
Samsung - Exhibit 1016 - Page 1

Second Edition

lnternetworking
with

TCP/IP
VOLUME I

Principles, Protocols, and Architecture

Douglas E. Comer-

Samsung — Exhibit 1016 — Page 1

Samsung - Exhibit 1016 - Page 2

Internetworking With TCP/IP

;*____________

Samsung — Exhibit 1016 — Page 2

Samsung - Exhibit 1016 - Page 3

lnternetworking With TCP/IP
Vol I:

Principles, Protocols, and Architecture

Second Edition

DOUGLAS E. COMER

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907

3 PRENTICE HALL
Englewood Cliffs, New Jersey 07632

i

Samsung — Exhibit 1016 — Page 3

Samsung - Exhibit 1016 - Page 4

Library of Congress CataIogIng—1n—Publtcatton Data

Comer, Douglas E.
Internetworktng with TCP/IP / Douglas E. Caner. -- 2nd ed.

p. cm.
Includes blbllographlcal references (v. 1, p.) and tndex.
Contents: vol. 1. Prlnctples. protocols. and archltecture.
ISBN 0—13—468505—9 (v. 1)
1. Computer networks. 2. Computer network protocols. 3. Data

transnlsston systems. I. Title.
TK5105.5.C59 1991
004.6-—dc2O 90-7529

CIP

Editorial/production supervision: Joe Scordato
Cover design: Karen Stephens
Cover illustration: Jim Kinstrey
Manufacturing buyers: Linda Behrens and Patrice Fraccio

The author and publisher of this book have used their best efforts in preparing this book.
These efforts include the development, research, and testing of the theories and programs to
detennine their effectiveness. The author and publisher make no warranty of any kind,
expressed or implied, with regard to these programs or the documentation contained in this
book. The author and publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the fumishing, perfonnance, or use of these
programs.

©1991 by Prentice-Hall, Inc.
A Division of Simon & Schuster

Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book UNIX is a registered trademark of AT&T Bell
may be reproduced, in any form or by any Laboratories. proNET—l0 is a trademark of
means without permission in writing from Proteon Corporation. VAX, Microvax, and
the publisher. LSI 11 are trademarks of Digital Equipment

Corporation. Network Systems and HYPER-
primed in the United States of America channels are registered trademarks of Network

Systems Corporation.
10 9 8 7 6 5

ISBN E]-1.3-'-IEBSEIS-‘I

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sidney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S. A., Mexico
Prentice-Hall of India Private Limited, New Delhi

Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

""“ ""‘“"""“‘ "" "“"""**!"m, .

Samsung — Exhibit 1016 — Page 4

Samsung - Exhibit 1016 - Page 5

T0 Chris

Samsung — Exhibit 1016 — Page 5

Samsung - Exhibit 1016 - Page 6

Contents

Foreword xix

Preface xxi

Chapter 1 Introduction and Overview 1

1.1 The Need For An Internet 1

1.2 The TCP/IP Internet 2

1.3 Internet Services 3

1.4 History And Scope Of The Internet 6

1.5 The Original Internet Activities Board 8

1.6 The New IAB Organization 9

1.7 Internet Request For Comments 11
1.8 Internet Protocols and Standardization 12

1.9 Future Growth and Technology 12
1.10 The FNC And The NREN 13

1.1] Organization Of This Text 14

1.12 Summary 15

Chapter 2 Review of Underlying Network Technologies 17

2.1 Introduction 17

2.2 Two Approaches To Network Communication 18

2.3 Wide Area, Metropolitan Area, and Local Area Networks 19

2.4 Ethernet Technology 20

2.5 ProNET Token Ring Technology 28

2.6 ARPANET Technology 33

2.7 National Science Foundation Networking 36

2.8 Other Technologies over which TCP/IP has been used 44

2.9 Summary Ana’ Conclusion 48

Samsung — Exhibit 1016 — Page 6

Samsung - Exhibit 1016 - Page 7

viii Contents

Chapter 3 lnternetworking Concept and Architectural Model 51

3.1 Introduction 51

3.2 Application-Level Interconnection 51
3.3 Network-Level Interconnection 52

3.4 Properties Of The Internet 53
3.5 Internet Architecture 54

3.6 Interconnection Through 1P Gateways or Routers 54
3.7 The User’s View 56

3.8 All Networks Are Equal 56

3.9 The Unanswered Questions 57

3.10 Summary 58

Chapter 4 Internet Addresses 61

4.1 Introduction 61

4.2 Universal Identifiers 61

4.3 Three Primary Classes Of IP Addresses 62

4.4 Addresses Specify Network Connections 63
4.5 Network And Broadcast Addresses 63

4.6 Limited Broadcast 64

4.7 Interpreting Zero To Mean “This" 64

4.8 Weaknesses In Internet Addressing 65
4.9 Dotted Decimal Notation 66

4.10 Loopback Address 67

4.11 Summary Of Special Address Conventions 67

4.12 Internet Addressing Authority 68

4.13 An Example 68

4.14 Network Byte Order 69

4.15 Summary 70

Chapter 5 Mapping Internet Addresses to Physical Addresses (ARP) 73

5.1 Introduction 73

5.2 The Address Resolution Problem 73

5.3 Two Types Of Physical Addresses 74

5.4 Resolution Through Direct Mapping 74

5.5 Resolution Through Dynamic Binding 75
5.6 The Address Resolution Cache 76

5.7 ARP Refinements 77

5.8 Relationship Of ARP To Other Protocols 77

— vv«"

Samsung — Exhibit 1016 — Page 7

Samsung - Exhibit 1016 - Page 8

""h¢4-‘.«"-..4,._4.. ._,,M\,__”,._,.,..-.--.-rn-u.--.-w-.—‘.__'....‘......
1

Contents ix

5.9 ARP Implementation 77

5.10 ARP Encapsulation And Identification 79
5.11 ARP Protocol Format 79

5.12 Summary 80

Chapter 6 Determining an Internet Address at Startup (RARP) 83

6.1 Introduction 83

6.2 Reverse Address Resolution Protocol (RARP) 84

6.3 Timing RARP Transactions 86

6.4 Primary And Backup RARP Servers 86

6.5 Summary 87

Chapter 7 Internet Protocol: Connectionless Datagram Delivery 89

7.1 Introduction 89

7.2 A Virtual Network 89

7.3 Internet Architecture And Philosophy 90

7.4 The Concept Of Unreliable Delivery 90

7.5 Connectionless Delivery System 91

7.6 Purpose Of The Internet Protocol 91

7.7 The Internet Datagram 91

7.8 Internet Datagram Options 100

7.9 Summary 106

Chapter 8 Internet Protocol: Routing IP Datagrams 109

8.1 Introduction 109

8.2 Routing In An Internet 109

8.3 Direct And Indirect Delivery 111

8.4 Table-Driven IP Routing 113

8.5 Default Routes 115

8.6 H0st—Specific Routes 115

8.7 The Final Algorithm 115

8.8 Routing With IP Addresses 116

8.9 Handling Incoming Datagrams 118

8.10 Establishing Routing Tables 119

8.11 Summary 119

Samsung — Exhibit 1016 — Page 8

Samsung - Exhibit 1016 - Page 9

x Contents

Chapter 9 Internet Protocol: Error and Control Messages (ICMP) 123

9.1 Introduction 123

9.2 The Internet Control Message Protocol 123

9.3 Error Reporting vs. Error Correction 124

9.4 ICMP Message Delivery 125

9.5 ICMP Message Format 126

9.6 Testing Destination Reachability And Status 127

9.7 Echo Request And Reply Message Format 128

9.8 Reports Of Unreachable Destinations 128

9.9 Congestion And Datagram Flow Control 130

9.10 Source Quench Format 130

9.11 Route Change Requests From Gateways 131

9.12 Detecting Circular Or Excessively Long Routes 133

9.13 Reporting Other Problems 134

9.14 Clock Synchronization And Transit Time Estimation 134

9.15 Information Request And Reply Messages 136

9.16 Obtaining A Subnet Mask 136

9.17 Summary 137

Chapter 10 Protocol Layering 139

10.1 Introduction 139

10.2 The Need For Multiple Protocols 139

10.3 The Conceptual Layers Of Protocol Software 140

10.4 Functionality Of The Layers 143
10.5 CCITT X.25 And Its Relation To The ISO Model 144

10.6 Diflerences Between X.25 And Internet Layering 147

10.7 The Protocol Layering Principle 149

10.8 Layering In The Presence Of Network Substructure 151

10.9 Two Important Boundaries In The TCP/IP Model 153

10.10 The Disadvantage OfLayering 154

10.11 The Basic Idea Behind Multiplexing And Demultiplexing 154
10.12 ISO’s OSI Protocols 156

10.13 Summary 157

Chapter 11 User Datagram Protocol 159

11.1 Introduction 159

11.2 Identifying The Ultimate Destination 159

11.3 The User Datagram Protocol 160

Samsung — Exhibit 1016 — Page 9

Samsung - Exhibit 1016 - Page 10

Contents

11.4 Format Of UDP Messages 161

11.5 UDP Pseudo—Header 162

11.6 UDP Encapsulation And Protocol Layering 163

11.7 Layering And The UDP Checksum Computation 165

11.8 UDP Multiplexing, Demultiplexing, And Ports 165
11.9 Reserved And Available UDP Port Numbers 166

11.10 Summary 168

Chapter 12 Reliable Stream Transport Service (TCP)

12.1 Introduction 171

12.2 The Need For Stream Delivery 171

12.3 Properties Of The Reliable Delivery Service 172

12.4 Providing Reliability 173

12.5 The Idea Behind Sliding Windows 175
12.6 The Transmission Control Protocol 177

12.7 Ports, Connections, And Endpoints 178

12.8 Passive And Active Opens 180

12.9 Segments, Streams, And Sequence Numbers 181
12.10 Variable Window Size And Flow Control 182

12.11 TCP Segment Format 183

12.12 Out OfBand Data 184

12.13 Maximum Segment Size Option 185

12.14 TCP Checksum Computation 186

12.15 Acknowledgements And Retransmission 187
12.16 Timeout And Retransmission 188

12.17 Accurate Measurement Of Round Trip Samples 190

12.18 Karn's Algorithm And Timer Backofi‘ 191

12.19 Responding To High Variance In Delay 192

12.20 Response To Congestion 192

12.21 Establishing A TCP Connection 194

12.22 Initial Sequence Numbers 196

12.23 Closing a TCP Connection 196
12.24 TCP Connection Reset 198

12.25 TCP State Machine 198

12.26 Forcing Data Delivery 200
12.27 Reserved TCP Port Numbers 200

12.28 TCP Performance 200

12.29 Summary 202

Samsung — Exhibit 1016 — Page 10

xi

171

Samsung - Exhibit 1016 - Page 11

xii Contents

Chapter 13 Routing: Cores, Peers, and Algorithms (GGP) 205

13.1 Introduction 205

13.2 The Origin Of Gateway Routing Tables 206

13.3 Routing With Partial Information 207

13.4 Original Internet Architecture And Cores 208

13.5 Core Gateways 209

13.6 Beyond The Core Architecture To Peer Backbones 212

13.7 Automatic Route Propagation 214

13.8 Vector Distance (Bellman-Ford) Routing 214

13.9 Gateway—To—Gateway Protocol (GGP) 216

13.10 GGP Message Formats 216

13.11 Link—State (SPF) Routing 218
13.12 SPF Protocols 219

13.13 Summary 220

Chapter 14 Routing: Autonomous Systems (EGP) 223

14.1 Introduction 223

14.2 Adding Complexity To The Architectural Model 223
14.3 A Fundamental Idea: Extra Hops 224

14.4 Autonomous System Concept 226

14.5 Exterior Gateway Protocol (EGP) 228

14.6 EGP Message Header 229

14.7 EGP Neighbor Acquisition Messages 230

14.8 EGP Neighbor Reachability Messages 231

14.9 EGP Poll Request Messages 232

14.10 EGP Routing Update Messages 234

14.11 Measuring From The Receiver’s Perspective 235

14.12 The Key Restriction 0fEGP 236
14.13 Technical Problems 238

14.14 Decentralization Of The Internet Architecture 239

14.15 Beyond Autonomous Systems 239

14.16 Summary 240

Chapter 15 Routing: Interior Gateway Protocols (RIP, OSPF, HELLO) 243

15.1 Introduction 243

15.2 Static Vs. Dynamic Interior Routes 243

15.3 Routing Information Protocol (RIP) 246
15.4 The Hello Protocol 252

Samsung — Exhibit 1016 — Page 11

Samsung - Exhibit 1016 - Page 12

Contents

15.5 Combining RIP, Hello, And EGP 254

15.6 The Open SPF Protocol (OSPF) 255

15.7 Routing With Partial Information 262

15.8 Summary 262

16.1 Introduction 265

16.2 Review 0fRelevant Facts 265

16.3 Minimizing Network Numbers 266

16.4 Transparent Gateways 267

16.5 Proxy ARP 268
16.6 Subnet Addresses 270

16.7 Flexibility In Subnet Address Assignment 272

16.8 Implementation Of Subnets With Masks 273

16.9 Subnet Mask Representation 274

16.10 Routing In The Presence 0fSubnets 275

16.11 The Subnet Routing Algorithm 276

16.12 Unified Routing Algorithm 276

16.13 Maintenance Of Subnet Masks 278

16.14 Broadcasting To Subnets 278

16.15 Summary 279

Chapter 17 Multicast Addressing (IGMP)

17.1 Introduction 281

17.2 Hardware Broadcast 281

173 Hardware Multicast 282

17.4 IP Multicast 283

17.5 IP Multicast Addresses 283

17.6 Mapping IP Multicast To Ethernet Multicast 284

17.7 Extending [P To Handle Multicasting 285

17.8 Internet Group Management Protocol 286

17.9 IGMP Implementation 286

17.10 Group Membership State Transitions 287

17.11 IGMP Message Format 288

17.12 Multicast Address Assignment 289

17.13 Propagating Routing Information 289

17.14 Summary 290

xiii

Chapter 16 Transparent Gateways And Subnet Addressing 265

281

Samsung — Exhibit 1016 — Page 12

Samsung - Exhibit 1016 - Page 13

xiv

Chapter 18 Client-Server Model Of Interaction

18.1 Introduction 293

18.2 The Client—Server Model 293

18.3 A Simple Example: UDP Echo Server
18.4 Time And Date Service 296

18.5 The Complexity of Servers 297
18.6 RARP Server 298

18.7 Alternatives To The Client-Server Model

18.8 Summary 300

294

299

Chapter 19 Bootstrap Protocol (BOOTP)

19.1 Introduction 303

19.2 Introduction 303

19.3 Using IP To Determine An IP Address 304

19.4 The BOOTP Retransmission Policy 305

19.5 BOOTP Message Format 306

19.6 The Two-Step Bootstrap Procedure

19.7 Vendor-Specific Field 308

19.8 Summary 309

307

Chapter 20 The Domain Name System

20.1 Introduction 311

20.2 Names For Machines

20.3 F[at Namespace 312
20.4 Hierarchical Names 313

20.5 Delegation Of Authority For Names

20.6 Subset Authority 314
20.7 TCP/IP Internet Domain Names 315

20.8 Official And Unofficial Internet Domain Names

20.9 Items Named And Syntax Of Names 319

20.10 Mapping Domain Names To Addresses
20.11 Domain Name Resolution 321

20.12 Efficient Translation 322

20.13 Caching: The Key To Efliciency

20.14 Domain Server Message Format

2015 Compressed Name Format 327

311

313

316

319

323

324

20.16 Abbreviation Of Domain Names
329

328

20.17 Inverse Mappings

Samsung — Exhibit 1016 — Page 13

Contents

293

303

311

Samsung - Exhibit 1016 - Page 14

Contents

20.18 Pointer Queries 329

20.19 Object Types And Resource Record Contents 330

20.20 Obtaining Authority For A Subdomain 331

20.21 Summary 332

Chapter 21 The Socket Interface

21.1 Introduction 335

21.2 The UNIX I/O Paradigm And Network 1/0 336

21.3 Adding Network 1/0 to UNIX 336
21.4 The Socket Abstraction 337

21.5 Creating A Socket 337
21.6 Socket Inheritance And Termination 338

21.7 Specifying A Local Address 339

21.8 Connecting Sockets To Destination Addresses 340

21.9 Sending Data Through A Socket 341

21.10 Receiving Data Through A Socket 343

21.11 Obtaining Local And Remote Socket Addresses 344

21.12 Obtaining And Setting Socket Options 345

21.13 Specifying A Queue Length For A Server 346

21.14 How A Server Accepts Connections 346

21.15 Servers That Handle Multiple Services 347

21.16 Obtaining And Setting The Host Names 348

21.17 Obtaining And Setting The Internal Host Domain 349

21.18 4BSD UNIX Network Library Calls 349

21.19 Network Byte Order Conversion Routines 350

21.20 IP Address Manipulation Routines 351

21.21 Accessing The Domain Name System 352

21.22 Obtaining Information About Hosts 354

21.23 Obtaining Information About Networks 355

21.24 Obtaining Information About Protocols 355

21.25 Obtaining Information About Network Services 356

21.26 An Example Client 357

21.27 An Example Server 359

2128 Summary 362

Chapter 22 Applications: Remote Login (TELNET, Rlogin)

22.1 Introduction 365

22.2 Remote Interactive Computing 365
22.3 TELNET Protocol 366

22.4 Accommodating Heterogeneity 368

Samsung — Exhibit 1016 — Page 14

XV

335

365

Samsung - Exhibit 1016 - Page 15

xvi

22.5 Passing Commands That Control The Remote Side 370

22.6 Forcing The Server To Read A Control Function 372

22.7 TELNET Options 372

22.8 TELNET Option Negotiation 373

22.9 Rlogin (4BSD UNIX) 374

22.10 Summary 375

Chapter 23 Applications: File Transfer And Access (FTP, TFTP, NFS)

23.1 Introduction 377

23.2 File Access And Transfer 377
23.3 On-line Shared Access 378

23.4 Sharing By File Transfer 379

23.5 FTP: The Major TCP/1P File Transfer Protocol 379
23.6 FTP Features 380

23.7 FTP Process Model 380

23.8 TCP Port NumberAssignment 382

23.9 The User's View 0fFTP 382

23.10 An Example Anonymous FTP Session 384
23.11 TFTP 385

23.12 NFS 387

23.13 NFS Implementation 387

23.14 Remote Procedure Call (RPC) 388

23.15 Summary 389

Chapter 24 Applications: Electronic Mail (822, SMTP)

24.1 Introduction 391

24.2 Electronic Mail 391

24.3 Mailbox Names And Aliases 393

24.4 Alias Expansion And Mail Forwarding 393

24.5 The Relationship Of lnternetworking And Mail 394
24.6 TCP/1P Standard For Electronic Mail Service 396

24.7 Electronic Mail Addresses 397

24.8 Pseudo Domain Addresses 398

24.9 Simple Mail Transfer Protocol (SMTP) 399

24.10 Summary 401

Samsung — Exhibit 1016 — Page 15

Contents

377

391

Samsung - Exhibit 1016 - Page 16

11
rK.

1

-«e<v~—.A»~,.:..,.y_:.-rs-av.-.~_:—..-_-_v~-;..x..,,,,

Chapter 25 Applications: Internet Management (SNMP, CMOT) 403

25.1 Introduction 403

25 .2 The Level Of Management Protocols 403

25.3 Architectural Model 404

25.4 Protocol Architecture 406

25.5 Common Management Information Base 406

25.6 Examples of MIB Variables 407

25.7 The Structure Of Management Information 408

25.8 Formal Definitions Using ASN.1 409

25.9 Structure And Representation Of MIB Object Names 409

25.10 Simple Network Management Protocol 414

25.11 SNMP Message Format 416

25.12 Example Encoded SNMP Message 418

25.13 Summary 419

Chapter 26 Summary Of Protocol Dependencies 421

26.1 Introduction 421

26.2 Protocol Dependencies 421

26.3 Application Program Access 423

26.4 Summary 424

Chapter 27 TCP/IP Internet Research And Engineering Problems 427

27.1 Introduction 427

27.2 The Forces Stimulating Evolution 428

27.3 Routing In An Expanded Internet 430

27.4 Finding Users 431

27.5 Finding Services 432

27.6 Managing Networks 432

27.7 Automatic Configuration 433

27.8 New Applications 434

27.9 High-Speed Communication Technologies 437
27.10 Reliable Transactions 438

27.11 Security 439

27.12 Summary 439

Samsung — Exhibit 1016 — Page 16

Samsung - Exhibit 1016 - Page 17

xviii Contents

Appendix 1 A Guide To RFCs 441

Appendix 2 Glossary Of lnternetworking Terms and Abbreviations 477

Appendix 3 Standardization And Official TCP/IP Protocol Standards 513

Appendix 4 Examples Of Internet Information Archives 523

Bibliography 527

Index 535

Samsung — Exhibit 1016 — Page 17

Samsung - Exhibit 1016 - Page 18

....,..‘,-,,..,;.,-,;»__..

Foreword

This second edition of Professor Douglas Comer’s book provides an up-to-date

overview and introduction to TCP/IP. There have been many requests for the article,

report, or book to read to get started on understanding the TCP/IP protocols. This book
satisfies those requests. Writing an introduction to TCP/IP for the uninitiated is a very

difficult task. While combining the explanation of the general principles of computer

communication with the specific examples from the TCP/IP protocol suite, Doug Comer

has provided a very readable book.
While this book is specifically about the TCP/IP protocol suite, it is a good book

for learning about computer communications protocols in general. The principles of ar-

chitecture, layering, multiplexing, encapsulation, addressing and address mapping, rout-

ing, and naming are quite similar in any protocol suite, though, of course, different in

detail (See Chapters 3, 10, 18, 20, and 26).

Computer communication protocols do not do anything themselves. Like operat-

ing systems, they are in the service of application processes. Processes are the active

elements that request communication and are the ultimate senders and receivers of the

data transmitted. The various layers of protocols are like the various layers in a com-

puter operating system, especially the file system. Understanding protocol architecture

is like understanding operating system architecture. In this book Doug Comer has taken

the “bottom up” approach — starting with the physical networks and moving up in lev-

els of abstraction to the applications.

Since application processes are the active elements using the communication sup-

ported by the protocols, TCP/IP is an “interprocess communication” (IPC) mechanism.

While there are several experiments in progress with operating system style message

passing and procedure call types of IPC based on IP, the focus in this book is on more

traditional applications that use the UDP datagram or TCP logical connection forms of

IPC (See Chapters 11, 12, 18, 20, and 22-25). Typically in operating systems there is a

set of functions provided by the operating system to the application processes. This

system call interface usually includes calls for opening, reading, writing, and closing

files, among other things. In many systems there are similar system calls for IPC func-

tions including network communication. As an example of such an interface Doug Co-

mer presents an overview of the socket interface (See Chapter 21).

One of the key ideas inherent in TCP/IP and in the title of this book is “intemet—

working." The power of a communication system is directly related to the number of

entities in that system. The telephone network is very useful because (nearly) all the

telephones are in one network (as it appears to the users). Computer communication

Samsung — Exhibit 1016 — Page 18

Samsung - Exhibit 1016 - Page 19

xx Foreword

systems and networks are currently separated and fragmented. The goal of interconnec-

tion and intemetworking, to have a single powerful computer communication network,

is fundamental to the design of TCP/IP. Essential to intemetworking is addressing (See

Chapters 4, 5, 6, and 17), and a universal protocol — the Internet Protocol (See Chapters

7, 8, and 9). Of course, the individual networks have their own protocols which are

used to carry the IP datagrams (See Chapter 2), and there must be a mapping between

the individual network address and the IP address (See Chapters 5, 6, and 19).
To have an intemetwork the individual networks must be connected. The connect-

ing devices are called gateways. Further, these gateways must have some procedures

for forwarding data from one network to the next. The data is in the form of IP da-

tagrams and the destination is specified by an IP address, but the gateway must make a

routing decision based on the IP address and what it knows about the connectivity of

the networks making up the Internet. The procedures for distributing the current con-

nectivity information to the gateways are called routing algorithms, and these are

currently the subject of much study and development (See Chapters 13, 14, 15, 16, and
17).

Like all communication systems, the TCP/IP protocol suite is an unfinished sys-

tem. It is evolving to meet changing requirements and new opportunities. Thus, this

book is, in a sense, a snapshot of TCP/IP circa 1990. And, as Doug Comer points out,

there are many loose ends (See Chapter 27). One area that has changed significantly

since the first edition of this book is network management (See Chapter 25).

Most chapters end with a few pointers to material “for further study.’ Many of
these refer to memos of the RFC series of notes. This series of notes is the result of a

policy of making the working ideas and the protocol specifications developed by the

TCP/IP research and development community widely available. This availability of the

basic and detailed information about these protocols, and the availability of the early

implementations of them, has had much to do with their current widespread use. This

commitment to public documentation at this level of detail is unusual for a research ef-

fort, and has had significant benefits for the development of computer communication

(See Appendices 1, 3, and 4).

This book brings together information about the various pans of the TCP/IP archi-

tecture and protocols and makes it accessible. Its publication is a very significant mile-

stone in the evolution of computer communications.

9

Jon Postel,

Director, Communications Division
Information Sciences Institute

University of Southern California

June, 1990

Samsung — Exhibit 1016 — Page 19

Samsung - Exhibit 1016 - Page 20

.--.'-wtt‘<'.=r-r:-.d«*.-
L.. .
l‘.A_.v
1.

Preface

In the last century, railroads revolutionized the world by providing a transportation

network that moved raw materials and manufactured products. They made an industri-

alized society possible. Digital communication networks have started a new revolution

by providing the technology that transports the data needed by a society in which infor-
mation plays a key role. Networking already permeates industry, education, and

government. It has already begun to change the way we view the world by shrinking

geographic distances and forming new communities of people who interact frequently.
More important, network growth is explosive. The revolution is well underway.

To understand networking and the selection of topics discussed in this book, it is

important to realize that network research and development occurred in three stages.
Before the 1960s, the main question was, “How can we transmit bits across a commun-

ication medium efficiently and reliably?" The results include the development of infor-

mation theory, the sampling theorem, and other ideas commonly referred to as signal

processing. Beginning around the mid 1960s, emphasis shifted to packet switching and

the question became, “How can we transmit packets across a communication medium

efficiently and reliably?” The results include the development of packet switching

technologies, local area networks, and statistical analysis of network response to load.

From approximately the mid 1970s to the present, emphasis has centered on network ar-

chitecture and the question, “How can we provide communication services across a

series of interconnected networks?” The results include the development of intemet-

work technologies, protocol layering models, datagram and stream transport services,

and the client—server interaction paradigm.

Most textbooks and network courses concentrate on the first two stages of network

research, presenting the well—known theories of data communications and queueing

analysis. Although such information is important to engineers who design network

technologies and hardware products, most network architects purchase commercially

available network hardware. Instead of detailed knowledge about how bits or packets

flow across communication media, they need to know how to interconnect such

hardware and how to use the resulting system.

This text concentrates on the third stage of networking. It examines the architec-

ture of interconnected networks and explains the principles and protocols that make

such interconnected architectures function as a single unified communication system.

More important, it shows how an interconnected architecture can be used for distributed

computation.

Samsung - Exhibit 1016 - Page 20

Samsung - Exhibit 1016 - Page 21

xxii Preface

The entire text focuses on the concept of intemetworking in general and the

TCP/IP intemet technology in particular. lntemetworking is a powerful abstraction that

allows us to deal with the complexity of multiple underlying communication technolo-

gies. It hides the details of network hardware and provides a high level communication

environment. As the book shows, the ultimate goal of intemetworking is maximal in-

teroperability, that is, maximizing the ability of programs on diverse computer and net-

work systems to communicate reliably and efficiently.
The text reviews both the architecture of network interconnections as well as inter-

net communication services and the protocols needed to provide those services. By the

end of the book, the reader will understand how it is possible to interconnect multiple

physical networks into a coordinated system, how intemet protocols operate in that en-

vironment, and how application programs use the resulting system. As a specific exam-

ple, the reader learns the details of the Connected (TCP/IP) Internet, including the archi-

tecture of the gateway system and the application protocols it supports. In addition, the

book discusses some of the limitations of the intemet approach.

Writing about intemetworking is both exciting and challenging. It is challenging

because, as in any rapidly changing research area, nothing is stable. It is exciting be-

cause the TCP/IP Internet is an active, rapidly expanding entity. Researchers working

on it generate new ideas constantly and the possibilities seem endless. Looking back
over TCP/IP and the evolution of the Internet makes it clear that much has been accom-

plished. Knowing that the research has taken a little over a decade makes one realize
how intense the effort has been.

Designed as both a college text and as a professional reference, the book is written

at an advanced undergraduate or graduate level. For professionals, the book provides a

comprehensive introduction to the TCP/IP technology and the architecture of the Inter-

net. Although it is not intended to replace protocol standards, the book is a good start-

ing point for leaming about intemetworking because it provides a unifonn overview that

emphasizes principles. Moreover, it gives the reader perspective that can be extremely

difficult to obtain from individual protocol documents.

When used in the classroom, the text provides more than sufficient material for a

single semester network course at either the undergraduate or graduate level. Such a

course can be extended to a 2-semester sequence if accompanied by programming pro-

jects and readings from the literature. For undergraduate courses, it can be taken at face

value. Students should be expected to grasp the basic concepts described in the text,

and they should be able to describe or use them. At the graduate level, students should

be expected to use the material here as a basis for further exploration of current

research. They should understand it well enough to answer exercises or solve problems

that require them to explore subtleties and consequences. Many of the exercises suggest

such subtleties; solving them often requires students to read protocol standards and ap-

ply creative energy to comprehend consequences.

At all levels, hands—on experience sharpens the concepts and helps students gain

intuition. Thus, I encourage instructors to invent projects that force students to use in-

temetwork services and protocols. Although such experimentation is safest when the

instructional laboratory network is isolated from production computing facilities, we

have found that students exhibit the most enthusiasm, and benefit the most, when they
have access to the “real” TCP/IP Internet.

Samsung — Exhibit 1016 — Page 21

Samsung - Exhibit 1016 - Page 22

Preface X’““

The book is organized into four main parts. Chapters 1 and 2 form an introduction

that provides an overview and discusses existing technologies. In particular, Chapter 2
reviews physical network hardware. The intention is to provide basic intuition about

what is possible, not to spend inordinate time on hardware details. Chapters 3-12
describe the TCP/IP Internet from the viewpoint of a single host, showing the basic ser-

vices available and the protocols a host uses to access them. They cover the basics of

lntemet addressing and routing as well as the notion of protocol layering. Chapters

13-17 describe the architecture of an intemet when viewed globally. They explore the

core gateway system and the protocols gateways use to exchange routing information.

Finally, Chapters 18-26 discuss application level services available in the Internet.

They present the client—server model of interaction and give several examples of how
one can organize client and server software. The last section discusses electronic mail

and the domain name system, two topics that are extremely popular.

The chapters have been organized “bottom up.” They begin with an overview of

hardware and continue to build new functionality on top of it. This view will appeal to

anyone who has developed Internet software because it follows the same pattern one
uses in implementation. The concept of layering does not appear until Chapter 10. The

discussion of layering emphasizes the distinction between conceptual layers of func-

tionality and the reality of layered protocol software in which multiple objects appear at

each layer.

Although it is difficult to omit any chapter completely, the instructor will find that

students are often satisfied to know that something is possible without knowing the de-

tails. For example, one can skim through Chapters 5, 6, and 9 by covering only the

functionality and not the details of the protocols. In addition, several chapters (especial-

ly 16) contain engineering techniques. While such techniques are crucial to efficient

implementations, they can be skipped to save time.

A modest background is required to understand the material. The reader is expect-

ed to have programmed in a high level language and to be familiar with basic data

structures like stacks, queues, and trees. Readers need basic intuition about the organi-

zation of computer software into an operating system that supports concurrent program-

ming and application programs that users invoke to perform computation. Readers do

not need sophisticated mathematics, nor do they need to know information theory or

theorems from data communications; the book describes the physical network as a black

box around which an intemetwork can be built. It states design principles in English

and discusses motivations and consequences.

Many people have contributed to this book. I thank Scott Ballew, Steve Chapin,

Jim Griffioen, Chris Kent, Tim Korb, Dan Lynch, Thomas Narten, Vic Norman, Shawn

Ostermann, John Steele, Mike StJohns, Dan Torrney, Raj Yavatkar, and Preston Wilson

who all read drafts and made valuable comments. Craig Partridge supplied numerous

suggestions, including a few exercises, and corrected several technical errors. He and

Van Jacobson supplied the graph of lntemet round trip delays in Chapter 12. Dave

Stevens suggested both technical and grammatical improvements for the second edition.

Barry Shein graciously allowed me to use his example UNIX client and server code in

Appendix 1. Charlotte Tubis provided valuable editing. Special thanks go to my wife,

Chris, who has read the text more times than 1 can count and made extensive sugges-
tions.

Samsung — Exhibit 1016 — Page 22

Samsung - Exhibit 1016 - Page 23

Internetworking With TCP/IP

Samsung — Exhibit 1016 — Page 23

Samsung - Exhibit 1016 - Page 24

%

§

”'“«"'tf“':“".‘‘::.-"I3-1‘f-1“j~‘“':j..;;<t...t«";.*m'
St.

I.
, .1.

Introduction and Overview

1.1 The Need For An Internet

Data communication has become a fundamental part of computing. World—wide

networks gather data about such diverse subjects as atmospheric conditions, crop pro-

duction, and airline traffic. Groups establish electronic mailing lists so they can share

information of common interest. Hobbyists exchange programs for their home comput-

ers. In the scientific world, data networks are essential because they allow scientists to

send programs and data to remote supercomputers for processing, to retrieve the results,

and to exchange scientific information with colleagues.

Unfortunately, most networks are independent entities, established to serve the

needs of a single group. The users choose a hardware technology appropriate to their

communication problems. More important, it is impossible to build a universal network

from a single hardware technology because no single network suffices for all uses.

Some users need a high-speed network to connect machines, but such networks cannot

be expanded to span large distances. Others settle for a slower speed network that con-

nects machines thousands of miles apart.

Recently, however, a new technology has emerged that makes it possible to inter-

connect many disparate physical networks and make them function as a coordinated

unit. The new technology, called internetworking, or internetting, accommodates multi-

ple, diverse underlying hardware technologies by adding both physical connections and

a new set of conventions. The intemet technology hides the details of network

hardware and permits computers to communicate independent of their physical network
connections.

The intemet technology described in this book is an example of open system inter-

connection. It is called an open system because, unlike proprietary communication sys-

tems available from one specific vendor, the specifications are publicly available. Thus,

l

Samsung - Exhibit 1016 - Page 24

Samsung - Exhibit 1016 - Page 25

2 Introduction and Overview Chap. 1

anyone can build the software needed to communicate across an intemet. More impor-

tant, the entire technology has been designed to foster communication between

machines with diverse hardware architectures, to use almost any packet switched net-

work hardware, and to accommodate multiple computer operating systems.

To appreciate intemet technology, think of how it affects research. Imagine for a

minute the effects of interconnecting all the computers used by scientists. Any scientist

would be able to exchange data resulting from an experiment with any other scientist.

It would be possible to establish national data centers to collect data from natural

phenomena and make the data available to all scientists. Computer services and pro-

grams available at one location could be used by scientists at other locations. As a

result, the speed with which scientific investigations proceed would increase. In short,

the changes would be dramatic.

1.2 The TCP/IP Internet

Government agencies have realized the importance and potential of intemet tech-

nology for many years and have been funding research that will make possible a nation-

al intemet. This book discusses principles and ideas underlying the leading intemet

technology, one that has resulted from research funded by the Defense Advanced

Research Projects Agency (DARPA). The DARPA technology includes a set of network

standards that specify the details of how computers communicate, as well as a set of

conventions for interconnecting networks and routing traffic. Officially named the

TCP/IP Internet Protocol Suite and commonly referred to as TCP/IP (after the names of

its two main standards), it can be used to communicate across any set of interconnected

networks. For example, some corporations use TCP/IP to interconnect all networks

within their corporation, even though the corporation has no connection to outside net-

works. Other groups use TCP/IP for long haul communication among geographically
distant sites.

Although the TCP/IP technology is noteworthy by itself, it is especially interesting

because its viability has been demonstrated on a large scale. It forms the base technolo-

gy for a large intemet that connects most major research institutions, including universi-

ty, corporate, and government labs. The National Science Foundation (NSF), the

Department of Energy (DOE), the Department of Defense (DOD), the Health and Hu-

man Services Agency, (HHS) and the National Aeronautics and Space Administration

(NASA) all participate, using TCP/IP to connect many of their research sites with those

of DARPA. The resulting entity, known as the connected Internet, the DARPA/NSF In-

ternet, the TCP/IP Internet, or just the Internet'l', allows researchers at connected institu-

tions to share infonnation with colleagues across the country as easily as they share it

with researchers in the next room. An outstanding success, the Internet demonstrates

the viability of the TCP/IP technology and shows how it can accommodate a wide

variety of underlying network technologies.

‘i‘WE‘: will follow the usual convention of capitalizing Internet when referring specifically to the connected
intemet, and use lower case otherwise; we will also assume the term “inIemet" used without further qualifica-
tion refers to TCP/IP intemets.

Samsung — Exhibit 1016 — Page 25

Samsung - Exhibit 1016 - Page 26

lI

Sec. L2 The TCP/IP Internet 3

Most of the material in this book applies to any intemet that uses TCP/IP, but

some chapters refer specifically to the connected Internet. Readers interested only in

the technology should be careful to watch for the distinction between the Internet archi-

tecture as it exists and general TCP/[P intemets as they might exist. It would be a mis-

take, however, to ignore sections of the text that describe the connected Internet com-

pletely — many corporate networks are already more complex than the connected Inter-
net of ten years ago, and many of the problems they face have already been solved in
the connected Internet.

1.3 Internet Services

One cannot appreciate the technical details underlying TCP/[P without understand-

ing the services it provides. This chapter reviews intemet services briefly, highlighting
the services most users access, and leaving to later chapters the discussion of how com-

puters connect to a TCP/IP intemet and how the functionality is implemented.
Much of our discussion of services will focus on standards called protocols. Proto-

cols, like TCP and IP, give the formulas for passing messages, specify the details of

message fonnats, and describe how to handle error conditions. Most important, they al-

low us to discuss communication standards independent of any particular vendor’s net-

work hardware. In a sense, protocols are to communication what programming

languages are to computation. A programming language allows one to specify or

understand a computation without knowing the details of any particular CPU instruction

set. Similarly, a communication protocol allows one to specify or understand data com-

munication without depending on detailed knowledge of a particular vendor’s network
hardware.

Hiding the low—level details of communication helps improve productivity in

several ways. First, because programmers deal with higher-level protocol abstractions,

they do not need to learn or remember as many details about a given hardware confi-

guration. They can create new programs quickly. Second, because programs built us-

ing higher-level abstractions are not restricted to a particular machine architecture or

particular network hardware, they do not need to be changed when machines or net-

works are reconfigured. Third, because application programs built using higher-level

protocols are independent of the underlying hardware, they can provide direct communi-

cation for an arbitrary pair of machines. Programmers do not need to build special ver-

sions of application software to move and translate data between each possible pair of
machine types.

We will see that all network services are described by protocols. The next sections

refer to protocols used to specify application—level services as well as those used to de-

fine network—level services. Later chapters explain each of these protocols in more de-
tail.

Samsung - Exhibit 1016 - Page 26

Samsung - Exhibit 1016 - Page 27

4 Introduction and Overview Chap. 1

1.3.1 Application Level Internet Services

From the user’s point of view, a TCP/IP intemet appears to be a set of application

programs that use the network to carry out useful communication tasks. We use the

term interoperability to refer to the ability of diverse computing systems to cooperate in

solving computational problems. We say that intemet application programs exhibit a

high degree of interoperability. Most users that access the Internet do so merely by run-

ning application programs without understanding the TCP/IP technology, the structure

of the underlying intemet, or even the path their data travels to its destination; they rely

on the application programs to handle such details. Only programmers who write such

application programs view the intemet as a network and need to understand the details

of the technology.

The most popular and widespread Internet application services include:

0 Electronic mail. Electronic mail allows a user to compose memos and send them

to individuals or groups. Another part of the mail application allows users to read

memos that they have received. Electronic mail has been so successful that many

Internet users depend on it for normal business correspondence. Although many

electronic mail systems exist, it is important to understand that using TCP/IP

makes mail delivery more reliable. Instead of relying on intermediate machines to

relay mail messages, the TCP/IP mail delivery system operates by having the

sender’s machine contact the receiver’s machine directly. Thus, the sender knows

that once the message leaves the local machine, it has been successfully received
at the destination site.

0 File transfer. Although users sometimes transfer files using electronic mail, mail

is designed primarily for short, text files. The TCP/IP protocols include a file

transfer application program that allows users to send or receive arbitrarily large

files of programs or data. For example, using the file transfer program, one can

copy from one machine to another large data banks containing satellite images,

programs written in FORTRAN or Pascal, or an English dictionary. The system

provides a way to check for authorized users, or even to prevent all access. Like
mail, file transfer across a TCP/IP intemet is reliable because the two machines

involved communicate directly, without relying on intermediate machines to make

copies of the file along the way.

0 Remote login. Perhaps the most interesting Internet application, remote login al-

lows a user sitting at one computer to connect to a remote machine and establish

an interactive login session. The remote login makes it appear that the user’s ter-

minal or workstation connects directly to the remote machine by sending every

keystroke from the user’s keyboard to the remote machine and displaying every

character the remote computer prints on the user’s terminal screen. When the re-

mote login session terminates, the application returns the user to the local system.

Samsung — Exhibit 1016 — Page 27

Samsung - Exhibit 1016 - Page 28

"'a‘''""'*"-‘.'.'W,‘-"e’~"~t*‘“7-='-*1-ape»-:vqasgauvi».u»:~.r.I"!"S.“~«.,xa~..n-.~,-i.«s..=:~.-.-,.,.,- 7"IL.!f‘}«Bf‘K!'§.:yi3r~:'.;,;;,::‘,.';2$‘,$fit':a§i'.i'5i(fl§_”_""‘ ‘‘ g‘'" ,‘“'

Sec. 1.3 Internet Services 5

We will return to each of these applications in later chapters to examine them in more

detail. We will see exactly how they use the underlying TCP/IP protocols, and why

having standards for application protocols has helped ensure that they are widespread.

1.3.2 Network-Level Internet Services

A programmer who writes application programs that use TCP/IP protocols has an

entirely different view of an intemet than a user who merely executes applications like
electronic mail. At the network level, an intemet provides two broad types of service

that all application programs use. While it is unimportant at this time to understand the
details of these services, they cannot be omitted from any overview of TCP/IP:

0 Connectionless Packet Delivery Service. This service, explained in detail

throughout the text, forms the basis for all other intemet services. Connectionless

delivery is an abstraction of the service that most packet-switching networks offer.

It means simply that a TCP/IP intemet routes small messages from one machine

to another based on address information carried in the message. Because the con-

nectionless service routes each packet separately, it does not guarantee reliable,

in-order delivery. Because it usually maps directly onto the underlying hardware,

the Connectionless service is extremely efficient. More important, having connec-

tionless packet delivery as the basis for all intemet services makes the TCP/IP

protocols adaptable to a wide range of network hardware.

0 Reliable Stream Transport Service. Most applications need much more than

packet delivery because they require the communication software to recover au-

tomatically from transmission errors, lost packets, or failures of intermediate

switches along the path between sender and receiver. The reliable transport ser-

vice handles such problems. It allows an application on one computer to establish

a “connection” with an application on another computer, and then to send a large

volume of data across the connection as if it were a permanent, direct hardware

connection. Underneath, of course, the communication protocols divide the

stream of data into small messages and send them, one at a time, waiting for the

receiver to acknowledge reception.

Many networks provide basic services similar to those outlined above, so one

might wonder what distinguishes TCP/IP services from others. The primary distin-
guishing features are:

0 Network Technology Independence. While TCP/IP is based on conventional pack-

et switching technology, it is independent of any particular vendor's hardware.

The connected Internet includes a variety of network technologies ranging from

networks designed to operate within a single building to those designed to span

large distances. TCP/IP protocols define the unit of data transmission, called a

datagram, and specify how to transmit datagrams on a particular network.

Samsung — Exhibit 1016 — Page 28

Samsung - Exhibit 1016 - Page 29

6 Introduction and Overview Chap. 1

0 Universal Interconnection. A TCP/IP intemet allows any pair of computers to

which it attaches to communicate. Each computer is assigned an address that is

universally recognized throughout the intemet. Every datagram carries the ad-

dresses of its source and destination. Intermediate switching computers use the

destination address to make routing decisions.

0 End—to-End Acknowledgements. The TCP/IP intemet protocols provide ack-

nowledgements between the source and ultimate destination instead of between

successive machines along the path, even when the two machines do not connect

to a common physical network.

0 Application Protocol Standards. In addition to the basic transport-level services

(like reliable stream connections), the TCP/IP protocols include standards for

many common applications including electronic mail, file transfer, and remote lo-

gin. Thus, when designing application programs that use TCP/IP, programmers

often find that existing software provides the communication services they need.

Later chapters will discuss the details of the services provided to the programmer as

well as many of the application protocol standards.

1.4 History And Scope Of The Internet

Part of what makes the TCP/IP technology so exciting is its almost universal adop-

tion as well as the size and growth rate of the connected Internet. DARPA began work-

ing toward an intemet technology in the mid 1970s, with the architecture and protocols

taking their current form around 1977-79. At that time, DARPA was known as the pri-

mary funding agency for packet—switched network research and had pioneered many

ideas in packet-switching with its well-known ARPANET. The ARPANET used con-

ventional point—to-point leased line interconnection, but DARPA had also funded ex-

ploration of packet-switching over radio networks ‘and satellite communication channels.

Indeed, the growing diversity of network hardware technologies helped force DARPA

to study network interconnection, and pushed intemetworking forward.

The availability of research funding from DARPA caught the attention and imagi-

nation of several research groups, especially those researchers who had previous experi-

ence using packet switching on the ARPANET. DARPA scheduled informal meetings

of researchers to share ideas and discuss results of experiments. By 1979, so many
researchers were involved in the TCP/IP effort that DARPA formed an informal com-

mittee to coordinate and guide the design of the protocols and architecture of the evolv-

ing connected Internet. Called the Internet Control and Configuration Board (ICCB),

the group met regularly until 1983, when it was reorganized.

The connected Internet began around 1980 when DARPA started converting

machines attached to its research networks to the new TCP/IP protocols. The AR-

PANET, already in place, quickly became the backbone of the new Internet and was

used for many of the early experiments with TCP/IP. The transition to Internet technol-

ogy became complete in January 1983 when the Office of the Secretary of Defense

Samsung — Exhibit 1016 — Page 29

Samsung - Exhibit 1016 - Page 30

5«r

E
2.2

2'W.’-P7-'K-,2‘L‘”\!'.(.'xV:‘:;.'.~‘_.'-'~'.16-v,r.'A-10.-,;‘b‘r:.~g'.‘.

Sec_]_4 History And Scope Of The Internet 7

mandated that all computers connected to long-haul networks use TCP/IP. At the same

time, the Defense Communication Agency (DCA) split the ARPANET into two separate
networks, one for further research and one for military communication. The research

part retained the name ARPANET; the military part, which was somewhat larger, be-
came known as the MILNET.

To encourage university researchers to adopt and use the new protocols, DARPA

made an implementation available at low cost. At that time, most university computer

science departments were running a version of the UNIX operating system available in

the University of California’s Berkeley Software Distribution, commonly called Berke-

[ey UNIX or BSD UNIX. By funding Bolt Beranek and Newman, Inc. (BBN) to imple-
ment its TCP/IP protocols for use with UNIX, and funding Berkeley to integrate the

protocols with its software distribution, DARPA was able to reach over 90% of the
university computer science departments. The new protocol software came at a particu-

larly significant time because many departments were just acquiring second or third

computers and connecting them together with local area networks. The departments
needed communication protocols and no others were generally available.

The Berkeley software distribution became popular because it offered more than

basic TCP/IP protocols. In addition to standard TCP/IP application programs, Berkeley
offered a set of utilities for network services that resembled the UNIX services used on

a single machine. The chief advantage of the Berkeley utilities lay in their similarity to
standard UNIX. For example, an experienced UNIX user can quickly learn how to use

Berkeley’s remote file copy utility (rcp) because it behaves exactly like the UNIX file

copy utility except that it allows users to copy files to or from remote machines.
Besides a set of utility programs, Berkeley UNIX provides a new operating system

abstraction known as a socket that allows application programs to access communica-

tion protocols. A generalization of the UNIX mechanism for I/O, the socket has options

for several types of network protocols in addition to TCP/IP. Its design has been debat-

ed .since its introduction, and many operating systems researchers have proposed alter-

natives. Independent of its overall merits, however, the introduction of the socket

abstraction was important because it allowed programmers to use TCP/IP protocols with

little effort. Thus, it encouraged researchers to experiment with TCP/IP.

The success of the TCP/IP technology and the Internet among computer science

researchers led other groups to adopt it. Realizing that network communication would

soon be a crucial part of scientific research, the National Science Foundation took an

active role in expanding the TCP/IP Internet to reach as many scientists as possible.

Starting in 1985, it began a program to establish access networks centered around its six

supercomputer centers. In 1986 it expanded networking efforts by funding a new long

haul backbone network, called the NSFNET7‘, that eventually reached all its supercom-

puter centers and tied them to the ARPANET. Finally, in 1986 NSF provided seed mo-

ney for many regional networks, each of which now connects major scientific research

institutions in a given area. All the NSF-funded networks use TCP/IP protocols, and all
are part of the connected Internet.

«*The term NSFNET is sometimes used loosely to mean all the NSF—funded networking activities, but we
will use it to refer to the backbone. The next chapter gives more details about the technology.

Samsung - Exhibit 1016 - Page 30

Samsung - Exhibit 1016 - Page 31

8 Introduction and Overview Chap. 1

Within seven years of its inception, the Internet had grown to span hundreds of in-

dividual networks located throughout the United States and Europe. It connected nearly

20,000 computers at universities, government, and corporate research laboratories. Both

the size and the use of the Internet continued to grow much faster than anticipated. By

late 1987 it was estimated that the growth had reached 15% per month and remained

high for the following two years. By 1990, the connected Internet included over 3,000

active networks and over 200,000 computers.

Adoption of TCP/IP protocols and growth of the Internet has not been limited to

govemment-funded projects. Major computer corporations are all connected to the In-

ternet as well as many other large corporations including: oil companies, the auto indus-

try, electronics firms, and telephone companies. In addition, many companies use the

TCP/IP protocols on their internal corporate intemets even though they choose not to be

part of the connected Internet.

Rapid expansion introduced problems of scale unanticipated in the original design

and motivated researchers to find techniques for managing large, distributed resources.

In the original design, for example, the names and addresses of all computers attached

to the Internet were kept in a single file that was edited by hand and then distributed to

every site on the Internet. By the mid 1980s, it became apparent that a central database

would not suffice. First, requests to update the file would soon exceed the capacity of

people to process them. Second, even if a correct central file existed, network capacity

was insufficient to allow either frequent distribution to every site or on-line access by

every site.

New protocols were developed and a naming system was put in place across the

connected Internet that allows any user to resolve the name of a remote machine au-

tomatically. Known as the Domain Name System, the mechanism relies on machines

called name servers to answer queries about names. No single machine contains the en-

tire domain name database. Instead, data is distributed among a set of machines that

use TCP/IP protocols to communicate among themselves when answering a query.

1.5 The Original Internet Activities Board

Because the TCP/IP intemet protocol suite did not arise from a specific vendor or

from a recognized professional society, it is natural to ask, “who sets the technical

direction and decides when protocols become standard?” The answer is a group known

as the Internet Activities Board (IAB). The IAB provides the focus and coordination for

much of the research and development underlying the TCP/IP protocols and guides the

evolution of the connected Internet. It decides which protocols are a required part of

the TCP/IP suite and sets official policies.

Formed in 1983 when DARPA reorganized the Internet Control and Configuration

Board, the IAB inherited much of its charter from the earlier group. Its initial goals

were to encourage exchange among the principals involved in research related to

TCP/IP and the Internet and to keep researchers focused on common objectives.

Through the first six years, the IAB evolved from a DARPA-specific research group

Samsung — Exhibit 1016 — Page 31

Samsung - Exhibit 1016 - Page 32

w:.--‘

I

Sec. 1.5 The Original lntemet Activities Board 9

into an autonomous organization. During these years, each member of the IAB chaired

an Internet Task Force charged with investigating a problem or set of issues deemed to

be important. The IAB consisted of approximately ten task forces, with charters rang-

ing from one that investigated how the traffic load from various applications affects the
Internet to one that handled short term lntemet engineering problems. The IAB met

several times each year to hear status reports from each task force, review and revise

technical directions, discuss policies, and exchange information with representatives

from agencies like DARPA and NSF who funded lntemet operations and research.
The chairman of the IAB had the title Internet Architect and was responsible for

suggesting technical directions and coordinating the activities of the various task forces.
The IAB chairman established new task forces on the advice of the IAB and also

represented the IAB to others.
Newcomers to TCP/IP are sometimes surprised to learn that the IAB did not

manage a large budget; although it set direction, it did not fund most of the research and

engineering it envisioned. Instead, volunteers performed much of the work. Members
of the IAB were each responsible for recruiting volunteers to serve on their task forces,

for calling and running task force meetings, and for reporting progress to the IAB. Usu-

ally, volunteers came from the research community or from commercial organizations

that produced or used TCP/IP. Active researchers participated in lntemet task force ac-

tivities for two reasons. On one hand, serving on a task force provided opportunities to

learn about new research problems. On the other hand, because new ideas and problem

solutions designed and tested by task forces often became part of the TCP/IP lntemet

technology, members realized that their work had a direct, positive influence on the
field.

1.6 The New IAB Organization

By the summer of 1989, both the TCP/IP technology and the connected lntemet

had grown beyond the initial research project into production facilities on which

thousands of people depended for daily business. It was no longer possible to introduce

new ideas by changing a few installations overnight. To a large extent, the literally

hundreds of commercial companies that offer TCP/IP products determined whether pro-

ducts would interoperate by deciding when to incorporate changes in their software.

Researchers who drafted specifications and tested new ideas in laboratories could no

longer expect instant acceptance and use of their ideas. It was ironic that the research-

ers who designed and watched TCP/IP develop found themselves overcome by the com-

mercial success of their brainchild. In short, TCP/IP became a successful, production

technology and the market place began to dominate its evolution.

To reflect the political and commercial realities of both TCP/IP and the connected

lntemet, the IAB was reorganized in the summer of 1989. The chairmanship changed.

Researchers were moved from the IAB itself to a subsidiary group and a new IAB

board was constituted to include representatives from the wider community.

Samsung — Exhibit 1016 — Page 32

Samsung - Exhibit 1016 - Page 33

10 Introduction and Overview Chap. 1

The new IAB organization and names for subparts can best be explained by the di-

agram in Figure 1.1.

THE IAB ORGANIZATION

THE BOARD

research groups working groups

Figure 1.1 The structure of the IAB after the 1989 reorganization.

As Figure 1.1 shows, in addition to the Board itself, the IAB organization contains

two major groups: the Internet Research Task Force (IRTF) and the Internet Engineer-

ing Task Force (IETF).

As its name implies, the IETF concentrates on short—terrn or medium—terrn en-

gineering problems. The IETF existed in the old IAB structure, and its success provid-

ed part of the motivation for reorganization. Unlike most IAB task forces, which were

limited to a few individuals who focused on one specific issue, the IETF had grown to

include dozens of active members who worked on many problems concurrently. Before

the reorganization, the IETF had been divided into over 20 working groups, each work-

ing on a specific problem. Working groups held individual meetings to formulate prob-

lem solutions. In addition, the entire IETF met regularly to hear reports from working

groups and discuss proposed changes or additions to the TCP/IP technology. Usually

held three times annually, full IETF meetings attracted hundreds of participants and

spectators. The IETF had become too large for the chairman to manage.

The reorganized IAB structure retained the IETF, but split it into eight areas, each

with its own manager. The IETF chairman and the eight IETF area managers comprise

the Internet Engineering Steering Group (IESG), the individuals responsible for coo'rdi-

nating all efforts of IETF working groups.

Samsung — Exhibit 1016 — Page 33

Samsung - Exhibit 1016 - Page 34

Sec. 1.6 The New IAB Organization 1 1

Because the IETF was widely known throughout the Internet, and because its

meetings were widely recognized and attended, the name “IETF” was preserved in the

reorganization and still refers to the entire body, including the chairman, area managers,
and all members of working groups. Similarly, the name “IETF working group” was

retained.

Created during the reorganization, the Intemet Research Task Force was given a

name that denotes it as the research counterpart to the IETF. The IRTF coordinates

research activities related to TCP/IP protocols or intemet architecture in general. Like

the IETF, the IRTF has a small group called the Internet Research Steering Group or

IRSG, that sets priorities and coordinates research activities. Unlike the IETF, however,

the IRTF is currently a much smaller organization. Each member of the IRSG chairs a

volunteer Internet Research Group analogous to the IETF working groups; the IRTF is
not divided into areas.

1.7 Internet Request For Comments

We have said that no vendor owns the TCP/IP technology nor does any profession-

al society or standards body. Thus, the documentation of protocols, standards, and poli-

cies cannot be obtained from a vendor. Instead, DCA funds a group at SRI Internation-
al to maintain and distribute information about TCP/IP and the connected Internet.

Known as the Network Information Center or simply The NICT, the group handles

many administrative details for the Internet in addition to distributing documentation.

Documentation of work on the Internet, proposals for new or revised protocols, and

TCP/IP protocol standards all appear in a series of technical reports called Internet Re-

quests For Comments, or RFCs. (Preliminary versions of RFCs are known as Internet

drafts.) RFCs can be short or long, can cover broad concepts or details, and can be

standards or merely proposals for new protocols. The RFC editor is called the Deputy

Internet Architect, and is a member of the IAB. While RFCs are edited, they are not re-

fereed in the same way as academic research papers. Also, some reports pertinent to

the Internet were published in an earlier, parallel series of reports called Internet En-

gineering Notes, or IENs. Although the IEN series is no longer active, not all IENs ap-

pear in the RFC series. There are references to RFCs and IENs throughout the text.

Both the RFC and IEN note series are numbered sequentially in the chronological

order they are written. Each new or revised RFC is assigned a new number, so readers

must be careful to obtain the highest numbered version of a document; an index is

available to help identify the correct version.

The NIC distributes RFCs and IENs to the community. You can obtain RFCs

from the NIC by postal mail, by electronic mail, or directly across the Internet using a

file transfer program. Ask a local network expert how to obtain RFCs at your site, or
refer to Appendix I for further instructions on how to retrieve them.

+Pronounced “The Nick" after its acronym.

r. ’
i

i-.A .
F’.0'

gt":
is/I
»

Samsung — Exhibit 1016 — Page 34

Samsung - Exhibit 1016 - Page 35

12 Introduction and Overview Chap. I

1.8 Internet Protocols and Standardization

Readers familiar with data communication networks realize that many communica-

tion protocol standards exist. Many of them precede the Internet, so the question arises,

“Why did the Internet designers invent new protocols when so many international stan-

dards already existed?" The answer is complex, but follows a simple maxim:

Use existing protocol standards whenever such standards apply; in-

vent new protocols only when existing standards are insuflicient, but

be prepared to migrate to international standards when they become

available and provide equivalent functionality.

So, despite appearances to the contrary, the TCP/IP Internet Protocol Suite was not

intended to ignore or avoid international standards. It came about merely because none

of the existing protocols satisfied the need. The philosophy of adopting standards when

they become available also means that when international standards arise and provide

the same interoperability as TCP/IP, the Internet will migrate from TCP/IP to those new

standards. These ideas agree with the federal govemment, which has adopted an Opens

Systems Profile that specifies the adoption and use of the International Standards

Organization’s intemet technology whenever the technology offers the equivalent func-

tionality of TCP/IP.

1.9 Future Growth and Technology

Both the TCP/IP technology and the Internet continue to evolve. New protocols

are being proposed; old ones are being revised. NSF has added considerable complexi-

ty to the system by introducing its backbone network, several regional networks, and

hundreds of campus networks. Other groups continue to connect to the Internet as well.

The most significant change comes not from added network connections, however, but

from additional traffic. Physicists, chemists, and space scientists manipulate and ex-

change much larger volumes of data than computer science researchers who accounted

for much of the early Internet traffic. These other scientists introduced substantial load

when they began using the Internet, and the load has increased steadily as they continue
to find new uses.

To accommodate growth in traffic, the capacity of the NSFNET backbone has al-

ready been increased twice, making the current capacity approximately 28 times larger

than the original; an additional increase by another factor of 30 is scheduled for late

1990. At the current time, it is difficult to foresee an end to the need for more capacity.

Samsung - Exhibit 1016 - Page 35

Samsung - Exhibit 1016 - Page 36

Sec. 1.9 Future Growth and Technology 13

Growth in demands for networking should not be unexpected. The computer in-

dustry has enjoyed a continual demand for increased processing power and larger data
storage for many years. Users have only begun to understand how to use networks. In
the future we can expect continual increases in the demand for communications. Thus,

higher—capacity communication technologies will be needed to accommodate the

growth.
Figure 1.2 summarizes expansion of the Internet and illustrates an important com-

ponent of growth: the change in complexity arising because multiple autonomous
groups manage parts of the connected Internet. The initial designs for many subsystems
depended on centralized management. Much effort is needed to extend those designs to
accommodate decentralized management.

number of number of number of

networks computers managers

1980

1990

1995
Figure 1.2 Growth of the connected Internet. In addition to traffic increases

that result from increased size, the Internet faces complexity that

results from decentralized management of both development and
operations.

1.10 The FNC And The NREN

The Federal Networking Council (FNC)1‘ serves to coordinate activities of federal

agencies that fund research or development of TCP/IP and the Internet. The FNC

currently consists of representatives from DARPA, NSF, NASA, DOE, DOD, and HHS.

FNC members participate in IAB meetings and help suggest priorities for Internet

research and engineering projects.

Aware of increasing needs of their agencies and national priorities for high-speed
computing and communication, the FNC has worked with leaders in the technical com-

munity to produce a plan to evolve the current Internet into a National Research and

Education Network (NREN). According to the plan, the NREN will expand to eventual-

ly connect all educational institutions and research labs. Doing so will require higher

speed communication technologies as well as a shift from federally funded backbone

networks to commercially operated services. The FNC will use federal research funds

to stimulate research and development of the needed technologies.

1’The FNC was originally called the Federal Research Internet Coordination Committee (FRICC).

Samsung — Exhibit 1016 — Page 36

Samsung - Exhibit 1016 - Page 37

14 Introduction and Overview Chap. I

1.11 Organization Of This Text

This text is organized into two volumes. Volume I presents the TCP/IP technolo-

gy, applications that use it, and the architecture of the connected Internet in more detail.

It discusses the fundamentals of protocols like TCP and IP, and shows how they fit to-

gether in an intemet. In addition to giving details, it highlights the general principles

underlying network protocols and explains why the TCP/IP protocols adapt easily to so

many underlying physical network technologies. Volume II discusses in depth the

internal details of the TCP/IP protocols and shows how programmers use them. It

discusses the interface between programs and the protocols and shows how to create

and manage corporate intemets.

So far we have talked about the TCP/IP technology and the lntemet in general

terms, summarizing the services provided and the history of their development. The

next chapter provides a brief summary of the type of network hardware used throughout

the Internet. Its purpose is not to illuminate nuances of a particular vendor’s hardware,

but to focus on the features of each technology that are of primary importance to an in-

temet architect. Later chapters delve into the protocols and the Internet, fulfilling three

purposes: they explore general concepts and review the Internet architectural model,

they examine the details of TCP/IP protocols, and they look at standards for high—level

services like electronic mail and electronic file transfer. Chapters 3 through 12 review

fundamental principles and describe the network protocols software found in any

machine that uses TCP/IP. Later chapters describe services that span multiple

machines, including the propagation of routing information, name resolution, and appli-
cations like electronic mail.

Several appendices follow the main text. The first appendix contains a guide to

RFCs. It expands on the description of RFCs found in this chapter and gives examples
of what can be found in RFCs. It describes in detail how to obtain RFCs from the NIC

by electronic mail, postal mail, and file transfer. Finally, because the standard RFC in-

dex comes in chronological order, it presents a list of RFCs organized by topic to make

it easier for beginners to find RFCs pertinent to a given subject.

The second appendix contains an alphabetical list of terms and abbreviations used

throughout the literature and the text. Because beginners often find the new terminolo-

gy overwhelming and difficult to remember, they are encouraged to use the alphabetical

list instead of scanning back through the text.

Finally, the third appendix, intended as a reference, contains a list of the official

Internet protocols. It includes a description of the IAB terminology for distinguishing

between protocols that are recommended” and those that are “required,” as well as

listing the protocols themselves.

44

Samsung — Exhibit 1016 — Page 37

Samsung - Exhibit 1016 - Page 38

I

at

"V.

 Summary 15

Sec. 1.12

1.12 Summary

An intemet consists of a set of connected networks that act as a coordinated whole.

The chief advantage of an intemet is that it provides universal interconnection while al-

lowing individual groups to use whatever network hardware is best suited to their needs.
We will examine principles underlying intemet communication in general and the de-

tails of one intemet protocol suite in particular. We will also discuss how intemet pro-

t0C0lS are used in an intemet. Our example technology, called TCP/IP after its two

main protocols, was developed by the Defense Advanced Research Projects Agency. It

provides the basis for the connected Internet, a large, operational intemet that connects
most major scientific research institutions including many universities, corporations, and

government laboratories. The connected Internet is expanding rapidly and has continu-
ing support from the Defense Research Projects Agency, the National Science Founda-
tion, the Department of Energy, the National Aeronautics and Space Administration,

and other government agencies.

FOR FURTHER STUDY

Cerf’s The History Of The ARPANET [1989] and History of the Internet Activities

Board [RFC 1120] provide fascinating reading and point the reader to many early

research papers on TCP/IP and intemetworking. Denning [Nov-Dec 1989] provides a

different perspective on the history of the ARPANET. Jennings et. al. [1986] discusses

the importance of computer networking for scientists. Denning [Sept—Oct 1989] also

points out the importance of intemetworking and gives one possible scenario for a
world-wide intemet.

In [FCCSET], the Federal Coordinating Committee for Science, Engineering and

Technology suggests networking should be a national priority. The FRICC presents

their vision for a national intemet capable of interconnecting all educational and

research groups in the country and their plan for evolving the connected Internet toward

that vision over the next few years [I989]. The Government Open System Profile re-

port, GOSIP [I989], outlines government procurement procedures for OSI products.

The IETF publishes minutes from its regular meetings; these are available from the

Corporation for National Research Initiatives in Reston, VA. The Journal of Internet-

workings Research and Experience reports on intemetworking research, with emphasis

on experimental validation of ideas. The periodical Connexions [Lynch and Jacobsen
1987] contains articles about TCP/IP and the Internet as well as official statements of

policy from the IAB. Finally, the reader is encouraged to remember that the TCP/IP

protocol suite and the Internet continue to change; new information can be found in in

RFCs and at conferences like the annual Interop conference [Lynch 1987].

Samsung — Exhibit 1016 — Page 38

Samsung - Exhibit 1016 - Page 39

16 Introduction and Overview Chap. 1

EXERCISES

1.1 Explore application programs at your site that use TCP/IP.

1.2 Find out whether your site connects to the Internet.

1.3 TCP/IP products account for over a billion dollars per year in gross revenue. Read trade
publications to find a list of vendors offering such products.

Samsung — Exhibit 1016 — Page 39

Samsung - Exhibit 1016 - Page 40

2

Review of Underlying

Network Technologies

2.1 Introduction

It is important to understand that the Internet is not a new kind of physical net-

work. It is, instead, a method of interconnecting physical networks and a set of conven-

tions for using networks that allow the computers they reach to interact. While

hardware technology plays only a minor role in the overall design, it is important to be

able to distinguish between the low-level mechanisms provided by the hardware itself

and the higher-level facilities that the Internet protocol software provides. It is also im-

portant to understand how the facilities supplied by packet-switched technology affect

our choice of high~level abstractions.

This chapter introduces basic packet—switching concepts and terminology and then

reviews some of the underlying network hardware technologies that have been used in

TCP/IP intemets. Later chapters describe how these networks are interconnected and

how the TCP/IP protocols accommodate vast differences in the hardware. While the list

presented here is certainly not comprehensive, it clearly demonstrates the variety among

physical networks over which TCP/IP operates. The reader can safely skip many of the

technical details, but should try to grasp the idea of packet switching and try to imagine

building a homogeneous communication system using such heterogeneous hardware.

Most important, the reader should look closely at the details of the physical address

schemes the various technologies use; later chapters will discuss in detail how high-

level protocols use these physical addresses.

17

Samsung — Exhibit 1016 — Page 40

Samsung - Exhibit 1016 - Page 41

[8 Review of Underlying Network Technologies Chap. 2

2.2 Two Approaches To Network Communication

Whether they provide connections between one computer and another or between

terminals and computers, communication networks can be divided into two basic types:

circuit-switched and packet—switched)‘. Circuit-switched networks operate by forming a

dedicated connection (circuit) between two points. The U.S. telephone system uses cir-

cuit switching technology — a telephone call establishes a circuit from the originating

phone through the local switching office, across trunk lines, to a remote switching of-

fice, and finally to the destination telephone. While a circuit is in place, the phone

equipment samples the microphone repeatedly, encodes the samples digitally, and
transmits them across the circuit to the receiver. The sender is guaranteed that the sam-

ples can be delivered and reproduced because the circuit provides a guaranteed data

path of 64 Kbps (thousand bits per second), the rate needed to send digitized voice.

The advantage of circuit switching lies in its guaranteed capacity: once a circuit is esta-

blished, no other network activity will decrease the capacity of the circuit. One disad-

vantage of circuit switching is cost: circuit costs are fixed, independent of traffic. For

example, one pays a fixed rate when making a phone call, even when the two parties do
not talk.

Packet-switched networks, the type usually used to connect computers, take an en-

tirely different approach. In a packet—switched network, traffic on the network is divid-

ed into small pieces called packets that are multiplexed onto high capacity intermachine

connections. A packet, which usually contains only a few hundred bytes of data, carries

identification that enables computers on the network to know whether it is destined for

them or how to send it on to its correct destination. For example, a file to be transmit-

ted between two machines may be broken into many packets that are sent across the

network one at a time. The network hardware delivers the packets to the specified des-

tination, where network software reassembles them into a single file again. The chief

advantage of packet-switching is that multiple communications among computers can

proceed concurrently, with intermachine connections shared by all pairs of machines

that are communicating. The disadvantage, of course, is that as activity increases, a

given pair of communicating computers receives less of the network capacity. That is,

whenever a packet switched network becomes overloaded, computers using the network

must wait before they can send additional packets.

Despite the potential drawback of not being able to guarantee network capacity,

packet-switched networks have become extremely popular. The motivations for adopt-

ing packet switching are cost and performance. Because multiple machines can share a

network, fewer interconnections are required and cost is kept low. Because engineers

have been able to build high speed network hardware, capacity is not usually a problem.

So many computer interconnections use packet-switching that, throughout the remainder

of this text, the tenn network will refer only to packet—switched networks.

H11 fact, it is possible to build hybrid hardware technologies‘, for our purposes, only the difference in
functionality is imponant.

Samsung - Exhibit 1016 - Page 41

Samsung - Exhibit 1016 - Page 42

Sec. 2.3 Wide Area, Metropolitan Area, and Local Area Networks 19

2.3 Wide Area, Metropolitan Area, and Local Area Networks

. . Packet-switched networks that span large geographical distances (e.g., the con-

. .1. {mental U.S.) are fundamentally different from those that span short distances (e.g., a

, ,, single room). To help characterize the differences in capacity and intended use, packet
‘i switched technologies are often divided into three broad categories: wide area networks

A. (WANS), Metropolitan Area Networks (MANS), and Local Area Networks (LANs).
WAN technologies, sometimes called long haul networks, allow endpoints to be ar-

bitrarily far apart and are intended for use over large distances. Usually, WANs operate
at slower speeds than other technologies and have much greater delay between connec-

tions. Typical speeds for a WAN range from 9.6 Kbps to 45 Mbps (million bits per
second).

The newest type of network hardware, MAN technologies span intermediate geo-

graphic areas and operate at medium—to-high speeds. The name is derived from the
ability of a single MAN to span a large metropolitan area. MANs introduce less delay

than WANS, but cannot span as large a distance. Typical MANs operate at 56 Kbps to

100 Mbps.

LAN technologies provide the highest speed connections among computers, but sa-

crifice the ability to span large distances. For example, a typical LAN spans a small

area like a single building or a small campus and operates between 4 Mbps and 2 Gbps

, . (billion bits per second).

’ {i r’ We have already mentioned the general tradeoff between speed and distance: tech-
fi nologies that provide higher speed communication operate over shorter distances. There

are other differences among technologies in the three categories as well. In LAN tech-

, ,, nologies, each computer usually contains a network interface device that connects the

if machine directly to the network medium (e.g., a passive copper wire or coaxial cable).
Often, the network itself is passive, depending on electronic devices in the attached

computers to generate and receive the necessary electrical signals. In MAN technolo-

gies, a network contains active switching elements that introduce short delays as they

route data to its destination. In WAN technologies, a network usually consists of a

‘ series of complex packet switches interconnected by communication lines. The size of
the network can be extended by adding a new switch and another communication line.

Attaching a computer to a WAN means connecting it to one of the packet switches.

The switches introduce significant delays when routing traffic. Thus, the larger the

WAN becomes the longer it takes to route traffic across it.

The goal of network protocol design is to hide the technological differences

between networks, making interconnection independent of the underlying hardware.

The next sections present six examples of network technologies used throughout the In-
"‘. temet, showing some of the differences among them. Later chapters show how the

A TCP/IP software isolates such differences and makes the communication system in-

§ dependent of the underlying hardware technology.

Samsung — Exhibit 1016 — Page 42

Samsung - Exhibit 1016 - Page 43

20 Review of Underlying Network Technologies Chap. 2

2.4 Ethernet Technology

Ethernet is the name given to a popular local area packet-switched network tech-

nology invented at Xerox PARC in the early 1970s. The version described here was

standardized by Xerox Corporation, Intel Corporation, and Digital Equipment Corpora-

tion in 1978. As Figure 2.1 shows, an Ethernet consists of a coaxial cable about 1/2

inch in diameter and up to 500 meters long. A resistor is added between the center wire

and shield at each end to prevent reflection of electrical signals. Called the ether, the

cable itself is completely passive; all the active electronic components that make the

network function are associated with computers that are attached to the network.

