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Dynamic holography for optical interconnections.
II. Routing holograms with predictable

location and intensity of each diffraction order
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An analysis of dynamic phase-only holograms, described by fractional notation and recorded onto a pixelated
spatial light modulator (SLM) in a reconfigurable optical beam-steering switch, is presented. The phase
quantization and arrangement of the phase states and the SLM pixelation and dead-space effects are decou-
pled, expressed analytically, and simulated numerically. The phase analysis with a skip–rotate rule reveals
the location and intensity of each diffraction order at the digital replay stage. The optical reconstruction of
the holograms recorded onto SLM’s with rectangular pixel apertures entails sinc-squared scaling, which fur-
ther reduces the intensity of each diffraction order. With these two factors taken into account, the highest
values of the nonuniform first-order diffraction efficiencies are expected to be 33%, 66%, and 77% for two-,
four-, and and eight-level one-dimensional holograms with a 90% linear pixel fill factor. The variation of the
first-order diffraction efficiency and the relative replay intensities were verified to within 1 dB by performing
the optical reconstruction of binary phase-only holograms recorded onto a ferroelectric liquid crystal on a sili-
con SLM. © 2001 Optical Society of America

OCIS codes: 050.1950, 090.1760, 090.2890, 100.5090, 120.5060, 230.6120.
1. INTRODUCTION
In Part I,1 the effects of hologram illumination on the re-
play beam profile, the on-beam-axis coupling efficiency,
and the cross-talk isolation of a 4f holographic switch
were presented. For dynamic holographic routing with a
reconfigurable spatial light modulator (SLM), the conven-
tional grating description in terms of its physical pitch
length and analysis as a step-phase function2 are both
cumbersome and inadequate: cumbersome because the
physical parameters of a holographic replay are not nec-
essarily required or known when one is analyzing a holo-
graphic switch and inadequate because gratings (see Sub-
section 2.A) form only a subset of all possible routing
patterns with a pixelated SLM with inherent physical
limitations. Another way to replay arbitrary hologram
functions encoded onto SLM’s with pixel defects is to per-
form a discrete Fourier transform (DFT; e.g., a fast-
Fourier-transform algorithm3) on the zero-padded, over-
sampled digital representation of the optical holograms.
0740-3232/2001/010205-11$15.00 ©
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Clearly, the computing resources required for the DFT
and for evaluating the efficiency of the main replay order
and the potential cross talk of each noise order can be pro-
hibitive for large hologram array sizes.

Hence, here we treat the phase and the spatial effects
that determine the intensity and location of each far-field,
Fraunhofer diffraction order or peak (henceforth called
replay order) separately in analytic forms. For the
analyses we utilize the fractional hologram representa-
tion described in Subsection 2.A. In the context of optical
reconstruction of thin holograms, Subsection 2.B illus-
trates the typically convoluted phase and spatial effects.

The phase effect is concerned with quantization with a
limited number of phase levels and the dynamic hologram
patterns (i.e., the distribution of phase elements) within
each hologram unit (or base hologram) at the digital
synthesis–reconstruction stage. An equation that de-
scribes the intensity of all the replay orders in an aliased
digital replay (i.e., which comprises Dirac delta functions)
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is presented in Subsection 3.B. The locations of these re-
play orders are to be found by use of a skip–rotate rule
such that the intensity expression is applicable. These
intensities are exactly as given by a DFT of the hologram.

Recording the optical holograms on a dynamically re-
configurable SLM entails a further drop in replay inten-
sity as a result of pixelation and dead space as well as
phase errors (henceforth called the spatial effect).
Throughout this analysis, the paraxial optical reconstruc-
tion region (an area close to the optical axis at the replay
plane where scalar diffraction theory is valid) is divided
into subsections of size fl/d centered at the optical axis,
where f is the focal length of the transform lens, l is the
wavelength of illumination, and d is the pixel pitch, as
shown by the free-space holographic replay system in Fig.
1. These subsections of equal sizes are a result of the
pixel periodicity of the pixelated SLM and are called re-
play replications. Within all replay replications, the dis-
tribution of replay orders is identical, except that their in-
tensities are scaled by a sinc-squared roll-off that arises
from the pixel transmittance function. For the simplest
case of a rectangular pixel aperture, the intensity roll-off
expression is given in Subsection 4.A. The effects of SLM
pixel imperfection were analyzed for grating replay by use
of fixed surface-relief diffractive optical elements (DOE’s)
etched onto fused silica4 and optical correlation.5

In Section 5 experiments using dynamic holograms re-
corded onto SLM’s for fiber-to-fiber interconnects are de-
scribed. The results for the relative replay intensities of
a particular hologram and the first-order replay efficien-
cies of several holograms are shown.

