loads the appropriate

descriptor address (must be word-aligned) into SUDPTRH:L, then the MoBL-USB FX2LP18 does the rest.

2.3.5

Set Descriptor

Table 2-16. Set Descriptor-Device

Byte Field Value Meaning Firmware Response
0 bmRequestType 0x00 OUT, Device Read device descriptor data over
1 bRequest 0x07 ‘Set Descriptor’ EPOBUF.

2 wValueL 0x00
3 wValueH 0x01 Descriptor Type: Device
4 windexL 0x00
5 windexH 0x00
6 wLengthL LenL
7 wLengthH LenH

Table 2-17. Set Descriptor-Configuration

Byte Field Value Meaning Firmware Response
0 bmRequestType 0x00 OUT, Device Read configuration descriptor
1 bRequest 0x07 ‘Set Descriptor’ data over EPOBUF.
2 wValueL 0x00
3 wValueH 0x02 Descriptor Type: Configuration
4 windexL 0x00
5 windexH 0x00
6 wLengthL LenL
7 wLengthH LenH

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 45 of 346

45

W’“ll

"ﬁw RESS

PERFC

Endpoint Zero — F

Table 2-18. Set Descriptor-String

Byte Field Value Meaning Firmware Response
0 bmRequestType 0x00 IN, Device Read string descriptor data over
1 bRequest 0x07 ‘Set Descriptor’ EPOBUF.

2 wValueL 0x00 String Number

3 wValueH 0x03 Descriptor Type: String
4 windexL 0x00 (Language ID L)

5 windexH 0x00 (Language ID H)

6 wLengthL LenL

7 wLengthH LenH

The firmware handles Set Descriptor requests by clearing the HSNAK bit (by writing 1 to it), then reading descriptor data
directly from the EPOBUF buffer. The MoBL-USB FX2LP18 keeps track of the number of byes transferred from the host into
EPOBUF, and compares this number with the length field in bytes 6 and 7. When the proper number of bytes has been trans-
ferred, the MoBL-USB FX2LP18 automatically responds to the STATUS phase, which is the third and final stage of the CON-
TROL transfer.

Note The firmware controls the flow of data in the Data Stage of a Control Transfer. After the firmware processes each OUT
packet, it writes any value into the endpoint’s byte count register to re-arm the endpoint.

Configurations, Interfaces, and Alternate Settings

A USB device has one or more configurations. Only

one configuration is active at any time. -
Device

A configuration has one or more interfaces, all of which

are concurrently active. Multiple interfaces allow different

host-side device drivers to be associated with different

portions of a USB device.]]
_Conflg 1 Config 2 One at a time
Each interface has one or more alternate settings. High Power Low Power
Each alternate setting has a collection of one or more
endpoints. ‘//\
This structure is a software model; the MoBL-USB
FX2LP18 takes no action when these settings change. |né%ffsgiﬂ 0 | | |nterface 1 | | interface 2 'me(;;:ﬂ
However, the firmware must re-initialize endpoints and control audio video storage
reset the data toggle when the host changes configura-
tions or interfaces alternate settings. / \
As far as the firmware is concerned, a ‘configuration’ is Alt Setting Alt Setting Alt Setting '
simply a byte variable that indicates the current setting. 0 1 3 One at atime
The host issues a ‘Set Configuration’ request to select a i |
configuration, and a ‘Get Configuration’ request to deter- @ @
mine the current configuration.
46 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 46 of 346

S/ CYPRES

2351

Table 2-19. Set Configuration

RFORM

Set Configuration

Byte Field Value Meaning Firmware Response
0 bmRequestType 0x00 OUT, Device Read and store CFG, change
1 bRequest 0x09 ‘Set Configuration’ configurations in firmware.
2 wValueL CFG Configuration Number
3 wValueH 0x00
4 windexL 0x00
5 windexH 0x00
6 wLengthL 0x00
7 wLengthH 0x00

Endpoint Zero

When the host issues the ‘Set Configuration’ request, the firmware saves the configuration number (byte 2, CFG, in
Table 2-19), performs any internal operations necessary to support the configuration, and finally clears the HSNAK bit (by
writing 1 to it) to terminate the ‘Set Configuration’ CONTROL transfer.

Note After setting a configuration, the host issues Set Interface commands to set up the various interfaces contained in the

configuration.
2.3.6 Get Configuration
Table 2-20. Get Configuration
Byte Field Value Meaning Firmware Response
0 bmRequestType 0x80 IN, Device Send CFG over EPO after
1 bRequest 0x08 ‘Get Configuration’ re-configuring.
2 wValueL 0x00
3 wValueH 0x00
4 windexL 0x00
5 windexH 0x00
6 wLengthL 1 LenL
7 wLengthH 0 LenH

When the host issues the ‘Get Configuration’ request, the firmware returns the current configuration number. It loads the con-
figuration number into EPOBUF, loads a byte count of one into EPOBCH:L, and finally clears the HSHAK bit (by writing 1 to it)
to terminate the ‘Set Configuration’ CONTROL transfer.

2.3.7

This confusingly-named USB command actually sets alternate settings for a specified interface.

Set Interface

USB devices can have multiple concurrent interfaces. For example, a device may have an audio system that supports differ-
ent sample rates, and a graphic control panel that supports different languages. Each interface has a collection of endpoints.
Except for endpoint 0, which each interface uses for device control, endpoints may not be shared between interfaces.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 47 of 346

47

‘im

Endpoint Zero == C‘J{PRF%%

RFC

if

(1

Interfaces may report alternate settings in their descriptors. For example, the audio interface may have setting 0, 1, and 2 for
8-kHz, 22-kHz, and 44-kHz sample rates. The panel interface may have settings ‘0’ and ‘1’ for English and Spanish. The Set/
Get Interface requests select among the various alternate settings in an interface.

Table 2-21. Set Interface (Actually, Set Alternate Setting #AS for Interface #IF)

Byte Field Value Meaning Firmware Response
0 bmRequestType 0x00 OUT, Device Read and store byte 2 (AS) for
1 bRequest 0x0B ‘Set Interface’ Interface #IF, change setting for
2 wValueL AS Alternate Setting Number Interface #IF in firmware.

3 wValueH 0x00
4 windexL IF Interface Number
5 windexH 0x00
6 wLengthL 0x00
7 wLengthH 0x00

The firmware should respond to a Set Interface request by performing the following steps:
1. Perform the internal operation requested (such as adjusting a sampling rate).
2. Reset the data toggles for every endpoint in the interface.

3. Restore the endpoints to their default conditions, ready to send or accept data. For EP1 IN, for example, firmware should
clear the BUSY bit in the EP1CS register; for EP1OUT, firmware should load any value into the EP1 byte-count register.

4. Clear the HSNAK bit (by writing 1 to it) to terminate the Set Interface CONTROL transfer.

2.3.8 Get Interface

Table 2-22. Get Interface (Actually, Get Alternate Setting #AS for interface #IF)

Byte Field Value Meaning Firmware Response
0 bmRequestType 0x81 IN, Device Send AS for Interface #IF over
1 bRequest 0x0A ‘Get Interface’ EPO.

2 wValueL 0x00

3 wValueH 0x00

4 windexL IF Interface Number
5 windexH 0x00

6 wLengthL 1 LenL

7 wLengthH 0 LenH

When the host issues the Get Interface request, the firmware simply returns the alternate setting for the requested interface
IF and clears the HSNAK bit (by writing ‘1’ to it).

2.3.9 Set Address

When a USB device is first plugged in, it responds to device address 0 until the host assigns it a unique address using the Set
Address request. The MoBL-USB FX2LP18 copies this device address into the FNADDR (Function Address) register, then
subsequently responds only to requests to this address. This address is in effect until the USB device is unplugged, the host
issues a USB Reset, or the host powers down.

The FNADDR register is read only. Whenever the MoBL-USB FX2LP18 ReNumerates™ (see Enumeration and ReNumera-
tion™, on page 51), it automatically resets FNADDR to zero, allowing the device to come back as new.

A MoBL-USB FX2LP18 program does not need to know the device address, because the MoBL-USB FX2LP18 automatically
responds only to the host-assigned FNADDR value. The device address is readable only for debug/diagnostic purposes.

48 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 48 of 346

‘im

= C\,-(.PRF'%% Endpoint Zero

RFC

i

(1

2.3.10 Sync Frame

Table 2-23. Sync Frame

Byte Field Value Meaning Firmware Response
0 bmRequestType 0x82 IN, Endpoint Send a frame number over EPO
1 bRequest 0x0C ‘Sync Frame’ to synchronize endpoint #EP
2 wValueL 0x00
3 wValueH 0x00
4 windexL EP Endpoint number
5 windexH 0x00
6 wLengthL 2 LenL
7 wLengthH 0 LenH

The ‘Sync Frame’ request is used to establish a marker in time so the host and USB device can synchronize multi-frame
transfers over isochronous endpoints.

Suppose an isochronous transmission consists of a repeating sequence of five 300 byte packets transmitted from host to
device over EP8-OUT. Both host and device maintain sequence counters that count repeatedly from 1 to 5 to keep track of
the packets inside a transmission. To start up in sync, both host and device need to reset their counts to ‘0’ at the same time
(in the same frame).

To get in sync, the host issues the Sync Frame request with EP=EP8OUT (0x08). The firmware responds by loading EPOBUF
with a two byte frame count for some future time; for example, the current frame plus 20. This marks frame ‘current+20’ as the
sync frame, during which both sides initialize their sequence counters to ‘0.” The current frame count is always available in the
USBFRAMEL and USBFRAMEH registers.

Multiple isochronous endpoints can be synchronized in this manner; the firmware can keep a separate internal sequence
count for each endpoint.

About USB Frames

In full-speed mode (12 Mbps), the USB host issues an SOF (Start Of Frame) packet once every millisecond. Every SOF
packet contains an 11-bit (mod-2048) frame number. The firmware services all isochronous transfers at SOF time, using a
single SOF interrupt request and vector. If the MoBL-USB FX2LP18 detects a missing or garbled SOF packet, it can use an
internal counter to generate the SOF interrupt automatically.

In high-speed (480 Mbps) mode, each frame is divided into eight 125-microsecond micro-frames. Although the frame
counter still increments only once per frame, the host issues an SOF every microframe. The host and device always syn-
chronize on the zero-th microframe of the frame specified in the device’s response to the Sync Frame request; there’s no
mechanism for synchronizing on any other microframe.

2.3.11 Firmware Load

The USB endpoint-zero protocol provides a mechanism for mixing vendor-specific requests with standard device requests.
Bits 6:5 of the bmRequestType field are set to 00 for a standard device request and to 10 for a vendor request.

Table 2-24. Firmware Download

Byte Field Value Meaning Firmware Response

0 bmRequestType 0x40 Vendor Request, OUT None required.
1 bRequest 0xA0 ‘Firmware Load’

2 wValueL AddrL Starting address

3 wValueH AddrH

4 windexL 0x00

5 windexH 0x00

6 wLengthL LenL Number of bytes

7 wLengthH LenH

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 49

Exhibit 2033 - Page 49 of 346

Endpoint Zero

Table 2-25. Firmware Upload

‘im

=5 CYPRESS

RFC

if

(1

Byte Field Value Meaning Firmware Response
0 bmRequestType 0xCO Vendor Request, IN None Required.
1 bRequest 0xAO ‘Firmware Load’
2 wValueL AddrL Starting address
3 wValueH AddrH
4 windexL 0x00
5 windexH 0x00
6 wLengthL LenL Number of Bytes
7 wLengthH LenH

The MoBL-USB FX2LP18 responds to two endpoint zero vendor requests, RAM Download and RAM Upload. These requests
are active whether RENUM=0 or RENUM=1, but can only occur while the 8051 is held in reset. RAM Uploads can only occur
on word boundaries (that is, the start address must be evenly divisible by 2). The same restriction does not apply to RAM
Downloads.

Because bit 7 of the first byte of the SETUP packet specifies direction, only one bRequest value (0xA0) is required for the
upload and download requests. These RAM load commands are available to any USB device that uses the MoBL-USB
FX2LP18 chip.

A host loader program must write 0x01 to the CPUCS register to put the MoBL-USB FX2LP18's CPU into RESET, load all or
part of the MoBL-USB FX2LP18'’s internal RAM with code, then reload the CPUCS register with 0 to take the CPU out of

RESET.

50

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 50 of 346

3. Enumeration and ReNumeration™

F— -

=—# CYPRESS

PERFORM

3.1 Introduction

The MoBL-USB FX2LP18'’s configuration is ‘soft: Code and data are stored in internal RAM, which can be loaded from the
host over the USB interface. MoBL-USB FX2LP18-based USB peripherals can operate without ROM, EPROM, or FLASH
memory, shortening production lead times and making firmware updates extremely simple.

To support this soft configuration, the MoBL-USB FX2LP18 is capable of enumerating as a USB device with minimal firm-
ware. This automatically-enumerated USB device (the Default USB Device) contains a set of interfaces and endpoints and

can accept firmware downloaded from the host. However, at a minimum, an I2C™ boot EEPROM is required (see “MoBL-
USB FX2LP18 Startup” on page 51 for more details).

Note For the MoBL-USB FX2LP18, two separate Default USB Devices actually exist, one for enumeration as a full-speed
(12 Mbps) device, and the other for enumeration as a high-speed (480 Mbps) device. The MoBL-USB FX2LP18 automatically
performs the speed-detect protocol and chooses the proper Default USB Device. The two sets of Default USB Device
descriptors are shown in Appendices A and B.

Once the Default USB Device enumerates and the host downloads firmware and descriptor tables to the MoBL-USB
FX2LP18, it then begins executing the downloaded code, which electrically simulates a physical disconnect/connect from the
USB and causes the MoBL-USB FX2LP18 to enumerate again as a second device, this time taking on the USB personality
defined by the downloaded code and descriptors. This patented secondary enumeration process is called ‘ReNumeration™’

A MoBL-USB FX2LP18 register bit called RENUM controls whether device requests over endpoint zero are handled by firm-
ware or automatically by the Default USB Device. When RENUM=0, the Default USB Device handles the requests automati-
cally; when RENUM=1, they must be handled by firmware.

3.2 MoBL-USB FX2LP18 Startup

During the power-up sequence, internal logic checks the 12C port for the connection of an EEPROM whose first byte is 0xC2.
If an EEPROM containing firmware is attached to the 12C bus, the firmware is automatically loaded from the EEPROM into
the MoBL-USB FX2LP18's on chip RAM, and then the CPU is taken out of reset to execute this boot-loaded code. In this
case, the VID / PID / DID values are encapsulated in the firmware; the RENUM bit is automatically set to ‘1’ to indicate that
the firmware, not the Default USB Device, handles device requests. The EEPROM must contain the value 0xC2 in its first
byte to indicate this mode to MoBL-USB FX2LP18, so this mode is called a ‘C2 Load. Note Although the MoBL-USB
FX2LP18 can perform C2 Loads from EEPROMSs as large as 64 kB, code can only be downloaded to the 16K of on chip
RAM.

It is important to note that the MoBL-USB FX2LP18 comes out of reset with the DISCON bit set. This means that the device is
effectively disconnected from the USB bus. Firmware is required to connect to USB. So the device will not enumerate without
an EEPROM (a C2 Load), to download firmware that at least connects the device to USB.

If no EEPROM is present on the 12C port, an external processor must emulate an 12C slave. The MoBL-USB FX2LP18 does
not enumerate using internally stored descriptors (that is, Cypress’ VID/PID/DID is not used for enumeration).

It is still possible to download firmware over USB once the initial C2 Load from EEPROM occurs, and the device is connected
to USB by clearing the DISCON bit and indicates that the Default USB Device will handle USB requests by clearing the
RENUM bit. In this case, the firmware loaded from the EEPROM can be as simple as a one line code to clear the DISCON bit
and RENUM bit in the USBCS register.

Section 3.8 MoBL-USB FX2LP18 Vendor Request for Firmware Load on page 56 describes the USB ‘Vendor Request’ that
the MoBL-USB FX2LP18 supports for code download and upload.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 51

Exhibit 2033 - Page 51 of 346

‘im

Enumeration and ReNumeration™ = 4 C‘J{PRF%%

RFC

if

(1

Note The Default USB Device is fully characterized in Appendices A and B, which list the built-in descriptor tables for full-
speed and high-speed enumeration, respectively. Studying these Appendices in conjunction with Tables 3-1 and 3-2 is an
excellent way to learn the structure of USB descriptors.

3.3 The Default USB Device

The Default USB Device consists of a single USB configuration containing one interface (interface 0) and alternate settings 0,
1, 2 and 3. The endpoints and MaxPacketSizes reported for this device are shown in Table 3-1 (full-speed) and Table 3-2
(high-speed). Note that alternate setting zero consumes no interrupt or isochronous bandwidth, as recommended by the USB
Specification.

Table 3-1. Default Full-speed Alternate Settings

Alternate Setting 0 1 2 8
ep0 64 64 64 64
eplout 0 64 bulk 64 int 64 int
eplin 0 64 bulk 64 int 64 int
ep2 0 64 bulk out (2x) 64 int out (2x) 64 iso out (2x)
ep4d 0 64 bulk out (2x) 64 bulk out (2x) 64 bulk out (2x)
ep6 0 64 bulk in (2x) 64 intin (2x) 64 iso in (2x)
ep8 0 64 bulk in (2x) 64 bulk in (2x) 64 bulk in (2x)

Note: ‘0’ means ‘not implemented,” ‘2x’ means double buffered.

Table 3-2. Default High-speed Alternate Settings

Alternate Setting 0 1 2 3
ep0 64 64 64 64
eplout 0 512 bulk 64 int 64 int
eplin 0 512 bulk 64 int 64 int
ep2 0 512 bulk out (2x) 512 int out (2x) 512 iso out (2x)
ep4d 0 512 bulk out (2x) 512 bulk out (2x) 512 bulk out (2x)
ep6 0 512 bulk in (2x) 512 intin (2x) 512 iso in (2x)
ep8 0 512 bulk in (2x) 512 bulk in (2x) 512 bulk in (2x)

Note: ‘0’ means ‘not implemented,” ‘2x’ means double buffered.

Note Although the physical size of the EP1 endpoint buffer is 64 bytes, it is reported as a 512-byte buffer for high-speed alter-
nate setting ‘1’. This maintains compatibility with the USB specification, which allows only 512-byte bulk endpoints. If you use
this default alternate setting, do not send/receive EP1 packets larger than 64 bytes.

52 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 52 of 346

=4 CPRES

RFORM

Enumeration and ReNumeration™

3.4 ‘C2' EEPROM Boot-load Data Format

This section describes the ‘C2' EEPROM boot-load format.

If, at power-on reset, the MoBL-USB FX2LP18 detects an EEPROM connected to its 12C with the value 0xC2 at address
zero, the MoBL-USB FX2LP18 loads the EEPROM data into on chip RAM. It also sets the RENUM bit to ‘1,’ causing device
requests to be handled by the firmware instead of the Default USB Device. The ‘C2 Load’ EEPROM data format is shown in
Table 3-3.

Table 3-3. ‘C2 Load’ Format

EEPROM Address Contents
0xC2

Vendor ID (VID) L
Vendor ID (VID) H
Product ID (PID) L
Product ID (PID) H
Device ID (DID) L

Device ID (DID) H

Configuration byte
Length H

Length L

Start Address H
Start Address L

O |lo|NjJo |ja|bd|w|N |- |O

[EnY
o

=
=

Data Block

Length H
Length L
Start Address H
Start Address L

Data Block

0x80
0x01
OXxE6
0x00
last 00000000

The first byte indicates a ‘C2 Load,” which instructs the MoBL-USB FX2LP18 to copy the EEPROM data into on chip RAM.
The MoBL-USB FX2LP18 reads the next six bytes (VID / PID / DID) even though they are not used by most C2 Load applica-
tions. The eighth byte (byte 7) is the configuration byte described in the previous section.

Note Bytes 1-6 of a C2 EEPROM can be loaded with VID / PID / DID bytes if it is desired at some point to run the firmware
with RENUM = 0 (for example, MoBL-USB FX2LP18 logic handles device requests), using the EEPROM VID / PID / DID

One or more data records follow, starting at EEPROM address 8. Each data record consists of a 10-bit Length field (0-1023)
which indicates the number of bytes in the following data block, a 14-bit Start Address (0-Ox3FFF) for the data block, and the
data block itself.

The last data record, which must always consist of a single-byte load of 0x00 to the CPUCS register at 0XE600, is marked
with a ‘1’ in the most-significant bit of the Length field. Only the least-significant bit (8051RES) of this byte is writable by the
download; that bit is set to zero to bring the CPU out of reset.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 53

Exhibit 2033 - Page 53 of 346

\

J CYPRESS

PERFORM

Enumeration and ReNumeration™ — -

(1

Note Serial EEPROM data can be loaded only into these three on chip RAM spaces:
m Program / Data RAM at 0x0000-0x3FFF

m Data RAM at OXEOOO-OXE1FF

m The CPUCS register at 0XE600 (only bit 0, 8051RES, is EEPROM-loadable).

General Purpose Use of the I12C Bus

The MoBL-USB FX2LP18’s 12C controller serves two purposes. First, as described in this chapter, it manages the serial
EEPROM interface that operates automatically at power-on to determine the enumeration method. Second, once the
CPU is up and running, firmware can access the 12C controller for general-purpose use. This makes a wide range of
standard 12C peripherals available to an MoBL-USB FX2LP18-based system.

Other 12C devices can be attached to the SCL and SDA lines as long as there is no address conflict with the serial
EEPROM described in this chapter. The Input/Output chapter on page 203 describes the general-purpose nature of the
12C interface.

3.5 EEPROM Configuration Byte

The configuration byte is valid for both EEPROM load formats (CO and C2) and has the following format:
Figure 3-1. EEPROM Configuration Byte

Configuration

b7

b6

b5

b4

b3

b2

bl

b0

DISCON

0

0

400 kHz

Bit

Name

Description

54

DISCON (USB Disconnect)

400KHz (12C bus speed)

The config byte of the .iic file must be changed so that the FX2 will start at full speed. The uVision
project file contains the following iic generation line:

c:\cypress\usb\bin\hex2bix -c 0x80 -i -f 0xC2 -o bulkloop.iic bulkloop.hex

This line sets bit 7 of the config byte with the “-c 0x80". Setting bit 7 prevents the FX2 from entering
high-speed mode on startup.

A USB hub or host detects attachment of a full-speed device by sensing a high level on the D+ wire.
A USB device provides this high level using a 1500-ohm resistor between D+ and 3.3V (the D+ line is
normally low, pulled down by a 15 K-ohm resistor in the hub or host). The 1500-ohm resistor is inter-
nal to the MoBL-USB FX2LP18.

The MoBL-USB FX2LP18 accomplishes ReNumeration by selectively driving or floating the 3.3V sup-
ply to its internal 1500-ohm resistor. When the supply is floated, the host no longer ‘sees’ the MoBL-
USB FX2LP18; it appears to have been disconnected from the USB. When the supply is then driven,
the MoBL-USB FX2LP18 appears to have been newly-connected to the USB. From the host’s point
of view, the MoBL-USB FX2LP18 can be disconnected and re-connected to the USB, without ever
physically disconnecting.

0 100 kHz

1 400 kHz

If 400KHZ=0, the 12C bus operates at approximately 100 kHz. If 400KHZ=1, the 12C bus operates at
approximately 400 kHz. This bit is copied to I2CTL.0, whose default value is 0, or 100 kHz. Once the
CPU is running, firmware can modify this bit.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 54 of 346

S/ CYPRES

RFORM

Enumeration and ReNumeration™

3.6 The RENUM Bit

A MoBL-USB FX2LP18 control bit called ‘RENUM’ (ReNumerated) determines whether USB device requests over endpoint
zero are handled by the Default USB Device or by firmware. At power-on reset, the RENUM bit (USBCS.1) is zero, indicating
that the Default USB Device will automatically handle USB device requests. Once firmware has been downloaded to the
MoBL-USB FX2LP18 and the CPU is running, it can set RENUM=1 so that subsequent device requests will be handled by the
downloaded firmware and descriptor tables. The Endpoint Zero chapter on page 33 describes how the firmware handles
device requests while RENUM=1.

Another Use for the Default USB Device

The Default USB Device is established at power-on to set up a USB device capable of downloading firmware into the
MoBL-USB FX2LP18's RAM. Another useful feature of the Default USB Device is that code can be written to support the
already-configured generic USB device. Before bringing the CPU out of reset, the MoBL-USB FX2LP18 automatically
enables certain endpoints and reports them to the host via descriptors. By utilizing the Default USB Device (for example,
by keeping RENUM=0), the firmware can, with very little code, perform meaningful USB transfers that use these pre-con-
figured endpoints. This accelerates the USB learning curve.

3.7 MoBL-USB FX2LP18 Response to Device Requests (RENUM=0)

Table 3-4 shows how the Default USB Device responds to endpoint zero device requests when RENUM=0.

Table 3-4. How the Default USB Device Handles EPO Requests When RENUM=0

bRequest Name MoBL-USB FX2LP18 Response
0x00 Get Status-Device Returns two zero bytes
0x00 Get Status-Endpoint Supplies EP Stall bit for indicated EP
0x00 Get Status-Interface Returns two zero bytes
0x01 Clear Feature-Device None
0x01 Clear Feature-Endpoint Clears Stall bit for indicated EP
0x02 (reserved) None
0x03 Set Feature-Device Sets TEST_MODE feature
0x03 Set Feature-Endpoint Sets Stall bit for indicated EP
0x04 (reserved) None
0x05 Set Address Updates FNADDR register
0x06 Get Descriptor Supplies internal table
0x07 Set Descriptor None
0x08 Get Configuration Returns internal value
0x09 Set Configuration Sets internal value
0x0A Get Interface Returns internal value (0-3)
0x0B Set Interface Sets internal value (0-3)
0x0C Sync Frame None
Vendor Requests
0xAO0 Firmware Load Upload/Download on chip RAM
0xA1-0xAF Reserved Reserved by Cypress Semiconductor
all other None
MoBL-USB™ TRM, Document # 001-11981 Rev. *B 55

Exhibit 2033 - Page 55 of 346

W’“ll

Enumeration and ReNumeration™ =/ CYFRF%Q

PERFC

A USB host enumerates by issuing Set Address, Get Descriptor, and Set Configuration (to 1) requests (the Set Address and
Get Descriptor requests are used only during enumeration). After enumeration, the Default USB Device will respond to the
following device requests from the host:

m Set or clear an endpoint stall (Set/Clear Feature-Endpoint)
Read the stall status for an endpoint (Get_Status-Endpoint)
Set/Read an 8-bit configuration number (Set/Get Configuration)
Set/Read a 2-bit interface alternate setting (Set/Get Interface)
Download or upload on chip RAM

3.8 MoBL-USB FX2LP18 Vendor Request for Firmware Load

Prior to ReNumeration, the host downloads data into the MoBL-USB FX2LP18'’s internal RAM. The host can access two on
chip RAM spaces — Program / Data RAM at 0x0000-0x3FFF and Data RAM at 0XEO00-OXE1FF — which it can download
or upload only when the CPU is held in reset. The host must write to the CPUCS register to put the CPU in or out of reset.
These two RAM spaces may also be boot-loaded by a ‘C2' EEPROM connected to the 12C bus.

The USB Specification provides for ‘vendor-specific requests’ to be sent over endpoint zero. The MoBL-USB FX2LP18 uses
this feature to transfer data between the host and MoBL-USB FX2LP18 RAM. The MoBL-USB FX2LP18 automatically
responds to two ‘Firmware Load’ requests, as shown in Table 3-5 and Table 3-6.

Table 3-5. Firmware Download

Byte Field Value Meaning MoBL-USB FX2LP18 Response
0 bmRequest 0x40 Vendor Request, OUT None required
1 bRequest 0xA0 ‘Firmware Load’

2 wValueL AddrL .

Starting Address
3 wValueH AddrH
4 windexL 0x00
5 windexH 0x00
6 wLenghtL LenL

Number of Bytes
7 wLengthH LenH

Table 3-6. Firmware Upload

MoBL-USB FX2LP18

Byte Field Value Meaning
Response

0 bmRequest 0xCO Vendor Request, IN None required
1 bRequest 0xAO0 ‘Firmware Load’
2 wValuel AddrL Starting Address (must be
3 wValueH AddrH word-aligned)
4 windexL 0x00
5 windexH 0x00
6 wLengthL LenL

Number of Bytes
7 wLengthH LenH

Note These upload and download requests are always handled by the MoBL-USB FX2LP18, regardless of the state of the
RENUM bit. The upload start address must be word-aligned (that is, the start address must be evenly divisible by 2).

The bRequest value 0xAO is reserved for this purpose. It should never be used for another vendor request. Cypress Semicon-
ductor also reserves bRequest values 0xAl through OxAF; devices should not use these bRequest values.

A host loader program must write 0x01 to the CPUCS register to put the CPU into RESET, load all or part of the MoBL-USB
FX2LP18 RAM with firmware, then reload the CPUCS register with ‘0’ to take the CPU out of RESET. The CPUCS register (at
0xE600) is the only register that can be written using the Firmware Download command.

56 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 56 of 346

=/

Enumeration and ReNumeration™

3.9 How the Firmware ReNumerates
Two control bits in the USBCS (USB Control and Status) register control the ReNumeration™ process: DISCON and
RENUM.
Figure 3-2. USB Control and Status Register

USBCS USB Control and Status E680

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 DISCON RENUM
R/W RIW R/W RIW R/W
0 0 0 0 1 1 0 0

To simulate a USB connect, the firmware clears DISCON to 0.

The firmware also sets or clears the RENUM bit to indicate whether the firmware or the Default USB Device will handle device
requests over endpoint zero: if RENUM=0, the Default USB Device will handle device requests; if RENUM=1, the firmware
will.

3.10 Multiple ReNumerations™

MoBL-USB FX2LP18 firmware can ReNumerate™ anytime. One use for this capability might be to ‘fine tune’ an isochronous
endpoint’s bandwidth requests by trying various descriptor values and ReNumerating.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 57

Exhibit 2033 - Page 57 of 346

=7 CYPRESS

Enumeration and ReNumeration™

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

58
Exhibit 2033 - Page 58 of 346

4. Interrupts

S
T -l >
=

e
===
=—F

=—2# CYPRESS

PERFORM

4.1 Introduction

The MoBL-USB FX2LP18’s interrupt architecture is an enhanced and expanded version of the standard 8051’s. The MoBL-
USB FX2LP18 responds to the interrupts shown in Table 4-1; interrupt sources that are not present in the standard 8051 are
shown in bold type.

Table 4-1. MoBL-USB FX2LP18 Interrupts

MoBL-USB Interrupt Natural

FX2LP18 Interrupt SouEE Vector Priority
IEO INTO# Pin 0x0003 1
TFO Timer 0 Overflow 0x000B 2
IE1 INT1# Pin 0x0013 3
TF1 Timer 1 Overflow 0x001B 4
RI_LO&TI_O USARTO Rx & Tx 0x0023 5
TF2 Timer 2 Overflow 0x002B 6
Resume WAKEUP / WU2 Pin or USB Resume 0x0033 0
RI_1&TI_1 USART1 Rx & Tx 0x003B 7
USBINT usB 0x0043 8
12CINT 12C Bus 0x004B 9
IE4 GPIF / FIFOs / INT4 Pin 0x0053 10
IES INT5# Pin 0x005B 11
IE6 INT6 Pin 0x0063 12

The Natural Priority column in Table 4-1 shows the MoBL-USB FX2LP18 interrupt priorities. The MoBL-USB FX2LP18 can
assign each interrupt to a high or low priority group; priorities are resolved within the groups using the natural priorities.

4.2 SFRs

The following SFRs are associated with interrupt control:
IE - SFR 0xA8 (Table 4-2 on page 60)

IP - SFR 0xB8 (Table 4-3 on page 60)

EXIF - SFR 0x91 (Table 4-4 on page 60)

EICON - SFR 0xD8 (Table 4-5 on page 61)

EIE - SFR OXE8 (Table 4-6 on page 61)

EIP - SFR OxF8 (Table 4-7 on page 61)

The IE and IP SFRs provide interrupt enable and priority control for the standard interrupt unit, as with the standard 8051.
Additionally, these SFRs provide control bits for the Serial Port 1 interrupt.

The EXIF, EICON, EIE and EIP registers provide flags, enable control, and priority control.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 59

Exhibit 2033 - Page 59 of 346

Interrupts %_féYPRF,SS

PERFORM

Table 4-2. |E Register — SFR 0xA8

Bit Function

IE.7 EA - Global interrupt enable. Controls masking of all interrupts except USB wakeup (resume). EA = 0 dis-
ables all interrupts except USB wakeup. When EA = 1, interrupts are enabled or masked by their individual
enable bits.

IE.6 ES1 - Enable Serial Port 1 interrupt. ES1 = 0 disables Serial port 1 interrupts (TI_1 and RI_1). ES1 =1
enables interrupts generated by the TI_1 or RI_1 flag.

IE.5 ET2 - Enable Timer 2 interrupt. ET2 = 0 disables Timer 2 interrupt (TF2). ET2=1 enables interrupts gener-
ated by the TF2 or EXF2 flag.

IE.4 ESO - Enable Serial Port O interrupt. ESO = 0 disables Serial Port 0 interrupts (TI_0 and RI_0). ES0=1
enables interrupts generated by the TI_0 or RI_O flag.

IE.3 ET1 - Enable Timer 1 interrupt. ET1 = 0 disables Timer 1 interrupt (TF1). ET1=1 enables interrupts gener-
ated by the TF1 flag.

IE.2 EX1 - Enable external interrupt 1. EX1 = 0 disables external interrupt 1 (IE1). EX1=1 enables interrupts
generated by the INT1# pin.

IE.1 ETO - Enable Timer O interrupt. ETO = 0 disables Timer 0 interrupt (TF0). ETO=1 enables interrupts gener-
ated by the TFO flag.

IE.O EXO - Enable external interrupt 0. EXO = 0 disables external interrupt O (IE0). EX0=1 enables interrupts

generated by the INTO# pin.

Table 4-3. IP Register — SFR 0xB8

Bit Function

IP.7 Reserved. Read as 1.

IP.6 PS1 - Serial Port 1 interrupt priority control. PS1 = 0 sets Serial Port 1 interrupt (TI_1 or RI_1) to low prior-
ity. PS1 = 1 sets Serial port 1 interrupt to high priority.

IP.5 PT2 - Timer 2 interrupt priority control. PT2 = 0 sets Timer 2 interrupt (TF2) to low priority. PT2 = 1 sets
Timer 2 interrupt to high priority.

IP.4 PSO0 - Serial Port 0 interrupt priority control. PS0 = 0 sets Serial Port 0 interrupt (TI_0 or RI_0) to low prior-

ity. PSO = 1 sets Serial Port 0 interrupt to high priority.

IP.3 PT1 - Timer 1 interrupt priority control. PT1 = 0 sets Timer 1 interrupt (TF1) to low priority. PT1 = 1 sets
Timer 1 interrupt to high priority.

IP.2 PX1 - External interrupt 1 priority control. PX1 = 0 sets external interrupt 1 (IE1) to low priority. PT1 =1
sets external interrupt 1 to high priority.

IP.1 PTO - Timer 0 interrupt priority control. PTO = 0 sets Timer O interrupt (TFO) to low priority. PTO = 1 sets
Timer 0O interrupt to high priority.

IP.0 PXO0 - External interrupt O priority control. PX0 = 0 sets external interrupt O (IEO) to low priority. PX0 = 1
sets external interrupt O to high priority.

Table 4-4. EXIF Register — SFR 0x91

Bit Function

EXIF.7 IE5 - External Interrupt 5 flag. IE5 = 1 indicates a falling edge was detected at the INT5# pin. IE5 must be
cleared by software. Setting IE5 in software generates an interrupt, if enabled.

EXIF.6 IE4 - GPIF/FIFO/External Interrupt 4 flag. The ‘INT4’ interrupt is internally connected to the FIFO/GPIF
interrupt by default. IE4 must be cleared by software. Setting IE4 in software generates an interrupt, if
enabled.

EXIF.5 I2CINT - 12C Bus Interrupt flag. I2CINT = 1 indicates an 12C Bus interrupt. I2CINT must be cleared by
software. Setting I2CINT in software generates an interrupt, if enabled.

EXIF.4 USBINT - USB Interrupt flag. USBINT = 1 indicates an USB interrupt. USBINT must be cleared by soft-
ware. Setting USBINT in software generates an interrupt, if enabled.

EXIF.3 Reserved. Read as 1.

EXIF.2-0 Reserved. Read as 0.

60 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 60 of 346

== CVYPRESS

PERFORM

Table 4-5. EICON Register — SFR 0xD8

Bit Function

EICON.7 SMOD1 - Serial Port 1 baud rate doubler enable. When SMOD1 = 1, the baud rate for Serial Port
1 is doubled.

EICON.6 Reserved. Read as 1.

EICON.5 ERESI - Enable Resume interrupt. ERESI = 0 disables the Resume interrupt. ERESI = 1 enables
interrupts generated by the resume event.

EICON.4 RESI - Wakeup interrupt flag. RESI = 1 indicates a false-to-true transition was detected at the
WAKEUP or WUZ2 pin, or that USB activity has resumed from the suspended state. RESI must be
cleared by software before exiting the interrupt service routine, otherwise the interrupt will imme-
diately be reasserted. Setting RESI = 1 in software generates a wakeup interrupt, if enabled.

EICON.3 INT6 - External interrupt 6. When INT6 = 1, the INT6 pin has detected a low to high transition.
INT6 must be cleared by software. Setting this bit in software generates an IE6 interrupt, if
enabled.

EICON.2-0 Reserved. Read as 0.

Table 4-6. EIE Register — SFR OxES8

Bit Function
EIE.7-5 Reserved. Read as 1.

EIE.4 EX6 - Enable external interrupt 6. EX6 = 0 disables external interrupt 6 (IE6). EX6 = 1 enables
interrupts generated by the INT6 pin.

EIE.3 EX5 - Enable external interrupt 5. EX5 = 0 disables external interrupt 5 (IE5). EX5 = 1 enables
interrupts generated by the INT5# pin.

EIE.2 EX4 - Enable external interrupt 4. EX4 = 0 disables external interrupt 4 (IE4). EX4 = 1 enables
interrupts generated by the INT4 pin or by the FIFO/GPIF Interrupt.

EIE.1 EI2C - Enable 12C Bus interrupt (I2CINT). EI2C = 0 disables the 12C Bus interrupt. EI2C = 1
enables interrupts generated by the 12C Bus controller.

EIE.O EUSB - Enable USB interrupt (USBINT). EUSB = 0 disables USB interrupts. EUSB = 1 enables

interrupts generated by the USB Interface.

Table 4-7. EIP Register — SFR OxF8

Bit Function
EIP.7-5 Reserved. Read as 1.

EIP.4 PX6 - External interrupt 6 priority control. PX6 = 0 sets external interrupt 6 (IE6) to low priority.
PX6 = 1 sets external interrupt 6 to high priority.

EIP.3 PX5 - External interrupt 5 priority control. PX5 = 0 sets external interrupt 5 (IE5) to low priority.
PX5=1 sets external interrupt 5 to high priority.

EIP.2 PX4 - External interrupt 4 priority control. PX4 = 0 sets external interrupt 4
(INT4 / GPIF / FIFO) to low priority. PX4=1 sets external interrupt 4 to high priority.

EIP.1 PI2C - 12CINT priority control. PI2C = 0 sets |2C Bus interrupt to low priority. PI2C=1 sets |12C
Bus interrupt to high priority.

EIP.0 PUSB - USBINT priority control. PUSB = 0 sets USB interrupt to low priority. PUSB=1 sets USB
interrupt to high priority.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 61 of 346

Interrupts

61

Interrupts %ﬁYPRFS

RFORM

4.2.1 803x/805x Compatibility

The implementation of interrupts is similar to that of the Dallas Semiconductor DS80C320. Table 4-8 summarizes the differ-
ences in interrupt implementation between the Intel 8051, the Dallas Semiconductor DS80C320, and the MoBL-USB
FX2LP18.

Table 4-8. Summary of Interrupt Compatibility

S Intel Dallas Cypress
8051 DS80C320 MoBL-USB FX2LP18

Power Fail Interrupt Not implemented Internally generated Replaced with RESUME Interrupt

External Interrupt O Implemented Implemented Implemented

Timer O Interrupt Implemented Implemented Implemented

External Interrupt 1 Implemented Implemented Implemented

Timer 1 Interrupt Implemented Implemented Implemented

Serial Port O Interrupt Implemented Implemented Implemented

Timer 2 Interrupt Not implemented Implemented Implemented

Serial Port 1 Interrupt Not implemented Implemented Implemented

External Interrupt 2 Not implemented Implemented Replaced with autovectored USB Interrupt
External Interrupt 3 Not implemented Implemented Replaced with 12C Bus Interrupt

External Interrupt 4 Not implemented Implemented Replaced by autovectored FIFO/GPIF Interrupt.
External Interrupt 5 Not implemented Implemented Implemented

Watchdog Timer Interrupt Not implemented Internally generated Replaced with External Interrupt 6

Real-time Clock Interrupt Not implemented Implemented Not implemented
4.3 Interrupt Processing

When an enabled interrupt occurs, the MoBL-USB FX2LP18 completes the instruction it's currently executing, then vectors to
the address of the interrupt service routine (ISR) associated with that interrupt (see Table 4-9 on page 63). The MoBL-USB
FX2LP18 executes the ISR to completion unless another interrupt of higher priority occurs. Each ISR ends with a RETI1
(return from interrupt) instruction. After executing the RETI, the MoBL-USB FX2LP18 continues executing firmware at the
instruction following the one which was executing when the interrupt occurred.

Note The MoBL-USB FX2LP18 always completes the instruction in progress before servicing an interrupt. If the instruction in
progress is RETI, or a write access to any of the IP, IE, EIP, or EIE SFRs, the MoBL-USB FX2LP18 completes one additional
instruction before servicing the interrupt.

4.3.1 Interrupt Masking

The EA Bit in the IE SFR (IE.7) is a global enable for all interrupts except the RESUME (USB wakeup) interrupt, which is
always enabled. When EA = 1, each interrupt is enabled or masked by its individual enable bit. When EA = 0, all interrupts are
masked except the USB wakeup interrupt.

62 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 62 of 346

‘im

==# CYPRESS Interrupt
pts
Table 4-9 provides a summary of interrupt sources, flags, enables, and priorities.
Table 4-9. Interrupt Flags, Enables, Priority Control, and Vectors
RESUME Resume interrupt EICON.4 EICON.5 Always Highest 0 (highest) 0x0033
IEO External interrupt O TCON.1 IE.0 IP.0 1 0x0003
TFO Timer O interrupt TCON.5 IE.1 IP.1 2 0x000B
IE1 External interrupt 1 TCON.3 IE.2 IP.2 3 0x0013
TF1 Timer 1 interrupt TCON.7 IE.3 IP.3 4 0x001B
TI_OorRI_O Serial port 0 transmit or SCONO.1 (TI.0) IE.4 IP.4 5 0x0023
receive interrupt SCONO.0 (RI_0)
TF2 or EXF2 Timer 2 interrupt T2CON.7 (TF2) IE.5 IP.5 6 0x002B
T2CON.6 (EXF2)
TI_lorRI_1 Serial port 1 transmit or SCON1.1 (TI_1) IE.6 IP.6 7 0x003B
receive interrupt SCON1.0 (RI_1)
USBINT Autovectored USB interrupt EXIF.4 EIE.O EIP.0 8 0x0043
12CINT 12C Bus interrupt EXIF.5 EIE.1 EIP.1 9 0x004B
IE4 Autovectored FIFO / GPIF or EXIF.6 EIE.2 EIP.2 10 0x0053
External interrupt 4
IES External interrupt 5 EXIE7 EIE.3 EIP.3 11 0x005B
IE6 External interrupt 6 EICON.3 EIE.4 EIP.4 12 0x0063
43.1.1 Interrupt Priorities

There are two stages of interrupt priority: assigned interrupt level and natural priority. Assigned priority is set by firmware; nat-
ural priority is as shown in Table 4-9, and is fixed.

The assigned interrupt level (highest, high, or low) takes precedence over natural priority. The RESUME (USB wakeup) inter-
rupt always has highest assigned priority and is the only interrupt that can have highest assigned priority. All other interrupts
can be assigned either high or low priority.

In addition to an assigned priority level (high or low), each interrupt also has a natural priority, as listed in Table 4-9. ‘Simulta-
neous’ interrupts with the same assigned priority level (for example, both high) are resolved according to their natural priority.
For example, if INTO and INT1 are both assigned high priority and both occur simultaneously, INTO takes precedence due to
its higher natural priority.

Once an interrupt is being serviced, only an interrupt of higher ‘assigned’ priority level can interrupt the service routine. That
is, an ISR for a low-assigned-level interrupt can only be interrupted by a high-assigned-level interrupt. An ISR for a high-
assigned-level interrupt can only be interrupted by the RESUME interrupt.

4.3.2

The internal timers and serial ports generate interrupts by setting the interrupt flag bits shown in Table 4-9. These interrupts
are sampled once per instruction cycle (that is, once every 4 CLKOUT cycles).

Interrupt Sampling

INTO# and INT1# are both active low and can be programmed to be either edge-sensitive or level-sensitive, through the ITO
and IT1 bits in the TCON SFR. When ITx = 0, INTx# is level-sensitive and the MoBL-USB FX2LP18 sets the IEx flag when the
INTx# pin is sampled low. When ITx = 1, INTx# is edge-sensitive and the MoBL-USB FX2LP18 sets the IEx flag when the
INTx# pin is sampled high then low on consecutive samples.

The remaining five interrupts (INT 4-6, USB & 12C Bus interrupts) are edge-sensitive only. INT6 and INT4 are active high and
INT5# is active low.

To ensure that edge-sensitive interrupts are detected, the interrupt pins should be held in each state for a minimum of one
instruction cycle (4 CLKOUT cycles). Level-sensitive interrupts are not latched; their pins must remain asserted until the inter-
rupt is serviced.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 63

Exhibit 2033 - Page 63 of 346

= it

Interrupts CYPHF%

4.3.3 Interrupt Latency

Interrupt response time depends on the current state of the MoBL-USB FX2LP18. The fastest response time is five instruction
cycles: one to detect the interrupt, and four to perform the LCALL to the ISR.

The maximum latency is 13 instruction cycles. This 13-cycle latency occurs when the MoBL-USB FX2LP18 is currently exe-
cuting a RET instruction followed by a MUL or DIV instruction. The 13 instruction cycles in this case are: one to detect the
interrupt, three to complete the RETI, five to execute the DIV or MUL, and four to execute the LCALL to the ISR.

This 13-instruction-cycle latency excludes autovector latency for the USB and FIFO/GPIF interrupts (see sections 4.5 USB-
Interrupt Autovectors on page 69 and 4.8 FIFO/GPIF-Interrupt Autovectors on page 74), and any instructions required to per-
form housekeeping, as shown in Figure 4-2. Autovectoring adds a fixed four instruction cycles, so the maximum latency for an
autovectored USB or FIFO/GPIF interrupt is 13 + 4 = 17 instruction cycles.

4.4 USB-Specific Interrupts

The MoBL-USB FX2LP18 provides 28 USB-specific interrupts. One, ‘Resume,’ has its own dedicated interrupt; the other 27
share the ‘USB’ interrupt.
4.4.1 Resume Interrupt

After the MoBL-USB FX2LP18 has entered its idle state, it responds to an external signal on its WAKEUP/WU2 pins or
resumption of USB bus activity by restarting its oscillator and resuming firmware execution.

The Power Management chapter on page 83 describes suspend/resume signaling in detail, and presents an example which
uses the Wakeup Interrupt.

4.4.2 USB Interrupts

Table 4-10 on page 65 shows the 27 USB requests that share the USB Interrupt. Figure 4-1 on page 66 shows the USB Inter-
rupt logic; the bottom IRQ, EP8ISOERR, is expanded in the diagram to show the logic which is associated with each USB
interrupt request.

64 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 64 of 346

S/ Cioness

PERFORM

Table 4-10. Individual USB Interrupt Sources

INT2VEC
Priority Value Source Notes
1 00 SUDAV SETUP Data Available
2 04 SOF Start of Frame (or microframe)
3 08 SUTOK Setup Token Received
4 ocC SUSPEND USB Suspend request
5 10 USB RESET Bus reset
6 14 HISPEED Entered high-speed operation*
7 18 EPOACK MoBL-USB FX2LP18 ACK’d the CONTROL Handshake
8 ic reserved
9 20 EPO-IN EPO-IN ready to be loaded with data
10 24 EPO-OUT EPO-OUT has USB data
11 28 EP1-IN EP1-IN ready to be loaded with data
12 2C EP1-OUT EP1-OUT has USB data
13 30 EP2 IN: buffer available. OUT: buffer has data
14 34 EP4 IN: buffer available. OUT: buffer has data
15 38 EP6 IN: buffer available. OUT: buffer has data
16 3C EP8 IN: buffer available. OUT: buffer has data
17 40 IBN IN-Bulk-NAK (any IN endpoint)
18 44 reserved
19 48 EPOPING EPO OUT was Pinged and it NAKed*
20 4C EP1PING EP1 OUT was Pinged and it NAKed*
21 50 EP2PING EP2 OUT was Pinged and it NAKed*
22 54 EP4PING EP4 OUT was Pinged and it NAKed*
23 58 EP6PING EP6 OUT was Pinged and it NAKed*
24 5C EP8PING EP8 OUT was Pinged and it NAKed*
25 60 ERRLIMIT Bus errors exceeded the programmed limit
26 64 reserved
27 68 reserved
28 6C reserved
29 70 EP2ISOERR ISO EP2 OUT PID sequence error
30 74 EP4ISOERR ISO EP4 OUT PID sequence error
31 78 EP6ISOERR ISO EP6 OUT PID sequence error
32 7C EP8ISOERR ISO EP8 OUT PID sequence error

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 65 of 346

Interrupts

65

—l ———
— =

Interrupts EF (jypﬂpgg

Figure 4-1. USB Interrupts
USB Interrupt

00 [SUDAV
01
02 [SUTOK
— >
—
—
— >
[,
—
o "USB"
S Interrupt
- >
[
- R EXIF.4(rd)
[—
EXIF.4(0)
—
—
—
—
—
—
29 [EP4ISOERR

30 | EP6ISOERR

rb

USBERRIE.7

31 [EP8ISOERR S
USBERRIRQ.7 (1) R USBERRIRQ.7 (rd)] !

Interrupt Request Latch ;

> INT2VEC 0 |Iva |Iv3|Iv2 | vl |Ivo| O 0

Referring to the logic inside the dotted lines, each USB interrupt source has an interrupt request latch. IRQ bits are set auto-
matically by the MoBL-USB FX2LP18; firmware clears an IRQ bit by writing a ‘1’ to it. The output of each latch is ANDed with
an Interrupt Enable Bit and then ORed with all the other USB Interrupt request sources.

The MoBL-USB FX2LP18 prioritizes the USB interrupts and constructs an Autovector, which appears in the INT2VEC regis-
ter. The interrupt vector values 1V[4:0] are shown to the left of the interrupt sources (shaded boxes); ‘0’ is the highest priority,
31 is the lowest. If two USB interrupts occur simultaneously, the prioritization affects which one is first indicated in the
INT2VEC register.

If Autovectoring is enabled, the INT2VEC byte replaces the contents of address 0x0045 in the MoBL-USB FX2LP18’s pro-
gram memory. This causes the MoBL-USB FX2LP18 to automatically vector to a different address for each USB interrupt
source. This mechanism is explained in detail in section 4.5 USB-Interrupt Autovectors on page 69.