OUTER INSULATING JACKET

BRAIDED METAL SHIELD

1/2 INCH POLYETHYLENE FILLER

CENTER WIRE

Figure 2.1 Coaxial cable used in an Ethernet

Ethemets may be extended with hardware devices called repeaters that relay electr-

ical signals from one cable to another. Figure 2.2 shows a typical use of repeaters in an

office building. A single backbone cable runs vertically up the building, and a repeater

attaches the backbone to an additional cable on each floor. Computers attach to the ca-

bles on each floor. Only two repeaters can be placed between any two machines, so the

total length of a single Ethernet is still rather short (1500 meters).

Extending an Ethernet by using repeaters has advantages and disadvantages. Re-

peaters are less expensive than other types of interconnection hardware, making them

the least costly way to extend an Ethernet. However, repeaters have two disadvantages.

First, because repeaters repeat and amplify all electrical signals, they also copy electri-

cal disturbance or errors that occur on one wire to the other. Second, because they con-

tain active electronic components and require power, they can fail. In an office environ—

ment, the failure may occur in an inconvenient location (eg, above the ceiling or in a

wiring closet), making it difficult to find and repair.

Samsung — Exhibit 1016 — Page 43

Samsung - Exhibit 1016 - Page 44

2* 3

Ethernet Technology 21

FLOOR 3

FLOOR 2

FLOOR 1

FIEPEATER

Figure 2.2 Repeaters used to join Ethernet cables in a building. At most two
repeaters can be placed between a pair of communicating
machines.

Connections to the ether are made by taps as Figure 2.3 shows. At each tap, a

small hole in the outer layers of cable allows small pins to touch the center wire and the

braided shield (some manufacturers’ connectors require that the cable be cut and a “T”

inserted). Each connection to an Ethernet has two major electronic components. A

transceiver connects to the center wire and braided shield on the ether, sensing and

sending signals on the ether. A host interface connects to the transceiver and communi-

cates with the computer (usually through the computer’s bus).

The transceiver is a small piece of hardware usually found physically adjacent to

the ether. In addition to the analog hardware that senses and controls the ether, a tran-

sceiver contains digital circuitry that allows it to communicate with a digital computer.

The transceiver can sense when the ether is in use and can translate analog electrical

signals on the ether to (and from) digital fomt. The transceiver cable that runs between

the transceiver and host interface carries power to operate the transceiver as well as sig-

nals to control its operation.
Figure 2.4 shows the interconnection between a host and a transceiver. Each host

interface controls the operation of one transceiver according to instructions it receives

from the computer software. To the operating system software, the interface appears to

be an input/output device that accepts basic data transfer instructions from the comput-

er, controls the transceiver to carry them out, interrupts when the task has been complet-

Samsung — Exhibit 1016 — Page 44

Samsung - Exhibit 1016 - Page 45

22 Review of Underlying Network Technologies Chap. 2

ed, and reports status information. While the transceiver is a simple hardware device,

the host interface can be complex (e.g., it may contain a microprocessor used to control

transfers between the computer memory and the ether).

cenren WIRE\

BRAIDED METAL SHIELD/

(3)

(b) TRANSCEIVER

TO HOST

INTERFACE

Figure 2.3 (a) A cutaway view of the cable showing the details of 2 electrical
connections between a transceiver and the cable at a tap, and (b)

the schematic diagram of an Ethernet with many taps.

2.4.1 Properties of an Ethernet

The Ethernet is a 10 Mbps broadcast bus technology with best-effort delivery se-

mantics and distributed access control. It is a bus because all stations share a single

communication channel; it is broadcast because all transceivers receive every transmis-

sion. The method used to direct packets from one station to just one other station or a

subset of all stations will be discussed later. For now, it is enough to understand that

transceivers do not filter transmissions — they pass all packets onto the host interface,

which chooses packets the host should receive and filters out all others. Ethernet is

called a best—eff0rt delivery mechanism because it provides no information to the sender

about whether the packet was delivered. For example, if the destination machine hap-

pens to be powered down, the packet will be lost but the sender will not be notified.

We will see later how the TCP/IP protocols accommodate best-effort delivery hardware.

Samsung — Exhibit 1016 — Page 45

Samsung - Exhibit 1016 - Page 46

Sec. 2.4 Ethernet Technology 23

ETHERNET

<—— TRANSCEIVER

HOST INTERFACE

BOARD

<——— COMPUTER BUS

Figure 2.4 The connection between an Ethernet cable and a computer.

Ethernet access control is distributed because, unlike some network hardware, there

is no central authority granting access. The Ethernet access scheme is called Carrier

Sense Multiple Access with Collision Detect (CSMA/CD). It is CSMA because multiple
machines can access the Ethernet simultaneously and each machine determines whether

the ether is idle by sensing whether a carrier wave is present. When a host interface has

a packet to transmit, it listens to the ether to see if a message is being transmitted (i.e.,

performs carrier sensing). When no transmission is sensed, the host interface starts

transmitting. Each transmission is limited in duration (because there is a maximum

packet size). Furthermore, the hardware must observe a minimum idle time between

transmissions, which means that no single pair of communicating machines can use the

network without giving other machines an opportunity for access.

2.4.2 Collision Detection and Recovery

When a transceiver begins transmission, the signal does not reach all parts of the

network simultaneously. Instead it travels along the cable at approximately 80% of the

speed of light. Thus, it is possible for two transceivers to both sense that the network is

idle and begin transmission simultaneously. When the two electrical signals cross they

become scrambled, such that neither is meaningful. Such incidents are called collisions.

The Ethernet handles collisions in an ingenious fashion. Each transceiver monitors

the cable while it is transmitting to see if a foreign signal interferes with its transmis-

sion. Technically, the monitoring is called collision detect (CD), making the Ethernet a

Samsung — Exhibit 1016 — Page 46

Samsung - Exhibit 1016 - Page 47

24 Review of Underlying Network Technologies Chap. 2

CSMA/CD network. When a collision is detected, the host interface abons transmis-

sion, waits for activity to subside, and tries again. Care must be taken or the network

could wind up with all transceivers busily attempting to transmit and every transmission

producing a collision. To help avoid such situations, Ethernet uses a binary exponential

backoff policy where a sender delays a random time after the first collision, twice as

long if a second attempt to transmit also produces a collision, four times as long if a

third attempt results in a collision, and so on. The idea behind exponential backoff is

that in the unlikely event many stations attempt to transmit simultaneously, a severe

traffic jam could occur. In such a jam, there is high probability two stations will choose

random backoffs that are close together. Thus, the probability of another collision is

high. By doubling the random delay, the exponential backoff strategy quickly spreads

the stations’ attempts to retransmit over a reasonably long period of time, making the

probability of further collisions extremely small.

2.4.3 Ethernet Capacity

The standard Ethernet is rated at 10 Mbps, which means that data can be transmit-

ted onto the cable at 10 million bits per second. Although many recent computers can

generate data at Ethernet speed, raw network speed should not be thought of as the rate

at which two computers can exchange data. Instead, network speed should be thought

of as a measure of network total traffic capacity. Think of a network as a highway con-

necting multiple cities. High speeds make it possible to carry high traffic loads, while

low speed means the highway cannot carry as much traffic. A 10 Mbps Ethernet, for

example, can handle a few computers that generate heavy loads, or many computers that

generate light loads.

2.4.4 Ethernet Variations

Recent advances in technology have made it possible to build Ethemets that do not

need the electrical isolation of coaxial cable. Called twisted pair Ethernet, the technolo-

gy allows a conventional 10 Mbps Ethemet to pass across a pair of copper wires much

like the ones used to interconnect telephones. The advantage of using twisted pair is

that it reduces cost and makes it possible for many groups to use existing wiring instead

of adding new cable.

When high capacity is not needed, the network can still use Ethemet-like technolo-

gy, but operate at slightly lower speed. The advantages are primarily economic. Lower

speed means less complicated hardware and lower cost. One reason lower speed net-

works cost less is that the interfaces require less buffer memory and can be built from

inexpensive integrated circuits.

Costs can also be reduced if high—speed digital circuits can connect directly to the

Cable without using a transceiver. In such cases, an Ethernet can be implemented with
standard coaxial cable like that used for cable television. Called thin-wire Ethernet, the

thin cable is inexpensive, but supports somewhat fewer Connections and covers slightly
shorter distances than standard Ethernet cable. Workstation manufacturers find thin

Samsung — Exhibit 1016 — Page 47

Samsung - Exhibit 1016 - Page 48

Sec, 24 Ethernet Technology 25

wire Ethernet an especially attractive system because they can integrate Ethernet

hardware into single board computers and mount BNC—style connectors directly on the

back of the machine.

Because they require no special tools, BNC connectors make it possible for users

to connect workstations to Ethemets. Of course, allowing users to add their own

machines to networks has disadvantages. It means that the network is susceptible to

disconnection, incorrect wiring, or intentional abuse. In most situations, however, the

advantages outweigh the disadvantages.

Another method of reducing costs uses a single physical cable to carry multiple, in-

dependent Ethemets. Known as broadband, the technology works much like broadcast
radio. The transmitter multiplexes multiple Ethemets onto a single cable by assigning

each Ethernet a unique frequency. Receivers must be “tuned” to the correct frequency

so they receive only the desired signal and ignore others. Although the equipment

needed to connect to a broadband cable is somewhat more expensive than equipment
needed to connect to a conventional baseband cable, broadband eliminates the cost of

laying multiple cables.

2.4.5 Ethernet Addressing

An Ethernet host interface provides an addressing mechanism that keeps unwanted

packets from being passed to the host computer. Recall that each interface receives a

copy of every packet — even those addressed to other machines. The hardware filters

packets, ignoring those that are addressed to other machines and passing to the host

only those packets addressed to it. The addressing mechanism and filter are needed to

prevent a computer from being overwhelmed with incoming data.

To allow a computer to determine which packets are meant for it, each computer

attached to an Ethernet is assigned a 48-bit integer known as its Ethernet address. Eth-

ernet hardware manufacturers purchase blocks of Ethernet addressesT and assign them

in sequence as they manufacture Ethernet interface hardware. Thus, no two hardware
interfaces have the same Ethernet address.

Usually, the Ethernet address is fixed in machine readable form on the host inter-

face hardware. Because Ethernet addresses belong to hardware devices, they are some-

times called hardware addresses or physical addresses. Note the following important
property of Ethernet physical addresses:

Physical addresses are associated with the Ethernet interface

hardware; moving the hardware interface to a new machine or re-

placing a hardware interface that has failed changes the physical ad-
dress.

Knowing that Ethernet physical addresses can change will make it clear why higher lev-

els of the network software are designed to accommodate such changes.

I ’rThe Institute for Electrical and Electronic Engineers (IEEE) manages the Ethernet address space and as-signs addresses as needed.

Samsung — Exhibit 1016 — Page 48

Samsung - Exhibit 1016 - Page 49

26 Review of Underlying Network Technologies Chap. 2

The 48-bit Ethernet address does more than specify a single hardware interface. It

can be one of three types:

0 The physical address of one network interface,
0 The network broadcast address, or
0 A multicast address.

By convention, the broadcast address (all Is) is reserved for sending to all stations

simultaneously. Multicast addresses provide a limited form of broadcast in which a

subset of the computers on a network agree to respond to a multicast address. Every

computer in a multicast group can be reached simultaneously without affecting comput-
ers outside the multicast group.

To accommodate broadcast and multicast addressing, Ethemet interface hardware

must recognize more than its physical address. A host interface usually accepts at least

two kinds of transmissions: those addressed to the interface physical address and those

addressed to the broadcast address. Some interfaces can be programmed to recognize

multicast addresses or even alternate physical addresses. When the operating system

starts, it initializes the Ethemet interface, giving it a set of addresses to recognize. The

interface then scans each transmission, passing on to the host only those transmissions

designated for one of the specified addresses.

2.4.6 Ethernet Frame Format

The Ethemet should be thought of as a Iink—level connection among machines.

Thus, it makes sense to view the data transmitted as aframeT. Ethernet frames are of

variable length, with no frame smaller than 64 octetsi or larger than 1518 octets

(header, data, and CRC). As in all packet-switched networks, a frame must identify its

destination. Figure 2.5 shows the Ethernet frame format that contains the physical

source address as well as the physical destination address.

In addition to identifying the source and destination, each frame transmitted across

the Ethernet contains a preamble, type field, data field, and Cyclic Redundancy Check

(CRC). The preamble consists of 64 bits of alternating 0s and Is to help receiving

nodes synchronize. The 32-bit CRC helps the interface detect transmission errors: the

sender computes the CRC as a function of the data in the frame, and the receiver

recomputes the CRC to verify that the packet has been received intact.

The frame type field contains a 16-bit integer that identifies the type of the data be-

ing carried in the frame. From the Internet point of view, the frame type field is essen-

tial because it means Ethernet frames are self—identifying. When a frame arrives at a

given machine, the operating system uses the frame type to determine which protocol

software module should process the frame. The chief advantages of self—identifying

frames are that they allow multiple protocols to be used together on a single machine

and they allow multiple protocols to be intermixed on the same physical network

without interference. For example, one could have an application program using Inter-

net protocols while another used a local experimental protocol. The operating system

‘lThe term frame derives from communication over serial lines in which the sender “frames" the data by
adding special characters before and after the transmitted data.

:The term octet refers to an 8-bit quantity, often called a byte.

Samsung — Exhibit 1016 — Page 49

Samsung - Exhibit 1016 - Page 50

Sec. 2.4 Ethernet Technology 27

would decide where to send incoming packets based on their frame type. We will see
that the TCP/IP protocols use self—identifying Ethernet frames to distinguish among
several protocols.

Destination Source Frame

Preamble Address Address Type Frame Data CRC

@ 48 bits m 368-12000 bits m

Figure 2.5 The fonnat of a frame (packet) as it travels across an Ethernet.
Fields are not drawn to scale.

2.4.7 Bridges and Their Importance

We already discussed the use of Ethernet repeaters as one technique for extending

a physical Ethernet to multiple physical wire segments. Although repeaters were a po-
pular extension many years ago, most sites now use bridges to interconnect segments.
Unlike a repeater, which replicates electrical signals, a bridge replicates packets. In

fact, a bridge is a fast computer with two Ethernet interfaces and a fixed program. The

bridge operates both Ethernet interfaces in promiscuous mode, meaning that they cap-

ture all valid packets that appear on their respective Ethemets and deliver them to the

processor in the bridge. If the bridge connects two Ethemets. El and E3, the software
takes each packet arriving on E, and transmits it on E3, and vice versa.

Bridges are superior to repeaters because they do not replicate noise, errors, or

malformed frames; a completely valid frame must be received before it will be repro-

duced. Furthermore, bridge interfaces follow the Ethernet CSMA/CD rules, so colli-

sions and propagation delays on one wire remain isolated from those on the other. As a

, result, an (almost) arbitrary number of Ethemets can be connected together with
. :4 bridges. Note that bridges hide the details of interconnection: a set of bridged segments

V, acts like a single Ethernet. A computer can communicate across a bridge using exactly

1. the same hardware signals it uses to communicate on its own segment.
A Most bridges do much more than replicate frames from one wire to another: they

make intelligent decisions about which frames to forward. Such bridges are called

adaptive, or learning bridges. An adaptive bridge consists of a computer with two Eth-

ernet interfaces. The software in an adaptive bridge keeps two address lists, one for

each interface. When a frame arrives from Ethernet E1, the adaptive bridge adds the

48-bit Ethernet source address to the list associated with El. Similarly, when a frame

arrives from Ethernet E3, the bridge adds the source address to the list associated with

E2. Thus, over time the adaptive bridge will learn which machines lie on E, and which

lie on E2.

After recording the source address of a frame, the adaptive bridge uses the destina-
tion address to determine whether to forward the frame. If the address lists show that

the destination lies on the Ethernet from which the frame arrived, the bridge does not
forward the frame. If the destination is not in the address list (i.e., the destination is a

Samsung — Exhibit 1016 — Page 50

Samsung - Exhibit 1016 - Page 51

28 Review of Underlying Network Technologies Chap. 2

broadcast or multicast address or the bridge has not yet learned the location of the desti-

nation), the bridge forwards the frame to the other Ethernet.

The advantages of adaptive bridges should be obvious. Because the bridge uses

addresses found in normal traffic, it is completely automatic — humans are not required

to program the bridge with specific addresses. Because a bridge isolates traffic when

forwarding is unnecessary, it can be used to improve the performance of an overloaded

network (note that bridges work exceptionally well to partition load in a workstation en-
vironment where sets of workstations direct most of their traffic to a file server). To
summarize:

An adaptive Ethernet bridge connects two Ethernet segments, for-

warding frames from one to the other. It uses source addresses to

learn which machines lie on which Ethernet segment and it combines

information learned with destination addresses to eliminate forward-

ing when unnecessary.

From the TCP/IP point of view, bridged Ethemets are merely another form of physical

network connection. The important point is:

Because the connection among physical cables provided by bridges

and repeaters is transparent to machines using the Ethernet, we think

of bridged Ethernets as a single physical network system.

Most commercial bridges are much more sophisticated and robust than our descrip-

tion indicates. When first powered up, they check for other bridges and learn the topol-

ogy of the network. They use a distributed spanning—tree algorithm to decide how to

forward frames. In particular, the bridges decide how to propagate broadcast packets so

only one copy of a broadcast frame is delivered to each wire. Without such an algo-

rithm, Ethemets and bridges connected into a cycle would produce catastrophic results

because they would forward broadcast packets in both directions simultaneously.

2.5 ProNET Token Ring Technology

ProNET-10 is the name of a commercial local area network product that offers an

interesting alternative to the Ethernet. Based on networking research at universities, and

manufactured by Proteon Incorporated, a proNET—10 consists of a passive wiring sys-

tem that interconnects computers. Like the Ethernet, the 1ow—speed version operates at

10 Mbps'l', is limited to short geographic distances, and requires attached computers to
have an active host interface.

Unlike the Ethernet or related bus technologies, proNET—1O requires hosts to be

wired in a one-way ring and uses an access technology known as token passing. The.

primary distinguishing feature of token-passing systems is that they achieve fair access

by having all machines take turns using the network. At any time, exactly one machine

TA related Proteon product operates at 80 Mbps.

Samsung — Exhibit 1016 — Page 51

Samsung - Exhibit 1016 - Page 52

Sec. 2.5 ProNET Token Ring Technology 29

holds a token which grants that machine the right to send a packet. After sending its

packet, the machine passes the token to the next machine in sequence, and so on. Thus,
when none of the machines has anything to send, they continually pass the token

around; when they all have packets to send, they take turns sending them.

Although token passing can be used with Ethemet—like bus topologies, ring topolo—

gies like those used by proNET—10 make token passing especially simple because the
physical connections determine the sequence through which the token passes. The key
is that a given machine does not know the identity of the machine to which it passes the
token. We will soon see why token circulation based on physical order is important,

and how it can be used to make the ring more reliable.

To understand how a ring operates, we need to look at the hardware. Physically,

the ring network is not a continuous wire — it consists of point—to-point connections

among the host interfaces of computers on the net. At each host, one wire carries in-

coming signals, and another carries outgoing signals.

Conceptually, each host interface operates in one of three modes: copy mode,

transmit mode, or recovery mode. As Figure 2.6 shows, the first two modes represent

normal operation, with the choice depending on whether the machine currently holds
the token.

Figure 2.6 A token ring network with interface I, in transmit mode, holding

the token and sending a packet to interface 12. Other interfaces
are in copy mode. The sender always receives back the bits be-

ing sent; other interfaces extract a copy of the packet for their
host only if the address matches.

When not holding the token, an interface runs in copy mode, reading bits from the in-
coming wire and copying them to the outgoing wire. In copy mode, the interface also

watches the data stream to find packets addressed to the local machine, placing a copy
of such packets in the machine’s memory. When holding the token, the interface

Samsung — Exhibit 1016 — Page 52

Samsung - Exhibit 1016 - Page 53

30 Review of Underlying Network Technologies Chap. 2

operates in transmit mode, sending a packet on the outgoing wire and verifying correct-

ness by reading it back from the incoming wire.

It is important to understand that ProNET-l0 is a LAN technology that only has

small propagation delays. When constructed from shielded copper cable, the ring can

span at most a few adjacent buildings. When fiber optic cable is used, the ring can span

longer distances (e.g., an entire campus). In any case, propagation delays are short. As

a consequence, signals can propagate through the entire ring and return to the sender so

quickly that the beginning of a packet completes its trip around the ring while the

sender continues to transmit. The advantage of short propagation delay is that a station

can determine quickly whether the ring is broken. It can also determine whether electri-

cal interference or broken hardware along the path introduces any errors into the packet.
We will discuss both of these features below.

2.5.1 ProNET-10 Addressing

Quite unlike the Ethernet, proNET-l0 interface hardware does not have fixed ad-

dresses assigned by the manufacturer. Instead, each interface comes with a set of 8

switches that allows a system administrator to choose any of 255 possible addresses

(thus, a given proNET-l0 network is limited to 255 machines). The address must be

selected and configured using physical switches on the board. It cannot be changed

quickly or easily once the interface is installed, nor can it be changed by software.

However, making an address configurable has two important advantages. First, it

means that proNET-l0 addresses can be much smaller than Ethernet addresses (8 bits

instead of 48 bits). Second, it means:

Because customers can change proNET-l0 addresses when installing

boards, the network hardware address of a machine need not change

when the host interface hardware is replaced.

Of course, making hardware addresses configurable does have a disadvantage. Un-

like Ethernet addresses, the configurable address scheme used by proNET-l0 allows ad-

dress conflicts. An installer is required to ensure that each interface on a given ring is

assigned a unique address between 0 and 254. An address of all Is (255) is reserved for

broadcast traffic. As we will see later, when using proNET-l0 with TCP/IP, installers

should avoid assigning any host address zero.

2.5.2 ProNET-10 Frame Format

Figure 2.7 shows the proNET-l0 frame format. Fields are specified in bits because

the network is bit-oriented and does not always align data on octet boundaries. The net-

work hardware requires the data field to be an exact multiple of octets, making it easy

to transfer data to the host computer’s memory. Like the Ethernet, the hardware only

understands some parts of the frame fonnat; software supplies and uses other parts.

From the intemet designer’s point of view, the distinction is unimportant.

Samsung — Exhibit 1016 — Page 53

Samsung - Exhibit 1016 - Page 54

3.1. .,

.- -1 -

t ,
:2 :

ProNET Token Ring Technology 31Sec. 2.5

Start Dest. Src. Frame Frame End of
of M59, Addr. Addr. Type Data Msg. Parity Refuse

@%%% 0-16352 bits%E

Figure 2.7 The proNET- 10 frame format. Fields are not shown to scale.

Each frame begins with a start of message field, followed by two octets of destina-

tion and source address. The frame type field consists of three octets, but only the first

is currently used; the last two must contain 0. Following the data portion of the frame

comes an End of Message field, a single parity bit, and a ‘refused bit. Either another

frame or the token follows immediately after the end of a frame. Note that, like the

Ethernet, proNET—l0 frames are self-identifying.
In contrast to Ethernet, which uses a complex 32-bit CRC to check for transmis-

sion errors, proNET—l0 uses only a single parity. To understand why only one bit is

needed, recall that proNET is a LAN technology with low propagation delay. Thus, the

sending site receives a copy of the frame during transmission, and can easily compare

bits in the copy to see if they have been changed. In fact, the parity bit is unnecessary

except as a check on the refused bit.

The hardware uses aflag consisting of 7 contiguous 1 bits to distinguish fields like

end—of—message from user data. The token and beginning of a frame also start with a

flag. Whenever 7 contiguous 1 bits occur in the user’s data, the hardware modifies the

sequence to ensure that the receiver can distinguish it from a flag. The receiver reverses

the modification to deliver exactly the same data that was sent.

2.5.3 proNET-10 Token Recovery

Because a token passing ring relies on all hosts to forward the token when they fin-

ish transmitting, failures at one node can stop the ring. Suppose, for example, that a

malfunction or electrical interference damaged the token. Unless the ring included a
mechanism to recover, all transmission would cease. To recover from token loss, the

proNET—l0 has each station run two timers. One timer, called a flag timer, is reset

whenever the station detects an activity (e.g., a frame or a token) and the other, called a

token timer, is reset when a token arrives. If either timer has expired when the station

has a packet to send, the station changes to recovery mode and eventually generates a

new token for the ring. On an otherwise idle ring, the token circulates continually.

Thus, the flag timer expires quickly (after 3 ms) if the ring is completely idle. The to-

ken timer must allow for large packet transmissions by up to 255 other stations, so it

has a much longer expiration time (400 ms). Ring technologies that allow more stations

or larger packets use longer expiration times (e.g., proNET-80 uses 700ms).

Usually, the first station to enter recovery mode assumes it holds the token and

transmits its packet. Following the packet, it transmits the token as if nothing had gone

wrong. As it transmits, the station monitors the ring to check that the packet circulates

Samsung - Exhibit 1016 - Page 54

Samsung - Exhibit 1016 - Page 55

32 Review of Underlying Network Technologies Chap. 2

completely. If so, the ring has recovered and everything proceeds as usual. In the im—

probable case that two stations simultaneously attempt to transmit after a token loss,

they detect the problem because they do not receive back their own transmission. The

two stations back off, wait a random time, and try again. To guarantee that they do not

both wait exactly the same amount of time, each station computes a delay proportional

to its hardware address. Thus, if two boards begin circulating packets simultaneously,

only one survives. The recovery algorithm is both efficient and reliable. It guarantees

that in only a few trips around the ring, one station will decide it holds the token and all

other stations will agree.

2.5.4 proNET-10 Star-Shaped Ring

In practice, most installations configure proNET—10 networks into star—shaped rings

to improve reliability. The idea is to use a passive wire center as the hub of a physical

star topology even though the network operates logically as a ring. Figure 2.8 illus-
trates such a connection.

INTERFACE

FOR HOST,

WIRE CENTER

RELAY FOR HOST 1

INTERFACE

FOR HOST,

INTERFACE

FOR HOST,

Figure 2.8 The connection of three hosts through a passive wire center. Be-

cause it receives no power, relay R3 passes signals through direct-
ly. Logically, the network is a ring; physically, it is a star.

In the Figure, Relay R3 does not receive power because there is no host connection. R3

closes the ring and connects R2 to R4. Because other relays receive power, they connect

their respective hosts into the ring. Thus, an electrical signal sent from Host 4 passes

through relay R4, to relay R,, up to the interface on Host 1, back to relay RI, over to re-

lay R2, and so on.

Samsung — Exhibit 1016 — Page 55

Samsung - Exhibit 1016 - Page 56

V Sec 2 5 ProNET Token Ring Technology 33

The wire center has no active components, but uses sensitive relays powered by

current flowing over host connections. A host supplies low voltage direct current to

power the relay as well as the signal that encodes data over a single set of wires. Elec-
tronics in the wire center separate the DC power from the AC signal. As long as a
machine has power, its relay at the wire center keeps it connected into the ring. When

me machine is powered down, however, current stops flowing to the wire center, and

me corresponding relay changes state, disconnecting the host and connecting other

machines into the ring. Thus, the network continues to operate even if some of the at-

tached machines lose power (of course, a machine failure may stop the network for a

few milliseconds while the remaining nodes recover the token). Adding to the reliabili-

(y, the vendor has designed the proNET—l0 interface on two boards, a controller that
can participate in copy mode and token recovery without any help from the CPU, and a

computer interface that depends on the CPU to read or write packets. Using two boards
isolates the rest of the network from operating system failures on a given host.

5. 53 s.-
/._,v.

:15’

\
§:"€3

2.6 ARPANET Technology

One of the oldest wide area packet-switched networks, the ARPANET, was built

by the Defense Advanced Research Projects Agency (DARPA), at a time when the

agency was still called ARPA. DARPA awarded a contract for the development of AR-

PANET software to Bolt, Beranek and Newman of Cambridge, MA in the fall of 1968.

By September of 1969, the first pieces of the ARPANET were in place.

g ‘ The ARPANET served as a testbed for much of the research in packet—switching.

,3‘ In addition to its use for network research, researchers in several universities, military
is bases, and government labs regularly used the ARPANET to exchange files and elec-

tronic mail and to provide remote login among their sites. In 1975, control of the net-

work was transferred from DARPA to the U.S. Defense Communications Agency

(DCA). The DCA made the ARPANET part of the Defense Data Network (DDN), a

program that provides multiple networks as part of a world—wide communication system
for the Department of Defense.

In 1983 the Department of Defense partitioned the ARPANET into two connected

networks, leaving the ARPANET for experimental research and forming the MILNET

for military use. MILNET is restricted to unclassified data. Although under normal cir-

cumstances, both ARPANET and MILNET agreed to pass traffic to each other, controls
were established that allowed them to be disconnectedt. Because the ARPANET and

MILNET used the same hardware technology, our description of the technical details

apply to both even though we refer mainly to the ARPANET. In fact, the technology is

available commercially and has been used by several corporations to establish private
packet switching networks.

Because the ARPANET was already in place and used daily by many of the

researchers who developed the Internet architecture, it had a profound effect on their
work. They came to think of the ARPANET as a dependable wide area backbone

around which the Internet could be built. The influence of a single, central wide area

‘:‘Perhaps the best known example of disconnection occurred in November, 1988 when a worm program
attacked the Internet and replicated itself as quickly as possible.

Samsung — Exhibit 1016 — Page 56

Samsung - Exhibit 1016 - Page 57

34 Review of Underlying Network Technologies Chap. 1

backbone is still painfully obvious in some of the Internet protocols that we will discuss

later, and has prevented the Internet from accommodating additional backbone networks

gracefully.

Physically, the ARPANET consisted of approximately 50 BBN Corporation C30

and C300 minicomputers, called Packet Switching Nodes or PSNsi, scattered across the

continental U.S. and western Europe (the MILNET has approximately 160 PSNs, in-

cluding 34 in Europe and 18 in the Pacific and Far East). One PSN resided at each site

participating in the network and was dedicated to the task of switching packets; it could

not be used for general-purpose computation. Indeed, the PSN was considered to be

part of the ARPANET and was owned and controlled by the Network Operations

Center (NOC§) located at BBN in Cambridge, Massachusetts.

Point—to-point data circuits leased from long haul carriers connected the PSNs to-

gether to form a network. For example, leased data circuits connected the ARPANET

PSN at Purdue University to the ARPANET PSNs at Carnegie Mellon and at the

University of Wisconsin. Initially, most of the leased data circuits in the ARPANET

operated at 56 Kbps, speeds considered extremely fast in 1968 but slow by current stan-

dards. Remember to think of the speed as a measure of capacity rather than a measure

of the time it takes to deliver packets. As more computers used the ARPANET, capaci-

ty was increased to accommodate the load. For example, during the final year the AR-

PANET existed, many of the cross—country links operated over megabit-speed channels.

The idea of having no single point of failure in a system is common in military ap-

plications because reliability is important. When building the ARPANET, DARPA de-

cided to follow the military requirements for reliability, so they mandated that each PSN
had to have at least two leased line connections to other PSNs, and the software had to

automatically adapt to failures and choose alternate routes. As a result, the ARPANET

continued to operate even if one of its data circuits failed.

In addition to connections for leased data circuits, each ARPANET PSN ‘had up to

22 ports that connected it to user computers, called hosts. Originally, all computers that

needed to access the ARPANET connected directly to one of the ports on a PSN. Nor-

mally, direct connections were formed with a special-purpose interface board that

plugged into the computer’s I/O bus and attached to a PSN host port. When pro-

grammed properly, the interface allowed the computer to contact the PSN to send and

receive packets.

The original PSN port hardware used a complex protocol for transferring data

across the ARPANET. Fondly known as 1822, after the number of a technical report

that described it, this bizarre protocol survives and is still used on PSN ports in the

MILNET. In general, 1822 permits a host to send a packet across the ARPANET to a

specified destination PSN and a specified pon on that PSN. Performing the transfer is

complicated, however, because 1822 offers reliable, flow-controlled delivery. To

prevent a given host from saturating the net, 1822 limits the number of packets that can

be in transit. To guarantee that each packet arrives at its destination, 1822 forces the

sender to await a Ready For Next Message (RFNM) signal from the PSN before

transmitting each packet. The RFNM acts as an acknowledgement. It includes a buffer

iPSNs were initially called Interface Message Proeeswrs or IMPS, and the terminology persists.
§called “the knock" after its acronym.

Samsung — Exhibit 1016 — Page 57

Samsung - Exhibit 1016 - Page 58

.3I
.

Sec, 2_6 ARPANET Technology 35

reservation scheme that requires the sender to reserve a buffer at the destination PSN
before sending a packa-

Although there are many parts of 1822 not discussed here, the key idea to under-

stand is that underneath all the detail, the ARPANET is merely a transfer mechanism.
When a computer connected to one port sends a packet to another pon, the data

delivered is exactly the data sent. Because the ARPANET does not deliver a network-

specific header, packets sent across it do not have a fixed field to specify packet type.
Thus, unlike other network technologies, the ARPANET does not deliver self-

identifying packets. In summary:

The ARPANET does not understand contents of packets that travel

across it; it is only by convention that machines attached to the AR-

PANET agree on the format and contents of packets sent or received

at a specific PSN port.

Unfortunately, 1822 was never an industry standard. Because few vendors
manufacture 1822 interface boards it became difficult to connect new machines to the

ARPANET. To solve the problem, DARPA developed a new PSN interface that uses

an international data communications standard known as CCITT X.25 (the designator

was assigned by the standards committee that developed it). The first version of an

X.25 PSN implementation used only the data transfer part of the X.25 standard (known

as HDLC/LAPB), but later versions made it possible to use all of X.25 when connecting

to a PSN (i.e., ARPANET appears to be an X.25 network). Many MILNET ports now
use X25.

Internally, of course, the ARPANET used its own set of protocols that are invisible

to users. For example, there was a special protocol that allows one PSN to request

status from another, another protocol that PSNs used to send packets among themselves,

and still another that allowed PSNs to exchange information about link status and op-
timal routes.

Because the ARPANET was originally built as a single, independent network to be

used for research, its protocols and addressing structure were designed without much

thought given to expansion. By the mid l970’s, it became apparent no single network

would solve all communication problems, and DARPA began to investigate satellite and

packet radio network technologies. This experience with a variety of network technolo-

gies led to the concept of an intemetwork.

Today, the ARPANET has quietly disappeared and been replaced by new technolo-

gies. MILNET continues to form the backbone of the military side of the connected In-

ternet. The MILNET Monitoring Center, located near Washington DC, monitors traffic

24 hours a day, detects malfunctions in the hardware and communications lines, and

coordinates the installation of new software in the PSNs. DARPA is participating with

the FNC to fund research and experimentation that will provide the basis for the Nation-

al Research and Education Network. The NREN plan includes a DARPA—sponsored

Defense Research Internet (DR!) and a provision to make some of the new backbone
capacity available to researchers in a National Network Testbed (NNT).

Samsung — Exhibit 1016 — Page 58

Samsung - Exhibit 1016 - Page 59

36 Review of Underlying Network Technologies Chap. 2

2.6.1 ARPANET Addressing

While the details of ARPANET addressing are unimportant, they illustrate how

most wide area networks form physical addresses. Unlike local area networks like Eth-

ernet or proNET—l0, wide area networks usually imbed information in the address that

helps the network route packets to their destination efficiently. In the ARPANET, each

packet switch is assigned a unique integer, P, and each host port on the switch is num-

bered from 0 to N-1. Conceptually, a destination address consists of a pair of small in-

tegers, (P,N). In practice, the hardware uses a larger integer address, with some bits of

the address used to represent N and others used to represent P.

2.7 National Science Foundation Networking

Realizing that data communication would soon be crucial to scientific research, in

1987 the National Science Foundation established a Division of Network and Communi-

cations Research and Infrastructure to help ensure that requisite network communica-

tions will be available for U.S. scientists and engineers. Although the division funds

basic research in networking, its emphasis so far has been concentrated on providing
seed funds to build extensions to the Internet.

NSF’s Internet extensions form a three-level hierarchy consisting of a new cross-

country backbone, a set of “mid-level” or “regional” networks that each span a small

geographic area, and a set of “campus” or “access" networks. In the NSF model,

mid-level networks attach to the backbone and campus networks attach to the mid-level

nets. Researchers have a connection from their computer to the local campus network.

They can use that connection to communicate with local researchers’ computers across

the local campus net, and they can communicate with researchers further away because
their machine will route traffic across the local net and across the mid-level and back-

bone nets as needed.

2.7.1 The Original NSFNET Backbone

Of all the NSF—funded networks, the NSFNET backbone has the most interesting

history and uses the most interesting technology. To date, the backbone has evolved in

three major steps; it increased in size and capacity at the time the ARPANET declined
until it became the dominant backbone in the Internet. The first version was built

quickly, as a temporary measure. One early justification for the backbone was to pro-

vide scientists with access to NSF supercomputers. As a result, the first backbone con-

sisted of six Digital Equipment Corporation LSI-I l microcomputers located at the exist-

ing NSF supercomputer centers. Geographically, the backbone spanned the continental

United States from Princeton, NJ to San Diego, CA, using 56 Kbps leased lines as Fig-
ure 2.9 shows.

Samsung - Exhibit 1016 - Page 59

Samsung - Exhibit 1016 - Page 60

' sec. 2.7 National Science Foundation Networking 37

At each site, the LSI-ll microcomputer ran software affectionately known as fuzz-

bam“ code. Developed by Dave Mills, each fuzzball accessed computers at the local

supercomputer center using a conventional Ethernet interface. It accessed leased lines
leading to fuzzballs at other supercomputer centers using serial line controllers employ-

ing vendor link—level protocols. Fuzzballs contained tables with addresses of possible
destinations and used those tables to direct each incoming packet toward its destination.

Figure 2.9 Circuits in the original NSFNET backbone with sites in (1) San

_ Diego CA, (2) Boulder CO, (3) Champaign IL, (4) Pittsburgh PA,
(5) Ithaca NY, and (6) Princeton NJ.

The primary connection between the original NSFNET backbone and the rest of

the lntemet was located at Carnegie Mellon, which had both an NSFNET backbone

node and an ARPANET PSN. When a user, connected to NSFNET, sent traffic to a

site on the ARPANET, the packets would travel across the NSFNET to CMU where the

fuzzball would route them onto the ARPANET via a local Ethernet. Similarly, the

fuzzball understood that packets destined for NSFNET sites should be accepted from

the Ethernet and sent across the NSF backbone to the‘ appropriate site.

‘rThe exact origin of the term “fuzzball" is unclear.

Samsung — Exhibit 1016 — Page 60

Samsung - Exhibit 1016 - Page 61

38 Review of Underlying Network Technologies Chap. 2

2.7.2 The Second NSFNET Backbone 1988-1989

Although users were excited about the possibilities of computer communication,

the transmission and switching capacities of the original backbone were too small to

provide adequate service. Within months after its inception, the backbone became over-

loaded and its inventor worked to engineer quick solutions for the most pressing prob-

lems while NSF began the arduous process of planning for a second backbone.

In 1987, NSF issued a request for proposals from groups that wanted to establish

and operate a new, higher-speed backbone. Proposals were submitted in August of
1987 and evaluated that fall. On November 24, 1987 NSF announced it had selected a

proposal submitted by a partnership of: MERIT Inc., the statewide computer network

run out of the University of Michigan in Ann Arbor, IBM Corporation, and MCI Incor-

porated. The partners proposed to build a second backbone network, establish a net-

work operation and control center in Ann Arbor, and have the system operational by the

following summer. Because NSF had funded the creation of several new mid-level net-

works, the proposed backbone was planned to serve more sites than the original. Each

additional site would provide a connection between the backbone and one of the NSF
mid-level networks.

The easiest way to envision the division of labor among the three groups is to as-

sume that MERIT was in charge of planning, establishing, and operating the network

center. IBM contributed machines and manpower from its research labs to help MERIT

develop, configure, and test needed hardware and software. MCI, a long—distance car-

rier, provided the communication bandwidth using the optical fiber already in place for

its voice network. Of course, in practice there was close cooperation between all

groups, including joint study projects and representatives from IBM and MCI in the

project management.

By the middle of the summer of 1988, the hardware was in place and NSFNET be-

gan to use the second backbone. Shortly thereafter, the original backbone was shut

down and disconnected. Figure 2.10 shows the logical topology of the second back-
bone after it was installed in 1988.

Samsung — Exhibit 1016 — Page 61

Samsung - Exhibit 1016 - Page 62

sec. 2.7 National Science Foundation Networking 39

3 NSF Mid-level network

0 NSF supercomputer center

@ both

Figure 2.10 Logical circuits in the second NSFNET backbone from summer

1988 to summer 1989.
. M The technology chosen for the second NSFNET backbone was interesting. In

'1 essence, the backbone was a wide area network composed of packet switches intercon-
nected by communication lines. As with the original backbone, the packet switch at
each site connected to the site’s local Ethernet as well as to communication lines lead-

ing to other sites.

_ Instead of using either fuzzballs or commercially available packet switches, the

'1 second backbone used custom made packet switches, created by placing several conven-
‘ tional computers in a large cabinet and interconnecting them as Figure 2.11 shows. The

3* 3 result is called a nodal switching system (NSS). An NSS functions like a single packet
switch.

 -~-. ,— * .,....._. ..._.,.-.3-.'.—_5~,.

Samsung — Exhibit 1016 — Page 62

Samsung - Exhibit 1016 - Page 63

40 Review of Underlying Network Technologies Chap, 2

Nodal Switching System

connection to

site’s local net

INTERPROCESSOR

COMMUNICATION

leased lines to other sites

Figure 2.11 A Nodal Switching System (NSS) composed of multiple proces-

sors connected by an interprocessor communication mechanism.

As Figure 2.11 shows, an NSS contained a central interprocessor communication

mechanism and three types of processors: Packet Switching Processors (PSPs), a Rout-

ing and Control Processor (RCP), and an Application Processor (AP). In the first im-

plementation, the central interprocess communication mechanism was a conventional lo-

cal area network)‘ (an IBM Token Ring Network), and the processors were IBM RT-
PCs.

Conceptually, each Packet Switching Processor in an NSS controls one of the

leased lines leading to an NSS at another site. Physically, a leased line connects to an

I/O interface in the PSP bus. A PSP performs two tasks: it accepts packets that arrive

over the interprocessor communication net and transmits them across its leased line, and

it accepts packets that arrive over its leased line and routes them across the interproces-

sor communication net to an outgoing line (i.e., to the processor controlling the line

over which they must be sent). Because all Packet Switching Processors operate simul-

taneously, the NSS can switch packets in parallel. The whole NSS can be thought of as

a multiprocessor that uses its interprocessor communication channel as a bus.

Even though an NSS had parallel capability, efficiency was important. Initial

leased circuits operated at 448 Kbps, but the goal was to allow Packet Switching Pro-

cessors to handle leased lines running at speeds of DS—l (1.544 Mbps) through DS-3

(45 Mbps). At such speeds a processor has little time to perform computations for each

packet. Thus, to make routing decisions efficient, PSPs use a table lookup similar to

the one described in later chapters of this text. To further offload computational tasks,

each NSS contains additional Routing and Control Processors that are used to compute

+The interprocessor communication LAN is entirely local to the NSS.

Samsung — Exhibit 1016 — Page 63

Samsung - Exhibit 1016 - Page 64

1

gee. 2.7 National Science Foundation Networking 41

new routing tables or otherwise control the NSS. Application processors perform other
C tasks like network monitoring.

. 2.7.3 NSFNET Backbone 1989-1990

After measuring traffic on the second NSFNET backbone for a year, the operations

center reconfigured the network by adding some circuits and deleting others. In addi-
tion, they increased the speed of circuits to DS-I (1.544 Mbps). Figure 2.12 shows the
revised connection topology, which provided redundant connections to all sites.

® NSF Mid-level network

0 NSF supercomputer center

@ both

Figure 2.12 Circuits in the second NSFNET backbone from summer 1989 to
1990.

9 2.7.4 Multiplexing and Programmable Connections

. While the exact topology of NSFNET is unimportant, the technology used to re-

: configure it is. As part of their proposal, MERIT, IBM, and MCI promised to explore
‘,_ ’ g new ways to make the network reconfigurable. What makes their proposed plan more

5 interesting than most network plans is that it involves MCI, the vendor supplying the
long—lines connection service.

To understand the possibilities for reconfiguration, consider what usually happens

when a customer contacts a long-distance vendor to lease a digital data circuit.
Although the customer may imagine wires hung in a direct line between the two sites,

the vendor chooses a path for the circuit that takes advantage of existing cable. For ex-

Samsung — Exhibit 1016 — Page 64

Samsung - Exhibit 1016 - Page 65

42 Review of Underlying Network Technologies Chap. 2

ample, the vendor may connect the customer through a local office, from there to a

nearby large city where the vendor has trunk capacity, across the trunk to another large
city near the destination, and finally down through a local office to the specified termi-

nation point. More important, with modern technology, the vendor does not supply a

separate physical circuit. Instead, electronic equipment at one end of a trunk fiber mul-

tiplexes (combines) multiple circuits over the fiber and equipment at the other end

demultiplexes (separates) them, making it possible for the vendor to add or reconfigure

circuits electronically. For example, Figure 2.13 shows the location of optical fiber

owned by MCI. Circuits in the NSFNET backbone are multiplexed onto this fiber.

A NSFNET Backbone Site

o MCI Point of Presence

Figure 2.13 The MCI physical fiber installation over which NSFNET back-
bone circuits are allocated.

The MERIT/IBM/MCI proposal poses an interesting question: “If users had the

ability to reconfigure circuits electronically, how could they improve networking?”

The reconfiguration shown between Figures 2.11 and 2.12 illustrates one possibility.

The owner of a network could watch network traffic over a long period of time and then

reconfigure the circuits to provide a direct path between pairs of sites with the most

traffic. In addition to adding circuits where needed, dynamic reconfiguration can allow

the user to save money by eliminating costly direct paths between pairs of sites that

have little or no traffic. Comparing Figures 2.1 1 and 2.12, we see that a direct path has

Samsung — Exhibit 1016 — Page 65

Samsung - Exhibit 1016 - Page 66

 Sec 2 7 National Science Foundation Networking 43

. been added between the sites in Seattle and the San Francisco Bay area, while the direct

path between the site at Ann Arbor, Michigan and Houston, Texas has been eliminated.
of course, one cannot reconfigure underlying circuits without recomputing routes in

packet switches.
If users had access to the same reconfiguration facilities as vendors, they could do

much more than merely create or delete circuits. They could adjust circuit capacities on

demand. Such adjustments could be important because it could mean saving enough

money on unused circuit capacity to pay for more capacity when needed. Consider
NSFNET, for example. At 8 AM on the east coast, users arrive at work and begin gen-

erating traffic, so higher capacity is needed for circuits connecting to machines in the
east. Meanwhile, on the west coast, most users are still asleep, so little capacity is

needed for circuits that connect to west coast machines. As the day proceeds capacity

should gradually shift to the west coast circuits. By late afternoon, when users are leav-

ing their offices in the east, west coast circuits need the greatest capacity.

From the suppliers point of view, giving customers reconfigurable circuit capacity

means that customers still pay for a fixed capacity in the underlying physical network,

but they are free to allocate their bandwidth however they choose. Figure 2.14 illus-
trates the idea.

As Figure 2.l4 shows, a customer who pays for capacity T in the underlying physi-

cal network can choose to divide that capacity among multiple circuits. Of course,
when configuring the capacity of individual circuits, a customer must make sure that not

more than capacity T is allocated at any point along the physical cable. The chief draw-

back of this scheme is that to make valid capacity assignments, customers must know

both the topology of the physical net and the paths in that net to which their circuits

have been assigned.

Capacity T allocated from physical net

Figure 2.14 Three circuits (A, B, and C) that can be reconfigured as long as

they use less than capacity T at any point in the backbone. For

example, each can have capacity T/2 or, if A and B have capaci-
ty T/3, C can have capacity 2T/3.

Samsung — Exhibit 1016 — Page 66

Samsung - Exhibit 1016 - Page 67

44 Review of Underlying Network Technologies Chap. 2

2.7.5 NSFNET Mid-level Networks

NSF has funded many mid-level networks that span almost every state. A typical

mid-level network includes 10 to 30 universities and corporations clustered in a geo—

graphic area. The original NSF goal was to cover initial costs and then encourage self-

sufficiency by allowing each mid-level network to operate in fiscal and administrative

autonomy. While some mid-level nets have achieved the goal of fiscal independence,

others have found it difficult. Managers of mid-level networks have formed the

Federation of Academic Research Networks (FARNET) to help coordinate technical

work and lobby for additional government support.

Each mid-level network is free to choose whatever technology will serve it best;

NSF will provide access from a mid-level net to the rest of the Internet via the

NSFNET backbone. Most mid-level nets use point-to-point leased line interconnections

similar to that of the NSFNET backbone; almost all plan to upgrade to higher speed
lines over time.

2.7.6 NSFNET Access Networks

The family of NSF mid-level networks includes a motley collection of access net-

works. Some were funded as experiments using new technology (e.g., a satellite

bridge), while others were funded to provide supercomputer access for a specific

research individual or group. In the latter category, each supercomputer center includes

a consortium of research groups that connect to it over leased lines. A consortium

sometimes includes geographically distant sites, making these so-called consortium net-

works quite extensive.

2.7.7 NSFNET Campus Networks

The third tier in the NSF network family consists of campus networks that attach

to mid-level nets. NSF decided to concentrate its funding on the backbone and mid-

level nets, leaving universities and corporations free to choose their own local network-

ing strategy. Most major research institutions already have a network in place at each

campus; smaller corporations and schools are just beginning to consider the possibili-

ties. The technologies used range in complexity and speed from single local area net-

works to complex network interconnections with backbones operating at gigabit speeds.

2.8 Other Technologies over which TCP/IP has been used

One of the major strengths of TCP/IP lies in the variety of physical networking

technologies over which it can be used. We have already discussed several widely used

technologies, including local area and wide area networks. This section briefly reviews

others that help illustrate an important principle:

Samsung — Exhibit 1016 — Page 67

Samsung - Exhibit 1016 - Page 68

sec 2.8 Other Technologies over which TCP/IP has been used 45

Much of the success of the TCP/IP protocols lies in their ability to ac-
commodate almost any underlying communication technology.

2.8.1 X25NET

CSNETT, an organization formed in 1980 to help provide Internet services to in-

dustry and small schools, used X25NET technology to connect some of its subscribers
to the Internet. Originally developed at Purdue University, X25NET runs Internet pro-

tocols over Public Data Networks (PDNs). The motivation is to allow organizations

that cannot afford direct ARPANET connections to lease a network connection from a

common carrier (e.g., AT&T) and use it to send Internet traffic.

Readers who know about public packet-switched networks may find X25NET

strange because such networks use the CCITT X.25 protocols exclusively while the In-
ternet uses TCP/IP protocols. When used to transport TCP/IP traffic, however, the

underlying X.25 network merely provides a path over which Internet traffic can be
transferred. We have already stated that many underlying technologies can be used to

carry Internet traffic. The technique, sometimes called tunneling, simply means that a

complex network with its own protocols is treated like any other hardware delivery sys-
tem. To send TCP/IP traffic through an X.25 “tunnel,” one makes an X.25 connection

and then sends TCP/IP packets as if they were data. The X.25 system carries packets

along its connection and delivers them to another X.25 endpoint, where they must be

picked up and forwarded on to their ultimate destination. Because tunneling treats

packets like data, it does not provide for self-identifying frames. Thus, it only works

when both ends of the X.25 connection agree a priori that they will exchange TCP/IP

packets.

What makes the use of X.25 peculiar is its interface. Unlike most network

hardware, X.25 protocols provide a reliable transmission stream, sometimes called a vir-

tual circuit, between the sender and the receiver, while the Internet protocols have been

designed for a packet delivery system, making the two (apparently) incompatible.

Viewing X.25 connections merely as delivery paths produces a strange twist. It

turns out that X.25 networks exhibit substantially better throughput with multiple simul-

taneous connections. Thus, instead of opening a single connection to a given destina-

tion, an X25NET sender often opens multiple connections and distributes packets

among them to improve perfonnance. The receiver accepts packets from all the X.25

connections and combines them together again.

The addressing scheme used by X.25 networks is given in a related standard

known as X.l21. X.l2l physical addresses each consist of a 14-digit number, with 10

digits assigned by the vendor that supplies the X25 network service. Resembling tele-

phone numbers, one popular vendor’s assignment includes an area code based on geo-

graphic location. The addressing scheme is not surprising because it comes from an or-

ganization that determines international telephone standards. It is unfortunate, however,

because it makes assignment of Internet addresses difficult. Subscribers using X25NET

must each maintain a table of mappings between Internet addresses and X25 addresses.

TCSNET and BITNET have merged; the new organization is CREN.

Samsung - Exhibit 1016 - Page 68

Samsung - Exhibit 1016 - Page 69

46 Review of Underlying Network Technologies Chap. 2

Chapter 6 discusses the address mapping problem in detail and gives an alternative to

using fixed tables.

Because public X.25 networks operate independently of the Internet, a point of

contact must be provided between the two. Both DARPA and CSNET operate dedicat-

ed machines that provide the interconnection between X.25 and the ARPANET. The

primary interconnection is known as the VAN gateway. The VAN agrees to accept

X.25 connections and route incoming lntemet traffic to its destination.

X25NET is significant because it illustrates the flexibility and adaptability of the

TCP/IP protocols. In particular, it shows how tunneling makes it possible to use an ex-

tremely wide range of complex network technologies in an intemet.

2.8.2 Cypress

Most of the network technologies we have discussed so far are expensive. But In-

ternet access need not be limited to large institutions that connect directly to major

backbones like the NSFNET; many small schools and individuals need access as well.

Small institutions cannot afford high speed leased lines, or the equipment that connects

to it. Cypress is designed to fill that need by providing a low cost, low volume TCP/IF‘

technology.

Cypress consists of minicomputers interconnected by low or medium speed (9.6

Kbps to 56 Kbps) leased lines. As Figure 2.15 shows, each minicomputer resides at a

subscriber's site where it connects to the local computing environment over an Ethernet

local area network. It connects to the rest of Cypress over leased serial lines. At least

one site on a Cypress network connects to the lntemet and passes traffic between the

Cypress net and the rest of the Internet. .

Originally, Cypress was designed to have a “growing vine” topology in which

each new site leased a serial line to the closest existing site. The advantage of using a

vine topology is low cost; the disadvantage is delay, which becomes noticeable for traff-

ic that passes through several intermediate machines. The Cypress topology has

changed for two reasons: first, NSFNET has increased the number of potential lntemet
connection points dramatically, and second, most subscribers seem to be willing to pay

more to avoid delays. Thus, the Cypress network evolved to a single hub located at

Purdue University, where it connects to NSFNET. '

Cypress is based on a few key ideas. First, to achieve low cost, Cypress consoli-

dates functionality by using a single computer to serve several purposes. Second, like

Ethernet, the Cypress protocolsuse best—effort delivery, with no attempt made to

correct errors or recover lost packets at the link level. Later chapters will explain why

best—effort delivery works well in the TCP/IP environment. Third, Cypress operates as

a network, not merely as a set of point—to-point links. Fourth, Cypress connects to a

network at subscriber sites, not just to a single machine. Thus, many hosts at the

subscriber‘s site can use the Cypress connection by treating it as their path to the rest of

the lntemet. Fifth, Cypress allows its packet switches to be monitored from any site in

the lntemet because it uses IP to transport monitoring infonnation.

Samsung — Exhibit 1016 — Page 69

Samsung - Exhibit 1016 - Page 70

Sec. 2.8 Other Technologies over which TCP/IP has been used 47

The minicomputers that comprise a Cypress network are called implets, and each

implet provides three conceptual functions in a single machine. At the lowest level, an

implet operates like a packet switch, accepting packets over serial lines and routing

them on to their destination using the hardware address in a frame when selecting a

route. At the next level, an implet connects two networks, the local Ethernet at the

subscriber’s site and the Cypress network. At the highest level, an implet is a general

purpose computer that executes network control and monitoring programs as user
processes.

Figure 2.15 The Cypress network at its peak with sites at (1,2) Purdue, (3)

Tucson AZ, (4,5,6) Palo Alto CA, (7) Chicago IL, (8) Williams-

town MA, (9) Cambridge MA, and (10) Boston MA. At each

site an implet connects to an Ethernet.

In addition to its technical contributions Cypress demonstrates three important

ideas. First, it illustrates why network speed should be thought of as a measure of capa-

city. Sites with low traffic volumes perceive Cypress as an adequate, viable intercon-

nection technology. Low speed does not mean limited functionality. Second, Cypress

shows that the Internet protocols work well over a best-effort delivery system with

minimum link level protocols. Third, Cypress shows that designing control and moni-

toring software to use the Internet protocols makes monitoring flexible and debugging
easier.

Samsung — Exhibit 1016 — Page 70

Samsung - Exhibit 1016 - Page 71

48 Review of Underlying Network Technologies Chap. 2

2.8.3 Dial-up IP

Another interesting use of TCP/IP pioneered by CSNET involves running TCP/IP

protocols over the dial—up voice network (i.e., the telephone system). CSNET member

sites that use the Internet infrequently may not be able to justify leased line connections,

For those sites, CSNET developed a dial-up IP system that works as expected: whenev~
er a connection is needed, software at the member’s site uses a modem to form a con—

nection to the CSNET hub over the voice telephone network. A computer at the hub

answers the phone call and, after obtaining valid authorization, forwards traffic between

the site and other computers on the Internet.

2.8.4 Packet Radio

One of the most interesting DARPA experiments in packet switching resulted in a

technology that used broadcast radio waves to carry packets. Designed for a military

environment in which stations might be mobile, packet radio includes hardware and

software that allow sites to find other sites, establish point-to-point communication, and

then use the point-to—p0int communication to carry packets. Because sites change geo-

graphic location and may move out of communication range, the system must constant-

ly monitor connectivity and recompute routes to reflect changes in topology. An opera-

tional packet radio system was built and used to demonstrate TCP/IP communication

between a remote packet radio site and other sites on the Internet.

2.9 Summary And Conclusion

We have reviewed several network hardware technologies used by the TCP/IP pro-

tocols, ranging from high—speed, local area networks like Ethernet and proNET—l0 to

slower-speed, long haul networks like the ARPANET and Cypress. We have also seen

that it is possible to run the TCP/IP protocols over other general-purpose network proto-

cols using a technique called tunneling. While the details of specific network technolo-

gies are not important, a general idea has emerged:

The TCP/[P protocols are extremely flexible in that almost any under-

lying technology can be used to transfer TCP/[P traflic.

FOR FURTHER STUDY

Early computer communication systems employed point-to—point interconnection,

often using general-purpose serial line hardware that McNamara [I982] describes.

Metcalf and Boggs [1976] introduced the Ethernet with a 3 Mbps prototype version.

Digital [1980] specifies the 10 Mbps standard adopted by most vendors, with IEEE

Samsung — Exhibit 1016 — Page 71

Samsung - Exhibit 1016 - Page 72

7'——:_—"—'—"
For Funher Study 49

standard 802.3 reported in Nelson [I983]. Shoch, Dalal, and Redell [1982] provides an

historical perspective of the Ethernet evolution. Related work on the ALOHA network

is reported in Abramson [I970], with a survey of technologies given by Cotton [I979].

Token passing ring technology was proposed in Farmer and Newhall [I969]. Mill-

er and Thompson [I982], as well as Andrews and Shultz [I982], give recent summaries.

Another alternative, the slotted ring network, was proposed by Pierce [I972]. For a

comparison of technologies, see Rosenthal [I982].

Details of the proposal for the second NSFNET backbone can be found in MERIT

[November 1987]. Comer, Narten and Yavatkar [1987] first suggests using the tech-

nique of building a multiprocessor packet switch around a local area network bus; ap-

parently it was discovered independently for the second NSFNET backbone proposal.

For more information on the ARPANET see Cerf [1989] and BBN [I981]. The

ideas behind X25NET are summarized in Comer and Korb [I983], while Cypress is

described in Comer, Narten, and Yavatkar [April 1987]. Lanzillo and Partridge [Janu-

ary 1989] describes dial-up IP.

Quarterman and Hoskins [1986] provides a summary of major wide area computer

networks; Quarterman [1990] contains an updated list and offers more detail. LaQuey

[1990] contains a directory of computer networks.

EXERCISES

2.1 Find out which network technologies your site uses.

2.2 What is the maximum size packet that can be sent on a high-speed network like NSC’s Hy-
perchannel or Ultra Network Technologies’ UltraNet?

2.3 What are the advantages and disadvantages of tunneling?

2.4 Read the Ethernet standard to find exact details of the inter-packet gap and preamble size.
What is the maximum data rate Ethemet can deliver?

2.5 What characteristic of a satellite communication channel is most desirable? Least desir-
able?

2.6 Find a lower bound on the time it takes to transfer a 5 megabyte file across a network that
operates at: 9600 bps, 56 Kbps, 10 Mbps, 100 Mbps, and 2 Gbps.

Samsung — Exhibit 1016 — Page 72

Samsung - Exhibit 1016 - Page 73

5?3:

E 3

Internetworking Concept
and Architectural Model

3.1 Introduction

So far we have looked at the low—level details of transmission across individual

networks, the foundation on which all computer communication is built. This chapter

makes a giant conceptual leap by describing a scheme that allows us to collect the

diverse network technologies into a coordinated whole. The primary goal is a scheme

that hides the details of underlying network hardware while providing universal com-

munication services. The primary result is a high—level abstraction that provides the

framework for all design decisions. Succeeding chapters show how we use this abstrac-

tion to build the necessary layers of intemet communication software and how the

software hides the underlying physical transport mechanisms. Later chapters also show

how applications use the resulting communication system.

3.2 Application-Level Interconnection

Designers have taken two different approaches to hiding network details, using ap-

plication programs to handle heterogeneity or hiding details in the operating system.

Early heterogeneous network interconnections provided uniformity through application-

level programs. In such systems, an application-level program, executing on each
machine in the network, understands the details of the network connections for that

machine and interoperates with the application programs across those connections. For

example, some electronic mail systems consist of mailer programs that forward a memo

51

Samsung — Exhibit 1016 — Page 73

Samsung - Exhibit 1016 - Page 74

52 Intemetworking Concept and Architectural Model Chap. 3

one machine at a time. The path from source to destination may involve many different

networks, but that does not matter as long as the mail systems on all the machines

cooperate by forwarding each message.

Using application programs to hide network details may seem natural at first, but

such an approach results in limited, cumbersome communication. Adding new func-

tionality to the system means building a new application program for each machine.

Adding new network hardware means modifying or creating new programs for each

possible application. On a given machine each application program understands the

network connections for that machine, resulting in duplication of code.

Users who are experienced with networking understand that once the interconnec-

tions grow to hundreds or thousands of networks; no one can possibly build all the

necessary application programs. Furthermore, success of the step-at—a-time communica-

tion scheme requires correctness of all application programs executing along the way.

When an intermediate program fails, the source and destination remain unable to detect

or control the problem. Thus, systems that use intermediate programs cannot guarantee
reliable communication.

3.3 Network-Level Interconnection

The alternative to providing interconnection with application-level programs is a

system based on network-level interconnection. A network-level interconnection pro-

vides a mechanism that delivers packets from their original source to their ultimate des-

tination in real time. Switching small units of data instead of files or large messages

has several advantages. First, it maps directly onto the underlying network hardware,

making it extremely efficient. Second, it separates data communication activities from

application programs, permitting machines to handle network traffic without under-

standing the applications that use it. Third, it keeps the system flexible, making it pos-

sible to build general purpose network protocols. Fourth, it allows network managers to

add new network technologies by modifying or adding a single piece of new network

level software, while application programs remain unchanged.

The key to designing universal network-level interconnection can be found in an

abstract communication system concept known as inrernetworking. The intemetwork,

or internet, concept is an extremely powerful one. It detaches the notions of communi-

cation from the details of network technologies and hides low—level details from the

user. More important, it drives all software design decisions and explains how to han-

dle physical addresses and routes. After reviewing basic motivations for intemetwork-

ing, we will consider the properties of an intemet in more detail.

Recall that we began with two fundamental observations about the design of com-

munication systems:

O No single network can serve all users.
0 Users desire universal interconnection.

Samsung — Exhibit 1016 — Page 74

Samsung - Exhibit 1016 - Page 75

_.....--....-(«.53.--‘..»».r‘+"..‘.‘.".<-|.~1.cAi—

Sec. 3.3 Nerwork—Level Interconnection 53

The first observation is a technical one. Local area networks that provide the highest

speed communication are limited in geographic span; wide area networks span large

distances but cannot supply high speed connections. No single network technology sa-

tisfies all needs, so we are forced to consider multiple underlying hardware technolo-

gies.

The second observation is self-evident. Ultimately, we would like to be able to

communicate between any two points. In particular, we desire a communication system

that is not constrained by the boundaries of physical networks.

The goal is to build a unified, cooperative interconnection of networks that sup-

ports a universal communication service. Within each network, computers will use

underlying technology-dependent communication primitives like the ones described in
Chapter 2. New software, inserted between the technology-dependent communication

mechanisms and application programs, will hide the low-level details and make the col-

lection of networks appear to be a single large network. Such an interconnection
scheme is called an irzterrretwork or internet.

The idea of building an intemet follows a standard pattern of system design:

researchers imagine a high level computing facility and work from available computing

technology, adding layers of software until they have a system that efficiently imple-

ments the imagined high-level facility. The next section shows the first step of the

design process by defining the goal more precisely.

3.4 Properties Of The Internet

The notion of universal service is important, but it alone does not capture all the

ideas we have in mind for a unified intemet because there can be many implementations

of universal services. In our design, we want to hide the underlying intemet architec-

ture from the user. That is, we do not want to require users or application programs to
understand the details of hardware interconnections to use the intemet. We also do not

want to mandate a network interconnection topology. In particular, adding a new net-

work to the intemet should not mean connecting to a centralized switching point, nor

should it mean adding direct physical connections between the new network and all ex-

isting networks. We want to be able to send data across intermediate networks even

though they are not directly connected to the source or destination machines. We want
all machines in the intemet to share a universal set of machine identifiers (which can be

thought of as names or addresses).

Our notion of a unified intemet also includes the idea of network independence in

the user interface. That is, we want the set of operations used to establish communica-

tion or to transfer data to remain independent of the underlying network technologies

and the destination machine. Certainly, a user should not have to understand the net-

work interconnection topology when writing application programs that communicate.

Samsung — Exhibit 1016 — Page 75

Samsung - Exhibit 1016 - Page 76

54 Intemetworking Concept and Architectural Model Chap. 3

3.5 Internet Architecture

We have seen how machines connect to individual networks. The question arises,
“How are networks interconnected to form an intemetwork?" The answer has two

parts. Physically, two networks can only be connected by a computer that attaches to

both of them. A physical attachment does not provide the interconnection we have in

mind, however, because such a connection does not guarantee that the computer will

cooperate with other machines that wish to communicate. To have a viable intemet, we

need computers that are willing to shuffle packets from one network to another. Com-

puters that interconnect two networks and pass packets from one to the other are called
intemet gatewayst‘ or intemet routers.

Consider an example consisting of two physical networks shown in Figure 3.1. In

the figure, machine G connects to both network 1 and network 2. For G to act as a

gateway, it must capture packets on network 1 that are bound for machines on network
2 and transfer them. Similarly, G must capture packets on network 2 that are destined
for machines on network I and transfer them.

Figure 3.1 Two networks interconnected by G, a gateway (router).

3.6 Interconnection Through IP Gateways or Routers

When intemet connections become more complex, gateways need to know about

the topology of the intemet beyond the networks to which they connect. For example,

Figure 3.2 shows three networks interconnected by two gateways.

’rThe original literature used the term gateway but recently, vendors seem to prefer the term I!’ router —
they are used interchangeably throughout this text.

Samsung — Exhibit 1016 — Page 76

Samsung - Exhibit 1016 - Page 77

Sec. 3.6 Interconnection Through IP Gateways or Routers 55

..-...-.,.....-t::...~..~..'..~‘

Figure 3.2 Three networks interconnected by two gateways.

In this example, gateway G, must move from network 1 to network 2 all packets des-
tined for machines on either network 2 or network 3. As the size of the intemet ex-

pands, the gateway’s task of making decisions about where to send packets becomes

more complex.

The idea of a gateway seems simple, but it is important because it provides a way

to interconnect networks, not just machines. In fact, we have already discovered the

principle of interconnection used throughout an intemet:

In a TCP/IP internet, computers called gateways provide all intercon-

nections among physical networks.

You might suspect that gateways, which must know how to route packets to their

destination, are large machines with enough primary or secondary memory to hold in-

formation about every machine in the intemet to which they attach. However, gateways

used with TCP/IP intemets are usually minicomputers; they often have little or no disk

storage and limited main memories. The trick to building a small intemet gateway lies

in the following concept:

Gateways route packets based on destination network, not on destina-
tion host.

If routing is based on networks, the amount of information that a gateway needs to keep

is proportional to the number of networks in the intemet, not the number of machines.

Because gateways play a key role in intemet communication, we will return to

them in later chapters and discuss the details of how they operate and how they learn

about routes. For now, we will assume that it is possible and practical to have correct

routes for all networks in each gateway in the intemet. We will also assume that only

gateways provide connections between physical networks in an intemet.

Samsung — Exhibit 1016 — Page 77

Samsung - Exhibit 1016 - Page 78

S6 Intemetworking Concept and Architectural Model Chap. 3

3.7 The User’s View

Remember that TCP/IP is designed to provide a universal interconnection among
machines independent of the particular networks to which they attach. Thus, we want

the user to view an intemet as a single, virtual network to which all machines connect

despite their physical connections. Figure 3.3a shows how thinking of an intemet in-

stead of constituent networks simplifies the details and makes it easy for the user to

conceptualize communication. In addition to gateways that interconnect physical net-

works, intemet access software is needed on each host to allow application programs to

use the intemet as if it were a single, real physical network.

The advantage of providing interconnection at the network level now becomes

clear. Because application programs that communicate over the intemet do not know

the details of underlying connections, they can be run without change on any machine.

Because the details of each machine’s physical network connections are hidden in the

intemet software, only that software needs to change when new physical connections

appear or old ones disappear. In fact, it is possible to optimize routing by altering phy-

sical connections without even recompiling application programs.

A second advantage of having communication at the network level is more subtle:

users do not have to understand or remember how networks connect or what traffic they

carry. Application programs can be written that operate independent of underlying phy-

sical connectivity. In fact, network managers are free to change interior parts of the

underlying intemet architecture without changing application software in most of the

computers attached to the intemet (of course, network software must be reconfigured

when a computer moves to a new network).

As Figure 3.3b shows, gateways do not provide direct connections among all pairs

of networks. It may be necessary for traffic traveling from one machine to another to

pass across several intermediate networks. Thus, networks participating in the intemet

are analogous to highways in the U.S. interstate system: each net agrees to handle tran-

sit traffic in exchange for the right to send traffic throughout the intemet. Typical users
are unaffected and unaware of extra traffic on their local network.

3.8 All Networks Are Equal

Chapter 2 reviewed example network hardware used to build TCP/IP intemets and

illustrated the great diversity of technologies. We have described an intemet as a col-

lection of cooperative, interconnected networks. It is now important to understand a

fundamental concept: from the intemet point of view, any communication system capa-

ble of transferring packets counts as a single network, independent of its delay and

throughput characteristics, maximum packet size, or geographic scale. In particular,

Figure 3.3b uses the same small cloud to depict all physical networks because TCP/IP

treats them equally despite their differences. The point is:

Samsung - Exhibit 1016 - Page 78

Samsung - Exhibit 1016 - Page 79

15cc 3 3 All Networks Are Equal 57

The TCP/IP internet protocols treat all networks equally. A local

area network like an Ethernet, a wide area network like the NSFNET

backbone, or a point—to—point link between two machines each count

as one network.

Readers unaccustomed to intemet architecture may find it difficult to accept such a

simplistic view of networks. In essence, TCP/IP defines an abstraction of “network”
mat hides the details of physical networks; we will learn that such abstractions help

make TCP/IP extremely powerful.

Internet internet

i

hosts

/

(3) (D)

Figure 3.3 (a) The user's view of a TCP/IP intemet in which each computer

appears to attach to a single large network, and (b) the structure

of physical networks and gateways that provide interconnection.

3.9 The Unanswered Questions

Our sketch of intemets leaves many unanswered questions. For example, you
might wonder about the exact form of intemet machine addresses or how such addresses

relate to the Ethernet, proNET-10, or ARPANET physical hardware addresses described
in Chapter 2. The next three chapters confront these questions. They describe the for-
mat of IP addresses and illustrate how hosts map between intemet addresses and physi-

cal addresses. You might also want to know exactly what a packet looks like when it
Samsung — Exhibit 1016 — Page 79

Samsung - Exhibit 1016 - Page 80

58 Intemetworking Concept and Architectural Model Chap. 3

travels through an intemet, or what happens when packets arrive too fast for some host

or gateway to handle. Chapter 7 answers these questions. Finally, you might wonder

how multiple application programs executing concurrently on a single machine can send

and receive packets to multiple destinations without becoming entangled in each other’s

transmissions or how intemet gateways learn about routes. All of these questions will
be answered as well.

Although it may seem vague now, the direction we are following will let us learn

about both the structure and use of intemet protocol software. We will examine each

part, looking at the concepts and principles as well as technical details. We began by

establishing a physical communication layer on which an intemet is built. Each of the

following chapters will explore one part of the intemet software, until we understand

how all the pieces fit together.

3.10 Summary

An intemet is more than a collection of networks interconnected by computers. In-

temetworking implies that the interconnected systems agree to conventions that allow

each computer to communicate with every other computer. In particular, an intemet

will allow two machines to communicate even if the communication path between them

passes across a network to which neither connects directly. Such cooperation is only

possible when computers agree on a set of universal identifiers and a set of procedures

for moving data to its final destination.

In an intemet, interconnections among networks are fonned by computers called IP

gateways, or routers, that attach to two or more networks. Gateways route packets

between networks by receiving them from one network and sending them to another.

FOR FURTHER STUDY

Our model of an intemetwork comes from Cerf and Cain [1983] and Cerf and

Kahn [I974], which describe an intemet as a set of networks interconnected by gate-

ways and sketch an intemet protocol similar to that eventually developed for the TCP/IP

protocol suite. More information on the connected Internet architecture can be found in
Postel [I980]; Postel, Sunshine, and Chen [198]]; and in Hinden. I-Iaverty, and Sheltzer

[I983]. Shoch [1978] presents issues in intemetwork naming and addressing. Boggs et.

al. [1980] describes the intemet developed at Xerox PARC, an alternative to the TCP/IP

intemet we will examine. Cheriton [1983] describes intemetworking as it relates to the

V—system.