2. PROGRAMMABLE DIFFRACTIVE
OPTICAL ELEMENTS
Routing holograms are dynamically reconfigurable phase-
only holograms that are used in holographic free-space
beam steering applications. A single spot replay from ei-
ther noise- or efficiency-optimized routing holograms is
required for one-to-one switch interconnections. An
efficiency-optimized computer-generated hologram, ob-
tained by methods such as the inverse DFT, produces
only one solution of the phase distribution over a 1-D or
two-dimensional (2-D) hologram plane. All phase-shifted
or spatially shifted variants of this distribution are ei-
gensets of the original hologram, replaying the same in-

Fig. 1. Free-space 1 3 N optical switch with a coherent 4f
setup. The size of each replay replication, DR, is fl/d, a conse-
quence of pixel periodicity.
f 
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tensity pattern. It is useful to analyze the underlying
spatial frequency properties of a general efficiency-
optimized hologram as the base case. Noise-optimized
holograms, such as those generated by Gerchberg–
Saxton,6 direct binary search,7 simulated annealing,8 or
error diffusion9 algorithms, retain the fundamental char-
acteristics of their efficiency-optimized counterparts.

A. Fractional Representation of Routing Holograms
With the DFT analysis and a replay order notation simi-
lar to that of Dammann,2 the numerical intensity replay
of an m quantized phase-level, N 3 N grid-size hologram
is a series of Dirac delta functions:

uĥ~xd , yd!u2 5 (
n

(
s→2`

→`

(
t→2`

→`

hm;n
j,z d @xd 2 ~^nj 1 sN&!,

yd 2 ~^nz 1 tN&!#, (1)

where n 5 gm 1 1, g being an integer, is the order of re-
play; (xd , yd) is the discrete coordinate at the simulated
replay plane; (j, z) is the coordinate of the first replay or-
der; and hm;n

j,z is the simulated intensity of the nth replay
order, given that the hologram encoding is limited to m
phase levels. This expression follows directly from the
property of the DFT whereby an N-point function is trans-
formed into an N-point replay. Depending on the holo-
gram pattern, one or more numerical replay coordinates
will have nonzero intensity. These coordinates are given
by modulo-N functions, ^nj 1 sN& and ^nz 1 tN&, such
that

2N/2 < ~^nj 1 sN&, ^nz 1 tN&! , ~N/2!, (2)

where n and (s, t) can take any values as long as the ele-
ments of the set (^nj 1 sN&,^nz 1 tN&) are distinct. If
( s, t) are now assigned as the normalized spatial fre-
quency coordinates (henceforth called fractional coordi-
nates) of the first replay order, (i.e., s 5 j/N, t 5 z/N),
criterion (2) becomes

2
1
2 < ~^ns 1 s&, ^nt 1 t&! , 1

2 , (3)

where ^ns 1 s& and ^nt 1 t& are modulo-1 functions.
The normalized coordinate of the first replay order is then
rewritten as the simplest fraction between two rational
numbers, i.e., s 5 x/x0 and t 5 y/y0 , where x and y are
integers and x0 and y0 are positive integers. All four in-
tegers can be odd or even, as is m; and the denominators
x0 and y0 may or may not be multiples of m. The grating
is a special case for which the first-order replay fraction is
(1/x0, 1/y0) for two dimensions [either (1/x0, 0) or (0, 1/y0)
for 1-D routing], x0 and y0 are multiples of m, and Dam-
mann’s efficiency expression [i.e., sin2(np/m)/(np/m)2; Ref.
2] is applicable only for the 1-D cases without dead space.
The ( s, t) base hologram requires only four integers for a
complete representation of its form by x0 3 y0 sample
points, its replay orders, and the intensities that charac-
terize it. If the x0 3 y0 size base hologram is repeated on
an SLM (with a high-pixel-count N 3 N array), generally
in any noninteger multiples the number of addressable
points is huge (@N2).10 Provided that there is adequate
apodization (such as Gaussian) in the illumination, the
optical replay of this hologram yields the first diffraction
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order at ( sf l/d, t f l/d) spatial frequency coordinates
from the optical axis. Hence the fractional hologram rep-
resentation eliminates the need to know the physical pa-
rameters of the holographic replay system without com-
promising any aspect of the hologram properties.