Due to the OR gate in Figure 4-1, assertion of any of the individual USB interrupt sources sets the MoBL-USB FX2LP18's
‘main’ USB Interrupt request bit (EXIF.4). This main USB interrupt is enabled by setting EIE.O to ‘1.

To clear the main USB interrupt request, firmware clears the EXIF.4 bit to ‘0".

After servicing a USB interrupt, MoBL-USB FX2LP18 firmware clears the individual USB source’s IRQ bit by setting it to ‘1'. If
any other USB interrupts are pending, the act of clearing the IRQ bit causes the MoBL-USB FX2LP18 to generate another
pulse for the highest-priority pending interrupt. If more than one is pending, each is serviced in the priority order shown in
Figure 4-1, starting with SUDAV (priority 00) as the highest priority, and ending with EP8ISOERR (priority 31) as the lowest.

66 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 66 of 346

= it

®# CYPRESS

=
PERFC

Interrupts

Note The main USB interrupt request is cleared by clearing the EXIF.4 bit to ‘0’; each individual USB interrupt is cleared by
setting its IRQ bitto ‘1’.

It is important in any USB Interrupt Service Routine (ISR) to clear the main USB Interrupt before clearing the individual
USB interrupt request latch. This is because as soon as the individual USB interrupt is cleared, any pending USB interrupt
will immediately try to generate another main USB Interrupt. If the main USB IRQ bit has not been previously cleared, the
pending interrupt will be lost.

Figure 4-2 illustrates a typical USB ISR.

Figure 4-2. The Order of Clearing Interrupt Requests is Important

USB_ISR: push
push
push
push
push
push

mov
clr

mov

mov
mov
movx

; (service the

pop
pop
pop
pop
pop
pop

reti

dps
dpl
dph
dpll
dphl
acc

a,EXIF
acc.4
EXIF,a ;

dptr,#USBERRIRQ ;
a,#10000000b ;
@dptr,a

interrupt here)

acc
dphl
dpll
dph
dpl
dps

; FIRST clear the USB (INT2) interrupt request

Note: EXIF reg is not bit-addressable

now clear the USB interrupt request
use EP8ISOERR as example

The registers associated with the individual USB interrupt sources are described in the Registers chapter on page 237 and
section 8.6 CPU Control of MoBL-USB FX2LP18 Endpoints on page 96. Each interrupt source has an enable (IE) and a
request (IRQ) bit. Firmware sets the IE bit to ‘1’ to enable the interrupt. The MoBL-USB FX2LP18 sets an IRQ bit to ‘1’ to
request an interrupt, and the firmware clears an IRQ bit by writing a ‘1’ to it.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 67 of 346

67

—l ———
— =

Interrupts EF (jypﬂpgg

44.2.1 SUTOK, SUDAV Interrupts

Figure 4-3. SUTOK and SUDAV Interrupts

<+«—SETUP Stage——»

S D (03
E AllE|IC A|| 8bytes ||R A
D|[N||R

T olpllc T| Setup |IC C

V] rllplls A Data 1 K

P 0 6

Token Packet Data Packet H/S Pk
SUTOK SUDAV
Interrupt Interrupt

SUTOK and SUDAV are supplied to the MoBL-USB FX2LP18 by CONTROL endpoint zero. The first portion of a USB CON-
TROL transfer is the SETUP stage shown in Figure 4-3 (a full CONTROL transfer is shown in Figure 2-1 on page 34). When
the MoBL-USB FX2LP18 decodes a SETUP packet, it asserts the SUTOK (SETUP Token) Interrupt Request. After the MoBL-
USB FX2LP18 has received the eight bytes error-free and copied them into the eight internal registers at SETUPDAT, it
asserts the SUDAV Interrupt Request.

Firmware responds to the SUDAV Interrupt by reading the eight SETUP data bytes in order to decode the USB request. See
chapter “Endpoint Zero” on page 33.

The SUTOK Interrupt is provided to give advance warning that the eight register bytes at SETUPDAT are about to be over-
written. It is useful for debug and diagnostic purposes.

4.4.2.2 SOF Interrupt

Figure 4-4. A Start Of Frame (SOF) Packet

A USB Start-of-Frame Interrupt Request is asserted when the host sends a Start of Frame (SOF) packet. SOFs occur once
per millisecond in full-speed (12 Mbps) mode, and once every 125 microseconds in high-speed (480 Mbps) mode.

When the MoBL-USB FX2LP18 receives an SOF packet, it copies the eleven-bit frame number (FRNO in Figure 4-4) into the
USBFRAMEH:L registers and asserts the SOF Interrupt Request. Isochronous endpoint data may be serviced via the SOF
Interrupt.

44.2.3 Suspend Interrupt

If the MoBL-USB FX2LP18 detects a ‘suspend’ condition from the host, it asserts the SUSP (Suspend) Interrupt Request. A
full description of Suspend-Resume signaling appears in the Power Management chapter on page 83.

4424 USB RESET Interrupt

The USB host signals a bus reset by driving both D+ and D- low for at least 10 ms. When the MoBL-USB FX2LP18 detects
the onset of USB bus reset, it asserts the URES Interrupt Request.

4425 HISPEED Interrupt
This interrupt is asserted when the host grants high-speed (480 Mbps) access to the FX2LP18.

4.4.2.6 EPOACK Interrupt

This interrupt is asserted when the MoBL-USB FX2LP18 has acknowledged the STATUS stage of a CONTROL transfer on
endpoint 0.

68 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 68 of 346

= it

®# CYPRESS

=
PERFC

=
Interrupts

4.4.2.7 Endpoint Interrupts
These interrupts are asserted when an endpoint requires service.

For an OUT endpoint, the interrupt request signifies that OUT data has been sent from the host, validated by the MoBL-USB
FX2LP18, and is in the endpoint buffer memory.

For an IN endpoint, the interrupt request signifies that the data previously loaded by the MoBL-USB FX2LP18 into the IN end-
point buffer has been read and validated by the host, making the IN endpoint buffer ready to accept new data.

Table 4-11. Endpoint Interrupts

Interrupt Name Description

EPO-IN EPO-IN ready to be loaded with data (BUSY bit 1-to-0)
EPO-OUT EPO-OUT has received USB data (BUSY bit 1-to-0)
EP1-IN EP1-IN ready to be loaded with data (BUSY bit 1-to-0)
EP1-OUT EP1-OUT has received USB data (BUSY bit 1-to-0)
Ep2 IN: Buffer available (Empty Flag 1-to-0)

OUT: Buffer has received USB data (Empty Flag 0-to-1)
Ep4 IN: Buffer available (Empty Flag 1-to-0)

OUT: Buffer has received USB data (Empty Flag 0-to-1)
EP6 IN: Buffer available (Empty Flag 1-to-0)

OUT: Buffer has received USB data (Empty Flag 0-to-1)
Eps IN: Buffer available (Empty Flag 1-to-0)

OUT: Buffer has received USB data (Empty Flag 0-to-1)

4.4.2.8 In-Bulk-NAK (IBN) Interrupt

When the host sends an IN token to any IN endpoint which does not have data to send, the MoBL-USB FX2LP18 automati-
cally NAKs the IN token and asserts this interrupt.

4.4.2.9 EPXPING Interrupt
These interrupts are active only during high-speed (480 Mbps) operation.

High-speed USB implements a PING-NAK mechanism for OUT transfers. When the host wishes to send OUT data to an end-
point, it first sends a PING token to see if the endpoint is ready (for example, if it has an empty buffer). If a buffer is not avail-
able, the FX2LP18 returns a NAK handshake. PING-NAK transactions continue to occur until an OUT buffer is available, at
which time the FX2LP18 answers a PING with an ACK handshake and the host sends the OUT data to the endpoint.

The EPXPING interrupt is asserted when the host PINGs an endpoint and the FX2LP18 responds with a NAK because no
endpoint buffer memory is available.

44210 ERRLIMIT Interrupt

This interrupt is asserted when the USB error-limit counter has exceeded the preset error limit threshold. See section 8.6.3.3
USBERRIE, USBERRIRQ, ERRCNTLIM, CLRERRCNT on page 103 for full details.

44211 EPXISOERR Interrupt

These interrupts are asserted when an ISO data PID is missing or arrives out of sequence, or when an ISO packet is dropped
because no buffer space is available (to receive an OUT packet).
4.5 USB-Interrupt Autovectors

The main USB interrupt is shared by 27 interrupt sources. To save the code and processing time which normally would be
required to identify the individual USB interrupt source, the MoBL-USB FX2LP18 provides a second level of interrupt vector-
ing, called ‘Autovectoring.” When a USB interrupt is asserted, the MoBL-USB FX2LP18 pushes the program counter onto its
stack then jumps to address 0x0043, where it expects to find a ‘jump’ instruction to the USB Interrupt service routine.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 69

Exhibit 2033 - Page 69 of 346

Interrupts

=S5 CvrRESs

PERFORM

The MoBL-USB FX2LP18 jump instruction is encoded as follows:

Table 4-12. MoBL-USB FX2LP18 Jump Instruction

Address Op-Code Hex Value
0x0043 LIMP 0x02
0x0044 AddrH OxHH
0x0045 AddrL OxLL

If Autovectoring is enabled (AV2EN=1 in the INTSETUP register), the MoBL-USB FX2LP18 substitutes its INT2VEC byte (see
Table 4-10 on page 65) for the byte at address 0x0045. Therefore, if the high byte (‘page’) of a jump-table address is pre-
loaded at location 0x0044, the automatically-inserted INT2VEC byte at 0x0045 will direct the jump to the correct address out
of the 27 addresses within the page.

As shown in Table 4-13, the jump table contains a series of jump instructions, one for each individual USB Interrupt source’s

ISR.

Table 4-13. A Typical USB-Interrupt Jump Table

Table Offset Instruction
0x00 LIMP SUDAV_ISR
0x04 LIMP SOF_ISR
0x08 LIMP SUTOK_ISR
0x0C LIMP SUSPEND_ISR
0x10 LIMP USBRESET_ISR
0x14 LIMP HISPEED_ISR
0x18 LIMP EPOACK_ISR
0x1C LIMP SPARE_ISR
0x20 LIMP EPOIN _ISR
0x24 LIMP EPOOUT_ISR
0x28 LIMP EP1IN _ISR
0x2C LIMP EP1OUT_ISR
0x30 LIMP EP2_ISR
0x34 LIMP EP4_ISR
0x38 LIMP EP6_ISR
0x3C LIMP EP8_ISR
0x40 LIMP IBN_ISR
0x44 LIMP SPARE_ISR
0x48 LIMP EPOPING_ISR
0x4C LIMP EP1PING_ISR
0x50 LIMP EP2PING_ISR
0x54 LIMP EP4PING_ISR
0x58 LIMP EP6PING_ISR
0x5C LIMP EP8PING_ISR
0x60 LIMP ERRLIMIT_ISR
0x64 LIMP SPARE_ISR
0x68 LIMP SPARE_ISR
0x6C LIMP SPARE_ISR
0x70 LIMP EP2ISOERR_ISR
0x74 LIMP EP2ISOERR_ISR
0x78 LIMP EP2ISOERR_ISR
0x7C LIMP EP2ISOERR_ISR

70

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 70 of 346

—l ———
— =

=sC YF{F} F% Interrupts

45.1 USB Autovector Coding

To employ autovectoring for the USB interrupt:

1. Insert a jump instruction at 0x0043 to a table of jump instructions to the various USB interrupt service routines. Make sure
the jump table starts on a 0x0100-byte page boundary.

Code the jump table with jump instructions to each individual USB interrupt service routine. This table has two important
requirements, arising from the format of the INT2VEC Byte (zero-based, with the two LSBs set to ‘0’):

o It must begin on a page boundary (address 0xnn00)

o The jump instructions must be four bytes apart.

The interrupt service routines can be placed anywhere in memory.

Write initialization code to enable the USB interrupt (INT2) and Autovectoring.

N

»w

Figure 4-5. The USB Autovector Mechanism in Action

USB Interrupt

Vector
USB_Jmp_Table:
0x0043 LIMP 0x 0400
0x0044 04
0x 0045 2C .
EP2_ISR:
Automatically copied
by MoBL-USB FX2LP18
y Mol > 0x042 LIMP EP2_ISR 0x0119
INT2VEC 2c | 0x042D o1
0x042E 19

Figure 4-5 illustrates an ISR that services endpoint 2. When endpoint 2 requires service, the MoBL-USB FX2LP18 asserts the
USB interrupt request, vectoring to location 0x0043.

The jump instruction at this location, which was originally coded as ‘LJMP 0400, becomes ‘LIJMP 042C’ because the MoBL-
USB FX2LP18 automatically inserts 2C, the INT2VEC value for EP2 (Table 4-13 on page 70).

The MoBL-USB FX2LP18 jumps to 0x042C, where it executes the jump instruction to the EP2 ISR, arbitrarily located for this
example at address 0x0119.

Once the MoBL-USB FX2LP18 vectors to 0x0043, initiation of the endpoint-specific ISR takes only eight instruction cycles.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 71
Exhibit 2033 - Page 71 of 346

Interrupts

4.6 1°C™ Bus Interrupt

Figure 4-6. 12C Bus Interrupt-Enable Bits and Registers

o | s

EIE.1

—l ———
— =

==# CYPRESS

)) I°C Bus
Interrupt

RD or WR
—»
I2DAT register R EXIF.5(rd)
I2C Bus
Interrupt Request EXIF.5(0)
|2CS START STOP LASTRD ID1 IDO BERR ACK DONE
OXE678
|2DAT D7 D6 D5 D4 D3 D2 D1 DO
O0XE679

The Input/Output chapter on page 203 describes the interface to the MoBL-USB FX2LP18's I2C Bus controller. The MoBL-
USB FX2LP18 uses two registers, 12CS (Control and Status) and 12DAT (Data), to transfer data over the bus.

An 12C Bus Interrupt is asserted whenever one of the following occurs:
m The DONE bit (12CS.0) makes a zero-to-one transition, signaling that the bus controller is ready for another command.

m The STOP bit (I12CS.6) makes a one-to-zero transition.

To enable the ‘Done’ interrupt source, set EIE.1 to ‘1’; to additionally enable the ‘Stop’ interrupt source, set STOPIE to ‘1. If
both interrupts are enabled, the interrupt source may be determined by checking the DONE and STOP bits in the I2CS regis-

ter.

To reset the Interrupt Request, write a zero to EXIF.5. Any firmware read or write to the I2DAT or I2CS register also automati-
cally clears the Interrupt Request.

Note Firmware must make sure the STOP bit is zero before writing to 12CS or 12DAT.

72

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 72 of 346

W’“ll

=) "ﬁw RESS

PERFC

Interrupts

4.7 FIFO/GPIF Interrupt (INT4)

Just as the USB Interrupt is shared among 27 individual USB-interrupt sources, the FIFO/GPIF interrupt is shared among 14
individual FIFO/GPIF sources.

The FIFO/GPIF Interrupt, like the USB Interrupt, can employ autovectoring. Table 4-14 shows the priority and INT4VEC val-
ues for the 14 FIFO/GPIF interrupt sources.

Table 4-14. Individual FIFO/GPIF Interrupt Sources

INT4VEC
Priority Value Source Notes
1 80 EP2PF Endpoint 2 Programmable Flag
2 84 EP4PF Endpoint 4 Programmable Flag
3 88 EP6PF Endpoint 6 Programmable Flag
4 8C EP8PF Endpoint 8 Programmable Flag
5 90 EP2EF Endpoint 2 Empty Flag
6 94 EPAEF Endpoint 4 Empty Flag
7 98 EP6EF Endpoint 6 Empty Flag
8 9C EP8EF Endpoint 8 Empty Flag
9 A0 EP2FF Endpoint 2 Full Flag
10 A4 EP4FF Endpoint 4 Full Flag
11 A8 EP6FF Endpoint 6 Full Flag
12 AC EP8FF Endpoint 8 Full Flag
13 B0 GPIFDONE GPIF Operation Complete
(See General Programmable Interface, on page 135)
14 B4 GPIFWE GPIF Waveform
(See General Programmable Interface, on page 135)

When FIFO/GPIF interrupt sources are asserted, the MoBL-USB FX2LP18 prioritizes them and constructs an Autovector,
which appears in the INT4VEC register; ‘0’ is the highest priority, ‘14’ is the lowest. If two FIFO/GPIF interrupts occur simulta-
neously, the prioritization affects which one is first indicated in the INT4AVEC register. If Autovectoring is enabled, the
INT4VEC byte replaces the contents of address 0x0055 in the MoBL-USB FX2LP18's program memory. This causes the
MoBL-USB FX2LP18 to automatically vector to a different address for each FIFO/GPIF interrupt source. This mechanism is
explained in detalil in section 4.8 FIFO/GPIF-Interrupt Autovectors.

It is important in any FIFO/GPIF Interrupt Service Routine (ISR) to clear the main INT4 Interrupt before clearing the individ-
ual FIFO/GPIF interrupt request latch. This is because as soon as the individual FIFO/GPIF interrupt is cleared, any pend-
ing individual FIFO/GPIF interrupt will immediately try to generate another main INT4 Interrupt. If the main INT4 IRQ bit has
not been previously cleared, the pending interrupt will be lost.

The registers associated with the individual FIFO/GPIF interrupt sources are described in the Registers chapter on page 237
and in section 8.6 CPU Control of MoBL-USB FX2LP18 Endpoints on page 96. Each interrupt source has an enable (IE) and
a request (IRQ) bit. Firmware sets the IE bit to ‘1’ to enable the interrupt. The MoBL-USB FX2LP18 sets an IRQ bit to ‘1’ to
request an interrupt, and the firmware clears an IRQ bit by setting it to ‘1.

Note The main FIFO/GPIF interrupt request is cleared by clearing the EXIF.6 bit to ‘0’; each individual FIFO/GPIF interrupt is
cleared by setting its IRQ bitto ‘1.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 73

Exhibit 2033 - Page 73 of 346

=4 CPRES

RFORM

Interrupts

4.8 FIFO/GPIF-Interrupt Autovectors

The main FIFO/GPIF interrupt is shared by 14 interrupt sources. To save the code and processing time which normally would
be required to sort out the individual FIFO/GPIF interrupt source, the MoBL-USB FX2LP18 provides a second level of inter-
rupt vectoring, called Autovectoring. When a FIFO/GPIF interrupt is asserted, the MoBL-USB FX2LP18 pushes the program
counter onto its stack then jumps to address 0x0053, where it expects to find a ‘jump’ instruction to the FIFO/GPIF Interrupt
service routine.

The MoBL-USB FX2LP18 jump instruction is encoded as follows:

Table 4-15. MoBL-USB FX2LP18 JUMP Instruction

Address Op-Code Hex Value
0x0053 LIMP 0x02
0x0054 AddrH OxHH
0x0055 AddrL OxLL

If Autovectoring is enabled (AV4EN=1 in the INTSETUP register), the MoBL-USB FX2LP18 substitutes its INT4VEC byte (see
Table 4-14 on page 73) for the byte at address 0x0055. Therefore, if the high byte (‘page’) of a jump-table address is pre-
loaded at location 0x0054, the automatically-inserted INT4VEC byte at 0x0055 will direct the jump to the correct address out
of the 14 addresses within the page.

As shown in Table 4-16, the jump table contains a series of jump instructions, one for each individual FIFO/GPIF Interrupt

source’s ISR.

Table 4-16. A Typical FIFO/GPIF-Interrupt Jump Table

Table Offset Instruction
0x80 LIMP EP2PF_ISR
0x84 LIMP EP4PF_ISR
0x88 LIMP EP6PF_ISR
0x8C LIMP EP8PF_ISR
0x90 LIMP EP2EF_ISR
0x94 LIMP EP4EF_ISR
0x98 LIMP EP6EF_ISR
0x9C LIMP EP8EF_ISR
0xAO0 LIMP EP2FF_ISR
0xA4 LIMP EP4FF_ISR
0xA8 LIMP EP6FF_ISR
OxAC LIMP EP8FF_ISR
0xBO LIMP GPIFDONE_ISR
0xB4 LIMP GPIFWF_ISR

74

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 74 of 346

—l ———
— =

=sC YF{F} F% Interrupts

48.1 FIFO/GPIF Autovector Coding

To employ autovectoring for the FIFO/GPIF interrupt, perform the following steps:

1. Insert a jump instruction at 0x0053 to a table of jump instructions to the various FIFO/GPIF interrupt service routines.
Make sure the jump table starts at a 0x0100-byte page boundary plus 0x80.

Code the jump table with jump instructions to each individual FIFO/GPIF interrupt service routine. This table has two

important requirements, arising from the format of the INT4VEC byte (0x80-based, with the 2 LSBs set to ‘0’); the two
requirements are the following:

o It must begin on a page boundary + 0x80 (address 0xnn80).

o The jump instructions must be four bytes apart.

Place the interrupt service routines anywhere in memory.

4. Write initialization code to enable the FIFO/GPIF interrupt (INT4) and Autovectoring.

N

w

Figure 4-7. The FIFO/GPIF Autovector Mechanism in Action

FIFO/ GPIF
Interrupt
Vector FIFO_GPIF_Jmp_Table:
0x0053 LIvMP 0x0480
0x0054 04
0x0055 A
EP4FF_ISR
Automatically copied -
by MoBL-USB FX2LP18 0Ox04A LIJMP EP4FF_ISR 0x0321
INTAVEC s/ | OX04AS 01
0x04A6 19

Figure 4-7 illustrates an ISR that services EP4’s Full Flag. When EP4 goes full, the MoBL-USB FX2LP18 asserts the FIFO/
GPIF interrupt request, vectoring to location 0x0053.

The jump instruction at this location, which was originally coded as ‘LIMP 0480, becomes ‘LIJMP 04A4’ because the MoBL-
USB FX2LP18 automatically inserts A4, the INTAVEC value for EP4FF (Table 4-13 on page 70).

The MoBL-USB FX2LP18 jumps to 0x04A4, where it executes the jump instruction to the EP4FF ISR, arbitrarily located for
this example at address 0x0321.

Once the MoBL-USB FX2LP18 vectors to 0x0053, initiation of the endpoint-specific ISR takes only eight instruction cycles.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 75

Exhibit 2033 - Page 75 of 346

it

(1

¥ CYPRESS

e __F

Interrupts

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

76
Exhibit 2033 - Page 76 of 346

5. Memory

)
!

I

T

YPRESS

PERFORM

il
iy
()

51 Introduction

Memory organization in the MoBL-USB FX2LP18 is similar, but not identical, to that of the standard 8051. There are three dis-
tinct memory areas: Internal Data Memory, External Data Memory, and External Program Memory. As is explained below,
‘External’ memory is not necessarily external to the MoBL-USB FX2LP18 chip.

5.2 Internal Data RAM

As shown in Figure 5-1, the MoBL-USB FX2LP18’s Internal Data RAM is divided into three distinct regions: the ‘Lower 128’,
the ‘Upper 128’, and ‘SFR Space’. The Lower 128 and Upper 128 are general-purpose RAM; the SFR Space contains control
and status registers.

Figure 5-1. Internal Data RAM Organization

Lower 128
OXTE . Indirect addressing only
General- OxFF X OxXFF
Purpose RAM
Upper 128 SFR Space
0x30
Ox2F | 7F LECEER 78
. 0x80 LS 0x80
Register Bit-Addressable OX7F
Bank Select RAM
(PSW.4:3) . .
oolor o w0 Lower 128 Direct addressing only
Ox1F
11 oas| RO-R7 (Bank 3) \
0x17
10 ,,40| RO-R7 (Bank 2) 0x00
01 gigg RO-R7 (Bank 1) Direct or indirect addressing
00 .o | RO-R7 (Bank 0)
MoBL-USB™ TRM, Document # 001-11981 Rev. *B 77

Exhibit 2033 - Page 77 of 346

—l ———
— =

Memory ;__E_;_ (jypﬁpgg

5.2.1 The Lower 128

The Lower 128 occupies Internal Data RAM locations 0x00-0x7F. All of the Lower 128 may be accessed as general-purpose
RAM, using either direct or indirect addressing (for more information on the addressing modes. See the Instruction
Set chapter on page 197).

Two segments of the Lower 128 may additionally be accessed in other ways.

m Locations 0x00-0x1F comprise four banks of 8 registers each, numbered RO through R7. The current bank is selected via
the ‘register-select’ bits (RS1:RS0) in the PSW special-function register; code which references registers R0-R7 accesses
them only in the currently selected bank.

m Locations 0x20-0x2F are bit addressable. Each of the 128 bits in this segment may be individually addressed, either by its
bit address (0x00 to Ox7F) or by reference to the byte which contains it (0x20.0 to Ox2F.7).

5.2.2 The Upper 128

The Upper 128 occupies Internal Data RAM locations 0x80 — OxFF; all 128 bytes may be accessed as general purpose RAM,
but only by using indirect addressing (for more information on the addressing modes. See the Instruction Set chapter on
page 197).

Since the MoBL-USB FX2LP18's stack is internally accessed using indirect addressing, it's a good idea to put the stack in the
Upper 128; this frees the more efficiently accessed Lower 128 for general purpose use.

5.2.3 SFR (Special Function Register) Space

The SFR Space, like the Upper 128, is accessed at Internal Data RAM locations 0x80-0xFF. The MoBL-USB FX2LP18 keeps
SFR Space separate from the Upper 128 by using different addressing modes to access the two regions: SFRs may only be
accessed using ‘direct’ addressing, and the Upper 128 may only be accessed using ‘indirect’ addressing.

The SFR Space contains MoBL-USB FX2LP18 control and status registers; an overview is in section 11.12 Special Function
Registers on page 195, and a full description of all the SFRs is in the Registers chapter on page 237.

The sixteen SFRs at locations 0x80, 0x88, ..., 0xF0, 0xF8 are bit addressable. Each of the 128 bits in these registers may be
individually addressed, either by its bit address (0x80 to OxFF) or by reference to the byte which contains it (for example,
0x80.0, 0xC8.7, and so on).

5.3 External Program Memory and External Data Memory

The standard 8051 employs a Harvard architecture for its External memory; the program and data memories are physically
separate. The MoBL-USB FX2LP18 uses a modified version of this memory model; the ‘on chip’ program and data memories
are unified in a Von Neumann architecture. This allows the MoBL-USB FX2LP18'’s on chip RAM to be loaded from an external
source (USB or EEPROM, see Enumeration and ReNumeration™, on page 51), then used as program memory.

Standard 8051

The standard 8051 has separate address spaces for program and data memory; it can address 64 kB of read only program
memory at addresses 0x0000-OxFFFF, and another 64 kB of read/write data memory, also at addresses 0x0000-OxFFFF. The
standard 8051 keeps the two memory spaces separate by using different bus signals to access them; the read strobe for pro-
gram memory is PSEN# (Program Store Enable), and the read and write strobes for data memory are RD# and WR#. The
8051 generates PSEN# strobes for instruction fetches and for the MOVC (move code memory into the accumulator) instruc-
tion; it generates RD# and WR# strobes for all data-memory accesses. In a standard 8051 application, an external 64 kB
ROM chip (enabled by the 8051's PSEN# signal) might be used for program memory and an external 64 kB RAM chip
(enabled by the 8051's RD# and WR# signals) might be used for data memory.

In the standard 8051, all program memory is read only.

MoBL-USB FX2LP18

The MoBL-USB FX2LP18 has 16 kB of on chip RAM (the ‘Main RAM’) at addresses 0x0000 — Ox3FFF, and 512 bytes of on
chip RAM (the ‘Scratch RAM’) at addresses OXEO00 — OXE1FF. Although this RAM is physically located inside the chip, it's
addressed by firmware as ‘External’ memory, just as though it were in an external RAM chip.

78 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 78 of 346

-

CYPRESS Memory

The RD# and PSEN# strobes are automatically combined for accesses to addresses below 0x4000, so the Main RAM is
accessible as both data and program memory. The RD# and PSEN# strobes are not combined for the Scratch RAM; Scratch
RAM is accessible as data memory only.

Although it's technically accurate to say that the Main RAM data memory is writable while the Main RAM program memory is
not, it's a distinction without a difference. The Main RAM is accessible both as program memory and data memory, so writing
to Main RAM data memory is equivalent to writing to Main RAM program memory at the same address.

The Scratch RAM is never accessible as program memory.

The MoBL-USB FX2LP18 also reserves 7.5 kB (OXE200 — OxFFFF) of the data memory address space for control/status reg-
isters and endpoint buffers (see section “On Chip Data Memory at 0OXEO00 — OXFFFF” on page 81).

The MoBL-USB FX2LP18 chip has no facility for adding off chip program or data memory. Therefore, the Main RAM must
serve as both program and data memory. To accomplish this, the MoBL-USB FX2LP18 reads the Main RAM using the logical
OR of the PSEN# and RD# strobes. It is the responsibility of the system designer to ensure that the program and data mem-
ory spaces do not overlap; with most C compilers, this is done by using linker directives that place the code and data modules
into separate areas.

54 MoBL-USB FX2LP18 Memory Map

Figure 5-2. MoBL-USB FX2LP18 External Program/Data Memory Map

FFFF
7.5KB
USB regs and
4K FIFO buffers

E200
E1FF

0.5 KB RAM
E000 Data

|

|

| 16 KB RAM |
Code and Data

|

|

|

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 79

Exhibit 2033 - Page 79 of 346

= it

Memory =7

‘CYPRESS

PERFC

The on chip MoBL-USB FX2LP18 memory consists of three RAM regions:

m 0x0000 — Ox3FFF (Main RAM)

m O0xEO000 — OXE1FF (Scratch RAM)

m O0xE200 — OxFFFF (Registers/Buffers)

The 16 kB ‘Main RAM’ occupies program memory (PSEN#) and data memory (RD#WR#) addresses 0x0000 — Ox3FFF.
The 512 byte ‘Scratch RAM’ occupies data memory (RD#WR#) addresses 0xEQ00 — OXE1FF.

7.5 kB of control/status registers and endpoint buffers occupy data memory (RD#/WR#) addresses 0XE200 — OXFFFF.

Note The asterisks in Figure 5-2 on page 79 indicate memory regions that may be accessed using three special MoBL-USB
FX2LP18 resources:

m Setup Data Pointer (see section 8.7 The Setup Data Pointer on page 104)
m Upload or download via USB (see section 3.8 MoBL-USB FX2LP18 Vendor Request for Firmware Load on page 56)

m Code boot from an 12C EEPROM (see section 13.5 EEPROM Boot Loader on page 216 and section 3.4 ‘C2' EEPROM
Boot-load Data Format on page 53)

Note MoBL-USB FX2LP18 code execution begins at address 0x0000, where the reset vector is located.

80 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 80 of 346

—l ———
— =

== CYDHF% Memory

5.5 On Chip Data Memory at OxEOO0O - OxFFFF

Figure 5-3. On Chip Data Memory at OXEOOO — OxFFFF

FFFF

EP2-EPS (4 KB)

Buffers

F000
EFFF

Reserved (2KB)
E800
E7FF
E7C0 EP1IN (64)
E7BF
£780 EP10OUT (64)
E77F
£740 EPO IN/OUT (64)
E73F
£700 Reserved (64)
E6FF MoBL-USB Control and Status

Registers (512)
E500
E4FF
£480 Reserved (128)
EA4TF

GPIF Waveforms (128)

E400
E3FF

Reserved (512)
E200
E1FF

Scratch RAM (512)

E000

Figure 5-3 shows the memory map for on chip data RAM at OXEO0O0 — OxFFFF.

512 bytes of Scratch RAM are available at 0XEOOO — OXE1FF. This is data RAM only; code cannot be executed from it. The
128 bytes at 0XE400 — OXE47F hold the four waveform descriptors for the GPIF, described in the General Programmable
Interface chapter on page 135. The area from OXE500 — OXE6FF contains control and status registers.

Memory blocks 0XxE200 — OXE3FF, 0XE480 — OXxE4FF, OXE700 — OXE73F, and OXE800 — OXEFFF) are reserved; they must not
be used for data storage.

The remaining RAM contains the endpoint buffers. These buffers are accessible either as addressable data RAM (via the
‘MOVX' instruction) or as FIFOs (via the Autopointer, described in section 8.8 Autopointers on page 105).

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 81

Exhibit 2033 - Page 81 of 346

iy

(1

e __F

¥ CYPRESS

Memory

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

82
Exhibit 2033 - Page 82 of 346

6. Power Management

= =
=2 CYPRESS

PERFORM

6.1 Introduction

The USB host can ‘suspend’ a device to put it into a power-down mode. When the USB signals a SUSPEND operation, the
MoBL-USB FX2LP18 goes through a sequence of steps to allow the firmware first to turn off external power-consuming sub-
systems, and then to enter a low-power mode by turning off the MoBL-USB FX2LP18’s oscillator. Once suspended, the
MoBL-USB FX2LP18 is awakened either by resumption of USB bus activity or by assertion of one of its two WAKEUP pins
(provided that they're enabled). This chapter describes the suspend-resume mechanism.

It is important to understand the distinction between ‘suspend’, ‘resume’, ‘idle’, and ‘wakeup’.

m SUSPEND is a request (indicated by a 3-millisecond ‘J’ state on the USB bus) from the USB host/hub to the device. This
request is usually sent by the host when it enters a low-power ‘suspended’ state. USB devices are required to enter a low
power state in response to this request.

The MoBL-USB FX2LP18 also provides a register called SUSPEND; writing any value to it will allow the MoBL-USB
FX2LP18 to enter the suspended state even when a SUSPEND condition does not exist on the bus.

m RESUME is a signal initiated by the device or host driving a ‘K’ state on the USB bus, requesting that the host or device be
taken out of its low-power ‘suspended’ mode. A USB device can only signal a RESUME if it has reported (via its Configu-
ration Descriptor) that it is ‘remote wakeup capable’, and only if the host has enabled remote wakeup from that device.

m Idle is a MoBL-USB FX2LP18 low-power state. Firmware initiates this mode by setting bit zero of the PCON (Power Con-
trol) register. To meet the stringent USB suspend current specification, the MoBL-USB FX2LP18's oscillator must be
stopped; after the PCON.0 bit is set, the oscillator will stop if: a) a SUSPEND condition exists on the bus or the SUSPEND
register has been written to, and b) all three WAKEUP sources are either disabled or false (WAKEUP, WU2, USB
Resume). The MoBL-USB FX2LP18 exits the Idle state when it receives a Wakeup Interrupt.

m Wakeup is the mechanism which restarts the oscillator and asserts an interrupt to force the MoBL-USB FX2LP18 to exit
the Idle state and resume code execution. The MoBL-USB FX2LP18 recognizes three wakeup sources: one from the
USB itself (when bus activity resumes) and two from device pins (WAKEUP and WU?2).

The MoBL-USB FX2LP18 enters and exits its Idle state independent of USB activity; in other words, the chip can enter the
Idle state at any time, even when not connected to USB. The Idle state is ‘hooked into’ the USB SUSPEND-RESUME mech-
anism using interrupts. A suspend interrupt is automatically generated when the USB goes inactive for 3 milliseconds; firm-
ware may respond to that interrupt by entering the Idle state to reduce power. If the MoBL-USB FX2LP18 is in the Idle state,
a Wakeup Interrupt is generated when one of the three Wakeup sources is asserted; the MoBL-USB FX2LP18 responds to
that interrupt by exiting the Idle state and resuming code execution.

Once the MoBL-USB FX2LP18 is awake, its firmware may send a USB RESUME request by setting the SIGRSUME bit in the
USBCS register (at 0XE680). Before sending the RESUME request, the device must have: a) reported remote-wakeup capa-
bility in its Configuration Descriptor, and b) been given permission (via a ‘Set Feature-Remote Wakeup’ request from the host)
to use that remote-wakeup capability. To be compliant with the USB Specification, firmware must wait 5 milliseconds after the
wakeup interrupt, set the SIGRSUME bit, wait 10-15 milliseconds, then clear it.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 83

Exhibit 2033 - Page 83 of 346

=24 CYPRESS

24 MHz

i

explained in the next sections.
OPEN
WUPOL WUEN
—) START—) Oscillator
WAKEUP pin — STOP—»
WUZ2EN
WU2POL
w2 pinw
PLL
Restart
Delay
divider
l CLKOUT

L—PCON.0—
"RESUME" INT—
8051 |—» Resume
(USBCS.0)

EICON.5
(ERESI)
USB T T
Writes any value to

Resume
Suspend
No USB activity "SUSPEND'
for 3 msec.
Interrupt
SUSPEND register
(OXE681)

Power Management

Figure 6-1 illustrates the MoBL-USB FX2LP18 logic that implements USB suspend and resume. These operations are
Figure 6-1. Suspend-Resume Control

Signal

MoBL-USB™ TRM, Document # 001-11981 Rev. *B
Exhibit 2033 - Page 84 of 346

84

CYPRESS

-

Power Management

6.2 USB Suspend

Figure 6-2. USB Suspend sequence
24 MHz

-

——STOP —p»| Oscillator

e »/cikouT |

A 4

— PCON.0 —

Signal
8051 |—>» Resume

(USBCS.0)
| l
- UsB
No USB activity "SUSPEND"
for 3 msec. .
Interrupt Writes any value to

SUSPEND register
(0OXE681)

A USB device recognizes a SUSPEND request as three milliseconds of the bus-idle state. When the MoBL-USB FX2LP18
detects this condition, it asserts the USB interrupt (INT2) and the SUSPEND interrupt autovector (vector #3).

If the CPU is in reset when a SUSPEND condition is detected on the bus, the MoBL-USB FX2LP18 automatically turns its
oscillators (and keeps the CPU in reset) until an enabled wakeup source is asserted.

Note The bus-idle state is not equivalent to the disconnected-from-USB state; for full-speed, bus-idle is a ‘J’ state which
means that the voltage on D+ is higher than that on D-.

MoBL-USB FX2LP18 firmware responds to the SUSPEND interrupt by taking the following actions:
1. Perform any necessary housekeeping such as shutting off external power-consuming devices.
2. Set bit zero of the PCON register.

These actions put the MoBL-USB FX2LP18 into a low power ‘suspend’ state, as required by the USB Specification.

6.2.1 SUSPEND Register

MoBL-USB FX2LP18 firmware can force the chip into its low-power mode at any time, even without detecting a 3-millisecond
period of inactivity on the USB bus. This ‘unconditional suspend’ functionality is useful in applications which require the
MoBL-USB FX2LP18 to enter its low-power mode even while disconnected from the USB bus.

To force the MoBL-USB FX2LP18 unconditionally to enter its low-power mode, firmware simply writes any value to the SUS-
PEND register (at OXE681) before setting the PCON.O0 bit.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 85

Exhibit 2033 - Page 85 of 346

Power Management E-=- C‘Jflfﬁlf%%
6.3 Wakeup/Resume

Figure 6-3. MoBL-USB FX2LP18 Wakeup/Resume sequence

24 MHz

OPEN D
USB Resume ﬁ h
WUPOL WUEN
) START—» .
WAKEUP pinﬁ>:D Oscillator
WUZ2EN
WU2POL
WU2 pin
PLL
Restart
Delay
divider
o »fctxour |
EICON.5
(ERESI)
Signal
"WAKEUP" INT—» 8051 |—» Resume
(USBCS.0)

Once in the low-power mode, there are three ways to wake up the MoBL-USB FX2LP18:
m USB activity on the MoBL-USB FX2LP18's DPLUS pin

m Assertion of the WAKEUP pin

m Assertion of the WU2 (Wakeup 2) pin

These three wakeup sources may be individually enabled by setting the DPEN, WUEN, and WUZ2EN bits in the Wakeup Con-
trol register.

WAKEUPCS Wakeup Control & Status E682
b7 b6 b5 b4 b3 b2 bl b0
wu2 wu WU2POL WUPOL 0 DPEN WU2EN WUEN
R/W R/W R/W R/W R R/W R/W R/W
0 0 0 0 0 1 0 1

The polarities of the wakeup pins are set using the WUPOL and WU2POL bits; ‘0’ is active low and ‘1’ is active high.

Three bits in the WAKEUP register enable the three wakeup sources. DPEN stands for ‘DPLUS Enable’ (DPLUS is one of the
USB data lines; the other is DMINUS).

WUEN (Wakeup Enable) enables the WAKEUP pin, and WU2EN (Wakeup 2 Enable) enables the WU2 pin.

When the MoBL-USB FX2LP18 chip detects activity on DPLUS while DPEN is true, or a false-to-true transition on WAKEUP
or WU2 while WUEN or WU2EN is true, it asserts the ‘wakeup’ interrupt.

86 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 86 of 346

il

=7 CYDHF% Power Management

The status bits WU and WU2 indicate which of the wakeup pins caused the wakeup event. Asserting the wakeup pin (accord-
ing to its programmed polarity) sets the corresponding bit. If the wakeup was caused by resumption of USB DPLUS activity,
neither of these bits is set, leading to the conclusion that the third source, a USB bus reset, caused the wakeup event. Firm-
ware clears the WU and WU2 flags by writing ‘1’ to them.

Note Holding either WAKEUP pin in its active state (as determined by the programmed polarity) inhibits the MoBL-USB
FX2LP18 chip from turning off its oscillator in order to enter the ‘suspend’ state.

Note While disconnected from the USB bus, the DPLUS and DMINUS lines may float. Noise on these lines may indicate
activity to the MoBL-USB FX2LP18 and initiate a wakeup event. Firmware must set DPEN to ‘0’ if this is not desired.

Some designs also use the WAKEUP# pin as a general purpose input pin. Due to the built-in latch on this pin, it must be
cleared before it will show the current state of the pin. For example, to detect a ‘1’ on the WAKEUP# pin use the following
code:

WAKEUPCS = bmWU | bmWUPOL | bmWUEN; // Write one to bmWU to clear it, set
// active high, enable
WAKEUPCS = bmWU | bmWUPOL | bmWUEN; // This line is required only if WUPOL

// is changing.
// A WUPOL change can trigger a WAKEUP event

it (WAKEUPCS & bmwWu)

{
// WAKEUP# is a one

}

else

{
// WAKEUP# is 0

}

Note If the polarity is changed, an additional WAKEUP event may be triggered. Always clear the WAKEUP event after chang-
ing the polarity.

6.3.1 Wakeup Interrupt

When a wakeup event occurs, the MoBL-USB FX2LP18 restarts its oscillator and, after the PLL stabilizes, it generates an
interrupt request. This applies whether or not the MoBL-USB FX2LP18 is connected to the USB. The Wakeup Interrupt is a
dedicated interrupt, and is not shared by USBINT like most of the other individual USB interrupts.

The Wakeup Interrupt vector is at 0x33, and has the highest interrupt priority. It is enabled by ERISI (EICON.5), and its IRQ
flag is at EICON.4 (EICON is SFR 0xD8). Note If the MoBL-USB FX2LP18 is suspended with ERISI (EICON.5) low, it never
‘wakes up’.

The Wakeup Interrupt Service Routine clears the interrupt request flag RESI (using the ‘bit clear’ instruction, for example, ‘clr
EICON.4’), and then executes a ‘reti’ (return from interrupt) instruction. This causes the MoBL-USB FX2LP18 to continue pro-
gram execution at the instruction following the one that set PCON.0 to initiate the power-down operation.

About the Wakeup Interrupt

The MoBL-USB FX2LP18 enters its idle state when it sets PCON.O to ‘1'. Although a standard 8051 exits the idle state when
any interrupt occurs, the MoBL-USB FX2LP18 supports only the Wakeup Interrupt to exit the idle state.

Note If PCON.O is set when no Suspend condition exists (for example, the USB is not signaling ‘Suspend’, and firmware has
not written to the SUSPEND register), the Wakeup Interrupt will fire immediately.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 87

Exhibit 2033 - Page 87 of 346

— & =

Power Management = CYPHF%
6.4 USB Resume (Remote Wakeup)
USBCS USB Control and Status 7FD6
b7 b6 b5 b4 b3 b2 bl b0
- - SIGRSUME

Firmware sets the SIGRSUME bit to send a remote-wakeup request to the host. To be compliant with the USB Specification,
the firmware must wait 5 milliseconds after the wakeup interrupt, set the SIGRSUME bit, wait 10-15 milliseconds, then clear it.

Note Before setting the SIGRSUME bit to ‘1’, MoBL-USB FX2LP18 firmware must check that the source of the wakeup event
was one of the WAKEUP pins. If neither WAKEUP pin was the source, the wakeup event was the resumption of USB DPLUS
activity, and in this case, the device must not signal a remote-wakeup by setting the SIGRSUME bit to ‘1'.

The Default USB Device does not support remote wakeup. This fact is reported at enumeration time in byte 7 of the built-in
Configuration Descriptor (see Appendices A and B).

6.4.1 WU2 Pin

The WU2 function shares the general-purpose 10 pin PA3. Unlike other multi-purpose |10 pins that use configuration registers
(PORTACFG, PORTCCFG, and PORTECFG) to select alternate functions, the PA3 and WU2 functions are simultaneously
active. However, the WU2 function has no effect unless enabled (by setting the WU2EN bit to ‘1’). If WU2 is used as a
wakeup pin, make sure to set PA3 as an input (OEA.3=0, the default state) to prevent PA3 from also driving the pin.

The dual nature of the PA3/WU2 pin allows the MoBL-USB FX2LP18 to enter the low-power mode, then periodically awaken
itself. This is done by connecting an RC network to the PA3/WU2 pin; if the WU2 pin is set to the default polarity (active-high),
the resistor is connected to 3.3V and the capacitor is connected to ground.

The firmware then performs the following steps:

1. Set W2POL to ‘1’ for active-high polarity on the WU2 pin.

2. Set WU2EN to ‘1’ to enable Wakeup 2.

3. Enable the wakeup interrupt by setting EICON.5=1.

4

Set PA3 to ‘0, then set OEA.3 to ‘1’. This enables the PA3 output and drives the PA3/WU2 pin to ground, discharging the
capacitor.

Set OEA.3 to ‘0. This floats the PA3/WU2 pin, allowing the resistor to begin charging the capacitor.

6. Write any value to the SUSPEND register, so the MoBL-USB FX2LP18 will unconditionally stop the oscillator when the
firmware sets PCON.O.

7. Set PCON.O to ‘1'. This commands the MoBL-USB FX2LP18 to enter the Idle state.

o

After the capacitor charges to a logic high level, the wakeup interrupt triggers via the WU2 pin.

8. In the Wakeup interrupt service routine, clear EICON.4 (the wakeup interrupt request flag), then execute a ‘reti’ instruc-
tion. This resumes program execution at the instruction following the instruction in step 7.

9. At this point, the firmware can check for any tasks to perform; if none are required, it can then re-enter the Idle state start-
ing at step 4.

By selecting a long time constant for the RC network attached to the WU2 pin, the MoBL-USB FX2LP18 chip can operate at
extremely low average power, since the on/off (active/suspend) duty-cycle is very short.

88 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 88 of 346

= =
=2 CYPRESS

PERFORM

7.1 Introduction

There are three different reset functions on the MoBL-USB FX2LP18. This chapter describes their effects.

m Hard Reset. An active low reset pin (RESET#) is provided in order to reset the MoBL-USB FX2LP18 to a known state at
power-on or any other application-specific reset event.

m CPU Reset, controlled by the MoBL-USB FX2LP18's USB Core logic. The CPU Reset is always asserted (for example,
the CPU is always held in reset) while the MoBL-USB FX2LP18's RESET# pin is asserted.

m USB Bus Reset, which is a condition on the USB bus initiated by the USB host in order to put every device's USB func-
tions in a known state.

Figure 7-1. MoBL-USB FX2LP18 Resets

RES
vee cPU
CPUCS.0
(1 at PWR ON)
RESET# | » RES
Py USB Core 12,24,
J7 or|48
s : USB Bus ! MHz
DMINUS i _Reset |
A
| XTALIN 48 MHz
24 T . <1, +2
— ! » ,)
MHz & Oscillator PLL or +4
L XTALOUT CLKOUT

7.2 Hard Reset

The RESET# pin can be connected to an external R-C network or other external reset source in order to ensure that, when
power is first applied, the MoBL-USB FX2LP18 is held in reset until the operating parameters (VCC voltage, crystal frequency,
PLL frequency, and so on.) stabilize. The 24 MHz oscillator and PLL stabilize 5 ms after VCC reaches 3.0 V. An R-C network
can satisfy the power-on reset requirements of the MoBL-USB FX2LP18. See Figure 7-1 for a sample connection scheme
(for example, R = 27K ohm, C = 1 pyF).

The RESET# pin can also be asserted at any time after the MoBL-USB FX2LP18 is running. If the MoBL-USB FX2LP18’s
XTALIN pin is driven by an external clock source that continues to run while the chip is in reset, RESET# need only be
asserted for 200 us. Otherwise, it must be asserted for at least 5 ms.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 89

Exhibit 2033 - Page 89 of 346

—l ———
— =

Resets =4 (jypﬂpgg

The CLKOUT pin, crystal oscillator, and PLL are active as soon as power is applied. Once the CPU is out of reset, firmware
may clear a control bit (CLKOE, CPUCS.1) to inhibit the CLKOUT output pin for EMI-sensitive applications that do not need
this signal.

The CLKOUT signal is active while RESET# is low. When RESET# returns high, the activity on the CLKOUT pin depends on
whether or not the MoBL-USB FX2LP18 is in the low-power ‘suspend’ state; if it is, CLKOUT stops. Resumption of USB bus
activity or assertion of the WAKEUP or WU2 pin (if enabled) restarts the CLKOUT signal.

Power-on default values for all MoBL-USB FX2LP18 register bits are shown in the Registers chapter on page 237. At power-
on reset:

m Endpoint data buffers and byte counts are uninitialized.

The CPU clock speed is set to 12 MHz, the CPU is held in reset, and the CLKOUT pin is active.

All port pins are configured as general-purpose input pins.

USB interrupts are disabled and USB interrupt requests are cleared.

Bulk IN and OUT endpoints are unarmed, and their stall bits are cleared. The MoBL-USB FX2LP18 will NAK IN and OUT
tokens while the CPU is reset.

Endpoint data toggle bits are cleared to ‘0'.

The RENUM bit is cleared to ‘0’. This means that the Default USB Device, not the firmware, will respond to USB device
requests.

The USB Function Address register is cleared to zero.

The endpoints are configured for the Default USB Device.
Interrupt autovectoring is turned off.
Configuration Zero, Alternate Setting Zero is in effect.

D+ pull up resistor is disconnected from the data line during a hard reset.

7.3 Releasing the CPU Reset

Register bit CPUCS.0 resets the CPU. This bit is set to ‘1’ at power-on, initially holding the CPU in reset. There are three
ways that the CPUCS.0 bit can be cleared to ‘0’ releasing the CPU from reset:

m By the host, as the final step of a RAM download.
m Automatically, at the end of an EEPROM load (assuming the EEPROM is correctly programmed).

Note MoBL-USB FX2LP18 firmware cannot put the CPU into reset by setting CPUCS.0 to ‘1’; to the firmware, that bit is read
only.

7.3.1 RAM Download

Once enumerated, the host can download code into the MoBL-USB FX2LP18 RAM using the ‘Firmware Load’ vendor request
(Endpoint Zero chapter on page 33). The last packet loaded writes 0x00 to the CPUCS register, which releases the CPU from
reset. Note that only CPUCS.0 can be written in this way.

7.3.2 EEPROM Load

The Enumeration and ReNumeration™ chapter on page 51 describes the EEPROM boot loads in detail. At power-on, the
MoBL-USB FX2LP18 checks for the presence of an EEPROM on its 12C bus. If found, it reads the first EEPROM byte. If it
reads OxC2 as the first byte, the MoBL-USB FX2LP18 downloads firmware from the EEPROM into internal RAM. The last
operation in a ‘C2’ Load writes 0x00 to the CPUCS register, which releases the CPU from reset.

