
Exhibit B

Request for EX PARTE Reexamination
U.S. Patent No. 6,701,365

The Open Group, Technical Standard, Protocols for X/Open PC
lnterworking: SMB, Version 2.0

Customer No.: 8791 Blakely, Sokoloff, Taylor & Zafman, LLP
Sunnyvale, California 94085-4040
Telephone (408) 720-8300
Fax (408) 720-8383

Samsung - Exhibit 1014 - Page 1

Technical Standard

Protocols for X/Open PC lnterworking:
SMB, Version 2

Samsung - Exhibit 1014 - Page 2

[This page intentionally left blank]

Samsung - Exhibit 1014 - Page 3

X;()pen CAE Specification

Protocols forX/Open PC Interworking: SMB, Version 2

X;()pen Company Ltd.

Samsung - Exhibit 1014 - Page 4

ii

© September 1992, X;()pen Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

XI Open CAE Spedfication

Protocols for X/ Open PC Interworking: SMB, Version 2

ISBN: 187aBJ456
X/ Open Document Number: CaB

Published by X/ Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/ Open
at:

X/ Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG 1 lAX
United Kingdom

or by Electronic Mail to:

XOSpecs@xopen.org

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 5

Chapter

Chapter

Chapter

1 Introduction 1
11 \\hy Republish... 1
12 This Document... 1
13 Overview of Document Layout.. 2

2
21
22
221
222

3
31
32
33
331
332
333
34
35
351
352
353
354
355
36
37
37.1
37.2
37.3
38
381
382
39
310
310.1
310.2
311
312

SMB File-sharing Service Model.. 3
SMB Protocol Prindples. 4
Security Overview 5

Share-level Security Mode.. 5
User-level Security Mode.. 5

SMB Protocol Conventions... 7
Summary of SMBs. 7
SMB Environment Definitions.. 10
Share-level and User-level Security Modes.. 12

Share-level Security Mode.. 12
User-level Security Mode with Extended Protocols............................ 12
User-level Security with Core Protocol.. 13

Connection Protocols.. 14
Naming.. 15

Resource Names . 15
NetBIOSNames.. 15
Uniform Naming Convention.. 16
Canonical Pathnames... 16
Long Names... 16

Wldcards 17
File Paradigm.. 17

Regular Files . 18
OpenModes... 18
Wite Behaviour.. 19

Locking Conventions.. 3J
Byte Locking . 3J
Opportunistic Locking... 3J

Chaining of Extended SMB Requests.. 22
Exception and Error Handling.. 24

Disorderly LMXSession Dissolution.. 24
Errors and Error Handling.. 24

Tlmeouts.. 25
Downward-compatibility Support.. 25

Protocols for X/ Open PC Interworking: SMB, Version 2 iii

Samsung - Exhibit 1014 - Page 6

Chapter

Chapter

iv

Contents

4 LMX Considerations... 27
4 1 LMXUsernarne Mapping... 'Z1
42 LMXFilename Mapping 28
43 LMXFile Mapping... 3J
43 1 SMBFile Attributes.. 3J
432 CAE File Access Permissions 3J
433 File System Issues... 3J
434 CAESpecial Files.. 31
435 Deleting or Renaming a File... 31
436 LongFilenames... 31
43 7 Extended Attributes... 31
44 LMXFile Locking... 33
44 1 Interlocking Behaviour.. 33
442 Locking Tlmeouts 34
443 Read-only Locks.. 34
45 LMXServer Caching... 35
46 LMXPrintSpooling... 35
4 7 SMB Error Codes.. 35
48 Security Policy.. J3
49 Negotiated Dialect... J3
410 Networkissues... J3

5
51
52
53
531
532
533
534
535
536
537
538
539
5310
54
55
56
561
562
563
564
565

Data Objects and Constants... 37
SMB Format... 31
SMB Command Codes.. 4J
Data OQjects . 43

Time Fields... 43
Date Fields.. 43
File Attributes Fields.. 43
Buffers... 44
File-sharing Control . 44
Resource Types.. 45
Access Modes.. 46
Open Function... 46
Resource Names, Pathnarnes, Filenames and Network Pathnarnes 46
Fileidentifiers.. 47

SMB Dialects . 48
Tlmeouts.. 48
SMBError Codes.. 49

SMB Error Class Mappings... 49
Error Codes for the SUCCESS Class... 49
Error Codes for the ERRDOS Class . 49
Error Codes for the ERRSRV Class . 51
Error Codes for the ERRHRD Class.. 52

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 7

Contents

Chapter 6
61
62
63
64

Chapter 7
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12

Chapter 8
81
82
83
84
85
86
87

Chapter 9
901
902
903
9.4

Chapter 10
10. 1
10.2
10.3
10.4
10.5
10.6

Chapter 11
111
112
113
114

Core SMB Connection Management Requests...................... 55
SMBnegprot Spedfication 0 55
SMBtcon Spedfication 0 57
SMBtdis Spedfication 0 5:1
SMBexit Spedfication 00000000000 0000000000000 0000000000 0000000000000 000000000000 000000000000 00000000000 0 61

Core SMB File Operation Requests... 63
SMBcreate Spedfication 0 63
SMBmknew Spedfication 0 f57
SMBopen Spedfication 0 70
SMBread Spedfication 0 73
SMBwrite Spedficationo 0 76
SMBlseek Spedfication 0 79
SMBlock Spedficationooo 81
SMBunlock Spedficationoo 83
SMBflush Spedfication 0 85
SMBclose Spedfication 0 f51
SMBmv Spedfication 0 8:1
SMBunlink Spedfication 0 92

Core SMB Directory and Attribute Operations..................... 95
SMBmkdir Spedfication 0 95
SMBrmdir Spedficationoo 97
SMBsearch Spedfication 0 ill
SMBgetatr Spedfication 0 1m
SMBsetatr Spedfication 0 1C6
SMBdskattr Spedfication 0 107
SMBchkpath Spedfication 0 1C9

CoreS MB Spool 0 p eration Requests .. 111
SMBsplopen Spedficationo 0 111
SMBsplwr Spedfication 0 113
SMBsplclose Spedficationo 0 115
SMBsplretq Spedfication 000000000 00000000 00000000 0000000 00000000 00000000 00000000 000000000 00000000 0000 117

Core Plus SMB File Operations ... 121
SMBnegprot Spedfication 0 121
SMBreadbraw Spedficationo 0 123
SMBwritebraw Spedfication 00000000 00000000 0000000 00000000 00000000 00000000 00000000 000000000 0000000 125
SMBlockread Spedfication 0 123
SMBwriteunlock Spedfication 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 13J
SMBwriteclose Spedfication 00 00000000 00000000 0000000 00000000 000000000 00000000 00000000 00000000 00000 1:::2

Extended l.OSMB Connection Management Requests 135
SMBnegprot Spedfication 0 135
SMBsecpkgXSpedficationooo 1:::9
SMBsesssetupX Spedfication 0 144
SMBtconXSpedfication 000000 00000000 000000000 0000000 00000000 00000000 00000000 00000000 00000000 0000000 00 147

Protocols for X/ Open PC Interworking: SMB, Version 2 v

Samsung - Exhibit 1014 - Page 8

vi

Chapter 12
121
122
123
124
125
126
127
128

Chapter 13
131
132
133
134
135

Chapter 14
141
142
143
144

Chapter 15
151
152
153
154
155

Chapter 16
161
1611
1612
1613
1614
1615
16151
16152
16153
16154

Contents

Extended l.OSMB File Operations ... 151
SMBopenXSpedfication .. 151
SMBlockingXSpedfication 153
SMBreadXSpedfication 16J
SMBwritebraw Spedfication 163
SMBwriteclose Spedfication 1ffi
SMBwriteXSpedfication 1EB
SMBreadbmpx Spedfication 171
SMBwritebmpx Spedfication .. 174

Extended l.OSMB Directory and Attribute Operations 179
SMBffirst Spedfication.. 179
SMBfclose Spedfication.. 181
SMBfunique Spedfication.. 182
SMBgetattrE Spedfication. 183
SMBsetattrE Spedfication 185

Extended l.OSMB Miscellaneous Requests 187
SMBcopy Spedfication . 187
SMBecho Spedfication.. 191
SMBioctl Spedfication . 193
SMBmove Spedfication.. 194

Extended 2.0Protocol Additions and Modifications 197
SMBsesssetupX Spedfication.. 197
SMBcopy Spedfication ... 201
SMBfindnclose Spedfication . 2J2
SMBfindclose Spedfication .. a:B
SMBuloggoffXSpedfication .. 204

Extended 2.0Protocol SMBtrans2 ... 207
SMBtrans2......... aJ7

Request Formats.. 207
Response Format... aB
Transaction Flow... 210
Service .. 211
ExtendedAttribute ... 212

ErrorsEncountered \\hen Creating EAs .. 212
Encapsulation of EAs in the SMB Protocol... 212
FEAStructure ... 212
GEAStructure .. 214

16 16 Information Levels... 214
1617 Defined SMBtrans2Protocols ... 214
162 1RANSACT2_0PEN .. 216
163 1RANSACT2_FINDFIRST .. 221
164 1RANSACT2_FlNDNEXf .. 2::5
165 1RANSACT2_QFSINFO .. 2::9
166 1RANSACT2_SE1FSINFO .. 231

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 9

Contents

167
168
169
1610
1611
1612
1613

Appendix A
A.1
A.2
A.3

Appendix B
B.1
B.2
B.3
B.4
B.41
B.42
B.5
B.51
B. 52
B.6
B.61
B.62
B.7
B.7.1
B.7.2
B.7.3
B.8

Appendix c
C.1
C.2

Appendix D
D.1
D.ll
D.12

Appendix E

Appendix F

1RANSACT2_QPATI-IINFO ... 233
1RANSACT2_SE1PATI-IINFO ... Z£
1RANSACT2_QFILEINFO.. 233
TRANSA CT2_SETFILEINFO. 241
1RANSACT2_FINDNOTIFYFIRST... 243
1RANSACT2_FINDNOTIFYNEXf .. 246
1RANSACT2_MKDIR.. 249

SMB Transmission Analysis .. 251
Introduction .. 251
DOS Functions.. 232
OS/ 2Functions . 2:9

LAN Manager Remote Administration Protocol.. 263
CJverview ... aB
Remote API Protocol... 634
LMXAccess Control Lists Mapping 00 a£
Transaction API Request Format .. 651

Farameter Section . 651
Data Section . 651

Transaction API Response Format... aB
Farameter Section . aB
Data Section . aB

Descriptor Strings.. aB
Descriptor String Types 00 00000000 000000000 000000 000000000 00000000 00000000 00000000 00000000 000000000 00 aB
Fbinter Types and Returned Data 00. 271

Examples . 272
N etShareDel... 272
NetShareAdd ... 272
N etShareEnum.. 'Z73

APINumbers .. Z75

The X/Open Security Package ... 277
E() Functions .. 'ZT7
U () Functions.. 278

SMB Encryption Techniques ... 279
SMB Authentication . 219

SMBnegprot Response... 219
SMBtcon, SMBtconX, SMBsesssetupX Requests.................................. 219

TO PIN" etBIOS .. 281

RFC 1001 ... 349

Protocols for X/ Open PC Interworking: SMB, Version 2 vii

Samsung - Exhibit 1014 - Page 10

Contents

Appendix G RFC 1002 ... 419

Glossary .. 505

Index .. 511

viii X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 11

X/Open

XIOpen is an independent, worldwide, open systems organisation supported by most of the
world's largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

XI Open's strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

XIOpen defines this CAE in a set of spedfications which include an evolving portfolio of
application programming interfaces (APis) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The XI Open CAE is implemented in real products and recognised by a distinctive trade mark
the XIOpen brand- that is licensed by XIOpen and may be used on products which have
demonstrated their conformance.

X/0 pen Technical Publications

XI Open publishes a wide range of technical literature, the main part of which is focussed on
spedfication development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of XI Open spedfication:

• CAE Specifications

CAE (Common Applications Environment) spedfications are the stable spedfications that
form the basis for XIOpen-branded products. These spedfications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an XIOpen CAE spedfication can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the mcyority of XIOpen CAE spedfications once these spedfications are
referenced in an XIOpen component or profile definition and included in the XIOpen
branding programme.

CAE spedfications are published as soon as they are developed, not published to coindde
with the launch of a particular XI Open brand. By making its spedfications available in this
way, XIOpen makes it possible for conformant products to be developed as soon as is
practicable, so enhandng the value of the XI Open brand as a procurement aid to users.

Protocols for X/ Open PC Interworking: SMB, Version 2 ix

Samsung - Exhibit 1014 - Page 12

X

Preface

• Preliminary Specifications

These spedfications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary spedfication is not a draft spedfication. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE spedfication.

Preliminary spedfications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
spedfication is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE spedfication. There is always the
intent to progress to a corresponding CAE spedfication, but the ability to do so depends on
consensus among XI Open members. In all cases, any resulting CAE spedfication is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE spedfication cannot be guaranteed.

In addition, XI Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of spedfying or claiming XI Open conformance.

• Teclmical Studies

XI Open Technical Studies present results of analyses performed by XI Open on suQjects of
interest in areas relevant to X/Open's Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for XI Open to disseminate information on its current direction
and thinking, in advance of possible development of a Spedfication, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solidt feedback. A
Snapshot represents the interim results of an XI Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Spedfication, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by XI Open members to develop any spedfic products.

Versions and Issues of Specifications

As with all live documents, CAE Spedfications require revision, in this case as the suQject
technology develops and to align with emerging assodated international standards. X/Open
makes a distinction between revised spedfications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 13

Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
XI Open maintains both the previous and new issue as current publications.

Corrigenda

Most XIOpen publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistendes. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done in any one of the following ways:

• anonymous ftp to ftp.xopen.org

• ftpmail (see below)

• reference to the Corrigenda list in the latest XI Open Publications Price List.

To request Corrigenda information using ftpmail, send a message to ftpmail@xopen.org with the
following four lines in the body of the message:

open
cd pub/Corrigenda
get index
quit

This will return the index of publications for which Corrigenda exist. Use the same email
address to request a copy of the full corrigendum information following the email instructions.

This Document

Of all the types of computers, personal computers are the most abundant. Originally intended
to be a personal productivity tool, an ever-increasing number of them are being connected to
computer networks, thus becoming parts of distributed information systems.

Personal computers normally run under single-user operating systems with interfaces differing
from those spedfied in the XIOpen Portability Guide. However, XIOpen realises how
important it is to fadlitate interworking between personal computers and XIOpen-compliant
systems in a standardised way.

Two areas have to be addressed to achieve this goal; interoperability, and programming
interfaces to server functions fadlitating applications portability. Interoperability means that
personal computers and XI Open-compliant systems can interchange information using the
same network protocols. Standardisation of programming interfaces to server functions, in
addition to standardisation of protocols, makes it possible to write distributed client/server
applications whose server component will be portable to all XI Open-compliant systems.

For interoperability via asynchronous serial links, XIOpen has already defined in the XIOpen
Portability Guide, Issue 3 a file transfer protocol and a set of features provided on XI Open
compliant systems for terminal emulators. Now it is time to address interworking in local area
networks (LANs).

In the XIOpen (PC)NFS and SMB Developers' Spedfications interoperability of personal
computers and XIOpen-compliant systems is addressed. The applications portability
components, containing definitions of programmatic interfaces to server functions, are
documented in the XI Open CAE Spedfication, IPC Mechanisms for SMB and the XI Open CAE
Spedfication, Use of XI1 to Access NetBIOS.

Protocols for X/ Open PC Interworking: SMB, Version 2 xi

Samsung - Exhibit 1014 - Page 14

xii

Preface

\\hen connecting personal computers and XI Open-compliant systems via standard transport
protocols, there appear to be two possibly overlapping but distinct market segments. In the first
one, personal computers are added to existing networks of X/ Open-compliant systems which
already have a distributed file system, the most widely-adopted one being the Network File
System originally designed by Sun Microsystems. In the second one, X/ Open-compliant servers
are added to LANs consisting primarily of personal computers. For personal computers running
under DOS or OS/2 operating systems, which is the vast mcyority, the generally accepted non
proprietary protocol is the Server Message Block from Microsoft Corporation.

Therefore, for connecting personal computers to X/ Open-compliant systems, both the (PC)NFS
(see the X/Open Developers' Spedfication, Protocols for X/Open PC Interworking: (PC)NFS)
and the SMBprotocols have been adopted by X/ Open.

The following diagram illustrates the relationship of the service protocols (defined in the
X/ Open (PC)NFS and SMB Developers' Spedfications) to their underlying transport protocols.
It also reflects the organisation of the two documents. The (PC)NFS spedfication describes the
protocols for NFS, RPC and XDR. The SMB spedfication describes the protocols for SMB, the
mapping ofNetBIOS over an OSI transport (TOP/NetBIOS) and the mapping ofNetBIOS over
an Internet Protocol Suite transport (RFC 1m VRFC len:).

NFS

SMB

RPC/XDR

TOP/NetBIOS RFC lffiV1CD2

TCP UDP

Connection- Defined Defined
Connectionless oriented outside the outside the

Transport Transport Spedfication Spedfication
Services Services

~SPTA51)
Defined

outside the Defined IP

Spedfication outside the
Spedfication Defined

outside the
Spedfication

Since SMB and NFS protocols do not easily map onto the seven layer OSI Reference Model, the
diagram does not use it.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 15

Preface

Throughout the spedfication "DOS" is used to refer to the MS-DOS or PCDOS personal
computer operating system.

Protocols for X/ Open PC Interworking: SMB, Version 2 xiii

Samsung - Exhibit 1014 - Page 16

xiv

TradeMarks

Ethernet® is a registered trade mark of Xerox Corporation.

LAN Manager™ is a trade mark of Microsoft Corporation.

MS-DOS® is a registered trade mark of Microsoft Corporation.

NFS® is a registered trade mark of Sun Microsystems.

OS/ 2f9 is a registered trade mark of International Business Machines Corporation.

Palatino ® is a registered trade mark of Linotype A G and/ or its subsidiaries.

PC-NFS™ is a trade mark of Sun Microsystems.

UNix® is a registered trade mark of UNIX System Laboratories Inc. in the U.S.A. and other
countries.

X/ Open™ and the "X' device are trade marks of X/ Open Company Ltd. in the U.K. and other
countries.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 17

Referenced Documents

The following documents are referenced in this spedfication:

IPC
XI Open CAE Spedfication, IPC Mechanisms for SMB
(Document No.: C 195 ISBN: 1-8'76XD-2BE).

NetBIOS
X/Open CAE Spedfication, Use of XI1 to Access NetBIOS, contained in X/Open CAE
Spedfication, XI Open Transport Interface (XTI)
(Document No.: C 193 ISBN: 1-8'76XD-Z:J-4).

OS/2
Microsoft OS/2Programmer's Reference, Volume 4

(PC)NFS
XI Open Developers' Spedfication, Protocols for XI Open PC Interworking: (PC)NFS
(Document No.: DCBJ, ISBN: 1-8'76XD-CDE).

SMB
XI Open Developers' Spedfication, Protocols for XI Open PC Interworking: SMB
(Document No.: D 110, ISBN: 1-8'76XD-01-4).

XNFS
XI Open CAE Spedfication, Protocols for XI Open Interworking: XNFS, Issue 4
(Document No.: C218 ISBN: 1-8'76XD-ffi~.

XPG3
XI Open Portability Guide, Issue 3 Jmuary 1SHJ.

Protocols for X/ Open PC Interworking: SMB, Version 2 XV

Samsung - Exhibit 1014 - Page 18

Referenced Documents

xvi X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 19

Chapter 1

Introduction

1.1 Why Republish
A previous version of this spedfication has been published. The previous version described the
SMB protocol up to a dialect level called extended. Since that time, a new dialect has been added
and several errors and omissions were found in the spedfication. This version of the
spedfication corrects the errors and omissions and contains the definition for the extended 20
SMB dialect. The extended protocol of the previous version of this document is now called
extended lOwhich is to be distinguished from the new extended 20dialect.

1.2 This Document
The relevant parts of this CAE Spedfication include the spedfication of the SMB protocol itself,
definition of the conventions used in mapping SMB redirector semantics onto X/Open
semantics, spedfications of the binding of the NetBIOS interface to popular protocol stacks, and
selection of protocol profiles to permit interoperability.

Information regarding NetBIOS is provided because the great mcyority of SMB redirector
implementations of the SMBprotocols rely on NetBIOS as well.

The interface to the NetBIOS implementation on the CAE system is outside the scope of this
spedfication. Wthin this document only the NetBIOS service definition to the Internet Protocol
Suite (RFC lffiV len:} (see Appendices F and G) and an OSI transport (TOP/NetBIOS) (see
Appendix Eon page 231) are considered.

In this second publication, the SMB definitions necessary for Inter -process Communication (IPC)
from SMB redirectors to processes executing on the same CAE system as the LMXserver have
been removed. These definitions are found in the XI Open CAE Spedfication, IPC Mechanisms
forSMB.

This spedfication does include the SMB protocol and the SMB service definition to be
implemented by an LMX server. The SMB service definition of the SMB redirector as well as
user interfaces necessary to access network resources are outside the scope of this spedfication.

Protocols for X/ Open PC Interworking: SMB, Version 2 1

Samsung - Exhibit 1014 - Page 20

Overview of Document Layout Introduction

1.3 Overview of Document Layout

2

Chapter 2provides an overview of the service and security model for the SMB protocol.

Chapter 3 discusses the conventions related to the rules the SMB protocol maintains. This
chapter describes the environments maintained within the SMB protocol model as well as rules
governing file locking and user security.

Chapter 4 describes conventions that can be followed for mapping the SMB protocol model
described in Chapter 3 into the CAE environment. This chapter provides guidelines for such
things as how filenames in the CAE environment are viewed by the SMB protocol environment.

Chapter 5defines the basic structure, data items and constant definitions for the SMB protocol.

The core dialect is defined in Chapter 6through Chapter 9

Additions to the core dialect that make up the core plus dialect are found in Chapter 10.

Chapter 11 through Chapter 14define the extended lOSMB dialect.

The additions for the extended 20SMB dialect are covered in Chapter 15and Chapter 16

A description of the mapping of DOS and OS/2 system calls to SMB protocol requests,
descriptions of support of NetBIOS names on TCP/IP and OSI protocols, and additional SMB
protocols that may be used for LMX server administration are contained in the appendices to
this spedfication.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 21

Chapter 2

SMB File-sharing Service Model

This CAE Spedfication describes the X/Open LAN Manager (LMX) architecture, the Server
Message Block (SMB) protocol, and their applicability to interoperability between X/Open
compliant LAN Manager implementations running in an X/Open Common Applications
Environment (CAE) and SMB redirectors running DOS or OS/2

LMX provides a file and print-sharing service which preserves, as far as possible, the same
semantics as provided by a DOS or OS/2system to an application. This service is provided by
mapping the SMB redirector semantics onto those supported by the CAE system in which the
LMXserver runs.

This model is in contrast to a file-sharing service, in which the LMXserver provides a complete
emulation of the SMB redirector's file storage architecture, but does not permit access to that
emulation from applications running on the same CAE system. The intent behind the LMX
approach is to permit applications existing on SMB redirectors and CAE systems to cooperate in
the processing of information. \\ithin this architecture the SMB redirector can assume that only
the file contents are stored in the same format as in the SMB redirector' s operating system. That
is, directory information does not need to be stored on the CAE system in a file or have the same
layout as in the SMB redirector' s operating system.

In LMX resources are shared by making the name of the resource available for access from the
network. For example, the LMXserver named XOPEN will make a resource DOCUMENTS that
contains this document available. This allows users on SMB redirectors to connect to this
resource and access this data. In this example the resource DOCUMENTS could point to a
directory tree that contains the files belonging to this document. The user will see this directory
and its files as if they are on the local SMB redirector's system.

Protocols for X/ Open PC Interworking: SMB, Version 2 3

Samsung - Exhibit 1014 - Page 22

SMB Protocol Principles SMB File-sharing Service Model

2.1 SMB Protocol Principles

4

File and print sharing are implemented using the SMB protocol. This protocol is used between
two types of system: SMB redirectors and LMX servers. \\hen a user on an SMB redirector
wants to make use of SMB file and print services available in the network the user needs an SMB
redirector implementation of the SMB protocol. Upon request the SMB redirector will connect to
an LMXserver. Throughout this document the term LMXserver does not imply any particular
design.

The SMB protocol requires a reliable connection-oriented virtual drcuit provided by a NetBIOS
implementation.

Each LMXserver in the network will offer resources. \\hen a user on an SMB redirector wishes
to use a resource, or resources, from an LMXserver, the user of the SMBredirectorwill cause the
SMB redirector to set up a single LMXsession with the desired LMXserver using NetBIOS. The
action of setting up the LMXsession includes using NetBIOS to locate the system in the network
then negotiating the level of SMB support desired by the SMB redirector. If multiple resources
are desired by the SMB redirector, the SMB redirectorwill use the single LMXsession to perform
all SMB exchanges. So, if the user requests use of both a file system share and a printer share on
the same LMXserver, then only one LMXsession exists between the SMB redirector and this
LMXserver system.

Once the LMX session has been established the SMB redirector will take initiative to request
services offered by the LMXserver by sending SMB requests across the LMXsession. Each SMB
request is executed by the LMX server and the result is sent back to the SMB redirector in an
SMB response. SMB redirector implementations may support multiple simultaneous
connections to different LMXservers.

The SMB protocols can be divided into:

• core protocol

• core plus protocol

• extended lOprotocol

• extended 20protocol

each one being a superset of the previous one. The extended protocols offer a richer set of
functionality and are required for some of the IPC mechanisms described in the X/ Open CAE
Spedfication, IPC Mechanisms for SMB.

In the extended protocols, mechanisms exist to have users authorised by the LMX server (see
Section 2~. If an SMB protocol supporting user authorisation is negotiated the LMXserver will
authorise the one user working on the SMB redirector upon request of the SMB redirector. This
is commonly referred to as a logon procedure.

Once the level of protocol is negotiated, and if necessary the user has been authorised, the SMB
redirector will request access to a spedfic resource. The resource requested may be a directory
tree, spooled device, I/0 device, etc. If the requested resource has been made available by the
LMXserver for access by that user, file and spool operations can be executed (for example, open
file, show print queue) from now on.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 23

SMB File-sharing Service Model Security Overview

2.2 Security Overview
The networks using the SMB protocol will contain not only multi-user systems with user-based
security models, but also single-user systems that have no concept of user IDs or permissions.
Once these systems are connected to the network, however, they are in a multi-user
environment and need a method of access control. First, unsecure systems need to be able to
provide some sort of bona fides to other systems in the network which do have permissions.
Second, unsecure nodes need to control access to their resources by others.

The SMB protocol defines a mechanism that enables the network software to provide the
security where it is missing from the operating system, and supports user-based security where
it is provided by the operating system. The mechanism also allows systems with no concept of
user ID to demonstrate access authorisation to systems which do have a permission mechanism.

The LMXserver will define the security mode that is being used; it cannot be negotiated by the
SMB redirector. \\ithin the SMB protocols two forms of security exist:

• share-level security mode

Can be applied to restrict the access to a shared resource, pladng access control at the level of
the resource.

• user-level security mode

Can assign user context to anyone establishing an LMX session. This way different access
rights can be granted to people connecting to the same resource. This form of security can
only be used when an extended SMB protocol has been negotiated.

2.2.1 Share-level Security Mode

A share-level security mode LMXserver makes a resource available to all users on the network.
Any user who knows the name of the LMXserver, the name of the resource, and the password,
has the same access to everything (for example, read-only) within a resource. The password is
optional.

For example, the LMX server named XOPEN offers the resource DOCUMENTS. This is a file
system subtree where each individual file or directory will have the same permissions for all
users, for example, read-only or read/write. Access to this resource is controlled by a password.
The LMXserver could make a second resource available with a different password and different
access rights pointing to the same directory with the files belonging to this document.

2.2.2 User-level Security Mode

A user-level security mode LMXserver also makes a resource available, but in addition requires
the user to provide a username and optional password in order to gain access.

Thus the LMX server is now able to allow differing access rights depending on the validated
user. The access rights may not only be spedfied per resource but may be set individually for
each file or directory accessible via a resource name. One user may have full access, another
read-only and perhaps another no access to different files and directories within the shared
resource.

For example, on the LMXserver named XOPEN with the resource DOCUMENTS a user called
BOB could be the author of the document and a user called J\N a reviewer for the document.
Now BOB can have read/write access to the document while J\N is only able to read the files
belonging to the document.

Protocols for X/ Open PC Interworking: SMB, Version 2 5

Samsung - Exhibit 1014 - Page 24

SMB File-sharing Service Model

6 X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 25

Chapter 3

SMB Protocol Conventions

Much of the SMB protocol definition is design and implementation-independent. In addition to
the SMB protocol and spedfic meaning of fields, the LMXserver has to obey certain rules. This
chapter includes a summary of SMBs and defines generic conventions for LMXservers, such as:

1 SMB Environments

2 user-level and share-level security modes

3 connection protocols

4 naming

5 wildcards and the interpretation of wildcard pathnames

6 file attributes

7. locking, including opportunistic locking, and an implidt variety of locking for enhandng
the performance of applications which do not make explidt lock requests

8 chaining, and the mechanism for making multiple requests in a single SMB

9 exception and error handling

10. timeouts

11 downward-compatibility support

31 Summary of SMBs
The following table lists the SMBs (requests and responses) which are required for various levels
of the SMB protocol. The table gives the name of each request/response and a brief description,
the section of this spedfication in which the SMB is described, and indicates whether the request
is part of the core (C), core plus (C+), extended 10 (E) or extended 20 (E~ SMB protocol. The
SMBs used to implement file and print sharing are defined here. Additional SMBs can be found
in the X/Open CAE Spedfication, IPC Mechanisms for SMB and the appendices to this
spedfication.

In the following tables, the SMB names ending with capital X indicate that the SMB request
permits chaining (see Section 3 9on page Z:).

Protocols for X/ Open PC Interworking: SMB, Version 2 7

Samsung - Exhibit 1014 - Page 26

Summary of SMBs SMB Protocol Conventions

Name Description Section Protocol

SMBchkpath Verify path is directory 87 c
SMBclose Close file 7.10 c
SMBcopy Copy file 141 E
SMBcreate Create/ Open file 7.1 c
SMBdskattr Get the LMX server file 86 c

system information
SMBecho Test an LMXsession 142 E
SMBexit Indicate process exit 64 c
SMBfclose Close active search 132 E
SMBffirst Active search 131 E
SMBfindclose Close an active search 154* E2
SMBfindnclose Notification of close for 153" E2

an active search
SMBflush Flush data for file(s) 7.9 c
SMBfunique One-time active search 133 E
SMBgetatr Get file attributes 84 c
SMBgetattrE Get extended file 134 E

attributes

SMBlock Lock byte-range of file 7.7 c
SMBlockingX Lock multiple ranges 122 E

and X
SMBlockread Lock and read byte-range 10.3 C+
SMBlseek Set current file pointer 7.6 c
SMBmkdir Create new directory 81 c
SMBmknew Create new file 7.2 c
SMBmove Move files by copying 144 E
SMBmv Change name of file (s) 7.11 c
SMBnegprot Negotiate Protocol 61 *

SMBopen Open File 7.3 c
SMBopenX Extended open and X 121 E
SMBread Read from file 7.4 c
SMBreadbmpx Read block multiplexed 125 E
SMBsecpkgX Negotiate security 112 E

packages and X
SMBtrans2(TRANSA CT2_FIND FIRST) Active search 163 E2
SMBtrans2(TRANSA CT2_FIND NEXT) Active search 164 E2
SMBtrans2(TRANSA CT2_MKD IR) Create new directory 1613 E2
SMBtrans2(TRANSA CT2_ OPEN) Open File 162 E2
SMBtrans2(TRANSA CT2_SETFSINFO) Set file system 166 E2

information
SMBtrans2(TRANSACT2_QPATHINFO) Query file information 167 E2
SMBtrans2(TRANSA CT2_SETPATHINFO) Set file information 168 E2
SMBtrans2(TRANSA CT2_ QFILEINFO) Query file information 169 E2
SMBtrans2(TRANSA CT2_SETFILEINFO) Set file information 1610 E2
SMBtrans2(TRANSA CT2_FIND NOTIFYFIRST) Monitor file or directory 1611 E2

changes
SMBtrans2(TRANSA CT2_FIND NOTIFYNEXT) Continue monitoring 1612 E2

(*) The SMBn egprot response changes if either extended dialect of SMB is being negotiated.

8 X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 27

SMB Protocol Conventions Summary of SMBs

Name Description Section Protocol

SMBreadbraw Read block raw 10. 1 C+
SMBreadX Read and X 123 E
SMBrmdir Delete empty directory 82 c
SMBsearch Directory wildcard 83 c

lookup
SMBsesssetu pX Session setup and X 113 E
SMBulogoflX User logoff and X 155* E2
SMBsetatr Set file attributes 85 c
SMBsetattrE Set extended file 135 E

attributes
SMBsplclose Close and queue spool 9.3 c

file
SMBsplopen Create spool file 9.1 c
SMBsplretq Getspoolqueueinfo 9.4 c
SMBsplwr Wite to spool file 9.2 c
SMBtcon Tree connect 62 c
SMBtconX Tree connect and X 114 E
SMBtdis Tree disconnect 63 c
SMBunlink Delete file 7.12 c
SMBunlock Unlock byte-range of file 7.8 c
SMBwrite Witeto file 7.5 c
SMBwritebmpx Wite block multiplexed 126 E
SMBwritebraw Wite block raw 10.2 C+

SMBwriteclose Wite and close file 10.5 E
SMBwriteunlock Wite and unlock byte- 10.4 C+

range

SMBwriteX WiteandX 124 E

Protocols for X/ Open PC Interworking: SMB, Version 2 9

Samsung - Exhibit 1014 - Page 28

SMB Environment Definitions SMB Protocol Conventions

3.2 SMB Environment Definitions

10

The following environments are defined for the purpose of spedfying the SMB protocol. An
LMXserver does not need to construct such an environment, as long as the required semantics
are preserved.

The hierarchy of environments is summarised below:

LMXSession Environment
User Environment (UID)
Resource Environment (TID)

Process Environment (PID)
Multiplex Request Environment (MID)
File Environment (FID)

1 LMXSession Environment

This consists of one LMX session established between an SMB redirector and an LMX
server. The LMXsession represents the logical connection between the SMB redirector and
the LMXserver. This connection is initiated by the SMB redirector and is only considered
an LMXsession after the SMBnegprot protocol exchange has successfully completed. Only
one protocol dialect can be negotiated on a single LMXsession.

An LMXsession is implemented using a NetBIOS session.

For each LMX session the maximum buffer size for subsequent SMB requests and
responses is set by the LMX server and sent to the SMB redirector. It is the SMB
redirector's responsibility not to send larger SMB requests than expected by the LMX
server.

An LMX server may drop the LMX session after the last resource environment has been
terminated. \\hen an LMXsession becomes inactive for some period of time and the LMX
server is not maintaining any file environment information for the SMB redirector, the
LMXserver may choose to terminate the LMXsession. This allows other SMB redirectors
to connect and use the LMXsession resource. It is the responsibility of the SMB redirector
to reestablish the LMXsession after it has been terminated due to this timeout.

If the LMX session environment is terminated, all PIDs, TIDs and FIDs within it will be
invalidated.

2 User Environment, also called the Logon Environment

This is represented by a user ID (UID). A UID uniquely identifies a user within a given
LMX session environment. \\ithin dialects of this document, there is exactly one UID per
LMXsession. An LMXserver executing in user-level security mode uses this to identify
the scope and type of access allowed for this user. In share-level security mode this
environment is not used.

If the user environment is terminated in the extended 20dialect via SMBulogoflX, all FIDs
and TIDs currently held by the UID are invalidated. In the extended 10 dialect no
termination SMB exists other than the termination of the LMXsession.

3 Resource Environment

This is represented by a TID. A TID uniquely identifies a resource being shared within the
LMXsession between the SMB redirector and the LMXserver. The TID is requested by the
SMB redirector and assigned by the LMX server. The resource being shared may be a
directory tree, spooled device, I/0 device, etc. More than one TID may exist within a
single LMXsession environment.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 29

SMB Protocol Conventions SMB Environment Definitions

In an LMXserver executing in share-level security mode, the TID also identifies the scope
and type of accesses allowed across the connection.

Wthin the core SMB protocol it is possible for the LMX server to set a new maximum
buffer size for subsequent SMB requests within this resource environment. The new
maximum buffer size is not only valid for the new resource environment, but for all
resources environments established within the LMXsession. It is the SMB redirector's and
the LMXserver's responsibility not to send larger SMBs than negotiated.

If a resource environment is terminated (via an SMBtdis request) all PIDs and FIDs within
it will be invalidated. The LMXserver will close all files, free all locks, release all active file
searches and terminate all processes created on behalf of that TID.

4 Process Environment

This is represented by a process ID (PI D). A PID uniquely identifies an SMB redirector
process or thread within a given LMXsession environment. Most SMB requests include a
PID to indicate which process initiated the request. SMB redirectors inform LMXservers
of the creation of a new process by simply introdudng a new PID. The LMXserver does
not maintain any process relationships.

Wthin the core SMB protocol the SMBexit request terminates the process environment.
Otherwise, there is no mechanism for the LMX server to determine a process exit on the
SMB redirector. It is the SMB redirector's responsibility to close a resource when the last
SMB redirector process referendng the resource closes it.

Files opened by one process may be manipulated by another process in the same resource
environment (that is, possessing the same TID).

If in the SMB core protocol a process environment is terminated, the LMX server will
invalidate all FIDs created by that PID.

5 File Environment

This is represented by a file ID (FID). An FID identifies an open file and is unique within a
given LMXsession environment. Another LMXsession environment may be given an FID
of the same value, but the FID will refer to a different open instance of the same or different
file. The scope of the FID is the user environment. This means a file may be opened and its
FID passed to another process (using a different PID in the same LMX session) for use
without being opened by this process. The second process must use the same UID and
TID as the process which opened the file.

If a file environment is terminated (via an SMB request) or invalidated, all locks placed on
that FID will be released.

6 Multiplexed Request

This is represented by a multiplexed ID (MID). This is not an environment, but a part of
the SMB request that needs to be discussed at this time. An MID uniquely identifies an
SMB request within the LMXsession. By using the MID, an SMB redirector is able to send
multiple requests to the LMXserver and determine which SMB response is assodated with
each SMB request. There is no termination of the Multiplex Request Environment. It is
maintained for the SMB redirector's use only. The core and core plus protocol do not use
an MID.

Protocols for X/ Open PC Interworking: SMB, Version 2 11

Samsung - Exhibit 1014 - Page 30

Share-level and User-level Security Modes SMB Protocol Conventions

3.3 Share-level and User-level Security Modes

3.3.1 Share-level Security Mode

The following section applies to the access of LMX servers that use share-level security. By
default all SMB requests are refused as unauthorised. \\hen an administrator of the LMXserver
chooses to allow access to resources, he or she would establish each share with the following
attributes:

• The resource type (see Section 536on page 45) that will be used in SMBtcon and SMBtconX
requests.

• The mapping of the resource type to the resource on the CAE system (for example, file
system subtrees will be identified on the CAE system with the root of the offered subtree
being the directory shared).

• An indication of which access to this resource is permitted (for example, read-only).

• Optionally, a password (to be supplied in the SMBtcon or SMBtconX request) is required
before access to the resource is permitted.

Note that when a file system subtree is shared, all files underneath that directory are then
affected. If a particular file is within the range of multiple offers, connecting to any of the offers
gains access to the file; the access rights gained (for example, read versus read/write) will depend
upon the attributes of the offer that the SMB redirector connected to. The LMXserver will not
check for nested directories with more restrictive permissions.

For example, if the LMX server is offering a read/write share J\ZZ, corresponding to path
/usr1azz, and a read-only share J\ZZCAT, corresponding to path /usr1azz/catalog, an SMB
redirector which connected to the J\ZZ share would be permitted read/write access to the file
catalo g/m yrecs, even though that file is also contained within the scope of a read-only share.

3.3.2 User-level Security Mode with Extended Protocols

12

LMX servers with user-based file security (in user-level security mode) will require the SMB
redirector to present a username and password (if any) along with the requested UID value prior
to accessing resources.

A username and password are sent by the SMB redirector and validated by the LMXserver via
the SMBsesssetupX protocol. If the username and password are valid the LMXserver responds
with a UID that is used to identify the user on all subsequent SMB requests and prove to the
LMX server that this user has been authenticated. The SMB redirector must assodate the UID
with the user and include the UID for all network resource accesses made by that user.

The SMBtcon and SMBtconX protocols are still used to define the directory subtree or other
resource available to the user, but the LMXserver uses the UID to allow differing types of access
to the same resources under a given TID. Note that a single SMB redirector may issue multiple
SMBtcon or SMBtconX in order to gain access to multiple shared resources.

An LMX server in user-level security mode will still require administrative action to make a
share available. The attributes of the share are the same as for share-level security mode, except
that a single password is no longer used for the share.

If the LMXserver responds to an SMBnegprot request and selects the extended protocol, it will
indicate in the SMB response the security mode in effect. This allows the SMB redirector to
know whether the User Logon information is needed in the SMBsesssetupX request.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 31

SMB Protocol Conventions Share-level and User-level Security Modes

Each LMX server may maintain a list of valid users. It may then verify every access by these
users.

From the LMXserver's point of view, the UID is therefore not assodated with a particular shared
resource, but with the authenticated user. The UID may be used to access any shared resource
controlled by the LMXserver which has been connected to via the TREE CONNECT1 protocol.

3.3.3 User-level Security with Core Protocol

There is no support within the core protocol to allow user -level security for SMB redirectors that
are only capable of working with the core protocol. An LMXserver in user-level security mode
may decline connections with an SMB redirector requesting only the core protocol.

In an effort to be flexible, the LMXserver may select to support the core-only SMB redirector by
mapping the SMB redirector into the user-level security environment. This mapping could be
performed by the following steps:

1 If the SMB redirector's system name is defined as a username (and the password supplied
with SMBtcon matches), the user logon will be performed using that value.

2 If the above fails, the LMX server may r~ect the request or assign a default username
(probably allowing limited access).

3 The UID will then be ignored and all access will be validated assuming the username
selected above.

The above allows LMXservers in user-level security mode" to accommodate SMB redirectors
supporting only the SMB core protocol.

1 The term TREE CONNECT is used to represent either the SMBtcon or SMBtconX request usage.

Protocols for X/ Open PC Interworking: SMB, Version 2 13

Samsung - Exhibit 1014 - Page 32

Connection Protocols SMB Protocol Conventions

3.4 Connection Protocols

14

No network traffic is generated when an LMXserver makes resources available for sharing. The
required information is simply stored until requests from SMB redirectors arrive.

The SMB protocol makes use of a NetBIOS transport fadlity. NetBIOS defines a set of network
transport fadlities. The interface is outside the scope of this document. The NetBIOS functions
can be implemented over a variety of transport protocols, however within this document only
the mapping of NetBIOS over TCP and UDP (see Appendices F and G) and NetBIOS over ISO
transport services (see Appendix Eon page 231) are considered.

To establish an LMXsession the SMB redirector will establish a NetBIOS session with the LMX
server. Therefore the LMXserver listens on the LMXN etBI OS name (see Section 3 5on page 15).

After the LMXsession has been established the SMB redirector will negotiate the SMB protocol
level sending an SMBnegprot. The SMBnegprot must be the first SMB request sent on the
NetBIOS session. In the SMBnegprot response the LMXserver will spedfy the maximum buffer
size that the SMB redirector is allowed to request or send. Due to the nature of the NetBIOS
transport service the maximum buffer size will be in the range of lK to 64K bytes. Each SMB
request or response will be sent as a single N etBI OS message.

\\hen the user of the SMB redirector issues a command to connect to a particular share, the SMB
redirector generates an SMBtcon or SMBtconX request containing the name of the shared
resource and the assodated password. The password could be empty. If the LMXserver is in
user-level security mode the username and password will be supplied via the SMBsesssetupX
request. If no SMBsesssetupX request is received, the LMXserver may use the SMB redirector's
system name as described in Section 333on page 13to perform user authorisation.

\\hen running in share-level security mode, on receiving the SMBtcon or SMBtconX request, the
LMXserver verifies the resource name/password combination and returns either an error code
or an identifier (the TID).

The resource name is included in the TREE CONNECT request and the identifier (TID)
identifying the connection is returned. The meaning of this identifier (TID) is LMX server
spedfic; the SMB redirector must not assodate any spedfic meaning to it.

The SMB redirector must assodate the identifier with the device name being redirected
(spedfied by the user in the command which initiated the TREE CONNECT) and include the
TID for all future network resource accesses.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 33

SMB Protocol Conventions Naming

3.5 Naming

\\ithin the SMB protocols three types of name formats can be distinguished:

• N etBI OS names

• names according to the Uniform Naming Convention (UN C)

• long filenames

An LMXserver supports the following hierarchy of names for file and print sharing:

file and pathname

resource name

LMXservername

The first layer, the LMX servername, is used by the SMB redirector to identify the spedfic LMX
server desired. This LMXservername is typically used by the user on the SMB redirector when
he wants to connect to a particular resource maintained by that LMXserver. The mapping of the
LMXservername to the NetBIOS name may be obtained by converting the LMXservername to
upper case, padding up to the fifteenth byte with Ck2J and adding Ck2J in the sixteenth byte.
This approach restricts the length of the LMXservername to 15characters.

3.5.1 Resource Names

Each LMXserver supports a collection of resource names. A resource name represents a resource
provided by the LMXserver. This name is at a minimum in 83format (refer to Section 353on
page lEJ, however, actual restrictions on this name are implementation-spedfic. Examples of
resources are:

• file system subtrees

• printers

• IPC fadlities (outside the scope of this spedfication, see the X/Open CAE Spedfication, IPC
Mechanisms for SMB)

• administrative data, which can be accessed and modified via remote administration (see
Appendix Bon page ~

• directly accessible devices (outside the scope of this spedfication)

A resource name is also commonly referred to as a share name. The resource name for IPC
fadlities IPC$and the resource name for administrative data ADMIN$are reserved and cannot
be used for other services.

3.5.2 N etBIOS Names

NetBIOS names are used to establish a NetBIOS session between the LMXserver and the SMB
redirector, the LMX session. Other NetBIOS names are used for messaging services, as
described in the XI Open CAE Spedfication, IPC Mechanisms for SMB. A NetBIOS name has a
length of 16 bytes. NetBIOS names have no structure; that is, there is no concept of network
number, host number, socket number, and so on. Each partidpant in a communication uses a
NetBIOS name. NetBIOS names are dynamically claimed and relinquished. There are two types
ofNetBIOS name: unique, which can be claimed by only one system at a time, and group, which
can be claimed by several systems at a time.

Since NetBIOS names are used to connect systems with the SMB protocol, some structure on the
NetBIOS name is imposed. For the LMXservername, the first fifteen bytes normally comprise

Protocols for X/ Open PC Interworking: SMB, Version 2 15

Samsung - Exhibit 1014 - Page 34

Naming SMB Protocol Conventions

the LMXservername in all upper-case characters. Any remaining bytes are padded with trailing
blanks (ASCII Ck2Q to bring the total length of the NetBIOS name to 15 bytes. LMX
servernames are usually simple, unstructured names, such as XOPEN-PCIG, TOOLSVR,
J\SONZ.

The sixteenth byte is used to distinguish various uses of the SMBprotocol, as follows:

cxm Used by the SMB redirector to name its end of a file-sharing connection; also used for
the sending end of messaging drcuits and the sending and receiving ends of class 2
mailslot datagrams (see the X/Open CAE Spedfication, IPC Mechanisms for SMB). A
NetBIOS name ending in Ckffiis also said to be in redirector format.

Ck2J Used by LMX servers as the NetBIOS name to which they listen for incoming
connections (LMXnetwork name). A NetBIOS name ending in Ck2Jis also said to be in
server format.

It is important to note that a single system may use all forms at various times, depending upon
the type of interaction and the system with which it is interacting.

So, as an example, the SMB redirector will use aN etBIOS name ending in Ckffias the caller name
and a NetBIOS name ending in Ck2Jfor the LMXservername.

3.5.3 Uniform Naming Convention

UNC names are constructed from names having an 83format that are separated by a backslash
(\). An 83format name consists of two components: a one to eight-byte basename must be
present and an optional one to three-byte extension may be added. If the second component is
spedfied, the two components are separated by a period (.),hence the term 83format. Wthin
an 83format name the following bytes are illegal:

• "./\[]:1 <>+=;,*?Ck2J(space)

• bytes less than Ck2J

Note that the characters *and? are used in some SMB requests as wildcard characters.

3.5.4 Canonical Pathnames

For all of the dialects defined in this document, except for the extended 20 SMB protocol, file
and directory names need to follow the Uniform Naming Convention (UNC). The backslash (\)
separator is the directory separator. Two spedal directory names, . and .. , must be recognised.
They have the usual CAE meanings; . points to its own directory, .. points to its parent
directory. In the root directory of the file system subtree, . and .. are not present.

Note that it is the LMXserver's responsibility to ensure that virtual root as defined by the TID.

3.5.5 Long Names

16

The extended 20protocol allows for the creation of long file and directory names with a total
length up to 2E5 characters. These names are case-insensitive and may be case-preserving
(implementation-dependent). That is, the names File and file will represent the same name.
Long names have a free format, compared to UNC names. It is possible to create a long name
for a file which contains multiple instances of the component separator .. Directories are still
delimited by the\ character.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 35

SMB Protocol Conventions Wildcards

3.6 Wildcards

Some SMB requests support wildcard filenames as the last 83 or long filename format of a
pathname. These are filenames which refer to a number of files based on a pattern-match
defined by the wildcard string. Only filenames which are acceptable under the filename
convention (see Section 42on page~ can be matched by wildcards.

Each part of an 83format name- the basename and the extension (if applicable) - is treated
separately. For long filenames the . in the name is significant even though there is no longer a
restriction on the size of each of the components on either side of the ..

• The *character matches an entire part, as will an empty spedfication of that part. If received,
it is interpreted to mean filling the remainder of the component in the name with ? and
performing the search with this wildcard character. Any characters that occur after the *are
ignored.

• The ? character matches exactly one character. Multiple ? characters at the end of a part
match that number of characters or fewer.

For example, the strings ABC.TXf and A.TXf would match the wildcard *.TXf, but ABC.T
would not; AB.C and ABC.C would match A??.C, but ABCD.C would not; *.*would match all
filenames.

Some SMBs, such as SMBmv and SMBcopy, use wildcards to transform filenames. In this case,
two wildcard patterns would be supplied; the non-spedal characters in filenames matching the
first wildcard would be replaced with the non-spedal characters in the same relative positions
from the second wildcard, and the wild fields would be left unchanged.

For example, the wildcards *.F and *.FOR would transform ABC.F to ABC.FOR, but ABC.F 1
would not match the first wildcard and would not be transformed; A!B??.C and X?Y??.TXf
would transform A 1B2C to XlY2TXf, but A 1BZ34C would not match the first wildcard.

3. 7 File Paradigm

All resource type information is stored using a file paradigm. For the resource type the
following file types are defined:

• regular files on file system subtrees

• spool files for printers

Other types defined that are outside the scope of this spedfication are:

• named pipes for IPC fadlities

• mailslots for IPC fadlities

• devices on directly accessible devices

Note that directories are never treated as files, but require spedal SMB requests to be read.

Protocols for X/ Open PC Interworking: SMB, Version 2 17

Samsung - Exhibit 1014 - Page 36

File Paradigm SMB Protocol Conventions

3. 7.1 Regular Files

In SMB requests the following attributes are known:

read-only file

hidden file
system file
volumeiD

directory
archive file

If this attribute is set, write access is denied. Otherwise read and write
access is allowed.

The file is excluded from normal directory searches.
The file is excluded from normal directory searches.
11-byte volume label to identify a file system subtree. It is implemented
as a spedal file and must reside on the root directory of the file system
subtree. Some SMB redirectors expect this to be a file.

The file is a directory.
If this attribute is set it indicates that the file has been changed since the
last backup. Typically it is set whenever the file has been written to and
will be cleared by backup programmes.

The volume ID attribute cannot be spedfied together with other attributes. The other attributes
can be set concurrently. Files without any attribute set are referred to as regular files.

3. 7.2 Open Modes

18

There are two groups of file exclusion which can be selected via the SMB protocol when a file is
opened. A file opened in any deny mode may be opened again only for accesses allowed by the
deny mode. The two groups and their subtypes are:

Group 1

DENY NONE

DENY ALL

DENY READ

DENY\VRITE

Anyone else may read and/or write.

Deny other users any access to this file.

Other users may access for writing.

Other users may access for reading.

The deny modes provide exclusion at the file level. A file opened in any deny mode may be
opened again only for the access allowed by the deny mode. This exclusion applies to all
subsequent opens of the file even if it is from the same process requesting the original deny
mode open. The DENY READ and DENY ALL modes deny opening a file for execution
(reference Section 535onpage 44).

Subsequent opens of a file may spedfy more restrictive deny modes as long as the new
exclusions do not conflict with the existing deny modes granted.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 37

SMB Protocol Conventions File Paradigm

The following table outlines access to the file:

Existing New open requesting
Deny Mode access DENY ALL DENY\VRITE DENY READ DENY NONE

DENY ALL R/W fail fail fail fail
READ fail fail fail fail
\VRITE fail fail fail fail

DENY\VRITE R/W fail fail fail READ
READ fail READ fail READ
\VRITE fail fail READ READ

DENY READ R/W fail fail fail \VRITE
READ fail \VRITE fail \VRITE
\VRITE fail fail \VRITE \VRITE

DENY NONE R/W fail fail fail ALL

Group 2

Compatibility

READ fail ALL fail ALL
\VRITE fail fail ALL ALL

\\ithin an LMXsession, once a file has been opened in compatibility mode, all
subsequent opens of that file by any process must be in compatibility mode
until the last open instance has been closed. If a process opened a file for any
access, another process using the same LMX session may open the same file
for any access.

Across LMXsessions, compatibility mode opens are mapped as follows:

Compatibility Read Only < >
Compatibility Wite Access < >

The rules for group 1 open modes apply.

DENY\VRITE
DENY ALL

3. 7.3 Write Behaviour

The SMB protocols make assumptions on the state of written data; that is, whatever data is
written is assumed to be what will be read at a later instant. The actual pladng of the data onto
the storage medium is a function of the LMXserver. Yet, the SMB protocols do allow the SMB
redirector to make suggestions about the pladng of the data.

There are two types of write behaviour:

Wite through

Witebehind

The data is to be placed on the storage medium prior to the response to the
write request.

It is acceptable to cache the data internally to the server and respond to the
write request immediately.

These write behaviour modes are only availabe in the extended dialects of the SMB protocols.
The core and core plus dialects assume a write through behaviour.

Protocols for X/ Open PC Interworking: SMB, Version 2 19

Samsung - Exhibit 1014 - Page 38

Locking Conventions SMB Protocol Conventions

3.8 Locking Conventions

3.&1 Byte Locking

The SMB protocol supports a form of record locking for read access or write access. This lock
covers a range of bytes and cannot overlap any other locked range. Access to a locked range of
bytes from a process which did not obtain the lock is prevented. Processes need not take a lock
to determine if any other process had that range locked as well.

3.&2 Opportunistic Locking

Opportunistic locking is a performance enhancement available in the extended protocols which
enables an SMB redirector to reduce the number of SMB requests to a minimum when it is the
only SMB redirector accessing a file opened in non-exclusive mode. This form of locking allows
the SMB redirector to cache locking requests as long as no other process is attempting to access
the file. The support of opportunistic locking is the one instance within the SMB protocols
where the LMXserver will make requests of the SMB redirector.

An SMB redirector requests an opportunistic lock (or oplock) in two ways:

1 by setting bit 5 (and optionally bit 6for additional notifications such as file deletion) in the
smb_flg field of the SMB header (see Section 5 1 on page 37) of the SMBopen, SMBcreate or
SMBmknew core SMB requests. The oplock is granted by bit 5being set in the smb_flg field
of the SMB response. If bit 5is not set in the response then the oplock was not granted.

2 by setting bit 1 (and optionally bit ~ of the smb_flags field in the SMBopenX extended SMB
request. The oplock is granted by bit 15of smb_action being set in the response.

An opportunistic lock may only be granted if no other SMB redirector has the file open. An LMX
server need not implement opportunistic locking; such an implementation would simply deny
all oplock requests.

The LMXserver must break the oplock and notify the SMB redirector in the following cases:

• another process attempts to open the file

• if bit 6 and bit 2 were set in the oplock request and an operation that changes the file (for
example, SMBunlink, SMBmv, SMBmove) was received by the LMXserver

\\hen an LMXserver deddes to break an oplock, it must perform the following steps:

1 Hold off the request which caused it to break the oplock.

2 Send to the SMB redirector which has the oplock an SMBlockingX request with MID=- 1

3 Permit the SMB redirector to flush any data that was cached by sending the appropriate
SMB \VRITE requests. The SMB redirector must flush any cached byte-range locks as well.
These lock requests can be embedded in the SMBlockingX request which must be issued in
response to the broken oplock notification.

4 Finally, the SMB redirector sends an SMBlockingX request responding to the request issued
in step 1 If the SMBlockingX request contained any lock requests, a response by the LMX
server must be generated. If the request did not contain lock requests, no response by the
LMX server is generated. Note that the SMBlockingX request should contain no unlock
requests, as the SMB redirector was not explidtly locking to the LMXserver while it had an
opportunistic lock.

The SMB redirector with the oplock may choose to close the file during step 3processing. If it
does so, the LMXserver may grant an opportunistic lock to the new requesting SMB redirector if
all other conditions are met.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 39

SMB Protocol Conventions Locking Conventions

If the SMB redirector has issued an SMB CLOSE request on the file at the same time the LMX
server has attempted to break the oplock, the SMB redirector will ignore the SMBlockingX
request; the LMX server must handle the SMB CLOSE request correctly and not expect a
response to its attempt to cancel the oplock.

It is possible that notification of a broken oplock (the SMBlockingX request), and some other
request from the SMB redirector, cross on the network. In this case, the LMXserver must note
that the notification is outstanding and cause all SMB requests to fail (by returning zero-length
data, for example). The SMB redirector will respond to the broken oplock notification and retry
the SMB request.

An LMX server is permitted to detect access to an opportunistically-locked file from an LMX
server-resident process and break the lock; however, this functionality is not mandatory.

Protocols for X/ Open PC Interworking: SMB, Version 2 21

Samsung - Exhibit 1014 - Page 40

Chaining of Extended SMB Requests SMB Protocol Conventions

3.9 Chaining of Extended SMB Requests

22

Certain extended SMB protocol requests (those whose names end with X) can have an additional
SMB request chained to them; however, each SMB request which permits chaining allows only a
subset of the possible SMB requests to be chained. The chaining of SMB requests allows for a
reduction in the number of request/response actions that need to be taken in some instances.
For example, if an application on the SMB redirector requests a lock of a byte range followed by
a read of the data in this byte range, the SMB redirector may choose to cache the sending of the
locking request until the actual read occurs then send an SMBlockingX, SMBreadX chained
request.

The following rules must be obeyed by chained SMB requests:

1 The chained SMB request does not repeat the SMB header information. Rather, it starts
with its own smb_ wet field. The smb_com2field in each SMB ... X request spedfies the SMB
command code for the chained SMB request.

2 All chained SMB requests and their data must fit within the negotiated maximum buffer
size. This size limitation also applies to the amount of data in the SMB request.

3 There is one SMB request sent containing the chained SMB requests and there is one SMB
response to the chained SMB requests. The LMX server must not elect to send separate
SMB responses to each of the chained SMB requests.

4 All chained SMB responses must fit within the negotiated maximum buffer size. This
limits the maximum value on an embedded READ, for example. It is the SMB redirector's
responsibility not to request more bytes than will fit within the multiple SMB response.

5 If the last request of a chained series is a chained SMB request (that is, SMB . .. X), the
smb_com2field must be Ckaif (also referred to as the NIL command).

6 The LMX server will implidtly use the result of the prior SMB requests in chained SMB
requests. For example, the TID obtained via SMBtconX would be used in a chained
SMBopenX, and the FID obtained in the SMBopenX would be used in a chained SMBread. If
chained requests reference an FID, the smb_fid field in each SMB request must contain the
same FID value. In other words, each SMB request can only reference the same FID (and
TID) as the other SMB request in the combined request. The chained SMB requests can be
thought of as performing a single (multi-part) operation on the same resource.

7. The first SMB request to encounter an error will stop all further processing of chained SMB
requests. The LMXserver shall not undo SMB requests that succeeded.

Suppose SMBopenX and SMBread were requested; if the LMXserver were able to open the
file successfully but the read encountered an error, the file would remain open. This is
exactly the same as if the SMB requests had been sent separately.

8 If an error occurs while processing chained SMB requests, the SMB response element of the
chained SMB responses in the buffer will be the one which encountered the error. Other
unprocessed chained SMB requests will have been ignored when the LMX server
encountered the error and will not be represented in the chained SMB response. More
spedfically, the last valid smb_com2 (if not the NIL command) will represent the SMB
command code on which the error occurred. If no valid smb_com2is present, then the error
occurred on the first SMB request and smb_com contains the SMB command code which
failed. In all cases, the error class and code are returned in the smb_rcls and smb_err fields
of the SMB header at the start of the SMB response.

9 Each chained SMB request and SMB response contains the offset (from the start of the SMB
header) to the next chained SMB request/response in its own smb_off2 field. This permits

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 41

SMB Protocol Conventions Chaining of Extended SMB Requests

chained SMB requests to be built without packing them. There may be space between the
end of the previous SMB request (as defined by smb_ wet and smb_bcc) and the start of the
next chained SMB request; this simplifies the building of chained SMB requests.

10. The data in each SMB response is expected to be truncated to the negotiated maximum
number of 512byte blocks which will fit (aligned at a ::Zbit boundary) in the maximum
buffer size, with any remaining bytes in the final buffer.

Protocols for X/ Open PC Interworking: SMB, Version 2 23

Samsung - Exhibit 1014 - Page 42

Exception and Error Handling SMB Protocol Conventions

3.10 Exception and Error Handling
Exception handling within the SMB environment is built upon the various environments (see
Section 32on page lQ. \\hen any environment is terminated in either an orderly or disorderly
fashion, all contained environments are terminated.

3.1Ql Disorderly LMX Session Dissolution

The rules for disorderly LMXsession termination are as follows:

• An LMXserver may terminate the LMXsession to an SMB redirector at any time if the SMB
redirector is generating invalid SMB requests. However, wherever possible the LMXserver
should first return an error code to the SMB redirector indicating the cause of the LMX
session abort.

• If an LMX server gets a hard error on an LMX session (such as a send failure) all LMX
sessions from that SMB redirector may be aborted.

An SMB redirector is expected to reestablish an LMXsession in the case where it was dropped
by the LMXserver due to inactivity.

On write-behind activity, a subsequent \VRITE or CLOSE of the file will return the fact that a
previous \VRITE failed. Normally, write-behind failures are limited to hard disk errors and file
system out-of-space conditions.

3.1Q2 Errors and Error Handling

24

In the case of success for file and print sharing, the LMXserver must return error class SUCCESS
and error code SUCCESS. For situations where no error is defined by the SMB protocol, the error
class ERRSRV and error code ERRerror are to be returned.

The contents of SMB response parameters other than the SMB header fields are not guaranteed
in the case of an error return. In particular, the LMXserver may choose to return only the SMB
header portion from the SMB request in the SMB response; that is, the SMB header fields
smb_ wet and smb_bcc (see Section 5 lon page 37) may both be zero (0.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 43

SMB Protocol Conventions Timeouts

3.11 Tim eou ts
The extended protocols provide for timeouts on the LMX server. SMB requests which may
timeout include:

• opens to directly accessible devices

• byte-range locking

• read or write on directly accessible devices, mailslots and named pipes (refer to the X/ Open
CAE Spedfication, IPC Mechanisms for SMB)

If an LMXserver cannot support timeouts, then the error <ERRSRV, ERRtimeout> is returned,
just as if a timeout had occurred, if the resource is not available immediately upon request. A
timeout can indicate a delay time, an indefinite delay, or that a system default should be used.
Default timeouts apply to direct access devices, mailslots and named pipes only.

3.12 Downward-compatibility Support
The core and extended SMB protocol requests and responses are variable length. Thus
additional fields may be added in the smb_vwv[] and the smb_buf[] areas in future dialects (see
Section 5 lon page 37). LMXservers must be implemented such that additional fields in either
of these areas will not cause the SMB request to fail. If additional fields are encountered, which
are not recognised by the LMXserver's level of implementation, they should be ignored. This
allows for future upgrade of the SMB protocol and eliminates the need for reserved fields.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 44

SMB Protocol Conventions

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 45

Chapter 4

LMX Considerations

This chapter highlights possible behaviours of LMX servers and deals with aspects that are
caused by hosting LMXservers in the CAE.

The conventions an LMXserver must adhere to are:

1 user mapping from SMB redirectors to CAE environment

2 filename mapping, which defines the mapping from the namespace provided by the SMB
canonical pathname format to the namespace of CAE

3 access and attribute mapping, which defines the mapping from CAE access rights to SMB
file attributes and vice versa

4 locking, which defines the mapping from the SMB-supported locking operations to those
locking operations supported by CAE

Other items where LMXservers may choose differing approaches are:

1 SMB protocol dialect (or dialects) and password encryption

2 consequences of the CAE file system

3 LMXserver caching

4 method of support for printer spooling

5 usage of the underlying network, including the choice of the network protocol,
interoperability with other file-sharing prindples and extensions beyond a single
subnetwork

41 LMX Username Mapping
CAE file system security is based on a user or process having a CAE UID and one or more CAE
GIDs (refer to the X/Open Portability Guide, Issue 3 Volume 2 XSI System Interface and
Headers). Personal computers remotely accessing a CAE file system via an LMXserver must not
compromise the CAE file system security.

An LMX server must provide a mechanism to map a user to a CAE UID and CAE GIDs. This
mapping may be different for share-level and user-level security mode (refer to Section 33on
page :IL:). For example, an LMXserver running in user-level security mode may map each user
to its own unique CAE UID and CAE GIDs, while an LMXserver running in share-level security
mode may map all users to a common CAE UID and CAE GIDs. This mapping of a username
and password into the CAE environment may use the CAE user account system to hold the
usernames and passwords. Or, there may be a separate user account system for users of SMB
redirectors that maps these users into the CAE environment. Regardless of the approach taken,
an LMX server must guarantee that a user does not have any more access permissions than a
CAE process with the same CAE UID and CAE GIDs.

\\hen running in user-level security mode, the UID used in the SMB requests may be relative to
the LMXsession. The LMXserver therefore needs to map each pair (LMXsession, UID) to the
individual CAE UID and CAE GIDs.

Protocols for X/ Open PC Interworking: SMB, Version 2 Z1

Samsung - Exhibit 1014 - Page 46

LMX Filename Mapping LMX Considerations

42 LMX Filename Mapping
This convention governs the mapping between SMB pathnames (see Section 354 on page lEJ
and names maintained in the file system on the CAE system. The SMBsesssetupX request uses a
bit (bit 4in the smb_flg; see Section 5 lon page 37) in the SMB header which indicates whether or
not the pathnames in subsequent SMB requests have been translated to SMB canonical
pathnames. LMXservers must support this bit being set.

In addition to this flag, in the extended protocols another bit (bit 3in the smb_flg) in the SMB
header indicates whether the SMB redirector desires case-insensitive pathnames. If this bit is set,
operations should be case-insensitive. LMXservers must support this bit being set.

If an LMX server does not support the functionality of either bit 3 or bit 4 when not set, the
server may choose to ignore these bits and attempt to use the pathname provided in the SMB
request in the manner it would for the condition where the bits are set. This means that when an
SMB redirector performs a request with one (or both) of these bits cleared and the server does
not support that form of pathname, the SMB redirector will receive an error condition produced
by the normal functioning of the LMXserver (that is, file not found).

Wth regard to both these flags, the LMX server must generate pathnames in SMB responses
which match the requested form. If the SMB redirector did not request canonical pathnames, the
LMXserver must not map pathnames in responses, but simply use the local representation.

Pathnames following the Uniform Naming Convention (see Section 354on page lEJ from the
SMB redirector side are to be mapped by the LMXserver into the CAE file system. Characters
with values larger or equal to Ck8Jmay not be supported or converted from upper to lower-case
(and vice versa) by LMX servers. All other characters are mapped according to the following
rules:

1 Filenames with . and extension are used as is.

2 Convert all characters of value less than Ck8J to lower case (unless case-sensitive mode
was requested).

3 The directory separator\ is converted to /.

4 Accept the spedal names . and .. as is.

5 Leave any other spedal characters as they are. If any forbidden characters (see below)
remain in a name, r~ect the request.

Names of files on the CAE system are mapped by the LMX server to canonical pathnames
according to the following rules. An LMX server implementation may map a wider range of
CAE filenames into a canonical pathname bypassing some of the restrictions below. However,
all mappings need to obey rules one to three.

1 Names which are all lower case are split into filename and extension at the first period (.).
If case-insensitive mode was requested, all characters of value less than Ck8Jare converted
to upper case.

2 The spedal files . and .. are not translated and are used as is.

3 The directory separator I is converted to \.

4 If case-insensitive mode was requested, names containing an upper-case letter are invisible
and inaccessible from the SMB redirector. If case-sensitive mode was requested files of
mixed case are visible to the SMB redirector.

5 Basenames longer than 8characters are invisible and inaccessible from the SMB redirector
depending on the dialect chosen. The extended 20 dialect allows for longer file and

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 47

LMX Considerations LMX Filename Mapping

directory names.

6 Names containing a leading . (that is, a null basename part) are invisible and inaccessible
from the SMB redirector.

7. Names containing a trailing . (that is, a null extension with an extension separator present)
are invisible and inaccessible from the SMB redirector.

8 Names containing more than one . are invisible and inaccessible from the SMB redirector.

9 Names containing more than three characters following a . are invisible and inaccessible
from the SMB redirector.

10. Names containing characters not permitted in canonical pathnames are invisible and
inaccessible from the SMB redirector. Those illegal characters are:

"." (as anything but a separator for the extension)
" " (the space character, ASCII Ck2Q
any value less than ASCII Ck2J
Cka3 "+", Ck53 "[",(kg]"]", ()(21\ "*", Ck::=F "?', ()(3'\ ":", CkS:::: "\",
cx33 "·" cxa< "!" cx3J "=" cxi" "cx::=E" "CX22""" cxte "I" '' ' ' <' >' ' '
cxa= ","

Examples:

CAE filename SMB redirector (case-insensitive mode)

a A
acn ACN

main.c MAIN.C
1234~ <not accessible: too long>
12345378 12345378

/users/acn/main.c \ USERS\ACN\MAIN .C
file. <not accessible: trailing dot>

MSnet <not accessible: upper-case letter>
ACN <not accessible: upper-case letter>

file.baad <not accessible: extension too long>
s.c.x <not accessible: too many dots>

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 48

LMX File Mapping LMX Considerations

43 LMX File Mapping

43.1 SMB File Attributes

SMB file attributes (see Section 3 7 on page 17) are not the same as CAE file attributes. The
mapping of the read-only and directory attributes is the minimum set of required functionality.
Any other attributes not supported by the LMXserver may be ignored. If the read-only attribute
is spedfied, the SMB redirector has no write permission. For files created, the LMXserver will
turn off the CAE write permission. If the directory attribute is spedfied, the requested name will
map to a CAE directory. LMXservers may support more SMB file attributes but are not allowed
to use different semantics for the read-only and directory attribute.

Changing the read-only attribute via SMBsetatr or SMBsetattrE will affect the write mode of the
file from the LMXserver's perspective; hence, in user-level security mode the UID spedfied must
map to that of a CAE process with appropriate privilege.

43.2 CAE File Access Permissions

CAE provides a umask (refer to the X/Open Portability Guide, Issue 3 Volume 2 XSI System
Interface and Headers) to define the default file access permissions to be used when a new file is
created. An LMXserver must provide a mechanism to define the umask to be used for CAE files
created on behalf of the users. The mechanism is implementation-dependent. For example, an
implementation may provide a common umask for all users or may define a umask per user.

In CAE environments, it is necessary to have both the read and search attributes on a directory
to be allowed to view and transverse the directory (refer to the X/ Open Portability Guide, Issue
3 Volume 2 XSI System Interface and Headers). An LMX server must provide support that
allows for SMB redirectors to create directories that can be viewed and transversed.

\\hen the LMXserver opens a file on behalf a user (that is, the SMB redirector' s user mapped to a
CAE UID and CAE GIDs) the CAE access permissions for that file must be obeyed.

43.3 File System Issues

CAE provides a method whereby the maximum allowed size of an individual file can be
controlled. This control is provided via ulimit (refer to the X/Open Portability Guide, Issue 3
Volume 2 XSI System Interface and Headers). An LMXserver may provide support where this
feature can be used to govern the maximum file size allowed for all users of the LMXserver or
even individual users.

If this support is provided, it is not possible to retrieve the value for ulimit from SMB redirectors.
Therefore, SMB redirectors cannot tell the difference between a file size restriction or a file
system being out-of-space. The manner by which an LMXserver handles the CAE ulimit feature
is implementation-dependent.

The LMXserver will report either the free space of a single file system or the total free space of
all file systems that the shared file system subtree, accessible from the SMB redirector, may span.
Thus it is possible to get into a state where a directory path on the LMXserver has run out of free
space, but another directory path has not. In this state, SMB redirectors will report to the user
that there is free space available on the server and yet the user will not be able to write data to
files on the file system subtree or vice versa.

It is possible in a CAE environment that the LMX server has no control over the creation time
given to a particular file. Therefore, support for the setting of the creation time provided by an
SMB redirector is implementation-dependent.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 49

LMX Considerations LMX File Mapping

\\hen returning available space on the LMXserver to the SMB redirector (see Section 86on page
107), it may be necessary for the SMB server to report an allocation unit that is larger than the
51Zbyte units of the CAE system in order to avoid overflowing the number of allocation units
available in the SMB response. This can result in a rounding error for the free space information.

Some CAE systems provide no way for a program to block until the local file cache has actually
flushed to the disk, but simply indicate that a flush has been scheduled and will complete soon.
An LMXserver should nonetheless take steps to maximise the probability that the data is truly
on disk before the SMB redirector is notified.

43.4 CAE Special Files

LMXservers may allow access to CAE spedal files, such as CAE-defined FIFOs or character and
block spedal files (refer to the XI Open Portability Guide, Issue 3 Volume 2 XSI System Interface
and Headers). Support for spedal file access is not a requirement for LMXservers.

43.5 Deleting or Renaming a File

The spedfication for deleting or renaming a file via an SMB request (for an example, see Section
7.12on page 92or Section 7.11on page~ spedfy that for a file to be deleted no other process
may have the file open. In a CAE environment, it may not be possible for the LMX server to
determine whether another CAE application has the file to be deleted open. Therefore, it is
implementation-dependent whether the LMXserver will not allow an SMB redirector to delete
or rename a file while another CAE application has the file open for use. Additionally, it is
possible for a CAE application to delete or rename a file while an SMB redirector has the file
open for use. The actions taken by the LMX server under these drcumstances are
implementation-dependent.

43.6 Long Filenames

\\hen using the extended 20 protocol dialect, an LMX server may support the use of long
filenames. These are filenames which do not conform to the 83format (refer to Section 355on
page lEJ. It is possible that the CAE system on which the LMX server is executing does not
support filenames to the maximum length allowed in the long filename definition. In this case,
the LMXserver may support names longer than the 83format yet restrict the maximum length
of the name to the length supported by the CAE system. As an example, suppose the CAE
system supports names up to fourteen characters in length. An LMX server on this system is
allowed to provide long name support to the SMB redirectors and restrict the maximum length
of such names to fourteen characters. It is not required that an LMX server supporting long
filenames guarantees support of the maximum name length in the long filename definition.

43.7 Extended Attributes

The extended 20 protocol allows for the storage and retrieval of extended attributes on a file
stored on the LMX server. Extended attributes are name=value pairs where the length of the
combination of the name=value pair will not exceed f£f5.£J bytes. Both the name and the value
portion of the pair are free format and application-spedfic. The application will store and
retrieve the information based on the name. Support for extended attributes is optional.

Some SMB redirectors will store a collection of default extended attributes (EAs) when the
support for extended attributes is provided by the LMXserver. Known examples of names and
values for EAs stored are:

.COMMENTS= An ASCIIZ string giving some general discussion on the contents of the file.

Protocols for X/ Open PC Interworking: SMB, Version 2 31

Samsung - Exhibit 1014 - Page 50

LMX File Mapping LMX Considerations

32

. HISTORY= An ASCIIZ string indicating creation and change history for the file .

.KEYPHRASES= A collection of key words or phrases that pertain to the file.

. SUBECT=

. TYPE=

A suQject line for the file .

The type of the file; that is, it is a document file, plain text or a spreadsheet .

For moving or copying files in an environment where LMX servers may or may not be
supporting EAs, SMB redirectors will copy all of the data contents of a file between servers and
warn the user about loss of EA information. The spedfics of the SMB error codes that must be
supported by the LMXserver to generate this warning are discussed in Chapter 16on page ZJ7.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 51

LMX Considerations LMX File Locking

44 LMX File Locking

The locking model and functionality provided by the SMB protocols (and thus expected by SMB
redirector processes) and the model being used by applications running in a CAE environment
are quite different. This mismatch makes it impossible to require an LMX server to properly
mediate interlocking between an SMB redirector process and CAE application accessing the
same file.

Some forms of interlocking mediation are possible. If an LMX server chooses to support file
locking, it should support at least the features described in this section.

The SMB protocol does deny modes on open (see Section 3 7.2on page 1~ and byte-range locks.
The core SMB protocol supports only one type of byte-range lock via the SMBlock request that
excludes that byte-range from any other lock, read or write access by other SMB redirectors. The
extended protocols support additionally read-only locks via SMBlockingX.

The CAE does not define any forms of deny mode as in the SMB protocols. The CAE, however,
spedfies two forms of locks (see the XI Open Portability Guide, Issue 3 Volume 2 XSI System
Interface and Headers):

F_RDLCK Lock byte range allowing multiple readers (shared lock); a process may write to
the range (with or without an F_RDLCK) if no other process has an F_RDLCK on
that range. The file must have been opened with read access.

F _ WRLCK Lock byte range allowing R/W (read and write) for locking process only (exclusive
lock). The file must have been opened with write access.

These locks are advisory, rather than mandatory. \\ith advisory locking, cooperating processes
must acquire locks to determine whether any other process has locked that range as well.

441 Interlocking Behaviour

Deny Modes

An LMX server must mediate deny modes between multiple SMB redirector processes. But it
cannot completely enforce those access denials against other LMXserver-resident applications,
since those other processes may not be making lock requests against the file, and the CAE does
not provide a mandatory locking function. LMXservers may provide some forms of deny-mode
between an SMB redirector and a CAE application.

\\hen interlocking for deny modes is supported, the LMXserver may place the following locks
when an SMB redirector requests a byte-range lock:

SMB requested mode Action

Opens for DENY ALL with all access modes, DENY No action.
WRITE with READ access mode, and COMPATIBILITY
with all access modes.

Opens for DENY NONE or DENY READ with READ F_RDLCK only.
access mode.
Opens for DENY NONE, DENY READ or DENY WRITE F_ WRLCK only.
with WRITE and R/W access modes. In the case of
DENY WRITE with R/W access, the record to be locked
will be promoted to F_ WRLCK. A record to be unlocked
will be demoted to F_RDLCK.

Protocols for X/ Open PC Interworking: SMB, Version 2 33

Samsung - Exhibit 1014 - Page 52

LMX File Locking LMX Considerations

Although LMX servers acquire an advisory lock prior to each READ or \VRITE when
interlocking is in effect, application developers should use byte-range locks whenever
cooperating with CAE applications. This spedfication requires an LMXserver to return an error
if an access to a locked range takes place, which will cause many applications to fail.

Byte-range Locking

LMX servers must provide byte-range locking to SMB redirectors. There are some restrictions
on the ability of an LMX server to completely emulate the required functionality of the SMB
byte-range lock as it interacts with the access mode in which the file was opened. A file opened
read-only access cannot have an F_ WRLCK placed on it, as a CAE advisory write lock requires
write permission. Because of this, an LMX server cannot simulate the SMB redirector R/W
record locking semantics for read-only access.

Since the semantics of the SMB byte-range lock are mandatory rather than advisory, an LMX
server must cause accesses by an SMB redirector to locked byte ranges to fail. Ideally, LMX
servers would also cause access to those ranges from LMXserver-resident processes to fail. This
can only be accomplished if the LMX server-resident process is cooperative, that is, places
advisory locks on byte ranges of interest, and if the LMXserver places advisory locks on behalf
of SMB redirector SMB requests.

The semantics of SMB locking require that an SMB redirector attempting to access (without
locking) a range of bytes already locked by an LMXserver-resident process must receive an error
for that request. This means that an LMXserver must place advisory locks for all SMB redirector
SMB requests. These implidt locks exist solely for the time required for the requested operation
and do not persist beyond that time. If an SMB redirector has already explidtly requested a lock,
the LMXserver need only maintain that lock and permit the SMB redirector to explidtly release
it.

SMB byte-range locks can be larger than CAE file locks. The LMX server must support byte
range locks beyond standard CAE offsets.

442 Locking Timeouts

The extended dialect's requests for locking define timeout values that indicate how long the
SMB redirector would like to wait before a lock attempt is failed. Support for these timeout
values is not a requirement for an LMXserver and may be ignored. If an LMXserver cannot
support timeouts, then the error <ERRSRV, ERRtimeout> is returned, just as if a timeout had
occurred, if the resource is not available immediately upon request.

443 Read-only Locks

In the extended protocols, an LMX server may choose not to support read-only locks. It will
then treat any request for such a lock as though a read/write lock has been requested.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 53

LMX Considerations LMX Server Caching

45 LMX Server Caching
An LMXserver may perform its own internal caching in an effort to increase performance for
SMB redirectors. A simple example of this would be if the LMX server responds to write
requests prior to making the CAE call necessary to write the data in the CAE system. This action
by the LMX server is referred to as write-behind in the remainder of this document. By
responding prior to writing the data, it means the SMB redirector may receive the response prior
to the data being reflected in the CAE file system. If an LMXserver does caching, it is required
that it maintain this internal cache in such a manner that other SMB redirectors will see the same
data if they make a read request prior to the CAE write by the server. It is not required that after
an SMB redirector performs a write request, and receives the write response, that the data is
reflected immediately to other CAE applications on the LMX server system. If an LMX server
performs write-behind, it is required that the server honour SMBflush requests and not respond
to these requests prior to flushing all appropriate, internally-cached data to the CAE file system.

46 LMX Print Spooling
The SMB protocols allow for status information on print jobs submitted to the LMXserver. The
LMX server, however, may choose to deal with print requests by a number of methods. One
example would be for the LMXserver to queue print requests internally to the server and then
issue the requests to the CAE print spooling environment one job at a time, waiting for each job
to complete before the next is spooled. This approach allows the LMXserver to maintain state
information concerning print requests that can be returned to the SMB redirector when
necessary. Another approach is to couple the LMXserver print queueing support with the CAE
print spooling support. Depending on the degree the two are merged, it may not be possible for
the LMXserver to maintain the exact status of the print request, but a reasonable status must be
estimated when necessary.

The print spooling protocols defined in Chapter 9 allow for the transmission of printer setup
data, and give an indication of the type of data contained in the file (that is, text or graphics).

An LMXserver implementation may choose to use or discard the printer setup data. The text or
graphics mode indicator may be used by the LMX server to perform printer initialisation, or
ignored.

4 7 SMB Error Codes
Chapter 5 defines a number of constants and descriptions of possible meanings for SMB error
codes. In subsequent chapters, as each SMB is described, a table mapping possible error
conditions to error codes is provided. If an LMX server implementation experiences an error
condition that is not described in the table for the spedfic SMB, the LMXserver may return any
of the error codes defined in this document that best describe the error condition.

The ERRHRD class may cause an SMB redirector to notify the user of the error via an exception
handling routine. \\here the ERRHRD and ERRDOS class of errors overlap, the LMX server
implementation has the option to use either class.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 54

Security Policy LMX Considerations

48 Security Policy
An LMXserver must provide a security policy. It may provide either share-level security, user
level security, or a combination approach (refer to Section 22on page 5and Section 33on page
~.

Another aspect of security is the support for encryption of user passwords. An LMXserver may
choose to support the encryption technique described in Appendix D or Section 112 on page
1::9. It is also acceptable for an LMXserver not to support password encryption at all.

49 Negotiated Dialect
An LMX server may choose to support only one, a combination of, or all of the SMB dialects
described in this document. Since the process of negotiating an SMB dialect is open-ended it is
also possible that an LMXserver supports dialects not described in this spedfication.

410 Network Issues

33

This spedfication assumes the LMXserver implementation uses the transport support described
in Appendix Eon page 281 (TOP/NetBIOS), Appendix F on page 349 (RFC 1ffi1) and Appendix
G on page 419. It is for this reason that these RFCs are republished in this document.

For the binding of NetBIOS to the TCP/IP protocol suite (refer to Appendices F and G) only
those aspects forB-node functionality are required.

An implementation may choose to support the full M-node functionality, as that is a superset of
B-node.

For the binding ofNetBIOS to OSI transport (refer to Appendix Eon page 281) the NetBIOS user
agent is optional.

This spedfication defines a default method by which LMXservernames are mapped to NetBIOS
names (refer to Section 352on page 15). It is possible that an LMXserver implementation and
compatible SMB redirector implementation may use additional methods of mapping LMX
servernames to NetBIOS names.

SMB protocols are only spedfied to run on a single LAN subnetwork, but interoperation in
connected subnetworks is not precluded.

X/Open has defined other types of PC connectivity support; refer to the X/Open Developers'
Spedfication, Protocols for X/Open PC Interworking: (PC)NFS. (PC)NFS and SMB protocol
implementations, or other connectivity implementations, on the same server are not required to
interwork with respect to additional features beyond those provided by XSI (for example,
extended DOS file open modes). Additionally, if the CAE system is supporting access to other
CAE systems via XNFS (reference X/Open CAE Spedfication, Protocols for X/Open
Interworking: XNFS), it may be possible to configure an LMXserver to allow SMB redirectors
access to the resources of the other CAE systems via the XNFS connection, but this is not a
requirement.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 55

Chapter 5

Data Objects and Constants

This chapter describes the SMB format, common data structures, flag fields and other oQjects
commonly used in SMB requests and responses. It also defines various symbolic constants and
indicates their (required) values. Throughout the spedfication the following definitions will be
used:

8bit field

16bit

~bit

An octet; sometimes referred to as a byte.

Two 8bit fields with the least significant 8bit field first ~ittle-endian).

Two 16bit elements with the least significant 16bit element first ~ittle-endian).

5.1 SMB Format
All SMB requests and responses (except where noted) have a common header, as follows:

Offset Type Field Name Description

m 8bit field smb_idf14] contains Odf,Ck53Ck 4:1 ,Ck 42
O'l 8bit field smb_com command code
05 8bit field smb_rcls error class
Q3 8bit field smb_reh reserved for future
CJ7 16bit field smb_err error code
m 8bit field smb_flg flags
10 16bit field smb_res[71 reserved for future
24 16bit field smb_tid authenticated resource identifier
a3 16bit field smb_pid caller's process ID
28 16bit field smb_uid unauthenticated user ID
3J 16bit field smb_mid multiplex ID
32 8bit field smb_wct count of 16bit fields that follow
33 16bit field smb_vwv[] variable number of 16bit fields
- 16bit field smb_bcc count of 8bit fields that follow
- 8bit field smb_buf1] variable number of 8bit fields

The structure defined from smb_idf through smb_ wet is the fixed portion of the SMB structure
sometimes referred to as the SMB header. Following the header there is a variable number of
16bit fields (defined by smb_wct), and following that is smb_bcc which defines an additional

variable number of 8bit fields. The SMB header fields are defined as follows:

smb_idf

smb_com

smb_rcls

smb_err

smb_flg

SMBidentification string, always Ckff,Ck53Ck4:l,Ck42

SMB command code (see Section 5 2on page LQ.

Error class (see Section 5 6on page 4~, set in the SMB response only.

Error code (see Section 56on page 4~, set in the SMB response only.

A bit-encoded field. The flag bits are defined as follows:

Bit 0 \\hen set (returned) by the LMXserver in the SMBnegprot response,
this bit indicates that the LMX server supports the SMBlockread and
SMBwriteunlock requests.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 56

5MB Format

smb_tid

smb_pid

smb_uid

Bit 1

Bit 2

Bit 3

Bit 4

Data Objects and Constants

Used only in requests when an extended SMB protocol is negotiated.
\\hen set, the SMB redirector guarantees a receive buffer is already
posted; this has implications for the type of underlying transport
service which may be used in sending a response.

Reserved; MBZ (Must Be Zero).

\\hen on, all pathnames in the protocol must be treated as case
insensitive. If one of the extended protocols is negotiated and the bit
is set off, the pathnames are case-sensitive. The LMX server can
assume the value is always set to on.

Used only in the SMBsesssetupX request. \\hen on, the SMB
redirector indicates that all pathnames will be spedfied as canonical
pathnames, already obeying the file naming conventions (see Section
35 on page 15). \\hen off, pathnames are in the LMX server
representation. The LMX server can assume the value is always set
to on.

Bit 5 Used only in the SMBopen, SMBcreate and SMBmknew
requests/responses. \\hen set in a request, the SMB redirector asks
that the file be opportunistically locked, a feature of the extended
SMB protocols. If the LMX server places the opportunistic lock, this
bit is set in the SMB response. This bit is referred to as the oplock bit.

Bit 6 Used only in the SMBopen, SMBcreate and SMBmknew requests when
an extended protocol is negotiated; meaningful only if bit 5 is also
set. \\hen set, the SMB redirector is asking to be notified of any
operation which can modifY the file (for example, delete, setting of
attributes, rename, etc.). This allows the redirector to cache the
complete file. If not set, the SMB redirector need only be notified if
another open request is received for the file. This bit is referred to as
the opbatch bit.

Bit 7 Always set in responses. The smb_com (command code) field usually
contains the same value in a request from the SMB redirector to the
LMXserver as in the matching SMB response from the LMXserver to
the SMB redirector. This bit unambiguously distinguishes the SMB
request from the SMB response. On a multiplexed LMXsession on a
system where both LMXserver and SMB redirector are active, this bit
can be used by the system's SMB delivery system to help identifY
whether this protocol should be routed to a waiting SMB redirector
or to the LMXserver.

Used by the LMX server to identifY a resource (for example, a file system
subtree). The value Odftf is reserved. The LMX server is responsible for
enfordng use of a valid TID where appropriate (see Section 32on page 10.

Generated by the SMB redirector to uniquely identifY a process within the
SMB redirector's system. An SMB response will always contain the same
value in smb_pid (and smb_mid) as in the corresponding SMB request.

User identifier. It is used by the extended protocol when the LMX server is
executing in user-level security mode to validate access on requests which
reference named resources (such as file open). Refer to Section 32on page 10,
Section 33on page 12and Section 431on page 3Jfor additional information.
Thus differing users accessing the same TID may be granted differing access to

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 57

Data Objects and Constants 5MB Format

smb_mid

the resources defined by the TID based on smb_uid. The username and
password requested are validated by the LMX server via the SMBsesssetupX
exchange (refer to Section 113on page 144). The LMXserver returns a value
in smb_uid that will be used by the SMB redirector to represent the user
identity requested.

Note that Odffe (-~ is reserved as an invalid UID. In share-level security
mode this field is not used.

This field is used for multiplexing multiple SMBs on a single LMX session.
The PID (in smb_pid) and the MID (in smb_mid) uniquely identify a request and
are used by the SMB redirector to correlate incoming SMB responses to
previously sent SMB requests (refer to Section 32on page 10.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 58

SMB Command Codes Data Objects and Constants

5.2 SMB Command Codes
This table shows the mapping between the symbolic name for an SMB request or response and
the value to be placed in the smb_com field of the SMB header. The Protocol column indicates the
protocol class to which the request belongs:

C Core protocol; all dialects.

C+ Core plus protocol as generated by the lCBdialect.

E Extended protocol; only those dialects defined as extended 10.

E2 Extended protocol; only those dialects defined as extended 20.

Not generated by dialects of LAN Manager; included for reference purposes only.

Name smb_com Protocol

SMBmkdir cxm c
SMBrmdir CkOl c
SMBopen ()((]2 c
SMBcreate CkCB c
SMBclose Ck04 c
SMBflush Ck05 c
SMBunlink cxm c
SMBmv Ck07 c
SMBgetatr CkCB c
SMBsetatr cxm c
SMBread cxca c
SMBwrite CkCb c
SMBlock Cket c
SMBunlock ()(Qi c
SMBctemp ()((£ Reserved
SMBmknew ex a c
SMBchkpth Ck 10 c
SMBexit Ckll c
SMBlseek Ckl2 c
SMBlockread Ck 13 C+
SMBwriteunlock Ck 14 C+
SMBreadbraw ()(]a C+
SMBreadbmpx Cklb E
SMBreadbs Ck 1c E
SMBwritebraw Ck 1d C+
SMBwritebmpx Ck 1e E
SMBwritebs Cklf E
SMBwritec ()(2) E
reserved Ck21
SMBsetattrE CkZZ E
SMBgetattrE CkZ3 E
SMBlockingX Ck24 E
SMBtrans Ck25 E See Note.
SMBtranss Cka3 E

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 59

Data Objects and Constants SMB Command Codes

Name smb_com Protocol

SMBioctl Ck27 E
SMBioctls Ck28 E
SMBcopy CkZ:J E
SMBmove Ck21 E
SMBecho Ck2b E
SMBwriteclose ex a: E
SMBopenX Ckat E
SMBreadX Ck& E
SMBwriteX ex a E
SMBtrans2 Ck32 E2
SMBtranss2 Ck33 E2
SMBfindclose Ck34 E2
SMBfindnclose Ck35 E2
SMBlogon ()(6)

SMBbind Ck61
SMBunbind Ck62
SMBgetaccess Ck63
SMBlink Ck64
SMBfork Ckffi Reserved for
SMBgetpath CkEB proprietary
SMBreadh CkE9 dialects
SMBrdchk CkEb
SMBmknod Ckfr
SMBrlink CkEi:l
SMBgetlatr CkEe
SMBtcon Ck/0 c
SMBtdis Ck71 c
SMBnegprot Ck72 c
SMBsesssetu pX Ck73 E
SMBulogoflX Ck74 E2
SMBtconX Ck75 E
SMBdskattr ()(8) c
SMBsearch Ck81 c
SMBffirst Ck82 E
SMBfunique Ck83 E
SMBfclose Ck84 E
SMBsplopen CkcO c
SMBsplwr Ckcl c
SMBsplclose Ckc2 c
SMBsplretq Ckc3 c
SMBsends CkdO c
SMBsendb Ckd 1 c
SMBfwdname Ckd2 c
SMBcancelf Ckd3 c
SMBgetmac Ckd4 c
SMBsendstrt Ckd5 c
SMBsendend Ckd6 c

Protocols for X/ Open PC Interworking: SMB, Version 2 41

Samsung - Exhibit 1014 - Page 60

SMB Command Codes Data Objects and Constants

Name smb_com Protocol

SMBsendtxt Ckd7 c
Never valid Ckfe Never sent
Implementation-dependent Ckff

Note: The SMBtrans request is used within the extended SMB protocols only for services
described in the X/Open CAE Spedfication, IPC Mechanisms for SMB and is outside
the scope of this spedfication.

42 X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 61

Data Objects and Constants Data Objects

5.3 Data 0 bjects
This section defines various fields, oQjects and structures used in more than one SMB request or
response.

5.3.1 Time Fields

There are two time field formats; one 16 bits in length, and one 32 bits in length. Many SMBs
contain a 16bit quantity whose value indicates a particular time. Unless otherwise spedfied, the
time is encoded in the following format:

hhhhh Bits 11- 15contain the current hour; range is 0-23

mmmmmm Bits 5 10contain the current minute; range is 0-5:1.

xxxxx Bits 0-4contain the current seconds in units of two seconds; range is 0-Z::l.

Other SMBs contain a ::Zbit value which represents a time, in seconds, relative to midnight on
Jmuary L 1970 (the Epoch). This ::Zbit value is a signed, but always positive, ::Zbit integer, and
is split into two 16bit values in the SMB. The low-order 16bit values are always first, followed
immediately by the high-order 16bit values. This pair is usually referred to as time low and
time high.

5.3.2 Date Fields

Many SMBs contain a 16bit value indicating a particular date. Unless otherwise spedfied, the
date is encoded in the following format:

yyyyyyy Bits 9- 15 contain the current year, less 1ffi), range is 0- 119, indicating 1SEJ-a:ill.
Note that the base year is not 1970.

mmmm

ddddd

Bits 58contain the current month; range 1-12 where lis Jmuary.

Bits 0-4contain the current day of the month; range 1-31

5.3.3 File Attributes Fields

Many SMBs contain one or more 16bit values, each of which encodes file attributes. Unless
otherwise spedfied, the attributes are encoded in the following format:

Bit 0 The file is read-only.

Bit 1 The file is hidden.

Bit 2 The file is a system file.

Bit 3 The file is a volume identifier.

Protocols for X/ Open PC Interworking: SMB, Version 2 43

Samsung - Exhibit 1014 - Page 62

Data Objects Data Objects and Constants

Bit 4 The file is a directory.

Bit 5 The file is flagged as changed since last archive.

All other bits are reserved and Must Be Zero. If none of the attribute bytes are set, the file
attributes refer to a regular file. Note that use of this field is governed by the File Attributes
conventions (see Section 43 1on page~.

5.3.4 Buffers

Many of the core SMBs contain typed buffers in the smb_buffield. A buffer consists of a single 8
bit field, indicating the type of buffer, followed by a string of 8bit fields, which are the contents
of the buffer. The buffer type defines the termination method for the buffer contents. The buffer
types are:

01 Data Block. The buffer contains a 16bit value containing the length of the data block,
followed by that number of 8bit fields of data. This buffer is not null-terminated.

02 Dialect. The buffer is a null-terminated string of bytes making up a dialect name (see
Section 54 on page~.

O'l ASCIIZ. The buffer is a null-terminated string of ASCII characters.

05 Variable Block. The buffer contains a 16bit value containing the length of the data block,
followed by that number of 8bit fields of data. This buffer is not null-terminated.

5.3.5 File-sharing Control

44

SMBs which open files make use of a 16bit value to control the extent of file sharing to be
permitted. This 16bit value has the following format:

Bits 8 13and bit 15are reserved and should be ignored by the LMXserver.

w Wite-through mode. Neither read-ahead nor write-behind caching for this file is
permitted. An LMXserver should not respond to any SMB request involving this file
until all data related to the SMB request is on stable store (that is, on disk). This mode
is generated in extended protocols only.

r Reserved. Ignored by the LMXserver.

xxx Exclusion mode. Values are:

0

1

2

3

4

DOS compatibility mode (exclusive to an LMXsession, but that LMXsession
may have multiple opens).

DENY ALL (exclusive to this operation).

DENY \VRITE. Other users may access the file in READ mode. Open for
executing is not allowed.

DENY READ. Other users may access the file in \VRITE mode.

DENY NONE. Allow other users to access the file in any mode for which they
have permission.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 63

Data Objects and Constants Data Objects

56 Illegal. SMB redirectors should not spedfy these values.

7 FCB open mode (see below).

yyyy Type of access requested. Values are:

0 Open the file for reading.

1 Open the file for writing.

2 Open the file for reading and writing.

3 Open the file for executing (extended protocols only).

4 14 Illegal. SMB redirectors should not spedfy these values.

15 Illegal, except for FCB open (see below).

For the exclusion modes see Section 3 7.2on page 18

Spedal semantics, called an FCB open, are assodated with a file-sharing control value of CkCllf.
This type of open will cause a DOS compatibility open with the read/write modes set to the
maximum permissible. Generally, this will cause any access violations to be detected when the
first read and/or write is attempted, rather than during open processing.

The open for execute bit maps to read-only, and writes to these files from SMB redirectors are
not allowed while that attribute is set.

5.3.6 Resource Types

In SMBtcon and SMBtconX an ASCIIZ buffer (type 0'1) is used to spedfy the resource type. The
following are acceptable:

A: File system share.

LPr 1: Spoolable device.

COMM Character mode device.

IPC$ Mailslots or named pipes.

SMBopenX contains a 16bit field denoting a resource type. The permissible values for this field
are:

0 File or directory, as determined by the attribute field smb_attr related to the same file.

1 Stream mode named pipe- see the X/ Open CAE Spedfication, IPC Mechanisms for SMB.

2 Message mode named pipe- see the X/ Open CAE Spedfication, IPC Mechanisms for SMB.

3 Printer device.

4 Character mode device. \\hen an extended protocol has been negotiated, it allows a device
to be opened (via SMBopenX) for driver-level I/0. This provides direct access to real-time
and interactive devices such as modems, scanners, etc.

Protocols for X/ Open PC Interworking: SMB, Version 2 45

Samsung - Exhibit 1014 - Page 64

Data Objects Data Objects and Constants

Named Pipes, Mailslots and Messaging

Named pipes, mailslots and messaging are IPC mechanisms defined in the X/Open CAE
Spedfication, IPC Mechanisms for SMB which are outside the scope of this spedfication. To
support named pipes and mailslots extended SMB protocol elements are required that will use
spedfic resource types as defined above. Two such types of devices are defined:

COMM Communication devices like modems or terminals.