Samsung — Exhibit 1016 — Page 80

Samsung - Exhibit 1016 - Page 81

59

Changing a gateway routing table can be tricky because it is impossible to change all gate-
ways simultaneously. Investigate algorithms that guarantee to either install a change on all
machines or install it on none.

In an intemet, gateways periodically exchange information from their routing tables, mak-

ing it possible for a new gateway to appear and begin routing packets. Investigate the algo-
rithms used to exchange routing information.

Compare the organization of a TCP/IP intemet to the style of intemet designed by Xerox
Corporation.

What processors have been used as gateways in the connected Internet? Does the size and

speed of the gateways surprise you? Why?

Samsung — Exhibit 1016 — Page 81

Samsung - Exhibit 1016 - Page 82

Internet Addresses

4.1 Introduction

The previous chapter defined a TCP/IP intemet as a virtual network built by inter-

connecting physical networks with gateways. This chapter discusses addressing, an

essential ingredient that helps TCP/IP software hide physical network details and makes

the intemet appear to be a single, uniform entity.

4.2 Universal Identifiers

A communication system is said to supply universal communication service if it al-

lows any host to communicate with any other host. To make our communication sys-

tem universal, we need to establish a globally accepted method of identifying computers
that attach to it.

Often, host identifiers are classified as names, addresses, or routes. Shoch [1978]

suggests that a name identifies what an object is, an address identifies where it is, and a

route tells how to get there. Although these definitions are intuitive, they can be

misleading. Names, addresses, and routes really refer to successively lower level

representations of host identifiers. In general, people usually prefer pronounceable

names to identify machines, while software works better with more compact representa-
tions of identifiers that we think of as addresses. Either could have been chosen as the

TCP/IP universal host identifiers. The decision was made to standardize on compact,

binary addresses that make computations like routing decisions efficient. For now, we

will discuss only binary addresses, postponing until later the questions of how to map

between binary addresses and pronounceable names, and how to use addresses for rout-
ing.

61

Samsung - Exhibit 1016 - Page 82

Samsung - Exhibit 1016 - Page 83

62 Internet Addresses Chap, 4

4.3 Three Primary Classes Of IP Addresses

Think of an intemet as a large network like any other physical network. The

difference, of course, is that the intemet is a virtual structure, imagined by its designers,

and implemented entirely in software. Thus, the designers are free to choose packet for-

mats and sizes, addresses, delivery techniques, and so on; nothing is dictated by
hardware. For addresses, the designers of TCP/IP chose a scheme analogous to physical

network addressing in which each host on the intemet is assigned an integer address

called its internet address or IP address. The clever part of intemet addressing is that

the integers are carefully chosen to make routing efficient. Specifically, an IP address
encodes the identification of the network to which a host attaches as well as the identifi-

cation of a unique host on that network. We can summarize:

Each host an a TCP/IP internet is assigned a unique 32-bit internet
address that is used in all communication with that host.

The details of IP addresses help clarify the abstract ideas. For now, we give a sim-

plified view and expand it later. In the simplest case, each host attached to an intemet

is assigned a 32-bit universal identifier as its intemet address. The bits of IP addresses

for all hosts on a given network share a common prefix.

Conceptually, each address is a pair (netid, hostid), where netid identifies a net-

work, and hostid identifies a host on that network. In practice, each IP address must

have one of the first three forms shown in Figure 4.1)“.

O 1 2 3 4 8 16 24 31

C'assA

C'assB

C'assC

<='assD

<=IassE IIIIE

Figure 4.1 The five forms of Internet (IP) addresses. The three primary
forms, Classes A, B and C, can be distinguished by the first two
bits.

TThe fourth form, reserved for intemet multicasting. will be described in a later chapter; for now, we will
restrict our comments to the forms that specify addresses of individual objects.

Samsung - Exhibit 1016 - Page 83

Samsung - Exhibit 1016 - Page 84

V; Sec’ 4.3 Three Primary Classes Of IP Addresses 63

Given an IP address, its class can be determined from the three high-order bits,

5 with two bits being sufficient to distinguish among the three primary classes. Class A
addresses, which are used for the handful of networks that have more than 2'6 (i.e.,
65,536) hosts, devote 7 bits to netid and 24 bits to hostid. Class B addresses, which are
used for intermediate size networks that have between 23 (i.e., 256) and 2“'> hosts, allo-

cate 14 bits to the netid and 16 bits to the hostid. Finally, class C networks, which have

1655 than 23 hosts, allocate 21 bits to the netid and only 8 bits to the hostid. Note that

the IP address has been defined in such a way that it is possible to extract the hostid or

netid portions quickly. Gateways base routing on the netid and depend on such effi-
cient extraction.

4.4 Addresses Specify Network Connections

To simplify the discussion, we said that an intemet address identifies a host, but

that is not strictly accurate. Consider a gateway that attaches to two physical networks.

How can we assign a single IP address if the address encodes a network identifier as

well as a host identifier? In fact, we cannot. When conventional computers have two

or more physical connections they are called multi—homed hosts. Multi—homed hosts

and gateways require multiple IP addresses. Each address corresponds to one of the

machine’s network connections. Looking at multi—homed hosts leads to the following

important idea:

Because IP addresses encode both a network and a host on that net-

work, they do not specify an individual machine, but a connection to a
network.

Thus, a gateway connecting n networks has n distinct IP addresses, one for each net-
work connection.

_l V V 4.5 Network And Broadcast Addresses

y We have already cited the major advantage of encoding network information in in-
g; L temet addresses: it makes efficient routing possible. Another advantage is that intemet

- addresses can refer to networks as well as hosts. By convention, hostid 0 is never as-
signed to an individual host. Instead, an IP address with hostid zero is used to refer to

the network itself. In summary:

Internet addresses can be used to refer to networks as well as indivi-

dual hosts. By convention, the network address has hostid with all
5 bits 0.

Samsung — Exhibit 1016 — Page 84

Samsung - Exhibit 1016 - Page 85

64 lntemet Addresses Chap. 4

Another significant advantage of the intemet addressing scheme is that it includes a

broadcast address that refers to all hosts on the network. According to the standard,

any hostid consisting of all Is is reserved for broadcastf. On many network technolo-

gies (e.g., Ethernet) broadcasting can be as efficient as normal transmission; on others

(e.g., Cypress) broadcasting is supported by the network software, but requires substan-

tially more delay than single transmission. Some networks do not support broadcast at

all. Thus, having an IP broadcast address does not guarantee the availability or efficien-

cy of broadcast delivery. In summary,

IP addresses can be used to specify a broadcast and map to hardware

broadcast if available. By convention, a broadcast address has hostid
with all bits 1.

4.6 Limited Broadcast

Technically, the broadcast address we just described is called a directed broadcast
address because it contains both a valid network id and the broadcast hostid. A direct-

ed broadcast address can be interpreted unambiguously at any point in an intemet be-

cause it uniquely identifies the target network in addition to specifying broadcast on that

network. Directed broadcast addresses provide a powerful (and somewhat dangerous)

mechanism that allows a remote system to send a single packet that will be broadcast

on the specified network.

From an addressing point of view, the chief disadvantage of directed broadcast is

that it requires knowledge of the network address. Another form of broadcast address,

called a limited broadcast address or local network broadcast address, provides a

broadcast address for the local network independent of the assigned IP address. The lo-

cal broadcast address consists of thirty—two 1 s (hence, it is sometimes called the “all

Is” broadcast address). A host may use the limited broadcast address as part of a start-

up procedure before it learns its IP address or the IP address for the local network.
Once the host learns the correct IP address for the local network, however, it should use
directed broadcast.

As a general rule, TCP/IP protocols restrict broadcasting to the smallest possible

set of machines. We will see how this rule affects multiple networks that share ad-

dresses in Chapter 16 when we discuss subnet addressing.

4.7 Interpreting Zero To Mean “This”

We have seen that a field consisting of Is can be interpreted to mean “all,” as in

“all hosts” on a network. In general, intemet software interprets fields consisting of 0s

to mean “this.” The interpretation appears throughout the literature. Thus, an IP ad-
dress with hostid 0 refers to “this” host, and an intemet address with network id 0

refers to “this" network. Of course, it is only meaningful to use such an address in a

TUnfortunately, an early release of TCP/IP code that accompanied Berkeley UNIX incorrectly used all
zeroes for broadcast, and even though the Berkeley code has been repaired, the mistake still survives in some
commercial systems derived from that code.

Samsung — Exhibit 1016 — Page 85

Samsung - Exhibit 1016 - Page 86

, Sec 4_7 Interpreting Zero To Mean “This" 65

 , ontext where it can be interpreted unambiguously. For example, if a machine receives

.= a packet in which the source address has netid set to 0 and the hostid matching its own,
the receiver interprets the netid field to mean “this” network (i.e., the network over
which the packet arrived).

Using netid 0 is especially important in those cases where a host wants to com-

municate over a network but does not yet know the network IP address. The host uses
network id 0 temporarily, and other hosts on the network interpret the address as mean-

ing “this” network. In most cases, replies will have the network address fully speci-
fied, allowing the original sender to record it for future use. Chapters 9 and 20 will dis-
cuss in detail how a host determines its network address and how it uses network id 0.

4.7.1 Multicast Addressing

In addition to broadcasting, the IP address scheme supports a special form of mul-

tipoint delivery known as multicasting. Multicasting is especially useful for networks
where the hardware technology supports multicast delivery. Chapter 17 discusses multi-

cast addressing and delivery in detail.

4.8 Weaknesses In Internet Addressing

Encoding network information in an intemet address does have some disadvan-

tages. The most obvious disadvantage is that addresses refer to connections, not to
hosts:

If a host moves from one network to another, its IP address must

change.

To understand the consequences, consider travelers who wish to disconnect their per-

sonal computers, carry them along on a trip, and reconnect them to the intemet after

reaching their destination. The personal computer cannot be assigned a permanent IP
address because an IP address identifies the network to which the machine attaches.

Another weakness of the intemet addressing scheme is that when any class C net-

work grows to more than 255 hosts, it must have its address changed to a class B ad-

dress. While this may seem like a minor problem, changing network addresses can be

incredibly time—consuming and difficult to debug. Because most software is not

designed to handle multiple addresses for the same physical network, administrators

cannot plan a smooth transition in which they introduce new addresses slowly. Instead,

they must abruptly stop using one network address, change the addresses of all

machines, and then resume communication using the new network address.

The most important flaw in the intemet addressing scheme will not become fully

apparent until we examine routing. However, its importance warrants a brief introduc-

tion here. We have suggested that routing will be based on intemet addresses, with the

network id used to make routing decisions. Consider a host with two connections to the

-.,..,__

Samsung — Exhibit 1016 — Page 86

Samsung - Exhibit 1016 - Page 87

. ._....,._ —; — ' ' \~‘
. ~ - --- - -~- ---v ~« -—-#-—~—— —-——- »— .o~-»--——-.- ._ V — -._...».....-V__..,._...- 4... '4

.\ .

66 Internet Addresses Chap. 4

intemet. We know that such a host must have more than one IP address. The follow-

ing is true:

Because routing uses the network portion of the IP address, the path

taken by packets traveling to a host with multiple IP addresses
depends on the address used.

The implications are surprising. Humans think of each host as a single entity and want

to use a single name. They are often surprised to find that they must learn more than

one name and even more surprised to find that multiple names behave differently.

Another surprising consequence of the intemet addressing scheme is that merely

knowing one IP address for a destination may not be sufficient; it may be impossible to

reach the destination using that address. Consider the example network shown in Fig-

ure 4.2. In the figure, two hosts, A and B, both attach to network 1, and usually com-

municate directly using that network. Thus, users on host A should normally refer to

host 8 using IP address 14. An alternate path from A to B exists through gateway G and

is used whenever A sends packets to IP address 15. Now suppose B’s connection to net-

work 1 fails, but the machine itself remains running (e.g., a wire breaks between B and

network 1). Users on A who specify IP address 14 cannot reach B, although users who

specify address 15 can. These problems with naming and addressing will arise again in

later chapters when we consider routing and name binding.

Network 1

Figure 4.2 An example intemet with a multi-homed host, B, that demon-

strates a problem with the IP addressing scheme. If interface 14
becomes disconnected, A must use address I; to reach 8, routing
packets through gateway G.

4.9 Dotted Decimal Notation

When communicated to humans, either in technical documents or through applica-

tion programs, IP addresses are written as four decimal integers separated by decimal
points, where each integer gives the value of one octet of the IF’ addressf. Thus, the
32-bit intemet address

'u‘Dotted decimal notation is sometimes called dotted quad notation.

Samsung - Exhibit 1016 - Page 88

CC 49 Dotted Decimal Notation 67

10000000 00001010 00000010 00011110

128.10.2.30

, We will use dotted decimal notation when expressing IP addresses throughout the

' remainder of this text.

4.10 Loopback Address

The class A network address l27.0.0.0 is reserved for loopback and is designed for

testing and inter—process communication on the local machine. When any program uses

the loopback address to send data, the protocol software in the computer returns the data
without sending traffic across any network. The literature explicitly states that a packet

sent to a network 127 address should never appear on any network. Furthermore, a host

or gateway should never propagate routing or reachability information for network
number 127; it is not a network address.

4.11 Summary Of Special Address Conventions

In practice, IP uses only a few combinations of 0s (“this”) or Is (‘‘all'‘). Figure
4.3 lists the possibilities.

This host‘

Host on this net‘

Limited broadcast (local net) 2

Directed broadcast for net 2

127 anything (often 1) |-00Pba°k 3

Notes: 1 Allowed only at system startup and is
_. . never a valid destination address.
2 i » 3 2 Never a valid source address.

1 " 3 Should never appear on a network.

Figure 4.3 Special forms of IP addresses, including valid combinations of 05
(“this"), Is (“all”). The length of the net portion of a directed
broadcast depends on the network address class.

Samsung — Exhibit 1016 — Page 88

Samsung - Exhibit 1016 - Page 89

68 Internet Addresses Chap. 4

As the notes in the figure mention, using all 0s for the network is only allowed

during the bootstrap procedure. It allows a machine to communicate temporarily. Once
the machine learns its correct network and IP address, it must not use network 0.

4.12 Internet Addressing Authority

To insure that the network portion of an Internet addresses is unique, all Internet

addresses are assigned by a central authority, the Network Information Center (NIC).

The central authority only assigns the network portion of the address and delegates

responsibility for assigning host addresses to the requesting organization. Local area

networks with a small number of attached machines (less than 255) are usually assigned

Class C numbers because many local area networks are expected. Large networks, like

the ARPANET, are assigned class A numbers because only a few large networks are

expected.

It is only essential for the NIC to assign IP addresses for networks that are (or will

be) attached to the connected Internet. An individual corporation could take responsi-

bility for assigning unique network addresses within its TCP/IP intemet as long as it

never connects that intemet to the outside world. Indeed, many corporate groups that

use TCP/IP protocols do assign intemet addresses on their own. For example, the NIC

assigned address 10.0.0.0 to the ARPANET. If a college campus decides to use TCP/IP

protocols on one Ethernet with only three hosts (and no other gateway connections),

that college could choose to use address 10.0.0.0 for its local network. However, ex-

perience has shown that it is unwise to create a private intemet using the same network

addresses as the connected Internet because it prevents future interoperability and may

cause problems when trying to exchange software with other sites. Thus, everyone us-

ing TCP/IP is strongly encouraged to take the time to obtain official Internet addresses
from the NIC.

4.13 An Example

To clarify the IP addressing scheme, consider the example in Figure 4.4 that shows

just a few of the connections and hosts on the Internet at the Purdue University Depart-

ment of Computer Science in the mid—l980s. The example shows three networks: the

ARPANET (10.0.0.0), an Ethernet (128.1000), and a proNET-10 token ring network

(l92.5.48.0). Writing out the addresses in binary shows them to be class A, B, and C,

respectively.

In the figure, four hosts attach to these networks, labeled Arthur, Merlin,

Guenevere, and Lancelot. Machine Taliesyn serves as a gateway between the AR-

PANET and the proNET-10, and machine Glatisant serves as a gateway between the

proNET-10 and the Ethernet. Host Merlin has connections to both the Ethernet and the

proNET-10, so it can reach hosts on either network directly. Although a multi-homed

host like Merlin can also operate as a gateway, Merlin is primarily a timesharing system

Samsung — Exhibit 1016 — Page 89

Samsung - Exhibit 1016 - Page 90

sec. 4.13 An Example 69

and the additional work of routing packets would reduce the amount of processing

available to users. Thus, a dedicated gateway, Glatisant, was installed to keep the gate-

way traffic load off the timesharing system. Traffic between these two networks was
much higher than this configuration suggests because only a handful of the existing
hosts are shown.

ETHERNET 128.10.0.0

128.10.2.70 128.10.2.26

GUENEVERE GLATISANT LANCELOT

(Ethernet (gateway) (Ethernet

host) host)

128.10.2.3 128.10.2.8

MERLIN

(multi-homed

host)

192.5.48.3 192.5.48.7

TALIESYN

(gateway)

ARTHUR

(proNET

host)

 proNET-10
192.5.48.0

192.5.48.6 10.2.0.37
TO

ARPANET

10.0.0.0

192.5.48.1

Figure 4.4 Example IP address assignments for hosts and gateways on an
Ethernet, token ring network, and ARPANET.

Figure 4.4 shows the IP addresses for each network connection. Lancelot, which

connects only to the Ethernet, has been assigned l28.l0.2.26 as its only IP address.
Merlin has address 128.10.2.3 for its connection to the Ethernet and 192.5.48.3 for its

connection to the proNET—l0. Choosing the same value for the low-order byte of its

two addresses makes it easier for systems programmers to remember all of Merlin’: In-
ternet addresses.

4.14 Network Byte Order

To create an intemet that is independent of any particular vendor’s machine archi-

tecture or network hardware, we must define a standard representation for data. Consid-

er what happens, for example, when one machine sends a 32-bit binary integer to anoth-

er. The physical transport hardware moves the sequence of bits from the first machine

to the second without changing the order. However, not all machines store 32-bit in-

tegers in the same way. On some (called Little Endian), the lowest memory address

Samsung — Exhibit 1016 — Page 90

Samsung - Exhibit 1016 - Page 91

70 lntemet Addresses Chap. 4

contains the low-order byte of the integer. On others (called Big Endian), the lowest

memory address holds the high—order byte of the integer. Still others store integers in

groups of 16-bit words, with the lowest addresses holding the low-order word, but with

bytes swapped. Thus, direct copying of bytes from one machine to another may change
the value of the number. ,_

Standardizing byte-order for integers is especially important in an intemet because

intemet packets carry binary numbers that specify information like destination addresses

and packet lengths. Such quantities must be understood by both the senders and re-

ceivers. The TCP/IP protocols solve the byte-order problem by defining a network

standard byte order that all machines must use for binary fields in intemet packets.

Each host converts binary items from the local representation to network standard byte

order before sending a packet; it converts from network byte order to the host—specific

order when a packet is received. Naturally, the user data field in a packet is exempt
from this standard — users are free to format their own data however they choose. Of

course, most users rely on standard application programs and do not have to deal with

the byte order problem directly.

The intemet standard for byte order specifies that integers are sent most significant

byte first (i.e., Big Endian style). If one considers the successive bytes in a packet as it

travels from one machine to another, a binary integer in that packet has its most signifi-

cant byte nearest the beginning of the packet and its least significant byte nearest the

end of the packet. Many arguments have been offered about which data representation
should be used, and the intemet standard still comes under attack from time to time.

However, everyone agrees that having a standard is crucial, and the exact fonn of the

standard is far less important.

4.15 Summary

TCP/IP uses 32-bit binary addresses as universal machine identifiers. Called inter-

net or IP addresses, the identifiers are divided into three primary classes, allowing a few
hundred networks with over a million hosts each, thousands of networks with thousands

of hosts each, and over a million networks with up to 254 hosts each. To make such

addresses easier for humans to understand, they are written in dotted decimal notation,

with the values of the four octets written in decimal, separated by decimal points.
Because the IP address encodes network identification as well as the identification

of a specific host on that network, routing is efficient. An important property of IP ad-

dresses is that they refer to network connections. Hosts with multiple connections have

multiple addresses. One advantage of the intemet addressing scheme is that the same
form of address can be used to refer to hosts, networks, and all hosts on a network

(broadcast). The biggest disadvantage of the IP addressing scheme is that if a machine

has multiple addresses, knowing one address may not be sufficient to reach it when
some network(s) are unavailable.

Samsung - Exhibit 1016 - Page 91

Samsung - Exhibit 1016 - Page 92

C. 4_15 Summary 71

To permit the exchange of binary data among machines, TCP/IP protocols enforce
standard byte ordering for integers within protocol fields. In general, a host must con-

vert all binary data from its internal form to network standard byte order before sending

a packet, and it must convert from network byte order to internal order upon receipt.

_ son FURTHER sruov

Z'I’he intemet addressing scheme presented here can be found in Reynolds and Postel

V [RFCs 990 and 997]. Official Internet addresses are assigned by the NIC (see Appendix
1 for an address and telephone number). Chapter 16 covers an important part of the In-

ternet address standard called Subnet addressing. Subnet addressing allows a single net-

work address to be used with multiple physical networks. Chapter 17 shows how Class

D addresses are assigned for intemet multicast. Cohen [1981] explains bit and byte ord-

ering, and introduces the terms “Big Endian” and “Little Endian.”

EXERCISES

4.1 Exactly how many class A, B, and C networks can exist? Exactly how many hosts can a

network in. each class have? Be careful to allow for class D and E addresses.

4.2 A machine readable list of assigned addresses is sometimes called an intemet host table. If
your site has a host table, find out how many class A, B, and C network numbers have been
assigned.

4.3 How many hosts are attached to each of the local area networks at your site? Does your
site have any local area networks for which a Class C address is insufficient?

4.4 What is the chief difference between the IP addressing scheme and the U.S. telephone
numbering scheme?

4.5 A single central authority cannot manage to assign Internet addresses fast enough to accom-
modate the demand. Can you invent a scheme that allows the central authority to divide its
task among several groups but still ensure that each assigned address is unique?

4.6 Does network standard byte order differ from your local machine's byte order?

Samsung — Exhibit 1016 — Page 92

Samsung - Exhibit 1016 - Page 93

‘ Mapping Internet Addresses

to Physical Addresses

r (ARP)

5.1 Introduction

We have described the TCP/IP address scheme in which each host is assigned a

32-bit_ address and have said that an intemet behaves like a virtual network, using only

these assigned addresses when sending and receiving packets. We also reviewed

several physical network technologies and noted that two machines on a given physical

network can communicate only if they know each other’: physical network address.

What we have not mentioned is how a host or a gateway maps an IP address to the

correct physical address when it needs to send a packet across a physical net. This

chapter considers that mapping, showing how it is implemented for the two most com-
mon physical network address schemes.

5.2 The Address Resolution Problem

Consider two machines A and B that share a physical network. Each has an as—

signed IP address [A and I3 and a physical address PA and P3. The goal is to devise

low-level software that hides physical addresses and allows higher—1evel programs to

work only with intemet addresses. Ultimately, however, communication must be car-

ried out by physical networks using whatever physical address scheme the hardware

supplies. Suppose machine A wants to send a packet to machine B across a physical

73

Samsung — Exhibit 1016 — Page 93

Samsung - Exhibit 1016 - Page 94

74 Mapping Intemet Addresses to Physical Addresses (ARP) Chap. 5

network to which they both attach, but A has only B’s intemet address /3. The question

arises: how does A map that address to B's physical address, P3?

The problem of mapping high-level addresses to physical addresses is known as

the address resolution problem and has been solved in several ways. Some protocol

suites keep tables in each machine that contain pairs of high-level and physical ad-

dresses. Others solve the problem by encoding hardware addresses in high-level ad-

dresses. Using either approach exclusively makes high-level addressing awkward at

best. This chapter discusses two techniques for address resolution used by TCP/IP pro-
tocols.

5.3 Two Types Of Physical Addresses

There are two basic types of physical addresses, exemplified by the Ethernet,

which has large, fixed physical addresses, and proNET—l0, which has small, easily con-

figured physical addresses. Address resolution is difficult for Ethemet—like networks,

but easy for networks like proNET-10. We will consider the easy case first.

5.4 Resolution Through Direct Mapping

Consider a proNET-10 token ring network. Recall from Chapter 2 that it uses

small integers for physical addresses and allows the user to choose a hardware address

when installing an interface board in a computer. The key to making address resolution

easy for a proNET-10 network lies in observing that as long as one has the freedom to

choose both IP and physical addresses, they can be selected such that parts of them are

the same. Typically, one assigns IP addresses with the host id portion equal to 1, 2, 3,

and so on, and then, when installing network interface hardware, selects a physical ad-

dress that corresponds to the IP address. For example, one would select physical ad-
dress 3 for a machine with the IP address l92.5.48.3 because l92.5.48.3 is a class C ad-

dress with the host portion equal to 3.

For networks like proNET—l0, computing a physical address from an IP address is

trivial. The computation consists of extracting the host id portion of the IP address. It

is computationally efficient because it requires only a few machine instructions. It is

easy to maintain because the mapping can be performed without reference to extemal

data. Finally, new machines can be added to the network without changing data or

recompiling code.

Conceptually, choosing a numbering scheme that makes address resolution effi-

cient means selecting a function f that maps IP addresses to physical addresses. The

designer may be able to select a physical address numbering scheme as well, depending

on the hardware. Resolving IP address [A means computing

Samsung - Exhibit 1016 - Page 95

sec. 5.4 Resolution Through Direct Mapping 75

PA = f(IA)

we want the computation off to be efficient. If the set of physical addresses is con-

strained, it may be possible to arrange efficient mappings other than the one given in

the example above. For instance, when using X25, one cannot choose physical ad-

dresses. Usually, gateways on X.25 networks store pairs of IP and X.25 physical ad-

dresses in a table and search the table when resolving an IP address. To make address

resolution efficient in such cases, software can use a hash function to search the table.

Exercise 5.1 suggests another alternative.

5.5 Resolution Through Dynamic Binding

To understand why address resolution is difficult for some networks, consider Eth-

emet technology. Recall from Chapter 2 that an Ethernet has 48-bit physical addresses

assigned by vendors when they manufacture interface boards. As a consequence, when

hardware fails and requires that an interface board be replaced, the machine’s physical

address changes. Furthermore, because the Ethernet address is 48 bits long, there is no

hope it can be encoded in a 32-bit IP address.

Designers of TCP/IP protocols found a creative solution to the address resolution

problem for networks like the Chaosnet or Ethernet that have broadcast capability. The

solution allows new machines to be added to the network without recompiling code, and

does not require maintenance of a centralized database. To avoid maintaining a table of

mappings, the designers chose to use a low-level protocol to bind addresses dynamical-

ly. Termed the Address Resolution Protocol (ARP), it provides a mechanism that is

both efficient and easy to maintain.

As Figure 5.1 shows, the idea behind dynamic resolution with ARP is simple:

when host A wants to resolve IP address 13, it broadcasts a special packet that asks the

host with IP address /3 to respond with its physical address, P3. All hosts, including B,

receive the request, but only host B recognizes its IP address and sends a reply that con-

tains its physical address. When A receives the reply, it uses the physical address to

send the intemet packet directly to B. We can summarize:

The Address Resolution Protocol, ARP, allows a host to find the phy-

sical address of a target host on the same physical network, given

only the target's IP address.

Samsung - Exhibit 1016 - Page 95

Samsung - Exhibit 1016 - Page 96

76 Mapping Internet Addresses to Physical Addresses (ARP) Chap 5

Figure 5.1 The ARP protocol. To determine PB, B’s physical address, from

13, its IP address, (a) host A broadcasts an ARP request containing

In to all machines, and (b) host B responds with an ARP reply

that contains the pair (13, PB).

5.6 The Address Resolution Cache

It may seem silly that for A to send a packet to B it first sends a broadcast that

reaches B. Or it may seem even sillier that A broadcasts the question, “how can I reach

you?” instead of just broadcasting the packet it wants to deliver. But there is an impor-

tant reason for the exchange. Broadcasting is far too expensive to be used every time

one machine needs to transmit a packet to another because it requires every machine on

the network to process the broadcast packet. To reduce communication costs, hosts that

use ARP maintain a cache of recently acquired IP-to-physical address bindings so they

do not have to use ARP repeatedly. Whenever a host receives an ARP reply, it saves

the machine’s IP address and corresponding hardware address in its cache for successive

lookups. When transmitting a packet, the host always looks in its cache for a binding

before sending an ARP request. If the host finds the desired binding in its cache, it

need not broadcast on the network. Experience shows that because most network com-

munication involves more than one packet transfer, even a small cache is worthwhile.

Samsung — Exhibit 1016 — Page 96

Samsung - Exhibit 1016 - Page 97

E;
:3
,.
§

Sec. 5.7 ARP Refinements 77

5.7 ARP Refinements

Several refinements of ARP are possible. First, observe that if host A is about to

use ARP because it needs to send to B, there is a high probability that host 8 will need

to send to A in the near future. If we anticipate B's need, we can avoid extra network

traffic by arranging for A to include its IP-to—physical address binding when sending a

request to 8. Second, notice that because A broadcasts its initial request, all machines
on the network receive it and can extract and store in their cache A’s IP-to—physical ad-

dress binding. Third, when a new machine appears on the net (e.g., when an operating

system reboots), we can avoid having every other machine run ARP by broadcasting the
new machine’s IP address and physical address pair.

The following rule summarizes refinements:

The sender's IP-to—physical address binding is included in every ARP

broadcast; receivers update the IP-to—physical address binding infor-

mation in their cache before processing an ARP packet.

5.8 Relationship Of ARP To Other Protocols

ARP provides one possible mechanism to map from IP addresses to physical ad-

dresses; we have already seen that some network technologies do not need it. The point

is that ARP would be completely unnecessary if we could make all network interfaces

understand their IP address. Thus, ARP merely imposes a new address scheme on top
of whatever low-level address mechanism the hardware uses. The idea can be summar-

ized:

ARP is a low-level protocol that hides the underlying network physi-

cal addressing, permitting us to assign IP addresses of our choosing

to every machine. We think of it as part of the physical network sys-

tem, and not as part of the internet protocols.

5.9 ARP Implementation

Functionally, ARP is divided into two parts. One part determines physical ad-

dresses when sending a packet, and the other pan answers requests from other

machines. Address resolution for outgoing packets seems straightforward, but small de-

tails complicate an implementation. Given a destination IP address the host consults its

ARP cache to see if it knows the mapping from IP address to physical address. If it

does, it extracts the physical address, places the data in a frame using that address, and

sends the frame. If it does not know the mapping, it must broadcast an ARP request

and wait for a reply.

Samsung — Exhibit 1016 — Page 97

Samsung - Exhibit 1016 - Page 98

78 Mapping Internet Addresses to Physical Addresses (ARP) Chap. 5

Broadcasting an ARP request to find an address mapping can become complex.

The target machine could be down or just too busy to accept the request. If so, the

sender may not receive a reply or the reply may be delayed. Because the Ethernet is a

best-effort delivery system, the initial ARP broadcast request can also be lost (in which
case the sender should retransmit, at least once). Meanwhile, the host must storethe

original outgoing packet so it can be sent once the address has been resolved)“. In fact,

the host must decide whether to allow other application programs to proceed while it

processes an ARP request (most do). If so, it must handle the case where an application

generates additional ARP requests for the same address without broadcasting multiple

requests for a given target.

Finally, consider the case where machine A has obtained a binding for machine B,

but then B's hardware fails and is replaced. Although B’s address has changed, A’s

cached binding has not, so A uses a nonexistent hardware address, making successful re-

ception impossible. This case shows why it is important to have ARP software treat its

table of bindings as a cache and remove entries after a fixed period. Of course, the ti-

mer for an entry in the cache must be reset whenever an ARP broadcast arrives contain-

ing the binding (but it is not reset when the entry is used to send a packet).

The second part of the ARP code handles ARP packets that arrive from the net-

work. When an ARP packet arrives, the software first extracts the sender’s IP address

and hardware address pair, and examines the local cache to see if it already has an entry

for the sender. If a cache entry exists for the given IP address, the handler updates that

entry by overwriting the physical address with the physical address obtained from the

packet. The receiver then processes the rest of the ARP packet.

The receiver must handle two types of incoming ARP packets. If the incoming

ARP packet is a request, the receiving machine must see if it is the target of the request

(i.e., some other machine has broadcast a request for the receiver's physical address). If

so, the ARP software forms a reply by supplying its physical hardware address, and

sends the reply directly back to the requestor. The receiver also adds the sender’s ad-

dress pair to its cache if the pair is not already present. If the IP address mentioned in

the ARP request does not match the local IP address, the packet is requesting a mapping

for some other machine on the network and can be ignored. ’

The other interesting case occurs when an ARP reply arrives. Depending on the

implementation, the handler may need to create a cache entry or the entry may already

be present. In any case, once the cache has been updated, the receiver tries to match the

reply with a previously issued request. Usually, replies arrive in response to a request,
which was generated because the machine has a packet to deliver. Between the time the

machine broadcasts its ARP request and receives the reply, application programs or

higher-level protocols may generate additional requests for the same address; the

software must remember that it has already sent a request and not send more. Usually,

it places the additional requests on a queue. Once the reply arrives and the address

binding is known, the ARP software removes items from the queue and supplies the ad-

dress binding to each. If the machine did not previously issue a request for the IP ad-

dress in the reply, it simply stops processing the packet.

Hf the delay is significant, the host may choose to discard the outgoing packet(s).

Samsung — Exhibit 1016 — Page 98

Samsung - Exhibit 1016 - Page 99

‘V7

Sec. 5.10 ARP Encapsulation And Identification 79

5.10 ARP Encapsulation And Identification

When ARP messages travel from one machine to another, they must be carried in

physical frames. Figure 5.2 shows that the ARP message is carried in the data portion
of a frame.

ARP MESSAGE

FRAME

HEADER FRAME DATA AREA

Figure 5.2 An ARP message encapsulated in a physical network frame.

To identify the frame as carrying an ARP request or ARP reply, the sender assigns a

special value to the type field in the frame header and places the ARP message in the

frames data field. When a frame arrives at a host, the system examines the frame type

to determine its contents. For example, on an Ethernet, frames carrying ARP messages

have a type field of 0806”). This is a standard value assigned by the authority that sets
Ethernet standards.

5.11 ARP Protocol Format

Unlike most protocols, the data in ARP packets does not have a fixed-fonnat

header. Instead, the message is designed to be useful with a variety of network techno-

logies. Thus, the first fields in the header contain counts that specify the lengths of

succeeding fields. In fact, ARP can be used with arbitrary physical addresses and arbi-

trary protocol addresses. The example in Figure 5.3 shows the 28—octet ARP message

format used on Ethernet hardware (where physical addresses are 48—bits or 6 octets

long), when resolving IP protocol addresses (which are 4 octets long).

Figure 5.3 shows an ARP message with 4 octets per line, a format that is standard

throughout this text. Unfortunately, unlike most of the remaining protocols, the

variable-length fields in ARP packets do not align neatly on 32-bit boundaries, making

the diagram difficult to read. For example, the sender’s hardware address, labeled

SENDER HA, occupies 6 contiguous octets, so it spans two lines in the diagram.

Samsung — Exhibit 1016 — Page 99

Samsung - Exhibit 1016 - Page 100

80 Mapping lntemet Addresses to Physical Addresses (ARP) Chap. 5

O 8 16 24 31

HLEN

SENDER HA (octets 4-5)
SENDER IP (octets 2-3)

Figure 5.3 An example of ARP/RARP message format when used for IP-to-

Ethernet address resolution. The length of fields depends on the

hardware and protocol address lengths, which are 6 octets for an
Ethernet address and 4 octets for an IP address.

Field HARDWARE TYPE specifies a hardware interface type for which the sender

seeks an answer; it contains the value 1 for Ethernet. Similarly, field PROTOCOL

TYPE specifies the type of high—level protocol address the sender has supplied; it con-

tains 0800,6 for IP addresses. Field OPERATION specifies an ARP request (1), ARP

response (2), RARPT request (3), or RARP response (4). Fields HLEN and PLEN allow

ARP to be used with arbitrary networks because they specify the length of the hardware

address and the length of the high—level protocol address. The sender supplies its
hardware address and IP address, if known, in fields SENDER HA and SENDER 1P.

When making a request, the sender also supplies the target IP address (ARP), or

target hardware address (RARP), using fields TARGET HA and TARGET IP. Before

the target machine responds, it fills in the missing addresses, swaps the target and

sender pairs, and changes the operation to a reply. Thus, a reply carries the IP and

hardware addresses of the original requestor, as well as the IP and hardware addresses

of the machine for which a binding was sought.

5.12 Summary

IP addresses are assigned independent of a machine’s physical hardware address.

To deliver an intemet packet, the network software must ultimately map the IP address

into a physical hardware address and use the hardware address to transmit the frame. If

hardware addresses consist of small integers that can be changed easily, a direct map-

ping can be established by having the machine’s physical address encoded in its IP ad-

dress. Otherwise, the mapping must be performed dynamically. The Address Resolu-

tion Protocol (ARP) performs dynamic address resolution, using only the low—level net-

+RARP, another protocol that uses the same message format, will be described in the next Chapter.

Samsung — Exhibit 1016 — Page 100

Samsung - Exhibit 1016 - Page 101

if:A:
if

‘:1

Sec. 5.12 Summary 81

work communication system. ARP permits machines to resolve addresses without

keeping a permanent record of bindings.
A machine uses ARP to find the hardware address of another machine by broad-

casting an ARP request. The request contains the IP address of the machine for which a

hardware address is needed. Each machine responds to requests that match its IP ad-

dress by sending replies that contain the needed hardware address.

To make ARP efficient, each machine caches IP-to—physical address bindings. Be-

cause intemet traffic tends to consist of a sequence of interactions between pairs of

machines, the cache eliminates most ARP broadcast requests.

FOR FURTHER STUDY

The address resolution protocol used here is given by Plummer [RFC 826] and has

become a TCP/IP intemet protocol standard. Dalal and Printis [1981] describe the rela-

tionship between Ethernet and IP addresses, and Clark [RFC 814] discusses addresses

and bindings in general. Parr [RFC 1029] discusses fault tolerant address resolution.

The Internet Numbers document [RFC 1010] specifies values used to identify network

frames. Comer [1987] presents an example ARP implementation for the Xinu operating
system.

EXERCISES

5.1 Given a small set of physical addresses (positive integers), can you find a functionfand an

assignment of IP addresses such that f maps the IP addresses 1-to—1 onto the physical ad-
dresses and computingf is efficient?

5.2 In what special case does a host connected to an Ethernet not need to use ARP or an ARP
cache before transmitting an IP datagram?

5.3 One common algorithm for managing the ARP cache replaces the least recently used entry
when adding a new one. Under what circumstances can this algorithm produce unneces-
sary network traffic?

5.4 Should ARP update the cache if an old entry already exists for a given IP address? Why or
why not?

5.5 Should ARP modify the cache even when it receives information without specifically re-
questing it? Why or why not?

5.6 Any implementation of ARP that uses a fixed—size cache can fail when used on a network
that has many hosts and much ARP traffic. Explain how.

5.7 ARP is often cited as a security weakness. Explain why.

5.8 Explain what can happen if the hardware address field in an ARP response becomes Cor-
rupted during transmission. Hint: ARP implementations do not usually remove cache en-

tries if they are frequently used.

Samsung - Exhibit 1016 - Page 101

Samsung - Exhibit 1016 - Page 102

82 Mapping Internet Addresses to Physical Addresses (ARP) Chap. 5

5.9 Suppose machine C receives an ARP request sent from A looking for target B, and suppose

C has the binding from In to Pa in its cache. Should C answer the request? Explain.

5.10 How can a workstation use ARP when it boots to find out if any other machine on the net-

work is impersonating it? What are the disadvantages of the scheme?

. .. WW -»m—.~,wvmgz w:w;mwmm7

Samsung - Exhibit 1016 - Page 103

‘Determining an InternetI

“fAddress at Startup (HARP)

i 6.1 Introduction

We now know that physical network addresses are both low-level and hardware

dependent, and we understand that each machine using TCP/IP is assigned one or more
32-bit IP addresses that are independent of the machine’s hardware addresses. Applica-

tion programs always use the IP address when specifying a destination. Hosts and gate-

ways must use physical addresses to transmit datagrams across underlying networks;

they rely on address resolution schemes like ARP to perform the binding.

Usually, a machine’s IP address is kept on its secondary storage, where the operat-

ing system finds it at startup. The question arises, “How does a diskless machine, one

without access to secondary storage, determine its IP address?” The problem is critical
for diskless workstations that use IP addresses to communicate with a file server.

Furthermore, because many diskless machines use standard TCP/IP file transfer proto-

cols to obtain their initial boot image, they must obtain and use an IP address before the

operating system runs. This chapter explores the question of how to obtain an 1}’ ad-

.- dress and describes a protocol that diskless machines use.

To allow a single software image to be used on a set of machines, it must be built

without having the machine’s IP address bound into the image. In particular, designers

try to keep both bootstrap code and initial operating system images free from specific IP

addresses, so the same image can be run on many machines. When such code starts ex-
ecution on a diskless machine, it must use the network to contact a server to obtain the

machine’s IP address. The procedure sounds paradoxical: a machine communicates
with a remote server to obtain an address needed for communication.

83

 ‘ Ne‘-W ~**%IIv.

Samsung - Exhibit 1016 - Page 103

Samsung - Exhibit 1016 - Page 104

84 Determining an lntemet Address at Stanup (RARP) Chap. 6

The paradox is only imagined because the machine does know how to communi-

cate. It can use its physical address to communicate over a single network. Thus, the

machine must resort to physical network addressing temporarily in the same way that

operating systems use physical memory addressing to set up page tables for virtual ad-

dressing. Once a machine knows its intemet address, it can communicate across an in-
temet.

The idea behind finding an IP address is simple: the diskless machine sends a re-

quest to another machine, called a server'[", and waits until the server sends a response.

We assume the server has a disk where it keeps a database of intemet addresses. In the

request, the machine needing to know its intemet address must uniquely identify itself,

so the server can look up the correct intemet address and send a reply. Both the

machine that issues the request and the server that responds use physical network ad-

dresses during their brief communication. How does the diskless machine know the

physical address of a server? Usually, it does not — it simply broadcasts the request to

all machines on the local network. One or more servers respond.

When a diskless machine broadcasts a request, it must uniquely identify itself.

What information can be included in its request that will uniquely identify the machine?

Any unique hardware identification suffices (e.g., the CPU serial number). However,

we want to choose an identification that can be obtained by an executing program. The

objective is to create a single software image that can execute on an arbitrary processor.

Furthermore, the length or format of CPU-specific information may vary among proces-

sor models, and we would like to devise a server that accepts requests from all

machines on the physical network using a single format.

6.2 Reverse Address Resolution Protocol (RARP)

The designers of TCP/IP protocols realized that there is another piece of uniquely

identifying information readily available, namely, the machine’s physical network ad-

dress. Using the physical address as a unique identification has two advantages. Be-

cause a host obtains its physical addresses from the network interface hardware, such

addresses are always available and do not have to be bound into the operating system

image. Because the identifying information depends on the network and not on the CPU

vendor or model, all machines on a given network will supply uniform, unique identif-

iers. Thus, the problem becomes the reverse of address resolution: given a physical net-

work address, devise a scheme that will allow a server to map it into an intemet ad-
dress.

A diskless machine uses a TCP/IP intemet protocol called RARP (Re-r'e)‘se Address

Resolution Protocol) to obtain its IP address from a server. RARP is adapted from the

ARP protocol of the previous chapter and uses the same message format shown in Fig-

ure 5.3. In practice, the RARP message sent to request an intemet address is a little

more general than what we have outlined above: it allows a machine to request the IP

address of a third party as easily as its own. It also allows for multiple physical net-

work types.

rChapter 18 discusses servers in detail.

Samsung - Exhibit 1016 - Page 105

6 2 Reverse Address Resolution Protocol (RARP) 85

Like an ARP message, a RARP message is sent from one machine to another en-

gapsulated in the data portion of an Ethernet frame. An Ethernet frame carrying a
‘Ii/ggp request has the usual preamble, Ethernet source and destination addresses, and

packet type fields in front of the frame. The frame type contains the value 8035“; to
entify the contents of the frame as a RARP message. The data portion of the frame

contains the 28—octet RARP message.
‘;_; Figure 6.1 illustrates how a host uses RARP. The sender broadcasts a RARP re-

quest that specifies itself as both the sender and target machine, and supplies its physi-
'31 network address in the target hardware address field. All machines on the network

receive the request, but only those authorized to supply the RARP service process the

“request and send a reply; such machines are known as RARP servers. For RARP to
succeed, the network must contain at least one RARP server.

(b)

Figure 6.1 Example exchange using the RARP protocol. (a) machine A

broadcasts a RARP request specifying itself as a target, and (b)
those machines authorized to supply the RARP service (C and D)
reply directly to A.

Servers answer requests by filling in the target protocol address field, changing the

message type from request to reply, and sending the reply back directly to the machine

making the request. The original machine receives replies from all RARP servers, even
though only the first is needed.

Keep in mind that all communication between the machine seeking its IP address

and the server supplying it must be carried out using only the physical network. Furth-
ermore, the protocol allows a host to ask about an arbitrary target. Thus, the sender

supplies its hardware address separate from the target hardware address, and the server

Samsung — Exhibit 1016 — Page 105

Samsung - Exhibit 1016 - Page 106

86 Detennining an Internet Address at Startup (RARP) Chap. 6

is careful to send the reply to the sender’s hardware address. On an Ethernet, having a

field for the sender’s hardware address may seem redundant because the information is

also contained in the Ethernet frame header. However, not all Ethernet hardware pro-

vides the operating system with access to the physical frame header.

6.3 Timing RARP Transactions

Like any communication on a best—effort delivery network, RARP requests are sus-

ceptible to loss or corruption. Because RARP uses the physical network directly, no

other protocol software will time the response or retransmit the request; RARP software

must handle these tasks. In general, RARP is used only on local area networks like the

Ethernet, where the probability of failure is low. If a network has only one RARP

sewer, however, that machine may not be able to handle the load, so packets may be

dropped.

Many diskless machines rely on RARP to boot and may choose to retry indefinite-

ly until they receive a response. Other implementations announce failure after only a

few tries to avoid flooding the network with unnecessary broadcast traffic (e.g., in case

the server is unavailable). On an Ethernet, network failure is less likely than server

overload. Making RARP software retransmit quickly may have the unwanted effect of

flooding a congested server with more traffic. Using a large delay ensures that servers

have ample time to satisfy the request and return an answer.

6.4 Primary And Backup RARP Servers

The chief advantage of having several machines function as RARP servers is that it

makes the system more reliable. If one server is down, or too heavily loaded to

respond, another answers the request. Thus, it is highly likely that the service will be

available. The chief disadvantage of using many servers is that when a machine broad-

casts a RARP request, the network becomes overloaded when all servers attempt to

respond. On an Ethernet, for example, using multiple RARP servers makes the proba-

bility of collision high.

How can the RARP service be arranged to keep it available and reliable without

incurring the cost of multiple, simultaneous replies? There are at least two possibilities,

and they both involve delaying responses. In the first solution, each machine that

makes RARP requests is assigned a primary server. Under normal circumstances, only

the machine’s primary server responds to its RARP request. All nonprimary servers re-

ceive the request but merely record its arrival time. If the primary server is unavailable,

the original machine will timeout waiting for a response and then rebroadcast the re-

quest. Whenever a nonprimary server receives a second copy of a RARP request within

a short time of the first, it responds.

Samsung - Exhibit 1016 - Page 107

Chap. 6

iaving a
ration is

are pro-

are sus-

zctly, no
software

like the

: RARP

may be

definite-

r only a
in case

1 server

:ffect of
servers

.s that it

aded to

will be

: broad-

empt to

: proba-

without

ibilities,
ine that

es, only
vers re-

Iailable,
the re-

t within

3'5

.-:.-;.-

Sec. 6.4 Primary And Backup RARP Servers 87

The second solution uses a similar scheme but attempts to avoid having all nonpri—

mary servers transmit responses simultaneously. Each nonprimary machine that re-

ceives a request computes a random delay and then sends a response. Under normal

circumstances, the primary server responds immediately and successive responses are

delayed, so there is low probability that they arrive at the same time. When the primary

server is unavailable, the requesting machine experiences a small delay before receiving

a reply. By choosing delays carefully, the designer can insure that requesting machines

do not rebroadcast before they receive an answer.

6.5 Summary

At system startup, a diskless machine must contact a server to find its IP address

before it can communicate using TCP/IP. We examined the RARP protocol that uses

physical network addressing to obtain the machine’s intemet address. The RARP

mechanism supplies the target machine’s physical hardware address to uniquely identify

the processor and broadcasts the RARP request. Servers on the network receive the

message, look up the mapping in a table (presumably from secondary storage), and re-

ply to the sender. Once a machine obtains its IP address, it stores the address in

memory and does not use RARP again until it reboots.

FOR FURTHER STUDY

The details of RARP are given in Finlayson, et. al. [RFC 903]. Finlayson [RFC

906] describes workstation bootstrapping using the TFTP protocol. Comer [1987]

describes an example implementation of RARP for the Xinu operating system.

Chapter 19 considers an alternative to RARP known as BOOTP. Unlike the low-

level address determination scheme RARP supplies, BOOTP builds on higher level pro-

tocols like IP and UDP. Chapter 19 compares the two approaches, discussing the

strengths and weaknesses of each.

EXERCISES

6.1 A RARP server can broadcast RARP replies to all machines or transmit each reply directly

to the machine that makes the request. Can you characterize a system in which broadcast-
ing replies to all machines is beneficial?

6.2 RARP is a narrowly focused protocol in the sense that replies only contain one piece of in-
formation (i.e., the requested IP address). When diskless machines boot, they usually want
to know at least the time and their machine name in addition to their intemet address. Ex-

tend RARP to supply the additional information.

Samsung - Exhibit 1016 - Page 108

88 Determining an Internet Address at Startup (RARP) Chap. 6

6.3 How much larger will Ethernet frames become when information is added to RARP as
described in the previous exercise?

6.4 Adding a second RARP server to a network increases reliability. Does it ever make sense
to add a third? How about a fourth? Why or Why not?

6.5 The diskless workstations from one vendor use RARP to obtain their IP addresses, but al-

ways assume the response comes from the workstation’s file server. The diskless machine
then tries to obtain a boot image from that server. If it does not receive a response, the

workstation enters an infinite loop broadcasting boot requests. Explain how adding a back-
up RARP server to such a configuration can cause the network to become congested with
broadcasts. Hint: think of power failures.

—- « -—.-«Hr —.—.sw.—..,.e. ..._.._._.....,,,:'.,.l,.¢.. ...,.,.,..-.-,.—.7. ,..- .1..,~7,.?.,., .»....,-.—.»,.V«,.-um-rgu u.P,r,,,,,,,ww,v,,"$,?,":‘:Y"!w,,$T'‘:,¢ , V

Samsung - Exhibit 1016 - Page 109

\RP) Chap. 6

ad to RARP as

:ver make sense

ldresses, but al-
iskless machine

a response, the
' adding a back-

congested with

.....:>.':..‘.>.:,~u-w.-v-crux-.—aa::..-.;.<,..~.-:.:._,(.*...._:—.._,._...2.
Internet Protocol:

Connection/ess Datagram

Delivery

7.1 Introduction

We have been reviewing pieces of network hardware and software that make inter-

net communication possible, explaining the underlying network technologies and ad-

dress resolution. This chapter considers the fundamental principle of connectionless

delivery and discusses how it is provided by the Internet Protocol (IP), one of the two

major protocols used in intemetworking. We will study the format of IP datagrams and

see how they form the basis for all intemet communication. The next two chapters con-

tinue our examination of the lntemet Protocol by discussing datagram routing and error

handling.

7.2 A Virtual Network

Chapter 3 discussed an intemet architecture in which gateway machines connect

multiple physical networks. Looking at the architecture may be misleading, because the

focus should be on the interface that an intemet provides users, not on the interconnec-

tion technology.

89

Samsung - Exhibit 1016 - Page 110

90 lntemet Protocol: Connectionless Datagram Delivery Chan

A user thinks of an internet as a single virtual network that intercon-

nects all hosts, and through which communication is possible,‘ its

underlying architecture is both hidden and irrelevant.

In a sense, an intemet is an abstraction of physical networks because, at the lowest lev

el, it provides the same functionality: accepting packets and delivering them. Highe

levels of intemet software add most of the rich functionality users perceive.

7.3 Internet Architecture And Philosophy

Conceptually, a TCP/IP intemet provides three sets of services as shown in Figure

7.1; their arrangement in the figure suggests dependencies among them. At the lowest

level, a connectionless delivery service provides a foundation on which everything rests.

At the next level, a reliable transport service provides a higher level platform on which

applications depend. We will soon explore each of these services, understand what they

provide, and see the protocols associated with them.

APPLICATION SERVICES

RELIABLE TRANSPORT SERVICE

CONNECTIONLESS PACKET DELIVERY SERVICE

Figure 7.1 The three conceptual layers of intemet services.

7.4 The Concept Of Unreliable Delivery

Although we can associate protocol software with each of the services in Figure

7.1, the reason for identifying them as conceptual pans of the intemet is that they clear-

ly point out the philosophical underpinnings of the design. The point is:

Internet software is designed around three conceptual networking ser-

vices arranged in a hierarchy; much of its success has resulted be-

cause this architecture is surprisingly robust and adaptable.

Samsung — Exhibit 1016 — Page 110

Samsung - Exhibit 1016 - Page 111

The Concept Of Unreliable Delivery 91

ne of the most significant advantages of this conceptual separation is that it becomes
iaossibte to replace one service without disturbing others. Thus, research and develop-
ment can proceed concurrently on all three.

Connectionless Delivery System

The most fundamental intemet service consists of a packet delivery system.

‘Technically, the service is defined as an unreliable, best—effort, connectionless packet

,de]ivery system, analogous to the service provided by network hardware that operates
on a best-effort delivery paradigm. The service is called unreliable because delivery is

‘fig: guaranteed. The packet may be lost, duplicated, delayed, or delivered out of order,
but the service will not detect such conditions, nor will it inform the sender or receiver.

The service is called connectionless because each packet is treated independently from

all others. A sequence of packets sent from one machine to another may travel over

, different paths, or some may be lost while others are delivered. Finally, the service is
I’ said to use hest—e]f0rt delivery because the intemet software makes an earnest attempt to

deliver packets. That is, the intemet does not discard packets capriciously; unreliability

arises only when resources are exhausted or underlying networks fail.

it 7.6 Purpose Of The Internet Protocol

The protocol that defines the unreliable, connectionless delivery mechanism is

called the Internet Protocol and is usually referred to by its initials, IPT. IP provides

' three important definitions. First, the IP protocol defines the basic unit of data transfer

I used throughout a TCP/IP intemet. Thus, it specifies the exact format of all data as it

passes across a TCP/IP intemet. Second, IP software performs the routing function,

choosing a path over which data will be sent. Third, in addition to the precise, fonnal

specification of data formats and routing, IP includes a set of rules that embody the idea

of unreliable packet delivery. The rules characterize how hosts and gateways should

process packets, how and when error messages should be generated, and the conditions

under which packets can be discarded. IP is such a fundamental part of the design that

a TCP/IP intemet is sometimes called an lP—based technology.

We begin our consideration of IP in this chapter by looking at the packet format it

V specifies. We leave until later chapters the topics of routing and error handling.

7.7 The Internet Datagram

The analogy between a physical network and a TCP/IP intemet is strong. On a

physical network, the unit of transfer is a frame that contains a header and data, where

the header gives information like the (physical) source and destination addresses. The
intemet calls its basic transfer unit an Internet datagram, sometimes referred to as an IP

7ThC abbreviation lP gives rise to the term “IP address.“

Samsung — Exhibit 1016 — Page 111

Samsung - Exhibit 1016 - Page 112

92 Internet Protocol: Connectionless Datagram Delivery Chap. 7

datagram or merely a datagram. Like a typical physical network frame, a datagram is

divided into header and data areas. Also like a frame, the datagram header contains the

source and destination addresses and a type field that identifies the contents of the da-

tagram. The difference, of course, is that the datagram header contains IP addresses

whereas the frame header contains physical addresses. Figure 7.2 shows the general_
form of a datagram:

DATAGRAM HEADER DATAGRAM DATA AREA

Figure 7.2 General form of an IP datagram, the TCP/IP analogy to a network

frame. IP specifies the header format including the source and

destination IP addresses. IP does not specify the format of the

data area; it can be used to transport arbitrary data.

7.7.1 Datagram Format

Now that we have described the general layout of an IP datagram we can look at the

contents in more detail. Figure 7.3 shows the arrangement of fields in a datagram:

O 4 8 16 19 24 31

SERVICE TYPE
FLAG

TIME TO LIVE

PADDING

Figure 7.3 Format of an Internet datagram, the basic unit of transfer in a
TCP/IP intemet.

Because datagram processing occurs in software, the contents and fomiat are not

constrained by any hardware. For example, the first 4-bit field in a datagram (VERS)

contains the version of the IP protocol that was used to create the datagram. It is used

Samsung - Exhibit 1016 - Page 113

elivery Chap. 7

:, a datagram is
Ller contains the

tents of the da-

15 IP addresses

IWS the general

:
tetwork

‘cc and

of the

:an look at the

iatagram:

zrina

fonnat are not

tagram (VERS)
‘am. It is used

".«.— Sec. 7.7 The lntemet Datagram 93

to verify that the sender, receiver, and any gateways in between them agree on the for-

mat of the datagram. All IP software is required to check the version field before pro-

cessing a datagram to insure it matches the format the software expects. If standards

change, machines will reject datagrams with protocol versions that differ from theirs,

preventing them from misinterpreting datagram contents according to an outdated for-

mat. The current IP protocol version is 4.

The header length field (HLEN), also 4 bits, gives the datagram header length

measured in 32-bit words. As we will see, all fields in the header have fixed length ex-

cept for the IP OPTIONS and corresponding PADDING fields. The most common

header, which contains no options and no padding, measures 20 octets and has a header

length field equal to 5.

The TOTAL LENGTH field gives the length of the IP datagram measured in octets,

including octets in the header and data. The size of the data area can be computed by
subtracting the length of the header (HLEN) from the TOTAL LENGTH. Because the

TOTAL LENGTH field is 16 bits long, the maximum possible size of an IP datagram is

2'6 or 65,535 octets. In most applications this is not a severe limitation. It may become

more important in the future when higher speed networks can carry data packets larger
than 65,535 octets.

7.7.2 Datagram Type of Service and Precedence

The 8-bit SERVICE TYPE field specifies how the datagram should be handled and

is broken down into five subfields as shown in Figure 7.4:

O 1 2 3

In

Figure 7.4 The five subfields that comprise the 8~bit type—of—service field.

Three PRECEDENCE bits specify datagram precedence, with values ranging from 0

(normal precedence) through 7 (network control), allowing senders to indicate the im-

portance of each datagram. Although most host and gateway software ignores type of

service, it is an important concept because it provides a mechanism that will eventually

allow control information to have precedence over data. For example, if all hosts and

gateways honor precedence, it is possible to implement congestion control algorithms

that are not affected by the congestion they are trying to control.

Bits D, T, and R specify the type of transport the datagram desires. When set, the

D bit requests low delay, the T bit requests high throughput, and the R bit requests high

reliability. Of course, it may not be possible for an intemet to guarantee the type of

transport requested (i.e., it could be that no path to the destination has the requested

property). Thus, we think of the transport request as a hint to the routing algorithms,

Samsung - Exhibit 1016 - Page 114

94 lntemet Protocol: Connectionless Datagram Delivery Chap. 7

not as a demand. If a gateway does know more than one possible route to a given des-

tination, it can use the type of transport field to select one with characteristics closest to

those desired. For example, suppose the gateway can select between a low capacity

leased line or a high bandwidth (but high delay) satellite connection. Datagrams Carry-

ing keystrokes from a user to a remote computer could have the D bit set requesting

that they be delivered as quickly as possible, while datagrams carrying a bulk file

transfer could have the T bit set requesting that they travel across the high capacity sa-

tellite path.

It is also important to realize that routing algorithms must choose from among

underlying physical network technologies that each have characteristics of delay,

throughput, and reliability. Often, a given technology trades off one characteristic for

another (e.g., higher throughput rates at the expense of longer delay). Thus, the idea is

to give the algorithm a hint about what is most important; it seldom makes sense to

specify all three types of service. To summarize:

We regard the type of transport specification as a hint to the routing

algorithm that helps it choose among various paths to a destination

based on its knowledge of the hardware technologies available on

those paths. An internet does not guarantee the type of transport re-

quested.

7.7.3 Datagram Encapsulation

Before we can understand the next fields in a datagram, we need to consider how

datagrams relate to physical network frames. We start with a question: “How large can

a datagram be?” Unlike physical network frames that must be recognized by hardware,

datagrams are handled by software. They can be of any length the protocol designers

choose. We have seen that the current datagram format allots only 16 bits to the total

length field, limiting the datagram to at most 65,535 octets. However, that limit could

be changed in later versions of the protocol.

More fundamental limits on datagram size arise in practice. We know that as da-

tagrams move from one machine to another, they must always be transported by the

underlying physical network. To make intemet transportation efficient, we would like

to guarantee that each datagram travels in a distinct physical frame. That is, we want

our abstraction of a physical network packet to map directly onto a real packet if possi-
ble.

The idea of carrying one datagram in one network frame is called encapsulation.

To the underlying network, a datagram is like any other message sent from one machine

to another. The hardware does not recognize the datagram format, nor does it under-

stand the IP destination address. Thus, as Figure 7.5 shows, when one machine sends

an IP datagram to another, the entire datagram travels in the data portion of the network
frame.

Samsung — Exhibit 1016 — Page 114

Samsung - Exhibit 1016 - Page 115

Sec. 7.7 The Internet Datagram 95

DATAGRAM

HEADER DATAGRAM DATA AREA

HF::3"EER FRAME DATA AREA

Figure 7.5 The encapsulation of an IP datagram in _a frame. The physical net-

work treats the entire datagram, including the header, as data.

7.7.4 Datagram Size, Network MTU, and Fragmentation

In the ideal case, the entire IP datagram fits into one physical frame, making

transmission across the physical net efficient.T To achieve such efficiency, the

designers of IP might have selected a maximum datagram size such that a datagram

would always fit into one frame. But which frame size should be chosen? After all, a

datagram may travel across many types of physical networks as it moves across an in-
temet to its final destination.

To understand the problem, we need a fact about network hardware: each packet-

switching technology places a fixed upper bound on the amount of data that can be

transferred in one physical frame. For example, the Ethernet limits transfers to 1500:

octets of data, while the proNET—l0 allows 2044 octets per frame. We refer to these

limits as the network’s maximum transfer unit or MTU. MTU sizes can be quite small:

some hardware technologies limit transfers to 128 octets or less. Limiting datagrams to

fit the smallest possible MTU in the intemet makes transfers inefficient when those da-

tagrams pass across a network that can carry larger size frames. However, allowing da-

tagrams to be larger than the minimum network MTU in an intemet means that a da-

tagram may not always fit into a single network frame.

The choice should be obvious: the point of the intemet design is to hide underlying

network technologies and make communication convenient for the user. Thus, instead

of designing datagrams that adhere to the constraints of physical networks, TCP/IP

software chooses a convenient initial datagram size and arranges a way to divide large

datagrams into smaller pieces when the datagram needs to traverse a network that has a

small MTU. The small pieces into which a datagram is divided are called fragments,

and the process of dividing a datagram is known as fragmentation.

As Figure 7.6 illustrates, fragmentation usually occurs at a gateway somewhere

along the path between the datagram source and its ultimate destination. The gateway

receives a datagram from a network with a large MTU and must route it over a network

for which the MTU is smaller than the datagram size.

1A field in the frame header identifies the data being carried. Ethernet uses the type value 0800.“ to
specify that the data area contains an encapsulated [P datagram.

+*The limit of 1500 comes from the Ethernet specification; when used with a SNAP header the IEEE
802.3 standard limits data to l492 octets. Some hardware allows slightly larger transfers.

Samsung — Exhibit 1016 — Page 115

Samsung - Exhibit 1016 - Page 116

96 Internet Protocol: Connectionless Datagram Delivery Chap. 7

MTU=150O MTU=150O

Figure 7.6 An illustration of where fragmentation occurs. Gateway G, frag-

ments large datagrams sent from A to B; G_, fragments large da~

tagrams sent from B to A.

In the figure, both hosts attach directly to Ethemets which have an MTU of 1500

octets. Thus, both hosts can generate and send datagrams up to 1500 octets long. The

path between them, however, includes a network with an MTU of 620. If host A sends

host B a datagram larger than 620 octets, gateway G, will fragment the datagram. Simi-

larly, if B sends a large datagram to A, gateway G2 will fragment the the datagram.

Fragment size is chosen so each fragment can be shipped across the underlying

network in a single frame. In addition, because IP represents the offset of the data in

multiples of eight octets, the fragment size must be chosen to be a multiple of eight. Of

course, choosing the multiple of eight octets nearest to the network MTU does not usu-

ally divide the datagram into equal size pieces; the last piece is often shorter than the

others. Fragments must be reassembled to produce a complete copy of the original da-

tagram before it can be processed at the destination.

The IP protocol does not limit datagrams to a small size, nor does it guarantee that

large datagrams will be delivered without fragmentation. The source can choose any

datagram size it thinks appropriate; fragmentation and reassembly occur automatically,

without the source taking special action. The IP specification states that gateways must

accept datagrams up to the maximum of the MTUS of networks to which they attach.

In addition, gateways must always handle datagrams of up to 576 octets. (Hosts are

also required to accept, and reassemble if necessary, datagrams of at least 576 octets.)

Fragmenting a datagram means dividing it into several pieces. It may surprise you

to leam that each piece has the same format as the original datagram. Figure 7.7 illus-

trates the result of fragmentation.

Samsung — Exhibit 1016 — Page 116

Samsung - Exhibit 1016 - Page 117

Sec. 7.7 The lntemet Datagram 97

DATAGRAM data, 2 data, 3 dataa HEADER 600 octets 600 octets 200 octets

FRAGMENT 1

HEADER

m)

FRAGMENT2

HEADER

Fragment 1 (offset 0)

Fragment 2 (offset 600)

FRAGMENT 3

HEADER Fragment 3 (offset 1200)

(b)

Figure 7.7 (a) An original datagram carrying 1400 octets of data and (b) the

three fragments for network MTU of 620. Headers 1 and 2 have

the more fragments bit set. Offsets shown are decimal octets;

they must be divided by 8 to get the value stored in the fragment
headers.

Each fragment contains a datagram header that duplicates most of the original da-

tagram header (except for a bit in the FLAGS field that shows it is a fragment), fol-

lowed by as much data as can be carried in the fragment while keeping the total length
smaller than the MTU of the network over which it must travel.

7.7.5 Reassembly Of Fragments

Should a datagram be reassembled after passing across one network, or should the

fragments be carried to the final host before reassembly? In a TCP/IP intemet, once a

datagram has been fragmented, the fragments travel as separate datagrams all the way to

the ultimate destination where they must be reassembled. Preserving fragments all the

way to the ultimate destination has two disadvantages. First, because datagrams are not

reassembled immediately after passing across a network with small MTU, the small

fragments must be carried from the point of fragmentation to the ultimate destination.

Reassembling datagrams at the ultimate destination can lead to inefficiency: even if

some of the physical networks encountered after the point of fragmentation have large

MTU capability, only small fragments traverse them. Second, if any fragments are lost,

the datagram cannot be reassembled. The receiving machine starts a reassembly timer

when it receives an initial fragment. If the timer expires before all fragments arrive, the

Samsung — Exhibit 1016 — Page 117

Samsung - Exhibit 1016 - Page 118

98 lntemet Protocol: Connectionless Datagram Delivery Chap. 7

receiving machine discards the surviving pieces without processing the datagram. Thus,

the probability of datagram loss increases when fragmentation occurs because the loss

of a single fragment results in loss of the entire datagram.

Despite the minor disadvantages, performing reassembly at the ultimate destination

works well. It allows fragments to be routed independently and does not require inter-

mediate gateways to store or reassemble fragments.

7.7.6 Fragmentation Control

Three fields in the datagram header, IDENTIFICATION, FLAGS, and FRAGMENT

OFFSET, control fragmentation and reassembly of datagrams. Field IDENTIFICATION

contains a unique integer that identifies the datagram. Recall that when a gateway frag-

ments a datagram, it copies most of the fields in the datagram header into each frag-

ment. The IDENTIFICATION field must be copied. Its primary purpose is to allow the

destination to know which arriving fragments belong to which datagrams. As a frag-

ment arrives, the destination uses the IDENTIFICATION field along with the datagram

source address to identify the datagram. Computers sending IP datagrams must gen-

erate a unique value for the IDENTIFICATION field for each unique datagramf. One

technique used by IP software keeps a global counter in memory, increments it each

time a new datagram is created, and assigns the result as the datagram’s IDENTIFICA-
TION field.

Recall that each fragment has exactly the same format as a complete datagram.

For a fragment, field FRAGMENT OFFSET specifies the offset in the original datagram

of the data being carried in the fragment, measured in units of 8 octetsi, starting at

offset zero. To reassemble the datagram, the destination must obtain all fragments start-

ing with the fragment that has offset 0 through the fragment with highest offset. Frag-

ments do not necessarily arrive in order, and there is no communication between the

gateway that fragmented the datagram and the destination trying to reassemble it.

The low—order 2 bits of the 3-bit FLAGS field controls fragmentation. Usually, ap-

plication software using TCP/IP does not care about fragmentation because both frag-

mentation and reassembly are automatic procedures that occur at a low level in the

operating system, invisible to end users. However, to test intemet software or debug

operational problems, it may be important to test sizes of datagrams for which fragmen-

tation occurs. The first control bit aids in such testing by specifying whether the da-

tagram may be fragmented. It is called the do not fragment bit because setting it to I

specifies that the datagram should not be fragmented. An application may choose to

disallow fragmentation when only the entire datagram is useful. For example, consider

a computer bootstrap sequence in which a machine begins executing a small program in

ROM that uses the intemet to request an initial bootstrap, and another machine sends

back a memory image. If the software has been designed so it needs the entire image or

none of it, the datagram should have the do not fragment bit set. Whenever a gateway

needs to fragment a datagram that has the do not fragment bit set, the gateway discards

the datagram and sends an error message back to the source.

Tln theory, retransmissions of a datagram carry the same IDENTIFICATION field as the original; in prac-
tice, higher-level protocols usually perform retransmission, resulting in a new datagram with its own IDEN-
TIFICATION.

iOffsets are measured in multiples of 8 octets to save space in the header.

Samsung — Exhibit 1016 — Page 118

Samsung - Exhibit 1016 - Page 119

Sec. 7.7 The Internet Datagram 99

The low order bit in the FLAGS field specifies whether the fragment contains data

from the middle of the original datagram or from the end. It is called the more frag-

ments bit. To see why such a bit is needed, consider the IP software at the ultimate

destination attempting to reassemble a datagram. It will receive fragments (possibly out

of order) and needs to know when it has received all fragments for a datagram. When a

fragment arrives, the TOTAL LENGTH field in the header refers to the size of the frag-

ment and not to the size of the original datagram, so the destination cannot use the TO-

TAL LENGTH field to tell whether it has collected all fragments. The more fragments

bit solves the problem easily: once the destination receives a fragment with the more

fragments bit turned off, it knows this fragment carries data from the tail of the original

datagram. From the FRAGMENT OFFSET and TOTAL LENGTH fields, it can compute

the length of the original datagram. By examining the FRAGMENT OFFSET and TO-

TAL LENGTH of all fragments that have arrived, a receiver can tell whether the frag-

ments on hand contain all the data needed to reassemble the entire original datagram.

7.7.7 Time to Live (TTL)

Field TIME TO LIVE specifies how long, in seconds, the datagram is allowed to

remain in the intemet system. The idea is both simple and important: whenever a

machine injects a datagram into the intemet, it sets a maximum time that the datagram

should survive. Gateways and hosts that process datagrams must decrement the TIME

TO LIVE field as time passes and remove the datagram from the intemet when its time

expires.

Estimating exact times is difficult because gateways do not usually know the tran-

sit time for physical networks. A few rules simplify processing and make it easy to

handle datagrams without synchronized clocks. First, each gateway along the path from

source to destination is required to decrement the TIME TO LIVE field by I when it

processes the datagram header. Furthermore, to handle cases of overloaded gateways

that introduce long delays, each gateway records the local time when the datagram ar-

rives, and decrements the TIME TO LIVE by the number of seconds the datagram

remained inside the gateway waiting for service.

Whenever a TIME TO LIVE field reaches zero, the gateway discards the datagram

and sends an error message back to the source. The idea of keeping a timer for da-

tagrams is interesting because it guarantees that datagrams cannot travel around an in-

temet forever, even if routing tables become corrupt and gateways route datagrams in a
circle.

7.7.8 Other Datagram Header Fields

Field PROTOCOL is analogous to the type field in an Ethernet frame. The value

in the PROTOCOL field specifies which high—level protocol was used to create the mes-

sage being carried in the DATA area of a datagram. In essence, the value of PROTO-

COL specifies the format of the DATA area. The mapping between a high level proto-

col and the integer value used in the PROTOCOL field must be administered by a cen-

Samsung - Exhibit 1016 - Page 119

Samsung - Exhibit 1016 - Page 120

l00 Intemet Protocol: Connectionless Datagram Delivery Chap. 7

tral authority to guarantee agreement across the entire Internet.

Field HEADER CHECKSUM ensures integrity of header values. The IP checksum

is formed by treating the header as a sequence of 16-bit integers (in network byte ord-

er), adding them together using one’s complement arithmetic, and then taking the one’s

complement of the result. For purposes of computing the checksum, field HEADER
CHECKSUM is assumed to contain zero.

It is important to note that the checksum only applies to values in the IP header

and not to the data. Separating the checksum for headers and data has advantages and

disadvantages. Because the header usually occupies fewer octets than the data, having a

separate checksum reduces processing time at gateways which only need to compute

header checksums. The separation also allows higher level protocols to choose their

own checksum scheme for the data. The chief disadvantage is that higher level proto-

cols are forced to add their own checksum or risk having corrupted data go undetected.
Fields SOURCE IP ADDRESS and DESTINATION IP ADDRESS contain the 32-bit

IP addresses of the datagram’s sender and intended recipient. Although the datagram

may be routed through many intermediate gateways, the source and destination fields

never change; they specify the IP addresses of the original source and ultimate destina-
tion.