After a ‘C2’ Load, the MoBL-USB FX2LP18 sets the RENUM bit to ‘1", so the firmware will be responsible for responding to
USB device requests.

90 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 90 of 346

—l ———
— =

=£C Y.P,F.} F% Resets

7.4 CPU Reset Effects

The USB host may reset the CPU at any time by downloading the value 0x01 to the CPUCS register. The host might do this,
for example, in preparation for loading code overlays, effectively magnifying the size of the internal MoBL-USB FX2LP18
RAM. For such applications, it is important to know the state of the MoBL-USB FX2LP18 chip during and after a CPU reset. In
this section, this particular reset is called a ‘CPU Reset,” and should not be confused with the resets described in section 7.2
Hard Reset on page 89 This discussion applies only to the condition in which the MoBL-USB FX2LP18 chip is powered, and
the CPU is reset by the host setting the CPUCS.0 hit to ‘1'.

The basic USB device configuration remains intact through a CPU reset. Endpoints keep their configuration, the USB Func-
tion Address remains the same, and the 10 ports retain their configurations and values. Stalled endpoints remain stalled, data
toggles do not change, and the RENUM bit is unaffected. The only effects of a CPU reset are as follows:

m USB (INT2) interrupts are disabled, but pending interrupt requests remain pending.

m When the CPU comes out of reset, pending interrupts are kept pending, but disabled. This gives the firmware writer the
choice of acting on pre-reset USB events, or ignoring them by clearing the pending interrupt(s) before enabling INT2.

m The breakpoint condition (BREAKPT.3) is cleared.

m While the CPU is in reset, the MoBL-USB FX2LP18 enters the Suspend state automatically if a ‘suspend’ condition is
detected on the bus.

7.5 USB Bus Reset

The host signals a USB Bus Reset by driving an SEO state (both D+ and D- data lines low) for a minimum of 10 ms. The
MoBL-USB FX2LP18 senses this condition, requests the USB Interrupt (INT2), and supplies the interrupt vector for a USB
Reset. After a USB bus reset, the following occurs:

m Data toggle bits are cleared to ‘0.

m The device address is reset to zero.

m If the Default USB Device is active, the USB configuration and alternate settings are reset to zero.
m The MoBL-USB FX2LP18 will renegotiate with the host for high-speed (480 Mbps) mode.

Note that the RENUM bit is unchanged after a USB bus reset. Therefore, if a device has ReNumerated™ and loaded a new
personality, it retains the new personality through a USB bus reset.

7.6 MoBL-USB FX2LP18 Disconnect

Although not strictly a ‘reset,’ the disconnect-reconnect sequence used for ReNumeration™ affects the MoBL-USB FX2LP18
in ways similar to the other resets. When the MoBL-USB FX2LP18 simulates a disconnect-reconnect, the following occurs:

m Endpoint STALL bits are cleared.

m Data toggles are reset to ‘0’.

m The Function Address is reset to zero.

m If the Default USB Device is active, the USB configuration and alternate settings are reset to zero.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 91

Exhibit 2033 - Page 91 of 346

Resets

7.7 Reset Summary

==
g,

S CYPRESS

PERFORM

Table 7-1. Effects of Various Resets on MoBL-USB FX2LP18 Resources (“—" means “no change”)

RESET# Pin CPU Reset USB Bus Reset Disconnect
CPU Reset Reset n/a — —
IN Endpoints Unarm — — —
OUT Endpoints Unarm — — —
Breakpoint 0 0 — —
Stall Bits 0 — — 0
Interrupt Enables 0 0 — —
Interrupt Requests 0 — — —
CLKOUT Active — — —
CPU Clock Speed 12 MHz — — —
Data Toggles 0 — 0
Function Address 0 — 0
Default USB Device
Configuration 0 - 0 0
Default USB Device
Alternate Setting 0 - 0 0
RENUM Bit 0 —_ —_ —_
92 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 92 of 346

8. Access to Endpoint Buffers

= =
=2 CYPRESS

PERFORM

8.1 Introduction

USB data enters and exits the MoBL-USB FX2LP18 via endpoint buffers. External logic usually reads and writes this data by
direct connection to the endpoint FIFOs without any participation by the MoBL-USB FX2LP18's CPU. This is especially nec-
essary for the MoBL-USB FX2LP18, which can operate at the high-speed 480 Mbps transfer rate. However, this feature is
also available when attached to a full-speed host.

Note The chapters Slave FIFOs, on page 107 and General Programmable Interface, on page 135 give details about how
external logic directly connects to the large endpoint FIFOs. Direct connection is available only on endpoints 2, 4, 6, and 8.

When an application requires the CPU to process the data as it flows between external logic and the USB — or when there is
no external logic — firmware can access the endpoint buffers either as blocks of RAM or (using a special auto-incrementing
pointer) as a FIFO.

Even when external logic or the built-in General Programmable Interface (GPIF) is handling high-bandwidth data transfers
through the four large endpoint FIFOs without any CPU intervention, the firmware has certain responsibilities:

m Configure the endpoints.

m Respond to host requests on CONTROL endpoint zero.

m Control and monitor GPIF activity.

m Handle all application-specific tasks using its USARTS, counter-timers, interrupts, 10 pins, and others.

8.2 MoBL-USB FX2LP18 Large and Small Endpoints

MoBL-USB FX2LP18 endpoint buffers are divided into ‘small’ and ‘large’ groups. EPO and EP1 are small, 64-byte endpoints
which are accessible only by the CPU; they cannot be connected directly to external logic.

EP2, EP4, EP6 and EPS8 are large, configurable endpoints designed to meet the high-bandwidth requirements of USB 2.0.
Although data normally flows through the large endpoint buffers under control of the FIFO interfaces described in chapters
Slave FIFOs, on page 107 and General Programmable Interface, on page 135, the CPU can access the large endpoints if
necessary.

8.3 High-Speed and Full-Speed Differences

The data payload size and transfer speed requirements differ between full-speed (12 Mbps) and high-speed (480 Mbps). The
MoBL-USB FX2LP18 architecture is optimized for high-speed transfers, but does not limit full-speed transfers:

m Instead of many small endpoint buffers, MoBL-USB FX2LP18 provides a reduced number of large buffers.

m MoBL-USB FX2LP18 provides double, triple or quad buffering on its large endpoints (EP2, 4, 6, and 8).

m The CPU need not participate in data transfers. Instead, dedicated logic and unified endpoint/interface FIFOs move data
on and off the chip without any CPU intervention.

In the MoBL-USB FX2LP18, endpoint buffers appear to have different sizes depending on whether it is operating at full- or
high-speed. This is due to the difference in maximum data payload sizes allowed by the USB specification for the two modes,
as illustrated by Table 8-1 on page 94.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 93

Exhibit 2033 - Page 93 of 346

‘im

Access to Endpoint Buffers =" C‘J{PRF%%

RFC

if

(1

Table 8-1. Maximum Data Payload Sizes for Full-speed and High-speed

Transfer Type Max Data Payload Size
Full-speed High-speed
CONTROL (EPO only) 8,16,32,64 64
BULK 8,16,32,64 512
INTERRUPT 1-64 1-1024
ISOCHRONOUS 1-1023 1-1024

Although the EP2, EP4, EP6 and EP8 buffers are physically large, they appear as smaller buffers for the non-isochronous
types when the MoBL-USB FX2LP18 is operating at full-speed. This is to account for the smaller maximum data payload
sizes.

When operating at high-speed, firmware can configure the large endpoints’ size, type, and buffering depth; when operating at
full-speed, type and buffering are configurable but the buffer size is always fixed at 64 bytes for the non-isochronous types.

8.4 How the CPU Configures the Endpoints

Endpoints are configured via the six registers shown in Table 8-2.

Table 8-2. Endpoint Configuration Registers

Address Name Configurable Parameters
OXE610 EP1OUTCFG valid, type® (always OUT, 64 bytes, single-buffered)
OxE611 EP1INCFG valid, type® (always IN, 64 bytes, single-buffered)
OxE612 EP2CFG valid, direction, type, size, buffering

valid, direction, type (always 512 bytes, double-buffered in high-speed mode, 64 bytes double-buffered in full-
speed mode for non-iso)

0xE614 EP6CFG valid, direction, type, size, buffering

valid, direction, type (always 512 bytes double-buffered in high-speed mode, 64 bytes double-buffered in full-
speed mode for non-iso)

O0xE613 EPACFG

O0xE615 EP8CFG

Note 1: For EP1, ‘type’ may be set to Interrupt or Bulk only. Even though these buffers are 64 bytes in size, they are reported as 512 for USB 2.0 compliance.
The user must never transfer packets larger than 64 bytes to EP1.

Note The Registers chapter on page 237 gives full bit-level details for all endpoint configuration registers.

Endpoint 0 does not require a configuration register since it is fixed as valid, INNOUT, CONTROL, 64 bytes, single-buffered.
EPO uses a single 64-byte buffer both for IN and OUT transfers. EP1 uses separate 64 byte buffers for IN and OUT transfers.

Endpoints EP2 and EP6 are the most flexible endpoints, as they are configurable for size (512 or 1024 bytes in high-speed
mode, 64 bytes in full-speed mode for the non-isochronous types) and depth of buffering (double, triple, or quad). Endpoints
EP4 and EP8 are fixed at 512 bytes, double-buffered in high-speed mode. They are fixed at 64 bytes, double-buffered in full-
speed mode for the non-isochronous types.
The bits in the EPXCFG registers control the following:
m Valid. Setto ‘1’ (default) to enable the endpoint. A non-valid endpoint does not respond to host IN or OUT packets.
m Type. Two bits, TYPEL:0 (bits 5 and 4) set the endpoint type:

a 00 =invalid

o 01 =ISOCHRONOUS (EP2,4,6,8 only)

7 10 = BULK (default)

a 11 = INTERRUPT
m Direction.1=1IN,0=O0UT.

94 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 94 of 346

= it

‘CYPRESS

PERFC

Access to Endpoint Buffers

Buffering. EP2 and EP6 only. Two bits, BUF1:0 control the depth of buffering:

0 00 =quad

o 01 =invalid

o 10 = double (default)

o 11 =triple

‘Buffering’ refers to the number of RAM blocks available to the endpoint. With double buffering, for example, USB data can
fill or empty an endpoint buffer at the same time that another packet from the same endpoint fills or empties from the external
logic. This technique maximizes performance by saving each side, USB and external-logic interface, from waiting for the
other side. Multiple buffering is most effective when the providing and consuming rates are comparable but bursty (as is the
case with USB and many other interfaces, such as disk drives). Assigning more RAM blocks (triple and quad buffering) pro-

vides more ‘smoothing’ of the bursty data rates. A simple way to determine the appropriate buffering depth is to start with the
minimum, then increase it until no NAKs appear on the USB side and no wait states appear on the interface side.

Note The Valid bit is ignored when buffer space is allocated by the EZ-USB (for example, BUF[1:0] takes precedence over
the Valid bit).

When you are not using all of the endpoints in the endpoint configuration, disable the unused endpoints by writing a zero into
the “valid” bit of the corresponding EPXCFG register without disturbing the default state of the other bits in the register.

For example, if the endpoint configuration 11 (see 1.18 MoBL-USB FX2LP18 Endpoint Buffers on page 28), which utilizes
only endpoints 2 and 8, must be used, configure the endpoints as follows.

EP2CFG = 0xDB;
SYNCDELAY;
EP8CFG = 0x92;
SYNCDELAY;
EPACFG &= Ox7F;
SYNCDELAY;
EP6CFG &=0x7F;
SYNCDELAY;

8.5 CPU Access to MoBL-USB FX2LP18 Endpoint Data

Endpoint data is visible to the CPU at the addresses shown in Table 8-3. Whenever the application calls for endpoint buffers
smaller than the physical buffer sizes shown in Table 8-3, the CPU accesses the endpoint data starting from the lowest
address in the buffer. For example, if EP2 has a reported MaxPacketSize of 512 bytes, the CPU accesses the data in the
lower portion of the EP2 buffer (that is, from OxFO00 to OxF1FF). Similarly, if the MoBL-USB FX2LP18 is operating in full-
speed mode (which dictates a maximum Bulk packet size of only 64 bytes), only the lower 64 bytes of the endpoint (for exam-
ple, 0OXFO00-0xFO3F for EP2) will be used for Bulk data.

Table 8-3. Endpoint Buffers in RAM Space

Name Address Size (bytes)
EPOBUF OXE740-0XE77F 64
EP1OUTBUF OxE780-OxE7BF 64
EP1INBUF OXE7CO0-0XE7FF 64
EP2FIFOBUF 0xF000-0xF3FF 1024
EP4FIFOBUF 0xF400-0xF7FF 1024
EP6FIFOBUF 0xF800-0xFBFF 1024
EP8FIFOBUF 0xFCO00-0xFFFF 1024

Note EPOBUF is for the (optional) data stage of a CONTROL transfer. The eight bytes of data from the CONTROL packet
appear in a separate MoBL-USB FX2LP18 RAM buffer called SETUPDAT, at OxE6B8-OXE6BF.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 95

Exhibit 2033 - Page 95 of 346

=7 CYPRESS

PERFC

Access to Endpoint Buffers =+

The CPU can only access the ‘active’ buffer of a multiple-buffered endpoint. In other words, firmware must treat a quad-buff-
ered 512-byte endpoint as being only 512 bytes wide, even though the quad-buffered endpoint actually occupies 2048 bytes
of RAM. Also, when EP2 and EP6 are configured such that EP4 and/or EP8 are unavailable, the firmware must never attempt
to access the buffers corresponding to those unavailable endpoints.

For example, if EP2 is configured for triple-buffered 1024-byte operation, the firmware should access EP2 only at 0xFOO0O-
0xF3FF. The firmware should not access the EP4 or EP6 buffers in this configuration, since they do not exist (the RAM space
which they would normally occupy is used to implement the EP2 triple-buffering).

8.6 CPU Control of MoBL-USB FX2LP18 Endpoints

From the CPU’s point of view, the ‘small’ and ‘large’ endpoints operate slightly differently, due to the multiple-packet buffering
scheme used by the large endpoints.

The CPU uses internal registers to control the flow of endpoint data. Since the small endpoints EPO and EP1 are programmed
differently than the large endpoints EP2, EP4, EP6, and EP8, these registers fall into three categories:

m Registers that apply to the small endpoints (EPO, EP1IN, and EP10UT)

m Registers that apply to the large endpoints (EP2, EP4, EP6, and EP8)

m Registers that apply to both sets of endpoints

8.6.1 Registers That Control EPO, EP1IN, and EP1OUT

Table 8-4. Registers that control EPO and EP1

Address Name Function
O0XE6A0 EPOCS EPO HSNAK, Busy, Stall
OXE68A EPOBCH EPO Byte Count (MSB)
OxE68B EPOBCL EPO Byte Count (LSB)
OXE65C USBIE EPO Interrupt Enables
OXE65D USBIRQ EPO Interrupt Requests
SFR 0xBA EPO1STAT Endpoint 0 and 1 Status
OxXE6AL EP1OUTCS EP10UT Busy, Stall
OxE68D EP10UTBC EP10OUT Byte Count
OxE6A2 EP1INCS EP1IN Busy, Stall
OXE68F EP1INBC EP1IN Byte Count

8.6.1.1 EPOCS

Firmware uses this register to coordinate CONTROL transfers over endpoint 0. The EPOCS register contains three bits:
HSNAK, BUSY and STALL.

HSNAK

HSNAK is automatically set to ‘1’ whenever the SETUP token of a CONTROL transfer arrives. The MoBL-USB FX2LP18 logic
automatically NAKs the STATUS (handshake) stage of the CONTROL transfer until the firmware clears the HSNAK bit by
writing ‘1’ to it. This mechanism gives the firmware a chance to hold off subsequent transfers until it completes the actions
required by the CONTROL transfer.

Note Firmware must clear the HSNAK bit after servicing every CONTROL transfer.

BUSY

The read-only BUSY bit is relevant only for the data stage of a CONTROL transfer. BUSY=1 indicates that the endpoint is cur-
rently being serviced by USB, so firmware should not access the endpoint data.

BUSY is automatically cleared to ‘0’ whenever the SETUP token of a CONTROL transfer arrives. The BUSY bit is set to ‘1’
under different conditions for IN and OUT transfers.

96 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 96 of 346

—l ———
— =

=¥ C Y.P,F.} F% Access to Endpoint Buffers

For EPO IN transfers, MoBL-USB FX2LP18 logic NAKs all IN tokens to EPO until the firmware has ‘armed’ EPO for IN trans-
fers by writing to the EPOBCH:L Byte Count register, which sets BUSY=1 to indicate that firmware must not access the data.
Once the endpoint data is sent and acknowledged, BUSY is automatically cleared to ‘0’ and the EPOIN interrupt request bit is
asserted. After BUSY is automatically cleared to ‘0’, the firmware may refill the EPOIN buffer.

For EPO OUT transfers, MoBL-USB FX2LP18 logic NAKs all OUT tokens to EPO until the firmware has ‘armed’ EPO for OUT
transfers by writing any value to the EPOBCL register. BUSY is automatically set to ‘1’ when the firmware writes to EPOBCL,
and BUSY is automatically cleared to ‘0’ after the data has been correctly received and ACK'd. When BUSY transitions to
zero, the MoBL-USB FX2LP18 also generates an EPOOUT interrupt request.

Note The MoBL-USB FX2LP18'’s autovectored interrupt system automatically transfers control to the appropriate ISR (Inter-
rupt Service Routine) for the endpoint requiring service. The Interrupts chapter on page 59 describes this mechanism.

STALL

Set STALL=1 to instruct the MoBL-USB FX2LP18 to return the STALL response to a CONTROL transfer. This is generally
done when the firmware does not recognize an incoming USB request. According to the USB spec, endpoint zero must
always accept transfers, so STALL is automatically cleared to ‘O’ whenever a SETUP token arrives. If it's desired to stall a
transfer and also clear HSNAK to ‘0’ (by writing a ‘1’ to it), the firmware should set STALL=1 first, in order to ensure that the
STALL bit is set before the ‘acknowledge’ phase of the CONTROL transfer can complete.

8.6.1.2 EPOBCH and EPOBCL

These are the byte count registers for bytes sent as the optional data stage of a CONTROL transfer. Although the EPO buffer
is only 64 bytes wide, the byte count registers are 16 bits wide to allow using the Setup Data Pointer to send USB IN data
records that consist of multiple packets.

To use the Setup Data Pointer in its most-general mode, firmware clears the SUDPTR AUTO bit and writes the word-aligned
address of a data block into the Setup Data Pointer, then loads the EPOBCH:L registers with the total number of bytes to
transfer. The MoBL-USB FX2LP18 automatically transfers the entire block, partitioning the data into MaxPacketSize packets
as necessary.

Note The Setup Data Pointer is the subject of section 8.7 The Setup Data Pointer on page 104.

For IN transfers without using the Setup Data Pointer, firmware loads data into EPOBUF, then writes the number of bytes to
transfer into EPOBCH and EPOBCL. The packet is armed for IN transfer when the firmware writes to EPOBCL, so EPOBCH
should always be loaded first. These transfers are always 64 bytes or less, so EPOBCH must be loaded with ‘0’ (and EPOBCL
must be in the range [0-64]). EPOBCH will hold that zero value until firmware overwrites it.

For EPO OUT transfers, the byte count registers indicate the number of bytes received in EPOBUF. Byte counts for EPO OUT
transfers are always 64 or fewer, so EPOBCH is always zero after an OUT transfer. To re-arm the EPO buffer for a future OUT
transfer, the firmware simply writes any value to EPOBCL.

Note The EPOBCH register must be initialized on reset, since its power-on-reset state is undefined.

8.6.1.3 USBIE and USBIRQ

Three interrupts — SUTOK, SUDAV, and EPOACK — are used to manage CONTROL transfers over endpoint zero. The indi-
vidual enables for these three interrupt sources are in the USBIE register, and the interrupt-request flags are in the USBIRQ
register.

Each of the three interrupts signals the completion of a different stage of a CONTROL transfer.

m SUTOK (Setup Token) asserts when MoBL-USB FX2LP18 receives the SETUP token.

m SUDAV (Setup Data Available) asserts when MoBL-USB FX2LP18 logic has loaded the eight bytes from the SETUP
stage into the 8-byte buffer at SETUPDAT.

m EPOACK (Endpoint Zero Acknowledge) asserts when the handshake stage has completed.

The SUTOK interrupt is not normally used; it is provided for debug and diagnostic purposes. Firmware generally services the
CONTROL transfer by responding to the SUDAV interrupt, since this interrupt fires only after the eight setup bytes are avail-
able for examination in the SETUPDAT buffer.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 97

Exhibit 2033 - Page 97 of 346

— sy T

</ CYPRESS

Access to Endpoint Buffers

8.6.1.4 EPO1STAT

The BUSY bhits in EPOCS, EP10OUTCS, and EP1INCS (described later in this chapter) are replicated in this SFR; they are pro-
vided here in order to allow faster access (via the MOV instruction rather than MOVX) to those bits.

Three status bits are provided in the EPO1STAT register; the status bits are the following:
m EP1INBSY: 1 = EP1IN is busy

m EP10OUTBSY: 1 = EP10UT is busy

m EPOBSY: 1= EPO is busy

8.6.1.5 EP10OUTCS

This register is used to coordinate BULK or INTERRUPT transfers over EP10OUT. The EP10OUTCS register contains two bits,
BUSY and STALL.

BUSY

This bit indicates when the firmware can read data from the Endpoint 1 OUT buffer. BUSY=1 means that the SIE ‘owns’ the
buffer, so firmware should not read (or write) the buffer. BUSY=0 means that the firmware may read from (or write to) the
buffer. A 1-to-0 BUSY transition asserts the EP10UT interrupt request, signaling that new EP10OUT data is available.

BUSY is automatically cleared to ‘0’ after the MoBL-USB FX2LP18 verifies the OUT data for accuracy and ACKs the transfer.
If a transmission error occurs, the MoBL-USB FX2LP18 automatically retries the transfer; error recovery is transparent to the
firmware.

Firmware arms the endpoint for OUT transfers by writing any value to the byte count register EP1OUTBC, which automati-
cally sets BUSY=1.

At power-on (or whenever a 0-to-1 transition occurs on the RESET# pin), the BUSY bit is set to ‘0’, so the MoBL-USB
FX2LP18 NAKs all EP10UT transfers until the firmware arms EP10UT by writing any value to EP1OUTBC.

STALL

Firmware sets STALL=1 to instruct the MoBL-USB FX2LP18 to return the STALL PID (instead of ACK or NAK) in response to
an EP10UT transfer. The MoBL-USB FX2LP18 continues to respond to EP1OUT transfers with the STALL PID until the firm-
ware clears this bit.

8.6.1.6 EP10OUTBC
Firmware may read this 7-bit register to determine the number of bytes (0-64) in EPLOUTBUF.

Firmware writes any value to EP1OUTBC to arm an EP10UT transfer.

8.6.1.7 EP1INCS

This register is used to coordinate BULK or INTERRUPT transfers over EP1IN. The EP1INCS register contains two bits,
BUSY and STALL.

BUSY

This bit indicates when the firmware can load data into the Endpoint 1 IN buffer. BUSY=1 means that the SIE ‘owns’ the
buffer, so firmware should not write (or read) the buffer. BUSY=0 means that the firmware may write data into (or read from)
the buffer. A 1-to-0 BUSY transition asserts the EP1IN interrupt request, signaling that the EP1IN buffer is free and ready to
be loaded with new data.

The firmware schedules an IN transfer by loading up to 64 bytes of data into EP1INBUF, then writing the byte count register
EP1INBC with the number of bytes loaded (0-64). Writing the byte count register automatically sets BUSY=1, indicating that
the transfer over USB is pending. After the MoBL-USB FX2LP18 subsequently receives an IN token, sends the data, and suc-
cessfully receives an ACK from the host, BUSY is automatically cleared to ‘0’ to indicate that the buffer is ready to accept
more data. This generates the EP1IN interrupt request, which signals that the buffer is again available.

98 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 98 of 346

=
= o
I~

=4 Cyprress

RFO

Access to Endpoint Buffers

At power-on, or whenever a 0-to-1 transition occurs on the RESET# pin, the BUSY bit is set to ‘0’, meaning that the MoBL-
USB FX2LP18 NAKs all EP1IN transfers until the firmware arms the endpoint by writing the number of bytes to transfer into
the EP1INBC register.

STALL

Firmware sets STALL=1 to instruct the MoBL-USB FX2LP18 to return the STALL PID (instead of ACK or NAK) in response to
an EP1IN transfer. The MoBL-USB FX2LP18 will continue to respond to EP1IN transfers with the STALL PID until the firm-
ware clears this bit.

8.6.1.8 EP1INBC

Firmware arms an IN transfer by loading this 7-bit register with the number of bytes (0-64) it has previously loaded into
EP1INBUF.

8.6.2 Registers That Control EP2, EP4, EP6, EP8

In order to achieve the high transfer rates required by USB 2.0’s high-speed mode, and to maximize full-speed trans-
fer rates, the MoBL-USB FX2LP18’s CPU should not participate in transfers to and from the ‘large’ endpoints. Instead,
those endpoints are usually connected directly to external logic (see chapters Slave FIFOs, on page 107 and General Pro-
grammable Interface, on page 135 for details). Although especially suited for high-speed (480 Mbps) transfers, the functional-
ity of these endpoints is identical at full-speed, except for packet size.

Some applications, however, may require the firmware to have at least some small amount of control over the large end-
points. For those applications, the MoBL-USB FX2LP18 provides the registers shown in Table 8-5.

Table 8-5. Registers that Control EP2,EP4,EP6 and EP8

Address Name Function
SFR OxAA EP2468STAT EP2, 4, 6, 8 empty/full
0xE648 INPKTEND force end of IN packet
0xE649 OUTPKTEND skip or commit an OUT packet
0xE640 EP2ISOINPKTS ISO IN packets per frame or microframe
OXEBA3 EP2CS npak, full, empty, stall
0XE690 EP2BCH byte count (H)
OXE691 EP2BCL byte count (L)
OxE641 EP4ISOINPKTS ISO IN packets per frame or microframe
OXE6A4 EP4CS npak, full, empty, stall
0xE694 EP4BCH byte count (H)
0XE695 EP4BCL byte count (L)
0xXE642 EP6ISOINPKTS ISO IN packets per frame/microframe
OXEB6A5 EP6CS npak, full, empty, stall
0xE698 EP6BCH byte count (H)
0xE699 EP6BCL byte count (L)
0xE643 EP8ISOINPKTS ISO IN packets per frame/microframe
OXE6A6 EP8CS npak, full, empty, stall
O0XE69C EP8BCH byte count (H)
OXE69D EP8BCL byte count (L)

8.6.2.1 EP2468STAT

The Endpoint Full and Endpoint Empty status bits (described below, in section Section 8.6.2.3) are replicated here in order to
allow faster access by the firmware.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 99

Exhibit 2033 - Page 99 of 346

—l ———
— =

Access to Endpoint Buffers et CYDHF%

8.6.2.2 EP2ISOINPKTS, EP4ISOINPKTS, EP6ISOINPKTS, EP8ISOINPKTS

These registers only apply to ISOCHRONOUS IN endpoints. Refer to the EPxISOINPKTS register descriptions in the
Registers chapter on page 237 for details.

MoBL-USB FX2LP18 has the capability of sending a zero-length packet (ZLP) when the host issues an IN token to an isoch-
ronous IN endpoint and the SIE does not have any data available.

These registers do not affect full-speed (12 Mbps) operation; full-speed isochronous transfers are always fixed at one packet
per frame.

8.6.2.3 EP2CS, EP4CS, EP6CS, EP8CS

Because the four large endpoints offer double, triple or quad buffering, a single BUSY bit is not sufficient to convey the state
of these endpoint buffers. Therefore, these endpoints have multiple bits (NPAK, FULL, EMPTY) that can be inspected in order
to determine the state of the endpoint buffers.

Note Multiple-buffered endpoint data must be read or written only at the buffer addresses given in Table 8-3 on page 95. The
MoBL-USB FX2LP18 automatically switches the multiple buffers in and out of the single addressable buffer space.

NPAK[2:0] (EP2, EP6) and NPAK[1:0] (EP4, EP8)

NPAK values have different interpretations for IN and OUT endpoints:

m OUT Endpoints: NPAK indicates the number of packets received over USB and ready for the firmware to read.

m IN Endpoints: NPAK indicates the number of IN packets committed to USB (that is, loaded and armed for USB transfer),
and thus unavailable to the firmware.

The NPAK fields differ in size to account for the depth of buffering available to the endpoints. Only double buffering is avail-
able for EP4 and EP8 (two NPAK bits), and up to quad buffering is available for EP2 and EP6 (three NPAK bits).

FULL

While FULL and EMPTY apply to transfers in both directions, ‘FULL’ is more useful for IN transfers. It has the same meaning
as ‘BUSY’, but applies to multiple-buffered IN endpoints. FULL=1 means that all buffers are committed to USB, and none are
available for firmware access.

For IN transfers, FULL=1 means that all buffers are committed to USB, so firmware should not load the endpoint buffer with
any more data. When FULL=1, NPAK will hold 2, 3 or 4, depending on the buffering depth (double, triple or quad). This indi-
cates that all buffers are in use by the USB transfer logic. As soon as one buffer becomes available, FULL will be cleared to
‘0’ and NPAK will decrement by one, indicating that all but one of the buffers are committed to USB (that is, one is available
for firmware access). As IN buffers are transferred over USB, NPAK decrements to indicate the number still pending, until all
are sent and NPAK=0.

EMPTY

While FULL and EMPTY apply to transfers in both directions, EMPTY is more useful for OUT transfers. EMPTY=1 means that
the buffers are empty; all received packets (2, 3, or 4, depending on the buffering depth) have been serviced.

STALL

Firmware sets STALL=1 to instruct the MoBL-USB FX2LP18 to return the STALL PID (instead of ACK or NAK) in response to
an IN or OUT transfer. The MoBL-USB FX2LP18 continues to respond to IN or OUT transfers with the STALL PID until the
firmware clears this bit.

100 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 100 of 346

—l ———
— =

=¥ C Y.P,F.} F% Access to Endpoint Buffers

8.6.2.4 EP2BCH:L, EP4BCH:L, EP6BCH:L, EP8BCH:L

Endpoints EP2 and EP6 have 11-bit byte count registers to account for their maximum buffer sizes of 1024 bytes. Endpoints

EP4 and EP8 have 10-bit byte count registers to account for their maximum buffer sizes of 512 bytes.

The byte count registers function similarly to the EPO and EP1 byte count registers:

m For an IN transfer, the firmware loads the byte count registers to arm the endpoint (if EPXxBCH must be loaded, it should
be loaded first, since the endpoint is armed when EPxBCL is loaded).

For an OUT transfer, the firmware reads the byte count registers to determine the number of bytes in the buffer, then
writes any value to the low byte count register to re-arm the endpoint. See the ‘Skip’ section, below, for further details.

SKIP

Normally, the CPU interface and outside-logic interface to the endpoint FIFOs are independent, with separate sets of control
bits for each interface. The AUTOOUT mode and the SKIP bit implement an ‘overlap’ between these two domains. A brief
introduction to the AUTOOUT mode is given below; full details appear in the Slave FIFOs chapter on page 107

When outside logic is connected to the interface FIFOs, the normal data flow is for the MoBL-USB FX2LP18 to commit OUT
data packets to the outside interface FIFO as they become available. This ensures an uninterrupted flow of OUT data from
the host to the outside world, and preserves the high bandwidth required by the high-speed mode.

In some cases, it may be desirable to insert a ‘hook’ into this data flow, so that -- rather than the MoBL-USB FX2LP18 auto-
matically committing the packets to the outside interface as they are received over USB -- firmware receives an interrupt for
every received OUT packet, then has the option either to commit the packet to the outside interface (the output FIFO), or to
discard it. The firmware might, for example, inspect a packet header to make this skip/commit decision.

To enable this ‘hook’, the AUTOOUT bit is cleared to ‘0'. If AUTOOUT = 0 and an OUT endpoint is re-armed by writing to its
low byte-count register, the actual value written to the register becomes significant:

m If the SKIP bit (bit 7 of each EPXBCL register) is cleared to ‘0’, the packet will be committed to the output FIFO and
thereby made available to the FIFO’s master (either external logic or the internal GPIF).

m If the SKIP bit is set to ‘1", the just-received OUT packet will not be committed to the output FIFO for transfer to the exter-
nal logic; instead, the packet will be ignored, its buffer will immediately be made available for the next OUT packet, and
the output FIFO (and external logic) will never even ‘know’ that it arrived.

Note The AUTOOUT bit appears in bit 4 of the Endpoint FIFO Configuration Registers EP2FIFOCFG, EP4FIFOCFG,
EP6FIFOCFG and EP8S8FIFOCFG.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 101

Exhibit 2033 - Page 101 of 346

Access to Endpoint Buffers

8.6.3 Registers That Control All Endpoints
Table 8-6. Registers That Control All Endpoints
Address Name Description
OxE658 IBNIE IN-BULK-NAK individual interrupt enables
O0xE659 IBNIRQ IN-BULK-NAK individual interrupt requests
OXE65A NAKIE PING plus combined IBN-interrupt enable
OXE65B NAKIRQ PING plus combined IBN-interrupt request
0XE65C USBIE SUTOK, SUDAV, EP0-ACK, SOF interrupt enables
OxXE65D USBIRQ SUTOK, SUDAV, EP0-ACK, and SOF interrupt requests
OXE65E EPIE Endpoint interrupt enables
OXE65F EPIRQ Endpoint interrupt requests
0xE662 USBERRIE USB error interrupt enables
OXE663 USBERRIE USB error interrupt requests
OxE664 ERRCNTLIM USB error counter and limit
0XE665 CLRERRCNT Clear error count
OxE683 TOGCTL Endpoint data toggles

¥ CYPRESS

PERFC

it

—

(1

8.6.3.1 IBNIE, IBNIRQ, NAKIE, NAKIRQ

These registers contain the interrupt-enable and interrupt-request bits for two endpoint conditions, IN-BULK-NAK and PING.

IN-BULK-NAK (IBN)

When the host requests an IN packet from a BULK endpoint, the endpoint NAKs (returns the NAK PID) until the endpoint
buffer is filled with data and armed for transfer, at which point the MoBL-USB FX2LP18 answers the IN request with data.

Until the endpoint is armed, a flood of IN-NAKs can tie up bus bandwidth. Therefore, if the IN endpoints are not always kept
full and armed, it may be useful to know when the host is ‘knocking at the door’, requesting IN data.

The IN-BULK-NAK (IBN) interrupt provides this notification. The IBN interrupt fires whenever a BULK endpoint NAKs an IN
request. The IBNIE/IBNIRQ registers contain individual enable and request bits per endpoint, and the NAKIE/NAKIRQ regis-
ters each contain a single bit, IBN, that is the OR’'d combination of the individual bits in IBNIE/IBNIRQ, respectively.

Firmware enables an interrupt by setting the enable bit high, and clears an interrupt request bit by writing a ‘1’ to it.
Note The MoBL-USB FX2LP18 interrupt system is described in detail in the Interrupts chapter on page 59

The IBNIE register contains an individual interrupt-enable bit for each endpoint: EPO, EP1, EP2, EP4, EP6 and EP8. These
bits are valid only if the endpoint is configured as a BULK or INTERRUPT endpoint. The IBNIRQ register similarly contains
individual interrupt request bits for the 6 endpoints.

The IBN interrupt-service routine should take the following actions, in the order shown:

1. Clear the USB (INT2) interrupt request (by writing ‘0’ to it).

2. Inspect the endpoint bits in IBNIRQ to determine which IN endpoint just NAK'd.

3. Take the required action (set a flag, arm the endpoint, and so on), then clear the individual IBN bit in IBNIRQ for the ser-
viced endpoint (by writing ‘1’ to it).

4. Repeat steps (2) and (3) for any other endpoints that require IBN service, until all IRQ bits are cleared.

5. Clear the IBN bit in the NAKIRQ register (by writing ‘1’ to it).

Note Because the IBN bit represents the OR’d combination of the individual IBN interrupt requests, it will not ‘fire’ again until
all individual IBN interrupt requests have been serviced and cleared.

PING
PING is the ‘flip side’ of IBN; it's used for high-speed (480 Mbps) BULK OUT transfers.

102 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 102 of 346

— e

—F CYDHF% Access to Endpoint Buffers

When operating at full-speed, every host OUT transfer consists of the OUT PID and the endpoint data, even if the endpoint is
NAKing (not ready). While the endpoint is not ready, the host repeatedly sends all the OUT data; if it's repeatedly NAK'd, bus
bandwidth is wasted.

USB 2.0 introduced a new mechanism, called PING, that makes better use of bus bandwidth for ‘unready’ BULK OUT end-
points.

At high-speed, the host can ‘ping’ a BULK OUT endpoint to determine if it is ready to accept data, holding off the OUT data
transfer until it can actually be accepted. The host sends a PING token, and the MoBL-USB FX2LP18 responds with:

m An ACK to indicate that there is space in the OUT endpoint buffer

m A NAK to indicate ‘not ready, try later’.

The PING interrupts indicate that a BULK OUT endpoint returned a NAK in response to a PING.
Note PING only applies at high-speed (480 Mbps).

Unlike the IBN bits, which are combined into a single IBN interrupt for all endpoints, each BULK OUT endpoint has a separate
PING interrupt (EPOPING, EP1PING, EP2PING, ..., EP8PING). Interrupt-enables for the individual interrupts are in the NAKIE
register; the interrupt-requests are in the NAKIRQ register.

The interrupt service routine for the PING interrupts should perform the following steps, in the order shown:
1. Clear the INT2 interrupt request.

2. Take the action for the requesting endpoint.

3. Clear the appropriate EPXPING bit for the endpoint.

8.6.3.2 EPIE, EPIRQ

These registers are used to manage interrupts from the MoBL-USB FX2LP18 endpoints. In general, an interrupt request is
asserted whenever the following occurs:

m An IN endpoint buffer becomes available for the CPU to load.
m An OUT endpoint has new data for the CPU to read.

For the small endpoints (EPO and EP1IN/OUT), these conditions are synonymous with the endpoint BUSY bit making a 1-to-
0 transition (busy to not-busy). As with all interrupts, this one is enabled by writing a ‘1’ to its enable bit, and the interrupt flag
is cleared by writing a ‘1’ to it.

Do not attempt to clear an IRQ bit by reading the IRQ register, ORing its contents with a bit mask (for example, 00010000),
then writing the contents back to the register. Since a ‘1’ clears an IRQ bit, this clears all the asserted IRQ bits rather than
just the desired one. Instead, simply write a single ‘1’ (for example, 00010000) to the register.

8.6.3.3 USBERRIE, USBERRIRQ, ERRCNTLIM, CLRERRCNT
These registers are used to monitor the ‘health’ of the USB connection between the MoBL-USB FX2LP18 and the host.

USBERRIE

This register contains the interrupt-enable bits for the ‘Isochronous Endpoint Error’ interrupts and the ‘USB Error Limit’ inter-
rupt.

An ‘Isochronous Endpoint Error’ occurs when the MoBL-USB FX2LP18 detects a PID sequencing error for a high-bandwidth,
high-speed ISO endpoint.

USBERRIRQ

This register contains the interrupt flags for the ‘Isochronous Endpoint Error’ interrupts and the ‘USB Error Limit’ interrupt.

ERRCNTLIM

Firmware sets the USB error limit to any value from 1 to 15 by writing that value to the lower nibble of this register; when that
many USB errors (CRC errors, Invalid PIDs, garbled packets, and others) have occurred, the ‘USB Error Limit’ interrupt flag
will be set. At power-on-reset, the error limit defaults to 4 (0100 binary).

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 103

Exhibit 2033 - Page 103 of 346

=7 CYPRESS

PERFC

Access to Endpoint Buffers =+

The upper nibble of this register contains the current USB error count.

CLRERRCNT

Writing any value to this register clears the error count in the upper nibble of ERRCNTLIM. The lower nibble of ERRCNTLIM
is not affected.

8.6.3.4 TOGCTL

As described in the Introducing MoBL-USB™ FX2LP18 chapter on page 15 the host and device maintain a data toggle bit,
which is toggled between data packet transfers. There are certain times when the firmware must reset an endpoint’s data tog-
gle bit to ‘0"

m After a configuration changes (for example, after the host issues a Set Configuration request).

m After an interface’s alternate setting changes (that is, after the host issues a Set Interface request).

m After the host sends a ‘Clear Feature - Endpoint Stall’ request to an endpoint.

For the first two, the firmware must clear the data toggle bits for all endpoints contained in the affected interfaces. For the
third, only one endpoint’s data toggle bit is cleared.

The TOGCTL register contains bits to set or clear an endpoint data toggle bit, as well as to read the current state of a toggle
bit.

At this writing, there is no known reason for firmware to set an endpoint toggle to ‘1’. Also, since the MoBL-USB FX2LP18
handles all data toggle management, normally there is no reason to know the state of a data toggle. These capabilities are
included in the TOGCTL register for completeness and debug purposes.

TOGCTL Data Toggle Control E683
b7 b6 b5 b4 b3 b2 bl b0
Q S R 10 EP3 EP2 EP1 EPO
R R/W R/W R/W R/W R/W R/W R/W
X X X X X X X

A two-step process is employed to clear an endpoint data toggle bit to ‘0’. First, writes the TOGCTL register with an endpoint
address (EP3:EPO) plus a direction bit (10). Then, keeping the endpoint and direction bits the same, write a ‘1’ to the ‘R’
(reset) bit. For example, to clear the data toggle for EP6 configured as an ‘IN’ endpoint, write the following values sequentially
to TOGCTL:

m 00010110
m 00110110

8.7 The Setup Data Pointer

The USB host sends device requests using CONTROL transfers over endpoint 0. Some requests require the MoBL-USB
FX2LP18 to return data over EPQ. During enumeration, for example, the host issues Get Descriptor requests that ask for the
device’s capabilities and requirements. The returned data can span many packets, so it must be partitioned into packet-sized
blocks, then the blocks must be sent at the appropriate times (for example, when the EPO buffer becomes ready).

The Setup Data Pointer automates this process of returning IN data over EPO, simplifying the firmware.

For the Setup Data Pointer to work properly, EPO’s MaxPacketSize must be set to 64, and the address of SUDPTRH:L
must be word-aligned (for example, the LSB of SUDPTRL must be ‘0’).

104 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 104 of 346

il

—F CYDHF% Access to Endpoint Buffers

Table 8-7 lists the registers which configure the Setup Data Pointer.

Table 8-7. Registers Used To Control the Setup Data Pointer

Address Register Name Function
OxE6B3 SUDPTRH High address
OxE6B4 SUDPTRL Low address
OXE6B5 SUDPTRCTL SDPAUTO bit

To send a block of data, the block’s word-aligned starting address is loaded into SUDPTRH:L. The block length must previ-
ously have been set; the method for accomplishing this depends on the state of the SDPAUTO bit:

m SDPAUTO =0 (Manual Mode): Used for general-purpose block transfers. Firmware writes the block length to EPOBCH:L.

m SDPAUTO =1 (Auto Mode): Used for sending Device, Configuration, String, Device Qualifier, and Other Speed Configu-
ration descriptors only. The block length is automatically read from the ‘length’ field of the descriptor itself; no explicit load-
ing of EPOBCH: L is necessary.

Writing to SUDPTRL starts the transfer; the MoBL-USB FX2LP18 automatically sends the entire block, packetizing as neces-
sary.

For example, to answer a Get Descriptor - Device request, firmware sets SDPAUTO = 1, then loads the address of the device
descriptor into SUDPTRH:L. The MoBL-USB FX2LP18 then automatically loads the EPO data buffer with the required number
of packets and transfers them to the host.

To command the MoBL-USB FX2LP18 to ACK the status (handshake) packet, the firmware clears the HSNAK bit (by writing
‘1’ to it) before starting the Setup Data Pointer transfer.

If the firmware needs to know when the transaction is complete (for example, sent and acknowledged), it can enable the
EPOACK interrupt before starting the Setup Data Pointer transfer.

When SDPAUTO = 0, writing to EPOBCH:L only sets the block length; it does not arm the transfer (the transfer is armed by
writing to SUDPTRL). Therefore, before performing an EPO transfer which does not use the Setup Data Pointer (that is,
one which is meant to be armed by writing to EPOBCL), SDPAUTO must be set to ‘1.

8.7.1 Transfer Length

When the host makes any EPOIN request, the MoBL-USB FX2LP18 respects the following two length fields:
m the requested number of bytes (from the last two bytes of the SETUP packet received from the host)

m the available number of bytes, supplied either as a length field in the actual descriptor (SDPAUTO=1) or in EPOBCH:L
(SDPAUTO=0)

In accordance with the USB Specification, the MoBL-USB FX2LP18 sends the smaller of these two length fields.

8.7.2 Accessible Memory Spaces

The Setup Data Pointer can access data in either of two RAM spaces:
m On-chip Main RAM (16 KB at 0x0000-0x3FFF)
m On-chip Scratch RAM (512 bytes at OXEO00-OXE1FF)

8.8 Autopointers

Endpoint data is available to the CPU in RAM buffers (see Table 8-3 on page 95). In some cases, it is faster for the firmware
to access endpoint data as though it were in a FIFO register. The MoBL-USB FX2LP18 provides two special data pointers,
called ‘Autopointers’, that automatically increment after each byte transfer. Using the Autopointers, firmware can access con-
tiguous blocks of on-chip data memory as a FIFO.

Each Autopointer is controlled by a 16-bit address register (AUTOPTRnNH:L), a data register (XAUTODATN), and a control bit
(APTRnNINC). An additional control bit, APTREN, enables both Autopointers.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 105

Exhibit 2033 - Page 105 of 346

W’“ll

"ﬁw RESS

PERFC

Access to Endpoint Buffers — F

A read from (or write to) an Autopointer data register actually accesses the address pointed to by the corresponding Auto-
pointer address register, which increments on every data-register access. To read or write a contiguous block of memory (for
example, an endpoint buffer) using an Autopointer, load the Autopointer’s address register with the starting address of the
block, then repeatedly read or write the Autopointer’s data register.

The AUTOPTRnNH:L registers may be written or read at any time to determine the current Autopointer address.

Most of the Autopointer registers are in SFR Space for quick access; the data registers are available only in External Data
space.

Table 8-8. Registers that Control the Autopointers

Address Register Name Function
SFR OxAF AUTOPTRSETUP Increment/freeze, memory access enable
SFR 0x9A AUTOPTR1H Address high
SFR 0x9B AUTOPTRIL Address low
OxE67B XAUTODAT1 Data
SFR 0x9D AUTOPTR2H Address high
SFR Ox9E AUTOPTR2L Address low
OxE67C XAUTODAT2 Data

The Autopointers are configured using three bits in the AUTOPTRSETUP register: one bit (APTREN) enables both autopoint-
ers, and two bits (one for each Autopointer, called APTR1INC and APTR2INC, respectively) control whether or not the
address increments for every Autodata access.

The Autopointers must not be used to read or write registers in the OXE600-OXE6FF range; Autopointer accesses within
that range produce undefined results.

106 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 106 of 346

9. Slave FIFOs

= =
=2 CYPRESS

PERFORM

9.1 Introduction

Although some MoBL-USB FX2LP18-based devices may use the MoBL-USB FX2LP18's CPU to process USB data directly
(See chapter “Access to Endpoint Buffers” on page 93), most will use the chip simply as a conduit between the USB and
external data-processing logic (for example, an ASIC or DSP, or the IDE controller on a hard disk drive).

In devices with external data-processing logic, USB data flows between the host and that external logic — usually without any
participation by the MoBL-USB FX2LP18's CPU — through the internal endpoint FIFOs. To the external logic, these endpoint
FIFOs look like most others; they provide the usual timing signals, handshake lines (full, empty, programmable-level), read
and write strobes, output enable, and others.

These FIFO signals must, of course, be controlled by a FIFO ‘master’. The MoBL-USB FX2LP18's General Programmable
Interface (GPIF) can act as an internal master when the MoBL-USB FX2LP18 is connected to external logic which does not
include a standard FIFO interface (General Programmable Interface, on page 135 discusses the internal-master GPIF), or the
FIFOs can be controlled by an external master. While its FIFOs are controlled by an external master, the MoBL-USB
FX2LP18 is said to be in ‘Slave FIFO’ mode.

This chapter provides details on the interface — both hardware and software — between the MoBL-USB FX2LP18's slave
FIFOs and an external master.

9.2 Hardware

Figure 9-1 illustrates the four slave FIFOs. The figure shows the FIFOs operating in 16-bit mode, although they can also be
configured for 8-bit operation.

Figure 9-1. Slave FIFOs Role in the MoBL-USB FX2LP18 System

CPU Slave FIFOs Device Pins
FD[15:0]

30/48MHz

IFCLK 5 - 48MHz

where: x = Y Y

2,4,6,0r8 FLAGA
Slave FIFOs FLAGB
WORDWIDE = 1 FLAGC >
EPXFIFOBUF _ FLAGD / SLCS#
o EP2
EPx - EF, FF, PF EP4 SLOE
- £P6 SLRD
EPXBCH:L EPS < SLWR
cPy [>
f FIFOADRI[1:0]
INPKTEND PKTEND
PORTI/O
MoBL-USB™ TRM, Document # 001-11981 Rev. *B 107

Exhibit 2033 - Page 107 of 346

Slave FIFOs =" CYPHF%Q

it

(1

Table 9-1 lists the registers associated with the slave FIFO hardware. The registers are fully described in the
Registers chapter on page 237

Table 9-1. Registers Associated with Slave FIFO Hardware

IFCONFIG EPXFIFOPFH/L
PINFLAGSAB PORTACFG
PINFLAGSCD INPKTEND
FIFORESET EPxFIFOIE
FIFOPINPOLAR EPXFIFOIRQ
EPXCFG EPXFIFOBCH:L
EPXFIFOCFG EPXFLAGS
EPXAUTOINLENH:L EPxFIFOBUF

9.2.1 Slave FIFO Pins

The MoBL-USB FX2LP18 comes out of reset with its 10 pins configured in ‘Ports’ mode, not ‘Slave FIFO’ mode. To configure
the pins for Slave FIFO mode, the IFCFG[1:0] bits in the IFCONFIG register must be set to ‘11’ (see Table 13-10, “IFCFG
Selection of Port IO Pin Functions,” on page 211 for details). When IFCFG1:0 = 11, the Slave FIFO interface pins are pre-
sented to the external master, as shown in Figure 9-2.

Figure 9-2. MoBL-USB FX2LP18 Slave Mode Full-Featured Interface Pins

- IFCLK -

FLAGA >

FLAGB -

FLAGC -

MOBL-USB | ccorsicse | EXT
|\S/|I§:jlz . sLot Master
< SLRD
- SLWR
< PKTEND
< FD[15:0] »
FIFOADR[1:0]

External logic accesses the FIFOs through an 8- or 16-bit wide data bus, FD. The data bus is bidirectional, with its output driv-
ers controlled by the SLOE pin.

The FIFOADRJ1:0] pins select which of the four FIFOs is connected to the FD bus and is being controlled by the external
master.

In asynchronous mode (IFCONFIG.3 = 1), SLRD and SLWR are read and write strobes; in synchronous mode (IFCONFIG.3 =
0), SLRD and SLWR are enables for the IFCLK clock pin.