LPT 1 Printer devices which will be accessed directly.

5.3. 7 Access Modes

Some SMBs which open files return an indication of the type of access granted to the requestor.
This 16bit field takes the following values:

0 Read-only access granted.

1 Wite-only access granted.

2 Read/write access granted.

23 Reserved; do not use.

5.3.8 Open Function

The open function field controls the way a file should be treated when it is opened for use by
certain extended SMB requests. This 16bit field is bit-encoded:

Bits 0- 1 This field determines the action to be taken if the file exists. The values and meanings
for this field are:

0 The request should fail and an error returned indicating the prior existence of the
file.

1 The file should be appended to.

2 The file should be truncated to zero (Q length.

3 Reserved; this value should not be used.

Bit 4 If the file does not exist and this bit is clear, the request should fail; if this bit is set, the
file should be created.

All other bits are reserved and should be ignored by the LMXserver.

5.3.9 Resource Names, Pathnames, Filenames and Network Pathnames

A pathname is a 1 to 255byte long UNC name that routes to a directory.

A filename is an 83format or long filename format name that routes to a file. In the case of the
extended 20dialect a filename may be up to 255bytes in length. A pathname may be included
to spedfy a directory where the file resides.

A network pathname is a filename proceeded by the LMX servername and has the following
format:

\\ <LMXservername> \ <pathname> \<filename>

where:

<LMXservername> is a one to fifteen byte LMXservername.

46 X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 65

Data Objects and Constants Data Objects

<pathname> is a collection of component names in either the 83format or in a long
filename format.

<filename> is the final 83or long filename format name.

5.3.10 File Identifiers

Many SMB requests and responses contain a 16bit file identifier (FID). These are created by the
LMXserver upon an open request and need to be maintained by the SMB redirector. All values
but- 1 (CkFFFF) are valid. The- 1 is used to spedfy all FIDs or no FID, depending on the context
by which it is used.

Protocols for X/ Open PC Interworking: SMB, Version 2 47

Samsung - Exhibit 1014 - Page 66

SMB Dialects Data Objects and Constants

5.4 SMB Dialects
To distinguish between various levels of SMB protocols the SMB redirector will send in the
SMBnegprot request (see Section 61 on page ~ a set of dialect strings from which the LMX
server will select one to be used for the LMXsession. The currently known dialect strings are:

Dialect String Referred to as

PC NETWORK PROGRAM 1.0 core protocol
MICROSOFT NETWORKS 1. 03 core plus dialect
MICROSOFT NETWORKS 3.0 extended lOprotocol
LANMAN 1.0 extended lOprotocol
LM1.2X002 extended 20protocol

MICROSOFT NET\\ORKS 30 and LANMAN 10 spedfy the same SMB protocol dialect.
MICROSOFT NET\\ORKS 30is used by DOS SMB redirectors and LANMAN lOis used by
OS/2SMB redirectors. The MICROSOFT NET\\ORKS lCBstring spedfies a slightly extended
version of the core protocol. The LM 12XCD2 protocol spedfies the second extension to the
protocols. This dialect is used to provide longer names to files and other file characteristics to
the SMB environment.

5.5 Timeouts

48

Some of the SMB protocols allow for the operation to time out prior to its success or failure. This
timeout feature allows SMB redirectors to attempt to open devices which may not open
immediately. For example, an application that requires the services of a modem may be running
on the SMB redirector system. An LMX server may provide a modem pool and allow SMB
redirector access to this modem pool. \\hen the SMB redirector attempts to open a modem
device, the open request may be queued until a modem is free. By spedfying a timeout on the
open request, the SMB redirector is able to return a busy error to the user of the modem
application when all of the modems are busy rather than wait indefinitely.

Timeout values within the SMB protocol are typically ::Zbit values representing the number of
milliseconds the SMB redirector would like before the request is returned with an error
(exceptions are noted in the text when a timeout is defined). Some timeout values are reserved
for the following function:

0 Return immediately if the request cannot be satisfied at this time.

- 1 \Nrit indefinitely.

-2 \Nrit for an LMX server-defined default. This default time is implementation-dependent.
Suggested defaults depend on the type of activity requested. For example, writes may have
an infinite timeout, but opens may have a timeout in the range of 10to 2Jseconds.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 67

Data Objects and Constants SMB Error Codes

5.6 SMB Error Codes
This section spedfies the error class and error code values for the SMB headers. In SMB
responses the error class will be set in the SMB header field smb_rcls. The error code will be set
in the SMB header field smb_err. If a value is not listed it is considered reserved for future use.
Some of the error codes will only occur when SMBs are used to implement the X/ Open CAE
Spedfication, IPC Mechanisms for SMB, which is outside the scope of this spedfication.

In the case of success, the LMX server must return error class SUCCESS and error code
SUCCESS. An undefined error (for example, caused by a corrupted SMB, internal LMXserver
error) should be in error class ERRSRV and error code ERR error.

5.6.1 SMB Error Class Mappings

Unless otherwise stated, the following error classes may be returned.

Name Value Description

SUCCESS cxm The request was successful.
ERRDOS CkOl Error is considered to be operating system related.
ERRSRV ()((]2 Error is generated by the LMXserver.
ERRHRD cxm Error is a hardware error.
ERRXOS ()(04 Reserved.
ERRRMXl Ckel Reserved.
ERRRMX2 Cke2 Reserved.
ERRRMX3 Cke3 Reserved.
ERRCMD Ckff Command was not in the SMB format.

The ERRXOS, ERRRMX L ERRRMX2 and ERRRMX3 error classes are not used in the SMB
protocols defined in this spedfication.

5.6.2 ErrorCodesfortheSUCCESS Class

The following error codes may be generated with the SUCCESS error class.

Name Value Description

SUCCESS cxm The request was successful.
BUFFERED ()(54 Message was buffered (used in Messaging).
LOGGED ()(55 Message was logged (used in Messaging).
DISPLAYED ()(53 Message was displayed (used in Messaging).

Note: Messaging is described in the X/ Open CAE Spedfication, IPC Mechanisms for SMB
and is outside the scope of this spedfication.

5.6.3 Error Codes for the ERRD OS Class

In general, the ERRDOS class is used to return OS-spedfic errors to SMB redirectors. Since the
SMB redirector needs to understand these error codes for all LMX servers, it is impossible to
define CAE-spedfic errors. Instead, the list of possible error codes, with some explanatory text,
appears below. An LMX server may elect to return one of these more spedfic error codes any
time a system-spedfic error occurs.

The N arne column gives the symbolic name for the error. The Value column indicates the
numeric value for the constant, and a description follows in the Description column. A hint to
the CAE error code (see Chapter 23 Error Numbers, of the X/ Open Portability Guide, Issue 3
Volume 2 XSI System Interface and Headers) that may be mapped to the SMB error code is
given in the description text.

Protocols for X/ Open PC Interworking: SMB, Version 2 49

Samsung - Exhibit 1014 - Page 68

SMB Error Codes

Name

ERRbadfunc

ERRbadfile

ERRbadpath

ERRnofids

ERRnoaccess

ERRbadfid

ERRnomem

ERRbadmem
ERRbadenv
ERRbadaccess
ERRbaddata

ERRres
ERRbaddrive
ERRremcd

ERRdiffdevice

ERRnofiles

ERRbadshare

ERRlock

ERRfilexists

Data Objects and Constants

Value Description

1 Invalid function. The LMXserver's OS did not
recognise or could not perform a system call
generated by the LMX server; for example, set
the directory file attribute on a data file, invalid
seek mode. [EINVAL]

2 File not found. The last component of a file's
pathname could not be found. [ENOENT]

3 Directory invalid. A directory component in a
pathname could not be found. [ENOENT]

4 Too many open files. The LMX server has no
FlDs available. [EMFILE]

5 Access denied, the requestor's context does not
permit the requested function. This includes
the following conditions: invalid rename
command, write to FID open for read-only,
read on FID open for write-only, attempt to
delete a non-empty directory. [EPERM]

6 Invalid FID. The FID spedfied was not
recognised by the LMXserver. [EBADF]

8 Insuffident LMX server memory to perform
the requested function. [ENOMEM]

9 Invalid memory block address. [EFAULT]
10 Invalid environment.
12 Invalid open mode.
13 Invalid data (generated only by IOCTL calls

within the LMXserver). [Ea3IG]

14 Reserved.
15 Invalid drive spedfied. [ENXIO]
16 A Delete Directory request attempted to

remove the LMXserver's current directory.

17 Not the same device (for example, a rename
across different file systems was attempted).
[EXDEV]

18 A File Search command can find no more files
matching the spedfied criteria.

32 The sharing mode spedfied for an Open
conflicts with existing FID on the file.
[ETXIBSY]

33 A Lock request conflicted with an existing lock
or spedfied an invalid mode, or an Unlock
request attempted to remove a lock held by
another process. [EDEADLOCK]

8J The file named in a Create Directory, Make
New File or Link request already exists. The
error may also be generated in the Create and
Rename transaction. [EEXIST]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 69

Data Objects and Constants SMB Error Codes

5.6.4

Name Value Description

ERRbadpipe ZD Named pipe invalid.
ERRpipebusy 231 All instances of the requested pipe are busy.
ERRpipeclosing 232 Named pipe close in progress.
ERRnotconnected ZB No process on the other end of the named pipe.
ERRmoredata 234 There is more data to be returned.
ERROR_EAS_DIDNT_FIT Z75 There are no extended attributes, or the

number of attributes available did not fit into
the SMB response.

ERROR_EAS_NOT_SUPPORTED 282 The LMX server does not support storage of
extended attributes.

Error Codes for the ERRSRV Class

The following error codes may be generated with the ERRSRV error class:

Name

ERR error

ERRbadpw

ERRbadtype
ERRaccess

ERRinvnid
ERRinvnetname
ERRinvdevice

ERRqfull

ERRqtoobig

ERRinvpfid
ERRsmbcmd

ERRsrverror
ERRfilespecs

ERRbadlink
ERRbadpermits

Value

1

2

3
4

5
6
7

Description

Non-spedfic error code. It is returned under the following
conditions: resource other than file system space exhausted
(for example,TIDs), first command on the LMX session was
not SMBnegprot, multiple SMBnegprots attempted, or internal
LMXserver error.
Bad password - name/password pair in an SMBtcon,
SMBtconX or SMBsesssetu pX are invalid.

Reserved.
The requestor does not have the necessary access rights
within the spedfied context for the requested function. The
context is defined by the TID or the UID. [EACCES]

The TID spedfied in a command was invalid.
Invalid LMXservername in SMBtcon or SMBtconX
Invalid device - printer request made to non-printer
connection or non-printer request made to printer
connection.

49 Print queue full (that is, too many queue items) - returned by
open print file.

5J Print queue full (that is, no space or queued i tern too big).
52 Invalid print file spedfied in smb_fid.
64 The LMX server did not recognise the command code

received.

ffi The LMXserver encountered an internal error.
f57 The FID and pathname parameters contained an invalid

combination of values.

EB Reserved.
E9 The access permissions spedfied for a file or directory are

not a valid combination. The LMX server cannot set the
requested attribute.

Protocols for X/ Open PC Interworking: SMB, Version 2 51

Samsung - Exhibit 1014 - Page 70

SMB Error Codes

Name

ERRbadpid
ERRsetattrmode

ERRpaused
ERRmsgoff
ERRnoroom
ERRrmuns
ERRtimeout
ERRnoresource
ERRtoomanyuids
ERRbaduid

ERRuseMPX

ERRuseSTD

ERRcontMPX
ERRBadPW
ERRnosupport

Data Objects and Constants

Value Description

70 Reserved.
71 The attribute mode in the Set File Attribute request is

invalid.

81
82
83
'C7
83
ffi
g)

91

251

232
254

Odftf

Message server is paused. (Reserved for messaging.)
Not receiving messages. (Reserved for messaging.)
No room to buffer message. (Reserved for messaging.)
Too many remote usernames. (Reserved for messaging.)
Operation timed out.
No resources currently available for SMB request.
Too many UIDs active on this LMXsession.
The UID given (smb_uid) is not known as a valid ID on this
LMXsession.

Temporarily unable to support Raw mode operation, use
MPXmode.

Temporarily unable to support Raw mode operation, use
standard read/write.

Continue in MPXmode.
Reserved.
Function not supported.

5.6.5 Error Codes for the ERRHRD Class

The following error codes may be generated for hard errors on the LMX server with the
ERRHRD error class. CAE error mapping hints to each of these errors are noted at the end of the
error description.

The ERRHRD error class may cause an SMB redirector to notify the user of the error condition
via an exception handling routine. \\here ERRHRD and ERRDOS error classes overlap, the
LMXserver implementation has the option to choose an appropriate class for the error.

Name Value Description

ERRnowrite 19 Attempt to write on write-protected diskette. [EROFS]
ERRbadunit 20 Unknown unit. [ENODEV]
ERRnotready 21 Drive not ready. [EUCLEAN]
ERRbadcmd Z2 Unknown command.
ERR data Z3 Data error (CRC). [EIO]
ERRbadreq 24 Bad request structure length. [ERANGE]
ERRseek 25 Seek error.
ERRbadmedia a3 Unknown media type.
ERRbadsector 27 Sector not found.
ERRnopaper 28 Printer out of paper.
ERRwrite Z:J Witefault.
ERRread 3J Read fault.
ERRgeneral 31 General hardware failure.
ERRbadshare 32 An open conflicts with an existing open. [ETXIBSY]
ERRlock 33 A Lock request conflicted with an existing lock or spedfied

an invalid mode, or an Unlock request attempted to remove
a lock held by another process. [EDEADLOCK]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 71

Data Objects and Constants SMB Error Codes

Name Value Description

ERRwrongdisk 34 The wrong disk was found in a drive.
ERRFCBUnavail 35 No FCBs are available to process the request.
ERRsharebufexc J3 A sharing buffer has been exceeded.
ERRdiskfull 3:1 No space on file system. [ENOSPC]

Protocols for X/ Open PC Interworking: SMB, Version 2 53

Samsung - Exhibit 1014 - Page 72

Data Objects and Constants

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 73

Chapter 6

Core SMB Connection Management Requests

This section defines the elements of the core SMB protocol related to connection management.
They are:

SMBnegprot

SMBtcon

SMBtdis

SMBexit

negotiate protocol

tree connect

tree disconnect

process exit

61 SMBnegprot Specification

SMBnegprot Detailed Description

This core protocol request is sent as the first request to establish the LMXsession, negotiating the
protocol dialect that the SMB redirector and LMX server will use when communicating with
each other. The SMB redirector sends a list of dialects that he can communicate with. The LMX
server responds with a selection of one of those dialects (numbered Oto n) or- !indicating that
none of the dialects were acceptable. Exactly one negotiate message must be sent on each
NetBIOS session; subsequent negotiate requests must be r~ected with an error response and no
action will be taken.

The SMB protocol does not impose any particular structure on the dialect strings. Implementors
of particular protocols may choose to include, for example, version numbers in the string. An
LMXserver may choose to support one or more of the dialects identified in Section 54 on page
48 The fields described here are only valid when the core protocol has been negotiated. The
other SMB dialects impose some differences on the SMBnegprot format; refer to the sections
discussing the different dialects for information on these differences.

SMBnegprot Deviations

None.

SMBnegprot Field Descriptions

Field descriptions for the core protocol (SMBnegprot) are as follows:

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBnegprot smb_com SMBnegprot
smb_wct 0 smb_wct 1
smb_bcc min=2 smb_vwv[O] smb_index
smb_buf1] dialectO smb_bcc 0

dialectn

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 74

SMBnegprot Specification Core SMB Connection Management Requests

SMBnegprot Error CodeD escriptions

If any error occurs, the server will return <ERRSRV, ERRerror>; otherwise, <SUCCESS,
SUCCESS> will be returned.

SMBnegprot Preconditions

The SMB redirector attempting to negotiate a protocol must have established a NetBIOS session
with the server.

SMBnegprot Postconditions

The SMB redirector that negotiated this protocol must be able to handle all aspects of the dialect
negotiated.

SMBnegprot Side Effects

The LMX server will keep record of which dialect the SMB redirector negotiated and will use
only that dialect in conversations with the SMB redirector.

Conventions

None.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 75

Core SMB Connection Management Requests SMBtcon Specification

6.2 SMBtcon Specification

SMBtcon Detailed Description

This core protocol request is sent to establish direct access to a resource on an LMXserver. The
exact behaviour of this request and the semantics of the password argument depend upon the
security mode of the LMXserver.

• share-level security mode

The password establishes the user's rights to access this resource. It must match the
password (if any) defined by the server administrator when the resource was made available
for sharing (offered).

• user-level security mode

Based on the negotiated dialect, an LMXserver in user-level security must behave in one of
two different ways:

- If one of the extended SMB protocol dialects was selected the SMB redirector has already
issued an SMBsesssetupX request. This request contained a username and password and
resulted in the LMXserver assigning a valid UID (refer to Section 332on page :IL:). In
this case, the password field will be meaningless and must be ignored.

- If the core or core plus dialect was selected, the SMB redirector will issue an SMBtcon
request as if the LMX server were in share-level security mode. The LMX server may
select to support a mapping to user-level security (refer to Section 333on page 1~. The
password supplied with the SMBtcon request can be used for this validation.

S MBtcon Deviations

None.

SMBtcon Field Descriptions

smb_path

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBtcon smb_com SMBtcon
smb_wct 0 smb_wct 2
smb_bcc min=4 smb_vwv[O] smb_maxxmt
smb_buf[] smb_path smb_vwv[1] TID

smb_password smb_bcc 0
smb_device

An ASCIIZ buffer (type 0'1; refer to Section 534 on page 44) containing a
resource name preceded by the LMX servername. The format is like a
network pathname (refer to Section 539on page 4EJ. For example, a resource
called src residing on a server called lmserverl would be referenced by
\\ lmserverl\ src.

smb_password An ASCIIZ (type 04) buffer containing the password for the resource. Total
length of the buffer must be less than or equal to 15 bytes. For the extended
protocols the encrypted password string can be up to 24bytes.

smb_device An ASCIIZ (type 04) buffer containing the resource type. Refer to Section 536
onpage45

Protocols for X/ Open PC Interworking: SMB, Version 2 51

Samsung - Exhibit 1014 - Page 76

SMBtcon Specification Core SMB Connection Management Requests

smb_maxxmt A 16bit integer defining the largest message that the SMB redirector can send
to the LMXserver and vice versa.

TID (Tree ID) A 16bit integer used by the LMX server in subsequent SMB
redirector requests to refer to a resource relative to smb_path. Most access to
the server requires a valid TID, whether the resource is password protected or
not. The smb_tid field in the SMB header of this request is ignored. The value
Odftfis reserved.

SMBtcon Error Code Descriptions

CAE Code

-

-

-

-

-

-

-

DOS Class

SUCCESS
ERRDOS
ERRDOS

ERRSRV
ERRSRV
ERRSRV
ERRSRV

ERRSRV
ERRSRV

ERRSRV

SMBtcon Preconditions

DOS Code

SUCCESS
ERRnomem
ERRbadpath

Description

Everything worked, no problems.
A memory related resource has depleted.
The CAE path related to the resource is not
valid.

ERRinvdevice Resource type mismatch for connect.
ERRaccess User not authorised to access spedfied resource.
ERRerror Ran out of TIDs.
ERRerror First command on the NetBIOS session wasn't

SMBnegprot.

ERR error
ERRbadpw

LMXserver internal error.
Bad password, name/password pair in an
SMBtcon is invalid.

ERRinvnetname Invalid resource name supplied in the SMBtcon.

1 The SMB redirector attempting to set up this SMBtcon must have established an LMX
session with the LMXserver.

2 The path, password and device name must all be valid instances of those types.

SMBtcon Postconditions

1 If there are no errors the TID is valid to be used in future SMB requests until it is nullified
with an SMBtdis request. Otherwise, the TID should not be used in future transactions.

2 If there are no errors the smb_maxxmt size will represent the negotiated maximum buffer
size for the LMXsession.

SMBtcon Side Effects

None.

Conventions

• Resource Names (see Section 539on page 4EJ applies to the smb_path field.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 77

Core SMB Connection Management Requests SMBtdis Specification

6.3 SMBtdis Specification

SMBtdis Detailed Description

This core protocol request is sent to invalidate the resource (file or print) sharing connection
identified by the TID.

S MBtdis Deviations

None.

SMBtdis Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBtdis smb_com SMBtdis
smb_wct 0 smb_wct 0
smb_bcc 0 smb_bcc 0

There are no parameters of interest besides the TID (passed in the smb_tid field of the SMB
header). If an invalid TID is sent, the server will ignore the request and return an error.

SMBtdis Error Code Descriptions

CAE Code DOS Class DOS Code Description
- SUCCESS SUCCESS Everything worked, no problems.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid

ID on this LMXsession.
- ERRSRV ERRinvnid TID spedfied in command was invalid.
- ERRSRV ERR error LMXserver internal error.

SMBtdis Preconditions

1 The SMB redirector attempting to invalidate this TID must have established an LMX
session with the LMXserver.

2 The SMB redirector attempting to invalidate this TID should have established this TID as a
valid one with the LMXserver.

SMBtdis Postconditions

1 If there are no errors then the TID will be invalidated and the SMB redirector should not
use the TID again.

2 If an error other than TID Invalid occurs, the TID will be invalidated and the SMB
redirector should not use the TID again.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 78

SMBtdis Specification Core SMB Connection Management Requests

SMBtdis Side Effects

The TID that was sent no longer has any meaning to the LMXserver.

Conventions

None.

EO X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 79

Core SMB Connection Management Requests SMBexit Specification

6.4 SMBexit Specification

SMBexit Detailed Description

This core protocol request informs the LMX server that an SMB redirector process has
terminated.

The LMXserver will release any locks and close any resources owned by the exiting process.

Nate that there is no process creation SMB request. PIDs are assigned by the SMB redirector.

SMBexit Deviations

An LMXserver should accept this request from any LMXsession regardless of dialect.

SMBexit Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value
smb_com SMBexit smb_com SMBexit
smb_wct 0 smb_wct 0
smb_bcc 0 smb_bcc 0

The smb_pid field from the SMB header indicates the process to be terminated.

SMBexit Error Code Descriptions

CAE Code DOS Class DOS Code Description
- SUCCESS SUCCESS Everything worked, no problems.
- ERRSRV ERRinvnid Bad TID.
- ERRSRV ERR error Some other error occurred.

SMBexit Preconditions

The SMB redirector must have registered a UID and established a TID with the LMXserver.

SMBexit Postconditions

None.

SMBexit Side Effects

None.

Conventions

None.

Protocols for X/ Open PC Interworking: SMB, Version 2 61

Samsung - Exhibit 1014 - Page 80

Core SMB Connection Management Requests

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 81

Chapter 7

Core SMB File Operation Requests

This section defines the elements of the core SMB protocol related to normal file access. They
are:

SMBcreate

SMBmknew

SMBopen

SMBread

SMBwrite

SMBlseek

SMBlock

SMBunlock

SMBflush

SMBclose

SMBmv

SMBunlink

open a file; create it if it doesn't exist

create and open a new file; fail if it exists

open an existing file

read from a file

write to a file

set the current position in a file

lock a range of bytes in a file

unlock a range of bytes in a file

force any buffers of a file to disk

close a file

rename a file

delete a file

7.1 SMBcreate Specification

SMBcreate Detailed Description

This core protocol request is used to create and open a new regular file, or open an existing
regular file and truncate its length to zero. The file-sharing mode for the open operation cannot
be spedfied. The FID returned can be used in subsequent commands.

SMBcreate Deviations

1 The archive, system and hidden file attribute bits may be ignored, in accordance with the
File Attribute mapping convention (see Section 43 1on page~.

2 The create time spedfied is used to set the LMXserver's last modify time for the file.

SMBcreate Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBcreate smb_com SMBcreate
smb_wct 3 smb_wct 1
smb_vwv[O] smb_attr smb_vwv[O] smb_fid
smb_vwv[1-~ smb_time smb_bcc 0
smb_bcc min=2
smb_buf1] smb_pathname

Protocols for X/ Open PC Interworking: SMB, Version 2 63

Samsung - Exhibit 1014 - Page 82

SMBcreate Specification Core SMB File Operation Requests

smb_attr This is a file attribute field (see Section 533 on page 4~. It defines the
attributes to be given to the newly-created file. The bits 3and 4 (volume label
and directory) are not allowed to be set. If the file already exists, this field is
ignored.

smb_time A ::Zbit integer which sets the LMXserver's idea of the last modify time for
the file. A value of zero indicates a null time field (see Section 53 1 on page
4~.

smb_pathname An ASCIIZ (type 04) buffer containing the name of the file to be created.

smb_fid This signed integer is the FID returned by the LMXserver for the opened file.
The SMB redirector will use that FID in other requests to refer to this
particular file.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 83

Core SMB File Operation Requests

SMBcreate Error Code Descriptions

CAE Code

EACCES

EACCES

EACCES
EAGAIN

EFAULT

EINTR
EISDIR
EMFILE

EN FILE
ENOENT

ENOSPC

ENOTDIR
ENXIO

EROFS
ETXIBSY

DOS Class DOS Code

ERRDOS ERRnoaccess

ERRDOS ERRnoaccess

ERRDOS ERRnoaccess
ERRDOS ERRbadshare

ERRSRV ERRerror

ERRSRV ERRerror
ERRDOS ERRnoaccess
ERRDOS

ERRDOS
ERRDOS

ERRSRV

ERRDOS
ERRSRV

ERRSRV
ERRSRV

ERRSRV
ERRSRV

ERRSRV

ERRSRV

ERRSRV

SUCCESS

ERRnofids

ERRnofids
ERRbadfile

ERR error

ERRbadpath
ERR error

ERR error
ERRaccess

ERRinvnid
ERRinvdevice

ERRaccess

ERRaccess

ERRbaduid

SUCCESS

Protocols for X/ Open PC Interworking: SMB, Version 2

SMBcreate Specification

Description

File does not exist and the directory in which the
file is to be created does not permit writing.
Search permission is denied on a component of
the path-prefix.
File exists and write permission is denied.
File exists, mandatory file/record locking is set,
and there are outstanding record locks on the
file.
Path points outside the allocated address space
of the process.
A signal was caught during the operation.
Named file is an existing directory.
Maximum number of file descriptors are
currently open in this process.
System file table is full.
Component of path-prefix does not exist or
pathname is null.
File must be created, and the system is out of
resources necessary to create files.
Component of path-prefix is not a directory.
Named file is a character-spedal or block-spedal
file and the device assodated with this spedal
file does not exist; or O_NDELAY is set, file is a
FIFO, 0_ \VRONLY is set and no process has the
file open for reading.
Named file resides on read-only file system.
File is a pure procedure file that is being
executed.
TID spedfied in command is invalid.
File creation request made to a share that is not a
file system subtree.
Named file exists as a directory, spedal file or
named pipe.
Wite and Create permissions required, or the
file attributes spedfied a volume label.
The UID given (smb_uid) is not known as a valid
ID on this LMXsession.
Everything worked, no problems.

Samsung - Exhibit 1014 - Page 84

SMBcreate Specification Core SMB File Operation Requests

E6

SMBcreate Preconditions

1 The SMB redirector has sent a valid SMB request with a valid TID for a file system subtree
and valid UID.

2 The SMB redirector must have write permission on the file's parent directory in order to
create a new file, or write permission on the file itself in order to truncate it. The
permission is granted via the security mode used (refer to Section 33on page 1L:).

SMBcreate Postconditions

1 The LMXserver obeys the rules for mapping the new file into the CAE file system. If the
read-only attribute is set, the CAE write permission bits for the mode of the file are turned
off.

2 The LMXserver' s last modifY time for the file will be set according to smb_ time. If smb_ time
was zero, the last modifY time for the file will be left unchanged.

3 The SMB redirector will be granted read/write access to the file if it was created (even if
the read-only bit was set). If the file existed, access rights will be granted according to the
existing access mode.

4 The newly-created or truncated file is opened in the DOS read/write compatibility mode.

SMBcreate Side Effects

File is created or truncated.

Conventions

• Attribute (see Section 431on page~.

• Filename (see Section 3 5on page 15).

• Opportunistic Locking (see Section 3 8 2on page 2Q.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 85

Core SMB File Operation Requests SMBmknew Specification

7.2 SMBmknew Specification

SMBmknew Detailed Description

This core protocol request is equivalent to the SMBcreate request except that it will fail if the
named file already exists.

SMBmknew Deviations

1 The archive, system and hidden file attribute bits are ignored.

2 The create time spedfied is used to set the LMXserver's last modify time for the file.

SMBmknew Field Descriptions

smb_attr

smb_time

smb_path

smb_fid

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBmknew smb_com SMBmknew
smb_wct 3 smb_wct 1
smb_vwv[O] smb_attr smb_vwv[O] smb_fid
smb_vwv[1-~ smb_time smb_bcc 0
smb_bcc min=2
smb_buf1] smb_path

A file attribute field (refer to Section 533on page 4~ containing attributes to
be given to the new file. The bits 3and 4 (volume label and directory) are not
allowed to be set.

A ::Zbit integer to be used as the file creation time.

An ASCIIZ (type 04) buffer containing the name of the file to be created.

A 16bit integer containing the FID the SMB redirector will use to refer to the
opened file.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 86

SMBmknew Specification Core SMB File Operation Requests

EB

SMBmknew Error Code Descriptions

CAE Code

EACCES

EACCES

EEXIST
EFAULT

EINTR
EMFILE

EN FILE
ENOENT
ENOSPC

ENOTDIR
EROFS

DOS Class DOS Code

ERRDOS ERRnoaccess

ERRDOS ERRnoaccess

ERRDOS ERRnoaccess
ERRSRV ERRerror

ERRSRV
ERRDOS

ERRDOS
ERRDOS
ERRSRV

ERRDOS
ERRSRV
ERRSRV

ERRSRV
ERRSRV

ERRSRV

SUCCESS

ERR error
ERRnofids

ERRnofids
ERRbadfile
ERR error

ERRbadpath
ERR error
ERRaccess

ERRinvnid
ERRinvdevice

ERRbaduid

SUCCESS

SMBmknew Preconditions

Description

Search permission is denied on a component of
the path-prefu, or the parent directory does not
permit writing.
Requested permission is denied for the named
file.
O_CREAT and O_EXCL are set and the file exists.
Path points outside the allocated address space
of the process.
A signal was caught during the operation.
Maximum number of file descriptors are
currently open in this process.
System file table is full.
Component of path-prefu does not exist.
The system is out of resources necessary to create
files.
Component ofpath-prefu is not a directory.
Named file resides on read-only file system.
Wite and create permissions for the directory
required.
TID spedfied in command is invalid.
File creation request made to a share that is not a
file system subtree.
The UID given (smb_uid) is not known as a valid
ID on this LMXsession.
Everything worked, no problems.

1 The SMB redirector has sent a valid SMB request, with a valid UID and valid TID for a file
system subtree.

2 The SMB redirector must have appropriate permissions in order to create the new file.

3 The named file must not exist before the request is sent.

SMBmknew Postconditions

1 A new file with the given pathname will be created and opened, or an error will be
returned.

2 The LMXserver obeys the rules for mapping the new file into the CAE file system. If the
read-only file attribute is set, the CAE write permission bit of the mode for the new file
must be turned off.

3 The LMXserver's last modifY time for the file will be set to smb_time. If smb_time is zero,
the LMXserver will assign the current time.

4 The SMB redirector is granted read/write access to the file regardless of smb_attr.

5 The newly-created file is opened in DOS read/write compatibility mode.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 87

Core SMB File Operation Requests

SMBmknew Side Effects

None.

Conventions

• Attribute (see Section 431on page~.

• Filename (see Section 3 5on page 15).

• Opportunistic Locking (see Section 3 8 2on page 2Q.

Protocols for X/ Open PC Interworking: SMB, Version 2

SMBmknew Specification

E9

Samsung - Exhibit 1014 - Page 88

SMBopen Specification Core SMB File Operation Requests

7.3 SMBopen Specification

70

SMBopen Detailed Description

This core protocol request is used to open an existing regular file and obtain an FID which is
used to refer to the file in subsequent requests. It cannot be used to open directories or LMX
named pipes (refer to the XI Open CAE Spedfication, IPC Mechanisms for SMB).

SMBopen Deviations

The archive, system and hidden file attribute bits in the output attribute field are treated
according to Section 43 1on page 3J.

SMBopen Field Descriptions

smb_mode

smb_iattr

smb_path

smb_fid

smb_oattr

smb_time

smb_size

smb_access

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBopen smb_com SMBopen
smb_wct 2 smb_wct 7
smb_vwv[O] smb_mode smb_vwv[O] smb_fid
smb_vwv[1] smb_iattr smb_vwv[1] smb_oattr
smb_bcc min=2 smb_vwv[Z~ smb_time
smb_buf1] smb_path smb_vwv[451 smb_size

smb_vwv[61 smb_access
smb_bcc 0

A file-sharing control field which indicates the access modes and deny modes
being requested (see Section 535on page 44).

Attributes to be assigned to the file. Ignored.

An ASCIIZ (type 04) buffer containing the name of the file to be opened.

A 16bit signed integer containing the FID returned for the opened file.

Attributes currently assigned to the file (see Section 533on page 4~.

A ::Zbit integer time of the last modification to the opened file (see Section
531onpage4~.

A ::Zbit signed integer which contains the current size of the opened file, in
bytes.

An access mode field (see Section 53 7 on page 4EJ indicating the access
permission set actually granted to the opening process.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 89

Core SMB File Operation Requests

SMBopen Error Code Descriptions

CAE Code

EACCES

EACCES

EAGAIN

EFAULT

EINTR
EISDIR

EMFILE

EN FILE
ENOENT

ENOTDIR
ENXIO
EROFS

ETXIBSY

DOS Class

ERRDOS

ERRDOS

ERRDOS

ERRSRV

ERRSRV
ERRDOS

ERRDOS

ERRDOS
ERRDOS

ERRDOS
ERRSRV
ERRSRV

ERRDOS

ERRSRV

ERRSRV
ERRSRV

ERRSRV

ERRDOS

SUCCESS

DOS Code

ERRnoaccess

ERRnoaccess

ERRbadshare

ERR error

ERR error
ERRnoaccess

ERRnofids

ERRnofids
ERRbadfile

ERRbadpath
ERR error
ERR error

ERRnoaccess

ERRaccess

ERRinvnid
ERRinvdevice

ERRbaduid

ERRnoaccess

SUCCESS

Protocols for X/ Open PC Interworking: SMB, Version 2

SMBopen Specification

Description

Search permission is denied on a component of
the path-prefu.
Requested access permission is denied for the
named file.
File exists, mandatory file/record locking is set,
and there are outstanding record locks on the
file.
Path points outside the allocated address space
of the process.
A signal was caught during the open operation.
Named file is a directory and oflag is write or
read/write.
Maximum number of file descriptors are
currently open in this process.
System file table is full.
File does not exist, or component of pathname
does not exist.
Component ofpath-prefu is not a directory.
Generic LMXserver open failure.
Named file resides on read-only file system and
requested access permission is write or
read/write.
File is a pure procedure file that is being
executed and requested access permission
spedfies write or read/write.
Permission conflict between requested
permission and permissions for the shared
resource; for example, open for write of a file in
a read-only file system subtree.
TID spedfied in command is invalid.
File creation request made to a share that is not a
file system subtree.
The UID given (smb_uid) is not known as a valid
ID on this LMXsession.
Open mode failure. See rules for Compatibility
and DENY mode opens.
Everything worked, no problems.

71

Samsung - Exhibit 1014 - Page 90

SMBopen Specification Core SMB File Operation Requests

72

SMBopen Preconditions

1 The SMB redirector has sent a valid SMB request, with a valid UID and a valid TID.

2 The file being opened must exist.

3 The pathname spedfied is not an LMXnamed pipe.

SMBopen Postconditions

1 The file will be opened in the requested mode with the returned FID, or an error will be
returned.

2 The file will be opened only if the user has the appropriate permissions and there is no
conflict between already-granted access or deny modes and the requested access or deny
modes.

SMBopen Side Effects

The file exclusion mode requested will be in effect for subsequent open commands.

Conventions

• Access (see Section 432on page~.

• Attribute (see Section 431on page~.

• Filename (see Section 3 5on page 15).

• Opportunistic Locking (see Section 3 8 2on page 2Q.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 91

Core SMB File Operation Requests SMBread Specification

7.4 SMBread Specification

SMBread Detailed Description

This core protocol request will read bytes from a regular file and, if an extended protocol is
negotiated, from a named pipe, mailslot or directly accessible device. End-of-file is indicated by
returning fewer bytes than requested; a read starting at or beyond end-of-file returns zero bytes.

SMBread Deviations

None.

SMBread Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBread smb_com SMBread
smb_wct 5 smb_wct 5
smb_vwv[O] smb_fid smb_vwv[O] smb_count
smb_vwv[1] smb_bytecount smb_ vwv [1-41 rsvd (MBZ)
smb_vwv[Z~ smb_offset smb_bcc length of data + 3
smb_vwv[4] smb_ coun tleft smb_buf1] smb_data
smb_bcc 0

smb_fid

smb_bytecount

A 16bit signed integer indicating the file from which smb_data should be read.

A 16bit unsigned integer indicating the amount of data to be read. The SMB
redirector will ensure that the amount requested will fit in the negotiated
maximum buffer size.

smb_offset

smb_ coun tleft

smb_count

rsvd

smb_data

A ::Zbit unsigned integer defining the file pointer position.

A 16bit unsigned integer. This field is advisory, and some SMB redirectors
will set it to zero, in which case it should be ignored. If the value is not zero,
then it is an estimate of the total number of bytes that will be read, including
those read by this request. This additional information may be used by the
LMXserver to optimise buffer allocation and/or read-ahead.

A 16bit unsigned integer giving the actual number of bytes returned to the
SMB redirector. This must be equal to smb_bytecount, unless:

1 End-of-file was reached before reading smb_bytecount bytes. The number
of bytes actually read, along with that data, is returned.

2 smb_offset pointed at or beyond end-of-file. A zero (Q value is returned.

These four 16bit fields are reserved and must be zero.

A Data Block (type 01) buffer containing the actual data read from the file (see
Section 534onpage 44).

Protocols for X/ Open PC Interworking: SMB, Version 2 73

Samsung - Exhibit 1014 - Page 92

SMBread Specification Core SMB File Operation Requests

74

SMBread Error Code Descriptions

CAE Code DOS Class DOS Code Description

EIO ERRHRD ERR data A problem has occurred in the physical II 0.
ENXIO ERRHRD ERRwrite The device assodated with the file descriptor is a

block-spedal or character-spedal file and the
value of the file pointer is out of range.

EBADF ERRSRV ERR error An FID was validated by the LMX server but
unacceptable to the system.

EAGAIN ERRDOS ERRlock O_NDELAY set and (a) read from empty CAE
FIFO attempted, or (b) file open on the LMX
server and a record lock on the file exists.

EDEADLK ERRSRV ERR error The read would block and deadlock would
result.

ENOLCK ERRDOS ERRnoaccess File is open on the LMXserver in enforced-lock
mode, a record lock exists on the file, and the file
was opened with O_NDELAY set.

- ERRDOS ERRnoaccess Attempt to read from a portion of the file that
the LMX server knows has been locked or been
opened in deny-read.

- ERRDOS ERRbadaccess Read permission required.
- ERRDOS ERRbadfid Attempt to read from an FID that the LMX

server does not have open.
- ERRSRV ERR error Corrupt SMB request has been encountered.
- ERRSRV ERRinvdevice Attempt to read from an open spool file.
- ERRSRV ERRinvnid Invalid TID in request.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid

ID on this LMXsession.
- SUCCESS SUCCESS Everything worked, no problems.

SMBread Preconditions

1 The SMB redirector has sent a valid SMB request.

2 The SMB redirector' s read request will fit in an SMB buffer of the negotiated size.

3 The SMB redirector must have a valid TID for a file system resource with the appropriate
permissions for the read operation.

4 The SMB redirector must have a valid FID and at least read access.

SMBread Postconditions

1 If the read was successful, the LMX server has returned to the SMB redirector either the
data for all of the requested read or all the data that was available up to the EOF.

2 If the read failed, the LMX server has returned to the SMB redirector an SMB response
indicating the reason for the failure of this read or a previous block operation.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 93

Core SMB File Operation Requests

SMBread Side Effects

None.

Conventions

• Locking (see Section 4 4on page ~.

Protocols for X/ Open PC Interworking: SMB, Version 2

SMBread Specification

75

Samsung - Exhibit 1014 - Page 94

SMBwrite Specification Core SMB File Operation Requests

7.5 SMBwrite Specification

76

SMBwrite Detailed Description

This core protocol request writes bytes from a regular file and, if an extended protocol is
negotiated, to a named pipe, mailslot or directly accessible device. It can also be used to truncate
a file to a given point or extend a file beyond its current size.

SMBwrite Deviations

None.

SMBwrite Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBwrite smb_com SMBwrite
smb_wct 5 smb_wct 1
smb_vwv[O] smb_fid smb_vwv[O] smb_count
smb_vwv[1] smb_bytecount smb_bcc 0
smb_vwv[Z~ smb_offset
smb_vwv[4] smb_ coun tleft
smb_bcc length of data + 3
smb_buf1] smb_data

smb_fid

smb_bytecount

The FID to be written to.

An unsigned integer indicating the number of bytes to be written. If this value
is zero, the file should be truncated or extended to the size indicated in
smb_offset. If extended, the bytes between the old and new EOFwill be zero.

smb_offset

smb_ coun tleft

smb_data

smb_count

A ::Zbit unsigned integer defining the file position at which the data should be
written.

A 16bit unsigned integer. This field is advisory, and some SMB redirectors
will set it to zero, in which case it should be ignored. If the value is not zero,
then it is an estimate of the total number of bytes that will be written,
including those written by this request. This additional information may be
used by the LMXserver to optimise buffer allocation or perform write-behind.

A Data Block (type 01) buffer containing the actual bytes to be written (see
Section 534onpage 44).

A 16bit unsigned integer containing the actual number of bytes written. If
this is less than smb_bytecount but no explidt error is returned, then
insuffident file system space prevented more than smb_count of bytes from
being written.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 95

Core SMB File Operation Requests SMBwrite Specification

SMBwrite Error Codes

CAE Code DOS Class DOS Code Description

EIO ERRHRD ERR data A problem occurred during physical II 0.
ENXIO ERRHRD ERRwrite An error occurred on the FID being written to.
EBADF ERRDOS ERRbadfid A valid smb_fid mapped to an LMX server FID

not accepted by the operating system.
EAGAIN ERRDOS ERRnoaccess Resources for II 0 temporarily exhausted
EFBIG SUCCESS SUCCESS The file has grown too large (size exceeds ulimit)

and no more data can be written to the file. An
smb_count of 0 will be returned to the SMB
redirector in the count field of the SMB response.
This indicates to the SMB redirectors that the file
system is full.

ENOSPC SUCCESS SUCCESS No space on the file system; smb_count will be 0,
indicating the file system is full.

EPIPE ERRHRD ERRbadunit Witeto a named pipe with no reader.
EDEADLK ERRSRV ERR error The write would block due to locking, but

O_NDELAY was set.

ERANGE ERRSRV ERR error Attempted write size is outside of the minimum
and maximum ranges that can be written to the
supplied FID.

ENOLCK ERRDOS ERRnoaccess A record lock has been taken on the file, or the
SMB redirector has attempted to write to a
portion of the file that the LMX server knows
has been locked, opened in deny-write open
mode, or opened in read-only mode.

- ERRDOS ERRbadaccess Wite permission required.
- ERRDOS ERRbadfid Invalid FID spedfied.
- ERRSRV ERR error Corrupt SMB request was received.
- ERRSRV ERRinvdevice Attempt to write to an open spool file.
- ERRSRV ERRinvnid Invalid TID spedfied.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid

ID on this LMXsession.
- SUCCESS SUCCESS Everything worked, no problems.

SMBwrite Preconditions

1 The SMB redirector has sent a valid SMB request.

2 The SMB redirector' s write request will fit in an SMB buffer.

3 The SMB redirector must have a valid TID to a regular file system resource with
appropriate permissions for the write operation.

4 The SMB redirector must have a valid FID with at least write access.

Protocols for X/ Open PC Interworking: SMB, Version 2 77

Samsung - Exhibit 1014 - Page 96

SMBwrite Specification Core SMB File Operation Requests

78

SMBwrite Postconditions

1 If the write was successful, the LMX server has returned to the SMB redirector either a
count value for a write of the entire amount or a count value for less than the entire write
amount if file system space is exhausted or the file has reached the maximum file size.

2 If the write failed, the LMX server has returned to the SMB redirector an SMB request
indicating the reason for the failure of this write or a previous block operation.

SMBwrite Side Effects

The data is not necessarily reflected in the file system until an SMBflush or the FID is closed.

Conventions

• Locking (see Section 4 4on page ~.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 97

Core SMB File Operation Requests SMBlseek Specification

7.6 SMBlseek Specification

SMBlseek Detailed Description

The SMBlseek core protocol request sets the current file pointer for a regular file. The response
returns the new file pointer expressed as the offset from the start of the file, and may be beyond
the current end-of-file. An attempt to seek to a position before the beginning-of-file sets the file
pointer to beginning-of-file.

Nate that the current file pointer at the start of this command reflects the offset plus data length
spedfied in the previous read, write or seek request, and the pointer set by this command will be
replaced by the offset spedfied in the next read, write or seek command.

SMBlseek Deviations

None.

SMBlseek Field Descriptions

smb_fid

smb_mode

smb_offset

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBlseek smb_com SMBlseek
smb_wct 4 smb_wct 2
smb_vwv[O] smb_fid smb_ vwv [0- 1] smb_offset
smb_vwv[1] smb_mode smb_bcc 0
smb_vwv[Z~ smb_offset
smb_bcc 0

The FID whose pointer is to be manipulated.

A 16bit field indicating where (beginning=O, current position= L end=~ the
seek is to take place.

A ::Zbit signed integer. In the request, indicates how far to move from the
position indicated by smb_mode. Positive values move forward in the file
towards EOF; negative values move backward through the file towards BOF.
In the response, indicates the resulting position after the move, relative to
BOF.

Protocols for X/ Open PC Interworking: SMB, Version 2 79

Samsung - Exhibit 1014 - Page 98

SMBlseek Specification Core SMB File Operation Requests

SMBlseek Error Code Descriptions

CAE Code DOS Class DOS Code Description

EBADF ERRDOS ERRbadfid FID is valid but not accepted by the system.
EINVAL ERRDOS ERRnoaccess Invalid smb_mode.

ESPIPE ERRDOS ERRnoaccess Cannot seek on this file (named pipe).
- ERRDOS ERRbadfid The SMB redirector has supplied an invalid FID.
- ERRDOS ERRnoaccess The SMB redirector's context does not permit

this access.
- ERRSRV ERRinvnid TID spedfied in command is invalid.
- ERRSRV ERRinvdevice Attempt to seek on a non-regular file.
- ERRSRV ERR error The LMX server has received a corrupt SMB

request.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid

ID on this LMXsession.
- SUCCESS SUCCESS Everything worked, no problems.

SMBlseek Preconditions

1 The SMB redirector has sent a valid SMB request with a valid TID for a file system
resource.

2 The SMB redirector must have acquired a valid FID from the LMXserver.

3 The SMB redirector has spedfied a valid smb_mode value.

SMBlseek Postconditions

1 If the SMBlseekwas successful, the LMXserver has returned to the SMB redirector the new
file pointer position.

2 If the SMBlseek was unsuccessful, the LMX server has returned an error indicating the
failure of this operation or of a previous block operation.

SMBlseek Side Effects

The current file position maintained by the LMX server is changed to the offset returned to the
SMB redirector.

Conventions

None.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 99

Core SMB File Operation Requests SMBlock Specification

7. 7 SMBlock Specification

SMBlock Detailed Description

This command is sent by an SMB redirector process to lock a given byte range of a regular file. A
lock prevents attempts to lock, read or write the byte range by any other SMB redirector.
Multiple non-overlapping lock ranges are allowed on the same file. Overlapping locks are not
allowed. Byte ranges beyond the current end-of-file may be locked; however, such locks will not
cause allocation of file space. A lock may only be unlocked by the process (PID) that performed
the lock.

SMBlock Deviations

Refer to Section 44on page 33

SMBlock Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value
smb_com SMBlock smb_com SMBlock
smb_wct 5 smb_wct 0
smb_vwv[O] smb_fid smb_bcc 0
smb_vwv[1-~ smb_count
smb_vwv[341 smb_offset
smb_bcc 0

smb_fid The FID to be locked.

smb_count

smb_offset

A ::Zbit unsigned integer containing the number of bytes in the lock range.

A ::Zbit unsigned integer containing the offset to the start of the lock range.

SMBlock Error Code Descriptions

CAE Code DOS Class DOS Code Description

EBADF ERRSRV ERR error A valid FID was r~ected by the underlying
system.

EACCES ERRDOS ERRnoaccess File access rights do not match requested locks.
EACCES ERRDOS ERRlock A lock has already been taken out on this record.
ENOLCK ERRDOS ERRlock Insuffident resources to place the requested

lock.
EDEADLK ERRSRV ERR error The lock request would block and cause a

deadlock with another process.
- ERRDOS ERRbadfid An invalid FID was spedfied.
- ERRDOS ERRlock Byte range is already locked by another serving

process.
- ERRSRV ERR error An invalid SMB request was sent.
- ERRSRV ERRinvnid TID spedfied in command is invalid.
- ERRSRV ERRinvdevice Attempt to lock on a non-regular file.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid

ID on this LMXsession.
- SUCCESS SUCCESS Everything worked, no problems.

Protocols for X/ Open PC Interworking: SMB, Version 2 81

Samsung - Exhibit 1014 - Page 100

SMBlock Specification Core SMB File Operation Requests

SMBlock Preconditions

1 The SMB redirector has sent a valid SMB request with valid access to the file system
subtree.

2 The SMB redirector must have a valid FID.

SMBlock Postconditions

The given byte range of the file will be locked preventing access by other SMB redirectors not
using the same FID.

SMBlock Side Effects

Only requests using the PID as sent in the SMBlock request may access the locked record (s).

Conventions

• Locking (see Section 4 4on page ~.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 101

Core SMB File Operation Requests SMBunlock Specification

7.8 SMBunlock Specification

SMBunlock Detailed Description

This core protocol request is used to unlock a byte range. The byte range spedfied must be
exactly the same as that spedfied in a previous successful lock request from the same SMB
redirector process (that is, the PID must be the same). An unlock request for a range that was
not locked is treated as an error.

S MBunlock Deviations

None.

SMBunlock Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBunlock smb_com SMBunlock
smb_wct 5 smb_wct 0
smb_vwv[O] smb_fid smb_bcc 0
smb_vwv[1-~ smb_count
smb_vwv[341 smb_offset
smb_bcc 0

This request is identical in format to SMBlock (see Section 7. 7 on page 81).

SMBunlock Error Code Descriptions

Additional applicable error codes can be found in the spedfication of SMBlock (see Section 7. 7 on
page 81).

CAE Code DOS Class DOS Code Description
- ERRDOS ERRlock The record cannot be unlocked with this PID or

a lock on this range does not exist for this PID.
- SUCCESS SUCCESS Everything worked, no problems.

SMBunlock Preconditions

1 The SMB redirector has sent a valid SMB request with a valid TID for a file system
resource.

2 The SMB redirector must have a valid FID.

3 The byte range and PID spedfied must exactly match a byte range and PID spedfied in a
previous successful lock operation on this FID.

SMBunlock Postconditions

The spedfied byte range of the file will be unlocked, or an error will be returned.

Protocols for X/ Open PC Interworking: SMB, Version 2 83

Samsung - Exhibit 1014 - Page 102

SMBunlock Specification Core SMB File Operation Requests

SMBunlock Side Effects

The record is now open for reading/writing/locking by other SMB redirectors.

Conventions

• Locking (see Section 4 4on page ~.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 103

Core SMB File Operation Requests SMBflush Specification

7.9 SMBflush Specification

SMBflush Detailed Description

This core request flushes data and allocation information for a spedfied file or for all files open
under this LMXsession.

S MBflush Deviations

Some CAE systems provide no way for a programme to block until the local file cache has
actually flushed to the disk, but simply indicate that a flush has been scheduled and will
complete soon. An LMXserver should nonetheless take steps to maximise the probability that
the data is truly on disk before the SMB redirector is notified.

An LMX server may always flush all files supported on the LMX session even if a single-file
flush was requested.

SMBflush Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value
smb_com SMBflush smb_com SMBflush
smb_wct 1 smb_wct 0
smb_vwv[O] smb_fid smb_bcc 0
smb_bcc 0

smb_fid The FID to be flushed. If this field is set to Odfff (that is, - ~, all files open in
the LMXsession environment will be flushed.

SMBflush Error CodeD escriptions

CAE Code DOS Class DOS Code Description
- ERRSRV ERRinvnid Bad TID.
- ERRDOS ERRbadfid The spedfied FID is not open.
- ERRSRV ERR error Other CAE errors mapped here.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid

ID on this LMXsession.
- SUCCESS SUCCESS Everything worked, no problems.

SMBflush Preconditions

1 The SMB redirector must have issued a valid SMB request with a valid UID and valid TID
for a shared resource.

2 The spedfied FID must be open, or it must be Ckffff.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 104

SMBflush Specification Core SMB File Operation Requests

SMBflush Postconditions

1 All modified data and retrieval state information is scheduled to be flushed to stable store.

2 Buffered named pipe data, if any, is flushed through to the cooperating processes.

SMBflush Side Effects

Eventually, the data will be written to stable store.

Conventions

None.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 105

Core SMB File Operation Requests SMBclose Specification

7.10 SMBclose Specification

SMBclose Detailed Description

This core protocol request is sent by an SMB redirector process to invalidate the given FID for
that process. All locks held by the SMB redirector process on that FID will be released as part of
the close. The FID cannot be used by the SMB redirector for further file access requests.

SMBclose Deviations

None.

SMBclose Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value
smb_com SMBclose smb_com SMBclose
smb_wct 3 smb_wct 0
smb_vwv[O] smb_fid smb_bcc 0
smb_vwv[1-~ smb_time
smb_bcc 0

smb_fid The FID to be closed.

smb_time An LMXserver may optionally update the last modification time for the file to
smb_time. A zero (0 or Odfffffff smb_time results in the LMXserver using the
default value.

SMBclose Error Code Descriptions

CAE Code DOS Class DOS Code Description

EBADF ERRDOS ERRbadfid The FID is valid but no longer accepted by the
operating system.

- ERRDOS ERRbadfid The SMB redirector has supplied an invalid FID.
- ERRSRV ERRinvnid TID spedfied in command is invalid.
- ERRSRV ERRinvdevice Attempt to close an open spool file.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid

ID on this LMXsession.
- SUCCESS SUCCESS Everything worked, no problems.

SMBclose Preconditions

1 The SMB redirector has sent a valid SMB request, with a valid UID and TID.

2 The SMB redirector has sent a valid FID for an open file.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 106

SMBclose Specification Core SMB File Operation Requests

SMBclose Postconditions

1 If the file being closed was written to, all the modified buffers for the file will be flushed to
the file system.

2 Any remaining locks on the FID (including opportunistic locks) will be removed.

3 The last modifY time for the file will be set to the time spedfied by the SMB redirector.

4 The FID will be invalidated for further file access requests.

SMBclose Side Effects

None.

Conventions

None.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 107

Core SMB File Operation Requests SMBmv Specification

7.11 SMBmv Specification

SMBmv Detailed Description

This core protocol request changes the name of one or more files or directories. Multiple files
may be renamed in response to a single request, as SMBmv supports filenames with wildcards in
the last 83component of the pathname; wildcards elsewhere in pathnames are not permitted.

Every file that matches the attribute field and the first pathname is renamed according to the
second pathname, provided that file does not already exist (see Section 36on page 17for more
details of the name transformation).

\\ildcards are not allowed in the destination path for directories. A move of a directory cannot
have a destination located in the directory itself or any subdirectory within the source directory.
In these conditions the error <ERRDOS, ERRbadpath> is to be returned.

If a *is received it indicates to the LMX server to fill the remainder of the component with ?.
Any characters provided after the *will be ignored and the usual ? wildcard mapping applies.

A file to be renamed can be open. If it is opened by the requesting process, the open must be in
compatibility mode. Otherwise, the rename fails with <ERRDOS, ERRnoaccess>. If the file is
opened by another process, that process has an oplock on the file, and the process has asked for
extended notification, the rename request will block until after the oplock has been broken. If
the process with the oplock closed the file, the rename takes place; if not, it fails.

There must not already be a different file existing with the new name. If there is, the rename will
fail. If wildcards are used in a rename operation, and only some of the renames fail for any
reason, the request will fail silently; that is, no error will be returned.

Because an LMXserver may serve multiple requests on the same resource simultaneously, there
may be interactions between the execution of this request and ongoing searches of the same
resource (SMBsearch, SMBffirst, SMBfunique, SMBfclose). Although there is no prohibition on
renaming directories actively being searched, an LMXserver may cause the search to appear to
have reached the end of the directory since no more entries will be found.

SMBmv Deviations

Some LMX servers will ignore the attribute field; others treat it according to the Attribute
convention.

An LMXserver may choose to return the error <ERRDOS, ERRdiffdevice> if the move requested
spans two different CAE file systems.

SMBmv Field Descriptions

smb_attr

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBmv smb_com SMBmv
smb_wct 1 smb_wct 0
smb_vwv[O] smb_attr smb_bcc 0
smb_bcc min=4
smb_buf1] smb_oldpath

smb_newpath

A file attribute field. An LMXserver should match file attributes against this
field when selecting files which match smb_oldpath to rename. Items that
match this field are added with regular files to the list of items moved.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 108

SMBmv Specification

smb_oldpath

smb_newpath

Core SMB File Operation Requests

An ASCIIZ (type 04) buffer containing the name of the file or files to be
renamed. Only the filename component (not directory components) may
contain wildcards.

An ASCIIZ (type 04) buffer containing the new name(s) to be given to the
file(s) which match smb_oldpath.

SMBmv Error Code Descriptions

CAE Code

ENOTDIR

ENOENT
EACCES

EEXIST
EXDEV
EROFS
EMLINK
ENOSPC
EBUSY

ETXIBSY

DOS Class DOS Code

ERRDOS ERRbadpath

ERRDOS ERRbadfile
ERRSRV ERRaccess

ERRDOS ERRnoaccess
ERRDOS ERRdiffdevice
ERRHRD ERRnowrite
ERRDOS ERRnoaccess
ERRDOS ERRnoaccess
ERRDOS ERRnoaccess

ERRDOS ERRnoaccess

ERRSRV ERRaccess
ERRSRV ERRerror
ERRSRV ERRbaduid

SUCCESS SUCCESS

SMBmv Preconditions

Description

A component in the old pathname is not a
directory.
The old file does not exist.
A component in a pathname denies the required
permission.
The new file already exists.
Attempt to rename to a different device.
Attempt to write on a read-only file system.
Too many links to old file.
The directory is full.
The old path is the mounted point for a file
system.
The old path is the last link to an executing
programme.
An attempt was made to change a volume label.
Internal error.
The UID given (smb_uid) is not known as a valid
ID on this LMXsession.
Everything worked, no problems.

1 SMB, UID and TID are valid; TID is for a file system resource.

2 smb_oldpath must refer to one or more files.

3 Transformation with smb_newpath must not match any existing files.

4 Process has appropriate permissions for all directories in both path arguments; write
permissions on last directory in each path argument.

SMBmv Postconditions

smb_oldpath no longer points to any existing files. (This condition may not persist in the
presence of other file-sharing activity, or if some of the new names conflicted with already
existing files.)

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 109

Core SMB File Operation Requests SMBmv Specification

SMBmv Side Effects

Searches involving renamed directories may be prematurely terminated.

Conventions

• Access (see Section 432on page~.

• Attribute (see Section 431on page~.

• Filename (see Section 3 5on page 15).

• Opportunistic Locking (see Section 3 8 2on page 2Q.

• Wldcards (see Section 36on page 17).

Protocols for X/ Open PC Interworking: SMB, Version 2 91

Samsung - Exhibit 1014 - Page 110

SMBunlink Specification Core SMB File Operation Requests

7.12 SMBunlink Specification

SMBunlink Detailed Description

This core protocol request is sent to delete a regular file or files. Read-only files may not be
deleted unless the read-only attribute is set in the SMBunlink request. \\ildcards in the filename
part of the pathname are supported.

The effect of the SMBunlink will be LMX server implementation-dependent. Normally only the
referenced filename can be deleted. If another SMB redirector has the file open, the contents of
the file will remain available until that SMB redirector closes the handle to the file. If
opportunistic locking is supported and another SMB redirector has been granted an oplock on
the file, the process has asked for notification of the SMBunlink request. The SMBunlink request
being processed will block until the oplock has been broken (reference Section 382on page 2Q.

If a wildcard pathname matches more than one file, and not all of the files could be unlinked, the
request fails silently.

The smb_attr field may be applied as an additional filter on files matching the wildcard string in
smb_path. LMXservers may optionally provide this filtering function.

S MBunlink Deviations

Only the spedfied directory entry is immediately deleted. The file contents are deleted only
when all the file's directory entries have been deleted and all the FIDs assodated with it have
been destroyed.

Some LMX servers may ignore the smb_attr field. Others will treat it in accordance with the
attribute convention (refer to Section 3 7 on page 17).

LMXservers require the user to have write permission in the target file's parent directory.

SMBunlink Field Descriptions

smb_attr

smb_path

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBunlink smb_com SMBunlink
smb_wct 1 smb_wct 0
smb_vwv[O] smb_attr smb_bcc 0
smb_bcc rnin=2
smb_buf1] smb_path

A file attribute field. Some LMX servers treat it as indicating the attributes
that the target file must have.

An ASCIIZ (type 04) buffer indicating the file to be unlinked.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 111

Core SMB File Operation Requests

SMBunlink Error Code Descriptions

CAE Code

ENOTDIR

ENOENT
EACCES

EPERM
EROFS
EBUSY
ETXIBUSY

DOS Class

ERRDOS

ERRDOS
ERRSRV

ERRDOS
ERRHRD
ERRDOS
ERRDOS

DOS Code

ERRbadpath

ERRbadfile
ERRaccess

ERRnoaccess
ERRnowrite
ERRnoaccess
ERRnoaccess

SMBunlink Specification

Description

A component in the path-prefix is not a
directory.
The spedfied file does not exist.
A component in the path denies the required
permission.
The spedfied file is a directory.
Attempt to modifY a read-only file system.
The spedfied file is a directory.
The spedfied file is the last link to a shared text
file.

ERRSRV ERRaccess Attempt to delete a volume label, or delete
permission required.

ERRinvdevice Attempt to unlink a non-regular file.
Internal error.

ERRSRV
ERRSRV
ERRSRV

ERR error
ERRbaduid The UID given (smb_uid) is not known as a valid

ID on this LMXsession.
SUCCESS SUCCESS Everything worked, no problems.

SMBunlink Preconditions

1 The SMB request, UID and TID are valid; the TID refers to a file system resource with write
permissions.

2 smb_path refers to one or more existing files.

3 The directory containing the files to be unlinked must allow writes by the requesting
process.

4 The files to be unlinked are not opened (except by the request process in compatibility
mode).

SMBunlink Postconditions

The file's directory entries are removed.

SMBunlink Side Effects

None.

Conventions

• Access (see Section 432on page~.

• Attribute (see Section 431on page~.

• Filename (see Section 3 5on page 15).

• Opportunistic Locking (see Section 3 8 2on page 2Q.

• Wldcards (see Section 36on page 17).

Protocols for X/ Open PC Interworking: SMB, Version 2 93

Samsung - Exhibit 1014 - Page 112

Core SMB File Operation Requests

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 113

Chapter 8

Core SMB Directory and Attribute Operations

This section defines the elements of the core SMB protocol which manipulate directories and
attributes. They are:

SMBmkdir

SMBrmdir

SMBsearch

SMBgetatr

SMBsetatr

SMBdskattr

SMBchkpath

create an empty directory

delete an empty directory

perform a wildcard lookup in a directory

get file attributes

set file attributes

get information about the LMXserver' s file system

ensure a path is valid and points to a directory

81 SMBmkdir Specification

SMBmkdir Detailed Description

This core protocol request creates a new directory which must not already exist. Wite
permission is required in the spedfied directory's parent directory.

SMBmkdir Deviations

The LMXserver obeys the rules for mapping the new directory into the CAE file system (refer to
Section 431onpage ~.

SMBmkdir Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBmkdir smb_com SMBmkdir
smb_wct 0 smb_wct 0
smb_bcc min=2 smb_bcc 0
smb_buf1] smb_path

smb_path An ASCIIZ (type 04) buffer containing the name of the directory to be created.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 114

SMBmkdir Specification Core SMB Directory and Attribute Operations

SMBmkdir Error CodeD escriptions

CAE Code DOS Class DOS Code Description

ENOTDIR ERRDOS ERRbadpath A component of the path-prefix was not a
directory.

ENOENT ERRDOS ERRbadpath A component of the path-prefix did not exist.
EACCES ERRDOS ERRnoaccess A component of the path-prefix denied search

permission.
EROFS ERRHRD ERRnowrite Attempt to write a read-only file system.
EEXIST ERRDOS ERRfilexists The spedfied path already exists.
ENOSPC ERRDOS ERRnoaccess The parent's directory is full.
EIO ERRHRD ERR data Physical II 0 error on disk.
EMLINK ERRDOS ERRnoaccess Too many links to the parent directory.

- ERRSRV ERR error Internal error.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid

ID on this LMXsession.
- SUCCESS SUCCESS Everything worked, no problems.

SMBmkdir Preconditions

1 Valid SMB request, UID and TID; TID is for a file system subtree.

2 The parent directory of the new directory must have the necessary access rights to create a
directory.

SMBmkdir Postconditions

The directory is created in the file system.

SMBmkdir Side Effects

None.

Conventions

• Filename (see Section 3 5on page 15).

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 115

Core SMB Directory and Attribute Operations SMBrmdir Specification

&2 SMBrmdir Specification

SMBrmdir Detailed Description

This core protocol request deletes an empty directory. The requesting UID must have write
permission in the target directory's parent directory.

Because an LMXserver may serve multiple requests on the same resource simultaneously, there
may be interactions between the execution of this request and ongoing searches of the same
resource (SMBsearch, SMBffirst, SMBfunique, SMBfclose). Although there is no prohibition on
deleting directories actively being searched, an LMX server may cause the search to appear to
have reached the end of the directory since no more entries will be found.

SMBrmdir Deviations

None.

SMBrmdir Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value
smb_com SMBrmdir smb_com SMBrmdir
smb_wct 0 smb_wct 0
smb_bcc min=2 smb_bcc 0
smb_buf1] smb_path

smb_path An ASCIIZ (type 04) buffer containing the name of the directory to delete.

SMBrmdir Error CodeD escriptions

CAE Code

ENOTDIR

ENOENT
EACCES

EROFS
EBUSY

EEXIST

DOS Class

ERRDOS

ERRDOS
ERRDOS

ERRHRD
ERRDOS

ERRDOS
ERRSRV
ERRSRV

SUCCESS

DOS Code

ERRbadpath

ERRbadfile
ERRnoaccess

ERRnowrite
ERRnoaccess

ERRnoaccess
ERR error
ERRbaduid

SUCCESS

Protocols for X/ Open PC Interworking: SMB, Version 2

Description

A component in the path-prefix is not a
directory.
The spedfied directory does not exist.
A component in the path denies the required
permission.
Attempt to modifY a read-only file system.
The directory is in use and cannot be removed at
this time.
Attempt to remove a non-empty directory.
Internal error.
The UID given (smb_uid) is not known as a valid
ID on this LMXsession.
Everything worked, no problems.

Samsung - Exhibit 1014 - Page 116

SMBrmdir Specification Core SMB Directory and Attribute Operations

SMBrmdir Preconditions

1 Valid SMB request, UID and TID; TID refers to a file system subtree.

2 The UID has write access to the parent directory of the target.

SMBrmdir Postconditions

The directory is deleted.

SMBrmdir Side Effects

An in-progress search from another process may receive an inconsistent view of the resource.

Conventions

• Access (see Section 432on page~.

• Filename (see Section 3 5on page 15).

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 117

Core SMB Directory and Attribute Operations SMBsearch Specification

&3 SMBsearch Specification

SMBsearch Detailed Description

This core protocol request searches a directory for one or more regular files matching a wildcard
template. Two forms of the SMBsearch request exist: SearchFirst and SearchNext.

Every search begins when an SMB redirector sends a SearchFirst request to the LMX server
asking for n files that match a spedfied wildcard template. The LMX server sends a response
containing the directory information for up to n files found which match the template. The
response contains a search handle defined below.

The SMB redirector may then resume the search at any search handle of a previous SMBsearch
response. The LMX server responds to SearchNext with the directory information for up to n
additional matching files, picking up from the point indicated by the search handle.

The SMB redirector does not indicate when a search is complete; that is, there is no SearchDone
request.

SMBsearch Deviations

Since the SMB redirector never closes a search, the LMX server must use some heuristics in
determining when to release resources assodated with a search. These heuristics should never
result in a search being declared terminated by the LMXserver while it is still possible for the
SMB redirector to continue it. Some possible heuristics are:

1 An SMBexit request from the same process is received.

2 The TID containing the search is broken.

3 The LMXsession containing the search times out.

4 An error of any sort is returned in response to an SMBsearch request.

For the root directory of the directory subtree located by the TID the directory entries . and ..
are not returned to the SMB redirector. If a volume label is returned it should be a printable
string. Some SMB redirector applications will print this string, but no other semantics are
assodated with it.

The system, archive and hidden bits of the file attribute fields are treated in accordance with the
Attribute convention (see Section 43 lon page~.

An LMX server must guarantee never to return information on a given file twice in the same
SMBsearch sequence, provided End_buf_search_id contents are not reused by the SMB redirector.
Some CAE systems can rearrange the information within a directory without the LMXserver's
knowledge; for example, entries may be moved around to pack a directory, etc. Because of this,
LMX servers may not be able to guarantee that all files are reported once; that is, some files
matching smb_pathname and smb_attr may not be reported to the SMB redirector.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 118

SMBsearch Specification Core SMB Directory and Attribute Operations

lffi

SMBsearch Field Descriptions

Request Format:

smb_count

smb_attr

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBsearch smb_com SMBsearch
smb_wct 2 smb_wct 1
smb_vwv[O] smb_count smb_vwv[O] smb_count
smb_vwv[1] smb_attr smb_bcc min=3
smb_bcc min=5 smb_data

smb_pathname
smb_search_id[]

A signed integer. In the request, the maximum number of entries to find and
return in the response (n); in the response, the number of entries actually
returned. If no matching entries were found between the point where this
particular SearchFirst or SearchNext began, a zero (0 should be returned. The
number of entries returned will be the minimum of:

- the number of entries requested

- the number of (complete) entries that will fit in the negotiated SMB buffer

- the number of entries that match the requested name pattern and
attributes

An attribute field. If supported, the LMX server will only return directory
entries whose attributes match this field as well as the wildcard pathname.
Unless this field spedfies the volume label, normal files whose names match
the wildcard are always returned. If this field spedfies the volume label, only
the volume label information is returned.

smb_pathname An ASCIIZ (type 04) buffer containing the wildcard path to search. Only the
last component of the pathname may contain a wildcard.

smb_search_id

smb_data

A Variable Block (type 05), 21 or 0 bytes in length. If this is a zero-byte Data
Block, it is a SearchFirst request; otherwise it is a SearchNext request containing
the End_buf_search_id (see below) returned in the last dir_info structure in a
previous SearchFirst or SearchNext response.

A Variable Block (type 05) containing an array of dir_info structures, tightly
packed. The total size of the array is 43"smb_count.

The dir_info structure contains information about each file which matched the wildcard
smb_pathname (and, optionally, the smb_attr attributes). The structure contains:

Position Field Name Description

m End_buf_search_id A 21-byte string whose structure is defined below.

21 End_buf_attr The attribute field for the file.
Z3 End_buf_time A 16bit time field, indicating the time oflast modification.

25 End_buf_date A 16bit date field, indicating the date oflast modification.

Z1 End_buf_size A ::Zbit integer giving the size of the file.
31 End_buf_pname A blank-padded string, 13 characters in length, giving the

name of the file in printable form. For example, AB.Tx
would be encoded as AB.Tx vvvvvvvv. (v is a blank space.)

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 119

Core SMB Directory and Attribute Operations SMBsearch Specification

The End_buf_search_id referred to as the search handle above appears in two places: in the
SearchNext request, and at the beginning of each dir_info structure. It contains state information
the LMXserver needs to continue a search. Its structure is as follows:

Position Field Name Description

m sr_resl Reserved for SMB redirector use. This field must be
maintained by the LMX server. In other words, the value
spedfied by the SMB redirector system must be returned in
the appropriate search handle of the response.

01 sr_servdata 16byte field reserved for LMXserver use. Usually maintains
state to continue searches; see paragraph below.

17 sr_res2[4] 4byte field reserved for SMB redirector use. This field must
be maintained by the LMXserver in the same manner as the
sr_res 1 field.

DOS SMB redirectors using the dialects PC NETWJRK PROGRAM 10 MICROSOFT
NETWJRKS lffi and MICROSOFT NETWJRKS 30 used the sr_servdata field in order to
enhance the performance of the search sequence. If those SMB redirectors exist on the network,
then the sr_servdata field is defined and the LMXserver must maintain the following structure of
information:

Position Description

010

11

1Z 13

1415

A compressed 11-byte string maintaining the search pattern for the directory
search. This will include any meta-characters for the search. The . in DOS
filenames (preceding the 3byte filename extension) is ssumed, in that it is not
maintained in the string but rather inserted prior to the last 3 characters of the
field. The first 8characters are blank padded unless meta-characters are used. In
the case of meta-characters, a * is expanded out into the appropriate number of
question marks.

An unsigned byte. No assumptions are made on this value except that it should
be non-zero.

An unsigned 16bit integer which maintains the directory index value for this
search entry. This value starts counting from zero and continues in a linear
sequence. Some SMB redirectors are known to modifY this value to allow them
to resume a directory search at an arbitrary location.

An unsigned 16bit integer that may be used by the LMXserver. It should not be
zero.

Protocols for X/ Open PC Interworking: SMB, Version 2 101

Samsung - Exhibit 1014 - Page 120

SMBsearch Specification Core SMB Directory and Attribute Operations

102

SMBsearch Error Code Descriptions

Error DOS Error DOS
CAE Code Class Code Description

EACCES ERRDOS ERRnoaccess No permission for the spedfied pathname.
EIO ERRHRD ERR data Physical II 0 error on disk.
EMFILE ERRSRV ERRnoresource Exhausted process file handle supply.
EN FILE ERRSRV ERRnoresource Exhausted system file handle supply.
ENOENT SUCCESS SUCCESS Ignored (a file disappeared or didn't exist).
ENOTDIR ERRDOS ERRbadpath Component in pathname was not a directory.
EOF ERRDOS ERRnofiles Search can find no more files.

- ERRSRV ERR error LMXserver internal error.
- ERRDOS ERRbadfid search_id was not active.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid

ID on this LMXsession.
- SUCCESS SUCCESS Everything worked, no problems.

SMBsearch Preconditions

1 Valid SMB, UID and TID; the TID refers to a file system subtree.

2 The UID has appropriate permission on all directories in smb_pathname.

3 The LMXserver has not declared the search terminated.

SMBsearch Postconditions

1 After a SearchFirst request, the various directories under search are opened as necessary,
and suffident state is maintained to continue the search.

2 After a SearchNext, the retained state information is updated to permit continuing the
search without returning dir_info on the same file twice.

SMBsearch Side Effects

Various directories are open for reading as long as the search is active. This may delay other
requests from other SMB redirectors (for example, SMBrmdir).

Conventions

• Access (see Section 432on page~.

• Attribute (see Section 431on page~.

• Filename (see Section 35on page 15).

• Wldcard (see Section 36on page 17).

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 121

Core SMB Directory and Attribute Operations SMBgetatr Specification

&4 SMBgetatr Specification

SMBgetatr Detailed Description

This core protocol request is used to obtain information about a regular file or directory.

S MBgetatr Deviations

1 The archive, system and hidden file attribute bits are treated according to the attribute
mapping convention.

2 The smb_timevalue returned will be the file's last modified time (as set by a previous close
operation).

SMBgetatr Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value
smb_com SMBgetatr smb_com SMBgetatr
smb_wct 0 smb_wct 10
smb_bcc min=2 smb_vwv[O] smb_attr
smb_buf1] smb_path smb_vwv[1-~ smb_time

smb_vwv[341 smb_size
smb_vwv[5~ reserved (MBZ)
smb_bcc 0

smb_path An ASCIIZ (type 04) buffer containing the name of the regular file or directory
for which information is requested.

smb_attr

smb_time

smb_size

A 16bit attribute field describing the file.

A ::Zbit time giving the last modifY time for the file.

A ::Zbit integer containing the current size of the file in bytes.

SMBgetatr Error CodeD escriptions

CAE Code

EACCES

EINTR
ENOENT

ENOTDIR

DOS Class DOS Code

ERRDOS ERRnoaccess

ERRSRV
ERRDOS

ERRDOS
ERRDOS
ERRSRV
ERRSRV

ERRSRV

SUCCESS

ERR error
ERRbadfile

ERRbadpath
ERRnoaccess
ERRinvtid
ERRinvdevice

ERRbaduid

SUCCESS

Protocols for X/ Open PC Interworking: SMB, Version 2

Description

Component of path-prefix denies search
permission.
A signal was caught during some system call.
File does not exist, or component of pathname
does not exist.
Component of path-prefix is not a directory.
Read permission required.
TID spedfied in command is invalid.
Invalid resource type: TID was not for a file
system subtree.
The UID given (smb_uid) is not known as a valid
ID on this LMXsession.
Everything worked, no problems.

lCB

Samsung - Exhibit 1014 - Page 122

SMBgetatr Specification Core SMB Directory and Attribute Operations

104

SMBgetatr Preconditions

1 The SMB redirector has the appropriate permission to the file system subtree.

2 smb_path refers to an existing file or directory.

SMBgetatr Postconditions

The smb_attr and smb_time fields are accurate for files and directories; smb_size is correct only for
files and is meaningless for directories.

SMBgetatr Side Effects

None.

Conventions

• Attribute (see Section 431on page~.

• Filename (see Section 3 5on page 15).

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 123

Core SMB Directory and Attribute Operations SMBsetatr Specification

&5 SMBsetatr Specification

SMBsetatr Detailed Description

This core protocol request is used to set information about an existing regular file or directory.

S MBsetatr Deviations

1 The archive, system and hidden file attribute bits are treated according to the file attributes
conventions. Reference Section 43 1on page 3Jfor additional information on file attribute
handling.

2 The smb_timespedfied will become the last modify time for the file.

SMBsetatr Field Descriptions

smb_attr

smb_time

smb_path

smb_nul

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBsetatr smb_com SMBsetatr
smb_wct 8 smb_wct 0
smb_vwv[O] smb_attr smb_bcc 0
smb_vwv[1-~ smb_time
smb_ vwv [3 7] reserved (MBZ)
smb_bcc min=2
smb_buf1] smb_path

smb_nul

A file attribute field, to be given to the file (see Section 35 on page 15 for
details of the Attribute convention).

A ::Zbit time giving the last modify time for the file. A value of Oindicates the
last modify time should be unchanged.

An ASCIIZ (type 04) buffer containing the name of the regular file or directory
for which information is to be set.

An ASCIIZ (type 04) buffer containing the null string.

Protocols for X/ Open PC Interworking: SMB, Version 2 105

Samsung - Exhibit 1014 - Page 124

SMBsetatr Specification Core SMB Directory and Attribute Operations

103

SMBsetatr Error CodeD escriptions

CAE Code DOS Class DOS Code Description

EACCES ERRDOS ERRnoaccess Search permission is denied on a component of
the path-prefu.

EACCES ERRSRV ERRaccess The UID does not have appropriate privilege
and is not the owner of the file and the read-only
attribute flag was changed.

EINTR ERRSRV ERR error A signal was caught during the system call.
ENOENT ERRDOS ERRbadfile File does not exist, or component of pathname

does not exist.
ENOTDIR ERRDOS ERRbadpath Component ofpath-prefu is not a directory.
EPERM ERRSRV ERRaccess The UID does not have appropriate privilege

and is not the owner of the file and time is non-
zero.

EROFS ERRSRV ERRaccess The file system containing the file is read-only.
- ERRSRV ERRinvnid TID spedfied in command is invalid.
- ERRSRV ERRinvdevice The TID does not refer to a file system subtree.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid

ID on this LMXsession.
- SUCCESS SUCCESS Everything worked, no problems.

SMBsetatr Preconditions

1 The SMB redirector has sent a valid SMB request with a valid UID and a valid TID for a file
system subtree.

2 smb_path refers to an existing file or directory.

3 The spedfied UID or TID represents appropriate privilege to perform the action.

SMBsetatr Postconditions

The file attribute and time will be set accordingly, or an error will be returned.

SMBsetatr Side Effects

1 If the read-only attribute was changed, the access mode for the file will have been changed
accordingly. For example, when the read-only attribute is removed the LMXserver will set
those write permission bits for a file not explidtly masked out by the current umask value.

2 The last modifY time for the file will be changed if the spedfied time was non-zero.

Conventions

• Access (see Section 432on page~.

• Attribute (see Section 431on page~.

• Filename (see Section 3 5on page 15).

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 125

Core SMB Directory and Attribute Operations SMBdskattr Specification

&6 SMBdskattr Specification

SMBdskattr Detailed Description

This core protocol request returns some information on the resource's assodated file system
subtree.

SMBdskattr Deviations

An LMXserver may return zero (0 in the smb_vwv[4] (media identifier code) field.

SMBdskattr Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value
smb_com SMBdskattr smb_com SMBdskattr
smb_wct 0 smb_wct 5
smb_bcc 0 smb_vwv[O] number of allocation

units/server
smb_vwv[1] number of

blocks/allocation unit
smb_vwv[21 block size (in bytes)

smb_vwv[31 number of free
allocation units

smb_vwv[4] reserved (media
identifier code)

smb_bcc 0

SMBdskattr Error CodeD escriptions

CAE Code DOS Class DOS Code Description

ENOENT ERRHRD ERRnotready The file system has been removed from the
system.

ENOTDIR ERRHRD ERRnotready The file system has been removed from the
system.

EIO ERRHRD ERR data Physical II 0 error on disk.
- ERRSRV ERRaccess Read permission is required.
- ERRSRV ERRinvnid Invalid TID spedfied.
- ERRSRV ERRinvdevice Invalid resource type (that is, no file system

subtree) spedfied.
- ERRSRV ERR error Other CAE and internal errors.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid

ID on this LMXsession.
- SUCCESS SUCCESS Everything worked, no problems.

Protocols for X/ Open PC Interworking: SMB, Version 2 107

Samsung - Exhibit 1014 - Page 126

SMBdskattr Specification Core SMB Directory and Attribute Operations

lCB

SMBdskattr Preconditions

The SMB request, UID and TID must be valid and represent the appropriate access rights to
perform the action.

SMBdskattr Postconditions

None.

SMBdskattr Side Effects

None.

Conventions

• File System Issues (see Section 433on page~.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 127

Core SMB Directory and Attribute Operations SMBchkpath Specification

& 7 SMBchkpath Specification

SMBchkpath Detailed Description

This core protocol request verifies that a path exists and is a directory. For example, SMB
redirectors which maintain a concept of a working directory might use SMBchkpath to verifY the
validity of a change working directory command. Note that an LMX server does not have a
concept of working directory. The SMB redirector must always supply a full pathname (relative
to the TID).

SMBchkpath Deviations

None.

SMBchkpath Field Descriptions

From SMB redirector

Field Name Field Value
smb_com SMBchkpath
smb_wct 0
smb_bcc min=2
smb_buf1] smb_path

To SMB redirector

Field Name Field Value
smb_com SMBchkpath
smb_wct 0
smb_bcc 0

smb_path An ASCIIZ (type 04) buffer containing the name of the directory to be
checked.

SMBchkpath Error Code Descriptions

CAE Code DOS Class DOS Code Description

ENOTDIR ERRDOS ERRbadpath A component of the path was not a directory.
ENOENT ERRDOS ERRbadfile The spedfied directory does not exist.
EACCES ERRDOS ERRnoaccess A component of the path lacked search permission.
EACCES ERRSRV ERRaccess No read permission in spedfied directory.
ENXIO ERRDOS ERRbadpath The spedfied path wasn't a directory.
EN FILE ERRDOS ERRnofids System file table full.
EMFILE ERRDOS ERRnofids LMXsession has too many open files.
EIO ERRHRD ERR data Physical II 0 error on disk.

- ERRSRV ERRinvnid Invalid TID spedfied.
- ERRSRV ERR error Internal error.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid ID

on this LMXsession.
- SUCCESS SUCCESS Everything worked, no problems.

SMBchkpath Preconditions

SMB request, UID and TID are valid and represent the appropriate access rights to perform the
action.

Protocols for X/ Open PC Interworking: SMB, Version 2 1C9

Samsung - Exhibit 1014 - Page 128

SMBchkpath Specification Core SMB Directory and Attribute Operations

110

SMBchkpath Postconditions

If no error is returned, smb_path referred to a valid existing directory which is readable by the
SMB redirector.

SMBchkpath Side Effects

None.

Conventions

• Filename (see Section 3 5on page 15).

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 129

Chapter 9

Core SMB Spool Operation Requests

This section defines the elements of core SMB protocol which support spooling and printing
operations. They are:

SMBsplopen

SMBsplwr

SMBsplclose

SMBsplretq

create a new spool file

write to a spool file

close a spool file and queue it for spooling

return information on the spool queue

9.1 SMBsplopen Specification

SMBsplopen Detailed Description

This core protocol request will create a spool file. The file will be deleted once it has been
printed. The LMX server will grant write permission to the creator of the file. No other LMX
session will be given any access permissions to the file.

All users will have read permission on the print spool queue, but only the print LMXserver has
write permission to it.

SMBsplopen Deviations

Some LMXservers do not distinguish between text and graphics modes.

SMBsplopen Field Descriptions

smb_psdlen

smb_mode

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBsplopen smb_com SMBsplopen
smb_wct 2 smb_wct 1
smb_vwv[O] smb_psdlen smb_vwv[O] smb_fid
smb_vwv[1] smb_mode smb_bcc 0
smb_bcc min=2
smb_buf smb_ident

A 16bit integer giving the length of printer setup data to be sent. This means
that the first smb_psdlen bytes of data sent to this spool file will be treated by
the LMXserver as setup data.

A 16bit field providing additional control over the printing of this file. The
field can have the following values:

0 Text mode. Some LMX servers expand ASCII TABs to spaces in this
mode.

1 Graphics mode. The LMXserver treats the data as raw octets and will not
interpret or change it.

Protocols for X/ Open PC Interworking: SMB, Version 2 111

Samsung - Exhibit 1014 - Page 130

SMBsplopen Specification Core SMB Spool Operation Requests

112

smb_ident An ASCIIZ (type 04) buffer containing a suggested name for the spool file.
The LMXserver may ignore, truncate, or otherwise use this information in any
way.

smb_fid The FID of the spool file. Data written to this FID will be spooled.

SMBsplopen Error Code Descriptions

CAE Code

EACCES

EINTR
EMFILE

EN FILE
EROFS

DOS Class DOS Code

ERRSRV ERRerror
ERRSRV ERRerror

ERRSRV ERRqfull
ERRSRV ERRqtoobig

ERRSRV ERRerror

ERRDOS

ERRSRV
ERRDOS

ERRDOS
ERRSRV

ERRSRV
ERRSRV

SUCCESS

ERRnoaccess

ERR error
ERRnofids

ERRnofids
ERR error

ERRinvdevice
ERRbaduid

SUCCESS

SMBsplopen Preconditions

Description

The request SMB was invalid or malformed.
The LMXserver cannot find the spool queue for
this file.
Insuffident resources to create the print job.
The queue is full; no entry is available to create
the job.
The LMX server has exhausted some resource
and cannot create the print job.
Search permission is denied on a component of
the path-prefix.
A signal was caught during a system call.
Maximum number of file descriptors are
currently open in this process.
System file table is full.
The spool file or spool queue resides on a read
only file system.
The TID does not refer to a printer resource.
The UID given (smb_uid) is not known as a valid
ID on this LMXsession.
Everything worked, no problems.

The SMB request, UID and TID are valid and represent the appropriate access rights for the
action.

SMBsplopen Postconditions

1 If successful, smb_fid contains the FID to be used in subsequent SMBsplwr requests for this
spool file.

2 Although some resources were reserved to create the spool file, there is no guarantee that
suffident resources exist for a given amount of data to be spooled within this spool file.

SMBsplopen Side Effects

A spool file has been created on the LMXserver.

Conventions

• Print Spooling (see Section 4 6on page 35).

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 131

Core SMB Spool Operation Requests SMBsplwr Specification

9.2 SMBsplwr Specification

SMBsplw r Detailed Description

This core protocol request appends the data block to the spool file spedfied by the FID. The first
block sent to a spool file must contain the printer setup data; the length of this data was spedfied
in the SMBsplopen request. Additional data may appear with the first block sent.

SMBsplw r Deviations

It is possible that LMX servers are such that if an SMBsplwr request contained a message of
length greater than the maximum transmit size for the TID spedfied, the LMX server would
abort the LMXsession to the SMB redirector (see Section 6 1on page 55 and Section 62on page
57). Rather than aborting, the LMX server could accept an amount of data which is the lesser of
the amount the SMB redirector indicated would be sent and the size of the data in the buffer.

SMBsplwrField Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBsplwr smb_com SMBsplwr
smb_wct 1 smb_wct 0
smb_vwv[O] smb_fid smb_bcc 0
smb_bcc min=4
smb_buf smb_data

smb_fid

smb_data

The FID for a spool file. Obtained in an SMBsplopen response.

A Data Block (type 01) buffer, containing data to be written to the spool file.
The first bytes of the first smb_data field sent to a newly-opened spool file are
considered to be printer setup data; the length of this setup data is spedfied in
the smb_psdlen field of the SMBsplopen request.

SMBsplw r Error CodeD escriptions

CAE Code DOS Class DOS Code Description

EBADF ERRDOS ERRbadfid FID is valid, but no longer accepted by the
underlying operating system.

- ERRDOS ERRbadfid Invalid FID.
EAGAIN ERRDOS ERRnoaccess A temporary resource limitation prevented this

data from being written.

EIO ERRHRD ERRwrite A physical I/0 error has occurred.
- ERRSRV ERRqtoobig A part of the spooler subsystem failed due to

lack of file system space.
- ERRSRV ERRinvnid The TID in the command is invalid.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid

ID on this LMXsession.
- SUCCESS SUCCESS Everything worked, no problems.

Protocols for X/ Open PC Interworking: SMB, Version 2 113

Samsung - Exhibit 1014 - Page 132

SMBsplwr Specification Core SMB Spool Operation Requests

114

SMBsplw r Preconditions

1 The SMB request, UID and TID are valid and represent the appropriate access rights for the
action.

2 The spool file spedfied by smb_fid must have been opened with SMBsplopen.

SMBsplw r Postconditions

If no error is returned, the data sent in the request will be written to the spool file.

SMBsplw r Side Effects

None.

Conventions

• Print Spooling (see Section 4 6on page 35).

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 133

Core SMB Spool Operation Requests SMBsplclose Specification

9.3 SMBsplclose Specification

S MBsplclose Detailed Description

This core protocol request invalidates the spedfied FID and queues the file for spooling. The FID
must reference a spool file.

S MBsplclose Deviations

None.

SMBsplclose Field Descriptions

From SMB redirector

Field Name Field Value
smb_com SMBsplclose
smb_wct 1
smb_vwv[O] smb_fid
smb_bcc 0

To SMB redirector

Field Name Field Value
smb_com SMBsplclose
smb_wct 0
smb_bcc 0

smb_fid The FID of the spool file to be closed and queued for spooling.

SMBsplclose Error CodeD escriptions

CAE Code DOS Class DOS Code Description

EBADF ERRSRV ERR error The LMXserver could not use a valid FID.
- ERRDOS ERRbadfid The FID in the request is not valid.
- ERRSRV ERRinvdevice The FID does not refer to an open spool file.
- ERRSRV ERRinvnid The TID in the command is invalid.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid

ID on this LMXsession.
- SUCCESS SUCCESS Everything worked, no problems.

SMBsplclose Preconditions

1 The SMB request, UID and TID are valid and represent the appropriate access rights for the
action.

2 smb_fid must refer to a spool file opened with SMBsplopen.

SMBsplclose Postconditions

1 If no errors have occurred, the spool file will be closed and the job scheduled.

2 If an error has occurred, it is possible that the data was not printed and may have been lost.

Protocols for X/ Open PC Interworking: SMB, Version 2 115

Samsung - Exhibit 1014 - Page 134

SMBsplclose Specification Core SMB Spool Operation Requests

SMBsplclose Side Effects

1 The data is spooled. Refer to Section 46on page 35

2 During or after the printing of the file, the resources consumed by it will be released.

Conventions

• Print Spooling (see Section 4 6on page 35).

116 X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 135

Core SMB Spool Operation Requests SMBsplretq Specification

9.4 SMBsplretq Specification

SMBsplretq Detailed Description

This core protocol request obtains a list of the elements currently in the print spool queue on the
LMXserver. Zero or less than the requested number of elements will be returned only when the
beginning or end of the queue is encountered.

S MBsplretq Deviations

Some LMX servers cannot search the queue backwards, and will respond to requests for
backward searches with a forward search instead. The in intercept bit in the smb_status field of
smb_data will never be used.

SMBslpretq Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBsplretq smb_com SMBsplretq
smb_wct 2 smb_wct 2
smb_vwv[O] smb_maxcount smb_vwv[O] smb_count
smb_vwv[1] smb_st_index smb_vwv[1] smb_res_index
smb_bcc 0 smb_bcc min=3

smb_buf smb_data

smb_maxcount A 16bit integer spedfying the maximum number of entries to return. If
positive, search forward in the queue; if negative, search backwards. If
smb_maxcount entries require more data than can fit in a message, those entries
which fit are returned and no error is generated.

smb_st_index

smb_count

smb_res_index

smb_data

A 16bit integer indicating the first entry in the queue to return. A value of 0
indicates the start of the queue; other values should only come from the
smb_res_index field of previous SMBsplretq responses.

A 16bit integer indicating how many entries were actually returned.

A 16bit integer giving the index of the entry following the last entry returned;
it may be used as the start index in a subsequent request to resume the queue
listing.

A Data Block (type 01) buffer containing an array of smb_count queue element
structures. Each queue element is 23 bytes in length and contains the
following fields:

smb_date

m 16bit field smb_date
02 16bit field smb_time
O'l 8bit field smb_status
05 16bit field smb_file
CJ7 2Zbit field smb_size
11 8bit field smb_res
12 8bit field smb_name[161

A 16bit field containing the date for when the file was
created. Refer to Section 532on page 43

Protocols for X/ Open PC Interworking: SMB, Version 2 117

Samsung - Exhibit 1014 - Page 136

SMBsplretq Specification Core SMB Spool Operation Requests

118

smb_time

smb_status

smb_file

smb_size

smb_res

smb_name

A 16bit field telling time for when the file was created.
Refer to Section 531on page 43

An 8bit field indicating the file's status in the print spool
queue as follows:

CkOl held or stopped

()((]2 printing

cxm awaiting print

Ck04 in intercept (never used)

Ck05 file had error

cxm printer error

Ck07'Ckff reserved; do not use

A 16bit integer containing the spool job ID, as generated on
the LMX server during the processing of the SMBsplopen
request for this spool file.

A ::Zbit integer containing the size of the file in bytes.

An 8bit reserved field; MBZ (Must Be Zero).

A 16byte string identifying the spool file. This may be the
originating SMB redirector' s name or the spool filename.
The spool filename is created by the LMX server when an
SMBsplopen request is received. This string is left-justified
and NULL-filled in the field.

SMBsplretq Error Code Descriptions

CAE Code DOS Class DOS Code Description
- ERRHRD ERRnotready Any of several errors could be mapped to this

error code.
- ERRHRD ERR error A resource limitation was exceeded.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid

ID on this LMXsession.
- SUCCESS SUCCESS Everything worked, no problems.

SMBsplretq Preconditions

1 The maximum SMBsize permits at least 23" smb_max_count bytes of data in addition to the
SMB header and request subheader.

SMBsplretq Postconditions

None.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 137

Core SMB Spool Operation Requests SMBsplretq Specification

SMBsplretq Side Effects

None.

Conventions

This is a request where the UID and the TID need not be valid for service.

• Print Spooling (see Section 4 6on page 35).

Protocols for X/ Open PC Interworking: SMB, Version 2 119

Samsung - Exhibit 1014 - Page 138

Core SMB Spool Operation Requests

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 139

Chapter 10

Core Plus SMB File Operations

This section defines the elements of the core plus SMB protocol which provide for file
operations. They are:

SMBnegprot negotiate modifications when the core plus dialect is selected by the LMX
server

SMBreadbmpx read block multiplexed

SMBwritebmpx write block multiplexed

SMBreadbraw read block raw from a file

SMBwritebraw write block raw to a file

SMBlockread lock a byte range and read it

SMBwriteunlock write to a byte range and unlock it

SMBwriteclose write to a file and close it

10.1 SMBnegprot Specification

SMBnegprot Detailed Description

This SMB protocol request is sent to establish the protocol dialect that the SMB redirector and
LMXserver will use when communicating with each other. The SMB redirector sends a list of
dialects that it can use for communication. The LMXserver responds with a selection of one of
those dialects (numbered 0 to n) or - 1 indicating that none of the dialects were acceptable.
Exactly one negotiate message must be sent on each NetBIOS session; subsequent negotiate
requests must be r~ected with an error response and no action will be taken. The rules for the
use of SMBnegprot outlined in Section 6 1on page 55 hold here as well.

SMBnegprot Deviations

None.

SMBnegprot Field Descriptions

Field descriptions for other dialects of the SMB protocol (SMBnegprot) are:

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBnegprot smb_com SMBnegprot
smb_wct 0 smb_wct 13
smb_bcc min=2 smb_vwv[O] smb_index
smb_buf1] dialectO smb_ vwv [1-41 smb_rsvdO

smb_vwv[51 smb_blkmode
smb_vwv[612l smb_rsvdl
smb_bcc 0

Protocols for X/ Open PC Interworking: SMB, Version 2 121

Samsung - Exhibit 1014 - Page 140

SMBnegprot Specification Core Plus SMB File Operations

122

The fields are defined as:

dialectn

smb_index

smb_rsvdO

smb_blkmode

smb_rsvdl

smb_bcc

A Dialect (type G) buffer containing the name of a dialect (refer to Section 54
on page~.

The dialect selected by the LMX server; corresponds to the indexth dialect
string in the request, where the first string is numbered 0

Reserved; MBZ (Must Be Zero).

\\hether or not SMBreadbraw and SMBwritebraw are supported.

Bit 0 If set, SMBreadbraw is supported.

Bit 1 If set, SMBbwritebraw is supported.

Bit Z 15 Reserved; Must Be Zero.

Some SMB redirectors when negotiating the core plus dialect ignore these bits
and assume both SMBs are acceptable.

Reserved; MBZ (Must Be Zero).

This area is ignored in the core plus dialect.

Note that bit Oaf the smb_flg field in the SMB header of the response will be interpreted by the
SMB redirector to indicate support for SMBlockread and SMBwriteunlock.

SMBnegprot Error CodeD escriptions

If any error occurs, the LMX server will return <ERRSRV, ERRerror>; otherwise, <SUCCESS,
SUCCESS> will be returned.

SMBnegprot Preconditions

The SMB redirector attempting to negotiate a protocol must have established a NetBIOS session
with the LMXserver.

SMBnegprot Postconditions

The SMB redirector that negotiated this protocol must be able to handle all aspects of the SMB
dialect negotiated.

SMBnegprot Side Effects

The LMXserver will keep a record of which dialect the SMB redirector negotiated and will use
only that dialect in conversations with the SMB redirector.

Conventions

None.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 141

Core Plus SMB File Operations SMBreadbraw Specification

10.2 SMBread braw Specification

SMBreadbraw Detailed Description

The read block raw request is used to maximise the performance of reading a large block of data
from a file on the LMX server. Any supported file type can be read via SMBreadbraw. Up to
E:Q535bytes can be read in one request/response regardless of the maximum negotiated buffer
size.

\\hen the SMB redirector sends this request, it guarantees no other request will be issued on the
same LMXsession until the response is received from the LMXserver. Given this guarantee, the
LMX server responds by sending just the requested data in a single transport message. No
header of any sort is generated. Because the entire response is sent as a single message, the SMB
redirector can determine how much data was actually sent.

If the request is to read more data than is present in the file, the read response will be of the
length actually read from the file. If the read begins at or after EOF, or some other error is
encountered, a zero-length message is sent in response. An SMB redirector will send a read
request other than SMBreadbraw to find out what happened, at which time an EOF indication or
error is returned in the response to that request.