The field labeled DATA in Figure 7.3 shows the beginning of the data area of the

datagram. Its length depends, of course, on what is being sent in the datagram.

The IP OPTIONS field, discussed below, is variable length. The field labeled

PADDING, depends on the options selected. It represents bits containing zero that may

be needed to ensure the datagram header extends to an exact multiple of 32 bits (recall

that the header length field is specified in units of 32-bit words).

7.8 Internet Datagram Options

The IP OPTIONS field following the destination address is not required in every

datagram; options are included primarily for network testing or debugging. Options

processing is an integral part of the IP protocol, however, so all standard implementa-
tions must include it.

The length of the IP OPTIONS field varies depending on which options are select-

ed. Some options are one octet long; they consist of a single octet option code. Other

options are variable length. When options are present in a datagram, they appear con-

tiguously, with no special separators between them. Each option consists of a single oc-

tet option code, which may be followed by a single octet length and a set of data octets

for that option. The option code octet is divided into three fields as Figure 7.8 shows.

Samsung - Exhibit 1016 - Page 120

Samsung - Exhibit 1016 - Page 121

‘ ..lsf»_=.,V.-_

Sec. 7.8 Internet Datagram Options 101

O l 2 3 4 5 6 7

COPY OPTION CLASS OPTION NUMBER

Figure 7.8 The division of the option code octet into three fields of length 1,
2, and 5 bits.

The fields consist of a 1-bit COPY flag, a 2-bit OPTION CLASS, and the 5-bit OPTION

NUMBER. The COPY flag controls how gateways treat options during fragmentation.

When the COPY bit is set to I, it specifies that the option should be copied into all

fragments. When set to 0, the COPY bit means that the option should only be copied

into the first fragment and not into all fragments.

The OPTION CLASS and OPTION NUMBER bits specify the general class of the

option and give a specific option in that class. The table in Figure 7.9 shows how
classes are assigned.

Option Class Meaning

0 Datagram or network control
1 Reserved for future use

2 Debugging and measurement
3 Reserved for future use

Figure 7.9 Classes of IP options as encoded in the OPTION CLASS bits of an

option code octet.

The table in Figure 7.10 lists the possible options that can accompany an IP da-

tagram and gives their OPTION CLASS and OPTION NUMBER values. As the list

shows, most options are used for control purposes.

:»-...;~,»-i.vf:2:v.l:.:.-

Samsung — Exhibit 1016 — Page 121

Samsung - Exhibit 1016 - Page 122

l02 lntemet Protocol: Connectionless Datagram Delivery Chap. 7

Option Option

Class Number Length Description

0 0 - End of option list. Used if options
do not end at end of header

(also see header padding field).

0 1 - No operation (used to align octets in

a list of options).

0 2 11 Security and handling restrictions

(for military applications).

0 3 var Loose source routing. Used to route

a datagram along a specified path.
0 7 var Record route. Used to trace a route.

0 8 4 Stream identifier. Used to carry a

SATNET stream identifier (Obsolete).

0 9 var Strict source routing. Used to route

a datagram along a specified path.

2 4 var Internet timestamp. Used to record

timestamps along the route.

Figure 7.10 The eight possible IP options with their numeric class and

number codes. The value var in the length column stands for
variable.

7.8.1 Record Route Option

The routing and timestamp options are the most interesting because they provide a

way to monitor or control how intemet gateways route datagrams. The record route op-

tion allows the source to create an empty list of IP addresses and arrange for each gate-

way that handles the datagram to add its IP address to the list. Figure 7.11 shows the

format of the record route option.

As described above, the CODE field contains the option number and option class

(7 for record route). The LENGTH field specifies the total length of the option as it ap-

pears in the IP datagram, including the first three octets. The fields starting with one la-

beled FIRST IP ADDRESS comprise the area reserved for recording intemet addresses.

The POINTER field specifies the offset within the option of the next available slot.

Samsung — Exhibit 1016 — Page 122

Samsung - Exhibit 1016 - Page 123

Sec. 7.8 lntemet Datagram Options 103

CODE(7) LENGTH POINTER

FIRST up ADDRESS

SECOND IP ADDRESS

Figure 7.11 The format of the record route option in an IP datagram.

Whenever a machine handles a datagram that has the record route option set, the

machine adds its address to the record route list (enough space must be allocated in the

option by the original source to hold all entries that will be needed). To add itself to
the list, a machine first compares the pointer and length fields. If the pointer is greater

than the length, the list is full, so the machine forwards the datagram without inserting

its entry. If the list is not full, the machine inserts its 4-octet IP address at the position

specified by the POINTER, and increments the POINTER by four.
When the datagram arrives, the destination machine must extract and process the

list of IP addresses. If the destination handles the datagram as usual, it will ignore the

recorded route. Note that the source must agree to enable the record route option and

the destination must agree to process the resultant list; a single machine will not receive
information about recorded routes automatically just because it turns on the record route

option.

7.8.2 Source Route Options

Another idea that network builders find interesting is the source route option. The

idea behind source routing is that it provides a way for the sender to dictate a path

through the intemet. For example, to test the throughput over a particular physical net-

work, N, system administrators can use source routing to force IP datagrams to traverse

network N even if gateways would normally choose a path that did not include it. The

ability to make such tests is especially important in a production environment, because

it gives the network manager freedom to route users’ datagrams over networks that are

known to operate correctly while simultaneously testing other networks. Of course,

such routing is only useful to people who understand the network topology; the average
user has no need to know or use it.

Samsung — Exhibit 1016 — Page 123

Samsung - Exhibit 1016 - Page 124

104 lntemet Protocol: Connectionless Datagram Delivery Chap. 7

IP supports two forms of source routing. One form, called strict source routing,

specifies a routing path by including a sequence of IP addresses in the option as figure
7.12 shows.

CODE(137) LENGTH POINTER

IP ADDRESS OF FIRST HOP

Figure 7.12 The strict source route option specifies an exact route by giving a
list of IP addresses the datagram must follow.

Strict source routing means that the addresses specify the exact path the datagram must

follow to reach its destination. The path between two successive addresses in the list

must consist of a single physical network; an error results if a gateway cannot follow a
strict source route. The other form, called loose source routing, also includes a se-

quence of IP addresses. It specifies that the datagram must follow the sequence of IP

addresses, but allows multiple network hops between successive addresses on the list.

Both source route options require gateways along the path to overwrite items in the

address list with their local network addresses. Thus, when the datagram arrives at its

destination, it contains a list of all addresses visited, exactly like the list produced by

the record route option.

The format of a source route option resembles that of the record route option

shown above. Each gateway examines the POINTER and LENGTH fields to see if the

list has been exhausted. If it has, the pointer is greater than the length, and the gateway

routes the datagram to its destination as usual. If the list is not exhausted, the gateway

follows the pointer, picks up the IP address, replaces it with the gateway’s address'l', and

routes the datagram using the address it obtained from the list.

7.8.3 Timestamp Option

The timestamp option works like the record route option in that the timestamp op-

tion contains an initially empty list, and each gateway along the path from source to

destination fills in one item in the list. Each entry in the list contains two 32-bit items:

the IP address of the gateway that supplied the entry, and a 32-bit integer timestamp.

Figure 7.13 shows the format of the timestamp option.

1A gateway has one address for each interface; it records the address that corresponds to the network
over which it routes the datagram.

Samsung - Exhibit 1016 - Page 124

Samsung - Exhibit 1016 - Page 125

e

A

lntemet Datagram Options 105Sec. 7.8

CODE(68) LENGTH POINTER OFLOW FLAGS

FIRST IP ADDRESS

FIRST TIMESTAMP

Figure 7.13 The format of the timestamp option. Bits in the FLAG field con-

trol the exact format and rules gateways use to process this op«
tion.

In the figure, the LENGTH and POINTER fields are used to specify the length of

the space reserved for the option and the location of the next unused slot (exactly as in

the record route option). The 4-bit OFLOW field contains an integer count of gateways

that could not supply a timestamp because the option was too small.

The value in the 4-bit FLAGS field controls the exact format of the option and tells

how gateways should supply timestamps. The values are:

Flags value Meaning

0 Record timestamps only; omit IP addresses.

1 Precede each timestamp by an IP address

(this is the format shown in Figure 7.13).

3 IP addresses are specified by sender; a

gateway only records a timestamp if the
next IP address in the list matches the

gateway’s IP address.

Figure 7.14 The interpretation of values in the FLAGS field of a timestamp

option.

Timestamps give the time and date at which a gateway handles the datagram, ex-

pressed as milliseconds since midnight, Universal TimeT. If the standard representation

for time is unavailable, the gateway can use any representation of local time provided it

turns on the high—order bit in the timestamp field. Of course, timestamps issued by in-

dependent computers are not always consistent even if represented in universal time;

each machine reports time according to its local clock, and clocks may differ. Thus,

timestamp entries should always be treated as estimates, independent of the representa-
tion.

It may seem odd that the timestamp option includes a mechanism to have gateways

record their IP addresses along with timestamps because the record route option already

provides that capability. However, recording IP addresses with timestamps eliminates

‘r Universal Time was formerly called Greenwich Mean Time; it is the time of day at the prime meridian.

 v....r~- -.-at _fivv«»rafQ;\V‘v!aff

Samsung — Exhibit 1016 — Page 125

Samsung - Exhibit 1016 - Page 126

106 Internet Protocol: Connectionless Datagram Delivery Chap. 7

ambiguity. Having the route recorded along with timestamps is also useful because it

allows the receiver to know exactly which path the datagram followed.

7.8.4 Processing Options During Fragmentation

The idea behind the COPY bit in the option CODE field should now be clear.

When fragmenting a datagram, a gateway replicates some IP options in all fragments

while it places others in only one fragment. For example, consider the option used to

record the datagram route. We said that each fragment will be handled as an indepen-

dent datagram, so there is no guarantee that all fragments follow the same path to the

destination. If all fragments contained the record route option, the destination might re-

ceive a different list of routes from each fragment. It could not produce a single, mean-

ingful list of routes for the reassembled datagram. Therefore, the IP standard specifies

that the record route option should only be copied into one of the fragments.

Not all IP options can be restricted to one fragment. Consider the source route op-

tion, for example, that specifies how a datagram should travel through the internet.

Source routing information must be replicated in all fragment headers, or fragments will

not follow the specified route. Thus, the code field for source route specifies that the

option must be copied into all fragments.

7.9 Summary

The fundamental service provided by TCP/IP intemet software is a connectionless,

unreliable, best—effo11 packet delivery system. The Internet Protocol (IP) formally speci-

fies the format of intemet packets, called datagrams, and infomtally embodies the ideas

of connectionless delivery. This chapter concentrated on datagram formats; later

chapters will discuss IP routing and error handling.

Analogous to a physical frame, the IP datagram is divided into header and data

areas. Among other information, the datagram header contains the source and destina-

tion IP addresses, fragmentation control, precedence, and a checksum used to catch

transmission errors. Besides fixed-length fields, each datagram header can contain an

options field. The options field is variable length, depending on the number and type of

options used as well as the size of the data area allocated for each option. Intended to

help monitor and control the intemet, options allow one to specify or record routing in-

formation, or to gather timestamps as the datagram traverses an intemet.

FOR FURTHER STUDY

Postel [1980] discusses possible ways to approach intemet protocols, addressing,

and routing. In later publications, Postel [RFC 791] gives the standard for the Internet

Protocol, and Homig [RFC 894] specifies the standard for the transmission of IP da-

Samsung — Exhibit 1016 — Page 126

Samsung - Exhibit 1016 - Page 127

"""».-Va-.4«‘..~m-*-.-s,r..aet..-'.v.:»g:A,-542:4-,-2;-,::»«~,~

For Further Study 107

tagrams across an Ethernet. Clark [RFC 815] describes efficient reassembly of frag-

ments. In addition to the packet format, Internet authorities also specify many constants

needed in the network protocols. These values can be found in Reynolds and Postel

[RFC 1010]. Kent and Mogul [1987] discuss the disadvantages of fragmentation.

An alternative intemet protocol suite known as ms, is given in Xerox [I981].

Boggs er. al. [1980] describe the PARC Universal Packet (PUP) protocol, an abstraction

from xns closely related to the IP datagram.

EXERCISES

7.1 What is the single greatest advantage of having the IP checksum cover only the datagram
header and not the data? What is the disadvantage?

7.2 Is it ever necessary to use an IP checksum when sending packets over an Ethernet?

7.3 What is the MTU size for the MILNET? NSFNET? X25NET? Hyperchannel?

7.4 Do you expect high—speed local area networks to have larger or smaller MTU size than
slower, 1ong—haul networks?

7.5 Argue that fragments should have small, nonstandard headers.

7.6 Find out when the IP protocol version last changed. ls having a protocol version number
really useful?

7.7 Can you imagine why a one’s complement checksum was chosen for IP instead of a cyclic
redundancy check?

7.8 What are the advantages of doing reassembly at the ultimate destination instead of doing it
after the datagram travels across one network?

7.9 What is the minimum network MTU required to send an IP datagram that contains at least
one octet of data?

7.10 Suppose you are hired to implement IP datagram processing in hardware. Is there any rear-
rangement of fields in the header that would have made your hardware more efficient?
Easier to build?

7.11 If you have access to an implementation of IP, revise it and test your locally available im-

plementations of IP to see if they reject IP datagrams with an out-of—date version number.

Samsung — Exhibit 1016 — Page 127

Samsung - Exhibit 1016 - Page 128

Internet Protocol: Routing /P

Datagrams

8.1 Introduction

We have seen that all intemet services build on an unreliable, connectionless pack-

et delivery system, and that the basic unit of transfer in a TCP/IP intemet is the IP da-

tagram. This chapter adds to the description of connectionless service by describing

how gateways route IP datagrams and deliver them to their final destinations. We think

of the datagram format from Chapter 7 as characterizing the static aspects of the Inter-

net Protocol. The description of routing in this chapter characterizes the operational as-

pects. The next chapter concludes our presentation of IP by describing how errors are

handled; later chapters show how other protocols use it to provide higher-level services.

8.2 Routing In An Internet

In a packet switching system, routing refers to the process of choosing a path over

which to send packets, and router refers to any computer making such a choice.

Routing occurs at several levels. For example, within a wide area network that has

multiple physical connections between packet switches, the network itself is responsible

for routing packets from the time they enter until they leave. Such internal routing is

completely self-contained inside the wide area network. Machines on the outside can

not participate in decisions; they merely view the network as an entity that delivers
packets.

109

Samsung — Exhibit 1016 — Page 128

Samsung - Exhibit 1016 - Page 129

ll0 lntemet Protocol: Routing IP Datagrams Chap. 8

Remember that the goal of TCP/IP is to provide a virtual network that offers a

connectionless IP datagram delivery service. Thus, we will focus on internet routing or

IP routing. Analogous to routing within a physical network, IP routing chooses a path

over which a datagram should be sent. The IP routing algorithm must choose how to

send a datagram across multiple physical networks.

Routing in an intemet can be difficult, especially between machines with multiple

physical network connections. Ideally, the routing software would examine such things

as network load, datagram length, or the type of service specified in the datagram

header, when selecting the best path. Most intemet routing software is much less so-

phisticated, however, and selects routes based on fixed assumptions about shortest

paths.

To understand IP routing completely, we must go back and look at the architecture

of a TCP/IP intemet. First, recall that an intemet is composed of multiple physical net-

works interconnected by computers called gateways. Each gateway has direct connec-

tions to two or more networks. Unlike a gateway, a host usually connects directly to

one physical network. We know that it is possible, however, to have multi-homed hosts

that connect directly to multiple networks.

Both hosts and gateways participate in IP routing. When an application program

on a host attempts to communicate, the TCP/IP protocols eventually generate one or

more IP datagrams. The host must make a routing decision when it chooses where to

send the datagrams. As figure 8.1 shows, hosts must make routing decisions even if

they have only one network connection.

To other

destinations

To some

destinations

Figure 8.1 An example of a singly—homed host that must route datagrams. It

must choose to send the datagram either to gateway G, or to gate-

way G2 because no single gateway provides the best path to all
destinations.

Of course, gateways make IP routing decisions (that is their primary purpose and

the motivation for calling them routers). What about multi-homed hosts? Any comput-

er with multiple network connections can act as a gateway, and as we will see, multi-

Samsung — Exhibit 1016 — Page 129

W

Samsung - Exhibit 1016 - Page 130

.cxxauav‘as..~_«...~“-3.,._..‘.,.v,q_;ag.4-W205-?

Sec. 8.2 Routing In An lntemet lll

homed hosts running TCP/IP have all the software needed for routing. Furthermore,

sites that cannot afford separate gateway computers often do use general—purpose

timesharing machines as both hosts and gateways (the practice is especially widespread

among university sites). However, the TCP/IP standards draw a sharp distinction

between the functions of a host and those of a gateway, and sites that try to mix host

and gateway functions on a single machine sometimes find that their multi—homed hosts

engage in unexpected interactions. For now, we will distinguish hosts from gateways

and assume that hosts do not perform the gateway function of transferring packets from
one network to another.

8.3 Direct And Indirect Delivery

Loosely speaking, we can divide routing into two forms: direct routing and in-

direct routing. Direct routing, the transmission of a datagram from one machine direct-

ly to another, is the basis on which all intemet communication rests. Two machines can

engage in direct routing only if they both attach directly to an underlying physical

transmission system (e.g., a single Ethernet). Indirect routing occurs when the destina-

tion is not on a directly attached network, forcing the sender to pass the datagram to a

gateway for delivery.

8.3.1 Datagram Delivery Over A Single Network

We know that one machine on a given physical network can send a physical frame

directly to another machine on the same network. To transfer an IP datagram, the

sender encapsulates the datagram in a physical frame, maps the destination IP address

into a physical address, and uses the network hardware to deliver it. Chapter 5 present-

ed two possible mechanisms for address resolution, including using the ARP protocol

for dynamic address binding on Ethemet—like networks. Chapter 7 discussed datagram
encapsulation. Thus, we have reviewed all the pieces needed to understand direct

delivery. To summarize:

Transmission of an IP datagram between two machines on a single

physical network does not involve gateways. The sender encapsulates

the datagram in a physical frame, binds the destination IP address to

a physical hardware address, and sends the resulting frame directly to
the destination.

How does the sender know whether the destination lies on a directly connected net-

work? The test is straightforward. We know that IP addresses are divided into a

network—specifiC prefix and a host-specific suffix. To see if a destination lies on one of

the directly connected networks, the sender extracts the network portion of the destina-

tion IP address and compares it to the network portion of its own IP address(es). A

match means the datagram can be sent directly. Here we see one of the advantages of

the lntemet address scheme, namely:

.. rvtw‘-art-$90525

Samsung — Exhibit 1016 — Page 130

Samsung - Exhibit 1016 - Page 131

112 lntemet Protocol: Routing IP Datagrams Chap. 8

Because the internet addresses of all machines on a single network in-

clude a common network id, and because extracting that id can be

done in a few instructions, testing whether a machine can be reached

directly is extremely eflicient.

From the intemet perspective, it is easiest to think of direct routing as datagram

delivery. Delivery is the final step in any datagram transmission, even if the datagram

traverses many networks and intermediate gateways. The final gateway along the path

between the datagram source and its destination will connect directly to the same physi~

cal network as the destination. Thus, the final gateway will deliver the datagram using

direct routing. We can think of direct routing between the source and destination as a

special case of general purpose routing — in a direct route the datagram does not happen

to pass through any intervening gateways.

8.3.2 Indirect Routing

Indirect routing is more difficult than direct routing because the sender must identi-

fy a gateway to which the datagram can be sent. The gateway must then forward the

datagram on toward its destination network.

To visualize how indirect routing works, imagine a large intemet with many net-

works interconnected by gateways but with only two hosts at the far ends. When one

host wants to send to the other, it encapsulates the datagram and sends it to the nearest

gateway. We know that it can reach a gateway because all physical networks are inter-

connected, so there must be a gateway attached to each one. Thus, the originating host

can reach a gateway using a single physical network. Once the frame reaches the gate-

way, software extracts the encapsulated datagram, and the IP routing routines select the

next gateway along the path towards the destination. The datagram is again placed in a

frame and sent over the next physical network to a second gateway, and so on, until it

can be delivered directly. These ideas can be summarized:

Gateways in a TCP/IP internet form a cooperative, interconnected

structure. Datagrams pass from gateway to gateway until they reach

a gateway that can deliver the datagram directly.

How can a gateway know where to send each datagram? How can a host know

which gateway to use for a given destination? The two questions are related because

they both involve IP routing. We will answer them in two stages, considering the basic

table-driven routing algorithm in this chapter and postponing a discussion of how gate-

ways leam new routes until later.

Samsung — Exhibit 1016 — Page 131

Samsung - Exhibit 1016 - Page 132

Sec. 8.4 Table—Driven IP Routing 1 13

8.4 Table-Driven IP Routing

The usual IP routing algorithm employs an Internet routing table (sometimes

called an IP routing table) on each machine that stores information about possible desti-

nations and how to reach them. Because both hosts and gateways route datagrams, both

have IP routing tables. Whenever the IP routing software in a host or gateway needs to

transmit a datagram, it consults the routing table to decide where to send the datagram.

What information should be kept in routing tables? If every routing table con-

tained information about every possible destination address, it would be impossible to

keep the tables current. Furthermore, because the number of possible destinations is

large, machines would have insufficient space to store the information.

Conceptually, we would like to use the principle of information hiding and allow

machines to make routing decisions with minimal information. For example, we would

like to isolate information about specific hosts to the local environment in which they

exist and arrange for machines that are far away to route packets to them without know-

ing such details. Fortunately, the IP address scheme helps achieve this goal. Recall

that IP addresses are assigned to make all machines connected to a given physical net-

work share a common prefix (the network portion of the address). We have already

seen that such an assignment makes the test for direct delivery efficient. It also means

that routing tables only need to contain network prefixes and not full IP addresses.

Using the network portion of a destination address instead of the complete host ad-

dress makes routing efficient and keeps routing tables small. More important, it helps

hide infonnation, keeping the details of specific hosts confined to the local environment

in which those hosts operate. Typically, a routing table contains pairs (N, G), whereN

is the IP address of a destination network, and G is the IP address of the “next” gate-

way along the path to network N. Thus, the routing table in a gateway G only specifies

one step along the path from G to a destination network — the gateway does not know

the complete path to a destination.

, It is important to understand that the routing table always points to gateways that

gr can be reached across a single network. That is, all gateways listed in machine M’s
routing table must lie on networks to which M connects directly. When a datagram is
ready to leave M, IP software locates the destination IP address and extracts the network

5 portion. M then uses the network id to make a routing decision, selecting a gateway

that can be reached directly.
In practice, we apply the principle of information hiding to hosts as well. We in-

" sist that although hosts have IP routing tables, they must keep minimal information in

their tables. The idea is to force hosts to rely on gateways for most routing.

Figure 8.2 shows a concrete example that helps explain routing tables. The exam—

ple intemet consists of four networks connected by three gateways. In the figure, the

routing table gives the routes that gateway G uses. Because G connects directly to net-

works 20.0.0.0 and 30.0.0.0, it can reach any host on those networks directly (possibly

using ARP to find physical addresses). Given a datagram destined for a host on net-

work 40.0.0.0, G routes it to address 30.0.0.7, the address of gateway H. H will then

deliver the datagram directly. G can reach address 30.0.0.7 because both G and H at-

tach directly to network 30.0.0.0.

 ' , #3 f,'V‘-‘¥.''§'’<\t-'~‘l:‘.4lv3=:5W¥r

Samsung — Exhibit 1016 — Page 132

Samsung - Exhibit 1016 - Page 133

l 14 lntemet Protocol: Routing IP Datagrams Chap. 8

TO REACH HOSTS ROUTE TO

ON NETWORK THIS ADDRESS

T

(b)

Figure 8.2 (a) An example intemet with 4 networks and 3 gateways, and (b)

the routing table for gateway G.

As Figure 8.2 demonstrates, the size of the routing table depends on the number of net-

works in the intemet; it only grows when new networks are added. However, the table

size and contents are independent of the number of individual hosts connected to the

networks. We can summarize the underlying principle:

To hide information, keep routing tables small, and make routing de-

cisions eflicient, IP routing software only keeps information about
destination network addresses, not about individual host addresses.

Choosing routes based on the destination network id alone has several conse-

quences. First, in most implementations, it means that all traffic headed for a given net-

work takes the same path. As a result, even when multiple paths exist, they may not be

used concurrently. Also, all types of traffic follow the same path without regard to the

delay or throughput of physical networks. Second, because only the final gateway

along the path attempts to communicate with the destination host, only it can determine

if the host exists or is operational. Thus, we need to arrange a way for that gateway to

send reports of delivery problems back to the original source. Third, because each gate-

way routes traffic independently, datagrams traveling from host A to host 8 may follow

Samsung — Exhibit 1016 — Page 133

Samsung - Exhibit 1016 - Page 134

Sec. 8.4 Table—Driven IP Routing 1 15

an entirely different path than datagrams traveling from host 8 back to host A. We

need to ensure that gateways cooperate to guarantee that two-way communication is al-

ways possible.

8.5 Default Routes

Another technique used to hide information and keep routing table sizes small con-

solidates multiple entries into a default case. The idea is to have the IP routing software

first look in the routing table for the destination network. If no route appears in the

table, the routing routines send the datagram to a default gateway.

Default routing is especially useful when a site has a small set of local addresses

and only one connection to the rest of the intemet. For example, default routes work

well in host machines that attach to a single physical network and reach only one gate-

way leading to the remainder of the intemet. The entire routing decision consists of

two tests: one for the local net, and a default that points to the only possible gateway.

Even if the site contains a few local networks, the routing is simple because it consists

of a few tests for the local networks plus a default for all other destinations.

8.6 Host-Specific Routes

Although we said that all routing is based on networks and not on individual hosts,

most IP routing software allows per-host routes to be specified as a special case. Hav-

ing per-host routes gives the local network administrator more control over network use

and can also be used to control access for security purposes. When debugging network

connections or routing tables, the ability to specify a special route to one individual

machine turns out to be especially useful.

8.? The Final Algorithm

lg Taking into account everything we have said, the IP routing algorithm becomes:

Samsung — Exhibit 1016 — Page 134

Samsung - Exhibit 1016 - Page 135

1 l6 Internet Protocol: Routing IP Datagrams Chap. 8

Algorithm:

Route_lP_Datagram (datagram, routing_table)

Extract destination IP address, lo, from datagram

Compute IP address of destination network, in

if In matches any directly connected network address

send datagram to destination over that network;

(This involves resolving ID to a physical address,

encapsulating datagram, and sending the frame.)

else if lo appears as a host-specific route

route datagram as specified in the table;

else if In appears in routing table

route datagram as specified in the table;

else if a default route has been specified

route datagram to the default gateway;

else declare a routing error;

Figure 8.3 The IP routing algorithm. Given an IP datagram and a routing

table, this algorithm selects the next machine to which the da-

tagram should be sent. Routing tables always specify a next
machine that lies on a directly connected network.

8.8 Routing With IP Addresses

It is important to understand that IP routing does not alter the original datagram.

In particular, the datagram source and destination addresses remain unaltered; they al-

ways specify the IP address of the original source and the IP address of the ultimate

destination. When IP executes the routing algorithm it computes a new address, the IP

address of the machine to which the datagram should be sent next. The new address is

most likely the address of a gateway. However, if the datagram can be delivered direct-

ly, the new address will be the same as the address of the ultimate destination.

The IP address computed by the IP routing algorithm is known as the next hop ad-

dress because it tells where the datagram must be sent next (even though it may not be

the ultimate destination). Where does IP store the next hop address? Not in the da-

tagram; no place is reserved for it. In fact, IP does not “store” the next hop address at

all. After executing the routing algorithm, IP passes the datagram and the next hop ad-

Samsung — Exhibit 1016 — Page 135

Samsung - Exhibit 1016 - Page 136

Sec. 8.8 Routing With IP Addresses 117

dress to the network interface software responsible for the physical network over which

the datagram must be sent. The network interface software binds the next hop address

to a physical address, forms a frame using that physical address, places the datagram in

the data portion of the frame, and sends the result. After using the next hop address to

find a physical address, the network interface software discards the next hop address.

It may seem odd that routing tables store the IP address of a next hop for each des-

tination network when those addresses must be translated into corresponding physical

addresses before the datagram can be sent. If we imagine a host sending a sequence of

datagrams to the same destination address, the use of IP addresses will appear incredi-

bly inefficient. IP dutifully extracts the destination address in each datagram and uses

the routing table to produce a next hop address. It then passes the datagram and next

hop address to the network interface, which recomputes the binding to a physical ad-

dress. If the routing table used physical addresses, the binding between the next hop’s

IP address and physical address could be performed once, saving unneeded computa-
tion.

Why does IP software avoid using physical addresses when storing and computing

routes? As Figure 8.4 shows, there are two important reasons.

EXAMINATION OR DATAGRAM

UPDATES OF ROUTES TO BE ROUTED

ROUTING ROUTING ALGORITHM

TABLE IN IP SOFTWARE

IP addresses used

Physical addresses used

-:>—ct=-‘=aa“".,_:-I.-.--,-_«‘_.<.,.,_g__g
DATAGRAM TO BE SENT

PLUS NEXT HOP ADDRESS

Figure 8.4 IP software and the routing table it uses reside above the address

boundary. Using only IP addresses makes routes easy to examine

or change and hides the details of physical addresses at the lowest

possible level.

First, the routing table provides an especially clean interface between IP software that

routes datagrams and high—level software that manipulates routes. To debug routing

problems, network managers often need to examine the routing tables. Using only IP

Samsung — Exhibit 1016 — Page 136

Samsung - Exhibit 1016 - Page 137

_ _.,-.».:..-g>g.;.x.*a It “-5.-._ 1 ~.. ~

ll8 [ntemct Protocol: Routing IP Datagrams Chap. 8

addresses in the routing table makes it easy for managers to understand and easy to see

whether software has updated the routes correctly. Second, the whole point of the Inter-

net Protocol is to build an abstraction that hides the details of underlying networks.

Figure 8.4 shows the address boundary, the imponant conceptual division between

low-level software that understands physical addresses and intemet software that only

uses high-level addresses. Above this boundary, all software can be written to com-

municate using intemet addresses; knowledge of physical addresses is relegated to a few

small, low—level routines. We will see that observing the boundary also helps keep the

implementation of remaining TCP/IP protocols easy to understand, test, and modify.

8.9 Handling Incoming Datagrams

So far, we have discussed IP routing by describing how decisions are made about

outgoing packets. It should be clear, however, that IP software must process incoming

datagrams as well.

When an IP datagram arrives at a host, the network interface software delivers it to

the IP software for processing. If the datagram’s destination address matches the host’s

IP address, IP software on the host accepts the datagram and passes it to the appropriate

higher-level protocol software for further processing. If the destination IP address does

not match, a host is required to discard the datagram (i.e., hosts are forbidden from at-

tempting to forward datagrams that are accidentally routed to the wrong machine).

Unlike hosts, gateways perfonn forwarding. When an IP datagram arrives at a

gateway it is delivered to the IP software. Again, two cases arise: the datagram could

have reached its final destination, or it may need to travel further. As with hosts, if the

datagram destination IP address matches the gateway’s own IP address, the [P software

passes the datagram to higher-level protocol software for processing)‘. If the datagram

has not reached its final destination, IP routes the datagram using the standard algorithm

and the information in the local routing table.

Detennining whether an IP datagram has reached its final destination is not quite

as trivial as it seems. Remember that even a host may have multiple physical connec-
tions, each with its own IP address. When an IP datagram arrives, the machine must

compare the destination intemet address to the IP address for each of its network con-

nections. If any match, it keeps the datagram and processes it. A machine must also

accept datagrams that were broadcast on the physical network if their destination IP ad-
dress is the limited IP broadcast address or the directed IP broadcast address for that

network. As we will see in Chapters 16 and 17, subnet and multicast addresses make

address recognition even more complex. In any case, if the address does not match any

of the local machine’s addresses, IP decrements the time—to—live field in the datagram

header, discarding the datagram if the count reaches zero, or computing a new check-

sum and routing the datagram if the count remains positive.

Should every machine route the IP datagrams it receives‘? Obviously, gateways

must route incoming datagrams because that is their main function. We have also said

that some multi-homed hosts act like gateways even though they are really general

fUsually, the only datagrams destined for a gateway are those used to test connectivity or those that carry
gateway management commands.

Samsung — Exhibit 1016 — Page 137

Samsung - Exhibit 1016 - Page 138

Handling Incoming DatagramsSec. 8.9 H9

purpose computing systems. While using a host as a gateway is not usually a good
idea, if one chooses to use that arrangement, the host must be configured to route da-

tagrams just as a gateway does. But what about other hosts, those that are not intended
to be gateways? The answer is that hosts not designated to be gateways should not

route datagrams that they receive; they should discard them.

There are four reasons why a host not designated to serve as a gateway should re-

frain from performing any gateway functions. First, when such a host receives a da-

tagram intended for some other machine, something has gone wrong with intemet ad-
dressing, routing, or delivery. The problem may not be revealed if the host takes

corrective action by routing the datagram. Second, routing will cause unnecessary net-

work traffic (and may steal CPU time from legitimate uses of the host). Third, simple

errors can cause chaos. Suppose that every host routes traffic and imagine what hap-

pens if one machine accidentallyx broadcasts a datagram that is destined for some host,
H. Every host on the network receives a copy of the datagram from the broadcast, and

every machine routes its copy to H, which will be bombarded with many copies.

Fourth, as later chapters show, gateways do more than merely route traffic. As the next

chapter shows, gateways use a special protocol to report errors, while hosts do not

(again, to avoid having multiple error reports bombard a source). Gateways also pro-

pagate routing information to ensure that their routing tables are consistent. If hosts

route datagrams without participating fully in all gateway functions, unexpected

anomalies may arise.

8.10 Establishing Routing Tables

We have discussed how IP routes datagrams based on the contents of routing

tables, without saying how systems initialize their routing tables or update them as the

network changes. Later chapters deal with these questions and discuss protocols that al-

low gateways to keep routes consistent. For now, it is only important to understand that

IP bases all routing decisions on tables, so changing those tables will change the routes

datagrams follow.

8.11 Summary

IP routing consists of deciding where to send a datagram based on its destination
IP address. The route is direct if the destination machine lies on a network to which the

sending machine attaches; we think of this as the final delivery step in datagram

transmission. The route is indirect if the datagram must be sent to a gateway for

delivery. The general paradigm is that hosts send indirectly routed datagrams to the

nearest gateway; the datagrams travel through the intemet from gateway to gateway un-

til they can be delivered directly across one physical network.

Samsung — Exhibit 1016 — Page 138

Samsung - Exhibit 1016 - Page 139

120 Internet Protocol: Routing IP Datagrams Chap. 8

IP routing produces the IP address of the next machine (i.e., the address of the next

hop) to which the datagram should be sent; IP passes the datagram and next hop address

to network interface software. Transmission of a datagram from one machine to the

next always involves encapsulating the datagram in a physical frame, mapping the next

hop intemet address to a physical address, and sending the frame using the underlying
hardware.

The intemet routing algorithm is table driven and uses only IP addresses. It bases

routing decisions on the destination network address instead of the destination host ad-

dress, keeping routing tables small. Default routes also help keep tables small, especial-

ly for hosts that can access only one gateway.

FOR FURTHER STUDY

Routing is an important topic. Frank and Chou [1971] and Schwartz and Stern

[1980] discuss routing in general; Postel [1980] discusses intemet routing. Braden and

Postel [RFC 1009] provides a summary of how Internet gateways handle IP datagrams.

Narten [1989] contains a survey of Internet routing. Fultz and Kleinrock [1971] analyze

adaptive routing schemes; and McQuillan, Richer, and Rosen [1980] describe the AR-

PANET adaptive routing algorithm.

The idea of using policy statements to formulate rules about routing has been con-

sidered often. Leiner [RFC 1124] considers policies for interconnected networks.

Braun [RFC 1104] discusses models of policy routing for intemets, Rekhter [RFC 1092]

relates policy routing to the second NSFNET backbone, and Clark [RFC 1102]

describes using policy routing with IP.

EXERCISES

8.1 Complete routing tables for all gateways in Figure 8.]. Which benefit most from default
routes?

8.2 Examine the routing algorithm used in 4.3 BSD UNIX. Are all the cases mentioned here

covered? Does the algorithm allow anything not mentioned?

8.3 What does a gateway do with the time to live value in an IP header?

8.4 Consider a machine with two physical network connections and two IP addresses 1, and 1..

Is it possible for that machine to receive a datagram destined for 12 over the network with
address 1,? Explain.

8.5 Consider two hosts, A and B, that both attach to a common physical network, N. Is it ever

possible, when using our routing algorithm, for A to receive a datagram destined for B?
Explain.

8.6 Modify the routing algorithm to accommodate the IP source route options discussed in
Chapter 7.

Samsung — Exhibit 1016 — Page 139

T

Samsung - Exhibit 1016 - Page 140

Exercises l2l

8.7

8.8

8.9

8.10

8.11

8.12

8.13

An IP gateway must perform a computation that takes time proportional to the length of the
datagram header each time it processes a datagram. Explain.

A network administrator argues that to make monitoring and debugging his local network
easier, he wants to rewrite the routing algorithm so it tests host-specific routes before it
tests for direct delivery. Can you imagine how he could use the revised algorithm to build
a network monitor?

Is it possible to address a datagram to a gateway’s IP address? Does it make sense to do
so?

Consider a modified routing algorithm that examines host-specific routes testing for
delivery on directly connected networks. Under what circumstances might such an algo-
rithm be desirable?

Play detective: after monitoring IP traffic on a local area network for 10 minutes one even-

ing, someone notices that all frames destined for machine A carry IP datagrams that have
destination equal to A’s IP address, while all frames destined for machine B carry IP da-
tagrams with destination not equal to B’s IP address. Explain.

How could you change the IP datagram format to support high—speed packet switching at
gateways? Hint: a gateway must recompute a header checksum after decrementing the
time-to-live field.

Compare the ISO connectionless delivery protocol (ISO standard 8473) with IP. How well

will the ISO protocol support high—speed switching? Hint: variable length fields are expen-
sive.

Samsung — Exhibit 1016 — Page 140

Samsung - Exhibit 1016 - Page 141

-‘i-PW»?<*:«~vn»zanm~«>+~

Internet Protocol: Error and

Control Messages (ICMP)

9.1 Introduction

We have seen that the Internet Protocol provides an unreliable, connectionless da-

tagram delivery service, and that a datagram travels from gateway to gateway until it

reaches one that can deliver it directly to its final destination. If a gateway cannot route

or deliver a datagram, or if the gateway detects an unusual condition, like network

congestion, that affects its ability to forward the datagram, it needs to instruct the origi-
nal source to take action to avoid or correct the problem. This chapter discusses a

mechanism that gateways and hosts use to communicate such control or error infomia—

tion. We will see how gateways use the mechanism to report delivery problems, and
how hosts use it to test whether destinations are reachable.

9.2 The Internet Control Message Protocol

In the connectionless system we have described so far, each gateway operates auto-

nomously, routing or delivering datagrams that arrive without coordinating with the ori-

ginal sender. The system works well if all machines operate correctly and agree on

routing, but no system works correctly all the time. Besides failures of communication

lines and processors, [P fails to deliver datagrams when the destination machine is tem-

porarily or permanently disconnected from the network, when the time—to—live counter

expires, or when intermediate gateways become so congested that they cannot process

the incoming traffic. The important difference between having a real, hardware network

123

Samsung — Exhibit 1016 — Page 141

Samsung - Exhibit 1016 - Page 142

124 Internet Protocol: Error and Control Messages (ICMP) Chap. 9

and a software—based intemet is that in the former, the designer can often rely on net—

work hardware to inform machines when such problems arise. In an intemet, which has

no such hardware mechanism, a sender cannot tell whether a delivery failure resulted

from a local malfunction or a remote one. Debugging becomes extremely difficult,

The IP protocol itself contains nothing to help the sender test connectivity or learn
about such failures.

To allow gateways in an intemet to report errors or provide infonnation about

unexpected circumstances, the designers added a special—purpose message mechanism to

the TCP/IP protocols. The mechanism, known as the Internet Control Message Proto-

col (ICMP), is considered a required part of IP and must be included in every IP imple-
mentation.

Like all other traffic, ICMP messages travel across the intemet in the data portion

of IP datagrams. The ultimate destination of an ICMP message is not an application

program or user on the destination machine, however, but the Internet Protocol software

on that machine. That is, when an ICMP error message arrives, the ICMP software

module handles it. Of course, if ICMP determines that a particular higher—level proto-

col or application program has caused a problem, it will inform the appropriate module.
We can summarize:

The Internet Control Message Protocol allows gateways to send error

or control messages to other gateways‘ or hosts; ICMP provides com-

munication between the Internet Protocol software on one machine

and the Internet Protocol software on another.

Initially designed to allow gateways to report the cause of delivery errors to hosts,

ICMP is not restricted to gateways. Although guidelines restrict the use of some ICMP

messages, an arbitrary machine can send an ICMP message to any other machine.

Thus, a host can use ICMP to correspond with a gateway or another host. The chief ad-

vantage of allowing hosts to use ICMP is that it provides a single mechanism used for
all control and infonnation messages.

9.3 Error Reporting vs. Error Correction

Technically, ICMP is an error reporting mechanism. It provides a way for gate-

ways that encounter an error to report the error to the original source. Although the

protocol specification outlines intended uses of ICMP and suggests possible actions to

take in response to error reports, ICMP does not fully specify the action to be taken for
each possible error. In short,

ICMP only reports error conditions to the original source,’ the source

must relate errors to individual application programs and take action

to correct the problem.

Samsung — Exhibit 1016 — Page 142

Samsung - Exhibit 1016 - Page 143

Sec. 9.3 Error Reporting vs. Error Correction 125

Most errors stem from the original source, but others do not. Because ICMP re-

ports problems to the original source, however, it cannot be used to inform intermediate
gateways about problems. For example, suppose a datagram follows a route through a
set of gateways, GI, G2, Gk. If Gk has incorrect routing infonnation and mistakenly

routes the datagram to gateway G5, G5 can only report the error back to the datagram’s

original source. Unfortunately, the source has no responsibility for the problem or con-
trol over the misbehaving gateway. In fact, the source may not be able to detennine

which gateway caused the problem.

Why restrict ICMP to communication with the original source? The answer should

be clear from our discussion of datagram fonnats and routing in the previous chapters.

The datagram only contains fields that specify the original source and the ultimate desti-

nation; it does not contain a complete record of its trip through the intemet (except for

unusual cases where the record route option is used). Furthermore, because gateways

can establish and change their own routing tables, there is no global knowledge of

routes. Thus, when a datagram reaches a given gateway, it is impossible to know the

route it has taken to arrive there. If the gateway detects a problem, it cannot know the

set of intermediate machines that processed the datagram, so it cannot inform them of

the problem. Instead of silently discarding the datagram, the gateway uses ICMP to in-

form the original source that a problem has occurred, and trusts that host administrators

will cooperate with network administrators to locate and repair the problem.

9.4 ICMP Message Delivery

ICMP messages require two levels of encapsulation as Figure 9.1 shows. Each

ICMP message travels across the intemet in the data portion of an IP datagram, which

itself travels across each physical network in the data portion of a frame. Datagrams

carrying ICMP messages are routed exactly like datagrams carrying information for

users; there is no additional reliability or priority. Thus, error messages themselves may

be lost or discarded. Furthermore, in an already congested network, the error message

may cause additional congestion. An exception is made to the error handling pro-

cedures if an IP datagram carrying an ICMP message causes an error. The exception,

established to avoid the problem of having error messages about error messages, speci-

fies that ICMP messages are not generated for errors that result from datagrams carrying

ICMP error messages.

Samsung — Exhibit 1016 — Page 143

Samsung - Exhibit 1016 - Page 144

126 lntemet Protocol: Error and Control Messages (ICMP) Chap. 9

ICMP

HEADER ICMP DATA

DATAGRAM A D
HEADER DATAGR M ATA AREA

FRAME DATA AREA

Figure 9.1 Two levels of ICMP encapsulation. The ICMP message is encap-
sulated in an IP datagram, which is further encapsulated in a

frame for transmission. To identify ICMP, the datagram protocol
field contains the value 1.

FRAME
HEADER

It is important to keep in mind that even though ICMP messages are encapsulated

and sent using IP, ICMP is not considered a higher level protocol — it is a required part

of IP. The reason for using IP to deliver ICMP messages is that they may need to trav-

el across several physical networks to reach their final destination. Thus, they cannot

be delivered by the physical transport alone.

9.5 ICMP Message Format

Although each ICMP message has its own format, they all begin with the same

three fields: an 8-bit integer message TYPE field that identifies the message, an 8-bit

CODE field that provides further information about the message type, and a 16-bit

CHECKSUM field (ICMP uses the same additive checksum algorithm as IP, but the

ICMP checksum only covers the ICMP message). In addition, ICMP messages that re-

port errors always include the header and first 64 data bits of the datagram causing the

problem.

The reason for returning more than the datagram header alone is to allow the re-

ceiver to determine more precisely which protocol(s) and which application program

were responsible for the datagram. As we will see later, higher-level protocols in the

TCP/IP suite are designed so that crucial information is encoded in the first 64 bits.

The ICMP TYPE field defines the meaning of the message as well as its format.

The types include:

Samsung - Exhibit 1016 - Page 144

Samsung - Exhibit 1016 - Page 145

Sec. 9.5 ICMP Message Format 127

Type Field ICMP Message Type

0 Echo Reply
3 Destination Unreachable

4 Source Quench

5 Redirect (change a route)

8 Echo Request

11 Time Exceeded for a Datagram

12 Parameter Problem on a Datagram

13 Timestamp Request

14 Timestamp Reply

15 Information Request (obsolete)

16 Information Reply (obsolete)

17 Address Mask Request

18 Address Mask Reply

The next sections describe each of these messages, giving details of the message format

and its meaning.

9.6 Testing Destination Reachability And Status

TCP/IP protocols provide facilities to help network managers or users identify net-

work problems. One of the most frequently used debugging tools invokes the ICMP

echo request and echo reply messages. A host or gateway sends an ICMP echo request

message to a specified destination. Any machine that receives an echo request fonnu-

lates an echo reply and returns it to the original sender. The request contains an option-

al data area; the reply contains a copy of the data sent in the request. The echo request

and associated reply can be used to test whether a destination is reachable and respond-

ing. Because both the request and reply travel in IP datagrams, successful receipt of a

reply verifies that major pieces of the transport system work. First, IP software on the

source machine must route the datagram. Second, intermediate gateways between the

source and destination must be operating and must route the datagram correctly. Third,

the destination machine must be running (at least it must respond to intemipts), and

both ICMP and IP software must be working. Finally, routes in gateways along the re-

turn path must be correct.

On many systems, the command users invoke to send ICMP echo requests is

named ping. Sophisticated versions of ping send a series of ICMP echo requests, cap-

ture responses, and provide statistics about datagram loss. They allow the user to speci-

fy the length of the data being sent and the interval between requests. Less sophisticat-

ed versions merely send one ICMP echo request and await a reply.

Samsung — Exhibit 1016 — Page 145

Samsung - Exhibit 1016 - Page 146

, ___________j_’
128 lntemet Protocol: Error and Control Messages (ICMP) Chap. 9 f

9.7 Echo Request And Reply Message Format

Figure 9.2 shows the fonnat of echo request and reply messages.

8 1 6 31

Figure 9.2 ICMP echo request or reply message format.

The field listed as OPTIONAL DATA is a variable length field that contains data to be

returned to the sender. An echo reply always returns exactly the same data as was re-

ceived in the request. Fields IDENTIFIER and SEQUENCE NUMBER are used by the

sender to match replies to requests. The value of the TYPE field specifies whether the

message is a request (8) or a reply (0).

9.8 Reports Of Unreachable Destinations

When a gateway cannot deliver an IP datagram, it sends a destination unreachable

message back to the original source, using the format shown in Figure 9.3.

16 31

TYPE (3) CODE (0-5) CHECKSUM

UNUSED (MUST BE ZERO)

INTERNET HEADER + FIRST 64 BITS OF DATAGRAM

Figure 9.3 ICMP destination unreachable message format.

The CODE field in a destination unreachable message contains an integer that further

describes the problem. Possible values are:

Samsung — Exhibit 1016 — Page 146

Samsung - Exhibit 1016 - Page 147

Sec. 9.8 Reports Of Unreachable Destinations 129

Code Value Meaning

Network Unreachable

Host Unreachable

Protocol Unreachable

Port Unreachable

Fragmentation Needed and DF set
Source Route Failed

Destination network unknown

Destination host unknown

Source host isolated

Communication with destination

network administratively prohibited

(Dm\lO3U'l-bC:Jl\)—*O
10 Communication with destination host

Administratively prohibited

11 Network unreachable for type of service

12 Host unreachable for type of service

Although IP is a best-effort delivery mechanism, discarding datagrams should not

be taken lightly. Whenever an error prevents a gateway from routing or delivering a da-

tagram, the gateway sends a destination unreachable message back to the source and

then drops (i.e., discards) the datagram. Network unreachable errors usually imply rout-

ing failures; host unreachable errors imply delivery failurest. Because the message con-

tains a short prefix of the datagram that caused the problem, the source will know ex-

actly which address is unreachable.

Destinations may be unreachable because hardware is temporarily out of service,

because the sender specified a nonexistent destination address, or (in rare cir-

cumstances) because the gateway does not have a route to the destination network.

Note that although gateways report failures they encounter, they may not know of all

delivery failures. For example, if the destination machine connects to an Ethernet net-

work, the network hardware does not provide acknowledgements. Therefore, a gateway

can continue to send packets to a destination after the destination is powered down

without receiving any indication that the packets are not being delivered. To summar-
ize:

Although gateways send destination unreachable messages If they

Cannot route or deliver datagrams, not all such errors can be detect-
ed.

The meaning of protocol and port unreachable messages will become clear when

we study how higher level protocols use abstract destination points called ports. Most

of the remaining messages are self explanatory. If the datagram contains the source

route option with an incorrect route, it may trigger a source route failure message. If a

gateway needs to fragment a datagram but the “don’t fragment” bit is set, the gateway

sends afragmentation needed message back to the source.

T/\n exception occurs for gateways using the subnet addressing scheme of Chapter 16. They report sub-
net routing failures with ICMP host unreachable messages.

Samsung — Exhibit 1016 — Page 147

Samsung - Exhibit 1016 - Page 148

130 Internet Protocol: Error and Control Messages (ICMP) Chap. 9

9.9 Congestion And Datagram Flow Control

Because [P is connectionless, gateways cannot reserve memory or communication

resources in advance of receiving datagrams. As a result, gateways can be overrun with

traffic, a condition known as congestion. It is important to understand that Congestion

can arise for two entirely different reasons. First, a high—speed computer may be able to

generate traffic faster than a network can transfer it. For example, imagine a supercom-

puter generating intemet traffic. The datagrams may eventually need to cross a slow-

speed wide area network (WAN) even though the supercomputer itself attaches to a

high-speed local area net. Congestion will occur in the gateway that attaches to the

WAN because datagrams arrive faster than they can be sent. Second, if many comput-

ers simultaneously need to send datagrams through a single gateway, the gateway can

experience congestion, even though no single source causes the problem.

When datagrams arrive too quickly for a host or gateway to process, it enqueues

them in memory temporarily. If the datagrams are part of a small burst, such buffering

solves the problem. If the traffic continues, the host or gateway eventually exhausts

memory and must discard additional datagrams that arrive. A machine uses ICMP

source quench messages to relieve congestion. A source quench message is a request

for the source to reduce its current rate of datagram transmission. Usually, congested

gateways send one source quench message for every datagram that they discard. Gate-

ways may also use more sophisticated congestion control techniques. Some monitor in-

coming traffic and quench sources that have the highest datagram transmission rates.

Others attempt to avoid congestion altogether by arranging to send quench requests as

their queues start to become long but before they overflow.

There is no ICMP message to reverse the effect of a source quench. Instead, a host

that receives source quench messages from some machine, M, lowers the rate at which

it sends datagrams to M until it stops receiving source quench messages; it then gradual-

ly increases the rate as long as no further source quench requests are received.

9.10 Source Quench Format

In addition to the usual ICMP TYPE, CODE, CHECKSUM fields, and an unused

32-bit field, source quench messages have a field that contains a datagram prefix. Fig-

ure 9.4 illustrates the format. As with most ICMP messages that report an error, the da-

tagram prefix field contains a prefix of the datagram that triggered the source quench re-

quest.

Samsung — Exhibit 1016 — Page 148

Samsung - Exhibit 1016 - Page 149

t;
'5

I

'~'-.-*.«,\:r:*.*.‘f“4§i:«§;‘_';:

sec. 9.10 Source Quench Format 131

16 31

TYPE (4) CODE (0) CHECKSUM

UNUSED (MUST BE ZERO)

INTERNET HEADER + FIRST 64 BITS OF DATAGRAM

Figure 9.4 ICMP source quench message format. Congested gateways send

one source quench message each time they discard a datagram;

the datagram prefix identifies the datagram that was dropped.

9.11 Route Change Requests From Gateways

Internet routing tables usually remain static over long periods of time. Hosts ini-

tialize them from a configuration file at system startup, and system administrators sel-

dom make routing changes during normal operations. If network topology changes,

routing tables in a gateway or host may become incorrect. A change can be temporary

(e.g., when hardware needs to be repaired) or permanent (e.g., when a new network is
added to the intemet). As we will see in later chapters, gateways exchange routing in-

formation periodically to accommodate network changes and keep their routes up—to—

date. Thus, as a general rule:

Gateways are assumed to know correct routes; hosts begin with

minimal routing information and learn new routes from gateways.

To help follow this rule and to avoid duplicating routing information in the confi-

guration file on each host, the initial host route configuration specifies the minimum

possible routing information needed to communicate (eg, the address of a single gate-

way). Thus, the host begins with minimal information and relies on gateways to update

its routing table. In one special case, when a gateway detects a host using a nonoptimal

route, it sends the host an ICMP message, called a redirect, requesting that the host

change its routes. The gateway also forwards the original datagram on to its destina-
tion.

The advantage of the ICMP redirect scheme is simplicity: it allows a host to boot

knowing the address of only one gateway on the local network. The initial gateway re-

turns ICMP redirect messages whenever a host sends a datagram for which there is a

better route. The host routing table remains small but still contains optimal routes for
all destinations in use.

Redirect messages do not solve the problem of propagating routes in a general

way, however, because they are limited to interactions between a gateway and a host on

a directly connected network. Figure 9.5 illustrates the problem. In the Figure, assume

Samsung — Exhibit 1016 — Page 149

Samsung - Exhibit 1016 - Page 150

T
132 lntemet Protocol: Error and Control Messages (ICMP) Chap. 9

source S sends a datagram to destination D. Assume that gateway G, incorrectly routes

the datagram through gateway G_, instead of through gateway G, (i.e., G, incorrectly

chooses a longer path then necessary). When gateway G5 receives the datagram it can-

not send an ICMP redirect message to G, because it does not know G,’s address. Later

chapters explore the problem of how to propagate routes across multiple networks.

Figure 9.5 ICMP redirect messages do not provide routing among gateways.

In this example, Gateway G5 cannot redirect G, to use the shorter

path for datagrams from S to D.

In addition to the requisite TYPE, CODE, and CHECKSUM fields, each redirect

message contains a 32-bit GATEWAY INTERNET ADDRESS field and a DATAGRAM

PREFIX field, as Figure 9.6 shows.

16 31

TYPE (5) CODE (0 to 3) CHECKSUM

GATEWAY INTERNET ADDRESS

INTERNET HEADER + FIRST 54 BITS OF DATAGRAM

Figure 9.6 ICMP redirect message format.

The GATEWAY INTERNET ADDRESS field contains the address of a gateway that the

host is to use to reach the destination mentioned in the datagram header. The INTER-

NET HEADER field contains the IP header plus the next 64 bits of the datagram that

triggered the message. Thus, a host receiving an ICMP redirect examines the datagram

prefix to determine the datagram’s destination address. The CODE field of an ICMP

redirect message further specifies how to interpret the destination address, based on

values assigned as follows:

Samsung — Exhibit 1016 — Page 150

Samsung - Exhibit 1016 - Page 151

.,-~g_,.....,‘xx’.._.,:M,,V.,_,m.
1'.
‘A1.g.

. 9

V;.v.

sec. 9.1 1 Route Change Requests From Gateways 133

Code Value Meaning

0 Redirect datagrams for the Net (now obsolete)

1 Redirect datagrams for the Host

2 Redirect datagrams for the Type of Servicet and Net

3 Redirect datagrams for the Type of Service and Host

As a general rule, gateways only send ICMP redirect requests to hosts and not to

other gateways. We will see in later chapters that gateways use other protocols to ex-

change routing information.

9.12 Detecting Circular Or Excessively Long Routes

Because intemet gateways compute a next hop using local tables, errors in routing

tables can produce a routing cycle for some destination, D. A routing cycle can consist

of two gateways that each route a datagram for destination D to the other, or it can con-

sist of several gateways. When several form a routing cycle they each route a datagram

for destination D to the next gateway in the cycle. If a datagram enters a routing cycle,

it will pass around the cycle endlessly. As mentioned previously, to prevent datagrams

from circling forever in a TCP/IP intemet, each IP datagram contains a time-to—live

counter, sometimes called a hop count. A gateway decrements the time—to—live counter

whenever it processes the datagram and discards the datagram when the count reaches
zero.

Whenever a gateway discards a datagram because its hop count has reached zero or

because a timeout occurred while waiting for fragments of a datagram, it sends an

ICMP time exceeded message back to the datagram’s source, using the fonnat shown in

Figure 9.7.

CHECKSUMTYPE (11) CODE (0 or 1)

Figure 9.7 ICMP time exceeded message format. A gateway sends this mes-

sage whenever a datagram is discarded because the time—to—live

field in the datagram header has reached Zero or because its

reassembly timer expired while waiting for fragments.

The CODE field explains the nature of the timeout:

tRecall that each [P header specifies a type of service used for routing.

Samsung — Exhibit 1016 — Page 151

Samsung - Exhibit 1016 - Page 152

—a

134 Internet Protocol: Error and Control Messages (ICMP) Chap. 9

Code Value Meaning
0 Time—to—|ive count exceeded

1 Fragment reassembly time exceeded

Fragment reassembly refers to the task of collecting all the fragments from a da-

tagram. When the first fragment of a datagram arrives, the receiving host starts a timer

and considers it an error if the timer expires before all the pieces of the datagram arrive.

Code value 1 is used to report such errors to the sender; one message is sent for each
such error.

9.13 Reporting Other Problems

When a gateway or host finds problems with a datagram not covered by previous

ICMP error messages (eg., an incorrect datagram header), it sends a parameter problem

message to the original source. One possible cause of such problems occurs when argu-

ments to an option are incorrect. The message, formatted as shown in Figure 9.8, is

only sent when the problem is so severe that the datagram must be discarded.

0 16 31

TYPE (12) CODE (0 or 1) CHECKSUM

POINTER UNUSED (MUST BE ZERO)

INTERNET HEADER + FIRST 64 BITS OF DATAGRAM

Figure 9.8 ICMP parameter problem message format. Such messages are

only sent when the problem causes the datagram to be dropped.

To make the message unambiguous, the sender uses the POINTER field in the message

header to identify the octet in the datagram that caused the problem. Code 1 is used to

report that a required option is missing (e.g., a security option in the military communi-

my); the POINTER field is not used for code 1.

9.14 Clock Synchronization And Transit Time Estimation

Although machines on an intemet can communicate, they usually operate indepen-

dently, with each machine maintaining its own notion of the current time. Clocks that

differ widely can confuse users of distributed systems software. The TCP/IP protocol

suite includes several protocols that can be used to synchronize clocks. One of the sim-

Samsung — Exhibit 1016 — Page 152

Samsung - Exhibit 1016 - Page 153

Sec. 9.14 Clock Synchronization And Transit Time Estimation I35

plest techniques uses an ICMP message to obtain the time from another machine. A re-

questing machine sends an ICMP timestamp request message to another machine, ask-

ing that the second machine return its current value for the time of day. The receiving

machine returns a timestamp reply back to the machine making the request. Figure 9.9

shows the format of timestamp request and reply messages.

0 8 l 6 31

Figure 9.9 ICMP timestamp request or reply message format.

The TYPE field identifies the message as a request (13) or a reply (14); the IDEN-

TIFIER and SEQUENCE NUMBER fields are used by the source to associate replies

with requests. Remaining fields specify times, givenvin milliseconds since midnight,
Universal Timew‘. The ORIGINATE TIMESTAMP field is filled in by the original

sender just before the packet is transmitted, the RECEIVE TIMESTAMP field is filled

immediately upon receipt of a request, and the TRANSMIT TIMESTAMP field is filled

immediately before the reply is transmitted.

Hosts use the three timestamp fields to compute estimates of the delay time

between them and to synchronize their clocks. Because the reply includes the OR]-

GINATE TIMESTAMP field, a host can compute the total time required for a request to

travel to a destination, be transformed into a reply, and return. Because the reply carries

both the time at which the request entered the remote machine, as well as the time at

which the reply left, the host can compute the network transit time, and from that, esti-
mate the differences in remote and local clocks.

In practice, accurate estimation of round-trip delay can be difficult and substantial-

ly restricts the utility of ICMP timestamp messages. Of course, to obtain an accurate

estimate of round trip delay one must take many measurements and average them.

However, the round-trip delay between a pair of machines that connect to a large inter-

net can vary dramatically, even over short periods of time. Furthermore, recall that be-

cause IP is a best-effort technology, datagrams can be dropped, delayed, or delivered

out of order. Thus, merely taking many measurements may not guarantee consistency;

sophisticated statistical analysis may be needed to produce precise estimates.

+ Universal Time was formerly called Greenwich Mean Time; it is the time of day at the prime meridian.

L .______._._..__.._, —

Samsung — Exhibit 1016 — Page 153

Samsung - Exhibit 1016 - Page 154

136 Internet Protocol: Error and Control Messages (ICMP) Chap. 9

9.15 Information Request And Reply Messages

The ICMP information request and information reply messages (types 15 and 16)

are now considered obsolete and should not be used. It was originally intended to allow

hosts to discover their intemet address at system stanup. The current protocols for ad-

dress determination are RARP, described in Chapter 6, and BOOTP, described in

Chapter 19.

9.16 Obtaining A Subnet Mask

Chapter 16 discusses the motivation for subnet addressing as well as the details of

how subnets operate. For now, it is only important to understand that when hosts use

subnet addressing, some bits in the hostid portion of their IP address identify a physical

network. To participate in subnet addressing, hosts need to know which bits of the 32-

bit intemet address correspond to the physical network and which correspond to host

identifiers. The information needed to interpret the address is represented in a 32-bit

quantity called the subnet mask.
To learn the subnet mask used for the local network, a machine can send an ad-

dress mask request message to a gateway and receive an address mask reply. The

machine making the request can either send the message directly, if it knows the

gateway’s address, or broadcast the message if it does not. Figure 9.10 shows the for-

mat of address mask messages.

0 8 16 31

TYPE (17 or 13) CODE (0) CHECKSUM

IDENTIFIER SEQUENCE NUMBER

ADDRESS MASK

Figure 9.10 ICMP address mask request or reply message format. Usually,

hosts broadcast a request without knowing which specific gate-

way will respond.

The TYPE field in an address mask message specifies whether the message is a request

(17) or a reply (18). A reply contains the network’s subnet address mask in the AD-
DRESS MASK field. As usual, the IDENTIFIER and SEQUENCE NUMBER fields al-

low a machine to associate replies with requests.

Samsung — Exhibit 1016 — Page 154

Samsung - Exhibit 1016 - Page 155

7/
Q‘.-I‘.
3x.:.‘(

t
;!

. 9.

Sec. 9.17 Summary 137

9.17 Summary

Nonnal communication across an intemet involves sending messages from a user

process on one host to a user process on another host. Gateways may need to commun-
icate directly with the network software on a particular host to report abnormal condi-

tions or to send the host new routing information.

The Internet Control Message Protocol provides for extranorrnal communication

among gateways and hosts; it is an integral, required part of IP. ICMP includes source

quench messages that retard the rate of transmission, redirect messages that request a
host to change its routing tables, and echo request/reply messages that hosts can use to

determine whether a destination can be reached. An ICMP message travels in the data

area of an IP datagram and has three fixed-length fields at the beginning of the mes-

sage: an ICMP message type field, a code field, and an ICMP checksum field. The

message type determines the format of the rest of the message as well as its meaning.

FOR FURTHER STUDY

Both Tanenbaum [1981] and Stallings [1985] discuss control messages in general

and relate them to various network protocols. The central issue is not how to send con-

trol messages but when. Grange and Gien [I979], as well as Driver, Hopewell, and la-

quinto [l979], concentrate on a problem for which control messages are essential,

namely, flow control. Gerla and Kleinrock [1980] compare flow control strategies

analytically.

The Internet Control Message Protocol described here is a TCP/IP standard defined

by Postel [RFC 792]. Nagle [RFC 896] discusses ICMP source quench messages and

shows how gateways should use them to handle congestion control. Prue and Postel

[RFC 1016] discusses a more recent technique gateways use in response to source

quench. Nagle [1987] argues that congestion is always a concern in packet switched

networks. Mogul and Postel [RFC 950] discusses subnet mask request and reply mes-

sages. Finally, Jain, Ramakrishnan and Chiu [1987] discusses how gateways and tran-

sport protocols could cooperate to avoid congestion.

For a discussion of clock synchronization protocols see Mills [RFCs 956, 957, and
958].

EXERCISES

9.1 Devise an experiment to record how many of each ICMP message type appear on your 10-
cal nctwork during a day.

9.2 Experiment to see if you can send packets through a gateway fast enough to trigger an
ICMP source quench message.

Samsung — Exhibit 1016 — Page 155

Samsung - Exhibit 1016 - Page 156

138

9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.10

9.11

_

lntemet Protocol: Error and Control Messages (ICMP) Chap. 9

Devise an algorithm that synchronizes clocks using ICMP timestamp messages.

See if your local operating system contains a ping command. Does it allow you to build
one?

Assume that the operating system sends ICMP time—exceeded messages to application pro-
grams, and use them to build a trace;-oute command that reports the list of gateways
between the source and a particular destination.

If you connect to the Internet, try to ping host l28.lO.2.l (a machine at Purdue).

Should a gateway give ICMP messages priority over normal traffic? Why or why not?

Consider an Ethernet that has one conventional host, H, and 12 gateways connected to it.
Find a single (slightly illegal) frame carrying an IP packet that, when sent by host H,
causes H to receive exactly 24 packets.

Compare ICMP source quench packets with Jain’s l-bit scheme. Which is a more effective
strategy for dealing with congestion? Why?

There is no ICMP message that allows a machine to inform the source that transmission er-

rors are causing datagrams to arrive corrupted. Under what circumstances might such a
message be useful?

Should ICMP error messages contain a timestamp that specifies when they are sent? Why
or why not?

Samsung — Exhibit 1016 — Page 156

Samsung - Exhibit 1016 - Page 157

Protocol Layering

10.1 Introduction

Previous chapters have reviewed the architectural foundations of intemetworking,

described how gateways route Internet datagrams among themselves or to hosts, and

presented mechanisms used to map IP addresses to physical network addresses. This

chapter considers the general structure of software found in gateways and hosts that car-

ries out network communication. It presents the general principle of layering, shows

how layering makes lntemet Protocol software easier to understand and build, and

traces the path of datagrams through the protocol software they encounter when travers-

ing a TCP/IP intemet.

10.2 The Need For Multiple Protocols

We have said that protocols allow one to specify or understand communication

without knowing the details of a particular vendor’s network hardware. They are to

computer communication what programming languages are to computation. It should

be apparent by now how closely the analogy fits. Like assembler language, some proto-

cols describe communication across a physical network. For example, the details of the

Ethernet frame format, network access policy, and frame error handling comprise a pro-

tocol that describes communication on an Ethernet. Similarly, the details of IP ad-

dresses, the datagram format, and the concept of unreliable, connectionless delivery

comprise the Internet Protocol.

Complex data communication systems do not use a single protocol to handle all

transmission tasks. Instead, they require a set of cooperative protocols, sometimes

new-:4:-:.r»::-'~Ar:KIwQHnnwr_2
139

Samsung — Exhibit 1016 — Page 157

Samsung - Exhibit 1016 - Page 158

140 Protocol Layering Chap. 10

called a protocol family or protocol suite. To understand why, think of the problems
that arise when machines communicate over a data network: '

0 Hardware failure. A host or gateway may fail either because the hardware fails

or because the operating system crashes. A network transmission link may fail or ac-

cidentally be disconnected. The protocol software needs to detect such failures and re-

cover from them if possible.

0 Network congestion. Even when all hardware and software operates correctly,

networks have finite capacity which can be exceeded. The protocol software needs to

arrange ways that a congested machine can suppress further traffic.

0 Packet delay or loss. Sometimes, packets experience extremely long delays or

are lost. The protocol software needs to learn about failures or adapt to long delays.

0 Data corruption. Electrical or magnetic interference or hardware failures can

cause transmission errors that corrupt the contents of transmitted data. Protocol
software needs to detect and recover from such errors.

0 Data duplication or sequence errors. Networks that offer multiple routes may

deliver data out of sequence or may deliver duplicates of packets. The protocol

software needs to reorder packets and remove any duplicates.

Taken together, all these problems seem overwhelming. It is difficult to under-

stand how to write a single protocol that will handle them all. From the analogy with

programming languages, we can see how to conquer the complexity. Program transla-

tion has been partitioned into four conceptual subproblems identified with the software

that handles each subproblem: compiler, assembler, link editor, and loader. The divi-

sion makes it possible for the designer to concentrate on one subproblem at a time, and

for the implementor to build and test each piece of software independently.

Two final observations about our programming language analogy will help clarify

the organization of protocols. First, it should be clear that pieces of translation software

must agree on the exact format of data passed between them. For example, the data

passed from the compiler to the assembler consists of a program defined by the assem-

bly programming language. Thus, we see how the translation process involves multiple

programming languages. The analogy will hold for communication software, where we

will see that multiple protocols define the interfaces between the modules of communi-

cation software. Second, the four parts of the translator form a linear sequence in which

output from the compiler becomes input to the assembler, and so on. Protocol software

also uses a linear sequence.

10.3 The Conceptual Layers Of Protocol Software

Think of the modules of protocol software on each machine as being stacked verti-

cally into layers, as in Figure 10.1. Each layer takes responsibility for handling one

part of the problem.

Samsung — Exhibit 1016 — Page 158

Samsung - Exhibit 1016 - Page 159

.v.<vv¥nnnesw~«r,-:v_4§,M,;g.-,n,gg_w.,;’
:.
t»

‘.1
_.,£

Sec. 10.3 The Conceptual Layers Of Protocol Software 141

/Rgecei®

Figure 10.1 The conceptual organization of protocol software in layers.

Conceptually, sending a message from an application program on one machine to

an application program on another means transferring the message down through suc-

cessive layers of protocol software on the sender’s machine, transferring the message

across the network, and transferring the message up through successive layers of proto-
col software on the receiver’s machine.

In practice, the protocol software is much more complex than the simple model of

Figure 10.1 indicates. Each layer makes decisions about the correctness of the message

and chooses an appropriate action based on the message type or destination address.

For example, one layer on the receiving machine must decide whether to keep the mes-

sage or forward it to another machine. Another layer must decide which application

program should receive the message.

To understand the difference between the conceptual organization of protocol

software and the implementation details, consider the comparison shown in Figure 10.2.

The conceptual diagram in Figure lO.2a shows an Internet layer between a high level

protocol layer and a network interface layer. The realistic diagram in Figure l0.2b

shows that the IP software may communicate with multiple high—level protocol modules

and with multiple network interfaces.

Although a diagram of conceptual protocol layering does not show all details, it

does help explain the general ideas. For example, Figure 10.3 shows the layers of pro-

tocol software used by a message that traverses three networks. The diagram shows

only the network interface and lntemet Protocol layers in gateways because only those

layers are needed to receive, route, and then send datagrams. We understand that any
machine attached to two networks must have two network interface modules, even

though the conceptual layering diagram shows only a single network interface layer in
each machine.

Samsung — Exhibit 1016 — Page 159

Samsung - Exhibit 1016 - Page 160

142 Protocol Layering Chap, 10

Conceptual Layers Software Organization

Protocol 1 Protocol 2 Protocol 3

IP Module

Interface 2

(8) (b)

High Level

Protocol Layer

Internet

Protocol Layer

Network

Interface Layer Interface 1

Interface 3

Figure 10.2 A comparison of (a) conceptual protocol layering and (b) a real-

istic view of software organization showing multiple network in-

terfaces below IP and multiple protocols above it.

As Figure 10.3 shows, a sender on the original machine transmits a message which the

IP layer places in a datagram and sends across network 1. On intermediate machines

the datagram passes up to the IP layer which routes it back out again (on a different net-

work). Only when it reaches the final destination machine does IP extract the message

and pass it up to higher layers of protocol software.

Figure 10.3 The path of a message traversing the Internet from the sender

through two intermediate machines to the receiver. Intermediate

machines only send the datagram to the IP software layer.

Samsung — Exhibit 1016 — Page 160

Samsung - Exhibit 1016 - Page 161

i.1

sec. 10.4 Functionality Of The Layers 143

10.4 Functionality Of The Layers

Once the decision has been made to partition the communication problem into sub~

problems and organize the protocol software into modules that each handle one sub-

problem, the question arises: “what functionality should reside in each module?” The

question is not easy to answer for several reasons. First, given a set of goals and con-
straints goveming a particular communication problem, it is possible to choose an or-

ganization that will optimize protocol software for that problem. Second, even when
considering general network-level services such as reliable transport, it is possible to

choose from among fundamentally distinct approaches to solving the problem. Third,

the design of network (or intemet) architecture and the organization of the protocol

software are interrelated; one cannot be designed without the other.

10.4.1 ISO 7-Layer Reference Model

Two ideas about protocol layering dominate the field. The first, based on work

done by the International Organization for Standardization (ISO), is known as the ISO

Reference Model of Open System Interconnection, often referred to as the ISO model.

The ISO model contains 7 conceptual layers organized as Figure 10.4 shows.