Figure 9-3. Asynchronous vs. Synchronous Timing Models

IFCLK c
SLRD SLRD
SLWR \ ; SLWR \ /
Asynchronous Synchronous
108 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 108 of 346

Slave FIFOs

== CYPRESS

9.2.2 FIFO Data Bus (FD)
The FIFO data bus, FD[x:0], can be either 8 or 16 bits wide. The width is selected via each FIFO’'s WORDWIDE bit,

(EPXFIFOCFG.0):
m WORDWIDE=0: 8-bit mode. FD[7:0] replaces Port B. See Figure 9-4.
m WORDWIDE=1: 16-bit mode. FD[15:8] replaces Port D and FD[7:0] replaces Port B. See Figure 9-5 on page 110. FD[7:0]

is the LSB of the word, and FD[15:8] is the MSB of the word.
On a hard reset, the FIFO data bus defaults to 16-bit mode (WORDWIDE = 1) for all FIFOs.

In either mode, the FIFOADR[1:0] pins select which of the four FIFOs is internally connected to the FD pins.
If all of the FIFOs are configured for 8-bit mode, Port D remains available for use as general-purpose |O. If any FIFO is
configured for 16-bit mode, Port D is unavailable for use as general-purpose 10 regardless of which FIFO is currently
selected via the FIFOADR[1:0] pins.

Note In 16-bit mode, the MoBL-USB FX2LP18 only transfers even-sized packets of data across the FD bus. This should be

considered when the MoBL-USB FX2LP18 interfaces to host software that sends or receives odd-sized packets.

Figure 9-4. 8-Bit Mode Slave FIFOs, WORDWIDE=0

Slave FIFOs Device Pins

30/48MHz

MoBL-USB Registers

>

IFCLK
5 - 48MHz

FIFOADR[1:0]

FLAGA
FLAGB

EP2 FLAGC >

EP2FIFOBUF
EP4FIFOBUF EP4 < FLAGD/SLCS#’
D LELE

EPG6FIFOBUF P6

EP8FIFOBUF EP8 SLOE
SLRD

SLWR
PKTEND

FD[7:0] >

109

MoBL-USB™ TRM, Document # 001-11981 Rev. *B
Exhibit 2033 - Page 109 of 346

Slave FIFOs == t’i__rg{rgﬁgg

Figure 9-5. 16-hit Mode Slave FIFOs, WORDWIDE=1

MoBL Registers Slave FIFOs Device Pins

30/48MHz

IFCLK

5- 48MHz

FIFOADR[1:0]

FLAGA

FLAGB
EP2FIFOBUF EP2 FLAGC >
EP4FIFOBUF VI EP4 < FLAGD/SLCS#'
EPG6FIFOBUF EPG6

EP8FIFOBUF EP8 SLOE

SLRD

SLWR
PKTEND

FD[15:0] >

9.2.3 Interface Clock (IFCLK)

The slave FIFO interface can be clocked from either an internal or an external source. The MoBL-USB FX2LP18’s internal
clock source can be configured to run at either 30 or 48 MHz, and it can optionally be output on the IFCLK pin. If the MoBL-
USB FX2LP18 is configured to use an external clock source, the IFCLK pin can be driven at any frequency between 5 MHz
and 48 MHz. On a hard reset, it defaults to the internal source at 48 MHz, normal polarity, with the IFCLK output disabled. See

Figure 9-6 on page 111.
IFCONFIG.7 selects between internal and external sources: 0 = external, 1 = internal. If an external IFCLK is chosen, it must

be free-running at a minimum frequency of 5 MHz. In addition, in order to provide synchronization for the internal endpoint
FIFO logic, the external IFCLK source must be present before the firmware sets IFCONFIG.7 = 0.

IFCONFIG.6 selects between the 30- and 48-MHz internal clock: 0 = 30 MHz, 1 = 48 MHz. This bit has no effect when IFCON-
FIG.7 = 0.

IFCONFIG. is the output enable for the internal clock source: 0 = disable, 1 = enable. This bit must not be set to ‘1’ when
IFCONFIG.7 = 0.

IFCONFIG.4 inverts the polarity of the interface clock (either internal or external): 0 = normal, 1 = inverted. IFCLK inversion
can make it easier to interface the MoBL-USB FX2LP18 with certain external circuitry. When an internal IFCLK is used
(IFCONFIG.7 = 1), IFCONFIG.4 only affects the IFCLK output polarity if IFCONFIG.5 = 1. Figure 9-7 on page 111 demon-
strates the use of IFCLK output inversion in order to ensure a long enough setup time (ts) for reading the FIFO flags.

When IFCLK is configured as an input, the minimum external frequency that can be applied to it is 5 MHz. This clock must
be applied prior to initialization of the GPIF; only interruptions of it will lower the overall frequency, causing violations of the
minimum frequency requirement.

110 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 110 of 346

i
== X

E /) Eﬁyl_r{rﬁ;g Slave FIFOs

Figure 9-6. IFCLK Configuration

IFCFG.6
IFCFG.4 IFCFG.5

30 MHz 0 ’\1
1 | 0

48 MHz [1

IFCLK
IFCFG.7 Pin
IFCFG.4

Internal 1
IFCLK <— ¢ 0 <]
Signal 1< }—‘

Figure 9-7. Satisfying Setup Timing by Inverting the IFCLK Output

Internal IFCLK Signal /‘ /‘

Inverted IFCLK Output /‘ ‘ /4‘

FIFO Flag

MoBL-USB| —" V| Master

Asserts Samples
Flag S Flag

9.24 FIFO Flag Pins (FLAGA, FLAGB, FLAGC, FLAGD)

Four pins — FLAGA, FLAGB, FLAGC, and FLAGD (see Figure 9-7) — report the status of the MoBL-USB FX2LP18'’s FIFOs;
in addition to the usual ‘FIFO full’ and ‘FIFO empty’ signals, there is also a signal which indicates that a FIFO has filled to a
user-programmable level. The external master typically monitors the ‘empty’ flag (EF) of OUT endpoints and the ‘full’ (FF) flag
of IN endpoints; the ‘programmable-level’ flag (PF) is equally useful for either type of endpoint (it can, for instance, give
advance warning that an OUT endpoint is almost empty or that an IN endpoint is almost full).

The FLAGA, FLAGB, and FLAGC pins can operate in either of two modes: Indexed or Fixed, as selected via the PIN-
FLAGSAB and PINFLAGSCD registers. The FLAGD pin operates in Fixed mode only. FLAGA-FLAGC pins can be configured
independently; some pins can be in Fixed mode while others are in Indexed mode. See the PINFLAGSAB and PINFLAGSCD

register descriptions in the Registers chapter on page 237 for complete details.

Flag pins configured for Indexed mode report the status of the FIFO currently selected by the FIFOADR[1:0] pins. When con-
figured for Indexed mode, FLAGA reports the ‘programmable-level’ status, FLAGB reports the ‘full’ status, and FLAGC reports

the ‘empty’ status.

Flag pins configured for Fixed mode report one of the three conditions for a specific FIFO, regardless of the state of the
FIFOADR[1:0] pins. The condition and FIFO are user-selectable. For example, FLAGA could be configured to report FIFO2'’s
‘empty’ status, FLAGB to report FIFO4’s ‘empty’ status, FLAGC to report FIFO4's ‘programmable level’ status, and FLAGD to

report FIFO6's ‘full’ status.
The polarity of the ‘empty’ and ‘full’ flag pins defaults to active-low but may be inverted via the FIFOPINPOLAR register.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 111
Exhibit 2033 - Page 111 of 346

— sy T

</ CYPRESS

Slave FIFOs

On a hard reset, the FIFO flags are configured for Indexed operation.

Figure 9-8. FLAGx Pins

MoBL-USB Registers Slave FIFOs Device Pins

30/48MHz

IFCLK

v

5 - 48MHz

FIFOADR[1:0]

FLAGA
FLAGB

EP2FIFOBUF EP2 FLAGC >
EP4FIFOBUF — EP4 .FLAGD/SLCS#.
E

EP6FIFOBUF P6
EP8FIFOBUF EP8 SLOE
SLRD
A A SLWR
PKTEND

FD[15:0] >

9.2.5 Control Pins (SLOE, SLRD, SLWR, PKTEND, FIFOADRJ[1:0])

The Slave FIFO ‘control’ pins are SLOE (Slave Output Enable), SLRD (Slave Read), SLWR (Slave Write), PKTEND (Packet
End), and FIFOADR[1:0] (FIFO Select). ‘Read’ and ‘Write’ are from the external master’s point of view; the external master
reads from OUT endpoints and writes to IN endpoints. See Figure 9-9 on page 113.

Slave Output Enable and Slave Read — SLOE and SLRD

In synchronous mode (IFCONFIG.3 = 0), the FIFO pointer is incremented on each rising edge of IFCLK while SLRD is
asserted. In asynchronous mode (IFCONFIG.3 = 1), the FIFO pointer is incremented on each asserted-to-deasserted transi-

tion of SLRD.

The SLOE pin enables the FD outputs. In synchronous mode, when SLOE is asserted, this causes the FD bus to be driven
with the data that the FIFO pointer is currently pointing to. The data is pre-fetched and is output only when SLOE is asserted.
In asynchronous mode, the data is not pre-fetched, and SLRD must be asserted when SLOE is asserted for the FD bus to be
driven with the data that the FIFO pointer is currently pointing to. SLOE has no other function besides enabling the FD bus to

be in a driven state.
By default, SLOE and SLRD are active-low; their polarities can be changed via the FIFOPINPOLAR register.

Slave Write — SLWR

In synchronous mode (IFCONFIG.3 = 0), data on the FD bus is written to the FIFO (and the FIFO pointer is incremented) on
each rising edge of IFCLK while SLWR is asserted. In asynchronous mode (IFCONFIG.3 = 1), data on the FD bus is written to
the FIFO (and the FIFO pointer is incremented) on each asserted-to-deasserted transition of SLWR.

By default, SLWR is active-low; its polarity can be changed via the FIFOPINPOLAR register.

112 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 112 of 346

—l ———
— =

EF CYDHF%% Slave FIFOs

FIFOADR[1:0]

The FIFOADRJ1:0] pins select which of the four FIFOs is connected to the FD bus (and, if the FIFO flags are operating in
Indexed mode, they select which FIFO’s flags are presented on the FLAGX pins):

Table 9-2. FIFO Selection via FIFOADR[1:0]

FIFOADR[L:0] Selected FIFO
00 EP2
01 EP4
10 EP6
1 EP8
PKTEND

An external master asserts the PKTEND pin to commit an IN packet to USB regardless of the packet’s length. PKTEND is
usually used when the master wishes to send a ‘short’ packet (for example, a packet smaller than the size specified in the
EPXAUTOINLENH:L registers).

For example: Assume that EPAAUTOINLENH:L is set to the default of 512 bytes. If AUTOIN = 1, the external master can
stream data to FIFO4 continuously, and (absent any bottlenecks in the data path) the MoBL-USB FX2LP18 will automatically
commit a packet to USB whenever the FIFO fills with 512 bytes. If the master wants to send a stream of data whose length is
not a multiple of 512, the last packet will not be automatically committed to USB because it's smaller than 512 bytes. To com-
mit that last packet, the master can do one of two things: It can pad the packet with dummy data in order to make it exactly
512 bytes long, or it can write the short packet to the FIFO, then pulse the PKTEND pin.

If the FIFO is configured to allow zero-length packets (EPxFIFOCFG.2 = 1), pulsing the PKTEND pin when a FIFO buffer is
available commits a zero-length packet.

By default, PKTEND is active-low; its polarity can be changed via the FIFOPINPOLAR register.

The PKTEND pin must not be asserted unless a buffer is available, even if only a zero-length packet is being committed.
The ‘full’ flag may be used to determine whether a buffer is available.

Note In synchronous mode, there is no specific timing requirement for PKTEND assertion with respect to SLWR assertion.
PKTEND can be asserted anytime. In asynchronous mode, SLWR and PKTEND should not be pulsed at the same time.
PKTEND should be asserted after SLWR has been de-asserted for the minimum de-asserted pulse width. In both modes,
FIFOADR([1:0] should be held constant during the PKTEND pin assertion.

Figure 9-9. Slave FIFO Control Pins

MoBL-USB Registers Slave FIFOs Device Pins

30/48MHz

IFCLK

v

5 - 48MHz

FIFOADR[1:0]

FLAGA

FLAGB
EP2FIFOBUF EP2 FLAGC >
EPAFIFOBUF Py EP4 < FLAGD/SLCS# '.
EP6FIFOBUF EP6
EP8FIFOBUF EP8 SLOE

SLRD

A A SLWR
PKTEND
FD[15:0] >
MoBL-USB™ TRM, Document # 001-11981 Rev. *B 113

Exhibit 2033 - Page 113 of 346

Slave FIFOs

9.2.6

— e

</ CYPRESS

Slave FIFO Chip Select

The Slave FIFO Chip Select (SLCS#) pin is an alternate function of pin PA7; it's enabled via the PORTACFG.6 bit (see section
13.3.1 Port A Alternate Functions on page 207).

The SLCS# pin allows external logic to effectively remove the MoBL-USB FX2LP18 from the FIFO Data bus, in order to, for
example, share that bus among multiple slave devices. For applications that do not need to share the FD bus among multiple
slave devices, the SLCS# pin can be tied to GND to permanently select the slave FIFO interface. This configuration is
assumed for the interface and timing examples that follow.

While the SLCS# pin is pulled high by external logic, the MoBL-USB FX2LP18 floats its FD[x:0] pins and ignores the SLOE,
SLRD, SLWR, and PKTEND pins.

9.2.7

Implementing Synchronous Slave FIFO Writes

Figure 9-10. Interface Pins Example: Synchronous FIFO Writes

FLAGB

MoBL-USB
Slave
Mode

FIFOADR[1:0]

A

FULL

<l

SLWR

Y

PKTEND

FD[15:0]

5-48MHz

EXT.
Master

In order to implement synchronous FIFO writes, a typical sequence of events for the external master is:

IDLE: When write event occurs, transition to State 1.
STATE 1: Point to IN FIFO, assert FIFOADR[1:0] (setup time must be met with respect to the rising edge of IFCLK), transition

to State 2.

STATE 2: If FIFO-Full flag is false (FIFO not full), transition to State 3 else remain in State 2.

STATE 3: Drive data on the bus, assert SLWR (setup and hold times must be met with respect to the rising edge of IFCLK),

de-assert SLWR. Transition to State 4.

STATE 4: If more data to write, transition to State 2 else transition to IDLE.

Figure 9-11. State Machine Example: Synchronous FIFO Writes

114

Full

State 1

State 4

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 114 of 346

CYPRESS

L

Figure 9-12. Timing Example: Synchronous FIFO Writes, Waveform 1

Slave FIFOs

__J LA

IFCLK
FIFOADRO
_ L3
FIFOADRL ‘k
__Master Selects EP8 EP8 2itjmpty
I N+1

FLAGB - FULL
N

FLAGC - EMPTY
SLWR

FD[15:O]_

PKTEND

FD bus, FLAGC - EMPTY exhibits a ‘not-empty’ condition.
Figure 9-13. Timing Example: Synchronous FIFO Writes, Waveform 2

Figures 9-12 to 9-14 show timing examples of an external master performing synchronous FIFO writes to EP8. These exam-
ples assume that EP8 is configured as IN, Bulk, 512 bytes buffer size, 4x buffered, WORDWIDE = 1, AUTOIN = 1,
EPS8AUTOINLENH:L = 512. With AUTOIN = 1, and EPSBAUTOINLENH:L = 512, this causes data packets to be automatically

committed to USB whenever the master fills the FIFO with 512 bytes (or 256 words since WORDWIDE = 1).
In Figure 9-12, the external master selects EP8 by setting FIFOADR[1:0] to ‘11’ and once it writes the first data value over the

e | LA L] LA
FIFOADRo: J
oo | Comits Pt
FLAGB-FULL AUTOIN=1
FLAGC - EMPTY :
SLWR: |
FD[15:0]: 510 | 511 I 512
PKTEND:
In Figure 9-13, once the external master writes the 512th word into the EP8 FIFO, the second 512-byte packet is automati-
cally committed to USB. The first 512-byte packet was automatically committed to USB when the external master wrote the

256th word into the EP8 FIFO.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 115 of 346

115

— e

Slave FIFOs =4 t’i__rlp_ﬁlﬁsg

Figure 9-14. Timing Example: Synchronous FIFO Writes, Waveform 3, PKTEND Pin lllustrated

IFCLK: | | ﬂ | | | fl | | | A |

FIFOADRO
FIFOADR1

FLAGB - FULL
FLAGC - EMPTY .f
: Data Not
SLWR Written
FD[15:O]_ 815 | / 816 I N
PKTEND

Master Manually
Commits Short Pkt

Figure 9-14 shows the 4th packet in the EP8 FIFO being manually committed by pulsing PKTEND. There is no specific timing
requirement for PKTEND assertion with respect to SLWR assertion. Hence, PKTEND is asserted the same time the 816th
word is written into EP8. This causes the short packet to be committed, which contains 48 words (or 96 bytes). The 4th packet
would have been automatically committed if the external master finished writing the 1024th word.

Once the 4th packet has been committed, FLAGB - FULL is asserted, indicating that no more FIFO buffers are available for
the external master to write into. A buffer will become available once the host has read an entire packet.

Note FIFOADR[1:0] must be held constant during the PKTEND assertion.

116 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 116 of 346

-

9.2.8 Implementing Synchronous Slave FIFO Reads

Figure 9-15. Interface Pins Example: Synchronous FIFO Reads

CYPRESS

FLAGB
FLAGC
MoBL-USB

Slave
Mode

FIFOADRI[1:0]

A

FULL

EMPTY

\ 4

SLOE

-l
-

SLRD

FD[15:0]

In order to implement synchronous FIFO reads, a typical sequence of events for the external master is:

IDLE: When read event occurs, transition to State 1.

[
'

5-48MHz

EXT.
Master

Slave FIFOs

STATE 1: Point to OUT FIFO, assert FIFOADR[1:0] (setup time must be met with respect to the rising edge of IFCLK), transi-

tion to State 2.

STATE 2: Assert SLOE. If FIFO-Empty flag is false (FIFO not empty), transition to State 3 else remain in State 2.

STATE 3: Sample data on the bus, assert SLRD (setup and hold times must be met with respect to the rising edge of IFCLK),

de-assert SLRD. De-assert SLOE, transition to State 4.

Note Since SLOE has no other function than to enable the FD outputs, it is also correct to tie the SLRD and SLOE signals

together.

STATE 4: If more data to read, transition to State 2 else transition to IDLE.

Figure 9-16. State Machine Example: Synchronous FIFO Reads

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

State 1

State 4

Exhibit 2033 - Page 117 of 346

117

==7# CYPRESS

Slave FIFOs

Figure 9-17. Timing Example: Synchronous FIFO Reads, Waveform 1

rex__ [T ATTLA LA LA LA

FIFOADRO
FIFOADR1 \
FLAGB - FULL Selects EP2

Asserts SLOE then _

FLAGC - EMPTY Reads First Byte Increments to Next
— in FIFO Byte in FIFO
SLOE | /. /.
SLRD

z I N I N+1

FD[7:0]

Figures 9-17 and 9-18 show timing examples of an external master performing synchronous FIFO reads from EP2. These
examples assume that EP2 is configured as OUT, Bulk, 512 bytes buffer size, 2x buffered, WORDWIDE = 0, AUTOOUT = 1.

In Figure 9-17, the external master selects EP2 by setting FIFOADR[1:0] to 00. It asserts SLOE to turn on the FD output driv-
ers, samples the first byte in the FIFO, and then pulses SLRD to increment the FIFO pointer.

Figure 9-18. Timing Example: Synchronous FIFO Reads, Waveform 2, EMPTY Flag lllustrated

re__ [LA LA LA LA LA

FIFOADRO
FIFOADRL
FLAGB - FULL EP2 Empty
FLAGC - EMPTY |
— Reads 1023 Byte Reads Last Byte
SLOE in FIFO in FIFO

sl L[L[

1023 | 1024 | | z

FO7:0]

Figure 9-18 shows FLAGC - EMPTY assert after the master reads the 1024th (last) byte in the FIFO. This assumes that the
host has only sent 1024 bytes to EP2.

118 MoBL-USB™ TRM, Document # 001-11981 Rev. *B
Exhibit 2033 - Page 118 of 346

-

ﬁYDHF% Slave FIFOs

9.2.9 Implementing Asynchronous Slave FIFO Writes

Figure 9-19. Interface Pins Example: Asynchronous FIFO Writes

__ FIFOADRIL:0]
FLAGB FULL >
< SLWR
MoBL-USB | FD[15:0] EXT.
Slave < PKTEND Master
Mode

In order to implement asynchronous FIFO writes, a typical sequence of events for the external master is:
IDLE: When write event occurs, transition to State 1.

STATE 1: Point to IN FIFO, assert FIFOADR[1:0] (setup time must be met with respect to the asserting edge of SLWR), tran-
sition to State 2.

STATE 2: If FIFO-Full flag is false (FIFO not full), transition to State 3 else remain in State 2.

STATE 3: Drive data on the bus (setup time must be met with respect to the de-asserting edge of SLWR), write data to the
FIFO and increment the FIFO pointer by asserting then de-asserting SLWR, transition to State 4.

STATE 4: If more data to write, transition to State 2 else transition to IDLE.

Figure 9-20. State Machine Example: Asynchronous FIFO Writes

Launch

State 1 State 4

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 119

Exhibit 2033 - Page 119 of 346

Slave FIFOs

Figure 9-21. Timing Example: Asynchronous FIFO Writes

=24 CYPRESS

IFCLK

FIFOADRO
FIFOADR1
FLAGB - FULL
N+1

FLAGC - EMPTY
SLWR
z |

FD[15:0]

120

PKTEND
Figure 9-21 shows a timing example of asynchronous FIFO writes to EP8. The external master selects EP8 by setting
FIFOADR[1:0] to 11. Once it writes the first data value over the FD bus, FLAGC - EMPTY exhibits a ‘not-empty’ condition.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 120 of 346

-

ﬁYDHF% Slave FIFOs

9.2.10 Implementing Asynchronous Slave FIFO Reads

Figure 9-22. Interface Pins Example: Asynchronous FIFO Reads

__ FIFOADRIL:.0]
FLAGB FULL >
EMPTY o
FLAGC >
- SLOE
MOBL-USB | SLRD EXT.
Slave FD[15:0] . Master
Mode o

In order to implement asynchronous FIFO reads, a typical sequence of events for the external master is:
IDLE: When read event occurs, transition to State 1.

STATE 1: Point to OUT FIFO, assert FIFOADR[1:0] (setup time must be met with respect to the asserting edge of SLRD),
transition to State 2.

STATE 2: If Empty flag is false (FIFO not empty), transition to State 3 else remain in State 2.

STATE 3: Assert SLOE, assert SLRD, sample data on the bus, de-assert SLRD (increment FIFO pointer), de-assert SLOE,
transition to State 4.

Note Since SLOE has no other function than to enable the FD outputs, it is also correct to tie the SLRD and SLOE signals
together.

STATE 4: If more data to read, transition to State 2 else transition to IDLE.

Figure 9-23. State Machine Example: Asynchronous FIFO Reads

Empty

Launch

State 1 State 4

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 121

Exhibit 2033 - Page 121 of 346

S/ CYPRES

RFORM

Slave FIFOs

Figure 9-24. Timing Example: Asynchronous FIFO Reads

IFCLK

]
FIFOADRl_

FLAGB - FULL

FIFOADRO

FLAGC - EMPTY

SLOE: I

SLRD: I

111

FD[15:0] z | N

Figure 9-24 shows a timing example of asynchronous FIFO reads from EP2. The external master selects EP2 by setting
FIFOADR[1:0] to 00, and strobes SLOE/SLRD to sample data on the FD bus.

9.3 Firmware

This section describes the interface between firmware and the FIFOs. More information is available in the Access to Endpoint
Buffers chapter on page 93.

Table 9-3. Registers Associated with Slave FIFO Firmware

Register Name
EPXCFG INPKTEND/OUTPKTEND
EPXFIFOCFG EPXFIFOIE
EPXAUTOINLENH/L EPXFIFOIRQ
EPXFIFOPFH:L INT2IVEC
EP2468STAT INT4IVEC
EP24FIFOFLGS INTSETUP
EP68FIFOFLGS IE
EPxCS P
EPXFIFOFLGS INT2CLR
EPxBCH:L INTACLR
EPXFIFOBCH:L EIE
EPXFIFOBUF EXIF
REVCTL (bits 0 and 1 must be initialized to ‘1’ for operation as described in this chapter)

9.3.1 Firmware FIFO Access

Firmware can access the slave FIFOs using four registers in XDATA memory: EP2FIFOBUF, EP4FIFOBUF, EP6FIFOBUF,
and EP8FIFOBUF. These registers can be read and written directly (using the MOVX instruction), or they can serve as
sources and destinations for the dual Autopointer mechanism built into the MoBL-USB FX2LP18 (see section “Autopointers”
on page 105).

Additionally, there are a number of FIFO control and status registers: Byte Count registers indicate the number of bytes in
each FIFO; flag bits indicate FIFO fullness, mode bits control the various FIFO modes, and others.

122 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 122 of 346

il

=3 CY”HFS% Slave FIFOs

This chapter focuses on the registers and bits which are specific to slave-FIFO operation; for a more detailed description of all
the FIFO regqisters, see the chapters Access to Endpoint Buffers, on page 93 and Registers, on page 237.

Setting the REVCTL bits enables features that are not required by every application. So although not necessary, for proper
operation as described in this chapter, firmware must set the DYN_OUT and ENH_PKT bits (REVCTL.0 and REVCTL.1)

to ‘1.
Figure 9-25. EPxFIFOBUF Registers

MoBL-USB Registers Slave FIFOs Device Pins

30/48MHz

IFCLK
- 5 - 48MHz

v

FIFOADR[1:0]

FLAGA
FLAGB
EP2FIFOBUF EP2 FLAGC >

EP4FIFOBUF — EPé .FLAGD/SLCS#.

EP6FIFOBUF P6
EP8FIFOBUF EP8 SLOE
SLRD
A A SLWR
PKTEND

FD[15:0] >

9.3.2 EPx Memories

The slave FIFOs connect external logic to the four endpoint memories (EP2, EP4, EP6, and EP8). These endpoint memories

have the following programmable features:

1. Type can be either BULK, INTERRUPT, or ISOCHRONOUS.

2. Direction can be either IN or OUT.

3. For EP2 and EPS6, size can be either 512 or 1024 bytes. EP4 and EP8 are fixed at 512 bytes.

4. Buffering can be 2x, 3x, or 4x for EP2 and EP6. EP4 and EP8 are fixed at 2x.

5. MoBL-USB FX2LP18 can automatically commit endpoint data to and from the slave FIFO interface (AUTOIN =1,
AUTOOUT = 1), or manually commit endpoint data to and from the slave FIFO interface (AUTOIN = 0, AUTOOUT = 1).

On a hard reset, these endpoint memories are configured as follows:

1. EP2 - Bulk OUT, 512 bytes/packet, 2x buffered.

2. EP4 - Bulk OUT, 512 bytes/packet, 2x buffered.

3. EP6 - Bulk IN, 512 bytes/packet, 2x buffered.

4. EPS8 - Bulk IN, 512 bytes/packet, 2x buffered.

Note In full-speed mode, buffer sizes scale down to 64 bytes for the non-isochronous types.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 123

Exhibit 2033 - Page 123 of 346

il

Slave FIFOs P/ CyPRESS

Figure 9-26. EPx Memories

MoBL-USB Registers Slave FIFOs Device Pins

30/48MHz

IFCLK
N 5 - 48MHz

v

FIFOADR[1:0]

FLAGA
FLAGB

EP2FIFOBUF EP2 FLAGC >
EP4FIFOBUF — EP4 .FLAGD/SLCS# ;
EP6

EP6FIFOBUF
EP8FIFOBUF EP8 SLOE
SLRD

. A SLWR
PKTEND

FD[15:0] >

9.3.3 Slave FIFO Programmable-Level Flag
Each FIFO’s Programmable-level Flag (PF) asserts when the FIFO reaches a user-defined fullness threshold.

See the discussion of the EPXFIFOPFH:L registers in the Registers chapter on page 237 for full details.

9.34 Auto-In / Auto-Out Modes

The FIFOs can be configured to commit packets to/from USB automatically. For IN endpoints, Auto-In Mode allows the exter-
nal logic to stream data into a FIFO continuously, with no need for it or the firmware to packetize the data or explicitly signal
the MoBL-USB FX2LP18 to send it to the host. For OUT endpoints, Auto-Out Mode allows the host to continuously fill a FIFO,
with no need for the external logic or firmware to handshake each incoming packet, arm the endpoint buffers, and so on. See

Figure 9-27.
Figure 9-27. When AUTOOUT=1, OUT Packets are Automatically Committed

CPU

Host ——pp USB Data Path | sjave —JpMaster

AUTOOUT=1

To configure an IN endpoint FIFO for Auto Mode, set the AUTOIN bit in the appropriate EPXFIFOCFG register to ‘1’. To con-
figure an OUT endpoint FIFO for Auto Mode, set the AUTOOUT bit in the appropriate EPXFIFOCFG register to ‘1. See

Figure 9-28 and Figure 9-29 on page 125.
On a hard reset, all FIFOs default to Manual Mode (for example, AUTOIN = 0 and AUTOOUT = 0).

124 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 124 of 346

W’“ll

= 4 CYFRF%% Slave FIFOs

PERFC

Figure 9-28. TD_Init Example: Configuring AUTOOUT =1
TD_InitQ):

REVCTL = OxO03; // REVCTL.O and REVCTL.1 to set to 1
SYNCDELAY;

EP2CFG = OxA2; // EP2 is DIR=OUT, TYPE=BULK, SIZE=512, BUF=2x
SYNCDELAY;
FI1FORESET
SYNCDELAY;
FIFORESET = 0x02;
SYNCDELAY;
FIFORESET
SYNCDELAY;
OUTPKTEND
SYNCDELAY;
OUTPKTEND
SYNCDELAY;
EP2FIFOCFG = 0x10; // EP2 is AUTOOUT=1, AUTOIN=0, ZEROLEN=0, WORDWIDE=0

0x80; // Reset the FIFO

0x00;

0x82; // Arm both EP2 buffers to “prime the pump”

0x82;

Figure 9-29. TD_Init Example: Configuring AUTOIN = 1

TD_Init(Q):

REVCTL = 0xO03; // REVCTL.O and REVCTL.1 set to 1
SYNCDELAY;

EP8CFG = OxEO; // EP8 is DIR=IN, TYPE=BULK
SYNCDELAY;
FIFORESET
SYNCDELAY;
FIFORESET
SYNCDELAY;
FIFORESET
SYNCDELAY ;
EP8FIFOCFG = 0xO0C; // EP8 is AUTOOUT=0, AUTOIN=1, ZEROLEN=1, WORDWIDE=0
SYNCDELAY;

EPSAUTOINLENH = 0x02; // Auto-commit 512-byte packets

SYNCDELAY;
EPS8AUTOINLENL

0x80; // Reset the FIFO

0x08;

0x00;

0x00;

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 125

Exhibit 2033 - Page 125 of 346

=7 CYPRESS

PERFC

Slave FIFOs =

9.35 CPU Access to OUT Packets, AUTOOUT =1

The MoBL-USB FX2LP18's CPU is not in the host-to-master data path when AUTOOUT = 1. To achieve the maximum band-
width, the host and master are directly connected, bypassing the CPU. Figure 9-30 shows that, in Auto-Out mode, data from
the host is automatically committed to the FIFOs with no firmware intervention.

Figure 9-30. TD_Poll Example: No Code Necessary for OUT Packets When AUTOOUT=1
TD_Poll():

// no code necessary to xfr data from host to master!
// AUTOOUT=1 auto-commits packets

Note If AUTOOUT = 1, an OUT FIFO buffer is automatically committed, and could contain 0-1024 bytes, depending on the
size of the OUT packet transmitted by the host. The buffer size must be set appropriately (512 or 1024) to accommodate the
USB data payload size.

9.3.6 CPU Access to OUT Packets, AUTOOUT =0

In some systems, it may be desirable to allow the MoBL-USB FX2LP18's CPU to participate in the transfer of data between
the host and the slave FIFOs. To configure a FIFO for this ‘Manual-Out’ mode, the AUTOOUT bit in the appropriate EPxFIFO-
CFG register must be cleared to ‘0’ (see Figure 9-31).

Figure 9-31. TD_Init Example, Configuring AUTOOUT=0

TD_Init():

REVCTL = 0x03; // REVCTL.O and REVCTL.1 set to 1

SYNCDELAY;

EP2CFG = OxAZ2; // EP2 is DIR=0UT, TYPE=BULK, SI1ZE=512, BUF=2x
SYNCDELAY ;

FIFORESET = 0x80; // Reset the FIFO

SYNCDELAY;

FIFORESET = 0x02;

SYNCDELAY;

FIFORESET = 0x00;

SYNCDELAY ;

EP2FIFOCFG = 0x00; // EP2 is AUTOOUT=0, AUTOIN=0, ZEROLEN=0, WORDWIDE=0
SYNCDELAY;

OUTPKTEND = 0x82; // Arm both EP2 buffers to “prime the pump”
SYNCDELAY;

OUTPKTEND = 0x82;

As lllustrated in Figure 9-32 on page 127, firmware can do one of three things when the MoBL-USB FX2LP18 is in Manual-
Out mode and a packet is received from the host:

1. It can commit (pass to the FIFOs) the packet by writing OUTPKTEND with SKIP=0 (Figure 9-33 on page 127).
2. It can skip (discard) the packet by writing OUTPKTEND with SKIP=1 (Figure 9-34 on page 127).

3. It can edit the packet (or source an entire OUT packet) by writing to the FIFO buffer directly, then write the length of the
packet to EPXBCH:L. The write to EPXBCL commits the edited packet, so EPxBCL should be written after writing EPXBCH
(Figure 9-35 on page 128).

In all cases, the OUT buffer automatically re-arms so it can receive the next packet, once the external master has finished
reading all data in the OUT buffer.

See section 8.6.2.4 EP2BCH:L, EP4BCH:L, EP6BCH:L, EP8BCH:L on page 101 for a detailed description of the SKIP bit.

126 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 126 of 346

Slave FIFOs

W"‘]I
f‘} el

YF HF%%

—_—F

Figure 9-32. Skip, Commit, or Source (AUTOOUT=0)

EPXBCH:L
CPU
skip =0
Host — USB Data \T Slave —® Master
skip =1
AUTOOUT =0
Figure 9-33. TD_Poll Example, AUTOOUT=0, Commit Packet
TD_Poll():
iT(1(EP2468STAT & 0x01))
{ 7/ EP2EF=0 when FIFO NOT empty, host sent packet
OUTPKTEND = O0x02; // SKIP=0, pass buffer on to master
}
Figure 9-34. TD_Poll Example, AUTOOUT=0, Skip Packet

TD_Poll():
iT(1(EP2468STAT & 0x01))
{ // EP2EF=0 when FIFO NOT empty, host sent packet

0x82; // SKIP=1, do NOT pass buffer on to master

OUTPKTEND =
}

127

MoBL-USB™ TRM, Document # 001-11981 Rev. *B
Exhibit 2033 - Page 127 of 346

it

iy,

Slave FIFOs =4 CYPHF.%%

PERFC

Figure 9-35. TD_Poll Example, AUTOOUT=0, Source

TD_Poll():

iT(EP24FIFOFLGS & 0x02)

{

SYNCDELAY; //

FIFORESET = 0x80; // nak all OUT pkts. from host
SYNCDELAY; //

FIFORESET = 0x02; // advance all EP2 buffers to cpu domain
SYNCDELAY; //

EP2FIFOBUF[0] = OxAA; // create newly sourced pkt. data
SYNCDELAY; //

EP2BCH = 0x00;

SYNCDELAY; //

EP2BCL = 0x01; // commit newly sourced pkt. to interface fifo

// beware of "left over" uncommitted buffers

SYNCDELAY ; //

OUTPKTEND = 0x82; // skip uncommitted pkt. (second pkt.)
// note: core will not allow pkts. to get out of sequence
SYNCDELAY; //

FIFORESET = 0x00; // release "nak all”

}

Note If an uncommitted packet is in an OUT endpoint buffer when the MoBL-USB FX2LP18 is reset, that packet is not auto-
matically committed to the master. To ensure that no uncommitted packets are in the endpoint buffers after a reset, the firm-
ware’s ‘endpoint initialization’ routine should skip 2, 3, or 4 packets (depending on the buffering depth selected for the FIFO)
by writing OUTPKTEND with SKIP=1. See Figure 9-36.

Figure 9-36. TD_Init Example, OUT Endpoint Initialization

TD_Init():

REVCTL = 0x03; // REVCTL.O and REVCTL.1 set to 1

SYNCDELAY ;

EP2CFG = OxA2; // EP2 is DIR=OUT, TYPE=BULK, SIZE=512, BUF=2x
SYNCDELAY;

EP2FIFOCFG = 0x00; // EP2 is AUTOOUT=0, AUTOIN=0, ZEROLEN=0, WORDWIDE=0

// OUT endpoints do NOT come up armed

SYNCDELAY ;

OUTPKTEND = 0x82; // arm first buffer by writing OUTPKTEND w/skip=1
SYNCDELAY;

OUTPKTEND = 0x82; // arm second buffer by writing OUTPKTEND w/skip=1

128 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 128 of 346

= it

EF CYPRESS Slave FIFOs

PERFC

9.3.7 CPU Access to IN Packets, AUTOIN =1

Auto-In mode is similar to Auto-Out mode: When an IN FIFO is configured for Auto-In mode (by setting its AUTOIN bit to ‘1’),
data from the master is automatically packetized and committed to USB without any CPU intervention (see Figure 9-37).

Figure 9-37. TD_Poll Example, AUTOIN =1
TD_Poll():

// no code necessary to xfr data from master to host!
// AUTOIN=1 and EPSAUTOINLEN=512 auto commits packets
// in 512 byte chunks.

Auto-In mode differs in one important way from Auto-Out mode: In Auto-Out mode, data (excluding data in short packets) is
always auto-committed in 512- or 1024-byte packets; in Auto-In mode, the auto-commit packet size may be set to any non-
zero value (with the single restriction, of course, that the packet size must be less than or equal to the size of the endpoint
buffer). Each FIFO’s Auto-In packet size is stored in its EPXAUTOINLENH:L register pair.

To source an IN packet, firmware can temporarily halt the flow of data from the external master (via a signal on a general-pur-
pose 10 pin, typically), wait for an endpoint buffer to become available, create a new packet by writing directly to that buffer,
then commit the packet to USB and release the external master. In this way, the firmware can insert its own packets in the
data stream. See Figure 9-38, which illustrates data flowing directly between the master and the host, and Figure 9-39, which
shows the firmware sourcing an IN packet. A firmware example appears in Figure 9-40 on page 130.

Figure 9-38. Master Writes Directly to Host, AUTOIN = 1

/0 | Busy
CPU
\ 4
USB Data Path Slave < Master
AUTOIN=1
Figure 9-39. Firmware Intervention, AUTOIN =0 or 1
1/0 | Busy
CPU
Host USB Data Path Slave Master
AUTOIN=0 or
AUTOIN=1
MoBL-USB™ TRM, Document # 001-11981 Rev. *B 129

Exhibit 2033 - Page 129 of 346

\

Slave FIFOs WP/ CYPRESS
Figure 9-40. TD_Poll Example: Sourcing an IN Packet
TD_Poll():
if(source_pkt_event)
{ 7/ 100-msec background timer fired
if(holdoff_master())
{ // signaled “busy” to master successful
while('(EP68FIFOFLGS & 0x20))
{ // EP8EF=0, when buffer not empty
; // wait “til host takes entire FIFO data
¥
FIFORESET = 0x80; // initiate the “source packet” sequence
SYNCDELAY;
FIFORESET = 0x06;
SYNCDELAY;
FIFORESET = 0x00;
EPSFIFOBUF[O] = 0x02; // <STX>, packet start of text msg
EP8BFIFOBUFL 1] = 0x06; // <ACK>
EP8BFIFOBUFL 2 1 = 0x07; // <HEARTBEAT>
EPS8FIFOBUF[3] = 0x03; // <ETX>, packet end of text msg
SYNCDELAY;
EP8BCH = 0x00;
SYNCDELAY;
EP8BCL = 0x04; // pass newly-sourced buffer on to host
}
else
{
history_record(EP8, BAD_MASTER);
}
}
130 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 130 of 346

— -,
—— .“;1.—
=F

YPHF%Q Slave FIFOs

9.3.8 Access to IN Packets, AUTOIN=0

In some systems, it may be desirable to allow the MoBL-USB FX2LP18's CPU to participate in every data-transfer between
the external master and the host. To configure a FIFO for this ‘Manual-In” mode, the AUTOIN bit in the appropriate EPxFIFO-
CFG register must be cleared to ‘0.

In Manual-In mode, firmware can commit, skip, or edit packets sent by the external master, and it may also source packets
directly. To commit a packet, firmware writes the endpoint number (with SKIP=0) to the INPKTEND register. To skip a packet,
firmware writes the endpoint number with SKIP=1 to the INPKTEND register. To edit or source a packet, firmware writes to the
FIFO buffer, then writes the packet commit length to EPXBCH and EPxBCL (in that order).

Figure 9-41. TD_Poll Example, AUTOIN=0, Committing a Packet via INPKTEND
TD_Poll():

iT(master_Ffinished_longxfr())
{ // master currently points to EP8, pins FIFOADR[1:0]=11
if('(EP6BFIFOFLGS & 0x10))
{ // EP8FF=0 when buffer available
INPKTEND = Ox08; // firmware commits EP8 packet
// by writing 8 to INPKTEND
release_master(EP8);

}
}

Figure 9-42. TD_Poll Example, AUTOIN=0, Skipping a Packet via INPKTEND
TD_Poll1():

if(master_Ffinished_longxfr())
{ 7/ master currently points to EP8, pins FIFOADR[1:0]=11
if(1'(EP6BFIFOFLGS & 0x10))
{ // EP8FF=0 when buffer available
INPKTEND = Ox88; // firmware skips EP8 packet
// by writing 0x88 to INPKTEND
release_master(EP8);

}
}

Figure 9-43. TD_Poll Example, AUTOIN=0, Editing a Packet via EPXxBCH:L
TD_Poll():

iT(master_finished_xfr())

{ // modify the data
EPSFIFOBUF[L O] = Ox02; // <STX>, packet start of text msg
EPS8FIFOBUFL 7] 0x03; // <ETX>, packet end of text msg

SYNCDELAY;
EP8BCH = 0x00;
SYNCDELAY;
EP8BCL = 0x08; // pass buffer on to host, packet size is 8
}
MoBL-USB™ TRM, Document # 001-11981 Rev. *B 131

Exhibit 2033 - Page 131 of 346

=
== =

Slave FIFOs =7 \Yp}qug

9.3.9 Auto-In / Auto-Out Initialization

Enabling Auto-In transfers between slave FIFO and endpoint

Typically, a FIFO is configured for Auto-In mode as follows:

Configure bits IFCONFIG[7:4] to define the behavior of the interface clock.
Set bits IFCFG1:0=11.

Set REVCTL.0 and REVCTL.1 to ‘1.

Configure EPXCFG.

Reset the FIFOs.

Set bit EPXFIFOCFG.3=1.

Set the size via the EPXAUTOINLENH:L registers.

N o g s~ wDdhRE

Enabling Auto-Out transfers between endpoint and slave FIFO

Typically, a FIFO is configured for Auto-Out mode as follows:

Configure bits IFCONFIG[7:4] to define the behavior of the interface clock.

Set bits IFCFG1:0=11.

Set REVCTL.0 and REVCTL.1 to ‘1'.

Configure EPXCFG.

Reset the FIFOs.

Arm OUT buffers by writing to OUTPKTEND N times with skip = 1, where N is buffering depth.
Set bit EPXFIFOCFG.4=1.

N o gD RE

132 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 132 of 346

= it

=
= e

=4 CYPRESS

Slave FIFOs

9.3.10 Auto-Mode Example: Synchronous FIFO IN Data Transfers

Figure 9-44. Code Example, Synchronous Slave FIFO IN Data Transfer

TD_Init():
IFCONFIG = 0x03; // use IFCLK pin driven by external logic (56MHz to 48MHZz)
// use slave FIFO interface pins driven sync by external master
SYNCDELAY ;
REVCTL = 0x03; // REVCTL.O0 and REVCTL.1 set to 1
SYNCDELAY;
EP8CFG = OXEO; // sets EP8 valid for IN"s
// and defines the endpoint for 512 byte packets, 2x buffered
SYNCDELAY ;
FIFORESET = 0x80; // reset all FIFOs
SYNCDELAY ;
FIFORESET = 0x02;
SYNCDELAY;
FIFORESET = 0x04;
SYNCDELAY ;
FIFORESET = 0x06;
SYNCDELAY ;
FIFORESET = 0x08;
SYNCDELAY ;
FIFORESET = 0x00;
SYNCDELAY; // this defines the external interface to be the following:
EPS8FIFOCFG = 0x0C; // this lets the MoBL-USB FX2LP18 auto commit IN packets, gives the
// ability to send zero length packets,
// and sets the slave FIFO data interface to 8-bits
PINFLAGSAB = 0x00; // defines FLAGA as prog-level flag, pointed to by FIFOADR[1:0]
SYNCDELAY; // FLAGB as full flag, as pointed to by FIFOADR[1:0]
PINFLAGSCD = 0x00; // FLAGC as empty flag, as pointed to by FIFOADR[1:0]
// won"t generally need FLAGD
PORTACFG = 0x00; // used PA7/FLAGD as a port pin, not as a FIFO flag
SYNCDELAY;
FIFOPINPOLAR = 0x00; // set all slave FIFO interface pins as active low
SYNCDELAY;
EPSBAUTOINLENH = 0x02; // MoBL-USB FX2LP18 automatically commits data in 512-byte chunks
SYNCDELAY ;
EPBAUTOINLENL = 0x00;
SYNCDELAY ;
EP8FIFOPFH = 0x80; // you can define the programmable flag (FLAGA)
SYNCDELAY; // to be active at the level you wish
EP8FIFOPFL = 0x00;
TD_Poll1():

// nothing! The MoBL-USB FX2LP18 is doing all the work of transferring packets
// from the external master sync interface to the endpoint buffer...

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 133 of 346

133

= it

Slave FIFOs =

‘CYPRESS

PERFC

9.3.11 Auto-Mode Example: Asynchronous FIFO IN Data Transfers

The initialization code is exactly the same as for the synchronous-transfer example in “Auto-Mode Example: Synchronous
FIFO IN Data Transfers” on page 133, but with IFCLK configured for internal use at a rate of 48 MHz and the ASYNC bit set
to ‘1. Figure 9-45 shows the one-line modification that's needed.

Figure 9-45. TD_Init Example, Asynchronous Slave FIFO IN Data Transfers

TD_Init(): // slight modification from our synchronous firmware example
IFCONFIG = OxCB;

// this defines the external interface as follows:

// use internal 1FCLK (48MHZz)

// use slave FIFO interface pins asynchronously to external master

Code to perform the transfers is, as before, unnecessary; as Figure 9-46 illustrates.

Figure 9-46. TD_Poll Example, Asynchronous Slave FIFO IN Data Transfers

TD_Poll():
// nothing! The MoBL-USB FX2LP18 is doing all the work of transferring packets
// from the external master async interface to the endpoint buffer..

9.4 Switching Between Manual-Out and Auto-Out

Because OUT endpoints are not automatically armed when the MoBL-USB FX2LP18 enters Auto-Out mode, the firmware
can safely switch the MoBL-USB FX2LP18 between Manual-Out and Auto-Out modes without any need to flush or reset the
FIFOs.

Note Switching between Manual-Out mode to Auto-Out mode is not required for every application. Most applications remain
in either mode for each endpoint.

134 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 134 of 346

10. General Programmable Interface

= =
=2 CYPRESS

PERFORM

10.1 Introduction

The General Programmable Interface (GPIF) is an ‘internal master’ to the MoBL-USB FX2LP18's endpoint FIFOs. It replaces
the external ‘glue’ logic which might otherwise be required to build an interface between the MoBL-USB FX2LP18 and the
outside world.

At the GPIF's core is a programmable state machine which generates up to six ‘control’ and nine ‘address’ outputs, and
accepts six external and two internal ‘ready’ inputs. Four user-defined Waveform Descriptors control the state machine; gen-
erally (but not necessarily), one is written for FIFO reads, one for FIFO writes, one for single-byte/word reads, and one for sin-
gle-byte/word writes.

‘Read’ and ‘Write’ are from the MoBL-USB FX2LP18's point of view. ‘Read’ waveforms transfer data from the outside
world to the MoBL-USB FX2LP18; ‘Write’ waveforms transfer data from the MoBL-USB FX2LP18 to the outside world.

Firmware can assign the FIFO-read and -write waveforms to any of the four FIFOs, and the GPIF will generate the proper
strobes and handshake signals to the outside-world interface as data is transferred into or out of that FIFO.

As with external mastering (see Slave FIFOs, on page 107), the data bus between the FIFOs and the outside world can be
either 8 or 16 bits wide.

The GPIF is not limited to simple handshaking interfaces between the MoBL-USB FX2LP18 and external ASICs or micropro-
cessors; it is powerful enough to directly implement such protocols as ATAPI (PIO and UDMA), IEEE 1284 (EPP Parallel
Port), Utopia, and others. A MoBL-USB FX2LP18 can, for instance, function as a single-chip interface between USB and an
IDE hard disk drive or CompactFlash™ memory card.

This chapter provides an overview of GPIF, discusses external connections, and explains the operation of the GPIF engine.
Figure 10-1 on page 136 presents a block diagram illustrating GPIF's place in the MoBL-USB FX2LP18 system.

GPIF waveforms are created with the Cypress GPIF Designer utility, a Windows™-based application which is distributed
with the Cypress MoBL-USB FX2LP18 Development Kit. Although this chapter will describe the structure of the Waveform
Descriptors in some detail, knowledge of that structure is usually not necessary. The GPIF Designer simply hides the com-
plexity of the Waveform Descriptors; it does not compromise the programmer’s control over the GPIF in any way.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 135

Exhibit 2033 - Page 135 of 346

General Programmable Interface

Figure 10-1. GPIF's Place in the MoBL-USB FX2LP18 System

!m

I'l“gl
i
@]

CYPRESS

GPIF Device Pins

8051

XDATA
FD[15:0]
>

v |

XGPIFSGLDATH/L

Slave FIFOs
WORDWIDE=1 E':,XEE
EP2FIFOBUF X
EP4FIFOBUF | EPXPF__ 5]
EP2 .
SLOE | GPIFADR([8:0]

EPGFIFOBUF e
¢EPBFIFOBUF s SLRD
EPB ¢SLWR |__cTL[5:0])

¢ RDY]J5:0

f f FIFOADR[1:0]

INPKTEND
W aveform Descriptors
8051 WEO GPIF
WF1
WF2
WF3 | GSTATE[2:0 >
XGPIFSGLDATLX >
GPIFTRIG
>
GPIF DONE
<
GPIFWF
8051 INTRDY
>
PORT I/O
< >

Figure 10-2 on page 137 shows an example of a simple GPIF transaction. For this transaction, the GPIF generates an
address (GPIFADR([8:0]), drives the FIFO data bus (FD[15:0]), then waits for an externally-supplied handshake signal (RDYO0)

to go low, after which it pulls its CTLO output low. When the RDYO signal returns high, the GPIF brings its CTLO output high,

then floats the data bus.

136

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 136 of 346

= it

CYPHF% General Programmable Interface

Figure 10-2. Example GPIF Waveform

SO . S1 . S2 . S3 ' S4 ' S5 ' S6

GPIFADR[8:0] A I A+1

FD[15:0]

CTLO

RDYO

10.1.1 Typical GPIF Interface

The GPIF allows the MoBL-USB FX2LP18 to connect directly to external peripherals such as ASICs, DSPs, or other digital
logic that uses an 8- or 16-bit parallel interface.