If an error should occur at the SMB redirector end, all data must be received and thrown away.
The LMXserver will not be informed.

SMBreadbraw Deviations

Support for the timeout field for file types other than named pipes is optional. If timeouts are
not supported, all requests are treated as non-blocking.

SMBreadbraw Field Descriptions

smb_fid

smb_offset

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBreadbraw raw data
smb_wct 8
smb_vwv[O] smb_fid
smb_vwv[1-~ smb_offset
smb_vwv[31 smb_maxcnt
smb_vwv[4] smb_mincnt
smb_vwv[5G smb_timeout
smb_vwv[71 smb_rsvd
smb_bcc 0

The FID for the read.

A ::Zbit unsigned integer giving the offset into the file, in bytes, at which the
read is to begin.

smb_maxcnt

smb_mincnt

An unsigned 16bit field indicating the number of bytes to be read.

If a timeout is spedfied, this is the minimum number of bytes that must be
read for the request to return before timing out.

smb_timeout A ::Zbit integer giving the number of milliseconds to wait for at least
smb_mincnt bytes of data to be read. A value of zero (0 indicates the read
should not block. A timeout of - 1 means the LMX server should wait
indefinitely. A timeout of -2indicates the default timeout for the named pipe

Protocols for X/ Open PC Interworking: SMB, Version 2 123

Samsung - Exhibit 1014 - Page 142

SMBreadbraw Specification Core Plus SMB File Operations

124

should be used.

smb_rsvd A 16bit reserved field, which should be ignored.

The response contains no headers or other overhead, and is a single message containing the
bytes that were read. A zero-length message indicates either smb_offset pointed beyond the
current EOF or some other error occurred.

SMBreadbraw Error Code Descriptions

No errors may be returned in the response to this request. Instead, any errors are saved until the
next request for this file, at which time they will be returned.

SMBreadbraw Preconditions

1 The SMB redirector has sent a valid SMB request with a valid TID for a readable resource.

2 The FID is valid and the process has read access.

SMBread braw Postconditions

The LMXserver has returned to the SMB redirector either all of the requested raw data, all of the
data up to the EOF, or a response with no data.

SMBreadbraw Side Effects

Since the LMXserver is not allowed to return errors with this SMB request, a return of Obytes
can indicate either EOF, file system read error, outstanding break or block, or that the LMX
server is temporarily out of some required resource. In the case of a 0 byte return, the SMB
redirector should follow up with an SMBread or SMBreadmpx request at which time the LMX
server can return an error if necessary.

Conventions

• Locking (see Section 4 4on page ~.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 143

Core Plus SMB File Operations SMBwritebraw Specification

10.3 SMBwritebraw Specification

SMBwritebraw Detailed Description

The write block raw message exchange provides a high-performance mechanism for transferring
large amounts of data to be written to a file on the LMX server. Any supported file type,
including spool files, may be written with this exchange.

The SMBwritebraw exchange behaves much like an SMBwritebmpx exchange, except that instead
of additional data being sent in secondary requests, all the additional data is sent in a single raw
message; that is, the first segment of data is sent in the primary request, and the remainder in a
single message with no SMB header or SMBwritebraw subheader.

If all the data to be written fits in the primary request, a zero-length secondary request is still
sent; even if the secondary request is zero-length, a secondary response must be generated when
write-through mode was spedfied.

If the LMXserver is busy or otherwise unable to support the raw write of the remaining data, the
data sent with the primary request is still written (to stable store if write-through mode was set).
If any other error occurs, the data is discarded. In either case, an appropriate error is returned in
a secondary response. A primary response is only sent if the primary request was satisfied with
no errors and the LMXserver is prepared for a raw message.

SMBwritebraw Deviations

The smb_ timeout and smb_remaining fields will not be supported with II 0 devices.

SMBwritebraw Field Descriptions

SMB redirectors using the core plus dialect of the SMB protocol use a slightly different form of
the SMBwritebraw primary request, and expect a slightly modified primary response. roth forms
are shown below.

Primary SMBwritebraw (core plus only):

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBwritebraw smb_com SMBwritebraw
smb_wct 10 smb_wct 0
smb_vwv[O] smb_fid smb_bcc 0
smb_vwv[1] smb_tcount
smb_vwv[21 smb_rsvd
smb_vwv[341 smb_offset
smb_vwv[5G smb_timeout
smb_vwv[71 smb_wmode
smb_vwv[8~ smb_rsvd
smb_bcc min=O
smb_buf1] smb_data

smb_fid The FID of the file to be written to.

smb_tcount An unsigned 16bit field giving the total number of bytes that will be written
to the file. This value must be correct in at least one of the requests in the
exchange; in other requests, it may be an over-estimate.

smb_rsvd These fields are reserved and should be ignored by the LMXserver.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 144

SMBwritebraw Specification Core Plus SMB File Operations

smb_offset

smb_timeout

smb_wmode

smb_data

A ::Zbit integer giving the position in the file at which the bytes in the request
should be written.

A ::Zbit integer giving the number of milliseconds the LMXserver may block
while trying to complete the write. This value is ignored for regular files. For
I/0 devices and named pipes (refer to the X/Open CAE Spedfication, IPC
Mechanisms for SMB), the LMX server will wait this much time to complete
the write. If smb_timeout is- L the LMXserver will wait indefinitely; if it is -2
the server will wait the default amount of time for the file. An LMX server
may choose to treat all timeouts as a that is, do not block.

A 16bit flag field controlling the write mode. If bit 0 is set, write-through
mode is requested; the LMX server will write all data atomically and
acknowledge the write with the secondary response. If clear, write-behind is
permitted; the LMX server need not write atomically and need not report
completion. If bit lis set, the LMXserver should fill in the smb_remaining field
in the primary response.

The actual data to be written. This is a string of bytes in no particular format.

Note that, in the core plus protocol dialect, there is no padding between the end of the
smb_ vwv [] block and the data to be written.

Secondary SMBwritebraw:

smb_count

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

raw data smb_com SMBwritec
smb_wct 1
smb_vwv[O] smb_count
smb_bcc 0

The total number of bytes written. If this is different from the smallest
smb_tcount sent by the SMB redirector, some error occurred (for example, out
of free space on the file system).

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 145

Core Plus SMB File Operations

SMBwritebraw Error Code Descriptions

CAE Code DOS Class

ERRDOS
ERRDOS

DOS Code

ERRbadfid
ERRnoaccess

ERRbadaccess
ERR error
ERRinvnid

SMBwritebraw Specification

Description

Invalid FID.
File opened in deny write mode, or write range
overlaps a lock.
Invalid open mode for the attempted operation.
Corrupt SMB.
Invalid TID.

ERRDOS
ERRSRV
ERRSRV
ERRSRV ERRnoresource The LMX server is temporarily out of a needed

resource.
ERRSRV

ERRSRV

ERRtimeout

ERRuseMPX

ERRSRV ERRuseSTD

ERRSRV ERRbaduid

SUCCESS SUCCESS

SMBw ritebraw Preconditions

Requested operation timed out.

Can't do raw mode at this time; use
SMBwritebmpx.

Can't do raw mode at this time; use SMBwrite or
SMBwriteX.

The UID given (smb_uid) is not known as a valid
ID on this LMXsession.
Everything worked, no problems.

1 The primary SMB was valid and spedfied a valid TID for a writable resource.

2 The FID was valid, and the process had write access to the file.

3 Before sending the secondary message, the LMXserver must have sent a primary response.
The LMX server has been able to write the accompanying data to disk, allocated the
needed memory for a buffer, and sent the response to the SMB redirector.

SMBw ritebraw Postconditions

1 If write-through mode is set, a primary response or secondary response indicates the data
in the primary response has been written to stable store (unless some error other than
ERRuseSTD or ERRuseMPXwas returned).

2 After a primary response is received, the LMX server is ready for a raw secondary
message.

SMBwritebraw Side Effects

None.

Conventions

• Locking (see Section 4 4on page ~.

Protocols for X/ Open PC Interworking: SMB, Version 2 127

Samsung - Exhibit 1014 - Page 146

SMBlockread Specification Core Plus SMB File Operations

10.4 SMBlockread Specification

SMBlockread Detailed Description

This lock and read protocol request has the effect of explidtly locking the bytes in the spedfied
range and then reading them. The lock is maintained until explidtly released by the SMB
redirector or the SMB redirector closes the file. Only the bytes actually read by this request are
locked, not the bytes spedfied in the advisory smb_countleft field.

Support for this SMB is optional; an LMX server should set the appropriate bit in the smb_flg
field of the SMBnegprot response (see Section 6 1 on page 55 for other dialects of the SMB
protocol and Section 5 1 on page 37).

S MBlockread Deviations

None.

SMBlockread Field Descriptions

The request and response format are identical to that of SMBread (see Section 7.4on page 'f1.

SMBlockread Error Code Descriptions

For a more complete description of the potential error codes resulting from this SMB message
see Section 7.4on page 73and Section 7.7on page 81

CAE Code DOS Class DOS Code Description
- ERRDOS ERRnoaccess No read access to TID.

EBADF ERRDOS ERRbadfid Invalid FID.
- ERRDOS ERRlock The intended read range overlaps a lock held by

another process.
EPERM ERRDOS ERRbadaccess No read access for the file.

- ERRSRV ERR error Corrupt SMB.
- ERRSRV ERRinvdevice TID is not for a file system subtree.
- ERRSRV ERRinvnid Invalid TID.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid

ID on this LMXsession.
- SUCCESS SUCCESS Everything worked, no problems.

SMBlockread Preconditions

1 The SMB redirector has sent a valid SMB with a valid TID for a readable file system
resource.

2 The FID is valid, and the process has read access to the file.

3 The range of bytes to be read is not already locked by some other process.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 147

Core Plus SMB File Operations SMBlockread Specification

SMBlockread Postconditions

1 The requested number of bytes (smb_bytecount) has been locked, read and returned, in that
order.

2 The current file position is left after the bytes read.

SMBlockread Side Effects

1 Other SMB redirector processes will be unable to access the locked record until the SMB
redirector holding the lock has released it or unless they are using the same FID.

2 The LMXserver may have pre-read the remaining bytes (smb_countleft- smb_bytecount) to
increase the performance of subsequent reads from the same process.

Conventions

• Locking (see Section 4 4on page ~.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 148

SMBwriteunlock Specification Core Plus SMB File Operations

10.5 SMBwriteunlock Specification

m

SMBwriteunlock Detailed Description

This write and unlock protocol request has the effect of writing to a range of bytes and then
unlocking them. This request is usually complementary to an earlier usage of SMBlockread on
the same range of bytes. Only the range of bytes actually written to is unlocked, not the range
spedfied in the advisory smb_countleft field. If an error occurs during the write, the byte range
should not be unlocked.

Aside from the lack of spedal handling of zero-length writes, this request behaves in an identical
fashion to a core protocol SMBwrite request followed by a core protocol SMBunlock request.

Support for this SMB is optional; an LMX server should set the appropriate bit in the smb_flg
field of the SMBnegprot response (see Section 6 1 on page 55 for other dialects of SMB protocol
and Section 5 lon page 37).

SMBwriteunlock Deviations

See Section 7.5on page 76and Section 7.8on page 83

SMBwriteunlock Field Descriptions

The SMBwriteunlock request and response format are identical to those of SMBwrite (see Section
7. 5on page 7EJ.

SMBwriteunlock Error Code Descriptions

For a list of other error codes generated during the handling of this SMB see Section 7.5on page
76and Section 7.8on page 83

CAE Code DOS Class DOS Code Description
- ERRDOS ERRlock The requested range was locked by a different

process.
- SUCCESS SUCCESS Everything worked, no problems.

SMBw riteunlock Preconditions

1 The SMB redirector has sent a valid SMB request with a TID for a writable file system
subtree.

2 The FID must be valid and the process must have write access.

3 The write operation must succeed before the unlock operation is attempted.

SMBw riteunlock Postconditions

1 Either the write succeeded or an error was returned.

2 If the write succeeded, the byte range was unlocked.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 149

Core Plus SMB File Operations SMBwriteunlock Specification

SMBwriteunlock Side Effects

Same as for SMBwrite and SMBunlock.

Conventions

• Locking (see Section 4 4on page ~.

Protocols for X/ Open PC Interworking: SMB, Version 2 131

Samsung - Exhibit 1014 - Page 150

SMBwriteclose Specification Core Plus SMB File Operations

10.6 SMBwriteclose Specification

SMBwriteclose Detailed Description

The write and close protocol request is used to first write the spedfied bytes and then close the
file. Any supported file type, including spool files, may be spedfied in this request. This request
behaves identically to an SMBwrite request followed by an SMBclose request. Any buffered data
must be flushed to stable store or to the device before the response is sent.

SMBwriteclose Deviations

See Section 7.5on page 76and Section 126on page 1EBfor details.

SMBwriteclose Field Descriptions

smb_fid

smb_count

smb_offset

smb_time

smb_rsvd

smb_pad

smb_data

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBwriteclose smb_com SMBwriteclose
smb_wct (6or 1L:) smb_wct 1
smb_vwv[O] smb_fid smb_vwv[O] smb_count
smb_vwv[1] smb_count smb_bcc 0
smb_vwv[Z~ smb_offset
smb_vwv[451 smb_time
smb_vwv[611] smb_rsvd
smb_bcc (1 + smb_count)
smb_buf1] smb_pad

smb_data

The FID to be closed.

In the request, the number of bytes of data to be written. In the response, the
number of bytes that were actually written.

A ::Zbit offset into the file, in bytes, at which the data is to be written.

A ::Zbit time value to be used as the last modifY time for the file. A value of
zero indicates the last modified time should be unchanged.

This six 16bit field is only present if smb_ wet is 12 These fields should be
ignored.

A single 8bit field which is used to pad out the beginning of the smb_data area
to a ::Zbit address boundary.

A string of bytes, in no particular format, whose length is given by smb_count.
This is the data to be written.

SMBwriteclose Error Code Descriptions

Exactly the errors returned by SMBwriteX and SMBclose can be returned for this request. If an
error occurs during the write operation, the file will still be closed. Only one error can be
returned in the response; if errors occur during both the write and close operations, the close
error is reported.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 151

Core Plus SMB File Operations SMBwriteclose Specification

SMBw riteclose Preconditions

1 The SMB redirector has sent a valid SMB with a TID for a writable resource.

2 The FID is valid and the process has write access to the file.

SMBw riteclose Postconditions

1 The data in the call is written to the file. If an error occurred, it will be reported unless a
close error occurs as well.

2 The file is closed and any errors are reported.

SMBwriteclose Side Effects

Any buffered data for the file is written, and any outstanding locks are released in random order.

Conventions

• Locking (see Section 4 4on page ~.

Protocols for X/ Open PC Interworking: SMB, Version 2 133

Samsung - Exhibit 1014 - Page 152

Core Plus SMB File Operations

134 X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 153

Chapter 11

Extended 1.05MB Connection Management Requests

This section defines those elements of the extended 10 SMB protocol dialects which support
connection and LMXsession management. They are:

SMBnegprot negotiate modifications when an extended dialect is selected by the LMX
server

SMBsecpkgX negotiate security packages and related information

SMBsesssetupX set up a session, log on a user

SMBtconX extended Tree Connect

11.1 SMBnegprot Specification

SMBnegprot Detailed Description

This SMB protocol request is sent to establish the protocol dialect that the SMB redirector and
LMXserver will use when communicating with each other. The SMB redirector sends a list of
dialects that it can use for communication. The LMXserver responds with a selection of one of
those dialects (numbered 0 to n) or - 1 indicating that none of the dialects were acceptable.
Exactly one negotiate message must be sent on each NetBIOS session; subsequent negotiate
requests must be r~ected with an error response and no action will be taken. The rules to the
use of SMBnegprot outlined in Section 6 lon page 55 hold here as well.

SMBnegprot Deviations

None.

Protocols for X/ Open PC Interworking: SMB, Version 2 135

Samsung - Exhibit 1014 - Page 154

SMBnegprot Specification Extended 1.05MB Connection Management Requests

133

SMBnegprot Field Descriptions

Field descriptions for other dialects of the SMB protocol (SMBnegprot) are:

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBnegprot smb_com SMBnegprot
smb_wct 0 smb_wct 13
smb_bcc min=2 smb_vwv[O] smb_index
smb_buf1] dialectO smb_vwv[1] smb_secmode

smb_vwv[21 smb_maxxmt
smb_vwv[31 smb_maxmux

dialectn smb_vwv[4] smb_maxvcs
smb_vwv[51 smb_blkmode
smb_vwv[6 7] smb_sesskey
smb_vwv[81 smb_srv_time
smb_vwv[9] smb_srv_date
smb_ vwv [10] smb_srv_tzone
smb_ vwv [11- 121 smb_rsvd
smb_bcc
smb_buf1] smb_ crypt key []

The fields are defined as:

dialectn

smb_index

smb_secmode

smb_maxxmt

A Dialect (type G) buffer containing the name of a dialect (refer to Section 54
on page~.

The dialect selected by the LMX server; corresponds to the indexth dialect
string in the request, where the first string is numbered 0

This flag field describes the LMXserver's security mode.

Bit 0 If set, the LMX server is in user-level security mode; if clear, share
level.

Bit 1 If set, the LMX server supports password encryption in SMB form
(see Section 113on page 144and Appendix Don page~.

Bit 2 If set, the LMX server supports the SMBsecpkgX extended security
package negotiation (see Section 112on page 1~.

Bit 315 Reserved; MBZ (Must Be Zero).

The LMX server's maximum SMB buffer size in bytes. Minimum value is lK
byte. This provides suffident room for most requests and responses. All SMB
requests including chained requests must fit in this buffer size.

This is the maximum SMB message size which the SMB redirector can send to
the LMX server. This size may be larger than the smb_bufsize value in the
SMBsesssetupX request, sent to the LMXserver from the SMB redirector, which
is the maximum SMB message size the LMX server may send to the SMB
redirector.

For example, if the LMX server's buffer size (smb_maxxmt in the SMBnegprot
response) were 4K byte and the SMB redirectors's buffer size were only 3(

byte (smb_bufsize in the SMBsesssetupX request), the SMB redirector could send
up to 4K byte of data in an SMBwrite (or SMBwriteX) request but may request
no more than 3(byte of data in SMBread (or SMBreadX) requests. The largest

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 155

Extended 1.05MB Connection Management Requests SMBnegprot Specification

smb_maxmux

smb_maxvcs

smb_blkmode

smb_sesskey

smb_srv_time

smb_srv_date

smb_srv_tzone

smb_rsvd

smb_bcc

smb_cryptkey

response from the LMXserver would also be 2K byte.

The maximum number of simultaneous multiplexed reads supported per
LMXsession; must be at least 1

The maximum number of NetBIOS sessions supported per LMX session.
Mustbe 1

\\hether or not SMBreadbraw and SMBwritebraw are supported.

Bit 0 If set, SMBreadbraw is supported.

Bit 1 If set, SMBbwritebraw is supported.

Bit Z 15 Reserved; Must Be Zero.

Some SMB redirectors when negotiating LANMAN 10 dialect ignore these
bits and assume both SMBs are acceptable.

A ::Zbit value of the LMXsession key; uniquely identifies an LMXsession.

16bit current time according to the LMXserver (see Section 53 1on page 4~.

16bit current date according to the LMXserver (see Section 532on page 4~.

A 16bit value for the number of minutes the current time zone is away from
GMT.

A ::Zbit reserved field. Must be zero.

In the case of SMBnegprot, the field gives the length of the token in
smb_cryptkey.

This is an unformatted array of bytes which contains an opaque token to be
used for password encryption (see Section 112 on page 1::9, Section 113 on
page 144and Appendix Don page~.

Note that bit Oaf the smb_flg field in the SMB header of the response will be interpreted by the
SMB redirector to indicate support for SMBlockread and SMBwriteunlock.

SMBnegprot Error CodeD escriptions

If any error occurs, the LMX server will return <ERRSRV, ERRerror>; otherwise, <SUCCESS,
SUCCESS> will be returned.

SMBnegprot Preconditions

The SMB redirector attempting to negotiate a protocol must have established a NetBIOS session
with the LMXserver.

SMBnegprot Postconditions

The SMB redirector that negotiated this protocol must be able to handle all aspects of the SMB
dialect negotiated.

Protocols for X/ Open PC Interworking: SMB, Version 2 137

Samsung - Exhibit 1014 - Page 156

SMBnegprot Specification Extended 1.05MB Connection Management Requests

SMBnegprot Side Effects

The LMX server will keep record of which dialect the SMB redirector negotiated and will use
only that dialect in conversations with the SMB redirector.

If the SMB redirector is to perform password encryption, it must store and use the smb_cryptkey
token in accordance with the encryption function selected (see Section 112on page 1~ or with
the SMB encryption mechanism (see Section 113on page 144and Appendix Don page~.

Conventions

None.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 157

Extended 1.05MB Connection Management Requests SMBsecpkgX Specification

11.2 SMBsecpkgX Specification

SMBsecpkgX Detailed Description

The SMBsecpkgX extended protocol request is used to negotiate the security package to be used
for a given LMX session. Part of the negotiation determines the authentication and password
encryption algorithms required to establish the identity of the user sitting at the SMB redirector
system. The SMBsecpkgX request and response are only used when the LMXserver is in user
level security mode and both the SMB redirector and the LMXserver understand Extended User
Authentication (see Section 22on page 5).

The SMB redirector will send an SMBsecpkgX request to the LMX server immediately after
receipt of an SMBnegprot response which set bits land 2in the smb_secmodefield, only if the SMB
redirector supports Extended User Authentication.

An LMXserver may r~ect an SMBsesssetupX request which was not preceded by an acceptable
SMBsecpkgX exchange, or it may instead support SMB-style authentication and encryption
mechanisms (see Section 113on page 144). An LMXserver may provide a mechanism to control
this choice, on either a per-server or per-share basis.

In addition to supporting negotiation of a security package and its components, the SMBsecpkgX
exchange also supports a mechanism for authentication of the serving system to the SMB
redirector similar to the SMB redirector to the LMX server mechanism supported by the
combination of SMBnegprot and SMBsesssetupX requests.

After the successful exchange of SMBsecpkgX request and response the SMB redirector will use
as its UID for the LMXsession the value of the smb_uid field in the response header. This is the
only case in which the LMXserver selects the value of smb_uid to be used for the LMXsession.
In all other cases (that is, no SMBsecpkgX exchange) the value of smb_uid is selected by the SMB
redirector.

SMBsecpkgX Deviations

Use of the SMBsecpkgX exchange is only defined for the client-server dialogue package-type. An
LMXserver may implement other package-types without conflict.

\\ithin the client-server package-type negotiation, only the X/ Open security package is defined.
An LMXserver may choose to support additional packages of that type.

SMBsecpkgX Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBsecpkgX smb_com SMBsecpkgX
smb_wct 4 smb_wct 4
smb_vwv[O] smb_com2 smb_vwv[O] smb_com2
smb_vwv[1] smb_off2 smb_vwv[1] smb_off2
smb_vwv[21 smb_pkgtype smb_vwv[21 smb_index
smb_vwv[31 smb_numpkgs smb_vwv[31 smb_pkgarglen
smb_bcc min=4 smb_bcc
smb_buf1] smb_pkglist 1 smb_buf1] smb_pkgargs

smb_pkglist n

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 158

SMBsecpkgX Specification Extended 1.05MB Connection Management Requests

14)

smb_pkgtype

smb_numpkgs

smb_pkglist

smb_index

smb_pkgarglen

smb_pkgargs

A 16bit field containing the package-type being negotiated by this
SMBsecpkgX request and response. The only value defined is a the package
type for the dialogue between an SMB redirector and the LMXserver.

A 16bit integer containing the number of packages of type smb_pkgtype being
offered by the SMB redirector. This must be greater than zero.

Each smb_pkglist is a structure describing a particular package. The structures
are concatenated together, with no padding, to form the smb_bufsection of the
request.

The smb_pkglist structure looks like:

Field Name Field Type Contents

smb_pkgnamlen 16bit field Length, in bytes, of package name in
this structure.

smb_pkgarglen 16bit field Length of package-spedfic info (in
bytes).

smb_pkgname byte array The name of the package described
by this structure. This is not
padded.

smb_pkgargs byte array Package-spedfic information. The
format of this counted array is
defined by the package name
assodated with it.

A 16bit integer containing the number of the package selected by the LMX
server. The first smb_pkglist in the request corresponds to an smb_index value
of a the second corresponds to 1; etc. If the LMXserver can support none of
the offered packages, a - lis returned.

A 16bit integer giving the length, in bytes, of the package-spedfic information
being returned from the LMX server to the SMB redirector. This may be zero
for some packages.

This is an unstructured array of bytes containing package-spedfic information
in a format determined by the package selected by smb_index. The format may
be different from that of the smb_pkgargs in the request for the same package.

X/Open has defined one package of type a this package has smb_pkgname XAJPEN. The
smb_pkgargs for this package are defined below.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 159

Extended 1.05MB Connection Management Requests SMBsecpkgX Specification

xp_flags

xp_name

Request Response

Type Name Type Name

16bit field xp_flags 16bit field xp_esel
string xp_name 16bit field xp_usel
16bit field xp_edialects typeOl xp_ouinf

string xp_eO typeOl xp_nuinf
00 0 0 0 0 typeOl xp_Cr

string xp_en
16bit field xp_udialects

string
00 0

string
typeOl

xp_uo
0 0 0

xp_un
xp_Cs

A set of flags modifYing use of this exchange.

Bit 0 If set, the LMXserver must respond to the challenge, Cs, contained in
this request. If clear, the SMB redirector does not require the LMX
server to authenticate itself.

Bits 1-15Undefined; MBZ (Must Be Zero).

A null-terminated string containing the username. This name, possibly
truncated, should be used by the LMX server to identifY which user is to be
authenticated.

xp_edialects The number of bi-directional encryption function (referred to as E()) names
which follow in the pkgargs structure. This must be greater than zero.

xp_en

xp_udialects

xp_un

xp_Cs

xp_esel

xp_usel

Each null-terminated string names a particular E() function. The meaning of
these names must be agreed upon by implementors of SMB redirectors and
LMXservers.

The number of password encryption function (U ()) names which follow. This
must be greater than zero.

Each null-terminated string names a particular U() function. As with E()
functions, the meaning of these names must be mutually agreed upon by SMB
redirector and LMXserver systems.

This data (type 01) buffer contains a challenge string. The response string,
xp_Cr, will be generated using theE() selected by the LMXserver, and the
password stored on the LMX server for the user indicated by xp_username.
The SMB redirector can use the password, as typed by the user, xp_ouinf, and
the challenge response to ensure that the LMXserver in fact knew the user's
password as well. The particular algorithm for accomplishing this depends
upon the E() and U() functions negotiated. This field is meaningless and
should be ignored if bit Oaf xp_flags is not set.

The index of the xp_en which the LMXserver has selected. This index is zero
based, in the same fashion as smb_index (above). If none of the offered xp_en
functions are supported by the LMXserver, a -1 will be returned in this field
and an error will be returned.

The index of the xp_un which the LMX server has selected. This index is
zero-based. If none of the offered xp_un functions are supported by the LMX
server, a - 1 will be returned in this field and an error will be returned.

Protocols for X/ Open PC Interworking: SMB, Version 2 141

Samsung - Exhibit 1014 - Page 160

SMBsecpkgX Specification Extended 1.05MB Connection Management Requests

142

xp_ouinf

xp_nuinf

xp_Cr

A data (type 01) buffer, whose contents are used in combination with the
user's password and the chosen U() to reproduce the password as stored on
the LMX server. This string may be unused for some U () and would be of
zero length if such aU() were selected.

A data buffer whose contents are to be used if the password for this user is
changed via some administrative protocol. Some LMX servers may not
support such an administrative protocol, and some U () functions require no
such data or permit reuse of such data; in any of these cases, the length of this
buffer will be zero.

A data buffer containing the response to xp_ Cs; see above. This field will be
ignored and should be of zero length if bit Oaf xp_flags was not set.

SMBsecpkgX Error CodeD escriptions

CAE Code DOS Class DOS Code Description
- ERRSRV ERRbadpermits For either theE() or U () functions, there was no

match between the functions supported on the
SMB redirector and LMXserver.

- ERRSRV ERR error The SMB redirector has already negotiated this
package-type.

- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMXsession.

- SUCCESS SUCCESS Everything worked, no problems.

If the user named in the xp_name field does not exist on the LMXserver, the LMXserver should
nonetheless generate a properly formatted response with data that appears to be valid. The SMB
redirector attempt to set up an LMXsession should be r~ected after the SMBsesssetupX request is
received.

SMBsecpkgX Preconditions

The LMXserver must have set bits land 2ofthe smb_secmode field in its SMBnegprot response on
this same NetBIOS session.

SMBsecpkgX Postconditions

If the optional SMB redirector challenge was used, the SMB redirector can rely upon the LMX
server actually knowing the user's password.

SMBsecpkgX Side Effects

All authentication exchanges after this SMB exchange will use the selected E () as an encryption
and decryption mechanism. All passwords passed over the connection after this SMB exchange
will be encoded using the selected U ()and xp_ouinflxp_nuinfinformation.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 161

Extended 1.05MB Connection Management Requests SMBsecpkgX Specification

Conventions

• Chaining (see Section 3 9on page Z:).

Only SMBsesssetupX may be chained to SMBsecpkgX. Furthermore, this can only be successfully
done if:

1 Only one E() and U() function is offered in the SMBsecpkgX request. If distinct functions
are offered, the SMB redirector cannot know a priori which E() or U() function to use to
compute the encrypted user password.

2 The U() function does not require the use of xp_ouinfto compute the encrypted password.

Protocols for X/ Open PC Interworking: SMB, Version 2 143

Samsung - Exhibit 1014 - Page 162

SMBsesssetupX Specification Extended 1.05MB Connection Management Requests

11.3

144

SMBsesssetupX Specification

SMBsesssetupX Detailed Description

This extended protocol request is used to further set up the LMX session normally just
established via the SMBnegprot request/response. The SMBsesssetupX request serves two
purposes: identification of the user for this LMXsession, and negotiation of SMB redirector-side
communication parameters.

• User Identification

The actual semantics for this request are governed by the security mode of the LMX server.
See Section 22on page 5for a discussion of these modes.

In user -level security mode, the SMB redirector will establish a mapping between a particular
username on the LMXserver and a UID which the SMB redirector will use to represent that
user. A password may be sent by the SMB redirector to authenticate that the person using
the SMB redirector is indeed the username to be mapped to. Further, the password may be
encrypted to ensure security.

The LMXserver validates the username and password supplied and, if valid, it establishes a
mapping between the LMXsession's UID and the actual UID corresponding to the spedfied
username and password. That actual UID will be used for access checks required by requests
issued on behalf of the UID on this LMXsession.

The value of the UID is relative to an LMXsession; it is possible for the same UID value to
represent two different users on two different LMX sessions on the LMX server. The LMX
server must map the pair of <LMXsession ID, UID> to the different accounts.

In share-level security mode, the username and password are unused. The LMX server
should use a unique, reserved account and corresponding actual UID to perform access
checks for all requests.

• SMB Redirector Communications Parameters

The LMXserver, in its response to the SMBnegprot request, has set some parameters for the
communication it was expecting from the SMB redirector. In the SMBsesssetupX request, the
SMB redirector must indicate the parameters for the communication it is expecting from the
LMX server. These values may be different; for example, the LMX server may be able to
receive a maximum message size of lEK bytes, while the SMB redirector can only receive lK
bytes.

Some LMX servers may need to renegotiate buffer sizes after the SMBsesssetupX exchange.
This renegotiation is available through the SMBtcon request, but not through SMBtconX.

SMBsesssetupX Deviations

None.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 163

Extended 1.05MB Connection Management Requests SMBsesssetupX Specification

SMBsesssetupX Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBsesssetu pX smb_com SMBsesssetu pX
smb_wct 10 smb_wct 3
smb_vwv[O] smb_com2 smb_vwv[O] smb_com2
smb_vwv[1] smb_off2 smb_vwv[1] smb_off2
smb_vwv[21 smb_bufsize smb_vwv[21 smb_action
smb_vwv[31 smb_mpxmax smb_bcc 0
smb_vwv[4] smb_vc_num
smb_vwv[5G smb_sesskey
smb_vwv[71 smb_apasslen
smb_vwv[8~ smb_rsvd
smb_bcc minval=O
smb_buf1] smb_apasswd

smb_aname

smb_com2and smb_off2descriptions can be found in Section 39on page 22

smb_bufsize The size of the largest message the SMB redirector is willing to receive. It
must be true that smb_bufsize::::: smb_maxxmt (see Section 6 1on page~.

smb_mpxmax

smb_vc_num

smb_sesskey

smb_apasslen

smb_rsvd

smb_apasswd

smb_aname

smb_action

The maximum number of requests which the SMB redirector will have
outstanding on a single LMX session. It must be true that smb_mpxmax :::::
smb_maxmux (see Section 6 1on page~.

Permits multiple LMXsessions to be assodated with a single NetBIOS session.
If zero (0, this LMX session is the first or only NetBIOS session. If
smb_ vc_num is zero (0 and there are other previously established LMX
sessions still connected from this SMB redirector, it is recommended that the
LMXserver abort the previous LMXsession to free up the resources held.

A ::Zbit integer which identifies to which LMX session that this NetBIOS
session is assodated. Ignored when smb_ vc_num is zero (0. This value would
be obtained from the smb_sesskey field in the response to the SMBnegprot
assodated with the LMXsession this NetBIOS session is to be made a part of.

Length of the smb_apasswd field.

A ::Zbit reserved field; the LMXserver should ignore this field.

A character string containing the password, possibly encrypted. Ignored by
an LMXserver in share-level security mode.

An ASCIIZ (not type 04) buffer containing the username to be assodated with
smb_uid and validated with smb_apasswd. Ignored by an LMXserver in share
level security mode. The length of this field is derived from the difference
between smb_bcc and smb_apasslen.

A bit-encoded field indicating the results of a successful LMXsession setup. If
bit Ois clear, everything went normally. If bit Ois set, the LMXsession was
setup but a default or guest account was used instead of the account
requested. (An LMXserver in share-level security mode would set this bit).

Protocols for X/ Open PC Interworking: SMB, Version 2 145

Samsung - Exhibit 1014 - Page 164

SMBsesssetupX Specification Extended 1.05MB Connection Management Requests

146

SMBsesssetupX Error Code Descriptions

CAE Code DOS Class DOS Code Description
- ERRSRV ERR error Internal LMXserver error.
- ERRSRV ERRbadpw Username and password pair was invalid.
- ERRSRV ERRtoomanyuids LMXserver does not support this many UIDs in

one LMXsession.
- ERRSRV ERR error No SMBnegprot request has been issued on this

N etBI OS session.
- ERRSRV ERRnosupport This request cannot be chained to the request

which precedes it in this message.
- SUCCESS SUCCESS Everything worked, no problems.

SMBsesssetupX Preconditions

1 The SMB redirector attempting the SMBsesssetupX must have established an LMXsession
with the LMXserver and negotiated an extended protocol dialect.

2 The username and password must both be valid instances of those types.

3 smb_com2must be a legal chained command.

4 There are many other preconditions based upon the SMBs that may be chained. These are
enumerated in the spedfications for those SMBs.

SMBsesssetupX Postconditions

1 If there are no errors the value in smb_uid is used as a valid UID in future SMBs.

2 There are many other postconditions based upon the SMBs that may be chained. These are
enumerated in the spedfications for these SMBs.

SMBsesssetupX Side Effects

Conversion of paths to a canonical pathname is controlled by bit 4ofthe smb_flg in the header of
this request (see Section 5 1 on page 37).

Conventions

• Opportunistic Locking (see Section 3 8 2on page 2Q.

• Chaining (see Section 3 9on page Z:).

The SMBs which may be chained after SMBsesssetupX are:

SMBchkpath SMBfunique SMBopen
SMBcopy SMBgetatr SMBopenX
SMBcreate SMBmkdir SMBrename
SMBdskattr SMBmknew SMBrmdir
SMBffirst SMBmv

SMBsearch
SMBsetatr
SMBsplopen
SMBsplretq

SMBtconX
SMBunlink
SMBtrans
NIL

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 165

Extended 1.05MB Connection Management Requests SMBtconX Specification

11.4 SMBtconX Specification

SMBtconX Detailed Description

This extended protocol request will establish direct access to a resource (file system subtree,
spooled device, etc.) on an LMXserver. The functionality provided by this request matches very
closely that of the core protocol SMBtcon request. The differences are:

1 SMBtconX permits another request to be chained to it (for example, SMBopenX).

2 A flag can be set in the SMBtconX request which will invalidate the TID in the request, then
acquire a new TID for the requested resource and return it.

3 The maximum receive buffer sizes cannot be renegotiated.

4 The resource type need not be explidtly identified.

S MBtconX Deviations

None.

SMBtconX Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBtconX smb_com SMBtconX
smb_wct 4 smb_wct 2
smb_vwv[O] smb_com2 smb_vwv[O] smb_com2
smb_vwv[1] smb_off2 smb_vwv[1] smb_off2
smb_vwv[21 smb_flags smb_bcc minval=3
smb_vwv[31 smb_spasslen smb_buf1] smb_service
smb_bcc minval=3
smb_buf1] smb_spasswd

smb_path
smb_dev

smb_com2and smb_off2descriptions can be found in Section 39on page 22

smb_flags

smb_spasslen

smb_spasswd

smb_path

A 16bit field containing additional control flags. The only flag currently
defined is bit 0 if set, the TID in the request is to be closed (as if an SMBtdis
request were received for it) before the new resource is obtained.

A 16bit field giving the length of the smb_spasswd field. If this value is zero,
smb_bcc must contain the end-of-string terminator (that is, a zero character) for
the password value.

A string of bytes containing the password for the resource. May be encrypted.
Refer to Appendix Don page 279.

An ASCIIZ buffer (not type 0'1) containing the resource name preceded by the
LMXservername (refer to Section 539on page 4E). For example, a resource
called src residing on a server called lmserverl would be referenced by
\\ lmserverl\ src. If not spedfied by the SMB redirector, a zero byte must be
present.

Protocols for X/ Open PC Interworking: SMB, Version 2 147

Samsung - Exhibit 1014 - Page 166

SMBtconX Specification Extended 1.05MB Connection Management Requests

148

smb_dev An ASCIIZ buffer giving the resource type the SMB redirector will use to refer
to the newly-attached resource. If this value is not of a well-known form to
the LMX server it is treated as a wildcard; in this case, the LMX server will
return the actual resource type (see Section 536 on page 45). in the
smb_service field of the response. If not spedfied by the SMB redirector, a zero
byte must be present.

smb_service An ASCIIZ buffer identifying the actual resource type corresponding to the
requested resource.

SMBtconX Error CodeD escriptions

CAE Code DOS Class DOS Code Description
- ERRSRV ERR error Ran out of TIDs.
- ERRSRV ERR error First command on the NetBIOS session was not

an SMBnegprot.
- ERRSRV ERR error LMXserver internal error.
- ERRSRV ERRbadpw Bad password; name/password pair in the

SMBtconX is invalid.
- ERRSRV ERRinvnetname Invalid resource name supplied in the

SMBtconX.
- SUCCESS SUCCESS Everything worked, no problems.

SMBtconX Preconditions

1 The SMB redirector attempting to setup this SMBtconX must have established an LMX
session with the LMXserver.

2 The smb_path, smb_spasswd and smb_dev must all be valid instances of those types.

3 The process attempting to setup this SMBtconX must have negotiated an extended
protocol dialect (for example, LANMAN 10or LM 12Xcn:).

SMBtconX Postconditions

1 If there are no errors the TID and service string are valid and may be used in future SMB
requests.

2 If bit 0 in smb_flags was set, the resource defined by the TID in the request has been
disconnected from this LMXsession.

SMBtconX Side Effects

None.

Conventions

• Filename (see Section 3 5on page 15).

• Chaining (see Section 3 9on page Z:).

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 167

Extended 1.05MB Connection Management Requests

Requests which may be chained to SMBtconX are:

SMBchkpath SMBfunique SMBmv
SMBcopy SMBgetatr SMBopen
SMBcreate SMBmkdir SMBopenX
SMBdskattr SMBmknew SMBrename
SMBffirst

Protocols for X/ Open PC Interworking: SMB, Version 2

SMBrmdir
SMBsearch
SMBsetatr
SMBsplopen

SMBtconX Specification

SMBsplretq
SMBtrans
SMBunlink
NIL

149

Samsung - Exhibit 1014 - Page 168

Extended 1.05MB Connection Management Requests

lED X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 169

Chapter 12

Extended 1.05MB File Operations

This section defines the elements of the extended 10 SMB protocol which provide for normal
operations on files. They are:

SMBopenX

SMBlockingX

SMBreadX

SMBwritebraw

SMBwriteclose

SMBwriteX

open of a file with chaining

locking on a file with chaining

read from a file with chaining

write block raw to a file

write to a file and close it

write to a file with chaining

121 SMBopenX Specification

SMBopenX Detailed Description

This extended protocol request opens a file, providing enhanced functionality over that of
SMBopen.

SMBopenX Deviations

1 The archive, system and hidden file attribute bits are treated according to the file attributes
convention. Refer to Section 43 1on page 3J.

2 LMX servers which cannot maintain a creation time for their files will ignore the create
time field.

SMBopenX Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBopenX smb_com SMBopenX
smb_wct 15 smb_wct 15
smb_vwv[O] smb_com2 smb_vwv[O] smb_com2
smb_vwv[1] smb_off2 smb_vwv[1] smb_off2
smb_vwv[21 smb_flags smb_vwv[21 smb_fid
smb_vwv[31 smb_mode smb_vwv[31 smb_attributes
smb_vwv[4] smb_sattr smb_vwv[451 smb_time
smb_vwv[51 smb_attr smb_vwv[6 7] smb_size
smb_vwv[6 7] smb_time smb_vwv[81 smb_access
smb_vwv[81 smb_ofun smb_vwv[9] smb_type
smb_ vwv [9- 10] smb_size smb_ vwv [10] smb_state
smb_ vwv [11- 121 smb_timeout smb_ vwv [11] smb_action
smb_ vwv [13 14] smb_resv smb_ vwv [1Z 131 smb_fileid
smb_bcc min= 1 smb_ vwv [14] smb_resv
smb_buf1] smb_pathname smb_bcc 0

Protocols for X/ Open PC Interworking: SMB, Version 2 151

Samsung - Exhibit 1014 - Page 170

SMBopenX Specification Extended 1.05MB File Operations

smb_com2and smb_oif2descriptions can be found in Section 39on page 22

smb_flags

smb_mode

smb_sattr

smb_attr

smb_time

smb_ofun

smb_size

smb_timeout

smb_pathname

smb_fid

smb_attributes

smb_access

smb_type

smb_state

Controls various spedal actions. If bit 0 is set, the additional information
(smb_ vwv [3 10]) fields will be valid in the response. Bits 1 and 2 control
opportunistic locking (see Section 382 on page 2Q. The other bits are
reserved.

The open mode for the file (see Section 535on page 44).

The set of attributes that the file must have in order to be found while
searching to see if it exists. Regardless of the contents of this field, normal files
always match (see Section 533on page 4~.

The set of attributes that the new file is to have if the file needs to be created
(see Section 5 33on page 4~.

In the request, this is the ::Zbit integer time to be assigned to the file as a time
of creation (if the file must be created). In the response, this is the ::Zbit
integer time of last modification. Refer to Section 53 1 on page 43

This open function field controls actions to be taken on the file during the
open (see Section 5 38on page 4EJ.
In the request, this ::Zbit integer is the number of bytes to be reserved on file
creation or truncation. In the response, the ::Zbit integer contains the number
of bytes in the file after any open actions have been taken (see smb_ofun
above). This field is advisory.

This ::Zbit integer is the number of milliseconds to wait on a blocked open
before returning without obtaining a resource. A value of zero (0 means no
delay (that is, do not queue the request). A value of -1 indicates to wait
forever. See Section 3 llon page 2S

An ASCIIZ buffer containing the name of the file to be opened.

An FID representing this open instance of the file.

A file attribute field describing the actual attributes of the file after the open.
See Section 533on page 43

The actual access rights granted to this process (see Section 53 7 on page 4EJ.
A resource type field (see Section 536on page 45

Describes the status of a named pipe as follows. Refer to the X/Open CAE
Spedfication, IPC Mechanisms for SMB.

Bit 15 Blocking. Zero (0 indicates that reads/writes block if no data is
available; 1 indicates that reads/writes return immediately if no
data is available.

Bit 14 Endpoint. Zero (0 indicates SMB redirector end of a named
pipe; !indicates the LMXserver end of a named pipe.

Bits 1011 Type of named pipe. m indicates the named pipe is a stream
mode pipe; Olindicates the named pipe is a message mode pipe.

Bits 89 Read Mode. m indicates to read the named pipe as a stream
mode named pipe; 01 indicates to read the named pipe as a
message mode named pipe.

12 X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 171

Extended 1.05MB File Operations SMBopenX Specification

smb_action

smb_fileid

smb_resv

Describes the results of the open operation. This 16bit field contains two
fields:

Bit 15

Bits 0-1

Lock Status. Set true only if an opportunistic lock was requested
by the SMB redirector and was granted by the LMXserver. This
bit should be false (0 if no lock was requested, the lock could
not be granted, or the LMX server does not support
opportunistic locking.

Open Action. The LMX server should set this to match the
requested action from the smb_ofun field:

1 The file existed and was opened.

2 The file did not exist and was therefore created.

3 The file existed and was truncated.

This 16bit field is reserved; MBZ (Must Be Zero).

Reserved; MBZ.

Protocols for X/ Open PC Interworking: SMB, Version 2 153

Samsung - Exhibit 1014 - Page 172

SMBopenX Specification

154

SMBopenX Error CodeD escriptions

CAE Code

EACCES

EACCES
EAGAIN

EEXIST

EFAULT

EINTR
EISDIR

EMFILE

EN FILE
ENOENT

ENOSPC

ENOTDIR
ENXIO

EROFS

ETXIBSY

DOS Class DOS Code

ERRDOS ERRnoaccess

ERRDOS
ERRDOS

ERRSRV

ERRSRV

ERRSRV
ERRDOS

ERRSRV

ERRDOS
ERRDOS

ERRSRV

ERRDOS
ERRSRV

ERRSRV

ERRSRV

ERRSRV
ERRSRV

ERRSRV

SUCCESS

ERRnoaccess
ERRshare

ERR error

ERR error

ERR error
ERRnoaccess

ERR error

ERRnofids
ERRbadfile

ERR error

ERRbadpath
ERR error

ERR error

ERR error

ERRinvnid
ERRinvdevice

ERRbaduid

SUCCESS

Extended 1.05MB File Operations

Description

Component of path-prefix denies search
permission.
Access permission is denied for the named file.
File exists, mandatory file/record locking is set,
and there are outstanding record locks on the
file.
The create could not occur due to the existence
of a file that did not have matching attributes
(smb_sattr).

Path points outside the allocated address space
of the process.
A signal was caught during some system call.
Named file is a directory and access is write or
read/write.
Maximum number of file descriptors are
currently open in this process.
System file table is full.
File does not exist, or component of pathname
does not exist.
File must be created, and the system is out of
resources necessary to create files.
Component of path-prefix is not a directory.
The requested file is a CAE spedal file and the
system cannot support access to the file at this
time.
File resides on read-only file system and
requested access permission is write or
read/write.
File is pure procedure file that is being executed
and requested access spedfies write or
read/write.
Invalid TID.
Invalid resource type; TID does not refer to a
printer share.
The UID given (smb_uid) is not known as a valid
ID on this LMXsession.
Everything worked, no problems.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 173

Extended 1.05MB File Operations SMBopenX Specification

SMBopenX Preconditions

The SMB redirector has sent a valid SMB request with a valid TID which is at least writable by
this process.

SMBopenX Postconditions

The named file was possibly created or truncated, and then opened.

SMBopenX Side Effects

If an opportunistic lock was granted, the notification mechanisms described in Section 382on
page 2Jare active.

Conventions

• Access (see Section 432on page~.

• Attributes (see Section 431on page~.

• Filenames (see Section 3 5on page 15).

• Opportunistic Locking (see Section 3 8 2on page 2Q.

• Chaining (see Section 3 9on page Z:).

The following are the only valid chained requests for this SMB: SMBread, SMBreadX, SMBioctl
and NIL.

Protocols for X/ Open PC Interworking: SMB, Version 2 155

Samsung - Exhibit 1014 - Page 174

SMBlockingX Specification Extended 1.05MB File Operations

122 SMBlockingX Specification

lEB

SMBlockingX Detailed Description

This extended protocol request is used to lock and/or unlock one or more byte ranges of a
particular regular file.

If the number of unlock ranges is non-zero, the byte ranges indicated by byte offset and length
will be unlocked.

If the number of lock ranges is non-zero, the byte ranges indicated by byte offset and length will
be locked, if possible. Locking byte ranges beyond the EOF is permitted. Access is permitted to
any SMB redirector using the file descriptor provided with the lock request, but only requests
using the PID that did the locking may do the unlocking. Attempts to lock bytes that have been
previously locked will fail.

If the LMX server is unable to acquire all of the locks that the SMB redirector requested (after
waiting for the length of the timeout, if spedfied), all the locks acquired with this request will be
removed and the entire request fails.

Closing a file with locks still in force causes the locks to be released in an undefined order.

S MBlockingX Deviations

LMX servers may choose not to support lock timeouts, and may treat all requests as though a
timeout ofOhad been requested.

LMX servers may choose not to support read-only locks, and will treat any request for such a
lock as though a read/write lock had been requested.

Locking requests generated within the SMB protocol have a ::Zbit unsigned offset for the
beginning of the lock. The mapping of this offset within the CAE system on behalf of the SMB
redirector is implementation-dependent.

SMBlockingX Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBlockingX smb_com SMBlockingX
smb_wct 8 smb_wct 2
smb_vwv[O] smb_com2 smb_vwv[O] smb_com2
smb_vwv[1] smb_off2 smb_vwv[1] smb_off2
smb_vwv[21 smb_fid smb_bcc 0
smb_vwv[31 smb_locktype
smb_vwv[451 smb_timeout
smb_vwv[61 smb_ unlockn um
smb_vwv[71 smb_locknum
smb_bcc 10*(number of

lock/unlock
structs)

smb_buf1] smb_unlkrng
smb_lkrng

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 175

Extended 1.05MB File Operations SMBlockingX Specification

smb_com2and smb_oif2descriptions can be found in Section 39on page 22

smb_fid

smb_locktype

The FID to use to perform locks or unlocks.

A bit-field which spedfies the type of locks (mode) to be placed on the file.
The mode is ignored for performing unlocks. The bits are defined as follows:

BitO

Bit 1

Bits Z 15

If set, indicates read-only lock requested. If a read-only lock is
granted, other read-only lock requests on the same range of
bytes will be permitted, but read/write locks (bit 0 not set) will
be denied until all the read-only locks are released. Support for
this request is optional.

If set, this indicates that an opportunistic lock is being broken,
and in the response thereto, this bit will be set by the LMXserver
in an SMBlockingX request sent to the SMB redirector under the
conditions outlined in Section 382on page 20.

Reserved; ignored by the LMXserver on receipt of request, and
set to zero by the LMXserver when sending a request.

smb_timeout A ::Zbit integer indicating the amount of time, in milliseconds, to wait in an
attempt to acquire all requested locks. A value of zero signals the LMXserver
not to wait at all but to return an error immediately if any lock could be
obtained. A value of -!indicates the LMXserver should wait indefinitely to
obtain the locks. (Note that requests with - 1 timeouts could easily lead to
deadlock.) Support for this field is optional; an LMX server may ignore all
values and behave as if a timeout of 0 (that is, no wait) was always requested
(reference XI Open CAE Spedfication, IPC Mechanisms for SMB).

smb_unlocknum A signed 16bit field indicating the number of smb_unlkrng structures attached
to this request.

smb_locknum A signed 16bit field indicating the number of smb_lkrng structures attached to
this request.

The smb_unlkrng and smb_lkrng structures are identical. Each describes a range of bytes to be
unlocked or locked, respectively. The structure is:

Position Field Name Description

m smb_lpid The PID of the process owning the lock.
02 smb_lkoif A ::Zbit unsigned integer containing the offset, in bytes, to

the start of the range to be unlocked or locked.
Q3 smb_lklen A ::Zbit unsigned integer containing the length, in bytes, of

the range to be unlocked or locked.

Protocols for X/ Open PC Interworking: SMB, Version 2 157

Samsung - Exhibit 1014 - Page 176

SMBlockingX Specification Extended 1.05MB File Operations

lEE

SMBlockingX Error CodeD escriptions

See Section 7.7on page 81and Section 7.8on page 83for other error codes.

CAE Code DOS Class DOS Code Description
- ERRDOS ERRbadfile File was not found.
- ERRDOS ERRbadfid An invalid FID was spedfied.
- ERRDOS ERRlock A lock request conflicted with an existing lock,

the mode spedfied was invalid, or an unlock
request was attempted by other than the owning
PID.

- ERRSRV ERR error Invalid SMB request was sent.
- ERRSRV ERRinvdevice Requested a lock on a non-file system subtree.
- ERRSRV ERRinvnid Invalid TID was spedfied.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid

ID on this LMXsession.
- SUCCESS SUCCESS Everything worked, no problems.

SMBlockingX Preconditions

1 The SMB redirector has sent a valid SMB request.

2 The SMB redirector must have a valid TID to a file system subtree.

3 The SMB redirector has spedfied a valid FID and has appropriate privileges.

If the request is generated by the LMX server, the FID corresponds to a file which the SMB
redirector had opened with an opportunistic lock.

SMBlockingX Postconditions

1 Locking a range of bytes will fail if any subranges or overlapping ranges are locked. In
other words, if any of the spedfied bytes are already locked, the lock will fail.

2 Either all of the requested ranges will be locked or none will. That is, if a lock on any of the
spedfied ranges fails, any of the ranges previously locked by this request will be unlocked.
Locked ranges not locked by this request remain locked.

3 If the lock request timed out, the response will return an ERRlock as if a lock could not be
obtained and a zero timeout was spedfied.

If the request was generated by the LMXserver, any data being cached on the SMB redirector
has been flushed and/or invalidated, and the LMXserver can permit the operation which caused
the opportunistic lock break to complete.

SMBlockingX Side Effects

Any process using the FID spedfied in the request has access to the locked bytes, but other
processes will be denied the locking of the same bytes.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 177

Extended 1.05MB File Operations SMBlockingX Specification

Conventions

• Access (see Section 432on page~.

• Attributes (see Section 431on page~.

• Locking (see Section 4 4on page ~.

• Filenames (see Section 4 2on page ~.

• Opportunistic Locking (see Section 3 8 2on page 2Q.

• Chaining (see Section 3 9on page Z:).

The SMBlockingX request may only have an SMBread or SMBreadX chained request.

Protocols for X/ Open PC Interworking: SMB, Version 2 lEG

Samsung - Exhibit 1014 - Page 178

SMBreadX Specification Extended 1.05MB File Operations

123 SMBreadX Specification

SMBreadX Detailed Description

The SMBreadX extended protocol request is used to read data from any of the supported file
types mentioned in Section 3 7 on page 17. The request allows reads to be timed out and offers a
generalised alternative to the SMBread request.

SMBreadX Deviations

Not all LMXservers support all types listed in Section 536on page 45 Some LMXservers may
ignore the smb_timeout and smb_remaining fields for some types.

SMBreadX Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBreadX smb_com SMBreadX
smb_wct 10 smb_wct 12
smb_vwv[O] smb_com2 smb_vwv[O] smb_com2
smb_vwv[1] smb_off2 smb_vwv[1] smb_off2
smb_vwv[21 smb_fid smb_vwv[21 smb_remaining
smb_vwv[341 smb_offset smb_vwv[341 smb_rsvd
smb_vwv[51 smb_maxcnt smb_vwv[51 smb_dsize
smb_vwv[61 smb_mincnt smb_vwv[61 smb_doff
smb_vwv[~~ smb_timeout smb_ vwv [~ 10] smb_rsvd
smb_vwv[9] smb_ coun tleft smb_bcc (data length+ pad)
smb_bcc 0 smb_buf1] smb_pad

smb_data

smb_com2and smb_off2descriptions can be found in Section 39on page 22

smb_fid

smb_offset

smb_maxcnt

smb_mincnt

smb_timeout

The FID from which the data should be read.

A ::Zbit integer containing the offset into the file (in bytes) at which the read
should start.

An unsigned 16bit field indicating the maximum number of bytes to read.
Note that a single SMBreadX request cannot return more than the minimum of
smb_maxcnt and the maximum negotiated buffer size for the LMX session.
(See Section 113on page 144and Section 6 1on page~.

An unsigned 16bit value indicating the minimum number of bytes to return.

A ::Zbit integer containing the number of milliseconds the LMXserver should
wait before returning. If smb_mincnt bytes are read before this time has
expired, the LMXserver should generate a response immediately. For regular
files this field is ignored.

\\hen reading from a named pipe (refer to the X/Open Developers'
Spedfication, Protocols for X/Open PC Interworking: SMB), there are several
spedal values which the SMB redirector can spedfy in this field:

0 If no data is available in the named pipe, respond immediately with
smb_ dsize set to zero (0.

lED X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 179

Extended 1.05MB File Operations SMBreadX Specification

smb_ coun tleft

smb_remaining

smb_dsize

smb_doff

smb_rsvd

smb_pad

smb_data

-1 Block forever until at least smb_mincnt bytes of data are available, and
return that data.

-2 Use the default timeout assodated with the named pipe being read
(reference XI Open CAE Spedfication, IPC Mechanisms for SMB).

>0 \Nlit until smb_mincnt data bytes are available or the timeout occurs. If
there is a timeout, respond with a timeout error and whatever data was
available.

This unsigned 16bit field contains a hint to the LMX server indicating
approximately how many more bytes will be read from this FID before the
next non-read operation is requested for it. This is generated to help the LMX
server increase performance by reading ahead in the file in antidpation of
another SMBreadX request. An LMXserver may ignore this field.

This signed 16bit integer is always - 1 for regular files. For named pipes and
CAE spedal files, this 16bit integer indicates the number of bytes that could
be read from this file without blocking. This value need only be an
approximation, and it may become inaccurate after the response is sent back
to the SMB redirector. An LMX server may choose not to support this
functionality and always return- 1

This unsigned 16bit field contains the number of bytes of data actually read
and returned in this response.

This unsigned 16bit field indicates the offset from the SMB header to the start
of the returned data, in bytes. This permits variable-sized padding.

These two 16bit and four 16bit fields are padding that force the SMBreadX
response to be the same size as the SMBwriteX request. They must be zero.

This field is between zero and three 8bit fields in length, as governed by the
smb_doff field. It may be used by an LMX server to pad the size of the
SMBreadX response out to a 16bit or ::Zbit boundary which provides the best
performance.

The actual data read from the file.

Protocols for X/ Open PC Interworking: SMB, Version 2 161

Samsung - Exhibit 1014 - Page 180

SMBreadX Specification Extended 1.05MB File Operations

162

SMBreadX Error CodeD escriptions

For more information pertaining to potential error codes generated by this SMB request see
Section 7.4on page 73and Section 7. lOon page 'CT.

CAE Code DOS Class DOS Code Description
- ERRDOS ERRnoaccess Access denied. The requester's context does not

permit the requested action or a read request is
in conflict with an existing lock.

- ERRDOS ERRbadfid Invalid FID. The SMB redirector has attempted
to use an FID not recognised by the LMXserver.

- ERRDOS ERRlock Attempt to read bytes which were locked for
write.

- ERRDOS ERRbadaccess Invalid open mode for the attempted operation
(for example, reading a write-only file).

- ERRSRV ERR error Error is returned to SMB redirectors for non-
spedfic errors such as corrupt SMB requests.

- ERRSRV ERRinvnid Error is returned to SMB redirectors attempting
some action with an invalid TID.

- ERRSRV ERRtimeout The requested named pipe operation timed out.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid

ID on this LMXsession.
- SUCCESS SUCCESS Everything worked, no problems.

SMBreadX Preconditions

1 SMB request, UID and TID are valid and represent the appropriate access rights to perform
the action.

2 The FID must be valid, and the SMB redirector must have appropriate permissions for the
read operation.

SMBreadX Postconditions

1 The read data is returned.

2 The LMX server's current file pointer (see Section 7.6 on page ~ is advanced by the
amount of data actually read.

SMBreadX Side Effects

None for normal files.

For named pipes or CAE spedal files, the data that was read is removed; a repeated read at the
same offset will return new data.

Conventions

• Chaining (see Section 3 9on page Z:).

Only SMBclose request may be chained to the SMBreadX request.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 181

Extended 1.05MB File Operations SMBwritebraw Specification

124 SMBwritebraw Specification

SMBwritebraw Detailed Description

The write block raw message exchange provides a high-performance mechanism for transferring
large amounts of data to be written to a file on the LMX server. Any supported file type,
including spool files, may be written with this exchange.

The SMBwritebraw exchange behaves much like an SMBwritebmpx exchange, except that instead
of additional data being sent in secondary requests, all the additional data is sent in a single raw
message; that is, the first segment of data is sent in the primary request, and the remainder in a
single message with no SMB header or SMBwritebraw subheader.

If all the data to be written fits in the primary request, a zero-length secondary request is still
sent; even if the secondary request is zero-length, a secondary response must be generated when
write-through mode was spedfied.

If the LMXserver is busy or otherwise unable to support the raw write of the remaining data, the
data sent with the primary request is still written (to stable store if write-through mode was set).
If any other error occurs, the data is discarded. In either case, an appropriate error is returned in
a secondary response. A primary response is only sent if the primary request was satisfied with
no errors and the LMXserver is prepared for a raw message.

SMBwritebraw Deviations

The smb_ timeout and smb_remaining fields will not be supported with II 0 devices.

SMBwritebraw Field Descriptions

Primary SMBwritebraw (extended other than core plus):

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBwritebraw smb_com SMBwritebraw
smb_wct 12 smb_wct 1
smb_vwv[O] smb_fid smb_vwv[O] smb_remaining
smb_vwv[1] smb_tcount smb_bcc 0
smb_vwv[21 smb_rsvd
smb_vwv[341 smb_offset
smb_vwv[5G smb_timeout
smb_vwv[71 smb_wmode
smb_vwv[8~ smb_rsvd
smb_ vwv [10] smb_dsize
smb_ vwv [11] smb_doff
smb_bcc min=O
smb_buf1] smb_pad

smb_data

smb_fid The FID of the file to be written to.

smb_tcount An unsigned 16bit field giving the total number of bytes that will be written
to the file. This value must be correct in at least one of the requests in the
exchange; in other requests, it may be an over-estimate.

smb_rsvd These fields are reserved and should be ignored by the LMXserver.

Protocols for X/ Open PC Interworking: SMB, Version 2 163

Samsung - Exhibit 1014 - Page 182

SMBwritebraw Specification Extended 1.05MB File Operations

164

smb_offset

smb_timeout

A ::Zbit integer giving the position in the file at which the bytes in the request
should be written.

A ::Zbit integer giving the number of milliseconds the LMXserver may block
while trying to complete the write. This value is ignored for regular files. For
I/0 devices and named pipes (refer to X/Open CAE Spedfication, IPC
Mechanisms for SMB), the LMX server will wait this much time to complete
the write. If smb_timeout is- L the LMXserver will wait indefinitely; if it is -2
the server will wait the default amount of time for the file. An LMX server
may choose to treat all timeouts as a that is, do not block.

smb_ wmode A 16bit flag field controlling the write mode. If bit 0 is set, write-through
mode is requested; the LMX server will write all data atomically and
acknowledge the write with the secondary response. If clear, write-behind is
permitted; the LMX server need not write atomically and need not report
completion. If bit lis set, the LMXserver should fill in the smb_remaining field
in the primary response.

smb_dsize The number of data bytes in this request.

smb_doff The offset in bytes from the beginning of the SMB header to smb_data.

smb_pad Between zero and three unused bytes; the SMB redirector may use these to
pad out the smb_data area to a properly-aligned boundary.

smb_data The actual data to be written. This is a string of bytes in no particular format.

smb_remaining A 16bit integer which is always- 1 for regular files or if bit 1 of smb_ wmode is
not set. Otherwise, this is the number of bytes available to be read from the
I/0 device or named pipe spedfied by the FID. If the LMX server does not
support this functionality,- 1should always be returned.

Secondary SMBwritebraw:

smb_count

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

raw data smb_com SMBwritec
smb_wct 1
smb_vwv[O] smb_count
smb_bcc 0

The total number of bytes written. If this is different from the smallest
smb_tcount sent by the SMB redirector, some error occurred (for example, out
of free space on the file system).

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 183

Extended 1.05MB File Operations

SMBwritebraw Error Code Descriptions

CAE Code DOS Class

ERRDOS
ERRDOS

DOS Code

ERRbadfid
ERRnoaccess

ERRbadaccess
ERR error
ERRinvnid

SMBwritebraw Specification

Description

Invalid FID.
File opened in deny write mode, or write range
overlaps a lock.
Invalid open mode for the attempted operation.
Corrupt SMB.
Invalid TID.

ERRDOS
ERRSRV
ERRSRV
ERRSRV ERRnoresource The LMX server is temporarily out of a needed

resource.
ERRSRV
ERRSRV

ERRtimeout
ERRuseMPX

ERRSRV ERRuseSTD

ERRSRV ERRbaduid

SUCCESS SUCCESS

SMBw ritebraw Preconditions

Requested operation timed out.
Can't do raw mode at this time; use
SMBwritebmpx.

Can't do raw mode at this time; use SMBwrite or
SMBwriteX.

The UID given (smb_uid) is not known as a valid
ID on this LMXsession.
Everything worked, no problems.

1 The primary SMB was valid and spedfied a valid TID for a writable resource.

2 The FID was valid, and the process had write access to the file.

3 Before sending the secondary message, the LMXserver must have sent a primary response.
The LMX server has been able to write the accompanying data to disk, allocated the
needed memory for a buffer, and sent the response to the SMB redirector.

SMBw ritebraw Postconditions

1 If write-through mode is set, a primary response or secondary response indicates the data
in the primary response has been written to stable store (unless some error other than
ERRuseSTD or ERRuseMPXwas returned).

2 After a primary response is received, the LMX server is ready for a raw secondary
message.

SMBwritebraw Side Effects

None.

Conventions

• Locking (see Section 4 4on page ~.

Protocols for X/ Open PC Interworking: SMB, Version 2 165

Samsung - Exhibit 1014 - Page 184

SMBwriteclose Specification Extended 1.05MB File Operations

125 SMBwriteclose Specification

lffi

SMBwriteclose Detailed Description

The write and close protocol request is used to first write the spedfied bytes and then close the
file. Any supported file type, including spool files, may be spedfied in this request. This request
behaves identically to an SMBwrite or SMBwriteX request followed by an SMBclose request. Any
buffered data must be flushed to stable store or to the device before the response is sent.

Since the call is related to either the SMBwrite or SMBwriteX request, the length of the request
may change; an SMB redirector may construct the request like SMBwrite, with six 16bit fields in
the variable word vector, or like SMBwriteX, with twelve 16bit fields in the smb_ vwv. The LMX
server must be prepared to accept either form.

SMBwriteclose Deviations

See Section 7.5on page 76and Section 126on page 1EBfor details.

SMBwriteclose Field Descriptions

smb_fid

smb_count

smb_offset

smb_time

smb_rsvd

smb_pad

smb_data

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBwriteclose smb_com SMBwriteclose
smb_wct (6or 1L:) smb_wct 1
smb_vwv[O] smb_fid smb_vwv[O] smb_count
smb_vwv[1] smb_count smb_bcc 0
smb_vwv[Z~ smb_offset
smb_vwv[451 smb_time
smb_vwv[611] smb_rsvd
smb_bcc (1 + smb_count)
smb_buf1] smb_pad

smb_data

The FID to be closed.

In the request, the number of bytes of data to be written. In the response, the
number of bytes that were actually written.

A ::Zbit offset into the file, in bytes, at which the data is to be written.

A ::Zbit time value to be used as the last modifY time for the file. A value of
zero indicates the last modified time should be unchanged.

This six 16bit field is only present if smb_ wet is 12 These fields should be
ignored.

A single 8bit field which is used to pad out the beginning of the smb_data area
to a ::Zbit address boundary.

A string of bytes, in no particular format, whose length is given by smb_count.
This is the data to be written.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 185

Extended 1.05MB File Operations SMBwriteclose Specification

SMBwriteclose Error Code Descriptions

Exactly the errors returned by SMBwriteX and SMBclose can be returned for this request. If an
error occurs during the write operation, the file will still be closed. Only one error can be
returned in the response; if errors occur during both the write and close operations, the close
error is reported.

SMBw riteclose Preconditions

1 The SMB redirector has sent a valid SMB with a TID for a writable resource.

2 The FID is valid and the process has write access to the file.

SMBw riteclose Postconditions

1 The data in the call is written to the file. If an error occurred, it will be reported unless a
close error occurs as well.

2 The file is closed and any errors are reported.

SMBwriteclose Side Effects

Any buffered data for the file is written, and any outstanding locks are released in random order.

Conventions

• Locking (see Section 4 4on page ~.

Protocols for X/ Open PC Interworking: SMB, Version 2 167

Samsung - Exhibit 1014 - Page 186

SMBwriteX Specification Extended 1.05MB File Operations

126 SMBwriteX Specification

lEB

SMBw riteX Detailed Description

This extended protocol request is used to write to any supported file type (see Section 3 7 on
page 17). The SMBwriteX command allows writes to be timed out and offers a generalised
alternative to the SMBwrite and SMBsplwr requests.

Note that a zero-length write does not truncate the file as was true of the SMBwrite request;
rather a zero-length write merely transfers zero bytes of information to the file. The SMBwrite
request may be used to truncate the file.

SMBw riteX Deviations

Some LMXservers may limit support of extended features for CAE spedal files. For example,
smb_timeout and/or smb_remaining may not be supported and locking versus non-blocking may
be a configured parameter, etc.

Some CAE systems provide no way for a programme to block until the local file cache has
actually flushed to the disk, but simply indicate that a flush has been scheduled and will
complete soon. An LMXserver should nonetheless take steps to maximise the probability that
the data is truly on disk before the SMB redirector is notified.

SMBwriteXField Descriptions

smb_fid

smb_offset

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBwriteX smb_com SMBwriteX
smb_wct 12 smb_wct 6
smb_vwv[O] smb_com2 smb_vwv[O] smb_com2
smb_vwv[1] smb_off2 smb_vwv[1] smb_off2
smb_vwv[21 smb_fid smb_vwv[21 smb_count
smb_vwv[341 smb_offset smb_vwv[31 smb_remaining
smb_vwv[5G smb_timeout smb_vwv[451 smb_rsvd
smb_vwv[71 smb_wmode smb_bcc 0
smb_vwv[81 smb_ coun tleft
smb_vwv[9] smb_rsvd
smb_ vwv [10] smb_dsize
smb_ vwv [11] smb_doff
smb_bcc min=O
smb_buf1] smb_pad

smb_data

The FID handle of the file to which the data should be written.

A ::Zbit unsigned integer giving the position in the file at which the data is to
be written.

smb_timeout A ::Zbit signed field giving the time (in milliseconds) within which a write
must complete. A value of zero (0 indicates the write should never block.
This field is ignored for regular files.

For other than regular file types (refer to XI Open CAE Spedfication, IPC
Mechanisms for SMB), this value has two spedal values. If the timeout is - L
the LMXserver should block indefinitely waiting for the write. If the timeout
is -2 the LMXserver should use the default timeout for the file type.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 187

Extended 1.05MB File Operations SMBwriteX Specification

smb_wmode A 16bit field containing flags, defined as follows:

Bit 0 If set, an LMX server must not respond to the SMB redirector
before the data is actually written to the disk (that is, write
through).

Bit 1 If set, the LMX server should set smb_remaining correctly for
writes to named pipes or I/0 devices.

Bit 2 For named pipes only. If set, RawwriteNamedPipe should be
used. (See the X/Open CAE Spedfication, IPC Mechanisms for
SMB).

Bit 3 For named pipes only. If set, this data is the start of a message.

All other bits are reserved and should be ignored.

smb_countleft This unsigned 16bit field is an advisory field telling the LMX server
approximately how many bytes will be written to this file before the next
non-write operation. It should include the number of bytes to be written by
this request. An LMX server may ignore this field or use it to perform
optimisations.

smb_rsvd A 16bit reserved field; MBZ.

smb_dsize An unsigned 16bit field giving the amount of data to be written, in bytes.

smb_doff A 16bit field giving the offset from the start of the SMB header to the
beginning of the data to be written. Spedfying this field allows an SMB
redirector to effidently align the data buffer.

smb_pad The 8bit fields between the end of the SMBwriteX header and the beginning of
the data as pointed to by smb_doff. These fields should be ignored.

smb_data The actual data to be written. This is not in a buffer form; it is simply a string
of bytes.

smb_count A 16bit field giving the actual number of bytes written. The value would be
different from smb_dsize if, for example, the file system became full or a file
size limit imposed by ulimit was reached (refer to Section 433on page~.

smb_remaining This 16bit integer should be -1 for regular files. For named pipes and I/0
devices, if bit 1 of smb_ wmode is set, the server should return the amount of
data available to be read on this named pipe after the read. This value may be
approximate, and a server may simply force this field to be- 1

smb_rsvd A 32bit reserved field. It should be zero (Q.

Protocols for X/ Open PC Interworking: SMB, Version 2 1E9

Samsung - Exhibit 1014 - Page 188

SMBwriteX Specification Extended 1.05MB File Operations

170

SMBw riteX Error CodeD escriptions

CAE Code DOS Class DOS Code Description
- ERRDOS ERRnoaccess TID non-writable or other prohibition of access.
- ERRDOS ERRbadfid Invalid FID. The SMB redirector has attempted

to use an FID not recognised by the LMXserver.
- ERRDOS ERRlock The write overlapped an existing byte-range

lock placed by another process.
- ERRDOS ERRbadaccess Invalid open mode for the attempted operation

(for example, writing a read-only file).
- ERRSRV ERR error Error is returned to the SMB redirector for non-

spedfic errors such as corrupt SMB requests.
- ERRSRV ERRinvnid Invalid TID.
- ERRSRV ERRtimeout The requested operation timed out.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid

ID on this LMXsession.
- SUCCESS SUCCESS Everything worked, no problems.

SMBwriteX Preconditions

SMB request, UID and TID are valid and represent the appropriate access rights to perform the
action.

SMBwriteX Postconditions

If no error occurred, the data was buffered to be written to disk. The current file pointer for this
file is advanced.

SMBwriteX Side Effects

A write-through write will cause the written data to be flushed to stable store, and may cause all
buffered data for the file to be flushed.

Conventions

Chaining (see Section 3 9on page Z:).

The following are the only valid requests which may be chained to an SMBwriteX request:
SMBread, SMBreadX, SMBlockingX, SMBclose, SMBlockread and NIL.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 189

Extended 1.05MB File Operations SMBreadbmpx Specification

12 7 SMBreadbmpx Specification

SMBreadbmpxDetailed Description

The read block multiplexed request is used to maximise the performance of reading a large block
of data from the LMX server to the SMB redirector on a multiplexed LMX session. The
SMBreadbmpx request can be applied to any supported file type.

Each SMBreadbmpx request will cause one or more assodated responses to be sent from the LMX
server. Each response contains as much of the remaining data to be read as will fit, and
responses are generated until all the requested data has been transmitted. The LMXserver can
rely on the SMB redirector to maintain synchronisation; if the SMB redirector encounters a
problem while it is receiving responses to an SMBreadbmpx request, it is responsible for
discarding all those responses and will not notify the LMXserver in any way. After solving the
problem, the SMB redirector may reissue the request; the LMX server need not retain state
concerning a completed SMBreadbmpx request. No acknowledgement of receipt from the SMB
redirector is needed; the underlying transport is expected to ensure all responses arrive at the
SMB redirector in the correct order.

Note that the request and all responses make up a single complete SMB exchange; thus, the TID,
PID and UID are expected to remain constant. Also, the SMBreadbmpx exchange is supported on
multiplexed NetBIOS sessions. \\hat this means is that the SMB redirector may issue other SMB
requests while the (multiple) SMBreadbmpx responses are being sent from the LMXserver to the
SMB redirector. Because of this, the response must contain the MID and PID of the original
SMBreadbmpx request.

During an SMBreadbmpx exchange, the SMB redirector should not issue SMB requests which
conflict with this; for example, the SMB redirector should not issue an SMBclose request on the
same file for which it is still receiving SMBreadbmpx responses.

SMBreadbmpx Deviations

LMXservers may not support timeouts on all possible file types.

SMBreadbmpxField Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBreadbmpx smb_com SMBreadbmpx
smb_wct 8 smb_wct 8
smb_vwv[O] smb_fid smb_ vwv [0- 1] smb_offset
smb_vwv[1-~ smb_offset smb_vwv[21 smb_tcount
smb_vwv[31 smb_maxcnt smb_vwv[31 smb_remaining
smb_vwv[4] smb_mincnt smb_vwv[451 smb_rsvd
smb_vwv[5G smb_timeout smb_vwv[G smb_dsize
smb_vwv[71 smb_rsvd smb_vwv[71 smb_doff
smb_bcc 0 smb_bcc min=O

smb_buf1] smb_pad
smb_data

The FID of the file to be read from. smb_fid

smb_offset A ::Zbit integer giving the position in the file at which to read (in the request)
or the position in the file at which the data returned in this response began.

Protocols for X/ Open PC Interworking: SMB, Version 2 171

Samsung - Exhibit 1014 - Page 190

SMBreadbmpx Specification Extended 1.05MB File Operations

172

smb_maxcnt

smb_mincnt

smb_timeout

smb_rsvd

smb_tcount

smb_remaining

smb_dsize

smb_doff

smb_pad

smb_data

Maximum number of bytes to return; the desired read size.

The minimum number of bytes to read. For regular files, this value is usually
zero. \\hen the timeout is used, this is the minimum number of bytes which
will satisfy the read; if fewer bytes are available, the request will block until
enough are available or the timeout is reached.

A ::Zbit integer giving the number of milliseconds to wait for smb_mincnt
bytes of data to become readable. A timeout of zero (0 indicates the call
should never block. This value is ignored for regular files and may be ignored
for I/0 devices. For named pipes, there are two spedal values: -I means the
request should block forever until at least smb_mincnt bytes become available;
-2means the default timeout assodated with the named pipe should be used.

These fields are reserved and should be ignored in requests and set to zero in
responses.

An integer giving the total number of bytes expected to be returned in all
responses to this request. This value will usually start at smb_maxcnt and may
be reduced by file truncations while the read is in progress, etc. This value
must be accurate in at least the last response generated (that is, contain the
actual number of bytes sent in all responses) but may be an overestimate in
earlier responses.

If this value in the last response is less than smb_maxcnt, EOF was encountered
during the read. If this value is exactly zero (0, the original offset into the file
began after EOF; in this case, only one response may be generated.

This integer should be - 1 for regular files. For devices or named pipes this
indicates the number of bytes remaining to be read from the file after the bytes
returned in the response were de-queued. LMXservers need not support this
function and should return- lifthey do not support it.

The number of data bytes returned in the individual response.

The offset in bytes from the beginning of the SMB to the beginning of the data
being returned. This offset permits the LMX server to use an effident
alignment of the data within the SMB response.

Zero (0 to three (~ bytes of padding. This is the space after the end of the
SMBreadbmpx subheader which is unused because the data was aligned. The
smb_doff points to the first byte after this bytestring.

The actual data bytes read.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 191

Extended 1.05MB File Operations SMBreadbmpx Specification

SMBread bm px Error CodeD escriptions

See Section 123on page 16Jfor other error codes.

CAE Code DOS Class DOS Code Description
- ERRDOS ERRnoaccess File was opened in Deny Read mode.

EBADFID ERRDOS ERRbadfid The FID was valid but unacceptable to the
underlying OS.

- ERRDOS ERRlock Read overlapped a byte-range lock granted to
another process.

- ERRDOS ERRbadaccess Some conflict in open mode occurred.
- ERRSRV ERR error Invalid SMB.
- ERRSRV ERRinvnid Invalid TID.
- ERRSRV ERRnoresource A temporary resource limitation in the LMX

server caused this request to fail.
- ERRSRV ERRtimeout A timeout occurred.
- ERRSRV ERRuseSTD Temporarily out of suffident buffers.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid

ID on this LMXsession.
- SUCCESS SUCCESS Everything worked, no problems.

SMBread bm px Preconditions

1 SMB request, UID and TID are valid and represent the appropriate access rights to perform
the action.

2 The FID is valid.

SMBread bm px Postconditions

1 For I/0 devices or named pipes the returned data was consumed from the device.

2 After completion the current file position pointer will be right after the read data or at EOF.

SMBreadbmpx Side Effects

Because of the nature of the request, the operation may not be atomic on the LMX server;
requests on the same file from other processes may change the results of this request.

Conventions

• Locking (see Section 4 4on page ~.

Protocols for X/ Open PC Interworking: SMB, Version 2 173

Samsung - Exhibit 1014 - Page 192

SMBwritebmpx Specification Extended 1.05MB File Operations

128

174

SMBwritebmpx Specification

SMBw ritebm px Detailed Description

This extended protocol request provides a high performance mechanism for writing large
amounts of data while other activity is being generated by the SMB redirector. The
SMBwritebmpx operation can be performed on any supported file type.

Unlike most SMBs, there are two forms of both request and response: primary and secondary.
The collection of all requests and responses related to a given primary SMBwritebmpx request is
called an SMBwritebmpx exchange.

An SMBwritebmpx exchange begins when the SMB redirector sends a primary request. This
request sets many of the parameters for the exchange and contains the first part of the data to be
written. If an error occurred while handling this request, the LMX server sends a secondary
response indicating the error and ends the exchange; otherwise, the LMXserver sends a primary
response indicating it is ready for more data. Then, if the amount of data to be written is greater
than what could fit in the primary request, the SMB redirector sends secondary requests until all
data has been sent. If the exchange was in write-through mode, the LMX server sends a
secondary response; otherwise, the LMX server relies on the transport to ensure delivery of all
requests and does not generate an additional reply.

If an error occurs after the primary response is sent, any secondary requests must be discarded.
If write-through mode was requested, error information is returned to the SMB redirector in the
secondary response. If not, the error is cached and returned in the response to the next request
issued by the SMB redirector for that file.

Other requests may be issued on the same LMXsession while the exchange is in progress. The
TID, PID, UID and MID are expected to be identical in all requests and responses in a given
SMBwritebmpx exchange.

If write-through mode is spedfied, the LMXserver will collect all the data and write it to the disk
atomically; otherwise, in write-behind mode, the LMXserver need not make this guarantee.

SMBwritebmpx Deviations

Timeouts for II 0 devices are implementation-dependent.

Some CAE systems provide no way for a programme to block until the local file cache has
actually flushed to the disk, but simply indicate that a flush has been scheduled and will
complete soon. An LMXserver should nonetheless take steps to maximise the probability that
the data is truly on disk before the SMB redirector is notified.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 193

Extended 1.05MB File Operations SMBwritebmpx Specification

SMBw ritebm px Field Descriptions

Primary Request/Response

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBwritebmpx smb_com SMBwritebmpx
smb_wct 12 smb_wct 1
smb_vwv[O] smb_fid smb_vwv[O] smb_remaining
smb_vwv[1] smb_tcount smb_bcc 0
smb_vwv[21 smb_rsvd
smb_vwv[341 smb_offset
smb_vwv[5G smb_timeout
smb_vwv[71 smb_wmode
smb_vwv[8~ smb_rsvd
smb_ vwv [10] smb_dsize
smb_ vwv [11] smb_doff
smb_bcc min=O
smb_buf1] smb_pad

smb_data

smb_fid The FID of the file to be written to.

smb_tcount An unsigned 16bit field giving the total number of bytes that will be written
to the file. This value must be correct in at least one of the requests in the
exchange; in other requests, it may be an over-estimate.

smb_rsvd

smb_offset

smb_timeout

smb_wmode

smb_dsize

smb_doff

smb_pad

smb_data

These fields are reserved and should be ignored by the LMXserver.

A ::Zbit integer giving the position in the file at which the bytes in the request
should be written.

A ::Zbit integer giving the number of milliseconds the LMXserver may block
while trying to complete the write. This value is ignored for regular files. For
I/0 devices and named pipes (refer to the X/Open CAE Spedfication, IPC
Mechanisms for SMB), the LMX server will wait this much time to complete
the write. If smb_timeout is- L the LMXserver will wait indefinitely; if it is -2
the server will wait the default amount of time for the file. An LMX server
may choose to treat all timeouts as a that is, do not block.

A 16bit flag field controlling the write mode. If bit 0 is set, write-through
mode is requested; the LMX server will write all data atomically and
acknowledge the write with the secondary response. If clear, write-behind is
permitted; the LMX server need not write atomically and need not report
completion. If bit lis set, the LMXserver should fill in the smb_remaining field
in the primary response.

The number of data bytes in this request.

The offset in bytes from the beginning of the SMB header to smb_data.

Between zero and three unused bytes; the SMB redirector may use these to
pad out the smb_data area to a properly-aligned boundary.

The actual data to be written. This is a string of bytes in no particular format.

Protocols for X/ Open PC Interworking: SMB, Version 2 175

Samsung - Exhibit 1014 - Page 194

SMBwritebmpx Specification Extended 1.05MB File Operations

176

smb_remaining A 16bit integer which is always- lfor regular files or if bit 1 of smb_ wmode is
not set. Otherwise, this is the number of bytes available to be read from the
I/0 device or named pipe spedfied by the FID. If the LMX server does not
support this functionality,- lshould always be returned.

Secondary Request/Response

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBwritebs smb_com SMBwritec
smb_wct 8 smb_wct 1
smb_vwv[O] smb_fid smb_vwv[O] smb_count
smb_vwv[1] smb_tcount smb_bcc 0
smb_vwv[Z~ smb_offset
smb_vwv[451 smb_rsvd
smb_vwv[61 smb_dsize
smb_vwv[71 smb_doff
smb_bcc min=O
smb_buf1] smb_pad

smb_data

smb_count The total number of bytes written. If this is different from the smallest
smb_tcount sent by the SMB redirector, some error occurred (for example, out
of free space on the file system).

All other fields are identical to the primary request.

SMBw ritebm px Error CodeD escriptions

For other error codes see Section 126 on page lEE If a secondary response is not being
generated by the LMX server, any error should be cached and returned in the response to the
next request from the same process involving this FID.

CAE Code DOS Class DOS Code Description
- ERRSRV ERRnoresource Unable to allocate enough buffer space.
- ERRSRV ERRtimeout Timeout occurred.
- ERRSRV ERRuseSTD Some resource limitation prevents the LMX

server from supporting SMBwritebmpx at this
time; more limited write requests (SMBwrite,
SMBwriteX) should be used instead.

- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMXsession.

- SUCCESS SUCCESS Everything worked, no problems.

SMBwritebmpx Preconditions

1 The SMB redirector has sent a valid SMB request with a valid TID for a writable resource.

2 The FID is valid and the process has write access.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 195

Extended 1.05MB File Operations SMBwritebmpx Specification

SMBw ritebm px Postconditions

1 After the LMX server responds to the primary request to write-behind, the data in the
primary write-behind request has been written.

2 After the secondary response, either an error was returned or all the data was written
atomically.

3 After the last secondary request in a write-behind mode exchange is received, all the data
is available to be read but might not yet be written to stable store.

4 If write-through mode was not spedfied, the LMXserver has cached any errors to be sent
as a response to the next request from this process related to this file.

SMBwritebmpx Side Effects

Because write-behind mode does not guarantee atomic write of all data, it is possible that this
exchange is interfered with. It is possible, for example, that data from other processes could be
interspersed with the data written by an exchange.

Conventions

None.

Protocols for X/ Open PC Interworking: SMB, Version 2 177

Samsung - Exhibit 1014 - Page 196

Extended 1.05MB File Operations

178 X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 197

Chapter 13

Extended 1.05MB Directory and Attribute Operations

This section defines the elements of the extended SMB protocol that support directory and
attribute access. They are:

SMBffirst

SMBfclose

SMBfunique

SMBgetattrE

SMBsetattrE

start/continue an extended wildcard directory lookup

end an extended wildcard directory lookup

perform a one-time extended wildcard directory lookup

get extended file attributes

set extended file attributes

131 SMBffirst Specification

SMBffirst Detailed Description

The SMBffirst extended protocol request behaves exactly like the SMBsearch core request, except
the LMX server can expect the SMB redirector to terminate the search by issuing an SMBfclose
request. Because of this expectation, the LMXserver should not use heuristics to terminate the
search, and should instead preserve all search state and resources until the SMBfclose request is
received or the LMXsession is closed.

As in the case of SMBsearch, there are two forms of the SMBffirst request: FindFirst, indicated by a
null smb_search_id, and FindNext, which has a valid smb_search_id spedfied.

If a FindFirst request (an SMBffirst request whose smb_search_id is null) fails (no entries are
found), the LMXserver should respond with a failure and terminate the search. No SMBfclose
request should be expected.

Otherwise, SMBffirst behaves in all respects like SMBsearch.

SMBffirst Deviations

See Section 83on page m.

SMBffirst Field Descriptions

See Section 83on page m.

SMBffirst Error CodeD escriptions

See Section 83on page m.

SMBffirst Preconditions

1 SMB request, UID and TID are valid and represent the appropriate access rights to perform
the action on a searchable disk resource.

2 The process has read/search permissions on all directories encountered.

3 For a FindN ext request, the matching FindFirst/ FindN ext request must not have failed.

Protocols for X/ Open PC Interworking: SMB, Version 2 179

Samsung - Exhibit 1014 - Page 198

SMBffirst Specification Extended 1.05MB Directory and Attribute Operations

18)

SMBffirst Postconditions

1 If the FindFirst fails, the search is terminated.

2 As long as SMBffirst requests continue to succeed, search state and resources are
maintained; directories may remain open, etc.

3 After each FindNext, state information is updated in such a way as to ensure the search can
continue without returning dir_info on the same file twice.

SMBffirst Side Effects

Various directories may remain open for reading during the lifetime of an active search. This
may interfere with requests from other processes on involved directories.

Conventions

• Access (see Section 432on page~.

• Attributes (see Section 431on page~.

• Filename (see Section 3 5on page 15).

• Wldcard (see Section 36on page 17).

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 199

Extended 1.05MB Directory and Attribute Operations SMBfclose Specification

132 SMBfclose Specification

SMBfclose Detailed Description

The SMBfclose extended protocol request terminates an active search begun by SMBffirst.

SMBfclose Deviations

None.

SMBfclose Field Descriptions

The SMBfclose request and response are identical to the SMBsearch request and response (see
Section 83on page~. The fields are interpreted differently:

smb_com

smb_count

smb_attr

smb_pathname

smb_search_id

smb_data

This should be SMBfclose in both request and response.

This 16bit integer should be ignored in the request and must be zero in the
response.

This attribute field should be ignored.

This ASCIIZ (type 04) buffer should be empty; that is, the buffer contains a
single ASCII NULL character.

This variable block (type 05) buffer should be one of the find_buf_search_id
structures returned in any response to the search being terminated. This
buffer identifies the search which is to be terminated.

This variable block (type 05) should be zero length; that is, the length for the
buffer should be zero (0, and no data bytes should be appended.

SMBfclose Error Code Descriptions

Same as for SMBsearch (see Section 83on page~.

SMBfclose Preconditions

1 SMB request, UID and TID are valid and represent the appropriate access rights to perform
the action.

2 The search identified by smb_search_id must be active.

SMBfclose Postconditions

Any allocated resources for the identified search are released, and the search is no longer active.

SMBfclose Side Effects

None.

Conventions

None.

Protocols for X/ Open PC Interworking: SMB, Version 2 181

Samsung - Exhibit 1014 - Page 200

SMBfunique Specification Extended 1.05MB Directory and Attribute Operations

133 SMBfunique Specification

182

SMBfunique Detailed Description

The SMBfunique extended lOprotocol request behaves exactly like the SMBsearch core request,
except the LMX server can terminate the search immediately after sending the response. The
SMBfunique request, while it does support a wildcard smb_pathname, is designed to return
information on only a few (possibly one) files. If more files match than can fit into the response,
the LMXserver can disregard them.

SMBfuniq ue Deviations

See Section 83on page m.

SMBfunique Field Descriptions

See Section 83on page m. The LMXserver should expect that smb_search_id will always be a
zero-length variable block (type 05) buffer.

SMBfunique Error Code Descriptions

See Section 83on page m.

SMBfunique Preconditions

1 SMB request, UID and TID are valid and represent the appropriate access rights to perform
the action.

2 The process has read/search permissions on all directories encountered.

SMBfunique Postconditions

No state or resources are maintained on the LMXserver after the response is sent; the search is
considered inactive.

SMBfunique Side Effects

Because SMBfunique is a one pass search, interaction with other requests due to directories
remaining open for long periods of time should be greatly reduced; however, they may not be
eliminated.

Conventions

• Access (see Section 432on page~.

• Attributes (see Section 431on page~.

• Filename (see Section 3 5on page 15).

• Wldcard (see Section 36on page 17).

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 201

Extended 1.05MB Directory and Attribute Operations SMBgetattrE Specification

134 SMBgetattrE Specification

SMBgetattrE Detailed Description

This extended 10 protocol request returns extended attribute information for a given open
regular file.

S MBgetattrE Deviations

1 LMXservers which cannot maintain a creation date and time for their files will return the
last modifY date and time instead.

2 The attribute field is treated according to the Attribute convention.

SMBgetattrE Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBgetattrE smb_com SMBgetattrE
smb_wct 1 smb_wct 11
smb_vwv[O] smb_fid smb_vwv[O] smb_cdate
smb_bcc 0 smb_vwv[1] smb_ctime

smb_vwv[21 smb_adate
smb_vwv[31 smb_atime
smb_vwv[4] smb_mdate
smb_vwv[51 smb_mtime
smb_vwv[6 7] smb_datasize
smb_vwv[8~ smb_allocsize
smb_ vwv [10] smb_attr
smb_bcc 0

The FID for which extended attribute information should be returned. smb_fid

smb_cdate

smb_ctime

smb_adate

smb_atime

smb_mdate

smb_mtime

smb_datasize

smb_allocsize

A date field giving the creation date for the file. See Section 532on page 43

A time field giving the creation time for the file. See Section 53 1on page 43

A date field giving the last access date for the file.

smb_attr

A time field giving the last access time for the file.

A date field giving the last modifY date for the file.

A time field giving the last modifY time for the file.

A ::Zbit integer giving the current size of the file (offset to EO F) in bytes.

A ::Zbit integer giving the amount of space allocated to the file. LMXservers
on systems which do not support pre-allocation of space will set this field to
the same value as smb_datasize.

An attribute field giving the attributes of the file (see Section 3 7 on page 17).

Protocols for X/ Open PC Interworking: SMB, Version 2 183

Samsung - Exhibit 1014 - Page 202

SMBgetattrE Specification Extended 1.05MB Directory and Attribute Operations

184

SMBgetattrE Error Code Descriptions

CAE Code DOS Class DOS Code Description

EBADF ERRDOS ERRbadfid Invalid or no longer an acceptable FID.
EINTR ERRSRV ERR error A signal was caught during a system call.

- ERRSRV ERRinvnid TID spedfied in command is invalid.
- ERRSRV ERRinvdevice TID not for a disk resource.
- SUCCESS SUCCESS Everything worked, no problems.

SMBgetattrE Preconditions

1 SMB request, UID and TID are valid and represent the appropriate access rights to perform
the action.

2 The FID must be valid.

SMBgetattrE Postconditions

None.

SMBgetattrE Side Effects

None.

Conventions

• Attribute (see Section 431on page~.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 203

Extended 1.05MB Directory and Attribute Operations SMBsetattrE Specification

135 SMBsetattrE Specification

SMBsetattrE Detailed Description

This extended 10 protocol request is used to set extended attribute information for an open
regular file.

S MBsetattrE Deviations

LMXservers which cannot maintain a creation time for their files will ignore the create date and
time fields.

SMBsetattrE Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBsetattrE smb_com SMBsetattrE
smb_wct 7 smb_wct 0
smb_vwv[O] smb_fid smb_bcc 0
smb_vwv[1] smb_cdate
smb_vwv[21 smb_ctime
smb_vwv[31 smb_adate
smb_vwv[4] smb_atime
smb_vwv[51 smb_mdate
smb_vwv[61 smb_mtime
smb_bcc min=O

smb_rsvd

The FID whose extended attributes are to be changed. smb_fid

smb_cdate A date field containing the creation date for the file. See Section 532on page
43

smb_ctime

smb_adate

smb_atime

smb_mdate

smb_mtime

smb_rsvd

A time field containing the creation time for the file. See Section 53 1 on page
43

A date field containing the last access date for the file.

A time field containing the last access time for the file.

A date field containing the last modify date for the file.

A time field containing the last modify time for the file.

A reserved character string; LMXservers should ignore this field.

Protocols for X/ Open PC Interworking: SMB, Version 2 185

Samsung - Exhibit 1014 - Page 204

SMBsetattrE Specification Extended 1.05MB Directory and Attribute Operations

lffi

SMBsetattrE Error Code Descriptions

CAE Code DOS Class DOS Code Description

EACCES ERRSRV ERRaccess The UID does not have appropriate privilege
and is not the owner of the file.

EBADF ERRDOS ERRbadfid Invalid or no longer an acceptable FID.
EINTR ERRSRV ERR error A signal was caught during the operation.
EPERM ERRSRV ERRaccess The UID does not have appropriate privilege

and is not the owner of the file.
EROFS ERRSRV ERRaccess File system is read-only.

- ERRSRV ERRinvnid TID spedfied in command is invalid.
- ERRSRV ERRinvdevice TID does not spedfy a disk resource.
- SUCCESS SUCCESS Everything worked, no problems.

SMBsetattrE Preconditions

1 SMB request, UID and TID are valid and represent the appropriate access rights to perform
the action.

2 The FID is valid.

SMBsetattrE Postconditions

A file time and date will remain unchanged if the corresponding date and time in the request
was zero.

SMBsetattrE Side Effects

None.

Conventions

• Access (see Section 432on page~.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 205

Chapter 14

Extended 1. OSMB Miscellaneous Requests

This section defines the remaining elements of the extended lOSMB protocol. They are:

SMBcopy

SMBecho

SMBioctl

SMBmove

copy one or more files

test an LMXsession

I/0 device control

move one or more files by renaming

141 SMBcopy Specification

SMBcopy Detailed Description

This extended lOprotocol request copies one or more files from a given path to a new path on a
single LMXserver. The source path may include wildcards. The destination may be a directory
or a single file, but it may not include wildcards. If the destination is a directory, the source
file(s) are copied into that directory; if the destination is a regular file, the source file(s) are
appended to it (possibly after the destination is truncated).

SMBcopy Deviations

None.

SMBcopy Field Descriptions

smb_tid2

smb_ofun

smb_flags

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBcopy smb_com SMBcopy
smb_wct 3 smb_wct 1
smb_vwv[O] smb_tid2 smb_vwv[O] smb_cct
smb_vwv[1] smb_ofun smb_bcc min=O
smb_vwv[21 smb_flags smb_buf1] smb_errfile
smb_bcc min=2
smb_buf1] smb_path

smb_new_path

The TID corresponding to smb_new_path. The TID for smb_path is sent in
smb_tid in the SMB header. If smb_tid2is- L the TID in smb_tid should be used
for smb_new_path as well; this permits SMBcopy to be chained to SMBtconX.

This is an open function field (see Section 538on page 4E). If smb_new_path is
a simple file smb_ofun applies at the start of the operation; in the case of
wildcards all subsequent files will then be appended. It is applied to each
copied file when smb_new _path is a directory.

This 16bit field contains a set of flags controlling the copy operations:

Bit 0 If set, the destination must be a file.

Protocols for X/ Open PC Interworking: SMB, Version 2 187

Samsung - Exhibit 1014 - Page 206

SMBcopy Specification

lffi

smb_path

smb_new_path

smb_cct

smb_errfile

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Extended 1.05MB Miscellaneous Requests

If set, the destination must be a directory.

Copy destination mode: O=binary (indicating the contents of the file
are not to be interpreted), l=ASCII (indicating DOS format text file).
This bit is ignored.

Copy source mode: 0= binary (indicating the contents of the file are
not to be interpreted), l=ASCII (indicating DOS format text file).
This bit is ignored.

If set, all writes must be verified by comparing the copied destination
to the original source(s).

If set, indicates a tree copy is requested. A tree copy means the
contents of the directory and any subdirectories are to be copied.
This bit only has meaning if the extended 20 SMB dialect was
negotiated.

All other bits are reserved and should be ignored.

An ASCIIZ buffer containing the name of the file(s) to be copied; wildcard
characters are permitted. The path is interpreted relative to smb_tid in the
SMBheader.

An ASCIIZ buffer containing the name of the destination to which the source
file(s) are to be copied. Wldcards may not be used. The path is interpreted
relative to smb_tid2in the SMBcopy subheader.

A 16bit integer containing the actual number of files copied.

This is an ASCIIZ buffer which may contain the name of the source file on
which an error was encountered during a copy operation. \\hen a copy error
is encountered, the expanded source filename is returned in smb_errfile and the
error code is returned in smb_err (in the SMB header).