B. Thin Holographic Elements
A general overview of thin holographic elements for steer-
ing an incoming beam to a single main order in the
paraxial domain (i.e., when the incident angle and the dif-
fraction angle are both small and the transverse feature
of the diffractive element is much larger than the illumi-
nation wavelength) is shown in Fig. 2. Both the micro-
prism and the step-phase triangular gratings in Figs. 2(a)
and 2(b) have the same physical pitch lengths (8d, where
d is the feature size of the quantized phase steps). They
steer the illumination to the desired fractional coordinate
(1/8, 2/8, and 3/8 are shown) as a function of the phase
depth of the unit element (2p, 4p, and 6p are shown).
The difference is that in the latter case there are higher-
order replications at multiple integers along the frac-
tional coordinate (lighter arrows) as a result of phase
quantization and spatial pixelation of the continuous
phase-retardation profile in the former. Blazing the tri-
angular phase profile for a higher order produces an arbi-
trary steering function by exciting the required replay or-
der (i.e., the main order diffracted to any of the x0
locations for using x0 pixels per period). However, this
f 
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presents severe difficulties in making surface-normal op-
tical components with such considerable depths and num-
bers of discrete phase steps, and the long optical paths ul-
timately cause the grating function to depend on the
polarization along and orthogonal to the grating line.
One useful configuration of the step-phase grating blazed
for a higher order is arrayed-waveguide gratings, for
which the optical paths are laid out on a planar substrate
and hence the path-length difference can be made several
tens or hundreds of the center wavelength to disperse a
broadband light to several locations.11

In making surface-normal optical components one can
exploit the modulo-2p property of the phase-retardation
profile to wrap any quantized phase level beyond 2p back
to the $0, 2p% range. Figure 2(c) shows the phase profiles
of s 5 1/8, 2/8, 3/8 as well as their corresponding replay
images. In most fabrication and encoding techniques for
recording fixed DOE’s and programmable holograms on
SLM’s, only a limited number of quantized phase levels m
are available (m ! x0 , e.g., m 5 2 for symmetric replays
and more for asymmetric replays). It is possible that
phase quantization is out of sync with spatial pixelation;
i.e., stepping from one pixel to the next does not involve a
single phase step increase or decrease, as shown in Figs.
2(d) and 2(e). Consequently, there are multiple diffrac-
tion orders within the central replications, and similar
but scaled replay orders that appear at other replications
are a result of sampling the optical field at each pixel.
Fig. 2. Beam steering with periodic diffractive optical elements with a full period shown: (a) gratings composed of a microprism array,
(b) step-phase gratings blazed for the desired main replay order, (c)–(e) thin optical elements that have only limited numbers of phase
levels m, and up to 2p phase depth. With each beam-steering technique the phase profile and the associated replay plane image within
the two central replications are depicted for three routing fractions ( s 5 1/8, 2/8, 3/8).
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The far-field amplitude of the (nx , ny)th diffraction or-
der of a complex-amplitude hologram, H, is often assumed
to be12

h~nx , ny! 5 H 1

x0 y0
(

kx50

x021

(
ky50

y021

H~kx , ky!

3 expF2pjS nxkx

x0
1

nyky

y0
D G J

3 $sinc~pnx /x0!sinc~pny /y0!%, (4)

where sinc(x) 5 sin(x)/x and the number of pixels in each
unit element of the hologram is x0 3 y0 . The phase
term, within the normalized double summation [the first
set of braces in Eq. (4)], is periodic with respect to x0 and
y0 and can be evaluated with a DFT algorithm. The
double sinc term (in the second set of braces) accounts for
the intensity scaling that is due to pixelation without
dead space. The orthogonal phase and spatial effects de-
termine the replay intensity and location of each holo-
gram replay order. The replay can be further simplified
for routing holograms that steer the light to a single main
order.