The GPIF provides external pins that can operate as outputs (CTL[5:0]), inputs (RDY[5:0]), Data bus (FD[15:0]), and Address
Lines (GPIFADR][8:0]).

A Waveform Descriptor in internal RAM describes the behavior of each of the GPIF signals. The Waveform Descriptor is
loaded into the GPIF registers by the firmware during initialization, and it is then used throughout the execution of the code to
perform transactions over the GPIF interface.

Figure 10-3 shows a block diagram of a typical interface between the MoBL-USB FX2LP18 and a peripheral function.

Figure 10-3. MoBL-USB FX2LP18 Interfacing to a Peripheral

GPIFADR[8:0]

Y

IFCLK

Y

A

FD[15:0]
CTL[5:0]

MoBL-USB [*
Master
Mode

Peripheral

Yy

RDYI[5:0]
PORT I/O o
Ll

A

A

AN

> Debug

GSTATE[2:0]

The following sections detail the features available and steps needed to create an efficient GPIF design. This includes defini-
tion of the external GPIF connections and the internal register settings, along with firmware needed to execute data transac-
tions over the interface.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 137

Exhibit 2033 - Page 137 of 346

General Programmable Interface E:-_?!E‘YPRF%

RFORM

10.2 Hardware

Table 10-1 lists the registers associated with the GPIF hardware; a detailed description of each register may be found in the
Registers, on page 237

Table 10-1. Registers Associated with GPIF Hardware

Register Name
GPIFIDLECS IFCONFIG
GPIFIDLECTL FIFORESET
GPIFCTLCFG EPXCFG
PORTCCFG EPXFIFOCFG
PORTECFG EPXAUTOINLENH/L
GPIFADRH/L EPXFIFOPFH/L
GPIFTCB3:0
GPIFWFSELECT EPXGPIFTRIG
EPXGPIFFLGSEL GPIFABORT
EPXGPIFPFSTOP XGPIFSGLDATH/LX/LNOX
GPIFREADYCFG GPIFSGLDATH/LX/LNOX
GPIFREADYSTAT GPIFTRIG
Note The X’ in these register names represents 2, 4, 6, or 8; endpoints 0 and 1 are not associ-
ated with the GPIF.

10.2.1 The External GPIF Interface

The GPIF provides many general input and output signals with which external peripherals may be interfaced ‘gluelessly’ to
the MoBL-USB FX2LP18.

The GPIF interface signals are shown in Table 10-2.

Table 10-2. GPIF Pin Descriptions

PIN IN/OUT Description
CTL[5:0] O/ Hi-Z Programmable control outputs
RDY[5:0] | Sampleable ready inputs
FD[15:0] 1/O/Hi-Z Bidirectional FIFO data bus
GPIFADRI[8:0] O/ Hi-Zz Address outputs
IFCLK 1/0 Interface clock
GSTATE[2:0] O/ Hi-Z Current GPIF State number (for debug)

The Control Output pins (CTL[5:0]) are usually used as strobes (enable lines), read/write lines, and others.

The Ready Input pins (RDY[5:0]) are sampled by the GPIF and can force a transaction to wait (inserting wait states), con-
tinue, or repeat until they're in a particular state.

The GPIF Data Bus is a collection of the FD[15:0] pins.
m An 8-bit wide GPIF interface uses pins FD[7:0].
m A 16 bit-wide GPIF interface uses pins FD[15:0].

The GPIF Address lines (GPIFADR[8:0]) can generate an incrementing address as data is transferred. If higher-order
address lines are needed, other non-GPIF |0 signals (for example, general-purpose 10O pins) may be used.

The Interface Clock, IFCLK, can be configured to be either an input (default) or an output interface clock for synchronous
interfaces to external logic.

The GSTATE[2:0] pins are outputs which show the current GPIF State number; they are used for debugging GPIF waveforms.

138 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 138 of 346

= S
S—— T

=7 CYPHF% General Programmable Interface

10.2.2 Default GPIF Pins Configuration

The MoBL-USB FX2LP18 comes out of reset with its 10 pins configured in ‘Ports’ mode, not ‘GPIF Master’ mode. To config-
ure the pins for GPIF mode, the IFCFGL1.:0 bits in the IFCONFIG register must be set to 10 (see Table 13-10, “IFCFG Selec-
tion of Port 10 Pin Functions,” on page 211 for details).

10.2.3 Six Control OUT Signals

The 100- pin MoBL-USB FX2LP18 package bring out all six Control Output pins, CTL[5:0]. The 56-pin package brings out
three of these signals, CTL[2:0]. CTLx waveform edges can be programmed to make transitions as often as once per IFCLK
clock (once every 20.8 ns if IFCLK is running at 48MHz).

By default, these signals are driven high.

10.2.3.1

The GPIF Control pins (CTL[5:0]) have several output modes:
m CTL[3:0] can act as CMOS outputs (optionally tristatable) or open-drain outputs.
m CTL[5:4] can act as CMOS outputs or open-drain outputs.

If CTL[3:0] are configured to be tristatable, CTL[5:4] are not available.

Control Output Modes

Table 10-3. CTL[5:0] Output Modes

TRICTL (GPIFCTLCFG.7)

GPIFCTLCFG[6:0]

CTL[3:0]

CTL[5:4]

0

0

CMOS, Not Tristatable

CMOS, Not Tristatable

0

1

Open-Drain

Open-Drain

1

X

CMOS, Tristatable

Not Available

10.2.4 Six Ready IN signals

The 100- pin MoBL-USB FX2LP18 packages bring out all six Ready inputs, RDY[5:0]. The 56-pin package brings out two of
these signals, RDY[1:0].

The RDY inputs can be sampled synchronously or asynchronously. When the GPIF samples RDY inputs asynchronously
(SAS=0), the RDY inputs are unavoidably delayed by a small amount (approximately 24 ns at 48 MHz IFCLK). In other words,
when the GPIF “looks” at a RDY input, it actually “sees” the state of that input 24 ns ago.

10.2.5 Nine GPIF Address OUT Signals

Nine GPIF address lines, GPIFADR([8:0], are available. If the GPIF address lines are configured as outputs, writing to the
GPIFADRH:L registers drives these pins immediately. The GPIF engine can then increment them under control of the Wave-
form Descriptors. The GPIF address lines can be tri-stated by clearing the associated PORTXCFG bits and OEXx bits to 0 (see
section 13.3.3 Port C Alternate Functions on page 209 and section 13.3.4 Port E Alternate Functions on page 210).

10.2.6 Three GSTATE OUT Signals

Three GPIF State lines, GSTATE[2:0], are available as an alternate configuration of PORTE[2:0]. These default to general-
purpose inputs; setting GSTATE (IFCONFIG.2) to ‘1’ selects the alternate configuration and overrides PORTECFG[2:0] bit
settings.

The GSTATE[2:0] pins output the current GPIF State number; this feature is used for debugging GPIF waveforms, and is use-
ful for correlating intended GPIF waveform behavior with actual observed GPIF signaling.

10.2.7 8/16-Bit Data Path, WORDWIDE = 1 (default) and WORDWIDE =0
When the MoBL-USB FX2LP18 is configured for GPIF Master mode, PORTB is always configured as FD[7:0].

If any of the WORDWIDE bits (EPxFIFOCFG.0) are set to ‘1’, PORTD is automatically configured as FD[15:8]. If all the
WORDWIDE bits are cleared to 0, PORTD is available for general-purpose 10.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 139

Exhibit 2033 - Page 139 of 346

— sy T

</ CYPRESS

General Programmable Interface

10.2.8 Byte Order for 16-bit GPIF Transactions

Data is sent over USB in packets of 8-bit bytes, not 16-bit words. When the FIFO Data bus is 16 bits wide, the first byte in
every pair sent over USB is transferred over FD[7:0] and the second byte is transferred over FD[15:8].

10.2.9 Interface Clock (IFCLK)

The GPIF interface can be clocked from either an internal or an external source. The MoBL-USB FX2LP18'’s internal clock
source can be configured to run at either 30 or 48 MHz, and it can optionally be output on the IFCLK pin. If the MoBL-USB
FX2LP18 is configured to use an external clock source, the IFCLK pin can be driven at any frequency between 5 MHz and 48
MHz. On a hard reset, the MoBL-USB FX2LP18 defaults to the internal source at 48 MHz, normal polarity, with the IFCLK out-
put disabled. See Figure 10-4.

IFCONFIG.7 selects between internal and external sources: 0 = external, 1 = internal. If an external IFCLK is chosen, it must
be free-running at a minimum frequency of 5 MHz. In addition, in order to provide synchronization for the internal endpoint
FIFO logic, the external IFCLK source must be present before the firmware sets IFCONFIG.7 = 0.

IFCONFIG.6 selects between the 30- and 48-MHz internal clock: 0 = 30 MHz, 1 = 48 MHz. This bit has no effect when IFCON-
FIG.7 =0.

IFCONFIG.5 is the output enable for the internal clock source: 0 = disable, 1 = enable. This bit has no effect when
IFCONFIG.7 = 0.

IFCONFIG.4 inverts the polarity of the interface clock (whether it’s internal or external): 0 = normal, 1 = inverted. IFCLK inver-
sion can make it easier to interface the MoBL-USB FX2LP18 with certain external circuitry. When an internal IFCLK is used
(IFCONFIG.7 = 1), IFCONFIG.4 only affects the IFCLK output polarity (if IFCONFIG.5 = 1). When an external IFCLK is used
(IFCONFIG.7 = 0), IFCONFIG.4 only affects the IFCLK input polarity. Figure 10-5 on page 141, for example, demonstrates the
use of IFCLK output inversion in order to ensure a long enough setup time (ts) for a control signal to the peripheral.

When IFCLK is configured as an input, the minimum external frequency that can be applied to it is 5 MHz. This clock must
be applied prior to initialization of the GPIF and interruptions of it will lower the overall frequency, causing violations of the
minimum frequency requirement.

Figure 10-4. IFCLK Configuration

IFCFG.6
IFCFG.4 IFCFG.5
30 MHz —¢
48 MHz — 1 0
>o—t
IFCLK
IFCFG.7 Pin
IFCFG.4
Internal 1
IFCLK <—— ° 0 <]
Signal 1 Q<}
140 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 140 of 346

= it
S—

CYPHF-%L? General Programmable Interface

PERFC

Figure 10-5. Satisfying Setup Timing by Inverting the IFCLK Output

Internal IFCLK Signal m

Inverted IFCLK Output

FIFO Flag

MoBL-USB| Y ¥ [Master

Asserts Samples
Flag il Flag

10.2.10 Connecting GPIF Signal Pins to Hardware

The first step in creating the interface between the MoBL-USB FX2LP18's GPIF and an external peripheral is to define the

hardware interconnects.

1. Choose IFCLK settings. Choose either the internal or external interface clock. If internal, choose either 30 or 48 MHz; if
external, ensure that the frequency of the external clock is in the range 5-48 MHz, and that it is free-running.

2. Determine the proper FIFO Data Bus size. If the data bus for the interface is 8 bits wide, use the FD[7:0] pins and set
WORDWIDE=0. If the data bus for the interface is 16 bits wide, use FD[15:0] and set WORDWIDE=1.

3. Assign the CTLx signals to the interface. Make a list of all interface signals to be driven from the GPIF to the periph-
eral, and assign them to the CTL[5:0] inputs. If there are more output signals than available CTLx outputs, non-GPIF IO
signals must be driven manually by MoBL-USB FX2LP18 firmware. In this case, the CTLx outputs should be assigned
only to signals that must be driven as part of a data transaction.

4. Assign the RDYn signals to the interface. Make a list of all interface signals to be driven from the peripheral to the
GPIF, and assign them to the RDY[5:0] inputs. If there are more input signals than available RDY inputs, non-GPIF |0 sig-
nals must be sampled manually by firmware. In this case, the RDYn inputs should be used only for signals that must be
sampled as part of a data transaction.

5. Determine the proper GPIF Address connections. If the interface uses an Address Bus, use the GPIFADR[8:0] signals
for the least significant bits, and other non-GPIF 10 signals for the most significant bits. If the address pins are not needed
(as when, for instance, the peripheral is a FIFO) they may be left unconnected.

10.2.11 Example GPIF Hardware Interconnect

The following example illustrates the hardware connections that can be made for a standard interface to a 27C256 EPROM.

Table 10-4. Example GPIF Hardware Interconnect

Step Result Connection Made
1. Choose IFCLK settings. Internal IFCLK, 48MHz, Async RDY sampling, GPIF. | No connection.
2. Determine proper FIFO Data Bus size. 8 bits from the EPROM. FDI[7:0] to D[7:0]. Firmware writes WORDWIDE=0.
3. Assign CTLx signals to the interface. CS and OE are inputs to the EPROM. CTLOto CS. CTL1 to OE.
4. Assign RDYn signals to the interface. 27C256 EPROM has no output ready/wait signals. No connection.
5. Determine the proper GPIFADR connections. | 16 bits of address. GPIFADRI8:0] to A[8:0] and other 10 pins to A[15:9].

The process is the same for larger, more-complicated interfaces.

Note Two other GPIF hardware interconnect examples are also available in the GPIF Designer utility. These examples illus-
trate a connection between the GPIF and the asynchronous FIFO as well as a connection between the GPIF and a DSP from
Texas Instrument.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 141

Exhibit 2033 - Page 141 of 346

— sy T

</ CYPRESS

General Programmable Interface

10.3 Programming the GPIF Waveforms

Each GPIF Waveform Descriptor can define up to 7 States. In each State, the GPIF can be programmed to:
Drive (high or low) or float the CTL outputs

Sample or drive the FIFO Data bus

Increment the value on the GPIF Address bus

Increment the pointer into the current FIFO

Trigger a GPIFWF (GPIF Waveform) interrupt

Additionally, each State may either sample any two of the following:
m The RDYXx input pins

m AFIFO flag

m The INTRDY (internal RDY) flag

m The Transaction-Count-Expired flag

then AND, OR, or XOR the two terms and branch on the result to any State

or:
m Delay a specified number [1-256] of IFCLK cycles

States which sample and branch are called ‘Decision Points’ (DPs); States which do not are called ‘Non-Decision Points’
(NDPs).

Figure 10-6. GPIF State Machine Overview

State 7

XOR}
Event CPU |GPIF
. INTRDY bit o—r >
Y| GPIFWFISR| <+——e
1 State 7
and (reserved)
X=Y-1 GPIF State Machine Firmware Hooks

(up to 7 programmable states)

10.3.1 The GPIF Registers

Two blocks of registers control the GPIF state machine:

m GPIF Configuration Registers — These registers configure the general settings and report the status of the interface.
Refer to the Registers chapter on page 237 and the remainder of this chapter for details.

m Waveform Registers — These registers are loaded with the Waveform Descriptors that configure the GPIF state
machine; there are a total of 128 bytes located at addresses 0xE400 to OxE47F. The GPIF Designer utility must be used
to create Waveform Descriptors.

GPIF transactions cannot be initiated until the Configuration Registers and Waveform Registers are loaded by firmware.

Access to the waveform registers is only allowed while the MoBL-USB FX2LP18 is in GPIF mode (that is, IFCFG1:0 = 10).
The waveform registers may only be written while the GPIF engine is halted (that is, DONE = 1).

If it's desired to dynamically reconfigure Waveform Descriptors, this may be accomplished by writing just the bytes which
change; it's not necessary to reload the entire set of Waveform Descriptors in order to modify only a few bytes.

142 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 142 of 346

-

ﬁYDHF% General Programmable Interface

10.3.2 Programming GPIF Waveforms
The ‘programs’ for GPIF waveforms are the Waveform Descriptors, which are stored in the Waveform Registers by firmware.

The MoBL-USB FX2LP18 can hold up to four Waveform Descriptors, each of which can be used for one of four types of trans-
fers: Single Write, Single Read, FIFO Write, or FIFO Read. By default, one Waveform Descriptor is assigned to each transfer
type, but it's not necessary to retain that configuration; all four Waveform Descriptors could, for instance, be configured for
FIFO Write usage (see the GPIFWFSELECT register in the Registers chapter on page 237).

Each Waveform Descriptor consists of up to seven 32-bit State Instructions that program key transition points for GPIF inter-
face signals. There's a one-to-one correspondence between the State Instructions and the GPIF state-machine States.
Among other things, each State Instruction defines the state of the CTLx outputs, the state of FD[15:0], the use of the RDYn
inputs, and the behavior of GPIFADR[8:0].

Transitions from one State to another always happen on a rising edge of the IFCLK, but the GPIF may remain in one State for
many IFCLK cycles.

10.3.2.1 The GPIF IDLE State

A Waveform consists of up to seven programmable States, numbered SO to S6, and one special Idle State, S7. A Waveform
terminates when the GPIF program branches to its Idle State.

To complete a GPIF transaction, the GPIF program must branch to the IDLE State, regardless of the State that the GPIF pro-
gram is currently executing. For example, a GPIF Waveform might be defined by a program which contains only 2 pro-
grammed States, SO and S1. The GPIF program would branch from S1 (or S0) to S7 when it wished to terminate.

The state of the GPIF signals during the Idle State is determined by the contents of the
GPIFIDLECS and GPIFIDLECTL registers.

Once a waveform is triggered, another waveform may not be started until the first one terminates. Termination of a waveform
is signaled through the DONE bit (GPIFIDLECS.7 or GPIFTRIG.7) or, optionally, through the GPIFDONE interrupt.

m If DONE = 0, the GPIF is busy generating a Waveform.

m If DONE = 1, the GPIF is done (GPIF is in the Idle State) and ready for firmware to start the next GPIF transaction.

Important With one exception (writing to the GPIFABORT register in order to force the current waveform to terminate) it is
illegal to write to any of the GPIF-related registers (including the Waveform Registers) while the GPIF is busy. Doing so will
cause indeterminate behavior likely to result in data corruption.

GPIF Data Bus During IDLE

During the Idle State, the GPIF Data Bus (FD[15:0]) can be either driven or tri-stated, depending on the setting of the
IDLEDRY bit (GPIFIDLECS.0):

m If IDLEDRV = 0, the GPIF Data Bus is tri-stated during the Idle State.

m If IDLEDRV = 1, the GPIF Data Bus is actively driven during the Idle State, to the value last placed on the bus by a GPIF
Waveform.

CTL Outputs During IDLE

During the IDLE State, the state of CTL[5:0] depends on the following register bits:

m TRICTL (GPIFCTLCFG.7), as described in section 10.2.3.1 Control Output Modes on page 139.
m GPIFCTLCFG[5:0]

m GPIFIDLECTL[5:0].

The combination of these bits defines CTL5:0 during IDLE as follows:

m If TRICTL is O, GPIFIDLECTL[5:0] directly represent the output states of CTL5:0 during the IDLE State. The GPIFCTL-
CFG[5:0] bits determine whether the CTL5:0 outputs are CMOS or open-drain: If GPIFCTLCFG.x = 0, CTLx is CMOS; if
GPIFCTLCFG.x = 1, CTLx is open-drain.

m If TRICTL is 1, GPIFIDLECTL[7:4] are the output enables for the CTL[3:0] signals, and GPIFIDLECTL[3:0] are the output
values for CTL[3:0]. CTL4 and CTL5 are unavailable in this mode.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 143

Exhibit 2033 - Page 143 of 346

General Programmable Interface

Table 10-5 illustrates this relationship.

Table 10-5. Control Outputs (CTLx) During the IDLE State

;i-!éw

TRICTL Control Output Output State Output Enable

CTLO GPIFIDLECTL.0
CTL1 GPIFIDLECTL.1
CTL2 GPIFIDLECTL.2 NIA

0 oTL3 GPIFIDLECTL 3 (CTL Outputs are always

enabled when TRICTL = 0)

CTL4 GPIFIDLECTL.4
CTL5 GPIFIDLECTL.5
CTLO GPIFIDLECTL.O0 GPIFIDLECTL.4
CTL1 GPIFIDLECTL.1 GPIFIDLECTL.5
CTL2 GPIFIDLECTL.2 GPIFIDLECTL.6

! CTL3 GPIFIDLECTL.3 GPIFIDLECTL.7
CTL4 N/A
CTL5 (CTL4 and CTLS5 are not available when TRICTL = 1)

10.3.2.2 Defining States

RES

R

O R M

Each Waveform is made up of a number of States, each of which is defined by a 32-bit State Instruction. Each State can be
one of two basic types: a Non-Decision Point (NDP) or a Decision Point (DP).

For ‘write’ waveforms, the data bus is either driven or tri-stated during each State. For ‘read’ waveforms, the data bus is either
sampled/stored or not sampled during each State.

Non-Decision Point (NDP) States

For NDP States, the control outputs (CTLx) are defined by the GPIF instruction to be either ‘1’, ‘0,’ or tri-stated during the
entire State. NDP States have a programmable fixed duration in units of IFCLK cycles.

Figure 10-7 illustrates the basic concept of NDP States. A write waveform is shown, and for simplicity all the States are shown

with equal spacing. Although there are a total of six programmable CTL outputs, only one (CTLO) is shown in Figure 10-7.

Figure 10-7. Non-Decision Point (NDP) States

GPIFADR[8:0]

FD[15:0]

CTLO

S1 . S2

S3 ' S4 ' S5

A

The following information refers to Figure 10-7.

In State O:
m FD[7:0] is programmed to be tri-stated.
m CTLO is programmed to be driven to a logic 1.

144

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 144 of 346

-

ﬁYDHF% General Programmable Interface

In State 1:
m FD[7:0] is programmed to be driven.
m CTLO is still programmed to be driven to a logic 1.

In State 2:
m FD[7:0] is programmed to be driven.
m CTLO is programmed to be driven to a logic 0.

In State 3:
m FD[7:0] is programmed to be driven.
m CTLO is still programmed to be driven to a logic 0.

In State 4:
m FD[7:0] is programmed to be driven.
m CTLO is programmed to be driven to a logic 1.

In State 5:
m FD[7:0] is programmed to be tri-stated.
m CTLO is still programmed to be driven to a logic 1.

In State 6:
m FD[7:0] is programmed to be tri-stated.
m CTLO is still programmed to be driven to a logic 1.

Since all States in this example are coded as NDPs, the GPIF automatically branches from the last State (S6) to the Idle State
(S7). This is the State in which the GPIF waits until the next GPIF waveform is triggered by the firmware.

States 2 and 3 in the example are identical, as are States 5 and 6. In a real application, these would probably be combined
(there’s no need to duplicate a State in order to ‘stretch’ it, since each NDP State can be assigned a duration in terms of
IFCLK cycles). If fewer than 7 States were defined for this waveform, the Idle State would not automatically be entered after
the last programmed State; that last programmed State’s State Instruction would have to include an explicit unconditional
branch to the Idle State.

Decision Point (DP) States

Any State can be designated as a Decision Point (DP). A DP allows the GPIF engine to sample two signals — each of the
‘two’ can be the same signal, if desired — perform a boolean operation on the sampled values, then branch to other States (or
loop back on itself, remaining in the current State) based on the result.

If a State Instruction includes a control task (advance the FIFO pointer, increment the GPIFADR address, and so on), that task
is always executed once upon entering the State, regardless of whether the State is a DP or NDP. If the State is a DP that
loops back on itself, however, it can be programmed to re-execute the control task on every loop.

With a Decision Point, the GPIF can perform simple tasks (wait until a RDY line is low before continuing to the next State, for
instance). Decision point States can also perform more-complex tasks by branching to one State if the operation on the sam-
pled signals results in a logic 1, or to a different State if it results in a logic 0.

In each State Instruction, the two signals to sample can be selected from any of the following:

m the six external RDY signals (RDY0-RDY5)

m one of the current FIFO'’s flags (PF, EF, FF)

m the INTRDY bit in the READY register

m a ‘Transaction Count Expired’ signal (which replaces RDY5)

The State Instruction also specifies a logic function (AND, OR, or XOR) to be applied to the two selected signals. If it's desired

to act on the state of only one signal, the usual procedure is to select the same signal twice and specify the logic function as
AND.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 145

Exhibit 2033 - Page 145 of 346

General Programmable Interface =/ CYPHF.S?

PERFORM

it

iy,

The State Instruction also specifies which State to branch to if the result of the logical expression is 0, and which State to
branch to if the result of the logical expression is 1.

Below is an example waveform created using one Decision Point State (State 1); Non-Decision Point States are used for the
rest of the waveform.

Figure 10-8. One Decision Point: Wait States Inserted Until RDY0 Goes Low

. S0 ; s1 s2 s3 sa : S5 : S6

GPIFADR[8:0] A |
FD[15:0] z I VALID | z
CTLO

RDYO '

Figure 10-9. One Decision Point: No Wait States Inserted: RDYO is Already Low at Decision Point 11

so . st sz ss . s S5 s6
GPIFADR[8:0] A
FD[15:0] z : VALID | .

:

In Figure 10-8 and Figure 10-9, there is a single Decision Point defined as State 1. In this example, the input ready signal is
assumed to be connected to RDYO, and the State Instruction for S1 is configured to branch to State 2 if RDYO is a logic 0 or
to branch to State 1 (for example, loop indefinitely) if RDYO is a logic ‘1.

In Figure 10-8, the GPIF remains in S1 until the RDYO signal goes low, then branches to S2. Figure 10-9 illustrates the GPIF
behavior when the RDYO signal is already low when S1 is entered: The GPIF branches to S2.

Note Although it appears in Figure 10-9 that the GPIF branches immediately from State 1 to State 2, this is not exactly true.
Even if RDYO is already low before the GPIF enters State 1, the GPIF spends one IFCLK cycle in State 1 to evaluate the deci-
sion point. The logic function is applied on the rising edge of IFCLK entering State 1. If the logic function holds TRUE at this
point, then the branch is effective on the next rising of IFCLK.

146 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 146 of 346

General Programmable Interface

10.3.3 Re-Executing a Task Within a DP State

In the simple DP examples shown earlier in this chapter, a control task (for example, output a word on FD[15:0] and increment
GPIFADR[8:0]) executes only once at the start of a DP State, then the GPIF waits, sampling a RDYXx input repeatedly until
that input “informs” the GPIF to branch to the next State.

The GPIF also has the capability to re-execute the control task every time the RDYx input is sampled; this feature can be
used to burst a large amount of data without passing through the Idle State (a waveform example is shown in Figure 10-10).

To re-execute a task within a decision point state, the ‘re-execute’ bit for that decision point must be enabled. This is per-
formed by checking the ‘Loop (Re-Execute)’ check-box within GPIF Designer (an example is shown in Figure 10-11).
Figure 10-13 on page 148 shows an example of a GPIF waveform that uses a DP state which does not re-execute its control
tasks.

Figure 10-10. Re-Executing a Task within a DP State

Fek_ [] LA LA | L]
GPIFADR[8:0] : A AT [AR | AR
FD[15:0] - D D+1 I D+2 I D+3
CTLO:
RDYO— | DP, transitions to
v v'\ next interval when
NDP DP NDP terms are met

—

DP, using re-execute control
task feature... to loop on to
itself until terms are met

Figure 10-11. GPIF Designer Setup for the Waveform of Figure 10-10

3lock Diagram | Single Read | Single wiite | FIFD Read FIFO Wiite |

4|

States Al

IDLE
F(|RDv0 #][=1 anD F[ROvo #]=1)

-+
Status | w | THEN GOTO [52 -] ELsE GoTo [51 -]
A A

|
Data . : : : l F

Add |

s1i32i

cre &

[# LOOF [ReExecute §

o oK _ X Carca |

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 147

Exhibit 2033 - Page 147 of 346

= it

B

2
General Programmable Interface = YPHF%
Figure 10-12. GPIF Designer Output for the Waveform of Figure 10-10
State 0 1 2 3 4 5 6 7
AddrMode Same Val Inc Val Same Val SameVal SameVal SameVal Same Val
DataMode Activate Activate No Data No Data No Data No Data No Data
NextData SameData NextData SameData SameData SameData SameData SameData
Int Trig No Int No Int No Int No Int No Int No Int No Int
IF/Wait Wait 4 IF Wait 1 Wait 1 Wait 1 Wait 1 Wait 1
Term A RDYO
LFUNC AND
Term B RDYO
Branchl Then 2
BranchO Else 1
Re-execute Yes
CTLO 1 0 1 1 1 1 1 1
CTL1 1 1 1 1 1 1 1 1
CTL2 1 1 1 1 1 1 1 1
CTL3 1 1 1 1 1 1 1 1
CTL4 1 1 1 1 1 1 1 1
CTL5 1 1 1 1 1 1 1 1
Figure 10-13. A DP State That Does NOT Re-Execute the Task
Fek || L L] L]
GPIFADR[8:0] A A+l
FD[15:0] D D+1
CTLO
RDYO | DP, ti iti t
— , transitions to
v v'\ next interval when
NDP DP NDP terms are met
DP, loop on to itself until terms
are met... control tasks execute
on rising edge transition into
DP only...
148 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 148 of 346

= it

Figure 10-14. GPIF Designer Setup for the Waveform of Figure 10-13

Block Diagram | Single Flead | Single Wiite | FIFO Read FIFO Wiite |

4

IDLE

States s0 | 51 | 22 |

EEEE NN
Data I—‘.' . . . '.l' '..' .
Addr | EE— + g IF([RDYD =||=1 aND J[RDvD |=1]
saws | (@) THENGotO[s2 | Eise coto [S1]

X Cancel |

T &

Figure 10-15. GPIF Designer Output for the Waveform of Figure 10-13

State 0 1 2 3 4 5 6 7
AddrMode Same Val Inc Val Same Val SameVal SameVal SameVal Same Val
DataMode Activate Activate No Data No Data No Data No Data No Data
NextData SameData NextData SameData SameData SameData SameData SameData
Int Trig No Int No Int No Int No Int No Int No Int No Int

IF/Wait Wait 4 IF Wait 1 Wait 1 Wait 1 Wait 1 Wait 1
Term A RDYO
LFUNC AND
Term B RDYO
Branchl Then 2
BranchO Else 1
Re-execute No
CTLO 1 0 1 1 1 1 1 1
CTL1 1 1 1 1 1 1 1 1
CTL2 1 1 1 1 1 1 1 1
CTL3 1 1 1 1 1 1 1 1
CTL4 1 1 1 1 1 1 1 1
CTL5 1 1 1 1 1 1 1 1

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 149 of 346

=+ CYPHF% General Programmable Interface

149

S/ CYPRESS

PERFORM

General Programmable Interface

10.3.4

Each State’s characteristics are defined by a 4-byte State Instruction. The four bytes are named LENGTH / BRANCH,
OPCODE, LOGIC FUNCTION, and OUTPUT.

State Instructions

Note that the State Instructions are interpreted differently for Decision Points (DP = 1) and Non-Decision Points (DP = 0).
Non-Decision Point State Instruction (DP = 0)

LENGTH / BRANCH

Bit 7 | Bit6 | Bit5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 Bit0
Number of IFCLK cycles to stay in this State (0 = 256 cycles)

OPCODE
7 6 5 4 3 2 1 0
X X SGL GINT INCAD NEXT/ SGLCRC DATA DP =0
LOGIC FUNCTION
7 6 5 | 4 | 3 | 2 1 0
Not Used
OUTPUT (if TRICTL Bit = 1)

7 6 5 4 3 2 1 0
OE3 OE2 OE1 OEO CTL3 CTL2 CTL1 CTLO
OUTPUT (if TRICTL Bit =0)

7 6 5 4 3 2 1 0
X X CTL5 CTL4 CTL3 CTL2 CTL1 CTLO
150 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 150 of 346

S/ CYPRES

RFORM

Decision Point State Instruction (DP = 1)

LENGTH / BRANCH

General Programmable Interface

Bit 7 Bit 6 Bit 5 | Bit 4 | Bit 3 Bit 2 Bit 1 Bit0
Re-Execute X BRANCHON1 BRANCHONO
OPCODE
7 6 5 4 3 2 1 0
X X SGL GINT INCAD NEXT/SGLCRC DATA DP=1
LOGIC FUNCTION
7 6 5 4 3 2 1 0
LFUNC TERMA TERMB
OUTPUT (if TRICTL Bit = 1)

7 6 5 4 3 2 1 0
OE3 OE2 OE1 OEO CTL3 CTL2 cTLl CTLO
OUTPUT (if TRICTL Bit = 0)

7 6 5 4 3 2 1 0
X X CTL5 CTL4 CTL3 CTL2 CTL1 CTLO

LENGTH / BRANCH Register: This register’s interpretation depends on the DP bit:

m For DP = 0 (Non-Decision Point), this is a LENGTH field; it holds the fixed duration of this State in IFCLK cycles. A value
of O is interpreted as 256 IFCLK cycles.

m For DP =1 (Decision Point), this is a BRANCH field; it specifies the State to which the GPIF will branch:
BRANCHONL1: Specifies the State to which the GPIF will branch if the logic expression evaluates to ‘1'.
BRANCHONO: Specifies the State to which the GPIF will branch if the logic expression evaluates to ‘0’.

Re-Execute: Setting this bit allows the DP to re-execute its control tasks.

OPCODE Register: This register sets a number of State characteristics.

SGL Bit: has no effect in a Single-Read or Single-Write waveform. In a FIFO waveform, it specifies whether a single-data
transaction should occur (from/to the SGLDATH:L or UDMACRCH.: L registers), even in a FIFO-Write or FIFO-Read trans-
action. See also ‘NEXT/SGLCRC’, below.

1 = Use SGLDATH:L or UDMACRCH:L.
0 = Use the FIFO.

GINT Bit: specifies whether to generate a GPIFWF interrupt during this State.
1 = Generate GPIFWF interrupt (on INT4) when this State is reached.
0 = Do not generate interrupt.

INCAD Bit: specifies whether to increment the GPIF Address lines GPIFADR[8:0].
1 = Increment the GPIFADR][8:0] bus at the beginning of this State.
0 = Do not increment the GPIFADR[8:0] signals.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 151

Exhibit 2033 - Page 151 of 346

—l ———
— =

General Programmable Interface e CYDRF%

NEXT/SGLCRC Bit:
If SGL = 0, specifies whether the FIFO should be advanced at the start of this State.
1 = Move the next data in the OUT FIFO to the top.
0 = Do not advance the FIFO.
The NEXT bit has no effect when the waveform is applied to an IN FIFO.
If SGL = 1, specifies whether data should be transferred to/from SGLDATH:L or UDMACRCH:L. See also ‘SGL Bit’,
above.
1 = Use UDMACRCH:L.
0 = Use SGLDATH:L.

DATA Bit: specifies whether the FIFO Data bus is to be driven, tri-stated, or sampled.
During a write:
1 = Drive the FIFO Data bus with the output data.
0 = Tri-state (do not drive the bus).

During a read:
1 = Sample the FIFO Data bus and store the data.
0 = Do not sample the data bus.
DP Bit: indicates whether the State is a DP or NDP:
1 = Decision Point.
0 = Non-Decision Point.
LOGIC FUNCTION Register: This register is used only in DP State Instructions. It specifies the inputs (TERMA and
TERMB) and the Logic Function (LFUNC) to apply to those inputs. The result of the logic function determines the State to
which the GPIF will branch (see also ‘LENGTH /BRANCH Register’, above).
TERMA and TERMB bits:
=000: RDYO
=001: RDY1
=010: RDY2
=011: RDY3
=100: RDY4
=101: RDYS5 (or Transaction-Count Expiration, if GPIFREADYCFG.5 = 1)
= 110: FIFO flag (PF, EF, or FF), preselected via EPXGPIFFLGSEL
=111: INTRDY (Bit 7 of the GPIFREADYCFG register)

LFUNC bits:

=00: AAND B

=01.AORB

=10: AXORB

=11: AAND B

The TERMA and TERMB inputs are sampled at each rising edge of IFCLK. The logic function is applied, then the branch
is taken on the next rising edge.

This register is meaningful only for DP Instructions; when the DP bit of the OPCODE register is cleared to 0, the contents
of this register are ignored.

152 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 152 of 346

S/ CYPRES

RFO

General Programmable Interface

OUTPUT Register: This register controls the state of the six Control outputs (CTL5:0) during the entire State defined by
this State Instruction.

OEx Bit: If TRICTL = 1, specifies whether the corresponding CTLx output signal is tri-stated.

1 = Drive CTLx
0 = Tri-state CTLx

CTLx Bit: specifies the state to set each CTLx signal to during this entire State.

1 = High level

If the CTLx bit in the GPIFCTLCFG register is set to ‘1’, the output driver will be an open-drain.
If the CTLx bit in the GPIFCTLCFG register is set to ‘0’, the output driver will be driven to CMOS levels.

0 = Low level

10.3.4.1 Structure of the Waveform Descriptors

Up to four different waveforms can be defined. Each Waveform Descriptor comprises up to 7 State Instructions which are
loaded into the Waveform Registers as defined in this section.

Table 10-6. Waveform Descriptor Addresses

Waveform Descriptor Base XDATA Address
0 0xE400
1 0xE420
2 OXE440
3 O0xE460

Within each Waveform Descriptor, the State Instructions are packed as described in Table 10-7. Waveform Descriptor O is
shown as an example. The other Waveform Descriptors follow exactly the same structure but at higher XDATA addresses.

Table 10-7. Waveform Descriptor O Structure

XDATA Address

Contents

0xE400 LENGTH / BRANCH [0] (LENGTH / BRANCH field of State 0 of Waveform Program 0)
0xE401 LENGTH / BRANCH [1] (LENGTH / BRANCH field of State 1 of Waveform Program 0)
0xE402 LENGTH / BRANCH [2] (LENGTH / BRANCH field of State 2 of Waveform Program 0)
0xE403 LENGTH / BRANCH [3] (LENGTH / BRANCH field of State 3 of Waveform Program 0)
0xE404 LENGTH / BRANCH [4] (LENGTH / BRANCH field of State 4 of Waveform Program 0)
OxE405 LENGTH / BRANCH [5] (LENGTH / BRANCH field of State 5 of Waveform Program 0)
0XE406 LENGTH / BRANCH [6] (LENGTH / BRANCH field of State 6 of Waveform Program 0)
O0xE407 Reserved

0xE408 OPCODE[0] (OPCODE field of State 0 of Waveform Program 0)

0xE409 OPCODE[1] (OPCODE field of State 1 of Waveform Program 0)

OXE40A OPCODE[2] (OPCODE field of State 2 of Waveform Program 0)

OxE40B OPCODE[3] (OPCODE field of State 3 of Waveform Program 0)

OxE40C OPCODE[4] (OPCODE field of State 4 of Waveform Program 0)

0xE40D OPCODE([5] (OPCODE field of State 5 of Waveform Program 0)

OXE40E OPCODE([6] (OPCODE field of State 6 of Waveform Program 0)

OXE40F Reserved

0xE410 OUTPUTI[0] (OUTPUT field of State 0 of Waveform Program 0)

OxE411 OUTPUTI[1] (OUTPUT field of State 1 of Waveform Program 0)

0xE412 OUTPUTI[2] (OUTPUT field of State 2 of Waveform Program 0)

O0xE413 OUTPUTI[3] (OUTPUT field of State 3 of Waveform Program 0)

O0xE414 OUTPUTI[4] (OUTPUT field of State 4 of Waveform Program 0)

0xE415 OUTPUTI[5] (OUTPUT field of State 5 of Waveform Program 0)

OxE416 OUTPUTI[6] (OUTPUT field of State 6 of Waveform Program 0)

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 153 of 346

153

=4 CPRES

RFORM

General Programmable Interface

Table 10-7. Waveform Descriptor O Structure (continued)

XDATA Address Contents

OxE417 Reserved

O0xE418 LOGIC FUNCTIONJO] (LOGIC FUNCTION field of State 0 of Waveform Program 0)
0xE419 LOGIC FUNCTION[1] (LOGIC FUNCTION field of State 1 of Waveform Program 0)
OXE41A LOGIC FUNCTION[2] (LOGIC FUNCTION field of State 2 of Waveform Program 0)
0xE41B LOGIC FUNCTION[3] (LOGIC FUNCTION field of State 3 of Waveform Program 0)
O0xE41C LOGIC FUNCTIONJ[4] (LOGIC FUNCTION field of State 4 of Waveform Program 0)
O0XE41D LOGIC FUNCTIONI5] (LOGIC FUNCTION field of State 5 of Waveform Program 0)
OXE41E LOGIC FUNCTIONI6] (LOGIC FUNCTION field of State 6 of Waveform Program 0)
OxE41F Reserved

10.3.4.2 Terminating a GPIF Transfer

Once a GPIF transfer is initiated, the ONLY way to terminate the transfer is to either:

m have it terminate naturally when the byte count expires or

m have the 8051 terminate and abort the transfer by writing to the GPIFABORT register.

Once a GPIF transfer is triggered, it will not terminate until the Transaction Count (TC) has expired. The GPIF engine checks

the state of the TC only when in IDLE state. While designing a GPIF waveform, you must have the waveform pass through an
IDLE state in order for the GPIF to check the TC and finally terminate when TC has expired.

GPIF does allow you to save time and avoid going through the IDLE state by using the ‘Transaction Count Expired’ (TCxpire)
signal. This TCxpire replaces RDY5, if GRIFREADYCFG.5 = 1. Section 10.4.3.2 Reading the Transaction-Count Status in a
DP State on page 170 provides further information on this.

154 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 154 of 346

== CVYPRESS

PERFORM

10.4 Firmware

Table 10-8. Registers Associated with GPIF Firmware

GPIFTRIG (SFR)

GPIFSGLDATH (SFR)

GPIFSGLDATLX (SFR)

GPIFSGLDATLNOX (SFR)

EPXGPIFTRIG

XGPIFSGLDATH

XGPIFSGLDATLX

XGPIFSGLDATLNOX

GPIFABORT

GPIFIE

GPIFIRQ

GPIFTCB3

GPIFTCB2

GPIFTCB1

GPIFTCBO

EPXBCH/L

EPXFIFOBCH/L

EPXFIFOBUF

INPKTEND/OUTPKTEND

EPXCFG

EPxFIFOCFG

EPXAUTOINLENH/L

EPXFIFOPFH/L

EP2468STAT(SFR)

EP24FIFOFLGS(SFR)

EP68FIFOFLGS(SFR)

EPxCS

EPxFIFOFLGS

EPXFIFOIE

EPXFIFOIRQ

INT2IVEC

INT4IVEC

INTSETUP

IE (SFR)

IP (SFR)

INT2CLR(SFR)

INTACLR(SFR)

EIE (SFR)

EXIF (SFR)

General Programmable Interface

The X’ in these register names represents 2, 4, 6, or 8; endpoints 0 and 1 are not associated with the Slave FIFOs.

The GPIF Designer utility, distributed with the Cypress MoBL-USB FX2LP18 Development Kit, generates C code which may
be linked with the rest of an application’s source code. Except for Gpiflnit(), the GPIF Designer output source file does not
include the following basic GPIF framework and functions:

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 155 of 346

155

General Programmable Interface

156

TD_Init():

=24 CYPRESS

Gpiflnit(); // Configures GPIF from GPIF Designer generated waveform data

//

//

//
//
//
//
//
//
//

//

TODO: configure other endpoints, etc. here
TODO: arm OUT buffer(s) here

setup INT4 as internal source for GPIF interrupts
using INT4CLR (SFR), automatically enabled
INTSETUP |= 0x03; //Enable INT4 Autovectoring
SYNCDELAY ;

GPIFIE = 0x03; // Enable GPIFDONE and GPIFWF interrupt(s)

SYNCDELAY;
EIE |= 0x04; // Enable INT4 ISR, EIE.2(EIEX4)=1

TODO: configure GPIF interrupt(s) to meet your needs here

void Gpiflnit(void)

{
BYTE 1i;
// Registers which require a synchronization delay, see section 15.14
// FIFORESET FIFOPINPOLAR
/7 INPKTEND OUTPKTEND
// EPxXBCH:L REVCTL
// GPIFTCB3 GPIFTCB2
// GPIFTCB1 GPIFTCBO
// EPXFIFOPFH:L EPXAUTOINLENH:L
// EPXFIFOCFG EPXGPIFFLGSEL
// PINFLAGSxx EPXFIFOIRQ
// EPXFIFOIE GPIFIRQ
// GPIFIE GPIFADRH:L
// UDMACRCH:L EPXGPIFTRIG
// GPIFTRIG
// 8051 doesn"t have access to waveform memories "til
// the part is in GPIF mode.
IFCONFIG = OxCE;
// I1FCLKSRC=1 , FIFO’s executes on internal clk source
// xXMHz=1 , 48MHz internal clk rate
// 1FCLKOE=0 , Don"t drive IFCLK pin signal at 48MHz
// 1FCLKPOL=0 , Dbon"t invert IFCLK pin signal from internal clk
// ASYNC=1 , master samples asynchronous
// GSTATE=1 , Drive GPIF states out on PORTE[2:0], debug WF
// IFCFG[1:0]=10, FX2LP18 in GPIF master mode
GPIFABORT = OxFF; // abort any waveforms pending
GPIFREADYCFG = InitData[O];
GPIFCTLCFG = Initbata[1];
GPIFIDLECS = InitData[2];
GPIFIDLECTL = InitData[3];
GPIFWFSELECT = InitData[5];
GPIFREADYSTAT = InitData[6];

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 156 of 346

\

CYPRESS

// use dual autopointer feature...

AUTOPTRSETUP = 0x07;

// source
APTR1H = MSB(&WaveData);
APTR1L = LSB(&WaveData);

// destination
AUTOPTRH2 = OXxE4;
AUTOPTRL2 = 0x00;

// transfer
for (1 = Ox00; 1 < 128; i++)

{
}

// Configure GPIF Address pins, output initial value,

PORTCCFG = OxFF; // [7:0] as alt. func. GPIFADR[7:0]

OEC = OxFF; // and as outputs
PORTECFG |= 0x80; // [8] as alt. func. GPIFADR[8]
OEE |= 0x80; // and as output

// ...OR... tri-state GPIFADR[8:0] pins

// PORTCCFG = 0x00; // [7:0] as port 1/0

// OEC = 0x00; // and as inputs

// PORTECFG &= Ox7F; // [8] as port 1/0

// OEE &= OX7F; // and as input

// GPIF address pins update when GPIFADRH/L written
SYNCDELAY; //
GPIFADRH = 0x00; // bits[7:1] always O
SYNCDELAY ; //

GPIFADRL = 0x00;

// Configure GPIF FlowStates registers for Wave 0 of WaveData

EXTAUTODAT2 = EXTAUTODAT1;

FLOWSTATE = FlowStates[O];
FLOWLOGIC = FlowStates[1]

FLOWEQOCTL = FlowStates[2];
FLOWEQLCTL = FlowStates[3]

FLOWHOLDOFF = FlowStates[4];
FLOWSTB = FlowStates[5];
FLOWSTBEDGE = FlowStates[6];
FLOWSTBHPERIOD = FlowStates[7];

}

//
voi

Set Address GPIFADR[8:0] to PERIPHERAL
d Peripheral_SetAddress(WORD gaddr)

SYNCDELAY ; //

GPIFADRH = gaddr >> 8;

SYNCDELAY; //

GPIFADRL = (BYTE)gaddr; // setup GPIF address

}

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 157 of 346

// inc both pointers

// point to PERIPHERAL address 0x0000

General Programmable Interface

157

General Programmable Interface

158

// Set GPIF Transaction Count

void Peripheral_SetGPIFTC(WORD xfrcnt)

{
SYNCDELAY ; //
GPIFTCB1 = xfrcnt >> 8; // setup transaction count
SYNCDELAY ; //
GPIFTCBO = (BYTE)xfrcnt;
3

#define GPIF_FLGSELPF O
#define GPIF_FLGSELEF 1
#define GPIF_FLGSELFF 2

// Set EP2GPIF Decision Point FIFO Flag
void SetEP2GPIFFLGSEL(WORD DP_FIFOFlag

{
¥

// Set EPAGPIF Decision Point FIFO Flag
void SetEPAGPIFFLGSEL(WORD DP_FIFOFlag

EP2GPIFFLGSEL = DP_FIFOFlag;

EPAGPIFFLGSEL = DP_FIFOFlag;
¥

Select (PF, EF,

)

Select (PF, EF,

)

// Set EP6GPIF Decision Point FIFO Flag Select (PF, EF,

void SetEP6GPIFFLGSEL(WORD DP_FIFOFlag
{

}

EP6GPIFFLGSEL = DP_FIFOFlag;

)

// Set EP8GPIF Decision Point FIFO Flag Select (PF, EF,

void SetEP8GPIFFLGSEL(WORD DP_FIFOFlag
{

}

// Set EP2GPIF Programmable Flag STOP,
void SetEP2GPIFPFSTOP(void)

EP8GPIFFLGSEL = DP_FIFOFlag;

EP2GPIFPFSTOP = 0xO01;
¥

// Set EP4GPIF Programmable Flag STOP,
void SetEPA4GPIFPFSTOP(void)

{
}

// Set EP6GPIF Programmable Flag STOP,
void SetEP6GPIFPFSTOP(void)

{
}

// Set EP8GPIF Programmable Flag STOP,
void SetEP8GPIFPFSTOP(void)

EPAGPIFPFSTOP = 0xO01;

EPG6GPIFPFSTOP = 0xO01;

EP8GPIFPFSTOP = 0x01;
}

)

overrides

overrides

overrides

overrides

= i

=24 CYPRESS

FF)
FF)
FF)

FF)

Transaction Count

Transaction Count

Transaction Count

Transaction Count

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 158 of 346

General Programmable Interface

== CYPRESS
// write single byte to PERIPHERAL, using GPIF
void Peripheral_SingleByteWrite(BYTE gdata)
while('(GPIFTRIG & 0x80)) // poll GPIFTRIG.7 Done bit

{
// trigger GPIF

3
XGPIFSGLDATLX = gdata;
// ...single byte write transaction

}
// write single word to PERIPHERAL, using GPIF

void Peripheral_SingleWordWrite(WORD gdata)
while('(GPIFTRIG & O0x80)) // poll GPIFTRIG.7 Done bit

{

{
// trigger GPIF

¥
// using register(s) in XDATA space
gdata >> 8;
// ...single word write transaction

XGP IFSGLDATH
XGPIFSGLDATLX = gdata;

}
// read single byte from PERIPHERAL, using GPIF
void Peripheral_SingleByteRead(BYTE xdata *gdata)

static BYTE g_data = 0x00;
while('(C GPIFTRIG & 0x80)) // poll GPIFTRIG.7 Done bit

{
{
}
// using register(s) in XDATA space, dummy read
g_data = XGPIFSGLDATLX; // trigger GPIF
// ...single byte read transaction
while('(GPIFTRIG & 0x80)) // poll GPIFTRIG.7 Done bit

// ...GPIF reads byte from PERIPHERAL

{

3

// using register(s) in XDATA space,
XGPIFSGLDATLNOX;

*gdata

}

// read single word from PERIPHERAL, using GPIF
void Peripheral_SingleWordRead(WORD xdata *gdata)

{
BYTE g_data = 0x00;
while('(GPIFTRIG & 0x80)) // poll GPIFTRIG.7 Done bit

// trigger GPIF

{
// using register(s) in XDATA space, dummy read
// ...single word read transaction

T
g_data = XGPIFSGLDATLX;
whille('(GPIFTRIG & 0x80)) /7 poll GPIFTRIG.7 Done bit

{

}
Exhibit 2033 - Page 159 of 346

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

159

= i

General Programmable Interface =7 CYDRF%

// using register(s) in XDATA space, GPIF reads word from PERIPHERAL
*gdata = ((WORD)XGPIFSGLDATH << 8) | (WORD)XGPIFSGLDATLNOX;

}

#define GPIFTRIGWR O
#define GPIFTRIGRD 4

#define GPIF_EP2 0O
#define GPIF_EP4 1
#define GPIF_EP6 2
#define GPIF_EP8 3

// write byte(s)/word(s) to PERIPHERAL, using GPIF and EPxFIFO
// if EPx WORDWIDE=0 then write byte(s)

// if EPx WORDWIDE=1 then write word(s)

void Peripheral_FIFOWrite(BYTE FIFO_EpNum)

{
while('(GPIFTRIG & 0x80)) /7 poll GPIFTRIG.7 Done bit

{
¥

// trigger FIFO write transaction(s), using SFR
GPIFTRIG = FIFO_EpNum; // R/W=0, EP[1:0]=FIFO_EpNum for EPx write(s)

}

// read byte(s)/word(s) from PERIPHERAL, using GPIF and EPxFIFO
// if EPx WORDWIDE=0 then read byte(s)
// if EPx WORDWIDE=1 then read word(s)

void Peripheral_FIFORead(BYTE FIFO_EpNum)

{
while('(GPIFTRIG & 0x80)) // poll GPIFTRIG.7 GPIF Done bit
{

}

// trigger FIFO read transaction(s), using SFR
GPIFTRIG = GPIFTRIGRD | FIFO_EpNum; // R/W=1, EP[1:0]=FIFO_EpNum for EPx read(s)

}

160 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 160 of 346

—

=74 CYPRESS

104.1

8051

Single-Read Transactions

General Programmable Interface

Figure 10-16. Firmware Launches a Single-Read Waveform, WORDWIDE=0
XDATA GPIF Device Pins
* FD[7:0]

GPIFADR[8:0] >

v

XGPIFSGLDATH/L

Waveform Descriptors

8051

GPIF

WFO
WF1
WF2
WF3
P

GPIF DONE

CTL[5:0]

>

RRY[5:0]

GPIFWF

XGPIFSGLDATLX
g

<

single transactions will be 16 bits wide.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

8051 INTRDY
* All EPx WORDWIDE bits must be cleared to ‘0’ for 8-bit single transactions. If any of the EPx WORDWIDE bits are set to ‘1’, then

Exhibit 2033 - Page 161 of 346

161

General Programmable Interface %HESS

PERFORM

Figure 10-17. Single-Read Transaction Waveform

Fok_ || L] |
GPIFADR[8:0] 0x00AB
FD[7:0] hi-z 0x80 hi-Z
cTLo
RDYO
v v v \
NDP NDP NDP NDP NDP NDP
i1 i2 i3 i4

162 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 162 of 346

=7 CYPRESS

PERFC

‘Jv?
= C

Figure 10-19. GPIF Designer Output for the Waveform of Figure 10-17

State 0 1 2 3 4 5 6 7
AddrMode Same Val SameVal SameVal SameVal SameVal SameVal Same Val
DataMode No Data No Data Activate No Data No Data No Data No Data
NextData SameData SameData SameData SameData SameData SameData SameData
Int Trig No Int No Int No Int No Int No Int No Int No Int

IF/Wait Wait 4 Wait 1 Wait 1 Wait 2 Wait 1 Wait 1 Wait 1

Term A

LFUNC

Term B

Branchl

Branch0O

Re-execute
CTLO 1 1 0 1 1 1 1 1
CTL1 1 1 1 1 1 1 1 1
CTL2 1 1 1 1 1 1 1 1
CTL3 1 1 1 1 1 1 1 1
CTL4 1 1 1 1 1 1 1 1
CTL5 1 1 1 1 1 1 1 1

To perform a Single-Read transaction:
1. Initialize the GPIF Configuration Registers and Waveform Descriptors.