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 207

Extended 1.05MB Miscellaneous Requests

SMBcopy Error Code Descriptions

CAE Code

EACCES

EAGAIN
EEXIST
EINTR
EISDIR
EMFILE

EN FILE
ENOENT

ENOSPC

ENOTDIR

ENXIO
EROFS
ETXIBSY

DOS Class DOS Code

ERRDOS ERRnoaccess

ERRDOS
ERRSRV
ERRSRV
ERRDOS
ERRSRV

ERRDOS
ERRDOS

ERRSRV

ERRDOS

ERRSRV
ERRSRV
ERRSRV
ERRSRV
ERRSRV
ERRDOS
ERRDOS
ERRSRV

SUCCESS

ERRshare
ERRfilexists
ERR error
ERRnoaccess
ERR error

ERRnofids
ERRbadfile

ERR error

ERRbadpath

ERR error
ERR error
ERR error
ERRinvnid
ERRinvdevice
ERRnofiles
ERRbadshare
ERRbaduid

SUCCESS

SMBcopy Preconditions

SMBcopy Specification

Description

Component of path-prefix denies search
permission.
There are outstanding record locks on the file.
Destination file exists.
A signal was caught during the open operation.
Can't copy onto a directory.
Maximum number of file descriptors are
currently open in this process.
System file table is full.
File does not exist, or component of pathname
does not exist.
The system is out of resources necessary to
create files.
Component of either path-prefix is not a
directory.
One of the TlDs is not for a file system subtree.
Destination file system subtree is read-only.
Can't copy onto programme being executed.

Invalid TID.
One of the TlDs is not for a file system subtree.
No more files matching the spedfied criteria.
Share conflict when creating a destination file.
The UID given (smb_uid) is not known as a valid
ID on this LMXsession.
Everything worked, no problems.

1 The SMB redirector has sent a valid SMB with a valid smb_tid and smb_tid2 for file system
subtrees; the smb_tid2resource must allow writes.

2 The SMB redirector has appropriate read/search permission on source and destination
paths, and write permission on the destination file or into the destination directory.

SMBcopy Postconditions

Not all files may have been copied; smb_errfilewill indicate which copy failed.

SMBcopy Side Effects

Some files may be overwritten if smb_ofun flags requested it.

Protocols for X/ Open PC Interworking: SMB, Version 2 lffi

Samsung - Exhibit 1014 - Page 208

SMBcopy Specification Extended 1.05MB Miscellaneous Requests

Conventions

• Access (see Section 432on page~.

• Filename (see Section 3 5on page 15).

• Wldcards (see Section 36on page 17).

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 209

Extended 1.05MB Miscellaneous Requests SMBecho Specification

142 SMBecho Specification

SMBecho Detailed Description

This extended protocol request is used to test an LMXsession by exchanging messages between
the SMB redirector and LMXserver. Since it is used to verify communications, the request may
be issued at any time during the life of an LMXsession, except before an SMBnegprot request has
been issued, and not while a raw exchange is in progress (for example, SMBwritebraw).

The LMXserver will respond with the exact number of messages spedfied in the request.

SMBecho Deviations

None.

SMBecho Field Descriptions

smb_reverb

smb_data

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBecho smb_com SMBecho
smb_wct 1 smb_wct 1
smb_vwv[O] smb_reverb smb_vwv[O] smb_sequence
smb_bcc min=O smb_bcc min=O
smb_buf1] smb_data smb_buf1] smb_data

A 16bit integer indicating the number of responses the LMX server should
generate for this request. If zero, no response at all will be generated.

This string of bytes is test data which is spedfied by the SMB redirector in its
request and returned by the LMXserver in every response. The string of bytes
is not formatted; the LMXserver must be careful to exactly reproduce it and
set smb_bcc correctly in the responses.

smb_sequence A 16bit integer containing the sequence number of this particular response.
The first response would have smb_sequence = L and the last response would
set smb_sequenceto smb_reverb.

SMBecho Error Code Descriptions

CAE Code DOS Class DOS Code Description
- ERRSRV ERRnoaccess LMXsession has not been established.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid

ID on this LMXsession.
- ERRSRV ERRnosupport Requested function is not supported.
- SUCCESS SUCCESS Everything worked, no problems.

No CAE errors are possible.

Protocols for X/ Open PC Interworking: SMB, Version 2 191

Samsung - Exhibit 1014 - Page 210

SMBecho Specification

SMBecho Preconditions

None.

SMBecho Postconditions

None.

SMBecho Side Effects

None.

Conventions

None.

Extended 1.05MB Miscellaneous Requests

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 211

Extended 1.05MB Miscellaneous Requests SMBioctl Specification

143 SMBioctl Specification

SMBioctl Detailed Description

This extended protocol request permits detailed control of I/0 devices by the SMB redirector.
The actual forms of control available are device-specific and implementation-dependent.

SMBioctl Deviations

Because the mapping between ioctl request numbers and actual functionality varies from
implementation to implementation, it is impossible to provide this functionality in a portable
manner. Nonetheless, SMB redirectors using the LMXserver may generate SMBioctl requests.

An LMX server which does not support the SMBioctl request should return error code
ERRnosupport in error class ERRSRV if it receives such a request.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 212

SMBmove Specification Extended 1.05MB Miscellaneous Requests

144 SMBmove Specification

SMBmove Detailed Description

This extended protocol request is used to move files between directories on the LMX server.
Directories as well as regular files may be moved into a new directory. The SMBmove protocol
removes the deviations of SMBmv and allows for relocating files to different file system subtrees.
A move of a directory cannot have a destination located in the directory itself or any
subdirectory within the source directory. In these conditions the error <ERRDOS, ERRbadpath>
is to be returned.

The source path may include wildcards in the last component of the path, but the destination
path must spedfy a single file or directory (that is, no wildcards). If the destination is a
directory, the source file(s) are moved into that directory; if the destination is a regular file, all
source files but the last one are lost, and the last one is renamed to the destination path. The
sequence in which files match a wildcard spedfication is undefined, so the spedfic file which
will be given the destination name cannot be spedfied.

SMBmove Deviations

None.

SMBmove Field Descriptions

smb_tid2

smb_ofun

smb_flags

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBmove smb_com SMBmove
smb_wct 3 smb_wct 1
smb_vwv[O] smb_tid2 smb_vwv[O] smb_count
smb_vwv[1] smb_ofun smb_bcc min=O
smb_vwv[21 smb_flags smb_buf1] smb_errfile
smb_bcc min=2
smb_buf1] smb_path

smb_new_path

The TID corresponding to smb_new_path. The TID for smb_path is sent in
smb_tid in the SMB header. If smb_tid2is- L the TID in smb_tid should be used
for smb_new_path as well; this permits SMBmoveto be chained to SMBtconX.

This is an open function field (see Section 538on page 4E). If smb_new_path is
a simple file smb_ofun applies at the start of the operation; in the case of
wildcards all subsequent files will then be appended. It is applied to each
moved file when smb_new _path is a directory.

This 16bit field contains a set of flags controlling the copy operations:

Bit 0 If set, the destination must be a file.

Bit 1 If set, the destination must be a directory.

Bit 4 If set, all writes must be verified by comparing the copied destination
to the original source(s).

All other bits are reserved and should be ignored.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 213

Extended 1.05MB Miscellaneous Requests SMBmove Specification

smb_path

smb_new_path

smb_count

smb_errfile

An ASCIIZ buffer containing the name of the file(s) to be moved; wildcard
characters are permitted. The path is interpreted relative to smb_tid in the
SMBheader.

An ASCIIZ buffer containing the name of the destination to which the source
file(s) are to be copied. Wldcards may not be used. The path is interpreted
relative to smb_tid2in the SMBmove subheader.

A 16bit integer containing the actual number of files moved.

This is an ASCIIZ buffer which may contain the name of the source file on
which an error was encountered, the expanded source filename is returned in
smb_errfile and the error code is returned in smb_err (in the SMB header).

SMBmove Error Code Descriptions

CAE Code

EACCES

EACCES
EEXIST
EINTR
EMLINK

ENOENT

ENOSPC

ENOTDIR

EROFS
EXDEV

DOS Class

ERRDOS

ERRDOS
ERRDOS
ERRSRV
ERRSRV

ERRDOS

ERRSRV

ERRDOS

ERRSRV
ERRDOS

ERRDOS
ERRDOS

ERRSRV
ERRSRV
ERRSRV
ERRSRV

ERRSRV

SUCCESS

DOS Code

ERRnoaccess

ERRnoaccess
ERRfilexists
ERR error
ERR error

ERRbadfile

ERR error

ERRbadpath

ERRnoaccess
ERRnoaccess

ERRnofiles
ERRbadshare

ERR error
ERRinvnid
ERRnosupport
ERRaccess

ERRbaduid

SUCCESS

Protocols for X/ Open PC Interworking: SMB, Version 2

Description

Search permission is denied on a component of
either path-prefu.
No write access to destination directory.
Directory or file already exists.
A signal was caught during a system call.
Maximum number of links to a file would be
exceeded.
A component of either path-prefu does not
exist, smb_path does not exist, or smb_new_path is
a null string.
Directory containing the link cannot be
extended.
A component of either path-prefu is not a
directory.
Read-only file system.
smb_path and smb_new_path are on different
logical devices.
No files match smb_path.

Share conflict when creating or appending to a
destination file.
Corrupt SMB request.
Invalid TID.
Requested function is not supported.
The resource represented by the TID does not
allow writes.
The UID given (smb_uid) is not known as a valid
ID on this LMXsession.
No errors.

Samsung - Exhibit 1014 - Page 214

SMBmove Specification Extended 1.05MB Miscellaneous Requests

SMBmove Preconditions

1 The SMB redirector has sent a valid SMB request; both TIDs are for file system subtrees; the
SMB redirector has delete permission under the source TID and create permission under
the destination TID.

2 The source file(s) or directory must exist.

3 Files must not be open by other SMB redirectors. If they are, the error <ERRDOS,
ERRbadshare> is returned.

4 The SMB redirector has write permission in the destination directory and delete (write)
permission in the source directory.

SMBmove Postconditions

1 If the move succeeded, none of the matching source files can be found under the old
names, and the files are now accessible under the new names.

2 If a move fails, the reason for the failure is returned in smb_errfile, along with an error
return. No remaining moves are attempted, and smb_count reflects the actual number of
files moved.

SMBmove Side Effects

Moves of multiple files to a single regular file result in the loss of all but the last file.

Conventions

• Access (see Section 432on page~.

• Filenames (see Section 3 5on page 15).

• Wldcards (see Section 36on page 17).

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 215

Chapter 15

Extended 20Protocol Additions and Modifications

This chapter documents the changes and additions to the extended 10 dialect that take effect
when the extended 20dialect is negotiated. These SMBs and the SMBtrans2 (refer to Chapter 16
on page 207) constitute the additions to the extended 10 dialect for the extended 20 dialect.
There is no affect on the SMBnegprot protocol for the extended 20 protocol. Refer to the
extended 10protocol description for details.

15.1 SMBsesssetupX Specification

SMBsesssetupX Detailed Description

This extended 20 protocol request is used to further set up the LMX session normally just
established via the SMBnegprot request/response. The SMBsesssetupX request serves one
additional purpose over the activities performed in the extended 10dialect. That purpose is to
allow the SMB redirector system to challenge the LMXserver with an encryption key. The LMX
server must use the encryption key to return a response. Based on the response value, the SMB
redirector can determine whether the LMX server is really the LMX server desired or an
imposter.

• User Identification

The actual semantics for this request are governed by the security mode of the LMX server.
See Section 33on page 12for a discussion of these modes.

In user -level security mode, the SMB redirector will establish a mapping between a particular
username on the LMXserver and a UID which the SMB redirector will use to represent that
user. A password may be sent by the SMB redirector to authenticate that the person using
the SMB redirector is indeed the username to be mapped to. Further, the password may be
encrypted to ensure security.

The LMXserver validates the name and password supplied and, if valid, it generates a UID
corresponding to the spedfied username. That actual UID will be sent in all subsequent
requests by the SMB redirector and used by the LMX server for access checks required by
requests.

The value of the UID is relative to an LMXsession; it is possible for the same UID value to
represent two different users on two different LMX sessions on the LMX server. The LMX
server must map the pair of <LMXsession ID, UID> to the different accounts. In share-level
security mode, the username and password are not used. The LMX server should use a
unique, reserved account and corresponding UID to perform access checks for all requests.

• SMB redirector Communications Parameters

The LMXserver, in its response to the SMBnegprot request, has set some parameters for the
communication it was expecting from the SMB redirector. In the SMBsesssetupX request, the
SMB redirector indicates the parameters for the communication it is expecting from the LMX
server. These values may be different; for example, the LMXserver may be able to receive a
maximum message size of lEK bytes, while the SMB redirector can only receive lK bytes.

Some LMX servers may need to renegotiate buffer sizes after the SMBsesssetupX exchange.
This renegotiation is available through the SMBtcon request, but not through SMBtconX.

Protocols for X/ Open PC Interworking: SMB, Version 2 197

Samsung - Exhibit 1014 - Page 216

SMBsesssetupX Specification Extended 20Protocol Additions and Modifications

SMBsesssetupX Deviations

None.

SMBsesssetupX Field Descriptions

From SMB redirector

Field Name Field Value

smb_com SMBsesssetu pX
smb_wct 10
smb_vwv[O] smb_com2
smb_vwv[1] smb_off2
smb_vwv[21 smb_bufsize
smb_vwv[31 smb_mpxmax
smb_vwv[4] smb_vc_num
smb_vwv[5G smb_sesskey
smb_vwv[71 smb_apasslen
smb_vwv[81 smb_encryptlen
smb_vwv[9] smb_encryptoff
smb_bcc minval=O
smb_buf1] smb_apasswd

smb_aname

To SMB redirector

Field Name Field Value

smb_com SMBsesssetu pX
smb_wct 3
smb_vwv[O] smb_com2
smb_vwv[1] smb_off2
smb_vwv[21 smb_action
smb_bcc Minimum= 0
smb_buf1] smb_encresp[]

smb_com2 Description can be found in Section 39on page 22

smb_off2 Description can be found in Section 39on page 22

smb_bufsize The size of the largest message the SMB redirector is willing to receive. It
must be true that smb_bufsize::::: smb_maxxmt (see Section 6 1on page~.

smb_mpxmax The maximum number of requests which the SMB redirector will have
outstanding on a single LMX session. It must be true that smb_mpxmax :::::
smb_maxmux (see Section 6 1on page~.

smb_ vc_num Permits multiple NetBIOS sessions to be assodated with a single LMXsession.
If zero (q, this NetBIOS session is the first or only NetBIOS session assodated
with the NetBIOS session being set up. If smb_ vc_num is zero (0 and there are
other previously established NetBIOS session still connected from this SMB
redirector, it is recommended that the LMXserver abort the previous NetBIOS
session and free up the resources held.

smb_sesskey A ::Zbit integer which identifies to which LMXsession this NetBIOS session is
assodated. Ignored when smb_vc_num is zero (Q. This value would be
obtained from the smb_sesskey field in the response to the SMBnegprot
assodated with the LMXsession this NetBIOS session is to be made a part of.

smb_apasslen Length of the smb_apasswd field.

smb_encryptlen The size of the encryption key used to challenge the LMXserver.

smb_encryptoff The byte offset from the start of the SMBheaderto the encryption key.

smb_encresp[] The LMX server response to the encryption key challenge from the SMB
redirector.

smb_apasswd A character string containing the password, possibly encrypted. Ignored by
an LMXserver in share-level security mode.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 217

Extended 20Protocol Additions and Modifications SMBsesssetupX Specification

smb_aname

smb_action

An ASCIIZ (not type 04) buffer containing the username to be assodated with
smb_uid and validated with smb_apasswd. Ignored by an LMXserver in share
level security mode. The length of this field is derived from the difference
between smb_bcc and smb_apasslen.

A bit-encoded field indicating the results of a successful LMXsession setup. If
bit Ois clear, everything went normally. If bit Ois set, the LMXsession was
setup but a default or guest account was used instead of an individual account
represented by the username provided. (An LMX server in share-level
security mode would set this bit.)

SMBsesssetupX Error Code Descriptions

CAE Code DOS Class DOS Code Description
- ERRSRV ERR error Internal LMXserver error.
- ERRSRV ERRbadpw Username/password pair was invalid.
- ERRSRV ERRtoomanyuids The LMXserver does not support this many

UIDs in one LMXsession.
- ERRSRV ERR error No SMBnegprot request has been issued on

this NetBIOS session.
- ERRSRV ERRnosupport This request cannot be chained to the

request which precedes it in this message.
- SUCCESS SUCCESS Everything worked, no problems.

SMBsesssetupX Preconditions

1 The process attempting to secure an LMX session must have established an LMX session
with the LMXserver and negotiated an extended dialect.

2 The username and password must both be valid instances of those types.

3 smb_com2must be a legal chained command.

4 There are many other preconditions based upon the SMBs that may be chained. These are
enumerated in the spedfications for those SMBs.

SMBsesssetupX Postconditions

1 If there are no errors the UID is valid to be used in future SMBs.

2 There are many other postconditions based upon the SMBs that may be chained. These are
enumerated in the spedfications for these SMBs.

SMBsesssetupX Side Effects

Conversion of paths to a canonical pathname is controlled by bit 4 of the smb_flg flag in the
header of this request (see Section 5 1 on page 37).

Conventions

• Opportunistic Locking (see Section 3 8 2on page 2Q.

• Chaining (see Section 3 9on page Z:).

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 218

SMBsesssetupX Specification Extended 20Protocol Additions and Modifications

The SMBs which may be chained after SMBsesssetupX are:

SMBchkpath SMBfunique SMBopen SMBsearch SMBtconX
SMBcopy SMBgetatr SMBopenX SMBsetatr SMBunlink
SMBcreate SMBmkdir SMBrename SMBsplopen SMBtrans
SMBdskattr SMBmknew SMBrmdir SMBsplretq NIL
SMBffirst SMBmv

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 219

Extended 20Protocol Additions and Modifications SMBcopy Specification

15.2 SMBcopy Specification

SMBcopy Detailed Description

The SMBcopy protocol for the extended 20 dialect is unchanged from the extended 10 dialect
except that the request may now be used to spedfy a copy of entire directory subtrees (tree
copy) on the LMXserver. The tree copy mode is selected by setting bit 5of the smb_flags field in
the SMBcopy request (reference bit 5in SMBcopy Field Descriptions on page 187). \\hen the
tree copy option is selected the destination must not be an existing file and the source mode
must be binary. A request with bit 5of the smb_flags field set and either bit Oar bit 3set is not
allowed and the LMXserver returns the error code <ERRDOS, ERRbadfile>. \\hen the tree copy
mode is selected the smb_ cct field of the response protocol is undefined.

Protocols for X/ Open PC Interworking: SMB, Version 2 201

Samsung - Exhibit 1014 - Page 220

SMBfindnclose Specification Extended 20Protocol Additions and Modifications

15.3 SMBfindnclose Specification

SMBfindnclose Detailed Description

The SMBfindndoseprotocol closes the assodation between a directory handle returned following
a resource monitor established using an SMBtrans2(FINDNOTIFYFIRSI) request to the LMX
server and the resulting system directory monitor. This request allows the LMX server to free
any resources held in support of the open handle.

SMBfindnclose Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBfindnclose smb_com SMBfindnclose
smb_wct 1 smb_wct 0
smb_vwv[O] smb_handle smb_bcc 0
smb_bcc 0 smb_bcc 0

smb_handle The directory handle assodated
SMBtrans2(TRANSA CT2_FIND NOTIFYFIRSI).

with a

SMBfindnclose Error CodeD escriptions

CAE Code DOS Class DOS Code Description
- ERRDOS ERRbadfid The SMB redirector has supplied an

directory handle.
- ERRSRV ERRinvnid TID spedfied in command is invalid.
- ERRSRV ERR error Other CAE error.
- SUCCESS SUCCESS Operation succeeded.

SMBfindnclose Preconditions

None.

SMBfindnclose Postconditions

previous

invalid

If the directory handle was valid, it is made invalid and resources used to support the directory
search operations have been freed.

SMBfindnclose Side Effects

None.

Conventions

None.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 221

Extended 20Protocol Additions and Modifications SMBfindclose Specification

15.4 SMBfindclose Specification

SMBfindclose Detailed Description

The SMBfindclose protocol closes the assodation between a search handle returned following a
successful SMBtrans2(TRANSACT2_FINDFIRSI) request to the LMX server and the resulting
system file search. This request allows the LMX server to free any resources held in support of
the open handle.

SMBfindclose Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBfindclose smb_com SMBfindclose
smb_wct 1 smb_wct 0
smb_vwv[O] smb_handle smb_bcc 0
smb_bcc 0 smb_bcc 0

smb_handle The directory handle assodated
SMBtrans2(TRANSA CT2_FIND NOTIFYFIRSI).

with a

SMBfindclose Error CodeD escriptions

CAE Code DOS Class DOS Code Description
- ERRDOS ERRbadfid The SMB redirector has supplied an

directory handle.
- ERRSRV ERRinvnid TID spedfied in command is invalid.
- ERRSRV ERR error Other CAE error.
- SUCCESS SUCCESS Operation succeeded.

SMBfindclose Preconditions

None.

SMBfindclose Postconditions

previous

invalid

If the directory handle was valid, it is made invalid and resources used to support the directory
search operations have been freed.

SMBfindclose Side Effects

None.

Conventions

None.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 222

SMBuloggoffX Specification Extended 20Protocol Additions and Modifications

15.5 SMBuloggoffX Specification

SMBuloggoffX Detailed Description

This protocol is used to logoff the user (identified by the UID value in smb_uid) previously
logged on via the SMBsesssetupX protocol.

The LMX server will remove this UID from its list of valid UIDs for this LMX session. Any
subsequent protocol containing this UID (in smb_uid) received on this LMX session will be
returned with an access error.

Another SMBsesssetupX must be sent in order to reenstate the user on the LMXsession.

LMXsession termination also causes the UIDs registered on the LMXsession to be invalidated.
\\hen the LMX session is reestablished, SMBsesssetupX request must again be used to validate
each user.

The only valid protocol that can be chained in an SMBuloggoflX is SMBsessetu pX.

SMBuloggoffX Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBuloggoflX smb_com SMBuloggoflX
smb_wct 2 smb_wct 2
smb_vwv[O] smb_com2 smb_vwv[O] smb_com2
smb_vwv[1] smb_off2 smb_vwv[1] smb_off2
smb_bcc 0 smb_bcc 0

smb_com2 The secondary command value.

smb_off2 Offset from start of the SMB header to the secondary command.

SMBuloggoffX Error CodeD escriptions

CAE Code DOS Class DOS Code
- ERRSRV ERRinvnid
- ERRSRV ERR error
- ERRSRV ERRbaduid

- SUCCESS SUCCESS

SMBuloggoffX Preconditions

None.

SMBuloggoffX Postconditions

Description

TID spedfied in command is invalid.

Other CAE error.
The UID given (smb_uid) is not known as a valid
ID on this LMXsession.

Operation succeeded.

If the user was previously logged on, his logon identity as spedfied in the SMBsesssetupX is
removed, but the LMXsession remains.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 223

Extended 20Protocol Additions and Modifications SMBuloggoffX Specification

SMBuloggoffX Side Effects

Another SMBsesssetupX must be sent to log the user into the LMXserver.

Conventions

None.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 224

Extended 20Protocol Additions and Modifications

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 225

Chapter 16

Extended 20Protocol SMBtrans2

The SMBtrans2 protocol is used to extend the original file-sharing protocols with extended
attribute and long filename support. An FID obtained from the new requests may be used in
previously defined SMB requests and vice versa.

The format of enhanced and new commands is defined commendng at the smb_wct field. All
messages will include the standard SMB header defined in Section 5 1 on page '31. \\hen an
error is encountered, an LMX server may choose to return only the header portion of the
response (i.e., smb_ wet and smb_bcc both contain zero).

161 SMBtrans2

16.1.1 Request Formats

smb_tpscnt

smb_tdscnt

Transaction SMB Request Formats

Primary Request Secondary Request

Field Name Field Value Field Name Field Value

smb_com SMBtrans2 smb_com SMBtrans2
smb_wct 14+-smb_suwcnt smb_wct 8
smb_vwv[O] smb_tpscnt smb_vwv[O] smb_tpscnt
smb_vwv[1] smb_tdscnt smb_vwv[1] smb_tdscnt
smb_vwv[21 smb_mprcnt smb_vwv[21 smb_pscnt
smb_vwv[31 smb_mdrcnt smb_vwv[31 smb_psoff
smb_vwv[4] smb_msrcnt smb_vwv[4] smb_psdisp
smb_vwv[51 smb_flags smb_vwv[51 smb_dscnt
smb_vwv[6 7] smb_timeout smb_vwv[61 smb_dsoff
smb_vwv[81 smb_rsvdl smb_vwv[l] smb_dsdisp
smb_vwv[9] smb_pscnt smb_vwv[81 smb_fid
smb_ vwv [10] smb_psoff smb_bcc
smb_ vwv [11] smb_dscnt smb_param
smb_ vwv [121 smb_dsoff smb_data
smb_ vwv [131 smb_suwcnt
smb_ vwv [14] smb_setup[]
smb_bcc
smb_buf1] smb_name

smb_param
smb_data

A 16bit unsigned integer containing the total number of parameter bytes
being sent. This value may be revised downward in any or all secondary
requests. The smallest value of smb_tpscnt sent during this transaction must
equal the sum of all the smb_pscnt fields in all requests sent during the
transaction.

A 16bit unsigned integer containing the total number of data bytes being sent.
This value may be revised downward in any or all secondary requests. The
smallest value of smb_tdscnt sent during this transaction must equal the sum
of all the smb_dscnt fields in all requests sent during the transaction.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 226

SMBtrans2

smb_mprcnt

smb_mdrcnt

smb_msrcnt

smb_flags

smb_timeout

smb_rsvdl

smb_pscnt

smb_psoff

smb_psdisp

smb_dscnt

smb_dsoff

smb_dsdisp

smb_fid

Extended 20Protocol SMBtrans2

A 16bit integer containing the maximum number of parameter bytes the SMB
redirector expects to be returned. The LMXserver may not exceed this limit in
its response.

A 16bit unsigned integer containing the maximum number of data bytes the
SMB redirector expects to be returned. The LMXserver may not exceed this
limit in its response.

A 16bit integer containing the maximum number of setup fields the SMB
redirector expects to be returned. The LMXserver may not exceed this limit in
its response. The value of smb_msrcnt must be less than or equal to 255and is
stored in the low-order byte of the field; the high-order byte is reserved and
must be zero.

A 16bit field containing flags altering the behaviour of the request. The flags
are:

BitO

Bit 1

Bits Z 15

If set, the TID on which this transaction was requested is closed
after the transaction is completed.

If set, the transaction is one way; that is, no final response should
be generated by the LMX server. An interim response, if
required by the flow of the transaction, should be produced
regardless of the setting of this bit.

Reserved; MBZ.

A ::Zbit integer spedfying the number of milliseconds to wait for completion
of the requested operation before causing a timeout. A value of zero (0
means no delay (that is, do not queue the request). A value of- 1 indicates to
wait forever. See Section 3 11on page 2S

A 16bit reserved field which must be zero.

A 16bit unsigned integer indicating the number of parameter bytes being sent
in this particular request; i.e., the size of smb_param.

A 16bit integer giving the offset, in bytes, from the start of the SMB header to
the beginning of the smb_param field. This permits smb_param to be preceded
in the request by pad bytes to result in better alignment of the buffer.

A 16bit integer giving the absolute displacement amongst all parameter bytes
for this transaction for the parameter bytes contained in this request. This is
used by the LMXserver to correctly assemble all the parameter bytes received
even if the requests were received out of sequence.

A 16bit unsigned integer indicating the number of data bytes being sent in
this particular request; i.e., the size of smb_data.

A 16bit integer giving the offset, in bytes, from the start of the SMB header to
the beginning of the smb_data field. This permits smb_data to be preceded in
the request by pad bytes to result in better alignment of the buffer.

A 16bit integer giving the displacement amongst all data bytes for this
transaction of the data bytes contained in this request. This is used by the
LMX server to correctly assemble all the data bytes received even if the
requests were received out of sequence.

A 16bit integer containing the FID for file-based requests. Otherwise the
value is Odftf.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 227

Extended 20Protocol SMBtrans2 SMBtrans2

smb_suwcnt

smb_setup[]

smb_bcc

smb_name

smb_param

smb_data

A 16bit integer containing the number of setup 16bit fields sent in the
primary request. This value must be less than or equal to 255and is stored in
the low-order byte of the 16bit field; the high-order value is reserved and
must be zero.

An array of 16bit fields of setup data.

Contains the total size in bytes of the data to follow, including any pad bytes
added for alignment. The length of this array is given by smb_swcnt and may
be zero.

A null-terminated ASCIIZ string containing the transaction name. No pad
bytes are permitted before this field; it must immediately follow the smb_bcc
field.

An array of bytes, beginning at smb_psoffbytes into the request and containing
smb_pscnt bytes. Padding may precede this field, as smb_psdisp points to its
beginning; for the same reason, smb_param is not required to precede smb_data
in each message.

An array of bytes, beginning at smb_dsoffbytes into the request and containing
smb_dscnt bytes. Padding may precede this field, as smb_dsdisp points to its
beginning; for the same reason, this field is not always required to follow
smb_param.

16.1.2 Response Format

Transaction SMB Response Formats

Interim Response Final Response

Field Name Field Value Field Name Field Value

smb_com SMBtrans2 smb_com SMBtrans2
smb_wct 0 smb_wct lOt-smb_suwcnt
smb_bcc 0 smb_vwv[O] smb_tprcnt

smb_vwv[1] smb_tdrcnt
smb_vwv[21 smb_rsvd
smb_vwv[31 smb_prcnt
smb_vwv[4] smb_proff
smb_vwv[51 smb_prdisp
smb_vwv[61 smb_drcnt
smb_vwv[71 smb_droff
smb_vwv[81 smb_drdisp
smb_vwv[9] smb_suwcnt
smb_ vwv [10-] smb_setup
smb_bcc

smb_param
smb_data

The meaning of the parameters is identical to the definitions above with the parameter names
changed; for example, smb_tprcnt is the total number of parameter bytes being returned, and is
used in the same way as smb_tpscnt in the request messages.

As was the case in the request messages, the ordering of smb_param and smb_data is not required,
since smb_prdisp and smb_drdisp are suffident to locate each correctly.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 228

SMBtrans2 Extended 20Protocol SMBtrans2

16.1.3 Transaction Flow

210

A small set of rules governs the flow of the various protocol elements making up a transaction,
including which request or response type to send at any particular time.

1 The SMB redirector sends the first (primary) request which identifies the total bytes
(parameters and data) which are to be sent, and contains the setup 16bit fields, and as
many of the parameter and data bytes as will fit in the maximum negotiated buffer size.
This request also identifies the maximum number of bytes (setup, parameters and data) the
LMX server may return when the transaction is completed. The parameter bytes are
immediately followed by the data bytes (the length fields identify the break point). If all
the bytes fit in the single buffer, skip to step 4

2 The LMX server responds with a single interim response meaning O.K., send the
remainder of the bytes, or (if error response) terminate the transaction.

3 The SMB redirector then sends a secondary request full of bytes to the LMX server. This
step is repeated until all bytes have been delivered to the LMXserver.

4 The LMXserver sets up and performs the transaction with the information provided.

5 Upon completion of the transaction, if bit 1 of smb_flag was not set in the primary request,
the LMXserver sends back up to the number of parameter and data bytes requested (or as
many as will fit in the negotiated buffer size). This step is repeated until all bytes requested
have been returned. Fewer than the requested number of bytes (from smb_mdrcnt and
smb_mprcnt) may be returned.

The flow of a transaction when the request parameters and data do not all fit in a single buffer is:

SMB redirector ---;,. SMBtrans2request (data) >--;;> LMXserver
SMB redirector ~ OK send remaining data ~ LMXserver
SMB redirector ---;,. SMBtrans2secondary request 1 (data) >--;;> LMXserver
SMB redirector ---;,. SMBtrans2secondary request 2 (data) >--;;> LMXserver
SMB redirector ---;,. SMBtrans2secondary request n (data) >--;;> LMXserver

(LMXserver sets up and performs the
SMBtrans2)

SMB redirector ~ SMBtrans2response 1 (data) ~ LMXserver
SMB redirector ~ SMBtrans2response 2 (data) ~ LMXserver
SMB redirector ~ SMBtrans2response n (data) ~ LMXserver

The flow for the Transaction protocol when the request parameters and data do all fit in a single
buffer is:

SMB redirector ---;,. SMBtrans2request (data) >--;;> LMXserver
(LMXserver sets up and performs the
SMBtrans2)

SMB redirector ~ SMBtrans2response 1 (data) ~ LMXserver
(only one if all data fit in buffer)

SMB redirector ~ SMBtrans2response 2 (data) ~ LMXserver
SMB redirector ~ SMBtrans2response n (data) ~ LMXserver

Note that the primary request through to the final response make up the complete protocol:
thus, the TID, PID, UID and MID are expected to remain constant and can be used by both the
LMX server and SMB redirector to route the individual messages of the protocol to the correct
process. Also, it is the responsibility of the LMXserver to assemble the multiple requests into
the final complete request to execute. Similarly, the SMB redirector will assemble the response
sequence.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 229

Extended 20Protocol SMBtrans2 SMBtrans2

The simplest form of an SMBtrans2is to send a single primary request and (optionally) receive a
single, final response.

16.1.4 Service

The SMBtrans2protocol allows transfer of parameter and data blocks greater than the maximum
negotiated buffer size between the SMB redirector and the LMXserver.

The SMBtrans2 command scope includes (but is not limited to) IOCTL device requests and file
system requests which require the transfer of an extended attribute list.

The SMBtrans2 protocol is used to transfer a request for any of a set of supported functions on
the LMXserver which may require the transfer of large data blocks. The function requested is
identified by the first 16bit field in the SMBtrans2 smb_setup[] field. Other function-spedfic
information may follow the function identifier in the smb_setup[] or in the smb_param fields. The
functions supported are not defined by the protocol, but by SMB redirector and LMX server
implementations. The protocol simply provides a means of delivering them and retrieving the
results.

The number of bytes needed in order to perform the SMBtrans2 request may be more than will fit
in the negotiated buffer size.

At the time of the request, the SMB redirector knows the number of parameter and data bytes
expected to be sent and passes this information to the LMXserver in the primary request fields
smb_tpscnt and smb_tdscnt. This may be reduced by lowering the total number of bytes expected
(smb_tpscnt and/or smb_tdscnt) in the secondary request.

Thus when the amount of parameter bytes received (the total of each smb_pscnt) equals the total
amount of parameter bytes expected (smallest smb_tpscnt), then the LMXserver has received all
the parameter bytes.

Likewise, when the amount of data bytes received (total of each smb_dscnt) equals the total
amount of data bytes expected (smallest smb_tdscnt), then the LMXserver has received all the
data bytes.

The parameter bytes should normally be sent first, followed by the data bytes. However, the
LMXserver knows where each begins and ends in each buffer by the offset fields (smb_psoff and
smb_dsoff) and the length fields (smb_pscnt and smb_dscnt). The displacement of the bytes is also
known (smb_psdisp and smb_dsdisp). Thus the LMXserver is able to reassemble the parameter
and data bytes regardless of the order sent by the SMB redirector.

If all parameter bytes and data bytes fit into a single buffer, then no secondary request is sent.

The SMB redirector knows the maximum amount of data and parameter bytes the LMX server
may return from smb_mprcnt and smb_mdrcnt of the request. The LMXserver informs the SMB
redirector of the actual amounts being returned in each buffer of the response in the fields
smb_tprcnt and smb_tdrcnt.

The LMXserver may reduce the expected bytes by lowering the total number of bytes expected
(smb_tprcnt and/or smb_tdrcnt) in any response.

\\hen the amount of parameter bytes received (total of each smb_prcnt) equals the total amount
of parameter bytes expected (smallest smb_tprcnt), then the SMB redirector has received all the
parameter bytes.

Likewise, when the amount of data bytes received (total of each smb_drcnt) equals the total
amount of data bytes expected (smallest smb_tdrcnt), then the SMB redirector has received all the
data bytes.

Protocols for X/ Open PC Interworking: SMB, Version 2 211

Samsung - Exhibit 1014 - Page 230

SMBtrans2 Extended 20Protocol SMBtrans2

The parameter bytes should normally be returned first, followed by the data bytes. However, the
SMB redirector knows where each begins and ends in each buffer by the offset fields (smb_proff
and smb_droff) and the length fields (smb_prcnt and smb_drcnt). The displacement of the bytes
relative to the start of each response is also known (smb_prdisp and smb_drdisp). Thus the SMB
redirector is able to reassemble the parameter and data bytes regardless of the order the
information is returned.

16.1.5 Extended Attribute

An overview of EAs was given in Section 43 7 on page 31 The extended 20SMB dialect allows
for the creation, viewing and manipulation of EAs. Support for EAs is optional and it is possible
for an LMX server to negotiate the extended 20 protocol dialect and not support EAs. In this
case, a null EA list is provided on all SMBtrans2 requests that return EAs and the error
<ERRDOS, ERROR_EAS_NOT_SUPPORTED> is returned.

A null EA list is a zero' ed FEA structure (defined below), or in other words, four zero bytes.

161.51 Errors Encountered VWJen Creating EAs

An LMXserver is not required to support EAs when the extended 20dialect is selected. If the
LMXserver does not support EAs, the error <ERRDOS, ERROR_EAS_NOT_SUPPORTED> will
be returned when the SMB redirector attempts to set EAson a file and a null EA list will be
returned when EAs are requested by the SMB redirector. In the case where EAs are supported,
when the LMXserver is attempting to store EAs sent during the creation of the file and it is not
possible to store the EAs due to memory restrictions or file system space, the error code
<ERRSRV, ERRerror> or the error code <ERRSRV, ERRnoresources> may be returned. In this
case, the creation of the file will fail and no FID will be returned to the SMB redirector.

16 1. 52 Encapsulation of EAs in the SMB Protocol

There are two forms of structures that may be returned when passing EAs in the SMB protocol.
The first is the full extended attribute structure, or FEA structure, and the second is a shorter
form for getting the extended attribute names available, or the GEA structure. The GEA
structure is used only in SMB requests. FEA structures are used in both SMB requests and
responses.

Extended attributes are carried in the SMB requests and responses in these FEA and GEA
structures. To contain multiple EAs a "list" structure is used. Both the FEA and GEA structures
are encapsulated in this list structure. The list structure is a ::Zbit integer size value followed by
the FEA or GEA structure. This size value includes its own field length and is the total length of
all contained structures in the list.

161.53 FEA Structure

212

The FEA structure contains the values for extended attributes (EAs) on a file. An extended
attribute is a "name","value" pair where the name is an ASCIIZ string and the value is an
unformatted binary area. It is up to the user application to impose format on the value
information. This structure is used to carry EAs inside the SMB protocol. \\hen the text below
references an EA list inside the protocol, this is the structure containing the user-defined EA.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 231

Extended 20Protocol SMBtrans2 SMBtrans2

The "name","value" pair is represented by the following structure:

Name Description

fEA A single byte that spedfies EA flags. The only flag
defined at this time is FEA_NEEDEA which is equal to
()(8) \\hen set to L the FEA_NEEDEA flag indicates
that EAs are needed on the file.

cbNameLen A single byte that spedfies the length of the EA name
not including the null-terminating character.

cbValueLen A 16bit unsigned integer spedfying the length of the EA
value.

cbName[] Zero-terminated string of cbNameLen+ 1 bytes. This
data immediately follows the cbValueLen field.

cbValue[] Variable number of EA value bytes. This data
immediately follows the cbName[] field.

The encapsulated FEA list as it is stored in the SMB protocol is illustrated below.

FEA Length
(~bit integer)

Flag
8bit

Name Length
8bit

Value Length
15bit

Null-terminated name

Value data

Flag
8bit

Name Length
8bit

Value Length
15bit

Null-terminated name

Value data

As can be seen above, a null FEA list has a length value of 8followed by a zero flags field, a zero
name length and a zero value length.

Protocols for X/ Open PC Interworking: SMB, Version 2 213

Samsung - Exhibit 1014 - Page 232

SMBtrans2 Extended 20Protocol SMBtrans2

161.54 GEA Structure

The GEA structure contains the names for EAson a file. An EA name is an ASCIIZ string.

The EA name is represented by the following structure:

Name Description

cbNameLen A single byte that spedfies the length of the EA name
not including the null-terminating character.

cbName[] The byte location of the name. This name immediately
follows the cbNameLen field.

The encapsulated GEA list is shown below as it is stored in the SMB protocol.

GEA Length (~bit integer)

Name Length
8bit

Null-terminated name

Name Length
8bit

Null-terminated name

16.1.6 Information Levels

Many of the extended 20 protocols have an information level passed as an argument. This
information level is described here. The information level controls the amount and type of
information on a file that is returned to the SMB redirector. The information level has the
following valid values and meanings:

1 DOS-compatible. This returns information in a manner consistant with DOS or the other
dialect levels. Spedfically, no extended attribute information is returned to the SMB
redirector.

2 This value indicates that the size of the complete extended attribute list (that is, name and
value pair) is to be returned to the SMB redirector in an EA encapsulating structure, but the
FEA list is not included. This is performed by including a null FEA list (that is, all sizes
zero) in the smb_data field of the response.

3 This indicates that the complete collection of FEA structures contained in an EA
encapsulating structure is to be returned to the SMB redirector. The FEA structures
returned are stored in the smb_data field of the SMB response.

16.1. 7 Defined SMBtrans2 Protocols

214

This section spedfies the defines used by the SMBtrans2protocol.

The following function codes are transferred in smb_setup[O] and are used by the LMXserver to
identify the spedfic function required.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 233

Extended 20Protocol SMBtrans2 SMBtrans2

Manifest Value Meaning

TRANSACT2_0PEN cxm Open or create a file.
TRANSACT2_FINDFIRST CkOl Find the first file in a directory.
TRANSACT2_FINDNEXT ()((]2 Continue search of a directory.
TRANSACT2_QFSINFO cxm Query information about a file system.
TRANSA CT2_SETFSINFO Ck04 Set information on a file system.
TRANSACT2_QPATHINFO Ck05 Query information about a spedal file or

directory.
TRANSACT2_SETPATHINFO cxm Set information on a spedal file or

directory.
TRANSA CT2_ QFILEINFO Ck07 Query information about a file.
TRANSA CT2_SETFILEINFO CkCB Set information on a file.
TRANSACT2_FINDNOTIFYFIRST CkCb Commence monitoring changes on a file

or directory.
TRANSACT2_FINDNOTIFYNEXT Cket Continue monitoring changes on a file

or directory.
TRANSACT2_MKDIR ()(Qi Create a directory.

Protocols for X/ Open PC Interworking: SMB, Version 2 215

Samsung - Exhibit 1014 - Page 234

TRANSACT2_0PEN Extended 20Protocol SMBtrans2

162 TRANSACT2_0PEN

216

The function code TRANSACT2_0PEN in smb_setup[O] in the primary SMBtrans2 requests
identifies a request to open or create a file with extended attributes.

Primary Request Format

smb_wct

smb_tpscnt

smb_tdscnt

smb_mprcnt

smb_mdrcnt

smb_msrcnt

smb_flags

smb_timeout

smb_rsvdl

smb_pscnt

smb_psoff

smb_dscnt

smb_dsoff

smb_suwcnt

smb_setup[O]

smb_bcc

smb_param []

Value= 15

Total number of parameter bytes being sent.

Total size of extended attribute list.

Maximum return parameter length.

Value= 0. No data returned.

Value= 0. No setup fields to return.

Bit Oand bit 1 must be zero.

Maximum milliseconds to wait for resource to open.

Reserved. Must be zero.

Value= tpscnt. Parameters must be in primary request.

Offset from the start of an SMB header to the parameter bytes.

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.

Value= 1

Value= TRANSACT2_0PEN.

Total bytes following including pad bytes.

The parameter block for the the TRANSACT2_0PEN function is the open
spedfic information in the following format:

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 235

Extended 20Protocol SMBtrans2 TRANSACT2_0PEN

smb_data[]

Location N arne

smb_param [O 1] open_flags2

smb_param [231 open_mode

smb_param [451 open_sattr

smb_param [6 71 open_attr

smb_param [8 11] open_ time

smb_param [12 131 open_ofun
smb_param [14 171 open_ size

Meaning

Bit 0 If set, return additional
information.

Bit 1 If set, set single user total file
lock (if only access).

Bit 2 If set, the LMX server should
notify the SMB redirector on
any action which can modify
the file (SMBunlink, SMBsetatr,
SMBmv, etc.). If not set, the
LMX server need only notify
the SMB redirector on another
open request.

Bit 3 If set, return total length of EAs
for the file.

File open mode. Reference Section 535
onpage44

The set of attributes that the file must
have in order to be found while
searching to see if it exists. Regardless
of the contents of this field, normal files
always match.
File attributes (for create). Reference
Section 533on page 43

Create time. Reference Section 531 on
page43

Open function.
Bytes to reserve on create or truncate.
This field is advisory only.

smb_param [1821] open_rsvd[51 Reserved. Must be zero.
smb_param [26231 open_pathname[] File pathname.

FEALISTstructure for the file opened.

Secondary Request Format

There may be zero or more of these.

smb_wct

smb_tpscnt

smb_tdscnt

smb_pscnt

smb_psoff

smb_psdisp

smb_dscnt

smb_dsoff

Value= 9.

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Value= 0. All parameters were in the primary request.

Value= 0. No parameters in secondary request.

Value= 0. No parameters in secondary request.

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.

Protocols for X/ Open PC Interworking: SMB, Version 2 217

Samsung - Exhibit 1014 - Page 236

TRANSACT2_0PEN Extended 20Protocol SMBtrans2

218

smb_dsdisp Byte displacement for these data bytes.

smb_fid Value= Odftf. No FID in this request.

smb_bcc Total bytes following including pad bytes.

smb_data [] Data bytes.

Response Format

smb_wct

smb_tprcnt

smb_tdrcnt

smb_prcnt

smb_proff

smb_prdisp

smb_drcnt

smb_droff

smb_drdisp

smb_suwcnt

smb_bcc

smb_param []

Value= 10.

Total parameter length retuned.

Value= 0. No data bytes.

Number of parameter bytes returned in this buffer.

Offset from the start of an SMB header to the parameter bytes.

Value= 0. Byte displacement for these parameter bytes

Value= 0. No data bytes.

Value= 0. No data bytes

Value= 0. No data bytes

Value= 0. No setup return fields.

Total bytes following including pad bytes.

The parameter block for the the TRANSACT2_0PEN function response is the
open-spedfic return information in the following format:

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 237

Extended 20Protocol SMBtrans2

Location

smb_param [O 1]
smb_param [231

Name
open_fid
+open_attribute

smb_param [4 71 +open_ time

smb_param [8 11] +open_ size

smb_param [12 131 +open_ access

smb_param [14 151 +open_ type

smb_param [16 171 +open_ state

smb_param [18 19] open_ action

Protocols for X/ Open PC Interworking: SMB, Version 2

TRANSACT2_0PEN

Meaning

FID.
Attributes of file or device. Reference
Section 533on page 43

Last modification time. Reference
Section 53 1on page 43

::Zbit integer spedfying the current file
size.

Access permissions actually allowed.
Reference Section 53 7on page 46

File type. Reference Section 536 on
page45
State of IPC device (for example, named
pipe). Reference X/Open CAE
Spedfication, IPC Mechanisms for SMB.

Bit 15 Blocking. Zero (0
indicates that reads/writes
block if no data is
available; 1 indicates that
reads/writes return
immediately if no data is
available.

Bit 14 Endpoint. Zero (0
indicates SMB redirector
end of a named pipe; 1
indicates the LMX server
end of a named pipe.

Bits 1011 Type of named pipe. m
indicates the named pipe
is a stream mode pipe; 01
indicates the named pipe
is a message mode pipe.

Bits 89 Read Mode. m indicates
to read the named pipe as
a stream mode named
pipe; 01 indicates to read
the named pipe as a
message mode named
pipe.

Action taken.

Bit 15 Lock Status. Set true only
if an opportunistic lock
was requested by the SMB
redirector and was granted
by the LMX server. This
bit should be false (0 if no
lock was requested, the

219

Samsung - Exhibit 1014 - Page 238

TRANSACT2_0PEN

Location Name

smb_param [:DZ31 open_fileid

Extended 20Protocol SMBtrans2

Meaning

Bits 0-1

lock could not be granted,
or the LMX server does
not support opportunistic
locking.

Open Action. The LMX
server should set this to
match the requested action
from the smb_ofun field:

1 The file existed and
was opened.

2 The file did not exist
and was therefore
created.

3 The file existed and
was truncated.

A unique number for this instance of the
file. Similar to a file node number. This
value is informational only. If the LMX
server does not support the value it may
be set to zero.

smb_param [24231 open_offerror 16bit integer offset into FEALIST data
of first error which occurred while
setting the extended attributes.

smb_param [1Z 131 ++open_EAlength 16bit integer spedfying the total EA
length for the opened file.

\\here:

+ items returned only if bit Oaf open_flags2is set in primary request

++ items returned only if bit 3of open_flags2is set in primary request

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 239

Extended 20Protocol SMBtrans2 TRANSA CT2_FIND FIRST

163 TRANSACT2_FINDFIRST
The function code TRANSACT2_FINDFIRSTin smb_setup[O] in the primary SMBtrans2 request
identifies a request to find the first file that matches the spedfied file spedfication.

Primary Request Format

smb_wct

smb_tpscnt

smb_tdscnt

smb_mprcnt

smb_mdrcnt

smb_msrcnt

smb_flags

smb_timeout

smb_rsvdl

smb_pscnt

smb_psoff

smb_dscnt

smb_dsoff

smb_suwcnt

smb_setup[O]

smb_bcc

smb_param []

Value= 15

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Maximum return parameter length.

Maximum return data length.

Value= 0. No setup fields to return.

Bit Oand bit 1 must be zero.

Value= 0. Not used for find first.

Reserved. Must be zero.

Value= smb_tpscnt. All parameters must be in primary request.

Offset from the start of an SMB header to the parameter bytes.

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.

Value= 1

Value= TRANSACT2_FINDFIRST.

Total bytes following including pad bytes.

The parameter block for the TRANSACT2_FINDFIRST function is the find
first-spedfic information in the following format:

Protocols for X/ Open PC Interworking: SMB, Version 2 221

Samsung - Exhibit 1014 - Page 240

TRANSA CT2_FINDFIRST Extended 20Protocol SMBtrans2

222

Location

smb_param [O 1]
smb_param [231
smb_param [34]

smb_param [561
smb_param [7' 10]
smb_param [11]

smb_param []

Name
fin dfirst_A ttribu te
fin dfirst_SearchCoun t
fin dfirst_flags

Meaning

Search attribute.
Number of entries to find.
Find flags:

Bit 0 If set, close search after this
request.

Bit 1 If set, close search if end of
search reached.

Bit 2 If set, the SMB redirector
requires resume key for
each entry found.

findfirst_FileinfoLevel Search level.
findfirst_rsvd
findfirst_FileName[]

smb_data[]

Reserved. Must be zero.
Beginning of name of the file to find.
Additional FileinfoLevel-dependent
match information. For a search
requiring extended attribute
matching the data buffer contains
the FEALIST data for the search.
This location follows after the
findfirst_FileName field.

Secondary Request Format

There may be zero or more of these.

smb_wct

smb_tpscnt

smb_tdscnt

smb_pscnt

smb_psoff

smb_psdisp

smb_dscnt

smb_dsoff

smb_dsdisp

smb_fid

smb_bcc

smb_fid

smb_data[]

Value= 9.

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Value= 0. All parameters in primary request.

Value= 0. No parameters in secondary request.

Value= 0. No parameters in secondary request.

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

Value= Odftf. No FID in this request.

Total bytes following including pad bytes.

Value= Odftf. No FID in this request.

Data bytes (size= value of smb_dscnt).

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 241

Extended 20Protocol SMBtrans2 TRANSA CT2_FIND FIRST

First Response Format

smb_wct

smb_tprcnt

smb_tdrcnt

smb_rsvd

smb_prcnt

smb_proff

smb_prdisp

smb_drcnt

smb_droff

smb_drdisp

smb_suwcnt

smb_bcc

smb_param []

smb_data[]

Value= 10.

Value= 10.

Total length of return data buffer.

Reserved. Mustbezero.

Number of parameter bytes returned in this buffer.

Offset from the start of an SMB header to the parameter bytes.

Value= 0. Byte displacement for parameter bytes.

Number of data bytes returned in this buffer.

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

Value= ONo setup return fields.

Total bytes following including pad bytes.

The parameter block for the TRANSACT2_FINDFIRSTfunction response is the
find first-spedfic return information in the following format:

Location

smb_param [q
smb_param [q
smb_param [q
smb_param [q
smb_param [q

N arne Meaning

Endfirst_dir_handle Directory search handle.
Endfirst_searchcount Number of matching entries found.
En dfirst_ eos End of search indicator.
En dfirst_ off error
Endfirst_lastname

Error offset if EA error.
If zero, the LMXserver does not require
Endnext_FileName[] in order to continue
search. If not zero, offset from start of
returned data to filename of last found
entry returned.

Return data bytes (size = value of smb_dscnt). The data block contains the
level-dependent information about the matches found in the search. If bit 2in
the Endfirst_flags is set, each returned file descriptor block will be proceeded
by a four-byte resume key.

Subsequent Response Format

smb_wct

smb_tprcnt

smb_tdrcnt

smb_prcnt

smb_proff

smb_prdisp

smb_drcnt

smb_droff

Value= 10.

Value= 8

Total length of return data buffer.

Value= 0.

Value= 0.

Value= 0.

Number of data bytes returned in this buffer.

Offset from the start of an SMB header to the data bytes.

Protocols for X/ Open PC Interworking: SMB, Version 2 223

Samsung - Exhibit 1014 - Page 242

TRANSA CT2_FINDFIRST Extended 20Protocol SMBtrans2

224

smb_drdisp

smb_suwcnt

smb_bcc

smb_data[]

Byte displacement for these data bytes.

Value= 0. No setup return fields.

Total bytes following including pad bytes.

Return data bytes (size = smb_dscnt). The data block contains the level
dependent information about the matches found in the search. If bit 2in the
Endfirst_flags is set, each returned file descriptor block will be proceeded by a
four-byte resume key.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 243

Extended 20Protocol SMBtrans2 TRANSACT2_FINDNEXT

164 TRANSACT2_FINDNEXT
The function code TRANSACT2_FINDNEXTin smb_setup[O] in the primary SMBtrans2 request
identifies a request to continue a file search started by a TRANSACT2_FINDFIRSTsearch.

Primary Request Format

smb_wct

smb_tpscnt

smb_tdscnt

smb_mprcnt

smb_mdrcnt

smb_msrcnt

smb_flags

smb_timeout

smb_rsvdl

smb_pscnt

smb_psoff

smb_dscnt

smb_dsoff

smb_suwcnt

smb_setup[O]

smb_bcc

smb_param []

Value= 15

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Maximum return parameter length.

Maximum return data length.

Value= 0. No setup fields to return.

Bit Oand bit 1 must be zero.

Value= 0. Not used for find next.

Reserved. Must be zero.

Value= smb_tpscnt. All parameters must be in primary request.

Offset from the start of an SMB header to the parameter bytes.

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.

Value= 1

Value= TRANSACT2_FINDNEXT.

Total bytes following including pad bytes.

The parameter block for the TRANSACT2_FINDNEXT function is the find
next-spedfic information in the following format:

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 244

TRANSACT2_FINDNEXT Extended 20Protocol SMBtrans2

Location

smb_param [1-21
smb_param [34]
smb_param [561
smb_param [7' 10]
smb_param [11- 121

smb_param [131

smb_param []

N arne Meaning

findnext_DirHandle Directory search handle.
findnext_SearchCount Number of entries to find.
findnext_FileinfoLevel Search level.
fin dn ext_ResumeKey
fin dn ext_flags

Server reserved resume key.
Find flags:

Bit 0 If set, close search after this
request.

Bit 1 If set, close search if end of
search reached.

Bit 2 If set, the SMB redirector
requires resume key for
each entry found. If clear,
rewind after search.

findnext_FileName[] Beginning of name of file to resume
search.

smb_data [] Additional FileinfoLevel-dependent
match information. For a search
requiring extended attribute
matching the data buffer contains
the FEALIST data for the seach.

Secondary Request Format

There may be zero or more of these.

smb_wct

smb_tpscnt

smb_tdscnt

smb_pscnt

smb_psoff

smb_psdisp

smb_dscnt

smb_dsoff

smb_dsdisp

smb_fid

smb_bcc

smb_data[]

Value= 9.

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Value= 0. All parameters in primary request.

Value= 0. No parameters in secondary request.

Value= 0. No parameters in secondary request.

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

Search handle returned from TRANSACT2_FINDFIRST.

Total bytes following including pad bytes.

Data bytes (size= smb_dscnt).

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 245

Extended 20Protocol SMBtrans2 TRANSACT2_FINDNEXT

First Response Format

smb_wct

smb_tprcnt

smb_tdrcnt

smb_rsvd

smb_prcnt

smb_proff

smb_prdisp

smb_drcnt

smb_droff

smb_drdisp

smb_suwcnt

smb_bcc

smb_param []

Value= 10.

Value= 6

Total length of return data buffer.

Reserved. Mustbezero.

Number of parameter bytes returned in this buffer.

Offset from the start of an SMB header to the parameter bytes.

Value= 0. Byte displacement for parameter bytes.

Number of data bytes returned in this buffer.

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

Value= 0. No setup return fields.

Total bytes following including pad bytes.

The parameter block for the TRANSACT2_FINDNEXTfunction response is the
find next-spedfic return information in the following format:

Location

smb_param [q
smb_param [1]
smb_param [~
smb_param [2J

Name Meaning

En dn ext_searchcoun t Number of matching entries found.

Endnext_eos End of search indicator.
En dn ext_ off error
Endfirst_lastname

Error offset if EA error.
If zero, LMX server does not require
Endnext_FileName[] in order to continue
search. If not zero, offset from start of
returned data to filename of last found
entry returned.

smb_param [41 smb_data [] Return data bytes (size = smb_dscnt).
The data block contains the level
dependent information about the
matches found in the search. If bit 2in
the Endfirst_flags is set, each returned file
descriptor block will be proceeded by a
four-byte resume key.

Subsequent Response Format

smb_wct

smb_tprcnt

smb_tdrcnt

smb_rsvd

smb_prcnt

smb_proff

smb_prdisp

Value= 10.

Value= 6

Total length of return data buffer.

Reserved. Mustbezero.

Value= 0.

Value= 0.

Value= 0.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 246

TRANSACT2_FINDNEXT Extended 20Protocol SMBtrans2

smb_drcnt

smb_droff

smb_drdisp

smb_suwcnt

smb_bcc

smb_data[]

Number of data bytes returned in this buffer.

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

Value= 0. No setup return fields.

Total bytes following including pad bytes.

Return data bytes (size = smb_dscnt). The data block contains the level
dependent information about the matches found in the search. If bit 2in the
Endfirst_flags is set, each returned file descriptor block will be proceeded by a
four-byte resume key.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 247

Extended 20Protocol SMBtrans2 TRANSACT2_ QFSINFO

HiS TRANSACT2_QFSINFO
The function code TRANSACT2_QFSINFO in smb_setup[O] in the primary SMBtrans2 requests
identifies a request to query information about a file system.

Primary Request Format

smb_wct

smb_tpscnt

smb_tdscnt

smb_mprcnt

smb_mdrcnt

smb_msrcnt

smb_flags

smb_timeout

smb_rsvdl

smb_pscnt

smb_psoff

smb_dscnt

smb_dsoff

smb_suwcnt

smb_setup[O]

smb_bcc

smb_param []

Response Format

smb_wct

smb_tprcnt

smb_tdrcnt

smb_rsvd

smb_prcnt

smb_proff

smb_prdisp

smb_drcnt

Value= 15

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Maximum return parameter length.

Maximum return data length.

Value= 0. No setup fields to return.

Bit Oand bit 1 must be zero.

Value= 0. Not used for SMBtrans2(TRANSA CT2_ QFSINFO).

Reserved. Must be zero.

Value= 2 Parameters are in primary request.

Offset from the start of an SMB header to the parameter bytes.

Value= 0. No data sent with SMBtrans2(TRANSA CT2_ QFSINFO).

Value= 0. No data sent with qfsinfo.

Value= 1

Value= TRANSACT2_QFSINFO.

Total bytes following including pad bytes.

The parameter block for the TRANSACT2_QFSINFO function is the qfsinfo
spedfic information in the following format:

Location N arne Meaning

smb_param [O 1] qfsinfo_FSinfoLevel Level of information required. Refer to
DosQFileinfo in the Microsoft OS/2
Programmer's Reference, Volume 4

Value= 10.

Value= 0.

Total length of return data buffer.

Reserved. Mustbezero.

Value= 0. No return parameter bytes for TRANSACT2_QFSINFO.

Offset from the start of an SMB header to the parameter bytes.

Value= 0. Byte displacement for parameter bytes.

Number of data bytes returned in this buffer.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 248

TRANSACT2_ QFSINFO Extended 20Protocol SMBtrans2

smb_droff

smb_drdisp

smb_suwcnt

smb_bcc

smb_data[]

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

Value= 0. No setup return fields.

Total bytes following including pad bytes.

Return data bytes (size = smb_dscnt). The data block contains the level
dependent information about the file system.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 249

Extended 20Protocol SMBtrans2 TRANSA CT2_SETFSINFO

166 TRANSACT2_SETFSINFO
The function code TRANSACT2_SETFSINFO in smb_setup[O] in the primary SMBtrans2requests
identifies a request to set information for a file system subtree.

Primary Request Format

smb_wct

smb_tpscnt

smb_tdscnt

smb_mprcnt

smb_mdrcnt

smb_msrcnt

smb_flags

smb_timeout

smb_rsvdl

smb_pscnt

smb_psoff

smb_dscnt

smb_dsoff

smb_suwcnt

smb_setup[O]

smb_bcc

smb_param []

smb_data[]

Value= 15

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Maximum return parameter length.

Value= 0. No data returned.

Value= 0. No setup fields to return.

Bit Oand bit 1 must be zero.

Value= 0. Not used for setfsinfo.

Reserved. Must be zero.

Value= 4 All parameters must be in primary request.

Offset from the start of an SMB header to the parameter bytes.

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.

Value= 1

Value= TRANSACT2_SETFSINFO.

Total bytes following including pad bytes.

The parameter block for the TRANSACT2_SETFSINFO function is the
setfsinfo-spedfic information in the following format:

Location N arne Meaning

smb_param [O 1] setfsinfo_FSinfoLevel Level of information provided. Refer to
DosQFileinfo in the Microsoft OS/2
Programmer's Reference, Volume 4

Level-dependent file system information.

Secondary Request Format

There may be zero or more of these.

smb_wct

smb_tpscnt

smb_tdscnt

smb_pscnt

smb_psoff

smb_psdisp

Value= 9.

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Value= 0. All parameters in primary request.

Value= 0. No parameters in secondary request.

Value= 0. No parameters in secondary request.

Protocols for X/ Open PC Interworking: SMB, Version 2 231

Samsung - Exhibit 1014 - Page 250

TRANSA CT2_SETFSINFO Extended 20Protocol SMBtrans2

smb_dscnt

smb_dsoff

smb_dsdisp

smb_fid

smb_bcc

smb_data[]

Response Format

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

Value= Ckffff. No FID in request.

Total bytes following including pad bytes.

Data bytes (size= smb_dscnt).

smb_ wet Value= 10.

smb_tprcnt Value= 0.

smb_tdrcnt

smb_rsvd

smb_prcnt

smb_proff

smb_prdisp

smb_drcnt

smb_droff

smb_drdisp

smb_suwcnt

smb_bcc

Value= 0. No data bytes.

Reserved. Mustbezero.

Value= 0. No return parameters for setfsinfo.

Offset from the start of an SMB header to the parameter bytes.

Value= 0. Byte displacement for parameter bytes.

Value= 0. No data bytes.

Value= 0. No data bytes.

Value= 0. No data bytes.

Value= 0. No setup return fields.

Value= 0.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 251

Extended 20Protocol SMBtrans2 TRANSACT2_ QPATHINFO

16 7 TRANSACT2_QPATHINFO
The function code TRANSACT2_QPATHINFO in smb_setup [O] in the primary SMBtrans2requests
identifies a request to query information about spedfic file or subdirectory.

Primary Request Format

smb_wct

smb_tpscnt

smb_tdscnt

smb_mprcnt

smb_mdrcnt

smb_msrcnt

smb_flags

smb_timeout

smb_rsvdl

smb_pscnt

smb_psoff

smb_dscnt

smb_dsoff

smb_suwcnt

smb_setup[O]

smb_bcc

smb_param []

smb_data[]

Value= 15

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Maximum return parameter length.

Maximum return data length.

Value= 0. No setup fields to return.

Bit Oand bit 1 must be zero.

Value= 0. Not used for qpathinfo.

Reserved. Must be zero.

Value= smb_tpscnt. All parameters must be in primary request.

Offset from the start of an SMB header to the parameter bytes.

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.

Value= 1

Value= TRANSACT2_QPATHINFO.

Total bytes following including pad bytes.

The parameter block for the TRANSACT2_QPATHINFO function is the
qpathinfo-spedfic information in the following format:

Location N arne Meaning

smb_param [O 1] qpathinfo_FSinfoLevel Level of information required. Refer
to DosQFileinfo in the Microsoft
OS/2 Programmer's Reference,
Volume4

smb_param [251 qpathinfo_rsvd Reserved. Must be zero.

smb_param [G qpathinfo_PathName[] File/directory name.

Additional FileinfoLevel-dependent information.

Secondary Request Format

There may be zero or more of these.

smb_wct

smb_tpscnt

smb_tdscnt

smb_pscnt

Value= 9.

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Value= 0. All parameters in primary request.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 252

TRANSACT2_ QPATHINFO Extended 20Protocol SMBtrans2

smb_psoff

smb_psdisp

smb_dscnt

smb_dsoff

smb_dsdisp

smb_fid

smb_bcc

smb_data[]

Value= 0. No parameters in secondary request.

Value= 0. No parameters in secondary request.

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

Value= Ckffff. No FID in request.

Total bytes following including pad bytes.

Data bytes (size= smb_dscnt).

First Response Format

smb_wct

smb_tprcnt

smb_tdrcnt

smb_rsvd

smb_prcnt

smb_proff

smb_prdisp

smb_drcnt

smb_droff

smb_drdisp

smb_suwcnt

smb_bcc

smb_param []

smb_data[]

Value= 10.

Value= 2

Total length of return data buffer.

Reserved. Mustbezero.

Value= 2 Parameter bytes returned for TRANSACT2_QFSINFO.

Offset from the start of an SMB header to the parameter bytes.

Value= 0. Byte displacement for parameter bytes.

Number of data bytes returned in this buffer.

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

Value= 0. No set up return fields.

Total bytes following including pad bytes.

The parameter block for the TRANSACT2_QPATHINFO response is the
qpathinfo-spedfic return information in the following format:

Location N arne Meaning

smb_param [O 1] qpathinfo_offerror Error offset ifEA error.

Return data bytes (size= smb_dscnt). The data block contains the requested
level-dependent information about the path.

Subsequent Response Format

smb_wct

smb_tprcnt

smb_tdrcnt

smb_rsvd

smb_prcnt

smb_proff

smb_prdisp

Value= 10.

Value= 2

Total length of return data buffer.

Reserved. Mustbezero.

Value= 0.

Value= 0.

Value= 0.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 253

Extended 20Protocol SMBtrans2 TRANSACT2_ QPATHINFO

smb_drcnt

smb_droff

smb_drdisp

smb_suwcnt

smb_bcc

smb_data[]

Number of data bytes returned in this buffer.

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

Value= 0. No set up return fields.

Total bytes following including pad bytes.

Return data bytes (size= smb_dscnt). The data block contains the requested
level-dependent information about the path.

Protocols for X/ Open PC Interworking: SMB, Version 2 235

Samsung - Exhibit 1014 - Page 254

TRANSACT2_SETPATHINFO Extended 20Protocol SMBtrans2

Hi8 TRANSACT2_SETPATHINFO
The function code TRANSACT2_SETPATHINFO in smb_setup[O] in the primary SMBtrans2
requests identifies a request to set information for a file or directory.

Primary Request Format

smb_wct

smb_tpscnt

smb_tdscnt

smb_mprcnt

smb_mdrcnt

smb_msrcnt

smb_flags

smb_timeout

smb_rsvdl

smb_pscnt

smb_psoff

smb_dscnt

smb_dsoff

smb_suwcnt

smb_setup[O]

smb_bcc

smb_param []

smb_data[]

Value= 15

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Maximum return parameter length.

Value= 0. No data returned.

Value= 0. No setup fields to return.

Bit Oand bit 1 must be zero.

Value= 0. Not used for setpathinfo.

Reserved. Must be zero.

Value= smb_tpscnt. All parameters must be in primary request.

Offset from the start of an SMB header to the parameter bytes.

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.

Value= 1

Value= TRANSACT2_SETPATHINFO.

Total bytes following including pad bytes.

The parameter block for the TRANSACT2_SETPATHINFO function is the
setpathinfo-spedfic information in the following format:

Location

smb_param [O 1]
smb_param [251
smb_param [G

Name

setpathinfo_PathinfoLevel
setpathinfo_rsvd
setpathinfo_pathname[]

Meaning

Information level supplied.
Reserved. Must be zero.
Pathname to set information on.

Additional FileinfoLevel-dependent information.

Secondary Request Format

There may be zero or more of these.

smb_wct

smb_tpscnt

smb_tdscnt

smb_pscnt

smb_psoff

smb_psdisp

Value= 9.

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Value= 0. All parameters in primary request.

Value= 0. No parameters in secondary request.

Value= 0. No parameters in secondary request.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 255

Extended 20Protocol SMBtrans2 TRANSACT2_SETPATHINFO

smb_dscnt

smb_dsoff

smb_dsdisp

smb_fid

smb_bcc

smb_data[]

Response Format

smb_wct

smb_tprcnt

smb_tdrcnt

smb_rsvd

smb_prcnt

smb_proff

smb_prdisp

smb_drcnt

smb_droff

smb_drdisp

smb_suwcnt

smb_bcc

smb_param []

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

Value= Odftf. No FID in this request.

Total bytes following including pad bytes.

Data bytes (size= smb_dscnt).

Value= 10.

Value= 2

Value= 0. No data bytes.

Reserved. Mustbezero.

Value= 2 Parameter bytes being returned.

Offset from the start of an SMB header to the parameter bytes.

Value= 0. Byte displacement for parameter bytes.

Value= 0. No data bytes.

Value= 0. No data bytes.

Value= 0. No data bytes.

Value= 0. No set up return fields.

Total bytes following including pad bytes.

The parameter block for the TRANSACT2_SETPATHINFO function response is
the setpathinfo-spedfic return information in the following format:

Location N arne Meaning

smb_param [O 1] setpathinfo_offerror Offset into FEALIST data of first error
which occurred while setting the
extended attributes.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 256

TRANSA CT2_ QFILEINFO Extended 20Protocol SMBtrans2

169 TRANSACT2_QFILEINFO
The function code TRANSACT2_QFILEINFOin smb_setup[O] in the primary SMBtrans2requests
identifies a request to query information about a spedfic file.

Primary Request Format

smb_wct

smb_tpscnt

smb_tdscnt

smb_mprcnt

smb_mdrcnt

smb_msrcnt

smb_flags

smb_timeout

smb_rsvdl

smb_pscnt

smb_psoff

smb_dscnt

smb_dsoff

smb_suwcnt

smb_setup[O]

smb_bcc

smb_param []

smb_data[]

Value= 15

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Maximum return parameter length.

Maximum return data length.

Value= 0. No setup fields to return

Bit Oand bit 1 must be zero.

Value= 0. Not used for qfileinfo.

Reserved. Must be zero.

Value= 4All parameters are in primary request.

Offset from the start of an SMB header to the parameter bytes.

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.

Value= 1

Value= TRANSACT2_QFILEINFO.

Total bytes following including pad bytes.

The parameter block for the TRANSACT2_QFILEINFO function is the
qfileinfo-spedfic information in the following format:

Location N arne

smb_param [O 1] qfileinfo_FileHandle
smb_param [231 qfileinfo_FileinfoLevel

Meaning

FID.
Level of information required. Refer
to DosQFileinfo in the Microsoft
OS/2 Programmer's Reference,
Volume4

Additional FileinfoLevel-dependent information.

Secondary Request Format

There may be zero or more of these.

smb_wct

smb_tpscnt

smb_tdscnt

smb_pscnt

smb_psoff

Value= 9.

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Value= 0.

Value= 0.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 257

Extended 20Protocol SMBtrans2 TRANSA CT2_ QFILEINFO

smb_psdisp

smb_dscnt

smb_dsoff

smb_dsdisp

smb_fid

smb_bcc

smb_data[]

Value= 0.

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

TheFID.

Total bytes following including pad bytes.

Data bytes (size= smb_dscnt).

First Response Format

smb_wct

smb_tprcnt

smb_tdrcnt

smb_rsvd

smb_prcnt

smb_proff

smb_prdisp

smb_drcnt

smb_droff

smb_drdisp

smb_suwcnt

smb_bcc

smb_param []

smb_data[]

Value= 10.

Value= 2

Total length of return data buffer.

Reserved. Mustbezero.

Value= 2 No parameter bytes returned for qfileinfo.

Offset from the start of an SMB header to the parameter bytes.

Value= 0. Byte displacement for these parameter bytes.

Number of data bytes returned in this buffer.

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

Value= 0. No set up return fields.

Total bytes following including pad bytes.

The parameter block for the TRANSACT2_QFILEINFO response is the
qfileinfo-spedfic return information in the following format:

Location N arne Meaning

smb_param [O 1] qfileinfo_offerror Error offset ifEA error.

Return data bytes (size= smb_dscnt). The data block contains the requested
level-dependent information about the file.

Subsequent Response Format

smb_wct

smb_tprcnt

smb_tdrcnt

smb_rsvd

smb_prcnt

smb_proff

smb_prdisp

smb_drcnt

Value= 10.

Value= 2

Total length of return data buffer.

Reserved. Mustbezero.

Value= 0.

Value= 0.

Value= 0.

Number of data bytes returned in this buffer.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 258

TRANSA CT2_ QFILEINFO Extended 20Protocol SMBtrans2

24)

smb_droff

smb_drdisp

smb_suwcnt

smb_bcc

smb_data[]

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

Value= 0. No set up return fields.

Total bytes following including pad bytes.

Return data bytes (size= smb_dscnt). The data block contains the requested
level-dependent information about the file.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 259

Extended 20Protocol SMBtrans2 TRANSA CT2_SETFILEINFO

1610 TRANSACT2_SETFILEINFO
The function code TRANSACT2_SETFILEINFO in smb_setup[O] in the primary SMBtrans2
requests identifies a request to set information for a spedfic file.

Primary Request Format

smb_wct

smb_tpscnt

smb_tdscnt

smb_mprcnt

smb_mdrcnt

smb_msrcnt

smb_flags

smb_timeout

smb_rsvdl

smb_pscnt

smb_psoff

smb_dscnt

smb_dsoff

smb_suwcnt

smb_setup[O]

smb_bcc

smb_param []

smb_data[]

Value= 15

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Maximum return parameter length.

Value= 0. No data returned.

Value= 0. No setup fields to return.

Bit Oand bit 1 must be zero.

Value= 0. Not used for setfileinfo.

Reserved. Must be zero.

Value= 6 Parameters must be in primary request.

Offset from the start of an SMB header to the parameter bytes.

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.

Value= 1

Value= TRANSACT2_SETFILEINFO.

Total bytes following including pad bytes.

The parameter block for the TRANSACT2_SETFILEINFO function is the
setfileinfo-spedfic information in the following format:

Location N arne

smb_param [O 1] setfileinfo_FileHandle
smb_param [231 setfileinfo_FileinfoLevel

smb_param [451 setfileinfo_IOFlag

Meaning

FID.
Level of information required. Refer
to DosQFileinfo in the Microsoft
OS/2 Programmer's Reference,
Volume4

Flag field:

Ckffi10 Witethrough.

Cka:ID No cache.

Additional FileinfoLevel-dependent information. For level
contains the FEALIST structure to set for this file.

2 smb_data[]

Protocols for X/ Open PC Interworking: SMB, Version 2 241

Samsung - Exhibit 1014 - Page 260

TRANSA CT2_SETFILEINFO Extended 20Protocol SMBtrans2

Secondary Request Format

There may be zero or more of these.

smb_wct

smb_tpscnt

smb_tdscnt

smb_pscnt

smb_psoff

smb_psdisp

smb_dscnt

smb_dsoff

smb_dsdisp

smb_fid

smb_bcc

smb_data[]

Response Format

smb_wct

smb_tprcnt

smb_tdrcnt

smb_rsvd

smb_prcnt

smb_proff

smb_prdisp

smb_drcnt

smb_droff

smb_drdisp

smb_suwcnt

smb_bcc

smb_param []

Value= 9.

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Value= 0.

Value= 0. No parameters in secondary request.

Value= 0.

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

TheFID.

Total bytes following including pad bytes.

Data bytes (size= smb_dscnt).

Value= 10.

Value= 2

Value= 0. No data bytes.

Reserved. Mustbezero.

Value= 2 Parameter bytes being returned.

Offset from the start of an SMB header to the parameter bytes.

Value= 0. Byte displacement for these parameter bytes.

Value= 0. No data bytes.

Value= 0. No data bytes.

Value= 0. No data bytes.

Value= 0. No set up return fields.

Total bytes following including pad bytes.

The parameter block for the TRANSACT2_SETFILEINFO function response is
the setfileinfo-spedfic return information in the following format:

Location N arne Meaning

smb_param [O 1] setfileinfo_offerror Offset into FEALIST data of first error
which occurred while setting the
extended attributes.

242 X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 261

Extended 20Protocol SMBtrans2 TRANSA CT2_FIND NOTIFYFIRST

Hill TRANSACT2_FINDNOTIFYFIRST
The function code TRANSACT2_FINDNOTIFYFIRSTin smb_setup[O] in the primary SMBtrans2
request identifies a request to commence monitoring changes to a spedfic file or directory.

Primary Request Format

smb_wct

smb_tpscnt

smb_tdscnt

smb_mprcnt

smb_mdrcnt

smb_msrcnt

smb_flags

smb_timeout

smb_rsvdl

smb_pscnt

smb_psoff

smb_dscnt

smb_dsoff

smb_suwcnt

Value= 15

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Maximum return parameter length.

Maximum return data length.

Value= 0. No setup fields to return.

Bit Oand bit 1 must be zero.

Spedfies duration to wait for changes.

Reserved. Must be zero.

Value= tpscnt. All parameters must be in primary request.

Offset from the start of an SMB header to the parameter bytes.

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.

Value= 1

Value= TRANSACT2_FINDNOTIFYFIRST.

Total bytes following including pad bytes.

smb_setup[O]

smb_bcc

smb_param [] The parameter block for the TRANSACT2_FINDNOTIFYFIRSTfunction is the
find first-spedfic information in the following format:

smb_data[]

Location

smb_param [O 1]
smb_param [231
smb_param [451
smb_param [69]
smb_param [10]

Name Meaning

En dnfirst_A ttribu te Search attribute.
Endnfirst_ ChangeCount Number of changes to wait for.
Endnfirst_Level Information level required.
Endfirst_rsvd Reserved. Must be zero.
Endnfirst_PathSpec[] Path to monitor.

Additional level-dependent match data.

Secondary Request Format

There may be zero or more of these.

smb_wct

smb_tpscnt

smb_tdscnt

smb_pscnt

smb_psoff

Value= 9.

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Value= 0. All parameters in primary request.

Value= 0. No parameters in secondary request.

Protocols for X/ Open PC Interworking: SMB, Version 2 243

Samsung - Exhibit 1014 - Page 262

TRANSA CT2_FINDNOTIFYFIRST Extended 20Protocol SMBtrans2

244

smb_psdisp

smb_dscnt

smb_dsoff

smb_dsdisp

smb_fid

smb_bcc

smb_data[]

Value= 0. No parameters in secondary request.

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

Value= Ckffff. No FID in this request.

Total bytes following including pad bytes.

Data bytes (size= smb_dscnt).

First Response Format

smb_wct

smb_tprcnt

smb_tdrcnt

smb_rsvd

smb_prcnt

smb_proff

smb_prdisp

smb_drcnt

smb_droff

smb_drdisp

smb_suwcnt

smb_bcc

smb_param []

smb_data[]

Value= 10.

Value= 6

Total length of return data buffer.

Reserved. Mustbezero.

Number of parameter bytes returned in this buffer.

Offset from the start of an SMB header to the parameter bytes.

Value= 0. Byte displacement for these parameter bytes.

Number of data bytes returned in this buffer.

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

Value= 0. No set up return fields.

Total bytes following including pad bytes.

The parameter block for the TRANSACT2_FINDNOTIFYFIRST function
response is the find first-spedfic return information in the following format:

Location Name Meaning

smb_param [O 1] findnfirst_handle Monitor handle.
smb_param [231 findnfirst_changecount Number of changes which occurred

within timeout.
smb_param [451 findnfirst_offerror Error offset if EA error.

Data bytes (size = smb_dscnt). The data block contains the level-dependent
information about the changes which occurred.

Subsequent Response Format

smb_wct

smb_tprcnt

smb_tdrcnt

smb_rsvd

smb_prcnt

smb_proff

Value= 10.

Value= 6

Total length of return data buffer.

Reserved. Mustbezero.

Value= 0.

Value= 0.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 263

Extended 20Protocol SMBtrans2 TRANSA CT2_FIND NOTIFYFIRST

smb_prdisp

smb_drcnt

smb_droff

smb_drdisp

smb_suwcnt

smb_bcc

smb_data[]

Value= 0.

Number of data bytes returned in this buffer.

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

Value= 0. No set up return fields.

Total bytes following including pad bytes.

Data bytes (size = smb_dscnt). The data block contains the level-dependent
information about the changes which occurred.

Protocols for X/ Open PC Interworking: SMB, Version 2 245

Samsung - Exhibit 1014 - Page 264

TRANSACT2_FINDNOTIFYNEXT Extended 20Protocol SMBtrans2

1612 TRANSACT2_FINDNOTIFYNEXT

246

The function code TRANSACT2_FINDNOTIFYNEXTin smb_setup[O] in the primary SMBtrans2
request identifies a request to continue monitoring changes to a file or directory spedfied by a
TRANSACT_FINDNOTIFYFIRSTrequest.

Primary Request Format

smb_wct

smb_tpscnt

smb_tdscnt

smb_mprcnt

smb_mdrcnt

smb_msrcnt

smb_flags

smb_timeout

smb_rsvdl

smb_pscnt

smb_psoff

smb_dscnt

smb_dsoff

smb_suwcnt

smb_setup[O]

smb_bcc

smb_param []

smb_data[]

Value= 15

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Maximum return parameter length.

Maximum return data length.

Value= 0. No setup fields to return.

Bit Oand bit 1 must be zero.

Duration of monitor period.

Reserved. Must be zero.

Value= 0. All parameters in primary request.

Offset from the start of an SMB header to the parameter bytes.

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.

Value= 1

Value= TRANSACT2_FINDNOTIFYNEXT.

Total bytes following including pad bytes.

The parameter block for the TRANSACT2_FINDNOTIFYNEXTfunction is the
find next-spedfic information in the following format:

Location N arne

smb_param [O 1] Endnnext_DirHandle
smb_param [231 Endnnext_ ChangeCount

Meaning

Directory monitor handle.
Number of changes to wait for.

Data bytes (size = smb_dscnt). Additional level-dependent monitor
information.

Secondary Request Format

There may be zero or more of these.

smb_wct

smb_tpscnt

smb_tdscnt

smb_pscnt

smb_psoff

smb_psdisp

Value= 9.

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Value= 0. All parameters in primary request.

Value= 0. No parameters in secondary request.

Value= 0. No parameters in secondary request.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 265

Extended 20Protocol SMBtrans2 TRANSACT2_FINDNOTIFYNEXT

smb_dscnt

smb_dsoff

smb_dsdisp

smb_fid

smb_bcc

smb_data[]

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

Search handle.

Total bytes following including pad bytes.

Data bytes (size= smb_dscnt).

First Response Format

smb_wct

smb_tprcnt

smb_tdrcnt

smb_rsvd

smb_prcnt

smb_proff

smb_prdisp

smb_drcnt

smb_droff

smb_drdisp

smb_suwcnt

smb_bcc

smb_param []

smb_data[]

Value= 10.

Value= 4

Total length of return data buffer.

Reserved. Mustbezero.

Number of parameter bytes returned in this buffer.

Offset from the start of an SMB header to the parameter bytes.

Value= 0. Byte displacement for these parameter bytes.

Number of data bytes returned in this buffer.

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

Value= 0. No set up return fields.

Total bytes following including pad bytes.

The parameter block for the TRANSACT2_FINDNOTIFYNEXT function
response is the find notify next-specific return information in the following
format:

Location N arne Meaning

smb_param [O 1] findnnext_changecount Number of changes during the
monitor period.

smb_param [231 findnnext_offerror Error offset if EA error.

Data bytes (size = smb_dscnt). The data block contains the level-dependent
information about the changes which occurred.

Subsequent Response Format

smb_wct

smb_tprcnt

smb_tdrcnt

smb_rsvd

smb_prcnt

smb_proff

smb_prdisp

Value= 10.

Value= 4

Total length of return data buffer.

Reserved. Mustbezero.

Value= 0.

Value= 0.

Value= 0.

Protocols for X/ Open PC Interworking: SMB, Version 2 247

Samsung - Exhibit 1014 - Page 266

TRANSACT2_FINDNOTIFYNEXT Extended 20Protocol SMBtrans2

248

smb_drcnt

smb_droff

smb_drdisp

smb_suwcnt

smb_bcc

smb_data[]

Number of data bytes returned in this buffer.

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

Value= 0. No set up return fields.

Total bytes following including pad bytes.

Data bytes (size = smb_dscnt). The data block contains the level-dependent
information about the changes which occurred.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 267

Extended 20Protocol SMBtrans2 TRANSACT2_MKDIR

1613 TRANSACT2_MKDIR
The function code TRANSACT2_MKDIR in smb_setup[O] in the primary SMBtrans2 requests
identifies a request to create a directory with extended attributes.

Primary Request Format

smb_wct

smb_tpscnt

smb_tdscnt

smb_mprcnt

smb_mdrcnt

smb_msrcnt

smb_flags

smb_timeout

smb_rsvdl

smb_pscnt

smb_psoff

smb_dscnt

smb_dsoff

smb_suwcnt

smb_setup[O]

smb_bcc

smb_param []

smb_data[]

Value= 15

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Maximum return parameter length.

Value= 0. No data returned.

Value= 0. No setup fields to return.

Bit Oand bit 1 must be zero.

Value= 0.

Reserved. Must be zero.

Value= 0. All parameters in primary request.

Offset from the start of an SMB header to the parameter bytes.

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.

Value= 1

Value= TRANSACT2_MKDIR.

Total bytes following including pad bytes.

The parameter block for the TRANSACT2_MKDIR function is the mkdir
spedfic information in the following format:

Location N arne Meaning

smb_param [031 mkdir_rsvd Reserved. Must be zero.
smb_param [41 mkdir_dirname[] Beginning of directory name.

Data bytes (size = smb_dscnt). FEALIST structure for the directory to be
created.

Secondary Request Format

There may be zero or more of these.

smb_wct

smb_tpscnt

smb_tdscnt

smb_pscnt

smb_psoff

smb_psdisp

Value= 9.

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Value= 0. All parameters in primary request.

Value= 0. No parameters in secondary request.

Value= 0. No parameters in secondary request.

Protocols for X/ Open PC Interworking: SMB, Version 2 249

Samsung - Exhibit 1014 - Page 268

TRANSACT2_MKDIR Extended 20Protocol SMBtrans2

smb_dscnt Number of data bytes being sent in this buffer.

smb_dsoff Offset from the start of an SMB header to the data bytes.

smb_dsdisp Byte displacement for these data bytes.

smb_fid Value= Odftf. No FID in this request.

smb_bcc Total bytes following including pad bytes.

smb_data [] Data bytes (size= smb_dscnt).

Response Format

smb_wct

smb_tprcnt

smb_tdrcnt

smb_rsvd

smb_prcnt

smb_proff

smb_prdisp

smb_bcc

smb_param []

Value= 10.

Value= 2

Value= 0. No data bytes.

Reserved. Mustbezero.

Value= 2 Parameter bytes being returned.

Offset from the start of an SMB header to the parameter bytes.

Value= 0. Byte displacement for these parameter bytes.

Total bytes following including pad bytes.

The parameter block for the TRANSACT2_MKDIR function response is the
mkdir-spedfic return information in the following format:

Location N arne Meaning

smb_param [O 1] mkdir_offerror Offset into FEALIST data of first error
which occurred while setting the
extended attributes.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 269

Appendix A

SMB Transmission Analysis

A.l Introduction
This appendix describes the mapping between DOS and OS/2 system calls on an SMB
redirector, and the assodated SMB requests sent from the SMB redirector to an LMXserver. The
DOS SMB redirector is assumed to be using the core SMB protocols, and the OS/2 SMB
redirector is assumed to be using the LAN Manager extended SMB protocols. \\trile an OS/2
SMB redirector will use core SMB requests to communicate with a core LMXserver, and a DOS
LAN Manager client will use extended SMB requests to communicate with an OS/2server, these
situations will not be considered here.

The mappings given here do not completely describe the behaviour of all SMB redirectors; they
do not take into account various optimisations which SMB redirectors may do which will result
in behaviour which differs from that described here. In particular, the extended SMB protocol
contains a number of fadlities which allow a redirector to improve performance. These include:
SMB chaining, opportunistic locking, caching and various spedalised SMB requests, such as
Read Block Multiplex, Wite Block Multiplex, Read Block Raw and Wite Block Raw. Redirectors
which make use of these fadlities may not behave exactly as described here.

It should also be noted that the OS/2 SMB redirector and file system make extensive use of
internal buffers and heuristics that make it difficult to determine an exact mapping between
OS/2 API calls and SMB emissions. The listed API calls give an indication of which SMBs are
sent when invoked, and where possible, an explanation is given regarding any spedal
drcumstances.

DOS and OS/2system calls which are not listed here will not normally result in SMB requests
being transmitted.

Protocols for X/ Open PC Interworking: SMB, Version 2 251

Samsung - Exhibit 1014 - Page 270

DOS Functions SMB Transmission Analysis

A .2 D 0 S Functions

Function Number DOS Function

cxm Terminate Programme
Ck05 Print Character
()(Qi Reset Disk
ex a Open File (FCB II 0)
Ck 10 Close File (FCB II 0)
Ckll Search For First Entry
Ck12 Search For Next Entry
Ck 13 Delete File (FCB II 0)
Ck 14 Sequential Read (FCB II 0)
Ck 15 Sequential Wite (FCBIIO)
Ck 16 Create File (FCB II 0)
Ck 17 Rename File (FCB II 0)
Cklb Get Default Drive Data
Ck 1c Get Drive Data
Ck21 Random Read (FCB II 0)
CkZZ Random Wite (FCBIIO)
CkZ3 Get File Size (FCB II 0)
Ck27 Random Block Read (FCB II 0)
Ck28 Random Block Wite (FCBIIO)
CkJ3 Get Disk Free Space
()(3::) Create Directory
Ck31 Remove Directory
Ck3J Change Current Directory
Ck3: Create File Handle
Ck3:1 Open File Handle
Ck2e Close File Handle
CkJ' Read Via File Handle
()(4) Wite Via File Handle
Ck41 Delete Directory Entry
Ck42 Move File Pointer
Ck43 Set/Get File Attributes
Ck4b Load and Execute Programme/Load Overlay
Ck4c End Process
Ck4e Find First File
Ck4f Find Next File
()(53 Change Directory Entry
Ck57 Set/ Get Date/Time of File
()(51 Create Temporary File Handle
CkBJ Create New File
Ck5: Unlock/Lock File
Ck~ Get Assign List Entry
CkEB Flush Buffer

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 271

SMB Transmission Analysis

Change Current Directory

Function number

SMBsent

Reason

Ck3J.

SMBchkpth.

Change directory.

Change Directory Entry

Function number

SMBsent

Reason

Close File (FCB 1/0)

Function number

SMBsent

Reason

Close File Handle

Function number

SMBsent

Reason

Create Directory

Function number

SMBsent

Reason

Create File (FC B 1/0)

Function number

SMBsent

Reason

Create File Handle

Function number

SMBsent

Reason

()(5:)

SMBmv.

Rename file.

CklO

SMBclose.

Close file (FCB I/0).

Ck2e.

SMBclose, SMBsplclose (printer device).

Close file.

()(3:1

SMBmkdir.

Make directory.

Ck 16

SMBcreate.

Create file.

Ck3:.

SMBcreate.

Create file.

Protocols for X/ Open PC Interworking: SMB, Version 2

DOS Functions

Samsung - Exhibit 1014 - Page 272

DOS Functions

Create New File

Function number

SMBsent

Reason

CkBJ.

SMBmknew.

Create file.

Delete Directory Entry

Function number Ck41

SMBsent

Reason

Delete File (FCB 1/0)

Function number

SMBsent

Reason

End Process

Function number

SMBsent

Reason

Find First File

Function number

SMBsent

Reason

Find Next File

Function number

SMBsent

Reason

Flush Buffer

Function number

SMBsent

Reason

SMBunlink.

Delete file.

Ck 13

SMBunlink.

Delete file (FCB II 0).

Ck4c.

SMBexit.

Exit programme.

Ck4e.

SMBsearch.

Find first matching filename.

Ck4f.

SMBsearch.

Find next matching filename.

CkEB

SMBflush.

Commit file.

SMB Transmission Analysis

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 273

SMB Transmission Analysis

Get Assign List Entry

Function number CkB".

SMBsent

Reason

SMBtcon, SMBtdis.

Redirect device, cancel redirection.

Get Default Drive Data

Function number

SMBsent

Reason

Get Disk Free Space

Function number

SMBsent

Reason

Get Drive data

Function number

SMBsent

Reason

Ck lb.

SMBdskattr.

Get data on the default drive.

()(J)

SMBdskattr.

Get free space on disk.

Ck lc.

SMBdskattr.

Get data on a drive.

Get File Size (FCB 1/0)

Function number CkZ3

SMBsent

Reason

SMBsearch.

File size in records.

Load and Execute Programme/Load Overlay

Function number Ck4b.

SMBsent

Reason

Move File Pointer

Function number

SMBsent

Reason

SMBopen, SMBread, SMBclose.

Load/execute programme.

Ck42

SMBlseek.

Set position in file.

Protocols for X/ Open PC Interworking: SMB, Version 2

DOS Functions

Samsung - Exhibit 1014 - Page 274

DOS Functions

Open File (FCB 1/0)

Function number

SMBsent

Reason

Open File Handle

Function number

SMBsent

Reason

Print Character

Function number

SMBsent

Reason

cxa.
SMBopen (read/write/share set to Ckff).

Open file (FCBIIO).

Ck3:1.

SMBopen, SMBsplopen (printer device).

Open file.

CkOS

SMBsplopen, SMBsplwr, SMBsplclose.

Printer output.

Random Block Read (FCB 1/0)

Function number Ck27.

SMBsent SMBread.

Reason Random block read (FCB II 0).

Random Block Write (FC B 1/0)

Function number Ck23

SMBsent SMBwrite.

Reason Random block write (FCBIIO).

Random Read (FCB 1/0)

Function number Ck21

SMBsent SMBread.

Reason Random read (FCB II 0).

Random Write (FCB 1/0)

Function number Ck22

SMBsent

Reason

SMBwrite.

Random write.

SMB Transmission Analysis

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 275

SMB Transmission Analysis

Read Via File Handle

Function number

SMBsent

Reason

Remove Directory

Function number

SMBsent

Reason

CkJ'.

SMBread.

Read file.

Ck31.

SMBrmdir.

Remove directory.

Rename File (FCB 1/0)

Function number Ck 17.

SMBsent

Reason

Reset Disk

Function number

SMBsent

Reason

Search For First Entry

SMBmv.

Rename file.

CkQi.

SMBflush.

Disk reset (flush file buffers).

Function number Ck 11

SMBsent

Reason

Search For Next Entry

SMBsearch.

Search first matching entry.

Function number Ck 12

SMBsent

Reason

SMBsearch.

Search next matching entry.

Sequential Read (FCB 1/0)

Function number Ck 14

SMBsent

Reason

SMBread.

Sequential read (FCB II 0).

Protocols for X/ Open PC Interworking: SMB, Version 2

DOS Functions

257

Samsung - Exhibit 1014 - Page 276

DOS Functions

Sequential Write (FCB 1/0)

Function number Ck 15

SMBsent

Reason

SMBwrite.

Sequential write (FCBI/0).

Set/Get D atelfime of File

Function number

SMBsent

Reason

Ck57.

SMBsearch, SMBsetatr.

Get/set file date and time.

Set/Get File Attributes

Function number

SMBsent

Reason

Terminate Programme

Function number

SMBsent

Reason

Unlock/Lock File

Function number

SMBsent

Reason

Write Via File Handle

Function number

SMBsent

Reason

Ck43

SMBsetatr.

Change file attributes.

cxm
SMBexit.

Programme terminate.

Ck5:.

SMBlock, SMBunlock.

Lock/Unlock file.

()(4)

SMBwrite, SMBsplwr (printer device).

Witefile.

SMB Transmission Analysis

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 277

SMB Transmission Analysis OSJ2Functions

A.3 OS/2Functions
The SMB requests generated from OS/2 redirectors will vary based on the protocol dialect
negotiated. This variation is highlighted in the sequences below by listing the SMB request that
will be sent if the extended 10 dialect was negotiated first followed by the SMB request for the
extended 20dialect.

D osBufReset

SMBsent

Reason

DosChDir

SMBsent

Reason

D osClose

SMBsent

Reason

D osD elete

SMBsent

Reason

D osD eviOC tl

SMBsent

Reason

DosExecPgm

SMB sent

Reason

D osFileLocks

SMBsent

Reason

SMBflush.

Flush file buffer.

SMBchkpth.

Change the current working directory.

SMBclose, SMBwriteclose, SMBwrite.

Close FID.

If the file II 0 is buffered, a DosClose will cause the data in the buffers to
be flushed. This type of situation may cause an SMBwriteclose or
SMBwrite to be sent.

SMBunlink.

Delete a file.

SMBioctl, SMBioctls.

Pass a device-spedfic IIO control request to a driver.

SMBopen, SMBread, SMBclose. SMBtrans2(TRANSACT2_0PEN) may be
used for the open function instead of SMBopen for the extended 20
dialect.

Start a programme as a child process.

DosExecPgm makes use of OS/ 2s standard file II 0 functions.

SMBlock SMBlockingX, SMBlockread, SMBunlock, SMBwriteunlock.

Set or reset a byte lock range in an open file.

An SMBwriteunlock is sent after unlocking bytes which were just written
out. SMBlockread is used to lock and then read ahead.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 278

OSJ2Functions

D osFind Close

SMBsent

Reason

DosFindFirst

SMBsent

Reason

D osFindFirst2

SMBsent

Reason

DosFindNext

SMBsent

Reason

D osFindN otifyClose

SMBsent

Reason

DosMkDir

SMBsent

Reason

DosMove

SMBsent

Reason

DosOpen

SMBsent

Reason

SMB Transmission Analysis

SMBfclose and possibly SMBfindnclose.

Close an active directory search handle. If change notification was
involved, the SMBfindnclose will be sent to cancel further notifications.

SMBffirst or SMBtrans2(TRANSA CT2_FIND FIRS I).

Find the first file in a directory matching the search pattern.

SMBtrans2(TRANSA CT2_FIND FIRS I). An SMBfindclose may follow.

Find the first file in a directory matching the search pattern. If no
additional searchs are desired the SMBfindclose will be used to allow the
server to free resources assodated with the find.

SMBffirst or SMBtrans2(TRANSA CT2_FIND NEXT).

Get the next file from the search pattern.

If this function is used on a suffidently large directory it will eventually
send an SMBfind request.

SMBfin dn close.

To indicate to the LMXserver that directory search requests are complete.

SMBmkdir SMBtrans2(TRANSA CT2_MKD IR).

Create a new directory.

SMBmv.

Rename or move a file.

SMBopenX, SMBopen, SMBcreate, SMBreadX or
SMBtrans2(TRANSA CT2_ OPEN).

Open a device/file for I/0.

DosOpen may send an SMBreadX read ahead. DosOpen will send an
SMBopenX instead of an SMBopen when in protected mode. SMBopen has
no capabilities for creating a file when opening, so DosOpen may send an
SMBcreate.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 279

SMB Transmission Analysis

DosQCurDir

SMBsent

Reason

DosQFSinfo

SMBsent

Reason

D osQ Filelnfo

SMBsent

Reason

DosQFileMode

SMBsent

Reason

DosRead

SMBsent

Reason

D osReadA sync

SMBsent

Reason

DosRmDir

SMBsent

Reason

D osSetFilelnfo

SMBsent

Reason

SMBchkpth.

Determine the current directory of a logical drive.

SMBdskattr or SMBtrans2(TRANSA CT2_ QFSINFO).

Retrieve file system information data.