Layer Functionality

7

6

5 T

4

3 T

(Hardware Interface)=
1 Physical Hardware

Connection

Figure 10.4 The ISO 7-layer reference model for protocol software.

Samsung — Exhibit 1016 — Page 161

Samsung - Exhibit 1016 - Page 162

144 Protocol Layering Chap. ll)

The ISO model, built to describe protocols for a single network, does not contain a

specific level for intemetwork routing in the same way TCP/IP protocols do.

10.5 CCITT X.25 And Its Relation To The ISO Model

Although it was designed to provide a conceptual model and not an implementa-

tion guide, the ISO layering scheme has been the basis for several protocol implementa-

tions. Among the protocols commonly associated with the ISO model, the set of proto-

cols known as X.25 is probably the best known and most widely used. X.25 was esta-

blished as a recommendation of the Consultative Committee on International Telephony

and Telegraphy (CCITT), an international organization that recommends standards for

international telephone services. X.25 has been adopted by public data networks

throughout the United States and Europe.

In the X.25 view, a network operates much like a telephone system. Like the AR-

PANET described in Chapter 2, an X.25 network is assumed to consist of complex

packet switches that contain the intelligence needed to route packets. Hosts do not at-

tach directly to communication wires of the network. Instead each host attaches to one

of the packet switches using a serial communication line. In one sense the connection

between a host and an X.25 packet switch is a miniature network consisting of one seri-

al link. The host must follow a complicated procedure to transfer packets onto the net-
work.

0 Physical Layer. X.25 specifies a standard for the physical interconnection

between host computers and network packet switches, as well as the procedures used to

transfer packets from one machine to another. In the reference model, level 1 specifies

the physical interconnection including electrical characteristics of voltage and current.

A corresponding protocol, X.21, gives the details used by public data networks.

I Data Link Layer. The level 2 portion of the X.25 protocol specifies how data

travels between a host and the packet switch to which it connects. X.25 uses the term

frame to refer to a unit of data as it passes between a host and a packet switch (it is im-

portant to understand that the X.25 definition of frame differs from the way we have

used it). Because raw hardware delivers only a stream of bits, the level 2 protocol must

define the format of frames and specify how the two machines recognize frame boun-

daries. Because transmission errors can destroy data, the level 2 protocol includes error

detection (e.g., a frame checksum). Finally, because transmission is unreliable, the level

2 protocol specifies an exchange of acknowledgements that allows the two machines to

know when a frame has been transferred successfully.

One commonly used level 2 protocol, named the High Level Data Link Communi-

cation, is best known by its acronym, HDLC. Several versions of HDLC exist, with the

most recent known as HDLC/LAPB. It is important to remember that successful

transfer at level 2 means a frame has been passed to the network packet switch for

Samsung - Exhibit 1016 - Page 162

Samsung - Exhibit 1016 - Page 163

Sec. 105 CCITT X25 And Its Relation To The ISO Model 145

delivery; it does not guarantee that the packet switch accepted the packet or was able to

route it.

0 Network Layer. The ISO reference model specifies that the third level contains

functionality that completes the definition of the interaction between host and network.

Called the network or communication subnet layer, this level defines the basic unit of

transfer across the network and includes the concepts of destination addressing and rout-

ing, Remember that in the X25 world, communication between host and packet switch
is conceptually isolated from the traffic that is being passed. Thus, the network might

allow packets defined by level 3 protocols to be larger than the size of frames that can

be transferred at level 2. The level 3 software assembles a packet in the form the net~

work expects and uses level 2 to transfer it (possibly in pieces) to the packet switch.

Level 3 must also respond to network congestion problems.

0 Transport Layer. Level 4 provides end—to—end reliability by having the destina~

tion host communicate with the source host. The idea here is that even though lower

layers of protocols provide reliable checks at each transfer, the end—to—end layer double
checks to make sure that no machine in the middle failed.

0 Session Layer. Higher levels of the ISO model describe how protocol software

can be organized to handle all the functionality needed by application programs. The

ISO committee considered the problem of remote temiinal access so fundamental that

they assigned layer 5 to handle it. In fact, the central service offered by many public

data networks consists of terminal to host interconnection. The carrier provides a spe-

cial purpose host computer called a Packet Assembler And Disassembler (PAD) on the

network with dialup access. Subscribers, usually travelers who carry their own terminal

and modem, dial up the local PAD, make a network connection to the host with which

they wish to communicate, and log in. Using the network for long distance communi-

cation is less expensive than direct dialup.

0 Presentation Layer. ISO layer 6 is intended to include functions that many ap-

plication programs need when using the network. Typical examples include standard

routines that compress text or convert graphics images into bit streams for transmission

across a network. Although it is not completely understood, much work has been ex-

pended on this layer in recent years. The ISO draft standard, known as Abstract Syntax

Notation I (ASN.1), provides a representation of data that application program use.

0 Application Layer. Finally, ISO layer 7 includes application programs that use

the network. Examples include electronic mail or file transfer programs. In particular,

the CCITT has devised a protocol for electronic mail called the X400 or X.400(1988)

standard. In fact, the CCITT and ISO worked jointly on message handling systems; the
ISO version is called MOTIS.

Samsung — Exhibit 1016 — Page 163

Samsung - Exhibit 1016 - Page 164

l46 Protocol Layering Chap. 10 l

10.5.1 The TCP/IP Internet Layering Model

The second major layering model did not arise from a standards committee, but

came instead from research that led to the TCP/IP protocol suite. With a little work, the

ISO model can be stretched to describe the TCP/IP layering scheme, but the underlying

assumptions are different enough to warrant distinguishing the two.

Broadly speaking, TCP/IP software is organized into four conceptual layers that

build on a fifth layer of hardware. Figure 10.5 shows the conceptual layers as well as

the form of data as it passes between them.

Conceptual Layer Objects Passed

Between Layers

Application

Messages or Streams

Transport

Transport Protocol Packets

Network Interface

<———————:

<——j:——

<——i—— IP Datagrams

<—j———-
Network-Specific Frames

Figure 10.5 The 4 conceptual layers of TCP/IP software and the form of ob-

jects passed between layers. The layer labeled network interface
is sometimes called the data link layer.

0 Application Layer. At the highest level, users invoke application programs that

access services available across a TCP/IP intemet. An application interacts with the

transport level protocol(s) to send or receive data. Each application program chooses

the style of transport needed, which can be either a sequence of individual messages or

a continuous stream of bytes. The application program passes data in the required form

to the transport level for delivery.

0 Transport Layer. The primary duty of the transport layer is to provide com-

munication from one application program to another. Such communication is often

called end-to-end. The transport layer may regulate flow of information. It may also

provide reliable transport, ensuring that data arrives without error and in sequence. To

do so, it arranges to have the receiving side send back acknowledgements, and it re-

transmits lost packets. The transport software divides the stream of data being transmit-

 '—‘—

Samsung — Exhibit 1016 — Page 164

Samsung - Exhibit 1016 - Page 165

sec. 10.5 CCITT X25 And Its Relation To The ISO Model l47

ted into small pieces (called packets in the ISO terminology) and passes each packet

along with a destination address to the next layer for transmission.
Although Figure 10.5 uses a single block to represent the application layer, a gen-

eral purpose computer can have multiple application programs accessing the intemet at
one time. The transport layer must accept data from several user programs and send it

to the next lower layer. To do so, it adds additional information to each packet, includ-

ing codes that identify which application program sent it and which application program
should receive it, as well as a checksum. The receiving machine uses the checksum to

verify that the packet arrived intact, and uses the destination code to identify the appli-

cation program to which it should be delivered.

0 Internet Layer. As we have already seen, the lntemet layer handles communica-

tion from one machine to another. It accepts a request to send a packet from the tran-

sport layer along with an identification of the machine to which the packet should be
sent. It encapsulates the packet in an IP datagram, fills in the datagram header, uses the

routing algorithm to determine whether to deliver the datagram directly or send it to a

gateway, and passes the datagram to the appropriate network interface for transmission.

The Internet layer also handles incoming datagrams, checking their validity, and using

the routing algorithm to decide whether the datagram should be processed locally or for-

warded. For datagrams addressed to the local machine, software in the intemet layer

deletes the datagram header and chooses from among several transport protocols the one

that will handle the packet. Finally, the Internet layer sends ICMP error and control

messages as needed and handles all incoming ICMP messages.

0 Network Interface Layer. The lowest level TCP/IP software comprises a net-

work interface layer, responsible for accepting IP datagrams and transmitting them over

a specific network. A network interface may consist of a device driver (e.g., when the

network is a local area network to which the machine attaches directly) or a complex

subsystem that uses its own data link protocol (e.g., when the network consists of pack-

et switches that communicate with hosts using HDLC).

10.6 Differences Between X.25 And Internet Layering

There are two subtle and important differences between the TCP/IP layering
scheme and the X.25 scheme. The first difference revolves around the focus of atten-

tion on reliability, while the second involves the location of intelligence in the overall
system.

aX.',=é¢,9‘<‘_n.'-- .

10.6.1 Link-Level vs. End-To-End Reliability

One major difference between the TCP/IP protocols and the X25 protocols lies in

their approaches to providing reliable data transfer services. In the X.25 model, proto-

col software detects and handles errors at all levels. At the link level, complex proto-

cols guarantee that the transfer betwecn a host and the packet switch to which it con-

nects will be correct. Checksums accompany each piece of data transferred, and the re-

Samsung - Exhibit 1016 - Page 165

Samsung - Exhibit 1016 - Page 166

148 Protocol Layering Chap. 10

ceiver acknowledges each piece of data received. The link level protocol includes

timeout and retransmission algorithms that prevent data loss and provide automatic

recovery after hardware fails and restarts.

Successive levels of X.25 provide reliability of their own. At level 3, X.25 also

provides error detection and recovery for packets transferred onto the network, using

checksums as well as timeout and retransmission techniques. Finally, level 4 must pro-

vide end-to-end reliability, having the source correspond with the ultimate destination to

verify delivery.

In contrast to such a scheme, TCP/IP bases its protocol layering on the idea that re-

liability is an end—to-end problem. The architectural philosophy is simple: construct the

intemet so it can handle the expected load, but allow individual links or machines to

lose data or corrupt it without trying to repeatedly recover. In fact, there is little or no

reliability in most TCP/IP network interface layer software. Instead, the transport layer

handles most error detection and recovery problems.

The resulting freedom from interface layer verification makes TCP/IP software

much easier to understand and implement correctly. Intermediate gateways can discard

datagrams that become corrupted because of transmission errors. They can discard any

datagrams that cannot be delivered. They can discard datagrams when the arrival rate

exceeds machine capacity. They can reroute datagrams through paths with shorter or

longer delay without informing the source or destination.

Having unreliable links means that some datagrams do not arrive. Detection and

recovery of datagram loss is carried out between the source host and the ultimate desti-
nation and is, therefore, called end—to-end verification. The end—to-end software located

in the transport layer uses checksums, acknowledgements, and timeouts to control

transmission. Thus, unlike the connection-oriented X.25 protocol layering, the TCP/IP

software focuses most of its reliability control in one layer.

10.6.2 Locus of Intelligence and Decision Making

Another difference between the X25 model and the TCP/IP model emerges when

one considers the locus of authority and control. As a general rule, networks using

X.25 adhere to the idea that a network is a utility that provides a transport service. The

vendor that offers the service controls network access and monitors traffic to keep

records for accounting and billing. The network vendor handles problems like routing,

flow control, and acknowledgements internally, making transfers reliable. This view

leaves little that the hosts can (or need to) do. In short, the network is a complex, in-

dependent system to which one can attach relatively simple host computers; the hosts

themselves participate in the network operation very little.

By contrast, TCP/IP requires hosts to participate in almost all of the network proto-

cols. We have already mentioned that hosts actively implement end—to-end error detec-

tion and recovery. They also participate in routing because they must choose a gateway

when sending datagrams, and they participate in network control because they must

handle ICMP control messages. Thus, when compared to an X.25 network, a TCP/IP

intemet can be viewed as a relatively simple packet delivery system to which intelligent
hosts attach.

Samsung — Exhibit 1016 — Page 166

Samsung - Exhibit 1016 - Page 167

sec. 10.7 The Protocol Layering Principle 149

10.7 The Protocol Layering Principle

Independent of the particular layering scheme used, or the functions of the layers,

the operation of layered protocols is based on a fundamental idea. The idea, called the

layering principle, can be summarized succinctly:

Layered protocols are designed so that layer n at the destination re-

ceives exactly the same object sent by layer n at the source.

The layering principle explains why layering is such a powerful idea. It allows the

protocol designer to focus attention on one layer at a time, without worrying about how

lower layers perform. For example, when building a file transfer application, the

designer thinks only of two copies of the application program executing on two

machines and concentrates on the messages they need to exchange for file transfer. The

designer assumes that the application on one host receives exactly what the application
on the other host sends.

Figure 10.6 illustrates how the layering principle works:

Host A Host B

Application Application

identical

message

 identical

datagram

identical

— ’ frame ‘ ~

Figure 10.6 The path of a message as it passes from an application on one
host to an application on another. Layer n on host B receives

exactly the same object that layer n sent on host A.

Samsung — Exhibit 1016 — Page 167

Samsung - Exhibit 1016 - Page 168

150 Protocol Layering Chap. 10

10.7.1 Layering in a TCP/IP Internet Environment

Our statement of the layering principle is somewhat vague, and the illustration in

Figure 10.6 skims over an important issue because it fails to distinguish between

transfers from source to ultimate destination and transfers across multiple networks.

Figure 10.7 illustrates the distinction, showing the path of a message sent from an appli-

cation program on one host to an application on another through a gateway.

As the figure shows, message delivery uses two separate network frames, one for

the transmission from host A to gateway G, and another from gateway G to host 8. The

network layering principle states that the frame delivered to G is identical to the frame

sent by host A. By contrast, the application and transport layers deal with end—to—end

issues and are designed so the software at the source communicates with its peer at the

ultimate destination. Thus, the layering principle states that the packet received by the

transport layer at the ultimate destination is identical to the packet sent by the transport

layer at the original source.

Host A Host B

‘d ' I . .
_ , - I mum - t _ Application

’_-—' message ‘~_‘\‘

"d ' I

__,—— packet ~~_“

Gateway G

identical identical

‘ datagram \ T - T ‘ dalagram ‘ T ‘ ~
Network Network

identical ""e"a°° identical lntefface

’ frame ~ I / frame \ ~

Figure 10.7 The layering principle when a gateway is used. The frame

delivered to gateway G is exactly the frame sent from host A,
but differs from the frame sent between G and 8.

Samsung — Exhibit 1016 — Page 168

-.‘-a.«r,xax,

Samsung - Exhibit 1016 - Page 169

1-..~ .
‘.5
E’

sec. 10.7 The Protocol Layering Principle 151

It is easy to understand that in higher layers, the layering principle applies across

end-to-end transfers, and that at the lowest layer it applies to asingle machine transfer.

It is not as easy to see how the layering principle applies to the Internet layer. On one

hand, we have said that hosts attached to an intemet should view it as a large, virtual

network, with the IP datagram taking the place of a network frame. In this view, da-

tagrams travel from original source to ultimate destination, and the layering principle

guarantees that the ultimate destination receives exactly the datagram that the original
source sent. On the other hand, we know that the datagram header contains fields, like

a time to live counter, that change every time the datagram passes through a gateway.

Thus, the ultimate destination will not receive exactly the same datagram as the source

sent. We conclude that although most of the datagram stays intact as it passes across an

intemet, the layering principle only applies to datagrams across single machine

transfers. To be accurate, we should not view the Internet layer as providing end-to-end
service.

10.8 Layering In The Presence Of Network Substructure

Recall from Chapter 2 that some wide area networks contain multiple packet

switches. For example, the Cypress network consists of gateways that connect to an

Ethernet local area network as well as to other Cypress gateways over leased serial

lines. Cypress transfers IP datagrams but uses its own internal packet protocol when

transferring them across serial lines. The Cypress serial line protocol software must be

merged with other protocols, and the question arises: “How do the Cypress protocols fit

into the TCP/IP layering scheme?" The answer depends on how the designer views the
serial line interconnections.

From the perspective of II’, the set of point-to-point connections among gateways

can either function like a set of independent physical networks, or they can function col-

lectively like a single physical network. In the first case, each physical link is treated

exactly like any other network in the intemet. It is assigned a unique (class C) network

number, and the two hosts that share the link each have a unique IP address assigned

for their connection. Routes are added to the IP routing table as they would be for any

other network. A new software module is added at the network interface layer to con-

trol the new link hardware, but no substantial changes are made to the layering scheme.

The main disadvantage of the independent network approach is that it proliferates net-

work numbers (one for each connection between two machines), causing routing tables

to be larger than necessary.

The second approach to accommodating point-to—point connections avoids assign-

ing multiple IP addresses to the physical wires. Instead, it treats all the connections col-

lectively as a single, independent IP network with its own frame format, hardware ad-

dressing scheme, and data link protocols. Cypress uses the single network approach

and has only one network number for all point—to—point connections.

Samsung — Exhibit 1016 — Page 169

 __ ,_—_-...,—»~~,«.¢..,p.-_'{'11:‘.:r- i.-. e. :,~

Samsung - Exhibit 1016 - Page 170

152 Protocol Layering Chap. 10

Using the single network approach means extending the protocol layering scheme

to add a new intranetwork routing layer between the network interface layer and the

hardware devices. For machines with only one point—to—point connection, an additional

layer seems unnecessary. To see why it is needed, consider a machine with several

physical point—to—point connections, and recall from Figure 10.2 how the network inter-

face layer is divided into multiple software modules that each control one network. We

need to add one new network interface for the new point—to—point network, but the new

interface must control multiple hardware devices. Furthennore, given a datagram to

send, the new interface must choose the correct link over which the datagram should be

sent. Figure 10.8 shows the organization.

The Internet layer passes to the network interface all datagrams that should be sent

out on any of the point—to—point connections. The interface passes them to the intranet

routing layer that must further distinguish among multiple physical connections and

route the datagram across the correct one.

The programmer who designs the intranet routing software determines exactly how

the software chooses a physical link. Usually, the algorithm relies on an intranet rout-

ing table. The intranet routing table is analogous to the intemet routing table in that it

specifies a mapping of destination address to route. It contains pairs of entries, (D, L),

where D is a destination host address and L specifies one of the physical lines used to
reach that destination.

Conceptual Layer Software Organization

Protocol 1 Protocol 2 Protocol 3

IP Module

Network

Interface Interface 1 Interface 2 Interface 3

Point-To-Point

Net Module

(8) (b)

Figure 10.8 (a) conceptual position of an intranet protocol for point-to-point

connections when IP treats them as a single IP network, and (b)

detailed diagram of corresponding software modules. Each ar-

row corresponds to one physical device.

Samsung — Exhibit 1016 — Page 170

Samsung - Exhibit 1016 - Page 171

v,

itt‘.

sec. 10.8 Layering In The Presence Of Network Substructure 153

The difference between the intemet routing table and the intranet routing table is

that intranet routing tables are quite small. They only contain routing information for

hosts directly attached to the point-to-point network. The reason is simple: the Internet

layer maps an arbitrary destination address to a specific gateway address before passing
the datagram to a network interface. Thus, the intranet layer is only asked to distin-

guish among machines on a single point—to—point network.

10.9 Two Important Boundaries In The TCP/IP Model

The conceptual protocol layering includes two boundaries that may not be obvious:

a protocol address boundary that separates high-level and low—leve1 addressing, and an

operating system boundary that separates the system from application programs.

10.9.1 High-Level Protocol Address Boundary

Now that we have seen the layering of TCP/IP software, we can be precise about

an idea introduced in Chapter 8: a conceptual boundary partitions software that uses

low—level (physical) addresses from software that uses high-level (IP) addresses. As

Figure 10.9 shows, the boundary occurs between the network interface layer and the In-

ternet layer. That is,

Application programs as well as all protocol software from the Inter-

net layer upward use only IP addresses; the network interface layer

handles physical addresses.

Thus, protocols like ARP belong in the network interface layer. They are not part of IP.

Conceptual Layer Boundary

Application
Software outside the operating system

Software inside the operating system
 Only 1}’ addresses used

Network Physical addresses used
Interface

' Hardware '

Figure 10.9 The relationship between conceptual layering and the boundaries
for operating system and high-level protocol addresses.

Samsung — Exhibit 1016 — Page 171

Samsung - Exhibit 1016 - Page 172

154 Protocol Layering Chap. l0 E

10.9.2 Operating System Boundary

Figure 10.9 shows another important boundary as well, the division between

software that is generally considered part of the operating system and software that is

not. While each implementation of TCP/IP chooses how to make the distinction, many

follow the scheme shown. Because they lie inside the operating system, passing data

between lower layers of protocol software is much less expensive than passing it

between an application program and a transport layer. Chapter 21 discusses the prob-

lem in more detail and describes an example of the interface an operating system might

provide.

10.10 The Disadvantage Of Layering

We have said that layering is a fundamental idea that provides the basis for proto«

col design. It allows the designer to divide a complicated problem into subproblems

and solve each one independently. Unfortunately, the software that results from strict

layering can be extremely inefficient. As an example, consider the job of the transport

layer. It must accept a stream of bytes from an application program, divide the stream

into packets, and send each packet across the intemet. To optimize transfer, the tran-

sport layer should choose the largest possible packet size that will allow one packet to

travel in one network frame. In particular, if the destination machine attaches directly

to one of the same networks as the source, only one physical net will be involved in the

transfer, so the sender can optimize packet size for that network. If the software

preserves strict layering, however, the transport layer cannot know how the Internet

module will route traffic or which networks attach directly. Furthermore, the transport

layer will not understand the datagram or frame formats nor will it be able to determine

how many octets of header will be added to a packet. Thus, strict layering will prevent

the transport layer from optimizing transfers.

Usually, implementors relax the strict layering scheme when building protocol

software. They allow information like route selection and network MTU to propagate

upward. When allocating buffers, they often leave space for headers that will be added

by lower layer protocols and may retain headers on incoming frames when passing them

to higher layer protocols. Such optimizations can make dramatic improvements in effi-

ciency while retaining the basic layered structure.

10.11 The Basic Idea Behind Multiplexing And Demultiplexing

Communication protocols use a technique called multiplexing and demu/tiplexing

throughout the layered hierarchy. When sending a message, the source computer in-

cludes extra bits that encode the message type, originating program, and protocols used.

 -‘J

Samsung — Exhibit 1016 — Page 172

Samsung - Exhibit 1016 - Page 173

?
7
i
l
9."

2
7r‘

Sec. 10. ll The Basic Idea Behind Multiplexing And Demultiplexing 155

Eventually, all messages are placed into network frames for transfer and combined into

a stream of packets. At the receiving end, the destination machine uses the extra infor—

mation to guide processing.

Consider an example of demultiplexing shown in Figure 10.10.

IP Module ARP Module RARP Module

Demultiplexing Based

On Frame Type

Frame Arrives

Figure 10.10 Demultiplexing of incoming packets based on the protocol type

found in the packet header.

The figure illustrates how software in the network interface layer uses the frame type to

choose a procedure that handles the incoming frame. We say that the network interface

demultiplexes the frame based on its type. To make such a choice possible, software in

the source machine must set the frame type field before transmission. Thus, each

software module that sends frames uses the type field to specify frame contents.

Multiplexing and demultiplexing occur at almost every protocol layer. For exam-

ple, after the network interface demultiplexes frames and passes those frames that con-

tain IP datagrams to the IP module, the IP software extracts the datagram and demulti-

plexes further based on the transport protocol. Figure 10.11 demonstrates demultiplex-

ing at the Internet layer.

Samsung — Exhibit 1016 — Page 173

Samsung - Exhibit 1016 - Page 174

l56 Protocol Layering Chap. 10

ICMP Protocol UDP Protocol TCP Protocol

IP Module

Datagram Arrives

Figure 10.11 Demultiplexing at the Internet layer. IP software chooses an ap-

propriate procedure to handle a datagram based on the type

field in the datagram header.

EGP Protocol

To decide how to handle a datagram, intemet software examines the header of a da-

tagram and selects a protocol handler based on the datagram type. In the example, the

possible datagram types are: ICMP, which we have already examined, and UDP, TCP,

and EGP, which we will examine in later chapters.

10.12 ISO’s OSI Protocols

The International Organization for Standardization has an effort underway to

develop a set of protocols that follow the 7-layer reference model. There are currently

five transport standards, known as TP—0, TP—1, TP—2, TP-3, and TP-4. They range in

sophistication from simple to complex and are intended for use in a variety of environ-

ments. The simplest of the protocols, TP—0, provides little in the way of flow control or

reliability. It is meant for use in an environment like the one provided by X.25 where

the underlying network offers a reliable, stream oriented delivery service.

In some ways, the most complex of the OSI transport protocols, TP—4, resembles

TCP. It assumes that the underlying environment only provides connectionless, unreli-

able packet delivery. Thus, it handles the problems of lost data, flow control, window

management, and data that arrives out of sequence.

The future of ISO’s OSI protocols is unclear. Many people believe that once ISO

eventually finishes the design of its OSI protocols and makes them international stan-

dards, vendors will begin to build and test serious implementations. Past experience

with protocol design has shown that implementations will reveal flaws and inefficien-

cies in the standards, and the design will be modified to solve these problems. Once the

Samsung - Exhibit 1016 - Page 174

Samsung - Exhibit 1016 - Page 175

7‘¥T'?TVW"i‘5-’<‘$' fi3:%i.

Sec. l0.l2 lSO's OSI Protocols 157

design stabilizes, TP-4 may attain the same level of performance as TCP and may begin

to take over the market because it is an internationally accepted standard. Others be-

lieve that the future for OSI is not as bright. They think the OSI technology will al-

ways lag behind TCP/IP and that users who are installing TCP/IP now will be unwilling

to pay for conversion to OSI protocols later.

10.13 Summary

Protocols are the standards that specify how data is represented when being

transferred from one machine to another. Protocols specify how the transfer occurs,

how errors are detected, and how acknowledgements are passed. To simplify protocol

design and implementation, communication problems are segregated into subproblems

that can be solved independently. Each subproblem is assigned a separate protocol.

The idea of layering is fundamental in protocol design because it provides a con-

ceptual framework for protocol design. In a layered model, each layer handles one part

of the communication problem and usually corresponds to one protocol. Protocols fol-

low the layering principle, which states that the software implementing layer It on the

destination machine receives exactly what the software implementing layer n on the
source machine sends.

We examined the 4-layer Internet reference model as well as the ISO 7—layer refer-

ence model. In both cases, the layering model provides only a conceptual framework

for protocol software. The CCITT X25 protocols follow the ISO reference model and

provide an example of reliable communication service offered by a commercial utility,

while the TCP/IP protocols provide an example of a different layering scheme.

In practice, protocol software uses multiplexing and demultiplexing to distinguish

among multiple protocols within a given layer, making protocol software more complex

than the layering model suggests.

FOR FURTHER STUDY

Postel [RFC 791] provides a sketch of the Internet Protocol layering scheme and Clark

[RFC 817] discusses the effect of layering on implementations. Saltzer, Reed, and

Clark [1984] argues that end-to—end verification is important. Chesson [1987] makes

the controversial argument that layering produces intolerably bad network throughput.

Comer [1987] shows an example implementation that achieves efficiency by

compromising strict layering and passing pointers between layers.

A description of the ISO protocols TP-O through TP-4 can be found in the Intema—

tional Organization for Standardization documents [l986a] and [l986b]. The ISO pro-
tocol documents [l987a] and [l987b] describe ASN.1 in detail. Sun [RFC 1014]

describes XDR, an example of what might be called a TCP/IP presentation protocol.

Clark discusses passing information upward through layers [Clark 1985].

Samsung — Exhibit 1016 — Page 175

Samsung - Exhibit 1016 - Page 176

Ct: 158 Protocol Layering Chap, [0

r:
' EXERCISES

10.1 Study the ISO layering model in more detail. How well does a local area network like
the Ethernet fit it?

10.2 Build a case that TCP/IP is moving toward a five—level protocol architecture that in-
cludes a presentation layer. (hint: various programs use the XDR protocol, Courier, and
ASN.1.)

10.3 Do you think any single presentation protocol will eventually emerge that replaces all
f others? Why or why not?

10.4 Compare and contrast the tagged data format used by the ASN.1 presentation scheme
with the untagged fonnat used by XDR. Characterize situations in which one is better
than the other.

10.5 Find out how BSD UNIX uses the mbuf structure to make layered protocol software effi-
cient.

10.6 Read about the AT&T streams mechanism. How does it help make protocol implemen«
-J‘ tation easier?

Samsung — Exhibit 1016 — Page 176

Samsung - Exhibit 1016 - Page 177

User Datagram Protocol

11.1 Introduction

Previous chapters described a TCP/IP intemet capable of transferring IP datagrams

among host computers, where each datagram is routed through the intemet based on the

destination’s IP address. At the Internet Protocol layer, a destination address identifies

a host computer; no further distinction is made regarding which user or which applica-

tion program will receive the datagram. This chapter extends the TCP/IP protocol suite

by adding a mechanism that distinguishes among multiple destinations within a given

host, allowing multiple application programs executing on a given computer to send and

receive datagrams independently.

11.2 Identifying The Ultimate Destination

The operating systems in most computers support multiprogramming, which means

they permit multiple application programs to execute simultaneously. Using operating

system jargon, we refer to each executing program as a process, task, application pro-

gram, or a user level process; and the systems are called multiprocessing systems. It

may seem natural to say that a process is the ultimate destination for a message. How-

ever, specifying that a particular process on a particular machine is the ultimate destina-

tion for a datagram is somewhat misleading. First, because processes are created and

destroyed dynamically, senders seldom know enough to identify a process on another

machine. Second, we would like to be able to replace processes that receive datagrams

without informing all senders (e.g., rebooting a machine can change all the processes,

but senders should not be required to know about the new processes). Third, we need

to identify destinations based on the functions they implement without knowing the pro-

7-1':-er-wet-crane._

159

Samsung — Exhibit 1016 — Page 177

Samsung - Exhibit 1016 - Page 178

,

160 User Datagram Protocol Chap. 1 1

cess that implements the function (e.g., to allow a sender to Contact a file server without

knowing which process on the destination machine implements the file server function).

More important, in systems that allow a single process to handle two or more functions,

it is essential that we arrange a way for a process to decide exactly which function the
sender desires.

Instead of thinking of a process as the ultimate destination, we will imagine that

each machine contains a set of abstract destination points called protocol ports. Each

protocol port is identified by a positive integer. The local operating system provides an

interface mechanism that processes use to specify a port or access it.

Most operating systems provide synchronous access to ports. From a particular

process’ point of view, synchronous access means the computation stops during a port

access operation. For example, if a process attempts to extract data from a port before

any data arrives, the operating system stops (blocks) the process until data arrives.

Once the data arrives, the operating system passes the data to the process and restarts it.

In general, ports are buflered, so data that arrives before a process is ready to accept it

will not be lost. To achieve buffering, the protocol software located inside the operat-

ing system places packets that arrive for a particular protocol port in a (finite) queue un-

til a process extracts them.

To communicate with a foreign port, a sender needs to know both the IP address of

the destination machine and the protocol port number of the destination within that

machine. Each message carries both a destination port number on the foreign machine

to which the message is sent, as well as a source port number on the source machine to

which replies should be addressed. Thus, it is possible for any process that receives a

message to reply to the sender.

11.3 The User Datagram Protocol

In the TCP/IP protocol suite, the User Datagram Protocol or UDP provides the

primary mechanism that application programs use to send datagrams to other applica-

tion programs. UDP provides protocol ports used to distinguish among multiple pro-

grams executing on a single machine. That is, in addition to the data sent, each UDP

message contains both a destination port number and a source port number, making it

possible for the UDP software on the destination to deliver the message to the correct

recipient and for the recipient to send a reply.

UDP uses the underlying Internet Protocol to transport a message from one

machine to another, and provides the same unreliable, connectionless datagram delivery

semantics as IP. It does not use acknowledgements to make sure messages arrive, it

does not order incoming messages, and it does not provide feedback to control the rate

at which information flows between the machines. Thus, UDP messages can be lost,

duplicated, or arrive out of order. Furthermore, packets can arrive faster than the reci-

pient can process them. We can summarize:

Samsung — Exhibit 1016 — Page 178

Samsung - Exhibit 1016 - Page 179

Sec. 1 1.3 The User Datagram Protocol 161

The User Datagram Protocol (UDP) provides unreliable connection-

less delivery service using IP to transport messages between

machines. It adds the ability to distinguish among multiple destina-

tions within a given host computer.

An application program that uses UDP accepts full responsibility for handling the

problem of reliability, including message loss, duplication, delay, out—of—order delivery,

and loss of connectivity. Unfortunately, application programmers often ignore these

problems when designing software. Furthermore, because programmers often test net-

work software using highly reliable, low-delay local area networks, testing may not ex-

pose potential failures. Thus, many application programs that rely on UDP work well

in a local environment but fail in dramatic ways when used in a larger TCP/1P intemet.

11.4 Format Of UDP Messages

Each UDP message is called a user datagram. Conceptually, the user datagram

consists of two parts, a UDP header and UDP data area. As Figure 11.1 shows, the

header is divided into four 16-bit fields that specify the port from which the message

was sent, the port to which the message is destined, the message length, and a UDP
checksum.

O 16 31

UDP SOURCE PORT UDP DESTINATION PORT

UDP MESSAGE LENGTH UDP CHECKSUM

DATA

Figure 11.1 The format of fields in a UDP datagram.

 ,,,.._.-....,..r,,,.,,.,4

The SOURCE PORT and DESTINATION PORT fields contain the 16-bit UDP pro-

tocol port numbers used to demultiplex datagrams among the processes waiting to re-

ceive them. The SOURCE PORT is optional. When used, it specifies the port to which

replies should be sent; if not used, it should be zero.
The LENGTH field contains a count of octets in the UDP datagram, including the

UDP header and the user data. Thus, the minimum value for LENGTH is eight, the

length of the header alone.

Samsung — Exhibit 1016 — Page 179

Samsung - Exhibit 1016 - Page 180

162 User Datagram'Protocol Chap. 1 1

The UDP checksum is optional and need not be used at all; a value of zero in the

CHECKSUM field means that the checksum has not been computed. The designers

chose to make the checksum optional to allow implementations to operate with little

computational overhead when using UDP across a highly reliable local area network.

Recall, however, that IP does not compute a checksum on the data portion of an IP da-

tagram. Thus, the UDP checksum provides the only way to guarantee that data has ar-
rived intact and should be used.

Beginners often wonder what happens to UDP messages for which the computed

checksum is zero. A computed value of zero is possible because UDP uses the same

checksum algorithm as IP: it divides the data into 16-bit quantities and computes the

one’s complement of their one’s complement sum. Surprisingly, zero is not a problem

because one’s complement arithmetic has two representations for zero: all bits set to

zero or all bits set to one. When the computed checksum is zero, UDP uses the

representation with all bits set to one.

11.5 UDP Pseudo-Header

The UDP checksum covers more information than is present in the UDP datagram

alone. To compute the checksum, UDP prepends a pseudo-header to the UDP da-

tagram, appends an octet of zeros to pad the datagram to an exact multiple of 16 bits,

and computes the checksum over the entire object. The octet used for padding and the

pseudo-header are not transmitted with the UDP datagram, nor are they included in the

length. To compute a checksum, the software first stores zero in the CHECKSUM field,

then accumulates a 16-bit one’s complement sum of the entire object, including the

pseudo-header, UDP header, and user data.

The purpose of using a pseudo-header is to verify that the UDP datagram has

reached its correct destination. The key to understanding the pseudo-header lies in real-

izing that the correct destination consists of a specific machine and a specific protocol

port within that machine. The UDP header itself specifies only the protocol port

number. Thus, to verify the destination, UDP on the sending machine computes a

checksum that covers the destination IP address as well as the UDP datagram. At the

ultimate destination, UDP software verifies the checksum using the destination IP ad-

dress obtained from the header of the IP datagram that carried the UDP message. If the

checksums agree, then it must be true that the datagram has reached the intended desti-

nation host as well as the correct protocol port within that host.

The pseudo-header used in the UDP checksum computation consists of 12 octets of

data arranged as Figure 11.2 shows. The fields of the pseudo-header labeled SOURCE
IP ADDRESS and DESTINATION IP ADDRESS contain the source and destination IP

addresses that will be used when sending the UDP message. Field PROTO contains the

IP protocol type code (17 for UDP), and the field labeled UDP LENGTH contains the

length of the UDP datagram (not including the pseudo-header). To verify the check-
sum, the receiver must extract these fields from the IP header, assemble them into the

pseudo-header format, and recompute the checksum.

Samsung — Exhibit 1016 — Page 180

Samsung - Exhibit 1016 - Page 181

~«.4....~......,....,__..,_..‘

Sec. 1 1.5 UDP Pseudo—l-leader 163

O 8 16 31

SOURCE IP ADDRESS

DESTINATION IP ADDRESS

E PROTO UDP LENGTH

Figure 11.2 The 12 octets of the pseudo-header used during UDP checksum

computation.

11.6 UDP Encapsulation And Protocol Layering

UDP provides our first example of a transport protocol. In the layering model of

Chapter 10, UDP lies in the layer above the lntemet Protocol layer. Conceptually, ap-

plication programs access UDP, which uses IP to send and receive datagrams as Figure
11.3 shows.

Conceptual Layering

Application

User Datagram (UDP)

Internet (IP)

Network Interface

Figure 11.3 The conceptual layering of UDP between applications programs

and IP.

Layering UDP above IP means that a complete UDP message, including the UDP

header and data, is encapsulated in an IP datagram as it travels across an intemet as Fig-
ure 1 1.4 shows.

Samsung — Exhibit 1016 — Page 181

Samsung - Exhibit 1016 - Page 182

.
164 User Datagram Protocol Chap. 1 l

HEUADDPER UDP DATA AREA

IP

HEADER IP DATA AREA

FRAME DATA AREA

Figure 11.4 A UDP datagram encapsulated in an IP datagram for transmis-

sion across an intemet. The datagram is further encapsulated in

a frame each time it travels across a single network.

FRAME
HEADER

For the protocols we have examined, encapsulation means that UDP prepends a

header to the data that a user sends and passes it to IP. The IP layer prepends a header

to what it receives from UDP. Finally, the network interface layer embeds the datagram

in a frame before sending it from one machine to another. The format of the frame

depends on the underlying network technology. Usually, network frames include an ad-
ditional header.

On input, a packet arrives at the lowest layer of network software and begins its

ascent through successively higher layers. Each layer removes one header before pass—

ing the message on, so that by the time the highest level passes data to the receiving

process, all headers have been removed. Thus, the outermost header corresponds to the

lowest layer of protocol, while the innermost header corresponds to the highest protocol

layer. When considering how headers are inserted and removed, it is important to keep

in mind the layering principle. In particular, observe that the layering principle applies

to UDP, so the UDP datagram received from IP on the destination machine is identical

to the datagram that UDP passed to IP on the source machine. Also, the data that UDP

delivers to a user process on the receiving machine will be exactly the data that a user

process passed to UDP on the sending machine.

The division of duties among various protocol layers is rigid and clear:

The IP layer is responsible only for transferring data between a pair

of hosts on an internet, while the UDP layer is responsible only for

diflerentiating among multiple sources or destinations within one host.

Thus,»0nly the IP header identifies the source and destination hosts; only the UDP layer

identifies the source or destination ports within a host.

Samsung — Exhibit 1016 — Page 182

Samsung - Exhibit 1016 - Page 183

Sec. 1 1.7 Layering And The UDP Checksum Computation 165

11.7 Layering And The UDP Checksum Computation

Observant readers will have noticed a seeming contradiction between the layering

rules and the UDP Checksum computation. Recall that the UDP Checksum includes a

pseudo—header that has fields for the source and destination IP address. It can be argued

that the destination IP address must be known to the user when sending a UDP da-

tagram, and the user must pass it to the UDP layer. Thus, the UDP layer can obtain the

destination IP address without interacting with the IP layer. However, the source IP ad-

dress depends on the route IP chooses for the datagram, because the IP source address

identifies the network interface over which the datagram is transmitted. Thus, UDP

cannot know a source IP address unless it interacts with the IP layer.

We assume that UDP software asks the IP layer to compute the source and (possi-

bly) destination IP addresses, uses them to construct a pseudo—header, computes the

checksum, discards the pseudo—header, and then passes the UDP datagram to IP for

transmission. An alternative approach that produces greater efficiency arranges to have

the UDP layer encapsulate the UDP datagram in an IP datagram, fill in the source and

destination IP header fields, compute the UDP Checksum, and then pass the IP datagram

to the IP layer, which fills in the remaining IP header fields.

Does the strong interaction between UDP and IP violate our basic premise that

layering reflects separation of functionality? Yes. UDP has been tightly integrated with

the IP protocol. It is clearly a compromise of the pure separation, made for entirely

practical reasons. We are willing to overlook the layering violation because it is impos-

sible to fully identify a destination application program without specifying the destina-

tion machine, and we want to make the mapping between addresses used by UDP and

those used by IP efficient. One of the exercises examines this issue from a different

point of view, asking the reader to consider whether UDP should be separated from IP.

11.8 UDP Multiplexing, Demultiplexing, And Ports

We have seen in Chapter 10 that software throughout the layers of a protocol

hierarchy must multiplex or demultiplex among multiple objects at the next layer. UDP

software provides another example of multiplexing and demultiplexing. It accepts UDP

datagrams from many application programs and passes them to IP for transmission, and

it accepts arriving UDP datagrams from IP and passes them to the appropriate applica-

tion program.

Conceptually, all multiplexing and demultiplexing between UDP software and ap-

plication programs occur through the port mechanism. In practice, each application pro-

gram must negotiate with the operating system to obtain a protocol port and an associat-

ed port number before it can send a UDP datagramT. Once the port has been assigned,

any datagram the application program sends through that port will have that port
number in its UDP SOURCE PORT field.

1For now, we will describe ports abstractly; Chapter 21 provides an example of the operating system
primitives used to create and use pons.

Samsung - Exhibit 1016 - Page 183

Samsung - Exhibit 1016 - Page 184

.

166 User Datagram Protocol Chap. 1 1

While processing input, UDP accepts incoming datagrams from the IP software

and demultiplexes based on the UDP destination port, as Figure l 1.5 shows.

 UDP: Demultiplexing

Based On Port

UDP Datagram arrives

IP Layer

Figure 11.5 Example of demultiplexing one layer above IP. UDP uses the

UDP destination port number to select an appropriate destination

port for incoming datagrams.

The easiest way to think of a UDP port is as a queue. In most implementations. when

an application program negotiates with the operating system to use a given port, the

operating system creates an internal queue that can hold arriving messages. Often, the

application can specify or change the queue size. When UDP receives a datagram, it

checks to see that the destination port number matches one of the ports currently in use.

If not, it sends an ICMP port unreachable error message and discards the datagram. If

a match is found, UDP enqueues the new datagram at the port where an application pro-

gram can access it. Of course, an error occurs if the port is full, and UDP discards the

new datagram.

11.9 Reserved And Available UDP Port Numbers

How should protocol port numbers be assigned? The problem is important because

two computers need to agree on port numbers before they can interoperate. For exam-

ple, when computer A wants to obtain a file from computer B, it needs to know what

port the file transfer program on computer 8 uses. There are two fundamental ap-

proaches to port assignment. The first approach uses central authority. Everyone

agrees to allow a central authority to assign port numbers as needed and to publish the

list of all assignments. Then all software is built according to the list. This approach is

sometimes called universal assignment and the port assignments specified by the au-

thority are called wel1—kn0wn port assignments.

Samsung - Exhibit 1016 - Page 184

Samsung - Exhibit 1016 - Page 185

Sec. 11.9 Reserved And Available UDP Port Numbers 167

The second approach to port assignment uses dynamic binding. In the dynamic

binding approach, ports are not globally known. Instead, whenever a program needs a

port the network software assigns one. To learn about the current port assignment on

another computer, it is necessary to send a request that asks a question like, “How do I

reach the file transfer service.” The target machine replies by giving the correct port
number to use.

The TCP/IP designers adopted a hybrid approach that assigns a few port numbers a

priori, but leaves most available for local sites or application programs. The assigned

port numbers begin at low values and extend upward, leaving large integer values avail-

able for dynamic assignment. The table in Figure 11.6 lists some of the currently as-

signed UDP port numbers. The second column contains Internet standard assigned key-

words. while the third contains keywords used on most UNIX systems.

Decimal Keyword UNIX Keyword Description

0 — — Reserved

7 ECHO echo Echo

9 DISCARD discard Discard

11 USERS systat Active Users

13 DAYTIME daytime Daytime

15 - netstat Who is up or NETSTAT

17 QUOTE qotd Quote of the Day

19 CHARGEN chargen Character Generator
37 TIME time Time

42 NAMESERVER name Host Name Server

43 NICNAME whois Who Is

53 DOMAIN nameserver Domain Name Server

67 BOOTPS bootps Bootstrap Protocol Sewer

68 BOOTPC bootpc Bootstrap Protocol Client

69 TFTP tttp Trivial File Transfer

111 SUNRPC sunrpc Sun Microsystems RPC

123 NTP ntp Network Time Protocol

161 — snmp SNMP net monitor

1 162 — snmp—trap SNMP traps
§ 512 - biff UNIX comsat

513 - who UNIX rwho daemon
“ 514 — syslog system log

525 — timed Time daemon

Figure 11.6 An illustrative sample of currently assigned UDP ports showing
the standard keyword and the UNIX equivalent; the list is not

exhaustive. To the extent possible, other transport protocols that

offer identical services use the same port numbers as UDP.

Samsung — Exhibit 1016 — Page 185

Samsung - Exhibit 1016 - Page 186

168 User Datagram Protocol Chap. 1 l

11.10 Summary

Most computer systems permit multiple application programs to execute simultane-

ously. Using operating system jargon, we refer to each executing program as a process.

The User Datagram Protocol, UDP, distinguishes among multiple processes within a

given machine by allowing senders and receivers to add two 16-bit integers called pro-

tocol port numbers to each UDP message. The port numbers identify the source and

destination. Some UDP port numbers, called well known, are permanently assigned and

honored throughout the Internet (e.g., port 69 is reserved for use by the trivial file

transfer protocol TFTP described in Chapter 23). Other port numbers are available for

arbitrary application programs to use.

UDP is a thin protocol in the sense that it does not add significantly to the seman-

tics of IP. It merely provides application programs with the ability to communicate us-

ing the unreliable connectionless packet delivery service. Thus, UDP messages can be

lost, duplicated, delayed, or delivered out of order; the application program using UDP

must handle these problems. Many programs that use UDP do not work correctly

across an intemet because they fail to accommodate these conditions.

In the protocol layering scheme, UDP lies in the Transport layer, above the Internet

Protocol layer and below the Application layer. Conceptually, the transport layer is in-

dependent of the Internet layer, but in practice they interact strongly. The UDP check-

sum includes IP source and destination addresses, meaning that UDP software must in-

teract with IP software to find addresses before sending datagrams.

FOR FURTHER STUDY

Tanenbaum [1981] contains a tutorial comparison of the datagram and virtual cir-

cuit models of communication. Ball et. a1. [1979] describes message—based systems

without discussing the message protocol. The UDP protocol described here is a stan-

dard for TCP/IP and is defined by Postel [RFC 768].

EXERCISES

11.1 Try UDP in your local environment. Measure the average transfer speed with messages
of 128, 256, 512, 1024, 2048, and 4096 bytes. Can you explain the results (hint: what is
your network MTU)?

11.2 Why is the UDP checksum separate from the IP checksum? Would you object to a pro-
tocol that used a single checksum for the complete IF datagram including the UDP mes-
sage?

Samsung — Exhibit 1016 — Page 186

-

Samsung - Exhibit 1016 - Page 187

Exercises

11.3

11.4

11.5

11.6

11.7

11.8

11.9

169

Not using checksums can be dangerous. Explain how a single corrupted ARP packet
broadcast by machine P can make it impossible to reach another machine, Q.

Should the notion of multiple destinations identified by protocol ports have been built
into IP? Why, or why not?

Name Registry. Suppose you want to allow arbitrary pairs of application programs to es»
tablish communication with UDP, but you do not wish to assign them fixed UDP port

numbers. Instead, you would like potential correspondents to be identified by a charac-

ter string of 64 or fewer characters. Thus, a program on machine A might want to com-
municate with the "funny—special—long-id" program on machine B (you can assume that a

process always knows the IP address of the host with which it wants to communicate).
Meanwhile, a process on machine C wants to communicate with the "comer’s-own-

program-id" on machine A. Show that you only need to assign one UDP port to make
such communication possible by designing software on each machine that allows (a) a

local process to pick an unused UDP port id over which it will communicate, (b) a local
process to register the 64-character name to which it responds, and (c) a foreign process
to use UDP to establish communication using only the 64-character name and destination
intemet address.

Implement name registry software from the previous exercise.

What is the chief advantage of using preassigned UDP port numbers? The chief disad-
vantage?

What is the chief advantage of using protocol ports instead of process identifiers to

specify the destination within a machine?

UDP provides unreliable datagram communication because it does not guarantee delivery
of the message. Devise a reliable datagram protocol that uses timeouts and ack-
nowledgements to guarantee delivery. How much does reliability cost?

Samsung — Exhibit 1016 — Page 187

Samsung - Exhibit 1016 - Page 188

12
Reliable Stream Transport

Service (TCP)

12.1 Introduction

Previous chapters have explored the unreliable connectionless packet delivery ser-

vice that forms the basis for all intemet communication and the IP protocol that defines

it. This chapter introduces the second most important and well known intemet service,

reliable stream delivery, and the Transmission Control Protocol (TCP) that defines it.

We will see that TCP adds substantial functionality to the protocols already discussed,

but that its implementation is also substantially more complex.

Although TCP is presented here as part of the TCP/IP Internet protocol suite, it is

an independent, general purpose protocol that can be adapted for use with other delivery

systems. For example, because TCP makes very few assumptions about the underlying

network, it is possible to use it over a single network like an Ethemet, as well as over a

complex intemet. In fact, TCP has been so popular that one of the International Organi-

zation for Standardization’s open systems protocols, TP—4, has been derived from it.

12.2 The Need For Stream Delivery.,...s..~«-......-s-.-.-V779‘-[iI}1j‘.§4?——{'fV...
At the lowest level, computer communication networks provide unreliable packet

delivery. Packets can be lost or destroyed when transmission errors interfere with data,

when network hardware fails, or when networks become too heavily loaded to accom-

modate the load presented. Networks that route packets dynamically can deliver them

out of order, delivery them after a substantial delay, or deliver duplicates. Furthermore,

l7l

Samsung - Exhibit 1016 - Page 188

Samsung - Exhibit 1016 - Page 189

172 Reliable Stream Transport Service (TCP) Chap. l2

underlying network technologies may dictate an optimal packet size or pose other con-
straints needed to achieve efficient transfer rates.

At the highest level, application programs often need to send large volumes of data

from one computer to another. Using an unreliable connectionless delivery system for

large volume transfers becomes tedious and annoying, and it requires programmers to

build error detection and recovery into each application program. Because it is difficult

to design, understand, or modify software that correctly provides reliability, few appli-

cation programmers have the necessary technical background. As a consequence, one

goal of network protocol research has been to find general purpose solutions to the

problems of providing reliable stream delivery, making it possible for experts to build a

single instance of stream protocol software that all application programs use. Having a

single general purpose protocol helps isolate application programs from the details of

networking, and makes it possible to define a uniform interface for the stream transfer
service.

12.3 Properties Of The Reliable Delivery Service

The interface between application programs and the TPC/IP reliable delivery ser-

vice can be characterized by 5 features:

0 Stream Orientation. When two application programs (user processes) transfer

large volumes of data, we think of the data as a stream of bits, divided into 8-bit octets

or bytes. The stream delivery service on the destination machine passes to the receiver

exactly the same sequence of octets that the sender passes to it on the source machine.

0 Virtual Circuit Connection. Making a stream transfer is analogous to placing a

telephone call. Before transfer can start, both the sending and receiving application pro-

grams interact with their respective operating systems, informing them of the desire for

a stream transfer. Conceptually, one machine places a “call” which must be accepted

by the other. Protocol software modules in the two operating systems communicate by

sending messages across an intemet, verifying that the transfer is authorized, and that

both sides are ready. Once all details have been settled, the protocol modules inform

the application programs that a connection has been established and that transfer can be-

gin. During transfer, protocol software on the two machines continue to communicate

to verify that data is received correctly. If the communication fails for any reason (e.g.,

because network hardware along the path between the machines fails), both machines

detect the failure and report it to the appropriate application programs. We use the tenn

virtual circuit to describe such connections because although application programs view

the connection as a dedicated hardware circuit-, the reliability is an illusion provided by

the stream delivery service.

0 Buffered Transfer. Application programs send a data stream across the virtual

circuit by repeatedly passing data octets to the protocol software. When transferring

data, each application uses whatever size pieces it finds convenient, which can be as

small as a single octet. At the receiving end, the protocol software delivers octets from

the data stream in exactly the same order they were sent, making them available to the

Samsung — Exhibit 1016 — Page 189

Samsung - Exhibit 1016 - Page 190

....~...,_.~,_...,,...,.,.,.,_V

Sec. 12.3 Propenies Of The Reliable Delivery Service 173

receiving application program as soon as they have been received and verified. The

protocol software is free to divide the stream into packets independent of the pieces the

application program transfers. To make transfer more efficient and to minimize net-

work traffic, implementations usually collect enough data from a stream to fill a reason-

ably large datagram before transmitting it across an intemet. Thus, even if the applica-

tion program generates the stream one octet at a time, transfer across an intemet may be

quite efficient. Similarly, if the application program chooses to generate extremely

large blocks of data, the protocol software can choose to divide each block into smaller

pieces for transmission.

For those applications where data should be delivered even though it does not fill a

buffer, the stream service provides a push mechanism that applications use to force a

transfer. At the sending side, a push forces protocol software to transfer all data that

has been generated without waiting to fill a buffer. When it reaches the receiving side,

the push causes TCP to make the data available to the application without delay. The

reader should note, however, that the push function only guarantees that all data will be

transferred; it does not provide record boundaries. Thus, even when delivery is forced,

the protocol software may choose to divide the stream in unexpected ways.

0 Unstructured Stream. It is important to understand that the TCP/IP stream ser-

vice does not honor structured data streams. For example, there is no way for a payroll

application to have the stream service mark boundaries between employee records, or to

identify the contents of the stream as being payroll data. Application programs using

the stream service must understand stream content and agree on stream format before

they initiate a connection.

0 Full Duplex Connection. Connections provided by the TCP/IP stream service al-

low concurrent transfer in both directions. Such connections are called full duplex.

From the point of view of an application process, a full duplex connection consists of

two independent streams flowing in opposite directions, with no apparent interaction.

The stream service allows an application process to terminate flow in one direction

while data continues to flow in the other direction, making the connection half duplex.

The advantage of a full duplex connection is that the underlying protocol software can

send control information for one stream back to the source in datagrams carrying data in

the opposite direction. Such piggybacking reduces network traffic.

12.4 Providing Reliability

We have said that the reliable stream delivery service guarantees to deliver a

stream of data sent from one machine to another without duplication or data loss. The

question arises: “How can protocol software provide reliable transfer if the underlying

communication system offers only unreliable packet delivery?” The answer is compli-

cated, but most reliable protocols use a single fundamental technique known as positive

acknowledgement with retransmission. The technique requires a recipient to communi-

cate with the source, sending back an acknowledgement message as it receives data.

The sender keeps a record of each packet it sends and waits for an acknowledgement

Samsung — Exhibit 1016 — Page 190

Samsung - Exhibit 1016 - Page 191

174 Reliable Stream Transport Service (TCP) Chap. 12

before sending the next packet. The sender also starts a timer when it sends a packet

and retransmits a packet if the timer expires before an acknowledgement arrives.

Figure 12.1 shows how the simplest positive acknowledgement protocol transfers
data.

Events At Sender Site Network Messages Events At Receiver Site

Send Packet 1

Receive Packet 1
Send ACK 1

Receive ACK 1
Send Packet 2

Receive Packet 2
Send ACK 2

Receive ACK 2

Figure 12.1 A protocol using positive acknowledgement with retransmission

in which the sender awaits an acknowledgement for each packet

sent. Vertical distance down the figure represents increasing

time and diagonal lines across the middle represent network

packet transmission.

In the figure, events at the sender and receiver are shown on the left and right. Each di-

agonal line crossing the middle shows the transfer of one message across the network.

Figure 12.2 uses the same fomiat diagram as Figure 12.1 to show what happens

when a packet is lost or corrupted. The sender starts a timer after transmitting a packet.

When the timer expires, the sender assumes the packet was lost and retransmits it.

The final reliability problem arises when an underlying packet delivery system du-

plicates packets. Duplicates can also arise when networks experience high delays that

cause premature retransmission. Solving duplication requires careful thought because

both packets and acknowledgements can be duplicated. Usually, reliable protocols

detect duplicate packets by assigning each packet a sequence number and requiring the

receiver to remember which sequence numbers it has received. To avoid confusion

caused by delayed or duplicated acknowledgements, positive acknowledgement proto-

cols send sequence numbers back in acknowledgements, so the receiver can correctly

associate acknowledgements with packets.

Samsung — Exhibit 1016 — Page 191

Samsung - Exhibit 1016 - Page 192

Sec. 12.4 Providing Reliability 175

Events At Sender Site Network Messages Events At Receiver Site

Send Packet 1 P‘’‘k‘’' 105’
Start Timer

Packet should arrive
ACK should be sent

ACK would normally
arrive at this time

Timer Expires

Retransmit Packet 1
Start Timer

Receive Packet 1
Send ACK 1

Receive ACK 1
Cancel Timer

Figure 12.2 Timeout and retransmission that occurs when a packet is lost.

The dotted lines show the time that would be taken by the

transmission of a packet and its acknowledgement, if the packet
was not lost.

12.5 The Idea Behind Sliding Windows

Before examining the TCP stream service, we need to explore an additional con-

cept that underlies stream transmission. The concept, known as a sliding window,
makes stream transmission efficient. To understand the motivation for sliding windows,

recall the sequence of events that Figure 12.1 depicts. To achieve reliability, the sender

transmits a packet and then waits for an acknowledgement before transmitting another.

As Figure 12.1 shows, data only flows between the machines in one direction at any

time, even if the network is capable of simultaneous communication in both directions.

The network will be completely idle during times that machines delay responses (e.g.,

while machines compute routes or checksums). If we imagine a network with high

transmission delays, the problem becomes clear:

A simple positive acknowledgement protocol wastes a substantial

amount of network bandwidth because it must delay sending a new

packet until it receives an acknowledgementfor the previous packet.

The sliding window technique is a more complex form of positive acknowledge-

ment and retransmission than the simple method discussed above. Sliding window pro-

tocols use network bandwidth better because they allow the sender to transmit multiple

Samsung — Exhibit 1016 — Page 192

Samsung - Exhibit 1016 - Page 193

,

176 Reliable Stream Transport Service (TCP) Chap. 12

packets before waiting for an acknowledgement. The easiest way to envision sliding

window operation is to think of a sequence of packets to be transmitted as Figure 12.3

shows. The protocol places a small window on the sequence and transmits all packets
that lie inside the window.

initial window

lflfllflflflflflflw

(a)

window slides -—>

lflflflflflflflflflw

(b)

Figure 12.3 (a) A sliding window protocol with eight packets in the window,

and (b) The window sliding so that packet 9 can be sent when

an acknowledgement has been received for packet 1. Only

unacknowledged packets are retransmitted.

We say that a packet is unacknowledged if it has been transmitted but no acknowledge-

ment has been received. Technically, the number of packets that can be unack-

nowledged at any given time is constrained by the window size and is limited to a

small, fixed number. For example, in a sliding window protocol with window size 8,

the sender is permitted to transmit 8 packets before it receives an acknowledgement.

As Figure 12.3 shows, once the sender receives an acknowledgement for the first

packet inside the window, it “slides” the window along and sends the next packet. The

window continues to slide as long as acknowledgements are received.

The performance of sliding window protocols depends on the window size and the

speed at which the network accepts packets. Figure 12.4 shows an example of the

operation of a sliding window protocol when sending three packets. Note that the

sender transmits all three packets before receiving any acknowledgements.

With a window size of 1, a sliding window protocol is exactly the same as our

simple positive acknowledgement protocol. By increasing the window size, it is possi-

ble to eliminate network idle time completely. That is, in the steady state, the sender

can transmit packets as fast as the network can transfer them. The main point is:

Samsung — Exhibit 1016 — Page 193

Samsung - Exhibit 1016 - Page 194

Q5F
t.
lE
l
l‘
l
3'

i
F

Sec. 12.5 The Idea Behind Sliding Windows 177

Because a well tuned sliding window protocol keeps the network com-

pletely saturated with pockets, it obtains substantially higher

throughput than a simple positive acknowledgement protocol.

Conceptually, a sliding window protocol always remembers which packets have

been acknowledged and keeps a separate timer for each unacknowledged packet. If a

packet is lost, the timer expires and the sender retransmits that packet. When the sender

slides its window, it moves past all acknowledged packets. At the receiving end, the

protocol software keeps an analogous window, accepting and acknowledging packets as

they arrive. Thus, the window partitions the sequence of packets into three sets: those

packets to the left of the window have been successfully transmitted, received, and ack-

nowledged; those packets to the right have not yet been transmitted; and those packets

that lie in the window are being transmitted. The lowest numbered packet in the win-

dow is the first packet in the sequence that has not been acknowledged.

Events At Sender Site Network Messages Events At Receiver Site

Send Packet 1

Receive Packet 1

Send Packet 2 Send 1

Receive Packet 2

Send Packet 3 send ACK 2

. Receive Packet 3

Receive ACK 1 Send ACK 3

Receive ACK 2

Receive ACK 3

Figure 12.4 An example of three packets transmitted using a sliding window

protocol. The key concept is that the sender can transmit all

packets in the window without waiting for an acknowledgement.

12.6 The Transmission Control Protocol

Now that we understand the principle of sliding windows, we can examine the reli-

able stream service provided by the TCP/IP Internet protocol suite. The service is de-

fined by the Transmission Control Protocol, or TCP. The reliable stream service is so

Samsung — Exhibit 1016 — Page 194

Samsung - Exhibit 1016 - Page 195

178 Reliable Stream Transport Service (TCP) Chap. 12

important that the entire protocol suite is often referred to as TCP/IP. It is important to
understand that:

TCP is a commtmication protocol, not a piece of software.

The difference between a protocol and the software that implements it is analogous

to the difference between the definition of a programming language and a compiler. As

in the programming language world, the distinction between definition and implementa-

tion sometimes becomes blurred. People encounter TCP software much more frequent-

ly than they encounter the protocol specification, so it is natural to think of a particular

implementation as the standard. Nevertheless, the reader should try to distinguish
between the two.

Exactly what does TCP provide? TCP is complex, so there is no simple answer.

The protocol specifies the format of the data and acknowledgements that two computers

exchange to achieve a reliable transfer, as well as the procedures the computers use to

ensure that the data arrives correctly. It specifies how TCP software distinguishes

among multiple destinations on a given machine, and how communicating machines re-

cover from errors like lost or duplicated packets. The protocol also specifies how two

computers initiate a TCP stream transfer and how they agree when it is complete.

It is also important to understand what the protocol does not include. Although the

TCP specification describes how application programs use TCP in general terms, it does

not dictate the details of the interface between an application program and TCP. That

is, the protocol documentation only discusses the operations TCP supplies; it does not

specify the exact procedures application programs invoke to access these operations.

The reason for leaving the application program interface unspecified is flexibility. In

particular, because programmers usually implement TCP in the computer’s operating

system, they need to employ whatever interface the operating system supplies. Allow-

ing the implementor flexibility makes it possible to have a single specification for TCP

that can be used to build software for a variety of machines.

Because TCP assumes little about the underlying communication system, TCP can

be used with a variety of packet delivery systems, including the IP datagram delivery

service. For example, TCP can be implemented to use dialup telephone lines, a local

area network, a high speed fiber optic network, or a lower speed long haul network. In

fact, the large variety of delivery systems TCP can use is one of its strengths.

12.7 Ports, Connections, And Endpoints

Like the User Datagram Protocol (UDP) presented in Chapter 11, TCP resides

above IP in the protocol layering scheme. Figure 12.5 shows the conceptual organiza-

tion. TCP allows multiple application programs on a given machine to communicate

concurrently, and it demultiplexes incoming TCP traffic among application programs.

Like the User Datagram Protocol, TCP uses protocol port numbers to identify the ulti-

mate destination within a machine. Each port is assigned a small integer used to identi-

fy iti’.

+Both TCP and UDP use integer pon identifiers starting at I to identify ports. There is no confusion
between them because an incoming [P datagram identifies‘ the protocol being used as well as the port number.

 "4:

Samsung — Exhibit 1016 — Page 195

Samsung - Exhibit 1016 - Page 196

Sec. l2.7 Ports, Connections, And Endpoints 179

Conceptual Layering

Application

Reliable Stream (TCP) User Datagram (UDP)

Internet (IP)

Network Interface

Figure 12.5 The conceptual layering of UDP and TCP above IP. TCP pro-

vides a reliable stream service, while UDP provides an unreli-

able datagram delivery service. Application programs use both.

When we discussed UDP ports, we said to think of each port as a queue into which

protocol software places arriving datagrams. TCP ports are much more complex be-

cause a given port number does not correspond to a single object. Instead, TCP has

been built on the connection abstraction, in which the objects to be identified are virtual

circuit connections, not individual ports. Understanding that TCP uses the notion of

connections is crucial because it helps explain the meaning and use of TCP port
numbers:

TCP uses the connection, not the protocol port, as its fundamental

abstraction; connections are identified by a pair of endpoints.

Exactly what are the “endpoints” of a connection? We have said that a connec-

tion consists of a virtual circuit between two application programs, so it might be natur-

al to assume that an application program serves as the connection “endpoint.” It is not.

Instead, TCP defines an endpoint to be a pair of integers (host, port), where host is the

IP address for a host and port is a TCP port on that host. For example, the endpoint

(128.10.2.3, 25) specifies TCP port 25 on the machine with IP address 128.10.2.3.

Now that we have defined endpoints, it will be easy to understand connections.

Recall that a connection is defined by its two endpoints. Thus, if there is a connection

from machine (I8.26.0.36) at MIT to machine (l28.10.2.3) at Purdue University, it

might be defined by the endpoints:

Samsung - Exhibit 1016 - Page 196

Samsung - Exhibit 1016 - Page 197

_

180 Reliable Stream Transport Service (TCP) Chap. 12

(18.26.0.36, 1069) and (128.l0.2.3, 25).

Meanwhile, another connection might be in progress from machine (128.9.0.32) at the

Information Sciences Institute to the same machine at Purdue, identified by its end-

points:

(128.9.0.32, 1184) and (128.10.2.3, 53).

So far, our examples of connections have been straightforward because the ports

used at all endpoints have been unique. However, the connection abstraction allows

multiple connections to share an endpoint. For example, we could add another connec-

tion to the two listed above from machine (128.2.254.139) at CMU to the machine at
Purdue:

(128.2.254.139, 1184) and (128.10.2.3, 53).

It might seem strange that two connections can use the TCP port 53 on machine

l28.10.2.3 simultaneously, but there is no ambiguity. Because TCP associates incom-

ing messages with a connection instead of a protocol port, it uses both endpoints to

identify the appropriate connection. The important idea to remember is:

Because TCP identifies a connection by a pair of endpoints, a given

TCP port number‘ can be shared by multiple connections on the same
machine.

From a programmer’s point of view, the connection abstraction is significant. It

means a programmer can devise a program that provides concurrent service to multiple

connections simultaneously without needing unique local port numbers for each connec-

tion. For example, most systems provide concurrent access to their electronic mail ser-

vice, allowing multiple computers to send them electronic mail concurrently. Because

the program that accepts incoming mail uses TCP to communicate, it only needs to use

one local TCP port even though it allows multiple connections to proceed concurrently.

12.8 Passive And Active Opens

Unlike UDP, TCP is a connection oriented protocol that requires both endpoints to

agree to participate. That is, before TCP traffic can pass across an intemet, application

programs at both ends of the connection must agree that the connection is desired. To

do so, the application program on one end performs a passive open function by contact-

ing its operating system and indicating that it will accept an incoming connection. At

that time, the operating system assigns a TCP port number for its end of the connection.

The application program at the other end must then contact its operating system using

an active open request to establish a connection. The two TCP software modules com-

municate to establish and verify a connection. Once a connection has been created, ap-

plication programs can begin to pass data; the TCP software modules at each end ex-

change messages that guarantee reliable delivery. We will return to the details of estab-

lishing connections after examining the TCP message format.

 —‘

Samsung — Exhibit 1016 — Page 197

Samsung - Exhibit 1016 - Page 198

Sec. 12.9 Segments, Streams, And Sequence Numbers 181

12.9 Segments, Streams, And Sequence Numbers

TCP views the data stream as a sequence of octets or bytes that it divides into seg-

ments for transmission. Usually, each segment travels across an intemet in a single IP

datagram.

TCP uses a specialized sliding window mechanism to solve two important prob-

lems: efficient transmission and flow control. Like the sliding window protocol

described earlier, the TCP window mechanism makes it possible to send multiple seg-

ments before an acknowledgement arrives. Doing so increases total throughput because

it keeps the network busy. The TCP form of a sliding window protocol also solves the

end—to-end flow control problem, by allowing the receiver to restrict transmission until

it has sufficient buffer space to accommodate more data.

The TCP sliding window mechanism operates at the octet level, not at the segment

or packet level. Octets of the data stream are numbered sequentially, and a sender

keeps three pointers associated with every connection. The pointers define a sliding

window as Figure 12.6 illustrates. The first pointer marks the left of the sliding win-

dow, separating octets that have been sent and acknowledged from octets yet to be sent.

A second pointer marks the right of the sliding window and defines the highest octet in

the sequence that can be sent before more acknowledgements are received. The third

pointer marks the boundary inside the window that separates those octets that have al-

ready been sent from those octets that have not been sent. The protocol software sends

all octets in the window without delay, so the boundary inside the window usually

moves from left to right quickly.

current window

11
1 T

Figure 12.6 An example of the TCP sliding window. Octets through 2 have
been sent and acknowledged, octets 3 through 6 have been sent
but not acknowledged, octets 7 though 9 have not been sent but
will be sent without delay, and octets 10 and higher cannot be
sent until the window moves.

We have described how the sender’s TCP window slides along and mentioned that

the receiver must maintain 21 similar window to piece the stream together again. It is

important to understand, however, that because TCP connections are full duplex, two

transfers proceed simultaneously over each connection, one in each direction. We think

of the transfers as completely independent because at any time data can flow across the

Samsung — Exhibit 1016 — Page 198

Samsung - Exhibit 1016 - Page 199

_
I82 Reliable Stream Transport Service (TCP) Chap. I2

connection in one direction, or in both directions. Thus, TCP software at each end

maintains two windows per connection (for a total of four), one slides along the data

stream being sent, while the other slides along as data is received.

12.10 Variable Window Size And Flow Control

One difference between the TCP sliding window protocol and the simplified slid-

ing window protocol presented earlier occurs because TCP allows the window size to

vary over time. Each acknowledgement, which specifies how many octets have been

received, contains a window advertisement that specifies how many additional octets of

data the receiver is prepared to accept. We think of the window advertisement as speci-

fying the receiver’s current buffer size. In response to an increased window advertise-

ment, the sender increases the size of its sliding window and proceeds to send octets

that have not been acknowledged. In response to a decreased window advertisement,

the sender decreases the size of its window and stops sending octets beyond the boun-

dary. TCP software should not contradict previous advertisements by shrinking the

window past previously acceptable positions in the octet stream. Instead, smaller adver-

tisements accompany acknowledgements, so the window size changes at the time it
slides forward.

The advantage of using a variable size window is that it provides flow control as

well as reliable transfer. If the receiver’s buffers begin to become full, it cannot tolerate

more packets, so it sends a smaller window advertisement. In the extreme case, the re-

ceiver advertises a window size of zero to stop all transmissions. Later, when buffer

space becomes available, the receiver advertises a nonzero window size to trigger the

flow of data agaim‘.

Having a mechanism for flow control is essential in an intemet environment, where

machines of various speeds and sizes communicate through networks and gateways of

various speeds and capacities. There are really two independent flow problems. First,

intemet protocols need end-to-end flow control between the source and ultimate destina-

tion. For example, when a minicomputer communicates with a large mainframe, the

minicomputer needs to regulate the influx of data, or protocol software would be over-

run quickly. Thus, TCP must implement end-to—end flow control to guarantee reliable

delivery. Second, intemet protocols need a flow control mechanism that allows inter-

mediate systems (i.e., gateways) to control a source that sends more traffic than the
machine can tolerate.

When intermediate machines become overloaded, the condition is called conges-

tion, and mechanisms to solve the problem are called Congestion control mechanisms.

TCP uses its sliding window scheme to solve the end-to-end flow control problem; it

does not have an explicit mechanism for congestion control. We will see later, howev-

er, that a carefully programmed TCP implementation can detect and recover from

Congestion while a poor implementation can make it worse. In particular, a carefully

chosen retransmission scheme can help avoid congestion while a poor one can exacer-
bate it.

’rThere are two exceptions to transmission when the window size is zero. First, a sender is allowed to
transmit a segment with the urgent bit set to inform the receiver that urgent data is available. Second, to avoid
a potential deadlock that can arise if 21 nonzero advertisement is lost after the window size reaches zero, the
sender probes a zero-sized window periodically.

 -J

Samsung - Exhibit 1016 - Page 199

Samsung - Exhibit 1016 - Page 200

._......~-.7.u~,...,.......,.....,...-vs»~....—._..‘.....

Sec. 12.11 TCP Segment Format 183

12.11 TCP Segment Format

The unit of transfer between the TCP software on two machines is called a seg-

ment. Segments are exchanged to establish connections, to transfer data, to send ack-

nowledgements, to advertise window sizes, and to close connections. Because TCP

uses piggybacking, an acknowledgement traveling from machine A to machine B may

travel in the same segment as data traveling from machine A to machine B, even though

the acknowledgement refers to data sent from B to AT. Figure 12.7 shows the TCP seg-
ment format.

16 24 31

HLENmi

PADDING

Figure 12.7 The fonnat of a TCP segment with a TCP header followed by

data. Segments are used to establish connections as well as to

carry data and acknowledgements.

Each segment is divided into two pans, a header followed by data. The header,

known as the TCP header, carries the expected identification and control information.