Check that the GPIF is IDLE by checking if the DONE bit (GPIFIDLECS.7 or GPIFTRIG.7) is set.

2
3. Perform a dummy read of the XGPIFSGLDATLX register to start a single transaction.
4

General Programmable Interface

. Wait for the GPIF to indicate that the transaction is complete. When the transaction is complete, the DONE bit (GPI-

FIDLECS.7 or GPIFTRIG.7) will be set to ‘1". If enabled, a GPIFDONE interrupt will also be generated.
Depending on the bus width and the desire to start another transaction, the data read by the GPIF can be retrieved from

the XGPIFSGLDATH, XGPIFSGLDATLX, and/or the
XGPIFSGLDATLNOX register (or from the SFR-space copies of these registers):

In 16-bit mode only, the most significant byte, FD[15:8], of data is read from the
XGPIFSGLDATH register.

In 8- and 16-bit modes, the least significant byte of data is read by either:

o reading XGPIFSGLDATLX, which reads the least significant byte and starts another Single-Read transaction.

0 reading XGPIFSGLDATLNOX, which reads the least significant byte but does not start another Single-Read transac-

tion.

The following C program fragments (Figure 10-20 on page 164 and Figure 10-21 on page 165) illustrate how to perform a

Single-Read transaction in 8-bit mode (WORDWIDE=0):

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 163 of 346

163

General Programmable Interface =/ CYPHF%%

PERFC

iy

(1

Figure 10-20. Single-Read Transaction Functions

#define PERIPHCS 0x00AB
#define AOKAY 0x80
#define BURSTMODE 0x0000
#define TRISTATE OxFFFF
#define EVER ;;

// prototypes
void Gpiflnit(void);

// Set Address GPIFADR[8:0] to PERIPHERAL
void Peripheral_SetAddress(WORD gaddr)
{
if(gaddr < 512)
{ 7/ drive GPIF address bus w/gaddr
GPIFADRH = gaddr >> 8;
SYNCDELAY;
GPIFADRL = (BYTE)gaddr; // setup GPIF address
¥
else
{ // tri-state GPIFADR[8:0] pins
PORTCCFG = 0x00; // [7:0] as port 1/0
OEC = 0x00; // and as inputs
PORTECFG &= Ox7F; // [8] as port 1/0
OEE &= Ox7F; // and as input
b
b

// read single byte from PERIPHERAL, using GPIF
void Peripheral_SingleByteRead(BYTE xdata *gdata)

{
static BYTE g_data = 0x00;

whille('(GPIFTRIG & 0x80)) 7/ poll GPIFTRIG.7 Done bit
{

}

// using register(s) in XDATA space, dummy read
g_data = XGPIFSGLDATLX; // to trigger GPIF single byte read transaction

while(Y(GPIFTRIG & 0x80)) // poll GPIFTRIG.7 Done bit
{

}

// using register(s) in XDATA space, GPIF read byte from PERIPHERAL here
*gdata = XGPIFSGLDATLNOX;

164 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 164 of 346

.x"("::

iy

(1

=4 YPHF-%% General Programmable Interface

PERFC

Figure 10-21. Initialization Code for Single-Read Transactions

void TD_Init(void)

{
BYTE xdata periph_status;

Gpiflnit(); // Configures GPIF from GPIF Designer generated waveform data
// TODO: configure other endpoints, etc. here
// TODO: arm OUT buffer(s) here

// setup INT4 as internal source for GPIF interrupts

// using INT4CLR (SFR), automatically enabled

// INTSETUP |= O0x03; //Enable INT4 Autovectoring

// SYNCDELAY;

// GPIFIE = 0x03; // Enable GPIFDONE and GPIFWF interrupt(s)
// SYNCDELAY;

// EIE |= 0x04; // Enable INT4 ISR, EIE.2(EIEX4)=1

// TODO: configure GPIF interrupt(s) to meet your needs here

// get status of peripheral function
Peripheral_SetAddress(PERIPHCS);
Peripheral_SingleByteRead(&periph_status);

iT(periph_status == AOKAY)

{ 7/ set it and forget it
Peripheral_SetAddress(BURSTMODE);

he

else

{
Peripheral_SetAddress(TRISTATE);

¥

¥

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 165 of 346

165

3 ;i‘.g!‘

YPRESS

4

General Programmable Interface
10.4.2 Single-Write Transactions
Figure 10-22. Firmware Launches a Single-Write Waveform, WORDWIDE=0
8051 XDATA GPIF Device Pins
* FD[7:0]
>
CLK
XGPIFSGLDATH/L GPIFADRI8:0] >
W aveform Descriptors CTL[5:0] >
< RDY[5:0]
GPIF

WFO
WF1
WF2
WF3
>

8051
XGPIFSGLDATLX

GPIF DONE
GPIFWF

g

o

8051 INTRDY
* All EPx WORDWIDE bits must be cleared to zero for 8-bit single transactions. If any of the EPx WORDWIDE bits are set to ‘1’,

then single transactions will be 16 bits wide.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B
Exhibit 2033 - Page 166 of 346

166

% General Programmable Interface

PERFORM

Figure 10-23. Single-Write Transaction Waveform

Fo || | | | L]
GPIFADR[8:0] OX00AB
FD[7:0] hi-Z 0x01 hi-Z
cTLO
RDYO
v v v v
NDP NDP NDP NDP NDP NDP
i1 i2 i3 i4

Figure 10-24. GPIF Designer Setup for the Waveform of Figure 10-23

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 167

Exhibit 2033 - Page 167 of 346

General Programmable Interface

Figure 10-25. GPIF Designer Output for the Waveform of Figure 10-23

= it

‘CYPRESS

PERFC

State 0 1 2 3 4 5 6
AddrMode Same Val SameVal SameVal SameVal SameVal SameVal Same Val
DataMode No Data No Data Activate No Data No Data No Data No Data
NextData SameData SameData SameData SameData SameData SameData SameData
Int Trig No Int No Int No Int No Int No Int No Int No Int

IF/Wait Wait 4 Wait 1 Wait 1 Wait 1 Wait 1 Wait 1 Wait 1

Term A

LFUNC

Term B

Branchl

BranchO

Re-execute
CTLO 1 1 0 1 1 1 1
CTL1 1 1 1 1 1 1 1
CTL2 1 1 1 1 1 1 1
CTL3 1 1 1 1 1 1 1
CTL4 1 1 1 1 1 1 1
CTL5 1 1 1 1 1 1 1

[= T = =

Single-Write transactions are simpler than Single-Read transactions because no dummy-read operation is required. To exe-

cute a Single-Write transaction:
1. Initialize the GPIF Configuration Registers and Waveform Descriptors.

2. Check that the GPIF is IDLE by checking if the DONE bit (GPIFIDLECS.7 or GPIFTRIG.7) is set.

3. Ifin 16-bit mode (WORDWIDE = 1), write the most-significant byte of the data to the XGPIFSGLDATH register, then write

the least-significant byte to the XGPIFSGLDATLX register to start a Single-Write transaction.

In 8-bit mode, simply write the data to the XGPIFSGLDATLX register to start a Single-Write transaction.

4. Wait for the GPIF to indicate that the transaction is complete. When the transaction is complete, the DONE bit
(GPIFIDLECS.7 or GPIFTRIG.7) will be set to ‘1'. If enabled, a GPIFDONE interrupt will also be generated.

The following C program fragments (Figure 10-26 and Figure 10-27 on page 169) illustrate how to perform a Single-Write

transaction in 8-bit mode (WORDWIDE=0):

168 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 168 of 346

J CYPRESS

PERFORM

iy

—

(1

Figure 10-26. Single-Write Transaction Functions

#define PERIPHCS Ox00AB
#define P_HSMODE 0xO01

// prototypes
void Gpiflnit(void);

// Set Address GPIFADR[8:0] to PERIPHERAL
void Peripheral_SetAddress(WORD gaddr)

{

GPIFADRH = gaddr >> 8;

SYNCDELAY ;

GPIFADRL = (BYTE)gaddr; // setup GPIF address
b

// write single byte to PERIPHERAL, using GPIF
void Peripheral_SingleByteWrite(BYTE gdata)

{

while('(GPIFTRIG & 0x80)) // poll GPIFTRIG.7 Done bit

{

¥

XGPIFSGLDATLX = gdata; // trigger GPIF single byte write transaction
b

Figure 10-27. Initialization Code for Single-Write Transactions

void TD_Init(void)

{
GpifInit(); // Configures GPIF from GPIF Designer generated waveform data
// TODO: configure other endpoints, etc. here
// TODO: arm OUT buffer(s) here
// setup INT4 as internal source for GPIF interrupts
// using INT4CLR (SFR), automatically enabled
// INTSETUP |= O0x03; //Enable INT4 Autovectoring
// SYNCDELAY;
// GPIFIE = 0x03; // Enable GPIFDONE and GPIFWF interrupt(s)
// SYNCDELAY;
// EIE |= 0x04; // Enable INT4 ISR, EIE.2(EIEX4)=1
// TODO: configure GPIF interrupt(s) to meet your needs here
// tell peripheral we’re going into high-speed xfr mode
Peripheral_SetAddress(PERIPHCS);
Peripheral_SingleByteWrite(P_HSMODE);

¥

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 169 of 346

General Programmable Interface

169

S e

¥ CYPRESS

General Programmable Interface

10.4.3 FIFO-Read and FIFO-Write (Burst) Transactions

FIFO-Read and FIFO-Write waveforms transfer data to and from the MoBL-USB FX2LP18's Slave FIFOs (See chapter
“Slave FIFOs” on page 107). The waveform is started by writing to EPXGPIFTRIG, where ‘X’ represents the FIFO (2, 4, 6, or 8)
to/from which data should be transferred, or to GPIFTRIG.

A FIFO-Read or FIFO-Write waveform will generally transfer a long stream of data rather than a single byte or word. Usually,
the waveform is programmed to terminate after a specified number of transactions or when a FIFO flag asserts (for example,
when an IN FIFO is full or an OUT FIFO is empty). A ‘transaction’ is a transfer of a single byte (if WORDWIDE = 0) or word (if
WORDWIDE = 1) to or from a FIFO. Using the GPIF Designer’s terminology, a transaction is either an ‘Activate Data’ for a
FIFO-Read or a ‘Next FIFO Data’ for a FIFO-Write.

10.4.3.1 Transaction Counter

To use the Transaction Counter for FIFO ‘X', load GPIFTCB3:0 with the desired number of transactions (1 to 4,294,967,295).
When a FIFO-Read or -Write waveform is triggered on that FIFO, the GPIF will transfer the specified number of bytes (or
words, if WORDWIDE = 1) automatically.

This mode of operation is called Long Transfer Mode; when the Transaction Counter is used in this way, the Waveform
Descriptor should branch to the Idle State after each transaction.

Each time through the Idle State, the GPIF checks the Transaction Count; when it expires, the waveform terminates and the
DONE bit is set. Otherwise, the GPIF re-executes the entire Waveform Descriptor. Note In Long Transfer Mode, the DONE bit
is not set until the Transaction Count expires.

While the Transaction Count is active, the GPIF checks the Full Flag (for IN FIFOs) or the Empty Flag (for OUT FIFOs) on
every pass through the Idle State. If the flag is asserted, the GPIF pauses until the over/underflow threat is removed, then it
automatically resumes. In this way, the GPIF automatically throttles data flow in Long Transfer Mode.

The GPIFTCBS3:0 registers are readable and they update as transactions occur, so the CPU can read the Transaction Count
value at any time.

10.4.3.2 Reading the Transaction-Count Status in a DP State

To sample the transaction-count status in a DP State, set GPIFREADYCFG.5 to ‘1’ (which instructs the MoBL-USB FX2LP18
to replace the RDY5 input with the transaction-count expiration flag), then launch a FIFO transaction which uses a transaction
count. The MoBL-USB FX2LP18 will set the transaction-count expiration flag to ‘1’ when the transaction count expires. This
feature allows the Transaction Counter to be used without passing through the Idle State after each transaction.

10.4.4 GPIF Flag Selection

The GPIF can examine the PF, EF, or FF (of the current FIFO) during a waveform. One of the three flags is selected by the
FS[1:0] bits in the EPXGPIFFLGSEL register; that selected flag is called the GPIF Flag.

10.4.5 GPIF Flag Stop

When EPXGPIFPFSTOP.0 is set to ‘1’, FIFO-Read and -Write transactions are terminated by the assertion of the GPIF Flag.
When this feature is used, it overrides the Transaction Counter; the GPIF waveform terminates (sets DONE to ‘1) only when
the GPIF Flag asserts. If the GPIF Flag is already asserted at the time the waveform is launched, a GPIF DONE interrupt is
not generated.

No special programming of the Waveform Descriptors is necessary, and FIFO Waveform Descriptors that transition through
the Idle State on each transaction (for example, waveforms that do not use the Transaction Counter) are unaffected. Auto-
matic throttling of the FIFOs in IDLE still occurs, so there’s no danger that the GPIF will write to a full FIFO or read from an
empty FIFO.

Unless the firmware aborts the GPIF transfer by writing to the GPIFABORT register, only the GPIF Flag assertion will ter-
minate the waveform and set the DONE bit.

A waveform can potentially execute forever if the GPIF Flag never asserts.

Important The GPIF Flag is only automatically tested by the MoBL-USB FX2LP18 core while transitioning through the
IDLE State, and the assertion of the GPIF Flag is not latched. Since the assertion of the GPIF Flag is not latched, if it is
asserted and de-asserted during the waveform (due to the dynamic relationship between USB host activity and status of
the MoBL-USB FX2LP18 FIFOs), the core would not see the GPIF Flag asserted in the IDLE state.

170 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 170 of 346

General Programmable Interface

=
E—_g.- "Y"F F%
10.4.5.1 Performing a FIFO-Read Transaction
Figure 10-28. Firmware Launches a FIFO-Read Waveform
8051 XDATA GPIF Device Pins
FD[7:0]
30/48MHz
IFCLK
5 - 48MHz
Slave FIFOs EPXEF
EP2FIFOBUF EPxFF CLK
EP4FIFOBUF EP2 — EPXPF o]
EP4 :
EP6FIFOBUF i SLOE | GPIFADRI[8:0]
EP8SFIFOBUF SLRD >
D B— EP8
SR |__CTL[5:0] >
? ? ¢RDY[5:0]
INPKTEND FIFOADR[1:0]
Waveform Descriptors
8051 WEO GPIF
WF1
WF2
WF3
GPIFTRIG
GPIF DONE
<
GPIFWF
8051 INTRDY >
Figure 10-29. Example FIFO-Read Transaction
GPIFTC EPxFIFOBUF
TC=N 0x01 Peripheral data (Pdata)
TC=N+1 0x02 N N+1 N+2 512
TC=N+2 0x03
0x01 0x02 0x03 OxFF

AN
I N N - S

TC=512 OxXFF

171

MoBL-USB™ TRM, Document # 001-11981 Rev. *B
Exhibit 2033 - Page 171 of 346

General Programmable Interface

Figure 10-30. FIFO-Read Transaction Waveform

= it

=
A

YPRESS

IFCLK [] []
GPIFADR[8:0] 0x0000
FD[7:0] hi-Z Pdata++ hi-Z
CTLO
RDYO
v v v v
NDP NDP NDP NDP NDP
i1 i2 i3 i4

NDP

The above waveform executes until the Transaction Counter expires (until it counts to 512, in this example). The Transaction
Counter is decremented and sampled on each pass through the IDLE state. When the Transaction Counter is used without
passing through the IDLE state, the Transaction Counter is decremented on each ‘Activate’ (which samples the data bus).

Each iteration of the waveform reads a data value from the FIFO Data bus into the FIFO, then decrements and checks the
Transaction Counter. When it expires, the DONE bit is set to ‘1" and the GPIFDONE interrupt request is asserted.

Figure 10-31. GPIF Designer Setup for the Waveform of Figure 10-30

6l

States g0 | g1 | 52 | X |
L1 1 11 L1 i ygisampledatabushere | !
Data | & (& &
0 0 0 0 5 N & 0 0 0 0 0 0]
add |
Status |
I:TLI:I | |l 1 1 1 |l u| |l 1 1 1 1 1 1 1
172 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 172 of 346

=7 CYPRESS

PERFC

EE—_?“

Figure 10-32. GPIF Designer Output for the Waveform of Figure 10-30

General Programmable Interface

State 0 1 2 3 4 5 6
AddrMode Same Val SameVal SameVal SameVal SameVal SameVal Same Val
DataMode No Data No Data Activate No Data No Data No Data No Data
NextData SameData SameData SameData SameData SameData SameData SameData
Int Trig No Int No Int No Int No Int No Int No Int No Int

IF/Wait Wait 4 Wait 1 Wait 1 Wait 1 Wait 1 Wait 1 Wait 1

Term A

LFUNC

Term B

Branchl

Branch0O

Re-execute
CTLO 1 1 0 1 1 1 1
CTL1 1 1 1 1 1 1 1
CTL2 1 1 1 1 1 1 1
CTL3 1 1 1 1 1 1 1
CTL4 1 1 1 1 1 1 1
CTL5 1 1 1 1 1 1 1

[=

Typically, when performing a FIFO Read, only one ‘Activate’ is needed in the waveform, since each execution of ‘Activate’

increments the internal FIFO pointer (and EPXBCH:L) automatically.

To perform a FIFO-Read Transaction:

1. Program the MoBL-USB FX2LP18 to detect completion of the transaction. As with all GPIF Transactions, bit 7 of the

GPIFTRIG register (the DONE bit) signals when the Transaction is complete.
2. Inthe GPIFTRIG register, set the RW bit to ‘1’ and load EP[1:0] with the appropriate value for the FIFO which is to receive

the data.

3. Program the MoBL-USB FX2LP18 to commit (‘pass-on’) the data from the FIFO to the endpoint. The data can be trans-

ferred from the FIFO to the endpoint by either of the following methods:

a AUTOIN=1: CPU is not in the data path; the MoBL-USB FX2LP18 automatically commits data from the FIFO Data bus

to the USB.

0 AUTOIN=0: Firmware must manually commit data to the USB by writing either EPXxBCL or INPKTEND (with SKIP=0).

The following C program fragments (Figure 10-33 on page 174 through Figure 10-36 on page 176) illustrate how to perform a

FIFO-Read transaction in 8-bit mode (WORDWIDE = 0) with AUTOIN = 0:

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 173 of 346

173

W’“ll

General Programmable Interface = 4 CYF HF%%

Figure 10-33.

PERFC

FIFO-Read Transaction Functions

#define

#define
#define
#define
#define

#define
#define

// read(s) from PERIPHERAL, using GPIF and EPxFIFO
void Peripheral_FIFORead(BYTE FIFO_EpNum)

{
{
}

while('(C GPIFTRIG & 0x80)) // poll GPIFTRIG.7 GPIF Done bit

// trigger FIFO read transaction(s), using SFR
GPIFTRIG = GPIFTRIGRD | FIFO_EpNum; // R/W=1, EP[1:0]=FIFO_EpNum

}

// Set GPIF Transaction Count
void Peripheral_SetGPIFTC(WORD xfrcnt)

{

GPIFTCB1 = xfrcnt >> 8; // setup transaction count
SYNCDELAY;
GPIFTCBO = (BYTE)xfrcnt;

}

GPIFTRIGRD 4

GPIF_EP2 0
GPIF_EP4 1
GPIF_EP6 2
GPIF_EPS 3

BURSTMODE 0x0000
HSPKTSIZE 512

// for EPx read(s)

174

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 174 of 346

.x"("::

iy

(1

=4 YPHF-%% General Programmable Interface

PERFC

Figure 10-34. Initialization Code for FIFO-Read Transactions

void TD_Init(void)

{
GpifInit(); // Configures GPIF from GPIF Designer generated waveform data
// TODO: configure other endpoints, etc. here
EP8CFG = OxEO; // EP8 is DIR=IN, TYPE=BULK
SYNCDELAY ;
EP8FIFOCFG = 0x04; // EP8 is AUTOOUT=0, AUTOIN=0, ZEROLEN=1, WORDWIDE=0
// TODO: arm OUT buffer(s) here
// setup INT4 as internal source for GPIF interrupts
// using INT4CLR (SFR), automatically enabled
// INTSETUP |= O0x03; //Enable INT4 Autovectoring
// SYNCDELAY;
// GPIFIE = 0x03; // Enable GPIFDONE and GPIFWF interrupt(s)
// SYNCDELAY;
// EIE |= 0x04; // Enable INT4 ISR, EIE.2(EIEX4)=1
// TODO: configure GPIF interrupt(s) to meet your needs here
// tell peripheral we’re going into high-speed xfr mode
Peripheral_SetAddress(PERIPHCS);
Peripheral_SingleByteWrite(P_HSMODE);
// configure some GPIF registers
Peripheral_SetAddress(BURSTMODE);
Peripheral_SetGPIFTC(HSPKTSIZE);
3

Figure 10-35. FIFO-Read w/ AUTOIN = 0, Committing Packets via INPKTEND w/SKIP=0

void TD_Poll(void)
{

if('(EP6BFIFOFLGS & 0x10))

{ // EP8FF=0 when buffer available
// host is taking EP8 data fast enough
Peripheral_FIFORead(GPIF_EP8);

¥

if(gpifdone_event_flag)
{ // GPIF currently pointing to EP8, last FIFO accessed
iT('(EP2468STAT & 0x80))
{ 7/ EP8F=0 when buffer available
INPKTEND = 0x08; // Firmware commits pkt by writing 8 to INPKTEND
gpifdone_event_flag = 0;
¥
¥

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 175 of 346

175

=7 CYPRESS

PERFC

==
General Programmable Interface —F

Figure 10-36. FIFO-Read w/ AUTOIN = 0, Committing Packets via EPxBCL

void TD_Poll(void)
{

iT('(EP6BFIFOFLGS & 0x10))

{ 7/ EP8FF=0 when buffer available
// host is taking EP8 data fast enough
Peripheral_FIFORead(GPIF_EP8);

}

if(gpifdone_event_flag)
{ 7/ GPIF currently pointing to EP8, last FIFO accessed
iT(1(EP2468STAT & 0x80))
{ 7/ EP8F=0 when buffer available
// modify the data
EPSFIFOBUFL 0]
EP8SFIFOBUFL 7]
SYNCDELAY ;
EP8BCH = 0x00;
SYNCDELAY;
EP8BCL = 0x08; // pass 8-byte packet on to host

0x02; // <STX>, packet start of text msg
0x03; // <ETX>, packet end of text msg

10.4.6 Firmware Access to IN Packets, (AUTOIN=1)

The only difference between auto (AUTOIN=1) and manual (AUTOIN=0) modes for IN packets is the packet length feature
(EPXAUTOINLENHI/L) in AUTOIN=1.

Figure 10-37. AUTOIN=1, GPIF FIFO Read Transactions, AUTOIN = 1

8051

USB Slave l GPIF

AUTOIN=1, Long Transfer Mode

176 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 176 of 346

¥ CYPRESS

PERFC

it

—

(1

Figure 10-38. FIFO-Read Transaction Code, AUTOIN = 1

General Programmable Interface

void TD_Init(void)
{
EP8CFG = OxEOQO; // EP8 is DIR=IN, TYPE=BULK
SYNCDELAY;
EPS8FIFOCFG = 0x0C; // EP8 is AUTOOUT=0, AUTOIN=1, ZEROLEN=1, WORDWIDE=0
SYNCDELAY;
EPSAUTOINLENH = 0x02; // if AUTOIN=1, auto commit 512 byte packets
SYNCDELAY;
EPSAUTOINLENL = 0x00;
¥
void TD_Poll(void)
{
// no code necessary to xfr data from master to host!
// AUTOIN=1 and EPS8AUTOINLENH:L=512 auto commits IN packets,
// in 512 byte chunks.
}

Figure 10-39. Firmware intervention, AUTOIN = 0/1

8051

UsB Data Path Slave b GPIF

AUTOIN=0 or
AUTOIN=1

10.4.7 Firmware Access to IN Packets, (AUTOIN = 0)

In manual IN mode (AUTOIN=0), the firmware has the following options:

1. It can commit (‘pass-on’) packets sent from the master to the host when a buffer is available, by writing the INPKTEND

register with the corresponding EPx number and SKIP=0 (see Figure 10-40).

2. It can skip a packet by writing to INPKTEND with SKIP=1. See Figure 10-41 on page 178.
3. It can source or edit a packet (for example, write directly to EPXFIFOBUF) then write the EPXBCL. See Figure 10-42 on

page 178.

Figure 10-40. Committing a Packet by Writing INPKTEND with EPx Number (w/SKIP=0)

TD_Poll1():

iT(master_finished_longxfr())
{ // master currently points to EP8, last FIFO accessed
if('(EP6BFIFOFLGS & 0x10))
{ 7/ EP8FF=0 when buffer available
INPKTEND = 0x08; // Firmware commits pkt
// by writing 0x08 to INPKTEND
release_master(EP8);

¥
}

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 177 of 346

177

W’“ll

General Programmable Interface = 4 CYF HF%%

PERFC

Figure 10-41. Skipping a Packet by Writing to INPKTEND w/SKIP=1
TD_Poll():

if(master_finished_longxfr())
{ 7/ master currently points to EP8, last FIFO accessed
if('(EP68BFIFOFLGS & 0x10))
{ 7/ EP8FF=0 when buffer available
INPKTEND = 0x88; // Firmware commits pkt
// by writing 0x88 to INPKTEND
release_master(EP8);
3
3

Figure 10-42. Sourcing an IN Packet by writing to EPXBCH:L
TD_Poll():

if(source_pkt_event)
{ // 100msec background timer fired
if(holdoff_master())
{ 7/ signaled “busy” to master successful
while('(EP68FIFOFLGS & 0x20))
{ 7/ EP8EF=0, when buffer not empty
; /7 wait “til host takes entire FIFO data

}

// Reset FIFO 8.

FIFORESET = 0x80; // Activate NAK-AIl to avoid race conditions.
SYNCDELAY ;

FIFORESET = 0x08; // Reset FIFO 8.

SYNCDELAY;

FIFORESET = Ox00; // Deactivate NAK-AIlI.

EPSFIFOBUFL O] = Ox02; // <STX>, packet start of text msg
EP8SFIFOBUFL 1] 0x06; // <ACK>
EP8SFIFOBUFL 2] 0x07; // <HEARTBEAT>
EPSFIFOBUFL 3] = Ox03; // <ETX>, packet end of text msg
SYNCDELAY;
EP8BCH = 0x00;
SYNCDELAY ;
EP8BCL = 0x04; // pass src’d buffer on to host
3

else

{
history_record(EP8, BAD_MASTER);
}
}

178 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 178 of 346

General Programmable Interface

=# CYPRESS

1

Performing a FIFO-Write Transaction

10.4.7.1
Figure 10-43. Firmware Launches a FIFO-Write Waveform
8051 XDATA GPIF Device Pins
FD[7:0]
>
30/48MHz
IFCLK
5 - 48MHz
Slave FIFOs EPXEF
EP2FIFOBUF EPxFF CLK
EP4FIFOBUF EP2 |‘ __EPXPF o]
EP6FIFOBUF EP4 SLOE GPIFADR[8:0]
EP6 ‘
EP8FIFOBUF |
——p SLRD
EP8
SEWR | CTL[5:0] N
f f ¢RDYI5:0]
INPKTEND FIFOADR[1:0]
W aveform Descriptors
8051 WEO GPIF
WF1
WF2
WF3
GPIFTRIG
g
GPIF DONE
<
GPIF INTRDY
8051 INTRDY >
Figure 10-44. Example FIFO-Write Transaction
GPIFTC EPxFIFOBUF
TC=N 0x01 Peripheral data (Pdata)
TC=N+1 | 0x02 N N+l N+2 512
TC=N+2 0x03
0x02 0x03 OxFF

7: | 0x01

TC=512 OxFF

179

MoBL-USB™ TRM, Document # 001-11981 Rev. *B
Exhibit 2033 - Page 179 of 346

il

General Programmable Interface e CYDRF%

Figure 10-45. FIFO-Write Transaction Waveform

e’ _ [AL LA LA L]
GPIFADR[8:0] 0x0000

FD[7:0] hi-Z Pdata++ hi-Z

CTLO

RDYO
v v v v

NDP NDP NDP NDP NDP NDP

i1 i2 i3 i4

The above waveform executes until the Transaction Counter expires (until it counts to 512, in this example). The Transaction
Counter is decremented and sampled on each pass through the Idle State. When the Transaction Counter is used without
passing through the IDLE state, the Transaction Counter is decremented on each ‘Nextdata’ (which increments the FIFO
pointer).

Each iteration of the waveform writes a data value from the FIFO to the FIFO Data bus, then decrements and checks the
Transaction Counter. When it expires, the DONE bit is set to ‘1’ and the GPIFDONE interrupt request is asserted.

Figure 10-46. GPIF Designer Setup for the Waveform of Figure 10-45

Jlock Diagram | Single Read | Single wiite | FIFO Read ||

IDLE

States =0 | £ | 52 | 23 | g4 | sh | =k |
drive databus here m /_E\IIIncrer’:nent FIFO pointer here
Data | & (& &) (\l)
add |
Status |
a4 A AAAAAE
180 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 180 of 346

— & sy T

EE—_?“

YPRESS

PERFC

Figure 10-47. GPIF Designer Output for the Waveform of Figure 10-45

General Programmable Interface

State
AddrMode
DataMode
NextData
Int Trig

IF/Wait

Term A

LFUNC

Term B

Branchl

Branch0O

Re-execute
CTLO
CTL1
CTL2
CTL3
CTL4
CTL5

0 1 2 3 4 5
Same Val SameVal SameVal SameVal SameVal Same Val
No Data No Data Activate No Data No Data No Data
SameData SameData SameData SameData SameData SameData
No Int No Int No Int No Int No Int No Int
Wait 4 Wait 1 Wait 1 Wait 1 Wait 1 Wait 1

e = S
e = S
[A = =
e = S
e O
[=

6
Same Val
No Data
NextData
No Int
Wait 1

[=

[=

Typically, when performing a FIFO-Write, only one ‘NextData’ is needed in the waveform, since each execution of ‘NextData’
increments the FIFO pointer.

To perform a FIFO-Write Transaction:

1. Program the MoBL-USB FX2LP18 to detect completion of the transaction. As with all GPIF Transactions, bit 7 of the

GPIFTRIG register (the DONE bit) signals when the Transaction is complete.
2. Inthe GPIFTRIG register, set the RW bit to 0 and load EP[1:0] with the appropriate value for the FIFO which is to source

the data.

3. Program the MoBL-USB FX2LP18 to commit (‘pass-on’) the data from the endpoint to the FIFO. The data can be trans-
ferred by either of the following methods:

a AUTOOUT=1: CPU is not in the data path; the MoBL-USB FX2LP18 automatically commits data from the USB to the
FIFO Data bus.

0 AUTOOUT=0: Firmware must manually commit data to the FIFO Data bus by writing
EPxBCL.7=0 (firmware can choose to skip the current packet by writing EPxBCL.7=1).

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 181 of 346

181

\

"

General Programmable Interface =/ CYPHF.S?

PERFORM

The following C program fragments (Figures 10-48 through 10-50) illustrate how to perform a FIFO-Read transaction in 8-hit
mode (WORDWIDE = 0) with AUTOOUT = 0:

Figure 10-48. FIFO-Write Transaction Functions
#define GPIFTRIGWR O

#define GPIF_EP2 O
#define GPIF_EP4 1
#define GPIF_EP6 2
#define GPIF_EP8 3

#define BURSTMODE 0x0000
#define HSPKTSIZE 512

// write byte(s) to PERIPHERAL, using GPIF and EPxFIFO
void Peripheral _FIFOWrite(BYTE FIFO_EpNum)

{
while('(GPIFTRIG & O0x80)) // poll GPIFTRIG.7 Done bit

{
}

// trigger FIFO write transaction(s), using SFR
GPIFTRIG = FIFO_EpNum; // R/W=0, EP[1:0]=FIFO_EpNum for EPx write(s)

}

// Set GPIF Transaction Count
void Peripheral_SetGPIFTC(WORD xfrcnt)

{
GPIFTCB1 = xfrcnt >> 8; // setup transaction count
SYNCDELAY ;
GPIFTCBO = (BYTE)xfrcnt;
b
182 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 182 of 346

iy

ll'it

—
PERFORM

Figure 10-49. Initialization Code for FIFO-Write Transactions

void TD_Init(void)

{
GpifInit(); // Configures GPIF from GPIF Designer generated waveform data
// TODO: configure other endpoints, etc. here
EP2CFG = OxA2; // EP2 is DIR=0OUT, TYPE=BULK, SI1ZE=512, BUF=2x
SYNCDELAY ;
EP2FIFOCFG = 0x00; // EP2 is AUTOOUT=0, AUTOIN=0, ZEROLEN=0, WORDWIDE=0
SYNCDELAY;
// “all” EP2 buffers automatically arm when AUTOOUT=1
// TODO: arm OUT buffer(s) here
OUTPKTEND = 0x82; // Arm both EP2 buffers to “prime the pump”
SYNCDELAY ;
OUTPKTEND = 0x82;
SYNCDELAY ;
// setup INT4 as internal source for GPIF interrupts
// using INT4CLR (SFR), automatically enabled
// INTSETUP |= O0x03; //Enable INT4 Autovectoring
// GPIFIE = 0x03; // Enable GPIFDONE and GPIFWF interrupt(s)
// EIE |= 0x04; // Enable INT4 ISR, EIE.2(EIEX4)=1
// TODO: configure GPIF interrupt(s) to meet your needs here
// tell peripheral we’re going into high-speed xfr mode
Peripheral_SetAddress(PERIPHCS);
Peripheral_SingleByteWrite(P_HSMODE);
// configure some GPIF control registers
Peripheral_SetAddress(BURSTMODE);
3

Figure 10-50. FIFO-Write w/ AUTOOUT = 0, Committing Packets via OUTPKTEND

void TD_Poll(void)
{

if(1(EP2468STAT & 0x01))
{ // EP2EF=0 when FIFO “not” empty, host sent pkt.
OUTPKTEND = 0x02; // SKIP=0, pass buffer on to master

if(gpifdone_event_flag)

Peripheral_SetGPIFTC(HSPKTSIZE);
Peripheral_FIFOWrite(GPIF_EP2);
gpifdone_event_flag = 0;
3
}

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 183 of 346

— CYPHF.S? General Programmable Interface

183

General Programmable Interface

¥ CYPRESS

PERFC

it

—

(1

10.4.8 Firmware Access to OUT Packets, (AUTOOUT=1)

To achieve the maximum USB 2.0 bandwidth, the host and master are directly connected when AOUTOOUT=1; the CPU is
bypassed and the OUT FIFO is automatically committed to the host:

Figure 10-51. CPU not in data path, AUTOOUT=1

8051

usB > Slave |, GPIF

AUTOOUT=1, Long Transfer Mode

Figure 10-52. TD_Init Example: Configuring AUTOOUT = 1

TD_Init():

REVCTL = 0x03;
SYNCDELAY;

EP2CFG = OxA2;
SYNCDELAY ;
FIFORESET = 0x80;
SYNCDELAY ;
FIFORESET = 0x02;
SYNCDELAY;
FIFORESET = 0x00;
SYNCDELAY ;
OUTPKTEND = 0x82;
SYNCDELAY ;
OUTPKTEND = 0x82;
SYNCDELAY;

EP2FIFOCFG = 0x10;

// REVCTL.O and REVCTL.1 set to 1

// EP2 is DIR=OUT, TYPE=BULK, SI1ZE=512, BUF=2x

// Reset the FIFO

// Arm both EP2 buffers to “prime the pump”

// EP2 is AUTOOUT=1, AUTOIN=0, ZEROLEN=0, WORDWIDE=0

Figure 10-53. FIFO-Write Transaction Code, AUTOOUT =1

TD_Poll():

// no code necessary to xfr data from host to master!
// AUTOOUT=1 auto-commits packets

184

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 184 of 346

it

"

=4 CYPHF%% General Programmable Interface

PERFC

10.4.9 Firmware access to OUT packets, (AUTOOUT = 0)

Figure 10-54. Firmware can Skip or Commit, AUTOOUT =0

8051

USsB [] Slave |, GPIF

AUTOOUT=0

Figure 10-55. Initialization Code for AUTOOUT =0

TD_Init(:

REVCTL = 0x03; // REVCTL.O and REVCTL.1 set to 1

SYNCDELAY ;

EP2CFG = OxA2; // EP2 is DIR=0UT, TYPE=BULK, SIZE=512, BUF=2x
SYNCDELAY;

FIFORESET = 0x80; // Reset the FIFO

SYNCDELAY;

FIFORESET = 0x02;

SYNCDELAY ;

FIFORESET = 0x00;

SYNCDELAY;

EP2FIFOCFG = 0x00; // EP2 is AUTOOUT=0, AUTOIN=0, ZEROLEN=0, WORDWIDE=0
SYNCDELAY;

// OUT endpoints do NOT come up armed

OUTPKTEND = 0x82; // arm first buffer by writing OUTPKTEND w/skip=1
SYNCDELAY;

OUTPKTEND = 0x82; // arm second buffer by writing OUTPKTEND w/skip=1

In manual OUT mode (AUTOOUT = 0), the firmware has the following options:

1. It can commit (‘pass-on’) packet(s) sent from the host to the master when a buffer is available, by writing the
OUTPKTEND register with the SKIP bit (OUTPKTEND.7) cleared to 0 (see Figure 10-56) and the endpoint number in

EP[3:0].

Figure 10-56. Committing an OUT Packet by Writing OUTPKTEND w/SKIP=0

TD_Poll():

iT('(EP24FIFOFLGS & 0x02))
{ 7/ EP2EF=0 when FIFO “not” empty, host sent pkt.
OUTPKTEND = 0x02; // SKIP=0, pass buffer on to master

}

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 185 of 346

185

= it

==
General Programmable Interface —F

‘CYPRESS

PERFC

2. It can skip packet(s) sent from the host to the master by writing the OUTPKTEND register with the SKIP bit
(OUTPKTEND.7) setto ‘1’ (see Figure 10-57) and the endpoint number in EP[3:0].

Figure 10-57. Skipping an OUT Packet by Writing OUTPKTEND w/SKIP=1
TD_Poll():

if('(EP24FIFOFLGS & 0x02))
{ // EP2EF=0 when FIFO “not” empty, host sent pkt.

OUTPKTEND = 0x82; // SKIP=1, do NOT pass buffer on to master
3

3. It can edit the packet (or source an entire OUT packet) by writing to the FIFO buffer directly, then writing the length of the
packet to EPXBCH:L. The write to EPXxBCL commits the edited packet, so EPxBCL should be written after writing EPXxBCH
(Figure 10-58).

In all cases, the OUT buffer automatically re-arms so it can receive the next packet, after the GPIF has transmitted all data
in the OUT buffer.

See section “EP2BCH:L, EP4BCH:L, EP6BCH:L, EP8BCH:L” on page 101 for a detailed description of the SKIP bit.

Figure 10-58. Sourcing an OUT Packet (AUTOOUT = 0)

TD_Poll():

iT(EP24FIFOFLGS & 0x02)

{

SYNCDELAY ; //

FIFORESET = 0x80; // nak all OUT pkts. from host
SYNCDELAY; //

FIFORESET = 0x02; // advance all EP2 buffers to cpu domain
SYNCDELAY; //

EP2FIFOBUF[0] = OxAA; // create newly sourced pkt. data
SYNCDELAY; //

EP2BCH = 0x00;

SYNCDELAY; //

EP2BCL = 0xO01; // commit newly sourced pkt. to interface fifo

// beware of "left over"™ uncommitted buffers

SYNCDELAY; //

OUTPKTEND = 0x82; // skip uncommitted pkt. (second pkt.)
// note: core will not allow pkts. to get out of sequence
SYNCDELAY; //

FIFORESET = 0x00; // release "nak all"

}

The master is not notified when a packet has been skipped by the firmware.

The OUT FIFO is not committed to the host after a hard reset. This means that it is not available to initially accept any OUT
packets. In its initialization routine, therefore, the firmware should skip n packets (where n = 2, 3, or 4 depending on the buff-
ering depth) in order to ensure that the entire FIFO is committed to the host. See Figure 10-59 on page 187.

186 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 186 of 346

=4 CYPHF%% General Programmable Interface

PERFC

it

"

Figure 10-59. Ensuring that the FIFO is Clear after a Hard Reset

TD_Init():
REVCTL = Ox03; // REVCTL.O and REVCTL.1 set to 1
SYNCDELAY ;
EP2CFG = OxA2; // EP2 is DIR=0UT, TYPE=BULK, SI1ZE=512, BUF=2x
SYNCDELAY;
FIFORESET = 0x80; // Reset the FIFO
SYNCDELAY;
FIFORESET = 0x02;
SYNCDELAY ;
FIFORESET = 0x00;
SYNCDELAY;
EP2FIFOCFG = 0x00; // EP2 is AUTOOUT=0, AUTOIN=0, ZEROLEN=0, WORDWIDE=0
SYNCDELAY;

// OUT endpoints do NOT come up armed

OUTPKTEND = 0x82; // arm first buffer by writing OUTPKTEND w/skip=1
SYNCDELAY ;

OUTPKTEND = 0x82; // arm second buffer by writing OUTPKTEND w/skip=1

10.5 UDMA Interface

The MoBL-USB FX2LP18 has additional GPIF registers specifically for implementing a UDMA (Ultra-ATA) interface. For more
information, refer to the Registers chapter on page 237.

10.6 ECC Generation

The MoBL-USB FX2LP18 has additional registers specifically for implementing ECC based on the SmartMedia™ standard.
For more information, refer to the Registers chapter on page 237.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 187

Exhibit 2033 - Page 187 of 346

==7 CYPRESS

General Programmable Interface

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

188
Exhibit 2033 - Page 188 of 346

11. CPU Introduction

PERFORM

11.1 Introduction

The MoBL-USB FX2LP18's CPU, an enhanced 8051, is fully described in chapters Instruction Set, on page 197, Input/Out-
put, on page 203, and Timers/Counters and Serial Interface, on page 217. This chapter introduces the processor, its interface
to the MoBL-USB FX2LP18 logic, and describes architectural differences from a standard 8051. Figure 11-1 is a block dia-

gram of the MoBL-USB FX2LP18's 8051-based CPU.
Figure 11-1. MoBL-USB FX2LP18 CPU Features

Crystal
Register Serial Portl Timer2
RAM Timerl
Oscillator (256 bytes) Serial Port0 Timero
Z Z
~ SN~ SN~
8-bit CPU
= Z Z
— — — — —
| |
Interrupt |
Bus Control I/O Ports* |
Control | |
—— e ——_——
* The MoBL-USB family implements 1/O ports differently than in the standard 8051

MoBL-USB™ TRM, Document # 001-11981 Rev. *B
Exhibit 2033 - Page 189 of 346

189

= it

CPU Introduction CYPHF%

11.2 8051 Enhancements

The MoBL-USB FX2LP18 uses the standard 8051 instruction set, so it's supported by industry-standard 8051 compilers and
assemblers. Instructions execute faster on the MoBL-USB FX2LP18 than on the standard 8051

m Wasted bus cycles are eliminated; an instruction cycle uses only four clocks, rather than the standard 8051’s 12 clocks.

m The MoBL-USB FX2LP18's CPU clock runs at 12 MHz, 24 MHz, or 48 MHz — up to four times the clock speed of the
standard 8051.

In addition to speed improvements, the MoBL-USB FX2LP18 includes the following architectural enhancements to the CPU:

m A second data pointer

A second USART

A third, 16-bit timer (TIMER?2)

Eight additional interrupts (INT2-INT6, WAKEUP, T2, and USART1)

Variable MOVX timing to accommodate fast and slow RAM peripherals

Two Autopointers (auto-incrementing data pointers)

Vectored USB and FIFO/GPIF interrupts

Baud rate timer for 115K/230K baud USART operation

Sleep mode with three wakeup sources

An 12C™ bus controller that runs at 100 or 400 kHz

MoBL-USB FX2LP18-specific SFRs

Separate buffers for the SETUP and DATA portions of a USB CONTROL transfer

A hardware pointer for SETUP data, plus logic to process entire CONTROL transfers automatically
CPU clock-rate selection of 12, 24 or 48 MHz

Breakpoint facility

10 Port C read and write strobes

11.3 Performance Overview

The MoBL-USB FX2LP18 has been designed to offer increased performance by executing instructions in a 4-clock bus cycle,
as opposed to the 12-clock bus cycle in the standard 8051 (see Figure 11-2 on page 191). This shortened bus timing
improves the instruction execution rate for most instructions by a factor of three over the standard 8051 architectures.

Some instructions require a different number of instruction cycles on the MoBL-USB FX2LP18 than they do on the standard
8051. In the standard 8051, all instructions except for MUL and DIV take one or two instruction cycles to complete. In the
MoBL-USB FX2LP18, instructions can take between one and five instruction cycles to complete. However, due to the short-
ened bus timing of the MoBL-USB FX2LP18, every instruction executes faster than on a standard 8051, and the average
speed improvement over the entire instruction set is approximately 2.5x. Table 11-1 catalogs the speed improvements.

Table 11-1. MoBL-USB FX2LP18 Speed Compared to Standard 8051

Of the 246 MoBL-USB FX2LP18
opcodes...

150 execute at 3.0x standard speed
51 execute at 1.5x standard speed
43 execute at 2.0x standard speed
2 execute at 2.4x standard speed
Average Improvement: 2.5x

Note Comparison is between MoBL-USB FX2LP18 and standard 8051 run-
ning at the same clock frequency.

190 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 190 of 346

%g!f:ypms CPU Introduction

RFORM

Figure 11-2. MoBL-USB FX2LP18 to Standard 8051 Timing Comparison

Single-Byte, Single-Cycle Instruction Timing

_ 4“—>
PSEN | L L 1 [] I
MOBL-USB apo-ap7 XXX X0 X0 X0 X0 OO X
FX2LPI8 borme X X X X X X X X

«1
XTALL (U U UUUrrrrrrryryryyyyy

o 12 [

Standard E [‘—l] '|—|] B
8051 PSEN [l [| 1 I
ADO-AD7 X X X X X X X X X
PORT2 X X X X X_

11.4 Software Compatibility

The MoBL-USB FX2LP18 is object-code-compatible with the industry-standard 8051 microcontroller. That is, object code
compiled with an industry-standard 8051 compiler or assembler executes on the MoBL-USB FX2LP18 and is functionally
equivalent. However, because the MoBL-USB FX2LP18 uses a different instruction timing than the standard 8051, existing

code with timing loops may require modification.

The MoBL-USB FX2LP18 instruction timing is identical to that of the Dallas Semiconductor DS80C320.

11.5 803x/805x Feature Comparison

Table 11-2 provides a feature-by-feature comparison between the MoBL-USB FX2LP18 and several common 803x/805x

devices.

Table 11-2. Comparison Between MoBL-USB FX2LP18 and Other 803x/805x Devices

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 191 of 346

Intel Cypress

Feature 8031 8051 80C32 80C52 Dallas DS80C320 MFOXB2I|-__|:L>J]_SgB
Clocks per instruction cycle 12 12 12 12 4 4
Program / Data Memory - 4 kB ROM - 8 kB ROM - 16 kB RAM
Internal RAM 128 bytes 128 bytes 256 bytes 256 bytes 256 bytes 256 bytes
Data Pointers 1 1 1 1 2 2
Serial Ports 1 1 1 1 2 2
16-bit Timers 2 2 3 3 3 3
Interrupt sources (internal and external) 5 5 6 6 13 13
Stretch data-memory cycles no no no no yes yes

191

=7 CYPRESS

PERFC

CPU Introduction =

11.6 MoBL-USB FX2LP18/DS80C320 Differences

Although the MoBL-USB FX2LP18 is similar to the DS80C320 in terms of hardware features and instruction cycle timing,
there are some important differences between the MoBL-USB FX2LP18 and the DS80C320.

11.6.1 Serial Ports

The MoBL-USB FX2LP18 does not implement serial port framing-error detection and does not implement slave address com-
parison for multiprocessor communications. Therefore, the MoBL-USB FX2LP18 also does not implement the following
SFRs: SADDRO, SADDR1, SADENO, and SADENL1.