SMBgetattrE or SMBtrans2(TRANSA CT2_ QFILEINFO).

Retrieve a file information record.

SMBgetatr.

Get a file's attribute byte.

SMBread, SMBreadX, SMBreadbraw, SMBreadbmpx.

Read characters from an FID.

OSJ2Functions

SMBreadbraw is used to send a block of data which is larger than the data
size which was negotiated.

SMBread, SMBreadX, SMBreadbraw, SMBreadbmpx.

Read characters from an FID asynchronously.

Same behaviour as DosRead.

SMBrmdir.

Delete a subdirectory.

SMBsetattrE.

Change a file's directory information.

Protocols for X/ Open PC Interworking: SMB, Version 2 261

Samsung - Exhibit 1014 - Page 280

OSJ2Functions

D osSetFileMode

SMBsent

Reason

DosWrite

SMBsent

Reason

DosWriteAsync

SMBsent

Reason

SMB Transmission Analysis

SMBsetatr.

Change a file's attribute.

SMBwrite, SMBwriteX, SMBwritebraw, SMBwritebmpx.

Wite characters to an FID.

SMBwritebraw is used to send a block of data which is larger than the data
size which was negotiated.

SMBwrite, SMBwriteX, SMBwritebraw, SMBwritebmpx.

Wite characters to an FID asynchronously.

Same behaviour as DosWite.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 281

Appendix B

LAN Manager Remote Administration Protocol

B.l Overview
This section describes the mechanism used by LAN Manager to implement remote
administration functions and access control lists. The protocols described here are those which
are provided by the extended dialects. They are included here so that an implementor can build
an LMXserver which can handle this class of SMB redirector requests. However, their inclusion
in this spedfication does not imply any XI Open endorsement of these mechanisms as the basis
for future XI Open network management functionality.

All administrative functions in the LAN Manager are provided by a set of shared library
routines, often referred to as LAN Manager API routines. Many of these routines have a
servername argument which the caller uses to distinguish a local administrative operation (one
which applies to the LMX server on the local machine) from a remote operation (one which
applies to the server on another machine).

In the case of a remote operation the SMB redirector packages up its arguments, and sends them
to the appropriate LMXserver. The LMXserver then calls the corresponding LAN Manager API
routine locally, packages the results, and sends them back to the SMB redirector. The
mechanism resembles a spedalised, private, remote procedure call fadlity between the SMB
redirector and the LMXserver.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 282

Remote API Protocol LAN Manager Remote Administration Protocol

B.2 Remote API Protocol
1 All remote API operations are done using the share name IPC $ The SMB redirector will

automatically connect to that share if necessary in order to do a remote API call.

2 All remote API operations are done using the Transaction SMB SMBtrans.

3 The smb_name field of the Transaction SMB is always \PIPE\LANMAN. The server uses
this to identify a remote API request. The SMB resembles a normal named pipe operation,
which is also done using a Transaction SMB. However, the smb_setup[O] field, which
would normally contain the desired named pipe operation, is ignored; the
\PIPE\LANMAN name field is suffident to identify a remote API operation.

The arguments for the remote API call are encapsulated in the Transaction request SMB; return
values are encapsulated in the Transaction response SMB. In both the request and the response,
all binary values are stored in little-endian order, least significant byte first. There are no pad
bytes other than those explidtly spedfied in descriptor strings; therefore, items may be located
at an arbitrary byte boundary- there are no alignment restrictions.

The request and response Transaction SMBs contain a parameter section and a data section. The
arguments for a remote API call are split into two parts, and placed in these sections of the
request Transaction. The Transaction response message contains the results of the call, split
between the parameter and data sections of the Transaction response. A number of fields in the
Transaction SMB identify the size and location of these sections within the SMB, and also allow a
single Transaction request or response to be split into several messages (refer to X/Open CAE
Spedfication, IPC Mechanisms for SMB).

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 283

LAN Manager Remote Administration Protocol LMX Access Control Lists Mapping

B.3 LMX Access Control Lists Mapping
Access control lists (ACLs) are used by LMX servers running in user-level security mode.
Though the implementation of A CLs is outside the scope of the spedfication the following list is
a set of possible access permissions, which is used by LAN Manager implementations.

User-level security allows access permissions to be set for each shared resource (for example, file
system subtree, individual file, spooler, device, etc.). Each shared resource has a list of users and
groups, with the permissions allowed for each user or group on that resource.

ACL Permissions

R read

w write
X execute
c create

D delete
A change attributes

p change permissions

N deny access
y allow spool requests

Permission to read data from a resource and, by
default, execute the resource.

Permission to write data to the resource.
Permission to execute the resource.
Permission to create an instance of the resource
(for example, a file); data can be written to the
resource when creating it.

Permission to delete the resource.
Permission to modifY the resource's attributes
(for example, the date and time a file was last
modified).

Permission to modifY the permissions (read,
write, create, execute and delete) assigned to a
resource for a user, group or application.

No permissions.

Since the X/ Open CAE does not provide an access control list (ACL) mechanism, the usual CAE
access control mechanisms should be used instead. Following the prindple of least surprise, a
mapping is defined for access mechanisms which cannot easily be provided under CAE systems.
The CAE access control mechanisms are used to permit interoperability for applications which
reside on both PCs and on CAE hosts.

A mapping from (SMB) UID and username/password supplied by the client to CAE User ID
(uid) and Group ID(s) (gid) is established by the SMBsesssetupX and will be maintained by the
LMXserver. The mapped-to CAE User ID and one or more Group IDs are used for all accesses
on the CAE system in the usual manner.

The differences between the functionality provided by ACLs and the access control mechanisms
for LMXservers described above include:

1 ACL permissions apply to shared resources. This includes file system directories as well as
individual files. CAE permissions apply to individual files and directories but are not
extended to subtrees.

2 For each resource, A CL permissions can be listed for any number of individual users, for
any number of groups, and for anyone else. A CAE file or directory spedfies permissions
for the owner, one group and everyone else.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 284

LMX Access Control Lists Mapping LAN Manager Remote Administration Protocol

The following table shows the mapping between the ACL permissions and CAE permissions:

Notes:

SMB Permissions Equivalent CAE Permission

R read r read
w write w write
X execute r read (Note 1)
c create w write on parent dir
D delete w write on parent dir
A change attributes not supportable
p change permissions (Note 2)
N deny access no permissions (Note 3)
y allow spool requests not supportable

1 Execute permission for LMX servers requires only read permission, as the client
need only be able to read the file before it can execute it.

2 Not an assignable access right. The owner of a file and users with appropriate
privileges always have P access and cannot relinquish it; no other user can
acquire P access.

3 Not a spedfic right, but the absence of rights. Note that the privileged user
always has all rights and can relinquish none of them.

ACLs could be partially implemented for LMXservers by pladng the required checks into the
LMX server itself. The list would be used to further restrict (but not grant) access to files and
directories beyond the restrictions imposed by the usual CAE access control mechanisms. A
client may have access to a resource only if it does not conflict with CAE permissions and if it is
spedfied in the ACL. There may be cases where the ACL indicates that a user should have
access, but the CAE security would have to be drcumvented to honour it. The access will be
denied in accordance with the CAE in these cases. This permits access security to be maintained
on both the server and client system equivalently; if a user local on the CAE system is denied
access, access should be denied for the user on a client system as well.

X/Open-compliant system implementations which support native ACLs as an enhancement
may use that mechanism instead of the normal CAE access control mechanisms if desired, as
long as the ACLs do not grant permission where the expected CAE access mechanisms would
have denied it.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 285

LAN Manager Remote Administration Protocol Transaction API Request Format

B.4 Transaction A PI Request Format

B.41 Parameter Section

The parameter section (smb_param) of the Transaction request contains the following:

• API number: 16bit integer

• parameter descriptor string: null-terminated ASCII string

• data descriptor string: null-terminated ASCII string

• parms: subroutine arguments, as described by the parameter descriptor string

• auxiliary data descriptor string: optional null-terminated ASCII string

The API number identifies which API routine the SMB redirector wishes the LMX server to call
on its behalf. A list of API numbers is given in Section B.8on page 275

The parameter descriptor string describes the types of the arguments in the data section
(smb_data), as given in the original call to the routine on the SMB redirector.

The data descriptor string describes the format of a data structure, or data buffer, which is sent
to the API routine. The API routine on the SMB redirector is normally given a pointer to this
buffer. Note that this descriptor string is also used by the server to determine the format of the
data buffer to be sent back from the API call.

The parms field contains the actual subroutine arguments, as described by the parameter
descriptor string.

The auxiliary data descriptor string describes the format of a second, auxiliary data structure
which is either sent to or received from the API routine, in addition to that defined by the data
descriptor string. The data described by this descriptor string is located in the data section
(smb_data) of SMBtrans, immediately following the data described by the primary data
descriptor.

B.42 Data Section

The data section (smb_data) of the SMBtrans request contains the following:

• the primary data buffer, as described by the data descriptor string in the parameter section

• the auxiliary data buffer (optional), as described by the auxiliary data descriptor in the
parameter section

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 286

Transaction API Response Format LAN Manager Remote Administration Protocol

B.S Transaction API Response Format

B.5.1 Parameter Section

The parameter section (smb_param) of the SMBtrans response contains the following:

• Status: a 16bit integer. This is the return status as if the requested LAN Manager API routine
would be executed on the responder's system. Zero normally indicates success.

• Converter word: 16bit integer, used by the requestor's system to adjust the pointer in the
data section. The use of this field is described below.

• Parms: return parameters, as described by the parameter descriptor string in the request
message. Only those parameters which are identified in the parameter descriptor string as
being receive pointers (that is, which will be modified by the server) are actually returned
here.

B.5.2 Data Section

The data section (smb_data) of the SMBtrans request contains:

• the primary returned data buffer, as described by the data descriptor in the request message

• the auxiliary data buffer (optional), as described by the auxiliary data descriptor in the
request message

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 287

LAN Manager Remote Administration Protocol Descriptor Strings

B.6 DescriptorS trings

B.6.1

A descriptor string is a null-terminated ASCII string. Descriptor string elements consist of a
letter describing the type of the argument, possibly followed by a number (in ASCII
representation), spedfying the size of the argument. Each item in the descriptor string describes
one data element.

Descriptor String Types

The following describes the characters which may be encountered in a descriptor string, and the
format of the corresponding data described by the descriptor string.

B Byte

If followed by one or more digits (that is, B 1~ this refers to an array of bytes. One or more
bytes will be located in the corresponding data area. Nate that this type will not be found in
the parameter descriptor string (that is, it will not be used to describe subroutine
arguments), since single bytes cannot be pushed onto the stack by the SMB redirector.

W 16bit integer

If followed by one or more numbers (that is, W-4) this refers to an array of 16bit integers.
One or more 16bit integers will be located in the corresponding parameter or data area.

D ::Zbit integer

If followed by one or more numbers (that is, D~ this refers to an array of ::Zbit integers.
One or more ::Zbit integers will be located in the corresponding parameter or data area.

z Null-terminated ASCII string

The corresponding parameter or data area contains a null-terminated ASCII string. This
type has a different meaning when applied to returned data. (See below.)

b Byte pointer

The original argument list or data structure contained a pointer to one (that is, b) or more
(that is, b~ bytes at this position. The bytes themselves are located in the corresponding
parameter or data area. This type has a different meaning when applied to returned data.
(See below.)

w W:>rd pointer

The original argument list or data structure contained a pointer to one (that is, w) or more
(that is, w~ 16bit integers at this position. The integers themselves are located in the
corresponding parameter or data area. This type has a different meaning when applied to
returned data. (See below.)

d Dword pointer

The original argument list or data structure contained a pointer to one (that is, d) or more
(that is, d~ ::Zbit integers at this position. The integers themselves are located in the
corresponding parameter or data area. This type has a different meaning when applied to
returned data. (See below.)

g Receive byte pointer

The original argument list contained a pointer to one (that is, g) or more (that is, g~ bytes at
this position, which are to receive return values from the API call. The Transaction request
contains nothing at this position in the corresponding parameter or data area; the response
message contains data.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 288

Descriptor Strings LAN Manager Remote Administration Protocol

270

h Receive word pointer

Contains data in the parameter section. The original argument list contained a pointer to
one (that is, h) or more (that is, h~ 16bit integers at this position, which are to receive
return values from the API call. The Transaction request contains nothing at this position in
the corresponding parameter or data area; the response message contains data in the
parameter section.

Receive dword pointer

The original argument list contained a pointer to one (that is, i) or more (that is, i~ ::Zbit
integers at this position, which are to receive return values from the API call. The
Transaction request contains nothing at this position in the corresponding parameter or data
area; the response message contains data in the parameter section.

0 Null pointer

The original argument list or data structure contained a null pointer at this position. There
is nothing stored at this position in the corresponding parms or data area.

s Send data buffer pointer

The original argument list contained a pointer at this position to a data structure containing
more data arguments to the API call. This item appears only in a parameter descriptor
string. The format of the secondary data structure is described in the data descriptor string
(contained in the parameter section of the Transaction request message). The data itself is
contained in the data section of the Transaction request message.

T Length of send buffer

The original argument list contained a 16bit integer argument at this position which
spedfied the length of the send buffer. This item appears only in a parameter descriptor
string. No value is placed in the corresponding parameter area.

r Receive data buffer pointer

The original argument list contained a pointer at this position to a data structure which was
to be filled in by the API call. This item appears only in a parameter descriptor string. The
format of the secondary data structure is described in the data descriptor string (contained
in the parameter section of the Transaction request message). The data itself is contained in
the data section of the Transaction response message.

L Length of receive buffer

The original argument list contained a 16bit integer argument at this position which
spedfied the length of the receive buffer. This item appears only in a parameter descriptor
string. The corresponding parameter area contains a 16bit integer spedfying the length of
the receive buffer.

P Parameter number

The corresponding parameter or data area contains a 16bit short integer.

e Entries read

The original argument list contained a pointer to a 16bit integer at this position, which is to
receive the number of entries returned by the API call in the receive buffer. The Transaction
request contains nothing at this position in the corresponding parameter or data area; the
response message contains the numbers of entries returned in the receive data buffer.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 289

LAN Manager Remote Administration Protocol Descriptor Strings

N Number of auxiliary structures

This field is only found in data descriptor strings. The presence of the field indicates that
there will be auxiliary data sent (if found in a send data descriptor string), or received (if
found in a receive data descriptor string). The corresponding data block contains a 16bit
integer spedfying the number of auxiliary data structures to be sent (for a send data buffer),
or which have been received (for a receive data buffer).

K Unstructured data block

This will normally be the only item in a descriptor string.

F Fill

The corresponding data area contains one (that is, F) or more (that is, F~ fill bytes at this
position.

B.6.2 Pointer Types and Returned Data

Lower-case letters are considered pointer types. These pointer types z, b, w and d have a
different meaning if they are used to describe returned information. In this case the pointers
occur in a data descriptor string or auxiliary data descriptor string and describe data to be
returned in the data section (smb_data) of the SMBtrans response message. In this case the item
referred to by the pointer is not the array or string itself, but a ::Zbit integer. The high-order 16
bits are to be ignored and the low-order 16bits contain an offset. The offset subtracted by the
converter word points to the array or string within the returned data buffer itself.

The data descriptor describes one instance of the returned data structure. The response buffer
may contain several of these data structures, each of which is a fixed size. Together, these make
up the fixed-length portion of the returned data area. The returned data buffer may also contain
data pointed to by the various pointer types described above. This data may contain strings, and
is likely to be of variable length. The fixed-length data is always placed at the beginning of the
returned data buffer; the placement of the variable-length data is up to the server.

The responder must place variable-length data at the end of the data buffer and set the pointers
accordingly. Since the total length of the data buffer is only known at the end of processing,
there may be a gap between the fixed-length data and the variable-length data. To avoid
sending this gap accross the network the responder may position the variable-length data to a
position immediately following the fixed-length data. The pointers in the data descriptor string
do not need to get updated if the "converter word" in the response parameter section is set to
the value that the requestor must subtract from all pointer values referendng data in the
variable-length section.

Protocols for X/ Open PC Interworking: SMB, Version 2 271

Samsung - Exhibit 1014 - Page 290

Examples LAN Manager Remote Administration Protocol

B. 7 Examples

B.7.1

The following examples may help clarify details of the protocol. Some details have been
simplified for ease of explanation. Note that the format of some data structures may differ in
various versions of LAN Manager.

NetShareDel

This is one of the simplest examples of a remote API call. Suppose an SMB redirector
programme does the following call:

N etShareDel (SERVER, C, q;
This call deletes the outstanding share C on the server machine SERVER.

The parameter section of the Transaction request message contains:

4 API number for the N etShareDel function.

zW Parameter descriptor string. Note that the servername argument is not spedfied in the
descriptor. There are two arguments: a string spedfying the name of the share to be
deleted, and a reserved 16bit integer MBZ (Must Be Zero).

Data descriptor string. There is no data buffer in the arguments, so this descriptor
string is empty.

parms: The actual subroutine arguments, as described by the parameter descriptor string:

C: A null-terminated string.

0 A 16bit word.

There is no auxiliary data descriptor string.

The data section of the Transaction request message is empty.

The parameter section of the Transaction response message contains:

return status: (16bit word.)

converter word: Oin this case.

return parms: There are no return parameters in this case, so this section will be empty.

The data section of the Transaction response message is empty.

B. 7.2 N etShareAdd

This example uses a send buffer:

struct share_info_2buf;
NetShareAdd(SERVER, 2 &buf, sizeof(buf);

The parameter section of the Transaction request message contains:

3

\\ST:

B 133\M\N\N\NzBffi:

parms:

API number for the NetShareAdd function.

Parameter descriptor string.

Data descriptor string. This corresponds to the elements of the
share_info_2 structure.

The actual subroutine arguments, as described by the parameter
descriptor string:

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 291

LAN Manager Remote Administration Protocol Examples

2 The second argument.

Note that there is no data here corresponding to the sT portion
of the parameter descriptor string.

There is no auxiliary data descriptor string.

The data section of the Transaction request message contains the contents of the share_info_2
structure:

• thirteen bytes (from the shi2_netname field)

• one byte (from shi2_pad 1)

• one 16bit word (from shi2_type)

• null-terminated ASCII string, copied from the one pointed to by shi2_remark

• one 16bit word (from shi2_permissions)

• two 16bit words (shi2_max_uses and shi2_current_uses)

• null-terminated ASCII string, copied from the one pointed to by shi2_path

• nine bytes (from shi2_passwd)

• one byte (from shi2_pad2)

The parameter section of the Transaction response message contains:

• return status (16bit word)

• converter word: Oin this case

• return parms: there are no return parameters in this case, so this section will be empty

The data section of the Transaction response message is empty.

B. 7.3 N etShareEnum

This example has both return parameters and return data:

struct share_info_l buf[10];
NetShareEnum(SERVER, L &buf, sizeof(buf), &nentries, &total);

The parameter section of the Transaction request message contains:

0

WLeh:

B133\M:

API number for the N etShareEnum function.

Parameter descriptor string.

Data descriptor string (for returned data, in this case).

parms: The actual subroutine arguments, as described by the parameter descriptor string:

1: Second argument

sizeof(buf): This is a send parameter because the server needs to know how
much space it has available in which to return results

Note that the other arguments are result parameters, and are thus not
passed to the server.

There is no auxiliary data descriptor string.

The data section of the Transaction request message is empty.

Protocols for X/ Open PC Interworking: SMB, Version 2 273

Samsung - Exhibit 1014 - Page 292

Examples LAN Manager Remote Administration Protocol

274

The parameter section of the Transaction response message contains:

• return status (16bit word)

• converter word: (possibly set by server)

• entries returned (16bit word)

• total number of available entries (16bit word)

The data section of the response Transaction message contains a number of share_info_ 1
structures. The number of such structures is given by the entries returned return parameter.
Each structure contains:

• thirteen bytes (the shi l_netname field)

• one byte (shi l_pad 1)

• one 16bit word (shi]_type)

• the shi]_remark field. This is a four-byte value. The two low-order bytes contain the offset
within the data section of the null-terminated ASCII string. The value may need adjusting:
the converter word value must be subtracted from this offset in order to obtain the true offset
of the string.

• a possible gap following the fixed-length data. This is up to the server.

• the null-terminated string pointed to by the shi]_remark field

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 293

LAN Manager Remote Administration Protocol API Numbers

B.8 API Numbers
The following are the API numbers used to spedfy the various remote LAN Manager routines.
They are included here so that an implementor can build an LMXserver which can handle this
class of SMB redirector requests. However, their inclusion in this spedfication does not imply
any X/Open endorsement of these mechanisms as the basis for future X/Open network
management functionality. (A routine name beginning with R identifies a routine which gets
spedal handling by the LMXserver, rather than simply calling the local version of the routine.)

0 RN etShareEnum 44 RNetAccessSetinfo
1 RN etShareGetinfo 45 RN etAccessAdd
2 N etShareSetinfo 46 RN etAccessDel
3 NetShareAdd 47 N etGroupEnum
4 N etShareDel 48 NetGroupAdd
5 N etShareCheck 49 N etGroupDel
6 N etSessionEnum 5J N etGroupAddUser
7 N etSessionGetinfo 51 NetGroupDelUser
8 N etSessionDel 52 N etGroupGetUsers
9 N etConnectionEnum 53 NetUserEnum
10 N etFileEnum 54 RNetUserAdd
11 N etFileGetinfo 55 Net User Del
12 N etFileClose 53 N etUserGetinfo
13 RN etServerGetinfo 57 RNetUserSetinfo
14 N etServerSetinfo 58 RN etUserPasswordSet
15 N etServer DiskEnum 5:1 NetUserGetGroups
16 N etServer Admin Command 6J N et\\kstaLogon
17 NetAuditOpen 61 N et\\kstaLogoff
18 N etAuditClear 62 N et\\kstaSetUID
19 NetErrorLogOpen 63 N et\\kstaGetinfo
20 NetErrorLogClear 64 Net\\kstaSetinfo
21 N etCharDev Enum ffi NetUseEnum
Z2 N etChar DevGetinfo ffi NetUseAdd
Z3 N etChar DevControl 67 NetUseDel
24 N etCharDevQEnum EB NetUseGetinfo
25 N etChar DevQGetinfo E9 DosPrintQEnum
a3 N etChar DevQSetinfo 70 DosPrintQGetinfo
27 N etCharDevQPurge 71 DosPrintQSetinfo
28 RN etChar DevQPurgeSelf 72 DosPrintQAdd
Z:J N etMessageN ameEnum 73 DosPrintQDel
3J N etMessageN ameGetinfo 74 DosPrintQPause
31 NetMessageNameAdd 75 DosPrintQContinue
32 N etMessageN ameDel 76 DosPrint.bbEnum
33 NetMessageNameFwd 77 DosPrint.bbGetinfo
34 NetMessageNameUnFwd 78 RDosPrint.bbSetinfo
35 N etMessageBufferSend 79 DosPrint.bbAdd
J3 N etMessageFileSend 8J DosPrint.bbSchedule
37 N etMessageLogFileSet 81 RDosPrint.bbDel
28 N etMessageLogFileGet 82 RDosPrint.bbPause
3:1 N etServiceEnum 83 RDosPrint.bbContinue
4) RN etServiceinstall 84 DosPrintDestEnum
41 RN etServiceControl 85 DosPrintDestGetinfo
42 RN etAccessEnum ffi DosPrintDestControl
43 RNetAccessGetinfo 'C7 NetProfileSave

Protocols for X/ Open PC Interworking: SMB, Version 2 Z15

Samsung - Exhibit 1014 - Page 294

API Numbers

276

E8 N etProfileLoad
8:1 N etStatisticsGet
9J N etStatisticsClear
91 NetRemoteTOD
92 N etBiosEnum
m N etBiosGetinfo
9'l N etServer En urn
95 I_N etServer Enum
m NetServiceGetinfo
gr NetSplQmAbort
ffi NetSplQmClose
ill NetSplQmEndDoc
1m NetSplQmOpen
101 NetSplQmStartDoc
102 NetSplQmWite
1m DosPrintQPurge

LAN Manager Remote Administration Protocol

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 295

Appendix C

The X;()pen Security Package

The X/ Open security package, as defined in this appendix, permits the LMX server to select
encryption functions from lists sent by the SMB redirector. This appendix defines some
suggested E() and U() dialect names and the functions assodated with those names.

The definitions in this section are not a part of the XI Open spedfication of the SMB protocols at
the present time, and might not become a part of the X/Open spedfication in the future.
Nonetheless, it is recommended that the dialect names defined here are used as defined; if other
encryption functions are supported, names defined in this appendix should not be used for
them.

C.l E() Functions

The E() function is used to respond to the server and (optional) SMB redirector challenges. It
cryptographically combines the challenge string and the password string (in server form, see
Section C.2to produce the response string. The function should be chosen so that it is difficult or
expensive to derive the password string from the challenge string and response string, even if
the cryptographic function is not secret.

The following table gives theE() dialect name and a definition for the function to be used if that
dialect is selected.

NULL

UNIX

Value is the password string (in server form), unchanged. Used when the network
is known to be secure against eavesdropping (for example, link encryption).

The password string is used as a key to encrypt the challenge string using the DES
block mode algorithm. The DES function is applied as described in Appendix Don
page279.

The server-form password string is used as input to the well-known UNIX
password encryption algorithm3

. Instead of using a data block of all zeros, the
challenge string is used; the salt is two NULL characters.

2 U.S. Department of Commerce Data Encryption Standard.

3 Morris, Robert and Thompson, Ken; Password Security: A Case History. Bell Laboratories Technical Memorandum, April 3
1918 Reprinted in UNIX Programmers' Manual, Seventh Edition, Volume 2 page 5:6 New York: Holt, Rinehart and VVmston
(1~.

Protocols for X/ Open PC Interworking: SMB, Version 2 ZT7

Samsung - Exhibit 1014 - Page 296

U () Functions The X;()pen Security Rlckage

C .2 U () Functions

278

The U() function is used to transform a cleartext password into the form in which it is stored on
the server (that is, server-form). Many X/Open-compliant systems store passwords in an
encrypted form, and many of these functions are one-way; that is, the transformation from
cleartext to cryptotext is not reversible. Negotiation of the U() function permits the SMB
redirector to reproduce the cryptotext password given the clear password as typed by the user.

Some U () functions require additional data aside from the password and username. If the server
selects such a U() function, it will return the necessary additional data in the SMBsecpkgX
response. Some LMX server implementations support a mechanism for changing a user's
password via some additional protocol; those LMXserver implementations should also return
any additional data required for that process.

The following table defines U() dialect names and the functions to be performed if that dialect is
selected. The contents of the xp_ouinf and xp_nuinf fields of the SMBsecpkgX response are also
described.

NULL

UNIX

The server -form of the password is identical to the cleartext form.

The well-known UNIX password encryption algorithm is used. The xp_ouinffield
contains the two-character salt required by the algorithm. If the LMX server
supports password changes via protocol, the xp_nuinf field should be the new salt
to be used if the SMB redirector changes passwords.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 297

Appendix D

SMB Encryption Techniques

D .1 SMB Authentication
The SMB authentication scheme is based upon the server knowing a particular encrypted form
of the user's password, the client system constructing that same encrypted form based upon user
input, and the client passing that encrypted form in a secure fashion to the server so that it can
verifY the client's knowledge.

The scheme uses the DES4 encryption function in block mode; that is, there is a function E(K,D)
which accepts a ~byte key (K) and 8byte data block (D) and produces an 8byte encrypted data
block as its value. If the data to be encrypted is longer than 8 bytes, the encryption function is
applied to each block of 8 bytes in sequence and the results appended together. If the key is
longer than 7bytes, the data is first completely encrypted using the first 7bytes of the key, then
the second 7bytes, etc., appending the results each time. In other words:

E(KoKJ .DoD l)=E(Ko.Do) E(Ko.D 1)E(K1 .Do)E(Kl ,D 1)

D.l.l SMBnegprotResponse

The SMBnegprot response field smb_cryptkey is the result of computing:

C8=E(P7,S~

where:

• P7 is a ~byte string which is non-repeating. This is usually a combination of the time (in
seconds since Jmuary L 19/Q and a counter which is incremented after each use.

• 58 is an 8byte string whose value is ? ? ? ? ? ? ? ? (eight question marks).

D.l.2 SMBtcon, SMBtconX, SMBsesssetupX Requests

The client system may send an encrypted password in any one of these requests. The server
must validate that encrypted password by performing the same computations the client did to
create it, and ensuring the strings match. The server must compute:

P16=E(P14,S~

and:

P24=E(P21,C~

where:

• P 14is a 14byte string containing the user's password in cleartext, padded with spaces.

• S8is the 8byte well-known string (see above).

4 U.S. Department of Commerce Data Encryption Standard.

Protocols for X/ Open PC Interworking: SMB, Version 2 279

Samsung - Exhibit 1014 - Page 298

SMB Authentication SMB Encryption Techniques

• P21 is a 21-byte string obtained by appending 5 null (0 bytes to the string P 16, just
computed.

• C8is the value of smb_cryptkey sent in the SMBnegprot response for this connection.

The final string, P24, should be compared to the encrypted string in the request:

• the smb_passwd field in SMBtcon

• the smb_spasswd field in SMBtconX

• the smb_apasswd field in SMBsesssetupX

If they do not match, it is possible the client system was incapable of encryption; if so, the string
should be the user's password in cleartext. The server should try to validate the string, treating
it as the user's unencrypted password. If this validation fails as well, the password (and the
request) should be r~ected.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 299

Appendix E

TOP!NetBIOS

This appendix reproduces, in full and unedited, the MAP/TOP Users Group Technical Report
Spedfication of NetBIOS Interface and Name Service Support by Lower Layer OSI Protocols,
Version 10, September Z1, lSH:J.

Protocols for X/ Open PC Interworking: SMB, Version 2 281

Samsung - Exhibit 1014 - Page 300

TOPMetBIOS

MAP/TOP Users Group Technical Report
Specification of NetBIOS Interface and Name Service

Support by Lower Layer OSI Protocols
Version 1.0, September 27, 1989

1 INTRODUCTION

In addition to the universal
have purchased products that

interoperability TOP products offer, many users
conform to proprietary and de facto networking

standards. For IBM personal computers and compatibles, a de facto networking
standard is the Network Basic Input Output System, or NetBIOS. A majority of
popular network applications for these computers require a NetBIOS-compatible

interface.

Many vendors recognize this fact and understand the need to
investments in these applications while allowing the support of new
applications. Several of these vendors have introduced or plan to
TOP products with a NetBIOS-compatible interface.

preserve
TOP based
introduce

In order to prevent these vendors from developing separate and incompatible
implementations, the TOP NetBIOS Migration Technical Committee has defined a
uniform way to support the NetBIOS interface in TOP systems. All products
that conform to this specification interoperate with each other, and networks
composed of such products support both TOP applications and current PC
software packages. The PC applications operate without modification on the
local network and, in many cases, as described in section 3.4, across the TOP
internetwork. In order to support TOP applications, an implementation must
conform to the TOP V3. 0 Specification in addition to this NetBIOS support
specification.

The specification defined by the TOP NetBIOS Migration Technical Committee
consists of this specification. It is logically divided into two parts. The
first part defines a mapping of the NetBIOS Interface to ISO Transport
Services and Data Link Services. The second part defines a naming protocol
for the NetBIOS environment over TOP-recognized subnetworks that support

NetBIOS name support services.

Sections 3 through 6 and Appendix I comprise the first part. Section 2,
''Reference Documents,'' specifies the documents that the Technical Committee
considers to define the NetBIOS interface and the ISO transport services.
Readers should become familiar with these documents, as the remaining
sections assume a knowledge of both the NetBIOS interface and ISO transport
services and ISO transport profiles.

Section 3 describes the general principles behind the mapping of NetBIOS
commands to transport services. Section 4, ' 'Special Considerations, ' '
discusses several significant issues in the NetBIOS/transport mapping.
Sections 5 and 6 detail the mapping. ''NetBIOS Commands'' describes the
mapping of each NetBIOS command to ISO transport services. It identifies the
level of support required for each NetBIOS command, and it indicates the
specific transport service requests associated with each command. Section 6,
''Transport Service Indications and Confirmations,' ' describes the response
of the NetBIOS interface to each transport service indication and
confirmation. Finally, Appendix I, ''State Tables,'' presents state tables
that precisely define the mapping between NetBIOS ''sessions' ' and class four
transport connections.

Sections 7 through 9 and Appendices II through V define the NetBIOS Name
Service Protocol. Appendix VI is provided for future errata or clarifications
discovered during product implementation and interoperability testing.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 301

TOPMetBIOS

2 REFERENCES AND DEFINITIONS

The first step in defining a mapping between the NetBIOS interface and ISO
transport services is to agree on a definition of the NetBIOS interface and
OSI services. This section lists the reference documents that the SIG has
agreed to use as the definition for NetBIOS and transport.

2.1 The NetBIOS Interface

For the purposes of the mapping specified by this specification, the NetBIOS
interface is defined by the first section, ''NetBIOS,' ' in the first edition
(April 1987) of the IBM publication NetBIOS Application Development Guide
(IBM product number 6 8X22 70) . When that section directs readers to adapter
specific sections for exact details of certain commands (ADAPTER STATUS, for
example), those details can be found in this specification. Note that the IBM
specification defines the exchange of NCBs (Network Control Blocks - contents
and error responses) between a NetBIOS Client and NetBIOS service provider.
The contents of the NCBs and error responses are the same for NetBIOS
Interfaces for DOS and OS/2 environments; however, the NCB transfer mechanism
for these two environments is different and is not covered in this
specification.

2.2 OSI Services

ISO 8072-1986: Open Systems -- Transport Service Definition

ISO 8072-ADD1: Transport Service Definition Addendum 1:

Connectionless-Mode Transmission

ISO 8073-1986: Connection Oriented Transport Protocol Specification

ISO/DIS 8602: Protocol for Providing the Connectionless-Mode
Service

Transport

ISO 8473/N4542: Protocol for Providing the Connectionless-mode Network
Service

ISO 8648: Internal Organization of Network Layer

ISO 8348, AD1, AD2: Network Service Definition,
Transmission, Network Layer Addressing

ISO 8802/2: Logical Link Control

ISO 8802/3:
(CSMA/CD)

Carrier Sense Multiple Access

ISO 8802/4: Token Passing Bus Access Method

ISO 8802/5: Token Ring Access Method

2.3 Definitions

2.3.1 Reference Model Definitions

with

Connectionless Data

Collision Detection

This specification makes use
ISO/OSI's Basic Reference Model

of the following
[ISO 7498] :

concepts defined in the

DUA ISO Directory User Agent

DSA ISO Directory Service Agent

DIB Directory Information Base

ES End System

IS Intermediate System

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 302

LSAP Link Layer Service Access Point

NSAP Network Service Access Point

PDU Protocol Data Unit

psel presentation selector

SNPA Subnetwork Point of Attachment

SNPDU Subnetwork Protocol Data Unit

ssel session selector

TPDU Transport Protocol Data Unit

TSDU Transport Service Data Unit

tsel transport selector

2.3.2 Other Definitions

The following terms/concepts used in this specification,
defined in ISO 7498, are as follows:

NCB Network Control Block

NDUA NetBIOS Directory User Agent

NDSE NetBIOS Directory Service Entity

NSP NetBIOS Name Service Protocol

NSPDU NetBIOS Name Service Protocol Data Unit

2.3.3 Service Conventions Definitions

TOPMetBIOS

which are not

This Protocol Specification makes use of the following terms from the OSI
Service Conventions Technical Report (ISO TR 8509):

1. Service provider

2. Service user

2.3.4 Additional Definitions

For the purposes of this specification, the following definitions apply:

1. Group Name: a name which can be shared among multiple owners; a name
which is not unique. This definition derives from the NetBIOS group name
concept, rather than from the ISO/CCITT group entry.

2. Local Matter: a decision made by
Directory System that is not
specification.

a system concerning its behavior in the
prescribed or constrained by this

3. Protocol Address: the complete protocol address of an object or entity,
consisting of its transport address.

4. Byte and Octet: used interchangeably in the specification.

3 GENERAL PRINCIPLES

Before embarking on a detailed description of the mapping between the NetBIOS
interface and ISO transport services, it is important to understand several
general principles upon which this specification is based. The NetBIOS
interface is best supported at the ISO transport layer; NetBIOS ''sessions''
best map to class 4 transport connections, and NetBIOS Datagrams best map to
connectionless transport data requests except in the case of broadcast
datagrams (broadcast name services) where a Data Link level mapping is
required. The NetBIOS general commands, with one exception, do not require

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 303

TOPMetBIOS

any exchange of peer-to-peer protocol data units. The following subsections
discuss each of these principles in more detail.

3.1 NetBIOS Supported on a Transport Service

The best level in the OSI reference model at which to map the NetBIOS
interface is the level whose services most closely parallel the services
offered by the NetBIOS interface. That is the OSI transport level. The
NetBIOS interface requires reliable, sequenced data delivery, a service only
available at the transport level and above. The NetBIOS interface, however,
does not provide upper level services such as token management,
synchronization and activity management. The only OSI level above the network
level and below the session level is, of course, the OSI transport level, and
it is to this level that the NetBIOS interface best maps.

Readers should be cautioned that the NetBIOS interface definition (see above)
often refers to the NetBIOS interface as a ''session' • level interface. These
references exist because the protocols that support the original NetBIOS
interface (on the original PC Network Adapter) were developed before the OSI
reference model was widely understood. The highest level protocols on the
adapter were called ''session' • protocols despite the fact that they do not
provide OSI session services. Throughout this specification, terms which
refer to the NetBIOS view of a ''session' • will be placed in quotation marks.
Terms which refer to the OSI view of a session will remain unquoted.

In addition to its data transfer services, NetBIOS provides name service
support. The specific naming services NetBIOS provides differ fundamentally
from the current ISO directory services. No reasonable mapping between
NetBIOS name support and ISO directory services exists, so NetBIOS name
support does not affect the choice of protocol level at which to map the
NetBIOS interface. A protocol that provides NetBIOS naming services is
specified in the Sections 7 through 9.

Choosing to map NetBIOS to the transport level does provoke another concern:
the NetBIOS assumption of confirmed data delivery. NetBIOS data transfer
between ''sessions • • is a confirmed service, while ISO transport services
provide only unconfirmed data delivery (see ''Confirmed Data Delivery' • in
the following section) .

One important consequence of mapping the NetBIOS interface
services is that NetBIOS ''addresses • • equate to transport

to transport
selectors. A

NetBIOS ''address' • is a NetBIOS name; NetBIOS names correspond to transport
selectors. The transport address is the combination of a network service
access point (NSAP) address and a transport service access point selector
(T-Selector). The NSAP address for a name is an NSAP address on the network
node at which the name exists; the T-Selector for a name is equal to the full
NetBIOS name itself. Since the NetBIOS interface requires that names be
exactly sixteen characters long, T-Selectors used by NetBIOS names are also
sixteen bytes long. The correspondence between a NetBIOS name and a transport
address (an NSAP address and T-Selector pair) is detailed in part two of this
specification. 5

3. 2 NetBIOS ''Sessions • • as Transport Class Four Connections

Since the NetBIOS interface best maps to the transport level, NetBIOS
''sessions' '

''sessions' '
correspond to transport connections.
require reliable data delivery with

5 Sections 7-9 and Appendices II-V.

Protocols for X/ Open PC Interworking: SMB, Version 2

Furthermore, since NetBIOS
automatic error detection

Samsung - Exhibit 1014 - Page 304

TOPMetBIOS

and recovery, when operating over a connectionless network service, they
require class four (TP4) transport connections. Since this specification
assumes a connectionless network service, the NetBIOS ''session' ' support
commands map to TP4 services. LISTEN and CALL commands establish a TP4
connection; SEND, CHAIN SEND, RECEIVE and RECEIVE ANY commands transfer data
on that connection, and HANG UP commands terminate the connection. The
''NetBIOS Commands'' and ''Transport Service Indications
sections of this specification describe the operations
each of these commands. Appendix I, ' 'State Tables, ' '
between ''sessions'' and TP4 connections.

and Confirmations' '
required to support
details the mapping

3.3 NetBIOS Datagrams as Connectionless Transport Unitdata Requests

Data transfer with NetBIOS datagrams, unlike NetBIOS ''sessions'' is a
connectionless mode of transmission. Naturally, therefore, NetBIOS datagrams
correspond to data transfers using the connectionless mode transport service.
NetBIOS datagrams may be sent as broadcast datagrams or as multicast
datagrams to group names. In order to support broadcast datagrams and
datagrams to group names, the NetBIOS interface requires some form of
multicast or broadcast addressing. Currently, the ISO transport and network
layers do not support multicast or broadcast network addresses.

TOP support for multicast and broadcast addressing is only available through
the ISO 8802 link level protocols, so broadcast datagrams and datagrams to
group names must use link level addressing. Section 4.3 of this paper,
''Broadcast Datagrams and Datagrams to Group Names,'' details the addressing
techniques used.

Because NetBIOS datagrams may contain as many as 512 bytes, the NetBIOS
interface requires the lower level services to support a datagram size able
to include both the 512 bytes of data and header information for NetBIOS,
Transport, Network and Data link Layers. This requires a minimum frame size
of 650 octets.

Detailed
BROADCAST

documentation of
DATAGRAM, RECEIVE

the support
DATAGRAM and

required
RECEIVE

for SEND
BROADCAST

DATAGRAM, SEND
DATAGRAM can be
Indications and found in the ' 'NetBIOS Commands' ' and ' 'Transport Service

Confirmations'' sections below.

3.4 Guidelines and Constraints

1. There are three levels of NetBIOS interface services
different constraints on the networked NetBIOS based
interconnectivity, see Figure 2.

which imply
application

Level A NetBIOS Connection Services: These services rely on the
Connection Oriented Transport and Connectionless Network Protocols,
thus following full communication beyond the local network.

Level B NetBIOS Connection and Point-to-Point Datagram Services:
These services are a superset of Level A services. As they rely on the
Connectionless Network Protocol, communication is possible beyond the
local subnetwork. However as the Connectionless Transport is used, the
loss of NetBIOS Datagram, if it occurs, would not be recovered from by
the Transport Layer.

Level C - Extended NetBIOS Services: These services are a superset of
Level B services which adds the support of the NetBIOS broadcast and
multicast datagram services. As these added services do not use the
Connectionless Network Protocol, no direct communication (i.e., no OSI
Routing) is possible beyond the local subnetwork. As a consequence
any NetBIOS based application requiring Level C Services will have to
be distributed only within a single Subnetwork.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 305

TOPMetBIOS

2. The use of NetBIOS Name Services and the manner in which they are
distributed imply the following constraints.

a. Name Services scope
to a local subnetwork

support based
(the same as

on multicast mechanism is
NetBIOS native networking) .

limited

b. The expected way to extend the local
integrate the NetBIOS Name Servers
Environment.

scope of NetBIOS naming is to
into an OSI Directory Services

3.5 NetBIOS General Commands

Normally, the NetBIOS general commands do
protocol support. For example, no mapping to
RESET, CANCEL, UNLINK and SESSION STATUS

not require any
an ISO protocol is

commands. The type

peer-to-peer
required for

of support
required for each of these commands is detailed below in ''NetBIOS
Commands.''

However, one general command, ADAPTER STATUS, sometimes requires
communication with a remote system. When the ADAPTER STATUS specifies a
remote name, the local system must communicate with the remote system in
order to obtain the status. This communication uses the naming protocol
defined in NetBIOS Name Service Protocol Specification, so complete
documentation of this procedure can be found Appendix V.

The ADAPTER STATUS command also returns a buffer with fields that
to specific adapters. The values that adapters conforming
specification should use for these fields are stipulated in
STATUS'' in Appendix V.

4 SPECIAL CONSIDERATIONS

only apply
to this

''ADAPTER

A straightforward mapping from the NetBIOS interface to ISO transport
services does not resolve all the major NetBIOS/transport issues. It does not
specify how transport services provide zero octet sends, confirmed data
delivery, how they prevent data loss during hang ups, how they deliver
broadcast datagrams and datagrams to group names, how they affect NetBIOS
timeouts, how they resolve connections between group names, or how they
support permanent node names. This section discusses each of these topics.

This NetBIOS ''Session'' (mapping) Protocol resides above the transport layer
and makes use of the services provided by the transport protocol. This
protocol specifies use of two-octet NetBIOS headers for data transfer
requests (TSDUs) . The headers are fixed and always present. 6 The specific
values for the header are given in Table 1. The headers are used to solve the
issues of zero octet length messages and data loss during hang ups, as
described in the following subsections. The most significant octet is
transmitted first.

Value Description

0100H normal data (connection-oriented or connectionless)
0200H close request (connection-oriented only)
0300H close response (connection-oriented only)

TABLE 1. NetBIOS Header Values

6. Note that NetBIOS ''Session'' header is applied to the first TPDU only, and not all the TPDUs when a
TSDU is segmented into multiple TPDUs.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 306

TOPMetBIOS

Note: A TSDU with an invalid header will be ignored.

Once the transport circuit is established, all the connection oriented data
TSDUs generated by the NetBIOS interface/protocol layer will contain a two
octet fixed header, carrying NetBIOS opcode as defined above. Additionally
all non name service NetBIOS datagram TSDUs contain the two octet fixed
header with value OlOOH. Note, however, that this does not apply to TSDUs
generated by the Name Service Protocol described in sections 7 through 9.

Also, note that the header applies to TSDUs, not TPDUs or TIDUs.

4.1 Zero Length Data and Normal Data Transfer

The NetBIOS data transfer requests
header of OlOOH for normal data as
must evaluate the length of TSDUs
length ' 'user data' ' .

4.2 Confirmed Data Delivery

are mapped into data TSDUs with NetBIOS
well as zero length data. Implementations
to determine whether or not it has zero

The issue with mapping the NetBIOS interface to transport services is
guaranteeing data delivery on ''sessions' '. When a NetBIOS SEND or CHAIN
SEND command completes, the local user is assured that the remote user has
actually received the data. The ISO transport services, however, provide no
indication to the sender of actual data delivery; they do not have a T-DATA
confirmation primitive. Software implementing a NetBIOS interface does not
necessarily know when to indicate that a SEND command has completed.

This behavior can create a problem because, in some application programs, the
sender may take actions based on an assumption that the receiver has
possession of the data. Taking these actions before the receiver actually
does have the data may cause the application program to fail. Fortunately,
most NetBIOS application programs do not require true confirmed data
delivery; they only need assurance that data is not lost when the ''session''
is closed. This specification, therefore, provides a means of preventing data
loss during hang up (see below). Implementations are, of course, free to add
a confirmed data delivery service during normal data transfer. The details of
such a service are a local matter.

4.3 Data Loss During Hang Up

Because the NetBIOS interface cannot depend on ISO transport services to
guarantee data delivery at all times, the interface must prevent data loss
during hang up. The NetBIOS definition states that a HANG UP command does not
complete until all outstanding SEND and CHAIN SEND commands on the
''session' ' have completed (either successfully or unsuccessfully) . Because
NetBIOS confirms data delivery by completing the SEND command, NetBIOS users
are guaranteed that either all data will be delivered prior to the hang up,
or that an unsuccessful SEND or CHAIN SEND completion will alert them to data
that could not be delivered.

The transport T-DISCONNECT request, on the other hand, is not graceful. It
does not wait for all data sent to be delivered to the user. Without
confirmed data delivery, the transport user has no way of knowing whether or
not data has been delivered to the receiver before the disconnect completes.

To prevent data loss, the NetBIOS interface must delay the transport
disconnect until all data has been delivered to the user. To find out when
all data has been successfully delivered, the interface that wishes to hang
up sends a simple close request packet to the remote interface. This close
request is sent ''in stream' ' as a normal data TPDU with NetBIOS opcode of
0200H. When the remote interface has received all of these data messages
followed by a ''close request'' message and successfully delivered data

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 307

TOPMetBIOS

messages to the remote user, it sends a ''close response'' back to the local
interface, with NetBIOS opcode of 0300H. When the local interface receives
the close response, it knows that all data has been delivered. At that point
it issues a T- DISCONNECT request and completes the HANG UP command.

The close request and close response are each sent as a single data TSDU with
two octet of transport data for the NetBIOS header. The appropriate headers
are given in Table 1.

The case of close request collision is handled in a fashion similar to OSI
Session Protocol. Under these circumstances, close indication is given to
each end point. The action taken by each end point depends on its role at the
time the connection was established. The end point which originally issued
the connect request should immediately send a close response. The end point
which originally accepted the connect request should not send its close
response until a close response has been received from the other end point.

In addition to sending the close request, the NetBIOS interface initiating a
hang up starts a timer. If that timer expires before the interface receives a
close response, the ''session' ' is terminated abnormally and the interface
immediately issues a T-DISCONNECT request. The interface also aborts the
''session'' if it receives a T-DISCONNECT indication without having sent a
close response.

The close operation is detailed in the state tables of Appendix I.

4.4 Broadcast Datagrams and Datagrams to Group Names

An important issue in mapping the NetBIOS interface directly to transport
services is NetBIOS datagrams to group names and NetBIOS broadcast datagrams.
In order to support broadcast datagrams and datagrams to group names, the
NetBIOS interface requires some form of multicast or broadcast addressing.
Currently, however, the ISO transport and network layers do not support
multicast or broadcast network addresses. These datagrams, therefore, cannot
be transferred by the current ISO transport or network level protocols. Note
that here ''broadcast' ' refers to NetBIOS BROADCAST DATAGRAM commands, not
true media level broadcasts.

ISO support for multicast and broadcast addressing is available through the
ISO 8802 link level protocols, so broadcast datagrams and datagrams to group
names may be transferred by the link level. When the NetBIOS interface wishes
to send either type of multicast datagram, it directs the datagram to
TOP/NetBIOS Specific Media Access Control (MAC) Multicast Address [see
Appendix IV] 7

• The interface uses the node's normal MAC address as the
source MAC address. Address recommendations for Token Ring networks are
provided in Appendix IV ''Well Known Addresses''.

In order to differentiate these NetBIOS datagrams from non- NetBIOS ''pure''
OSI traffic, the interface also uses a special Logical Link Control (LLC)
service access point for NetBIOS multicast datagrams. By using a separate
LSAP, nodes avoid the possibility of conflict between invented NetBIOS
protocol for multicast/broadcast datagrams and an ISO multicast/broadcast
service which might be provided through the regular ISO LSAP in the future.
The specific LLC service access point defaults to the recommended value of
ECH 8

; however, conforming implementations must give users the ability to

7. The Specific Multicast Address for IEEE 802.3 is 09.00.6A.OO.Ol.OO. This MAC address is part of the
block of Ethernet addresses assigned to AT&T; AT&T has agreed to contribute it to the NetBIOS Special
Interest Group. This address must be configurable.

8. This value of LSAP is from public domain, and this value must be configurable.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 308

TOPMetBIOS

configure it to any other value. The selected service access point serves as
both the source and destination LLC address. Note that all the nodes on the
subnetwork have to be configured with the same LSAP value for this purpose;
inconsistent LSAP values will prevent intercommunication.

This addressing allows NetBIOS to send and receive multicast datagrams, but
the interface requires additional addressing information. NetBIOS must know
the source and destination names for each datagram sent to a group name, and
it must know the source name for each broadcast datagram. For point-to-point
communications, this information is normally available through the T
Selector.

In order to provide complete addressing information, NetBIOS multicast
datagrams continue to use the connectionless transport and connectionless
network protocols. Thus each datagram still has local and remote T-Selectors
associated with it, and, as is the case with normal datagrams, these T
Selectors indicate the local source and destination names. At the network
level, multicast datagrams use the same source NSAP as normal datagrams; the
destination NSAP, however, is a special NSAP which indicates the destination
is a multicast NSAP. The recommended NSAP address is
49.nn.nn.09.00.6A.OO.Ol.00.01, where [nn.nn=OO.OO] represents the subnetwork
number. Note that these datagrams use a special LLC service access point and
this NSAP address is not reported in the ES-IS protocol. Thus, strict TOP
conformant (i.e., non-NetBIOS) implementations of the ISO Connectionless
Network Protocol which do not support this special multicast NSAP need not
send or receive these datagrams. See Appendix VI for all the ''well known
addresses.' '

Strictly speaking, NetBIOS multicast datagrams have their own protocol stack
invented by the NetBIOS SIG for operation over the ISO datal ink layer. This
stack, which includes the connectionless transport layer and full network
layer (not the inactive subset) protocols, separates from the standard stack
at the LLC level, and the two stacks are kept separate by distinct LLC
service access points. Implementations, of course, are free to combine these
two logical stacks into a single physical stack. Such a combination allows
efficient use of common code. A protocol model of this NetBIOS implementation
under OSI environment is given in Figure 1 9

• Figure 2 provides a NetBIOS
architecture based on the protocol model presented in Figure 1.

As an important consequence of using link level addressing, NetBIOS
sacrifices the ability to send multicast datagrams across the TOP internet.
NetBIOS broadcast datagrams and datagrams to group names are restricted to
the local subnetwork.

Another issue with NetBIOS broadcast datagrams (but not datagrams to group
names) is the selection of a remote T- Selector to which they should be sent.
Since there is no destination name for these datagrams, the remote T-Selector
cannot be determined from the name as it is for normal datagrams. Broadcast
datagrams, therefore, use a destination T-Selector equal to the ASCII value
for an asterisk (2AH) followed by fifteen bytes equal to the ASCII value for
a space (20H) .

Table 2 summarizes the addresses NetBIOS requires for multicast
to-point datagrams. The actual recommended value for the
Multicast and Functional address are defined in Appendix IV.

and point
TOP/NetBIOS

9. The dotted line in Figure 1 indicates the boundary between OSI Standard Protocol and NetBIOS specific
support protocol.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 309

TOPMetBIOS

LSAP -

NetBIOS Services MAP/TOP/OSI
Upper Layer
Services and
Protocols

IBM NetBIOS Application Development Guide, April 1987
(Doc No. 68X2270 S68X-2270-00)

NetBIOS Mapping Rules
NetBIOS SIG Defined Mapping between NetBIOS Serivces and

: Y~c:l~~.ly:~r:~ .. ~~~Y.i.c:~~.

Transport Class 4
Connection-oriented Service
ISO 8072 Transport Service

Definition
ISO 8073 Transport Protocol

Specification

Network Connectionless

Transport - Unitdata
Connectionless Datagram Service
ISO 8072-ADl Transport Service
Connectionless-mode Transmissior.
ISO 8602 Protocol for
Connectionless

ISO 8646 Internal Organization of Network Layer
ISO 8348 Network Service Definition
ISO 8348-ADl Network Service Definition Connectionless

Data Transmission
ISO 8348-AD2 Network Service Definition Network Layer Addressing
ISO 8473 Protocol for Connectionless-mode Network Service
ISO 8473 TC 97/SC 6 N 3453 Provision of Underlying Services
assumed by 8473
ISO 9542 TC 97/SC 6 N 4053 End System to Indermediate System

Routing Exchange Protocol for use with 8473

Data Link
ISO 8802/2 Logical Link Control
ISO 8802/3 CSMA/CD Access Method
ISO 8802/4 Token Passing Bus Access Method
ISO 8802/5 Token Ring Access Method

Figure 1. NetBIOS Protocol Model

NetBIOS
Multicast/
Broadcast
Datagram
Service

NetBIOS SIG
defined
protocol for
support of
multicast,
broadcast
and NetBIOS
Group Names

Connection Services
Point-Point

Datagram Services
Multicast/Broadcast

Datagram Services

TOP/NetBIOS
NetBIOS Session and Name Service Protocols

I Connectionless
Connectionless I Multicast Transport Class 4

Transport Protocol I
OSI 8073

I
Transport Protocol

OSI 8602
I Non Std Ext OSI 8602

Full IP
Full IP

Multicast NSAP
OSI 8473

Restricted Err Report

FE EC

IEEE 802.2 LLC type 1 Service

IEEE 802.3, 802.4 and 802.5

Figure 2. OSI/NetBIOS Architecture

Protocols for X/ Open PC Interworking: SMB, Version 2 ,2;)1

Samsung - Exhibit 1014 - Page 310

TOPMetBIOS

Type Point-to-Point Multicast

Source MAC address source adapter's source adapter's
Dest. MAC address dest. adapter's TOP/NetBIOS Multicast
(CSMA/CD) Address
Dest. MAC address dest. adapter's TOP/NetBIOS Functional
(Token Ring) Address
Source LLC SAP FEH ECH
Destination LLC SAP FEH ECH
Source NSAP source adapter's source adapter's
Destination NSAP dest. adapter's multicast NSAP
Source T-Selector source name calling name
Dest. T-Selector destination name called name or "*<15 sp>"

TABLE 2. Default NetBIOS Addresses

4.4.1 Network Header - Multicast NPDUs

The network header for the PDUs for multicast traffic will be as per OSI 8473
Specification with the error bit turned off.

4.5 Send and Receive Timeouts

The NetBIOS interface defines send and receive timeouts for its ''sessions''.
These timeouts limit the amount of time the interface should wait for a SEND,
CHAIN SEND or RECEIVE command to complete. Application programs that use
these timeouts usually base their values on local subnetwork ''sessions' ' .
Since the original NetBIOS does not support internetworking, application
programs are unlikely to account for internetwork transit delay when they
specify a send or receive timeout value. Implementations that map the NetBIOS
interface to ISO transport services should adjust the send and receive
timeout values appropriately for ''sessions' ' in case they cross subnetwork
boundaries. The definition of ''appropriately'' in this case is left as a
local matter.

4. 6 ''Sessions' ' with Group Names

Another consideration in the mapping of NetBIOS to transport is the
establishment of ''sessions' ' with group names. This specification requires
support of ''sessions'' between group names. NetBIOS LISTEN and CALL commands
with group names for the local name are accepted by the interface. The LISTEN
command responds to any T-CONNECT indication specifying the correct T
Selector, and the CALL command results in a T-CONNECT request with the
appropriate local T-Selector. Additionally, the interface accepts LISTEN and
CALL commands with group names for the remote name. The LISTEN command
matches any T-CONNECT indication with the appropriate remote T-Selector, and
the CALL command results in a T-CONNECT request with a remote T-Selector
equal to the remote group name. In all cases, communication occurs through
standard ISO protocols attached to the normal ISO LSAP.

The only significant concern in connecting group names is the NSAP address
used in a T-CONNECT request when an application program calls a remote group
name. That NSAP address should be the specific address (i.e., not generic or
group address) of one system on which the group name exists. When the group
name exists on more than one system, the choice of which remote NSAP address
to use is, for the purposes of this specification, arbitrary. In cases where
an NDSE receives multiple responses, it is a local matter how one is chosen
for use. In the case where an NDUA is responding to an NDSE, the NDUA may
choose one address to put into the response PDU. The approach to be used to
make the choice is a local matter.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 311

TOPMetBIOS

4.7 Permanent Node Names

A permanent node name, which consists of ten octets of zeros followed by six
octets of Mac address, should be treated the same as any other NetBIOS name.
Calls to permanent node names, for example, should attempt to discover the
address of the remote name just as they would for normal names. The six non

zero bytes in a permanent node name cannot be assumed to correspond to the
Ethernet or MAC-layer address of the adapter (but may actually be) . Those

same six bytes, however, should be returned as the unit identification number
by the ADAPTER STATUS command (see below).

An adapter must, of course, successfully register its permanent node name
with the NetBIOS naming services each time it is initialized.

5 NetBIOS COMMANDS

The previous three sections specify a definition for the NetBIOS interface
and ISO transport services, outline the general principles for mapping the
two to each other, and discuss significant complications arising from the
mapping. This section begins a detailed description of that mapping. It
identifies the level of support required for each NetBIOS command, and it
indicates the specific transport service requests and responses associated
with each command. NetBIOS commands not listed in this section (TRACE and
FIND NAME, for example) are not part of the NetBIOS interface as defined in

section 2.1. This specification does not specify support for these additional
commands.

Most NetBIOS commands require some initial validation before the interface
accepts them. This initial validation may include verifying that the correct
adapter was specified, that a name has a valid format, that a local name
exists, that a name number is valid, that a ''session'' exists, etc .. The
NetBIOS interface definition described in section two, of the referred IBM
document, includes an adequate description of this validation. Consequently,
this specification omits any description of the validation procedures.
Conforming implementations, however, must perform validation for each command
as it is described in the NetBIOS interface definition.

Conforming implementations
from a post routine call
completed.

5.1 RESET

must be able to
by NetBIOS when

process NO WAIT commands issued
a previous NO WAIT command has

Implementations conforming to this standard accept and process RESET
commands. A RESET command resets the adapter status, deletes all names except
the permanent node name, and terminates all ''sessions' '. It does not reset
traffic and error statistics.

The only protocol interactions resulting from a RESET command are requests to
delete NetBIOS names and T- DISCONNECT requests to close NetBIOS connections.
Implementations need not delete names belonging to non- NetBIOS programs or
protocols, nor must they close non- NetBIOS connections. This specification
does not attempt to specify the operation of non-NetBIOS names and

connections.

The RESET command may also specify the number of commands and the number of
''sessions' ' to be supported by the adapter. Conforming implementations must
accept and process these parameters. If the RESET command specifies a value
of zero for either parameter, the minimum number of sessions and the number
of commands are configured to implementation specific values.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 312

TOPMetBIOS

5.2 CANCEL

Conforming implementations accept and process CANCEL commands. Processing is
identical to that specified in the NetBIOS definition. Cancelling a CALL,
SEND, CHAIN SEND or HANG UP commands results in an immediate T-DISCONNECT

request on the affected connection. Cancelling any other valid command does
not require any protocol interaction.

5.3 ADAPTER STATUS

ADAPTER STATUS commands for both local and remote adapters are accepted and
processed. Local status requests need not require protocol interaction
(details are left up to individual implementations); remote status requests,

however, use the services of the NetBIOS naming protocol. The format of
adapter status request/response is given in Appendix III.

When responding to an ADAPTER STATUS command, the NetBIOS interface fills in
a buffer with appropriate status information. Several fields within that
buffer apply only to specific adapters or specific network topologies. Since
it is not the intent of this specification to restrict implementations to
these few specific technologies, this specification must leave the exact
support of the ADAPTER STATUS command as a local matter. Implementations
should strive to use values for the status fields as close as possible to the
values indicated below.

Unit identification
permanent node name.
MAC layer address of

number: The
These bytes

the adapter.

six non-zero bytes of the adapter's

do not necessarily form the Ethernet or

External option status: One byte whose value is a local implementation
choice.

Results of
self-test.

last self
A binary

successfully passed.

test:
value

Software version: Two bytes
minor version number of this

One
of

byte
128

indicating the
(SOH) indicates

results of
that the

the last
test was

containing binary values for the major and
specification to which the adapter conforms.

The version number for this specification is 1.0.

Duration of reporting period: Two bytes whose value is a local
implementation choice. It is suggested that if the interface reports the
MAC statistics indicated by the next eight items, this field contains the
binary value of the time, in minutes, since the adapter began recording
the statistics. This value rolls over after reaching a value of <2**16-1>
minutes. If the interface does not report MAC statistics, it is suggested
that this field contains zero.

Number of CRC errors received: Two bytes whose value is a local
implementation choice. It is suggested that they either contain zero or
the binary value of the number of MAC-layer packets (frames) with CRC

errors received by the adapter. This value is not necessarily restricted
to NetBIOS frames, and it does not roll over after reaching <2**16-1>
errors.

Number of alignment errors received: Two bytes whose value is a local
implementation choice. It is suggested that they either contain zero or
the binary value of the number of MAC- layer packets (frames) with

alignment errors received by the adapter. This value is not necessarily
restricted to NetBIOS frames, and it does not roll over after reaching
<2**16-1> errors.

Number of collisions
implementation choice.

encountered: Two
It is suggested

bytes whose value is
that they either contain

a local
zero or

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 313

TOPMetBIOS

the binary value of the number of MAC-layer collisions detected by the
adapter. This value is not necessarily restricted to NetBIOS frames, and
it rolls over after reaching <2**16-1> collisions.

Number of unsuccessful transmissions: Two bytes whose value is a local
implementation choice. It is suggested that they either contain zero or
the binary value of the number of MAC- layer packets (frames) whose
transmission was aborted by the adapter. This value is not necessarily
restricted to NetBIOS frames, and it rolls over after reaching <2**16-1>.

Number of successfully transmitted packets (frames): Four bytes whose
value is a local implementation choice. It is suggested that they either
contain zero or the binary value of the number of MAC-layer packets
(frames) successfully transmitted by the adapter. This value is not
necessarily restricted to NetBIOS frames, and it rolls over after reaching
<2**32-1> packets.

Number of successfully received packets: Four bytes whose value is a local
implementation choice. It is suggested that they either contain zero or
the binary value of the number of MAC-layer packets (frames) successfully
received by the adapter. This value is not necessarily restricted to
NetBIOS frames, and it rolls over after reaching <2**32-1> packets.

Number of retransmissions: Two bytes whose value is a local implementation
choice. It is suggested that they either contain zero or the binary value
of the number of MAC-layer packets (frames) retransmitted by the adapter.
This value is not necessarily restricted to NetBIOS frames, and it rolls
over after reaching <2**16-1> retransmissions.

Number of times the receiver exhausted its resources: Two bytes whose
value is a local implementation choice. It is suggested that they either
contain zero or the binary value of the number of times the receiver did
not have sufficient buffers to receive an incoming MAC-layer packet. This
value is not necessarily restricted to NetBIOS frames, and it does not
roll over after reaching <2**16-1>.

Reserved for internal use: Eight bytes whose value is a local
implementation choice.

Free NCBs: Two bytes containing the binary value of the number of
additional NetBIOS commands the adapter can currently accept.

Configured maximum NCBs: Two bytes containing
maximum number of commands that the adapter can
the last RESET command or initialization.

the binary value of the
support, as configured by

Maximum number of NCBs: Two bytes containing the binary value of the
maximum number that the adapter can accept in the next RESET command for
the ''maximum number of commands supported' • parameter.

Reserved for internal use: Four bytes whose value is a local
implementation choice.

Pending sessions: Two bytes containing the binary value of the number of
currently active or pending ''sessions' •

Configured maximum sessions: Two bytes containing the binary value of the
maximum number of ''sessions' • that the adapter can support, as configured
by the last RESET command or initialization.

Maximum number of sessions: Two bytes containing the binary value of the
maximum number that the adapter can accept in the next RESET command for
the ''maximum number of sessions supported' • parameter.

Maximum ''session' • data packet size: Two bytes containing the binary
value, in octets, of the maximum TPDU size supported by the adapter, minus

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 314

TOPMetBIOS

the maximum TP header size.

Quantity of names in local name table: Two bytes containing the binary
value of the current number of NetBIOS names claimed by the adapter. This
value does not include the adapter's permanent node name, nor does it
include any names used by programs or protocols other than the NetBIOS
interface. This number also indicates the maximum number of name entry
pairs (the next two fields) which can follow.

Name: the sixteen byte NetBIOS name.

Name status: Two bytes, the first of which contains the binary value for
the NetBIOS name number, and the second of which contains the name's
status. The most significant bit of this second byte indicates whether the
name is a unique name (if the bit is clear) or a group name (if the bit is
set). The three least significant bits of the status denote the condition
of the name. The remaining bits of the name status are undefined, and
their values are a local implementation choice. The following list
summarizes the values for this field.

Oxxxxxxx name is a unique name

lxxxxxxx name is a group name

xxxxxOOO name is trying to register

xxxxxlOO name is registered

xxxxxlOl name is de-registered

xxxxxllO name has been detected as a duplicate

xxxxxlll name has been detected as a duplicate and is pending de
registration

5. 4 UNLINK

This specification does not provide support for the UNLINK command (nor, in
fact, for remote program load). A conforming implementation's response to an
UNLINK command is left as a local choice.

5.5 ADD NAME

Conforming implementations accept and process ADD NAME commands. The NetBIOS
interface translates the ADD NAME command into an appropriate request for the
NetBIOS naming services. When the interface receives a confirmation from the
naming services, it translates the confirmation's result to an appropriate
NetBIOS return code and completes the ADD NAME command. Details of name
registration can be found in NetBIOS Name Service Protocol (Section 9).

5.6 ADD GROUP NAME

Conforming implementations accept and process ADD GROUP NAME commands. The
NetBIOS interface translates the ADD GROUP NAME command into an appropriate
request for the NetBIOS naming services. When the interface receives a
confirmation from the naming services, it translates the confirmation's
result to an appropriate NetBIOS return code and completes the ADD GROUP NAME
command. Details of name registration can be found in NetBIOS Name Service
Protocol (Section 9).

5.7 DELETE NAME

Conforming implementations accept and process DELETE NAME commands according
to the NetBIOS interface definition. If the name has active ''sessions' ',
the interface marks the name for eventual deletion and returns the DELETE
NAME command with a return code of ''command completed, name has active

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 315

TOPMetBIOS

''sessions'' and is now de-registered'' (OFH). When all the active

''sessions'' have closed or aborted, the interface actually deletes the name.
If the name has pending commands other than active ' ' session' ' commands,
those commands are returned immediately with a ''name was deleted'' (17H)

completion.

When the NetBIOS interface deletes
active ''sessions' ' have closed),
NetBIOS naming services. Details
Name Service Protocol (Section 9).

5. 8 CALL

the name (either immediately or after all

it sends an appropriate request to the
of name deletion can be found in NetBIOS

Conforming implementations accept and process CALL commands. When it
receives a CALL command, the implementation first finds the transport address
corresponding to the remote NetBIOS name. To find this address, it sends a
resolve name request to the naming services. If the naming services cannot
discover the name's address, the interface completes the CALL command with a
return code of ''no answer (cannot find name called)'' (14H).

If the name resolution is successful, the interface continues processing by
attempting to establish a transport connection with the remote system. It
formulates an appropriate T-CONNECT request to pass to the transport

services. The called transport address for the indication consists of the
NSAP address of the node on which the remote name resides, along with a T

Selector equal to the remote name. If the remote name is a group name, the
NSAP address is that of one node on which the remote name resides; it is not
the NetBIOS multicast NSAP address. If the remote group name exists on more
than one node, the choice of which NSAP address to use is arbitrary (see

''Sessions with Group Names'' in section 5.6 above)

When the interface receives a T-CONNECT confirmation, it completes the CALL
command successfully. If the interface receives a T-DISCONNECT indication
instead, it examines the reason code of the indication. If the remote TS-user

initiated the disconnect, the interface completes the call with a ''session
open rejected'' (12H) return code. If the transport provider initiated the

disconnect, or name resolution fails, the interface completes the call with a
''no answer (cannot find name called)'' (14H) return code.

5.9 LISTEN

Conforming implementations accept and process LISTEN commands. When the
implementation receives a LISTEN for a valid local name, it holds onto the
command until it receives an appropriate T-CONNECT indication (see following
section). At that point, the interface completes the LISTEN command. The

interface may also complete the LISTEN command if it is cancelled or if the
local name is deleted; in these cases the LISTEN completes unsuccessfully.

5.10 HANG UP

Conforming implementations accept and process HANG UP commands. When an
implementation receives a HANG UP command, it immediately terminates any
pending RECEIVE commands and one RECEIVE ANY command for the ''session'' with
a ''session closed'' (OAH) return code. Any subsequent RECEIVE, SEND, CHAIN

SEND, or even HANG UP commands for the ''session' ' are also immediately
terminated with this same return code. The local interface also starts a
timer as soon as it receives a HANG UP. If the HANG UP has not completed when
this timer expires, the interface aborts the ''session' ' .

It sends a close request to the remote interface and waits
response. When the interface receives the close response, it
completes the HANG UP command and issues aT-DISCONNECT request.

Protocols for X/ Open PC Interworking: SMB, Version 2

for a close
successfully

Samsung - Exhibit 1014 - Page 316

TOPMetBIOS

If the interface receives a close request after it has sent one, then a
''close collision'' has encountered. Under such situation, if the local
interface is the initiator of the ''session' ' it will send a close response
and then wait for a close response, and the normal HANG UP process continues
as described above.

However, if the local interface is the acceptor of the ''session' ', in a
''close collision' ' situation, it will not issue a close response until it
has received one. Following that it will wait for a T-DISCONNECT indication
in order to complete the HANG UP process successfully.

If the interface receives a close request or a T-DISCONNECT indication before
the close response, it aborts the ''session' ' by completing all pending
commands with ''session ended abnormally'' (18H) return codes, and, if
necessary, issuing aT-DISCONNECT request.

5.11 SEND

Conforming implementations accept and process SEND commands. With each SEND
command during normal data transfer, the interface sends a T-DATA request to
transport. The user data for that request is the data contained in the SEND
command's buffer preceded by the two octet NetBIOS header. (Note that the
NetBIOS header is attached to datagram as well as connection oriented Virtual
Circuit traffic.) If the interface has some knowledge of when the data is
actually delivered to the user, it may withhold completion of the SEND until
it knows of actual data delivery. If the interface has no such knowledge, it
may complete the SEND at any time. The exact mechanism for determining when
to complete the SEND command is a local matter.

If the NetBIOS interface has received a close request from the remote
interface prior to receiving the SEND command from the local user, it accepts
the SEND command but does not issue the T-DATA request. Since the data cannot
be delivered to the remote user anyway, there is no need for the transport
request. Of course, the interface also withholds completion of the SEND
command until the close process completes. A SEND command retained in this
manner is returned with an error code indicating that the session terminated.

5.12 CHAIN SEND

Conforming implementations accept and process CHAIN SEND commands. With each
CHAIN SEND command, the interface sends a T-DATA request to transport. The
user data for that request is the combination of both of the command's
buffers, preceded by the two octet NetBIOS headers. If the interface has some
knowledge of when the data is actually delivered to the user, it may withhold
completion of the CHAIN SEND until it knows of actual data delivery. If the
interface has no such knowledge, it may complete the CHAIN SEND at any time.
The exact mechanism for determining when to complete the CHAIN SEND command
is a local matter.

If the NetBIOS interface has received a close request from the remote
interface prior to receiving the CHAIN SEND command from the local user, it
accepts the CHAIN SEND command but does not issue the T-DATA request. Since
the data cannot be delivered to the remote user anyway, there is no need for
the transport request. Of course, the interface also withholds completion of
the CHAIN SEND command until the close process completes. A CHAIN SEND
command retained in this manner is returned with an error code indicating
that the session terminated.

5.13 RECEIVE

Conforming
issues a

implementations
RECEIVE command,

accept
the

and process RECEIVE commands. When a
interface first looks for any user

user
data

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 317

TOPMetBIOS

received for the ''session'' that has not yet been given to the user. If such
user data exists, the interface copies the data into the RECEIVE command's
buffer and completes the command. If the user data copied was the last of a
T-DATA indication, the command completes successfully. If data still remains
from the indication, the RECEIVE completes with a ''message incomplete' '
(06H) return code.

If there is no data to satisfy the RECEIVE command, the interface simply
keeps the command until data arrives or a time-out occurs. The RECEIVE may
also complete if it is cancelled, if the ''session' ' is closed. A RECEIVE
command is not completed as a result of the local name being deleted.

5.14 RECEIVE ANY

Conforming implementations accept and process RECEIVE ANY commands. When a
user issues a RECEIVE ANY command, the interface first looks for any user
data received for an appropriate ''session'' that has not yet been given to
the user (see ''T-DATA indication' ' below). If such user data exists, the
interface copies the data into the RECEIVE ANY command's buffer and completes
the command. If the user data copied was the last data in a message, the
command completes successfully. If data still remains to be delivered the
RECEIVE ANY completes with a ''message incomplete'' (06H) return code.

If there is no data to satisfy the RECEIVE ANY command, the interface simply
keeps the command until data arrives or a time-out occurs. The RECEIVE ANY
may also complete if it is cancelled or if the local name is deleted.

5.15 SESSION STATUS

Conforming implementations must accept and process SESSION STATUS commands
according to the NetBIOS definition. The field referred to as ''state of the
session' ' is not identical to the state of the NetBIOS/TP4 mapping described
in Appendix I. The correspondence between the value returned by SESSION
STATUS and the mapping state is:

5.16

Value returned in State of NetBIOS/TP4
SESSION STATUS command mapping from Appendix I

IDLE (OOH) STA 00
LISTEN pending (01H)
CALL pending (02H)
Session established (03H)
HANG UP pending (04H)
HANG UP complete (05H)
Session Ended Abnormally (06H)

STA 01
STA 02
STA 03, STA 05
STA 04, STA 08
STA 06
STA 07

TABLE 3. Session Status Command Mapping

SEND DATAGRAM

SEND DATAGRAM commands. When Conforming implementations
the implementation receives
address corresponding to the

accept and process
a SEND DATAGRAM, it first finds the transport

name. To find this address, it
service module. If the naming
the interface simply completes

sends a
services
the SEND

remote NetBIOS
resolve name request to the naming
cannot resolve the name's address,

DATAGRAM command with an unsuccessful response code.

If naming services successfully resolves the remote name, and that name is a
unique name, the NetBIOS interface sends a T-UNITDATA request with an
appropriate destination transport address. That address consists of the NSAP
address of the node on which the name resides, along with a T- Selector equal
to the remote name. The interface then completes the SEND DATAGRAM command.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 318

TOPMetBIOS

If the remote name is a group name, the interface also sends a T-UNITDATA
request. In this case, however, the connectionless transport protocol will
use the special multicast NSAP, and it will direct the datagram to the
NetBIOS multicast MAC address and LLC service access point (see ''Broadcast
Datagrams and Datagrams to Group Names'' in section 4.4). The datagram is not
directed to a specific NSAP address of a node owning the group name. As with
unique names, the destination T-Selector is equal to the remote name. After
sending the T-UNITDATA request, the interface completes the SEND DATAGRAM
command successfully.

5.17 SEND BROADCAST DATAGRAM

Conforming implementations must also accept and process SEND BROADCAST
DATAGRAM commands. Since a SEND BROADCAST command does not specify a
destination name, there is no need for name resolution. The interface simply
sends a T-UNITDATA request to transport services with the special broadcast
T-Selector for the destination T-Selector. The connectionless transport
protocol will use the multicast NSAP, and it will direct the datagram to the
NetBIOS multicast MAC address and LLC service access point (see ''Broadcast
Datagrams and Datagrams to Group
sending the T-UNITDATA request, the
DATAGRAM command successfully.

5.18 RECEIVE DATAGRAM

Names'' in
interface

section
completes

four
the

above) . After
SEND BROADCAST

Conforming implementations must accept and process RECEIVE DATAGRAM commands.
When the interface receives a RECEIVE DATAGRAM command, it holds the command
until an incoming datagram satisfies the command, the command is cancelled,
or the local name is deleted. ''T-UNITDATA indication' ' in the following
section describes the actions the interface takes to successfully complete a
RECEIVE DATAGRAM command.

5.19 RECEIVE BROADCAST DATAGRAM

Conforming implementations must accept and process RECEIVE BROADCAST DATAGRAM
commands. When the interface receives a RECEIVE BROADCAST DATAGRAM command,
it holds the command until an incoming datagram satisfies the command, or the
command is cancelled. The command is also completed if the name is deleted.
''T-UNITDATA indication' ' in the following section describes the actions the
interface takes to successfully complete a RECEIVE BROADCAST DATAGRAM
command.

6 TRANSPORT SERVICE INDICATIONS AND CONFIRMATIONS

In addition to generating appropriate transport service requests and
responses, the NetBIOS interface must also respond appropriately to incoming
transport service indications and confirmations. This section describes the
responses to all of these service primitives.

In many implementations, the ISO transport services support upper layers
other than the NetBIOS interface. Some transport service implementations, for
example, may support both the NetBIOS interface and the ISO session protocol.
This specification does not address the complications multiple upper layers
introduce, and the primitives discussed below are assumed to be intended
solely for the NetBIOS interface. For example, there is no attempt to
describe how transport services know to pass a T-CONNECT indication to
NetBIOS instead of to the ISO session services.

6.1 T-CONNECT Indication

When the NetBIOS interface
pending LISTEN command to

receives a T-CONNECT indication,
match the indication. A matching

it looks for a
LISTEN command

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 319

TOPMetBIOS

must have a local name equal to the called T

have a remote name equal to the calling
(wildcard) remote name. If both a specific

match, the specific LISTEN takes precedence.

Selector,
T-Selector

LISTEN and

and it must either
or an unspecified
a wildcard LISTEN

If the interface matches a pending LISTEN command, it completes the command
successfully and sends transport a T- CONNECT response. If no matching LISTEN
exists, the interface sends transport aT-DISCONNECT request.

6.2 T-CONNECT Confirmation

When the NetBIOS interface receives a T-CONNECT confirmation, it completes

the appropriate CALL command successfully.

6.3 T-DISCONNECT Indication

The actions the NetBIOS interface takes when it receives a T-DISCONNECT

indication depend on the state of the affected ''session' ' If that
''session'' has a CALL pending, the CALL command is completed with a
''session open rejected'' (12H) or a ''no answer (cannot find name called)
(14H) return code. Which return code is returned depends on the reason given
in the T-DISCONNECT indication. If the reason indicates that the remote TS

user invoked the disconnect, the interface returns the call with a
''reject' 'ed return code; otherwise, it uses the ''no answer'' return code.

If the ''session' ' is established when the T-DISCONNECT indication arrives,
the interface completes any pending commands with the ''session ended
abnormally' ' (lSH) return code. The interface also takes this action if the

''session'' is in the process of hanging up.

The only time an interface expects to receive a T-DISCONNECT indication is

after sending a close response. In this case, the interface completes all
pending commands with a ''session closed'' (OAH) return code. Additionally,

if any RECEIVE ANY commands apply to the ''session' ', one of those commands
is also completed with ''session closed''. If no commands are pending on the
''session'', the interface waits for the user to issue another command. When
the user issues a command, that command is completed with a ''session
closed'' return code.

6.4 T-DATA Indication

A T-DATA indication tells the NetBIOS interface that data, a close request or

a close response has arrived for a ''session' '.

When the interface receives such an indication during normal data flow, it
looks for a pending RECEIVE command with which to pass the data on to the
user. If no RECEIVE command for the ''session'' is available, the interface
looks for a pending RECEIVE ANY for the ''session's'' local name. If none are
found, the interface then looks for a pending RECEIVE ANY for an unspecified
(wildcard) name.

If the interface finds any command to satisfy the T-DATA indication, it

copies the data into the command's buffer and completes the command. If all
of the user data from the indication fits in the buffer, the command is
completed successfully. If only part of the user data fits in the buffer
specified by the command, the interface returns the command with a ''message
incomplete' ' (06H) return code. The interface then looks for another pending

RECEIVE or RECEIVE ANY command in which to place the remaining data. The
interface continues in this fashion until all of the data has been given to
the user or until it can no longer find suitable commands.

If the interface cannot find a pending RECEIVE or RECEIVE ANY
keeps whatever user data is left until the user issues an

Protocols for X/ Open PC Interworking: SMB, Version 2

command, it
appropriate

3)1

Samsung - Exhibit 1014 - Page 320

TOPMetBIOS

command.

If the NetBIOS interface
Net BIOS header, after it
but before that HANG UP

receives a T-DATA indication, with a
has received a HANG UP command from the

has completed, the T-DATA indication

normal data
local user
is simply

ignored and the data discarded.

6.5 T-UNITDATA Indication

T-UNITDATA indications contain incoming NetBIOS datagrams. When the NetBIOS
interface receives a T-UNITDATA indication, it examines the destination T
Selector to determine if the datagram is a broadcast datagram or if it is
addressed to a specific name (see ''Broadcast Datagrams and Datagrams to
Group Names'' in section four above).

If the received datagram is a broadcast datagram, the interface looks for
pending RECEIVE BROADCAST DATAGRAM commands. If none exist, the interface
discards the T- UNITDATA indication. If an appropriate NetBIOS command does
exist, the interface copies the data from the T-UNITDATA indication to the
command's buffer. If all the data fits in the buffer, the interface returns
the RECEIVE BROADCAST DATAGRAM command with a successful completion. If the
data exceeds the size of the buffer, the interface returns the command with a
''message incomplete'' (06H) return code, and the remaining data is lost.

If the received datagram is directed to a specific name, whether that name is
a group name or a unique name, the NetBIOS interface ensures that the
destination name is registered on its adapter. If the name does not exist on
the local adapter, the interface discards the T-UNITDATA indication.

If the specific name exists on the local adapter, the interface searches for
a pending RECEIVE DATAGRAM command for that name. If none exists, the
interface then looks for a pending RECEIVE DATAGRAM command with an
unspecified (wildcard) local name. If the interface is still unsuccessful, it
discards the T-UNITDATA indication.

If an appropriate pending NetBIOS command does exist, the interface copies
the data from the T-UNITDATA indication to the command's buffer. If all the
data fits in the buffer, the interface returns the RECEIVE DATAGRAM command
with a successful completion. If the data exceeds the size of the buffer, the
interface returns the command with a ''message incomplete'' (06H) return code
and the remaining data is lost.

6.6 T-EXPEDITED Data

This option is negotiated in the transport call
the MAP/TOP v3.0 specification. NetBIOS itself
therefore T-EXPEDITED DATA Requests are never
DATA indication is received, it is ignored.

7 NetBIOS NAME SERVICE PROTOCOL - OVERVIEW

request PDU as described in
does not use Expedited Data,
generated. If a T-EXPEDITED

This part,
through V,

the remaining sections of
defines a naming protocol

this
for

specification
TOP networks

and
that

Appendices II
will support

NetBIOS name support services.

7.1 Architecture

The NetBIOS Name Service is a
facilities for naming objects in
those names to useful attributes,

distributed name service
the internet environment,
such as protocol addresses.

which provides
and for relating

The name
protocol
primitives

service protocol provides a mapping
(transport) addresses. The protocol

and a distributed information base.

of NetBIOS
is based on

Every node

Names to their
query/response

on the network

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 321

TOPMetBIOS

or names posted on that maintains information regarding the services
When a new name is to be added on any node,
the network to ensure that the name can
followed to obtain the address of an object.

node.
on that node queries other nodes

be added. A similar process is

In a simple topology consisting of a few NetBIOS nodes on a broadcast based
network, the name service protocol makes use of multicast addresses to
register and resolve names. The name service element on NetBIOS nodes is
called the NetBIOS Directory Service Element (NDSE) . In a more complex
topology having a large number of nodes, an internetworking environment or
the presence of an OSI directory service, the use of a NetBIOS Directory User
Agent (NDUA) is useful (but not required) . If there exists an NDUA on the
network, the NDSEs communicate with the NDUA using point-to-point datagram
communications. NDUAs become the focal point of name service activity. NDUAs
are expected to have the capability to interface with an OSI Directory User
Agent (DUA) or interface with other NDUAs.

In the case when NDSEs cannot communicate with an NDUA, they revert back to
limits the address
are not transported

multicast based communication among NDSEs. This
resolution to the local subnetwork, since multicasts
across subnet boundaries.

Figures 3 and 4 provide an example of a simple network topology.

The scenarios
involved for
communications

presented in this subsection depict the
various name service related actions

and call-back type applications.

network activities
for internetwork

NDSE

NDUA

Application
X

NDUA 1

Subnetwork
1

Figure 3.

0········0>

Internet
Connection

NDUA 2 Application
y

Subnetwork
2

Name Service Example

Local NetBIOS Directory Service Entity, present on every node.

NetBIOS Directory User Agent, zero or more present on a subnetwork. At
least one is needed for internet name service. It may also provide the
interface to the ISO Directory Services (DUA-DSA), if present. It may
also communicate with another NDUA using the name service protocol.

Protocols for X/ Open PC Interworking: SMB, Version 2 3J3

Samsung - Exhibit 1014 - Page 322

DIE 1

NETWORK 1
names

X
y

DIE 2

NETWORK 2
names

Names common to
both the scopes

Figure 4. Name Scopes

The above topology, Figure 3, contains two subnetworks (1
associated NDUAs (NDUA1 and NDUA2 respectively) . The
identify the administrative actions of NDUAs to provide
resolutions.

TOPMetBIOS

and 2) with the
following points
internetwork name

It is not possible for application programs using the NetBIOS interface to
identify whether they wish to advertise in an internet environment.
Therefore, NDUAs based on administrative filtering will update names in
their directory information base (DIB) using DSA/DUA when the application
programs register or unregister. The administrative filter mechanism is a
local matter. It is expected that the names registered in the DIBs will
be of ''server'' types providing services across internet boundaries.

Application programs based on the call-back
administrative support. For example if the
communicate with Y, and if it is necessary for
call each other, then the following steps can
NDUAs.

feature will also require
application X wishes to

both these applications to
be taken by the respective

X will be posted on network 1 by application X, similarly Y will be
posted on network 2 by application Y. Both these names will be entered
in the DIB by their respective NDUAs.

Y will be posted by NDUA1 in the DIB with a pointer to the entry made by
NDUA2. Similarly, X will be posted by NDUA2 in the DIB with a pointer to
the entry made by NDUA1. This will serve the purpose of determining the
uniqueness of ''globally' ' known names within the scopes in which they
are referenced.

If X & Y are unique names, then no other application can claim either of
these two names in the two networks and associated DIBs, see Figure 4.

Note that the information provided by the name service, particularly when
using NDUAs will be ''loosely consistent'' in the sense that it may not be
absolutely current.

7.2 High Level Feature Descriptions

The following set of features are provided by the NetBIOS Name Services. Some
of these features are specifically developed for the NetBIOS environment, and
for internetworking and performance reasons. A brief and high level
description of each of the features follow.

NetBIOS: The name service supports a flat, NetBIOS compatible name space.
Names need be unique only within the context of the local subnet.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 323

TOPMetBIOS

Standards: The name service requires minimum functionality from underlying
layers, a simple standard datagram transfer service is all that is needed.
Also, name service is architected with migration to the ISO directory
service in mind. A deliberate effort is made to ensure that we provide ISO
compatible name services in a way that allow a smooth transition to a
''real'' ISO directory service when it is fully specified.

Internetworking: The name services provide support for internetwork
communication. Access to the name service is transparent to the
application programs. Internet name resolution is supported. All intranet
name resolution is supported by the distributed database, multicast, or
point-to-point mechanisms. The name service is integrated with ISO
transport service to allow the exchange of information relative to transit
delay associated with a particular resource (e.g. 1200 baud link). Transit
delay information is important to allow support of NetBIOS applications
with dependencies on Receive-Time-Out or Send-Time-Out (RTO/STO).

Graceful Degradation: Loss of a single node affects only local calls to
that node. Loss of a NetBIOS Directory Service Entity (NDSE) on a node
affects only local calls to that node. Loss of an NDUA affects only
internet name resolution. Name resolution continues after the loss of an
NDUA by using the multicast operation mode of the name service.

Remote Adapter Status: The name service is integrated
Remote Adapter Status. A user can issue a status request
and will receive the status information associated with
that end point exists, even if the node is on another
that additional information regarding complete use of
provided in Appendix III.

with support for
on a NetBIOS name
the node on which

subnetwork. Note
this service is

Compatibility: The NetBIOS names are used for T- Selectors (transport
service access point identifiers.) This provides a simple, efficient and
effective mapping between NetBIOS names and T-Selectors which becomes a
part of the transport address (t-selector+nsap address with null ssap and
null psap). NetBIOS is implemented on ISO Transport Class 4 (8073) and ISO
Connect ionles s Transport (8 6 02) . Thus, NetBIOS based products and other
TOP applications can coexist on the same network and on the same node.

Set of Functions: A set of functions are defined. The name service makes
use of three types of messages, request/advise, response and pending.
Names, or objects, are associated with a set of attributes which include,
among other things, full transport address (with null psel and null ssel)
of the object.

The set of functions supported are:

a. Register Name

b. Register Group Name

c. Adapter Status

d. Unregister Name

e. Resolve Name

f. Advise Name Conflict (Generation and Response)

g. Advise NDUA Present

7.3 Scope and Purpose

This specification presents the NetBIOS Name Service Protocol (NSP) . The NSP
is the basic
systems. The
needs of the

transfer mechanism for exchanging name service requests between
NSP mechanism and protocol is specified here to support the
NetBIOS Name Service. It is currently used only by the NetBIOS

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 324

TOPMetBIOS

directories, but it is constructed to allow for expansion to other directory
applications.

It consists of high-level operations
resolution and attribute association.

7.4 Underlying Services

that support name registration,

The NetBIOS Name Service Protocol is based on datagram services provided by
CLTP (see Figure 2) with a maximum TPDU size of 1024 octets.

7.5 NetBIOS Name Service (NS)

Operations supported by the NS include name registration and resolution, the
storage, and the deletion of attribute information associated with names.
These operations were conceived with the ISO/CCITT Directory Services model
in mind, and should ease migration to that environment.

The following background information is useful when reviewing the protocol:

the name of an object (usually an application entity) can be thought of as
a search key for retrieving information about the object;

information takes the form of
characteristics of an object (such as

attributes which
its protocol address);

describe the

the distributed directory database
known as attribute tuples, which
format.

maintains this information in records
are encoded in a Type-Length-Value

7.6 Services

The NetBIOS Name Service Protocol primitives are summarized in Table 4:

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 325

TOPMetBIOS

Primitives Parameters

NB - RegisterName .Request/ NB Name, -
.Indication NB InitialAttributesList -

.Response/ NB - Response Code

.Confirm

NB - RegisterGroupName .Request/ NB Name, -
.Indication NB InitialAttributesList -

.Response/ NB - Response Code

.Confirm

NB _UnregisterName .Request/ NB Name -
.Indication

.Response/ NB - Response Code

.Confirm

NB ResolveName .Request/ NB Name, - -
.Indication NB - RequestAttributesList

.Response/ NB - ResponseCode,

.Confirm NB Name, -
NB ReturnedAttributesList -

NB_AdapterStatus .Request/ NB Name -
.Indication

.Response/ NB ReturnedAttributesList -

.Confirm

NB NameConflictAdvise .Request/ NB Name, - -
.Indication NB AdviseAttributeList -

NB NDUAHereAdvise .Request/ NB InitialAttributeList - -
.Indication

TABLE 4. Service Primitives for Name Service Protocol

8 NetBIOS NAME SERVICE PROTOCOL FUNCTIONS

8.1 General

This section describes the functions performed as part of the name service.
All the functions described here are mandatory.

8 .1.1 Response Semantics

The values given in the following sections for setting the Response
Semantics field in the name service PDUs serve as guidelines only.

Individual implementations may choose to use different values. However, any
example given assumes the use of the recommended values.

8 .1. 2 Multicast Requests versus Requests to NDUA

In general, the operation of these functions will
reaction to the presence of an NDUA. When these
requests, they operate as follows:

Protocols for X/ Open PC Interworking: SMB, Version 2

depend on the
functions issue

NDSE's
remote

Samsung - Exhibit 1014 - Page 326

1.

2.

TOPMetBIOS

If an NDSE does not know the address of an NDUA,
Otherwise, the request is sent as a point-to-point
as follows:

it proceeds to Step 2.
datagram to the NDUA,

a. DestinationAddress is set to the transport address of NDUA.

b. ProcedureTimeout is set to ''T'' seconds. The value of ''T'' as well
as the manner in which ''T'' may be configured, is left as a local
matter.

c. ResponseSemantics is set to Unconditional Response.

d. Other portions of the request PDU are set as appropriate for each
function. See below for details.

e. The request is sent as a point-to-point datagram to the NDUA. If no
response is received within ''T'' seconds, the request is
retransmitted every ''T'' seconds until such time as a response is
received or until some maximum number of retransmissions has been
reached (see also section 8. 7). The maximum number of times a given
request may be sent to an NDUA is denoted by ''X'' (X>=l). The value
of ''X'', as well as the manner in which ''X'' may be configured, is
left as a local matter.

f. If no response is received after ''X'' transmissions, proceed to Step
2. If a response is received, then the function will complete by
sending either a success or failure indication to the originator
depending on the response received, and Step 2 is not performed.

In the absence of an NDUA
the request is sent as a
follows:

(or no response from NDUA after ''X'' tries),
multicast datagram to all other NDSEs, as

a. address that DestinationAddress is set to the transport
''ALL NetBIOS DIRECTORY SERVICE ENTITIES' ' This address

the multicast the t-selector reserved
Appendix IV for details.

for NDSEs and

represents
consists of

NSAP. See

b. ProcedureTimeout is set to ''T'' seconds. The value of ''T' ', as well
as the manner in which ''T'' may be configured, is left as a local
matter.

c. ResponseSemantics is set as recommended for each function. Details
are given below for each function.

d. Other portions of the request PDU are set as appropriate for each
function. See below for details.

e. The request is sent as multicast datagram to all NDSEs. If no
response is received within ''T'' seconds, the request is
retransmitted every ''T'' seconds until such time as a response is
received or until some maximum number of retransmissions has been
reached (see also Section 8. 7). The maximum number of times a given
request may be sent to NDSEs is denoted by ''Y'' (Y >= 1). The value
of ''Y' ', as well as the manner in which ''Y'' may be configured, is
left as a local matter.

f. If no response is received after ''Y'' transmissions, then the
function will complete either a success or failure indication to the
originator depending on the ResponseSemantics used. (If Response on
Success was used, then failure is assumed. If Response on Failure was
used, then success is assumed, etc.)

If a response is received, then the function will complete by sending
either a success or failure indication to the originator depending on
the response received.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 327

TOPMetBIOS

8 .1. 3 Actions of NDSE (or NDUA) on Receipt of Remote Request

In general, when an NDSE (or NDUA)
NDUAs it will process the request
The general actions of NDSE are as
are given in Appendix V.

receives a request PDU from other NDSEs or
and return a response PDU as appropriate.
given below. More specific actions of NDUA

1. All the response PDUs must contain the same source reference that was
provided in the request PDU.

2. If for any reason, the NDSE expects a delay in processing the
within the ProcedureTimeout value provided in the request PDU,
return a point-to-point pending PDU to the originator.

request
it must

3. The NDSE must return the Response PDU based upon the type of request and
the ResponseSemantics.

a. A response PDU is always returned if Unconditional
requested.

Response was

b. A response PDU
partial success)

is returned if the operation was a success
and Response on Success was requested.

(or a

c. A response PDU is returned if the operation was a failure and
Response on Failure was requested.

8.2 Register Name Function

This function is responsible for verifying the
group) name, registering the name on the
associating attributes with the name.

unambiguity of a new (non
optionally, network, and,

Name service clients are allowed to choose a name for their application
entities, but a name must be determined to be unambiguous; that is, not
already in use 10

. The function queries all relevant databases, local or
remote, to determine if the name is already in use. If the name is not found,
the function assumes that the name is unclaimed and registration succeeds. If
the name is found to already exist, the function aborts and returns a failure
indication to the originator.

The following actions are taken by this function:

1. If the name exists in the local (node) version of the specified database,
the entire procedure is aborted and a failure indication is returned;
otherwise, the name is tentatively registered (put into ''being
registered state'') in the local database in order to avoid race
conditions with other systems adding the same name; and this name is
defended by generating responses to the received Register Name Requests
and Register Group Name Requests as if the name were registered, but will
respond to the Resolve Name Request as if the name were not registered.

2. A request
Parameter
follows:

is sent to an NDUA or all NDSEs, as described in Section 8.1.2.
values particular to the Register Name Request are set as

Procedure is set to NB RegisterName;

DestinationAddress is set
otherwise to the transport
DIRECTORY ENTITIES' ';

to the transport address of
group address that indicates

a valid NDUA,
' 'ALL NetBIOS

10. Note that this does not apply to group names which are ambiguous by definition. Group names are
registered using the Register Group Name Function.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 328

3. If

TOPMetBIOS

ProcedureTimeout is set to ''T'' seconds;

ResponseSemantic is set to Unconditional Response if NDUA11 address is
specified, otherwise it is set to Respond-on-Failure. Note that the
NDSE trying to register a name will receive a response, success or
failure if there exists an NDUA on the network. Otherwise it will
receive a failure response with response code of Registration Error.

NB Name is taken from the original NB RegisterName.Request;

NB Initial Attribute List contains at
protocol address and unique attribute.

a failure response is received from any

least two elements,

NDUA or NDSE, the name is
already in use on another node. In this easel the tentative registration
in the local database is cancelled, the procedure aborts, and a failure
indication is returned to the originator.

If a successful response is received from an NDUA (indicating either the
name was unknown or the name was previously registered to the NDUA with
the same protocol address as specified in the current request) or if no
response is received from any NDSE, then the name is considered to be
claimed by the local node. The tentative registration of the name in the
local database is made permanent, and the procedure completes by sending
a success indication to the originator.

4. The return code is returned in the NB ResponseCode.

See Appendix I I
NB_RegisterName

for a set
function.

of sample

8.3 Register Group Name Function

This function is
registering the
with the name.

responsible
name on the

to verify
network,

PDU encoding generated by a typical

the unambiguity
and, optionally,

of a new group name,
associate attributes

Names on the network must normally be unique; that is, referring to only one
owner. In the case of group names, however, the name is allowed to be shared
by several owners so long as all the owners recognize the situation. This
function is used when an application specifically wishes to share a name with
other applications.

This function queries all relevant databases, local or remote, to determine
if the name is already in use as a unique name. If a unique version of the
name is not found, the function assumes that the name is free to be claimed
as a group name, and registration succeeds. If the name is found to already
exist in a unique form, the function aborts and returns a failure indication
to the originator.

This function performs the following actions:

1. If a unique version of the name exists in the local version of the
appropriate database, the entire procedure is aborted and a failure
indication is returned; otherwise, the name is tentatively registered
(put into ''being registered state'') in the local database in order to
avoid race conditions with other systems adding the same name as a unique
name. While the name is tentatively registered, this node will defend the
name by generating responses to the Register Name Requests as if the name
were actually registered, but will respond to Resolve Name Requests as if

11. The operation of NDUA and NetBIOS Object Class definition is given in Appendix V.

310 X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 329

TOPMetBIOS

the name were not registered.