Fields SOURCE PORT and DESTINATION PORT contain the TCP port numbers that

identify the application programs at the ends of the connection. The SEQUENCE

NUMBER field identifies the position in the sender’s byte stream of the data in the seg-
ment. The ACKNOWLEDGEMENT NUMBER field identifies the number of the octet

that the source expects to receive next. Note that the sequence number refers to the

stream flowing in the same direction as the segment, while the acknowledgement

number refers to the stream flowing in the opposite direction as the segment.

The HLENi field contains an integer that specifies the length of the segment

header measured in 32-bit multiples. It is needed because the OPTIONS field varies in

length, depending on which options have been included. Thus, the size of the TCP

header varies depending on the options selected. The 6-bit field marked RESERVED is
reserved for future use.

Hn practice. piggybacking does not usually occur unless the recipient delays acknowledgements.
iThe specification says the field is the offset of the data area within the segment.

Samsung — Exhibit 1016 — Page 200

Samsung - Exhibit 1016 - Page 201

184 Reliable Stream Transport Service (TCP) Chap. 12

Some segments carry only an acknowledgement while some carry data. Others

carry requests to establish or close a connection. TCP software uses the 6-bit field la-

beled CODE BITS to determine the purpose and contents of the segment. The six bits

tell how to interpret other fields in the header according to the table in Figure 12.8.

Bit (left to right) Meaning if bit set to 1

URG Urgent pointer field is valid

ACK Acknowledgement field is valid

PSH This segment requests a push
FIST Reset the connection

SYN Synchronize sequence numbers

FIN Sender has reached end of its byte stream

Figure 12.8 Bits of the CODE field in the TCP header.

TCP software advertises how much data it is willing to accept every time it sends a

segment by specifying its buffer size in the WINDOW field. The field contains a 32-bit

unsigned integer in network—standard byte order. Window advertisements provide

another example of piggybacking because they accompany all segments, including those

carrying data as well as those carrying only an acknowledgement.

12.12 Out Of Band Data

Although TCP is a stream-oriented protocol, it is sometimes important for the program

at one end of a connection to send data out of band, without waiting for the program at

the other end of the connection to consume octets already in the stream. For example,

when TCP is used for a remote login session, the user may decide to send a keyboard

sequence that interrupts or aborts the program at the other end. Such signals are most

often needed when a program on the remote machine fails to operate correctly. The sig-

nals must be sent without waiting for the program to read octets already in the TCP

stream (or one would not be able to abort programs that stop reading input).

To accommodate out of band signaling, TCP allows the sender to specify data as

urgent, meaning that the receiving program should be notified of its arrival as quickly

as possible, regardless of its position in the stream. The protocol specifies that when

urgent data is found, the receiving TCP should notify whatever application program is

associated with the connection to go into “urgent mode.” After all urgent data has

been Consumed, TCP tells the application program to return to normal operation.

The exact details of how TCP informs the application program about urgent data

depend on the computer’s operating system, of course. The mechanism used to mark

urgent data when transmitting it in a segment consists of the URG code bit and the UR-

Samsung - Exhibit 1016 - Page 201

Samsung - Exhibit 1016 - Page 202

Sec. 12.12 Out Of Band Data 185

GENT POINTER field. When the URG bit is set, the urgent pointer specifies the posi-

tion in the window where urgent data ends.

12.13 Maximum Segment Size Option

Not all segments sent across a connection will be of the same size. However, both

ends need to agree on a maximum segment they will transfer. TCP software uses the

OPTIONS field to negotiate with the TCP software at the other end of the connection;

one of the options allows TCP software to specify the maximum segment size(MSS) that

it is willing to receive. For example, when a small personal computer that only has a

few hundred bytes of buffer space connects to a large supercomputer, it can negotiate a

MSS that restricts segments so they fit in the buffer. It is especially important for com-

puters connected by high-speed local area networks to choose a maximum segment size

that fills packets or they will not make good use of the bandwidth. Therefore, if the

two endpoints lie on the same physical network, TCP usually computes a maximum

segment size such that the resulting IP datagrams will match the network MTU. If the

endpoints do not lie on the same physical network, the current specification suggests us-

ing a maximum segment size of 536 (the default size of an IP datagram, 576, minus the

standard size of IP and TCP headers).

In a general intemet environment, choosing a good maximum segment size can be

difficult because performance can be poor for either extremely large segment sizes or

extremely small sizes. On one hand, when the segment size is small, network utiliza-

tion remains low. To see why, recall that TCP segments travel encapsulated in IP da-

tagrams which are encapsulated in physical network frames. Thus, each segment has at

least 40 octets of TCP and IP headers in addition to the data. Therefore, datagrams car-

rying only one octet of data use at most 1/41 of the underlying network bandwidth for

user data; in practice, minimum interpacket gaps and network hardware framing bits
make the ratio even smaller.

On the other hand, extremely large segment sizes can also produce poor perfor-

mance. Large segments result in large IP datagrams. When such datagrams travel

across a network with small MTU, IP must fragment them. Unlike datagrams, frag-

ments are not independent messages; all fragments must arrive or the entire datagram

must be retransmitted. Because the probability of losing a given fragment is nonzero,

increasing segment size above the fragmentation threshold decreases the probability the

datagram will arrive, which decreases throughput.

In theory, the optimum segment size, S, occurs when the IP datagrams carrying the

segments are as large as possible without requiring fragmentation anywhere along the

path from the source to the destination. In practice, finding S is difficult for several rea-

sons. First, TCP does not include a mechanism for doing so. Second, because gate-

ways in an intemet can change routes dynamically, the path datagrams follow between a

pair of communicating computers can change dynamically and so can the size at which

datagrams must be fragmented. Third, the optimum size depends on lower-level proto-

col headers (e.g., the segment size must be reduced to accommodate IP options).

Samsung — Exhibit 1016 — Page 202

Samsung - Exhibit 1016 - Page 203

186 Reliable Stream Transport Service (TCP) Chap. 12

Several research projects are exploring ways to find optimum segment size, but no stan-

dard currently exists.

12.14 TCP Checksum Computation

The CHECKSUM field in the TCP header contains a 16-bit integer Checksum used

to verify the integrity of the data as well as the TCP header. To compute the Checksum,

TCP software on the sending machine follows a procedure like the one described in

Chapter 11 for UDP. It prepends a pseudo header to the segment, appends enough

bytes containing zero to pad the segment to a multiple of 16 bits, and computes the 16-

bit checksum over the entire result. TCP does not count the padded zeros in the seg-

ment length, nor does it transmit them. Also, it assumes the Checksum field itself is

zero for purposes of the checksum computation. As with other checksums, TCP uses

16-bit arithmetic and takes the one’s complement of the one’s complement sum. At the

receiving site, TCP software performs the same computation to verify that the segment
arrived intact.

The purpose of using a pseudo header is exactly the same as in UDP. It allows the

receiver to verify that the segment has reached its correct destination, which includes

both a host IP address as well as a protocol port number. Both the source and destina-

tion IP addresses are important to TCP because it must use them to identify a connec-

tion to which the segment belongs. Therefore, whenever a datagram arrives carrying a

TCP segment, IP must pass to TCP the source and destination IP addresses from the da-

tagram as well as the segment itself. Figure 12.9 shows the format of the pseudo

header used in the Checksum computation.

O 8 16 31

T

Figure 12.9 The format of the pseudo header used in TCP checksum compu-

tations. At the receiving site, this infonnation is extracted from

the IP datagram that carried the segment.

The sending TCP assigns field PROTOCOL the value that the underlying delivery sys-

tem will use in its protocol type field. For IP datagrams carrying TCP, the value is 6.

The TCP LENGTH field specifies the total length of the TCP segment including the

TCP header. At the receiving end, information used in the pseudo header is extracted

from the IP datagram that carried the segment and included in the Checksum to verify

that the segment arrived at the correct destination intact.

Samsung — Exhibit 1016 — Page 203

Samsung - Exhibit 1016 - Page 204

.,....-—_—m.....‘—..—»:w-.«,-
1t

EI.

Sec. 12.15 Acknowledgements And Retransmission 187

12.15 Acknowledgements And Retransmission

Because TCP sends data in variable length segments, and because retransmitted

segments can include more data than the original, acknowledgements cannot easily refer

to datagrams or segments. Instead, they refer to a position in the stream using the

stream sequence numbers. The receiver collects data octets from arriving segments and

reconstructs an exact copy of the stream being sent. Because segments travel in IP da-

tagrams, they can be lost or delivered out of order; the receiver uses the sequence

numbers to reorder segments. At any time, the receiver will have reconstructed zero or

more octets contiguously from the beginning of the stream, but may have additional

pieces of the stream from datagrams that arrived out of order. The receiver always ack-

nowledges the longest contiguous prefix of the stream that has been received correctly.

Each acknowledgement specifies a sequence value one greater than the highest octet po-

sition in the contiguous prefix it received. Thus, the sender receives continuous feed-

back from the receiver as it progresses through the stream. We can summarize this im-

portant idea:

Acknowledgements always specify the sequence number of the next oc-

tet that the receiver expects to receive.

The TCP acknowledgement scheme is called cumulative because it reports how much of
the stream has accumulated. Cumulative acknowledgements have both advantages and

disadvantages. One advantage is that acknowledgements are both easy to generate and

unambiguous. Another advantage is that lost acknowledgements do not necessarily

force retransmission. A major disadvantage is that the sender does not receive informa-
tion about all successful transmissions, but only about a single position in the stream
that has been received.

To understand why lack of infonnation about all successful transmissions makes

the protocol less efficient, think of a window that spans 5000 octets starting at position

101 in the stream, and suppose the sender has transmitted all data in the window by

sending five segments. Suppose further that the first segment is lost, but all others ar-
rive intact. The receiver continues to send acknowledgements, but they all specify octet

101, the next highest contiguous octet it expects to receive. There is no way for the re-
ceiver to tell the sender that most of the data for the current window has arrived.

When a timeout occurs at the sender’s side, the sender must choose between two

potentially inefficient schemes. It may choose to retransmit all five segments instead of
the one missing segment. Of course, when the retransmitted segment arrives, the re-

ceiver will have correctly received all data from the window, and will acknowledge that

it expects octet 5101 next. However, that acknowledgement may not reach the sender

quickly enough to prevent the unnecessary retransmission of other segments from the
window. If the sender follows accepted implementation policy and retransmits only the

first unacknowledged segment, it must wait for the acknowledgement before it can de-
cide what and how much to send. Thus, it reverts to a simple positive acknowledge-

ment protocol and may lose the advantages of having a large window.

Samsung — Exhibit 1016 — Page 204

Samsung - Exhibit 1016 - Page 205

-

188 Reliable Stream Transport Service (TCP) Chap. 12

12.16 Timeout And Retransmission

One of the most important and complex ideas in TCP is embedded in the way it

handles timeout and retransmission. Like other reliable protocols, TCP expects the des-

tination to send acknowledgements whenever it successfully receives new octets from

the data stream. Every time it sends a segment, TCP starts a timer and waits for an

acknowledgement. If the timer expires before data in the segment has been ack-

nowledged, TCP assumes that the segment was lost or corrupted and retransmits it.

To understand why the TCP retransmission algorithm differs from the algorithm

used in many network protocols, we need to remember that TCP is intended for use in

an intemet environment. In an intemet, a segment traveling between a pair of machines

may traverse a single, low—delay network (e.g., a high—speed LAN), or it may wind

across multiple intermediate networks through multiple gateways. Thus, it is impossi-

ble to know a priori how quickly acknowledgements will return to the source. Further-

more, the delay at each gateway depends on traffic, so the total time required for a seg-

ment to travel to the destination and an acknowledgement to return to the source varies

dramatically from one instant to another. Figure 12.10, which shows measurements of

round trip times across the connected lntemet for 100 consecutive packets, illustrates
the problem. TCP software must accommodate both the vast differences in the time re-

quired to reach various destinations and the changes in time require to reach a given
destination as traffic load varies.

TCP accommodates varying intemet delays by using an adaptive retransmission

algorithm. In essence, TCP monitors the performance of each connection and deduces

reasonable values for timeouts. As the performance of a connection changes, TCP re-

vises its timeout value (i.e., it adapts to the change).

To collect the data needed for an adaptive algorithm, TCP records the time at

which each segment is sent, and the time at which an acknowledgement arrives for the

data in that segment. From the two times, TCP computes an elapsed time known as a

sample round trip time or round trip sample. Whenever it obtains a new round trip

sample, TCP adjusts its notion of the average round trip time for the connection. Usu-

ally, TCP software stores the estimated round trip time, RTT, as a weighted average and

uses new round trip samples to change the average slowly. For example, when comput-

ing a new weighted average, one early averaging technique used a constant weighting

factor, on, where OS oL< l, to weight the old average against the latest round trip sample:

RTT = (oi* Old_RTT) + ((1-on) * New_Round_Trip_Samp|e)

Choosing a value for (X close to 1 makes the weighted average immune to changes that

last a short time (e.g., a single segment that encounters long delay). Choosing a value

for on close to 0 makes the weighted average respond to changes in delay very quickly.

Samsung — Exhibit 1016 — Page 205

Samsung - Exhibit 1016 - Page 206

Sec. 12.16 Timeout And Retransmission 189

105

85

6s

Time

45

2s

10 20 30 40 50 60 70 80 90 100

Datagram Number

Figure 12.10 A plot of Internet round trip times as measured for 100 succes-
sive IP datagrams.

When it sends a packet, TCP computes a timeout value as a function of the current

round trip estimate. Again, early implementations used a constant weighting factor, B

(B> 1), and made the timeout greater than the current round trip estimate:

Timeout = [3 * RTT

Choosing a value for B can be difficult. On one hand, to detect packet loss quickly, the

timeout value should be close to the current round trip time (i.e., B should be close to

1). Detecting packet loss quickly improves throughput because TCP will not wait an

unnecessarily long time before retransmitting. On the other hand, if B: 1, TCP is over-

ly eager — any small delay will cause an unnecessary retransmission, which wastes net-

work bandwidth. The original specification recommended setting B22; more recent

work described below has produced better techniques for adjusting timeout.

Samsung — Exhibit 1016 — Page 206

Samsung - Exhibit 1016 - Page 207

6ll

190 Reliable Stream Transpon Service (TCP) Chap. 12

We can summarize the ideas presented so far:

To accommodate the varying delays encountered in an internet en-

vironment, TCP uses an adaptive retransmission algorithm that moni-

tors delays on each connection and adjusts its timeout parameter ac-

cordingly.

12.17 Accurate Measurement Of Round Trip Samples

In theory, measuring a round trip sample is trivial — it consists of subtracting the

time at which the segment is sent from the time at which the acknowledgement arrives.

However, complications arise because TCP uses a cumulative acknowledgement scheme

in which an acknowledgement refers to data received, and not to the instance of a

specific datagram that carried the data. Consider a retransmission. TCP forms a seg-

ment, places it in a datagram and sends it, the timer expires, and TCP sends the seg-

ment again in a second datagram. Because both datagrams carry exactly the same data,

the sender has no way of knowing whether an acknowledgement corresponds to the ori-

ginal or retransmitted datagram. This phenomenon has been called acknowledgement

ambiguity, and TCP acknowledgements are said to be ambiguous.

Should TCP assume acknowledgements belong with the earliest (i.e., original)

transmission or the latest (i.e., the most recent retransmission)? Surprisingly, neither as-

sumption works. Associating the acknowledgement with the original transmission can

make the estimated round trip time grow without bound in cases where an intemet loses

datagramsT. If an acknowledgement arrives after one or more retransmissions, TCP

will measure the round trip sample from the original transmission, and compute a new

RTT using the excessively long sample. Thus, RTT will grow slightly. The next time

TCP sends a segment, the larger RTT will result in slightly longer timeouts, so if an

acknowledgement arrives after one or more retransmissions, the next sample round trip
time will be even larger, and so on.

Associating the acknowledgement with the most recent retransmission can also fail.

Consider what happens when the end—to—end delay suddenly increases. When TCP

sends a segment, it uses the old round trip estimate to compute a timeout, which is now

too small. The segment arrives and an acknowledgement starts back, but the increase in

delay means the timer expires before the acknowledgement arrives, and TCP retransmits

the segment. Shortly after TCP retransmits, the first acknowledgement arrives and is

associated with the retransmission. The round trip sample will be much too small and

will result in a slight decrease of the estimated round trip time, RTT. Unfortunately,

lowering the estimated round trip time guarantees that TCP will set the timeout too

small for the next segment. Ultimately, the estimated round trip estimate can stablize at

a value, T, such that the correct round trip time is slightly longer than some multiple of

T. Implementations of TCP that associate acknowledgements with the most recent re-

transmission have been observed in a stable state with RTT slightly less than one-half

‘«‘The estimate can only grow arbitrarily large if every segment is lost at least once.

Samsung - Exhibit 1016 - Page 207

Samsung - Exhibit 1016 - Page 208

-v--v—«-...-»-»...-.v.,..-r..c..._-.

Sec. l2.l7 Accurate Measurement Of Round Trip Samples 191

of the correct value (i.e., TCP sends each segment exactly twice even though no loss
occurs).

12.18 Karn’s Algorithm And Timer Backoff

If the original transmission and the most recent transmission both fail to provide

accurate round trip times, what should TCP do? The accepted answer is simple: TCP

should not update the round trip estimate for retransmitted segments. This idea, known

as Karn’s Algorithm, avoids the problem of ambiguous acknowledgements altogether by

only adjusting the estimated round trip for unambiguous acknowledgements (ack-

nowledgements that arrive for segments that have only been transmitted once).

Of course, a simplistic implementation of Kam’s algorithm, one that merely ig-

nores times from retransmitted segments, can lead to failure as well. Consider what

happens when TCP sends a segment after a sharp increase in delay. TCP computes a

timeout using the existing round trip estimate. The timeout will be too small for the

new delay and will force retransmission. If TCP ignores acknowledgements from re-

transmitted segments, it will never update the estimate and the cycle will continue.

To accommodate such failures, Kam’s algorithm requires the sender to combine re-

transmission timeouts with a timer backofi’ strategy. The backoff technique computes

an initial timeout using a fonnula like the one shown above. However, if the timer ex-

pires and causes a retransmission, TCP increases the timeout. In fact, each time it must

retransmit a segment, TCP increases the timeout (to keep timeouts from becoming ridi-

culously long, most implementations limit increases to an upper bound that is larger

than the delay along any path in the intemet).

Implementations use a variety of techniques to compute backoff. Most choose a

multiplicative factor, and set the new value to:

new_timeout = y* timeout

Typically, Y is 2. (It has been argued that values of y less than 2 lead to instabilities).

Other implementations use a table of multiplicative factors, allowing arbitrary backoff at

each step'l'.

Kam’s algorithm combines the backoff technique with round trip estimation to

solve the problem of never increasing round trip estimates:

Karn's algorithm: When computing the round trip estimate, ignore

samples that correspond to retransmitted segments, but use a backoff

strategy, and retain the timeout value from a retransmitted packet for

subsequent packets until a valid sample is obtained.

Generally speaking, when an intemet misbehaves, Kam’s algorithm separates computa-

tion of the timeout value from the current round trip estimate. It uses the round trip es-

timate to compute an initial timeout value, but then backs off the timeout on each re-

+Berkeley UNIX is the most notable system that uses a table of factors, but current values in the table are
equivalent to using 7:2.

Samsung - Exhibit 1016 - Page 208

Samsung - Exhibit 1016 - Page 209

..,

192 Reliable Stream Transport Service (TCP) Chap. l2

transmission until it can successfully transfer a segment. When it sends subsequent seg-

ments, it retains the timeout value that results from backoff. Finally, when an ack-

nowledgement arrives corresponding to a segment that did not require retransmission,

TCP recomputes the round trip estimate and resets the timeout accordingly. Experience

shows that Kam’s algorithm works well even in networks with high packet lossi.

12.19 Responding To High Variance In Delay

Recent research into round trip estimation has shown that the computations

described above do not adapt to a wide range of variation in delay. Queueing theory

suggests that the variation in round trip time, (5, varies proportional to 1/(l—L), where L

is the current network load, OSLSI. If an intemet is running at 50% of capacity, we

expect the round trip delay to vary by a factor of i2(S, or 4. When the load reaches

80%, we expect a variation of 16. The original TCP standard specified the technique

for estimating round trip time that we described earlier. Using that technique and limit-

ing [3 to the suggested value of 2 means the round trip estimation can adapt to loads of
at most 30%.

The 1989 specification for TCP requires implementations to estimate both the aver-

age round trip time and the variance, and to use the estimated variance in place of the

constant B. As a result, new implementations of TCP can adapt to a wider range of

variation in delay and yield substantially higher throughput. Fortunately, the approxi-

mations require little computation; extremely efficient programs can be derived from the

following simple equations:

DIFF = SAMPLE — O|d_FlTT

RTT = O|d_RTT — 8* DIFF

DEV = O|d_DEV + 5(lD|FFl - O|d_DEV)

where DEV is the estimated mean deviation, and 6 is a fraction between 0 and 1 that

controls how quickly the new sample affects the weighted average. To make the com-

putation efficient, TCP chooses 5 to be 1/2", scales the computation by 2", and uses in-

teger arithmetic. Research suggests a value of 21:3 will work well.

12.20 Response To Congestion

It may seem that TCP software could be designed by considering the interaction

between the two endpoints of a connection and the communication delays between

those endpoints. In practice, however, TCP must also react to congestion in the inter-

net. Congestion is a condition of severe delay Caused by an overload of datagrams at

one or more switching points (eg., at gateways). When congestion occurs, delays in~

crease and the gateway begins to enqueue datagrams until it can route them. We must

iPhil Kam is an amateur radio enthusiast who developed this algorithm to allow TCP communication
across a high-loss packet radio connection.

 -4

Samsung — Exhibit 1016 — Page 209

Samsung - Exhibit 1016 - Page 210

Sec. 12.20 Response To Congestion 193

remember that each gateway has finite storage capacity and that datagrams compete for

that storage (i.e., in a datagram based intemet, there is no preallocation of resources to

individual TCP connections). In the worst case, the total number of datagrams arriving

at the congested gateway grows until the gateway reaches capacity and starts to drop da-
tagrams.

Endpoints do not usually know the details of where congestion has occurred or

why. To them, congestion simply means increased delay. Unfortunately, most tran-

sport protocols use timeout and retransmission, so they respond to increased delay by

retransmitting datagrams. Retransmissions aggravate congestion instead of alleviating

it. If unchecked, the increased traffic will produce increased delay, leading to increased
traffic, and so on, until the network becomes useless. The condition is known as

congestion collapse.

To avoid congestion collapse, TCP must reduce transmission rates when conges-

tion occurs. Gateways watch queue lengths and use techniques like ICMP source

quench to inform hosts that congestion has occurredT, but transport protocols like TCP

can help avoid congestion by reducing transmission rates automatically whenever delays

occur. Of course, algorithms to avoid congestion must be constructed carefully because

even under normal operating conditions an intemet will exhibit wide variation in round

trip delays.

To avoid congestion, the TCP standard now recommends using two techniques:

slow start and multiplicative decrease. They are related and can be implemented easily.
We said that for each connection, TCP must remember the size of the receiver’s win-

dow (i.e., the buffer size advertised in acknowledgements). To control congestion TCP

maintains a second limit, called the congestion window limit or congestion window. At

any time, TCP acts as if the window size is:

A|Iowed_window = min(receiver_advertisement, congestion_window)

In the steady state on a non—congested connection, the congestion window is the same

size as the receiver’s window. Reducing the congestion window reduces the traffic

TCP will inject into the connection. To estimate congestion window size, TCP assumes

that most datagram loss comes from congestion and uses the following strategy:

Multiplicative Decrease Congestion Avoidance: Upon loss of a seg-

ment, reduce the congestion window by half (down to a minimum of at

least one segment). For those segments that remain in the allowed

window, backoff the retransmission timer exponentially.

Because TCP reduces the congestion window by half for every loss, it decreases the

window exponentially if loss continues. In other words, if congestion is likely, TCP

reduces the volume of traffic exponentially and the rate of retransmission exponentially.

If loss continues, TCP eventually limits transmission to a single datagram and continues

to double timeout values before retransmitting. The idea is to provide quick and signifi-

cant traffic reduction to allow gateways enough time to clear the datagrams already in

their queues.

Tln a congested network, queue lengths grow exponentially for a significant time.

.............,..-«c—...._...._.__.—.-¢_....-.....,......_n._,.........ar-awe-.......-..«....
Samsung — Exhibit 1016 — Page 210

Samsung - Exhibit 1016 - Page 211

194 Reliable Stream Transport Service (TCP) Chap. 12

How can TCP recover when congestion ends? You might suspect that TCP should

reverse the multiplicative decrease and double the congestion window when traffic be-

gins to flow again. However, doing so produces an unstable system that oscillates wild-

ly between no traffic and congestion. Instead, TCP uses a technique called slow-startt

to scale up transmission:

Slow-Start (Additive) Recovery: Whenever starting traffic on a new

connection or increasing traffic after a period of congestion, start the

congestion window at the size of a single segment and increase the

congestion window by one segment each time an acknowledgement ar-
rtves.

Slow—start avoids swamping the intemet with additional traffic immediately after

congestion clears or when new connections suddenly start.

The term slow-start may be a misnomer because under ideal conditions, the start is

not very slow. TCP initializes the congestion window to 1, sends an initial segment,

and waits. When the acknowledgement arrives, it increases the congestion to 2, sends

two segments, and waits. When the two acknowledgements arrive they each increase

the congestion window by 1, so TCP can send 4 segments. Acknowledgements for

those will increase the congestion window to 8. Within four round—trip times, TCP can

send 16 segments, often enough to reach the receiver’s window limit. Even for ex-

tremely large windows, it takes only log2N round trips before TCP can send N seg-
ments.

To avoid increasing the window size too quickly and causing additional conges-

tion, TCP adds one additional restriction. Once the congestion window reaches one half

of its original size, TCP enters a congestion avoidance phase and slows down the rate

of increment. During congestion avoidance, it increases the congestion window by I

only if all segments in the window have been acknowledged.

Taken together, the slow—start increase, multiplicative decrease, congestion

avoidance, measurement of variation, and exponential timer backoff improve the perfor-

mance of TCP dramatically without adding any significant computational overhead to

the protocol software. Versions of TCP that use these techniques have improved the

performance of previous versions by factors of 2 to 10.

12.21 Establishing A TCP Connection

To establish a connection, TCP uses a three—way handshake. In the simplest case,

the handshake proceeds as Figure l2.l1 shows.

‘c‘The term slow—start is attributed to John Nagle; the technique was originally called xofhstart.

Samsung — Exhibit 1016 — Page 211

Samsung - Exhibit 1016 - Page 212

Sec. 12.21 Establishing A TCP Connection 195

Events At Site 1 Network Messages Events At Site 2

Send SYN seq=x

Receive SYN segment

Send SYN seq=y, ACK x+1.

Receive SYN + ACK segment

Send ACK y+1

Receive ACK segment

Figure 12.11 The sequence of messages in a three-way handshake. Time

proceeds down the page; diagonal lines represent segments sent

between sites. SYN segments carry initial sequence number
infomtation.

The first segment of a handshake can be identified because it has the SYNT bit set in

the code field. The second message has both the SYN bit and ACK bits set, indicating

that it acknowledges the first SYN segment as well as continuing the handshake. The

final handshake message is only an acknowledgement and is merely used to inform the

destination that both sides agree that a connection has been established.

Usually, the TCP software on one machine waits passively for the handshake, and

the TCP software on another machine initiates it. However, the handshake is carefully

designed to work even if both machines attempt to initiate a connection simultaneously.
Thus, a connection can be established from either end or from both ends simultaneous-

ly. Once the connection has been established, data can flow in both directions equally
well. There is no master or slave.

The three-way handshake is both necessary and sufficient for correct synchroniza-

tion between the two ends of the connection. To understand why, remember that TCP

builds on an unreliable packet delivery service, so messages can be lost, delayed, dupli-

cated, or delivered out of order. Thus, the protocol must use a timeout mechanism and

retransmit lost requests. Trouble arises if retransmitted and original requests arrive

while the connection is being established, or if retransmitted requests are delayed until

after a connection has been established, used, and terminated. A three-way handshake

(plus the rule that TCP ignores additional requests for connection after a connection has

been established) solves these problems.

'i'SYN stands for .rym'hI‘(mi:aIi0n; it is pronounced “sin“.

Samsung — Exhibit 1016 — Page 212

Samsung - Exhibit 1016 - Page 213

196 Reliable Stream Transport Service (TCP) Chap. 12

12.22 Initial Sequence Numbers

The three—way handshake accomplishes two important functions. It guarantees that

both sides are ready to transfer data (and that they know they are both ready), and it al-

lows both sides to agree on initial sequence numbers. Sequence numbers are sent and

acknowledged during the handshake. Each machine must choose an initial sequence

number at random that it will use to identify bytes in the stream it is sending. Sequence

numbers cannot always start at the same value. In particular, TCP cannot merely
choose sequence 1 every time it creates a connection (one of the exercises examines

problems that can arise if it does). Of course, it is important that both sides agree on an

initial number, so octet numbers used in acknowledgements agree with those used in
data segments.

To see how machines can agree on sequence numbers for two streams after only

three messages, recall that each segment contains both a sequence number field and an

acknowledgement field. The machine that initiates a handshake, call it A, passes its ini-

tial sequence number, x, in the sequence field of the first SYN segment in the three—way

handshake. The second machine, B, receives the SYN, records the sequence number,

and replies by sending its initial sequence number in the sequence field as well as an

acknowledgement that specifies B expects octet x+1. In the final message of the

handshake, A “acknowledges” receiving from B all octets through y. In all cases, ack-

nowledgements follow the convention of using the number of the next octet expected.

We have described how TCP usually carries out the three—way handshake by ex-

changing segments that contain a minimum amount of information. Because of the pro-

tocol design, it is possible to send data along with the initial sequence numbers in the

handshake segments. In such cases, the TCP software must hold the data until the

handshake completes. Once a connection has been established, the TCP software can

release data being held and deliver it to a waiting application program quickly. The

reader is referred to the protocol specification for the details.

12.23 Closing a TCP Connection

Two programs that use TCP to communicate can terminate the conversation grace-

fully using the close operation. lntemally, TCP uses a modified three—way handshake to

close connections. Recall that TCP connections are full duplex and that we view them

as containing two independent stream transfers, one going in each direction. When an

application program tells TCP that it has no more data to send, TCP will close the con-

nection in one direction. To close its half of a connection, the sending TCP finishes

transmitting the remaining data, waits for the receiver to acknowledge it, and then sends

a segment with the FIN bit set. The receiving TCP acknowledges the FIN segment and

informs the application program on its end that no more data is available (e.g., using the
operating system's end—of-file mechanism).

Samsung — Exhibit 1016 — Page 213

Samsung - Exhibit 1016 - Page 214

-._.. _Wv%~_—qm—-—

Sec. 12.23 Closing a TCP Connection 197

Once a connection has been closed in a given direction, TCP refuses to accept

more data for that direction. Meanwhile, data can continue to flow in the opposite

direction until the sender closes it. Of course, acknowledgements continue to flow back
to the sender even after a connection has been closed. When both directions have been

closed, the TCP software at each endpoint deletes its record of the connection.

The details of closing a connection are even more subtle than suggested above be-

cause TCP uses a modified three-way handshake to close a connection. Figure 12.12 il-

lustrates the procedure.

Events At Site 1 Network Messages Events At Site 2

Send FIN seq=x

Receive FIN segment
Send ACK x+1

(inform application)

Receive ACK segment Send FIN, ACK x+1

Receive FIN + ACK segment

Send ACK y+1

Receive ACK segment

Figure 12.12 The modified three-way handshake used to close connections.

The site that receives the first FIN segment acknowledges it

immediately and then delays before sending the second FIN
segment.

The difference between three-way handshakes used to establish and break connections

occurs after a machine receives the initial FIN segment. Instead of generating a second

FIN segment immediately, TCP sends an acknowledgement and then informs the appli-

cation of the request to shut down. Informing the application program of the request

and obtaining a response may take considerable time (e.g., it may involve human in-

teraction). The acknowledgement prevents retransmission of the initial FIN segment

during the wait. Finally, when the application program instructs TCP to shut down the

connection completely, TCP sends the second FIN segment and the original site replies

with the third message, an ACK.

Samsung — Exhibit 1016 — Page 214

Samsung - Exhibit 1016 - Page 215

'7.
I98 Reliable Stream Transport Service (TCP) Chap. 12

12.24 TCP Connection Reset

Nomially, an application program uses the close operation to shut down a connec-

tion when it finishes using it. Thus, closing connections is considered a normal part of

use, analogous to closing files. Sometimes abnormal conditions arise that force an ap-

plication program or the network software to break a connection. TCP provides a reset

facility for such abnonnal disconnections.

To reset a connection, one side initiates termination by sending a segment with the

RST bit in the CODE field set. The other side responds to a reset segment immediately

by aborting the connection. TCP also informs the application program that a reset oc-
curred. A reset is an instantaneous abort that means that transfer in both directions

ceases immediately, and resources such as buffers are released.

12.25 TCP State Machine

Like most protocols, the operation of TCP can best be explained with a theoretical

model called afinite state machine. Figure 12.13 shows the TCP finite state machine,

with circles representing states and arrows representing transitions between them. The
label on each transition shows what TCP receives to cause the transition and what it

sends in response. For example, the TCP software at each endpoint begins in the

CLOSED state. Application programs must issue either a passive open command (to

wait for a connection from another machine), or an active open command (to initiate a

connection). An active open command forces a transition from the CLOSED state to

the SYN SENT state. When TCP follows the transition, it emits a SYN segment. When

the other end returns a segment that contains a SYN plus ACK, TCP moves to the ES-

TABLISHED state and begins data transfer.

The TIMED WAIT state reveals how TCP handles some of the problems incurred

with unreliable delivery. TCP keeps a notion of maximum segment lifetime, the max-

imum time an old segment can remain alive in an intemet. To avoid having segments

from a previous connection interfere with a current one, TCP moves to the TIMED

WAIT state after closing a connection. It remains in that state for twice the maximum

segment lifetime before deleting its record of the connection. If any duplicate segments

happen to arrive for the connection during the timeout interval, TCP will reject them.

However, to handle cases where the last acknowledgement was lost it acknowledges

valid segments and restarts the timer. Because the timer allows TCP to distinguish old

connections from new ones, it prevents TCP from responding with a RST (reset) if the

other end retransmits a FIN request.

Samsung — Exhibit 1016 — Page 215

Samsung - Exhibit 1016 - Page 216

Sec. 12.25 TCP State Machine 199

M anything / reset

begin

passive open

active open/ syn

syn/syn + ack

timeout /
reset

syn + ack / ack

ESTAB-

LISHED

fin /ack
 close/fin

 close / fin
close / fin

fin / ack

timeout after 2 segment lifetimes

V

Figure 12.13 The TCP finite state machine. Each endpoint begins in the

closed state. Labels on transitions show the input that caused

the transition followed by the output if any.

1
1

Samsung — Exhibit 1016 — Page 216

Samsung - Exhibit 1016 - Page 217

‘s
200 Reliable Stream Transport Service (TCP) Chap. 12

12.26 Forcing Data Delivery

We have said that TCP is free to divide the stream of data into segments for

transmission without regard to the size of transfer application programs use. The chief

advantage of allowing TCP to choose a division is efficiency. It can accumulate enough

octets in a buffer to make segments reasonably long, reducing the high overhead that

occurs when segments contain only a few data octets.

Although buffering improves network throughput, it can interfere with some appli-

cations. Consider using a TCP connection to pass characters from an interactive termi-

nal to a remote machine. The user expects instant response to each keystroke. If the

sending TCP buffers the data, response may be delayed, perhaps for hundreds of keys-

trokes. Similarly, because the receiving TCP may buffer data before making it available

to the application program on its end, forcing the sender to transmit data may not be

sufficient to guarantee delivery.

To accommodate interactive users, TCP provides a push operation that an applica-

tion program can use to force delivery of octets currently in the stream without waiting

for the buffer to fill. The push operation does more than force TCP to send a segment.

It also requests TCP to set the PSH bit in the segment code field, so the data will be

delivered to the application program on the receiving end. Thus, when sending data

from an interactive terminal, the application uses the push function after each keystroke.

Similarly, application programs can force output to be sent and displayed on the termi-

nal promptly by calling the push function after writing a character or line.

12.27 Reserved TCP Port Numbers

Like UDP, TCP combines static and dynamic port binding, using a set of well-

known port assignments for commonly invoked programs (e.g., electronic mail), but

leaving most port numbers available for the operating system to allocate as programs

need them. The specification states that only port numbers less than 256 will be used

for well-known ports; the remainder are available for arbitrary applications. Figure

l2.l4 lists some of the currently assigned TCP ports. It should be pointed out that

although TCP and UDP port numbers are independent, the designers have chosen to use

the same integer port numbers for any service that is accessible from both UDP and

TCP. For example, a domain name server can be accessed either with TCP or with

UDP. In either protocol, port number 53 has been reserved for servers in the domain
name system.

12.28 TCP Performance

As we have seen, TCP is a complex protocol that handles communication over a

wide variety of underlying network technologies. Many people assume that because

TCP tackles a much more complex task than other transport protocols, the code must be

Samsung — Exhibit 1016 — Page 217

Samsung - Exhibit 1016 - Page 218

Sec. 12.28 TCP Performance

201

cumbersome and inefficient. Surprisingly, the generality we discussed does not seem to

hinder TCP performance. Experiments at Berkeley have shown that the same TCP that

operates efficiently over the connected Internet can deliver 8 Mbps of sustained

throughput between two workstations on a 10 Mbps Ethernet. At Cray Research, lnc.,

researchers have demonstrated TCP throughput of over 600 Mbps.

Decimal Keyword UNIX Keyword
0

1 TCPMUX -
5 RJE —
7 ECHO echo

9 DISCARD discard

1 1 USERS systat

13 DAYTIME daytime
15 - netstat

17 QUOTE qotd

19 CHARGEN chargen
20 FTP-DATA ttp—data
21 FTP ttp
23 TELNET telnet

25 SMTP smtp
37 TIME time
42 NAMESERVER name

43 NICNAME whois
53 DOMAIN nameserver

77 - rje

79 FINGER finger
93 DCP —

95 SUPDUP supdup
101 HOSTNAME hostnames

102 ISO-TSAP iso-tsap
103 X400 x400

104 X400-SND x400—snd

111 SUNRPC sunrpc
1 13 AUTH auth

117 UUCP—PATH uucp-path
1 19 NNTP nntp
129 PWDGEN -
139 NETBIOS—SSN —

160-223 Reserved

Descript_ion
Reserved

TCP Multiplexor
Remote Job Entry
Echo
Discard
Active Users

Daytime

Network status program
Quote of the Day
Character Generator

File Transfer Protocol (data)
File Transfer Protocol
Terminal Connection

Simple Mail Transport Protocol
Time

Host Name Server
Who Is
Domain Name Server

any private RJE service
Finger
Device Control Protocol
SUPDUP Protocol

NIC Host Name Server
ISO-TSAP
X.400 Mail Service

X.400 Mail Sending
SUN Remote Procedure Call
Authentication Service

UUCP Path Service

USENET News Transfer Protocol
Password Generator Protocol
NETBIOS Session Service

Figure 12.14 Examples of currently assigned TCP port numbers. To the ex-

tent possible, protocols like UDP use the same numbers.

Samsung — Exhibit 1016 — Page 218

Samsung - Exhibit 1016 - Page 219

.

202 Reliable Stream Transport Service (TCP) Chap. 12

12.29 Summary

The Transmission Control Protocol, TCP, defines a key service provided by an in-

temet, namely, reliable stream delivery. TCP provides a full duplex connection

between two machines, allowing them to exchange large volumes of data efficiently.

Because it uses a sliding window protocol, TCP can make efficient use of a net-

work. Because it makes few assumptions about the underlying delivery system, TCP is

flexible enough to operate over a large variety of delivery systems. Because it provides

flow control, TCP allows systems of widely varying speeds to communicate.

The basic unit of transfer used by TCP is a segment. Segments are used to pass

control information (eg, to allow TCP software on two machines to establish connec-

tions or break them) or data. The segment fonnat permits a machine to piggyback ack-

nowledgements for data flowing in one direction by including them in the segment

headers of data flowing in the opposite direction.

TCP implements flow control by having the receiver advertise the amount of data

it is willing to accept. It also supports out—of—band messages using an urgent data facili-

ty and forced delivery using a push mechanism.

The current TCP standard specifies exponential backoff for retransmission timers

and congestion avoidance algorithms like slow-start, multiplicative decrease, and addi-
tive increase.

FOR FURTHER STUDY

The standard for TCP can be found in Postel [RFC 793]; Braden [RFC 1122] con-

tains an update that clarifies several points. Clark [RFC 813] describes TCP window

management, Clark [RFC 816] describes fault isolation and recovery, and Postel [RFC

879] reports on TCP maximum segment sizes. Nagle [RFC 896] comments on conges-

tion in TCP/IP networks. Karn and Partridge [1987] discusses estimation of round-trip

times and presents Kam’s algorithm. Jacobson [1988] gives the congestion control al-

gorithms that are now a required part of the standard. Tomlinson [1975] considers the

three—way handshake in more detail. Mills [RFC 889] reports measurements of Internet

round-trip delays. Jain [1986] describes timer-based congestion control in a sliding

window environment. Borman [April 1989] summarizes experiments with high-speed

TCP on Cray computers.

EXERCISES

12.1 TCP uses a finite field to contain stream sequence numbers. Study the protocol specifi-

cation to find out how it allows an arbitrary length stream to pass from one machine to
another.

Samsung — Exhibit 1016 — Page 219

l

Samsung - Exhibit 1016 - Page 220

Exercises 203

12.2 The text notes that one of the TCP options permits a receiver to specify the maximum

segment size it is willing to accept. Why does TCP support an option to specify max-
imum segment size when it also has a window advertisement mechanism?

12.3 Under what conditions of delay, bandwidth, load, and packet loss will TCP retransmit

significant volumes of data unnecessarily?

12.4 Lost TCP acknowledgements do not necessarily force retransmissions. Explain why.

12.5 Experiment with local machines to determine how TCP handles machine restart. Estab-
lish a connection (e.g., a remote login) and leave it idle. Wait for the destination
machine to crash and restart, and then force the local machine to send a TCP segment

(e.g., by typing characters to the remote login).

12.6 Imagine an implementation of TCP that discards segments that arrive out of order, even
if they fall in the current window. That is, the imagined version only accepts segments

that extend the byte stream it has already received. Does it work? How does it compare
to a standard TCP implementation?

12.7 Consider computation of a TCP checksum. Assume that although the checksum field in
the segment has not been set to zero, the result of computing the checksum is zero.
What can you conclude?

12.8 What are the arguments for and against automatically closing idle connections?

12.9 If two application programs use TCP to send data but only send one character per seg-

ment (e.g., by using the PUSH operation), what is the maximum percent of the network
bandwidth they will have for their data?

12.10 Suppose an implementation of TCP uses initial sequence number 1 when it creates a
connection. Explain how a system crash and restart can confuse a remote system into
believing that the old connection remained open.

12.11 Look at the round—trip time estimation algorithm suggested in the ISO TP-4 protocol

specification and compare it to the TCP algorithm discussed in this chapter. Which
would you prefer to use?

12.12 Find out how implementations of TCP must solve the overlapping segment problem.
The problem arises because the receiver must receive only one copy of all bytes from the

data stream even if the sender transmits two segments that partially overlap one another

(e.g., the first segment carries bytes 100 through 200 and the second carries bytes 150
through 250).

12.13 Trace the TCP finite state machine transitions for two sites that execute a passive and ac-

tive open and step through the three—way handshake.

12.14 Read the TCP specification to find out the exact conditions under which TCP can make
the transition from FIN WAlT«1 to TIMED WAIT.

12.15 Trace the TCP state transitions for two machines that agree to close a connection grace-

fully.

12.16 Assume TCP is sending segments using a maximum window size (64 Kbytes) on a chan-
nel that has infinite bandwidth and an average roundtrip time of 20 milliseconds. What

is the maximum throughput? How does throughput change if the roundtrip time in-
creases to 40 milliseconds (while bandwidth remains infinite)?

12.17 Can you derive and equation that expresses the maximum possible TCP throughput as a
function of the network bandwidth, the network delay, and the time to process a segment

and generate an acknowledgement. Hint: consider the previous exercise.

Samsung — Exhibit 1016 — Page 220

Samsung - Exhibit 1016 - Page 221

Routing: Cores, Peers, and

Algorithms (GGP)

13.1 Introduction

Previous chapters have concentrated on the network level services TCP/IP offers

and the details of the protocols in hosts and gateways that provide those services. We

assumed that gateways always contained correct routes, and we said that gateways can

ask directly connected hosts to change routes with the ICMP redirect mechanism.

This chapter considers two broad questions: “what values should gateway routing

tables contain?” and “how can those values be obtained?” To answer the first ques-

tion, we will consider the relationship between intemet architecture and routing. In par-

ticular, we will discuss intemets structured around a backbone and those composed of

multiple peer networks, and consider their consequences for routing. While many of

our examples are drawn from the connected Internet, the ideas apply equally well to

smaller corporate intemets. To answer the second question, we will consider the two

basic types of route propagation algorithms and see how each supplies routing infonna-

tion automatically.

We begin by discussing routing in general. Later sections concentrate on intemet

architecture and describe the type of protocols gateways use to exchange routing infor-

mation. Chapters 14 and 15 continue to expand our discussion of routing. They ex-

plore protocols that gateways owned by two independent administrative groups use to

exchange information, and protocols that a single group uses among all its gateways.

205

Samsung — Exhibit 1016 — Page 221

Samsung - Exhibit 1016 - Page 222

206 Routing: Cores, Peers, and Algorithms (GGP) Chap. 13

13.2 The Origin Of Gateway Routing Tables

Recall from Chapter 3 that IP gateways provide active interconnections among net-

works. Each gateway attaches to two or more physical networks and routes IP da-

tagrams among them, accepting datagrams that arrive over one network interface, and

routing them out over another interface. Except for destinations on directly attached

networks, hosts pass all IP traffic to gateways which route the datagrams on toward

their final destinations. A datagram travels from gateway to gateway until it reaches a

gateway that attaches directly to the same network as the final destination. Thus, the

gateway system forms the architectural basis of an intemet and handles all traffic except

for direct delivery from one host to another.

Chapter 8 described the IP routing algorithm that hosts and gateways follow and

showed how it uses a table to make routing decisions. Each entry in the routing table

specifies the network portion of a destination address and gives the address of the next

machine along a path used to reach that network. Like hosts, gateways directly deliver

datagrams to destinations on networks to which the gateway directly attaches.

Although we have seen the basics of routing, we have not said how hosts or gate-

ways obtain the information for their routing tables. The issue has two aspects: what

values should be placed in the tables, and how gateways obtain those values. Both

choices depend on the architectural complexity and size of the intemet as well as ad-

ministrative policies.

In general, establishing routes involves initialization and update. Each gateway

must establish an initial set of routes when it starts, and it must update the table as

routes change (e.g., when a network interface fails). Initialization depends on the

operating system. In some systems, the gateway reads an initial routing table from

secondary storage at startup, keeping it resident in main memory. In others, the operat-

ing system begins with an empty table which must be filled in by executing explicit

commands (e.g., commands found in a startup command script). Finally, some operat-

ing systems start by deducing an initial set of routes from the set of addresses for the

networks to which the machine attaches and contacting a neighboring machine to ask
for additional routes.

Once an initial routing table has been built, a gateway must accommodate changes

in routes. In small, slowly changing intemets, managers can establish and modify gate-

way routes by hand. In rapidly changing environments like the Internet, however,

manual update is impossibly slow. Automated methods are needed.

Before we can understand the automatic routing table update protocols used in IP

gateways, we need to review several underlying ideas. The next sections do so, provid-

ing the necessary conceptual foundation for routing. Later sections discuss intemet ar-

chitecture and the protocols gateways use to exchange routing information.

Samsung — Exhibit 1016 — Page 222

Samsung - Exhibit 1016 - Page 223

Sec. 13.3 Routing With Partial Infomiation 207

13.3 Routing With Partial Information

The principal difference between gateways and typical hosts is that hosts usually

know little about the structure of the intemet to which they connect. Hosts do not have

complete knowledge of all possible destination addresses, or even of all possible desti-

nation networks. They depend on default entries in their routing tables to send to a

nearby gateway all datagrams for which they have no specific route. The point is that:

Hosts can route datagrams successfully even if they only have partial

routing information because they can rely on gateways.

Can gateways also route datagrams with only partial information? Yes, but only

under certain circumstances. To understand the criteria, imagine an intemet to be a

foreign country crisscrossed with dirt roads that have directional signs posted at inter-

sections. Imagine that you have no map, cannot ask directions because you cannot

speak the local language, have no ideas about visible landmarks, but you need to travel

to a village named Sussex. You leave on your journey, following the only road out of

town and begin to look for directional signs. The first sign reads:

Norfolk to the left; Hammond to the right; others straight aheadflr

Because the destination you seek is not listed explicitly, you continue straight ahead. In

routing jargon, we call this the default route. After several more signs, you finally find
one that reads:

Essex to the left; Sussex to the right; others straight ahead.

You turn to the right, follow several more signs, and emerge on a road that leads to
Sussex.

Our imagined travel is analogous to a datagram traversing an intemet, and the road

signs are analogous to gateway routing tables. Without a map or other navigational

aids, travel is completely dependent on road signs, just as datagram routing in an inter-

nct depends entirely on routing tables. Clearly, it is possible to navigate even though

each road sign contains only partial information.

A central question concerns correctness. As a traveler, you might ask, “How can I

be sure that following signs will lead to my final destination?” You also might ask,

“How can I be sure that following the signs will lead me to my destination along a

shortest path?” These questions may seem especially troublesome if you pass many

signs without finding your destination listed explicitly. Of course, the answers depend

on the topology of the road system and the contents of the signs, but the fundamental

idea is that when taken as a whole, the information on the signs is both consistent and

complete. Looking at this another way, we see that it is not necessary for each intersec-

tion to have a sign for every destination. The signs can list default paths as long as all

explicit signs point along a shortest path, and the turns for shortest paths to all destina-

fFortunately, signs are printed in English.

Samsung — Exhibit 1016 — Page 223

Samsung - Exhibit 1016 - Page 224

7
208 Routing; Cores, Peers, and Algorithms (GGP) Chap. 13

tions are marked. A few examples will explain some ways that consistency can be
achieved.

At one extreme, consider a simple star-shaped topology of roads in which each vil-

lage has exactly one road leading to it, and all those roads meet at a central point. To

guarantee consistency, the sign at the central intersection must contain information

about all possible destinations. At the other extreme, imagine an arbitrary set of roads

with signs at all intersections listing all possible destinations. To guarantee consistency,

it must be true that at any intersection if the sign for destination D points to road R, no

road other than R leads to a shorter path to D.

Neither of these architectural extremes works well for an intemet gateway system.

On one hand, the central intersection approach fails because no machine is fast enough

to serve as a central switch through which all traffic passes. On the other hand, having

information about all possible destinations in all gateways is impractical because it re-

quires propagating large volumes of information whenever a change occurs or whenever

administrators need to check consistency. Thus, we seek a solution that allows groups

to manage local gateways autonomously, adding new network interconnections and

routes without changing distant gateways.

To help explain some of the architecture described later, consider a third topology

in which half the cities lie in the eastern part of the country and half lie in the western

part. Suppose a single bridge spans the river that separates east from west. Assume

that people living in the eastem part do not like westerners, so they are willing to allow

road signs that list destinations in the east but none in the west. Assume that people

living in the west do the opposite. Routing will be consistent if every road sign in the

east lists all eastern destinations explicitly and points the default path to the bridge,

while every road sign in the west lists all western destinations explicitly and points the

default path to the bridge.

13.4 Original Internet Architecture And Cores

Much of our knowledge of routing and route propagation protocols has been

derived from experience with the connected Internet. When TCP/IP was first

developed, participating research sites were connected to the ARPANET and they used

it as the national backbone of the Internet. During initial experiments, each site

managed routing tables and installed routes to other destinations by hand. As the fled-

gling Intemet began to grow, it became apparent that manual maintenance of routes was

impractical; automated mechanisms were needed.

The Internet designers selected a gateway architecture that consisted of a small,

central set of gateways that kept complete information about all possible destinations,

and a larger set of outlying gateways that kept partial information. In terms of our anal-

ogy, it is like designating a small set of centrally located intersections to have signs that

list all destinations, and allowing the outlying intersections to list only local destina-

tions. As long as the default route at each outlying intersection points to one of the

central intersections, travelers will eventually reach their destination. The advantage of

Samsung — Exhibit 1016 — Page 224

Samsung - Exhibit 1016 - Page 225

Sec. 13.4 Original Internet Architecture And Cores 209

using partial information in outlying gateways is that it permitted local administrators to

manage local structural changes without affecting other parts of the Internet. The disad-

vantage is that it introduced the potential for inconsistency. In the worst case, an error

in an outlying gateway can make distant routes unreachable.
We can summarize these ideas:

The routing tables in a given gateway contain partial information

about possible destinations. Routing that uses partial information al-

lows sites autonomy in making local routing changes but introduces

the possibility of inconsistencies that may make some destinations un-

reachable from some sources.

In gateways, routing inconsistencies usually arise from errors in the algorithms that

compute routing tables, incorrect data supplied to those algorithms, or from errors that

occur while transmitting the results to other gateways. Protocol designers look for ways

to limit the impact of errors, with the objective being to keep all routes consistent at all

times. If routes become inconsistent for some reason, the protocols gateways use

should be robust enough to detect and correct the errors quickly. Most important, the

protocols should be designed to constrain the effect of errors.

13.5 Core Gateways

Loosely speaking, early Internet gateways could be partitioned into two groups, a

small set of core gateways controlled by the Internet Network Operations Center

(INOC), and a larger set of noncore gatewaysT controlled by individual groups. The

core system was designed to provide reliable, consistent, authoritative routes for all pos-

sible destinations; it was the glue that held the Internet together and made universal in-

terconnection possible. By fiat, each site assigned an Internet network address had to

arrange to advertise that address to the core system. The core gateways communicated

among themselves, so they could guarantee that the information they shared was con-

sistent. Because a central authority monitored and controlled the core gateways, they

were highly reliable.

To fully understand the core gateway system, it is necessary to recall that the Inter-

net evolved with a wide-area network, the ARPANET, already in place. When the In-

ternet experiments began, designers thought of the ARPANET as a main backbone on

which to build. Thus, a large part of the motivation for the core gateway system came

from the desire to connect local networks to the ARPANET. Figure 13.1 illustrates this
view.

‘.‘The tenns stub gateway and nonrou/ing gateway have also been applied to gateways that connect local
area networks to the ARPANET.

Samsung — Exhibit 1016 — Page 225

Samsung - Exhibit 1016 - Page 226

________.____—____%
210 Routing: Cores, Peers, and Algorithms (GGP) Chap. 13

Core

E ~—~ Gateways

Local Net 2

Figure 13.1 The Internet core gateway system viewed as a set of routers that

connect local area networks to the ARPANET. Hosts on the 10-

cal networks pass all nonlocal traffic to the closest core gateway.

To understand why such an architecture does not lend itself to routing with partial

information, suppose that a large intemet consists entirely of local area networks at-

tached to a backbone network through gateways. Assume that a gateway at each site

connects the local network at that site to the backbone, and imagine that the gateways

rely on default routes. Now consider the path a datagram follows. At the source site,

the local gateway checks to see if it has an explicit route to the destination and, if not,

sends the datagram along the path specified by its default route. All datagrams for

which the gateway has no route follow the same default path regardless of their ultimate

destination. The next gateway along the path diverts datagrams for which it has an ex-

plicit route, and sends the rest along its default route. To insure global consistency, the

chain of default routes must reach every gateway in a giant cycle as Figure 13.2 shows.

Thus, the architecture requires all local sites to coordinate their default routes. In addi-

tion, depending on default routes can be inefficient even when it is consistent. As Fig-

ure 13.2 shows, in the worst case a datagram will pass through all n gateways as it trav-

els from source to destination instead of going directly across the backbone.

 Local Net n

Figure 13.2 A set of gateways connected to a backbone network with default

routes shown. Routing is inefficient even though it is consistent.

Samsung — Exhibit 1016 — Page 226

Samsung - Exhibit 1016 - Page 227

Sec. 135 Core Gateways 211

To avoid the inefficiencies default routes cause, Internet designers arranged for all

core gateways to exchange routing information so that each would have complete infor-

mation about optimal routes to all possible destinations. Because each core gateway

knew routes to all possible destinations, it did not need a default route. If the destina-

tion address on a datagram was not in a core gateway’s routing table, the gateway

would generate an ICMP destination unreachable message and drop the datagram. In

essence, the core design avoided inefficiency by eliminating default routes.

Figure 13.3 depicts the conceptual basis of a core routing architecture. The figure

shows a central core system consisting of one or more core gateways, and a set of out-

lying gateways at local sites. Outlying gateways keep information about local destina-

tions and use a default route that sends datagrams destined for other sites to the core.

Figure 13.3 The routing architecture of a simplistic core system showing de-

fault routes. Core gateways do not use default routes; outlying

gateways, labeled L,, each have a default route that points to the
core.

Although the simplistic core architecture illustrated in Figure 13.3 is easy to under—

stand, it became impractical for three reasons. First, the Internet outgrew a single, cen-

trally managed long—haul backbone. The topology became complex and the protocols

needed to maintain consistency among core gateways became nontrivial. Second, not

every site could have a core gateway connected to the backbone, so additional routing

structure and protocols were needed. Third, because core gateways all interacted to en-

sure consistent routing information, the core architecture did not scale to large size. We

will return to this last problem in Chapter 14 after we examine the protocols that the

core system used to exchange routing information.

Samsung — Exhibit 1016 — Page 227

Samsung - Exhibit 1016 - Page 228

Vv

212 Routing: Cores, Peers, and Algorithms (GGP) Chap. 13

13.6 Beyond The Core Architecture To Peer Backbones

The introduction of the NSFNET backbone into the Internet added new complexity

to the routing structure. From the core system point of view, the connection to

NSFNET was initially no different than the connection to any other site. NSFNET at-

tached to the ARPANET backbone through a single gateway in Pittsburgh. The core

had explicit routes to all destinations in NSFNET. Gateways inside NSFNET knew
about destinations in NSFNET and used a default route to send all non—NSFNET traffic

to the core via the Pittsburgh gateway.

As NSFNET grew to become a major part of the Internet, it became apparent that

the core routing architecture would not suffice. The most important conceptual change
occurred when multiple connections were added between the ARPANET backbone and

the NSFNET backbone. We say that the two became peer backbone networks or simply

peers. Figure 13.4 illustrates the resulting peer topology.

Iriié "WWW

ARPANET BACKBONE

NSFNET BACKBONE

L if

Figure 13.4 An example of peer backbones interconnected through multiple
gateways. The diagram illustrates the architecture of the Internet
in 1989.

To understand the difficulties of IP routing among peer backbones, consider routes

from host 3 to host 2 in Figure 13.4. Assume for the moment that the figure shows
geographic orientation, so host 3 is on the West Coast attached to the NSFNET back-
bone while host 2 is on the East Coast attached to the ARPANET backbone. When es-

tablishing routes between hosts 3 and 2, the managers must decide whether to (a) route

the traffic from host 3 through the West Coast gateway, G1, and then across the AR-

PANET backbone, or (b) route the traffic from host 3 across the NSFNET backbone,

through the Midwest gateway, G2, and then across the ARPANET backbone to host 2,

or (c) route the traffic across the NSFNET backbone, through the East Coast gateway,

G3, and then to host 2. A more circuitous route is possible as well: traffic could flow

from host 3 through the West Coast gateway, across the ARPANET backbone to the

Midwest gateway, back onto the NSFNET backbone to the East Coast gateway, and fi-

Samsung — Exhibit 1016 — Page 228

Samsung - Exhibit 1016 - Page 229

Sec. 13.6 Beyond The Core Architecture To Peer Backbones 213

nally across the ARPANET backbone to host 2. Such a route may or may not be advis-

able, depending on the policies for network use and the capacity of various gateways
and backbones.

For most peer backbone configurations, traffic between a pair of geographically

close hosts should take a shortest path, independent of the routes chosen for cross-

country traffic. For example, traffic from host 3 to host 1 should flow through the West

Coast- gateway because it minimizes distance on both backbones.

All these statements sound simple enough, but they are complex to implement for

two reasons. First, although the standard IP routing algorithm uses the network portion

of an IP address to choose a route, optimal routing in a peer backbone architecture re-

quires individual routes for individual hosts. For our example above, the routing table

in host 3 needs different routes for host I and host 2, even though both hosts 1 and 2 at-

tach to the ARPANET backbone. Second, managers of the two backbones must agree

to keep routes consistent among all gateways or routing loops can develop (a routing

loop occurs when routes in a set of gateways point in a circle).

It is important to distinguish network topology from routing architecture. It is pos-

sible, for example, to have a single core system that spans multiple backbone networks.

The core machines can be programmed to hide the underlying architectural details and

to compute shortest routes among themselves. It is not possible, however, to partition

the core system into subsets that each keep partial information without losing func-

tionality. Figure 13.5 illustrates the problem.

detault route to sites

default routes beyond core 1from sites
behind core 1

default routes
from sites

behind core 2

PARTIAL

CORE #1

PARTIAL

CORE #2

default route to sites

beyond core 2

Figure 13.5 An attempt to partition a core routing architecture into two sets

of gateways that keep partial information and use default routes.

Such an architecture results in a routing loop for datagrams that

have an illegal (nonexistent) destination.

As the figure shows, outlying gateways have default routes to one side of the parti-

tioned core. Each side of the partition has information about destinations on its side of
the world and a default route for information on the other side of the world. In such an

architecture, any datagram sent to an illegal address will cycle between the two pani-

tions in a routing loop until its time to live counter reaches zero.
We can summarize as follows:

Samsung — Exhibit 1016 — Page 229

Samsung - Exhibit 1016 - Page 230

214 Routing: Cores, Peers, and Algorithms (GGP) Chap. l3

A core routing architecture assumes a centralized set of gateways

serves as the repository of information about all possible destinations

in an internet. Core systems work best for internets that have a sin-

gle, centrally managed backbone. Expanding the topology to multiple

backbones makes routing complex," attempting to partition the core or-

chitecture so that all gateways use default routes introduces potential

routing loops.

13.7 Automatic Route Propagation

We said that the original Internet core system avoided default routes because it

propagated complete information about all possible destinations to every core gateway.

The next sections discuss two basic types of distributed algorithms that compute and

propagate routing information, and use the original core gateway routing protocol to il-
lustrate one of them.

It may seem that automatic route propagation mechanisms are not needed, especial-

ly on small intemets. However, intemets are not static. Connections fail and are later

replaced. Networks can become overloaded at one moment and underutilized at the

next. The purpose of routing propagation mechanisms is not merely to find a set of

routes, but to continually update the information. Humans simply cannot respond to

changes fast enough; computers must be used. Thus, when we think about route propa-

gation, it is important to consider the dynamic behavior of protocols and algorithms.

13.8 Vector Distance (Bellman-Ford) Routing

The term vector—distance)“ refers to a class‘of algorithms gateways use to propagate
routing information. The idea behind vector—distance algorithms is quite simple. We

assume that each gateway begins with a set of routes for those networks to which it at-

taches. It keeps the list of routes in a table, where each entry identifies a destination

network and gives the distance to that network measured in hops.

Destination Distance

Net 1 0

Net 2 0

Figure 13.6 An initial vector—distance routing table with an entry for each
directly connected network. Entries contain the IP address of a

network and an integer distance to that network.

+The names Ford Fulkerson, Bellman—Ford, and Bellman are synonymous with vector—distance; they are
taken from the names of researchers who first published the idea.

 +

Samsung — Exhibit 1016 — Page 230

Samsung - Exhibit 1016 - Page 231

Sec. 13.8
 Vector Distance (Bellman—Ford) Routing 215

Periodically, each gateway sends a copy of its routing table to any other gateway it

can reach directly. When a report arrives at gateway K from gateway J, K examines the

set of destinations reported and the distance to each. If J knows a shorter way to reach

a destination, or ifJ lists a destination that K does not have in its table, or if K currently

routes to a destination through J and J's distance to that destination changes, K replaces

its table entry. For example, Figure 13.7 shows an existing table in a gateway, K, and

an update message from another gateway, J.

Destination DistanceDestination Distance

Net 1 direct Net 1 2

Net 2 direct + Net 4 3

Net 4 Gate. L Net 17 6

Net 17 Gate. M -> Net 21 4

Net 24 Gate. J Net 24 5

Net 30 Gate. Q Net 30 10

Net 42 Gate. J —> Net 42 3

(a) (b)

Figure 13.7 (a) An existing route table for a gateway K, and (b) an incoming

routing update message from gateway J. The marked entries

will be used to update existing entries or add new entries to KS
table.

Note that if J reports distance N, an updated entry in K will have distance N+1 (the dis-

tance to reach the destination from J plus the distance to reach J). Of course, the rout-

ing table entries contain a third column that specifies a route. Initial entries are all

marked direct delivery. When gateway K adds or updates an entry in response to a

message from gateway J, it assigns gateway J as the route for that entry.

The term vector-distance comes from the information sent in the periodic mes-

sages. A message contains a list of pairs (V,D), where V identifies a destination (called
the vector), and D is the distance to that destination. Note that vector-distance algo-

rithms report routes in the first person (i.e., we think of a gateway advertising, “I can

reach destination V at distance D”). In such a design, all gateways must participate in

the vector-distance exchange for the routes to be efficient and consistent.

Although vector-distance algorithms are easy to implement, they have disadvan-

tages. In a completely static environment, vector-distance algorithms propagate routes

to all destinations. When routes change rapidly, however, the computations may not

stabilize. When a route changes (ie, a new connection appears or an old one fails), the

information propagates slowly from one gateway to another. Meanwhile, some gate-

ways may have incorrect routing information.

Samsung — Exhibit 1016 — Page 231

Samsung - Exhibit 1016 - Page 232

216 Routing: Cores, Peers, and Algorithms (GGP) Chap. 13

For now, we will examine a protocol that uses the vector-distance algorithm

without discussing all the shortcomings. Chapter 15 completes the discussion by show-

ing another vector-distance protocol, the problems that can arise, and the heuristics used
to solve the most serious of them.

13.9 Gateway-To-Gateway Protocol (GGP)

The original core gateways used a vector—distance protocol known as the

Gateway-to—Gateway Protocol (GGP) to exchange routing information. While GGP is

no longer a key part of the TCP/IP suite, it does provide a concrete example of vector-

distance routing. GGP was designed to travel in IP datagrams like UDP user datagrams

or TCP segments. Each GGP message has a fixed format header that identifies the

message type and the format of the remaining fields. Because only core gateways parti-

cipated in GGP, and because core gateways were controlled by the INOC, outsiders

could not interfere with the exchange.

The original core system was arranged to permit new core gateways to be added

without modifying existing gateways. When a new gateway was added to the core sys-

tem, it was assigned one or more core neighbors with which it communicated. The

neighbors, already members of the core, already propagated routing information among

themselves. Thus, the new gateway only needed to inform its neighbors about networks

it could reach; they updated their routing tables and propagated this new information
further.

GGP is a true vector—distance protocol. The routing information gateways ex-

change with GGP consists of a set of pairs, (N,D), where N is an IP network address,

and D is a distance measured in hops. We say that a gateway using GGP advertises the

networks it can reach and its cost for reaching them.

GGP measures distance in gateway hops, where a gateway is defined to be zero

hops from directly connected networks, one hop from networks that are reachable

through one other gateway, and so on. Thus, the number of hops or the hop count

along a path from a given source to a given destination refers to the number of gate-

ways that a datagram encounters along that path. It should be obvious that using hop

counts to calculate shortest paths does not always produce desirable results. For exam-

ple, a path with hop count 3 that Crosses three Ethemets may be substantially faster than

a path with hop count 2 that crosses two slow speed serial lines. Many gateways use

artificially high hop counts for routes across slow networks.

13.10 GGP Message Formats

There are four types of GGP messages, each with its own format. The first octet

contains a code that identifies the message type. Figure 13.8 shows the format of one

GGP message type, the message gateways exchange to learn about routes. Recall that

the information consists of pairs of IP network and distance values. To keep messages

Samsung — Exhibit 1016 — Page 232

Samsung - Exhibit 1016 - Page 233

 Sec. l3.l0 217 GGP Message Fonnats

small, networks are grouped together by distance, and the message consists of a se-

quence of sets, where each set contains a distance value followed by a list of all net-
works at that distance.

The value 12 in the field labeled TYPE specifies that this message is a routing up-

date message, distinguishing it from other GGP message types. The 16-bit SEQUENCE
NUMBER is used to validate a GGP message; both sender and receiver must agree on

the sequence number before the receiver will accept the message. The field labeled UP-

DATE is a binary value that specifies whether the sender needs an update from the re-

ceiver. Because GGP groups networks by distance, the field labeled NUM. DIS-

TANCES specifies how many distance groups are present in this update.

The last part of a GGP routing update message contains sets of networks grouped

by distance. Each set starts with two 8-bit fields that specify a distance value and a

count of networks at that distance. If the count specifies rz networks at a given distance,

exactly n network IP addresses must occur before the next set header. To conserve

space, only the network portion of the IP address is included, so network numbers may

be 1, 2, or 3 octets long. The receiver must look at the first bits of the network identif-

ier to determine its length.

16 23

8

UPDATE
DISTANCE D,

FIRST NET AT DISTANCE D,

DISTANCE D2
FIRST NET AT DISTANCE D,

—

Figure 13.8 The format of a GGP routing update message. A gateway sends
such a message to advertise destination networks it knows how
to reach. Network numbers contain either 1, 2, or 3 octets,

depending on whether the network is class A, B, or C.

Samsung — Exhibit 1016 — Page 233

Samsung - Exhibit 1016 - Page 234

218 Routing: Cores, Peers, and Algorithms (GGP) Chap. 13

When a gateway receives a GGP routing update message, it sends a GGP ack-

nowledgement message back to the sender, using a positive acknowledgement if the

routing update was acceptable, and a negative acknowledgement if an error was detect-

ed. Figure 13.9 illustrates the format of GGP acknowledgements:

O 8 16 31

TYPE (2 or 10) UNUSED (0) SEQUENCE

Figure 13.9 The format of a GGP acknowledgement message. Type 2 identi-
fies the message as a positive acknowledgement, while type 10

identifies the message as a negative acknowledgement.

In positive acknowledgement messages, the field labeled SEQUENCE specifies a se-

quence number that the receiver is acknowledging. In negative acknowledgements, the

SEQUENCE field gives the sequence number that the receiver last received correctly.

In addition to routing update messages, the GGP protocol includes messages that

allow one gateway to test whether another is responding. A gateway sends an echo re-

quest message to a neighbor, which requests that the recipient respond by sending back

an echo reply message. Figure 13.10 shows the echo message formats.

0 8 31

TYPE (0 or 8) UNUSED (0)

Figure 13.10 The format of a GGP echo request or reply message. Type 8
identifies the message as an echo request, while type 0 identi-

fies the message as an echo reply.

13.11 Link-State (SPF) Routing

The main disadvantage of vector-distance algorithms is that they do not scale well.

Besides the problem of slow response to change mentioned earlier, the algorithm re-

quires large message exchanges. Because routing update messages contain an entry for

every possible network, message size is proportional to the total number of networks in
an intemet. Furthermore, because a vector-distance protocol requires every gateway to

participate, the volume of information exchanged can be enormous.

The primary alternative to vector-distance schemes is a class of algorithms known
as link-state, Shortest Path First, or SPFT. SPF algorithms require each participating

gateway to have complete topology information. The easiest way to think of the topol-

ogy information is to imagine that every gateway has a map that shows all other gate-

rThe name “shortest path first" is an unfortunate misnomer because most route computations choose
shortest paths. However, it seems to have gained wide acceptance.

Samsung - Exhibit 1016 - Page 234

Samsung - Exhibit 1016 - Page 235

Sec. 13.11 Link-State (SPF) Routing 219

ways and the networks to which they connect. In abstract terms, the gateways

correspond to nodes in a graph and networks that connect gateways correspond to

edges. There is an edge (link) between two nodes if and only if the corresponding gate-

ways can communicate directly.

Instead of sending messages that contain lists of destinations, a gateway participat-

ing in an SPF algorithm performs two tasks. First, it actively tests the status of all

neighbor gateways. In terms of the graph, two gateways are neighbors if they share a

link; in network terms, two neighbors connect to a common network. Second, it period-

ically propagates the link status information to all other gateways.

To test the status of 21 directly connected neighbor, a gateway periodically ex-

changes short messages that ask whether the neighbor is alive and reachable. If the

neighbor replies, the link between them is said to be ‘up’. Otherwise, the link is said to

be ‘down’. (In practice, to prevent oscillations between the up and down states, most

protocols use a k—0ut-0f—n rule to test liveness, meaning that the link remains up until a

significant percentage of requests have no reply, and then it remains down until a signi-

ficant percentage of messages receive a reply.)

To infomi all other gateways, each gateway periodically broadcasts a message that

lists the status (state) of each of its links. The status message does not specify routes —

it simply reports whether communication is possible between pairs of gateways. Proto-

col software in the gateways arranges to deliver a copy of each link status message to

all participating gateways (if the underlying networks do not support broadcast, delivery

is done by forwarding individual copies of the message point-to—point).

Whenever a link status message arrives, a gateway uses the infomiation to update

its map of the intemet, by marking links ‘up’ or ‘down’. Whenever link status changes,

the gateway recomputes routes by applying the well-known Dijkstra shortest path algo-

rithm to the resulting graph. Dijkstra’s algorithm computes the shortest paths to all des-

tinations from a single source.

One of the chief advantages of SPF algorithms is that each gateway computes

routes independently using the same original status data; they do not depend on the

computation of intermediate machines. Because link status messages propagate un-

changed, it is easy to debug problems. Because gateways perform the route computa-

tion locally, it is guaranteed to converge. Finally, because link status messages only

carry information about the direct connections from a single gateway, the size does not

depend on the number of networks in the intemet. Thus, SPF algorithms scale better

than vector—distance algorithms.

13.12 SPF Protocols

Besides proprietary protocols offered by vendors, only a few SPF protocols are

currently used in the Internet. One of the first examples of SPF comes from the AR-

PANET, which had used an SPF algorithm internally for approximately ten years. At

the other extreme, Chapter 15 discusses a general purpose SPF protocol proposed in the

late 1980s, but not widely used as of this writing.