11.6.2 Timer 2

The MoBL-USB FX2LP18 does not implement Timer 2 downcounting mode or the downcount enable bit (TMOD2, Bit 0).
Also, the MoBL-USB FX2LP18 does not implement Timer 2 output enable (T20E) bit (TMOD2, Bit 1). Therefore, the TMOD2
SFR is also not implemented in the MoBL-USB FX2LP18.

The MoBL-USB FX2LP18 Timer 2 overflow output is active for one clock cycle. In the DS80C320, the Timer 2 overflow output
is a square wave with a 50% duty cycle.

Although the T20E bit is not present in the MoBL-USB FX2LP18, Timer 2 output can still be enabled or disabled via the
PORTECFG.2 bit, since the T20UT pin is multiplexed with PORTE.2.

PORTECFG.2=0 configures the pin as a general-purpose 10 pin and disabled Timer 2 output;
PORTECFG.2=1 configures the pin as the T20UT pin and enables Timer 2 output.

11.6.3 Timed Access Protection

The MoBL-USB FX2LP18 does not implement timed access protection and, therefore, does not implement the TA SFR.

11.6.4 Watchdog Timer
The MoBL-USB FX2LP18 does not implement a watchdog timer.

11.6.5 Power Fail Detection

The MoBL-USB FX2LP18 does not implement a power fail detection circuit.

11.6.6 Port1O

The MoBL-USB FX2LP18’s port 10 implementation is significantly different from that of the DS80C320, mainly because of the
alternate functions shared with most of the 10 pins. See Input/Output, on page 203.

11.6.7 Interrupts

Although the basic interrupt structure of the MoBL-USB FX2LP18 is similar to that of the DS80C320, five of the interrupt
sources are different:

Table 11-3. Differences between MoBL-USB FX2LP18 and DS80C320 Interrupts

Interrupt Priority Dallas DS80C320 Cypress MoBL-USB FX2LP18
0 Power Fail RESUME (USB Wakeup)
8 External Interrupt 2 uUsB
9 External Interrupt 3 I2C Bus
10 External Interrupt 4 GPIF/FIFOs
12 Watchdog Timer External Interrupt 6

For more information, refer to the Timers/Counters and Serial Interface chapter on page 217.

192 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 192 of 346

—l ———
— =

=4 CYDHF% CPU Introduction

11.7 MoBL-USB FX2LP18 Register Interface

The MoBL-USB FX2LP18 peripheral logic (USB, GPIF, FIFOs, and so on) is controlled via a set of memory mapped registers
and buffers at addresses 0XE400 through OxFFFF. These registers and buffers are grouped as follows:

GPIF Waveform Descriptor Tables
General configuration

Endpoint configuration

Interrupts

Input/Output

USB Control

Endpoint operation

GPIF/FIFOs

Endpoint buffers

These registers and their functions are described throughout this manual. A full description of every MoBL-USB FX2LP18
register appears in the Registers chapter on page 237.

11.8 MoBL-USB FX2LP18 Internal RAM

Figure 11-3. MoBL-USB FX2LP18 Internal Data RAM

OXFFI ypper 128 | SFR Space
0x80 Indirect Addr Direct Addr
Ox7F Lower 128
0x00 Direct Addr

Like the standard 8051, the MoBL-USB FX2LP18 contains 128 bytes of Internal Data RAM at addresses 0x00-0x7F and a
partially populated SFR space at addresses 0x80-OxFF. An additional 128 indirectly-addressed bytes of Internal Data RAM
(sometimes called ‘IDATA’) are also available at addresses 0x80-0xFF.

All other on-chip MoBL-USB FX2LP18 RAM (program/data memory, endpoint buffer memory, and the MoBL-USB FX2LP18
control registers) is addressed as though it were off-chip 8051 memory. Firmware reads or writes these bytes as data using
the MOVX (‘move external’) instruction, even though the RAM and register set is actually inside the MoBL-USB FX2LP18
chip.

11.9 10O Ports

The MoBL-USB FX2LP18 implements 10 ports differently than a standard 8051, as described in Input/Output, on page 203.

The MoBL-USB FX2LP18 has up to five 8-bit wide, bidirectional 10 ports. Each port is associated with a pair of registers.

m An ‘OEX register. It sets the input/output direction of each of the 8 port pins (0 = input, 1 = output).

m An ‘|OxX register. Values written to IOx appear on the pins configured as outputs; values read from |Ox indicate the states
of the 8 pins, regardless of input/output configuration.

Most 10 pins have alternate functions which are selected using configuration registers. When an alternate configuration is
selected for an 10 pin, the corresponding OEXx bit is ignored (see section 13.2 |10 Ports on page 203). The default (power-on
reset) state of all IO ports is: alternate configurations ‘off’, all 10 pins configured as ‘inputs’.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 193

Exhibit 2033 - Page 193 of 346

CPU Introduction E:E!EYPRF%

RFORM

11.10 Interrupts

All standard 8051 interrupts, plus additional interrupts, are supported by the MoBL-USB FX2LP18. Table 11-4 lists the MoBL-
USB FX2LP18 interrupts.

Table 11-4. MoBL-USB FX2LP18 Interrupts

Standard 8051 Additional MoBL-USB STEE
Interrupts FX2LP18 Interrupts

INTO Pin PAO / INTO#

INT1 Pin PAL/ INT1#

Timer 0 Internal, Timer O

Timer 1 Internal, Timer 1

Tx0 & Rx0 Internal, USARTO
INT2 Internal, USB
INT3 Internal, 12C Bus Controller
INT4 Pin INT4 (100-pin only) OR Internal, GPIF/FIFOs
INTS Pin INT5# (100-pin only)
INT6 Pin INT6 (100-pin only)
WAKEUP Pin WAKEUP or Pin RA3/WU2
Tx1 & Rx1 Internal, USART1
Timer 2 Internal, Timer 2

The MoBL-USB FX2LP18 uses INT2 for 27 different USB interrupts. To help determine which interrupt is active, it provides a
feature called Autovectoring, which dynamically changes the address pointed to by the ‘jump’ instruction at the INT2 vector
address. This second level of vectoring automatically transfers control to the appropriate USB interrupt service routine (ISR).
The MoBL-USB FX2LP18 interrupt system, including a full description of the Autovector mechanism, is the subject of the
Interrupts chapter on page 59.

11.11 Power Control

The MoBL-USB FX2LP18 implements a low-power mode that allows it to be used in USB bus-powered devices (which are
required by the USB specification to draw no more than 500 pA when suspended) and other low-power applications. The
mechanism by which the MoBL-USB FX2LP18 enters and exits this low-power mode is described in detail in the Power
Management chapter on page 83.

194 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 194 of 346

=7 CvprrESs CPU Introduction

PERFORM

11.12 Special Function Registers

The MoBL-USB FX2LP18 was designed to keep coding as standard as possible, to allow easy integration of existing 8051
software development tools. The MoBL-USB FX2LP18 Special Function Registers (SFR) are summarized in Table 11-5.
Standard 8051 SFRs are shown in normal type and MoBL-USB FX2LP18-added SFRs are shown in bold type. Full details of
the SFRs can be found in the Registers chapter on page 237.

Table 11-5. MoBL-USB FX2LP18 Special Function Registers (SFR)

X 8x 9x Ax Bx Cx Dx Ex Fx
0 I0A 10B 10C 10D SCON1 PSW ACC B

1 SP EXIF INT2CLR I0E SBUF1

2 DPLO MPAGE INT4CLR OEA

3 DPHO OEB

4 DPL1 OEC

5 DPH1 OED

6 DPS OEE

7 PCON

8 TCON SCONO IE IP T2CON EICON EIE EIP
9 TMOD SBUFO

A TLO AUTOPTRH1 EP2468STAT EPO1STAT RCAP2L

B TL1 AUTOPTRL1 EP24FIFOFLGS GPIFTRIG RCAP2H

C THO EP68FIFOFLGS TL2

D TH1 AUTOPTRH2 GPIFSGLDATH TH2

E CKCON AUTOPTRL2 GPIFSGLDATLX

F AUTOPTRSETUP GPIFSGLDATLNOX

All un-labeled SFRs are reserved.

11.13 Reset

The various MoBL-USB FX2LP18 resets and their effects are described in the Resets chapter on page 89.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 195

Exhibit 2033 - Page 195 of 346

it

(1

¥ CYPRESS

e __F

CPU Introduction

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

196
Exhibit 2033 - Page 196 of 346

12. Instruction Set

j
i

Wy

CYPRESS

PERFORM

[
Y

12.1 Introduction

This chapter provides a technical overview and description of the MoBL-USB FX2LP18's assembly-language instruction set.

All MoBL-USB FX2LP18 instructions are binary-code-compatible with the standard 8051. The MoBL-USB FX2LP18 instruc-
tions affect bits, flags, and other status functions just as the 8051 instructions do. Instruction timing, however, is different both
in terms of the number of clock cycles per instruction cycle and the number of instruction cycles used by each instruction.

Table 12-2 on page 198 lists the MoBL-USB FX2LP18 instruction set and the number of instruction cycles required to com-
plete each instruction. Table 12-1 defines the symbols and mnemonics used in Table 12-2.

Table 12-1. Legend for Instruction Set Table

Symbol Function
A Accumulator
Rn Register (RO-R7, in the bank selected by RS1:RS0)
direct Internal RAM location (0x00 - Ox7F in the ‘Lower 128’, or 0x80 - OxFF in ‘SFR’ space)
@Ri Internal RAM location (0x00 - Ox7F in the ‘Lower 128’, or 0x80 - OxFF in the ‘Upper 128’) pointed to by RO or R1

Program-memory offset (-128 to +127 bytes relative to the first byte of the following instruction). Used by condi-

rel tional jumps and SIMP.

bit Bit address (0x20 - x2F in the ‘Lower 128,” and SFRs 0x80, 0x88, ..., OxF0, 0xF8)

#data 8-bit constant (0 - 255)

#datal6 16-bit constant (0 - 65535)

addrl6 16-bit destination address; used by LCALL and LIMP, which branch anywhere in program memory

11-bit destination address; used by ACALL and AJMP, which branch only within the current 2K page of program

addril memory (that is, the upper 5 address bits are copied from the PC)

Program Counter; holds the address of the currently-executing instruction. For the purposes of ‘ACALL’, ‘AJMP’,
PC and ‘MOVC A,@A+PC’ instructions, the PC holds the address of the first byte of the instruction following the cur-
rently-executing instruction.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 197

Exhibit 2033 - Page 197 of 346

Instruction Set

Table 12-2. MoBL-USB FX2LP18 Instruction Set

=
—

%}%‘KPHESS

PERFORM

Mnemonic Description | Bytes | Cycles | PSW Flags Affected | Opcode (Hex)
Arithmetic
ADD A, Rn Add register to A 1 1 CY OV AC 28-2F
ADD A, direct Add direct byte to A 2 2 CY OV AC 25
ADD A, @RI Add data memory to A 1 1 CY OV AC 26-27
ADD A, #data Add immediate to A 2 2 CY OV AC 24
ADDC A, Rn Add register to A with carry 1 1 CY OV AC 38-3F
ADDC A, direct Add direct byte to A with carry 2 2 CY OV AC 35
ADDC A, @Ri Add data memory to A with carry 1 1 CY OV AC 36-37
ADDC A, #data Add immediate to A with carry 2 2 CY OV AC 34
SUBB A, Rn Subtract register from A with borrow 1 1 CY OV AC 98-9F
SUBB A, direct Subtract direct byte from A with borrow 2 2 CY OV AC 95
SUBB A, @RI Subtract data memory from A with borrow 1 1 CY OV AC 96-97
SUBB A, #data Subtract immediate from A with borrow 2 2 CY OV AC 94
INC A Increment A 1 1 04
INC Rn Increment register 1 1 08-0F
INC direct Increment direct byte 2 2 05
INC @ Ri Increment data memory 1 1 06-07
DECA Decrement A 1 1 14
DEC Rn Decrement Register 1 1 18-1F
DEC direct Decrement direct byte 2 2 15
DEC @Ri Decrement data memory 1 1 16-17
INC DPTR Increment data pointer 1 3 A3
MUL AB Multiply A and B (unsigned; product in B:A) 1 5 CY=0 OV A4
DIV AB (DL:xggnﬁg;yqiotient in A, remainder in B) 1 5 cy=00v 84
DA A Decimal adjust A 1 1 CY D4
Logical
ANL, Rn AND register to A 1 1 58-5F
ANL A, direct AND direct byte to A 2 2 55
ANL A, @RI AND data memory to A 1 1 56-57
ANL A, #data AND immediate to A 2 2 54
ANL direct, A AND A to direct byte 2 2 52
ANL direct, #data AND immediate data to direct byte 3 3 53
ORL A, Rn OR register to A 1 1 48-4F
ORL A, direct OR direct byte to A 2 2 45
ORL A, @RI OR data memory to A 1 1 46-47
ORL A, #data OR immediate to A 2 2 44
ORL direct, A OR A to direct byte 2 2 42
ORL direct, #data OR immediate data to direct byte 3 3 43
XRL A, Rn Exclusive-OR register to A 1 1 68-6F
XRL A, direct Exclusive-OR direct byte to A 2 2 65
XRL A, @RI Exclusive-OR data memory to A 1 1 66-67
XRL A, #data Exclusive-OR immediate to A 2 2 64
XRL direct, A Exclusive-OR A to direct byte 2 2 62
XRL direct, #data Exclusive-OR immediate to direct byte 3 3 63
CLR A Clear A 1 1 E4
CPLA Complement A 1 1 F4
198 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 198 of 346

=
— .

%}%YPRESS

PERFORM

Table 12-2. MoBL-USB FX2LP18 Instruction Set (continued)

Instruction Set

Mnemonic Description Bytes Cycles PSW Flags Affected | Opcode (Hex)
SWAP A Swap nibbles of a 1 1 C4
RLA Rotate A left 1 1 23
RLC A Rotate A left through carry 1 1 CcY 33
RR A Rotate A right 1 1 03
RRC A Rotate A right through carry 1 1 CcY 13
Data Transfer
MOV A, Rn Move register to A 1 1 E8-EF
MOV A, direct Move direct byte to A 2 2 E5
MOV A, @Ri Move data byte at Ri to A 1 1 E6-E7
MOV A, #data Move immediate to A 2 2 74
MOV Rn, A Move A to register 1 1 F8-FF
MOV Rn, direct Move direct byte to register 2 2 A8-AF
MOV Rn, #data Move immediate to register 2 2 78-7F
MOV direct, A Move A to direct byte 2 2 F5
MOV direct, Rn Move register to direct byte 2 2 88-8F
MOV direct, direct Move direct byte to direct byte 3 3 85
MOV direct, @Ri Move data byte at Ri to direct byte 2 2 86-87
MOV direct, #data Move immediate to direct byte 3 3 75
MOV @RI, A MOV A to data memory at address Ri 1 1 F6-F7
MOV @RI, direct Move direct byte to data memory at address Ri 2 2 AB6-A7
MOV @RI, #data Move immediate to data memory at address Ri 2 2 76-77
MOV DPTR, #datal6 Move 16-bit immediate to data pointer 3 3 90
MOVC A, @A+DPTR Move code byte at address DPTR+A to A 1 3 93
MOVC A, @A+PC Move code byte at address PC+A to A 1 3 83
MOVX A, @RI Move external data at address Ri to A 1 2-9* E2-E3
MOVX A, @DPTR Move external data at address DPTR to A 1 2-9* EO
MOVX @Ri, A Move A to external data at address Ri 1 2-9* F2-F3
MOVX @DPTR, A Move A to external data at address DPTR 1 2-9* FO
PUSH direct Push direct byte onto stack 2 2 Cco
POP direct Pop direct byte from stack 2 2 DO
XCH A, Rn Exchange A and register 1 1 C8-CF
XCH A, direct Exchange A and direct byte 2 2 C5
XCHA, @Ri Exchange A and data memory at address Ri 1 1 C6-C7
XCHD A, @Ri Eé(g?easr;g;ithe low-order nibbles of A and data memory at 1 1 D6-D7
* Number of cycles is user-selectable. See “Stretch Memory Cycles (Wait States)” on page 200.
Boolean

CLRC Clear carry 1 1 CY=0 C3
CLR bit Clear direct bit 2 2 c2
SETBC Set carry 1 1 Cy=1 D3
SETB bit Set direct bit 2 2 D2
CPLC Complement carry 1 1 CY B3
CPL bit Complement direct bit 2 2 B2
ANL C, bit AND direct bit to carry 2 2 CY 82
ANL C, /bit AND inverse of direct bit to carry 2 2 CcY BO
ORL C, bit OR direct bit to carry 2 2 CY 72
ORL C, /bit OR inverse of direct bit to carry 2 2 CcY A0

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 199 of 346

199

Instruction Set %!EYPRFS

RFORM

Table 12-2. MoBL-USB FX2LP18 Instruction Set (continued)

Mnemonic Description Bytes Cycles PSW Flags Affected | Opcode (Hex)
MOV C, bit Move direct bit to carry 2 2 CY A2
MOV bit, C Move carry to direct bit 2 2 92
Branching
ACALL addril Absolute call to subroutine 2 3 11-F1
LCALL addr16 Long call to subroutine 3 4 12
RET Return from subroutine 1 4 22
RETI Return from interrupt 1 4 32
AJMP addr1l Absolute jump unconditional 2 3 01-E1
LIMP addr16 Long jump unconditional 3 4 02
SIMP rel Short jump (relative address) 2 3 80
JC rel Jump if carry = 1 2 3 40
JINC rel Jump if carry =0 2 3 50
JB bit, rel Jump if direct bit = 1 3 4 20
JNB bit, rel Jump if direct bit =0 3 4 30
JBC bhit, rel Jump if direct bit = 1, then clear the bit 3 4 10
JMP @ A+DPTR Jump indirect to address DPTR+A 1 3 73
JZ rel Jump if accumulator = 0 2 3 60
JINZ rel Jump if accumulator is non-zero 2 3 70
CJINE A, direct, rel Compare A to direct byte; jump if not equal 3 4 CY B5
CJINE A, #d, rel Compare A to immediate; jump if not equal 3 4 CY B4
CJINE Rn, #d, rel Compare register to immediate; jump if not equal 3 4 CY B8-BF
CJINE @ Ri, #d, rel Compare data memory to immediate; jump if not equal 3 4 CcY B6-B7
DJINZ Rn, rel Decrement register; jump if not zero 2 3 D8-DF
DJNZ direct, rel Decrement direct byte; jump if not zero 3 4 D5
Miscellaneous
NOP | No operation | 1 | 1 | 00

There is an additional reserved opcode (A5) that performs the same function as NOP. All mnemonics are copyright 1980, Intel Corporation.

12.1.1 Instruction Timing

Instruction cycles in the MoBL-USB FX2LP18 are 4 clock cycles in length, as opposed to the 12 clock cycles per instruction
cycle in the standard 8051. For full details of the instruction-cycle timing differences between the MoBL-USB FX2LP18 and
the standard 8051, see section 11.3 Performance Overview on page 190.

In the standard 8051, all instructions except for MUL and DIV take one or two instruction cycles to complete. In the MoBL-
USB FX2LP18, instructions can take between one and five instruction cycles to complete. For calculating the timing of soft-
ware loops, use the ‘Cycles’ column from Table 12-2. The ‘Bytes’ column indicates the number of bytes occupied by each
instruction.

By default, the MoBL-USB FX2LP18's timer/counters run at 12 clock cycles per increment so that timer-based events have
the same timing as with the standard 8051. The timers can also be configured to run at 4 clock cycles per increment to take
advantage of the higher speed of the MoBL-USB FX2LP18's CPU.

12.1.2 Stretch Memory Cycles (Wait States)

The MoBL-USB FX2LP18 can execute a MOVX instruction in 2 instruction cycles. The three LSBs of the Clock Control Reg-
ister (CKCON, at SFR location Ox8E) control the stretch value; the stretch value should be set to zero. A stretch value of zero
adds zero instruction cycles, resulting in MOVX instructions which execute in two instruction cycles. At power-on-reset, the
stretch value defaults to one (three-cycle MOVX); for the fastest data memory access, MoBL-USB FX2LP18 software must
explicitly set the stretch value to zero. The stretch value affects the width of the read/write strobe and all related timing.
Table 12-3 lists the data memory access speeds for stretch value zero. MD2-0 are the three LSBs of the Clock Control Regis-
ter (CKCON.2-0). The strobe width timing shown is typical.

200 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 200 of 346

= it

CYPHF.%% Instruction Set

PERFC

CPUCS.4:3 sets the basic clock reference for the MoBL-USB FX2LP18. These hits can be modified by firmware at any time.
At power-on-reset, CPUCS.4:3 is set to ‘00’ (12 Mhz).

Table 12-3. Data Memory Stretch Value

MOVX Read/Write Strobe Width Strobe Width Strobe Width
MD2 MD1 MDO Instruction Strobe Width @ 12 MHz @ 24 MHz @ 48 MHz
Cycles (Clocks) CPUCS.4:3 =00 CPUCS.4:3=01 CPUCS.4:3=10
0 0 0 2 2 167 ns 83.3ns 41.7 ns
12.1.3 Dual Data Pointers

The MoBL-USB FX2LP18 employs dual data pointers to accelerate data memory block moves. The standard 8051 data
pointer (DPTR) is a 16 bit pointer used to address external data RAM or peripherals. The MoBL-USB FX2LP18 maintains the
standard data pointer as DPTRO at the standard SFR locations 0x82 (DPL0) and 0x83 (DPHO); it is not necessary to modify
existing code to use DPTRO.

The MoBL-USB FX2LP18 adds a second data pointer (DPTR1) at SFR locations 0x84 (DPL1) and 0x85 (DPH1). The SEL bit
(bit O of the DPTR Select Register, DPS, at SFR 0x86), selects the active pointer. When SEL = 0, instructions that use the
DPTR will use DPLO:DPHO. When SEL = 1, instructions that use the DPTR will use DPL1:DPH1. No other bits of the DPS
SFR are used.

All DPTR-related instructions use the data pointer selected by the SEL Bit. Switching between the two data pointers by tog-
gling the SEL bit relieves firmware from the burden of saving source and destination addresses when doing a block move;
therefore, using dual data pointers provides significantly increased efficiency when moving large blocks of data.

The fastest way to toggle the SEL bit between the two data pointers is via the ‘INC DPS’ instruction, which toggles bit O of
DPS between ‘0’ and ‘1.

The SFR locations related to the dual data pointers are:

0x82 DPLO DPTRO low byte

0x83 DPHO DPTRO high byte

0x84 DPL1 DPTR1 low byte

0x85 DPH1 DPTR1 high byte

0x86 DPS DPTR Select (Bit 0)
12.1.4 Special Function Registers

The four SFRs listed below are related to CPU operation and program execution. Except for the Stack Pointer (SP), each of
the registers is bit addressable.

0x81 SP Stack Pointer

0xDO PSW Program Status Word
OXxEO ACC Accumulator Register
OxFO B B Register

Table 12-4 on page 202 lists the functions of the PSW bits.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 201

Exhibit 2033 - Page 201 of 346

Instruction Set

S CYPRES

PERFORM

Table 12-4. PSW Register - SFR 0xD0

Bit Function
PSW.7 CY - Carry flag. This is the unsigned carry bit. The CY flag is set when an arithmetic operation results in a carry from bit 7 to bit 8, and
cleared otherwise. In other words, it acts as a virtual bit 8. The CY flag is cleared on multiplication and division. See the ‘PSW Flags
Affected’ column in Table 12-2 on page 198.
PSW.6 AC - Auxiliary carry flag. Set to 1 when the last arithmetic operation resulted in a carry into (during addition) or borrow from (during sub-
traction) the high order nibble, otherwise cleared to 0 by all arithmetic operations. See the ‘PSW Flags Affected’ column in Table 12-2 on
page 198.
PSW.5 FO - User flag 0. Available to firmware for general purpose.
PSwW.4 RS1 - Register bank select bit 1.
PSW.3 RSO - Register bank select bit 0.
RS1:RSO select a register bank in internal RAM:
RS1 RSO Bank Selected
0 0 Register bank 0, addresses 0x00-0x07
0 1 Register bank 1, addresses 0x08-0x0F
1 0 Register bank 2, addresses 0x10-0x17
1 1 Register bank 3, addresses 0x18-0x1F
PSW.2 OV - Overflow flag. This is the signed carry bit. The OV flag is set when a positive sum exceeds 0x7F or a negative sum (in two’s comple-
ment notation) exceeds 0x80. After a multiply, OV = 1 if the result of the multiply is greater than OXFF. After a divide,
OV =1 if a divide-by-0 occurred. See the ‘PSW Flags Affected’ column in Table 12-2 on page 198.
PSW.1 F1 - User flag 1. Available to firmware for general purpose.
PSW.0 P - Parity flag. Contains the modulo-2 sum of the 8 bits in the accumulator (for example, set to ‘1’ when the accumulator contains an odd
number of ‘1’ bits, set to ‘0’ when the accumulator contains an even number of ‘1’ bits).

202

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 202 of 346

13. Input/Output

= =
=2 CYPRESS

PERFORM

13.1 Introduction

The 56-pin MoBL-USB FX2LP18 provides two input output systems:
m A set of programmable 10 pins
m A programmable I12C bus controller

The 100 -pin package additionally provides two programmable USARTSs, which are described in the Timers/Counters and
Serial Interface chapter on page 217

The 10 pins may be configured either for general-purpose 10 or for alternate functions (GPIF address and data; FIFO data;
USART, timer, and interrupt signals; and others). This chapter describes the usage of the pins in the general-purpose config-
uration, and the methods by which the pins may be configured for alternate functions.

This chapter also provides both the programming information for the 12C interface and the operating details of the EEPROM
boot loader. The role of the boot loader is described in the Enumeration and ReNumeration™ chapter on page 51.

13.2 10 Ports

The MoBL-USB FX2LP18's 10 ports are implemented differently than those of a standard 8051.

The MoBL-USB FX2LP18 has up to five eight-pin bidirectional IO ports, labeled A, B, C, D, and E. Individual IO pins are
labeled Px.n, where x is the port (A, B, C, D, or E) and n is the pin number (0 to 7).

The 100-pin MoBL-USB FX2LP18 package provide all five ports; the 56-pin package provides only ports A, B, and D.

Each port is associated with a pair of registers:

m An OEXx register (where x is A, B, C, D, or E), which sets the input/output direction of each of the 8 pins (0 = input, 1 = out-
put). See the OEX register on page 204.

m An IOx register (where x is A, B, C, D, or E). Values written to IOx appear on the pins which are configured as outputs; val-
ues read from 10x indicate the states of the 8 pins, regardless of input/output configuration. See 10x register on page 205.

Most 10 pins have alternate functions which may be selected using configuration registers (see Tables Table 13-1 on
page 207 through Table 13-9 on page 210). Each alternate function is unidirectional; the MoBL-USB FX2LP18 ‘knows’
whether the function is an input or an output, so when an alternate configuration is selected for an 10 pin, the corresponding
OEXx bit is ignored (see Figures Figure 13-2 on page 206 and Figure 13-3 on page 206).

The default (power-on reset) state of all IO ports is:
m Alternate configurations off
m All IO pins configured as inputs

Figure 13-1 on page 204 shows the basic structure of a MoBL-USB FX2LP18 10 pin.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 203

Exhibit 2033 - Page 203 of 346

=
o W

= CYPRESS

PERFORM

Input/Output

Figure 13-1. MoBL-USB FX2LP18 IO Pin

OEx Bit
— Write
|Ox Bit
A
Read
OEA Port A Output Enable SFR 0xB2
b7 b6 b5 v4 v3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
RIW RIW R/IW R/IW RIW RIW R/IW R/IW
0 0 0 0 0 0 0 0
OEB Port B Output Enable SFR 0xB3
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
RIW RIW R/IW RIW RIW RIW R/IW R/IW
0 0 0 0 0 0 0 0
OEC Port C Output Enable SFR 0xB4
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
OED Port D Output Enable SFR 0xB5
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
OEE Port E Output Enable SFR 0xB6
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
204 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 204 of 346

= CYPRESS

Input/Output
I0A Port A (Bit-Addressable) SFR 0x80
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
10B Port B (Bit-Addressable) SFR 0x90
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
10C Port C (Bit-Addressable) SFR OxAO0
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
RIW R/W R/IW R/W R/IW R/W R/W R/IW
X X X X X X X X
10D Port D (Bit-Addressable) SFR 0xBO
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
RIW R/W R/IW R/W R/IW R/W R/W R/IW
X X X X X X X X
I0E Port E SFR 0xB1
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
MoBL-USB™ TRM, Document # 001-11981 Rev. *B 205

Exhibit 2033 - Page 205 of 346

Input/Output

13.3

—l ———
— =

==# CYPRESS

IO Port Alternate Functions

Each 10 pin may be configured for an alternate (for example, non-general-purpose 10) function. These alternate functions are
selected through various configuration registers, as described in the following sections.

The 10-pin logic for alternate-function outputs is slightly different than for alternate-function inputs, as shown in Figures 13-2
(output) and 13-3 (input).

Figure 13-2. 10-Pin Logic when Alternate Function is an OUTPUT

Alternate Function
(Output)

OEXx Bit

f Write

Alternate Function
(Output)

OEx Bit ————X

rWriteH

IO Bit oI/ Pin> 10X Bit ¢—[l/O Pin>

L Read

a) General-Purpose I/O Configuration

T—Read

b) Alternate-Function Configuration

Figure 13-2 shows an 10 pin whose alternate function is always an output.
In Figure 13-2a, the 10 pin is configured for general-purpose 10. In this configuration, the alternate function is disconnected

and the pin functions normally.

In Figure 13-2b, the 10 pin is configured as an alternate-function output. In this configuration, the IOx/OEx output buffer is dis-
connected from the 10 pin, so writes to I0x and OEx have no effect on the IO pin. Reads from IOx, however, continue to work
normally; the state of the 1O pin (and, therefore, the state of the alternate function) is always available.

Figure 13-3. 10-Pin Logic when Alternate Function is an INPUT

Alternate Function
(Input)
OEx Bit

fWrite

L Read

a) General-Purpose I/0 Configuration

Alternate Function
(Input)

OEXx Bit ——X

rWrite —X

IOx Bt ¢—{V/0 Pin>- IOx Bit s—/O Pin>>

L Read

b) Alternate-Function Configuration

Figure 13-3 shows an 10 pin whose alternate function is always an input.

206

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 206 of 346

%g!éj{ws Input/Output

RFORM

In Figure 13-3a, the 10 pin is configured for general-purpose |0O. There's an important difference between alternate-function
inputs and the alternate-function outputs shown earlier in Figure 13-2 on page 206: Alternate-function inputs are never dis-
connected; they're always listening.

If the alternate function’s interrupt is enabled, signals on the 10 pin may trigger that interrupt. If the pin is to be used only for
general purpose 10, the alternate function’s interrupt must be disabled.

For example, suppose the PE5/INT6 pin is configured for general-purpose 10. Since the INT6 function is an input, the pin sig-
nal is also routed to the internal INT6 logic. If the INT6 interrupt is enabled, traffic on the PES5 pin will trigger an INT6 interrupt.
If this is undesirable, the INT6 interrupt should be disabled.

Of course, this side-effect can be useful in certain situations. In the case of PE5/INT6, for example, PE5 can trigger an INT6
interrupt even if the 10 pin is configured as an output (for example, OEE.5 = 1), so the firmware can directly generate ‘exter-
nal’ interrupts.

In Figure 13-3b, the IO pin is configured as an alternate-function input. Just as with alternate-function outputs, the IOx/OEx
output buffer is disconnected from the IO pin, so writes to I0x and OEx have no effect on the IO pin. Reads from 10x, how-
ever, continue to work normally; the state of the 10 pin (and, therefore, the input to the alternate function) is always available.

13.3.1 Port A Alternate Functions
Alternate functions for the Port A pins are selected by bits in three registers, as shown in Tables 13-1 and 13-2.

Table 13-1. Register Bits that Select Port A Alternate Functions

b7 b6 b5 b4 b3 b2 b1 b0

PORTACFG FLAGD Lcst INTL1 INT!
(0XE670) G sLes 0
IFCONFIG

IFCFG1 IFCFGO
(OXE601)
WAKEUPCS

WU2EN
(OXE682)

Note 1:Although the SLCS alternate function is selected by bit 6 of PORTACFG, that function does not appear on pin PA6. Instead,
the SLCS function appears on pin PA7 (see Table 13-2).

Table 13-2. Port A Alternate Function Configuration

Port A Pin Alternate Alternate Function Alternate Function
Function is Selected By... is Described in...
PA.O INTO PORTACFG.0 =1 See chapter “Interrupts” on page 59
PA.1 INT1 PORTACFG.1=1 See chapter “Interrupts” on page 59
PA.2 SLOE IFCFG1:0 =11 See chapter “Slave FIFOs” on page 107
PA.3 wu2l WU2EN =1 See chapter “Power Management” on page 83
PA.4 FIFOADRO IFCFG1:0 =11 See chapter “Slave FIFOs” on page 107
PA.5 FIFOADR1 IFCFG1:.0=11 See chapter “Slave FIFOs” on page 107
PA.6 PKTEND IFCFG1:.0=11 See chapter “Slave FIFOs” on page 107
ELAGD? PORTACFG.7 =1 See chapter “Slave FIFOs” on page 107
PAT sLcs® PORTACFG.6 =1 and See chapter “Slave FIFOs” on page 107
IFCFG1:0 =11

Note 1:When PA.3 is configured for alternate function WU2, it continues to function as a general-purpose input pin as well.
See section 6.4.1 WU2 Pin on page 88 for more information.

Note 2:Although PA.7’s alternate function FLAGD is selected via the PORTACFG register, the state of the FLAGD output is
undefined unless IFCFG1:0 = 11.

Note 3:FLAGD takes priority over SLCS if PORTACFG.6 and PORTACFG.7 are both set to ‘1'.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 207

Exhibit 2033 - Page 207 of 346

Input/Output %ﬁYPRESE

PERFORM

13.3.2 Port B and Port D Alternate Functions
When IFCFGL1 = 1, all eight Port B pins are configured for an alternate configuration (FIFO Data 7:0).

If any of the FIFOs are set to 16-bit mode (via the WORDWIDE bits in the EPXFIFOCFG registers), all eight Port D pins are
also configured for an alternate configuration (FIFO Data 15:8). See Tables 13-3, 13-4, and 13-5.

If all WORDWIDE bits are cleared to 0 (for example, if all four FIFOs are operating in 8-bit mode), the eight Port D pins may
be used as general-purpose 10 pins even if IFCFG1 = 1.

Table 13-3. Register Bits Which Select Port B and Port D Alternate Functions

b7 b6 b5 b4 b3 b2 b1)
IFCONFIG
IFCFG1
(OXE601)
EP2FIFOCFG
WORDWIDE
(0XE618)
EP4FIFOCFG
WORDWIDE
(0XE619)
EP6FIFOCFG
WORDWIDE
(OXE61A)
EPSFIFOCFG
WORDWIDE
(OXE61B)

Table 13-4. Port B Alternate-Function Configuration

T Alternate Alternate Function Alternate Function
i
Function is Selected By... is Described in...
PB.7:0 FD[7:0] IFCFG1=1 See chapter “Slave FIFOs” on page 107

Table 13-5. Port D Alternate-Function Configuration

Port D Pin Alternate Alternate Function Alternate Function
Function is Selected By... is Described in...
PD.7:0 FD[15:8] IFCFG1 =1 and See chapter “Slave FIFOs” on page 107
any WORDWIDE bit = 1

208 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 208 of 346

=4 Cyprress Input/Output

PERFORM

13.3.3 Port C Alternate Functions

Each Port C pin may be individually configured for an alternate function by setting a bit in the PORTCCFG register, as shown
in Tables 13-6 and 13-7.

Table 13-6. Register Bits That Select Port C Alternate Functions

b7 b6 b5 b4 b3 b2 b1 b0

PORTCCFG

GPIFA7 GPIFAG GPIFAS5 GPIFA4 GPIFA3 GPIFA2 GPIFAL GPIFAO
(OXE671)

Table 13-7. Port C Alternate-Function Configuration

Port C Pin Alternate Alternate Function Alternate Function
Function is Selected By... is Described in...
PC.0 GPIFAOQL PORTCCFGO = 1 §sep;g:plt§g'“6eneral Programmable Interface”
PC.1 GPIFA1L PORTCCFG.1 =1 fs%;:g:ritgg.‘ﬁeneral Programmable Interface”
PC.2 GPIFA2L PORTCCFG.2 = 1 §sep;g:plt§g'“6eneral Programmable Interface”
PC.3 GPIFA3L PORTCCFG.3 =1 fs%;:g:ritgg.‘ﬁeneral Programmable Interface”
PC.4 GPIFA4! PORTCCFG4 = 1 §sep;g:plt§g'“6eneral Programmable Interface”
PC.5 GPIFA5L PORTCCFGS5 = 1 fs%;:g:ritgg.‘ﬁeneral Programmable Interface”
PC.6 GPIFAGL PORTCCFG.6 = 1 §sep;g:plt§g'“6eneral Programmable Interface”
PC.7 GPIFAT7L PORTCCFG.7 = 1 fs%;:g:ritgg.‘ﬁeneral Programmable Interface”

Note 1:Although the Port C alternate functions GPIFAQ:7 are selected via the PORTCCFG register, the states of the GPIFAQ:7 outputs are undefined un-
less IFCFG1:0 = 10.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 209

Exhibit 2033 - Page 209 of 346

Input/Output ?ﬁYPRESE

PERFORM

13.3.4 Port E Alternate Functions
Each Port E pin may be individually configured for an alternate function by setting a bit in the PORTECFG register.

If the GSTATE bit in the IFCONFIG register is set to ‘1’, the PE.2:0 pins are automatically configured as GPIF Status pins
GSTATE[2:0], regardless of the PORTECFG.2:0 settings. In other words, GSTATE overrides PORTECFG.2:0. See Tables
13-8 and 13-9.

Table 13-8. Register Bits That Select Port E Alternate Functions

b7 b6 b5 b4 b3 b2 b1 b0
RERIECC GPIFAS T2EX INT6 RXD10UT RXDOOUT T20UT T10UT TOOUT
(0XE671)
IFCONFIG
(OxE601) GSTATE

Table 13-9. Port E Alternate-Function Configuration

X Alternate Alternate Function Alternate Function
Port E Pin X i i X i
Function is Selected By... is Described in...
See chapter “Timers/Counters and Serial Interface”
1 = =
PE.O TOOUT PORTECFG.0 =1 and GSTATE =0 on page 217
See chapter “Timers/Counters and Serial Interface”
1 = =
PE.1 T10UT PORTECFG.1 =1 and GSTATE=0 on page 217
See chapter “Timers/Counters and Serial Interface”
1 = =
PE.2 T20UT PORTECFG.2 =1 and GSTATE =0 on page 217
PE3 RXDOOUT PORTECFG3 =1 See chapter “Timers/Counters and Serial Interface
on page 217
_ See chapter “Timers/Counters and Serial Interface”
PE.4 RXD10OUT PORTECFG.4 =1 on page 217
PE.5 INT6 PORTECFG5=1 See chapter “Interrupts” on page 59
PE6 T2EX PORTECEGS = 1 See chapter “Timers/Counters and Serial Interface
on page 217
PE.7 GPIFAS2 PORTECFG.7 = 1 FS]aegecglggter General Programmable Interface” on

Note 1:If GSTATE is set to ‘1’, these settings are overridden and PE.2:0 are all automatically configured as GPIF Status pins (see Chapter 10).
Note 2:Although the PE.7 alternate function GPIFA8 is selected via the PORTECFG register, the state of the GPIFA8 output is undefined unless
IFCFG1:0 = 10.

210 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 210 of 346

S/ Cioness

PERFORM

Table 13-10. IFCFG Selection of Port IO Pin Functions

IFCFG1:0 = 00 IFCFG1:0 = 10 IFCFG1:0 = 11
(Ports) (GPIF Master) (Slave FIFO)
PD7 FD[15] FD[15]
PD6 FD[14] FD[14]
PD5 FD[13] FD[13]
PD4 FD[12] FD[12]
PD3 FD[11] FD[11]
PD2 FD[10] FD[10]
PD1 FD[9] FD[9]
PDO FDI[8] FDI[8]
PB7 FD[7] FD[7]
PB6 FDI6] FDI6]
PB5 FDI[5] FDI[5]
PB4 FD[4] FD[4]
PB3 FD[3] FD[3]
PB2 FD[2] FD[2]
PB1 FD[1] FD[1]
PBO FDI[O] FDI[O]
INTO# / PAO INTO# / PAO INTO# / PAO
INT1#/PAL INT1#/ PA1 INT1#/ PA1
PA2 PA2 SLOE
WU2 / PA3 WU2 / PA3 WU2 / PA3
PA4 PA4 FIFOADRO
PA5 PA5 FIFOADR1
PA6 PA6 PKTEND
PA7 PA7 PA7 | FLAGD / SLCS#
PC7:0 PC7:0 PC7:0
PET7:0 PE7:0 PE7:0

Note: Signals shown in bold type do not change with IFCFG;
they are shown for completeness.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 211 of 346

Input/Output

211

Input/Output = YDHFgg

13.4 12C Bus Controller

The 12C bus controller uses the SCL (Serial Clock) and SDA (Serial Data) pins, and performs two functions:
m General-purpose interfacing to 12C peripherals

m Boot loading from a serial EEPROM

The 12C pins SCL and SDA must have external 2.2K ohm pull up resistors even if no EEPROM is connected to the
MoBL-USB FX2LP18. The value of the pull up resistors required may vary, depending on the combination of VCC_IO and
the supply used for the EEPROM. The pull up resistors used must be such that when the EEPROM pulls SDA low, the volt-
age level meets the VIL specification of the MoBL-USB FX2LP18. For example, if the EEPROM runs off a 3.3V supply and
VCC_IO is 1.8V, the pull up resistors recommended are 10K ohm. This requirement may also vary depending on the
devices being run on the 12C pins. Refer to the 12C specifications for details.

The bus frequency defaults to approximately 100 kHz for compatibility, and it can be configured to run at 400 kHz for devices
that support the higher speed.

13.4.1 Interfacing to I12C Peripherals

Figure 13-4. General I12C Transfer

SDA D7><D6><D5><D4><D3><D2><Dl><DO>\AE<

SCL 1 2 3 4 5 6 7 8 9

Figure 13-4 illustrates the waveforms for an [2C transfer. SCL and SDA are open-drain pins which must be pulled up to Vcc
with external resistors. The MoBL-USB FX2LP18 is a bus master only, meaning that it generates clock pulses on SCL. Once
the master drives SCL low, external slave devices can hold SCL low to extend clock-cycle times.

Serial data (SDA) is permitted to change state only while SCL is low, and must be valid while SCL is high. Two exceptions to
this rule are the ‘start’ and ‘stop’ conditions. A ‘start’ condition is defined as a high-to-low transition on SDA while SCL is high,
and a ‘stop’ condition is defined as a low-to-high transition on SDA while SCL is high. Data is sent MSB first. During the last
bit time (clock #9 in Figure 13-4), the transmitting device floats the SDA line to allow the receiving device to acknowledge the

transfer by pulling SDA low.

The MoBL-USB FX2LP18 acts only as a bus master, never as a slave. Conflicts with a sec-
ond master can be detected, however, by checking for BERR=1 (see section 13.4.2.2 Sta-

tus Bits on page 214).

Multiple Bus Masters

212 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 212 of 346

E:._E!&YPRF% Input/Output
Figure 13-5. Addressing an I2C Peripheral
SDA SA3><SA2><SA1><SAO><DA2><DA1><DAO/R/\T/ ACK D7 D6
SCL 1 2 3 4 5 6 7 8 9 10 11

Each peripheral (slave) device on the 12C bus has a unique address. The first byte of an 12C transaction contains the address
of the desired peripheral. Figure 13-5 shows the format for this first byte, which is sometimes called a control byte.

The MoBL-USB FX2LP18 sends the bit sequence shown in Figure 13-5 to select the peripheral at a particular address, to
establish the transfer direction (using R/W), and to determine if the peripheral is present by testing for ACK.

The four most significant bits (SA3:0) are the peripheral chip’s slave address. |12C devices are internally hard wired to pre-
assigned slave addresses by device type. EEPROMSs, for instance, are assigned slave address 1010. The next three bits
(DA2:0) usually reflect the states of the device’s address pins. A device with three address pins can be strapped to one of
eight distinct addresses, which allows, for example, up to eight serial EEPROMSs to be individually addressed on one 12C
bus.

The eighth bit (R/W) sets the direction for the data transfer to follow (1 = master read, 0 = master write). Most address trans-
fers are followed by one or more data transfers, with the ‘stop’ condition generated after the last data byte is transferred.

In Figure 13-5, the master clocks the 7-bit slave/device address out on SDA, then sets the R/W bit high at clock 8, indicating
that a read transfer will follow this address byte. At clock 9, the master releases SDA and treats it as an input; the peripheral
device responds to its address by asserting ACK. At clock 10, the master begins to clock in data from the slave on the SDA

pin.
13.4.2

The three registers shown in this section are used to conduct transfers over the 12C bus.

Registers

I2CTL configures the bus. Data is transferred to and from the bus through the 12DAT register. The I12CS register controls the
transfers and reports various status conditions.

Writing to I2DAT initiates a write transfer on the 12C bus; the value written to I2DAT will be transferred. Reading from I12DAT
will retrieve the data that was transferred in the previous read transfer and (with one exception) initiate another read transfer.
To retrieve data from the previous read transfer without initiating another transfer, I2DAT must be read during the generation
of the ‘stop’ condition. See Step 13 of section 13.4.4 Receiving Data on page 215 for details.

12CSs 12C Bus Control and Status E678
b7 b6 b5 b4 b3 b2 b1l b0
START STOP LASTRD ID1 IDO BERR ACK DONE
R/W R/W R/W R R R R R
0 0 0 X X 0 0 0
12DAT I12C Bus Data E679
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
12CTL 12C Bus Mode E67A
b7 b6 b5 b4 b3 b2 b1l b0
0 0 0 0 0 STOPIE 400KHZ
R R R R R/W R/W
0 0 0 0 0 0

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 213 of 346

213

—l ———
— =

Input/Output == (jypﬂpgg

13.4.2.1 Control Bits

START

When START = 1, the next write to I2DAT will generate a ‘start’ condition followed by the byte of data written to 12DAT. The
START bit is automatically cleared to O after the ACK interval (clock 9 in Figure 13-4 on page 212).

STOP

When STOP = 1 after the ACK interval (clock 9 in Figure 13-4 on page 212), a ‘stop’ condition is generated. STOP may be set
by firmware at any time before, during, or after the 9-bit data transaction. STOP is automatically cleared after the ‘stop’ condi-
tion is generated.

An interrupt request is available to signal that the stop condition is complete; see “STOPIE”, below.

LASTRD

An 12C master reads data by floating the SDA line and issuing clock pulses on the SCL line. After every eight bits, the master
drives SDA low for one clock to indicate ACK. To signal the last byte of a multi-byte transfer, the master floats SDA at ACK
time to instruct the slave to stop sending.

When LASTRD = 1 at ACK time, the MoBL-USB FX2LP18 will float the SDA line. The LASTRD bit may be set at any time
before or during the data transfer; it's automatically cleared after the ACK interval.

Note Setting LASTRD does not automatically generate a ‘stop’ condition. At the end of a read transfer, the STOP bit should
also be set.

STOPIE

Setting this bit to ‘1’ enables the STOP bit Interrupt Request, which is activated when the STOP bit makes a 1-to-0 transition
(for example, when generation of a ‘stop’ condition is complete).

400KHZ

When this bit is at its default value of 0, SCL will be driven at approximately 100 kHz. Setting this bit to ‘1’ causes the MoBL-
USB FX2LP18 to drive SCL at approximately 400 kHz.

13.4.2.2 Status Bits
After each transaction’s ACK interval, the MoBL-USB FX2LP18 updates the three status bits DONE, ACK, and BERR.

DONE

The MoBL-USB FX2LP 18 sets this bit whenever it completes a byte transfer. The MoBL-USB FX2LP18 also generates an
interrupt request when it sets the DONE bit. The DONE bit is automatically cleared when the 12DAT register is read or written,
and the interrupt request bit is automatically cleared by reading or writing the 12CS or I2DAT registers (or by clearing EXIF.5
to 0).

ACK

During the ninth clock of a write transfer, the slave indicates reception of the byte by driving SDA low to acknowledge the byte
it just received. The MoBL-USB FX2LP18 floats SDA during this time, samples the SDA line, and updates the ACK bit with
the complement of the detected value: ACK=1 indicates that the slave acknowledged the transfer, and ACK=0 indicates the
slave did not.

The ACK bit is only meaningful after a write transfer. After a read transfer, its state should be ignored.

BERR

This bit indicates a bus error. BERR=1 indicates that there was bus contention during the preceding transfer, which results
when an outside device drives the bus when it should not, or when another bus master wins arbitration and takes control of
the bus.

214 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 214 of 346

-

ﬁYDHF% Input/Output

When a bus error is detected, the MoBL-USB FX2LP18 immediately cancels its current transfer, floats the SCL and SDA
lines, and sets DONE and BERR. BERR will remain set until it's updated at the next ACK interval. The 12C master will not
drive SCL until BERR is reset. If the bus error causes the master to detect bus contention and the slave to be stuck in the mid-
dle of a transfer, then there is no built-in contention resolution method to work around this deadlock. If there is a possibility of
this condition then the design must implement a method of resetting the slave or clocking the slave until the next ACK.

DONE is set with BERR only when bus contention occurs during a transfer. If BERR is set and the bus is still busy when
firmware attempts to restart a transfer, that transfer request will be ignored and the DONE flag will not be set. If contention
is expected, therefore, firmware should incorporate a time-out to test for this condition. See Steps 1 and 3 of sections
Section 13.4.3 and Section 13.4.4.

ID1, IDO

These bits are automatically set by the boot loader to indicate the Boot EEPROM addressing mode. They are normally used
only for debug purposes; for full details, see section 13.5 EEPROM Boot Loader on page 216.

13.4.3 Sending Data

To send a multiple-byte data record, follow these steps:

Set START=1. If BERR=1, start timer*.

Write the 7-bit peripheral address and the direction bit (O for a write) to I2DAT.
Wait for DONE=1 or for timer to expire*. If BERR=1, go to step 1.

If ACK=0, go to step 9.

Load I2DAT with a data byte.

Wait for DONE=1*. If BERR=1, go to step 1.

If ACK=0, go to step 9.

Repeat steps 5-7 for each byte until all bytes have been transferred.

Set STOP=1. Wait for STOP = 0 before initiating another transfer.

* The time-out should be at least as long as the longest expected Start-to-Stop interval on the bus.

© ® NG kA~ wwDNPE

13.4.4 Receiving Data

To read a multiple-byte data record, follow these steps:

1. Set START=L. If BERR = 1, start timer*.

2. Write the 7-bit peripheral address and the direction bit (1 for a read) to I2DAT.
3. Wait for DONE=1 or for timer to expire*. If BERR=1, go to step 1.

4. If ACK=0, set STOP=1 and go to step 15.
5

Read I2DAT to initiate the first burst of nine SCL pulses to clock in the first byte from the slave. Discard the value that was
read from I2DAT.

6. Wait for DONE=L1. If BERR=1, go to step 1.

7. Read the just-received byte of data from I2DAT. This read also initiates the next read transfer.

8. Repeat steps 6 and 7 for each byte until ready to read the second-to-last byte.

9. Wait for DONE=L1. If BERR=1, go to step 1.

10. Before reading the second-to-last I2DAT byte, set LASTRD=1.

11. Read the second-to-last byte from I2DAT. With LASTRD=1, this initiates the final byte read on the bus.
12. Wait for DONE=1. If BERR=1, go to step 1.