2. A request is sent to an NDUA and/or all NDSEs, as described in Section
8.1.2. Parameter values particular to the Register Group Name Request are
set as follows:

3.

Procedure is set to NB RegisterGroupName;

ProcedureTimeout is set to ''T' ';

ResponseSemantics is set to Unconditional Response if an NDUA address
is specified, else it is set to Respond-on-Failure. Note that the NDSE
trying to register a name will receive a response, success or failure,
if an NDUA exists on the network. Otherwise it will receive a failure
response with response code of Registration Error;

NB Name is taken from the original NB RegisterGroupName.Request;

NB Initial Attribute List contains
protocol address and group attribute.

at least two elements,

If a failure response is received
already in use on another node as
tentative registration in the local

from any NDUA or NDSE, the name is
a unique name. In this case, the

database is cancelled, the procedure
aborts, and a failure indication is returned to the originator.

If a successful response is received from an NDUA (indicating either the
name was unknown or the name was previously registered to the NDUA as a
group name) or if no response is received from any NDSE, then the name is
considered to be claimed by the local node. The tentative registration
of the name in the local database is made permanent, and the procedure
completes by sending a success indication to the originator.

4. The return code is returned in the NB ResponseCode.

See Appendix II for
NB_RegisterGroupName

a set of
function.

8.4 Unregister Name Function

sample PDU encodings generated by

This function is used to remove a registered name from the network.

a typical

This function attempts to update or remove both local and remote database
entries corresponding to this name. In the case of a unique name, all
attributes associated with the name are deleted from the entry, and the name
is released. In the case of a group name, specific sets of attributes
contained in the Unregister Name Request (viz. transport address) are
deleted, and the name is released when the last set of attributes are
deleted.

Note that if the node just ''disappears'' without unregistering a name, it is
possible that cached entries and NDUA databases may contain invalid entries.
The name service is designed to be ''loosely consistent'' and allows for the
possibility of invalid entries, so the protocol will still function when a
node ' 'disappears' ' .

This function performs the following actions:

1. If the name does not exist in the local (node) version of the appropriate
database, the entire procedure is aborted and a failure indication is
returned.

2. A request is sent to an NDUA and/or all NDSEs, as described in Section
8.1.2. Parameter values particular to the Unregister Name Request are set
as follows:

Protocols for X/ Open PC Interworking: SMB, Version 2 311

Samsung - Exhibit 1014 - Page 330

312

TOPMetBIOS

procedure is set to NB_UnregisterName;

if the name is being unregistered in
Directory Service Agents (DSAs) then
Identifier is included in the request;

other
for

domains
every DSA

(scopes) or
an Object

ResponseSemantics set to Unconditional Response if
specified, or
receives such
subnetwork;

else
is
it is

a request
set

it
to No Response. In addition,

re-multicasts this request on

NB Name is taken from the original NB_UnregisterName Request;

NB InitialAttributeList contains at least one element,
protocol (transport) address associated with the name.

NDUA is
when NDUA
the local

viz. 1 the

3. The return code is in the NB ResponseCode.

8.5 Resolve Name Function

This function is used to resolve a name to a set of attributes (most commonly
a Transport Address). If such an entry exists in a local or remote database,
the requested attributes are returned to the originator along with a success
indication. If the entry is found but not all requested attributes are known,
then those attributes which are known and requested are returned along with a
partial-success indication. If no such entry can be found, the procedure
returns a failure indication to the originator.

The following actions are taken by this function:

1. A request is sent to an NDUA and/or all NDSEs, as described in Section
8.1.2. Parameter values particular to the Resolve Name Request are set as
follows:

2.

3.

Procedure is set to NB ResolveName;

ProcedureTimeout is set to ''T'' seconds;

ResponseSemantics is set to unconditional response if an NDUA address
is specified, otherwise it is set to Respond-on-Success;

Arguments for the remote NB Resolvename
specified, are as specified below.

procedure, if NDUA is

NB Name is taken from the original NB ResolveName.Request;

NB RequestAttributesList is taken from the same parameter on the
original NB ResolveName.Request.

If a failure response is received from
NDSEs timed out without response, then
the procedure aborts and a failure
originator.

any NDUA or if the request (s) to
the name is unknown. In this case,

indication is returned to the

It is possible that the
attributes than requested.

resolve
In such

of partial success. Such responses
response' ' .

name response may contain fewer
a case, the response code will be
are also treated as a ''successful

If a successful response is received from an NDUA or an NDSE, then the
requested, or received attributes, when fewer attributes are received,
are returned to the originator with an indication of success.

The return code, name and
NB ResponseCode, NB Name
respectively, with the
NB ReturnedAttributesList.

requested attributes are returned as the
and NB ReturnedAttributesList parameters,

above parameters being passed as

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 331

TOPMetBIOS

A successful resolve name response must have the requested transport address
attributes. It is possible that, if the resolve name response is received
from NDUA it may contain more than one transport address when the name is a
group name. Similarly, resolve name responses may come from several NDSEs
when the name is a group name. Also, note that it is possible all the
attributes may not fit in a PDU. In that case the attribute list is
truncated based on local choice.

See Appendix
NB ResolveName

II for a
functions.

set of sample

8.6 Name Conflict Advise Function

PDU encodings generated by typical

This function consists
detection of conflict,
''NameConflictAdvise' '

of two parts. The first part of the function requires
and the second part requires the processing of the

indication.

This function is used to detect names in ''conflict''. It is possible, though
by remote chance, that a given subnetwork will contain two or more identical
unique names, or one or more identical group names along with at least one
identical unique name posted in the name service databases, such that every
node posting such name thinks that it has posted a unique name.

The function is defined in two parts. The first part is associated with the
detection of conflict. It requires that the node resolving a name detects
more than one response to a resolve name request (either by waiting for or by
accepting more than one response.) If more than one response is received, for
a unique name, it indicates that the name is in conflict. The node detecting
the conflict sends a point-to-point advise (NameConflictAdvise PDU) back to
all but one (generally the first) responder indicating that that name posted
is in conflict.

The second part of the function is associated with the processing of a
''NameConflictAdvise' ' indication. When a node receives the conflict
indication, it will set the ''Name-In-Conflict' ' attribute for that name.
When all the current sessions are terminated that are associated with a name
with the ''Name-In-Conflict' ' attribute set, the name should be
removed/unbound/deleted from its database by explicit user delete name
command. During this period, the node will not allow the use of that name for
any other ACTIVITY other than for currently active sessions and adapter
status.

8.7 Pending Function

This Pending function is invoked by the receiver of a request PDU if it
expects a longer delay in processing the request than the procedure timeout
indicated in the request PDU. The response PDU is returned to the source of
the request with the type field set to ''pending'' and the procedure timeout
field set to a new timeout value.

8.8 NDUA Here Advise Function

This function generates the ''NDUA here PDU'' to announce the presence of an
NDUA on a subnetwork. This function is used only by NDUAs. An NDUA uses this
function to multicast a message when it first joins the subnetwork. It also
uses the function to send point-to-point messages to NDSEs which may be
unaware of an NDUA's presence. See Appendix V for further details.

Protocols for X/ Open PC Interworking: SMB, Version 2 313

Samsung - Exhibit 1014 - Page 332

314

TOPMetBIOS

8.9 Special Comments

8.9.1 Cache

Cache table cleanup may be a concern in various applications. However, the
mechanism chosen to cleanup the cache table may or may not be desirable,
depending on a particular application. This protocol does not provide any
indication when a name is unadvertised, because there can be no guarantee
that such an indication will always be given.

It is possible to associate timers with every name in the cache table, so
that names are deleted after a finite amount of time. In addition, it also
possible to send ''keep- alive' ' PDUs periodically for every posted name.
However, both these techniques become cumbersome for a large network or
network with many posted names. Therefore, maintaining a cache is treated as
a local matter. Caches are set-up for reasons of performance. The protocols

do not specify or recommend a mechanism to maintain caches.

9 STRUCTURE AND ENCODING OF PDUs

9.1 Structure

All the Protocol Data Units shall contain an integral number of octets. The
octets in a PDU are numbered starting from 1 and increasing in the order they
are put into a TSDU. The bits in an octet are numbered from 1 to 8, where bit
1 is the low-order bit. Note that the name service PDUs do not carry the two

octet NetBIOS Header.

When consecutive octets are used to represent a binary number, the lower
octet number has the most significant value.

When the encoding of a PDU is represented using a diagram in this section,
the following representation is used:

1. octets are shown with the lowest numbered octet to the left, and higher
number octets to the right;

2. within an octet, bits are shown with bit 8 to the left and bit 1 (least
significant) to the right.

PDUs shall contain, in the following order:

1. the fixed part;

2. the variable part.

9.2 Fixed Part

9.2.1 General

The fixed part contains frequently occurring parameters such as the PDU type
and total length.

If any of the parameters of the fixed part have an invalid value, it
constitutes a protocol error and the offending PDU shall be discarded.

The format of the fixed part is shown in Figure 5.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 333

TOPMetBIOS

Octet

Length Indicator 1,2

Protocol Version Identifier 3

Type 4

Source Reference 5,6

Flags 7

Quality of Service 8

Response Semantics 9

Response Code 10

Procedure Timeout 11

Procedure 12

Figure 5. PDU Header - Fixed Part

9.2.2 Length Indicator

This field is contained in octets 1 and 2 of the PDU. The length is indicated
by an unsigned binary number, with a maximum value of 65534, and the value
65535 (1111 1111 1111 1111 or -1) is reserved for future extensions. The
length indicated shall be the header length in octets, but excluding the
length indicator field.

Note that this protocol defines PDUs as consisting entirely of header, since
there is no facility for carrying user data.

9.2.3 Protocol/Version Identifier

This field is contained in octet 3 of the PDU. The value of this field for
the first release shall be 0001 0001.

PDUs containing protocol/version identifiers with different values shall be
considered a protocol error.

9.2.4 Type

This field identifies the PDU type and is contained in octet 4. It is used to
define the structure of the variable part of the PDU. Valid codes are given
in Table 5.

Protocols for X/ Open PC Interworking: SMB, Version 2 315

Samsung - Exhibit 1014 - Page 334

TOPMetBIOS

Type Binary Value

REQUEST pdu 0000 0010
RESPONSE pdu 0000 0100
PENDING pdu 0000 1000
ADVISE pdu 0001 0000

TABLE 5. Valid PDU Type Codes

All other values are reserved and shall constitute a protocol error.

9.2.5 Source Reference

This field is contained in octets 5 and 6. It identifies a specific
invocation of a request and is used by the initiator to correlate responses
with the appropriate requests. The value for this field is selected by the
initiator and is returned (but not interpreted) by the responder. The same
value is used in the successive retransmissions of the PDU.

9.2.6 FLAGS

This field is contained in octet 7.

Every bit in the octet signifies a flag. Only two flags are defined.

1. The NDUA Flag - the least significant bit (binary value 0000 0001) Since
NDUAs must also monitor and respond to broadcast messages destined to all
NDSEs, it is important to be able to distinguish which of those messages
were sent by an NDUA and which ones were sent from an NDSE. NDUA sets
this flag in all the PDUs it generates; NDSEs reset this flag in all the
PDUs they generate.

2. The Internet Flag the second least significant bit (binary value 0000
0010) . This flag is set by NDUA in the response PDU if the object being
requested is across the LAN boundary, otherwise the flag is reset. This
flag is always reset in a request PDU12

•

3. Other values are reserved.

9.2.7 Quality of Service Field

This field is contained in octet 8.

When the value of this field is set to zero in the request PDU, the
destination entity is requested to provide the ''fastest'' answer, e.g. an
NDUA only checking its local table. When it is set to ''255' ', the responder
is expected to provide its best answer, e.g. an NDUA ignoring its local table
and obtaining current information from NDSEs 13

. The responder, similarly, will
set this field to zero or ''255'' based on the answer provided. No other
intermediate values for this field are defined.

9.2.8 Response Semantics

This field is contained in octet 9 of the PDU. It is set by the initiator to
define the circumstances under which the responder should send a RESPONSE
PDU. Allowable values are given in Table 6' and the responder must adhere to
the rules given below. This field has meaning only in the request PDUs; in

12. This flag is useful for End Systems in two cases, (1) for the selection of the proper NSAP address for
group names, and (2) for the selection of proper timer values for connections.

13. The definition of best is rather subjective. It implies that the responder is requested to make the most
thorough check, e.g. not just looking at the cached value but to revalidate the cache.

316 X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 335

TOPMetBIOS

response PDUs this field is copied from the request PDU.

Response Semantic Binary Value

No Response 0000 0000
Response on Success 0000 0001
Response on Failure 0000 0010
Unconditional Response 0000 0011

TABLE 6. Valid Response Semantics

All other values are reserved and shall constitute a protocol error.

The following rules shall be observed by the responder:

No Response
No response is expected.

Response-on-Success
The responder shall send a RESPONSE PDU only if the requested
operation resulted in success or partial success (i.e. , response code
of S-success or S-partialResults, see below).

Response-on-Failure
The responder shall
operation resulted in

Unconditional-Response

send a
failure.

RESPONSE PDU only if the requested

The responder shall always send a RESPONSE PDU to indicate the result
of the requested operation.

9.2.9 Response Code

This field is contained in octet 10 of the PDU. This 1-octet field is used to
indicate the outcome of a requested operation. The high-order bit indicates
success (Oxxx xxxx) or failure (1xxx xxxx), with the other bits encoded to
represent reasons. Table 7 shows a summary of the valid response codes.

Response Code

S-success 0000 0000
S-partialResults 0000 0001

E-protocolError 1000 0001
E-nameNotFound 1000 0010
E-noAccess 1000 0011
E-registrationError 1000 0100
E-registrationNameinConflict 1000 0101
E-foundNameinConflict 1000 0110

TABLE 7. Valid Response Codes

S-success
The request has been successfully completed.

S-partialResults
The request has been partially completed,
for 2 attributes only one was found

e.g. if the request was made
and returned. Note that the

a value for an attribute that responding entity must not ''make up',

it does not have.

E-protocolError
The request PDU violates the protocol (during normal operation this
error must not be generated, it is a diagnostic tool, e.g., it is used
when improper function code is received).

E-nameNotFound
The name in resolve name request is not found.

Protocols for X/ Open PC Interworking: SMB, Version 2 317

Samsung - Exhibit 1014 - Page 336

318

TOPMetBIOS

E-noAccess
The resources cannot
accessible, or name not

E-registrationError

be accessed,
found.

e.g. security or database not

The register name request has been denied due to an already existing
unique name when registering a unique or group name, or an already
existing group name when registering a unique name.

E-registrationNameinConflict
The register name request has been denied due to already existing
name/s in conflict.

E-foundNameinConflict
The resolve name request failed as the name found is in conflict.

9.2.10 Procedure Timeout

This field is
unsigned binary
the number of
procedure.

contained in
number with
seconds the

octet 11 of the PDU.
a maximum value of 255

originator will wait

It is interpreted as an
(1111 1111) . It specifies

before timing out the

The timeout value of 0 is valid; it indicates infinity (no timeout).

9.2.11 Procedure

This field is contained in octet 12 of the PDU.
procedure to be performed, and defines the format
the PDU. Allowable values are given in Table 8.

It identifies the remote
of the variable portion of

Procedure Binary Value

NS-RegisterName 0000 0001
NS-RegisterGroupName 0000 0010
NS-UnRegisterName 0000 0011
NS-ResolveName 0000 0100
NS-AdapterStatus 0000 1000

NS-NDUAHereAdvise 0011 0000
NS-NameConflictAdvise 0010 0000

FUTURE DIRECTORY PROCEDURES reserved

TABLE 8. Valid Procedure Codes

All other values are reserved and constitute a protocol error.

9.3 The Variable Part

9.3.1 General

The variable part is used to convey the parameters for the remote procedure,
or values being returned from such a call. If the variable part is present,
it may contain one or more parameters. Each remote procedure defines the
number, type and order of parameters to appear in the variable part. The
following are some of the most common parameters to appear in the variable
part. Their order of appearance differs with the exact procedure call, and
is defined in the PDU diagrams starting at sec. 9.5.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 337

TOPMetBIOS

9.3.2 Name

This parameter is a variable length field used to unambiguously identify a
database entry. It is usually set by the initiator and must be formed
according to the rules for NetBIOS Names 14

. It is encoded in the format shown
in Figure 6.

Octet

Name Length Indicator m

m+1
Name

n-1

Figure 6. Encoding of the Name Parameter

9.3.3 Attribute Descriptor

This is a variable-length parameter which describes an attribute. Attribute
descriptors may be specified by either the initiator (as in the case of a
NB ResolveName REQUEST pdu), or by the responder (as in the case of a
NB_ResolveName RESPONSE pdu).

Attribute tuples are encoded in a standard type-length-value format as shown

in Figure 7.

Octet

Attribute Code m

Attribute Length Indicator m+1

m+2
Attribute Value

n-1

Figure 7. Encoding of an Attribute Descriptor

The Attribute Code field is a 1-octet binary value allowing a maximum of 254

different attribute types. The value of 255 is reserved for possible future
extensions. The set of attribute codes in the range of 0-127 are reserved for

TOP/NetBIOS use. The set of attribute codes in the range of 128-254 are
assigned for private use (vendor specific). An implementation that does not

recognize an attribute code will ignore the attribute. Table 9 lists the
valid attribute codes defined by TOP/NetBIOS.

14. NetBIOS Names are defined to be consistent with the NetBIOS specifications to a length of exactly 16
octets.

Protocols for X/ Open PC Interworking: SMB, Version 2 319

Samsung - Exhibit 1014 - Page 338

TOPMetBIOS

Attribute Attribute Value

Reserved 0000 0000
Reserved 1111 1111
Reserved 0000 0111

to
0111 1111

Unique Name 0000 0001
Transport Address 0000 0010
Name In Conflict 0000 0011 -
VC Accept 0000 0100
DG Accept 0000 0101
NodeAdminTransport Address 0000 0110

Private 1xxx xxxx*

* - values not including 1111 1111

TABLE 9. Disposition of Attribute Codes

An attribute (code) that is not recognized will be ignored. However, an
unrecognizable attribute doe11not cause the entire request to be ignored.
Recognized15 attributes will still be registered (in the case of Registered
Name and Registered Group Name Requests) or returned with a response code S
partialResults (in the case of Resolve Name Requests).

The Attribute Length field is a 1-octet binary value which indicates the
length, in octets, of the attribute value field. The value field may be up to
254 octets in length. The value of 255 is reserved for possible future
extensions.

The Attribute Value field contains the value of the attribute identified in
the attribute code field. Encoding formats for standard attributes are
specified in sec. 9.4.

9.3.4 Attribute Lists

In many operations, a list of attribute descriptors may be passed as
parameters or return values. When such a list appears, it is preceded by an
Attribute Count parameter. This parameter is a 1-octet binary value
indicating the number of attribute descriptors in the list (see the previous
section for the format of attribute descriptors). The field allows for a
maximum of 254 attribute descriptors in the list. Such lists may contain only
one item. The value 255 is reserved for possible future extensions.

The format of an attribute list is given in Figure 8.

15. Valid attributes, including private attributes, are recognized, and a list of valid attributes codes are
given in Table 9.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 339

TOPMetBIOS

Repeated
11 i 11 times!

I
I
I
I
I
I __

Octet

Attribute Count i m

Attribute Code m+1

Attribute Length Indicator m+2

m+3
Attribute Value

n-1

Figure 8. Encoding of an Attribute List

9.4 Encodings for Selected Attributes

9.4.1 General

When attribute tuples are passed in the protocol, they are encoded using a
standard type-length- value format called an attribute descriptor (see sec.
9.3.3 for details). The following sections specify the contents of the
Attribute Code, Attribute Length and Attribute Value fields for each of the
standard attributes.

The following attributes are defined:

1. UniqueName

2. Transport Address

3. Name In Conflict

4. vc Accept

5. DG Accept

6. NodeAdminTransport Address

9.4.2 Encoding of the Attribute Code

In order to allow for new attributes to be added to the NetBIOS Name Service
Protocol with a minimum of central coordination, the attribute code field is
structured to represent a two-level hierarchy. The two levels are:

attribute authority identifier (bit 8);

attribute identifier (bits 1-7)

Attribute Authority Identifier

This field designates the authority responsible for allocating the attribute
identifiers under its control. When the value of this field is set to zero
(0), it indicates the value has been assigned by the TOP/NetBIOS SIG. The
other values associated with this field set to one (1) indicate these are
assigned locally for private use.

Attribute Identifier

This field designates the individual attribute within the domain of an
attribute authority. Each attribute within a domain must have a unique

Protocols for X/ Open PC Interworking: SMB, Version 2 321

Samsung - Exhibit 1014 - Page 340

TOPMetBIOS

seven-bit code assigned by the reigning authority.

9.4.3 UniqueName

This attribute specifies whether the name corresponding to this entry is a
unique name (as opposed to a group name) .

Attribute Code: 0000 0001

Attribute Length: 1 octet

Attribute Value: Boolean (Oxff=TRUE, OxOO=FALSE)

9.4.4 Transport Address

This attribute contains the Transport Address of the object. If this
attribute is requested for a recognized name in a resolve name request, at
least one transport address must be returned in the response. The encoding of
the Transport Address attribute value field is as follows:

Attribute Code: 0000 0010

Attribute Length: variable

Attribute Value: See Figure 9

Octet

Reserved Set to 0 m-2

Reserved Set to 0 m-1

tSelector Length Indicator m

m+1
tSelector

n-1

nAddress Length Indicator n

n+1
nAddress

p-1

Figure 9. Value Field of Transport Address Attribute

9.4.5 Name In Conflict

This attribute indicates that the name is in conflict within its
Normally this attribute will be reset, when the name is added

domain.

database. However, when it is detected that this name is
attribute is set. The name is said to be in conflict,
objects with the same name and at least one of which
attribute are present in the same domain16

•

in
when
with

to
conflict

two or
unique

the
this
more
name

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 341

TOPMetBIOS

Attribute Code:

Attribute Length:

Attribute Value:

9.4.6 VcAccept

0000 0011

1 octet

Boolean (Oxff=TRUE
conflict)

in conflict, OxOO=FALSE not in

This attribute specifies whether the server for this name is currently
accepting VC connection requests, e.g., ''listen'' outstanding for that name.
This attribute is only maintained by NDSEs. If these attributes are requested
from NDUA then ''partial results' ' may be returned17

•

Attribute Code:

Attribute Length:

Attribute Value:

9.4.7 DgAccept

This attribute

0000 0100

1 octet

Value (Ox01-0xff=YES, OxOO=NO)

specifies whether the server
transactions, e.g. receive
that name. This attribute is

for this name is
datagram/broadcast

only maintained by

currently
datagram

NDSEs. If
accepting DG
outstanding for
these attributes are requested from NDUA then ''partial results'' are
returned.

Attribute Code: 0000 0101

Attribute Length: 1 octet

Attribute Value: Boolean (Oxff=TRUE, OxOO=FALSE)

9.4.8 NodeAdminTransport Address

This attribute contains the Transport Address of the end-point used by Node
Administration. This address is used for network management communication,
e.g., for remote adapter status. The recommended address will be NDSE
transport address. To obtain the ''remote adapter status' ', the originating
node will send out a query packet (Resolve Name Request) with this attribute
set, and the responding node will return the address of the administrative
entity (NDSE) on that node. The adapter status request is sent to this
address. If this attribute is requested for a recognized name in a resolve
name request, then this attribute must be returned in the response. The
format of this attribute is the same as that of the ''transport address' '
attribute.

Attribute Code: 0000 0110

Attribute Length: variable

Attribute Value: See Figure 9

9.5 PDUs for NB RegisterName and NB RegisterGroupName

16. Note that this attribute is not carried in any of the currently defined PDUs, but this attribute may be
requested in a resolve name request, for administrative reasons. Internal implementation of this feature
is a local matter for NDUAs and NDSEs. However, it is necessary to maintain this information locally.

17. The intent of the value for this attribute is to represent the number of VC requests the object is
prepared to accept. A value of zero means the service is not available, and a value of Oxff means
maximum service. It is a local matter to determine the current value of this attribute to be returned in
the response PDU.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 342

224

TOPMetBIOS

9.5.1 REQUEST PDU

The format of the REQUEST PDU is shown in Figure 10.

Repeated
11 i 11 times!

I
I
I
I
I
I __

Octet

I
I 1

Fixed Part I thru
1 12

_________________________ I
I I
I Name Length Indicator I 13
I I
I I 14

I
I

Name

I Initial-Attribute Count i

I
I
I Attribute Code
I
I
I Attribute Length Indicator
I
I

Attribute Value

m-1

m

m+1

m+2

m+3

n-1

Figure 10. REQUEST PDU Format for NB RegisterName and
NB_RegisterGroupName

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 343

TOPMetBIOS

9.5.2 RESPONSE PDU

The format of the RESPONSE PDU is shown in Figure 11.

Octet

1

Fixed Part thru

12

Figure 11. RESPONSE PDU Format for NB RegisterName and
NB RegisterGroupName

9.6 PDUs for NB_UnregisterName

9.6.1 REQUEST PDU

The format of the REQUEST PDU is shown in Figure 12.

Repeated
11 i 11 times!

I
I
I
I
I
I __

I
I

Fixed Part I
I

_________________________ I
I I
I Name Length Indicator I
I I
I I

I
I

Name

I Initial-Attribute Count i

I
I
I Attribute Code
I
I
I Attribute Length Indicator
I
I

Attribute Value

Octet

1

thru
12

13

14

m-1

m

m+1

m+2

m+3

n-1

Figure 12. REQUEST PDU Format for NB_UnregisterName

9.6.2 RESPONSE PDU

The format of the RESPONSE PDU is shown in Figure 13.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 344

TOPMetBIOS

Octet

1

Fixed Part thru

12

Figure 13. RESPONSE PDU Format for NB_UnregisterName

9.7 PDUs for NB ResolveName

9.7.1 REQUEST PDU

The format of the REQUEST PDU is shown in Figure 14.

Repeated
"j" times I

I
I __

Octet

I
I 1

Fixed Part I thru
1 12

I I ·-----------1
I Name Length Indicator I 13
I I
I I 14

Name

________________________ !

I
Request-Attribute Count j I

I I ·-----------1
I Attribute Code I
I I
I I
!Attribute Length Indicator = 0 I
I I

n-1

n

m+1

n+2

Figure 14. REQUEST PDU Format for NB ResolveName

9.7.2 RESPONSE PDU

The format of the RESPONSE PDU is shown in Figure 15.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 345

TOPMetBIOS

Repeated
11 i 11 times!

I
I
I
I
I
I __

I
I

Fixed Part I
I
I I ·-----------1

I Name Length Indicator I
I I
I I

I
I

Name

I Returned-Attribute Count i

I
I
I Attribute Code
I
I
I Attribute Length Indicator
I
I

Attribute Value

Octet

1

thru
12

13

14

m-1

m

m+1

m+2

m+3

n-1

Figure 15. RESPONSE PDU Format for NB ResolveName

Note that it is possible that the response PDU will contain fewer
than requested, but never more. Nodes must not make use of
protocol control information (PCI) of a response to determine
address; they must parse the data contained in the response.

9.8 PDUs for NB NameConflictAdvise

The format of the ADVISE PDU is shown in Figure 16.

I
I

Fixed Part I
I
I I ·-----------1

I Name Length Indicator I
I I
I I

Name

Octet

1

thru
12

13

14

m-1

Figure 16. ADVISE PDU Format for NB NameConflictAdvise

Note that the Type Code = ADVISE PDU Type.

Protocols for X/ Open PC Interworking: SMB, Version 2

attributes
the source

a name's

Samsung - Exhibit 1014 - Page 346

TOPMetBIOS

9.9 PDU for NB NDUAHere

The format for NB_NDUAHere, ''I am here'' PDU is given Figure 17.

Repeated
11 i 11 times!

I
I
I
I
I
I __

Fixed Part

Initial-Attribute Count

Attribute Code

Attribute Length Indicator

Attribute Value

i

Octet

1

thru
12

13

m+1

m+2

m+3

n-1

Figure 17. NDUA - I am here Advise PDU Format: NB NDUAHere

Note that the Type Code = ADVISE PDU Type.

9.10 PDUs and Attributes

The intent of the following table is to provide general guidelines for the
set of attributes that are ''meaningful' ' with different PDU types. Note
that Register means both unique and group registrations and address implies
transport address. Attributes listed in square brackets imply optional. For
example, the resolve name request may request for NodeAdmin Transport
Address, or other attributes. The address attributes must be supplied in the
response PDU when requested in a request PDU.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 347

TOPMetBIOS

PDU Procedure Request/Response Attribute List

Register Request (name)
Unique/Group
Address

Response --

Unregister Request (name)
Address

Resolve Request (name)
Address
[NodeAdmin-Address]
[VC Accept]
[DG Accept]

Response (name)
Address (es)
Unique/Group
[VC Accept]
[DG Accept]
[NodeAdmin-Address]

NDUA Here Advise Address

Conflict Advise (name)
Address

Figure 18. Sample PDUs and Attributes

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 348

TOPMetBIOS

APPENDIX I : STATE TABLES

This appendix is an integral part of the body of this specification. It
presents, in an unambiguous form, the actions taken by the NetBIOS interface
in response to user commands and transport primitives. The state tables
detail the mapping between NetBIOS ''sessions' ' and class four transport
connections. They do not describe general, name service, or datagram service
commands, nor do they attempt to show the interaction with NetBIOS name
services. The state tables also omit any description of the validation
procedures performed on each NetBIOS command; those procedures are adequately
described in the NetBIOS interface definition.

The following subsections introduce the state tables by outlining the
notation, conventions, actions and variables used by the tables. The tables
themselves, which follow the text of this appendix, consist of six figures
that specify the incoming events, states, outgoing events, specific actions,
predicates and state tables. The actions defined by the state tables apply to
a single NetBIOS ''session' ' Each NetBIOS ''session' ' operates under an
independent state table.

I.1 Notation for State Tables

The state tables represent incoming events, states, and outgoing events with
their abbreviated names. Tables 10, 11, and 12 specify these abbreviated
names. The state tables represent specific actions with the notation [n],
where ''n'' is the number of the specific action in Table 10. Predicates are
represented by the notation pn, where ''n'' is the number of the predicate in
Table 14. Notes are indicated by (n), where ''n'' is the note number at the
foot of the figure. Finally, the tables show boolean operations with the
characters"&" (logical and), "I" (logical or), and"!" (logical not).

I.2 Conventions for Entries in State Tables

The intersection of each state and incoming event in the state tables (Table
15) either is left blank, contains the notation ''II'', or contains an entry.
If the intersection is blank, the incoming event is invalid. An invalid event
can only occur if the NetBIOS interface commits an error. If the intersection
contains ''I I,'' it is logically impossible for the interface to receive the
incoming event. Impossible events either cannot occur, or can only occur if
an entity other than the NetBIOS interface (for example, the transport
provider) commits an error. (These entries are often a consequence of the
tabular presentation of the state tables.)

If the intersection of current state and incoming event contains an entry,
the incoming event is valid and the entry specifies the actions the NetBIOS
interface should take. Each valid entry either contains an action list or
one or more conditional action lists. An action list may include outgoing
events and specific actions, and it always specifies the resultant state. A
conditional action list consists of a predicate expression made up of
predicates and boolean operators, and an action list.

I.3 Actions to be Taken by the NetBIOS Interface

The NetBIOS
15) . Where
invalid or

interface takes the actions defined by the state tables (Table
those tables do not specify an action (if the incoming event is

impossible), the action taken is a local matter.

For valid entries, if the intersection of the incoming event and state
contains an action list, the NetBIOS interface takes the specific actions
specified in the table. It then changes state to the indicated resultant
state. If the intersection contains one or more conditional action lists, for
each predicate expression that is true the NetBIOS interface takes the

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 349

TOPMetBIOS

specific actions in the order given by the action list for the predicate
expression. If none of the predicate expressions are true, the incoming event
is considered invalid and the actions taken are a local matter.

I.4 Variables

This specification defines several variables for the NetBIOS interface. The
state tables use these variables to clarify the effect of certain actions and
to clarify the conditions under which certain actions are valid. For purposes
of this specification, these variables are purely logical entities; the way
implementations actually represent them is a local matter.

Nsto - timeout value for SEND and CHAIN SEND commands

Nrto - timeout value for RECEIVE commands

Vtca False: the NetBIOS entity initiated the
(transport connection initiator) , True: the NetBIOS
t-connect indication (transport connection acceptor) .

t- connect request
entity received the

I.S Incoming Events

Abbreviated Name Name and Description

LISTEN NetBIOS LISTEN command from user
CALL NetBIOS CALL command from user
TCONind T-CONNECT indication primitive
TCONcnf+ T-CONNECT confirmation (positive) primitive
TDATAind T-DATA indication primitive
RECEIVE NetBIOS RECEIVE or RECEIVE ANY command from user
SEND NetBIOS SEND or CHAIN SEND command from user
SENDcnf NetBIOS SEND or CHAIN SEND command confirmed
HANG UP NetBIOS HANG UP command from user
CLSreq Close request from remote interface
CLSrsp Close response from remote interface
TDISCind T-DISCONNECT indication primitive
STO NetBIOS send timeout expiration
RTO NetBIOS receive timeout expiration
TIM Hang up timeout expiration

TABLE 10. Incoming Events

Notes:

The exact definition of SEND or CHAIN SEND command confirmation (see
''SENDcnf'' above) is a local matter. It is whatever event causes the
interface to complete a SEND or CHAIN SEND command. Some implementations may
define this event to be coincident with the SEND event; others may define it
to occur when the buffer containing user data is returned to the NetBIOS
interface, while still other implementations may define it to occur when the
transport provider receives a transport level acknowledgement of receipt of
the user data from the remote transport provider. Because the event cannot
be precisely defined in this specification, the following state tables do not
specify an implementation's actions when it receives a HANG UP command with
SEND commands pending. Implementations are free to handle this case in any
manner consistent with the NetBIOS definition and with this specification.
Regardless of its exact definition, this event does not apply to the
''completion' ' of close requests or close responses, despite the fact that
they, like user data, are sent in TSDUs.

Protocols for X/ Open PC Interworking: SMB, Version 2 331

Samsung - Exhibit 1014 - Page 350

TOPMetBIOS

I.6 Outgoing Events

Abbreviated Name Name and Description

TCONreq T-CONNECT request primitive
TCONrsp+ T-CONNECT response (positive) primitive
LSTNcplt Complete NetBIOS LISTEN command ''good''
CALLcplt Complete NetBIOS CALL command ''good''
TDATAreq T-DATA request primitive
SENDcplt Complete NetBIOS SEND/CHAIN-SEND command ''good''
RCVcplt Complete NetBIOS RECEIVE/RECEIVE-ANY command ''good''
CLSreq Close request to remote interface
CLSrsp Close response to remote interface
TDISCreq T-DISCONNECT request primitive
HANGcplt Complete NetBIOS HANG UP command ''good''

TABLE 11. Outgoing Events

Notes:

The completion of a NetBIOS command is only considered an outgoing event if
the completion is successful, i.e., the command completes with a return code
of ''good' • (OxOO). This distinction, though somewhat arbitrary, does make
the state tables more manageable.

I.7 States

Abbreviated Name Name and Description

STA 00 Idle, ''session' ' does not exist
STA 01 Listening
STA 02 Calling
STA 03 Established
STA 04 Hanging up, waiting for CLOSE RESPONSE
STA 05 Waiting for disconnect
STA 06 Closed, waiting to notify user
STA 07 Aborted, waiting to notify user
STA 08 Close Collison

TABLE 12. States

Notes:

For the correspondence between these states and the ''state of the session' •
returned in the SESSION STATUS command, please refer to ''SESSION STATUS'' in
section five.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 351

TOPMetBIOS

I.8 Specific Actions

State Description

[1] set Nsto and Nrto to appropriate values

[2] retain received data, waiting for RECEIVE or RECEIVE ANY

command
[3] discard data
[4] return NetBIOS command with ''Command timed out'' (Ox05)

return code
[5] return appropriate NetBIOS commands with ''Message incomplete' '

(Ox06) return code
[6] return NetBIOS command with ''Session closed'' (OxOA)

return code
[7] return NetBIOS command with ''Session open rejected'' (Ox12)

return code
[8] return all NetBIOS commands with ''Session ended abnormally''

(Ox18) return code
[9] terminate all pending RECEIVE commands and one RECEIVE ANY

command with ''Session closed'' (OxOA) return code
[10] start send timer
[11] start receive timer
[12] start hang up timer
[13] cancel send timer
[14] cancel receive timer
[15] cancel all timers for ''session' '
[16] return NetBIOS command with ''No answer (cannot find name

called) ' ' (Ox14) return code
[17] Set Vtca = false
[18] Set Vtca = true

TABLE 13. Specific Actions

I.9 Predicates

p1 any RECEIVE or RECEIVE ANY commands available?
p2 enough RECEIVE or RECEIVE ANY commands available?
p3 more than one RECEIVE or RECEIVE ANY command required for the

received data?
p4 retained data available for RECEIVE or RECEIVE ANY command?
p5 all of retained data from a single received TSDU fits in

RECEIVE or RECEIVE ANY command?
p6 Any commands available to notify user of new ''session' ' state?
p7 Does disconnect reason indicate ''remote TS user invoked' '?
p8 Vtca = false ?
p9 Any command available, in addition to send or chainsend?

TABLE 14. Predicates

Protocols for X/ Open PC Interworking: SMB, Version 2 333

Samsung - Exhibit 1014 - Page 352

TOPMetBIOS

I.lO State Tables

STATE STAOO STA01 STA02 STA03
----- idle listening calling established
EVENT

LISTEN [1] II II II
STA01

CALL [1] [17] II II II
TCONreq

STA02
TCONind TDISCreq [18] II II

STAOO TCONrsp+
LSTNcplt

STA03
TCONcnf+ II II CALLcplt II

STA03
TDATAind II II II p1&p2&p3

[5] [14]
RCVcplt

STA03

p1&p2&!p3
[14]

RCVcplt
STA03

p1&!p2
[5] [2] [14]

STA03

!p1
[2]

STA03

RECEIVE II II II p4&p5
RCVcplt

STA03

p4&!p5
[5]

STA03

!p4
[11]

STA03
SEND II II II [10]

TDATAreq
STA03

SENDcnf II II II [13]
SENDcplt

STA03
HANG UP II II II [12] [9] [14]

CLSreq
STA04

TABLE 15. State Tables

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 353

TOPMetBIOS

STATE STAOO STA01 STA02 STA03
----- idle listening calling established
EVENT

CLSreq II II II CLSrsp
STA05

CLSrsp II II II
TDISCind II II p7 p6

[7] [8] [15]
STAOO STAOO

!p7 !p6
[16] STA07

STAOO

STO II II II p9
[4] [8] [15]

TDISCreq
STAOO

!p9
TDISCreq

STA07

RTO II II II [4]

STA03

TIM II II II II

TABLE 15. State Tables (continued)

Protocols for X/ Open PC Interworking: SMB, Version 2 335

Samsung - Exhibit 1014 - Page 354

TOPMetBIOS

STATE STA04 STA05 STA06 STA07 STA08
----- wait wait closed, aborted, close
EVENT close-resp. disconnected waiting waiting collision

LISTEN II II II II
CALL II II II II

TCONind II II II II
TCONcnf+ II II II II
TDATAind [3] II II

STA04

RECEIVE [6] [11] [6] [8]
STA04 STA05 STAOO STAOO

SEND [6] [10] [6] [8]
STA04 STA05 STAOO STAOO

SENDcnf [13]
SENDcplt

STA05

HANG UP [6] [9] [15] [6] [8]
STA04 HANGcplt STAOO STAOO

STA05

CLSreq p8 II II II
CLSrsp

STA04

!p8
STA08

CLSrsp [15] II II CLSrsp
HANGcplt STA5
TDISCreq

STAOO

TDISCind [8] [15] p6 II II p6
STAOO [6] [15] [8] [15]

STAOO STAOO

!p6 !p6
STA06 STA07

STO II [4] [8] [15]
TDISCreq

STAOO

RTO II [4]
STA05

TIM [8] [15] [8] [15]
TDISCreq TDISCreq

STAOO STAOO

TABLE 15. State Tables (end)

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 355

TOPMetBIOS

APPENDIX II : SAMPLE PDU ENCODINGS

II.1 Register Name Operation

The following
REQUEST and

tables
RESPONSE

contain
PDUs

operation, with repeat count
request PDU is sent to NDUA,
no response from NDUA.

sample PDU encodings for the NB RegisterName
exchanged as a result of a NB RegisterName
N=3 (X=1 and Y=2) In this example, the first

and the subsequent PDUs are multicasted assuming

Value

Field PDU #1 PDU #2

Length Indicator variable same
Protocol/Version Indicator 0001 0001 same
Type 0000 0010 same
Source Reference variable same
FLAGs reset same
QOS variable same
Response Semantics 0000 0011 0000 0010 same
Response Code - same
Procedure Timeout variable same
Procedure 0000 0001 same
Name LI variable same
Name variable same
Initial-Attb Count n n
List of Attributes variable same

TABLE 16. NB RegisterName req. pdus generated by
NB_RegisterName operation

PDU #3

same
same
same
same
same
same

same
same
same
same
same

n
same

The response PDU generated by the NDUA after successful registration of a
name will have a Response Code of success. If an NDUA is not present on the
network the response PDU will be generated by other Nodes with a Response
Code of registration error if a name conflict exists.

II.2

Value

Field PDU #1

Length Indicator 0000 0000
0000 1010

Protocol/Version Indicator 0001 0001
Type 0000 0100
Source Reference variable
FLAGs -

QOS -

Response Semantics 0000 0011
Response Code 0000 0001
Procedure Timeout variable
Procedure 0000 0001

TABLE 17. NB RegisterName res. pdu generated by NDUA
NB RegisterName operation

Register Group Name

The following tables contain sample PDU encodings for the
NB RegisterGroupName REQUEST and RESPONSE PDUs exchanged as a result of an
NB RegisterGroupName operation, with repeat count N=3 (X=1, Y=2). In this
example, the first request PDU is generated for NDUA and the subsequent PDUs
are generated assuming no response from NDUA.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 356

TOPMetBIOS

Value

Field PDU #1 PDU #2 PDU #3

Length Indicator variable same same
Protocol/Version Indicator 0001 0001 same same
Type 0000 0010 same same
Source Reference variable same same
FLAGs reset same same
QOS variable same same
Response Semantics 0000 0011 0000 0010 same
Response Code - same same
Procedure Timeout variable same same
Procedure 0000 0010 same same
Name LI variable same same
Name variable same same
Initial-Attb Count variable same same
List of Attributes variable same same

TABLE 18. NB RegisterGroupName req. pdus generated by
NB RegisterGroupName operation

The response PDU generated by the NDUA after successful registration
will have response code of success. If an NDUA is not present on the
the response PDU will be generated by other Nodes with Response
registration error if there exist a name conflict.

II.3

Value

Field PDU #1

Length Indicator 0000 0000
0000 1010

Protocol/Version Indicator 0001 0001
Type 0000 0100
Source Reference variable
FLAGs -

QOS -

Response Semantics 0000 0001
Response Code 0000 0001
Procedure Timeout variable
Procedure 0000 0010

TABLE 19. NB RegisterGroupName res. pdu generated by NDUA
NB_RegisterGroupName operation

Resolve Name

of name
network

Code of

The following tables contain sample PDU encodings for the NB ResolveName
REQUEST, RESPONSE and PENDING PDUs exchanged as a result of an NB ResolveName
operation, with repeat count N=3 (X=1, Y 2). In this example the first
request PDU is generated for NDUA and the subsequent PDU are generated
assuming no response from NDUA.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 357

TOPMetBIOS

Field

Length Indicator
Protocol/Version Indicator
Type
Source Reference
FLAGs
QOS
Response Semantics
Response Code
Procedure Timeout
Procedure
Name LI
Name
Request-Attb Count
Attb Code (UniqueName)
Attb LI
Attb Code (TransportAddress)
Attb LI

PDU #1

variable
0001 0001

0000 0010

variable
reset

variable
0000 0011

variable
0000 0100

variable
variable
0000 0010

0000 0001

zero
0000 0010

zero

Value

PDU #2

same
same
same
same
same
same

0000 0001

variable
same
same
same
same
same
same
same
same

TABLE 20. NB ResolveName req. pdus generated by
NB ResolveName operation

Field

Length Indicator
Protocol/Version Indicator
Type
Source Reference
FLAGs
QOS
Response Semantics
Procedure Timeout
Procedure
Response Code
Name LI
Name
Returned-Attb Count
Attb Code (UniqueName)
Attb LI
Attb Value
Attb Code (TransportAddress)
Attb LI
Attb Value

Value

PDU #1

variable
0001 0001

0000 0100

variable

0000 0001

variable
0000 0100

0000 0001

variable
variable
0000 0010

0000 0001

0000 0001

1111 1111

0000 0010

variable
variable

TABLE 21. NB ResolveName res. pdu generated by
NB ResolveName operation

PDU #3

same
same
same
same
same
same
same

same
same
same
same
same
same
same
same
same

The following points should be noted in the REQUEST and RESPONSE PDU
encodings shown above:

The UniqueName attribute in this example indicates that a system holding a
unique version of the name is responding to the NB ResolveName, although
it could just have readily been a system with a group version of the name.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 358

Value

Field PDU #1

Length Indicator 0000 0000

0000 1010

Protocol/Version Indicator 0001 0001

Type 0000 1000

Source Reference variable
FLAGs -

QOS -

Response Semantics 0000 0001

Procedure Timeout variable
Procedure 0000 0100

TABLE 22. NB ResolveName pending pdu generated by
NB ResolveName operation

TOPMetBIOS

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 359

TOPMetBIOS

APPENDIX III : REMOTE ADAPTER STATUS

The remote adapter status processing consists of the following steps.

1. Obtain the address of the NDSE (remote machine) where the object (name)
resides by executing resolve name function with NodeAdminTransport
Address attribute set. This step is skipped if the address is already
cached.

2. Send the adapter status request PDU, point-to-point, to the remote NDSE
(only the fixed header) .

3. The NDSE will process the adapter status request indication, and return
the status information in the response PDU.

III.1 AdapterStatus Request PDU Format

The Adapter Status Request PDU will consist of a FIXED HEADER part as defined
in the following table. It is the same fixed format as given in Figure 5.

Field Value

Length Indicator 0000 0000
0000 1010

Protocol Version 0001 0001
Type 0000 0010
Source Reference variable
Flags 0000 0000
QOS variable
Response Semantics 0000 0001
Response Code 0000 0000
Procedure Timeout variable
Procedure 0000 1000

TABLE 23. AdapterStatus Request PDU Format

III.2 AdapterStatus Response PDU Format

The adapter status response PDU will consist of two parts, fixed part and
variable part. The format for the fixed part will be the same as the request
PDU but for the following changes:

Length

Type

Response

will be length of the PDU following length indicator field.

will be set to response PDU, 0000 0100.

will be set to appropriate response code.

The variable part will consist of the following:

Protocols for X/ Open PC Interworking: SMB, Version 2 341

Samsung - Exhibit 1014 - Page 360

TOPMetBIOS

Response PDU Variable Part

Length Indicator
MAC Address
External Option
Result of Last Self Test
Software Version
Reporting Period
CRC Errors
Alignment Errors
Number of Collisions
Number of Unsuccessful Xmit
Frames Transmitted
Frames Received
Number of Retransmissions
Resource Exhaustions
Local Implementation
Local Implementation
Free NCBs
Conf. Max NCBs
Max NCBs
Local Implementation
Local Implementation
Pending Sessions
Conf. Max Sessions
Max Sessions
Max TPDU Size
Quantity of Local Names
List of Names

--Name
--Name Number
--Name Status

Field

2 Octets
6 Octets
1 Octet
1 Octet

2 Octets
2 Octets
2 Octets
2 Octets
2 Octets
2 Octets
4 Octets
4 Octets
2 Octets
2 Octets
4 Octets
4 Octets
2 Octets
2 Octets
2 Octets
2 Octets
2 Octets
2 Octets
2 Octets
2 Octets
2 Octets
2 Octets
variable
16 Octets

1 Octet
Oxxx xxxx
1xxx xxxx
xxxx xOOO
xxxx x100
xxxx x101
xxxx x110
xxxx x111

impl. specific

unique name
group name
trying to register
registered
de-registered
duplicate name
duplicate name
being de-registered

TABLE 24. Adapter Status Variable Part PDU Format

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 361

TOPMetBIOS

APPENDIX IV : WELL KNOWN ADDRESSES

There are several well known addresses, described here, for the effective
operation of NetBIOS and the Name Service.

IV.1 Transport Selectors

1. NetBIOS Broadcast Address: T-Selector

The NetBIOS broadcast address t-selector is defined as ''*'' followed by
15 blank spaces.

T-Selector for Broadcast ''*<15 spaces>''

2. All NetBIOS Directory Service Entities: T-Selector

The NetBIOS Name Service
ENTITY (NDSE), will have
identifier (t- selector),
value.

Element for a Node, NetBIOS DIRECTORY SERVICE
a ''well known'' transport service access point
of 16 octet in length. This will be a reserved

T-Selector for NDSE = ''*NetBIOS NDSE<3 spaces>''

Note that the choice of source NSAP address for the nodes that support
multiple NSAPs is a local matter.

3. Recommended NDUA: T-Selector

The recommended
network
complete

is given
protocol

T-Selector, of 16 octets in length,
below. This will be a configurable

address of the NDUA entities will be
''I am Here PDUs''

for NDUAs on a
parameter. The

included in the

Recommended T-Selector for NDUA ''*NetBIOS NDUA<3 spaces>''

IV.2 Network Layer Addresses

1. Group NSAP Address

In order to implement group datagrams at transport level, only for
intranet traffic, a special node number (station number) value is
reserved in the network service access point address (NSAP Address). The
same NSAP address will be used by the NDUA and NDSEs for their group
datagrams.

The group NSAP address will identify all the nodes on the given
subnetwork.

The general structure of
specifications for binary
constraints are described in

the NSAP address, as
syntax, is used here.
the following two points.

per the
Additional

TOP 3.0
semantic

1. The recommended value of NSEL will be 01H, but it can be set to any
other value as per the installation option.

2. The station number field of NSAP address is set to group multicast
address.

STATION NUMBER [6 OCTETS] = 09006A000100H

3. The format of the remaining DSP must be configurable following TOP
3.0 specifications.

The NSAP address will use local AFI (49H) and the recommended format for
full NSAP address will be 18

:

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 362

TOPMetBIOS

NSAP LENGTH [1 OCTET] = 10 (decimal)

NSAP = 49.nn.nn.09.00.6A.00.01.00.01

nn.nn=OO.OO, subnetwork number (default)

2. NSAP Address Formats

The general NSAP address formats will be as per the TOP 3.0
Specifications.

IV.3 Link Layer Addresses

1. Multicast/Functional Addresses

Multicast addresses (broadcast based LANs) will be used as the
destination subnetwork point of attachment (SNPA) address for the group
NSAP address defined in the previous item. The multicast address is given
below. Note that the same functionality can also be achieved by using a
broadcast address. Also, the recommended functional addresses used as
multicast addresses in the token ring environment are provided. These
are recommended values and must be configurable.

Function Address

TOP/NetBIOS Multicast Address - IEEE 802.3 09.00.6A.00.01.00
End System Hellos (IS Address) - IEEE 802.5 C0.00.00.10.00.00
Intermediate System Hellos (ES Address) - IEEE 802.5 C0.00.00.08.00.00
TOP/NetBIOS Functional Address - IEEE 802.5 C0.00.00.20.00.00

TABLE 25. Recommended Multicast and Functional Addresses

2. LSAP Value

The LSAP value used by the NetBIOS
datagrams is given below.
configurable.

ECH

This
Protocol for multicast

is a recommended value
and broadcast
and must be

18. Note that if the connected subnetwork is token ring, the multicast NSAP address maps to the functional
address of CO. 00.00. 20.00. 00 as the SNPA address.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 363

TOPMetBIOS

APPENDIX V : OBJECTIVES AND ACTIONS OF NDUAs

The NetBIOS Directory User Agent provides two major support functions.

1. It helps in reducing the multicast traffic on the media.

2. It provides an interface to the OSI Directory Services for all the
NetBIOS Entities.

V.l New Protocol Element

One new protocol element is defined to support the NDUA functionalities, ''I
am here PDU' ' .

I am here PDU is an advise PDU with:

fixed header with ''I am here'' Procedure type and timeout=O, and

protocol address (presentation address).

There is NO ''I am signing OFF'' PDU. The NDSEs can detect the absence of
NDUAs based on timeouts. The actual implementation of this detection is a
local matter.

V. 2 Actions

There is a set of actions for NDUAs and NDSEs.

a. NDUAs multicast the ''I am here PDU'' N times at T intervals when joining
the network.

b. NDSEs save the information received in ''I am here PDU'' of at least one
NDUA.

c. NDSEs will multicast ''register name''
there is no known NDUA on the network,
is sent to one of the NDUAs.

and ''resolve name'' requests if
otherwise a point to point request

d. NDUA will process the "resolve name'' request by checking the cache, or
making a request to the DUA and/or sending a multicast ''resolve name''
request if the entry is not available in cache.

When processing a resolve name request for a group name, the NDUA may
choose one among many transport addresses to put into its response.
However, it is a local matter how NDUA makes this choice.

e. NDUAs will process the point-to-point ''register name'' request by
checking in the local database (cache) .

If the name is not found in the local database, the NDUA will
multicast the ''register name'' request on the LOCAL network with the
ResponseSemantics set to response on failure.

If it does not receive any response, that means the name is available
and the registration request is granted and a success response is
returned to the originator.

If the name was found in the local database and the presentation
address supplied in the request is the same as that in the local
database, the registration request is granted and a positive (success)
response is returned to the originator.

If the name was found in the local database and the presentation
address supplied in the request is different than in the local
database, a point to point resolve name request is sent to the NDSE
where the name was registered. If the resolve name succeeds, then the
new register name request is denied, but if the resolve name request
fails, then the register name request is granted. If the register name

Protocols for X/ Open PC Interworking: SMB, Version 2 345

Samsung - Exhibit 1014 - Page 364

TOPMetBIOS

request is granted then the local database is updated appropriately.
Success or failure response is returned to the originator of the
register name request. These checks are necessary as the NetBIOS
objects can move from one machine to another, or nodes can go down and
come back up without unregistering their services.

The NDUA
that was
supplied
returned
requested.

will maintain in its database all the information (attributes)
provided in the registration request PDU. Private attributes
with the register name request will be saved, and will be
in the resolve name response PDU, if those attributes are

NDUA will not make any semantic analysis of this data.

f. Also, based on administrative ''filtering' ', NDUAs will propagate the
''register name'' request to its DUA (if present). When such a request is
propagated it will include the appropriate ''object-id'' attribute in the
request to its DUA.

g. NDUAs will process the ''unregister name'' request by cleaning up the
cache and propagating it to DUAs (point-to-point).

h. In addition,
NDSE request
an NDUA must

am here
that this
to NDSE's

NDUAs will return point-to-point ''I
is received as a multicast PDU. Note

receive datagrams that were sent
(*NetBIOS_NDSE) .

PDU' ' if an
implies that
t- selector

i. NDSEs will multicast the ''resolve name'' request (N- X) times if no
responses are received for the first ''X'' point-to-point requests.

j . NDUAs will set the NDUA FLAG in all the PDUs generated by them.
other NDUAs, if present on the subnetwork, can distinguish between
PDUs received from NDUAs and from NDSEs. The NDSEs will always reset
NDUA flag in all PDUs generated by them, and they do not attach
semantic meaning to this flag in the received PDUs.

Thus
the
the
any

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 365

TOPMetBIOS

V.3 Object Class Definition

The following NetBIOS Object Class is defined for use in conjunction with OSI
Directory Services.

NetBIOSEntity OBJECT-CLASS
SUBCLASS OF top
MUST CONTAIN {

NetBIOSName
nameType
presentationAddressSet
adminPresentationAddress

{NetBIOSEntity-object-identifier-value}

NetBIOSName ATTRIBUTE
WITH ATTRIBUTE SYNTAX

octetStringSyntax (SIZE (16))
{netBIOSName-object-identifier-value}

nameType ATTRIBUTE
WITH ATTRIBUTE SYNTAX

INTEGER{
group (0),
unique (1)

MATCHES FOR EQUALITY
SINGLE VALUE

{nameType-object-identifier-value}

presentationAddressSet
SET OF PresentationAddress

adminPresentationAddress
PresentationAddress

Note that the above definition, object identifier value, must be assigned by
an OSI Registration Authority. Currently the U.S. does not have one, though
it will likely be NIST (previously known as NBS) or ANSI. Once a registration
authority is set up, it will be requested to assign the value.

Protocols for X/ Open PC Interworking: SMB, Version 2 347

Samsung - Exhibit 1014 - Page 366

TOPMetBIOS

APPENDIX VI : ERRATA AND CLARIFICATION

For future use.

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 367

Appendix F

This appendix reproduces, in full and unedited, RFC lffiL Protocol Standard for a NetBIOS
Service on a TCP/UDPTransport: Concepts and Methods.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 368

Network Working Group
Request for Comments: 1001

PROTOCOL STANDARD FOR A NetBIOS SERVICE
ON A TCP/UDP TRANSPORT:

CONCEPTS AND METHODS

ABSTRACT

RFC laJl

March, 1987

This RFC defines a proposed standard protocol to support NetBIOS
services in a TCP/IP environment. Both local network and internet
operation are supported. Various node types are defined to accommodate
local and internet topologies and to allow operation with or without the
use of IP broadcast.

This RFC describes the NetBIOS-over-TCP protocols in a general manner,
emphasizing the underlying ideas and techniques. Detailed
specifications are found in a companion RFC, "Protocol Standard For a
NetBIOS Service on a TCP/UDP Transport: Detailed Specifications".

NetBIOS Working Group [Page 1]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 369

RFC laJl

RFC 1001

SUMMARY OF CONTENTS

1. STATUS OF THIS MEMO
2. ACKNOWLEDGEMENTS
3. INTRODUCTION
4. DESIGN PRINCIPLES
5. OVERVIEW OF NetBIOS
6. NetBIOS FACILITIES SUPPORTED BY THIS STANDARD
7. REQUIRED SUPPORTING SERVICE INTERFACES AND DEFINITIONS
8. RELATED PROTOCOLS AND SERVICES
9. NetBIOS SCOPE
10. NetBIOS END-NODES
11. NetBIOS SUPPORT SERVERS
12. TOPOLOGIES
13. GENERAL METHODS
14. REPRESENTATION OF NETBIOS NAMES
15. NetBIOS NAME SERVICE
16. NetBIOS SESSION SERVICE
17. NETBIOS DATAGRAM SERVICE
18. NODE CONFIGURATION PARAMETERS
19. MINIMAL CONFORMANCE
REFERENCES
APPENDIX A - INTEGRATION WITH INTERNET GROUP MULTICASTING
APPENDIX B - IMPLEMENTATION CONSIDERATIONS

NetBIOS Working Group

Protocols for X/ Open PC Interworking: SMB, Version 2

March 1987

6

6

7

7

10
15
15
16
16
16
18
20

23

25

27

48

55
58

59

60

61
62

[Page 2]

351

Samsung - Exhibit 1014 - Page 370

RFC 1001

TABLE OF CONTENTS

1. STATUS OF THIS MEMO

2. ACKNOWLEDGEMENTS

3. INTRODUCTION

4. DESIGN PRINCIPLES
4.1 PRESERVE NetBIOS SERVICES
4.2 USE EXISTING STANDARDS
4.3 MINIMIZE OPTIONS
4.4 TOLERATE ERRORS AND DISRUPTIONS
4.5 DO NOT REQUIRE CENTRAL MANAGEMENT
4.6 ALLOW INTERNET OPERATION
4.7 MINIMIZE BROADCAST ACTIVITY
4.8 PERMIT IMPLEMENTATION ON EXISTING SYSTEMS
4.9 REQUIRE ONLY THE MINIMUM NECESSARY TO OPERATE
4.10 MAXIMIZE EFFICIENCY
4.11 MINIMIZE NEW INVENTIONS

5. OVERVIEW OF NetBIOS
5.1 INTERFACE TO APPLICATION PROGRAMS
5.2 NAME SERVICE
5.3 SESSION SERVICE
5.4 DATAGRAM SERVICE
5.5 MISCELLANEOUS FUNCTIONS
5.6 NON-STANDARD EXTENSIONS

6. NetBIOS FACILITIES SUPPORTED BY THIS STANDARD

7. REQUIRED SUPPORTING SERVICE INTERFACES AND DEFINITIONS

8. RELATED PROTOCOLS AND SERVICES

9. NetBIOS SCOPE

10. NetBIOS END-NODES
10.1 BROADCAST (B) NODES
10.2 POINT-TO- POINT (P) NODES
10.3 MIXED MODE (M) NODES

RFC laJl

March 1987

6

6

7

8

8

8

8

8

9

9

9

9

9

10
10

10
10
11
12
13
14
15

15

15

16

16

16
16
16
16

11. NetBIOS SUPPORT SERVERS 18
11.1 NetBIOS NAME SERVER (NBNS) NODES 18

11.1.1 RELATIONSHIP OF THE NBNS TO THE DOMAIN NAME SYSTEM 19
11.2 NetBIOS DATAGRAM DISTRIBUTION SERVER (NBDD) NODES 19
11.3 RELATIONSHIP OF NBNS AND NBDD NODES 20
11.4 RELATIONSHIP OF NetBIOS SUPPORT SERVERS AND B NODES

12. TOPOLOGIES
12.1 LOCAL

NetBIOS Working Group

20
20
20

[Page 3]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 371

RFC laJl

RFC 1001

12.1.1 B NODES ONLY
12.1.2 P NODES ONLY
12.1.3 MIXED B AND p NODES

12.2 INTERNET
12.2.1 P NODES ONLY
12.2.2 MIXED M AND p NODES

13. GENERAL METHODS
13.1 REQUEST/RESPONSE INTERACTION STYLE

13.1.1 RETRANSMISSION OF REQUESTS
13.1.2 REQUESTS WITHOUT RESPONSES: DEMANDS

13.2 TRANSACTIONS
13.2.1 TRANSACTION ID

13.3 TCP AND UDP FOUNDATIONS

14. REPRESENTATION OF NETBIOS NAMES
14.1 FIRST LEVEL ENCODING
14.2 SECOND LEVEL ENCODING

15. NetBIOS NAME SERVICE
15.1 OVERVIEW OF NetBIOS NAME SERVICE

15.1.1 NAME REGISTRATION (CLAIM)
15.1.2 NAME QUERY (DISCOVERY)
15.1.3 NAME RELEASE

15.1.3.1 EXPLICIT RELEASE
15.1.3.2 NAME LIFETIME AND REFRESH
15.1.3.3 NAME CHALLENGE
15.1.3.4 GROUP NAME FADE-OUT

15.1.3.5 NAME CONFLICT
15.1.4 ADAPTER STATUS
15.1.5 END-NODE NBNS INTERACTION

15.1.5.1 UDP, TCP, AND TRUNCATION
15.1.5.2 NBNS WACK
15.1.5.3 NBNS REDIRECTION

15.1.6 SECURED VERSUS NON-SECURED NBNS
15.1.7 CONSISTENCY OF THE NBNS DATA BASE
15.1.8 NAME CACHING

15.2 NAME REGISTRATION TRANSACTIONS
15.2.1 NAME REGISTRATION BY B NODES
15.2.2 NAME REGISTRATION BY P NODES

15.2.2.1 NEW NAME, OR NEW GROUP MEMBER
15.2.2.2 EXISTING NAME AND OWNER IS STILL ACTIVE
15.2.2.3 EXISTING NAME AND OWNER IS INACTIVE

15.2.3 NAME REGISTRATION BY M NODES
15.3 NAME QUERY TRANSACTIONS

15.3.1 QUERY BY B NODES
15.3.2 QUERY BY P NODES
15.3.3 QUERY BY M NODES
15.3.4 ACQUIRE GROUP MEMBERSHIP LIST

15.4 NAME RELEASE TRANSACTIONS
15.4.1 RELEASE BY B NODES

NetBIOS Working Group

Protocols for X/ Open PC Interworking: SMB, Version 2

March 1987

21
21
21
22
22
23

23
23
24
24
25
25
25

25
26
27

27
27
27
28
28
28
29
29
29
30
31
31
31
32
32
32
32
34
34
34
35
35
36
37
38
39
39
40
43
43
44
44

[Page 4]

Samsung - Exhibit 1014 - Page 372

RFC 1001

15.4.2 RELEASE BY P NODES
15.4.3 RELEASE BY M NODES

15.5 NAME MAINTENANCE TRANSACTIONS
15.5.1 NAME REFRESH
15.5.2 NAME CHALLENGE
15.5.3 CLEAR NAME CONFLICT

15.6 ADAPTER STATUS TRANSACTIONS

16. NetBIOS SESSION SERVICE
16.1 OVERVIEW OF NetBIOS SESSION SERVICE

16.1.1 SESSION ESTABLISHMENT PHASE OVERVIEW
16.1.1.1 RETRYING AFTER BEING RETARGETTED
16.1.1.2 SESSION ESTABLISHMENT TO A GROUP NAME

16.1.2 STEADY STATE PHASE OVERVIEW
16.1.3 SESSION TERMINATION PHASE OVERVIEW

16.2 SESSION ESTABLISHMENT PHASE
16.3 SESSION DATA TRANSFER PHASE

16.3.1 DATA ENCAPSULATION
16.3.2 SESSION KEEP-ALIVES

17. NETBIOS DATAGRAM SERVICE
17.1 OVERVIEW OF NetBIOS DATAGRAM SERVICE

17.1.1 UNICAST, MULTICAST, AND BROADCAST
17.1.2 FRAGMENTATION OF NetBIOS DATAGRAMS

17.2 NetBIOS DATAGRAMS BY B NODES
17.3 NetBIOS DATAGRAMS BY P AND M NODES

18. NODE CONFIGURATION PARAMETERS

19. MINIMAL CONFORMANCE

REFERENCES

APPENDIX A

INTEGRATION WITH INTERNET GROUP MULTICASTING
A-1. ADDITIONAL PROTOCOL REQUIRED IN B AND M NODES
A-2. CONSTRAINTS

APPENDIX B

IMPLEMENTATION CONSIDERATIONS
B-1. IMPLEMENTATION MODELS

B-1.1 MODEL INDEPENDENT CONSIDERATIONS
B-1.2 SERVICE OPERATION FOR EACH MODEL

B-2. CASUAL AND RESTRICTED NetBIOS APPLICATIONS
B-3. TCP VERSUS SESSION KEEP-ALIVES
B-4. RETARGET ALGORITHMS
B-5. NBDD SERVICE
B-6. APPLICATION CONSIDERATIONS

B-6.1 USE OF NetBIOS DATAGRAMS

NetBIOS Working Group

RFC laJl

March 1987

44
44
45
45
46
47
47

48
49
49
50
51
51
51
52
54
54
54

55
55
55
55
57
58

58

59

60

61

61
61
61

62

62
62
63
63
64
66
67
68
68
68

[Page 5]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 373

RFC laJl

RFC 1001 March 1987

PROTOCOL STANDARD FOR A NetBIOS SERVICE
ON A TCP/UDP TRANSPORT:

CONCEPTS AND METHODS

1. STATUS OF THIS MEMO

This RFC specifies a proposed standard for the Internet
community. Since this topic is new to the Internet community,
discussions and suggestions are specifically requested.

Please send written comments to:

Karl Auerbach
Epilogue Technology Corporation
P.O. Box 5432
Redwood City, CA 94063

Please send online comments to:

Avnish Aggarwal
Internet: mtxinu!excelan!avnish@ucbvax.berkeley.edu
Usenet: ucbvax!mtxinu!excelan!avnish

Distribution of this document is unlimited.

2. ACKNOWLEDGEMENTS

This RFC has been developed under the auspices of the Internet
Activities Board, especially the End-to-End Services Task Force.

The following individuals have contributed to the development of
this RFC:

Avni sh Aggarwal
Geoffrey Arnold
Keith Ball
Richard Cherry
Greg Ennis
David Kaufman
Dan Lynch
Steve Thomas

Arvind Agrawal
Karl Auerbach
Amatzia Ben-Artzi
David Crocker
Steve Holmgren
Lee LaBarre
Gaylord Miyata
Ishan Wu

Lorenzo Aguilar
K. Ramesh Babu
Vint Cerf
Steve Deering
Jay Israel
James Lau
David Stevens

The system proposed by this RFC does not reflect any existing
Netbios-over-TCP implementation. However, the design
incorporates considerable knowledge obtained from prior
implementations. Special thanks goes to the following
organizations which have provided this invaluable information:

CMC/Syros Excel an Sytek Ungermann-Bass

NetBIOS Working Group

Protocols for X/ Open PC Interworking: SMB, Version 2

[Page 6]

Samsung - Exhibit 1014 - Page 374

RFC laJl

RFC 1001 March 1987

3. INTRODUCTION

This RFC describes the ideas and general methods used to provide
NetBIOS on a TCP and UDP foundation. A companion RFC, "Protocol
Standard For a NetBIOS Service on a TCP/UDP Transport: Detailed
Specifications" [1] contains detailed descriptions of packet
formats, protocols, and defined constants and variables.

The NetBIOS service has become the dominant mechanism for
personal computer networking. NetBIOS provides a vendor
independent interface for the IBM Personal Computer (PC) and
compatible systems.

NetBIOS defines a software interface not a protocol. There is no
"official" NetBIOS service standard. In practice, however, the
IBM PC-Network version is used as a reference. That version is
described in the IBM document 6322916, "Technical Reference PC
Network" [2] .

Protocols supporting NetBIOS services have been constructed on
diverse protocol and hardware foundations. Even when the same
foundation is used, different implementations may not be able to
interoperate unless they use a common protocol. To allow NetBIOS
interoperation in the Internet, this RFC defines a standard
protocol to support NetBIOS services using TCP and UDP.

NetBIOS has generally been confined to personal computers to
date. However, since larger computers are often well suited to
run certain NetBIOS applications, such as file servers, this
specification has been designed to allow an implementation to be
built on virtually any type of system where the TCP/IP protocol
suite is available.

This standard defines a set of protocols to support NetBIOS
services.

These protocols are more than a simple communications service
involving two entities. Rather, this note describes a
distributed system in which many entities play a part even if
they are not involved as an end-point of a particular NetBIOS
connection.

This standard neither constrains nor determines how those
services are presented to application programs.

Nevertheless, it is expected that on computers operating under
the PC-DOS and MS-DOS operating systems that the existing NetBIOS
interface will be preserved by implementors.

NOTE: Various symbolic values are used in this document. For
their definitions, refer to the Detailed Specifications[1]

NetBIOS Working Group [Page 7]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 375

RFC laJl

RFC 1001 March 1987

4. DESIGN PRINCIPLES

In order to develop the specification the following design principles
were adopted to guide the effort. Most are typical to any protocol
standardization effort; however, some have been assigned priorities
that may be considered unusual.

4 .1. PRESERVE NetBIOS SERVICES

In the absence of an "official" standard for NetBIOS services, the
version found in the IBM PC Network Technical Reference[2] is used.

NetBIOS is the foundation of a large body of existing applications.
It is desirable to operate these applications on TCP networks and to
extend them beyond personal computers into larger hosts. To support
these applications, NetBIOS on TCP must closely conform to the
services offered by existing NetBIOS systems.

IBM PC-Network NetBIOS contains some implementation specific
characteristics. This standard does not attempt to completely
preserve these. It is certain that some existing software requires
these characteristics and will fail to operate correctly on a NetBIOS
service based on this RFC.

4.2. USE EXISTING STANDARDS

Protocol development, especially with standardization, is a demanding
process. The development of new protocols must be minimized.

It is considered essential that an existing standard which provides
the necessary functionality with reasonable performance always be
chosen in preference to developing a new protocol.

When a standard protocol is used, it must be unmodified.

4.3. MINIMIZE OPTIONS

The standard for NetBIOS on TCP should contain few, if any, options.

Where options are included, the options should be designed so that
devices with different option selections should interoperate.

4.4. TOLERATE ERRORS AND DISRUPTIONS

NetBIOS networks typically operate in an uncontrolled environment.
Computers come on-line at arbitrary times. Computers usually go
off-line without any notice to their peers. The software is often
operated by users who are unfamiliar with networks and who may
randomly perturb configuration settings.

Despite this chaos, NetBIOS networks work. NetBIOS on TCP must also

NetBIOS Working Group [Page 8]

Protocols for X/ Open PC Interworking: SMB, Version 2 357

Samsung - Exhibit 1014 - Page 376

RFC laJl

RFC 1001 March 1987

be able to operate well in this environment.

Robust operation does not necessarily mean that the network is proof
against all disruptions. A typical NetBIOS network may be disrupted
by certain types of behavior, whether inadvertent or malicious.

4.5. DO NOT REQUIRE CENTRAL MANAGEMENT

NetBIOS on TCP should be able to operate, if desired, without
centralized management beyond that typically required by a TCP based
network.

4.6. ALLOW INTERNET OPERATION

The proposed standard recognizes the need for NetBIOS operation
across a set of networks interconnected by network (IP) level relays
(gateways.)

However, the standard assumes that this form of operation will be
less frequent than on the local MAC bridged-LAN.

4.7. MINIMIZE BROADCAST ACTIVITY

The standard pre-supposes that the only broadcast services are those
supported by UDP. Multicast capabilities are not assumed to be
available in any form.

Despite the availability of broadcast capabilities, the standard
recognizes that some administrations may wish to avoid heavy
broadcast activity. For example, an administration may wish to avoid
isolated non-participating hosts from the burden of receiving and
discarding NetBIOS broadcasts.

4.8. PERMIT IMPLEMENTATION ON EXISTING SYSTEMS

The NetBIOS on TCP protocol should be implementable
operating systems, such as Unix(tm) and VAX/VMS(tm),
effort.

on common
without massive

The NetBIOS protocols should not require services typically
unavailable on presently existing TCP/UDP/IP implementations.

4.9. REQUIRE ONLY THE MINIMUM NECESSARY TO OPERATE

The protocol definition should specify only the minimal set of
protocols required for interoperation. However, additional protocol
elements may be defined to enhance efficiency. These latter elements
may be generated at the option of the sender, although they must be
accepted by all receivers.

NetBIOS Working Group [Page 9]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 377

RFC laJl

RFC 1001 March 1987

4.10. MAXIMIZE EFFICIENCY

To be useful, a protocol must conduct its business quickly.

4.11. MINIMIZE NEW INVENTIONS

When an existing protocol is not quite able to support a necessary
function, but with a small amount of change, it could, that protocol
should be used. This is felt to be easier to achieve than
development of new protocols; further, it is likely to have more
general utility for the Internet.

5. OVERVIEW OF NetBIOS

This section describes the NetBIOS services. It is for background
information only. The reader may chose to skip to the next section.

NetBIOS was designed for use by groups of PCs, sharing a broadcast
medium. Both connection (Session) and connectionless (Datagram)
services are provided, and broadcast and multicast are supported.
Participants are identified by name. Assignment of names is
distributed and highly dynamic.

NetBIOS applications employ NetBIOS mechanisms to locate resources,
establish connections, send and receive data with an application
peer, and terminate connections. For purposes of discussion, these
mechanisms will collectively be called the NetBIOS Service.

This service can be implemented in many different ways. One of the
first implementations was for personal computers running the PC-DOS
and MS-DOS operating systems. It is possible to implement NetBIOS
within other operating systems, or as processes which are,
themselves, simply application programs as far as the host operating
system is concerned.

The NetBIOS specification, published by IBM as "Technical Reference
PC Network"[2] defines the interface and services available to the
NetBIOS user. The protocols outlined by that document pertain only
to the IBM PC Network and are not generally applicable to other
networks.

5 .1. INTERFACE TO APPLICATION PROGRAMS

NetBIOS on personal computers includes both a set of services and an
exact program interface to those services. NetBIOS on other computer
systems may present the NetBIOS services to programs using other
interfaces. Except on personal computers, no clear standard for a
NetBIOS software interface has emerged.

NetBIOS Working Group [Page 10]

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 378

RFC laJl

RFC 1001 March 1987

5.2. NAME SERVICE

NetBIOS resources are referenced by name. Lower-level address
information is not available to NetBIOS applications. An
application, representing a resource, registers one or more names
that it wishes to use.

The name space is flat and uses sixteen alphanumeric characters.
Names may not start with an asterisk (*)

Registration is a bid for use of a name. The bid may be for
exclusive (unique) or shared (group) ownership. Each application
contends with the other applications in real time. Implicit
permission is granted to a station when it receives no objections.
That is, a bid is made and the application waits for a period of
time. If no objections are received, the station assumes that it has
permission.

A unique name should be held by only one station at a time.
duplicates ("name conflicts") may arise due to errors.

All instances of a group name are equivalent.

However,

An application referencing a name generally does not know (or care)
whether the name is registered as a unique or a group name.

An explicit name deletion function is specified, so that applications
may remove a name. Implicit name deletion occurs when a station
ceases operation. In the case of personal computers, implicit name
deletion is a frequent occurrence.

The Name Service primitives are:

1) Add Name

The requesting application wants exclusive use of the name.

2) Add Group Name

The requesting application is willing to share use of the
name with other applications.

3) Delete Name

The application no longer requires use of the name. It is
important to note that typical use of NetBIOS is among
independently-operated personal computers. A common way to
stop using a PC is to turn it off; in this case, the
graceful give-back mechanism, provided by the Delete Name
function, is not used. Because this occurs frequently, the
network service must support this behavior.

NetBIOS Working Group [Page 11]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 379

RFC laJl

RFC 1001 March 1987

5.3. SESSION SERVICE

A session is a reliable message exchange, conducted between a pair of
NetBIOS applications. Sessions are full-duplex, sequenced, and
reliable. Data is organized into messages. Each message may range
in size from 0 to 131,071 bytes. No expedited or urgent data
capabilities are present.

Multiple sessions may exist between any pair of calling and called
names.

The parties to a connection have access to the calling and called
names.

The NetBIOS specification does not define how a connection request to
a shared (group) name resolves into a session. The usual assumption
is that a session may be established with any one owner of the called
group name.

An important service provided to NetBIOS applications is the
detection of sessions failure. The loss of a session is reported to
an application via all of the outstanding service requests for that
session. For example, if the application has only a NetBIOS receive
primitive pending and the session terminates, the pending receive
will abort with a termination indication.

Session Service primitives are:

1) Call

Initiate a session with a process that is listening under
the specified name. The calling entity must indicate both a
calling name (properly registered to the caller) and a
called name.

2) Listen

Accept a session from a caller. The listen primitive may be
constrained to accept an incoming call from a named caller.
Alternatively, a call may be accepted from any caller.

3) Hang Up

Gracefully terminate a session. All pending data is
transferred before the session is terminated.

4) Send

Transmit one message. A time-out can occur. A time-out of
any session send forces the non-graceful termination of the
session.

NetBIOS Working Group [Page 12]

Protocols for X/ Open PC Interworking: SMB, Version 2 331

Samsung - Exhibit 1014 - Page 380

RFC laJl

RFC 1001 March 1987

5.4.

A "chain send" primitive is required by the PC NetBIOS
software interface to allow a single message to be gathered
from pieces in various buffers. Chain Send is an interface
detail and does not effect the protocol.

5) Receive

Receive data. A time-out can occur. A time-out on a
session receive only terminates the receive, not the
session, although the data is lost.

The receive primitive may be implemented with variants, such
as "Receive Any", which is required by the PC NetBIOS
software interface. Receive Any is an interface detail and
does not effect the protocol.

6) Session Status

Obtain information about all of the requestor's sessions,
under the specified name. No network activity is involved.

DATAGRAM SERVICE

The Datagram service is an unreliable, non-sequenced, connectionless
service. Datagrams are sent under cover of a name properly
registered to the sender.

Datagrams may be sent to a specific name or may be explicitly
broadcast.

Datagrams sent to an exclusive name are received, if at all, by the
holder of that name. Datagrams sent to a group name are multicast to
all holders of that name. The sending application program cannot
distinguish between group and unique names and thus must act as if
all non-broadcast datagrams are multicast.

As with the Session Service, the receiver of the datagram is told the
sending and receiving names.

Datagram Service primitives are:

1) Send Datagram

Send an unreliable datagram to an application that is
associated with the specified name. The name may be unique
or group; the sender is not aware of the difference. If the
name belongs to a group, then each member is to receive the
datagram.

NetBIOS Working Group [Page 13]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 381

RFC laJl

RFC 1001 March 1987

5.5.

2) Send Broadcast Datagram

Send an unreliable datagram to any application with a
Receive Broadcast Datagram posted.

3) Receive Datagram

Receive a datagram sent by a specified originating name to
the specified name. If the originating name is an asterisk,
then the datagram may have been originated under any name.

Note: An arriving datagram will be delivered to all pending
Receiving Datagrams that have source and destination
specifications matching those of the datagram. In other
words, if a program (or group of programs) issue a series of
identical Receive Datagrams, one datagram will cause the
entire series to complete.

4) Receive Broadcast Datagram

Receive a datagram sent as a broadcast.

If there are multiple pending Receive Broadcast Datagram
operations pending, all will be satisfied by the same
received datagram.

MISCELLANEOUS FUNCTIONS

The following functions are present to control the operation of the
hardware interface to the network. These functions are generally
implementation dependent.

1) Reset

Initialize the local network adapter.

2) Cancel

Abort a pending NetBIOS request. The successful cancel of a
Send (or Chain Send) operation will terminate the associated
session.

3) Adapter Status

Obtain information about the local network adapter or of a
remote adapter.

4) Unlink

For use with Remote Program Load (RPL) . Unlink redirects
the PC boot disk device back to the local disk. See the

NetBIOS Working Group [Page 14]

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 382

RFC laJl

RFC 1001 March 1987

5.6.

NetBIOS specification for further details concerning RPL and
the Unlink operation (see page 2-35 in [2]).

5) Remote Program Load

Remote Program Load (RPL) is not a NetBIOS function. It is
a NetBIOS application defined by IBM in their NetBIOS
specification (see pages 2-80 through 2-82 in [2]).

NON-STANDARD EXTENSIONS

The IBM Token Ring implementation of NetBIOS has added at least one
new user capability:

1) Find Name

This function determines whether a given name has been
registered on the network.

6. NetBIOS FACILITIES SUPPORTED BY THIS STANDARD

The protocol specified by this standard permits an implementer to
provide all of the NetBIOS services as described in the IBM
"Technical Reference PC Network" [2] .

The following NetBIOS facilities are outside the scope of this
specification. These are local implementation matters and do not
impact interoperability:

RESET
SESSION STATUS
UNLINK
RPL (Remote Program Load)

7. REQUIRED SUPPORTING SERVICE INTERFACES AND DEFINITIONS

The protocols described in this RFC require service interfaces to the
following:

TCP[3,4]
UDP [5]

Byte ordering, addressing conventions (including addresses to be
used for broadcasts and multicasts) are defined by the most
recent version of:

Assigned Numbers[6]

Additional definitions and constraints are in:

NetBIOS Working Group [Page 15]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 383

RFC laJl

RFC 1001 March 1987

IP [7]
Internet Subnets[8,9,10]

8. RELATED PROTOCOLS AND SERVICES

The design of the protocols described in this RFC allow for the
future incorporation of the following protocols and services.
However, before this may occur, certain extensions may be required to
the protocols defined in this RFC or to those listed below.

Domain Name Service[11,12,13,14]
Internet Group Multicast[15,16]

9. NetBIOS SCOPE

A "NetBIOS Scope" is the population of computers across which a
registered NetBIOS name is known. NetBIOS broadcast and multicast
datagram operations must reach the entire extent of the NetBIOS
scope.

An internet may support multiple, non-intersecting NetBIOS Scopes.

Each NetBIOS scope has a "scope identifier". This identifier is a
character string meeting the requirements of the domain name system
for domain names.

NOTE: Each implementation of NetBIOS-over-TCP must provide
mechanisms to manage the scope identifier(s) to be used.

Control of scope identifiers implies a requirement for additional
NetBIOS interface capabilities. These may be provided through
extensions of the user service interface or other means (such as node
configuration parameters.) The nature of these extensions is not
part of this specification.

10. NetBIOS END-NODES

End-nodes support NetBIOS service interfaces and contain
applications.

Three types of end-nodes are part of this standard:

Broadcast ("B") nodes
Point-to-point ("P") nodes
Mixed mode ("M") nodes

An IP address may be associated with only one instance of one of the
above types.

Without having preloaded name-to-address tables, NetBIOS participants

NetBIOS Working Group [Page 16]

Protocols for X/ Open PC Interworking: SMB, Version 2 335

Samsung - Exhibit 1014 - Page 384

RFC laJl

RFC 1001 March 1987

are faced with the task of dynamically resolving references to one
another. This can be accomplished with broadcast or mediated point
to-point communications.

B nodes use local network broadcasting to effect a rendezvous with
one or more recipients. P and M nodes use the NetBIOS Name Server
(NBNS) and the NetBIOS Datagram Distribution Server (NBDD) for this
same purpose.

End-nodes may be combined in various topologies. No matter how
combined, the operation of the B, P, and M nodes is not altered.

NOTE: It is recommended that the administration of a NetBIOS
scope avoid using both M and B nodes within the same scope.
A NetBIOS scope should contain only B nodes or only P and M
nodes.

10.1. BROADCAST (B) NODES

Broadcast (or "B") nodes communicate using a mix of UDP datagrams
(both broadcast and directed) and TCP connections. B nodes may
freely interoperate with one another within a broadcast area. A
broadcast area is a single MAC-bridged "B-LAN". (See Appendix A for
a discussion of using Internet Group Multicasting as a means to
extend a broadcast area beyond a single B-LAN.)

10.2. POINT-TO-POINT (P) NODES

Point-to-point (or "P") nodes communicate using only directed UDP
datagrams and TCP sessions. P nodes neither generate nor listen for
broadcast UDP packets. P nodes do, however, offer NetBIOS level
broadcast and multicast services using capabilities provided by the
NBNS and NBDD.

P nodes rely on NetBIOS name and datagram distribution servers.
These servers may be local or remote; P nodes operate the same in
either case.

10.3. MIXED MODE (M) NODES

Mixed mode nodes (or "M") nodes are P nodes which have been given
certain B node characteristics. M nodes use both broadcast and
unicast. Broadcast is used to improve response time using the
assumption that most resources reside on the local broadcast medium
rather than somewhere in an internet.

M nodes rely upon NBNS and NBDD servers. However, M nodes may
continue limited operation should these servers be temporarily
unavailable.

NetBIOS Working Group [Page 1 7]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 385

RFC laJl

RFC 1001 March 1987

11. NetBIOS SUPPORT SERVERS

Two types of support servers are part of this standard:

NetBIOS name server ("NBNS") nodes
Netbios datagram distribution ("NBDD") nodes

NBNS and NBDD nodes are invisible to NetBIOS applications and are
part of the underlying NetBIOS mechanism.

NetBIOS name and datagram distribution servers are the focus of name
and datagram activity for P and M nodes.

Both the name (NBNS) and datagram distribution (NBDD) servers are
permitted to shift part of their operation to the P or M end-node
which is requesting a service.

Since the assignment of responsibility is dynamic, and since P and M
nodes must be prepared to operate should the NetBIOS server delegate
control to the maximum extent, the system naturally accommodates
improvements in NetBIOS server function. For example, as Internet
Group Multicasting becomes more widespread, new NBDD implementations
may elect to assume full responsibility for NetBIOS datagram
distribution.

Interoperability between different implementations is assured by
imposing requirements on end-node implementations that they be able
to accept the full range of legal responses from the NBNS or NBDD.

11.1. NetBIOS NAME SERVER (NBNS) NODES

The NBNS is designed to allow considerable flexibility with its
degree of responsibility for the accuracy and management of NetBIOS
names. On one hand, the NBNS may elect not to accept full
responsibility, leaving the NBNS essentially a "bulletin board" on
which name/address information is freely posted (and removed) by P
and M nodes without validation by the NBNS. Alternatively, the NBNS
may elect to completely manage and validate names. The degree of
responsibility that the NBNS assumes is asserted by the NBNS each
time a name is claimed through a simple mechanism. Should the NBNS
not assert full control, the NBNS returns enough information to the
requesting node so that the node may challenge any putative holder of
the name.

This ability to shift responsibility for NetBIOS name management
between the NBNS and the P and M nodes allows a network administrator
(or vendor) to make a tradeoff between NBNS simplicity, security, and
delay characteristics.

A single NBNS may be implemented as a distributed entity, such as the
Domain Name Service. However, this RFC does not attempt to define

NetBIOS Working Group [Page 18]

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 386

RFC laJl

RFC 1001 March 1987

the internal communications which would be used.

11. 1. 1. RELATIONSHIP OF THE NBNS TO THE DOMAIN NAME SYSTEM

The NBNS design attempts to align itself with the Domain Name System
in a number of ways.

First, the NetBIOS names are encoded in a form acceptable to the
domain name system.

Second, a scope identifier is appended to each NetBIOS name. This
identifier meets the restricted character set of the domain system
and has a leading period. This makes the NetBIOS name, in
conjunction with its scope identifier, a valid domain system name.

Third, the negotiated responsibility mechanisms permit the NBNS to be
used as a simple bulletin board on which are posted (name,address)
pairs. This parallels the existing domain sytem query service.

This RFC, however, requires the NBNS to provide services beyond those
provided by the current domain name system. An attempt has been made
to coalesce all the additional services which are required into a set
of transactions which follow domain name system styles of interaction
and packet formats.

Among the areas in which the domain name service must be extended
before it may be used as an NBNS are:

11.2.

Dynamic addition of entries
Dynamic update of entry data
Support for multiple instance (group) entries
Support for entry time-to-live values and ability to accept
refresh messages to restart the time-to-live period
New entry attributes

NetBIOS DATAGRAM DISTRIBUTION SERVER (NBDD) NODES

The internet does not yet support broadcasting or multicasting. The
NBDD extends NetBIOS datagram distribution service to this
environment.

The NBDD may elect to complete, partially complete, or totally refuse
to service a node's request to distribute a NetBIOS datagram. An
end-node may query an NBDD to determine whether the NBDD will deliver
a datagram to a specific NetBIOS name.

The design of NetBIOS-over-TCP lends itself to the use of Internet
Group Multicast. For details see Appendix A.

NetBIOS Working Group [Page 19]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 387

RFC laJl

RFC 1001 March 1987

11.3. RELATIONSHIP OF NBNS AND NBDD NODES

This RFC defines the NBNS and NBDD as distinct, separate entities.

In the absence of NetBIOS name information, a NetBIOS datagram
distribution server must send a copy to each end-node within a
NetBIOS scope.

An implementer may elect to construct NBNS and NBDD nodes which have
a private protocol for the exchange of NetBIOS name information.
Alternatively, an NBNS and NBDD may be implemented within the same
device.

NOTE: Implementations containing private NBNS-NBDD protocols or
combined NBNS-NBDD functions must be clearly identified.

11.4. RELATIONSHIP OF NetBIOS SUPPORT SERVERS AND B NODES

As defined in this RFC, neither NBNS nor NBDD nodes interact with B
nodes. NetBIOS servers do not listen to broadcast traffic on any
broadcast area to which they may be attached. Nor are the NetBIOS
support servers even aware of B node activities or names claimed or
used by B nodes.

It may be possible to extend both the NBNS and NBDD so that they
participate in B node activities and act as a bridge to P and M
nodes. However, such extensions are beyond the scope of this
specification.

12. TOPOLOGIES

B, P, M, NBNS, and NBDD nodes may be combined in various ways to form
useful NetBIOS environments. This section describes some of these
combinations.

There are three classes of operation:

Class 0: B nodes only.
Class 1: p nodes only.
Class 2: p and M nodes together.

In the drawings which follow, any P node may be replaced by an M
node. The effects of such replacement will be mentioned in
conjunction with each example below.

12.1. LOCAL

A NetBIOS scope is operating locally when all entities are within the
same broadcast area.

NetBIOS Working Group [Page 20]

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 388

370

RFC laJl

RFC 1001 March 1987

12.1.1. B NODES ONLY

Local operation with only B nodes is the most basic mode of
operation. Name registration and discovery procedures use broadcast
mechanisms. The NetBIOS scope is limited by the extent of the
broadcast area. This configuration does not require NetBIOS support
servers.

====+=========+=====BROADCAST AREA=====+==========+=========+====

+--+--+
B

+-----+

+--+--+
B

+-----+

12.1.2. P NODES ONLY

+--+--+
B

+-----+

+--+--+
B

+-----+

+--+--+
B

+-----+

This configuration would typically be used when the network
administrator desires to eliminate NetBIOS as a source of broadcast
activity.

====+=========+==========+=B'CAST AREA=+==========+=========+====

+--+--+
p

+-----+

+--+--+
p

+-----+

+--+--+
INBNS
+-----+

+--+--+
p

+-----+

+--+--+

INBDD I
+-----+

+--+--+
p

+-----+

This configuration operates the same as if it were in an internet and
is cited here only due to its convenience as a means to reduce the
use of broadcast.

Replacement of one or more of the P nodes with M nodes will not
affect the operation of the other P and M nodes. P and M nodes will
be able to interact with one another. Because M nodes use broadcast,
overall broadcast activity will increase.

12.1.3. MIXED B AND P NODES

B and P nodes do not interact with one another. Replacement of P
nodes with M nodes will allow B's and M's to interact.

NOTE: B nodes and M nodes may be intermixed only on a local
broadcast area. B and M nodes should not be intermixed in
an internet environment.

NetBIOS Working Group [Page 21]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 389

RFC laJl

RFC 1001 March 1987

12.2. INTERNET

12.2.1. P NODES ONLY

P nodes may be scattered at various locations in an internetwork.
They require both an NBNS and an NBDD for NetBIOS name and datagram
support, respectively.

The NetBIOS scope is determined by the NetBIOS scope identifier
(domain name) used by the various P (and M) nodes. An internet may
contain numerous NetBIOS scopes.

+-----+

+-----+
p

+--+--+

I
I

1-----+-----
1 I

+-----+ I
1----+ p

I +-----+

+-----+
p +------+

+------+ I
INTERNET +--+G'WAY 1-+----+ p

+-----+

+-----+
INBNS +
+-----+

I
I

I I
1-----+-----1

I
I

+--+--+
INBDD I
+--+--+

+------+ I +-----+

I
+-----+ I

1----+ p

I +-----+

Any P node may be replaced by an M node with no loss of function to
any node. However, broadcast activity will be increased in the
broadcast area to which the M node is attached.

NetBIOS Working Group [Page 22]

Protocols for X/ Open PC Interworking: SMB, Version 2 371

Samsung - Exhibit 1014 - Page 390

372

RFC laJl

RFC 1001 March 1987

12.2.2. MIXED M AND P NODES

M and P nodes may be mixed. When locating NetBIOS names, M nodes
will tend to find names held by other M nodes on the same common
broadcast area in preference to names held by P nodes or M nodes
elsewhere in the network.

+-----+
p

+--+--+

I
I

/-----+----- +-----+
p +------+ INTERNET +------+NBDD I

+-----+ I I +-----+
/-----+-----/

+-----+
INBNS +
+-----+

I I
I I

+--+--+
IG'WAYI
+--+--+

====+=========+==========+=B'CAST AREA=+==========+=========+====

+--+--+
M

+-----+

+--+--+
p

+-----+

+--+--+
M

+--+--+

+--+--+
p

+-----+

+--+--+
M

+-----+

+--+--+
p

+-----+

NOTE: B and M nodes should not be intermixed in an internet
environment. Doing so would allow undetected NetBIOS name
conflicts to arise and cause unpredictable behavior.

13. GENERAL METHODS

Overlying the specific protocols, described later, are a few general
methods of interaction between entities.

13.1. REQUEST/RESPONSE INTERACTION STYLE

Most interactions between entities consist of a request flowing in
one direction and a subsequent response flowing in the opposite
direction.

In those situations where interactions occur on unreliable transports
(i.e. UDP) or when a request is broadcast, there may not be a strict
interlocking or one-to-one relationship between requests and
responses.

NetBIOS Working Group [Page 23]

+-----+

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 391

RFC laJl

RFC 1001 March 1987

In no case, however, is more than one response generated for a
received request. While a response is pending the responding entity
may send one or more wait acknowledgements.

13.1.1. RETRANSMISSION OF REQUESTS

UDP is an unreliable delivery mechanism where packets can be lost,
received out of transmit sequence, duplicated and delivery can be
significantly delayed. Since the NetBIOS protocols make heavy use of
UDP, they have compensated for its unreliability with extra
mechanisms.

Each NetBIOS packet contains all the necessary information to process
it. None of the protocols use multiple UDP packets to convey a
single request or response. If more information is required than
will fit in a single UDP packet, for example, when a P-type node
wants all the owners of a group name from a NetBIOS server, a TCP
connection is used. Consequently, the NetBIOS protocols will not
fail because of out of sequence delivery of UDP packets.

To overcome the loss of a request or response packet, each request
operation will retransmit the request if a response is not received
within a specified time limit.

Protocol operations sensitive to successive response packets, such as
name conflict detection, are protected from duplicated packets
because they ignore successive packets with the same NetBIOS
information. Since no state on the responder's node is associated
with a request, the responder just sends the appropriate response
whenever a request packet arrives. Consequently, duplicate or
delayed request packets have no impact.

For all requests, if a response packet is delayed too long another
request packet will be transmitted. A second response packet being
sent in response to the second request packet is equivalent to a
duplicate packet. Therefore, the protocols will ignore the second
packet received. If the delivery of a response is delayed until
after the request operation has been completed, successfully or not,
the response packet is ignored.

13.1.2. REQUESTS WITHOUT RESPONSES: DEMANDS

Some request types do not have matching responses. These requests
are known as "demands". In general a "demand" is an imperative
request; the receiving node is expected to obey. However, because
demands are unconfirmed, they are used only in situations where, at
most, limited damage would occur if the demand packet should be lost.

Demand packets are not retransmitted.

NetBIOS Working Group [Page 24]

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 392

374

RFC laJl

RFC 1001 March 1987

13.2. TRANSACTIONS

Interactions between a pair of entities are grouped into
"transactions". These transactions comprise one or more
request/response pairs.

13.2.1. TRANSACTION ID

Since multiple simultaneous transactions may be in progress between a
pair of entities a "transaction id" is used.

The originator of a transaction selects an ID unique to the
originator. The transaction id is reflected back and forth in each
interaction within the transaction. The transaction partners must
match responses and requests by comparison of the transaction ID and
the IP address of the transaction partner. If no matching request
can be found the response must be discarded.

A new transaction ID should be used for each transaction. A simple
16 bit transaction counter ought to be an adequate id generator. It
is probably not necessary to search the space of outstanding
transaction ID to filter duplicates: it is extremely unlikely that
any transaction will have a lifetime that is more than a small
fraction of the typical counter cycle period. Use of the IP
addresses in conjunction with the transaction ID further reduces the
possibility of damage should transaction IDs be prematurely re-used.

13.3. TCP AND UDP FOUNDATIONS

This version of the NetBIOS-over-TCP protocols uses UDP for many
interactions. In the future this RFC may be extended to permit such
interactions to occur over TCP connections (perhaps to increase
efficiency when multiple interactions occur within a short time or
when NetBIOS datagram traffic reveals that an application is using
NetBIOS datagrams to support connection- oriented service.)

14. REPRESENTATION OF NETBIOS NAMES

NetBIOS names as seen across the client interface to NetBIOS are
exactly 16 bytes long. Within the NetBIOS-over-TCP protocols, a
longer representation is used.

There are two levels of encoding. The first level maps a NetBIOS
name into a domain system name. The second level maps the domain
system name into the "compressed" representation required for
interaction with the domain name system.

Except in one packet, the second level representation is the only
NetBIOS name representation used in NetBIOS-over-TCP packet formats.
The exception is the RDATA field of a NODE STATUS RESPONSE packet.

NetBIOS Working Group [Page 25]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 393

RFC laJl

RFC 1001 March 1987

14.1. FIRST LEVEL ENCODING

The first level representation consists of two parts:

NetBIOS name
NetBIOS scope identifier

The 16 byte NetBIOS name is mapped into a 32 byte wide field using a
reversible, half-ASCII, biased encoding. Each half-octet of the
NetBIOS name is encoded into one byte of the 32 byte field. The
first half octet is encoded into the first byte, the second half
octet into the second byte, etc.

Each 4-bit, half-octet of the NetBIOS name is treated as an 8-bit,
right-adjusted, zero-filled binary number. This number is added to
value of the ASCII character 'A' (hexidecimal 41). The resulting 8-
bit number is stored in the appropriate byte. The following diagram
demonstrates this procedure:

0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+

Ia b c dlw x y zl
+-+-+-+-+-+-+-+-+

ORIGINAL BYTE

+--------+

v

0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+

lo o o o abc dl
+-+-+-+-+-+-+-+-+

+

0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+

lo 1 o o o o o 11
+-+-+-+-+-+-+-+-+

+--------+

SPLIT THE NIBBLES
v

0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+

lo o o ow x y zl
+-+-+-+-+-+-+-+-+

+ ADD 'A'

0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+

lo 1 o o o o o 11
+-+-+-+-+-+-+-+-+

This encoding results in a NetBIOS name being represented as a
sequence of 32 ASCII, upper-case characters from the set
{A,B,C ... N,O,P}.