3. PHASE EFFECT IN DIGITAL
REPRESENTATIONS OF ROUTING
HOLOGRAMS
In a numerical DFT grating replay in which only a single
sampling point for each pixel state is used, an aliased nu-
merical replay will always result, as is consistent with
Nyquist’s sampling criterion. For example, any integer
multiples of a binary {0, p} phase grating unit will give a
replay of 1 unit intensity at the first numerical replay
point, corresponding to a 21/2 fractional coordinate, as il-
lustrated in Fig. 3(a). Because two sample points are
used for each grating period, the highest-frequency com-
ponent that can be replayed by the DFT is the fundamen-
tal frequency. If the fractional coordinate of the first re-
play order is now 21/8 with the use of a binary
{0 0 0 0 p p p p% phase grating unit, the four times over-
sampling gives up to four times the fundamental fre-
quency replayed in the same output plane, resulting in
four peaks, which appear at 61 and 63 orders. These
two grating functions and their replays as well as those of
s 5 61/4 and 61/16 are shown in Fig. 3.

The higher replay orders, exceeding 61/2 of a simu-
lated hologram replay grid, should not be thought to be
spilling over to the higher replay replications, as each
phase element is sampled only by a single point in the nu-
merical DFT and no normalized spatial frequencies of
,21/2 or > 1/2 are possible in the numerical replay. In-
stead, those higher replay orders that overflow the 61/2
fractional coordinate at one end must be rolled back into
the same numerical replay grid through the opposite end.
It is possible that these contributions from infinite higher
replay orders overlap exactly the main order or other
higher noise orders that are present in the numerical re-
play grid.
f 
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A. Replay Intensities of Grating Holograms
For a general 1-D grating period x0 , the orders that ap-
pear within the numerical replay grid as a result of phase
quantization and the distribution of x0 phase elements
with m phase states have an aggregated intensity (by
summation of the intensities at overlapped positions):

hm;n
s 5 (

g52`

`

sinc2S np

m
1 g

x0p

m D , (5)

where n denotes the replay order and g is an integer.
The summation gives the intensity, hm;n

s :

hm;n
s 5 sinc2S np

m D (
g52`

` S n

n 1 gx0
D 2

. (6)

By use of the residue method, the convergent series sums
to

hm;n
s 5

sinc2~np/m !

sinc2~np/x0!
. (7)

Equation (7) gives an accurate description of the intensity
of each frequency component that is present in the nu-
merical replay grid. For the s 5 61/2, 61/4, 61/8,
61/16 binary phase gratings shown in Fig. 3, the first-
order intensities are

hm52;n561
s51/2 5

sinc2~p/2!

sinc2~p/2!
5 100%,

hm52;n561
s51/4 5

sinc2~p/2!

sinc2~p/4!
5 50%,

hm52;n561
s51/8 5

sinc2~p/2!

sinc2~p/8!
5 42.68%,

hm52;n561
s51/16 5

sinc2~p/2!

sinc2~p/16!
5 41.05%, (8)

Fig. 3. Overlap of higher replay orders in the numerical replay
grid of binary gratings. FFT, fast Fourier transform.
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respectively. The number of orders that appear within
the N numerical replay points is x0 /m, with a minimum
of 1 regardless of m values. As an example, optimization
of a four-level phase hologram to route to a 21/2 frac-
tional coordinate will always produce a binary grating.
Although x0 is 2 and m is 4 in this case, it should really be
considered m8 5 2, because that is the underlying holo-
gram property for this routing. For a grating that con-
sists of as many encoding elements as there are phase lev-
els (e.g., s 5 1/4, m 5 4; s 5 1/5, m 5 5, etc.), the
grating’s numerical replay will always contain a single or-
der of 100%. This means that the phase effect produces
100% efficiency [x0 5 m in Eq. (7)].