Samsung — Exhibit 1016 — Page 235

Samsung - Exhibit 1016 - Page 236

220 Routing: Cores. Peers, and Algorithms (GGP) Chap. 13

By 1988, the Internet core system had switched from early LSI—l1 computers run-

ning GGP to Butterfly processors] that use a Shortest Path First algorithm. The exact

protocol, known as SPREAD has not been documented in the RFC literature.

13.13 Summary

To insure that all networks remain reachable with high reliability, an intemet must

provide globally consistent routing. Hosts and most gateways contain only partial rout-

ing information; they depend on default routes to send datagrams to distant destinations.

The connected Internet solves the routing problem by using a core gateway architecture

in which a small set of core gateways contain complete information about all networks.

The core gateways exchange routing information periodically so once a single core

gateway learns about a route, all core gateways learn about it. To prevent routing

loops, the core is forbidden from using default routes.

A single, centrally managed core system works well for an intemet architecture

built on a single backbone network. However, when an intemet has multiple, separately

managed peer backbones that interconnect at multiple places, the core architecture does
not suffice.

When gateways exchange routing information they usually use one of two basic al-

gorithms, vector—distance or SPF. We examined the details of GGP, the vector—distance

protocol originally used to propagate routing update information throughout the core.

Each GGP routing update can be viewed as an advertisement that lists a set of networks

along with the gateway’s cost to reach those network.

The chief disadvantage of vector—distance algorithms is that they perform a distri-

buted shortest path computation that may not converge. Another disadvantage is that

routing update messages grow large as the number of networks increases.

FOR FURTHER STUDY

The definition of the core gateway system and GGP protocol in this chapter comes from

Hinden and Sheltzer [RFC 823]. Braden and Postel [RFC 1009] contains further specif-

ications for Internet gateways. Braun [RFC 1093] and Rekhter [RFC 1092] discusses

routing in the NSFNET backbone. Clark [RFC 1102] and Braun [RFC 1104] both

discusses policy-based routing. The next two chapters present protocols used for pro-

pagating routing information between separate sites and within a single site. Rekhter
[RFC 1074] considers the SPF algorithm used on the second NSFNET backbone.

+The butterfly is a multiprocessor computer that has a special purpose, high speed interconnection among
processors, designed to support packet switching. It is manufactured by Bolt, Beranek, and Newman, Inc.

3

 J

Samsung — Exhibit 1016 — Page 236

Samsung - Exhibit 1016 - Page 237

Exercises 221

EXERCISES

13.1

13.2

13.3

13.4

13.5

13.6

13.7

13.8

13.9

Suppose a gateway discovers it is about to route an IP datagram back over the same net-
work interface on which the datagram arrived. What should it do? Why?

After reading RFC 823 and RFC 1009, explain what an Internet core gateway does in
the situation described in the previous question.

How could core gateways use default routes to send all illegal datagrams to a specific
machine?

Imagine students experimenting with a gateway that attaches a local area network to the

Internet. They want to advertise their network to the core gateway system, but if they
accidentally advertise zero length routes to arbitrary networks (e.g., the ARPANET), real

Internet traffic would be diverted to their gateway. How can the core protect itself from

illegal data while still accepting updates from such ‘untrusted’ gateways?

Which ICMP messages does a gateway generate?

How did the original Internet core gateways determine whether a designated neighbor
was ‘up’ or ‘down’? Hint: consult RFC 823.

Suppose two core gateways each advertise the same cost, k, to reach a given network, N.
Describe the circumstances under which routing through one of them may take fewer
hops than routing through the other one.

How can a gateway know whether an incoming datagram carries a GGP message?

Consider the vector-distance update shown in Figure 13.7 carefully. Give three reasons
why the gateway will update its table with the three items shown.

Samsung — Exhibit 1016 — Page 237

Samsung - Exhibit 1016 - Page 238

 14

Routing: Autonomous

Systems (EGP)

14.1 Introduction

The previous chapter introduced the idea of route propagation and examined one

protocol gateways use to exchange routing information. This chapter extends our

understanding of intemet gateway architecture. It discusses the concept of autonomous

systems and shows the protocol that a group of networks and gateways operating under

one administrative authority use to propagate network reachability information to other
groups.

14.2 Adding Complexity To The Architectural Model

As we said, the original core gateway system evolved at a time when the Internet

had a single backbone (the ARPANET), and part of the motivation for a core architec-

ture was to provide connections between local area networks and the backbone (see Fig-

ure l3.l). If an intemet consists of only a single backbone plus a set of attached local

area networks, no further structure is needed. Each gateway knows the single local net-

work to which it attaches and can learn about all other networks by exchanging mes-

sages with other gateways across the backbone. Unfortunately, most intemets are not

nearly this simple. First, even if each intemet site has only one local network, a core

architecture is inadequate because it cannot grow to accommodate an arbitrary number

of sites. Second, most sites have multiple local area networks and multiple gateways

interconnecting them. Because a core gateway connects to a single network at each site,

223

Samsung — Exhibit 1016 — Page 238

Samsung - Exhibit 1016 - Page 239

224 Routing: Autonomous Systems (EGP) Chap. 14

the core only knows about one network at that site. Third, large intemets connect net-

works managed by independent groups. The routing architecture must provide a way

for each group to independently control routing and access. After examining the conse-

quences of each of these ideas, we will learn how a single protocol mechanism allows

construction of an intemet that spans multiple sites while allowing autonomy at each
site.

14.3 A Fundamental Idea: Extra Hops

So far, we have discussed an intemet architecture consisting of one or more back-

bone networks surrounded by a core gateway system. We have been thinking of the

core system as a central routing mechanism to which noncore gateways can send da-

tagrams for delivery. We also said that it is impossible to expand a single backbone ar-

bitrarily. Having fewer core gateways than networks in the intemet means that we must

change our view of core architecture or routing will be suboptimal. To see why, con-

sider the example in Figure 14.1

(ff? 1*:

Backbone Network L°°3'N°‘2
5 core T”, core
1 gateway gateway

noncore

gateway

Figure 14.1 The extra hop problem. Noncore gateways connected to the
backbone must learn routes from core gateways to have optimal

routing.

In the figure, core gateways G, and G2 connect to local area networks 1 and 2, respec-

tively. Because they exchange routing information, they both know how to reach both

networks. Suppose noncore gateway G3 thinks of the core as a delivery system and

chooses one of the core gateways, say G ,, to deliver all datagrams destined for networks

to which it has no direct connection. G1 sends datagrams for network 2 across the back-

bone to its chosen core gateway, G ,, which must then send them back across the back-

bone to gateway G2. The optimal route, of course, requires G3 to send datagrams des-

tined for network 2 directly to G2. Notice that the choice of core gateway makes no

difference. Only destinations that lie beyond the chosen gateway have optimal routes;

all paths that go through other backbone gateways require an extra hop. Also notice

that the core gateways cannot use ICMP redirect messages to inform G, that it has in-

correct routes because ICMP redirect messages can only be sent to the original source

and not to intermediate gateways.

Samsung — Exhibit 1016 — Page 239

Samsung - Exhibit 1016 - Page 240

Sec. 14.3 A Fundamental Idea: Extra Hops 225

We call the routing anomaly illustrated in Figure 14.1 the extra hop problem.

Solving it requires us to change our view of a core architecture:

Treating a core system as a central router introduces an extra hop for

most traffic. A mechanism is needed that allows noncore gateways to

learn routes from core gateways so they can choose optimal backbone
routes.

Allowing sites to have multiple networks and gateways means that the core does

not attach to all networks directly, so an additional mechanism is needed to allow the

core system to learn about them. Consider, for example, the set of networks and gate-

ways shown in Figure 14.2. We might imagine such an interconnection on a corporate

or university campus, where each network corresponds to a single building or to a sin-

gle department.

<:!” Backbone Network é
core

gateway

 Local Net 4

Figure 14.2 An example of multiple networks and gateways with a single
backbone connection. A mechanism is needed to pass reachabil-

ity information about additional local networks to the core sys-
tem.

Suppose the site has just installed local network 4 and has obtained an intemet address

for it. Also assume that the gateways G2, G3, and G4 have routes for all four local net-

works as well as default routes that pass other traffic to the core gateway, G,. Hosts

directly attached to local network 4 can communicate with one another, and any

machine on that network can route packets out to other backbone sites. However, be-

cause gateway G, attaches only to local network 1, it does not know about local net-

work 4. We say that, from the point of view of the core system, local network 4 is hid-

den behind local network 1. The important point is:

Samsung — Exhibit 1016 — Page 240

Samsung - Exhibit 1016 - Page 241

226 Routing: Autonomous Systems (EGP) Chap. 14

Because individual sites can have an arbitrarily complex structure, a

core system will not attach directly to all networks. A mechanism is

needed that allows noncore gateways to inform the care about hidden
networks.

Keep in mind that in addition to providing the core with infonnation about hidden net-

works, we need a mechanism that allows noncore gateways to obtain routing infonna-

tion from the core. Ideally, a single mechanism should solve both problems. Building

such a mechanism can be tricky. The subtle issues are responsibility and capability.

Exactly where does responsibility for informing the core reside? If we decide that one

of the gateways should inform the core, which one is capable of doing it? Look again

at the example. Gateway G4 is the gateway most closely associated with local network

4, but it lies 2 hops away from the nearest core gateway. Thus, G4 must depend on

gateway G1 to route packets to network 4. The point is that G4 cannot guarantee

reachability of local network 4 on its own. Gateway G3 lies one hop from the core and

can guarantee to pass packets, but it does not directly attach to local network 4. So, it

seems incorrect to grant G3 responsibility for network 4. Solving this dilemma will re-

quire us to introduce a new concept. The next sections discuss the concept and a proto-
col built around it.

14.4 Autonomous System Concept

The puzzle over which gateway should communicate reachability information to

the core system arises because we have only considered the mechanics of an intemet

routing architecture and not the administrative issues. Interconnections, like those in the

example of Figure 14.2, that arise when a backbone site has a complex local structure,

should not be thought of as multiple independent networks connected to an intemet, but

as a single site that has multiple networks under its control. Because the networks and

gateways fall under a single administrative authority, that authority can guarantee that
intemal routes remain consistent and viable. Furthermore, the administrative authority

can choose one of its machines to serve as the machine that will apprise the outside

world of network reachability. In the example from Figure 14.2, because gateways G_,,

G}, and G4 fall under control of one administrative authority, that authority can arrange

to have G} advertise reachability for networks 2, 3, and 4 (we assume the core system

already knows about network 1 because a core gateway attaches directly to it).

For purposes of routing, a group of networks and gateways controlled by a single

administrative authority is called an autonomous system. Gateways within an auto-

nomous system are free to choose their own mechanisms for discovering, propagating,

validating, and checking the Consistency of routes. Note that, under this definition, the

core gateways themselves form an autonomous system. We said that the original Inter-

net core gateways used GGP to communicate among themselves and that the current In-

Samsung — Exhibit 1016 — Page 241

Samsung - Exhibit 1016 - Page 242

Sec. 14.4 Autonomous System Concept 227

temet core uses SPREAD. The next chapter reviews other protocols autonomous sys-

tems use to propagate routing information.

Conceptually, the autonomous system idea is a straightforward and natural general-

ization of the architecture, depicted by Figure 14.2, with autonomous systems replacing

local area networks. Figure l4.3 illustrates the idea.

To make networks that are hidden inside autonomous systems reachable

throughout the Internet, each autonomous system must agree to advertise network

reachability information to other autonomous systems. Although advertisements can be

sent to any autonomous system, in a core architecture, it is crucial that each autonomous

system propagate information to a core gateway. Usually, one gateway in an auto-

nomous system takes responsibility for advertising routes and interacts directly with one

of the core gateways. It is possible, however, to have several gateways each advertise a
subset of the networks.

Backbone Network

Autonomous

System n

Autonomous

System 2

Autonomous

System 1
Figure 14.3 Architecture of an intemet with autonomous systems at backbone

sites. Each autonomous system consists of multiple networks

and gateways under a single administrative authority.

It may seem that our definition of an autonomous system is vague, but in practice

the boundaries between autonomous systems must be precise to allow automated algo-

rithms to make routing decisions. For example, an autonomous system owned by a cor-

poration may choose not to route packets through an autonomous system owned by

another even though they connect directly. To make it possible for automated routing

algorithms to distinguish among autonomous systems, each is assigned an autonomous

system number by the same central authority that is charged with assigning all Internet

network addresses. When two gateways exchange network reachability information, the

messages carry the autonomous system identifier that the gateway represents.
We can summarize these ideas:

Samsung — Exhibit 1016 — Page 242

Samsung - Exhibit 1016 - Page 243

228 Routing: Autonomous Systems (EGP) Chap. I4

A large TCP/IP internet has additional structure to accommodate ad-

ministrative boundaries.‘ each collection of networks and gateways

managed by one administrative authority is considered to be a single

autonomous system. An autonomous system is free to choose an inter-

nal routing architecture, but must collect information about all its net-

works and designate one or more gateways that will pass the reacha-

bility information to other autonomous systems. Because the connect-

ed Internet uses a core architecture, every autonomous system must

pass reachability information to Internet core gateways.

The next section presents the details of the protocol gateways use to advertise network

reachability. Later sections return to architectural questions to discuss an important res-

triction the protocol imposes on routing. They also show how the Internet model can be
extended.

1

14.5 Exterior Gateway Protocol (EGP)

Two gateways that exchange routing information are said to be exterior neighbors

if they belong to two different autonomous systems, and interior neighbors if they be-

long to the same autonomous system. The protocol exterior neighbors use to advertise

reachability information to other autonomous systems is called the exterior gateway

protocol or EGP, and the gateways using it are called exterior gateways. In the con-

nected Intemet, EGP is especially important because autonomous systems use it to ad-

vertise reachability information to the core system.

Autonomous Autonomous

System 1 System 2
Figure 14.4 Conceptual illustration of two exterior gateways, G, and G_,, us-

ing EGP to advertise networks in their autonomous systems after

collecting the information. As the name implies, exterior gate-

ways are usually close to the outer “edge” of an autonomous
system.

Samsung - Exhibit 1016 - Page 243

Samsung - Exhibit 1016 - Page 244

Sec. 14.5 Exterior Gateway Protocol (EGP) 229

Figure 14.4 illustrates two exterior neighbors using EGP. Gateway G, gathers in-

formation about networks in autonomous system 1 and reports that information to gate-

way G2 using EGP, while gateway G2 reports information from autonomous system 2.

EGP has three main features. First, it supports a neighbor acquisition mechanism

that allows one gateway to request another to agree that the two should communicate

reachability information. We say that a gateway acquires an EGP peer or an EGP

neighbor. EGP peers are neighbors only in the sense that they will exchange routing in-

formation; there is no notion of geographic proximity. Second, a gateway continually

tests whether its EGP neighbors are responding. Third, EGP neighbors periodically ex-

change network reachability infomiation by passing routing update messages.

14.6 EGP Message Header

To accommodate the three basic functions, EGP defines nine message types as the

following table shows:

Description

Requests gateway become a neighbor (peer)

Positive response to acquisition request

Negative response to acquisition request

Requests termination of neighbor relationship

Confirmation response to cease request

EGP Message Type

Acquisition Request

Acquisition Confirm

Acquisition Refuse

Cease Request
Cease Confirm

Hello Requests neighbor to respond it alive

I Heard You Response to hello message

Poll Request Requests network routing update

Routing Update Network reachability information

Error Response to incorrect message

All EGP messages begin with a fixed header that identifies the message type. Fig-
ure 14.5 shows the EGP header format.

16 318

VERSION TYPE CODE STATUS

CHECKSUM AUTONOMOUS SYSTEM NUM.

SEQUENCE NUMBER

Figure 14.5 The fixed header that precedes every EGP message.

Samsung — Exhibit 1016 — Page 244

Samsung - Exhibit 1016 - Page 245

230 Routing: Autonomous Systems (EGP) Chap. 14

The header field labeled VERSION contains an integer that identifies the version of EGP

used to format the message. Receivers check the version number to verify that their
software is using the same version of the protocol. Field TYPE identifies the type of
the message, with the CODE field used to distinguish among subtypes. The STATUS
field contains message—dependent status information. 3

EGP uses a checksum to verify that the message arrives intact. It uses the same i

checksum algorithm as IP, treating the entire EGP message as a sequence of 16-bit in-

tegers, and taking the one’s complement of the one’s complement sum. When perform-

ing the computation, field CHECKSUM is assumed to contain zeros, and the message is

padded to a multiple of 16 bits by adding zeros.

The field labeled AUTONOMOUS SYSTEM NUM. gives the assigned number of

the autonomous system of the gateway sending the message, and the SEQUENCE

NUMBER field contains a number that the sender uses to synchronize messages and re-

plies. A gateway establishes an initial sequence value when acquiring a neighbor and

increments the sequence number each time it sends a message. The neighbor replies

with the last sequence number it received, allowing the sender to match responses to
transmissions.

14.7 EGP Neighbor Acquisition Messages

A gateway sends neighbor acquisition messages to establish EGP communication

with another gateway. Note that EGP does not specify why or how one gateway

chooses another gateway as its neighbor. We assume that such choices are made by the

organizations responsible for administering the gateways and not by the protocol
software.

In addition to the standard header with a sequence number, neighbor acquisition

messages contain initial values for a time interval to be used for testing whether the

neighbor is alive (called a hello interval), and a polling interval that controls the max-

imum frequency of routing updates. The sender supplies a polling interval of n to

specify that the receiver should not poll more often than every n secondsT. The original

sender can change the polling interval dynamically as time passes. Furthermore, the

polling intervals that peers use can be asymmetric, allowing one peer to poll more fre-

quently than another. Figure l4.6 shows the format of acquisition messages and
responses.

Hn practice, most implementations use the polling interval as the exact frequency at which they send poll
requests.

Samsung — Exhibit 1016 — Page 245

Samsung - Exhibit 1016 - Page 246

Sec. 14.7 EGP Neighbor Acquisition Messages 231

16 24 318

CODE <0 to 4)

Figure 14.6 EGP neighbor acquisition message format. Fields beyond the

header specify initial parameters used by the protocol.

The CODE field identifies the specific message as the following table shows:

Code Meaning_

0 Acquisition Request

1 Acquisition Confirm

2 Acquisition Refuse

3 Cease Request
4 Cease Confirm

14.8 EGP Neighbor Reachability Messages

EGP permits two forms of testing whether a neighbor is alive. In active mode,

gateways test neighbors by periodically sending Hello messages along with poll mes-

sages and waiting for responses. In passive mode, a gateway depends on its neighbor to

periodically send hello or poll messages. A gateway operating in passive mode uses in-

formation from the status field of a reachability message (see below) to deduce whether

the peer is alive and whether the peer knows it is alive. Usually both gateways in a pair

operate in active mode.

Separating the calculation of neighbor reachability from routing information ex-

changes is important because it leads to lower network overhead. Because network

routing information does not change as frequently as the status of individual gateway

machines, it need not be passed frequently. FUI'IhCITI‘lOf€, neighbor reachability mes-

sages are small and require little computational overhead, while routing exchange mes-

sages are large and require much computation. Thus, by separating the two tests, neigh-

bors can be tested frequently with minimal computational and communication overhead.

Figure 14.7 shows that neighbor reachability requests consist of only the EGP message
header.

Samsung — Exhibit 1016 — Page 246

Samsung - Exhibit 1016 - Page 247

232 Routing: Autonomous Systems (EGP) Chap. 14

24 31O 16

VERSION TYPE (5) CODE (0 or 1) STATUS

CHECKSUM AUTONOMOUS SYSTEMS NUM.

SEQUENCE NUMBER

Figure 14.7 EGP neighbor reachability message format. Code 0 specifies a
Hello request message, while code 1 specifies an I Heard You
response.

Because it is possible for Hello messages or I Heard You responses to be lost in

transit, EGP uses a form of the k-out-of-n rule to determine whether a peer has changed

from ‘up’ to ‘down’. The best way to think of the algorithm is to imagine a gateway

sending a continuous sequence of Hello messages and receiving 1 Heard You responses,

and think of a window spanning the last 21 exchanges. At least k of the last n exchanges

must fail for the gateway to declare its neighbor down, and at leastj must succeed for

the gateway to declare that the neighbor is up, once it has been declared down. The

protocol standard suggests values for j and k that imply two successive messages must

be lost (received) before EGP will declare the peer down (up).

The hysteresis introduced by j and k have an important effect on the overall perfor-

mance of EGP. As with any routing algorithm, EGP should not propagate unnecessary

changes. The reason is simple: changes do not stop after a gateway propagates them to

its EGP peer. The peer may propagate them on to other gateways as well. Minimizing

rapid route changes is especially crucial when an EGP peer uses a vector—distance algo-

rithm to propagate changes because continual changes can make vector—distance algo-

rithms unstable. Thus, if exterior gateways report changes of reachability whenever a

message is lost, they can cause the routing system to remain in continual transition.

14.9 EGP Poll Request Messages

EGP poll request and poll response messages allow a gateway to obtain network

reachability information. Figure ‘14.8 shows the message format. The field labeled IP

SOURCE NETWORK specifies a network common to the autonomous systems to which

both gateways attach. The response will contain routes that have distances measured

with respect to gateways on the specified IP source network.

Samsung — Exhibit 1016 — Page 247

Samsung - Exhibit 1016 - Page 248

Sec. l4.9 EGP Poll Request Messages 233

O 8 16 24 31

VERSION CODE(0or1)

Figure 14.8 EGP poll message format. Code 0 specifies a Hello request mes-

sage, while code 1 specifies an I Heard You response.

It may be difficult to understand why EGP chooses to make a polling request

specify a source network. There are two reasons. First, recall that a gateway connects

to two or more physical networks. If an application on the gateway implements EGP, it

may not know over which interface EGP requests arrive. Thus, it may not know to

which network the request refers. Second, gateways that run EGP often collect infor-

mation for an entire autonomous system. When advertising network reachability, the

exterior gateway sends neighbors a set of pairs that each specify a destination network

in the autonomous system and the gateway used to reach that destination. Of course,

the gateway used to reach a destination depends on where traffic enters the autonomous

system. The source network mentioned in the polling request specifies the point at

which packets will enter the autonomous system. Figure 14.9 illustrates the idea of a
common network used as a base for network reachability information.

Figure 14.9 Gateways in two autonomous systems using EGP to communi-

cate network reachability information. A reachability message

specifies gateways on a network common to both systems and
destinations reachable via those gateways.

Samsung — Exhibit 1016 — Page 248

Samsung - Exhibit 1016 - Page 249

234 Routing: Autonomous Systems (EGP) Chap. 14

14.10 EGP Routing Update Messages

An exterior gateway sends a routing update message to convey information about

reachable networks to its EGP neighbor. Usually, the gateway has collected the infor-

mation and is making that information available to a gateway in another autonomous

system. In principle, a gateway running EGP could report two types of reachability to a

peer. The first type consists of destination networks that are reachable entirely within

the gateway’s autonomous system. The second type consists of destination networks

that the gateway has learned about, but which lie beyond the gateway’s autonomous

system boundary.

It is important to understand that EGP does not permit an arbitrary gateway to ad-

vertise reachability to an arbitrary destination network. The restriction limits gateways

to advertising only those destinations for which it is an authority. That is:

EGP restricts a (noncore) gateway to advertise only those networks

reachable entirely from within its autonomous system.

This rule, sometimes called the EGP third party restriction is intended to control the

propagation of information and allow each autonomous system to choose exactly how it

advertises reachability. For example, if each university campus forms an autonomous

system, a gateway on a given university campus might collect information about net-

works on that campus and advertise them to the Internet core, but it would not advertise

routes to networks on other campuses. Naturally, the restriction does not apply to the
core system.

Figure 14.10 illustrates the format of a routing update message. The fields labeled

INT. GWYS and # EXT. GWYS give the number of interior and exterior gateways ap-

pearing in the message. Distinguishing between interior and exterior gateways allows

the recipient to know whether distances are comparable. Unfortunately, it is impossible

to make such a distinction based on gateway addresses alone, and there is no provision

in the message for such a distinction. In practice, EGP implementations overcome the

problem by sending separate update messages for interior and exterior gateways. The

field labeled IP SOURCE NETWORK gives the network from which all reachability is

measured. _
In a sense, EGP routing update messages are a generalization of GGP routing up-

date messages because they accommodate multiple gateways instead of a single gate-

way. Thus, the fields of the routing update message following the IP SOURCE NET-

WORK form a sequence of blocks, where each block gives reachability information for

one of the gateways on the source network. A block begins with the IP address of a

gateway. The networks reachable from that gateway are listed along with their distance.

Like GGP, EGP groups networks into sets based on “distance.” For each distance,
there is a count of networks at that distance followed by the list of network addresses.

After the list of all networks at a given distance, the pattern is repeated for all distance
values.

Samsung — Exhibit 1016 — Page 249

Samsung - Exhibit 1016 - Page 250

Sec. 14.10 EGP Routing Update Messages 235

16 24 318

VERSION STATUS

#EXT-GWYS

#DlSTANCES

DISTANCE D,,

DISTANCE Du # NETS AT D,,

NETWORK 1 AT DISTANCE D,,

NETWORK 2 AT DISTANCE D,,

DISTANCES

DISTANCE D,“

LAST NET AT LAST DISTANCE FOR GATEWAY N

Figure 14.10 EGP routing update message format. All routes are given rela-

tive to a specified network. The message lists gateways on that

network and the distance of destinations through each. Network
addresses contain 1, 2, or 3 octets.

14.11 Measuring From The Receiver’s Perspective

Unlike most protocols that propagate routing information, EGP does not report its

own costs for reaching destination networks. Instead, it measures distances from the

common source network so all distances are correct from the pecr’s perspective. Figure
14.11 illustrates the idea.

Samsung — Exhibit 1016 — Page 250

Samsung - Exhibit 1016 - Page 251

236 Routing: Autonomous Systems (EGP) Chap. 14

To neighbor in other Autonomous System

SOURCE NETWORK

Figure 14.11 Example of an autonomous system. Gateway G_. runs EGP and

reports distances to all networks measured from the source net-
work, not from its own routing table.

In the example of Figure 14.11, gateway G2 has been designated to run EGP on

behalf of the autonomous system. It must report reachability to networks I through 4.

It reports network 1 as reachable through gateway G,, networks 3 and 4 as reachable

through gateway G3, and network 2 as reachable through G2. From G2’s perspective,

network 2 lies at distance 0. However, it reports network 2 at distance 1, its distance
from the source network.

14.12 The Key Restriction Of EGP

We have already seen that EGP restricts gateways, allowing them to advertise only

those destination networks reachable entirely within the gateway’s autonomous system.

However, there is a more fundamental limitation imposed by EGP:

Samsung — Exhibit 1016 — Page 251

al

to

in

Samsung - Exhibit 1016 - Page 252

Sec. 14.12
 The Key Restriction Of EGP

EGP does not interpret any of the distance metrics that appear in

routing update messages.

The rules specify that a value of 255 means the network is unreachable, but other values

are only comparable if they refer to gateways in the same autonomous system. In

essence, EGP uses the distance field to specify whether a path exists; the value cannot

be used to compute the shorter of two routes unless those routes are both contained

within a single autonomous system.

We can now see why a gateway in one autonomous system should not advertise

reachability to networks in another autonomous system (i.e., why the third party rule ex-

ists). The essential observation is this: when a gateway learns of a network in another

autonomous system, it does not obtain a universally accepted measure of distance.

Therefore, it should not pass that measure on. Advertising reachability with EGP is

equivalent to saying, “My autonomous system provides the path to this network.”

There is no way for the gateway to say, “My autonomous system provides one possible

path to this network.”

Looking at interpretation of distances another way allows us to realize that EGP

cannot be used as a routing algorithm. In particular, even if a gateway learns about two

different routes to the same network, it cannot know which is shorter. Without routing

information, we must be careful to advertise only the route we want traffic to follow.

As a result, there is only one path from the core to any network. We can summarize:

Because EGP only propagates reachability information, it restricts the

topology of any internet using EGP to a tree structure in which a core

system forms the root; there are no loops among other autonomous

systems connected to it.

The key point here is that the current lntemet architecture uses a tree—shaped topology,

and it cannot change until EGP changes.

The restriction on EGP that produces a tree structure results partially from the his-

torical evolution of the lntemet centered around the ARPANET. Although it may seem

innocuous, the restriction has some surprising consequences:

1. Universal connectivity fails if the core gateway system fails. Of course, it is

unlikely the entire lntemet core will fail simultaneously, but there have been

interesting examples of minor failures. In particular, on several occasions

the rapid growth of the lntemet resulted in table overflows in core gateways,

preventing EGP from successfully installing routes to new networks. Those
network addresses that could not be installed in the core tables were un-

reachable from many parts of the lntemet.

2. EGP can only advertise one path to a given network. That is, at any given

instant, all traffic routed from one autonomous system to a network in

another will traverse one path, even if multiple physical connections are

Samsung — Exhibit 1016 — Page 252

Samsung - Exhibit 1016 - Page 253

238 Routing: Autonomous Systems (EGP) Chap. 14 Sec

present. Also note that an outside autonomous system will only use one re— 14

turn path even if the source system divides outgoing traffic among two or

more paths. As a result, delay and throughput between a pair of machines

can be asymmetric, making an intemet difficult to monitor or debug. Ce;

3. EGP does not support load sharing on gateways between arbitrary auto- dc]

nomous systems. If two autonomous systems have multiple gateways Con- an

necting them, one would like to balance the traffic equally between all gate— am

ways. EGP allows autonomous systems to divide the load by network (eg,

to partition themselves into multiple subsets and have multiple gateways ad- chi

vertise partitions), but it does not support more general load sharing. 501

4. As a special case of point 3, EGP is inadequate for optimal routing in an ar- dif

chitecture that has multiple backbone networks interconnected at multiple ' re]

points. For example, the NSFNET and DDN backbone interconnection rot

described in Chapter 13 cannot use EGP alone to exchange routing inforrna— [er

tion if routes are to be optimal. Instead, managers manually divide the set me

of NSFNET networks and advertise some of them to one exterior gateway tra

and others to a different gateway.

5. It is difficult to switch to alternate physical paths if one fails, especially

when the paths cross two or more autonomous systems. Because EGP does ‘ll

not interpret distances, third parties cannot advertise routes and rely on the l

receiver to switch to an alternate route if one fails. Instead, responsibility
for selecting the least cost route falls to the exterior gateways that advenise est

reachability. tot
It
mi

14.13 Technical Problems wz

EGP has several weaknesses, many of which are trivial technicalities. The of

weaknesses must be repaired before EGP can support the rapidly expanding Internet cn- in;

vironment. The latest attempt to fix some of these problems has concentrated on the Tl

most pressing: reducing the size of update messages. Recall from Figure 14.10 that up- ca

date messages contain long lists of networks. For large autonomous systems with many i va

gateways and networks, the size of a single EGP routing update message can exceed lg ac
gateway or network capacity. In the past, not all gateways handled fragmentation and 1 tr?
reassembly, so it was sometimes impossible to transfer routing update messages. A pa

new version of the protocol is needed that will allow the sender to divide routing up- U2

dates into multiple messages. ‘ OU
Although many technical problems have been identified, several attempts to pro DC

duce a new version of EGP have failed. The efforts called EGP2 and EGP3 were both PIC

dropped after participants were unable to agree on approaches and details. While ex— I61
ploring possibilities, the working groups discussed EGP replacements and decided that bC

because so many fundamental changes were needed, simple improvements would be [0
inadequate. Consequently, EGP remains in use unchanged. : in

I, CC
I’ _
l
' da

Samsung — Exhibit 1016 — Page 253

Samsung - Exhibit 1016 - Page 254

Sec. 14.14 Decentralization Of The Internet Architecture 239

14.14 Decentralization Of The Internet Architecture

Two important architecture questions remain unanswered. The first focuses on

centralization: how can an intemet architecture be modified to further remove depen-

dence on a (centralized) core gateway system? The second concerns levels of trust: can

an intemet architecture be expanded to allow closer cooperation (trust) between some

autonomous systems than among others?

Removing all dependence on a core system will not be easy. Although TCP/IF ar-

chitectures continue to evolve, centralized roots are evident in many protocols. As more

software is built using existing protocols, inertia increases and change becomes more

difficult and expensive. More important, because the connected lntemet core system is

reliable, supported by a professional staff, and uses automated mechanisms to update

routing information, there is little motivation for change. Finally, as the size of an in-

temet grows, so does the volume of routing information that gateways must keep. A

mechanism must be found to limit the information needed by each node, or the update
traffic will inundate the network.

14.15 Beyond Autonomous Systems

Extending the notions of trust between autonomous systems is complex. The easi-

est step is to group autonomous systems hierarchically. Imagine, for example, three au-

tonomous systems in three separate academic departments on a large university campus.

It is natural to group these three together because they share administrative ties. The

motivation for hierarchical grouping comes primarily from the notion of trust. Gate-

ways within a group trust one another with a high level of confidence.

Grouping autonomous systems requires only minor changes to EGP. New versions

of EGP must agree to use an artificial scaling factor when reporting hop counts, allow-

ing counts to be increased when passed across the boundary from one group to another.

The technique, loosely called metric transformation, partitions distance values into three

categories. For example, suppose gateways within an autonomous system use distance

values less than 128. We could make the rule that when passing distance information

across an autonomous system boundary within a single group, the distances must be

transformed into the range of 128 to 191. Finally, we could make the rule that when

passing distance values across the boundary between two groups, the values must be

transformed into the range of 192' to 254T. The effect of such transformations is obvi-

ous: for any given destination network, any path that lies entirely within the auto-

nomous system is guaranteed to have lower cost than a path that strays outside the auto-

nomous system. Furthermore, among all paths that stray outside the autonomous sys-

tem, those that remain within the group have lower cost than those that cross group

boundaries. The key advantage of metric transformations is that they use an extant pro-

tocol, EGP. Transformations allow an autonomous system manager freedom to choose

internal distance metrics, yet make it possible for other systems to compare routing
costs.

tThe term autonomous (‘0nfedcI'aIi0H has been used to describe a group of autonomous systems: houn-
daries of autonomous Confederations correspond to transfomiations beyond l9l.

Samsung — Exhibit 1016 — Page 254

Samsung - Exhibit 1016 - Page 255

240 Routing: Autonomous Systems (EGP) Chap. 14

14.16 Summary

The Internet is composed of a set of autonomous systems, where each autonomous

system consists of gateways and networks under one administrative authority. Auto~

nomous systems use the Exterior Gateway Protocol to advertise routes to other auto-

nomous systems. Specifically, an autonomous system must advertise reachability of its

networks to another system before its networks are reachable from sources within that

system. We saw that EGP supports three basic functions: neighbor (peer) acquisition,

testing neighbor reachability, and advertising reachability to neighbors.

The connected Internet architecture consists of a central, connected piece (built

around the ARPANET and NSFNET backbone), with autonomous systems connected to

the center in a tree structure topology. The Internet core gateway system is part of the

central piece, while the “fringe” consists of local area networks that have only a single

connection to the rest of the Internet. Moving from a centralized architecture to a com-

pletely distributed one requires substantial changes in protocols like EGP.

FOR FURTHER STUDY

Mills [RFC 904] contains the formal EGP protocol specification. An early version of

EGP is given in Rosen [RFC 827], which also discusses the restriction to tree structured

topologies. Additional background can be found in the early gateway documents by
Seamonson and Rosen [RFC 888], and Mills [RFC 975]. Braden and Postel [RFC

1009] discusses requirements for Internet gateways and outlines some of the problems

with EGP (also see the predecessor, in RFC 985). Lougheed and Rekhter [RFC 1105]

presents BGP, the EGP-like protocol used between NSFNET mid-level networks and

the backbone. Finally, Kirton [RFC 911] describes the widely used implementation of

EGF‘ that runs under Berkeley 4.3 BSD UNIX.

EXERCISES

14.1 If your site connects to the Internet, find out if any gateways advertise routes to the core
gateway system.

14.2 Implementations of EGP use a “hold down” mechanism that causes the protocol to de-
lay accepting an acquisition request from a neighbor for a fixed time following the re»
ceipt of a cease request message from that neighbor. Read the protocol specification to
find out why.

14.3 For the networks in Figure 14.2, which machinc(s) should run EGP‘? Why?

14.4 The fonnal specification of EGP includes a finite state machine that explains how EGP

operates. Why does a confirm message take the EGP finite state machine from the ac-
quisiti()rz state to the down state, instead of from the acquisition state to the up state?

Samsung — Exhibit 1016 — Page 255

Samsung - Exhibit 1016 - Page 256

Exercises 241

14.5 What happens if a gateway in an autonomous system sends EGP routing update mes-
sages to a gateway in another autonomous system, claiming to have reachability for
every possible intemet destination?

y _p 14.6 Can two autonomous systems establish a routing loop by sending EGP updates messages
' :3 to one another? Explain.

14.7 Should gateways treat EGP separately from their own routing tables? For example,
should a gateway ever advertise reachability if it has not installed a route to that network

in its routing table? Why or why not?

14.8 Read RFC H05 and compare BGP to EGP.

Samsung — Exhibit 1016 — Page 256

Samsung - Exhibit 1016 - Page 257

15

Routing: Interior Gateway

Protocols (RIP, OSPF,

HELLO)

15.1 Introduction

The previous chapter introduced the autonomous system concept and examined the

Exterior Gateway Protocol that a gateway uses to advertise networks within its system

to other autonomous systems. This chapter completes our overview of intemet gateway

routing by examining how a gateway in an autonomous system learns about other net-
works within its autonomous system.

15.2 Static Vs. Dynamic Interior Routes

Two gateways within an autonomous system are said to be interior to one another.

For example, two Internet core gateways are interior to one another because the core

forms a single autonomous system. Two gateways on a university campus are con-

sidered interior to one another as long as machines on the campus are collected into a

single autonomous system.

How can gateways in an autonomous system learn about networks within the auto-

nomous system? In small, slowly changing intemets, managers can establish and modi-

fy gateway routes by hand. The administrator keeps a table of networks and updates
the table whenever a new network is added to, or deleted from, the autonomous system.

For example, consider the small corporate intemet shown in Figure 15.1. Routing for

243

Samsung — Exhibit 1016 — Page 257

Samsung - Exhibit 1016 - Page 258

244 Routing: Interior Gateway Protocols (RIP, OSPF, HELLO) Chap. 15

such an intemet is trivial because only one path exists between any two points. The

manager can manually configure routes in all hosts and gateways. If the intemet

changes (e.g., a new network is added), the manager must reconfigure the routes in all
machines.

Net 1

Net 4 Net 5

Figure 15.1 An example of a small intemet consisting of 5 Ethemets and 4
gateways at a single site. Only one possible route exists

between any two hosts in this intemet.

The disadvantages of a manual system are obvious; manual systems cannot accom-

modate rapid growth or rapid change. In large, rapidly changing environments like the

Internet, humans simply cannot respond to changes fast enough to handle problems and

automated methods must be used. Automated methods can also help improve robust-

ness and response to failure in small intemets that have alternate routes. To see how,

consider what happens if we add one additional gateway to the intemet in Figure 15.1,

producing the intemet shown in Figure 15.2.

In intemet architectures that have multiple physical paths, managers usually choose

one to be the primary path. If the gateways along the primary path fail, routes must be

changed to send traffic along an alternate path. Changing routes manually is both time

consuming and error—prone. Thus, even in small intemets, an automated system should

be used to change routes quickly and reliably.

Samsung — Exhibit 1016 — Page 258

fiQ.0Q
tl

Samsung - Exhibit 1016 - Page 259

Sec. 15.2 Static Vs. Dynamic Interior Routes 245

Net 1

Net 4 Net 5

Figure 15.2 The addition of gateway G5 introduces an alternate path between
networks 2 and 3. Routing software can quickly adapt to failure

of one gateway and automatically switch routes to the alternate

path.

To automate the task of keeping network reachability information accurate, interior

gateways usually communicate with one another, exchanging either network reachability

data or network routing information from which reachability can be deduced. Once the

reachability information for an entire autonomous system has been assembled, one of

the gateways in the system can advertise it to other autonomous systems using EGP.

Unlike exterior gateway communication, for which EGP provides a widely accept-

ed standard, no single protocol has emerged for use within an autonomous system. Part

of the reason for diversity comes from varied topologies and technologies used in auto-

nomous systems. Another part of the reason stems from the lack of an early standard

that was both functionally adequate and well-defined. As a result, a handful of proto-

cols have become popular; most autonomous systems use one of them exclusively to

propagate routing information internally.

Because there is no single standard, we use the term interior gateway protocol or

IGP as a generic description that refers to any algorithm that interior gateways use

when they exchange network reachability and routing information. For example, the

Butterfly core gateways form a somewhat specialized autonomous system that uses

SPREAD as its Interior Gateway Protocol. Some autonomous systems use EGP as their

IGP, although this seldom makes sense for small autonomous systems that span local

area networks with broadcast capability.

Figure 15.3 illustrates an autonomous system using an 1GP to propagate reachabili-

ty among interior gateways.

Samsung — Exhibit 1016 — Page 259

Samsung - Exhibit 1016 - Page 260

246 Routing: Interior Gateway Protocols (RIP, OSPF, HELLO) Chap. 15

EGP

Figure 15.3 Conceptual view of two autonomous systems each using its own

IGP internally but using EGP to communicate between an exte-

rior gateway and the other system.

In the figure, IGP, refers to the interior gateway protocol used within autonomous

system 1, and IGPZ refers to the protocol used within autonomous system 2. The figure

also illustrates an important idea:

A single gateway may use two different routing protocols simultane—

ously, one for communication outside its autonomous system and

another for communication within its autonomous system.

In particular, gateways that run EGP to advertise reachability usually also need to run

an IGP to obtain information from within their autonomous system.

15.3 Routing Information Protocol (RIP)

One of the most widely used IGPs is the Routing Information Protocol (RIP), also

known by the name of a program that implements it, routedi. The routed software was

originally designed at the University of California at Berkeley to provide consistent

routing and reachability information among machines on their local networks. It relies

on physical network broadcast to make routing exchanges quickly. It was never intend-

ed to be used on large, long haul networks (although it now is).

Based on earlier intemetworking research done at Xerox Corporation‘s Palo Alto

Research Center (PARC), routed implements a protocol derived from the Xerox NS

Routing Information Protocol (RIP), but generalizes it to cover multiple families of net-
works.

Despite minor improvements over its predecessors, the popularity of RIP as an IGP

does not arise from its technical merits. Instead, it is the result of Berkeley distributing

routed software along with their popular 4BSD UNIX systems. Thus, many TCP/IP

’rThe name comes from the UNIX convention of attaching “d" to the names of daemon processes; it is
pronounced “route—d".

Samsung — Exhibit 1016 — Page 260

__fl_‘___,—..~.»......‘—.~-.-—..._....»

Samsung - Exhibit 1016 - Page 261

Sec. 15.3 Routing Information Protocol (RIP) 247

sites adopted and installed routed and started using RIP without even considering its

technical merits or limitations. Once installed and running, it became the basis for local

routing, and research groups adopted it for larger networks. For example, the Cypress

network, described in Chapter 2, uses RIP to propagate network reachability among all
its machines.

Perhaps the most startling fact about RIP is that it was built and widely adopted

before a formal standard was written. Most implementations were derived from the

Berkeley code, with interoperability among them limited by the programmer’s under-

standing of undocumented details and subtleties. As new versions appeared, more prob-

lems arose. An RFC standard finally appeared in June 1988.

The underlying RIP protocol is a straightforward implementation of vector—distance

routing for local networks. It partitions participants into active and passive (silent)

machines. Active gateways advertise their routes to others; passive machines listen and

update their routes based on advertisements, but do not advertise. Typically, gateways

run RIP in active mode, while hosts use passive mode.

A gateway running RIP in active mode broadcasts a message every 30 seconds.

The message contains information taken from the gateway’s current routing database.

Each message consists of pairs, where each pair contains an IP network address and an

integer distance to that network. RIP uses a hop count metric to measure the distance to

a destination. In the RIP metric, a gateway is defined to be one hopT from directly con-

nected networks, two hops from networks that are reachable through one other gateway,

and so on. Thus, the number of hops or the hop count along a path from a given source

to a given destination refers to the number of gateways that a datagram encounters

along that path. It should be obvious that using hop counts to calculate shortest paths

does not always produce optimal results. For example, a path with hop count 3 that

crosses three Ethemets may be substantially faster than a path with hop count 2 that

crosses two slow speed serial lines. To compensate for differences in technologies,

many RIP implementations use artificially high hop counts when advertising connec-
tions to slow networks.

Both active and passive RIP participants listen to all broadcast messages and up-

date their tables according to the vector—distance algorithm described earlier. For exam-

ple, in the intemet of Figure 15.2, gateway G, will broadcast a message on network 2

that contains the pair (1,1), meaning that it can reach network 1 at cost 1. Gateways G2

and G5 will receive the broadcast and install a route to network 1 through G, (at cost 2).

Later, gateways G2 and G5 will include the pair (1,2) when they broadcast their RIP
messages on network 3. Eventually, all gateways and hosts will install a route to net-
work I .

RIP specifies a few rules to improve performance and reliability. For example,

once a gateway learns a route from another gateway, it must keep that route until it

learns of a better one. In our example, if gateways G2 and G5 both advertise network 1

at cost 2, gateways G, and G4 will install a route through the one that happens to adver-
tise first. We can summarize:

TRIP is somewhat unusual: many other protocols define direct connections to have cost zero.

Samsung — Exhibit 1016 — Page 261

Samsung - Exhibit 1016 - Page 262

248 Routing: Interior Gateway Protocols (RIP, OSPF, HELLO) Chap. 15

To prevent routes from oscillating between two or more equal cost

paths, RIP specifies that existing routes should be retained until a new

route has strictly lower cost.

What happens if the first gateway to advertise a route fails (e.g., if it crashes)?

RIP specifies that all listeners must timeout routes they learn via RIP. When a gateway
installs a route in its table, it starts a timer for that route. The timer must be restarted

whenever the gateway receives another RIP message advertising the route. The route

becomes invalid if 180 seconds pass without the route being advertised again.

RIP must handle three kinds of errors caused by the underlying algorithm. First,

because the algorithm does not explicitly detect routing loops, RIP must either assume

participants can be trusted or take precautions to prevent such loops. Second, to prevent

instabilities RIF must use a low value for the maximum possible distance (RIP uses 16).

Thus, managers must use an alternative protocol for intemets in which legitimate hop

counts approach 16. (Indeed, the small limit on hop counts makes RIP unsuitable for

the largest corporate intemets.) Third, the vector-distance algorithm used by RIP

creates a slow convergence or count to infinity problem in which inconsistencies arise,

because routing update messages propagate slowly across the network. Choosing a

small infinity (16) helps limit slow convergence, but does not eliminate it.

Routing table inconsistency is not unique to RIP. It is a fundamental problem that

occurs with any vector-distance protocol in which update messages carry only pairs of

destination network and distance to that network. To understand the problem consider

the set of gateways shown in Figure 15.4. The figure depicts routes to network 1 for

the intemet shown in Figure 15.2.

(a)

HE E
(b)

Figure 15.4 The slow convergence problem. In (a) three gateways each have
a route to network 1. In (b) the connection to network 1 has

vanished, but G_, causes a loop by advertising it.

Samsung — Exhibit 1016 — Page 262

........,-.._...--....—.._....__...—._.........4.

Samsung - Exhibit 1016 - Page 263

Sec. l5.3 Routing Information Protocol (RIP) 249

As the figure shows, gateway G, has a direct connection to network 1, so it has a

route in its table with distance I; it includes the route in its periodic broadcasts. Gate-

way G2 has learned the route from G,, installed the route in its routing table, and adver-

tises the route at distance 2. Finally, G3 has learned the route from G2 and advertises it
at distance 3.

Now suppose that G,’s connection to network 1 fails. G, will update its routing

table immediately to make the distance 16 (infinity). In the next broadcast, G, will re-

port the higher cost route. However, unless the protocol includes extra mechanisms to

prevent it, some other gateway could broadcast its routes before G1. In particular, sup-

pose G2 happens to advertise routes just after G,’s connection fails. If so, G, will re-

ceive G2’s message and follow the usual vector-distance algorithm: it notices that G2 has

advertised a route to network 1 at lower cost, calculates that it now takes 3 hops to

reach network 1 (2 for G2 to reach network 1 plus 1 to reach G2), and installs a new

route through G2. Figure l5.4b depicts the result. At this point, if either G, or G2 re-

ceives a datagram destined for network 1, they will route the datagram back and forth

until its time-to—live counter expires.

Subsequent RIP broadcasts by the two gateways do not solve the problem quickly.

In the next round of routing exchanges, G, broadcasts its routing table entries. When

G2 learns that G,’s route to network 1 has length 3, it calculates a new length for its

route, making it 4. In the third round, G, receives a report of the increase from G2 and

increases the distance in its table to 5. They continue counting to RIP infinity.

15.3.1 Solving The Slow Convergence Problem

For the example in Figure 15.4, it is possible to solve the slow convergence prob-

lem by using a technique known as split horizon update. When using split horizons, a

gateway records the interface over which it received a particular route and does not pro-

pagate its information about that route back over the same interface. In the example,

gateway G2 would not advertise its length 2 route back to gateway G,, so when G, loses

connectivity to network 1, it would stop advertising a route. After a few rounds of rout-

ing updates, all machines would agree that the network is unreachable. However, split-

ting the horizon does not cover all topologies as one of the exercises suggests.

Another way to think of the slow convergence problem is in terms of information

flow. If a gateway advertises a short route to some network, all receiving gateways

respond quickly to install that route. If a gateway stops advertising a route, the protocol

must depend on a timeout mechanism before it considers the route unreachable. Once

the timeout occurs, the gateway finds an alternative route and starts propagating that in-

formation. Unfortunately, a gateway cannot know if the alternate route depended on the

route that just disappeared. Thus, negative information does not always propagate

quickly. A short epigram captures the idea and explains the phenomenon:

Good news travels quickly; bad news travels slowly.

Samsung — Exhibit 1016 — Page 263

Samsung - Exhibit 1016 - Page 264

250 Routing: Interior Gateway Protocols (RIP, OSPF, HELLO) Chap. 15

Another technique used to solve the slow convergence problem employs hold

down. Hold down forces a participating gateway to ignore information about a network

for a fixed period of time following receipt of a message that claims the network is un-

reachable. Typically, the hold down period is set to 60 seconds. The idea is to wait

long enough to ensure that all machines receive the bad news and not to mistakenly ac-

cept a message that is out of date. It should be noted that all machines participating in

a RIP exchange need to use identical notions of hold down, or routing loops can occur.

The disadvantage of a hold down technique is that if routing loops occur, they will be

preserved for the duration of the hold down period. More important, the hold down

technique preserves all incorrect routes during the hold down period, even when altema—
tives exist.

A final technique for solving the slow convergence problem is called poison re-

verse. Once a connection disappears, the gateway advertising the connection retains the

entry for several update periods, and includes an infinite cost in its broadcasts. To

make poison reverse most effective, it must be combined with triggered updates. Trig-

gered updates force a gateway to send an immediate broadcast when receiving bad

news, instead of waiting for the next periodic broadcast. By sending an update immedi-

ately, a gateway minimizes the time it is vulnerable to believing good news.

Unfortunately, while triggered updates, poison reverse, hold down, and split hor-

izon techniques all solve some problems, they introduce others. For example, consider

what happens with triggered updates when many gateways share a common network. A

single broadcast may change all their routing tables, triggering a new round of broad-

casts. If the second round of broadcasts changes tables, it will trigger even more broad-
casts. A broadcast avalanche can result.

The use of broadcast, potential for routing loops, and use of hold down to prevent

slow convergence can make RIP extremely inefficient in a wide area network. Broad-

casting always takes substantial bandwidth. Even if no avalanche problems occur, hav-

ing all machines broadcast periodically means that the traffic increases as the number of

gateways increases. The potential for routing loops can also be deadly when line capa-

city is limited. Once lines become saturated by looping packets, it may be difficult or

impossible for gateways to exchange the routing messages needed to break these loops.

Also, in a wide area network, hold down periods are so long that the timers used by

higher level protocols can expire and lead to broken connections. Despite these well

known problems, many groups continue to use RIP as an IGP in wide area networks.

15.3.2 RIP Message Format

RIP messages can be broadly classified into two types: routing information mes-

sages and messages used to request information. Both use the same format which con-

sists of a fixed header followed by an optional list of network and distance pairs. Fig-

ure 15.5 shows the message format:

Samsung — Exhibit 1016 — Page 264

Samsung - Exhibit 1016 - Page 265

-’.t‘4;it«.«:‘.-r_{'._‘,9,_
Sec. 15.3 Routing Information Protocol (RIP) 251

O

8 16 24 31

«wt

T

Figure 15.5 The format of a RIP message. After the 32-bit header, the mes-

sage contains a sequence of pairs, where each pair consists of a
network I? address and an integer distance to that network.

In the figure, field COMMAND specifies an operation according to the following
table:

Command Meaning

1 Request for partial or full routing information

2 Response containing network-distance pairs from

sender’s routing table

3 Turn on trace mode (obsolete)

4 Turn off trace mode (obsolete)

5 Reserved for Sun Microsystems internal use

A gateway or host can ask another gateway for routing infomtation by sending a re-

quest command. Gateways reply to requests using the response command. In most

cases, however, gateways broadcast unsolicited response messages periodically.

Field VERSION contains the protocol version number (currently 1), and is used by

the receiver to verify it will interpret the message correctly.

Samsung — Exhibit 1016 — Page 265

Samsung - Exhibit 1016 - Page 266

252 Routing: Interior Gateway Protocols (RIP, OSPF, HELLO) Chap. l5

15.3.3 RIP Addressing conventions

The generality of RIP is also evident in the way it transmits network addresses.

The address format is not limited to use by TCP/IP; it can be used with multiple net-

work protocol suites. As Figure 15.5 shows, each network address reported by RIP can

have an address of up to 14 octets. Of course, IP addresses need only 4, so the remain-

ing octets are zero. The field labeled FAMILY OF NET i identifies the protocol family

under which the network address should be interpreted. RIP uses values assigned to ad-

dress families under the 4BSD UNIX operating system (IP addresses are assigned value
2).

In addition to normal IP addresses, RIP uses the convention that address 0.0.0.0

denotes a default route. RIP attaches a distance metric to every route it advertises, in-

cluding default routes. Thus, it is possible to arrange for two gateways to advertise a

default route (i.e., a route to the rest of the intemet) at different metrics, making one of

them a primary path and the other a backup.

The final field of each entry in a RIP message, DISTANCE T0 NET 1', contains an

integer count of the distance to the specified network. Distances are measured in gate-

way hops, but values are limited to the range I through 15, with distance 16 used to

signify infinity (i.e., no route exists).

15.3.4 Transmitting RIP Messages

RIP messages do not contain an explicit length field. Instead, RIP assumes that

the underlying delivery mechanism will tell the receiver the length of an incoming mes-

sage. In particular, when used with TCP/IP, RIP messages rely on UDP to tell the re-

ceiver the message length. RIP operates on UDP port 520. Although a RIP request can

originate at other UDP ports, the destination UDP port for requests is always 520, as is

the source port from which RIP broadcast messages originate.

Using RIP as an interior gateway protocol limits routing to a metric based on hop

counts. Often, hop counts provide only a crude measure of network response or capaci-

ty that does not produce optimal routes. Furthermore, computing routes on the basis of

minimum hop counts has the severe disadvantage that it makes routing relatively static

because routes cannot respond to changes in network load.

15.4 The Hello Protocol

The HELLO protocol provides an example of an IGP that uses a routing metric

based on network delay instead of hop count. HELLO is significant in the history of

the Internet because it was the IGP used among the original NSFNET backbone “fuzz-

ball" gateways. It is significant to us because it provides an example of a vector-

distance algorithm that does not use hop counts.

Samsung — Exhibit 1016 — Page 266

...,__.....__-—-—~..-~—...,.-.,....T~N~

Samsung - Exhibit 1016 - Page 267

Sec. 15.4 The Hello Protocol 253

HELLO provides two functions: it synchronizes the clocks among a set of

machines, and it allows each machine to compute shortest delay paths to destinations.

Thus, HELLO messages carry timestamp information as well as routing information.

The basic idea behind HELLO is simple: each machine participating in the HELLO ex-

change maintains a table of its best estimate of the clock in neighboring machines. Be-

fore transmitting a packet, a machine adds its timestamp by copying the current clock

value into the packet. When a packet arrives, the receiver computes the current delay

on the link. To do so, the receiver subtracts the timestamp on the incoming packet from

its estimate for the current clock in the neighbor. Periodically, machines poll their

neighbors to reestablish estimates for clocks.

HELLO messages also allow participating machines to compute new routes. The

algorithm works much like RIP, but uses delays instead of hop count. Each machine

periodically sends its neighbor a table of estimated delays for all other machines. Sup-

pose machine A sends machine B a routing table that specifies destinations and delays.

B examines each entry in the table. If B’s current delay to reach a given destination, D,

is greater than the delay from A to D plus the delay from B to A, B changes its route

and sends traffic to D via A. That is, B routes traffic to A as long as taking that path

shortens the delay.

As in any routing algorithm, HELLO cannot change routes too rapidly, or it would

become unstable. Instabilities in routing algorithms produce a two-stage oscillation ef-

fect in which traffic switches back and forth between alternate paths. In the first stage,

the machines find a lightly loaded path and abruptly switch their traffic onto it, only to

find that it becomes completely overloaded. In the second stage, the machines switch

traffic away from the overloaded path, only to find that it becomes the least loaded path,

and the cycle continues. Such oscillations do occur. To avoid them, implementations

of HELLO choose to change routes only when the difference in delays is large.

Figure 15.6 shows the HELLO message format. The protocol is more complex

than the message format shows because it distinguishes local network connections from

those multiple hops away, times out stale entries in its routing tables, and uses local
identifiers for hosts instead of full IP addresses.

Samsung — Exhibit 1016 — Page 267

Samsung - Exhibit 1016 - Page 268

254 Routing: Interior Gateway Protocols (RIP, OSPF, HELLO) Chap. 15

1 6 24 31

TIME

HOSTS

OFFSET,

DELAY" OFFSET"

Figure 15.6 The format of HELLO messages. Each message carries an entry

for the date and time as well as a timestamp that the protocol

uses to estimate network delays.

Field CHECKSUM contains a checksum over the message, field DATE contains

the local date of the sender, and field TIME contains the local time according to the

sender’s clock. The TIMESTAMP field is used in round trip computation.

The field labeled # HOSTS specifies how many entries follow in the list of hosts

and the field labeled LOCAL ENTRY points into the list to mark the block of entries

used for the local network. Each entry contains two fields, DELAY and OFFSET, that

give the delay to reach a host, and the sender’s current estimate of the offset between
the host's clock and the sender’s clock.

15.5 Combining RIP, Hello, And EGP

We have already observed that a single gateway may use both an IGP to gather

routing information within its autonomous system and EGP to advertise routes to other

autonomous systems. In principle, it should be easy to construct a single piece of

software that combines the two protocols, making it possible to gather routes and adver-

tise them without human intervention. In practice, technical and political obstacles

make doing so Complex.

Technically, IGP protocols, like RIP and Hello, are routing protocols. A gateway

uses such protocols to update its routing table based on information it acquires from

other gateways inside its autonomous system. Unlike interior gateway protocols, EGP

works in addition to a gateway’s usual routing table. A gateway uses EGP to communi-

cate reachability information to other autonomous systems independent of the gateway’s

own routing table. Thus, routed, the UNIX program that implements RIP, advertises in-

formation from the local routing table and changes the local routing table when it re-

ceives updates. It trusts those machines that use RIP to pass correct data. In contrast

Samsung — Exhibit 1016 — Page 268

Samsung - Exhibit 1016 - Page 269

Sec. 15.5 Combining RIP, Hello, And EGP 255

the program that implements EGP does not advertise routes from the local routing table;

it keeps a separate database of network reachability.

A gateway using EGP to advertise reachability must take care to propagate only

those routes it is authorized to advertise, or it may affect other parts of the intemet. For

example, if a gateway in an autonomous system happens to propagate a distance 0 route

to Purdue University when it has no such route, RIP will install the route in other

machines and start passing Purdue traffic to the gateway that made the error. As a

result, it may be impossible for machines in that autonomous system to reach Purdue.

If EGP propagates such errors outside the autonomous system, it may become impossi-

ble to reach Purdue from some parts of the intemet.

Written at Cornell University, the UNIX program gatedT combines RIP, Hello, and

EGP along with a set of rules that constrains how it advertises routes to exterior gate-

ways. Gated accepts RIP or Hello messages and modifies the local machine routing

tables just like the routed program, and it advertises routes from within its autonomous

system using EGP. The rules allow a system administrator to specify exactly which

networks gated may and may not advertise and how to report distances to those net-

works. Thus, although gated is not an IGP, it plays an important role in gateway rout-

ing because it demonstrates that it is feasible to build an automated mechanism linking

an IGP with EGP without sacrificing protection.

Gated perfonns another useful task by implementing metric transformations. Re-

call from Chapter 14 that extensions to EGP allow autonomous systems to make intelli-

gent routing decisions as long as all gateways using EGP agree to a loose interpretation

of distance metrics. In particular, the gateways within an autonomous system must

agree to use distance values below a fixed threshold, say 128. Whenever an exterior

gateway advertises reachability outside its autonomous system but inside its auto-

nomous confederation, it must transform the distance metrics into a higher range, say

128-191. The transformation tends to keep traffic within an autonomous system by ar-

tificially raising the cost to route outside. Finally, gateways transform distances into an

even higher range, say 192-254, when passing them across an autonomous confedera-

tion boundary to encourage traffic to remain within the autonomous confederation. Be-

cause gated provides the interface between its autonomous system and other auto-

nomous systems, it can implement such transformations easily.

15.6 The Open SPF Protocol (OSPF)

We said that the SPF route propagation algorithm scales better than vector—distance

algorithms. Recently, a working group of the Internet Engineering Task Force has pro-

posed a new interior gateway protocol that uses the SPF algorithm. Called the Open

SPF protocol (OSPF), the new protocol tackles several ambitious goals.

0 The specification is available in the published literature, making it an open stan-

dard that anyone can implement without paying license fees. The specification authors

hope many vendors will support OSPF and make it a popular standard that replaces

proprietary protocols.

T pronounced “gate d“ from “gate daemon"

Samsung - Exhibit 1016 - Page 269

Samsung - Exhibit 1016 - Page 270

256 Routing: Interior Gateway Protocols (RIP, OSPF, HELLO) Chap. 15

0 OSPF includes type of service routing. Managers can install multiple routes to a

given destination, one for each type of service (eg, low delay or high throughput).

When routing a datagram, a gateway running OSPF uses both the destination address

and type of service fields in an IP header to choose a route. OSPF is among the first

TCP/IP protocols to use type of service routing.

0 OSPF provides load balancing. If a manager specifies multiple routes to a given

destination at the same cost, OSPF distributes traffic over all routes equally. Again,

OSPF is among the first open IGPs to offer load balancing; protocols like RIP compute

a single route to each destination.

I To permit growth and make the networks at a site easier to manage, OSPF allows

a site to partition its networks and gateways into subsets called areas. Each area is

self—contained; knowledge of an area’s topology remains hidden from other areas.

Thus, multiple groups within a given site can cooperate in the use of OSPF for routing

even though each group retains the ability to change its internal network topology in-

dependently.

°The OSPF protocol specifies that all exchanges between gateways are authenti-
cated. OSPF allows a variety of authentication schemes, and even allows one area to
choose a different scheme than another area. The idea behind authentication is to

guarantee that only trusted gateways propagate routing information. To understand why

this might be a problem, consider what can happen when using RIP, which has no au-

thentication. If a malicious person uses a personal computer to propagate RIP messages

advertising low-cost routes, other gateways and hosts running RIP will change their

routes and start sending datagrams to the personal computer.

°OSPF supports host-specific routes as well as network-specific routes. (It also

supports subnet routes, a topic we will discuss in Chapter 16.)
0 To accommodate multi—access networks like Ethernet, OSPF extends the SPF al-

gorithm described above. We described the algorithm using a point—to-point graph and

said that each gateway running SPF would periodically broadcast link status messages

about each reachable neighbor. If K gateways attach to an Ethernet, they will broadcast

K? reachability messages. OSPF minimizes broadcasts by allowing a more complex

graph topology in which every multi—access network has a designated gateway (desig-

nated router) that sends link-status messages on behalf of all gateways on the net. It

also uses hardware broadcast capabilities, where they exist, to deliver link status mes-
sages.

0 To permit maximum flexibility, OSPF allows managers to describe a virtual net-

work topology that abstracts away from details of physical connections. For example, a

manager can configure a virtual link between two gateways in the routing graph even if

the physical connection between the two gateways requires communication across a
transit network. .

0 OSPF allows gateways to exchange routing information learned from other

(external) sites. Basically, one or more gateways with connections to other sites learn

information about those sites and include it when sending update messages. The mes-

sage format distinguishes between information acquired from external sources and infor-

Samsung - Exhibit 1016 - Page 270

Samsung - Exhibit 1016 - Page 271

Sec. 15.6 The Open SPF Protocol (OSPF) 257

mation acquired from gateways interior to the site, so there is no ambiguity about the

source or reliability of routes.

15.6.1 OSPF Message Format

Each OSPF message begins with a fixed, 24-octet header as Figure 15.7 shows:

16 24 31

VERSION <1)

CHECKSUM

Figure 15.7 The fixed 24—octet OSPF message header.

Field VERSION specifies the version of the protocol. Field TYPE identifies the

message type as one of:

Type Meaning

Hello (used to test reachability)

Database description (topology)

Link status request

Link status update

Link status acknowledgement

UIAODRJ-*
The field labeled SOURCE GATEWAY [P ADDRESS gives the address of the sender,

and the field labeled AREA ID gives the 32-bit identification number for the area.

Because each message can include authentication, field AUTHENTICATION TYPE

specifies which authentication scheme is used (currently, 0 means no authentication and

1 means a simple password is used).

15.6.2 OSPF Hello Message Format

OSPF sends hello messages on each link periodically to establish and test neighbor

reachability. Figure 15.8 shows the format.

Samsung — Exhibit 1016 — Page 271

Samsung - Exhibit 1016 - Page 272

258 Routing: Interior Gateway Protocols (RIP, OSPF, HELLO) Chap. l5

0 8 16 24 31

OSPF HEADER WITH TYPE :1

GWAY PRIO

Figure 15.8 OSPF “hello" message fonnat. A pair of neighbor gateways ex-

change these messages periodically to test reachability.

Field NETWORK MASK contains a network mask for the network over which the

message has been sent (see Chapter 16 for details about masks). Field DEAD TIMER

gives a time in seconds after which a nonresponding neighbor is considered dead. Field

HELLO INTER is the normal period, in seconds, between hello messages. Field GWAY

PRIO is the integer priority of this gateway used in selecting a backup designated gate-

way. The fields labeled DESIGNATED GATEWAY and BACKUP DESIGNATED

GATEWAY contain IP addresses that give the sender’s view of the designated gateway

and backup designated gateway for the network over which the message is sent. Final-

ly, fields labeled NEIGHBOR, IP ADDRESS give the IP addresses of all neighbors from

which the sender has recently received hello messages.

15.6.3 OSPF Database Description Message Format

Gateways exchange OSPF database description messages to initialize their network

topology database. In the exchange, one gateway serves as a master, while the other is

a slave. The slave acknowledges each database description message with a response.

Figure 15.9 shows the format.

Because the topology database can be large, it may be broken into several mes-

sages using the I and M bits. Bit I is set to I in the initial message; bit M is set to I if

additional messages follow. Bit S determines if the message was sent by a master (1) or

Samsung — Exhibit 1016 — Page 272

Samsung - Exhibit 1016 - Page 273

Sec. 15.6 The Open SPF Protocol (OSPF) 259

a slave (0). Field DATABASE SEQUENCE NUMBER numbers messages sequentially

so the receiver can tell if one is missing. The initial message contains a random integer

R; subsequent messages contain sequential integers starting at R.

O 8 16 24 29 31

OSPF HEADER WITH TYPE :2

IN

LINK CHECKSUM LINK AGE

Figure 15.9 OSPF Database Description message format. The fields starting

at LINK TYPE are repeated for each link being specified.

The fields from LINK TYPE through LINK AGE describe one link in the network

topology; they are repeated for each link. The LINK TYPE describes a link according to

the following table.

Link Type Meaning

1 Gateway link
2 Network link

3 Summary link (IP network)

4 Summary link (link to border gateway)

5 External link (link to another site)

Field LINK ID gives an identification for the link (which can be the IP address of a

gateway or a network, depending on the link type).

Field ADVERTISING GATEWAY specifies the address of the gateway advertising

this link, and LINK SEQUENCE NUMBER contains an integer generated by that gate-

way to insure that messages are not missed or received out of order. Field LINK

Samsung — Exhibit 1016 — Page 273

Samsung - Exhibit 1016 - Page 274

260 Routing: Interior Gateway Protocols (RIP, OSPF, HELLO) Chap. 15

CHECKSUM provides further insurance that the link information has not been corrupt~

ed. Finally, field LINK AGE also helps order messages — it gives the time in seconds
since the link was established.

15.6.4 OSPF Link Status Request Message Format

After exchanging database description messages with a neighbor, a gateway may

discover that parts of its database are out of date. To request that the neighbor supply

updated information, the gateway sends a request message. The message lists specific

links as shown in Figure 15.10. The neighbor responds with the most current informa-

tion it has about those links. The three fields shown are repeated for each link about

which status is requested. More than one request message may be needed if the list of

requests is long.

OSPF HEADER WITH TYPE :3

LINK TYPE

LINK ID

ADVERTISING GATEWAY

Figure 15.10 OSPF Link Status request message format. A gateway sends

this message to a neighbor to request current information about

a specific set of links.

15.6.5 OSPF Link Status Update Message Format

Gateways broadcast the status of links with an update message. Each update con-

sists of a list of advertisements, as Figure 15.11 shows.

Samsung — Exhibit 1016 — Page 274

I

............_.V_._v——._——_.—.——..-

Samsung - Exhibit 1016 - Page 275

Sec. 15.6 The Open SPF Protocol (OSPF) 261

 OSPF HEADER WITH TYPE = 4

NUMBER OF LINK STATUS ADVERTISEMENTS

LINK STATUS ADVERTISEMENT,

LINK STATUS ADVERTISEMENT“

Figure 15.11 OSPF Link Status update message format. A gateway sends

such a message to broadcast information about its directly con-

nected links to all other gateways.

Each link status advertisement has a header format as shown in Figure 15.12. The

values used in each field are the same as in the database description message.

16 310

Figure 15.12 The format of the header used for all link status advertisements.

Following the link status header comes one of four possible formats to describe the

links from a gateway to a given area, the links from a gateway to a specific network,

the links from a gateway to the physical networks that comprise a single IP network

(see Chapter 16), or the links from a gateway to networks at other sites. In all cases,

the LINK TYPE field in the link status header specifies which of the formats has been

used. Thus, a gateway that receives a link status update message knows exactly which
of the described destinations lie inside the site and which are external.

Samsung — Exhibit 1016 — Page 275

Samsung - Exhibit 1016 - Page 276

262 Routing: Interior Gateway Protocols (RIP, OSPF, HELLO) Chap. 15

15.7 Routing With Partial Information

We began our discussion of intemet gateway architecture and routing by discussing

the concept of partial information. Hosts can route with only partial information be-

cause they rely on gateways. It should now be clear that not all gateways have com-

plete information. Most autonomous systems have a single gateway that forms a

bridge, connecting the autonomous system to other autonomous systems. If the site

connects to the Internet, at least one gateway must have a connection that leads from

the site to a national backbone. Gateways within the autonomous system know about

destinations within that autonomous system, but they route all other traffic to the bridge.

How to do routing with partial information becomes obvious if we examine a

gateway’s routing tables. Gateways in the core system have a complete set of routes to

all possible destinations; they do not use default routing. In fact, if a destination net-

work address does not appear in the core tables, only two possibilities exist: either the

address is not a valid destination IP address, or the address is valid but currently un-

reachable (e.g., because the only gateways leading to that address have failed). Noncore

gateways do not usually have a complete set of routes; they rely on a default route to

handle network addresses they do not understand.

Using default routes for most noncore gateways has two consequences. First, it

means that local routing errors can go undetected. For example, if a machine in an au-

tonomous system incorrectly routes a packet to a core gateway instead of a local gate-

way, the core will route it back to the autonomous system (perhaps sending an ICMP

redirect message to the original source). Thus, connectivity may appear to be preserved

even if routing is incorrect. The problem may not seem severe for small autonomous

systems that have high speed interconnections, but in a wide area network with relative-

ly low speed lines, incorrect routes can be disastrous. Second, on the positive side, hav-

ing default routes means that the IGP routing update messages will be much smaller

than the routing updates the core system uses.

15.8 Summary

Managers must choose how to pass routing information among the local gateways

within an autonomous system. Manual maintenance of routing information suffices

only for small, slowly changing intemets that have minimal interconnection; most re-

quire automated procedures that discover and update routes automatically. Two gate-

ways under the control of a single manager run Interior Gateway Protocols, IGPs, to ex-

change routing information.

Usually an IGP implements either the vector—distance or SPF algorithm. We ex-

amined three specific IGPS: RIP, HELLO, and OSPF. RIP, 21 vector—distance protocol

implemented by the UNIX program routed, is the most popular. It uses split horizon,

hold—down, and poison reverse techniques to help eliminate routing loops and the prob-

lem of counting to infinity. Hello is interesting because it illustrates a vector—distance

Samsung — Exhibit 1016 — Page 276

Samsung - Exhibit 1016 - Page 277

Sec. 158 Summary 263

protocol that uses delay instead of a hop count as a distance metric. Finally, OSPF is a

proposed new protocol that implements the link—status algorithm.
Also, we saw that the gated program provides an interface between an interior

gateway protocol like RIP and the Exterior Gateway Protocol, EGP, automating the pro-

cess of gathering routes from within an autonomous system and advertising them to

another autonomous system.

FOR FURTHER STUDY

Hedrick [RFC 1058] discusses algorithms for exchanging routing information in general

and contains the standard specification for RIP. The HELLO protocol is documented in

Mills [RFC 891]. Mills and Braun [1987] considers the problems of converting

between delay and hop-count metrics. Moy [RFC 1131] contains the lengthy specifica-
tion of OSPF as well as a discussion of the motivation behind it. Fedor [June 1988]

describes gated.

EXERCISES

15.1 What possible network families does RIP support? Hint: read the networking section of
the 4.3 BSD UNIX Programmer's Manual.