The NetBIOS scope identifier is a valid domain name (without a
leading dot) .

An ASCII dot (2E hexidecimal) and the scope identifier are appended
to the encoded form of the NetBIOS name, the result forming a valid
domain name.

NetBIOS Working Group [Page 26]

Protocols for X/ Open PC Interworking: SMB, Version 2 375

Samsung - Exhibit 1014 - Page 394

376

RFC laJl

RFC 1001 March 1987

For example, the NetBIOS name "The NetBIOS name" in the NetBIOS scope
"SCOPE.ID.COM" would be represented at level one by the ASCII
character string:

FEGHGFCAEOGFHEECEJEPFDCAHEGBGNGF.SCOPE.ID.COM

14.2. SECOND LEVEL ENCODING

The first level encoding must be reduced to second level encoding.
This is performed according to the rules defined in on page 31 of RFC
883[12] in the section on "Domain name representation and
compression". Also see the section titled "Name Formats" in the
Detailed Specifications[1]

15. NetBIOS NAME SERVICE

Before a name may be used, the name must be registered by a node.
Once acquired, the name must be defended against inconsistent
registration by other nodes. Before building a NetBIOS session or
sending a NetBIOS datagram, the one or more holders of the name must
be located.

The NetBIOS name service is the collection of procedures through
which nodes acquire, defend, and locate the holders of NetBIOS names.

The name service procedures are different depending whether the end
node is of type B, P, or M.

15.1. OVERVIEW OF NetBIOS NAME SERVICE

15.1.1. NAME REGISTRATION (CLAIM)

Each NetBIOS node can own more than one name. Names are acquired
dynamically through the registration (name claim) procedures.

Every node has a permanent unique name. This name, like any other
name, must be explicitly registered by all end-node types.

A name can be unique (exclusive) or group (non-exclusive) . A unique
name may be owned by a single node; a group name may be owned by any
number of nodes. A name ceases to exist when it is not owned by at
least one node. There is no intrinsic quality of a name which
determines its characteristics: these are established at the time of
registration.

Each node maintains state information for each name it has
registered. This information includes:

Whether the name is a group or unique name
Whether the name is "in conflict"
Whether the name is in the process of being deleted

NetBIOS Working Group [Page 27]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 395

RFC laJl

RFC 1001 March 1987

B nodes perform name registration by broadcasting claim requests,
soliciting a defense from any node already holding the name.

P nodes perform name registration through the agency of the NBNS.

M nodes register names through an initial broadcast, like B nodes,
then, in the absence of an objection, by following the same
procedures as a P node. In other words, the broadcast action may
terminate the attempt, but is not sufficient to confirm the
registration.

15.1.2. NAME QUERY (DISCOVERY)

Name query (also known as "resolution" or "discovery") is the
procedure by which the IP address(es) associated with a NetBIOS name
are discovered. Name query is required during the following
operations:

During session establishment, calling and called names must be
specified. The calling name must exist on the node that posts the
CALL. The called name must exist on a node that has previously
posted a LISTEN. Either name may be a unique or group name.

When a directed datagram is sent, a source and destination name must
be specified. If the destination name is a group name, a datagram is
sent to all the members of that group.

Different end-node types perform name resolution using different
techniques, but using the same packet formats:

B nodes solicit name information by broadcasting a request.

P nodes ask the NBNS.

M nodes broadcast a request. If that does not provide the
desired information, an inquiry is sent to the NBNS.

15.1.3. NAME RELEASE

NetBIOS names may be released explicitly or silently by an end- node.
Silent release typically occurs when an end-node fails or is turned
off. Most of the mechanisms described below are present to detect
silent name release.

15.1.3.1. EXPLICIT RELEASE

B nodes explicitly release a name by broadcasting a notice.

P nodes send a notification to their NBNS.

M nodes both broadcast a notice and inform their supporting NBNS.

NetBIOS Working Group [Page 28]

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 396

RFC laJl

RFC 1001 March 1987

15.1.3.2. NAME LIFETIME AND REFRESH

Names held by an NBNS are given a lifetime during name registration.
The NBNS will consider a name to have been silently released if the
end-node fails to send a name refresh message to the NBNS before the
lifetime expires. A refresh restarts the lifetime clock.

NOTE: The implementor should be aware of the tradeoff between
accuracy of the database and the internet overhead that the
refresh mechanism introduces. The lifetime period should
be tuned accordingly.

For group names,
that fails to do
name and dropped

each end-node must send refresh messages. A node
so will be considered to have silently released the
from the group.

The lifetime period is established through a simple negotiation
mechanism during name registration: In the name registration
request, the end-node proposes a lifetime value or requests an
infinite lifetime. The NBNS places an actual lifetime value into the
name registration response. The NBNS is always allowed to respond
with an infinite actual period. If the end node proposed an infinite
lifetime, the NBNS may respond with any definite period. If the end
node proposed a definite period, the NBNS may respond with any
definite period greater than or equal to that proposed.

This negotiation of refresh times gives the NBNS means to disable or
enable refresh activity. The end-nodes may set a minimum refresh
cycle period.

NBNS implementations which are completely reliable may disable
refresh.

15.1.3.3. NAME CHALLENGE

To detect whether a node has silently released its claim to a name,
it is necessary on occasion to challenge that
ownership. If the node defends the name then
continue possession.
released the name.

Otherwise it is assumed

node's current
the node is allowed
that the node has

A name challenge may be issued by an NBNS or by a P or M node. A
challenge may be directed towards any end-node type: B, P, or M.

15.1.3.4. GROUP NAME FADE-OUT

NetBIOS groups may contain an arbitrarily large number of members.
The time to challenge all members could be quite large.

To avoid long delays when names are claimed through an NBNS, an

to

NetBIOS Working Group [Page 29]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 397

RFC laJl

RFC 1001 March 1987

optimistic heuristic has been adopted. It is assumed that there will
always be some node which will defend a group name. Consequently, it
is recommended that the NBNS will immediately reject a claim request
for a unique name when there already exists a group with the same
name. The NBNS will never return an IP address (in response to a
NAME REGISTRATION REQUEST) when a group name exists.

An NBNS will consider a group to have faded out of existence when the
last remaining member fails to send a timely refresh message or
explicitly releases the name.

15.1.3.5. NAME CONFLICT

Name conflict exists when a unique name has been claimed by more than
one node on a NetBIOS network. B, M, and NBNS nodes may detect a
name conflict. The detection mechanism used by B and M nodes is
active only during name discovery. The NBNS may detect conflict at
any time it verifies the consistency of its name database.

B and M nodes detect conflict by examining the responses received in
answer to a broadcast name query request. The first response is
taken as authoritative.
represent conflicts.

Any subsequent, inconsistent responses

Subsequent responses are inconsistent with the authoritative response
when:

AND

The subsequent response has the same transaction ID as the
NAME QUERY REQUEST.

The subsequent response is not a duplicate of the
authoritative response.

AND EITHER:

OR

The group/unique characteristic of the authoritative
response is "unique".

The group/unique characteristic of the subsequent
response is "unique".

The period in which B and M nodes examine responses is limited by a
conflict timer, CONFLICT TIMER. The accuracy or duration of this
timer is not crucial: the NetBIOS system will continue to operate
even with persistent name conflicts.

Conflict conditions are signaled by sending a NAME CONFLICT DEMAND to
the node owning the offending name. Nothing is sent to the node
which originated the authoritative response.

Any end-node that receives NAME CONFLICT DEMAND is required to update
its "local name table" to reflect that the name is in conflict. (The
"local name table" on each node contains names that have been

NetBIOS Working Group [Page 30]

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 398

RFC laJl

RFC 1001 March 1987

successfully registered by that node.)

Notice that only those nodes that receive the name conflict message
place a conflict mark next to a name.

Logically, a marked name does not exist on that node. This means
that the node should not defend the name (for name claim purposes),
should not respond to a name discovery requests for that name, nor
should the node send name refresh messages for that name.
Furthermore, it can no longer be used by that node for any session
establishment or sending or receiving datagrams. Existing sessions
are not affected at the time a name is marked as being in conflict.

The only valid user function against a marked name is DELETE NAME.
Any other user NetBIOS function returns immediately with an error
code of "NAME CONFLICT".

15.1.4. ADAPTER STATUS

An end-node or the NBNS may ask any other end-node for a collection
of information about the NetBIOS status of that node. This status
consists of, among other things, a list of the names which the node
believes it owns. The returned status is filtered to contain only
those names which have the same NetBIOS scope identifier as the
requestor's name.

When requesting node status, the requestor identifies the target node
by NetBIOS name A name query transaction may be necessary to acquire
the IP address for the name. Locally cached name information may be
used in lieu of a query transaction. The requesting node sends a
NODE STATUS REQUEST. In response, the receiving node sends a NODE
STATUS RESPONSE containing its local name table and various
statistics.

The amount of status which may be returned is limited by the size of
a UDP packet. However, this is sufficient for the typical NODE
STATUS RESPONSE packet.

15.1.5. END-NODE NBNS INTERACTION

There are certain characteristics of end-node to NBNS interactions
which are in common and are independent of any particular transaction
type.

15.1.5.1. UDP, TCP, AND TRUNCATION

For all transactions between an end-node and an NBNS, either UDP or
TCP may be used as a transport. If the NBNS receives a UDP based
request, it will respond using UDP. If the amount of information
exceeds what fits into a UDP packet, the response will contain a
"truncation flag". In this situation, the end- node may open a TCP

NetBIOS Working Group [Page 31]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 399

RFC laJl

RFC 1001 March 1987

connection to the NBNS, repeat the request, and receive a complete,
untruncated response.

15.1.5.2. NBNS WACK

While a name service request is in progress, the NBNS may issue a
WAIT FOR ACKNOWLEDGEMENT RESPONSE (WACK) to assure the client end
node that the NBNS is still operational and is working on the
request.

15.1.5.3. NBNS REDIRECTION

The NBNS, because it follows Domain Name system styles of
interaction, is permitted to redirect a client to another NBNS.

15.1.6. SECURED VERSUS NON-SECURED NBNS

An NBNS may be implemented in either of two general ways: The NBNS
may monitor, and participate in, name activity to ensure consistency.
This would be a "secured" style NBNS. Alternatively, an NBNS may be
implemented to be essentially a "bulletin board" on which name
information is posted and responsibility for consistency is delegated
to the end-nodes. This would be a "non-secured" style NBNS.

15.1.7. CONSISTENCY OF THE NBNS DATA BASE

Even in a properly running NetBIOS scope the NBNS and its community
of end-nodes may occasionally lose synchronization with respect to
the true state of name registrations.

This may occur should the NBNS fail and lose all or part of its
database.

More commonly, a P or M node may be turned-off (thus forgetting the
names it has registered) and then be subsequently turned back on.

Finally, errors may occur or an implementation may be incorrect.

Various approaches have been incorporated into the NetBIOS-over- TCP
protocols to minimize the impact of these problems.

1 . The NBNS (or any other node) may "challenge" (using a NAME
QUERY REQUEST) an end-node to verify that it actually owns a
name.

Such a challenge may occur at any time.
be prepared to make a timely response.

Every end-node must

Failure to respond causes the NBNS to consider that the
end-node has released the name in question.

NetBIOS Working Group [Page 32]

Protocols for X/ Open PC Interworking: SMB, Version 2 S31

Samsung - Exhibit 1014 - Page 400

RFC 1001

RFC laJl

March 1987

(If UDP is being used as the underlying transport, the
challenge, like all other requests, must be retransmitted
some number of times in the absence of a response.)

2. The NBNS (or any other node) may request (using the NODE
STATUS REQUEST) that an end-node deliver its entire name
table.

This may occur at any time.
to make a timely response.

Every end-node must be prepared

Failure to respond permits (but does not require) the NBNS
to consider that the end-node has failed and released all
names to which it had claims. (Like the challenge, on a UDP
transport, the request must be retransmitted in the absence
of a response.)

3. The NBNS may revoke a P or M node's use of a name by sending
either a NAME CONFLICT DEMAND or a NAME RELEASE REQUEST to
the node.

The receiving end-node may continue existing sessions which
use that name, but must otherwise cease using that name. If
the NBNS placed the name in conflict, the name may be re
acquired only by deletion and subsequent reclamation. If
the NBNS requested that the name be released, the node may
attempt to re-acquire the name without first performing a
name release transaction.

4. The NBNS may impose a "time-to-live" on each name it
registers. The registering node is made aware of this time
value during the name registration procedure.

Simple or reliable NBNS's may impose an infinite time-to
live.

5. If an end-node holds any names that have finite time-to
live values, then that node must periodically send a status
report to the NBNS. Each name is reported using the NAME
REFRESH REQUEST packet.

These status reports restart the timers of both the NBNS and
the reporting node. However, the only timers which are
restarted are those associated with the name found in the
status report. Timers on other names are not affected.

The NBNS may consider that a node has released any name
which has not been refreshed within some multiple of name's
time-to-live.

A well-behaved NBNS, would, however, issue a challenge to-,

NetBIOS Working Group [Page 33]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 401

RFC laJl

RFC 1001 March 1987

or request a list of names from-, the non-reporting end
node before deleting its name(s). The absence of a
response, or of the name in a response, will confirm the
NBNS decision to delete a name.

6. The absence of reports may cause the NBNS to infer that the
end-node has failed. Similarly, receipt of information
widely divergent from what the NBNS believes about the node,
may cause the NBNS to consider that the end-node has been
restarted.

The NBNS may analyze the situation through challenges or
requests for a list of names.

7. A very cautious NBNS is free to poll nodes (by sending NAME
QUERY REQUEST or NODE STATUS REQUEST packets) to verify that
their name status is the same as that registered in the
NBNS.

NOTE: Such polling activity, if used at all by an
implementation, should be kept at a very low level or
enabled only during periods when the NBNS has some reason to
suspect that its information base is inaccurate.

8. P and M nodes can detect incorrect name information at
session establishment.

If incorrect information is found, NBNS is informed via a
NAME RELEASE REQUEST originated by the end-node which
detects the error.

15.1.8. NAME CACHING

An end-node may keep a local cache of NetBIOS name-to-IP address
translation entries.

All cache entries should be flushed on a periodic basis.

In addition, a node ought to flush any cache information associated
with an IP address if the node receives any information indicating
that there may be any possibility of trouble with the node at that IP
address. For example, if a NAME CONFLICT DEMAND is sent to a node,
all cached information about that node should be cleared within the
sending node.

15.2. NAME REGISTRATION TRANSACTIONS

15.2.1. NAME REGISTRATION BY B NODES

A name claim transaction initiated by a B node is broadcast
throughout the broadcast area. The NAME REGISTRATION REQUEST will be

NetBIOS Working Group [Page 34]

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 402

RFC laJl

RFC 1001 March 1987

heard by all B and M nodes in the area. Each node examines the claim
to see whether it it is consistent with the names it owns. If an
inconsistency exists, a NEGATIVE NAME REGISTRATION RESPONSE is
unicast to the requestor. The requesting node obtains ownership of
the name (or membership in the group) if, and only if, no NEGATIVE
NAME REGISTRATION RESPONSEs are received within the name claim
timeout, CONFLICT TIMER. (See "Defined Constants and Variables" in
the Detailed Specification for the value of this timer.)

A B node proclaims its new ownership by broadcasting a NAME OVERWRITE
DEMAND.

B-NODE REGISTRATION PROCESS
<-----NAME NOT ON NETWORK------> <----NAME ALREADY EXISTS---->

REQ. NODE

(BROADCAST) REGISTER
------------------->

REGISTER
------------------->

REGISTER
------------------->

OVERWRITE
------------------->

(NODE HAS THE NAME)

NODE
HOLDING

NAME

REQ.NODE

(BROADCAST) REGISTER
<-------------------

REGISTER
<-------------------

NEGATIVE RESPONSE
------------------------------>

(NODE DOES NOT HAVE THE NAME)

The NAME REGISTRATION REQUEST, like any request, must be repeated if
no response is received within BCAST_REQ_RETRY_TIMEOUT. Transmission
of the request is attempted BCAST_REQ_RETRY COUNT times.

15.2.2. NAME REGISTRATION BY P NODES

A name registration may proceed in various ways depending whether
the name being registered is new to the NBNS. If the name is known
to the NBNS, then challenges may be sent to the prior holder(s).

15.2.2.1. NEW NAME, OR NEW GROUP MEMBER

The diagram, below, shows the sequence of events when an end-node
registers a name which is new to the NBNS. (The diagram omits WACKs,
NBNS redirections, and retransmission of requests.)

This same interaction will occur if the name being registered is a
group name and the group already exists. The NBNS will add the

NetBIOS Working Group [Page 35]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 403

RFC laJl

RFC 1001 March 1987

registrant to the set of group members.

P-NODE REGISTRATION PROCESS
(server has no previous information about the name)

P-NODE NBNS
REGISTER

--------------------------------->

POSITIVE RESPONSE
<---------------------------------

The interaction is rather simple: the end-node sends a NAME
REGISTRATION REQUEST, the NBNS responds with a POSITIVE NAME
REGISTRATION RESPONSE.

15.2.2.2. EXISTING NAME AND OWNER IS STILL ACTIVE

The following diagram shows interactions when an attempt is made to
register a unique name, the NBNS is aware of an existing owner, and
that existing owner is still active.

There are two sides to the diagram.
secured NBNS would handle the matter.
on the right.

The left side shows how a non
Secured NBNS activity is shown

P-NODE REGISTRATION PROCESS
(server HAS a previous owner that IS active)

<------NON-SECURED STYLE-------> <---------SECURED STYLE------->

REQ. NODE NBNS

REGISTER
------------------->

END-NODE CHALLENGE
<-------------------

QUERY
----------------------------->

QUERY
----------------------------->

POSITIVE RESPONSE
<----------------------------

NetBIOS Working Group

NODE
HOLDING

NAME

NBNS REQ.NODE

REGISTER
<-------------------

QUERY
<------------

QUERY
<------------

POSITIVE RESP
------------>

NEGATIVE RESPONSE
----------------->

[Page 36]

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 404

RFC laJl

RFC 1001 March 1987

A non-secured NBNS will answer the NAME REGISTRATION REQUEST with a
END-NODE CHALLENGE REGISTRATION RESPONSE. This response asks the
end-node to issue a challenge transaction against the node indicated
in the response. In this case, the prior node will defend against
the challenge and the registering end-node will simply drop the
registration attempt without further interaction with the NBNS.

A secured NBNS will refrain from answering the NAME REGISTRATION
REQUEST until the NBNS has itself challenged the prior holder(s) of
the name. In this case, the NBNS finds that that the name is still
being defended and consequently returns a NEGATIVE NAME REGISTRATION
RESPONSE to the registrant.

Due to the potential time for the secured NBNS to make the
challenge(s), it is likely that a WACK will be sent by the NBNS to
the registrant.

Although not shown in the diagram, a non-secured NBNS will send a
NEGATIVE NAME REGISTRATION RESPONSE to a request to register a unique
name when there already exists a group of the same name. A secured
NBNS may elect to poll (or challenge) the group members to determine
whether any active members remain. This may impose a heavy load on
the network. It is recommended that group names be allowed to fade
out through the name refresh mechanism.

15.2.2.3. EXISTING NAME AND OWNER IS INACTIVE

The following diagram shows interactions when an attempt is made to
register a unique name, the NBNS is aware of an existing owner, and
that existing owner is no longer active.

A non-secured NBNS will answer the NAME REGISTRATION REQUEST with a
END-NODE CHALLENGE REGISTRATION RESPONSE. This response asks the
end-node to issue a challenge transaction against the node indicated
in the response. In this case, the prior node will not defend
against the challenge. The registrant will inform the NBNS through a
NAME OVERWRITE REQUEST. The NBNS will replace the prior name
information in its database with the information in the overwrite
request.

A secured NBNS will refrain from answering the NAME REGISTRATION
REQUEST until the NBNS has itself challenged the prior holder(s) of
the name. In this case, the NBNS finds that that the name is not
being defended and consequently returns a POSITIVE NAME REGISTRATION
RESPONSE to the registrant.

NetBIOS Working Group [Page 37]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 405

RFC laJl

RFC 1001 March 1987

P-NODE REGISTRATION PROCESS
(server HAS a previous owner that is NOT active)

<------NON-SECURED STYLE-----> <----------SECURED STYLE-------->

REQ. NODE NBNS NODE
HOLDING

NAME

NBNS REQ.NODE

REGISTER REGISTER
-------------------> <-------------------

QUERY
END-NODE CHALLENGE <------------

<------------------- QUERY
<------------

NAME QUERY REQUEST POSITIVE RESPONSE
----------------------------> ------------------>

QUERY
---------------------------->

OVERWRITE
------------------->

POSITIVE RESPONSE
<------------------

Due to the potential time for the secured NBNS to make the
challenge(s), it is likely that a WACK will be sent by the NBNS to
the registrant.

A secured NBNS will immediately send a NEGATIVE NAME REGISTRATION
RESPONSE in answer to any NAME OVERWRITE REQUESTS it may receive.

15.2.3. NAME REGISTRATION BY M NODES

An M node begin a name claim operation as if the node were a B node:
it broadcasts a NAME REGISTRATION REQUEST and listens for NEGATIVE
NAME REGISTRATION RESPONSEs. Any NEGATIVE NAME REGISTRATION RESPONSE
prevents the M node from obtaining the name and terminates the claim
operation.

If, however, the M node does not receive any NEGATIVE NAME
REGISTRATION RESPONSE, the M node must continue the claim procedure
as if the M node were a P node.

Only if both name claims were successful does the M node acquire the
name.

The following diagram illustrates M node name registration:

NetBIOS Working Group [Page 38]

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 406

RFC laJl

RFC 1001 March 1987

M-NODE REGISTRATION PROCESS

<---NAME NOT IN BROADCAST AREA--> <--NAME IS IN BROADCAST AREA-->

REQ. NODE

(BROADCAST) REGISTER
------------------->

REGISTER
------------------->

REGISTER
------------------->

INITIATE
A P-NODE
REGISTRATION

v

15.3. NAME QUERY TRANSACTIONS

NODE
HOLDING

NAME

REQ.NODE

(BROADCAST) REGISTER
<-------------------

REGISTER
<-------------------

NEGATIVE RESPONSE
------------------------------->

(NODE DOES NOT HAVE THE NAME)

Name query transactions are initiated by end-nodes to obtain the IP
address(es) and other attributes associated with a NetBIOS name.

15.3.1. QUERY BY B NODES

The following diagram shows how B nodes go about discovering who owns
a name.

The left half of the diagram illustrates what happens if there are no
holders of the name. In that case no responses are received in
answer to the broadcast NAME QUERY REQUEST(s).

The right half shows a POSITIVE NAME QUERY RESPONSE unicast by a name
holder in answer to the broadcast request. A name holder will make
this response to every NAME QUERY REQUEST that it hears. And each
holder acts this way. Thus, the node sending the request may receive
many responses, some duplicates, and from many nodes.

NetBIOS Working Group [Page 39]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 407

RFC laJl

RFC 1001 March 1987

B-NODE DISCOVERY PROCESS

<------NAME NOT ON NETWORK------> <---NAME PRESENT ON NETWORK-->

REQ. NODE NODE
HOLDING

NAME

REQ.NODE

(BROADCAST) QUERY (BROADCAST) QUERY
----------------------> <---------------------

NAME QUERY REQUEST NAME QUERY REQUEST
----------------------> <---------------------

QUERY POSITIVE RESPONSE
----------------------> ------------------------------>

Name query is generally, but not necessarily, a prelude to NetBIOS
session establishment or NetBIOS datagram transmission. However,
name query may be used for other purposes.

A B node may elect to build a group membership list for subsequent
use (e.g. for session establishment) by collecting and saving the
responses.

15.3.2. QUERY BY P NODES

An NBNS answers queries from a P node with a list of IP address and
other information for each owner of the name. If there are multiple
owners (i.e. if the name is a group name), the NBNS loads as many
answers into the response as will fit into a UDP packet. A
truncation flag indicates whether any additional owner information
remains. All the information may be obtained by repeating the query
over a TCP connection.

The NBNS is not required to impose any order on its answer list.

The following diagram shows what happens if the NBNS has no
information about the name:

P-NODE DISCOVERY PROCESS
(server has no information about the name)

P-NODE NBNS
NAME QUERY REQUEST

--------------------------------->

NEGATIVE RESPONSE
<---------------------------------

NetBIOS Working Group

Protocols for X/ Open PC Interworking: SMB, Version 2

[Page 40]

Samsung - Exhibit 1014 - Page 408

RFC laJl

RFC 1001 March 1987

The next diagram illustrates interaction between the end-node and the
NBNS when the NBNS does have information about the name. This
diagram shows, in addition, the retransmission of the request by the
end-node in the absence of a timely response. Also shown are WACKs
(or temporary, intermediate responses) sent by the NBNS to the end
node:

P-NODE QUERY PROCESS
(server HAS information about the name)

P-NODE NBNS
NAME QUERY REQUEST

1-->

I
(OPTIONAL) WACK

<- - -

!timer
(optional timer restart)

v QUERY
--------------------------------------->

QUERY
1-->

I
(OPTIONAL) WACK

<- - -

!timer
(optional timer restart)

v QUERY
--------------------------------------->

POSITIVE RESPONSE
<---

The following diagram illustrates NBNS redirection. Upon receipt of
a NAME QUERY REQUEST, the NBNS redirects the client to another NBNS.
The client repeats the request to the new NBNS and obtains a
response. The diagram shows that response as a POSITIVE NAME QUERY
RESPONSE. However any legal NBNS response may occur in actual
operation.

NetBIOS Working Group [Page 41]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 409

RFC laJl

RFC 1001 March 1987

NBNS REDIRECTION

P-NODE NBNS
NAME QUERY REQUEST

--------------------------------->

REDIRECT NAME QUERY RESPONSE
<---------------------------------

(START FROM THE
VERY BEGINNING
USING THE ADDRESS
OF THE NEWLY
SUPPLIED NBNS.)

P-NODE
NAME QUERY REQUEST

NEW
NBNS

--------------------------------->

POSITIVE NAME QUERY RESPONSE
<---------------------------------

The next diagram shows how a P or M node tells the NBNS that the NBNS
has provided incorrect information. This procedure may begin after a
DATAGRAM ERROR packet has been received or a session set-up attempt
has discovered that the NetBIOS name does not exist at the
destination, the IP address of which was obtained from the NBNS
during a prior name query transaction. The NBNS, in this case a
secure NBNS, issues queries to verify whether the information is, in
fact, incorrect. The NBNS closes the transaction by sending either a
POSITIVE or NEGATIVE NAME RELEASE RESPONSE, depending on the results
of the verification.

CORRECTING NBNS INFORMATION BASE

P-NODE NBNS
NAME RELEASE REQUEST

--------------------------------->

QUERY
---------------->

QUERY
---------------->

(NAME TAKEN OFF THE DATABASE
IF NBNS FINDS IT TO BE
INCORRECT)

POSITIVE/NEGATIVE RESPONSE
<---------------------------------

NetBIOS Working Group [Page 42]

Protocols for X/ Open PC Interworking: SMB, Version 2 3:)1

Samsung - Exhibit 1014 - Page 410

RFC laJl

RFC 1001 March 1987

15.3.3. QUERY BY M NODES

M node name query follows the B node pattern. In the absence of
adequate results, the M node then continues by performing a P node
type query. This is shown in the following diagram:

M-NODE DISCOVERY PROCESS

<---NAME NOT ON BROADCAST AREA--> <--NAME IS ON BROADCAST AREA->

REQ. NODE

(BROADCAST) QUERY
--------------------->

NAME QUERY REQUEST
--------------------->

QUERY
--------------------->

INITIATE
A P-NODE
DISCOVERY
PROCESS

v

NODE
HOLDING

NAME

REQ.NODE

(BROADCAST) QUERY
<----------------------

NAME QUERY REQUEST
<----------------------

POSITIVE RESPONSE
------------------------------->

15.3.4. ACQUIRE GROUP MEMBERSHIP LIST

The entire membership of a group may be acquired by sending a NAME
QUERY REQUEST to the NBNS. The NBNS will respond with a POSITIVE
NAME QUERY RESPONSE or a NEGATIVE NAME QUERY RESPONSE. A negative
response completes the procedure and indicates that there are no
members in the group.

If the positive response has the truncation bit clear, then the
response contains the entire list of group members. If the
truncation bit is set, then this entire procedure must be repeated,
but using TCP as a foundation rather than UDP.

NetBIOS Working Group [Page 43]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 411

RFC laJl

RFC 1001

15.4. NAME RELEASE TRANSACTIONS

15.4.1. RELEASE BY B NODES

A NAME RELEASE DEMAND contains the following information:

NetBIOS name
The scope of the NetBIOS name
Name type: unique or group
IP address of the releasing node
Transaction ID

REQUESTING
B-NODE

NAME RELEASE DEMAND
---------------------------------->

15.4.2. RELEASE BY P NODES

OTHER
B-NODES

A NAME RELEASE REQUEST contains the following information:

NetBIOS name
The scope of the NetBIOS name
Name type: unique or group
IP address of the releasing node
Transaction ID

A NAME RELEASE RESPONSE contains the following information:

NetBIOS name
The scope of the NetBIOS name
Name type: unique or group
IP address of the releasing node
Transaction ID
Result:

Yes: name was released

March 1987

No: name was not released, a reason code is provided

REQUESTING
P-NODE

NAME RELEASE REQUEST
---------------------------------->

NAME RELEASE RESPONSE
<---------------------------------

15.4.3. RELEASE BY M NODES

NBNS

The name release procedure of the M node is a combination of the P
and B node name release procedures. The M node first performs the P

NetBIOS Working Group [Page 44]

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 412

RFC laJl

RFC 1001 March 1987

release procedure. If the P procedure fails then the release
procedure does not continue, it fails. If and only if the P
procedure succeeds then the M node broadcasts the NAME RELEASE DEMAND
to the broadcast area, the B procedure.

NOTE: An M node typically performs a B-style operation and then a
P-style operation. In this case, however, the P-style
operation comes first.

The following diagram illustrates the M node name release procedure:

<-----P procedure fails-------> <-------P procedure succeeds--->

REQUESTING
M-NODE

NAME RELEASE REQUEST

NBNS

-------------------------->

NEGATIVE RELEASE RESPONSE
<--------------------------

15.5. NAME MAINTENANCE TRANSACTIONS

15.5.1. NAME REFRESH

REQUESTING
M-NODE

NBNS

NAME RELEASE REQUEST
------------------------>

POSITIVE RELEASE RESPONSE
<-------------------------

OTHER
M-NODES

NAME RELEASE DEMAND
------------------------>

Name refresh transactions are used to handle the following
situations:

a) An NBNS node needs to detect if a P or M node has "silently"
gone down, so that names held by that node can be purged
from the data base.

b) If the NBNS goes down, it needs to be able to reconstruct
the data base when it comes back up.

c) If the network should be partitioned, the NBNS needs to be
able to able to update its data base when the network
reconnects.

Each P or M node is responsible for sending periodic NAME REFRESH
REQUESTs for each name that it has registered. Each refresh packet
contains a single name that has been successfully registered by that

NetBIOS Working Group [Page 45]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 413

RFC laJl

RFC 1001 March 1987

node. The interval between such packets is negotiated between the
end node and the NBNS server at the time that the name is initially
claimed. At name claim time, an end node will suggest a refresh
timeout value. The NBNS node can modify this value in the reply
packet. A NBNS node can also choose to tell the end node to not send
any refresh packet by using the "infinite" timeout value in the
response packet. The timeout value returned by the NBNS is the
actual refresh timeout that the end node must use.

When a node sends a NAME REFRESH REQUEST, it must be prepared to
receive a negative response. This would happen, for example, if the
the NBNS discovers that the the name had already been assigned to
some other node. If such a response is received, the end node should
mark the name as being in conflict. Such an entry should be treated
in the same way as if name conflict had been detected against the
name. The following diagram illustrates name refresh:

<-----Successful Refresh-----> <-----Unsuccessful Refresh---->

REFRESHING
NODE

NBNS REFRESHING
NODE

NBNS

NAME REFRESH REQUEST
------------------------>

POSITIVE RESPONSE
<------------------------

15.5.2. NAME CHALLENGE

NAME REFRESH REQUEST
----------------------->

NEGATIVE RESPONSE
<-----------------------

v
MARK NAME IN

CONFLICT

Name challenge is done by sending a NAME QUERY REQUEST to an end node
of any type. If a POSITIVE NAME QUERY RESPONSE is returned, then
that node still owns the name. If a NEGATIVE NAME QUERY RESPONSE is
received or if no response is received, it can be assumed that the
end node no longer owns the name.

Name challenge can be performed either by the NBNS node, or by an end
node. When an end-node sends a name claim packet, the NBNS node may
do the challenge operation. The NBNS node can choose, however, to
require the end node do the challenge. In that case, the NBNS will
send an END-NODE CHALLENGE RESPONSE packet to the end node, which
should then proceed to challenge the putative owner.

Note that the name challenge procedure sends a normal NAME QUERY
REQUEST packet to the end node. It does not require a special
packet. The only new packet introduced is the END-NODE CHALLENGE

NetBIOS Working Group [Page 46]

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 414

RFC laJl

RFC 1001 March 1987

RESPONSE which is sent by an NBNS node when the NBNS wants the end
node to perform the challenge operation.

15.5.3. CLEAR NAME CONFLICT

It is possible during a refresh request from a M or P node for a NBNS
to detects a name in conflict. The response to the NAME REFRESH
REQUEST must be a NEGATIVE NAME REGISTRATION RESPONSE. Optionally,
in addition, the NBNS may send a NAME CONFLICT DEMAND or a NAME
RELEASE REQUEST to the refreshing node. The NAME CONFLICT DEMAND
forces the node to place the name in the conflict state. The node
will eventually inform it's user of the conflict. The NAME RELEASE
REQUEST will force the node to flush the name from its local name
table completely. This forces the node to flush the name in
conflict.
this name.

This does not cause termination of existing sessions using

The following diagram shows an NBNS detecting and correcting a
conflict:

REFRESHING NODE NBNS

NAME REFRESH REQUEST
--->

NEGATIVE NAME REGISTRATION RESPONSE
<---

NAME CONFLICT DEMAND
<---

OR

NAME RELEASE REQUEST
<---

POSITIVE/NEGATIVE RELEASE REQUEST
--->

15.6. ADAPTER STATUS TRANSACTIONS

Adapter status is obtained from a node as follows:

1. Perform a name discovery operation to obtain the IP
addresses of a set of end-nodes.

2. Repeat until all end-nodes from the set have been used:

a. Select one end-node from the set.

b. Send a NODE STATUS REQUEST to that end-node using UDP.

NetBIOS Working Group [Page 47]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 415

RFC laJl

RFC 1001 March 1987

c. Await a NODE STATUS RESPONSE. (If a timely response is
not forthcoming, repeat step "b" UCAST_REQ_RETRY COUNT
times. After the last retry, go to step "a".)

d. If the truncation bit is not set in the response, the
response contains the entire node status. Return the
status to the user and terminate this procedure.

e. If the truncation bit is set in the response, then not
all status was returned because it would not fit into
the response packet. The responder will set the
truncation bit if the IP datagram length would exceed
MAX DATAGRAM LENGTH. Return the status to the user and
terminate this procedure.

3. Return error to user, no status obtained.

The repetition of step 2, above, through all nodes of the set, is
optional.

Following is an example transaction of a successful Adapter Status
operation:

REQUESTING NODE NAME OWNER

NAME QUERY REQUEST
--->

POSITIVE NAME QUERY RESPONSE
<---

NODE STATUS REQUEST
--->

NODE STATUS RESPONSE
<---

16. NetBIOS SESSION SERVICE

The NetBIOS session service begins after one or more IP addresses
have been found for the target name. These addresses may have been
acquired using the NetBIOS name query transactions or by other means,
such as a local name table or cache.

NetBIOS session service transactions, packets, and protocols are
identical for all end-node types. They involve only directed
(point-to-point) communications.

NetBIOS Working Group [Page 48]

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 416

RFC laJl

RFC 1001 March 1987

16.1. OVERVIEW OF NetBIOS SESSION SERVICE

Session service has three phases:

Session establishment - it is during this phase that the IP
address and TCP port of the called name is determined, and a
TCP connection is established with the remote party.

Steady state - it is during this phase that NetBIOS data
messages are exchanged over the session. Keep-alive packets
may also be exchanged if the participating nodes are so
configured.

Session close - a session is closed whenever either a party (in
the session) closes the session or it is determined that one
of the parties has gone down.

16.1.1. SESSION ESTABLISHMENT PHASE OVERVIEW

An end-node begins establishment of a session to another node by
somehow acquiring (perhaps using the name query transactions or a
local cache) the IP address of the node or nodes purported to own the
destination name.

Every end-node awaits incoming NetBIOS session requests by listening
for TCP calls to a well-known service port, SSN SRVC TCP PORT. Each
incoming TCP connection represents the start of a separate NetBIOS
session initiation attempt. The NetBIOS session server, not the
ultimate application, accepts the incoming TCP connection(s).

Once the TCP connection
service request packet.
information:

is open, the calling node sends session
This packet contains the following

Calling IP address (see note)
Calling NetBIOS name
Called IP address (see note)
Called NetBIOS name

NOTE: The IP addresses are obtained from the TCP service
interface.

When the session service request packet arrives at the NetBIOS
server, one of the the following situations will exist:

There exists a NetBIOS LISTEN compatible with the incoming
call and there are adequate resources to permit session
establishment to proceed.

There exists a NetBIOS LISTEN compatible with the incoming
call, but there are inadequate resources to permit

NetBIOS Working Group [Page 49]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 417

RFC laJl

RFC 1001 March 1987

establishment of a session.

The called name does, in fact, exist on the called node, but
there is no pending NetBIOS LISTEN compatible with the
incoming call .

The called name does not exist on the called node.

In all but the first case, a rejection response is sent back over the
TCP connection to the caller. The TCP connection is then closed and
the session phase terminates. Any retry is the responsibility of the
caller. For retries in the case of a group name, the caller may use
the next member of the group rather than immediately retrying the
instant address. In the case of a unique name, the caller may
attempt an immediate retry using the same target IP address unless
the called name did not exist on the called node. In that one case,
the NetBIOS name should be re-resolved.

If a compatible LISTEN
the session server may
NetBIOS data session.
redirect, or "retarget"
address).

exists, and there are adequate resources, then
transform the existing TCP connection into the
Alternatively, the session server may

the caller to another TCP port (and IP

If the caller is redirected, the caller begins the session
establishment anew, but using the new IP address and TCP port given
in the retarget response. Again a TCP connection is created, and
again the calling and called node exchange credentials. The called
party may accept the call, reject the call, or make a further
redirection.

This mechanism is based on the presumption that, on hosts where it is
not possible to transfer open TCP connections between processes, the
host will have a central session server. Applications willing to
receive NetBIOS calls will obtain an ephemeral TCP port number, post
a TCP unspecified passive open on that port, and then pass that port
number and NetBIOS name information to the NetBIOS session server
using a NetBIOS LISTEN operation. When the call is placed, the
session server will "retarget" the caller to the application's TCP
socket. The caller will then place a new call, directly to the
application. The application has the responsibility to mimic the
session server at least to the extent of receiving the calling
credentials and then accepting or rejecting the call.

16.1.1.1. RETRYING AFTER BEING RETARGETTED

A calling node may find that it can not establish a session with a
node to which it was directed by the retargetting procedure. Since
retargetting may be nested, there is an issue whether the caller
should begin a retry at the initial starting point or back-up to an
intermediate retargetting point. The caller may use any method. A

NetBIOS Working Group [Page 50]

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 418

RFC 1001

discussion of two such methods is in Appendix B, "Retarget
Algorithms".

16.1.1.2. SESSION ESTABLISHMENT TO A GROUP NAME

RFC laJl

March 1987

Session establishment with a group name requires special
consideration. When a NetBIOS CALL attempt is made to a group name,
name discovery will result in a list (possibly incomplete) of the
members of that group. The calling node selects one member from the
list and attempts to build a session. If that fails, the calling
node may select another member and make another attempt.

When the session service attempts to make a connection with one of
the members of the group, there is no guarantee that that member has
a LISTEN pending against that group name, that the called node even
owns, or even that the called node is operating.

16.1.2. STEADY STATE PHASE OVERVIEW

NetBIOS data messages are exchanged in the steady state. NetBIOS
messages are sent by prepending the user data with a message header
and sending the header and the user data over the TCP connection.
The receiver removes the header and passes the data to the NetBIOS
user.

In order to detect failure of one of the nodes or of the intervening
network, "session keep alive" packets may be periodically sent in the
steady state.

Any failure of the underlying TCP connection, whether a reset, a
timeout, or other failure, implies failure of the NetBIOS session.

16.1.3. SESSION TERMINATION PHASE OVERVIEW

A NetBIOS session is terminated normally when the user requests the
session to be closed or when the session service detects the remote
partner of the session has gracefully terminated the TCP connection.
A NetBIOS session is abnormally terminated when the session service
detects a loss of the connection. Connection loss can be detected
with the keep-alive function of the session service or TCP, or on the
failure of a SESSION MESSAGE send operation.

When a user requests to close a session, the service first attempts a
graceful in-band close of the TCP connection. If the connection does
not close within the SSN CLOSE TIMEOUT the TCP connection is aborted.
No matter how the TCP connection is terminated, the NetBIOS session
service always closes the NetBIOS session.

When the session service receives an indication from TCP that a
connection close request has been received, the TCP connection and
the NetBIOS session are immediately closed and the user is informed

NetBIOS Working Group [Page 51]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 419

RFC laJl

RFC 1001 March 1987

of the loss of the session. All data received up to the close
indication should be delivered, if possible, to the session's user.

16.2. SESSION ESTABLISHMENT PHASE

All the following diagrams assume a name query operation was
successfully completed by the caller node for the listener's name.

This first diagram shows the sequence of network events used to
successfully establish a session without retargetting by the
listener. The TCP connection is first established with the well
known NetBIOS session service TCP port, SSN SRVC TCP PORT. The
caller then sends a SESSION REQUEST packet over the TCP connection
requesting a session with the listener. The SESSION REQUEST contains
the caller's name and the listener's name. The listener responds
with a POSITIVE SESSION RESPONSE informing the caller this TCP
connection is accepted as the connection for the data transfer phase
of the session.

CALLER LISTENER

TCP CONNECT
====================================>

TCP ACCEPT
<===================================

SESSION REQUEST
------------------------------------>

POSITIVE RESPONSE
<-----------------------------------

The second diagram shows the sequence of network events used to
successfully establish a session when the listener does retargetting.
The session establishment procedure is the same as with the first
diagram up to the listener's response to the SESSION REQUEST. The
listener, divided into two sections, the listen processor and the
actual listener, sends a SESSION RETARGET RESPONSE to the caller.
This response states the call is acceptable, but the data transfer
TCP connection must be at the new IP address and TCP port. The
caller then re-iterates the session establishment process anew with
the new IP address and TCP port after the initial TCP connection is
closed. The new listener then accepts this connection for the data
transfer phase with a POSITIVE SESSION RESPONSE.

CALLER LISTEN PROCESSOR LISTENER

TCP CONNECT
=============================>

TCP ACCEPT
<=============================

SESSION REQUEST
----------------------------->

NetBIOS Working Group [Page 52]

Protocols for X/ Open PC Interworking: SMB, Version 2 L[)l

Samsung - Exhibit 1014 - Page 420

RFC laJl

RFC 1001 March 1987

SESSION RETARGET RESPONSE
<-----------------------------

TCP CLOSE
<=============================

TCP CLOSE
=============================>

TCP CONNECT
==>

TCP ACCEPT
<==

SESSION REQUEST
-->

POSITIVE RESPONSE
<--

The third diagram is the sequence of network events for a rejected
session request with the listener. This type of rejection could
occur with either a non-retargetting listener or a retargetting
listener. After the TCP connection is established at
SSN_SRVC_TCP_PORT, the caller sends the SESSION REQUEST over the TCP
connection. The listener does not have either a listen pending for
the listener's name or the pending NetBIOS listen is specific to
another caller's name. Consequently, the listener sends a NEGATIVE
SESSION RESPONSE and closes the TCP connection.

CALLER LISTENER

TCP CONNECT
====================================>

TCP ACCEPT
<===================================

SESSION REQUEST
------------------------------------>

NEGATIVE RESPONSE
<-----------------------------------

TCP CLOSE
<===================================

TCP CLOSE
====================================>

The fourth diagram is the sequence of network events when session
establishment fails with a retargetting listener. After being
redirected, and after the initial TCP connection is closed the caller
tries to establish a TCP connection with the new IP address and TCP
port. The connection fails because either the port is unavailable or
the target node is not active. The port unavailable race condition
occurs if another caller has already acquired the TCP connection with
the listener. For additional implementation suggestions, see
Appendix B, "Retarget Algorithms".

NetBIOS Working Group [Page 53]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 421

RFC laJl

RFC 1001 March 1987

CALLER LISTEN PROCESSOR LISTENER

TCP CONNECT
=============================>

TCP ACCEPT
<=============================

SESSION REQUEST
----------------------------->

REDIRECT RESPONSE
<-----------------------------

TCP CLOSE
<=============================

TCP CLOSE
=============================>

TCP CONNECT
==>

CONNECTION REFUSED OR TIMED OUT
<===

16.3. SESSION DATA TRANSFER PHASE

16.3.1. DATA ENCAPSULATION

NetBIOS messages are exchanged in the steady state. Messages are
sent by prepending user data with message header and sending the
header and the user data over the TCP connection. The receiver
removes the header and delivers the NetBIOS data to the user.

16.3.2. SESSION KEEP-ALIVES

In order to detect node failure or network partitioning,
keep alive" packets are periodically sent in the steady
session keep alive packet is discarded by a peer node.

11 Session
state. A

A session keep alive timer is maintained for each session. This
timer is reset whenever any data is sent to, or received from, the
session peer. When the timer expires, a NetBIOS session keep-alive
packet is sent on the TCP connection. Sending the keep-alive packet
forces data to flow on the TCP connection, thus indirectly causing
TCP to detect whether the connection is still active.

Since many TCP implementations provide a parallel TCP "keep- alive"
mechanism, the NetBIOS session keep-alive is made a configurable
option. It is recommended that the NetBIOS keep- alive mechanism be
used only in the absence of TCP keep-alive.

Note that unlike TCP keep alives, NetBIOS session keep alives do not
require a response from the NetBIOS peer -- the fact that it was

NetBIOS Working Group [Page 54]

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 422

RFC laJl

RFC 1001 March 1987

possible to send the NetBIOS session keep alive is sufficient
indication that the peer, and the connection to it, are still active.

The only requirement for interoperability is that when a session keep
alive packet is received, it should be discarded.

17. NETBIOS DATAGRAM SERVICE

17.1. OVERVIEW OF NetBIOS DATAGRAM SERVICE

Every NetBIOS datagram has a named destination and source. To
transmit a NetBIOS datagram, the datagram service must perform a name
query operation to learn the IP address and the attributes of the
destination NetBIOS name. (This information may be cached to avoid
the overhead of name query on subsequent NetBIOS datagrams.)

NetBIOS datagrams are carried within UDP packets. If a NetBIOS
datagram is larger than a single UDP packet, it may be fragmented
into several UDP packets.

End-nodes may receive NetBIOS datagrams addressed to names not held
by the receiving node. Such datagrams should be discarded. If the
name is unique then a DATAGRAM ERROR packet is sent to the source of
that NetBIOS datagram.

17.1.1. UNICAST, MULTICAST, AND BROADCAST

NetBIOS datagrams may be unicast, multicast, or broadcast. A NetBIOS
datagram addressed to a unique NetBIOS name is unicast. A NetBIOS
datatgram addressed to a group NetBIOS name, whether there are zero,
one, or more actual members, is multicast. A NetBIOS datagram sent
using the NetBIOS "Send Broadcast Datagram" primitive is broadcast.

17.1.2. FRAGMENTATION OF NetBIOS DATAGRAMS

When the header and data of a NetBIOS datagram exceeds the maximum
amount of data allowed in a UDP packet, the NetBIOS datagram must be
fragmented before transmission and reassembled upon receipt.

A NetBIOS Datagram is composed of the following protocol elements:

IP header of 20 bytes (minimum)
UDP header of 8 bytes
NetBIOS Datagram Header of 14 bytes
The NetBIOS Datagram data.

The NetBIOS Datagram data section is composed of 3 parts:

Source NetBIOS name (255 bytes maximum)
Destination NetBIOS name (255 bytes maximum)
The NetBIOS user's data (maximum of 512 bytes)

NetBIOS Working Group [Page 55]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 423

RFC laJl

RFC 1001 March 1987

The two name fields are in second level encoded format (see section
14.)

A maximum size NetBIOS datagram is 1064 bytes. The minimal maximum
IP datagram size is 576 bytes. Consequently, a NetBIOS Datagram may
not fit into a single IP datagram. This makes it necessary to permit
the fragmentation of NetBIOS Datagrams.

On networks meeting or exceeding the minimum IP datagram length
requirement of 576 octets, at most two NetBIOS datagram fragments
will be generated. The protocols and packet formats accommodate
fragmentation into three or more parts.

When a NetBIOS datagram is fragmented, the IP, UDP and NetBIOS
Datagram headers are present in each fragment. The NetBIOS Datagram
data section is split among resulting UDP datagrams. The data
sections of NetBIOS datagram fragments do not overlap. The only
fields of the NetBIOS Datagram header that would vary are the FLAGS
and OFFSET fields.

The FIRST bit in the FLAGS field indicate whether the fragment is the
first in a sequence of fragments. The MORE bit in the FLAGS field
indicates whether other fragments follow.

The OFFSET field is the byte offset from the beginning of the NetBIOS
datagram data section to the first byte of the data section in a
fragment. It is 0 for the first fragment. For each subsequent
fragment, OFFSET is the sum of the bytes in the NetBIOS data sections
of all preceding fragments.

If the NetBIOS datagram was not fragmented:

FIRST = TRUE
MORE = FALSE
OFFSET = 0

If the NetBIOS datagram was fragmented:

First fragment:
FIRST = TRUE
MORE = TRUE
OFFSET = 0

Intermediate fragments:
FIRST = FALSE
MORE = TRUE
OFFSET = sum(NetBIOS data in prior fragments)

Last fragment:
FIRST = FALSE
MORE = FALSE

NetBIOS Working Group

Protocols for X/ Open PC Interworking: SMB, Version 2

[Page 56]

Samsung - Exhibit 1014 - Page 424

RFC laJl

RFC 1001 March 1987

OFFSET = sum(NetBIOS data in prior fragments)

The relative position of intermediate fragments may be ascertained
from OFFSET.

An NBDD must remember the destination name of the first fragment in
order to relay the subsequent fragments of a single NetBIOS datagram.
The name information can be associated with the subsequent fragments
through the transaction ID, DGM_ID, and the SOURCE IP, fields of the
packet. This information can be purged by the NBDD after the last
fragment has been processed or FRAGMENT TO time has expired since the
first fragment was received.

17.2. NetBIOS DATAGRAMS BY B NODES

For NetBIOS datagrams with a named destination (i.e. non- broadcast),
a B node performs a name discovery for the destination name before
sending the datagram. (Name discovery may be bypassed if information
from a previous discovery is held in a cache.) If the name type
returned by name discovery is UNIQUE, the datagram is unicast to the
sole owner of the name. If the name type is GROUP, the datagram is
broadcast to the entire broadcast area using the destination IP
address BROADCAST ADDRESS.

A receiving node always filters datagrams based on the destination
name. If the destination name is not owned by the node or if no
RECEIVE DATAGRAM user operations are pending for the name, then the
datagram is discarded. For datagrams with a UNIQUE name destination,
if the name is not owned by the node then the receiving node sends a
DATAGRAM ERROR packet. The error packet originates from the
DGM SRVC UDP PORT and is addressed to the SOURCE IP and SOURCE PORT
from the bad datagram. The receiving node quietly discards datagrams
with a GROUP name destination if the name is not owned by the node.

Since broadcast NetBIOS datagrams do not have a named destination,
the B node sends the DATAGRAM SERVICE packet(s) to the entire
broadcast area using the destination IP address BROADCAST ADDRESS.
In order for the receiving nodes to distinguish this datagram as a
broadcast NetBIOS datagram, the NetBIOS name used as the destination
name is '*' (hexadecimal 2A) followed by 15 bytes of hexidecimal 00.
The NetBIOS scope identifier is appended to the name before it is
converted into second-level encoding. For example, if the scope
identifier is "NETBIOS.SCOPE" then the first-level encoded name would
be:

According to [2] , a user may not provide a NetBIOS name beginning
with 11 * 11

•

For each node in the broadcast area that receives the NetBIOS

NetBIOS Working Group [Page 57]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 425

RFC laJl

RFC 1001 March 1987

broadcast datagram, if any RECEIVE BROADCAST DATAGRAM user operations
are pending then the data from the NetBIOS datagram is replicated and
delivered to each. If no such operations are pending then the node
silently discards the datagram.

17.3. NetBIOS DATAGRAMS BY P AND M NODES

P and M nodes do not use IP broadcast to distribute NetBIOS
datagrams.

Like B nodes, P and M nodes must perform a name discovery or use
cached information to learn whether a destination name is a group or
a unique name.

Datagrams to unique names are unicast directly to the destination by
P and M nodes, exactly as they are by B nodes.

Datagrams to group names and NetBIOS broadcast datagrams are unicast
to the NBDD. The NBDD then relays the datagrams to each of the nodes
specified by the destination name.

An NBDD may not be capable of sending a NetBIOS datagram to a
particular NetBIOS name, including the broadcast NetBIOS name ("* ")
defined above. A query mechanism is available to the end- node to
determine if a NBDD will be able to relay a datagram to a given name.
Before a datagram, or its fragments, are sent to the NBDD the P or M
node may send a DATAGRAM QUERY REQUEST packet to the NBDD with the
DESTINATION NAME from the DATAGRAM SERVICE packet(s). The NBDD will
respond with a DATAGRAM POSITIVE QUERY RESPONSE if it will relay
datagrams to the specified destination name. After a positive
response the end-node unicasts the datagram to the NBDD. If the NBDD
will not be able to relay a datagram to the destination name
specified in the query, a DATAGRAM NEGATIVE QUERY RESPONSE packet is
returned. If the NBDD can not distribute a datagram, the end-node
then has the option of getting the name's owner list from the NBNS
and sending the datagram directly to each of the owners.

An NBDD must be able to respond to DATAGRAM QUERY REQUEST packets.
The response may always be positive. However, the usage or
implementation of the query mechanism by a P or M node is optional.
An implementation may always unicast the NetBIOS datagram to the NBDD
without asking if it will be relayed. Except for the datagram query
facility described above, an NBDD provides no feedback to indicate
whether it forwarded a datagram.

18. NODE CONFIGURATION PARAMETERS

B NODES:
Node's permanent unique name
Whether IGMP is in use
Broadcast IP address to use

NetBIOS Working Group

Protocols for X/ Open PC Interworking: SMB, Version 2

[Page 58]

Samsung - Exhibit 1014 - Page 426

RFC laJl

RFC 1001 March 1987

Whether NetBIOS session keep-alives are needed
Usable UDP data field length (to control fragmentation)

P NODES:
Node's permanent unique name
IP address of NBNS
IP address of NBDD
Whether NetBIOS session keep-alives are needed
Usable UDP data field length (to control fragmentation)

M NODES:
Node's permanent unique name
Whether IGMP is in use
Broadcast IP address to use
IP address of NBNS
IP address of NBDD
Whether NetBIOS session keep-alives are needed
Usable UDP data field length (to control fragmentation)

19. MINIMAL CONFORMANCE

To ensure multi-vendor interoperability, a minimally conforming
implementation based on this specification must observe the following
rules:

a) A node designed to work only in a broadcast area must
conform to the B node specification.

b) A node designed to work only in an internet must conform to
the P node specification.

NetBIOS Working Group [Page 59]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 427

RFC laJl

RFC 1001 March 1987

REFERENCES

[1] "Protocol Standard For a NetBIOS Service on a TCP/UDP
Transport: Detailed Specifications", RFC 1002, March 1987.

[2] IBM Corp., "IBM PC Network Technical Reference Manual", No.
6322916, First Edition, September 1984.

[3] J. Postel (Ed.) , "Transmission Control Protocol", RFC 793,

September 1981.

[4] MIL-STD-1778

[5] J. Postel, "User Datagram Protocol", RFC 768, 28 August
1980.

[6] J. Reynolds, J. Postel, "Assigned Numbers", RFC 990,
November 1986.

[7] J. Postel, "Internet Protocol", RFC 791, September 1981.

[8] J. Mogul, "Internet Subnets", RFC 950, October 1984

[9] J. Mogul, "Broadcasting Internet Datagrams in the Presence

of Subnets", RFC 922, October 1984.

[10] J. Mogul, "Broadcasting Internet Datagrams", RFC 919,
October 1984.

[11] P. Mockapetris, "Domain Names - Concepts and Facilities",

RFC 882, November 1983.

[12] P. Mockapetris, "Domain Names - Implementation and

Specification", RFC 883, November 1983.

[13] P. Mockapetris, "Domain System Changes and Observations",
RFC 973, January 1986.

[14] C. Partridge, "Mail Routing and the Domain System", RFC 974,
January 1986.

[15] S. Deering, D. Cheriton, "Host Groups: A Multicast Extension

to the Internet Protocol", RFC 966, December 1985.

[16] S. Deering, "Host Extensions for IP Multicasting", RFC 988,
July 1986.

NetBIOS Working Group [Page 60]

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 428

410

RFC laJl

RFC 1001 March 1987

APPENDIX A

This appendix contains supporting technical discussions.
an integral part of the NetBIOS-over-TCP specification.

INTEGRATION WITH INTERNET GROUP MULTICASTING

It is not

The Netbios-over-TCP system described in this RFC may be easily
integrated with the Internet Group Multicast system now being
developed for the internet.

In the main body of the RFC, the notion of a broadcast area was
considered to be a single MAC-bridged "B-LAN". However, the
protocols defined will operate over an extended broadcast area
resulting from the creation of a permanent Internet Multicast Group.

Each separate broadcast area would be based on a separate permanent
Internet Multicast Group. This multicast group address would be used
by B and M nodes as their BROADCAST ADDRESS.

In order to base the broadcast area on a multicast group certain
additional procedures are required and certain constraints must be
met.

A-1. ADDITIONAL PROTOCOL REQUIRED IN B AND M NODES

All B or M nodes operating on an IGMP based broadcast area must have
IGMP support in their IP layer software. These nodes must perform an
IGMP join operation to enter the IGMP group before engaging in
NetBIOS activity.

A-2. CONSTRAINTS

Broadcast Areas may overlap. For this reason, end-nodes must be
careful to examine the NetBIOS scope identifiers in all received
broadcast packets.

The NetBIOS broadcast protocols were designed for a network that
exhibits a low average transit time and low rate of packet loss. An
IGMP based broadcast area must exhibit these characteristics. In
practice this will tend to constrain IGMP broadcast areas to a campus
of networks interconnected by high-speed routers and inter-router
links. It is unlikely that transcontinental broadcast areas would
exhibit the required characteristics.

NetBIOS Working Group [Page 61]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 429

RFC laJl

RFC 1001 March 1987

APPENDIX B

This appendix contains supporting technical discussions.
an integral part of the NetBIOS-over-TCP specification.

It is not

IMPLEMENTATION CONSIDERATIONS

B-1. IMPLEMENTATION MODELS

On any participating system, there must be some sort of NetBIOS
Service to coordinate access by NetBIOS applications on that system.

To analyze the impact of the NetBIOS-over-TCP architecture, we use
the following three models of how a NetBIOS service might be
implemented:

1. Combined Service and Application Model

The NetBIOS service and application are both contained
within a single process. No interprocess communication is
assumed within the system; all communication is over the
network. If multiple applications require concurrent access
to the NetBIOS service, they must be folded into this
monolithic process.

2. Common Kernel Element Model

The NetBIOS Service is part of the operating system (perhaps
as a device driver or a front-end processor). The NetBIOS
applications are normal operating system application
processes. The common element NetBIOS service contains all
the information, such as the name and listen tables,
required to co-ordinate the activities of the applications.

3. Non-Kernel Common Element Model

The NetBIOS Service is implemented as an operating system
application process. The NetBIOS applications are other
operating system application processes. The service and the
applications exchange data via operating system interprocess
communication. In a multi-processor (e.g. network)
operating system, each module may reside on a different cpu.
The NetBIOS service process contains all the shared
information required to coordinate the activities of the
NetBIOS applications. The applications may still require a
subroutine library to facilitate access to the NetBIOS
service.

NetBIOS Working Group [Page 62]

Protocols for X/ Open PC Interworking: SMB, Version 2 411

Samsung - Exhibit 1014 - Page 430

412

RFC laJl

RFC 1001 March 1987

For any of the implementation models, the TCP/IP service can be
located in the operating system or split among the NetBIOS
applications and the NetBIOS service processes.

B-1.1 MODEL INDEPENDENT CONSIDERATIONS

The NetBIOS name service associates a NetBIOS name with a host. The
NetBIOS session service further binds the name to a specific TCP port
for the duration of the session.

The name service does not need to be informed of every Listen
initiation and completion. Since the names are not bound to any TCP
port in the name service, the session service may use a different tcp
port for each session established with the same local name.

The TCP port used for the data transfer phase of a NetBIOS session
can be globally well-known, locally well-known, or ephemeral. The
choice is a local implementation issue. The RETARGET mechanism
allows the binding of the NetBIOS session to a TCP connection to any
TCP port, even to another IP node.

An implementation may use the session service's globally well- known
TCP port for the data transfer phase of the session by not using the
RETARGET mechanism and, rather, accepting the session on the initial
TCP connection. This is permissible because the caller always uses
an ephemeral TCP port.

The complexity of the called end RETARGET mechanism is only required
if a particular implementation needs it. For many real system
environments, such as an in-kernel NetBIOS service implementation, it
will not be necessary to retarget incoming calls. Rather, all
NetBIOS sessions may be multiplexed through the single, well-known,
NetBIOS session service port. These implementations will not be
burdened by the complexity of the RETARGET mechanism, nor will their
callers be required to jump through the retargetting hoops.

Nevertheless, all callers must be ready to process all possible
SESSION RETARGET RESPONSEs.

B-1. 2 SERVICE OPERATION FOR EACH MODEL

It is possible to construct a NetBIOS service based on this
specification for each of the above defined implementation models.

For the common kernel element model, all the NetBIOS services, name,
datagram, and session, are simple. All the information is contained
within a single entity and can therefore be accessed or modified
easily. A single port or multiple ports for the NetBIOS sessions can
be used without adding any significant complexity to the session
establishment procedure. The only penalty is the amount of overhead
incurred to get the NetBIOS messages and operation requests/responses

NetBIOS Working Group [Page 63]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 431

RFC laJl

RFC 1001 March 1987

through the user and operating system boundary.

The combined service and application model is very similar to the
common kernel element model in terms of its requirements on the
NetBIOS service. The major difficulty is the internal coordination
of the multiple NetBIOS service and application processes existing in
a system of this type.

The NetBIOS name, datagram and session protocols assume that the
entities at the end-points have full control of the various well
known TCP and UDP ports. If an implementation has multiple NetBIOS
service entities, as would be the case with, for example, multiple
applications each linked into a NetBIOS library, then that
implementation must impose some internal coordination.
Alternatively, use of the NetBIOS ports could be periodically
assigned to one application or another.

For the typical non-kernel common element mode implementation, three
permanent system-wide NetBIOS service processes would exist:

The name server
the datagram server
and session server

Each server would listen for requests from the network on a UDP or
TCP well-known port. Each application would have a small piece of
the NetBIOS service built-in, possibly a library. Each application's
NetBIOS support library would need to send a message to the
particular server to request an operation, such as add name or send a
datagram or set-up a listen.

The non-kernel common element model does not require a TCP connection
be passed between the two processes, session server and application.
The RETARGET operation for an active NetBIOS Listen could be used by
the session server to redirect the session to another TCP connection
on a port allocated and owned by the application's NetBIOS support
library. The application with either a built-in or a kernel-based
TCP/IP service could then accept the RETARGETed connection request
and process it independently of the session server.

On Unix(tm) or POSIX(tm), the NetBIOS session server could create
sub-processes for incoming connections. The open sessions would be
passed through "fork" and "exec" to the child as an open file
descriptor. This approach is very limited, however. A pre- existing
process could not receive an incoming call. And all call-ed
processes would have to be sub-processes of the session server.

B-2. CASUAL AND RESTRICTED NetBIOS APPLICATIONS

Because NetBIOS was designed to operate in the open system
environment of the typical personal computer, it does not have the

NetBIOS Working Group [Page 64]

Protocols for X/ Open PC Interworking: SMB, Version 2 413

Samsung - Exhibit 1014 - Page 432

414

RFC laJl

RFC 1001 March 1987

concept of privileged or unprivileged applications. In many multi-
user or multi-tasking operating systems applications are assigned
privilege capabilities. These capabilities limit the applications
ability to acquire and use system resources. For these systems it is
important to allow casual applications, those with limited system
privileges, and privileged applications, those with 'super-user'
capabilities but access to them and their required resources is
restricted, to access NetBIOS services. It is also important to
allow a systems administrator to restrict certain NetBIOS resources
to a particular NetBIOS application. For example, a file server
based on the NetBIOS services should be able to have names and TCP
ports for sessions only it can use.

A NetBIOS application needs at least two local resources to
communicate with another NetBIOS application, a NetBIOS name for
itself and, typically, a session. A NetBIOS service cannot require
that NetBIOS applications directly use privileged system resources.
For example, many systems require privilege to use TCP and UDP ports
with numbers less than 1024. This RFC requires reserved ports for
the name and session servers of a NetBIOS service implementation. It
does not require the application to have direct access these reserved
ports.

For the name service, the manager of the local name table must have
access to the NetBIOS name service's reserved UDP port. It needs to
listen for name service UDP packets to defend and define its local
names to the network. However, this manager need not be a part of a
user application in a system environment which has privilege
restrictions on reserved ports.

The internal name server can require certain privileges to add,
delete, or use a certain name, if an implementer wants the
restriction. This restriction is independent of the operation of the
NetBIOS service protocols and would not necessarily prevent the
interoperation of that implementation with another implementation.

The session server is required to own a reserved TCP port for session
establishment. However, the ultimate TCP connection used to transmit
and receive data does not have to be through that reserved port. The
RETARGET procedure the NetBIOS session to be shifted to another TCP
connection, possibly through a different port at the called end.
This port can be an unprivileged resource, with a value greater than
1023. This facilitates casual applications.

Alternately, the RETARGET mechanism allows the TCP port used for data
transmission and reception to be a reserved port. Consequently, an
application wishing to have access to its ports maintained by the
system administrator can use these restricted TCP ports. This
facilitates privileged applications.

A particular implementation may wish to require further special

NetBIOS Working Group [Page 65]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 433

RFC laJl

RFC 1001 March 1987

privileges for session establishment, these could be associated with
internal information. It does not have to be based solely on TCP
port allocation. For example, a given NetBIOS name may only be used
for sessions by applications with a certain system privilege level.

The decision to use reserved or unreserved ports or add any
additional name registration and usage authorization is a purely
local implementation decision. It is not required by the NetBIOS
protocols specified in the RFC.

B-3. TCP VERSUS SESSION KEEP-ALIVES

The KEEP-ALIVE is a protocol element used to validate the existence
of a connection. A packet is sent to the remote connection partner
to solicit a response which shows the connection is still
functioning. TCP KEEP-ALIVES are used at the TCP level on TCP
connections while session KEEP-ALIVES are used on NetBIOS sessions.
These protocol operations are always transparent to the connection
user. The user will only find out about a KEEP-ALIVE operation if it
fails, therefore, if the connection is lost.

The NetBIOS specification[2] requires the NetBIOS service to inform
the session user if a session is lost when it is in a passive or
active state. Therefore,if the session user is only waiting for a
receive operation and the session is dropped the NetBIOS service must
inform the session user. It cannot wait for a session send operation
before it informs the user of the loss of the connection.

This requirement stems from the management of scarce or volatile
resources by a NetBIOS application. If a particular user terminates
a session with a server application by destroying the client
application or the NetBIOS service without a NetBIOS Hang Up, the
server application will want to clean-up or free allocated resources.
This server application if it only receives and then sends a response
requires the notification of the session abort in the passive state.

The standard definition of a TCP service cannot detect loss of a
connection when it is in a passive state, waiting for a packet to
arrive. Some TCP implementations have added a KEEP-ALIVE operation
which is interoperable with implementations without this feature.
These implementations send a packet with an invalid sequence number
to the connection partner. The partner, by specification, must
respond with a packet showing the correct sequence number of the
connection. If no response is received from the remote partner
within a certain time interval then the TCP service assumes the
connection is lost.

Since many TCP implementations do not have this KEEP-ALIVE function
an optional NetBIOS KEEP-ALIVE operation has been added to the
NetBIOS session protocols. The NetBIOS KEEP-ALIVE uses the
properties of TCP to solicit a response from the remote connection

NetBIOS Working Group [Page 66]

Protocols for X/ Open PC Interworking: SMB, Version 2 415

Samsung - Exhibit 1014 - Page 434

416

RFC laJl

RFC 1001 March 1987

partner. A NetBIOS session message called KEEP-ALIVE is sent to the
remote partner. Since this results in TCP sending an IP packet to
the remote partner, the TCP connection is active. TCP will discover
if the TCP connection is lost if the remote TCP partner does not
acknowledge the IP packet. Therefore, the NetBIOS session service
does not send a response to a session KEEP ALIVE message. It just
throws it away. The NetBIOS session service that transmits the KEEP
ALIVE is informed only of the failure of the TCP connection. It does
not wait for a specific response message.

A particular NetBIOS implementation should use KEEP-ALIVES if it is
concerned with maintaining compatibility with the NetBIOS interface
specification[2]. Compatibility is especially important if the
implementation wishes to support existing NetBIOS applications, which
typically require the session loss detection on their servers, or
future applications which were developed for implementations with
session loss detection.

B-4. RETARGET ALGORITHMS

This section contains 2 suggestions for RETARGET algorithms. They
are called the "straight" and "stack" methods. The algorithm in the
body of the RFC uses the straight method. Implementation of either
algorithm must take into account the Session establishment maximum
retry count. The retry count is the maximum number of TCP connect
operations allowed before a failure is reported.

The straight method forces the session establishment procedure to
begin a retry after a retargetting failure with the initial node
returned from the name discovery procedure. A retargetting failure
is when a TCP connection attempt fails because of a time- out or a
NEGATIVE SESSION RESPONSE is received with an error code specifying
NOT LISTENING ON CALLED NAME. If any other failure occurs the
session establishment procedure should retry from the call to the
name discovery procedure.

A minimum of 2 retries, either from a retargetting or a name
discovery failure. This will give the session service a chance to
re-establish a NetBIOS Listen or, more importantly, allow the NetBIOS
scope, local name service or the NBNS, to re-learn the correct IP
address of a NetBIOS name.

The stack method operates similarly to the straight method. However,
instead of retrying at the initial node returned by the name
discovery procedure, it restarts with the IP address of the last node
which sent a SESSION RETARGET RESPONSE prior to the retargetting
failure. To limit the stack method, any one host can only be tried a
maximum of 2 times.

NetBIOS Working Group [Page 67]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 435

RFC laJl

RFC 1001 March 1987

B-5. NBDD SERVICE

If the NBDD does not forward datagrams then don't provide Group and
Broadcast NetBIOS datagram services to the NetBIOS user. Therefore,
ignore the implementation of the query request and, when get a
negative response, acquiring the membership list of IP addresses and
sending the datagram as a unicast to each member.

B-6. APPLICATION CONSIDERATIONS

B-6.1 USE OF NetBIOS DATAGRAMS

Certain existing NetBIOS applications use NetBIOS datagrams as a
foundation for their own connection-oriented protocols. This can
cause excessive NetBIOS name query activity and place a substantial
burden on the network, server nodes, and other end- nodes. It is
recommended that this practice be avoided in new applications.

NetBIOS Working Group [Page 68]

Protocols for X/ Open PC Interworking: SMB, Version 2 417

Samsung - Exhibit 1014 - Page 436

RFC laJl

418 X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 437

Appendix G

This appendix reproduces, in full and unedited, RFC la:B Protocol Standard for a NetBIOS
Service on a TCP/UDPTransport: Detailed Spedfications.

Protocols for X/ Open PC Interworking: SMB, Version 2 419

Samsung - Exhibit 1014 - Page 438

RFC laJ2

Network Working Group
Request for Comments: 1002 March, 1987

PROTOCOL STANDARD FOR A NetBIOS SERVICE
ON A TCP/UDP TRANSPORT:
DETAILED SPECIFICATIONS

ABSTRACT

This RFC defines a proposed standard protocol to support NetBIOS
services in a TCP/IP environment. Both local network and internet
operation are supported. Various node types are defined to accommodate
local and internet topologies and to allow operation with or without the
use of IP broadcast.

This RFC gives the detailed specifications of the NetBIOS-over-TCP
packets, protocols, and defined constants and variables. A more general
overview is found in a companion RFC, "Protocol Standard For a NetBIOS
Service on a TCP/UDP Transport: Concepts and Methods".

NetBIOS Working Group [Page 1]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 439

RFC laJ2

RFC 1002

TABLE OF CONTENTS

1. STATUS OF THIS MEMO

2. ACKNOWLEDGEMENTS

3. INTRODUCTION

4. PACKET DESCRIPTIONS
4.1 NAME FORMAT
4.2 NAME SERVICE PACKETS

4.3

4.4

4.2.1 GENERAL FORMAT OF NAME SERVICE PACKETS
4.2.1.1 HEADER
4.2.1.2 QUESTION SECTION
4.2.1.3 RESOURCE RECORD

4.2.2 NAME REGISTRATION REQUEST
4.2.3 NAME OVERWRITE REQUEST & DEMAND
4.2.4 NAME REFRESH REQUEST
4.2.5 POSITIVE NAME REGISTRATION RESPONSE
4.2.6 NEGATIVE NAME REGISTRATION RESPONSE
4.2.7 END-NODE CHALLENGE REGISTRATION RESPONSE
4.2.8 NAME CONFLICT DEMAND
4.2.9 NAME RELEASE REQUEST & DEMAND
4.2.10 POSITIVE NAME RELEASE RESPONSE
4.2.11 NEGATIVE NAME RELEASE RESPONSE
4.2.12 NAME QUERY REQUEST
4.2.13 POSITIVE NAME QUERY RESPONSE
4.2.14 NEGATIVE NAME QUERY RESPONSE
4.2.15 REDIRECT NAME QUERY RESPONSE
4.2.16 WAIT FOR ACKNOWLEDGEMENT (WACK) RESPONSE
4.2.17 NODE STATUS REQUEST
4.2.18 NODE STATUS RESPONSE

SESSION SERVICE PACKETS
4.3.1 GENERAL FORMAT OF SESSION PACKETS
4.3.2 SESSION REQUEST PACKET
4.3.3 POSITIVE SESSION RESPONSE PACKET
4.3.4 NEGATIVE SESSION RESPONSE PACKET
4.3.5 SESSION RETARGET RESPONSE PACKET
4.3.6 SESSION MESSAGE PACKET
4.3.7 SESSION KEEP ALIVE PACKET

DATAGRAM SERVICE PACKETS
4.4.1 NetBIOS DATAGRAM HEADER
4.4.2 DIRECT_UNIQUE, DIRECT_GROUP, & BROADCAST DATAGRAM
4.4.3 DATAGRAM ERROR PACKET
4.4.4 DATAGRAM QUERY REQUEST
4.4.5 DATAGRAM POSITIVE AND NEGATIVE QUERY RESPONSE

5. PROTOCOL DESCRIPTIONS
5.1 NAME SERVICE PROTOCOLS

5.1.1 B-NODE ACTIVITY

NetBIOS Working Group

Protocols for X/ Open PC Interworking: SMB, Version 2

March 1987

4

4

5

5

5

7

7

8

10
11
13
14
15
16
16
17
18
19
20
20
21
22
23
24
25
26
27
29
29
30
31
31
31
32
32
32
32
33
34
34
34

35
35
35

[Page 2]

421

Samsung - Exhibit 1014 - Page 440

422

RFC 1002

5.1.1.1 B-NODE ADD NAME
5.1.1.2 B-NODE ADD GROUP NAME
5.1.1.3 B-NODE FIND NAME
5.1.1.4 B NODE NAME RELEASE
5.1.1.5 B-NODE INCOMING PACKET PROCESSING

5.1.2 P-NODE ACTIVITY
5.1.2.1 P-NODE ADD NAME
5.1.2.2 P-NODE ADD GROUP NAME
5.1.2.3 P-NODE FIND NAME
5.1.2.4 P-NODE DELETE NAME
5.1.2.5 P-NODE INCOMING PACKET PROCESSING
5.1.2.6 P-NODE TIMER INITIATED PROCESSING

5.1.3 M-NODE ACTIVITY
5.1.3.1 M-NODE ADD NAME
5.1.3.2 M-NODE ADD GROUP NAME
5.1.3.3 M-NODE FIND NAME
5.1.3.4 M-NODE DELETE NAME
5.1.3.5 M-NODE INCOMING PACKET PROCESSING
5.1.3.6 M-NODE TIMER INITIATED PROCESSING

5.1.4 NBNS ACTIVITY
5.1.4.1 NBNS INCOMING PACKET PROCESSING
5.1.4.2 NBNS TIMER INITIATED PROCESSING

5.2 SESSION SERVICE PROTOCOLS
5.2.1 SESSION ESTABLISHMENT PROTOCOLS

5.2.1.1 USER REQUEST PROCESSING
5.2.1.2 RECEIVED PACKET PROCESSING

5.2.2 SESSION DATA TRANSFER PROTOCOLS
5.2.2.1 USER REQUEST PROCESSING
5.2.2.2 RECEIVED PACKET PROCESSING
5.2.2.3 PROCESSING INITIATED BY TIMER

5.2.3 SESSION TERMINATION PROTOCOLS
5.2.3.1 USER REQUEST PROCESSING
5.2.3.2 RECEPTION INDICATION PROCESSING

5.3 NetBIOS DATAGRAM SERVICE PROTOCOLS
5.3.1 B NODE TRANSMISSION OF NetBIOS DATAGRAMS
5.3.2 P AND M NODE TRANSMISSION OF NetBIOS DATAGRAMS
5.3.3 RECEPTION OF NetBIOS DATAGRAMS BY ALL NODES
5.3.4 PROTOCOLS FOR THE NBDD

6. DEFINED CONSTANTS AND VARIABLES

REFERENCES

NetBIOS Working Group

RFC laJ2

March 1987

35
37
37
38
39
42
42
45
45
46
47
49
50
50
54
55
56
58
60
60
61
66
67
67
67
71
72
72
72
73
73
73
73
74
74
76
78
80

83

85

[Page 3]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 441

RFC laJ2

RFC 1002 March 1987

PROTOCOL STANDARD FOR A NetBIOS SERVICE
ON A TCP/UDP TRANSPORT:
DETAILED SPECIFICATIONS

1. STATUS OF THIS MEMO

This RFC specifies a proposed standard for the DARPA Internet
community. Since this topic is new to the Internet community,
discussions and suggestions are specifically requested.

Please send written comments to:

Karl Auerbach
Epilogue Technology Corporation
P.O. Box 5432
Redwood City, CA 94063

Please send online comments to:

Avnish Aggarwal
Internet: mtxinu!excelan!avnish@ucbvax.berkeley.edu
Usenet: ucbvax!mtxinu!excelan!avnish

Distribution of this memorandum is unlimited.

2. ACKNOWLEDGEMENTS

This RFC has been developed under the auspices of the Internet
Activities Board.

The following individuals have contributed to the development of
this RFC:

Avni sh Aggarwal
Geoffrey Arnold
Keith Ball
Richard Cherry
Greg Ennis
David Kaufman
Dan Lynch
Steve Thomas

Arvind Agrawal
Karl Auerbach
Amatzia Ben-Artzi
David Crocker
Steve Holmgren
Lee LaBarre
Gaylord Miyata
Ishan Wu

Lorenzo Aguilar
K. Ramesh Babu
Vint Cerf
Steve Deering
Jay Israel
James Lau
David Stevens

The system proposed by this RFC does not reflect any existing
Netbios-over-TCP implementation. However, the design
incorporates considerable knowledge obtained from prior
implementations. Special thanks goes to the following
organizations which have provided this invaluable information:

CMC/Syros Excel an Sytek Ungermann-Bass

NetBIOS Working Group

Protocols for X/ Open PC Interworking: SMB, Version 2

[Page 4]

423

Samsung - Exhibit 1014 - Page 442

424

RFC laJ2

RFC 1002 March 1987

3. INTRODUCTION

This RFC contains the detailed packet formats and protocol
specifications for NetBIOS-over-TCP. This RFC is a companion to
RFC 1001, "Protocol Standard For a NetBIOS Service on a TCP/UDP
Transport: Concepts and Methods" [1].

4. PACKET DESCRIPTIONS

Bit and byte ordering are defined by the most recent version of
"Assigned Numbers" [2].

4 .1. NAME FORMAT

The NetBIOS name representation in all NetBIOS packets (for NAME,
SESSION, and DATAGRAM services) is defined in the Domain Name
Service RFC 883[3] as "compressed" name messages. This format is
called "second-level encoding" in the section entitled
"Representation of NetBIOS Names" in the Concepts and Methods
document.

For ease of description, the first two paragraphs from page 31,
the section titled "Domain name representation and compression",
of RFC 883 are replicated here:

Domain names messages are expressed in terms of a sequence
of labels. Each label is represented as a one octet length
field followed by that number of octets. Since every domain
name ends with the null label of the root, a compressed
domain name is terminated by a length byte of zero. The
high order two bits of the length field must be zero, and
the remaining six bits of the length field limit the label
to 63 octets or less.

To simplify implementations, the total length of label
octets and label length octets that make up a domain name is
restricted to 255 octets or less.

The following is the uncompressed representation of the NetBIOS name
"FRED ", which is the 4 ASCII characters, F, R, E, D, followed by 12
space characters (Ox20) . This name has the SCOPE ID: "NETBIOS. COM"

EGFCEFEECACACACACACACACACACACACA.NETBIOS.COM

This uncompressed representation of names is called "first-level
encoding" in the section entitled "Representation of NetBIOS Names"
in the Concepts and Methods document.

The following is a pictographic representation of the compressed
representation of the previous uncompressed Domain Name
representation.

NetBIOS Working Group [Page 5]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 443

RFC laJ2

RFC 1002 March 1987

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

Ox20 E (Ox45) G (Ox47) F (Ox46)
+-+

C (Ox43) E (Ox45) F (Ox46) E (Ox45)
+-+

E (Ox45) C (Ox43) A (Ox41) C (Ox43)
+-+

A (Ox41) C (Ox43) A (Ox41) C (Ox43)
+-+

A (Ox41) C (Ox43) A (Ox41) C (Ox43)
+-+

A (Ox41) C (Ox43) A (Ox41) C (Ox43)
+-+

A (Ox41) C (Ox43) A (Ox41) C (Ox43)
+-+

A (Ox41) C (Ox43) A (Ox41) C (Ox43)
+-+

A (OX41) Ox07 N (Ox4E) E (Ox45)
+-+

T (Ox54) B (Ox42) I (Ox49) 0 (Ox4F)
+-+

S (Ox53) Ox03 C (Ox43) 0 (Ox4F)
+-+

M (Ox4D) OxOO
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Each section of a domain name is called a label [7 (page 31)]. A
label can be a maximum of 63 bytes. The first byte of a label in
compressed representation is the number of bytes in the label. For
the above example, the first Ox20 is the number of bytes in the
left-most label, EGFCEFEECACACACACACACACACACACACA, of the domain
name. The bytes following the label length count are the characters
of the label. The following labels are in sequence after the first
label, which is the encoded NetBIOS name, until a zero (OxOO) length
count. The zero length count represents the root label, which is
always null.

A label length count is actually a 6-bit field in the label length
field. The most significant 2 bits of the field, bits 7 and 6, are
flags allowing an escape from the above compressed representation.
If bits 7 and 6 are both set (11), the following 14 bits are an
offset pointer into the full message to the actual label string from
another domain name that belongs in this name. This label pointer
allows for a further compression of a domain name in a packet.

NetBIOS implementations can only use label string pointers in Name
Service packets. They cannot be used in Session or Datagram Service
packets.

NetBIOS Working Group [Page 6]

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 444

RFC laJ2

RFC 1002 March 1987

The other two possible values for bits 7 and 6 (01 and 10) of a label
length field are reserved for future use by RFC 883[2 (page 32)].

Note that the first octet of
the following bit patterns.
be either 0 or 1.):

a compressed name must contain one of
(An "x" indicates a bit whose value may

00100000 - Netbios name, length must be 32 (decimal)
11xxxxxx - Label string pointer
10xxxxxx - Reserved
01xxxxxx - Reserved

4.2. NAME SERVICE PACKETS

4.2.1. GENERAL FORMAT OF NAME SERVICE PACKETS

The NetBIOS Name Service packets follow the packet structure defined
in the Domain Name Service (DNS) RFC 883 [7 (pg 26-31)]. The
structures are compatible with the existing DNS packet formats,
however, additional types and codes have been added to work with
NetBIOS.

If Name Service packets are sent over a TCP connection they are
preceded by a 16 bit unsigned integer representing the length of the
Name Service packet.

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

+ ------- +

HEADER
+ ------- +

+-+

I
I
I

QUESTION ENTRIES

+-+

I
I
I

ANSWER RESOURCE RECORDS

+-+

I
I
I

AUTHORITY RESOURCE RECORDS

+-+

I
I
I

ADDITIONAL RESOURCE RECORDS

+-+

I
I
I

I
I
I

I
I
I

I
I
I

NetBIOS Working Group [Page 7]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 445

RFC laJ2

RFC 1002 March 1987

4.2.1.1. HEADER

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

NAME TRN ID I OPCODE NM FLAGS RCODE
+-+

QDCOUNT AN COUNT
+-+

NSCOUNT ARCOUNT
+-+

Field Description

NAME TRN ID

OPCODE

NM FLAGS

RCODE

QDCOUNT

AN COUNT

NSCOUNT

ARCOUNT

Transaction ID for Name Service Transaction.
Requestor places a unique value for each active
transaction. Responder puts NAME TRN_ID value
from request packet in response packet.

Packet type code, see table below.

Flags for operation, see table below.

Result codes of request. Table of RCODE values
for each response packet below.

Unsigned 16 bit integer specifying the number of
entries in the question section of a Name

Service packet. Always zero (0) for responses.
Must be non-zero for all NetBIOS Name requests.

Unsigned 16 bit integer specifying the number of
resource records in the answer section of a Name
Service packet.

Unsigned 16 bit integer specifying the number of
resource records in the authority section of a
Name Service packet.

Unsigned 16 bit integer specifying the number of
resource records in the additional records
section of a Name Service packet.

The OPCODE field is defined as:

0 1 2 3 4

+---+---+---+---+---+

R I OPCODE
+---+---+---+---+---+

NetBIOS Working Group [Page 8]

Protocols for X/ Open PC Interworking: SMB, Version 2 427

Samsung - Exhibit 1014 - Page 446

RFC laJ2

RFC 1002 March 1987

Symbol Bit(s)

OPCODE 1-4

R 0

Description

Operation specifier:
0 query
5 registration
6 release
7 WACK
8 refresh

RESPONSE flag:
if bit 0 then request packet
if bit == 1 then response packet.

The NM FLAGS field is defined as:

0 1 2 3 4 5 6

+---+---+---+---+---+---+---+

IAA lTC IRD IRA I 0 I 0 I B I
+---+---+---+---+---+---+---+

Symbol Bit(s)

B 6

RA 3

RD 2

TC 1

NetBIOS Working Group

Description

Broadcast Flag.
1: packet was broadcast or multicast

= 0: unicast

Recursion Available Flag.

Only valid in responses from a NetBIOS Name
Server -- must be zero in all other
responses.

If one (1) then the NBNS supports recursive
query, registration, and release.

If zero (0) then the end-node must iterate
for query and challenge for registration.

Recursion Desired Flag.

May only be set on a request to a NetBIOS
Name Server.

The NBNS will copy its state into the
response packet.

If one (1) the NBNS will iterate on the
query, registration, or release.

Truncation Flag.

[Page 9]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 447

RFC laJ2

RFC 1002 March 1987

Set if this message was truncated because the
datagram carrying it would be greater than
576 bytes in length. Use TCP to get the
information from the NetBIOS Name Server.

AA 0 Authoritative Answer flag.

Must be zero (0) if R flag of OPCODE is zero
(0).

If R flag is one (1) then if AA is one (1)
then the node responding is an authority for
the domain name.

End nodes responding to queries always set
this bit in responses.

4.2.1.2. QUESTION SECTION

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

I
I
I
I

QUESTION_NAME

+-+

QUESTION_TYPE QUESTION_CLASS
+-+

Field

QUESTION_NAME

QUESTION_TYPE

QUESTION_CLASS

Description

The compressed name representation of the
NetBIOS name for the request.

The type of request. The values for this field
are specified for each request.

The class of the request. The values for this
field are specified for each request.

QUESTION_TYPE is defined as:

Symbol Value Description:

I
I
I
I

NB
NBS TAT

Ox0020

Ox0021

NetBIOS general Name Service Resource Record
NetBIOS NODE STATUS Resource Record (See NODE
STATUS REQUEST)

QUESTION_CLASS is defined as:

NetBIOS Working Group [Page 10]

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 448

RFC laJ2

RFC 1002 March 1987

Symbol Value Description:

IN Ox0001 Internet class

4.2.1.3. RESOURCE RECORD

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

I
I
I
I

RR NAME

+-+

RR TYPE RR CLASS
+-+

TTL
+-+

RDLENGTH
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

I
I
I

RDATA

+-+

Field

RR NAME

RR TYPE

RR CLASS

TTL

RDLENGTH

RDATA

Description

The compressed name representation of the
NetBIOS name corresponding to this resource
record.

Resource record type code

Resource record class code

The Time To Live of a the resource record's
name.

Unsigned 16 bit integer that specifies the
number of bytes in the RDATA field.

RR CLASS and RR TYPE dependent field. Contains
the resource information for the NetBIOS name.

RESOURCE RECORD RR TYPE field definitions:

Symbol Value Description:

I
I
I
I

I
I
I
I
I

A Ox0001 IP address Resource Record (See REDIRECT NAME
QUERY RESPONSE)

NS Ox0002 Name Server Resource Record (See REDIRECT

NetBIOS Working Group [Page 11]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 449

RFC laJ2

RFC 1002 March 1987

NULL OxOOOA

NB Ox0020

NBS TAT Ox0021

NAME QUERY RESPONSE)
NULL Resource Record (See WAIT FOR
ACKNOWLEDGEMENT RESPONSE)
NetBIOS general Name Service Resource Record
(See NB FLAGS and NB_ADDRESS, below)

NetBIOS NODE STATUS Resource Record (See NODE
STATUS RESPONSE)

RESOURCE RECORD RR CLASS field definitions:

Symbol Value Description:

IN Ox0001 Internet class

NB FLAGS field of the RESOURCE RECORD RDATA field for RR TYPE of
nNBn:

0 1 2 3 4 5 6 7 8 9

1

0

1

1

1

2

1

3

1

4

1

5

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

I G I ONT RESERVED
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Symbol Bit(s) Description:

RESERVED
ONT

3-15
1,2

Reserved for future use.
Owner Node Type:

Must be zero (0).

G 0

00 B node
01 P node
10 M node
11 Reserved for future use

For registration requests this is the
claimant's type.
For responses this is the actual owner's
type.

Group Name Flag.
If one (1) then the RR NAME is a GROUP
NetBIOS name.
If zero (0) then the RR NAME is a UNIQUE
NetBIOS name.

The NB ADDRESS field of the RESOURCE RECORD RDATA field for
RR TYPE of "NB" is the IP address of the name's owner.

NetBIOS Working Group

Protocols for X/ Open PC Interworking: SMB, Version 2

[Page 12]

431

Samsung - Exhibit 1014 - Page 450

RFC laJ2

RFC 1002 March 1987

4.2.2. NAME REGISTRATION REQUEST

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

NAME TRN ID Ox5 OxO
+-+

Ox0001 OxOOOO
+-+

OxOOOO Ox0001
+-+

I
I
I
I

QUESTION_NAME

+-+

NB (Ox0020) IN (Ox0001)
+-+

I
I
I
I

RR NAME

+-+

NB (Ox0020) IN (Ox0001)
+-+

TTL
+-+

Ox0006 NB FLAGS
+-+

NB ADDRESS
+-+

I
I
I
I

I
I
I
I

Since the RR_NAME is the same name as the QUESTION_NAME, the
RR_NAME representation must use pointers to the QUESTION_NAME
name's labels to guarantee the length of the datagram is less
than the maximum 576 bytes. See section above on name formats
and also page 31 and 32 of RFC 883, Domain Names - Implementation
and Specification, for a complete description of compressed name
label pointers.

NetBIOS Working Group [Page 13]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 451

RFC laJ2

RFC 1002 March 1987

4.2.3. NAME OVERWRITE REQUEST & DEMAND

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

NAME TRN ID Ox5 lololololo oiBI OxO
+-+

Ox0001 OxOOOO
+-+

OxOOOO Ox0001
+-+

I
I
I
I

QUESTION_NAME

+-+

NB (Ox0020) IN (Ox0001)
+-+

I
I
I
I

RR NAME

+-+

NB (Ox0020) IN (Ox0001)
+-+

TTL
+-+

Ox0006 NB FLAGS
+-+

NB ADDRESS
+-+

I
I
I
I

I
I
I
I

NetBIOS Working Group [Page 14]

Protocols for X/ Open PC Interworking: SMB, Version 2 433

Samsung - Exhibit 1014 - Page 452

RFC laJ2

RFC 1002 March 1987

4.2.4. NAME REFRESH REQUEST

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

NAME TRN ID Ox9 lololololo oiBI OxO
+-+

Ox0001 OxOOOO
+-+

OxOOOO Ox0001
+-+

I
I
I
I

QUESTION_NAME

+-+

NB (Ox0020) IN (Ox0001)
+-+

I
I
I
I

RR NAME

+-+

NB (Ox0020) IN (Ox0001)
+-+

TTL
+-+

Ox0006 NB FLAGS
+-+

NB ADDRESS
+-+

I
I
I
I

I
I
I
I

NetBIOS Working Group [Page 15]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 453

RFC laJ2

RFC 1002 March 1987

4.2.5. POSITIVE NAME REGISTRATION RESPONSE

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

NAME TRN ID Ox5 OxO
+-+

OxOOOO Ox0001
+-+

OxOOOO OxOOOO
+-+

I
I
I
I

RR NAME

+-+

NB (Ox0020) IN (Ox0001)
+-+

TTL
+-+

Ox0006 NB FLAGS
+-+

NB ADDRESS
+-+

4.2.6. NEGATIVE NAME REGISTRATION RESPONSE

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+

NAME TRN ID Ox5 I1IOI111IO 0101 RCODE
+-+

OxOOOO Ox0001
+-+

OxOOOO OxOOOO
+-+

I
I
I
I

RR NAME

+-+

NB (Ox0020) IN (Ox0001)
+-+

TTL
+-+

Ox0006 NB FLAGS
+-+

NB ADDRESS
+-+

I
I
I
I

I
I
I
I

NetBIOS Working Group [Page 16]

Protocols for X/ Open PC Interworking: SMB, Version 2 435

Samsung - Exhibit 1014 - Page 454

RFC 1002

RCODE field values:

Symbol Value

FMT ERR Ox1

SRV ERR Ox2

IMP ERR Ox4

RFS ERR Ox5

ACT ERR Ox6
CFT ERR Ox7

RFC laJ2

March 1987

Description:

Format Error.
formatted.
Server failure.
process name.

Request was invalidly

Problem with NBNS, cannot

Unsupported request error. Allowable only
for challenging NBNS when gets an Update type
registration request.
Refused error. For policy reasons server
will not register this name from this host.
Active error. Name is owned by another node.
Name in conflict error. A UNIQUE name is
owned by more than one node.

4.2.7. END-NODE CHALLENGE REGISTRATION RESPONSE

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

NAME TRN ID Ox5 OxO
+-+

OxOOOO Ox0001
+-+

OxOOOO OxOOOO
+-+

I
I
I
I

RR NAME

+-+

NB (Ox0020) IN (Ox0001)
+-+

TTL
+-+

Ox0006 NB FLAGS
+-+

NB ADDRESS
+-+

I
I
I
I

NetBIOS Working Group [Page 1 7]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 455

RFC laJ2

RFC 1002 March 1987

4.2.8. NAME CONFLICT DEMAND

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

NAME TRN ID Ox5 Ox7
+-+

OxOOOO Ox0001
+-+

OxOOOO OxOOOO
+-+

I
I
I
I

RR NAME

+-+

NB (Ox0020) IN (Ox0001)
+-+

OxOOOOOOOO
+-+

Ox0006 loloNTiol OxOOO
+-+

OxOOOOOOOO
+-+

I
I
I
I

This packet is identical to a NEGATIVE NAME REGISTRATION RESPONSE
with RCODE = CFT ERR.

NetBIOS Working Group [Page 18]

Protocols for X/ Open PC Interworking: SMB, Version 2 437

Samsung - Exhibit 1014 - Page 456

RFC laJ2

RFC 1002 March 1987

4.2.9. NAME RELEASE REQUEST & DEMAND

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

NAME TRN ID Ox6 lololololo oiBI OxO
+-+

Ox0001 OxOOOO
+-+

OxOOOO Ox0001
+-+

I
I
I
I

QUESTION_NAME

+-+

NB (Ox0020) IN (Ox0001)
+-+

I
I
I
I

RR NAME

+-+

NB (Ox0020) IN (Ox0001)
+-+

OxOOOOOOOO
+-+

Ox0006 NB FLAGS
+-+

NB ADDRESS
+-+

Since the RR NAME is the same name as the QUESTION_NAME, the
RR_NAME representation must use label string pointers to the
QUESTION_NAME labels to guarantee the length of the datagram is
less than the maximum 576 bytes. This is the same condition as
with the NAME REGISTRATION REQUEST.

I
I
I
I

I
I
I
I

NetBIOS Working Group [Page 19]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 457

RFC laJ2

RFC 1002 March 1987

4.2.10. POSITIVE NAME RELEASE RESPONSE

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

NAME TRN ID Ox6 OxO
+-+

OxOOOO Ox0001
+-+

OxOOOO OxOOOO
+-+

I
I
I
I

RR NAME

+-+

NB (Ox0020) IN (Ox0001)
+-+

TTL
+-+

Ox0006 NB FLAGS
+-+

NB ADDRESS
+-+

4.2.11. NEGATIVE NAME RELEASE RESPONSE

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+

NAME TRN ID Ox6 111o1o1o1o olol RCODE
+-+

OxOOOO Ox0001
+-+

OxOOOO OxOOOO
+-+

I
I
I
I

RR NAME

+-+

NB (Ox0020) IN (Ox0001)
+-+

TTL
+-+

Ox0006 NB FLAGS
+-+

NB ADDRESS
+-+

I
I
I
I

I
I
I
I

NetBIOS Working Group [Page 20]

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 458

RFC laJ2

RFC 1002 March 1987

RCODE field values:

Symbol Value

FMT ERR Ox1

SRV ERR Ox2

RFS ERR Ox5

Description:

Format Error.
formatted.

Server failure.
process name.

Request was invalidly

Problem with NBNS, cannot

Refused error. For policy reasons server
will not release this name from this host.

ACT ERR Ox6 Active error. Name is owned by another node.
Only that node may release it. A NetBIOS
Name Server can optionally allow a node to
release a name it does not own. This would
facilitate detection of inactive names for
nodes that went down silently.

4.2.12. NAME QUERY REQUEST

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

NAME TRN ID OxO OxO
+-+

Ox0001 OxOOOO
+-+

OxOOOO OxOOOO
+-+

I
I
I
I

QUESTION_NAME

+-+

NB (Ox0020) IN (Ox0001)
+-+

I
I
I
I

NetBIOS Working Group [Page 21]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 459

RFC laJ2

RFC 1002 March 1987

4.2.13. POSITIVE NAME QUERY RESPONSE

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

NAME TRN ID OxO OxO
+-+

OxOOOO Ox0001
+-+

OxOOOO OxOOOO
+-+

I
I
I
I

RR NAME

+-+

NB (Ox0020) IN (Ox0001)
+-+

TTL
+-+

RDLENGTH
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

I
I
I
I

ADDR ENTRY ARRAY

+-+

I
I
I
I

I
I
I
I
I
I

The ADDR_ENTRY ARRAY a sequence of zero or more ADDR_ENTRY
records. Each ADDR ENTRY record represents an owner of a name.
For group names there may be multiple entries. However, the list
may be incomplete due to packet size limitations. Bit 22, "T",
will be set to indicate truncated data.