In the actual grating encoding that uses rectangular- or
square-aperture pixels and optical grating replay by the
use of a transform lens, each harmonic frequency compo-
nent will be revealed with appropriate intensity scaling
by the transform of the pixel aperture function. In the
ideal situation in which the grating is an infinite repeti-
tion of an m-level phase ramp, the pixel aperture is rect-
angular or square without dead space, and the grating il-
lumination is an infinite-expanse plane wave, the reverse
process of the summation in Eq. (5) takes place. The spa-
tial term of a grating effectively cancels out the denomi-
nator of Eq. (7) to yield Dammann’s expression.2 Decou-
pling the phase effect from the overall efficiency
expression is important because many arbitrary 2-D holo-
gram patterns in addition to 1-D gratings are often re-
quired, the parameters of the intensity scaling term are
dependent on the recording device, and the spatial effect
in general does not cancel out the denominator of Eq. (7)
to yield Dammann’s expression of hologram replay effi-
ciency.

B. Replay Intensities of General Holograms
At the digital stage, the numerical replay field of a gen-
eral 1-D phase-only hologram of a s 5 x/x0 first-order re-
play fraction contains the same fundamental properties
as the 1/x0 phase-only hologram. The relative intensities
of all the replay orders that are present are redistributed
according to which harmonic of the basic 1/x0 hologram is
excited. Extending the analysis to general 2-D holo-
grams, we use the least-common multiple of m, x0 , and y0

Fig. 4. Modulo-1 skip–rotate rule used to locate higher replay
orders of a s 5 1/10 quaternary hologram replay fraction.
f 
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[Eq. (7)] to enhance the intensity of each overlapped loca-
tion within the numerical replay grid:

hm;n
s,t 5

sinc2~np/m !

sinc2@np/lcm~m, x0 , y0!#
, (9)

where lcm(m, x0 , y0) takes the least common multiple of
m, x0 and y0 , either x0 or y0 is assumed 1 for general 1-D
holograms, and m > 2. There are lcm(m, x0 y0)/m non-
zero intensity orders within x0 3 y0 points in the numeri-
cal replay grid. It is important that 2-D Fourier (con-
tinually shifted) phase-only holograms rather than
crossed holograms be replayed. The crossed phase-only
holograms can be considered to be producing independent
routings in the x and y directions, giving many additional
orders in the numerical replay grid.

C. Replay Locations of General Holograms
One can predict the location of each replay order by fold-
ing higher replay orders with fractional locations of
,21/2 or >1/2 back to the numerical replay grid. Iden-
tifying the location of each order (or equivalently the or-
der number at each nonzero location) enables the intensi-
ties to be calculated from Eq. (9). The modulo-1 skip–
rotate rule is illustrated in Fig. 4 for a 1-D numerical
replay with s 5 1/10 and m 5 4. It has been assumed
that the phase-matching condition is satisfied (i.e., that
there is a 2p(m 2 1)/m phase depth between the lowest
and the highest phase levels.

The key to obtaining the correct number of n orders
that appear in the numerical replay grid is to draw an
ideal saw-toothed blaze along the n axis passing through
n 5 0 and the center of the 1-D numerical replay grid
with a slope of x and a period of 1/s. The orders that do
appear in the numerical replay grid have decreasing in-
tensities in accordance with Dammann’s criterion, n
5 gm 1 1, where g 5 0, 21, 11, 22, 12, 23, 13... .
Each integer g is taken successively until a high order be-
gins to overlap one of the existing replay orders (i.e., only
the lowest lcm(m, x0)/m orders at 6 frequencies need to
be considered). The overlap of a higher replay order with
an existing replay order occurs only after every
lcm(m, x0)-order separation, or 20 separations for the ho-
logram shown. We take the example of n 5 27 order; its
replay location (i.e., n 3 s or 27/10) is folded by the ideal
saw-toothed blaze to 3/10 along the unit replay grid. The
intensity of this aliased replay peak has contributions
from n 5 27, 13, 227, 33,... . Thus the aggregate inten-
sity is sinc2(27p/4) 1 sinc2(13p/4) 1 sinc2(227p/4)
1 sinc2(33p/4) 1 ..., or 2.52%, as given by the infinite
sum in Eq. (9) with y0 5 1.

Extending the skip–rotate rule to the replay of 2-D
Fourier holograms, we apply the modulo-1 function to
both the x and the y directions, resulting in an (xi 1 yi)
base vector and its multiples folding back to the $21/2,
1/2% unit replay grid from top to bottom and right to left,
and vice versa. The locations of the first ten replay or-
ders for a (1/10, 3/8) base hologram are shown in Fig. 5.
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