13. Set STOP=1.

14. Read the final byte from I2DAT immediately (the next instruction) after setting the STOP bit. By reading I2DAT while the
‘stop’ condition is being generated, the just-received data byte will be retrieved without initiating an extra read transaction
(nine more SCL pulses) on the 12C bus.

15. Wait for STOP = 0 before initiating another transfer.
* The time-out should be at least as long as the longest expected Start-to-Stop interval on the bus.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 215

Exhibit 2033 - Page 215 of 346

.x"(’::

iy

YPRESS

PERFC

Input/Output —)

13.5 EEPROM Boot Loader

Whenever the MoBL-USB FX2LP18 is taken out of reset via the reset pin, its boot loader checks for the presence of an
EEPROM on the 12C bus. If an EEPROM is detected, the loader reads the first EEPROM byte to determine how to enumer-
ate. The various enumeration modes are described in the Enumeration and ReNumeration™ chapter on page 51.

The MoBL-USB FX2LP18 boot loader supports two 12C EEPROM types:

m EEPROMSs with slave address 1010 that use an 8-bit internal address (for example, 24LC00, 24LC01/B, 24LC02/B).

m EEPROMSs with slave address 1010 that use a 16-bit internal address (for example, 24AA64, 24L.C128, 24AA256).
EEPROMs with densities up to 256 bytes require only a single address byte; larger EEPROMSs require two address bytes.

The MoBL-USB FX2LP18 must determine which EEPROM type is connected — one or two address bytes — so that it can
properly read the EEPROM.

The MoBL-USB FX2LP18 uses the EEPROM device-address pins A2, Al, and A0 to determine whether to send out one or
two bytes of address. As shown in Table 13-11, single-byte-address EEPROMs must be strapped to address 000, while
double-byte-address EEPROMs must be strapped to address 001.

Table 13-11. Strap Boot EEPROM Address Lines to These Values

Bytes Example EEPROM A2 Al AO
16 24AA00* N/A N/A N/A
128 24AA01 0 0 0
256 24AA02 0 0 0
4K 24AA32 0 0 1
8K 24AA6G4 0 0 1
16K 24AA128 0 0 1

* This EEPROM does not have device-address pins.

Additional EEPROM devices can be attached to the 12C bus for general-purpose use, as long as they are strapped for device
addresses other than 000 or 001.

Many single-byte Address EEPROMSs are special cases, because the EEPROM responds to all eight device addresses. If
one of these EEPROMSs used for boot loading, no other EEPROMS may share the bus. Consult your EEPROM data sheet
for details

After determining whether a one- or two-byte-address EEPROM is attached, the MoBL-USB FX2LP18 reports its results in
the ID1 and IDO bits, as shown in Table 13-12.

Table 13-12. Results of Power-On_Reset EEPROM Test

ID1 IDO Meaning
0 0 No EEPROM detected
0 1 One-byte-address load EEPROM detected
1 0 Two-byte-address load EEPROM detected
1 1 Not used

The MoBL-USB FX2LP18 does not check for bus contention during the boot loading process; if another I2C master is shar-
ing the bus, that master must not attempt to initiate any transfers while the boot loader is running.

216 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 216 of 346

14. Timers/Counters and Serial Interface

—'*=£

=—# CYPRESS

PERFORM

14.1 Introduction

The MoBL-USB FX2LP18's timer/counters and serial interface are very similar to the standard 8051, with some differences
and enhancements. This chapter provides technical information on configuring and using the timer/counters and serial inter-
face.

14.2 Timers/Counters

The MoBL-USB FX2LP18 includes three timer/counters (Timer O, Timer 1, and Timer 2). Each timer/counter can operate
either as a timer with a clock rate based on the MoBL-USB FX2LP18's internal clock (CLKOUT) or as an event counter
clocked by the TO pin (Timer 0), T1 pin (Timer 1), or the T2 pin (Timer 2). Timers 1 and 2 may be used for baud clock genera-
tion for the serial interface (see section 14.3 Serial Interface on page 225 for details of the serial interface).

Note The MoBL-USB FX2LP18 can be configured to operate at 12, 24, or 48 MHz. In ‘timer’ mode, the timer/counters run at
the same speed as the MoBL-USB FX2LP18, and they are not affected by the CLKOE and CLKINV configuration bits
(CPUCS.1 and CPUCS.2).

Each timer/counter consists of a 16-bit register that is accessible to software as two SFRs:

m Timer 0 THO and TLO

m Timer1TH1 and TL1

m Timer 2 TH2 and TL2

14.2.1 803x/805x Compatibility

The implementation of the timers/counters is similar to that of the Dallas Semiconductor DS80C320. Table 14-1 summarizes
the differences in timer/counter implementation between the Intel 8051, the Dallas Semiconductor DS80C320, and the MoBL-
USB FX2LP18.

Table 14-1. Timer/Counter Implementation Comparison

Feature Intel 8051 Dallas DS80C320 MoBL-USB FX2LP18
Number of timers 2 3 3
Timer 0/1 overflow No No Yes; TOOUT, TIOUT
available as output signals (one CLKOUT pulse)
Timer 2 output enable n/a Yes Yes
Timer 2 down-count enable n/a Yes No
Timer 2 overflow n/a Yes Yes; T20UT (one CLKOUT pulse)
available as output signal

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 217

Exhibit 2033 - Page 217 of 346

Timers/Counters and Serial Interface YDHF%

14.2.2 TimersOand 1

Timers 0 and 1 operate in four modes, as controlled through the TMOD SFR (Table 14-2 on page 219) and the TCON SFR
(Table 14-3 on page 219). The four modes are:

m 13-bit timer/counter (mode 0)

m 16-bit timer/counter (mode 1)

m 8-bit counter with auto-reload (mode 2)

m Two 8-bit counters (mode 3, Timer O only)

14.2.2.1 Mode 0, 13-Bit Timer/Counter — Timer 0 and Timer 1
Mode 0 operation is illustrated in Figure 14-1.

In mode O, the timer is configured as a 13-bit counter that uses bits 0-4 of TLO (or TL1) and all 8 bits of THO (or TH1). The
timer enable bit (TRO/TR1) in the TCON SFR starts the timer. The C/T Bit selects the timer/counter clock source: either CLK-

OUT or the TO/T1 pins.

The timer counts transitions from the selected source as long as the GATE Bit is 0, or the GATE Bit is 1 and the correspond-
ing interrupt pin (INTO or INT1) is 1.

When the 13-bit count increments from Ox1FFF (all ones), the counter rolls over to all zeros, the TFO (or TF1) Bit is set in the
TCON SFR, and the TOOUT (or TLOUT) pin goes high for one clock cycle.

Ignore the upper 3 bits of TLO (or TL1) because they are indeterminate in mode O.

Figure 14-1. Timer 0/1 - Modes 0 and 1

TOM (or T1M)
Oy
S~ 0 CLK TLO (or TL1)

CLKOUT 1 ¢
cIT 0 4
Divideby4_T FD—N [TT11
Mode Ol

Mode

Divide by 12

7
1111

TO (or T1) pin
TRO (or TR1)

0 THO (or TH1) 7

—» [111111 I—I
GATE Dc
INTO (or
INT1) pin pf FO (or TF1) [y INT
|
!__ _o To Serial Port
(Timer 1 only)
218 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 218 of 346

%!EYPRF% 2 Timers/Counters and Serial Interface

14.2.2.2 Mode 1, 16-Bit Timer/Counter — Timer 0 and Timer 1

In mode 1, the timer is configured as a 16-bit counter. As illustrated in Figure 14-1 on page 218, all 8 bits of the LSB Register

(TLO or TL1) are used. The counter rolls over to all zeros when the count increments from OxFFFF. Otherwise, mode 1 opera-
tion is the same as mode 0.

Table 14-2. TMOD Register — SFR 0x89

Bit Function
TMOD.7 GATEL1 - Timer 1 gate control. When GATE1 = 1, Timer 1 will clock only when INT1 = 1 and TR1 (TCON.6) = 1. When
GATEL =0, Timer 1 will clock only when TR1 = 1, regardless of the state of INT1.
TMOD.6 C/T1 - Counter/Timer select. When C/T1=0, Timer 1 is clocked by CLKOUT/4 or CLKOUT/12, depending on the state of
T1M (CKCON.4). When C/T1 = 1, Timer 1 is clocked by high-to-low transitions on the T1 pin.
TMOD.5 M1 - Timer 1 mode select bit 1.
TMOD.4 MO - Timer 1 mode select bit 0.
M1 MO Mode
0 0 Mode 0: 13-bit counter
0 1 Mode 1: 16-bit counter
1 0 Mode 2: 8-bit counter with auto-reload
1 1 Mode 3: Timer 1 stopped
TMOD.3 GATEQO - Timer 0 gate control, When GATEO = 1, Timer O will clock only when INTO = 1 and TRO (TCON.4) = 1. When
GATEO = 0, Timer 0 will clock only when TRO = 1, regardless of the state of INTO.
TMOD.2 C/TO - Counter/Timer select. When C/T0 =0, Timer 0 is clocked by CLKOUT/4 or CLKOUT/12, depending on the state of
TOM (CKCON.3). When C/TO = 1, Timer 0 is clocked by high-to-low transitions on the TO pin.
TMOD.1 M1 - Timer 0 mode select bit 1.
TMOD.0 MO - Timer O mode select bit 0.
M1 MO Mode
0 0 Mode 0: 13-bit counter
0 1 Mode 1: 16-bit counter
1 0 Mode 2: 8-bit counter with auto-reload
1 1 Mode 3: Two 8-bit counters

Table 14-3. TCON Register — SRF 0x88

Bit Function

TCON.7 TF1 - Timer 1 overflow flag. Set to 1 when the Timer 1 count overflows; automatically cleared when the MoBL-USB
FX2LP18 vectors to the interrupt service routine.

TCON.6 TR1 - Timer 1 run control. 1 = Enable counting on Timer 1.

TCON.5 TFO - Timer 0 overflow flag. Set to 1 when the Timer 0 count overflows; automatically cleared when the MoBL-USB
FX2LP18 vectors to the interrupt service routine.

TCON.4 TRO - Timer 0 run control. 1 = Enable counting on Timer 0.

TCON.3 IE1 - Interrupt 1 edge detect. If external interrupt 1 is configured to be edge-sensitive (IT1 = 1), IE1 is set when a negative

edge is detected on the INT1 pin and is automatically cleared when the MoBL-USB FX2LP18 vectors to the corresponding
interrupt service routine. In this case, IE1 can also be cleared by software. If external interrupt 1 is configured to be level-
sensitive (IT1 = 0), IE1 is set when the INT1 pin is 0 and automatically cleared when the INT1 pin is 1. In level-sensitive
mode, software cannot write to IE1.

TCON.2 IT1 - Interrupt 1 type select. INT1 is detected on falling edge when IT1 = 1; INT1 is detected as a low level when IT1 = 0.

TCON.1 IEO - Interrupt O edge detect. If external interrupt O is configured to be edge-sensitive (ITO = 1), IEO is set when a negative
edge is detected on the INTO pin and is automatically cleared when the MoBL-USB FX2LP18 vectors to the corresponding
interrupt service routine. In this case, IEQ can also be cleared by software. If external interrupt O is configured to be level-
sensitive (ITO = 0), IEO is set when the INTO pin is 0 and automatically cleared when the INTO pin is 1. In level-sensitive
mode, software cannot write to 1EO.

TCON.O ITO - Interrupt O type select. INTO is detected on falling edge when ITO = 1; INTO is detected as a low level when ITO = 0.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 219

Exhibit 2033 - Page 219 of 346

Timers/Counters and Serial Interface =3 CY”HFS%

14.2.2.3 Mode 2, 8-Bit Counter with Auto-Reload — Timer 0 and Timer 1

In mode 2, the timer is configured as an 8-bit counter, with automatic reload of the start value on overflow. TLO (or TL1) is the
counter, and THO (or TH1) stores the reload value.

As illustrated in Figure 14-2, mode 2 counter control is the same as for mode 0 and mode 1. When TLO/1 increments from
OxFF, the value stored in THO/1 is reloaded into TLO/1.

Figure 14-2. Timer 0/1 - Mode 2

. TOM (or T1M)
Divide by 12| —
oY

cIT
CLKOUT — 1 0 TLO (or TL) ,
0
L ~~ RELOAD
Dlv'deby4J 1 D—»I|I|I|I|I|I|I|I|I—

CLK

TO (or T1) pin > —

[11 [11
TRO (or TR1) HEEERREN
0 THO (or THI) 7

GATE Do
INTO (or TFO (or TF1)

INT1) pin |

— INT

_ _a To Serial Port
(Timer 1 only)

14.2.2.4 Mode 3, Two 8-Bit Counters — Timer 0 Only
In mode 3, Timer 0 operates as two 8-bit counters. Selecting mode 3 for Timer 1 simply stops Timer 1.

As shown in Figure 14-3 on page 221, TLO is configured as an 8-bit counter controlled by the normal Timer O control bits. TLO
can either count CLKOUT cycles (divided by 4 or by 12) or high-to-low transitions on the TO pin, as determined by the C/T Bit.
The GATE function can be used to give counter enable control to the INTO pin.

THO functions as an independent 8-bit counter. However, THO can only count CLKOUT cycles (divided by 4 or by 12). The
Timer 1 control and flag bits (TR1 and TF1) are used as the control and flag bits for THO.

When Timer 0 is in mode 3, Timer 1 has limited usage because Timer 0 uses the Timer 1 control bit (TR1) and interrupt flag
(TF1). Timer 1 can still be used for baud rate generation and the Timer 1 count values are still available in the TL1 and TH1
Registers.

Control of Timer 1 when Timer 0 is in mode 3 is through the Timer 1 mode bits. To turn Timer 1 on, set Timer 1 to mode 0, 1,
or 2. To turn Timer 1 off, set it to mode 3. The Timer 1 C/T Bit and T1M Bit are still available to Timer 1. Therefore, Timer 1 can
count CLKOUT/4, CLKOUT/12, or high-to-low transitions on the T1 pin. The Timer 1 GATE function is also available when

Timer 0 is in mode 3.

220 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 220 of 346

= it
o

CYPHF%»? Timers/Counters and Serial Interface

PERFC

Figure 14-3. Timer O - Mode 3

Divide b TOM
ivide by ﬁ
0
CLKOUT 1\—% _ CLK
CIT 0 TLO 7
e | iy O
TO pin
TRO TR0 f—> INT
TF1 | —p INT
GATE Do
INTO pin 0 THO 7
—_) OrrIT—

14.2.3 Timer Rate Control

By default, the MoBL-USB FX2LP18 timers increment every 12 CLKOUT cycles, just as in the standard 8051. Using this
default rate allows existing application code with real-time dependencies, such as baud rate, to operate properly.

Applications that require fast timing can set the timers to increment every 4 CLKOUT cycles instead, by setting bits in the
Clock Control Register (CKCON) at SFR location Ox8E. (See Table 14-4).

Each timer’s rate can be set independently. These settings have no effect in counter mode.

Table 14-4. CKCON (SFR 0x8E) Timer Rate Control Bits

Bit Function

CKCON.5 T2M - Timer 2 clock select. When T2M = 0, Timer 2 uses CLKOUT/12 (for compatibility with standard
8051); when T2M = 1, Timer 2 uses CLKOUT/4. This bit has no effect when Timer 2 is configured for
baud rate generation.

CKCON.4 T1M - Timer 1 clock select. When T1M = 0, Timer 1 uses CLKOUT/12 (for compatibility with standard
8051); when T1M = 1, Timer 1 uses CLKOUT/4.
CKCON.3 TOM - Timer O clock select. When TOM = 0, Timer 0 uses CLKOUT/12 (for compatibility with standard

8051); when TOM = 1, Timer 0 uses CLKOUT/4.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 221

Exhibit 2033 - Page 221 of 346

Timers/Counters and Serial Interface E:E!E’YIPRF.S

RFORM

14.2.4 Timer 2

Timer 2 runs only in 16-bit mode and offers several capabilities not available with Timers 0 and 1. The modes available for
Timer 2 are:

16-bit timer/counter

16-bit timer with capture

16-bit timer/counter with auto-reload
Baud rate generator

The SFRs associated with Timer 2 are:

T2CON (SFR 0xC8) Timer/Counter 2 Control register, (see Table 14-5).

RCAP2L (SFR 0xCA) Captures the TL2 value when Timer 2 is configured for capture mode, or as the LSB of the 16-bit
reload value when Timer 2 is configured for auto-reload mode.

RCAP2H (SFR 0xCB) Captures the TH2 value when Timer 2 is configured for capture mode, or as the MSB of the 16-bit
reload value when Timer 2 is configured for auto-reload mode.

TL2 (SFR OxCC) The lower 8 bits of the 16-bit count.
TH2 (SFR 0xCD) The upper 8 bits of the 16-bit count.

Table 14-5. T2CON Register — SFR 0xC8

Bit Function

T2CON.7 TF2 - Timer 2 overflow flag. Hardware will set TF2 when the Timer 2 overflows from OxFFFF. TF2 must be cleared to 0 by

the software. TF2 will only be setto a 1 if RCLK and TCLK are both cleared to 0. Writing a 1 to TF2 forces a Timer 2 inter-
rupt if enabled.

T2CON.6 EXF2 - Timer 2 external flag. Hardware will set EXF2 when a reload or capture is caused by a high-to-low transition on
the T2EX pin, and EXEN2 is set. EXF2 must be cleared to 0 by software. Writing a 1 to EXF2 forces a Timer 2 interrupt if
enabled.

T2CON.5 RCLK - Receive clock flag. Determines whether Timer 1 or Timer 2 is used for Serial Port O timing of received data in

serial mode 1 or 3. RCLK=1 selects Timer 2 overflow as the receive clock; RCLK=0 selects Timer 1 overflow as the
receive clock.

T2CON.4 TCLK - Transmit clock flag. Determines whether Timer 1 or Timer 2 is used for Serial Port O timing of transmit data in

serial mode 1 or 3. TCLK=1 selects Timer 2 overflow as the transmit clock; TCLK=0 selects Timer 1 overflow as the
transmit clock.

T2CON.3 EXEN2 - Timer 2 external enable. EXEN2=1 enables capture or reload to occur as a result of a high-to-low transition on

the T2EX pin, if Timer 2 is not generating baud rates for the serial port. EXEN2=0 causes Timer 2 to ignore all external
events on the T2EX pin.

T2CON.2 TR2 - Timer 2 run control flag. TR2=1 starts Timer 2; TR2=0 stops Timer 2.

T2CON.1 CIT2 - Counter/Timer select. When C/T2 = 1, Timer 2 is clocked by high-to-low transitions on the T2 pin.When C/T2=0

in modes 0, 1, or 2, Timer 2 is clocked by CLKOUT/4 or CLKOUT/12, depending on the state of T2M (CKCON.5). When
C/T2 = 0in mode 3, Timer 2 is clocked by CLKOUT/2, regardless of the state of CKCON.5.

T2CON.0 CP/RL2 - Capture/reload flag. When CP/RL2=1, Timer 2 captures occur on high-to-low transitions of the T2EX pin, if

EXEN2 = 1. When CP/RL2 = 0, auto-reloads occur when Timer 2 overflows or when high-to-low transitions occur on the
T2EX pin, if EXEN2 = 1. If either RCLK or TCLK is set to 1, CP/RL2 will not function and Timer 2 will operate in auto-
reload mode following each overflow.

14.2.4.1 Timer 2 Mode Control

Table 14-6 summarizes how the T2CON bits determine the Timer 2 mode.

Table 14-6. Timer 2 Mode Control Summary

TR2 TCLK RCLK CP/RL2 Mode
0 X X X Timer 2 stopped
1 1 X X Baud rate generator
1 X 1 X Baud rate generator
1 0 0 0 16-bit timer/counter with auto-reload
1 0 0 1 16-bit timer/counter with capture
X =Don't care

222 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 222 of 346

Timers/Counters and Serial Interface

14.2.5 Timer 2 The 6-Bit Timer/Counter Mode

Figure 14-4 illustrates how Timer 2 operates in timer/counter mode with the optional capture feature. The C/T2 Bit determines
whether the 16-bit counter counts CLKOUT cycles (divided by 4 or 12), or high-to-low transitions on the T2 pin. The TR2 Bit
enables the counter. When the count increments from OxFFFF, the TF2 flag is set and the T20UT pin goes high for one CLK-
OUT cycle.

14.2.5.1 Timer 2 The 16-Bit Timer/Counter Mode with Capture

The Timer 2 capture mode (Figure 14-4) is the same as the 16-bit timer/counter mode, with the addition of the capture regis-
ters and control signals.

The CP/RL2 Bit in the T2CON SFR enables the capture feature. When CP/RL2 = 1, a high-to-low transition on the T2EX pin
when EXEN2 = 1 causes the Timer 2 value to be loaded into the capture registers RCAP2L and RCAP2H.

Figure 14-4. Timer 2 - Timer/Counter with Capture

Divide by 13 T2M CP/RL2=1

CLKOU — 1¥0¢ CIT2
CLK O 78 15

Divide by 4 T2 [THZ I—
| |

[| | |
T2 pin > ||;||

[| | HEEEEEEN

TR2 [T RCAPZL T RCAPZH]
0 78 15

TF2 ¢

EXENZ—L CAPTURE
) p| EXF2 i>—> INT
T2EX pin >—————— J "
MoBL-USB™ TRM, Document # 001-11981 Rev. *B 223

Exhibit 2033 - Page 223 of 346

S e

Timers/Counters and Serial Interface =3 CY”HF%

14.2.6 Timer 2 16-Bit Timer/Counter Mode with Auto-Reload

When CP/RL2 = 0, Timer 2 is configured for the auto-reload mode illustrated in Figure 14-5. Control of counter input is the
same as for the other 16-bit counter modes. When the count increments from OxFFFF, Timer 2 sets the TF2 flag and the start-
ing value is reloaded into TL2 and TH2. Software must preload the starting value into the RCAP2L and RCAP2H registers.

When Timer 2 is in auto-reload mode, a reload can be forced by a high-to-low transition on the T2EX pin, if enabled by
EXEN2 = 1.

Figure 14-5. Timer 2 - Timer/Counter with Auto Reload

y T2M CP/RL2 =0
Divide by ﬁn

CLKOUT 1¥0¢ _
I cIT2 K 78 15

Divide by 4 ND_H T2 | THZ
[T I I TTTTITTT]
T2 pin
P [T T I I T T T I T T I T]
TR2 | RCAPZL | RCAP2H I
0 78 15
TF2 |«

EXENZ—I_

.)
T2EX pin >———] J

A4

EXF2 @—» INT

14.2.7 Timer 2 Baud Rate Generator Mode

Set either RCLK or TCLK to ‘1’ to configure Timer 2 to generate baud rates for Serial Port 0 in serial mode 1 or 3. Figure 14-6
on page 225 is the functional diagram for the Timer 2 baud rate generator mode. In baud rate generator mode, Timer 2 func-
tions in auto-reload mode. However, instead of setting the TF2 flag, the counter overflow is used to generate a shift clock for
the serial port function. As in normal auto-reload mode, the overflow also causes the pre-loaded start value in the RCAP2L
and RCAP2H Registers to be reloaded into the TL2 and TH2 Registers.

When either TCLK = 1 or RCLK =1, Timer 2 is forced into auto-reload operation, regardless of the state of the CP/RL2 Bit.
Timer 2 is used as the receive baud clock source when RCLK=1, and as the transmit baud clock source when TCLK=1.

When operating as a baud rate generator, Timer 2 does not set the TF2 Bit. In this mode, a Timer 2 interrupt can only be gen-
erated by a high-to-low transition on the T2EX pin setting the EXF2 Bit, and only if enabled by EXEN2 = 1.

The counter time base in baud rate generator mode is CLKOUT/2. To use an external clock source, set C/T2 to ‘1’ and apply
the desired clock source to the T2 pin.

The maximum frequency for an external clock source on the T2 pin is 6 MHz.

224 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 224 of 346

= it
o

‘CYPRESS

PERFC

Figure 14-6. Timer 2 - Baud Rate Generator Mode

Divide
CLKOUT — _
by 2 Ol CIT2

Timers/Counters and Serial Interface

TIMER 1 OVERFLOW

~ CLK
1
T Divide
T2 pin’> by 2
TR2 SMOD
I—'o\ T
0 78 15 RCLK RX
| L2 1HZ | —Pp 40— CLOCK
[T T T T 1111111 1 Divide
ﬁ ﬁ by 16
T T T T T 1T T T T T1 1711 TCL
| RCAP2L | RCAP2H | 40—
0 78 15 1 Divide
| by 16
EXEN2 | .,y

L

CLOCK

EXF2 [—p TIMER 2 INTERRUPT

T2EX pin >—— |) >

14.3 Serial Interface

The MoBL-USB FX2LP18 provides two serial ports. Serial Port 0 operates almost exactly as a standard 8051 serial port;
depending on the configured mode (see Table 14-7), its baud-clock source can be CLKOUT/4 or CLKOUT/12, Timer 1, Timer
2, or the High-Speed Baud Rate Generator (see section 14.3.2 High-Speed Baud Rate Generator on page 226). Serial Port 1
is identical to Serial Port 0, except that it cannot use Timer 2 as its baud rate generator.

Each serial port can operate in synchronous or asynchronous mode. In synchronous mode, the MoBL-USB FX2LP18 gener-
ates the serial clock and the serial port operates in half-duplex mode. In asynchronous mode, the serial port operates in full-
duplex mode. In all modes, the MoBL-USB FX2LP18 double-buffers the incoming data so that a byte of incoming data can be
received while firmware is reading the previously-received byte.

Each serial port can operate in one of four modes, as outlined in Table 14-7.

Table 14-7. Serial Port Modes

Timer 2 (Port 0 only), or

High-Speed Baud Rate Generator (Ports 0 and 1)

Mode Sync/ Baud-Clock Source Data Start/ 9th Bit Function
Async Bits Stop
0 Sync CLKOUT/4 or CLKOUT/12 8 None None
Async Timer 1 (Ports 0 and 1), 8 1 start, 1 stop None

Timer 2 (Port 0 only), or
High-Speed Baud Rate Generator (Ports 0 and 1)

2 Async CLKOUT/32 or CLKOUT/64 9 1 start, 1 stop 0, 1, or parity

3 Async Timer 1 (Ports 0 and 1), 9 1 start, 1 stop 0, 1, or parity

Baud Rate Generator on page 226).

Note: The High-Speed Baud Rate Generator provides 115.2K or 230.4K baud rates (see section 14.3.2 High-Speed

MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 225 of 346

225

‘im

b7 CYPRESS

if

(1

Timers/Counters and Serial Interface =

RFC

The registers associated with the serial ports are as follows. (Registers PCON and EICON also include some functionality
which is not part of the Serial Interface).

PCON (SFR 0x87) Bit 7, Serial Port 0 rate control SMODO (Table 14-13 on page 227).

SCONO (SFR 0x98) Serial Port 0 control (Table 14-11 on page 227).

SBUFO (SFR 0x99) Serial Port 0 transmit/receive buffer.

EICON (SFR 0xD8) Bit 7, Serial Port 1 rate control SMODL1 (Table 14-12 on page 227).

SCONL1 (SFR 0xCO0) Serial Port 1 control (Table 14-14 on page 228).

SBUF1 (SFR 0xC1) Serial Port 1 transmit/receive buffer.

T2CON (SFR 0xC8) Baud clock source for modes 1 and 3 (RCLK and TCLK in Table 14-5 on page 222).

UART230 (0xE608) High-Speed Baud Rate Generator enable (see section 14.3.2 High-Speed Baud Rate Generator).

14.3.1 803x/805x Compatibility

The implementation of the serial interface is similar to that of the Dallas Semiconductor, DS80C320. Table 14-8 summarizes
the differences in serial interface implementation between the Intel 8051, the Dallas Semiconductor DS80C320, and the
MoBL-USB FX2LP18.

Table 14-8. Serial Interface Implementation Comparison

Feature Intel 8051 Dallas DS80C320 MoBL-USB FX2LP18
Number of serial ports 1 2 2
Framing error detection not implemented implemented not implemented

Slave address comparison for multiproces-

g not implemented implemented not implemented
sor communication

14.3.2 High-Speed Baud Rate Generator

The MoBL-USB FX2LP18 incorporates a high-speed baud rate generator which can provide 115.2K and 230.4K baud rates
for either or both serial ports, regardless of the MoBL-USB FX2LP18's internal clock frequency (12, 24, or 48 MHz).

The high-speed baud rate generator is enabled for Serial Port 0 by setting UART230.0 to 1; it's enabled for Serial Port 1 by
setting UART230.1 to 1.

When enabled, the high-speed baud rate generator defaults to 115.2K baud. To select 230.4K baud for Serial Port 0, set
SMODO (PCON.7) to 1, for Serial Port 1, set SMOD1 (EICON.7) to 1.

Table 14-9. UART230 Register — Address 0xE608

Bit Function
UART230.7:2 Reserved
UART230.1 230UARTL1 - Enable high-speed baud rate generator for serial port 1. When 230UART1 = 1, a 115.2K baud (if

SMOD1 = 0) or 230.4K baud (if SMOD1 = 1) clock is provided to serial port 1. When 230UART1 = 0, serial port 1's
baud clock is provided by one of the sources shown in Table 14-7 on page 225.

UART230.0 230UARTO - Enable high-speed baud rate generator for serial port 0. When 230UARTO = 1, a 115.2K baud (if
SMODO = 0) or 230.4K baud (if SMODO = 1) clock is provided to serial port 0. When 230UART1 = 0, serial port 0’'s
baud clock is provided by one of the sources shown in Table 14-7 on page 225.

Note When the High-Speed Baud Rate Generator is enabled for either serial port, neither port may use Timer 1 as its baud-
clock source. Therefore, the allowable combinations of baud-clock sources for Modes 1 and 3 are listed below.

Table 14-10. Allowable Baud-Clock Combinations for Modes 1 and 3

Port 0 Port 1
Timer 1 Timer 1
Timer 2 Timer 1
Timer 2 High-Speed Baud Rate Generator
High-Speed Baud Rate Generator High-Speed Baud Rate Generator
226 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 226 of 346

W’“ll

b C P.RF%S Timers/Counters and Serial Interface

RFC

14.3.3 Mode 0

Serial mode 0 provides synchronous, half-duplex serial communication. For Serial Port 0, serial data output occurs on the
RXDOOUT pin, serial data is received on the RXDO pin, and the TXDO pin provides the shift clock for both transmit and
receive. For Serial Port 1, the corresponding pins are RXD1OUT, RXD1, and TXD1.

The serial mode 0 baud rate is either CLKOUT/12 or CLKOUT/4, depending on the state of the SM2_0 bit (or SM2_1 for
Serial Port 1). When SM2_0 = 0, the baud rate is CLKOUT/12, when SM2_0 = 1, the baud rate is CLKOUT/4.

Mode O operation is identical to the standard 8051. Data transmission begins when an instruction writes to the SBUFO (or
SBUF1) SFR. The USART shifts the data, LSB first, at the selected baud rate, until the 8-bit value has been shifted out.

Mode 0 data reception begins when the REN_O (or REN_1) bit is set and the RI_0 (or RI_1) bit is cleared in the correspond-
ing SCON SFR. The shift clock is activated and the USART shifts data, LSB first, in on each rising edge of the shift clock until
8 bits have been received. One CLKOUT cycle after the 8th bit is shifted in, the RI_0 (or RI_1) bit is set and reception stops
until the software clears the RI bit.

Figure 14-7 on page 228 through Figure 14-10 on page 230 illustrate Serial Port Mode 0 transmit and receive timing for both
low-speed (CLKOUT/12) and high-speed (CLKOUT/4) operation. The figures show Port 0 signal names, RXD0O, RXDOOUT,
and TXDO. The timing is the same for Port 1 signals RXD1, RXD1OUT, and TXD1, respectively.

Table 14-11. SCONO Register — SFR 98h

Bit Function
SCONO0.7 SMO_0 - Serial Port 0 mode bit 0.
SCONO0.6 SM1_0 - Serial Port 0 mode bit 1, decoded as:
SMO_0 SM1_0 Mode
0 0 0
0 1 1
1 0 2
1 1 3
SCONO0.5 SM2_0 - Multiprocessor communication enable. In modes 2 and 3, this bit enables the multiprocessor communication

feature. If SM2_0 = 1 in mode 2 or 3, then RI_O will not be activated if the received 9th bit is 0.

If SM2_0=1 in mode 1, then RI_0 will only be activated if a valid stop is received. In mode 0, SM2_0 establishes the
baud rate: when SM2_0=0, the baud rate is CLKOUT/12; when SM2_0=1, the baud rate is CLKOUT/4.

SCONO0.4 REN_O - Receive enable. When REN_0=1, reception is enabled.

SCONO0.3 TB8_0 - Defines the state of the 9th data bit transmitted in modes 2 and 3.

SCONO0.2 RB8_0 - In modes 2 and 3, RB8_0 indicates the state of the 9th bit received. In mode 1, RB8_0 indicates the state of
the received stop bit. In mode 0, RB8_0 is not used.

SCONO0.1 TI_O - Transmit interrupt flag. Indicates that the transmit data word has been shifted out. In mode 0, TI_0 is set at the
end of the 8th data bit. In all other modes, TI_0 is set when the stop bit is placed on the TXDO pin. TI_O must be cleared
by firmware.

SCONO0.0 RI_O - Receive interrupt flag. Indicates that serial data word has been received. In mode 0, RI_O is set at the end of the

8th data bit. In mode 1, RI_O is set after the last sample of the incoming stop bit, subject to the state of SM2_0. In
modes 2 and 3, RI_O is set at the end of the last sample of RB8_0. RI_0 must be cleared by firmware.

Table 14-12. EICON (SFR 0xD8) SMOD1 Bit

Bit Function

EICON.7 SMOD1 - Serial Port 1 baud rate doubler enable. When SMODL1 = 1 the baud rate for Serial Port is doubled.

Table 14-13. PCON (SFR 0x87) SMODO Bit

Bit Function
PCON.7 SMODO - Serial Port 0 baud rate double enable. When SMODO = 1, the baud rate for Serial Port 0 is doubled.
MoBL-USB™ TRM, Document # 001-11981 Rev. *B 227

Exhibit 2033 - Page 227 of 346

Timers/Counters and Serial Interface E%!EYPRF%

RFORM

Table 14-14. SCON1 Register — SFR COh

Bit Function

SCON1.7 SMO_1 - Serial Port 1 mode bit 0.

SCON1.6 SM1_1 - Serial Port 1 mode bit 1, decoded as:
SMO_1 SM1_1 Mode
0 0 0
0 1 1
1 0 2
1 1 3

SCON1.5 SM2_1 - Multiprocessor communication enable. In modes 2 and 3, this bit enables the multiprocessor communication

feature. If SM2_1 = 1 in mode 2 or 3, then RI_1 will not be activated if the received 9th bit is 0.

If SM2_1=1 in mode 1, then RI_1 will only be activated if a valid stop is received. In mode 0, SM2_1 establishes the baud
rate: when SM2_1=0, the baud rate is CLKOUT/12; when SM2_1=1, the baud rate is CLKOUT/4.

SCON1.4 REN_1 - Receive enable. When REN_1=1, reception is enabled.

SCONL1.3 TB8_1 - Defines the state of the 9th data bit transmitted in modes 2 and 3.

SCONL1.2 RB8_1 - In modes 2 and 3, RB8_1 indicates the state of the 9th bit received. In mode 1, RB8_1 indicates the state of the
received stop bit. In mode 0, RB8_1 is not used.

SCON1.1 TI_1 - Transmit interrupt flag. Indicates that the transmit data word has been shifted out. In mode 0, TI_1 is set at the end
of the 8th data bit. In all other modes, TI_1 is set when the stop bit is placed on the TXD1 pin. TI_1 must be cleared by
the software.

SCON1.0 RI_1 - Receive interrupt flag. Indicates that serial data word has been received. In mode 0, RI_1 is set at the end of the

8th data bit. In mode 1, RI_1 is set after the last sample of the incoming stop bit, subject to the state of SM2_1. In modes
2 and 3, RI_1 is set at the end of the last sample of RB8_1. RI_1 must be cleared by the software.

Figure 14-7. Serial Port Mode 0 Receive Timing - Low Speed Operation

CLKOUT

rRxpo /R O T XeXT OeX T e OO e)oK

RXDOOUT

xp0 I Jr Jr Jr_re_fr_r "
TI

RI

228 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 228 of 346

\

CYPHF%E Timers/Counters and Serial Interface

—

(1

Figure 14-8. Serial Port Mode 0 Receive Timing - High-Speed Operation

cucout [IIITTHUUUUTUUUUUTUUUTUUUU Uy Ut
RXDO XOX XK T O T OOX T OK T OO T OO OK

RXDOOUT

m™po L 1 [° - [[[

TI

RI

At both low and high-speed in Mode 0, data on RXDO is sampled two CLKOUT cycles before the rising clock edge on
TXDO.

Figure 14-9. Serial Port Mode 0 Transmit Timing - Low Speed Operation

CLKOUT

RXDO
RXDOOUT X D0 X D1 [X D2 X D3 X D4 X D5 X D6 X D7 X
TXDO M Jr JJr I rrr-r— "
Tl

RI

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 229

Exhibit 2033 - Page 229 of 346

= it

Timers/Counters and Serial Interface CYPHF%

Figure 14-10. Serial Port Mode 0 Transmit Timing - High-Speed Operation

cuwout [JTUTHTTTLUTUTLITUTU Uiy uiuUuuyyt

RXDO
RXDOOUT X D0 X D1 X D2 X D3 X D4 X b5 X D6 X D7 X

xoo [L[[LI - I I []
TI

RI

14.3.4 Mode 1

Mode 1 provides standard asynchronous, full-duplex communication, using a total of 10 bits: 1 start bit, 8 data bits, and 1 stop
bit. For receive operations, the stop bit is stored in RB8_0 (or RB8_1). Data bits are received and transmitted LSB first.

Mode 1 operation is identical to that of the standard 8051 when Timer 1 uses CLKOUT/12, (T1M=0, the default).

14.3.4.1 Mode 1 Baud Rate

The mode 1 baud rate is a function of timer overflow. Serial Port O can use either Timer 1 or Timer 2 to generate baud rates.
Serial Port 1 can only use Timer 1. The two serial ports can run at the same baud rate if they both use Timer 1, or different
baud rates if Serial Port 0 uses Timer 2 and Serial Port 1 uses Timer 1.

Each time the timer increments from its maximum count (OxFF for Timer 1 or OxFFFF for Timer 2), a clock is sent to the baud
rate circuit. That clock is then divided by 16 to generate the baud rate.

When using Timer 1, the SMODO (or SMOD1) Bit selects whether or not to divide the Timer 1 rollover rate by 2. Therefore,
when using Timer 1, the baud rate is determined by the equation:
SMODx
Baud Rate = 3 " Timer 1 Overflow Equation 1

When using Timer 2, the baud rate is determined by the equation:

Timer 2 Overflow
16

To use Timer 1 as the baud rate generator, it is generally best to use Timer 1 mode 2 (8-bit counter with auto-reload), although
any counter mode can be used. In mode 2, the Timer 1 reload value is stored in the TH1 register, which makes the complete
formula for Timer 1:

Baud Rate = Equation 2

SMODx
_2 CLKOUT .
Baud Rate = o X(12—8><T1M)><(256—TH1) Equation 3
To derive the required TH1 value from a known baud rate when T1M=0, use the equation:
SMODx
TH1 = 256—2 x CLKOUT Equation 4
384 x Baud Rate
230 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 230 of 346

‘im

=7 C‘J{PRF%% Timers/Counters and Serial Interface

RFC

i

(1

To derive the required TH1 value from a known baud rate when T1M=1, use the equation:

SMODx

2 x CLKOUT

128 x Baud Rate

Note Very low serial port baud rates may be achieved with Timer 1 by enabling the Timer 1 interrupt, configuring Timer 1 to
mode 1, and using the Timer 1 interrupt to initiate a 16-bit software reload.

TH1 = 256 — Equation 5

Table 14-15 lists sample reload values for a variety of common serial port baud rates, using Timer 1 operating in mode 2
(TMOD.5:4=10) with a CLKOUT/4 clock source (T1M=1) and the full timer rollover (SMOD1=1).

Table 14-15. Timer 1 Reload Values for Common Serial Port Mode 1 Baud Rates

CLKOUT =12 MHz CLKOUT =24 MHz CLKOUT =48 MHz
Nominal TH1 TH1 TH1
Actual Actual Actual
Rate Reload Error Reload Error Reload Error
Rate Rate Rate
Value Value Value
57600 FD 62500 +8.50% F9 53571 -6.99% F3 57692 +0.16%
38400 FB 37500 -2.34% F6 37500 -2.34% EC 37500 -2.34%
28800 F9 26786 -6.99% F3 28846 +0.16% E6 28846 +0.16%
19200 F6 18750 -2.34% EC 18750 -2.34% D9 19230 +0.16%
9600 EC 9375 -2.34% D9 9615 +0.16% B2 9615 +0.16%
4800 D9 4807 +0.16% B2 4807 +0.16% 64 4807 +0.16%
2400 B2 2403 +0.16% 64 2403 +0.16% — — —
Settings: SMOD=1, CF_I':O, Timerl Mode=2, TIM=1
Note Using rates that are off by 2% or more will not work in all systems.

More accurate baud rates may be achieved by using Timer 2 as the baud rate generator. To use Timer 2 as the baud rate
generator, configure Timer 2 in auto-reload mode and set the TCLK and/or RCLK bits in the T2CON SFR. TCLK selects Timer
2 as the baud rate generator for the transmitter; RCLK selects Timer 2 as the baud rate generator for the receiver. The 16-bit
reload value for Timer 2 is stored in the RCAP2L and RCA2H SFRs, which makes the equation for the Timer 2 baud rate:

Baud Rate = CLKOUT Equation 6
32 x (65536 — (256 x RCAP2H + RCAP2L))
To derive the required RCAP2H and RCAP2L values from a known baud rate, use the equation:
RCAP2H:L = 65536 — —=LKOUT Equation 7

32 x Baud Rate
When either RCLK or TCLK is set, the TF2 flag is not set on a Timer 2 rollover and the T2EX reload trigger is disabled.

Table 14-16 lists sample RCAP2H:L reload values for a variety of common serial baud rates.

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 231

Exhibit 2033 - Page 231 of 346

W’“ll

Timers/Counters and Serial Interface = CWRF%

PERFC

Table 14-16. Timer 2 Reload Values for Common Serial Port Mode 1 Baud Rates

CLKOUT =12 MHz CLKOUT = 24 MHz CLKOUT =48 MHz
. RCAP2H:L RCAP2H:L RCAP2H:L
Nominal Rate Actual Actual Actual
Reload Error Reload Error Reload Error
Rate Rate Rate
Value Value Value
57600 FFF9 53571 -6.99% FFF3 57692 +0.16% FFE6 57692 +0.16%
38400 FFF6 37500 -2.34% FFEC 37500 -2.34% FFD9 38461 +0.16%
28800 FFF3 28846 +0.16% FFE6 28846 +0.16% FFCC 28846 +0.16%
19200 FFEC 18750 -2.34% FFD9 19230 +0.16% FFB2 19230 +0.16%
9600 FFD9 9615 +0.16% FFB2 9615 +0.16% FF64 9615 +0.16%
4800 FFB2 4807 +0.16% FF64 4807 +0.16% FEC8 4807 +0.16%
2400 FF64 2403 +0.16% FEC8 2403 +0.16% FD90 2403 +0.16%
Note using rates that are off by 2.3% or more will not work in all systems.

14.3.4.2 Mode 1 Transmit

Figure 14-11 on page 233 illustrates the mode 1 transmit timing. In mode 1, the USART begins transmitting after the first roll-
over of the divide-by-16 counter after the software writes to the SBUFO (or SBUF1) register. The USART transmits data on the
TXDO (or TXD1) pin in the following order: start bit, 8 data bits (LSB first), stop bit. The TI_0 (or TI_1) bit is set 2 CLKOUT
cycles after the stop bit is transmitted.

14.3.5 Mode 1 Receive

Figure 14-12 on page 233 illustrates the mode 1 receive timing. Reception begins at the falling edge of a start bit received on
the RXDO (or RXD1) pin, when enabled by the REN_O (or REN_1) Bit. For this purpose, the RXDO (or RXD1) pin is sampled
16 times per bit for any baud rate. When a falling edge of a start bit is detected, the divide-by-16 counter used to generate the
receive clock is reset to align the counter rollover to the bit boundaries.

For noise rejection, the serial port establishes the content of each received bit by a majority decision of 3 consecutive sam-
ples in the middle of each bit time. For the start bit, if the falling edge on the RXDO (or RXD1) pin is not verified by a majority
decision of 3 consecutive samples (low), then the serial port stops reception and waits for another falling edge on the RXDO
(or RXD1) pin.
At the middle of the stop bit time, the serial port checks for the following conditions:
m RIO(orRI_1)=0
m If SM2_0 (or SM2_1) = 1, the state of the stop bitis 1

(If SM2_0 (or SM2_1) = 0, the state of the stop bit does not matter.

If the above conditions are met, the serial port then writes the received byte to the SBUFO (or SBUF1) Register, loads the stop
bit into RB8_0 (or RB8_1), and sets the RI_O0 (or RI_1) Bit. If the above conditions are not met, the received data is lost, the
SBUF Register and RB8 Bit are not loaded, and the RI Bit is not set.

After the middle of the stop bit time, the serial port waits for another high-to-low transition on the (RXDO or RXD1) pin.

232 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 232 of 346

— & S
e o
#

YPHF% Timers/Counters and Serial Interface

Figure 14-11. Serial Port 0 Mode 1 Transmit Timing

Write to
SBUFO [

TX CLK | | | | | | | | | |
SHIFT I | l I | I l I I

TXDO START/ D0 X D1 X D2 X D3 X D4 X D5 X D6 X D7 STOP

RXDO

RXDOOUT

TLO

RI_O

Figure 14-12. Serial Port 0 Mode 1 Receive Timing

RX CLK | N | U | I | N |

. RXDO \STARY 5o X b1 XD2 X D3 |[X D4 X D5 X D6 X D7 / STOP
By TN 1 A LA A
S TR T L T T

RXDOOUT
TXDO

TI_O

RI_O [

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 233

Exhibit 2033 - Page 233 of 346

—l ———
— =

Timers/Counters and Serial Interface e CYDRF%

14.3.6 Mode 2

Mode 2 provides asynchronous, full-duplex communication, using a total of 11 bits: 1 start bit, 8 data bits, a programmable 9th
bit, and 1 stop bit. The data bits are transmitted and received LSB first. For transmission, the 9th bit is determined by the
value in TB8_0 (or TB8_1). To use the 9th bit as a parity bit, move the value of the P bit (SFR PSW.0) to TB8_0 (or TB8_1).

The Mode 2 baud rate is either CLKOUT/32 or CLKOUT/64, as determined by the SMODO (or SMOD1) bit. The formula for
the mode 2 baud rate is:

2SMODX cLKOUT

Equation 8
64 .

Baud Rate =

Mode 2 operation is identical to the standard 8051.

14.3.6.1 Mode 2 Transmit

Figure 14-13 on page 235 illustrates the mode 2 transmit timing. Transmission begins after the first rollover of the divide-by-
16 counter following a software write to SBUFO (or SBUF1). The USART shifts data out on the TXDO (or TXD1) pin in the fol-
lowing order: start bit, data bits (LSB first), 9th bit, stop bit. The TI_0 (or TI_1) Bit is set when the stop bit is placed on the
TXDO (or TXD1) pin.

14.3.6.2 Mode 2 Receive

Figure 14-14 on page 235 illustrates the mode 2 receive timing. Reception begins at the falling edge of a start bit received on
the RXDO (or RXD1) pin, when enabled by the REN_O (or REN_1) Bit. For this purpose, the RXDO (or RXD1) pin is sampled
16 times per bit for any baud rate. When a falling edge of a start bit is detected, the divide-by-16 counter used to generate the
receive clock is reset to align the counter rollover to the bit boundaries.

For noise rejection, the serial port establishes the content of each received bit by a majority decision of 3 consecutive sam-
ples in the middle of each bit time. For the start bit, if the falling edge on the RXDO (or RXD1) pin is not verified by a majority
decision of 3 consecutive samples (low), then the serial port stops reception and waits for another falling edge on the RXDO
(or RXD1) pin.

At the middle of the stop bit time, the serial port checks for the following conditions:
m RIO(orRI_1)=0

m If SM2_0 (or SM2_1) = 1, the state of the stop bit is 1.
(If SM2_0 (or SM2_1) = 0, the state of the stop bit does not matter.)

If the above conditions are met, the serial port then writes the received byte to the SBUFO (or SBUF1) Register, loads the stop
bit into RB8_0 (or RB8_1), and sets the RI_O0 (or RI_1) Bit. If the above conditions are not met, the received data is lost, the
SBUF Register and RB8 Bit are not loaded, and the RI Bit is not set. After the middle of the stop bit time, the serial port waits
for another high-to-low transition on the RXDO (or RXD1) pin.

234 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 234 of 346

Nl““ll

f‘}§|

W RF%Q Timers/Counters and Serial Interface

—

Figure 14-13. Serial Port 0 Mode 2 Transmit Timing

Write to
SBUFO0 H

TX CLK .t rn° @& ;. | ‘@ ;{4 179
SHIFT | | S N O | | Y NN

TXDO STARY bo X b1 X2 X D3 X D4 X D5 X D6 X_D7 X TB8 /STOP

RXDO
RXDOOUT

TLO

RIO

Figure 14-14. Serial Port 0 Mode 2 Receive Timing

Vg <) | N | | A | | | | |

RXDO STARV Do X b1 XD2 X D3 X b4 X D5 X D6 X D7 X RB8,/STOP
Bit detector 1 Il |- I Il |- ||

samelng o T

SHIFT
RXDOOUT

TXDO
TILO

RI_O

MoBL-USB™ TRM, Document # 001-11981 Rev. *B 235

Exhibit 2033 - Page 235 of 346

\

Timers/Counters and Serial Interface =

#

¥ CYPRESS

(1

14.3.7 Mode 3

Mode 3 provides asynchronous, full-duplex communication, using a total of 11 bits: 1 start bit, 8 data bits, a programmable 9th
bit, and 1 stop bit. The data bits are transmitted and received LSB first.

The mode 3 transmit and operations are identical to mode 2. The mode 3 baud rate generation is identical to mode 1. That is,
mode 3 is a combination of mode 2 protocol and mode 1 baud rate. Figure 14-15 illustrates the mode 3 transmit timing.
Figure 14-16 illustrates the mode 3 receive timing.

Mode 3 operation is identical to that of the standard 8051 when Timer 1 uses CLKOUT/12, (T1M=0, the default).

Figure 14-15. Serial Port 0 Mode 3 Transmit Timing

Write to
SBUFO ﬂ

TX CLK | N | | S S | | | N A N AN
SHIFT o r— 1T " ‘1 @& q@® f 1

TXDO STARY Do X b1 X D2 X D3 X D4 X D5 X D6 X D7 X TB8 /STOP

RXDO
RXDOOUT

TILO

RI_O

Figure 14-16. Serial Port 0 Mode 3 Receive Timing

rxck o 1 e o e I

RXDO STARY Do X(D1 X D2 X D3 X D4 X_D5 X D6 X D7 X RB8/STOP

Bit detector 1| 11 1| B 1 | | |
sampling

B Lo LT

RXDOOUT
TXDO
TILO

RI_O

236 MoBL-USB™ TRM, Document # 001-11981 Rev. *B

Exhibit 2033 - Page 236 of 346