Each ADDR ENTRY has the following format:

+-+

NB FLAGS NB ADDRESS
+-+

NB ADDRESS (continued)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

NetBIOS Working Group [Page 22]

Protocols for X/ Open PC Interworking: SMB, Version 2 441

Samsung - Exhibit 1014 - Page 460

442

RFC laJ2

RFC 1002 March 1987

4.2.14. NEGATIVE NAME QUERY RESPONSE

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

NAME TRN ID OxO I1IOI1I?IO olol RCODE
+-+

OxOOOO OxOOOO
+-+

OxOOOO OxOOOO
+-+

I
I
I
I

RR NAME

+-+

NULL (OxOOOA) IN (Ox0001)
+-+

OxOOOOOOOO
+-+

OxOOOO
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

RCODE field values:

Symbol Value

FMT ERR Ox1

SRV ERR Ox2

NAM ERR Ox3

Description

Format Error.
formatted.
Server failure.
process name.

Request was invalidly

Problem with NBNS, cannot

Name Error. The name requested does not
exist.

I
I
I
I

IMP ERR Ox4 Unsupported request error. Allowable only
for challenging NBNS when gets an Update type
registration request.

RFS ERR Ox5

NetBIOS Working Group

Refused error. For policy reasons server
will not register this name from this host.

[Page 23]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 461

RFC laJ2

RFC 1002 March 1987

4.2.15. REDIRECT NAME QUERY RESPONSE

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

NAME TRN ID OxO OxO
+-+

OxOOOO OxOOOO
+-+

Ox0001 Ox0001
+-+

I
I
I
I

RR NAME

+-+

NS (Ox0002) IN (Ox0001)
+-+

TTL
+-+

RDLENGTH
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

I
I
I
I

NSD NAME

+-+

I
I
I
I

RR NAME

+-+

A (Ox0001) IN (Ox0001)
+-+

TTL
+-+

Ox0004 NSD IP ADDR
+-+

NSD IP_ADDR, continued
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

An end node responding to a NAME QUERY REQUEST always responds
with the AA and RA bits set for both the NEGATIVE and POSITIVE
NAME QUERY RESPONSE packets. An end node never sends a REDIRECT
NAME QUERY RESPONSE packet.

I
I
I
I

+

I
I
I
I

I
I
I
I

NetBIOS Working Group [Page 24]

Protocols for X/ Open PC Interworking: SMB, Version 2 443

Samsung - Exhibit 1014 - Page 462

444

RFC laJ2

RFC 1002 March 1987

When the requestor receives the REDIRECT NAME QUERY RESPONSE it
must reiterate the NAME QUERY REQUEST to the NBNS specified by
the NSD IP ADDR field of the A type RESOURCE RECORD in the
ADDITIONAL section of the response packet. This is an optional
packet for the NBNS.

The NSD NAME and the RR NAME in the ADDITIONAL section of the
response packet are the same name. Space can be optimized if
label string pointers are used in the RR NAME which point to the
labels in the NSD NAME.

The RR NAME in the AUTHORITY section is the name of the domain
the NBNS called by NSD_NAME has authority over.

4.2.16. WAIT FOR ACKNOWLEDGEMENT (WACK) RESPONSE

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

NAME TRN ID Ox7 OxO
+-+

OxOOOO Ox0001
+-+

OxOOOO OxOOOO
+-+

I
I
I
I

RR NAME

+-+

NULL (Ox0020) IN (Ox0001)
+-+

TTL
+-+

Ox0002 I OPCODE NM FLAGS OxO
+-+

I
I
I
I

NetBIOS Working Group [Page 25]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 463

RFC laJ2

RFC 1002 March 1987

The NAME TRN_ID of the WACK RESPONSE packet is the same
NAME TRN_ID of the request that the NBNS is telling the requestor
to wait longer to complete. The RR NAME is the name from the
request, if any. If no name is available from the request then
it is a null name, single byte of zero.

The TTL field of the ResourceRecord is the new time to wait, in
seconds, for the request to complete. The RDATA field contains
the OPCODE and NM_FLAGS of the request.

A TTL value of 0 means that the NBNS can not estimate the time it
may take to complete a response.

4.2.17. NODE STATUS REQUEST

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

NAME TRN ID OxO lololololo oiBI OxO
+-+

Ox0001 OxOOOO
+-+

OxOOOO OxOOOO
+-+

I
I
I

QUESTION_NAME

+-+

NBSTAT (Ox0021) IN (Ox0001)
+-+

I
I
I

NetBIOS Working Group [Page 26]

Protocols for X/ Open PC Interworking: SMB, Version 2 445

Samsung - Exhibit 1014 - Page 464

446

RFC laJ2

RFC 1002 March 1987

4.2.18. NODE STATUS RESPONSE

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

NAME TRN ID OxO OxO
+-+

OxOOOO Ox0001
+-+

OxOOOO OxOOOO
+-+

I
I
I

RR NAME

+-+

NBSTAT (Ox0021) IN (Ox0001)
+-+

OxOOOOOOOO
+-+

RDLENGTH NUM NAMES
+-+

+

I NODE NAME ARRAY
+

+-+

+

I STATISTICS
+

+-+

I
I
I

+

+

I
+

+

I
+

The NODE_NAME ARRAY is an array of zero or more NUM_NAMES entries
of NODE NAME records. Each NODE_NAME entry represents an active
name in the same NetBIOS scope as the requesting name in the
local name table of the responder. RR NAME is the requesting
name.

NetBIOS Working Group [Page 27]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 465

RFC laJ2

RFC 1002 March 1987

NODE NAME Entry:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+

+--- ---+

+--- NETBIOS FORMAT NAME ---+

+--- ---+

+-+

NAME FLAGS
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The NAME FLAGS field:

0 1 2 3 4 5 6 7 8 9

1

0

1

1

1

2

1

3

1

4

1
5

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

I G I ONT IDRGICNFIACTIPRMI RESERVED
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

The NAME FLAGS field is defined as:

Symbol Bit(s)

RESERVED 7-15
PRM 6

ACT 5

CNF 4

DRG 3

ONT 1,2

G 0

NetBIOS Working Group

Description:

Reserved for future use. Must be zero (0).
Permanent Name Flag. If one (1) then entry
is for the permanent node name. Flag is zero
(0) for all other names.

Active Name Flag. All entries have this flag
set to one (1).
Conflict Flag. If one (1) then name on this
node is in conflict.
Deregister Flag. If one (1) then this name
is in the process of being deleted.
Owner Node Type:

00 B node
01 P node
10 M node
11 Reserved for future use

Group Name Flag.
If one (1) then the name is a GROUP NetBIOS
name.
If zero (0) then it is a UNIQUE NetBIOS name.

[Page 28]

Protocols for X/ Open PC Interworking: SMB, Version 2 447

Samsung - Exhibit 1014 - Page 466

448

RFC laJ2

RFC 1002 March 1987

STATISTICS Field of the NODE STATUS RESPONSE:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+

UNIT ID (Unique unit ID)
+-+

UNIT_ID,continued JUMPERS TEST RESULT
+-+

VERSION NUMBER PERIOD OF STATISTICS
+-+

NUMBER OF CRCs NUMBER ALIGNMENT ERRORS
+-+

NUMBER OF COLLISIONS NUMBER SEND ABORTS
+-+

NUMBER GOOD SENDS
+-+

NUMBER GOOD RECEIVES
+-+

NUMBER RETRANSMITS I NUMBER_NO_RESOURCE_CONDITIONS
+-+

NUMBER FREE COMMAND BLOCKS TOTAL NUMBER COMMAND BLOCKS
+-+

IMAX_TOTAL_NUMBER_COMMAND_BLOCKSI NUMBER PENDING SESSIONS
+-+

MAX NUMBER PENDING SESSIONS MAX TOTAL SESSIONS POSSIBLE
+-+

SESSION DATA PACKET SIZE
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.3. SESSION SERVICE PACKETS

4.3.1. GENERAL FORMAT OF SESSION PACKETS

All session service messages are sent over a TCP connection.

All session packets are of the following general structure:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+

TYPE FLAGS LENGTH
+-+

I
I
I

TRAILER (Packet Type Dependent)

+-+

The TYPE, FLAGS, and LENGTH fields are present in every session
packet.

I
I
I

NetBIOS Working Group [Page 29]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 467

RFC laJ2

RFC 1002 March 1987

The LENGTH field is the number of bytes following the LENGTH
field. In other words, LENGTH is the combined size of the
TRAILER field(s). For example, the POSITIVE SESSION RESPONSE
packet always has a LENGTH field value of zero (0000) while the
RETARGET SESSION RESPONSE always has a LENGTH field value of six
(0006) .

One of the bits of the FLAGS field acts as an additional, high
order bit for the LENGTH field. Thus the cumulative size of the
trailer field(s) may range from 0 to 128K bytes.

Session Packet Types (in hexidecimal)

00 - SESSION MESSAGE
81 - SESSION REQUEST
82 - POSITIVE SESSION RESPONSE
83 - NEGATIVE SESSION RESPONSE
84 - RETARGET SESSION RESPONSE
85 - SESSION KEEP ALIVE

Bit definitions of the FLAGS field:

0 1 2 3 4 5 6 7

+---+---+---+---+---+---+---+---+

0 I 0 I 0 I 0 I 0 I 0 I 0 I E I
+---+---+---+---+---+---+---+---+

Symbol Bit(s) Description

E 7 Length extension, used
high-order bit on the

RESERVED 0-6 Reserved, must be zero

4.3.2. SESSION REQUEST PACKET

as an additional,
LENGTH field.

(0)

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

TYPE FLAGS LENGTH
+-+

I
I
I

CALLED NAME

+-+

I
I
I

CALLING NAME

+-+

I
I
I

I
I
I

NetBIOS Working Group [Page 30]

Protocols for X/ Open PC Interworking: SMB, Version 2 449

Samsung - Exhibit 1014 - Page 468

4ED

RFC laJ2

RFC 1002 March 1987

4.3.3. POSITIVE SESSION RESPONSE PACKET

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+

TYPE FLAGS LENGTH
+-+

4.3.4. NEGATIVE SESSION RESPONSE PACKET

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+

TYPE FLAGS LENGTH
+-+

ERROR CODE
+-+-+-+-+-+-+-+-+

NEGATIVE SESSION RESPONSE packet error code values (in
hexidecimal) :

80 - Not listening on called name
81 - Not listening for calling name
82 - Called name not present
83 - Called name present, but insufficient resources
SF - Unspecified error

4.3.5. SESSION RETARGET RESPONSE PACKET

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

TYPE FLAGS LENGTH
+-+

RETARGET IP ADDRESS
+-+

PORT
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

NetBIOS Working Group [Page 31]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 469

RFC laJ2

RFC 1002 March 1987

4.3.6. SESSION MESSAGE PACKET

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

TYPE FLAGS LENGTH
+-+

I
I
I
I
I

USER DATA

+-+

4.3.7. SESSION KEEP ALIVE PACKET

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

TYPE FLAGS LENGTH
+-+

4.4. DATAGRAM SERVICE PACKETS

4.4.1. NetBIOS DATAGRAM HEADER

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

MSG TYPE FLAGS DGM ID
+-+

SOURCE IP
+-+

SOURCE PORT DGM LENGTH
+-+

PACKET OFFSET
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

MSG TYPE values (in hexidecimal):

10 - DIRECT_UNIQUE DATAGRAM
11 - DIRECT GROUP DATAGRAM
12 - BROADCAST DATAGRAM
13 - DATAGRAM ERROR
14 - DATAGRAM QUERY REQUEST
15 - DATAGRAM POSITIVE QUERY RESPONSE
16 - DATAGRAM NEGATIVE QUERY RESPONSE

I
I
I
I
I

NetBIOS Working Group [Page 32]

Protocols for X/ Open PC Interworking: SMB, Version 2 451

Samsung - Exhibit 1014 - Page 470

452

RFC laJ2

RFC 1002 March 1987

Bit definitions of the FLAGS field:

0 1 2 3 4 5 6 7

+---+---+---+---+---+---+---+---+

o 1 o 1 o I o I SNT
+---+---+---+---+---+---+---+---+

Symbol

M

Bit(s)

7

Description

MORE flag, If set then more NetBIOS datagram
fragments follow.

F 6 FIRST packet flag,
(and possibly only)
datagram

If set then this is first
fragment of NetBIOS

SNT 4,5 Source End-Node type:
00 B node
01 P node
10 M node
11 NBDD

RESERVED 0-3 Reserved, must be zero (0)

4.4.2. DIRECT_UNIQUE, DIRECT_GROUP, & BROADCAST DATAGRAM

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

MSG TYPE FLAGS DGM ID
+-+

SOURCE IP
+-+

SOURCE PORT DGM LENGTH
+-+

PACKET OFFSET
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

I
I
I
I

SOURCE NAME

+-+

I
I
I
I

DESTINATION NAME

+-+

I
I
I
I

USER DATA

+-+

I
I
I
I
I
I

I
I
I
I

I
I
I
I

NetBIOS Working Group [Page 33]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 471

RFC laJ2

RFC 1002 March 1987

4.4.3. DATAGRAM ERROR PACKET

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+

MSG TYPE FLAGS DGM ID
+-+

SOURCE IP
+-+

SOURCE PORT ERROR CODE
+-+

ERROR CODE values (in hexidecimal):

82 - DESTINATION NAME NOT PRESENT
83 - INVALID SOURCE NAME FORMAT
84 - INVALID DESTINATION NAME FORMAT

4.4.4. DATAGRAM QUERY REQUEST

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

MSG TYPE FLAGS DGM ID
+-+

SOURCE IP
+-+

SOURCE PORT
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

I
I
I
I

DESTINATION NAME

+-+

4.4.5. DATAGRAM POSITIVE AND NEGATIVE QUERY RESPONSE

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

MSG TYPE FLAGS DGM ID
+-+

SOURCE IP
+-+

SOURCE PORT
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

I
I
I
I

DESTINATION NAME

+-+

+

I
I
I
I

+

I
I
I
I

NetBIOS Working Group [Page 34]

Protocols for X/ Open PC Interworking: SMB, Version 2 453

Samsung - Exhibit 1014 - Page 472

RFC laJ2

RFC 1002 March 1987

5. PROTOCOL DESCRIPTIONS

5.1. NAME SERVICE PROTOCOLS

A REQUEST packet is always sent to the well known UDP port -
NAME SERVICE UDP PORT. The destination address is normally
either the IP broadcast address or the address of the NBNS - the
address of the NBNS server it set up at initialization time. In
rare cases, a request packet will be sent to an end node, e.g. a
NAME QUERY REQUEST sent to "challenge" a node.

A RESPONSE packet is always sent to the source UDP port and
source IP address of the request packet.

A DEMAND packet must always be sent to the well known UDP port -
NAME SERVICE UDP PORT. There is no restriction on the target IP
address.

Terms used in this section:

tid - Transaction ID. This is a value composed from
the requestor's IP address and a unique 16 bit
value generated by the originator of the
transaction.

5.1.1. B-NODE ACTIVITY

5.1.1.1. B-NODE ADD NAME

PROCEDURE add_name(newname)

/*
* Host initiated processing for a B node

*/
BEGIN

REPEAT

/* build name service packet */

ONT = B NODE; /* broadcast node */ -
G = UNIQUE; /* unique name */
TTL = O·

'

broadcast NAME REGISTRATION REQUEST packet;

/*
* remote node(s) will send response packet
* if applicable

*/

NetBIOS Working Group [Page 35]

454 X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 473

RFC laJ2

RFC 1002

pause(BCAST_REQ_RETRY_TIMEOUT);

UNTIL response packet is received or
retransmit count has been exceeded

IF no response packet was received THEN
BEGIN /* no response */

/*
* build packet

*/

ONT = B_NODE;
G = UNIQUE;
TTL = 0;

/* broadcast node */
/* unique name */

/*
* Let other nodes known you have the name

*/

broadcast NAME UPDATE REQUEST packet;
/* name can be added to local name table */
return success;

END /* no response */
ELSE
BEGIN /* got response */

/*
* Match return transaction id
* against tid sent in request

*/

IF NOT response tid = request tid THEN
BEGIN

ignore response packet;
END
ELSE
CASE packet type OF

NEGATIVE NAME REGISTRATION RESPONSE:

return failure; /* name cannot be added */

POSITIVE NAME REGISTRATION RESPONSE:
END-NODE CHALLENGE NAME REGISTRATION RESPONSE:

/*
* B nodes should normally not get this
* response.

*/

ignore packet;

NetBIOS Working Group

Protocols for X/ Open PC Interworking: SMB, Version 2

March 1987

[Page 36]

455

Samsung - Exhibit 1014 - Page 474

4EB

RFC laJ2

RFC 1002 March 1987

END /* case */;
END /* got response */

END /* procedure */

5.1.1.2. B-NODE ADD GROUP NAME

PROCEDURE add_group_name(newname)

/*
* Host initiated processing for a B node

*/

BEGIN

END

5.1.1.3.

/*
* same as for a unique name with the
* exception that the group bit (G) must
* be set in the request packets.

*/

G = GROUP;

/*
* broadcast request

*/

B-NODE FIND NAME

PROCEDURE find_name(name)

/*
* Host initiated processing for a B node

*/

BEGIN

REPEAT

/*
* build packet

*/
ONT = B;
TTL = 0;
G = DONT CARE;

broadcast NAME QUERY REQUEST packet;

NetBIOS Working Group [Page 37]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 475

RFC laJ2

RFC 1002

/*
* a node might send response packet

*/

pause(BCAST_REQ_RETRY_TIMEOUT);
UNTIL response packet received OR

max transmit threshold exceeded

IF no response packet received THEN
return failure;

ELSE
IF NOT response tid

ignore packet;
request tid THEN

ELSE
CASE packet type OF
POSITIVE NAME QUERY RESPONSE:

/*
* Start a timer to detect conflict.

*
* Be prepared to detect conflict if
* any more response packets are received.

*
*/

save response as authoritative response;
start timer(CONFLICT_TIMER);
return success;

NEGATIVE NAME QUERY RESPONSE:
REDIRECT NAME QUERY RESPONSE:

/*
* B Node should normally not get either
* response.

*/

ignore response packet;

END /* case */
END /* procedure */

5.1.1.4. B NODE NAME RELEASE

PROCEDURE delete name (name)
BEGIN

REPEAT

/*
* build packet

*/

NetBIOS Working Group

Protocols for X/ Open PC Interworking: SMB, Version 2

March 1987

[Page 38]

457

Samsung - Exhibit 1014 - Page 476

4EB

RFC 1002

/*
* send request

*/

broadcast NAME RELEASE REQUEST packet;

/*
* no response packet expected

*/

pause(BCAST_REQ_RETRY_TIMEOUT);

UNTIL retransmit count has been exceeded
END /* procedure */

5.1.1.5. B-NODE INCOMING PACKET PROCESSING

RFC laJ2

March 1987

Following processing is done when broadcast or unicast packets
are received at the NAME SERVICE UDP PORT.

PROCEDURE process incoming_packet(packet)

/*
* Processing initiated by incoming packets for a B node

*/

BEGIN

/*
* Note: response packets are always sent
* to:
* source IP address of request packet
* source UDP port of request packet

*/

CASE packet type OF

NAME REGISTRATION REQUEST (UNIQUE):
IF name exists in local name table THEN

send NEGATIVE NAME REGISTRATION RESPONSE
NAME REGISTRATION REQUEST (GROUP) :

IF name exists in local name table THEN
BEGIN

IF local entry is a unique name THEN
send NEGATIVE NAME REGISTRATION RESPONSE

END
NAME QUERY REQUEST:

IF name exists in local name table THEN
BEGIN

build response packet;

NetBIOS Working Group [Page 39]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 477

RFC laJ2

RFC 1002

send POSITIVE NAME QUERY RESPONSE;
POSITIVE NAME QUERY RESPONSE:

IF name conflict timer is not active THEN
BEGIN

END

/*
* timer has expired already ...
* packet

*/

return;

ignore this

ELSE /* timer is active */
IF a response for this name has previously been

received THEN
BEGIN /* existing entry */

/*
* we sent out a request packet, and
* have already received (at least)
* one response

*
* Check if conflict exists.
* If so, send out a conflict packet.

*
* Note: detecting conflict does NOT
* affect any existing sessions.

*
*/

/*
* Check for name conflict.

March 1987

* See "Name Conflict" in Concepts and Methods

*/
check saved authoritative response against

information in this response packet;
IF conflict detected THEN
BEGIN

END

unicast NAME CONFLICT DEMAND packet;
IF entry exists in cache THEN
BEGIN

remove entry from cache;
END

END /* existing entry */
ELSE
BEGIN

/*
* Note: If this was the first response
* to a name query, it would have been
* handled in the
* find_name() procedure.

NetBIOS Working Group [Page 40]

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 478

4ED

RFC 1002

END

RFC laJ2

March 1987

*/

ignore packet;
END

NAME CONFLICT DEMAND:
IF name exists in local name table THEN
BEGIN

END

mark name as conflict detected;

/*
* a name in the state "conflict detected"
* does not "logically" exist on that node.
* No further session will be accepted on
* that name.
* No datagrams can be sent against that name.
* Such an entry will not be used for
* purposes of processing incoming request
* packets.
* The only valid user NetBIOS operation
* against such a name is DELETE NAME.

*/

NAME RELEASE REQUEST:
IF caching is being done THEN
BEGIN

remove entry from cache;
END

NAME UPDATE REQUEST:
IF caching is being done THEN
BEGIN

END

IF entry exists in cache already,
update cache;

ELSE IF name is "interesting" THEN
BEGIN

add entry to cache;
END

NODE STATUS REQUEST:
IF name exists in local name table THEN
BEGIN

END

/*
* send only those names that are
* in the same scope as the scope
* field in the request packet

*/

send NODE STATUS RESPONSE;

NetBIOS Working Group [Page 41]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 479

RFC laJ2

RFC 1002 March 1987

5.1.2. P-NODE ACTIVITY

All packets sent or received by P nodes are unicast UDP packets.
A P node sends name service requests to the NBNS node that is
specified in the P-node configuration.

5.1.2.1. P-NODE ADD NAME

PROCEDURE add_name(newname)

/*
* Host initiated processing for a P node

*/

BEGIN

REPEAT

/*
* build packet

*/

ONT = P;
G = UNIQUE;

/*
* send request

*/

unicast NAME REGISTRATION REQUEST packet;

/*
* NBNS will send response packet

*/

IF receive a WACK RESPONSE THEN
pause(time from TTL field of response);

ELSE
pause(UCAST_REQ_RETRY_TIMEOUT);

UNTIL response packet is received OR
retransmit count has been exceeded

IF no response packet was received THEN
BEGIN /* no response */

/*
* NBNS is down.

*/
Cannot claim name.

return failure; /* name cannot be claimed */
END /* no response */
ELSE

NetBIOS Working Group

Protocols for X/ Open PC Interworking: SMB, Version 2

[Page 42]

461

Samsung - Exhibit 1014 - Page 480

RFC laJ2

RFC 1002 March 1987

BEGIN /* response */
IF NOT response tid = request tid THEN
BEGIN
/* Packet may belong to another transaction */
ignore response packet;

END
ELSE
CASE packet type OF

POSITIVE NAME REGISTRATION RESPONSE:

/*
* name can be added

*/

adjust refresh timeout value, TTL, for this name;
return success; /* name can be added */

NEGATIVE NAME REGISTRATION RESPONSE:
return failure; /* name cannot be added */

END-NODE CHALLENGE REGISTRATION REQUEST:
BEGIN /* end node challenge */

/*
* The response packet has in it the
* address of the presumed owner of the
* name. Challenge that owner.
* If owner either does not
* respond or indicates that he no longer
* owns the name, claim the name.
* Otherwise, the name cannot be claimed.

*
*/

REPEAT

/*
* build packet

*/

unicast NAME QUERY REQUEST packet to the
address contained in the END NODE
CHALLENGE RESPONSE packet;

/*
* remote node may send response packet

*/

pause(UCAST_REQ_RETRY_TIMEOUT);

NetBIOS Working Group [Page 43]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 481

RFC laJ2

RFC 1002

UNTIL response packet is received or
retransmit count has been exceeded

IF no response packet is received OR
NEGATIVE NAME QUERY RESPONSE packet
received THEN

BEGIN /* update */

/*
* name can be claimed

*/

REPEAT

/*
* build packet

*/

unicast NAME UPDATE REQUEST to NBNS;

/*
* NBNS node will send response packet

*/

IF receive a WACK RESPONSE THEN

March 1987

pause(time from TTL field of response);
ELSE

pause(UCAST_REQ_RETRY_TIMEOUT);
UNTIL response packet is received or

retransmit count has been exceeded
IF no response packet received THEN
BEGIN /* no response */

/*
* name could not be claimed

*/

return failure;
END /* no response */
ELSE
CASE packet type OF

NetBIOS Working Group

POSITIVE NAME REGISTRATION RESPONSE:

/*
* add name

*/
return success;

NEGATIVE NAME REGISTRATION RESPONSE:

/*
* you lose

*/

Protocols for X/ Open PC Interworking: SMB, Version 2

[Page 44]

463

Samsung - Exhibit 1014 - Page 482

RFC laJ2

RFC 1002 March 1987

return failure;
END /* case */

END /* update */
ELSE

/*
* received a positive response to the "challenge"
* Remote node still has name

*/

return failure;
END /* end node challenge */

END /* response */
END /* procedure */

5.1.2.2. P-NODE ADD GROUP NAME

PROCEDURE add_group_name(newname)

/*
* Host initiated processing for a P node

*/

BEGIN

END

/*
* same as for a unique name, except that the
* request packet must indicate that a
* group name claim is being made.

*/

G = GROUP;

/*
* send packet

*/

5.1.2.3. P-NODE FIND NAME

PROCEDURE find_name(name)

/*
* Host initiated processing for a P node

*/

BEGIN

NetBIOS Working Group [Page 45]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 483

RFC laJ2

RFC 1002

REPEAT

/*
* build packet

*/

ONT = P;
G = DONT CARE;

unicast NAME QUERY REQUEST packet;

/*
* a NBNS node might send response packet

*/

IF receive a WACK RESPONSE THEN
pause(time from TTL field of response);

ELSE
pause(UCAST_REQ_RETRY_TIMEOUT);

UNTIL response packet received OR
max transmit threshold exceeded

IF no response packet received THEN
return failure;

ELSE
IF NOT response tid

ignore packet;
ELSE
CASE packet type OF

request tid THEN

POSITIVE NAME QUERY RESPONSE:
return success;

REDIRECT NAME QUERY RESPONSE:

/*
* NBNS node wants this end node
* to use some other NBNS node
* to resolve the query.

*/

repeat query with NBNS address
in the response packet;

NEGATIVE NAME QUERY RESPONSE:
return failure;

END /* case */
END /* procedure */

5.1.2.4. P-NODE DELETE NAME

PROCEDURE delete name (name)

March 1987

NetBIOS Working Group [Page 46]

Protocols for X/ Open PC Interworking: SMB, Version 2 465

Samsung - Exhibit 1014 - Page 484

RFC 1002

/*
* Host initiated processing for a P node

*/

BEGIN

REPEAT

/*
* build packet

*/

/*
* send request

*/

unicast NAME RELEASE REQUEST packet;
IF receive a WACK RESPONSE THEN

pause(time from TTL field of response);
ELSE

pause(UCAST_REQ_RETRY_TIMEOUT);
UNTIL retransmit count has been exceeded

or response been received

IF response has been received THEN
CASE packet type OF
POSITIVE NAME RELEASE RESPONSE:

return success;
NEGATIVE NAME RELEASE RESPONSE:

/*
* NBNS does want node to delete this
* name ! ! !

*/

return failure;
END /* case */

END /* procedure */

5.1.2.5. P-NODE INCOMING PACKET PROCESSING

Processing initiated by reception of packets at a P node

PROCEDURE process incoming_packet(packet)

/*
* Processing initiated by incoming packets at a P node

*/

BEGIN

NetBIOS Working Group

RFC laJ2

March 1987

[Page 47]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 485

RFC laJ2

RFC 1002 March 1987

/*
* always ignore UDP broadcast packets

*/

IF packet was sent as a broadcast THEN
BEGIN

END

ignore packet;
return;

CASE packet type of

NAME CONFLICT DEMAND:
IF name exists in local name table THEN

mark name as in conflict;
return;

NAME QUERY REQUEST:
IF name exists in local name table THEN
BEGIN /* name exists */

/*
* build packet

*/

/*
* send response to the IP address and port
* number from which the request was received.

*/

send POSITIVE NAME QUERY RESPONSE
return;

END /* exists */
ELSE
BEGIN /* does not exist */

/*
* send response to the requestor

*/

send NEGATIVE NAME QUERY RESPONSE
return;

END /* does not exist */
NODE STATUS REQUEST:

/*
* Name of "*" may be used for force node to
* divulge status for administrative purposes

*/
IF name in local name table OR name = "*" THEN
BEGIN

/*

NetBIOS Working Group

Protocols for X/ Open PC Interworking: SMB, Version 2

[Page 48]

467

Samsung - Exhibit 1014 - Page 486

4EB

RFC laJ2

RFC 1002 March 1987

END

* Build response packet and
* send to requestor node
* Send only those names that are
* in the same scope as the scope
* in the request packet.

*/

send NODE STATUS RESPONSE;

NAME RELEASE REQUEST:

/*
* This will be received if the NBNS wants to flush the
* name from the local name table, or from the local
* cache.

*/

IF name exists in the local name table THEN
BEGIN

END
ELSE

delete name from local name table;
inform user that name has been deleted;

IF name has been cached locally THEN
BEGIN

remove entry from cache:
END

END /* case */
END /* procedure */

5.1.2.6. P-NODE TIMER INITIATED PROCESSING

Processing initiated by timer expiration.

PROCEDURE timer_expired()

/*
* Processing initiated by the expiration of a timer on a P node

*/
BEGIN

/*
* Send a NAME REFRESH REQUEST for each name which the
* TTL which has expired.

*/
REPEAT

build NAME REFRESH REQUEST packet;
REPEAT

send packet to NBNS;

IF receive a WACK RESPONSE THEN
pause(time from TTL field of response);

NetBIOS Working Group [Page 49]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 487

RFC laJ2

RFC 1002 March 1987

ELSE
pause(UCAST_REQ_RETRY_TIMEOUT);

UNTIL response packet is received or
retransmit count has been exceeded

CASE packet type OF
POSITIVE NAME REGISTRATION RESPONSE:

/* successfully refreshed */
reset TTL timer for this name;

NEGATIVE NAME REGISTRATION RESPONSE:

/*
* refused, can't keep name
* assume in conflict

*/
mark name as in conflict;

END /* case */

UNTIL request sent for all names for which TTL
has expired

END /* procedure */

5 .1. 3. M-NODE ACTIVITY

M nodes behavior is similar to that of P nodes with the addition
of some B node-like broadcast actions. M node name service
proceeds in two steps:

1.Use broadcast UDP based name service.
operation, goto step 2.

2.Use directed UDP name service.

Depending on the

The following code for M nodes is exactly the same as for a P
node, with the exception that broadcast operations are done
before P type operation is attempted.

5.1.3.1. M-NODE ADD NAME

PROCEDURE add_name(newname)

/*
* Host initiated processing for a M node

*/

BEGIN

/*
* check if name exists on the
* broadcast area

*/

NetBIOS Working Group [Page 50]

Protocols for X/ Open PC Interworking: SMB, Version 2 4E9

Samsung - Exhibit 1014 - Page 488

470

RFC 1002

REPEAT
/* build packet */

broadcast NAME REGISTRATION REQUEST packet;
pause(BCAST_REQ_RETRY_TIMEOUT);

UNTIL response packet is received or
retransmit count has been exceeded

IF valid response received THEN
BEGIN

/* cannot claim name */

return failure;
END

/*
* No objections received within the
* broadcast area.
* Send request to name server.

*/

REPEAT

/*
* build packet

*/

ONT M·
'

unicast NAME REGISTRATION REQUEST packet;

/*
* remote NBNS will send response packet

*/

IF receive a WACK RESPONSE THEN
pause(time from TTL field of response);

ELSE
pause(UCAST_REQ_RETRY_TIMEOUT);

UNTIL response packet is received or
retransmit count has been exceeded

IF no response packet was received THEN
BEGIN /* no response */

/*
* NBNS is down.

*/
Cannot claim name.

NetBIOS Working Group

RFC laJ2

March 1987

[Page 51]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 489

RFC laJ2

RFC 1002 March 1987

return failure; /* name cannot be claimed */
END /* no response */
ELSE
BEGIN /* response */

IF NOT response tid = request tid THEN
BEGIN

ignore response packet;
END
ELSE
CASE packet type OF
POSITIVE NAME REGISTRATION RESPONSE:

/*
* name can be added

*/

adjust refresh timeout value, TTL;
return success; /* name can be added */

NEGATIVE NAME REGISTRATION RESPONSE:
return failure; /* name cannot be added */

END-NODE CHALLENGE REGISTRATION REQUEST:
BEGIN /* end node challenge */

/*
* The response packet has in it the
* address of the presumed owner of the
* name. Challenge that owner.
* If owner either does not
* respond or indicates that he no longer
* owns the name, claim the name.
* Otherwise, the name cannot be claimed.

*
*/

REPEAT

/*
* build packet

*/

/*
* send packet to address contained in the
* response packet

*/

unicast NAME QUERY REQUEST packet;

/*
* remote node may send response packet

NetBIOS Working Group

Protocols for X/ Open PC Interworking: SMB, Version 2

[Page 52]

471

Samsung - Exhibit 1014 - Page 490

472

RFC 1002

*/

pause(UCAST_REQ_RETRY_TIMEOUT);

UNTIL response packet is received or
retransmit count has been exceeded

IF no response packet is received THEN
BEGIN /* no response */

/*
* name can be claimed

*/
REPEAT

/*
* build packet

*/

unicast NAME UPDATE REQUEST to NBNS;

/*
* NBNS node will send response packet

*/

IF receive a WACK RESPONSE THEN

RFC laJ2

March 1987

pause(time from TTL field of response);
ELSE

pause(UCAST_REQ_RETRY_TIMEOUT);

UNTIL response packet is received or
retransmit count has been exceeded

IF no response packet received THEN
BEGIN /* no response */

/*
* name could not be claimed

*/

return failure;
END /* no response */
ELSE
CASE packet type OF
POSITIVE NAME REGISTRATION RESPONSE:

/*
* add name

*/

return success;
NEGATIVE NAME REGISTRATION RESPONSE:

NetBIOS Working Group [Page 53]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 491

RFC laJ2

RFC 1002

/*
* you lose

*/

return failure;
END /* case */

END /* no response */
ELSE
IF NOT response tid = request tid THEN
BEGIN

ignore response packet;
END

/*
* received a response to the "challenge"
* packet

*/

CASE packet type OF
POSITIVE NAME QUERY:

/*
* remote node still has name.

*/

return failure;
NEGATIVE NAME QUERY:

/*
* remote node no longer has name

*/

return success;
END /* case */

END /* end node challenge */
END /* case */

END /* response */
END /* procedure */

5.1.3.2. M-NODE ADD GROUP NAME

PROCEDURE add_group_name(newname)

/*
* Host initiated processing for a P node

*/

BEGIN

/*
* same as for a unique name, except that the
* request packet must indicate that a

NetBIOS Working Group

Protocols for X/ Open PC Interworking: SMB, Version 2

March 1987

[Page 54]

473

Samsung - Exhibit 1014 - Page 492

474

RFC 1002

END

5.1.3.3.

* group name claim is being made.

*/

G = GROUP;

/*
* send packet

*/

M-NODE FIND NAME

PROCEDURE find_name(name)

/*
* Host initiated processing for a M node

*/

BEGIN

/*
* check if any node on the broadcast
* area has the name

*/

REPEAT
/* build packet */

broadcast NAME QUERY REQUEST packet;
pause(BCAST_REQ_RETRY_TIMEOUT);

UNTIL response packet received OR
max transmit threshold exceeded

IF valid response received THEN
BEGIN

END

/*

save response as authoritative response;
start timer(CONFLICT_TIMER);
return success;

* no valid response on the b'cast segment.
* Try the name server.

*/

REPEAT

NetBIOS Working Group

RFC laJ2

March 1987

[Page 55]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 493

RFC laJ2

RFC 1002

/*
* build packet

*/

ONT = M;
G = DONT CARE;

unicast NAME QUERY REQUEST packet to NBNS;

/*
* a NBNS node might send response packet

*/

IF receive a WACK RESPONSE THEN
pause(time from TTL field of response);

ELSE
pause(UCAST_REQ_RETRY_TIMEOUT);

UNTIL response packet received OR
max transmit threshold exceeded

IF no response packet received THEN
return failure;

ELSE
IF NOT response tid

ignore packet;
ELSE
CASE packet type OF

request tid THEN

POSITIVE NAME QUERY RESPONSE:
return success;

REDIRECT NAME QUERY RESPONSE:

/*
* NBNS node wants this end node
* to use some other NBNS node
* to resolve the query.

*/

repeat query with NBNS address
in the response packet;

NEGATIVE NAME QUERY RESPONSE:
return failure;

END /* case */
END /* procedure */

5.1.3.4. M-NODE DELETE NAME

PROCEDURE delete name (name)

/*

NetBIOS Working Group

Protocols for X/ Open PC Interworking: SMB, Version 2

March 1987

[Page 56]

475

Samsung - Exhibit 1014 - Page 494

476

RFC 1002

* Host initiated processing for a P node

*/

BEGIN

/*
* First, delete name on NBNS

*/

REPEAT

/*
* build packet

*/

/*
* send request

*/

unicast NAME RELEASE REQUEST packet to NBNS;

IF receive a WACK RESPONSE THEN
pause(time from TTL field of response);

ELSE
pause(UCAST_REQ_RETRY_TIMEOUT);

UNTIL retransmit count has been exceeded
or response been received

IF response has been received THEN
CASE packet type OF
POSITIVE NAME RELEASE RESPONSE:

/*
* Deletion of name on b'cast segment is deferred
* until after NBNS has deleted the name

*/

REPEAT
/* build packet */

broadcast NAME RELEASE REQUEST;
pause(BCAST_REQ_RETRY_TIMEOUT);

UNTIL rexmt threshold exceeded

return success;
NEGATIVE NAME RELEASE RESPONSE:

/*
* NBNS does want node to delete this
* name

*/

NetBIOS Working Group

RFC laJ2

March 1987

[Page 57]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 495

RFC laJ2

RFC 1002

return failure;
END /* case */

END /* procedure */

5.1.3.5. M-NODE INCOMING PACKET PROCESSING

Processing initiated by reception of packets at a M node

PROCEDURE process incoming_packet(packet)

/*
* Processing initiated by incoming packets at a M node

*/

BEGIN
CASE packet type of

NAME CONFLICT DEMAND:
IF name exists in local name table THEN

mark name as in conflict;
return;

NAME QUERY REQUEST:
IF name exists in local name table THEN
BEGIN /* name exists */

/*
* build packet

*/

/*
* send response to the IP address and port

March 1987

* number from which the request was received.

*/

send POSITIVE NAME QUERY RESPONSE
return;

END /* exists */
ELSE
BEGIN /* does not exist */

/*
* send response to the requestor

*/

IF request NOT broadcast THEN

/*
* Don't send negative responses to
* queries sent by B nodes

*/

NetBIOS Working Group [Page 58]

Protocols for X/ Open PC Interworking: SMB, Version 2 477

Samsung - Exhibit 1014 - Page 496

478

RFC 1002

send NEGATIVE NAME QUERY RESPONSE
return;

END /* does not exist */
NODE STATUS REQUEST:

BEGIN

/*
* Name of "*" may be used for force node to
* divulge status for administrative purposes

*/
IF name in local name table OR name = "*" THEN

END

/*
* Build response packet and
* send to requestor node
* Send only those names that are
* in the same scope as the scope
* in the request packet.

*/

send NODE STATUS RESPONSE;

NAME RELEASE REQUEST:

/*

RFC laJ2

March 1987

* This will be received if the NBNS wants to flush the
* name from the local name table, or from the local
* cache.

*/

IF name exists in the local name table THEN
BEGIN

END
ELSE

delete name from local name table;
inform user that name has been deleted;

IF name has been cached locally THEN
BEGIN

remove entry from cache:
END

NAME REGISTRATION REQUEST (UNIQUE):
IF name exists in local name table THEN

send NEGATIVE NAME REGISTRATION RESPONSE
NAME REGISTRATION REQUEST (GROUP) :

IF name exists in local name table THEN
BEGIN

IF local entry is a unique name THEN

END
END /* case */

END /* procedure */

NetBIOS Working Group

send NEGATIVE NAME REGISTRATION RESPONSE

[Page 59]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 497

RFC laJ2

RFC 1002 March 1987

5.1.3.6. M-NODE TIMER INITIATED PROCESSING

Processing initiated by timer expiration:

PROCEDURE timer_expired()

/*
* Processing initiated by the expiration of a timer on a M node

*/
BEGIN

/*
* Send a NAME REFRESH REQUEST for each name which the
* TTL which has expired.

*/
REPEAT

build NAME REFRESH REQUEST packet;
REPEAT

send packet to NBNS;

IF receive a WACK RESPONSE THEN
pause(time from TTL field of response);

ELSE
pause(UCAST_REQ_RETRY_TIMEOUT);

UNTIL response packet is received or
retransmit count has been exceeded

CASE packet type OF
POSITIVE NAME REGISTRATION RESPONSE:

/* successfully refreshed */
reset TTL timer for this name;

NEGATIVE NAME REGISTRATION RESPONSE:

/*
* refused, can't keep name
* assume in conflict

*/
mark name as in conflict;

END /* case */

UNTIL request sent for all names for which TTL
has expired

END /* procedure */

5 .1. 4. NBNS ACTIVITY

A NBNS node will receive directed packets from P and M nodes.
Reply packets are always sent as directed packets to the source
IP address and UDP port number. Received broadcast packets must
be ignored.

NetBIOS Working Group [Page 60]

Protocols for X/ Open PC Interworking: SMB, Version 2 479

Samsung - Exhibit 1014 - Page 498

RFC laJ2

RFC 1002 March 1987

5.1.4.1. NBNS INCOMING PACKET PROCESSING

PROCEDURE process incoming_packet(packet)

/*
* Incoming packet processing on a NS node

*/

BEGIN
IF packet was sent as a broadcast THEN
BEGIN

END

discard packet;
return;

CASE packet type of

NAME REGISTRATION REQUEST (UNIQUE):
IF unique name exists in data base THEN
BEGIN /* unique name exists */

/*
* NBNS node may be a "passive"
* server in that it expects the
* end node to do the challenge
* server. Such a NBNS node is
* called a "non-secure" server.
* A "secure" server will do the
* challenging before it sends
* back a response packet.

*/

IF non-secure THEN
BEGIN

END
ELSE

/*

/*
* build response packet

*/

/*
* let end node do the challenge

*/

send END-NODE CHALLENGE NAME REGISTRATION
RESPONSE;

return;

* secure server - do the name
* challenge operation

*/

NetBIOS Working Group [Page 61]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 499

RFC laJ2

RFC 1002

REPEAT
send NAME QUERY REQUEST;
pause(UCAST_REQ_RETRY_TIMEOUT);

UNTIL response has been received or
retransmit count has been exceeded

IF no response was received THEN
BEGIN

/* node down */

update data base - remove entry;
update data base - add new entry;

March 1987

send POSITIVE NAME REGISTRATION RESPONSE;
return;

END
ELSE
BEGIN /* challenged node replied */

/*
* challenged node replied with
* a response packet

*/

CASE packet type

POSITIVE NAME QUERY RESPONSE:

/*
* name still owned by the
* challenged node

*
* build packet and send response

*/

/*
* Note: The NBNS will need to
* keep track (based on transaction id) of
* the IP address and port number
* of the original requestor.

*/

send NEGATIVE NAME REGISTRATION RESPONSE;
return;

NEGATIVE NAME QUERY RESPONSE:

update data base - remove entry;
update data base - add new entry;

/*
* build response packet and send

NetBIOS Working Group [Page 62]

Protocols for X/ Open PC Interworking: SMB, Version 2 481

Samsung - Exhibit 1014 - Page 500

RFC 1002

RFC laJ2

March 1987

* response

*/
send POSITIVE NAME REGISTRATION RESPONSE;
return;

END /* case */
END /* challenged node replied */

END /* unique name exists in data base */
ELSE
IF group name exists in data base THEN
BEGIN /* group names exists */

/*
* Members of a group name are NOT
* challenged.
* Make the assumption that
* at least some of the group members
* are still alive.
* Refresh mechanism will
* allow the NBNS to detect when all
* members of a group no longer use that
* name

*/

send NEGATIVE NAME REGISTRATION RESPONSE;
END /* group name exists */
ELSE
BEGIN /* name does not exist */

END

/*
* Name does not exist in data base

*
* This code applies to both non-secure
* and secure server.

*/

update data base - add new entry;
send POSITIVE NAME REGISTRATION RESPONSE;
return;

NAME QUERY REQUEST:
IF name exists in data base THEN
BEGIN

/*
* build response packet and send to
* requestor

*/

send POSITIVE NAME QUERY RESPONSE;
return;

NetBIOS Working Group [Page 63]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 501

RFC laJ2

RFC 1002

ELSE
BEGIN

END

/*
* build response packet and send to
* requestor

*/

send NEGATIVE NAME QUERY RESPONSE;
return;

NAME REGISTRATION REQUEST (GROUP) :
IF name exists in data base THEN
BEGIN

IF local entry is a unique name THEN
BEGIN /* local is unique */

IF non-secure THEN
BEGIN

send END-NODE CHALLENGE NAME
REGISTRATION RESPONSE;

return;
END

REPEAT
send NAME QUERY REQUEST;
pause(UCAST_REQ_RETRY_TIMEOUT);

UNTIL response received or
retransmit count exceeded

IF no response received or
NEGATIVE NAME QUERY RESPONSE

received THEN
BEGIN
update data base - remove entry;
update data base - add new entry;

March 1987

send POSITIVE NAME REGISTRATION RESPONSE;
return;

END
ELSE
BEGIN

/*
* name still being held
* by challenged node

*/

send NEGATIVE NAME REGISTRATION RESPONSE;
END

END /* local is unique */
ELSE
BEGIN /* local is group */

NetBIOS Working Group [Page 64]

Protocols for X/ Open PC Interworking: SMB, Version 2 483

Samsung - Exhibit 1014 - Page 502

RFC 1002

RFC laJ2

March 1987

/*
* existing entry is a group name

*/

update data base - remove entry;
update data base - add new entry;
send POSITIVE NAME REGISTRATION RESPONSE;
return;

END /* local is group */
END /* names exists */
ELSE
BEGIN /* does not exist */

/* name does not exist in data base */

update data base - add new entry;
send POSITIVE NAME REGISTRATION RESPONSE;
return;

END /* does not exist */

NAME RELEASE REQUEST:

/*
* secure server may choose to disallow
* a node from deleting a name

*/

update data base - remove entry;
send POSITIVE NAME RELEASE RESPONSE;
return;

NAME UPDATE REQUEST:

/*
* End-node completed a successful challenge,
* no update database

*/

IF secure server THEN
send NEGATIVE NAME REGISTRATION RESPONSE;

ELSE
BEGIN /* new entry */

END

IF entry already exists THEN
update data base - remove entry;

update data base - add new entry;
send POSITIVE NAME REGISTRATION RESPONSE;
start timer(TTL);

NAME REFRESH REQUEST:
check for consistency;

NetBIOS Working Group [Page 65]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 503

RFC laJ2

RFC 1002 March 1987

IF node not allowed to have name THEN
BEGIN

END
ELSE
BEGIN

END

/*
* tell end node that it can't have name

*/
send NEGATIVE NAME REGISTRATION RESPONSE;

/*
* send confirmation response to the
* end node.

*/
send POSITIVE NAME REGISTRATION;
start timer(TTL);

return;
END /* case */

END /* procedure */

5.1.4.2. NBNS TIMER INITIATED PROCESSING

A NS node uses timers to flush out entries from the data base.
Each entry in the data base is removed when its timer expires.
This time value is a multiple of the refresh TTL established when
the name was registered.

PROCEDURE timer_expired()

/*
* processing initiated by expiration of TTL for a given name

*/

BEGIN

END

/*
* NBNS can (optionally) ensure
* that the node is actually down
* by sending a NODE STATUS REQUEST.
* If such a request is sent, and
* no response is received, it can
* be assumed that the node is down.

*/
remove entry from data base;

NetBIOS Working Group

Protocols for X/ Open PC Interworking: SMB, Version 2

[Page 66]

485

Samsung - Exhibit 1014 - Page 504

RFC laJ2

RFC 1002 March 1987

5.2. SESSION SERVICE PROTOCOLS

The following are variables and should be configurable by the
NetBIOS user. The default values of these variables is found in
"Defined Constants and Variables" in the Detailed
Specification.):

- SSN RETRY COUNT - The maximum number TCP connection attempts
allowable per a single NetBIOS call request.

- SSN CLOSE TIMEOUT is the time period to wait when closing the
NetBIOS session before killing the TCP connection if session
sends are outstanding.

The following are Defined Constants for the NetBIOS Session
Service. (See "Defined Constants and Variables" in the Detailed
Specification for the value of these constants):

- SSN SRVC TCP PORT - is the globally well-known TCP port
allocated for the NetBIOS Session Service. The service accepts
TCP connections on this port to establish NetBIOS Sessions.
The TCP connection established to this port by the caller is
initially used for the exchange of NetBIOS control information.
The actual NetBIOS data connection may also pass through this
port or, through the retargetting facility, through another
port.

5.2.1. SESSION ESTABLISHMENT PROTOCOLS

5.2.1.1. USER REQUEST PROCESSING

PROCEDURE listen(listening name, caller name)

/*
* User initiated processing for B, P and M nodes

*
* This procedure assumes that an incoming session will be
* retargetted here by a session server.

*/
BEGIN

Do TCP listen; /* Returns TCP port used */
Register listen with Session Service, give names and

TCP port;

Wait for TCP connection to open; /* Incoming call */

Read SESSION REQUEST packet from connection

Process session request (see section on
processing initiated by the reception of session
service packets);

NetBIOS Working Group [Page 67]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 505

RFC laJ2

RFC 1002 March 1987

Inform Session Service that NetBIOS listen is complete;

IF session established THEN
return success and session information to user;

ELSE
return failure;

END /* procedure */

PROCEDURE call(calling name, called name)

/*
* user initiated processing for B, P and M nodes

*/

/*
* This algorithm assumes that the called name is a unique name.
* If the called name is a group name, the call() procedure
* needs to cycle through the members of the group
* until either (retry_count == SSN_RETRY COUNT) or
* the list has been exhausted.

*/
BEGIN

retry_ count = 0;
retarget = FALSE;
name_query = TRUE;

/* TRUE:
/* TRUE:

/*

caller is being retargetted */
caller must begin again with */
name query. * /

REPEAT
IF name_query THEN
BEGIN

END

/*

do name discovery, returns IP address;
TCP port = SSN_SRVC_TCP_PORT;

IF name discovery fails THEN
return failure;

ELSE
name_query = FALSE;

* now have IP address and TCP port of
* remote party.

*/

establish TCP connection with remote party, use an
ephemeral port as source TCP port;

IF connection refused THEN
BEGIN

IF retarget THEN
BEGIN

/* retry */
retarget = FALSE;

NetBIOS Working Group

Protocols for X/ Open PC Interworking: SMB, Version 2

[Page 68]

487

Samsung - Exhibit 1014 - Page 506

RFC laJ2

RFC 1002 March 1987

END

use original IP address and TCP port;
goto LOOP;

/* retry for just missed TCP listen */

pause(SESSION_RETRY_TIMER);
establish TCP connection, again use ephemeral

port as source TCP port;

IF connection refused OR
connection timed out THEN

return failure;
END
ELSE
IF connection timed out THEN
BEGIN

END

/*

IF retarget THEN
BEGIN

END
ELSE
BEGIN

END

/* retry */
retarget = FALSE;
use original IP address and TCP port;
goto LOOP;

/*
* incorrect name discovery was done,
* try again

*/

inform name discovery process of
possible error;

name_query = TRUE;
goto LOOP;

* TCP connection has been established

*/

wait for session response packet;
CASE packet type OF

POSITIVE SESSION RESPONSE:
return success and session established

information;

NEGATIVE SESSION RESPONSE:
BEGIN

NetBIOS Working Group [Page 69]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 507

RFC laJ2

RFC 1002

CASE error OF
NOT LISTENING ON CALLED NAME:
NOT LISTENING FOR CALLING NAME:
BEGIN

kill TCP connection;
return failure;

END

CALLED NAME NOT PRESENT:
BEGIN

/*
* called name does not exist on
* remote node

*/

inform name discovery procedure
of possible error;

IF this is a P or M node THEN
BEGIN

/*
* Inform NetBIOS Name Server
* it has returned incorrect
* information.

*/

March 1987

send NAME RELEASE REQUEST for called
name and IP address to

LOOP:

NetBIOS Name Server;
END
/* retry from beginning */
retarget = FALSE;
name_query = TRUE;
goto LOOP;

END /* called name not present */
END /* case */

END /* negative response */

RETARGET SESSION RESPONSE:
BEGIN

close TCP connection;
extract IP address and TCP port from

response;
retarget = TRUE;

END /* retarget response */
END /* case */

retry_count = retry_count + 1;

UNTIL (retry_count > SSN_RETRY COUNT);
return failure;

END /* procedure */

NetBIOS Working Group

Protocols for X/ Open PC Interworking: SMB, Version 2

[Page 70]

Samsung - Exhibit 1014 - Page 508

RFC laJ2

RFC 1002 March 1987

5.2.1.2. RECEIVED PACKET PROCESSING

These are packets received on a TCP connection before a session
has been established. The listen routines attached to a NetBIOS
user process need not implement the RETARGET response section.
The user process version, separate from a shared Session Service,
need only accept (POSITIVE SESSION RESPONSE) or reject (NEGATIVE
SESSION RESPONSE) a session request.

PROCEDURE session_packet(packet)

/*
* processing initiated by receipt of a session service
* packet for a session in the session establishment phase.
* Assumes the TCP connection has been accepted.

*/
BEGIN

CASE packet type

SESSION REQUEST:
BEGIN

IF called name does not exist on node THEN
BEGIN

END

send NEGATIVE SESSION RESPONSE with CALLED
NAME NOT PRESENT error code;

close TCP connection;

Search for a listen with CALLING NAME for CALLED
NAME;

IF matching listen is found THEN
BEGIN

END
ELSE
BEGIN

IF port of listener process is port TCP
connection is on THEN

BEGIN

END
ELSE
BEGIN

END

send POSITIVE SESSION RESPONSE;

Hand off connection to client process
and/or inform user session is
established;

send RETARGET SESSION RESPONSE with
listener's IP address and
TCP port;

close TCP connection;

/* no matching listen pending */

NetBIOS Working Group [Page 71]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 509

RFC laJ2

RFC 1002

END

send NEGATIVE SESSION RESPONSE with either
NOT LISTENING ON CALLED NAME or NOT
LISTENING FOR CALLING NAME error
code;

close TCP connection;

END /* session request */
END /* case */

END /* procedure */

5.2.2. SESSION DATA TRANSFER PROTOCOLS

5.2.2.1. USER REQUEST PROCESSING

PROCEDURE send_message(user_message)
BEGIN

END

build SESSION MESSAGE header;
send SESSION MESSAGE header;
send user_message;
reset and restart keep-alive timer;
IF send fails THEN
BEGIN

END
ELSE

/*
* TCP connection has failed */
*/

close NetBIOS session;
inform user that session is lost;
return failure;

return success;

5.2.2.2. RECEIVED PACKET PROCESSING

March 1987

These are packets received after a session has been established.

PROCEDURE session_packet(packet)

/*
* processing initiated by receipt of a session service
* packet for a session in the data transfer phase.

*/
BEGIN

CASE packet type OF

SESSION MESSAGE:
BEGIN

process message header;
read in user data;
reset and restart keep-alive timer;
deliver data to user;

NetBIOS Working Group

Protocols for X/ Open PC Interworking: SMB, Version 2

[Page 72]

491

Samsung - Exhibit 1014 - Page 510

RFC 1002

END /* session message */

SESSION KEEP ALIVE:
discard packet;

END /* case */
END /* procedure */

5.2.2.3. PROCESSING INITIATED BY TIMER

PROCEDURE session_ka_timer()

/*

RFC laJ2

March 1987

* processing initiated when session keep alive timer expires

*/
BEGIN

send SESSION KEEP ALIVE, if configured;
IF send fails THEN
BEGIN
/* remote node, or path to it, is down */

abort TCP connection;
close NetBIOS session;
inform user that session is lost;
return;

END
END /* procedure */

5.2.3. SESSION TERMINATION PROTOCOLS

5.2.3.1. USER REQUEST PROCESSING

PROCEDURE close session()

/* initiated by a user request to close a session */

BEGIN
close gracefully the TCP connection;

WAIT for the connection to close or SSN CLOSE TIMEOUT
to expire;

IF time out expired THEN
abort TCP connection;

END /* procedure */

5.2.3.2. RECEPTION INDICATION PROCESSING

PROCEDURE close indication()

/*
* initiated by a TCP indication of a close request from
* the remote connection partner.

NetBIOS Working Group [Page 73]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 511

RFC laJ2

RFC 1002 March 1987

*/
BEGIN

close gracefully TCP connection;

close NetBIOS session;

inform user session closed by remote partner;
END /* procedure */

5.3. NetBIOS DATAGRAM SERVICE PROTOCOLS

The following are GLOBAL variables and should be NetBIOS user
configurable:

- SCOPE ID: the non-leaf section of the domain name preceded by a
which represents the domain of the NetBIOS scope for the

NetBIOS name. The following protocol description only supports
single scope operation.

- MAX DATAGRAM LENGTH: the maximum length of an IP datagram. The
minimal maximum length defined in for IP is 576 bytes. This
value is used when determining whether to fragment a NetBIOS
datagram. Implementations are expected to be capable of
receiving unfragmented NetBIOS datagrams up to their maximum
size.

- BROADCAST ADDRESS: the IP address B-nodes use to send datagrams
with group name destinations and broadcast datagrams. The
default is the IP broadcast address for a single IP network.

The following are Defined Constants for the NetBIOS Datagram
Service:

- DGM SRVC UDP PORT: the globally well-known UDP port allocated
where the NetBIOS Datagram Service receives UDP packets. See
section 6, "Defined Constants", for its value.

5. 3 .1. B NODE TRANSMISSION OF NetBIOS DATAGRAMS

PROCEDURE send_datagram(data, source, destination, broadcast)

/*
* user initiated processing on B node

*/

BEGIN
group FALSE;

do name discovery on destination name, returns name type and
IP address;

NetBIOS Working Group [Page 74]

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 512

RFC 1002

RFC laJ2

March 1987

IF name type is group name THEN
BEGIN

group = TRUE;
END

/*
* build datagram service UDP packet;

*/
convert source and destination NetBIOS names into

half-ASCII, biased encoded name;
SOURCE NAME = cat(source, SCOPE ID);
SOURCE IP = this nodes IP address;
SOURCE PORT DGM_SRVC_UDP_PORT;

IF NetBIOS broadcast THEN
BEGIN

END
ELSE
BEGIN

END

DESTINATION NAME = cat (11 * 11
, SCOPE ID)

DESTINATION NAME cat(destination, SCOPE ID)

MSG TYPE = select one from set
{BROADCAST, DIRECT_UNIQUE, DIRECT_GROUP}

DGM_ID = next transaction id for Datagrams;
DGM_LENGTH = length of data + length of second level encoded

source and destination names;

IF (length of the NetBIOS Datagram, including UDP and
IP headers, > MAX_DATAGRAM_LENGTH) THEN

BEGIN

/*
* fragment NetBIOS datagram into 2 UDP packets

*/
Put names into 1st UDP packet and any data that fits

after names;
Set MORE and FIRST bits in 1st UDP packet's FLAGS;
OFFSET in 1st UDP = 0;

Replicate NetBIOS Datagram header from 1st UDP packet
into 2nd UDP packet;

Put rest of data in 2nd UDP packet;
Clear MORE and FIRST bits in 2nd UDP packet's FLAGS;
OFFSET in 2nd UDP = DGM LENGTH - number of name and

data bytes in 1st UDP;
END
BEGIN

/*
* Only need one UDP packet

*/

NetBIOS Working Group [Page 75]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 513

RFC laJ2

RFC 1002

END

USER_DATA = data;
Clear MORE bit and set FIRST bit in FLAGS;
OFFSET = 0;

IF (group == TRUE) OR (NetBIOS broadcast) THEN
BEGIN

END
ELSE
BEGIN

END

send UDP packet(s) to BROADCAST_ADDRESS;

send UDP packet(s) to IP address returned by name
discovery;

END /* procedure */

5.3.2. P AND M NODE TRANSMISSION OF NetBIOS DATAGRAMS

March 1987

PROCEDURE send_datagram(data, source, destination, broadcast)

/*
* User initiated processing on P and M node.

*
* This processing is the same as for B nodes except for
* sending broadcast and multicast NetBIOS datagrams.

*/

BEGIN
group FALSE;

do name discovery on destination name, returns name type
and IP address;

IF name type is group name THEN
BEGIN

group = TRUE;
END

/*
* build datagram service UDP packet;

*/
convert source and destination NetBIOS names into

half-ASCII, biased encoded name;
SOURCE NAME = cat(source, SCOPE ID);
SOURCE IP = this nodes IP address;
SOURCE PORT DGM_SRVC_UDP_PORT;

IF NetBIOS broadcast THEN
BEGIN

END
ELSE

DESTINATION NAME = cat (11 * 11
, SCOPE ID)

NetBIOS Working Group

Protocols for X/ Open PC Interworking: SMB, Version 2

[Page 76]

Samsung - Exhibit 1014 - Page 514

RFC 1002

RFC laJ2

March 1987

BEGIN
DESTINATION NAME cat(destination, SCOPE ID)

END

MSG TYPE = select one from set
{BROADCAST, DIRECT_UNIQUE, DIRECT_GROUP}

DGM_ID = next transaction id for Datagrams;
DGM_LENGTH = length of data + length of second level encoded

source and destination names;

IF (length of the NetBIOS Datagram, including UDP and
IP headers, > MAX_DATAGRAM_LENGTH) THEN

BEGIN

/*
* fragment NetBIOS datagram into 2 UDP packets

*/
Put names into 1st UDP packet and any data that fits

after names;
Set MORE and FIRST bits in 1st UDP packet's FLAGS;

OFFSET in 1st UDP = 0;

Replicate NetBIOS Datagram header from 1st UDP packet
into 2nd UDP packet;

Put rest of data in 2nd UDP packet;
Clear MORE and FIRST bits in 2nd UDP packet's FLAGS;
OFFSET in 2nd UDP = DGM LENGTH - number of name and

data bytes in 1st UDP;
END
BEGIN

/*

END

* Only need one UDP packet

*/
USER_DATA = data;
Clear MORE bit and set FIRST bit in FLAGS;
OFFSET = 0;

IF (group
BEGIN

TRUE) OR (NetBIOS broadcast) THEN

/*
* Sending of following query is optional.
* Node may send datagram to NBDD immediately
* but NBDD may discard the datagram.

*/
send DATAGRAM QUERY REQUEST to NBDD;
IF response is POSITIVE QUERY RESPONSE THEN

ELSE
BEGIN

send UDP packet(s) to NBDD Server IP address;

get list of destination nodes from NBNS;

NetBIOS Working Group [Page 77]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 515

RFC laJ2

RFC 1002 March 1987

END
ELSE
BEGIN

END

FOR EACH node in list
BEGIN

END

send UDP packet(s) to this node's
IP address;

send UDP packet(s) to IP address returned by name
discovery;

END /* procedure */

5.3.3. RECEPTION OF NetBIOS DATAGRAMS BY ALL NODES

The following algorithm discards out of order NetBIOS Datagram
fragments. An implementation which reassembles out of order
NetBIOS Datagram fragments conforms to this specification. The
fragment discard timer is initialized to the value FRAGMENT_TO.
This value should be user configurable. The default value is
given in Section 6, "Defined Constants and Variables".

PROCEDURE datagram_packet(packet)

/*
* processing initiated by datagram packet reception
* on B, P and M nodes

*/
BEGIN

/*
* if this node is a P node, ignore
* broadcast packets.

*/

IF this is a P node AND incoming packet is
a broadcast packet THEN

BEGIN
discard packet;

END

CASE packet type OF

DATAGRAM SERVICE:
BEGIN

IF FIRST bit in FLAGS is set THEN
BEGIN

IF MORE bit in FLAGS is set THEN
BEGIN

Save 1st UDP packet of the Datagram;
Set this Datagram's fragment discard

timer to FRAGMENT TO;

NetBIOS Working Group

Protocols for X/ Open PC Interworking: SMB, Version 2

[Page 78]

497

Samsung - Exhibit 1014 - Page 516

RFC 1002

END
ELSE
BEGIN

END

END
ELSE

return;

Datagram is composed of a single
UDP packet;

/* Have the second fragment of a Datagram */

Search for 1st fragment by source IP address
and DGM_ID;

IF found 1st fragment THEN
Process both UDP packets;

ELSE
BEGIN

END

discard 2nd fragment UDP packet;
return;

IF DESTINATION NAME is '*' THEN
BEGIN

END
ELSE

/* NetBIOS broadcast */

deliver USER DATA from UDP packet(s) to all
outstanding receive broadcast
datagram requests;

return;

BEGIN /* non-broadcast */
/* Datagram for Unique or Group Name */

IF DESTINATION NAME is not present in the
local name table THEN

BEGIN

END
ELSE

/* destination not present */
build DATAGRAM ERROR packet, clear

FIRST and MORE bit, put in
this nodes IP and PORT, set
ERROR_CODE;

send DATAGRAM ERROR packet to
source IP address and port
of UDP;

discard UDP packet(s);
return;

BEGIN /* good */
/*

NetBIOS Working Group

RFC laJ2

March 1987

[Page 79]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 517

RFC laJ2

RFC 1002 March 1987

END

5.3.4.

* Replicate received NetBIOS datagram for
* each recipient

*/
FOR EACH pending NetBIOS user's receive

datagram operation
BEGIN

IF source name of operation
matches destination name
of packet THEN

BEGIN

END

deliver USER DATA from UDP
packet(s);

END /* for each */
return;

END /* good */
END /* non-broadcast */

END /* datagram service */

DATAGRAM ERROR:
BEGIN

/*
* name service returned incorrect information

*/

inform local name service that incorrect
information was provided;

IF this is a P or M node THEN
BEGIN

END

/*
* tell NetBIOS Name Server that it may
* have given incorrect information

*/

send NAME RELEASE REQUEST with name
and incorrect IP address to NetBIOS
Name Server;

END /* datagram error */

END /* case */

PROTOCOLS FOR THE NBDD

The key to NetBIOS Datagram forwarding service is the packet
delivered to the destination end node must have the same NetBIOS
header as if the source end node sent the packet directly to the
destination end node. Consequently, the NBDD does not reassemble
NetBIOS Datagrams. It forwards the UDP packet as is.

NetBIOS Working Group [Page 80]

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 518

RFC laJ2

RFC 1002 March 1987

PROCEDURE datagram_packet(packet)

/*
* processing initiated by a incoming datagram service
* packet on a NBDD node.

*/

BEGIN
CASE packet type OF

DATAGRAM SERVICE:
BEGIN

IF packet was sent as a directed
NetBIOS datagram THEN

BEGIN

/*

END

* provide group forwarding service

*
* Forward datagram to each member of the
* group. Can forward via:
* 1) get list of group members and send
* the DATAGRAM SERVICE packet unicast
* to each
* 2) use Group Multicast, if available
* 3) combination of 1) and 2)

*/

ELSE
BEGIN

/*

END

* provide broadcast forwarding service

*
* Forward datagram to every node in the
* NetBIOS scope. Can forward via:
* 1) get list of group members and send
* the DATAGRAM SERVICE packet unicast
* to each
* 2) use Group Multicast, if available
* 3) combination of 1) and 2)

*/

END /* datagram service */

DATAGRAM ERROR:

NetBIOS Working Group [Page 81]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 519

RFC laJ2

RFC 1002

BEGIN

/*
* Should never receive these because Datagrams
* forwarded have source end node IP address and
* port in NetBIOS header.

*/

send DELETE NAME REQUEST with incorrect name and
IP address to NetBIOS Name Server;

END /* datagram error */

DATAGRAM QUERY REQUEST:
BEGIN

IF can send packet to DESTINATION NAME THEN
BEGIN

END
ELSE
BEGIN

END

/*
* NBDD is able to relay Datagrams for
* this name

*/

send POSITIVE DATAGRAM QUERY RESPONSE to
REQUEST source IP address and UDP port
with request's DGM_ID;

/*
* NBDD is NOT able to relay Datagrams for
* this name

*/

send NEGATIVE DATAGRAM QUERY RESPONSE to
REQUEST source IP address and UDP port

with request's DGM_ID;

END /* datagram query request */

END /* case */
END /* procedure */

NetBIOS Working Group

Protocols for X/ Open PC Interworking: SMB, Version 2

March 1987

[Page 82]

EDl

Samsung - Exhibit 1014 - Page 520

RFC laJ2

RFC 1002 March 1987

6. DEFINED CONSTANTS AND VARIABLES

GENERAL:

SCOPE ID

BROADCAST ADDRESS

BCAST_REQ_RETRY_TIMEOUT

BCAST_REQ_RETRY COUNT

UCAST_REQ_RETRY_TIMEOUT

UCAST_REQ_RETRY COUNT

MAX DATAGRAM LENGTH

NAME SERVICE:

REFRESH TIMER

CONFLICT TIMER

NAME SERVICE TCP PORT

NetBIOS Working Group

The name of the NetBIOS scope.

This is expressed as a character
string meeting the requirements of
the domain name system and without
a leading or trailing "dot".

An implementation may elect to make
this a single global value for the
node or allow it to be specified
with each separate NetBIOS name
(thus permitting cross-scope
references.)

An IP address composed of the
nodes's network and subnetwork
numbers with all remaining bits set
to one.

I.e. "Specific subnet" broadcast
addressing according to section 2.3
of RFC 950.

250 milliseconds.
An adaptive timer may be used.

3

5 seconds
An adaptive timer may be used.

3

576 bytes (default)

Negotiated with NBNS for each name.

1 second
Implementations may chose a longer
value.

13 7 (decimal)

[Page 83]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 521

RFC laJ2

RFC 1002

NAME SERVICE UDP PORT

INFINITE TTL

SESSION SERVICE:

SSN SRVC TCP PORT

SSN RETRY COUNT

SSN CLOSE TIMEOUT

SSN KEEP ALIVE TIMEOUT

DATAGRAM SERVICE:

DGM SRVC UDP PORT

FRAGMENT TO

NetBIOS Working Group

13 7 (decimal)

0

139 (decimal)

4 (default)
Re-configurable by user.

30 seconds (default)
Re-configurable by user.

March 1987

60 seconds, recommended, may be set to
a higher value.
(Session keep-alives are used only
if configured.)

138 (decimal)

2 seconds (default)

[Page 84]

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 522

RFC laJ2

RFC 1002 March 1987

REFERENCES

[1] "Protocol Standard For a NetBIOS Service on a TCP/UDP
Transport: Concepts and Methods", RFC 1001, March 1987.

[2] J. Reynolds, J. Postel, "Assigned Numbers", RFC 990, November
1986.

[3] P. Mockapetris, "Domain Names - Implementation and

Specification", RFC 883, November 1983.

NetBIOS Working Group [Page 85]

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 523

ACL
(Access Control List) A list used to control access to a file or resource. The list contains the user
IDs and/or group IDs that are allowed access to the file or resource.

API
(Application Programming Interface) A published interface for software developers.

big-endian
The name of a particular byte order (coined by Danny Cohen). \\hen looking at addresses in
increasing order, the most significant byte comes first. The Internet protocols use big-endian
byte order.

broadcast
The function of delivering a given packet to all hosts that are attached to the broadcasting
delivery system. Broadcasting is implemented both at the hardware and the software levels.

byte
8bits.

CAE
Common Applications Environment.

chaining
Transmission of more than one SMB request in a request.

client-server
The distributed system model where a requesting program (the client) interacts with a program
that can satisfy the request (the server). The client initiates the interaction and may wait for the
server to respond.

connection-oriented service
A service provided between two endpoints along which data is passed in a sequenced and
reliable way.

connectionless service
In a connectionless service each packet is a separate entity containing a source and destination
address; therefore, packets may be dropped or delivered out of sequence. The delivery service
offered by the Internet Protocol (IP) is a connectionless service.

core
The dialect name for the basic SMB dialect described in this spedfication.

core plus
The dialect name for the SMB dialect that provides additional features to the core dialect.

data encapsulation
The way a lower-level protocol accepts a message from a higher-level protocol and places it in
the data portion of the low-level frame.

daemon
A process that is not assodated with any user. This sort of process performs system-wide
functions; for example, administration, control of networks and execution-dependent activities.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 524

Glossary

datagram
A packet sent independently of the others in the network. It contains the source and destination
addresses as well as the data.

dialect
Used to refer to the level of protocol negotiated between the SMB redirector and the LMXserver.

DES
U.S. Department of Commerce Data Encryption Standard.

EA
(Extended Attribute) An SMB protocol element supported by the extended 20protocol dialect.
Extended attributes can be assodated with a file.

effective group ID
An attribute of a process that is used in determining various permissions, including file access
permissions. This value is suQject to change during the process' lifetime.

effective user ID
An attribute of a process that is used in determining various permissions, including file access
permissions. This value is suQject to change during the process' lifetime.

exec
The XSI system call that is used to start a process running.

extended 1.0
The dialect name for the first extended SMB protocol dialect.

extended 2.0
The dialect name for the second extended SMB protocol dialect.

Extended Attribute
See EA.

FCB
(File Control Block) The area of memory holding the file information and status. It is a term
assodated with DOS.

FID
(File ID) A unique number assodated with a file to enable it to be identified.

fifo
(First In First Out) One of the file types supported on an XSI system. A fifo, the alternative name
for a pipe, differs from a regular file because its data is transient; that is, once data is read from
the pipe it cannot be read again.

fork
The XSI system call which is used to create a new process. The process created is a duplicate of
the calling process.

Internet Protocol
~P) The protocol from the Internet Protocol Suite that provides the basis for Internet
communications.

interoperability
The ability of software and hardware on multiple machines and from multiple vendors to
communicate effectively.

ioctl
A system call which allows a process to spedfy control information to control a device. This

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 525

Glossary

function exists in both XSI and DOS.

IPC
~nter-process Communication) Methods by which two or more processes can communicate; for
example, formatted data streams or shared memory.

LAN
(Local Area Network) A physical network that operates at a high speed over short distances; for
example, Ethernet.

little-endian
The name of a particular byte order (coined by Danny Cohen). \\hen looking at addresses in
increasing order, the least significant byte comes first.

LMX
X/Open LAN Manager Architecture. The implementation of the LAN Manager on CAE
systems.

LMX Server
The system providing the LMXservice.

LMXSession
The path between two communicating systems that provides a reliable, sequenced data delivery
service.

MBZ
(tviust Be Zero) Reserved fields are often defined MBZ.

MID
(tviultiplex Identifier) A number which uniquely identifies a protocol request and response
within a process.

multicast
A method by which copies of a single packet are passed to a selected subset of all destinations.
Broadcast is a spedal case of multicast whereby the subset of destinations receiving a copy of
the packet is the entire set of destinations.

named pipe
An inter-process communication mechanism defined by the extended SMB spedfication. Also a
fifo.

NetBIOS
(Network Basic Input Output System) The de facto standard programmatic interface to networks
for DOS systems.

NFS
(Network File System) A protocol which allows a set of computers access to each others' file
systems. NFS was developed by Sun Microsystems and is used primarily on UNIX systems.

octet
8bits.

opportunistic lock
The server will notify the client, allowing it to flush its dirty buffers and unlock the file, when
another client attempts to open the file.

OSI
(Open Systems Interconnect) ISO standards for the interconnection of cooperative (open)
computer systems.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 526

Glossary

packet
A block of data sent across a packet switching network.

PID
(Process ID) The number assigned to a process so that it can be uniquely identified.

responder
An entity with which an initiator wishes to establish a transport connection.

RFC
(Request for Comments) The name of a series of notes that contain surveys, measurements,
ideas, techniques and observations, as well as proposed and accepted Internet protocol
standards.

root (of file system)
The top directory in the directory hierarchical structure.

RPC
Remote Procedure Call.

session
See LMXSession.

SMB
(Server Message Block) A protocol which allows a set of computers to access shared resources as
if they were local. The core protocol was developed by Microsoft Corporation and Intel, and the
extended protocols were developed by Microsoft Corporation.

SMB redirector
The client system accessing the LMXserver.

SMB request
The server message block sent from the SMB redirector to the LMXserver.

SMB response
The server message block sent from the LMXserver to the SMB redirector.

TBD
(robe Defined) Further detail will be provided at a later time.

TCP
(rransmission Control Protocol) The Internet standard transport level connection-oriented
protocol. It provides a full duplex, reliable stream service which allows a process on one
machine to send a stream of data to a process on another. Part of the Internet Protocol Suite.

TID
(free Connect Identifier) A numeric value passed by the LMX server to the SMB redirector to
represent a location within a file system subtree.

UDP
(User Datagram Protocol) The Internet connectionless protocol. Part of the Internet Protocol
Suite.

UID
(User Identifier) A token representing an authenticated <username, password> tuple. UIDs are
registered by the redirectors.

urn ask
The XSI process' file mode creation mask used during file and directory creation. Bit positions
that are set in the umask are cleared in the mode of the newly created file or directory. The

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 527

Glossary

umask is set using the umask() call.

working directory
A directory, assodated with a process, that is used in pathname resolution for pathnames that
do not begin with a slash.

Protocols for X/ Open PC Interworking: SMB, Version 2

Samsung - Exhibit 1014 - Page 528

Glossary

510 X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 529

16bit .. 37 date .. 43
16bit field ... 37 deny modes .. .18, 33 10
~bit .. 37 DENYALL .. .l8
~bit field ... 37 DENY NONE .. 18, 44
8bit field ... 37 DENY READ ... 18, 44
access control.. 33 44, 46 8L 83 158 DENY \\!RITE .. .18, 44
access control lists .. a£ DES ZT7, 279, 5:::6
access modes ... 46 /0, 12 dialect .. 5:::6
ACL ... ~ 5:J5 dialects ... 44, 10L 12L 135
ACL permissions .. a£ directory
API ... 5:J5 check ... 1(9

LAN Manager ... 633 delete ... gr
transaction ... 633 file system attributes .. 107

archive file attribute ... 43 get attributes .. 1CB
ASCIIZ .. 44 move .. Efl
attributes ffiEB 1~ 179, 181 remove .. gr

extended ... 183 185 renaming .. E9
authentication S, 56 12L 125 13:1, ~ ZT7, 279 search .. m
B-node functionality .. :::6 searchfirst ... 1m
big-endian .. 5:J5 searchnext .. 1m
broadcast .. 5:J5 set attributes .. 105
buffer types .. 44 directory access ... 179
buffers ... 44, 73 76 1:::6 directory create ... 95
byte .. 31, 5:J5 directory file attribute43
CAE ... 5:J5 directory functions 95 179, 181- 1tB 187, 194
canonical pathnames .. .16, 33 discarding ... 171
chaining 156 15:1, 1EB 1/0, 5:J5 DOS ... 251
chaining SMB requests 22, 143 Close File Handle ... 253
challenge string ... 141 Create Directory ... 253
character mode device .. .45 Create File (FCB I/0) .. 253
client-server ... 5:J5 Create File Handle ... 253
COMM .. 45 Create New File .. 254
Compatibility19 Delete Directory Entry 254
compatibility support .. 25 Delete File (FCB II 0) ... 254
connection management !35 End Process .. 254
Connection Protocols .. .14 Find First File ... 254
connection-oriented service 5:J5 Find Next File .. 254
connectionless service ... 5:J5 Flush Buffer .. 254
core .. 5:J5 Get Assign List Entry ... 255
core plus ... 5:J5 Get Default Drive Data 255
daemon ... 5:J5 Get Disk Free Space ... 255
data block 44, 73 76 113 117 Get Drive data ... 255
data buffer .. 141 Get File Size (FCB I/0) 255
data encapsulation ... 5:J5 Load and Execute Programme 255
data oQjects .. 43 Load Overlay ... 255
datagram .. 5:::6 Move File Pointer ... 255

Protocols for X/ Open PC Interworking: SMB, Version 2 511

Samsung - Exhibit 1014 - Page 530

Index

Open File (FCB I/0) .. 2'6 SMBlockread ... 128
Open File Handle ... 2'6 SMBlseek .. 8J
Print Character .. 2'6 SMBmkdir .. SX3
Random Block Read (FCB II 0) 2'6 SMBmknew .. EB
Random Block Wite (FCBI/0) 2'6 SMBmv ... 9J
Random Read (FCB I/0) 2'6 SMBnegprot .. 5'] ~ 137
Random Wite (FCB I/0) 2'6 SMBopen .. 71
Read Via File Handle ... 257 SMBopenX ... 154
Remove Directory .. 257 SMBread ... 74
Rename File (FCB I/0) 257 SMBreadbmpx .. 173
Reset Disk .. 257 SMBreadbraw .. 124
Search For First Entry .. 257 SMBreadX .. 162
Search For Next Entry 257 SMBrmdir ... 97
Sequential Read (FCBI/0) 257 SMBsearch .. 1<J2
Sequential Wite (FCBIIO) ZB SMBsecpkgX ... 142
Set/ Get Date/Time of File ZB SMBsesssetupX ... 146 1ffi
Set/Get File Attributes ZB SMBsetatr ... 1C6
Terminate Programme ZB SMBsetattr E ... 1ffi
Unlock/Lock File ... ZB SMBsplclose ... 115
Wite Via File Handle .. ZB SMBsplopen ... 112

DOS compatibility45 SMBsplretq ... 118
E() functions .. 'ZTT SMBsplwr ... 113
EA .. 5:::6 SMBtcon ... 58
echo .. 191 SMBtconX .. 148
effective group ID ... 5:::6 SMBtdis ... 5::l
effective user ID .. 5::::6 SMBunlink ... 93
encryption 55 12L 135 137, 13), ZT7, 279 SMBunlock ... 83

support for ... :::6 SMBwrite .. 77
environments SMBwritebmpx ... 176

file .. 11 SMBwritebraw .. 127, 165
hierarchy ... 10 SMBwriteclose .. 1~ 167
LMXsession .. .1 0 SMBwriteunlock ... 13J
process11 SMBwriteX ... 170
resource1 0 error handling .. 24
SMB ... 10 exception handling ... 24
user10 exclusion ... 44

epoch ... 43 exec .. 5:::6
error classes .. 24 extended 10 ... 5:::6
error codes extended 20 ... 5:::6

SMBchkpath .. 1CB Extended Attribute .. 212, 5:::6
SMBclose f57 extended attributes ... 31
SMBcreate .. ffi extended protocol ... 5
SMBdskattr .. 107 accessing resources .. 147
SMBexit ... 61 device control .. 193
SMBfclose ... 181 echo ... 191
SMBffirst ... 179 file copy .. 1f57
SMBflush .. 85 file move ... 194
SMBgetatr ... 1CB get attributes .. 183
SMBgetattrE ... 184 ioctl .. 193
SMBlock .. 81 locking .. 153
SMBlockingX ... 158 open ... 151

512 X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 531

Index

read .. l6J long names ... 16, 31
read block multiplexed 171 wildcards .. 17
search .. 179, 181- 182 fudfust ... 179
security ... 1:::9 fudnext ... l/'9
set attributes .. lffi fork ... 5:::6
set up .. 144, 197 F_RDLCK ... 33
write .. lEE F_\VRLCK .. 33
write block multiplexed 174 GEA ... 214
write block raw ... 163 hidden file attribute .. 43

extended SMB protocol ... 22 inactive timeout .. 24
FCB .. 5:::6 Information Levels ... 214
FCBopen .. 45 Internet Protocol ... 5::::6
FEA .. 212 interoperability ... 5:::6
FID .. 11, 47, 112 115 157, 16J ioctl .. 193 5:::6

...................................... 163 lEXi lEB 17L 175 5:::6 IPC ... !3J7
ffo .. 5:::6 LAN ... !3J7
file LAN Manager .. 251

access .. 128 13J LANMAN 10 .. 193
attributes 64, ffiEB 70, a), SB 95 little-endian .. !3J7

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 lCD, 1CX3 105- 103 183 lffi LMX ... !3J7
cache ... 3L 174 LMXserver ... 4, 55
close .. 87, 1~ lffi LMXServer .. 5J7
copy ... l87 LMXserver caching ... 35
creation ... 63 f57 LMXsession ... 10
delete ... 92 LMXSession .. !3J7
flush ... ffi LMXsession environment1 0
handles .. 87 LMXsession key ... 137
lock ... 8L 128 13), 153 LMXsession set up 125 144, 197
long seek qseek) .. 79 locking 33 124, llll3L 153 leq 173
make new ... f57 byte-range .. 34
move .. l94 conventions .. 2J
open .. 63 7(), 151 opportunistic ... 2), 28
read 73 1Z3 128 16), lEB 171 timeouts .. 34
search .. 179, 181 locks .. 153 1~ 156 219
seek .. /'9 long names ... 16
sharing .. /0 LPr ... 45
truncating ... lEE M-node functionality ... ::!3
types .. l?53 mailslots .. 45
unlinking .. 92 maximum buffer size ... 10
unlock ... 83 MBZ ... !3J7
wildcards ... 95 194 MICROSOFT NETWJRKS lffi 101
write 76 125 13J, 1~ 163 lEX] 174 MICROSOFT NETWJRKS 30 101

file attributes. 000 00000000 00000000 000000000 00000000 0000000 00000000 .. 43 an MID .. .l1, :::9, 174, !3J7
file environment11 multicast ... 5J7
file move ... 8:1 multiple NetBIOS sessions 137
file permissions ... an multiplex ID ... :::9
file renaming .. 8:1 multiplexed LMXsessions 171
file sharing control .. 44 multiplexed reads ... 137
filename .. 28 named pipe .. 5J7

canonical pathnames .. .16 named pipes ... 4546 12
illegal characters ... Z:J negotiated maximum buffer 56 73 133 144

Protocols for X/ Open PC Interworking: SMB, Version 2 513

Samsung - Exhibit 1014 - Page 532

Index

N etBIOS .. !3J7 list spool :fJle ... 117
NetShareAdd print mode

transaction API .. .'Z12 GRAPHICS .. 111
N etShareDel TEXf ... 111

transaction API ... 272 printing ... 111
N etShareEnum process environment11

transaction API .. .'Z73 process ID .. . 11, 28
NFS .. !3J7 process termination .. 61
null string ... 105 read-only :fJle attribute ... 43
octet ... 5J7 regular :fJle .. 18, 44
open function 46 1~ 187, 194 remote API ... 634
open modes .. 18 resource
oplock .. 20 types .. 45
opportunistic lock .. 5J7 resource environment 1 0
opportunistic locking 20, 153 219 resource type ... 57
OS/2 .. 251 responder ... s::B

DosBufReset .. 2:9 response string .. 141
DosChDir ... 2:9 RFC .. s::B
DosClose .. 2:9 root (of :fJle system) .. s::B
DosDelete ... 2:9 RPC .. s::B
DosDeviOCtl ... ZI::l search ID ... 1m
DosExecPgm .. 2:9 security ... 1:::9
DosFileLocks ... 2:9 support for ... :::6
DosFindClose .. alJ security modes 57, 133 ZT7, 279
DosFindFirst .. alJ share-level .. 5 12 197
DosFindFirst2 ... alJ user-level.. 5 12 1:::9, 144, 197, a£
DosFindNext ... alJ security package ... 1:::9
DosFindN otifyClose .. alJ X/OPEN ... 14J
DosMkDir .. alJ server
DosMove .. alJ user authentication ... 5
DosOpen .. alJ session ... s::B
DosQCurDir .. 631 share-level security .. 57
DosQFileinfo ... 631 SMB .. s::B
DosQFileMode .. 631 buffers ... 44
DosQFSinfo ... 631 chaining ... 143 146 aD
DosRead ... 631 command code .. -:51
DosReadAsync .. 631 core protocol 55 63 95 111
DosRmDir .. 631 data oQjects .. 43
DosSetFileinfo ... 631 date fields ... 43
DosSetFileMode .. a:2 dialects .. 44, 48
DosWite ... a:2 encryption .. 279
DosWiteAsync ... a:2 error class ... 31, 49

OSI ... !3J7 error codes ... 49
packet .. s::B extended- normal operations 151
passwords 5 57, 147, ~ ZT7, 279 extended lOprotocol .. 187
PC NET\\ORK PROGRAM 10 101 extended protocol 12Q 15L 179
PID11, ~ 157, 17L 174, 179, 1tB 5:B :fJle access .. 63 151
print :fJle attributes .. 43

append to spool :fJle ... 113 protocol ... 4J
close spool :fJle ... 115 protocol dialects ... 55
create spool :fJle ... 111 request/response values 4J

514 X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 533

Index

SMB formats .. 37 SMBsetattrE ... 7, 185 261
spooling and printing .. 111 SMBsplclose .. 7, 115 253 ZX3
test ... 191 SMBsplopen .. 7, 11 L ZX3
time fields ... 43 SMBsplretq ... 7, 117

SMB chaining ... 22 SMBsplwr .. 7, 113 z::E] ZB
SMB dialects ... 48 SMBtcon 7, 12 14, 57, 197, z::t5 279
SMB header 31 SMBtconX .. 7, 12 147, 279
SMB protocol ... 31 SMBtdis .. 7, 5:1, 2Ef5

SMB redirector .. 4, 5:::8 SMBtrans2(IRANSACT2_FINDFIRS1) 7, aD
SMB request ... 5:::8 SMBtrans2(IRANSACT2_FINDNEXI) 7, aD
SMB response .. 5:::8 SMBtrans2(IRANSACT2_MKDIR) 7, aD
SMBchkpath .. 7, 1CB SMBtrans2(IRANSACT2_0PEN) 7, aD
SMBchkpth .. 253 2'f), 261 SMBtrans2(IRANSACT2_ QFILEINFO) 261
SMBclose 7, 'C7, 253 z::t5 2'8 SMBtrans2(IRANSACT2_QFSINFO) 261
SMBcopy .. 7, 187 SMBulogoffX ... 204
SMBcreate .. 7, 2J, 63 253 aD SMBunlink 7, 2J, 3L SB 254, 2'8
SMBdskattr .. 7, 107, z::t5 261 SMBunlock ... 7, 83 ZBz:fl
SMBecho ... 7, 191 SMBwrite 7, 7E3 85 z::E] ZBz:fl, a:2
SMBexit .. 7, 6L ill, 254, ZB SMBwritebmpx ... 7, 174, a:2
SMBfclose .. 7, 97, 18L aD SMBwritebraw 7, 125 163 a:2
SMBffirst .. 7, 97, 179, 18L aD SMBwriteC ... a:2
SMBfindnclose ... aD SMBwriteclose 7, 122 1EQ 2'8
SMBflush 7, 78 85 254, Z57, 2'8 SMBwriteunlock ... 7, 13), 2'8
SMBfunique ... 7, 97, 182 SMBwriteX .. 7, 1EB a:2
SMBgetatr .. 7, 1CG 261 SNBtcon .. 144
SMBgetattrE .. 7, 183 261 spool
SMBioct1 ... 193, 2'8 append to spool file ... 113
SMBioctls .. z:fl close spool file ... 115
SMBlock .. 7, 8L 83 ZBz:fl create spool file ... 111
SMBlockingX ... 7, 153 2'8 list spool file ... 117
SMBlockread ... 7, 128 2'8 spoolable device .. 45
SMBlseek .. 7, 79, 2Ef5 spooling .. 111
SMBmkdir .. 7, 95 253 aD synchronisation ... 171
SMBmknew ... 7, 3J, f51, 254 system calls
SMBmove ... 194 DOS ... Z51
SMBmv 7, 3L aJ, 253 257, aD OS/2 .. Z51
SMBnegprot... 7, 12 55 12L 125 13:1, 144, 197, 279 system file attribute .. 43
SMBopen 7, 2J, 7(), 255-z::E] 2'8-aD TBD .. S:::S
SMBopenX ... 7, 3J, 15 L aD TCP .. S:::S
SMBread 7, 73 124, 255-Z57, 2'8, 261 TID lO, 12 14, 28 58 147, 171
SMBreadbmpx .. 7, 17L 261 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 17 4, 179, 1~ 1'C7, 194, 1SX3 5:::8
SMBreadbraw ... 7, 123 261 time ... 64, f51, 10, 'C7, 1CG 1C6
SMBreadmpx ... 124 time fields ... 43
SMBreadX .. 7, 16J, aD-261 timeouts .. 25
SMBrmdir .. 7, 97, Z57, 261 transaction API ... 633
SMBs .. 7 API numbers Z75
SMBsearch 7, 97, ill, 179, 1~ 254-z::t5 Z57-ZB descriptor strings .. aB
SMBsecpkgX .. 7, 13:1 examples .. 272
SMBsessetup .. 12 pointers ... 271
SMBsesssetupX 7, 14, 144, 197, 279 request format 2f51

SMBsetatr ... 7, 1()5 2:13 a:2 returned data ... 271

Protocols for X/ Open PC Interworking: SMB, Version 2 515

Samsung - Exhibit 1014 - Page 534

transaction SMB messages 263
tree connect .. 14, 57
tree disconnect .. 58
U () functions. 000000000000 0000000000000 000000000000 00000000000 0000000000278
UDP ... S:::S
UID 00.10, 12 28 13:1, 144, 171

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 17 4, 179, 1tB 197, a::Q 5:::8
umask ... E£3 63 95 1CG 5:::8
user ID .. .1 0, 28
user-level security .. a£
username .. 14 L a£
variable blockoo44, 1m, 181
volume identifier .. 43
wildcards .. l7, 194
working directory ... 5:::9
Wite behind .. 19
write mode 00 m 164, 175
Wite through19
write-behind 000000035, 44, m 133 164, 167, 174 175
write-through 00 0000 0000000000 00044, m 164, 1E9, 174 175
X/OPEN smb_pkgnameoooooooooooooooooooooooooooooooooooooo.14J

516

Index

X/ Open CAE Spedfication (1~

Samsung - Exhibit 1014 - Page 535

	2009-02-23 Receipt of Orig. Ex Parte Request by Third Party
	2009-02-23 Information Disclosure Statement (IDS) Form (SB08)
	2009-02-23 Copy of patent for which reexamination is requested
	2009-02-23 Other Reference-Patent/App/Search documents
	2009-02-23 Other Reference-Patent/App/Search documents
	2009-02-23 Other Reference-Patent/App/Search documents
	2009-02-23 Other Reference-Patent/App/Search documents
	2009-02-23 Other Reference-Patent/App/Search documents
	2009-02-23 Other Reference-Patent/App/Search documents
	2009-02-23 Reexam - Affidavit/Decl/Exhibit Filed by 3rd Party
	2009-02-23 Other Reference-Patent/App/Search documents
	2009-02-23 Reexam - Affidavit/Decl/Exhibit Filed by 3rd Party
	2009-02-23 Receipt of Orig. Ex Parte Request by Third Party
	2009-02-23 Receipt of Orig. Ex Parte Request by Third Party
	2009-02-23 Receipt of Orig. Ex Parte Request by Third Party
	2009-02-23 Reexam - Affidavit/Decl/Exhibit Filed by 3rd Party
	2009-02-23 Reexam - Affidavit/Decl/Exhibit Filed by 3rd Party
	2009-02-23 Other Reference-Patent/App/Search documents
	2009-02-23 Reexam - Affidavit/Decl/Exhibit Filed by 3rd Party
	2009-02-23 Reexam - Affidavit/Decl/Exhibit Filed by 3rd Party
	2009-02-23 Other Reference-Patent/App/Search documents
	2009-02-23 Reexam - Affidavit/Decl/Exhibit Filed by 3rd Party
	2009-02-23 Reexam - Affidavit/Decl/Exhibit Filed by 3rd Party
	2009-02-23 Reexam - Affidavit/Decl/Exhibit Filed by 3rd Party
	2009-02-23 Reexam - Affidavit/Decl/Exhibit Filed by 3rd Party
	2009-02-23 Fee Worksheet (SB06)
	2009-02-23 EFS Acknowledgment Receipt
	2009-02-24 Receipt of Orig. Ex Parte Request by Third Party
	2009-02-24 Reexam Certificate of Service
	2009-02-24 Reexam Certificate of Service
	2009-02-24 EFS Acknowledgment Receipt
	2009-02-24 Bibliographic Data Sheet
	2009-02-24 Paper Reexam File Jacket is scanned
	2009-03-04 Notice of Assignment of Reexamination Request
	2009-03-04 Notice of reexamination request filing date
	2009-03-04 Title Report
	2009-03-13 Determination -- Reexam Ordered
	2009-03-13 List of References cited by applicant and considered by examiner
	2009-03-13 Paper Reexam File Jacket is scanned
	2009-03-13 Search information including classification, databases and other search related notes
	2009-03-13 Reexam Litigation Search Conducted
	2009-03-13 Power of Attorney
	2009-03-13 Assignee showing of ownership per 37 CFR 3.73.
	2009-03-13 Reexam Certificate of Service
	2009-03-18 Communication - Re: Power of Attorney (PTOL-308)
	2009-03-18 Communication - Re: Power of Attorney (PTOL-308)
	2009-06-08 Notice of concurrent proceeding(s)
	2009-06-08 Notice of concurrent proceeding(s)
	2009-06-08 Reexam Certificate of Service
	2009-06-08 EFS Acknowledgment Receipt
	2009-06-11 Information Disclosure Statement (IDS) Form (SB08)
	2009-06-11 Reexam Certificate of Service
	2009-08-11 Information Disclosure Statement (IDS) Form (SB08)
	2009-08-11 EFS Acknowledgment Receipt
	2009-08-11 Information Disclosure Statement (IDS) Form (SB08)
	2009-08-12 Information Disclosure Statement (IDS) Form (SB08)
	2009-08-12 Reexam Certificate of Service
	2009-08-12 EFS Acknowledgment Receipt
	2009-08-12 Information Disclosure Statement (IDS) Form (SB08)
	2009-08-14 Reexam - Non-Final Action
	2009-08-14 List of References cited by applicant and considered by examiner
	2009-08-14 Search information including classification, databases and other search related notes
	2009-08-14 Paper Reexam File Jacket is scanned
	2009-10-08 Reexam Request for Extension of Time
	2009-10-08 Reexam Certificate of Service
	2009-10-08 Fee Worksheet (SB06)
	2009-10-08 EFS Acknowledgment Receipt
	2009-10-09 Reexam Extension of Time Period for Response Granted
	2009-11-16 Amendment/Req. Reconsideration-After Non-Final Reject
	2009-11-16 Applicant Arguments/Remarks Made in an Amendment
	2009-11-16 Affidavit-submitted prior to Mar 15, 2013
	2009-11-16 Reexam Certificate of Service
	2009-11-16 EFS Acknowledgment Receipt
	2009-12-11 Information Disclosure Statement (IDS) Form (SB08)
	2009-12-11 Foreign Reference
	2009-12-11 Foreign Reference
	2009-12-11 Foreign Reference
	2009-12-11 Foreign Reference
	2009-12-11 Foreign Reference
	2009-12-11 Foreign Reference
	2009-12-11 Foreign Reference
	2009-12-11 Foreign Reference
	2009-12-11 Foreign Reference
	2009-12-11 Foreign Reference
	2009-12-11 Foreign Reference
	2009-12-11 EFS Acknowledgment Receipt
	2009-12-11 Transmittal Letter
	2009-12-11 Foreign Reference
	2009-12-11 Foreign Reference
	2009-12-11 Foreign Reference
	2009-12-11 EFS Acknowledgment Receipt
	2009-12-11 Foreign Reference
	2009-12-11 Foreign Reference
	2009-12-11 Foreign Reference
	2009-12-11 Reexam Certificate of Service
	2009-12-11 EFS Acknowledgment Receipt
	2009-12-16 Information Disclosure Statement (IDS) Form (SB08)
	2009-12-16 Foreign Reference
	2009-12-16 EFS Acknowledgment Receipt
	2009-12-16 Transmittal Letter
	2009-12-16 Reexam Certificate of Service
	2009-12-16 EFS Acknowledgment Receipt
	2010-01-26 Information Disclosure Statement (IDS) Form (SB08)
	2010-01-26 Reexam Certificate of Service
	2010-01-26 EFS Acknowledgment Receipt
	2010-01-26 Transmittal Letter
	2010-02-24 Information Disclosure Statement (IDS) Form (SB08)
	2010-02-24 Reexam Certificate of Service
	2010-02-24 EFS Acknowledgment Receipt
	2010-02-24 Transmittal Letter
	2010-03-05 Information Disclosure Statement (IDS) Form (SB08)
	2010-03-05 Reexam Certificate of Service
	2010-03-05 Artifact sheet indicating an item has been filed which cannot be scanned
	2010-05-05 List of References cited by applicant and considered by examiner
	2010-05-06 Information Disclosure Statement (IDS) Form (SB08)
	2010-05-06 Reexam Certificate of Service
	2010-05-06 EFS Acknowledgment Receipt
	2010-05-06 Transmittal Letter
	2010-05-11 Notice of Intent to Issue a Reexam Certificate
	2010-05-11 Issue Information including classification, examiner, name, claim, renumbering, etc.
	2010-05-11 Search information including classification, databases and other search related notes
	2010-05-11 Bibliographic Data Sheet
	2010-05-11 Paper Reexam File Jacket is scanned
	2010-08-03 Reexamination Certificate Issued