15.2 Consider a large autonomous system using an interior gateway protocol like HELLO that
bases routes on delay. What difficulty does this autonomous system have if a subgroup

decides to use RIP on its gateways?

15.3 An autonomous system can be as small as a single local area network or as large as mul-

tiple long haul networks. Why does the variation in size make it difficult to find a stan-
dard IGP?

15.4 Characterize the circumstances under which the split horizon technique will prevent slow
convergence.

15.5 Consider an intemet composed of many local area networks running RIP as an IGP.

Find an example that shows how a routing loop can result even if the code uses “hold
down" after receiving information that a network is unreachable.

15.6 Should a host ever run RIP in active mode‘?

15.7 Under what circumstances will a hop count metric produce better routes than a metric
that uses delay?

15.8 Can you imagine a situation in which an autonomous system chooses not to advertise all
its networks? Hint: think of a university.

15.9 In broad terms, we could say that RIP distributes its own routing table, while EGP distri-
butes a table of known networks and gateways used to reach them (i.e., a gateway can

send an EGP advertisement for a network without installing a route to that network in its

own routing table). What are the advantages of each approach?

Samsung — Exhibit 1016 — Page 277

Samsung - Exhibit 1016 - Page 278

16

Transparent Gateways And

Subnet Addressing

16.1 Introduction

Chapter 4 discussed addressing in an intemet and presented the three primary

forms of IP addresses. Chapters 12 through 15 showed how gateways acquire reacha-

bility and routing information by exchanging addresses. This chapter examines three

extensions of the original IP address scheme that allow a site to use a single IP network

address for multiple physical networks. It considers the motivation for the address ex-

tensions, as well as the details of the subnet scheme that is now part of the TCP/IP stan-
dard.

16.2 Review Of Relevant Facts

Chapter 4 discussed addressing in intemetworks and presented the fundamentals of
the current IP address scheme. We said that the 32-bit addresses are carefully assigned

to make the IP addresses of all hosts on a given physical network share a common pre-

fix. In the original IP address scheme, designers thought of the common prefix as de-

fining the network portion of an intemet address and the remainder as a host portion.

The consequence of importance to us is:

265

Samsung — Exhibit 1016 — Page 278

Samsung - Exhibit 1016 - Page 279

266 Transparent Gateways And Subnet Addressing Chap. l6

In the original IP addressing scheme, each physical network is as-

signed a unique network address,‘ hosts on the network have the net-
work address embedded in their individual addresses.

The chief advantage of dividing an IP address into two parts is that it reduces the size

of routing tables required in gateways. Instead of keeping one routing entry per destina-

tion host, a gateway can keep one entry per network and examine only the network por-

tion of a destination address when making routing decisions.

Recall that TCP/IP accommodates widely diverse network sizes by having three

classes of primary addresses. Networks assigned class A addresses partition the 32 bits

into an 8-bit network portion and a 24-bit host portion. Class 8 addresses partition the

32 bits into 16-bit network and host portions, while class C partitions the address into a

24-bit network portion and an 8-bit host portion.

Also recall the intemet routing architecture described in Chapters 13, 14, and I5.

TCP/IP intemets are composed of individual autonomous systems in which each auto-

nomous system is free to choose its own internal routing scheme. In particular, the con-

nected Intemet can be thought of as a central core system with a set of autonomous sys-

tems attached to it. For routing purposes, topology is restricted to a tree structure. As

we consider extensions to the basic address and routing structures in this chapter, it will

be important to remember that individual sites have the freedom to modify their ad-

dresses and routes as long as the modifications remain invisible to other sites.

16.3 Minimizing Network Numbers

The IP addressing scheme seems to handle all possibilities, but it has a minor

weakness. How did the weakness arise? What did the designers fail to envision? The

answer is simple: growth. Because they worked in a world of expensive mainframe

computers, the designers envisioned an intemet with tens of networks and hundreds of

hosts. They did not foresee tens of thousands of small networks of personal computers

that would suddenly appear a decade later.

Growth has been most apparent in the connected Internet. A large number of trivi-

al networks stresses the entire Internet design because it means (I) immense administra-

tive overhead is required merely to manage network addresses, and (2) the routing

tables in gateways are extremely large. The second problem is important because it

means that when gateways use vector-distance protocols like GGP or reachability proto-

cols like EGP to exchange information from their routing tables, the load on the net-

work is high, as is the computational effort required in the gateway. So the problem be-

comes how to minimize the number of assigned network addresses without destroying

the original addressing scheme.

To minimize network addresses, the same IP network prefix must be shared by

multiple physical networks. Of course, the routing procedures must be modified, and
all machines that connect to those networks must understand the conventions used.

Samsung - Exhibit 1016 - Page 279

Samsung - Exhibit 1016 - Page 280

Sec. 16.3 Minimizing Network Numbers 267

The idea of sharing one network address among multiple physical networks is not

new and has taken several forms. We will examine three: transparent gateways, proxy
ARP, and standard IP subnets.

16.4 Transparent Gateways

The transparent gateway scheme is based on the observation that networks which

have class A IP addresses can be extended through a simple trick illustrated in Figure
16.1.

WIDE AREA

NET
Figure 16.1 Transparent gateway T extending a wide area network to multiple

hosts at a site. Each host appears to have an IP address on the
WAN.

The trick consists of arranging for a wide area network to multiplex several host con-

nections through a single host port. As Figure 16.1 shows, a special purpose gateway,

T, connects one host port from the wide area net to a local area network. T is called a

transparent gateway because other hosts and gateways on the WAN do not know it ex-
ists.

The local area network does not have its own IP prefix; hosts attached to it are as-

signed addresses as if they connected directly to the WAN. The transparent gateway

demultiplexes datagrams that arrive from the WAN by sending them to the appropriate

host either by using a table of addresses or by decoding some part of the IP address.

The transparent gateway also accepts datagrams from hosts on the local area network
and routes them across the WAN toward their destination.

To make demultiplexing efficient, transparent gateways often divide the IP address

into multiple parts and encode information in unused parts. For example, assume the
WAN is the ARPANET which has class A network address 10.0.0.0. Each packet

switch node (PSN) on the ARPANET is assigned a unique integer address. lntemally,

the ARPANET treats any 4-octet IP address of the form 10.p.u.i as four separate oc-

tets that specify the network (10), a specific port on the destination PSN (p), and a

Samsung — Exhibit 1016 — Page 280

Samsung - Exhibit 1016 - Page 281

268 Transparent Gateways And Subnet Addressing Chap. 16

destination PSN (i). Octet u is uninterpreted. Thus, ARPANET addresses 10.2 .5.37

and 10.2.9.3? both refer to host 2 on PSN 37. A transparent gateway connected to

PSN 37 on port 2 can use octet u to decide which real host should receive the datagram.

The ARPANET itself need not be aware of the multiple hosts that lie beyond the PSN.

Transparent gateways have advantages and disadvantages when compared to con-

ventional gateways. The chief advantage is that they require fewer network addresses.

Another is that they can support load balancing. That is, if two transparent gateways

connect to the same local area network, traffic to hosts on that network can be split

between them. By comparison, conventional gateways can only advertise one route to a

given network.

One disadvantage of transparent gateways is that they only work with networks

that have a large address space from which to choose host addresses. Thus, they work

best with class A networks, and they do not work well with class C networks. Another

disadvantage is that because they are not conventional gateways, transparent gateways

do not provide all the same services as standard gateways. In particular, transparent

gateways may not participate fully in ICMP or network management protocols. There-

fore, they do not return ICMP echo requests (i.e., one cannot easily “ping” a tran-

sparent gateway to determine if it is operating).

16.5 Proxy ARP

The terms proxy ARP, promiscuous ARP, and the ARP hack refer to a second tech-

nique used to map a single IP network prefix onto multiple physical addresses. The

technique, which only applies to networks that use ARP to bind intemet addresses to

physical addresses, can best be explained with an example. Figure 16.2 illustrates the
situation.

Main Network

Gateway running proxy ARP

Hidden Network

Figure 16.2 Proxy ARP technique (the ARP hack) allows one network ad-

dress to be shared between two physical nets. Gateway G

answers ARP requests on each network for hosts on the other
network, giving its hardware address and then routing datagrams

correctly when they arrive. In essence, G lies about IP—to-

physical address bindings.

Samsung - Exhibit 1016 - Page 281

Samsung - Exhibit 1016 - Page 282

Sec. l6.5 Proxy ARP 269

In the figure, two networks share a single IP network address. Imagine that the network

labeled main network was the original network, and that the second, labeled hidden net-

work, was added later. The gateway connecting the two networks, G, knows which

hosts lie on which physical network and uses ARP to maintain the illusion that only one

network exists. To make the illusion work, G keeps the location of hosts completely

hidden, allowing all other machines on the network to communicate as if directly con-

nected. In our example, when host H, needs to communicate with host [-14, it first in-

vokes ARP to map H,’s IP address into a physical address. Once it has a physical ad-

dress, H, can send the datagram directly to that physical address.

Because G runs proxy ARP software, it captures the broadcast ARP request from

H,, decides that the machine in question lies on the other physical network, and

responds to the ARP request by sending its own physical address. H, receives the ARP

response, installs the mapping in its ARP table, and then uses the mapping to send da-

tagrams destined for H4 to G. When G receives a datagram, it searches a special rout-

ing table to determine how to route the datagram. G must forward datagrams destined

for H, over the hidden network. To allow hosts on the hidden network to reach hosts

on the main network, G perfomis the proxy ARP service on that network as well.

Gateways using the proxy ARP technique are taking advantage of an important

feature of the ARP protocol, namely, trust. ARP is based on the idea that all machines

cooperate and that any response is legitimate. Most hosts install mappings obtained

through ARP without checking their validity and without maintaining consistency.

Thus, it may happen that the ARP table maps several IP addresses to the same physical

address, but that does not violate the protocol specification.

Some implementations of ARP are not as lax as others. In particular, ARP imple-

mentations designed to alert managers to possible security violations will inform them

whenever two distinct IP addresses map to the same physical hardware address. The

purpose of alerting the manager is to warn about spoofing, a situation in which one

machine claims to be another in order to intercept packets. Host implementations of

ARP that warn managers of possible spoofing cannot be used on networks that have

proxy ARP gateways because the software will generate messages frequently.

The chief advantage of proxy ARP is that it can be added to a single gateway on a

network without disturbing the routing tables in other hosts or gateways on that net-

work. Thus, proxy ARP completely hides the details of physical connections.

The chief disadvantage of proxy ARP is that it does not work for networks unless

they use ARP for address resolution. Furthermore, it does not generalize to more com-

plex network topology (e.g., multiple gateways interconnecting two physical networks),

nor does it support a reasonable form of routing. In fact, most implementations of

proxy ARP rely on managers to maintain tables of machines and addresses manually,

making it both time consuming and prone to errors.

Samsung - Exhibit 1016 - Page 282

Samsung - Exhibit 1016 - Page 283

270 Transparent Gateways And Subnet Addressing Chap. 16

Set

16.6 Subnet Addresses ta,

The third technique used to allow a single network address to span multiple physi— Isl;
cal networks is called subnet addressing, subnet routing, or subnelting. Subnetting is t6,
the most widely used of the three techniques because it is the most general and because of
it has been standardized. In fact, subnetting is now a required part of IP addressing.

The easiest way to understand subnet addressing is to imagine that a site has a sin-

gle class B IP network address assigned to it, but it has two or more physical networks.

Only local gateways know that there are multiple physical nets and how to route traffic

among them; gateways in other autonomous systems route all traffic as if there were a

single physical network. Figure 16.3 shows an example.

Network 12e.1o.1.o h;P
128.10.1.1 128.10.1.2 0

ti
REST OF THE

INTERNET

128.10.2.2

all traffic to

128.10.0.0

Figure 16.3 A site with two physical networks using subnet addressing to la—
bel them with a single class B network address. Gateway G ac-

cepts all traffic for net 128.10.0.0 and chooses a physical net- i
work based on the third octet of the address.

networks. Except for gateway G, all gateways in the intemet route as if there were a

single physical net. Once a packet reaches G, it must be sent across the correct physical

network to its destination. To make the choice of physical network efficient, the local I

site has chosen to use the third octet of the address to distinguish between the two net- [l

J

In the example, the site is using the single class B network address 128.10.0.0 for two {
i
l

works. The manager assigns machines on one physical net addresses of the form

128.10.1.X, and machines on the other physical net addresses of the form 128.l0.2.X,

where X represents a small integer used to identify a specific host. To choose a physi— ‘cal network, G examines the third octet of the destination address and routes datagrams
with value 1 to the network labeled 128.10.1.0 and those with value 2 to the network la— 3

beled /28.10.20. 1
Conceptually, adding subnets only changes the interpretation of IP addresses slight— :

ly. Instead of dividing the 32-bit IP address into a network prefix and a host suffix, i

subnetting divides the address into a network portion and a local portion. The interpre- ‘

Samsung — Exhibit 1016 — Page 283

Samsung - Exhibit 1016 - Page 284

 Sec. l6.6 Subnet Addresses 271

tation of the network portion remains the same as for networks that do not use subnet-

ting. As before, reachability to the network must be advertised to outside autonomous

systems; all traffic destined for the network will follow the advertised route. The in-

terpretation of the local portion of an address is left up to the site (within the constraints

of the formal standard for subnet addressing). To summarize:

We think of a 32-bit IP address as having an internet portion and a

local portion, where the internet portion identifies a site, possibly with

multiple physical networks, and the local portion identifies a host at
that site.

The example of Figure 16.3 showed subnet addressing with a class B address that

had a 2—octet intemet portion and a 2—octet local portion. To make routing among the

physical networks efficient, the site administrator in our example chose to use one octet

of the local portion to identify a physical network, and the other octet of the local por-

tion to identify a host on that network, as Figure 16.4 shows.

Internet

part

Internet physical

part network

Figure 16.4 (a) Conceptual interpretation of a 32-bit IP address in the original

IP address scheme, and (b) conceptual interpretation of ad-

dresses using the subnet scheme shown in Figure 16.3. The 10-

cal portion is divided into two parts that identify a physical net-
work and a host on that network.

The result is a form of hierarchical addressing that leads to corresponding hierarchical

routing. The top level of the routing hierarchy (i.e., other autonomous systems in the

intemet) uses the first two octets when routing, and the next level (e.g., the local site)

uses an additional octet. Finally, the lowest level (i.e., delivery across one physical net-
work) uses the entire address.

Hierarchical addressing is not new; many systems have used it before. The best

example is the US. telephone system, where a l0-digit phone number is divided into a

3—digit area code, 3—digit exchange, and 4-digit connection. The advantage of using

Samsung — Exhibit 1016 — Page 284

Samsung - Exhibit 1016 - Page 285

272 Transparent Gateways And Subnet Addressing Chap. 16

hierarchical addressing is that it accommodates large growth because it means a given

gateway does not need to know as much detail about distant destinations as it does

about local ones. One disadvantage is that choosing a hierarchical structure is difficult,

and it often becomes difficult to change a hierarchy once it has been established.

16.7 Flexibility In Subnet Address Assignment

The TCP/IP standard for subnet addressing recognizes that not every site will have

the same hierarchical addresses; it allows sites flexibility in choosing how to assign

them. To understand why such flexibility is desirable, imagine a site with five networks

interconnected, as Figure 16.5 shows. Suppose the site has a single class 8 network ad-

dress that it wants to use for all physical networks. How should the local part be divid-

ed to make routing efficient?

To rest of Internet

Network 1

Network 2

Network 3

Network 4 Network 5

Figure 16.5 A site with five physical networks arranged in three “levels.”

The simplistic division of addresses into physical net and host

parts may not be optimal for such cases.

In our example, the site will choose a partition of the local part of the IP address

based on how it expects to grow. Dividing the 16-bit local part into an 8-bit network

identifier and an 8-bit host identifier (as shown in Figure 16.4) allows up to 256 net-

works, with up to 256 hosts per network. Using 3 bits to identify a physical network

and 13 bits to identify a host on that network allows up to 8 networks with up to 8192

hosts per network.

No single partition of the local part of the address will work for all sites because

some have many networks with few hosts per network, while others have a few net-

works with many hosts attached to each. Furthermore, it may be that even within one

site, some groups have many networks, while others have many hosts on a few net-

Samsung - Exhibit 1016 - Page 285

Samsung - Exhibit 1016 - Page 286

Sec. 16.7 Flexibility In Subnet Address Assignment 273

works. To allow maximum autonomy, the TCP/IP subnet standard allows the subnet

partition to be selected on a per-network basis. Once a partition has been selected for a

particular network, machines attached to that network are expected to use it. If they do

not, datagrams can be lost or misrouted. We can summarize:

To allow maximum flexibility in choosing how to partition subnet ad-

dresses, the TCP/IP subnet standard permits subnet interpretation to

be chosen independently for each physical network. Once a subnet

partition has been selected, all machines on that network must honor
It.

16.8 Implementation Of Subnets With Masks

We have implied that choosing a subnet addressing scheme is synonymous with

choosing how to partition the local portion of an IP address into physical net and host

part. Indeed, most sites that use subnet addresses do exactly that, but subnet addressing

allows more complex assignments as well. The standard specifies that a site using sub-

net addressing must choose a 32-bit subnet mask for each network. Bits in the subnet

mask are set to 1 if the network treats the corresponding bit in the IP address as part of

the network address, and 0 if it treats the bit as part of the host identifier. For example,
the 32-bit subnet mask

11111111 11111111 11111111 00000000

specifies that the first three octets identify the network and the fourth octet identifies a
host on that network. It is assumed that the subnet mask has Is for all bits that

correspond to the net portion of the address (eg, the subnet mask for a class B network

will always include the first two octets plus zero or more subnet bits).

The interesting twist in subnet addressing arises because the standard does not res-

trict subnet masks to selecting contiguous bits of the address. For example, a network

might be assigned the mask

11111111 11111111 00011000 01000000

which selects the first two octets, two bits from the third octet, and one bit from the

fourth. Although such flexibility makes it possible to arrange interesting assignments of

addresses to machines, it makes assigning host addresses and understanding routing

tables tricky. Thus, it is recommended that sites use contiguous subnet masks and that

they use the same mask throughout an entire set of physical nets that share an IP ad-
dress.

Samsung — Exhibit 1016 — Page 286

Samsung - Exhibit 1016 - Page 287

274 Transparent Gateways And Subnet Addressing Chap. [6

16.9 Subnet Mask Representation

Specifying subnet masks in binary is both awkward and prone to errors. Therefore,

most software allows alternative representations. Often, the representation follows

whatever conventions the local operating system uses for representation of binary quan-

tities, with hexadecimal being quite popular.

Dotted decimal representation is also used for subnet addresses. It works best

when sites choose to align subnetting on octet boundaries. For example, many sites

choose to subnet class B addresses by using the third octet to identify the physical net

and the fourth octet to identify hosts. In such cases, the subnet mask has dotted decimal

representation 255.255.255.0, making it easy to write and understand.

The literature also contains examples of subnet addresses and subnet masks

represented in braces as a 3—tuple:

{ <network number>, <subnet number>, <host number>}

In this representation, the value -1 means “all ones." For example, if the subnet mask

for a class 8 network is 255.255.255.0, it can be written {-1, -1,0}.

The chief disadvantage of the 3-tuple representation is that it does not accurately

specify how many bits are used for each part of the address; the advantage is that it

abstracts away from the details of bit fields and emphasizes the values of the three parts

of the address. To see why values are sometimes more important than bit fields, con-

sider the 3-tuple

{12s.1o,-1,0}

which denotes an address with a network number 128.10, all ones in the subnet field,

and all zeroes in the host field. Expressing the same address value using other

representations requires a 32-bit IP address and a 32-bit subnet mask, and forces readers

to decode bit fields before they can deduce the values of individual fields. Furthermore,

the 3-tuple representation is independent of the IP address class or size of the subnet

field. Thus, it can be used to represent sets of addresses or abstract ideas. For example,

the 3-tuple

{ <network number>, -1, -1 }

denotes “addresses with a valid network number, a subnet field containing all ones, and

a host field containing all ones." We will see additional examples later in this chapter.

Samsung — Exhibit 1016 — Page 287

....U:n><"‘

Samsung - Exhibit 1016 - Page 288

Sec. 16.10 Routing In The Presence Of Subnets 275

16.10 Routing In The Presence Of Subnets

The standard IP routing algorithm must be modified to work with subnet addresses.

Obviously, all machines that have a subnet address need to use the modified algorithm,

which is called subnet routing. What may not be obvious is that unless restrictions are

added to the use of subnetting, other hosts and gateways at the site may also need to use

subnet routing. To see why, consider the example set of networks shown in Figure
16.6.

Net 1 (not a subnet address)

 Net 2 (subnet of address N) Net 3 (subnet of address N)

Figure 16.6 An example (illegal) topology with three networks where Nets 2

and 3 are subnets of a single IP network address, N. If such to-

pologies were allowed, host H would need to use subnet routing

even though Net 1 does not have a subnet address.

In the figure, physical networks 2 and 3 have been assigned subnet addresses of a single

IP network address, N. Although host H does not directly attach to a network that has a

subnet address, it must use subnet routing to decide whether to send datagrams destined

for network N to gateway G, or gateway G_,. It could be argued that H can send to ei-

ther gateway and let them handle the problem, but that solution means not all traffic

will follow a shortest path. In larger examples, the difference between an optimal and

nonoptimal path can be significant.

In theory, a simple rule that determines when machines need to use subnet routing
is:

To achieve optimal routing, a machine M must use subnet routing for

an IP network address N, unless there is a single path P that is a

shortest path between M and every physical network that is a subnet

of N.

Unfortunately, understanding the theoretical restriction does not help much in assigning

subnets. First, we know that shortest paths change if hardware fails or if routing algo-

rithms redirect traffic around congestion. Such dynamic changes make it difficult to use

the subnet rule except in trivial cases. Second, the subnet rule fails to consider the ar-

chitectural boundaries of autonomous systems or the difficulties involved in propagating

subnet masks. It is impossible to propagate subnet routes beyond the boundary of an

autonomous system because network reachability protocols like EGP do not provide for

it. Realistically, it becomes extremely difficult to propagate subnet information beyond

Samsung — Exhibit 1016 — Page 288

Samsung - Exhibit 1016 - Page 289

276 Transparent Gateways And Subnet Addressing Chap. 16

a given physical network. Therefore, the designers recommend that if a site uses subnet

addressing, that site should keep subnetting as simple as possible. In particular, all sub-

nets of a given network IP address must be contiguous, the subnet masks should be uni-

form across all networks, and all machines should participate in subnet routing.

16.11 The Subnet Routing Algorithm

Like the standard IP routing algorithm, the subnet routing algorithm bases its deci-

sions on a table of routes. Recall that in the standard algorithm, per—host routes and de-

fault routes are special cases; the table is used for all others. Each table entry contains a

pair of

(network address, next hop address)

where the network address field specifies the IP address of a destination network, N,

and the next hop address field specifies the address of a gateway to which datagrams

destined for N should be sent. The standard routing algorithm compares the network

portion of a destination address to the network address field of each entry in the routing

table until a match is found. Because the next hop address field is constrained to speci-

fy a machine that is reachable over a directly connected network, only one table lookup
is ever needed.

The standard algorithm knows how an address is partitioned into network portion

and local portion because the first two bits encode the address type and format (class A,

B, or C). With subnets, it is not possible to decide which bits correspond to the net-

work and which to the host from the address alone. Instead, the modified algorithm

used with subnets maintains additional information in the routing table. Each table en-

try contains one additional field that specifies the subnet mask used with the network in

that entry:

(subnet mask, network address, next hop address)

When choosing routes, the modified algorithm uses the subnet mask to extract bits of

the destination address for comparison with the table entry. That is, it performs a bit-
wise Boolean and of the full 32-bit destination IP address and the subnet mask field

from an entry, and it then checks to see if the result equals the value in the network ad-

dress field of that entry. If so, it routes the datagram to the address specified in the next

hop address field1‘ of the entry.

...,..-.__....——-----——-"""
16.12 Unified Routing Algorithm

Observant readers may have guessed that if we allow arbitrary masks, the subnet

routing algorithm can subsume all the special cases of the standard algorithm. It can

handle routes to individual hosts, default routes, and routes to directly connected net-

1A5 in the standard routing algorithm, the next hop gateway must be reachable by a directly connected
network.

Samsung — Exhibit 1016 — Page 289

Samsung - Exhibit 1016 - Page 290

Sec. 16.12 Unified Routing Algorithm 277

works using the same masking technique it uses for subnets. In addition, masks can

handle routes to conventional networks (i.e., networks not using subnet addressing).

The flexibility comes from the ability to combine arbitrary 32-bit values in a subnet

mask field and arbitrary 32-bit addresses in a network address field. For example, to in-

stall a route for a single host, one uses a mask of all Is and network address equal to
the host’s IP address. To install a default route, one uses a subnet mask of all 05 and a

network address of all 0s (because any destination address and zero equals zero). To

install a route to a standard, nonsubnet class 8 network, one specifies a mask with two
octets of Is and two octets of 0s. Because the table contains more information, the

routing algorithm contains fewer special cases as Figure 16.7 shows.

Algorithm:

Route_lP#Datagram (datagram, routing_table)

Extract destination IP address, in, from datagram

Compute IP address of destination network, In

if In matches any directly connected network address

send datagram to destination over that network

(This involves resolving In to a physical address,

encapsulating the datagram, and sending the frame.)
else

for each entry in routing table do
Let N be the bitwise-and of lo and the subnet mask

If N equals the network address field of the entry then

route the datagram to the specified next hop address

endforloop

If no matches were found, declare a routing error

Figure 16.7 The unified IP routing algorithm. Given an IP datagram and a

routing table with masks, this algorithm selects a next hop gate-

way to which the datagram should be sent. The next hop must

lie on a directly connected network.

In fact, clever implementations can eliminate the explicit test for destinations on directly

connected networks by adding table entries with appropriate values for the mask and
network address.

Samsung — Exhibit 1016 — Page 290

Samsung - Exhibit 1016 - Page 291

278 Transparent Gateways And Subnet Addressing Chap. 16

16.13 Maintenance Of Subnet Masks

How do subnet masks get assigned and propagated? Chapter 9 answered the

second pan of the question by showing that a host can obtain the subnet mask for a

given network by sending an ICMP subnet mask request to a gateway on that network.

The request can be broadcast if the host does not know the specific address of a gate-

way. However, there is no standard protocol for propagating the infonnation from one

gateway to another.

The first part of the question is more difficult to answer. Each site is free to

choose subnet masks for its networks. When making assignments, managers attempt to

balance sizes of networks, numbers of physical networks, expected growth, and ease of
maintenance. Difficulty arises because nonuniform masks give the most flexibility but

make possible assignments that lead to ambiguous routes. Or worse, it allows valid as-

signments that become invalid if more hosts are added to the networks. There are no

easy rules, so most sites make conservative choices. Typically, they select contiguous

bits from the local portion of an address to identify a network and use the same pani-
tion (i.e., the same mask) for all local physical networks at the site. For example, many

sites simply use a single subnet octet when subnetting a class 8 address.

16.14 Broadcasting To Subnets

Broadcasting is more difficult in a subnet architecture. Recall that in the original

IP addressing scheme, an address with a host portion of all Is denotes broadcast to all

hosts on the specified network. From the viewpoint of an observer outside a subnetted

site, broadcasting to the network address still makes sense. That is, the address:

{ network, -1, -1 }

means “deliver a copy to all machines that have network as their network addresses,

even if they lie on separate physical networks.” Operationally, broadcasting to such an

address makes sense only if the gateways that interconnect the subnets agree to pro-

pagate the datagram to all physical networks.

Within a set of subnetted networks, it becomes possible to broadcast to a specific

subnet (i.e., to broadcast to all hosts on a physical network that has been assigned one
of the subnet addresses). The subnet address standard uses a host field of all ones to
denote subnet broadcast. That is, a subnet broadcast address becomes:

{ network, subnet, -1 }

Considering subnet broadcast addresses and subnet broadcasting clarifies the

recommendation for using a consistent subnet mask across all networks that share a

subnetted IP address. As long as the subnet and host fields are identical, subnet broad-

cast addresses are unambiguous. More complex subnet address assignments may or

may not allow broadcasting to selected subsets of the physical networks that comprise a
subnet.

Samsung — Exhibit 1016 — Page 291

Samsung - Exhibit 1016 - Page 292

Sec. 16.15 Summary 279

16.15 Summary

The original IP address scheme assigns a unique 32-bit intemet address to each

physical network and requires gateways to keep routing tables proportional to the

number of networks in the intemet. We examined three techniques that have been in-

vented to allow sites to share one intemet address among multiple physical networks.

The first uses transparent gateways to extend the address space of a single network to

include hosts on an attached local network. The second, called proxy ARP, arranges for

a local gateway to impersonate computers on another physical network by answering

ARP messages addressed to them. Proxy ARP is useful only on networks that use ARP

for address resolution, and only for ARP implementations that do not complain when

multiple intemet addresses map to the same hardware address. The third technique, a

TCP/IP standard called subnet addressing, allows a site to share a single IP network ad-

dress among multiple physical networks, as long as all the hosts and gateways on those

networks cooperate. Subnetting requires hosts to use a modified routing algorithm in

which routing table entries contain a subnet mask. The algorithm can be viewed as a

generalization of the original routing algorithm, because it handles special cases like de-

fault routes or host-specific routes.

FOR FURTHER STUDY

The standard for subnet addressing comes from Mogul [RFC 950]. Clark [RFC 932],

Karels [RFC 936], Gads [RFC 940], and Mogul [RFC 917] all contain early proposals

for subnet addressing schemes. Mogul [RFC 922] discusses broadcasting in the pres-

ence of subnets. Postel [RFC 925] considers the use of proxy ARP for subnets. Carl-

Mitchell and Quartennan [RFC 1027] discusses using proxy ARP to implement tran-

sparent subnet gateways.

EXERCISES

16.1 If gateways using proxy ARP use a table of host addresses to decide whether to answer
ARP requests, the gateway table must be changed whenever a new host is added to one

of the networks. Explain how to assign IP addresses so hosts can be added without
changing tables. Hint: think of subnets.

16.2 Can transparent gateways be used with local area networks like the Ethernet?

16.3 Show that proxy ARP can be used with three physical networks that are interconnected
by two gateways.

16.4 Consider a fixed subnet partition of a Class B network number that will accommodate at
least 76 networks. How many hosts can be on each network?

Samsung — Exhibit 1016 — Page 292

Samsung - Exhibit 1016 - Page 293

280

16.5

16.6

16.7

16.8

16.9

16.10

16.11

16.12

16.13

16.14

16.15

16.16

16.17

16.18

Chap. 16Transparent Gateways And Subnet Addressing

Does it ever make sense to subnet a class C network address? Why or why not?

A site that chose to subnet their class B address by using the third octet for the physical
net was disappointed that they could not accommodate 255 or 256 networks. Explain.

Design a subnet address scheme for your organization assuming that you have one class
B address to use.

Is it reasonable for a single gateway to use both proxy ARP and subnet addressing? If
so, explain how. If not, explain why. 5

Argue that any network using proxy ARP is vulnerable to ‘spoofing” (i.e., an arbitrary
machine can impersonate any other machine).

Can you devise a (nonstandard) implementation of ARP that supports normal use, but
prohibits proxy ARP?

One vendor decided to add subnet addressing to its IP software by allocating a single
subnet mask used for all IP network addresses. The vendor modified its standard IP

routing software to make the subnet check a special case. Find a simple example in
which this implementation cannot work correctly.

Characterize the (restricted) situations in which the subnet implementation discussed in
the previous exercise will work correctly.

Read the standard to find out more about broadcasting in the presence of subnets. Can
you characterize subnet address assignments that allow one to specify a broadcast ad-
dress for all possible subnets?

The standard allows an arbitrary assignment of subnet masks for networks that comprise
a subnetted IP address. Should the standard restrict subnet masks to cover contiguous

bits in the address? Why or why not?

Carefully consider default routing in the presence of subnets. What can happen if a
packet arrives destined for a nonexistent subnet?

Compare architectures that use subnet addressing and gateways to interconnect multiple
Ethemets to an architecture that uses bridges as described in Chapter 2. Under what cir-
cumstances is one architecture preferable to the other?

Consider a site that chooses to subnet a class B network address, but decides that some

physical nets will use 6 bits of the local portion to identify the physical net while others

will use 8. Find an assignment of host addresses that makes destination addresses ambi-
guous.

The subnet routing algorithm in Figure 16.7 uses a sequential scan of entries in the rout-
ing table, allowing a manager to place host-specific routes before network-specific or
subnet—specif1c routes. Invent a data structure that achieves the same flexibility but uses

hashing to make the lookup efficient [This exercise was suggested by Dave Mills].

Samsung — Exhibit 1016 — Page 293

Samsung - Exhibit 1016 - Page 294

Mu/ticast Addressing

(IGMP)

17.1 Introduction

Chapter 4 described the three primary classes of IP addresses and the previous

chapter presented subnet addressing, an address extension that permits multiple physical

networks to share a single IP network address. This chapter explores a recent addition

to the IP addressing scheme that permits efficient multipoint delivery of datagrams. We

begin with a brief review of hardware support. Later sections describe the IP address

extension that uses multipoint delivery and present an experimental protocol used to

propagate special routing information among gateways.

17.2 Hardware Broadcast

Many hardware technologies contain mechanisms to send packets to multiple desti-

nations simultaneously (or nearly simultaneously). Chapter 2 reviewed several techno-

logies and discussed the most common form of multipoint delivery: broadcasting.

Broadcast delivery means that the network delivers one copy of a packet to each desti-

nation. On bus technologies like Ethernet, broadcast delivery can be accomplished with

a single packet transmission. On networks composed of switches with point—to-point

connections, software must implement broadcasting by forwarding copies of the packet

across individual connections until all switches have received a copy.

Samsung — Exhibit 1016 — Page 294

Samsung - Exhibit 1016 - Page 295

282 Multicast Addressing (IGMP) Chap. l7

With most hardware, the user specifies broadcast delivery by sending the packet to

a special, reserved destination address called the broadcast address. For example, Eth-
emet hardware addresses consist of 48-bit identifiers, with the all ones address used to

denote broadcast. Hardware on each machine recognizes the machine's hardware ad-

dress as well as the broadcast address, and accepts incoming packets that have either ad-
dress as their destination.

The chief disadvantage of broadcasting is that every broadcast consumes resources

on all machines. For example, it would be possible to design an alternative intemet

protocol suite that used broadcast to deliver datagrams on a local network and relied on

[P software to discard datagrams not intended for the local machine. However, such a

scheme would be expensive because all computers on the local network would receive

and process all datagrams sent on that network, even though most machines would dis-

card most of the datagrams that arrived. Thus, the designers of TCP/IP used address

binding mechanisms like ARP to eliminate broadcast delivery.

17.3 Hardware Multicast

Some hardware technologies support a second, less common form of multi-point

delivery called multicasting. Unlike broadcasting, multicasting allows each machine to

choose whether it wants to participate in a multicast. Typically, a hardware technology

reserves a large set of addresses for use with multicast. When a group of machines

want to communicate, they choose one particular multicast address to use for communi-

cation. After configuring their network interface hardware to recognize the selected

multicast address, all machines in the group will receive a copy of every packet sent to
that multicast address.

Multicast addressing can be viewed as a generalization of all other address forms.

For example, we can think of a conventional unicast address as a fortn of multicast ad-

dressing in which there is exactly one machine in the multicast group. Similarly, we

can think of broadcast addressing as a form of multicasting in which every machine is a

member of the multicast group. Other multicast addresses can correspond to arbitrary
sets of machines.

Ethernet provides the best example of multicasting in hardware. Ethernet uses the

low-order bit of the high-order octet to distinguish conventional unicast addresses (0)

from multicast addresses (1). In dotted hexadecimal notation)‘, the multicast bit is given

by:

01.O0.O0.OO.OO.0O,6

Initially, the network interface hardware is configured to accept packets destined for the
Ethernet broadcast address or the machine’s hardware address. However, it can be re-

configured easily to allow it to recognize a small set of multicast addresses as well.

+Dotted hexadecimal notation represents each octet as two hexadecimal digits with octets separated by
periods; the subscript 16 can be omitted only when the context is unambiguous.

Samsung - Exhibit 1016 - Page 295

Samsung - Exhibit 1016 - Page 296

Sec. 17.4 LP Multicast 283

17.4 IP Multicast

IP multicasting is the intemet abstraction of hardware multicasting. It allows

transmission of an IP datagram to a set of hosts that form a single multicast group. It is

possible for members of the group to be spread across separate physical networks. IP

multicasting uses the same best-effon delivery semantics as other IP datagram delivery,

meaning that multicast datagrams can be lost, delayed, duplicated, or delivered out of
order.

Membership in an IP multicast group is dynamic. A host may join or leave a

group at any time. Furthermore, a host may be a member of an arbitrary number of

multicast groups. Membership in a group determines whether the host will receive da-

tagrams sent to the multicast group; a host may send datagrams to a multicast group

without being a member.

Each multicast group has a unique multicast (class D) address. Like protocol

ports, some IP multicast addresses are assigned by the Internet authority and correspond

to groups that always exist even if they have no current members. Such addresses are

said to be well—kn0wn. Other multicast addresses are available for temporary use. They

correspond to transient multicast groups that are created when needed and discarded
when the count of members reaches zero.

IP multicasting may be used on a single physical network or throughout an inter-

net. In the latter case, special multicast gateways forward multicast datagrams. Howev-

er, hosts need not know about multicast gateways explicitly. The host transmits multi-

cast datagrams using the local network multicast capability. If multicast gateways are

present, they will receive the datagram and forward it to other networks as needed.

Multicast gateways will use the local hardware multicast capability to deliver the da-

tagram on target network(s) that support it. The time-to—live field in a multicast da-

tagram limits propagation through gateways exactly like the time to live field in a uni-

cast datagram limits its propagation. Multicast forwarding may be provided by physi-

cally independent gateways or the capability may be added to conventional gateways.

The TCP/IP standard for multicasting defines IP multicast addressing, specifies

how hosts send and receive multicast datagrams, and describes the protocol gateways

use to determine multicast group membership on a network. The next sections examine

each aspect in more detail.

17.5 IP Multicast Addresses

Like hardware multicasting, IP multicasting uses the datagram’s destination ad-

dress to specify multicast delivery. IP multicast uses class D addresses of the form

shown in Figure 17.1:

Samsung - Exhibit 1016 - Page 296

Samsung - Exhibit 1016 - Page 297

284 Multicast Addressing (IGMP) Chap. 17

01234 31

llllfl

Figure 17.1 The format of class D IP addresses used for IP multicasting. Bits

4 through 31 identify a particular multicast group.

The first 4 bits contain 1110 and identify the address as a multicast. The remain-

ing 28 bits specify a particular multicast group. There is no further structure in the

group bits. In particular, the group field does not identify the origin of the group, nor
does it contain a network address like class A, B, and C addresses.

When expressed in dotted decimal notation, multicast addresses range from

224.0.0.0 through 239.255.255.255

However, address 224.0.0.0 is reserved; it cannot be assigned to any group. Further-

more, address 224.0.0.l is permanently assigned to the all hosts group, which includes

all hosts and gateways participating in IP multicast. In general, the all hosts group ad-

dress is used to reach all machines that participate in IP multicast on a local network;
there is no IP multicast address that refers to all hosts in the intemet.

IP multicast addresses can only be used as destination addresses. They can never

appear in the source address field of a datagram, nor can they appear in a source route

or record route option. Furthermore, no ICMP error messages can be generated about

multicast datagrams (e.g., destination unreachable, source quench, echo reply, or time
exceeded).

17.6 Mapping IP Multicast To Ethernet Multicast

Although the standard does not cover all types of network hardware, it does speci-

fy how to map IP multicast addresses to Ethernet multicast addresses. The mapping is

efficient and easy to understand:

To map an IP multicast address to the Corresponding Ethernet multi-

cast address, place the low-order 23 bits of the IP multicast address

into the low-order 23 bits of the special Ethernet multicast address

01.o0.5E.00.o0.00,,.

For example, IP multicast address 224.0.0.1 becomes Ethernet multicast address

0l.00.5E.00.00.0116.

Interestingly, the mapping is not unique. Because IP multicast addresses have 28

significant bits that identify the multicast group, more than one group may map onto the

same Ethernet multicast address. The designers chose this scheme as a compromise.

On one hand, using 23 of the 28 bits for a hardware address means most of the multi-

Samsung — Exhibit 1016 — Page 297

Samsung - Exhibit 1016 - Page 298

Sec. l7.6 Mapping IP Multicast To Ethernet Multicast 285

cast address is included. The set of addresses is large enough so the chances of two

groups choosing addresses with all low-order 23 bits identical is small. On the other

hand, arranging for IP to use a fixed part of the Ethernet multicast address space makes

debugging much easier and eliminates interference between IP and other protocols that

share an Ethernet. The consequence of this design is that some multicast datagrams

may be received at a host that are not destined for that host. Thus, the IP software must

carefully check addresses on all incoming datagrams and discard any unwanted da-
tagrams.

17.7 Extending IP To Handle Multicasting

A host participates in IP multicast at one of three levels as Figure 17.2 shows:

Level Meaning

0 Host can neither send nor receive IP multicast

1 Host can send but not receive IP multicast

2 Host can both send and receive IP multicast

Figure 17.2 The three levels of participation in IP multicast.

Modifications that allow a machine to send IP multicast are not difficult. The IP

software must allow an application program to specify a multicast address as a destina-

tion IP address, and the network interface software must be able to map an IP multicast

address into the corresponding hardware multicast address (or use broadcast if the

hardware does not support multicasting).

Extending host software to receive IP multicast datagrams is more complex. IP

software on the host must have an interface that allows an application program to de-

clare that it wants to join or leave a particular multicast group. If multiple application

programs join the same group, the IP software must remember to pass each of them a

copy of datagrams that arrive destined for that group. If all application programs leave

a group, the host must remember that it no longer participates in that group. Further-
more, as we will see in the next section, the host must run a protocol that informs the

local multicast gateways of its group membership status. However, much of the com-

plexity comes from a basic idea:

Hosts join specific IP multicast groups on specific networks.

That is, a host with multiple network connections may join a particular multicast group

on one network and not on another. To understand the reason for keeping group

membership associated with networks, remember that it is possible to use IP multicast—

ing among local sets of machines. The host may want to use a multicast application to

interact with machines on one physical net but not with machines on another.

Samsung — Exhibit 1016 — Page 298

Samsung - Exhibit 1016 - Page 299

286 Multicast Addressing (IGMP) Chap. 17

Because group membership is associated with particular networks, the software

must keep separate lists of multicast addresses for each network to which the machine

attaches. Furthermore, an application program must specify a particular network when

it asks to join or leave a multicast group.

17.8 Internet Group Management Protocol

To participate in IP multicast on a local network, a host must have software that al-

lows it to send and receive multicast datagrams. To participate in a multicast that spans

multiple networks, the host must inform local multicast gateways. The local gateways

contact other multicast gateways, passing on the membership information and establish-

ing routes. The idea is quite similar to conventional route propagation among conven-

tional intemet gateways.

Before a multicast gateway can propagate multicast membership information, it
must determine that one or more hosts on the local network have decided to join a mul-

ticast group. To do so, multicast gateways and hosts that implement multicast must use

the Internet Group Management Protocol (IGMP) to communicate group membership
information.

IGMP is analogous to ICMP. Like ICMP, it uses IP datagrams to carry messages.

Also like ICMP, it provides a service used by IP. Therefore,

Although IGMP uses IP datagrams to carry messages, we think of it

as an integral part of IP, not a separate protocol.

Furthermore, IGMP is a standard for TCP/IP; it is required on all machines that partici-

pate in IP multicast at level 2.

Conceptually, IGMP has two phases. Phase 1: When a host joins a new multicast

group, it sends an IGMP message to the “all hosts” multicast address declaring its

membership. Local multicast gateways receive the message and establish necessary

routing by propagating the group membership information to other multicast gateways

throughout the intemet. Phase 2: Because membership is dynamic, local multicast gate-

ways periodically poll hosts on the local network to determine which hosts remain

members of which groups. If no host reports membership in a group after a poll, the

multicast gateway assumes that no host on the network remains in that group, and stops

advertising group membership to other multicast routers.

17.9 IGMP Implementation

IGMP is carefully designed to avoid congesting a local network. First, all com-

munication between hosts and multicast gateways uses IP multicast. That is, when

IGMP messages are encapsulated in an IP datagram for transmission, the IP destination

address is the all hosts multicast address. Thus, datagrams carrying IGMP messages are

Samsung - Exhibit 1016 - Page 299

Samsung - Exhibit 1016 - Page 300

Sec. l7.9 IGMP Implementation 287

transmitted using hardware multicast if it is available. As a result, on networks that

support hardware multicast, hosts not participating in IP multicast never receive IGMP

messages. Second, a multicast gateway will not send individual request messages for

each multicast group. Instead, it sends a single poll message to request information

about membership in all groups. The polling rate is restricted to at most one request

per minute. Third, hosts that are members of multiple groups do not send multiple

responses at the same time. Instead, after an IGMP request message arrives from a

multicast gateway, the host assigns each group in which it has membership a random

delay between 0 and 10 seconds, and sends a response for that group after the delay.

Thus, a host spaces its responses randomly over /0 seconds. Fourth, hosts listen to

responses from other hosts and suppress any of their responses that are unnecessary.

To understand why a response can be unnecessary, recall why multicast gateways

send a poll message. Gateways do not need to keep an exact record of group member«

ship because all transmissions to the group will be sent using hardware multicast. In-

stead, multicast gateways only need to know whether at least one host on the network

remains a member of the group. After the multicast gateway sends a poll message, all

hosts assign a random delay to their response. When the host with smallest delay sends

its response (using multicast), other participating hosts receive a copy. Each host as-

sumes that the multicast gateway also received a copy of the first response and cancels

its responses. Thus, in practice, only one host from each group responds to a request

message from the multicast gateway.

17.10 Group Membership State Transitions

IGMP must remember the status of each multicast group to which the host be-

longs. We think of a host as keeping a table in which it records group membership in-

formation. Initially, all entries in the table are unused. Whenever an application pro-

gram on the host joins a new group, IGMP software allocates an entry and fills in infor-
mation about the group. Among the information, IGMP keeps a group reference

counter which it initializes to I. If additional applications join the group, IGMP incre-

ments the reference counter in the entry. As application programs drop out of the

group, IGMP decrements the counter; the host leaves the multicast group when the
counter reaches zero.

The actions IGMP takes in response to IGMP messages can best be explained by

the state transition diagram in Figure 17.3.

Samsung — Exhibit 1016 — Page 300

Samsung - Exhibit 1016 - Page 301

288 Multicast Addressing (IGMP) Chap. 17

res onse arrives/cancel timer

 join group/start timer zinzer expn-es/send response

 leave group/cancel timer query arrives/start timer

Figure 17.3 The three possible states of an entry in a host’s multicast group
table and transitions among them. Transitions are caused by the

arrival of IGMP messages or events at the host (shown in italic).

As Figure 17.3 shows, a single timer mechanism can be used to generate both the

initial response message as well as responses to requests from the multicast gateway. A

request to join a group places the entry in the TIMER ACTIVE state and sets the timer

to a small value. When the timer expires, IGMP generates and sends a response mes-

sage and moves the entry to the MEMBER state.

In the MEMBER state, reception of an IGMP query causes the software to choose a

timeout value (at random), start a timer for the entry, and move the entry to the TIMER

ACTIVE state. If another host sends a response for the multicast group before the timer

expires, IGMP cancels the timer and moves the entry back to the MEMBER state.

17.11 IGMP Message Format

As Figure 17.4 shows, IGMP messages have a simple format.

O 4 8 16 31

VERS TYPE CHECKSUM
GROUP ADDRESS (ZERO IN QUERY)

Figure 17.4 The format of IGMP messages.

Field VERS gives the protocol version (the current value is I). The TYPE field identi-

fies the message as a query sent by a multicast gateway (I) or a response sent by a host

(2). The UNUSED field must Contain zero, and the CHECKSUM field contains a

Samsung — Exhibit 1016 — Page 301

Samsung - Exhibit 1016 - Page 302

«."5';'§'..“""“"-.'""‘"‘."7"”"‘!"7"'W,rvr-~.-..».--
..,,,.,....__1..

Sec. l7.l l IGMP Message Format 289

checksum for the 8—octet IGMP message (IGMP checksums are computed with the

same algorithm used for TCP and IP checksums). Finally, hosts use field GROUP AD-

DRESS to report their membership in a particular multicast group (the field contains

zero in a query and has no meaning).

17.12 Multicast Address Assignment

The standard does not specify exactly how groups of machines are assigned multi-

cast addresses, but suggests several possibilities. For example, if the local operating

system assigns an integer identifier to a set of processes or to a set of applications, that

identifier can be used to form an IP multicast address. Of course, it is possible to have

a network manager assign addresses manually. Another possibility is to allow a

machine to randomly form multicast addresses until it discovers one that is not in use.

17.13 Propagating Routing Information

Although the IP multicasting described in this chapter is a standard for TCP/IP, no

standard exists for the propagation of routing information among multicast gateways.

However, the literature describes an experimental protocol called the Distance Vector

Multicast Routing Protocol (DVMRP). Multicast gateways use DVMRP to pass group

membership information among themselves. They use the information to establish

routes so they can deliver a copy of a multicast datagram to every member of the multi-
cast group.

DVMRP resembles the RIP protocol described in Chapter 15, but incorporates

ideas that make it more efficient and robust. In essence, the protocol passes information

about current multicast group membership and the cost to route between gateways. For

each possible multicast group, the gateways impose a routing tree on top of the graph of

physical interconnections. When a gateway receives a datagram destined for an IP mul-

ticast address, it sends a copy of the datagram out over the network links that

correspond to branches in the routing tree.

DVMRP uses IGMP messages to carry information. It defines new IGMP message

types that allow gateways to declare membership in multicast groups, leave a multicast

group, and interrogate other gateways. The extensions also provide messages that carry

gateway routing information including cost metrics. The protocol has been implement-

ed, but more experimentation is needed before conclusions can be drawn about its per-
formance.

Samsung — Exhibit 1016 — Page 302

Samsung - Exhibit 1016 - Page 303

290 Multicast Addressing (IGMP) Chap. I7

17.14 Summary

IP Multicasting is an abstraction of hardware multicasting. It allows efficient

delivery of a datagram to multiple destinations. IP uses class D addresses to specify

multicast delivery; actual transmission uses hardware multicast if it is available.

IP multicast groups are dynamic: a host can join or leave a group at any time. For

local multicast, hosts only need the ability to send and receive multicast datagrams.

However, IP multicasting is not limited to a single physical network — multicast gate-

ways propagate membership information and arrange routing so that every member of a

multicast group receives a copy of every datagram sent to that group.

Hosts communicate their group membership to multicast gateways using IGMP.

IGMP has been designed to be efficient and to avoid using network resources. In most

cases, the only traffic IGMP introduces is a periodic message from a multicast gateway

and a single reply for each multicast group to which hosts on that network belong.

FOR FURTHER STUDY

Deering [RFC 1112] specifies the standard for IP multicasting described here. Waitz—

man, Partridge, and Deering [RFC 1075] describes multicast route propagation using a

vector—distance protocol similar to RIP. Earlier drafts of these ideas can be found in

Deering [RFCs 1054 and 988], and in Deering and Cheriton [RFC 966]. Deering and

Cheriton [May 1990] considers modifying various routing algorithms to support wide-

area multicasting.

EXERCISES

17.1 The standard suggests using 23 bits of the IP multicast address to form a hardware multi-
cast address. In such a scheme, how many IP multicast addresses map to a single
hardware multicast address?

17.2 Argue that IP multicast addresses should use only 23 of the 28 possible bits. Hint: what
are the practical limits on the number of groups to which a host can belong and the
number of hosts on a single network?

17.3 lP must always check the destination addresses on incoming multicast datagrams and
discard datagrams if the host is not in the specified multicast group. Explain how the
host might receive a multicast destined for a group to which that host is not a member.

17.4 ls there any advantage in having multicast gateways know the set of hosts on the local
network that belong to a given multicast group?

17.5 Find three applications in your environment that can benefit from IP multicast.

17.6 The standard says that IP software must arrange to deliver a copy of any outgoing multi-

cast datagram to application programs on the host that belong to the specified multicast
group. Does this design make programming easier or more difficult?

Samsung — Exhibit 1016 — Page 303

Samsung - Exhibit 1016 - Page 304

Exercises

17.7

17.8

17.9

17.10

17.11

291

When the underlying hardware does not support multicast, IP multicast uses hardware
broadcast for delivery. How can doing so cause problems?

Read RFC 1075 on DVMRP. What makes DVMRP more complex than RIP?

If your local network does not support hardware multicast, IP multicast datagrams will
be delivered with hardware broadcast. Is there any advantage to using IP multicast over
such networks?

The all hosts IP multicast address refers only to the local network, while all other 1P
multicast addresses refer to intemet-wide multicast groups. Argue that it would be ad-

vantageous to reserve a set of IP multicast addresses for local use only.

IGMP does not include a strategy for acknowledgment or retransmission, even when

‘ used on networks that use best—effort delivery. What can happen if a query is lost?

What can happen if a response is lost?

Samsung — Exhibit 1016 — Page 304

Samsung - Exhibit 1016 - Page 305

Client-Server Model Of

Interaction

18.1 Introduction

Early chapters presented the details of TCP/IP technology, including the protocols

that provide basic services and the gateway architecture that provides needed routing in-

formation. Now that we understand the basic technology, we can examine examples of

application programs that profit from the cooperative use of a TCP/IP intemet. While

the examples are both practical and interesting, they do not comprise the main point.

Instead, focus rests on the patterns of interaction among the communicating application

programs. The primary pattern of interaction among cooperating applications is known

as the Client-Server paradigm. It forms the basis of most network communication. It is

fundamental because it helps us understand the foundation on which distributed algo-

rithms are built. This chapter considers the relationship between client and server, pav-

ing the way for later chapters that illustrate the client-server pattern with further exam-

ples.

18.2 The Client-Server Model

The term server applies to any program that offers a service that can be reached

over the network. Servers accept requests that arrive over the network, perform their

service, and return the result to the requester. For the simplest services, each request ar-

rives in a single IP datagram and the server returns its response in another datagram.

Samsung — Exhibit 1016 — Page 305

Samsung - Exhibit 1016 - Page 306

294 Client—Server Model Of Interaction Chap. 18

An executing program becomes a client when it sends a request to a server and

waits for a response. Because the client-server model is a convenient and natural exten-

sion of interprocess communication on a single machine, it is easy to build programs
that use it to interact.

Servers can perform simple or complex tasks. For example, a time-of—day server
merely returns the current time whenever a client sends it a packet. Afile server re-

ceives requests to perform operations that store or retrieve information from a file; the

server perfonns the operation and returns the result.

Usually, servers are implemented as application level programsT. The advantage

of implementing servers as application programs is that they can execute on any com-

puting system that supports TCP/IP communication. Thus, the server for a particular

service may execute on a timesharing system along with other programs, or it may exe-

cute on a personal computer. Multiple servers may offer the same service, and they

may execute on the same machine or on multiple machines. In fact, it is common to re-

plicate copies of a given server onto physically independent machines to increase relia-

bility or improve performance. If a machine’s primary purpose is to support a particular

server program, the term “server” may be applied to the machine as well as to the

server program. Thus, one hears statements like “machine A is our file server.”

18.3 A Simple Example: UDP Echo Server

The simplest form of client—server interaction uses unreliable datagram delivery to

convey messages from a client to a server and back. Consider, for example, a UDP

echo server. The mechanics are straightforward as Figure 18.1 shows. At the server

site, a UDP echo server process begins by negotiating with its operating system for per-

mission to use the UDP port id reserved for the echo service. We call this the UDP

echo port. Once it has obtained permission, the echo server process enters an infinite i
loop that has three steps: (I) wait for a datagram to arrive at the echo port, (2) reverse

the source and destination addressesi (including source and destination IP addresses as

well as UDP port ids), and (3) return the datagram to its original sender. At some other

site, a program becomes a UDP echo client when it allocates an unused UDP protocol

port, sends a UDP message to the UDP echo server, and awaits the reply. The client

expects to receive back exactly the same data as it sent.

The UDP echo service illustrates two important points that are generally true about
client—server interaction. The first concerns the difference between the lifetime of

servers and clients: I

A server starts execution before interaction begins and (usually) con— i
tinues to accept requests and send responses without ever terminating. i

A client is any program that makes a request and awaits a response; i
it (usually) terminates after using a server a finite number of times.

'TThe UNIX system refers to application programs as user processes.
iOne of the exercises suggests considering this step in more detail. >

Samsung — Exhibit 1016 — Page 306

Samsung - Exhibit 1016 - Page 307

295Sec. 18.3 A Simple Example: UDP Echo Server

l'€qM€SI S€I'lI (0

well known port

(a)

I‘€Sp07lS€ SEMI I0

 client's port

(b)

Figure 18.1 UDP echo as an example of the client—server model. In (a) the
client sends a request to the server at a known IP address and at

a well-known UDP port, and in (b) the server returns a response.

Clients use any UDP port that is available.

The second point is more technical. It concerns the use of reserved and nonreserved

port identifiers:

A server waits for requests at a well-known port that has been

reserved for the service it offers. A client allocates an arbitrary,

unused, nonreserved port for its communication.

In a client—server interaction, only one of the two ports needs to be reserved. Assigning

a unique port identifier to each service makes it easy to build both clients and servers.

Who would use an echo service? It is not a service that the average user finds in-

teresting. However, programmers who design, implement, measure, or modify network

protocol software, or network managers who test routes and debug communication

problems, often use echo servers in testing. Echo servers can also be used to determine

if it is possible to reach a remote machine.

Samsung — Exhibit 1016 — Page 307

Samsung - Exhibit 1016 - Page 308

296 Client—Server Model Of Interaction Chap. 18

18.4 Time And Date Service

The echo server is extremely simple, and little code is required to implement either

the server or client side (provided that the operating system offers a reasonable way to

access the underlying UDP/IP protocols). Our second example, a time server, shows

that even simple client—server interaction can provide useful services. The problem it

solves is that of setting a computer’s time-of—day clock. The time of day clock is the

hardware device that maintains the current date and time, making it available to pro-

grams. Once set, the time of day clock keeps time as accurately as a wristwatch.

Many systems solve the problem by asking a programmer to type in the time and

date when the system boots. The system increments the clock periodically (e.g., every

second). When an application program asks for the date or time, the system consults

the internal clock and formats the time of day in human readable form. We can use a

client—server interaction to set clocks automatically when machines boot. To do so, a

manager configures the machine with the most accurate clock to run a time-of—day

server. When other machines boot, they Contact the server to obtain the current time.

18.4.1 Representation for the Date and Time

How should an operating system maintain the date and time-of—day? One useful

representation stores the time and date as the count of seconds since an epoch date. For

example, the UNIX operating system uses the zeroth second of January 1, 1970 as its

epoch date. The TCP/IP protocols also define an epoch date and report times as

seconds past the epoch. For TCP/IP, the epoch is defined to be the zeroth second of

January 1, 1900 and times are kept in 32-bit integers, a representation that accommo-
dates all dates in the near future.

Keeping the date as the time in seconds since an epoch makes the representation

compact and allows easy comparison. It ties together the date and time of day and

makes it possible to measure time by incrementing a single binary integer.

18.4.2 Local and Universal Time

What should we choose as the epoch, and exactly what time zone does the count

represent? When two systems communicate across large geographic distances, using
the local time zone from one or the other becomes difficult; they must agree on a stan-

dard time zone to keep values for date and time comparable. Thus, in addition to defin-

ing a representation for the date and choosing an epoch, the TCP/IP time server stan-

dard specifies that all values are given with respect to a single time zone. The time
zone is Greenwich Mean Time, now called universal coordinated time, or universal
time.

The interaction between a client and a server that offers time service works much

like an echo server. At the server side, the server application obtains permission to use

the reserved port assigned to time servers, waits for a UDP message directed to that

port, and responds by sending a UDP message that contains the current time in a 32-bit

integer. We can summarize:

Samsung - Exhibit 1016 - Page 308

...._........._.______.

Samsung - Exhibit 1016 - Page 309

Sec. 18.4 Time And Date Service 297

Sending a datagram to a time server is equivalent to making a request

for the current time; the server responds by returning a UDP message
that contains the current time.

18.5 The Complexity of Servers

In our examples so far, servers are fairly simple because they are sequential. That

is, the server processes one request at a time. After accepting a request, the server

forms a reply and sends it before going back to see if another request has arrived. We

implicitly assume that the operating system will queue requests that arrive for a server

while it is busy, and that the queue will not become too long because the server has

only a trivial amount of work to do.

In practice, servers are usually much more difficult to build than clients because

they need to accommodate multiple concurrent requests, even if a single request takes

considerable time to process. For example, consider a file transfer server responsible

for copying a file to another machine on request. Typically, servers have two parts: a

single master that is responsible for accepting new requests, and a set of slaves that are

responsible for handling individual requests. The master server performs the following

five steps:

Open port

The master opens the well—known port at which it can be reached.
Wait for client

The master waits for a new client to send a request.

Choose port

If necessary, the master allocates a new local protocol port for this

request and informs the client (we will see that this step is unneces—

sary with TCP).
Start Slave

The master starts an independent, concurrent slave to handle this

request (e.g., in UNIX, it forks a copy of the server process). Note

that the slave no longer accepts requests from the well—known

server port — it only handles one request and then terminates.
Continue

The master returns to the wait step and continues accepting new re-

quests while the newly created slave handles the previous request

concurrently.

Because the master starts a slave for each new request, processing proceeds concurrent-

ly. Thus, requests that require little time to complete can finish earlier than requests

that take longer, independent of the order in which they are started. For example, sup-

pose the first client that contacts a file server requests a large file transfer that takes

Samsung — Exhibit 1016 — Page 309

Samsung - Exhibit 1016 - Page 310

298 Client~Server Model Of Interaction Chap. 18

many minutes. If a second client contacts the sewer to request a transfer that takes only

a few seconds, the second transfer can start and complete while the first transfer

proceeds.

In addition to the complexity that results because servers handle concurrent re-

quests, complexity also arises because servers must enforce authorization and protection

rules. Server programs usually need to execute with highest privilege because they

must read system files, keep logs, and access protected data. The operating system will

not restrict a server program if it attempts to access users’ files. Thus, servers cannot

blindly honor requests from other sites. Instead, each server takes responsibility for en-

forcing the system access and protection policies.

Finally, servers must protect themselves against malformed requests or against re-

quests that will cause the server program itself to abort. Often, it is difficult to foresee

potential problems. For example, one project at Purdue University designed a file

server that allowed student operating systems to access files on a UNIX timesharing

system. Students discovered that requesting the server to open a file named /dev/try
caused the server to abort because UNIX associates that name with the control terminal

to which a program is attached. The server, created at system startup, had no such ter-

minal. Once the server program aborted, none of the client machines could access files

until a systems programmer restarted it.

A more serious example of server vulnerability became known in the fall of 1988

when a student at Cornell University built a worm program that attacked computers on

the connected Internet. Once the worm started running on a machine, it searched the

Internet for computers with servers that it knew how to exploit, and used them to create

more copies of itself. In one of the attacks, the worm used a bug in the UNIX fingerd

server. Because the server did not check incoming requests, the worm was able to send

an illegal string of input that caused the server to overwrite parts of its internal data

areas. The server, which executed with highest privilege, then misbehaved, allowing

the worm to create copies of itself.
We can summarize our discussion of servers:

Servers are usually more difficult to build than clients because, even

though they can be implemented with application level programs,

servers must enforce all the access and protection policies of the com-

puter system on which they run, and they must protect themselves

against all possible errors.

18.6 RARP Server

So far, all our examples of client—server interaction require the client to know the

complete server address. The RARP protocol from Chapter 6 provides an example of

client—server interaction with a slightly different twist. Recall that when a diskless

machine boots, it uses RARP to find its IP address. Instead of having the client com-

municate directly with a server, RARP clients broadcast their requests. One or more

Samsung — Exhibit 1016 — Page 310

Samsung - Exhibit 1016 - Page 311

Sec. 18.6 RARP Server 299

machines executing RARP server processes respond, each returning a packet that

answers the query.

There are two significant differences between a RARP server and a UDP echo or

time server. First, RARP packets travel across the physical network in hardware

frames, not in IP datagrams. Thus, unlike the UDP echo server which allows a client to

contact a server anywhere on an intemet, the RARP server requires the client to be on

the same physical network. Second, RARP cannot be implemented by an application

program. Echo and time servers can be built as application programs because they use

UDP. By contrast, a RARP server needs access to raw hardware packets.

18.7 Alternatives To The Client-Server Model

What are the alternatives to client—server interaction, and when might they be at-

tractive? This section gives at least one answer to these questions.

In the client—server model, programs usually act as clients when they need informa-

tion, but it is sometimes important to minimize such interactions. The ARP protocol

from Chapter 5 gives one example. It uses a modified form of client—server interaction

to obtain physical address mappings. Machines that use ARP keep a cache of answers

to improve the efficiency of later queries. Caching improves the performance of client-

server interaction in cases where the recent history of queries is a good indicator of fu-
ture use.

Although caching improves performance, it does not change the essence of client-

server interaction. The essence lies in our assumption that processing must be driven

by demand. We have assumed that a program executes until it needs information and

then acts as a client to obtain the needed information. Taking a demand—driven view of

the world is natural and arises from experience. Caching helps alleviate the cost of ob-

taining information by lowering the retrieval cost for all except the first process that

makes a request.

How can we lower the cost of information retrieval for the first request? In a dis-

tributed system, it may be possible to have concurrent background activities that collect

and propagate information before any particular program requests it, making retrieval

costs low even for the initial request. More important, precollecting information can al-

low a given system to continue executing even though other machines or the networks

connecting them fail.

Precollection is the basis for the 4BSD UNIX ruptime command. When invoked,

ruptime reports the CPU load and time since system startup for each machine on the lo-

cal network. A background program running on each machine uses UDP to broadcast

information about the machine periodically. The same program also collects incoming

information and places it in a file. Because machines propagate information continu-

ously, each machine has a copy of the latest information on hand; a client seeking infor-
mation never needs to access the network. Instead, it reads the information from secon-

dary storage and prints it in a readable form.

Samsung — Exhibit 1016 — Page 311

Samsung - Exhibit 1016 - Page 312

300 Client-Server Model Of Interaction Chap. 18 if i E,

The chief advantage of having information collected locally before the client needs

it is speed. The ruptime command responds immediately when invoked without waiting

for messages to traverse the network. A secondary benefit occurs because the client can E
find out something about machines that are no longer operating. In particular, if a

machine stops broadcasting information, the client can report the time elapsed since the 1:

last broadcast (i.e., it can report how long the machine has been off—line).

Precollection has one major disadvantage: it uses processor time and network 1

bandwidth even when no one cares about the data being collected. For example, the

ruptime broadcast and collection continues running throughout the night, even if no one

is logged in to read the information. If only a few machines connect to a given net— 1

work, precollection cost is insignificant. It can be thought of as an innocuous back-

ground activity. For networks with many hosts, however, the large volume of broadcast

traffic generated by precollection makes it too expensive. In particular, the cost of read-

ing and processing broadcast messages becomes high. Thus, precollection is not among

the most popular alternatives to client—server.

18.8 Summary

Processes that use network communication often fall into a pattern of use called

the client—server model. Server processes await requests and perform an action based on

the request. The action may include sending a response. Clients usually formulate a re-

quest, send it to the server, and then await a reply.

We have seen examples of clients and servers and found that some clients send re-

quests directly, while others broadcast requests. Broadcast is especially useful on a lo-
cal network when a machine does not know the address of a server.

We also noted that if servers use intemet protocols like UDP, they can accept and

respond to requests across an intemet. If they communicate using physical frames and

physical hardware addresses, they are restricted to a single physical network.

Finally, we considered an alternative to the client—server paradigm that used precol-

lection of information to avoid delays. An example of precollection came from a
machine status service.

FOR FURTHER STUDY

UDP echo service is defined in Postel [RFC 862]. The UNIX Programme;-’s

Manual describes the ruptime command (also see the related description of zwho). I
Feinler er. al. [1985] specifies many standard server protocols not discussed here, in-

cluding discard, character generation, day and time, active users, and quote of the day.

The next chapters consider others.

l

I1

Samsung — Exhibit 1016 — Page 312

Samsung - Exhibit 1016 - Page 313

Exercises 301

EXERCISES

18.1 Build a UDP echo client that sends a datagram to a specified echo server, awaits a reply,
and compares it to the original message.

18.2 Carefully consider the manipulation of IP addresses in a UDP echo server. Under what

18.3

18.4

18.5

18.6

18.7

18.8

conditions is it incorrect to create new IP addresses by reversing the source and destina-
tion IP addresses?

As we have seen, servers can be implemented by separate application programs or by

building server code into the protocol software in an operating system. What are the ad-
vantages and disadvantages of having an application program (user process) per server?

Suppose you do not know the IP address of a local machine running a UDP echo server,
but you know that it responds to port 7. Is there an IP address you can use to reach it?
Build a client for the UDP time service.

Which of the techniques from Chapter 16 allow one to have a RARP server on a
separate physical network from its client?

What is the chief disadvantage of having all machines broadcast their status periodically?

Examine the format of data broadcast by the servers that implement the 4BSD UNIX
ruptime command. What information is available to the client in addition to machine
status?

Samsung — Exhibit 1016 — Page 313

Samsung - Exhibit 1016 - Page 314

Bootstrap Protocol
(BOOTP)

19.1 Introduction

This chapter contains an example of how the client—server paradigm is used for
bootstrapping. We said that each computer attached to a TCP/IP intemet needs to know

f '_; its IP address before it can send or receive datagrams. Chapter 6 described how a disk-

less machine uses the RARP protocol at system startup to determine its IP address.
This chapter discusses an alternative: a bootstrap protocol that allows a diskless

machine to determine its IP address without using RARP. Surprisingly, the client and

server communicate using UDP, the User Datagram Protocol described in Chapter 11.

What makes the procedure surprising is that UDP relies on IP to transfer messages,

and it might seem impossible that a computer could use UDP to find an IP address to

use when communicating. Examining the protocol will help us understand how diskless

,5; machines use the special IP addresses mentioned in Chapter 4 and the flexibility of the
' UDP/ll’ transport mechanism.

19.2 Introduction

Chapter 6 presented the problem diskless computers face during system startup.

Such machines usually contain a startup program in nonvolatile storage (eg, in ROM).

To minimize cost and keep parts interchangeable, a vendor places exactly the same pro-

gram in all machines. Because diskless computers all start from the program, IP ad-
dresses cannot be stored in the code. Thus, a diskless machine must learn its ll’ address

- 303

Samsung — Exhibit 1016 — Page 314

Samsung - Exhibit 1016 - Page 315

304 Bootstrap Protocol (BOOTP) Chap. 19

from another source. In fact, a diskless computer needs to know much more than its IP

address. Usually, the ROM only contains a small stanup program, so the diskless com-

puter must also obtain an initial memory image to execute. In addition, each diskless
machine must determine the address of a file server on which it can store and retrieve

data, and the address of the nearest IP gateway.

The RARP protocol of Chapter 6 has three drawbacks. First, because RARP

operates at a low level, using it requires direct access to the network hardware. Thus, it

may be difficult or impossible for an application programmer to build a server. Second,

although RARP requires a packet exchange between a diskless machine and a computer

that answers its request, the reply contains only one small piece of information: the

diskless machine’s 4—octet IP address. This drawback is especially annoying on net-

works like an Ethernet that enforce a minimum packet size because additional infonna-

tion could be sent in the response at no additional cost. Third, because RARP uses a

computer's hardware address to identify the machine, it cannot be used on networks that

dynamically assign hardware addresses.

To overcome some of the drawbacks of RARP, researchers developed the

BO0Tstrap Protocol, BOOTP. Because it uses UDP and IP, BOOTP can be imple-

mented with an application program. Like RARP, BOOTP operates in the client—server

paradigm and requires only a single packet exchange. However, BOOTP is more effi-

cient because a single BOOTP message specifies many items needed at startup, includ-

ing the diskless machine’s IP address, the address of a gateway, and the address of a

server. BOOTP also includes a vendor—specific field in the reply that allows hardware

vendors to send additional information used only for their machines. As we will see,

the term “vendor-specific” is a misnomer because the current specification also recom-

mends using the vendor—specific area for general purpose information such as subnet
masks.

19.3 Using IP To Determine An IP Address

We said that BOOTP uses UDP to carry messages and that UDP messages are en-

capsulated in IP datagrams for delivery. To understand how BOOTP can use IP before

the diskless machine knows its IP address, recall from Chapter 4 that there are several

special—case IP addresses. In particular, when used as a destination address, the IP ad-

dress consisting of all Is (255.255.255.255) specifies limited broadcast. IP software can

accept and broadcast datagrams that specify the limited broadcast address even before

the software has discovered its local IP address information. The point is that:

An application program can use the limited broadcast IP address’ to

force [P to broadcast a datagrarn on the local network even if [P has

not yet discovered the IP address of the local network or the
machine's IP address.

i. . ,,______________ - . -_--w-.

Samsung — Exhibit 1016 — Page 315

Samsung - Exhibit 1016 - Page 316

Sec. 19.3 Using 1P To Determine An IP Address 305

Suppose client machine A wants to use BOOTP to find bootstrap infonnation (in-

cluding its IP address) and suppose B is the server on the same physical net that will

answer the request. Because A does not know B’s IP address or the IP address of the

network, it must broadcast its initial BOOTP request using the IP limited broadcast ad-

dress. What about the reply? Can B send a directed reply? No, not usually. Although

it may not be obvious, B may need to use the limited broadcast address for its reply,

even though it knows A's IP address. To see why, consider what will happen if an ap-

plication program on B attempts to send a datagram using A‘s IP address. After routing

the datagram, IP software on B will pass the datagram to the network interface software.

This software must map the next hop IP address to a corresponding hardware address,

presumably using ARP as described in Chapter 5. However, because A has not yet re-

ceived the BOOTP reply, it does not recognize its IP address, so it cannot answer B’s

ARP request. Therefore, B has only two alternatives: either broadcast the reply or use

information from the request packet to manually add an entry to its ARP cache. On

systems that do not allow application programs to modify the ARP cache, broadcasting

is the only solution.

19.4 The BOOTP Retransmission Policy

BOOTP places all responsibility for reliable communication on the client. We

know that because UDP uses IP for delivery, messages can be delayed, lost, delivered

out of order, or duplicated. Furthermore, because IP does not provide a checksum for

data, the UDP datagram could arrive with some bits corrupted. To guard against corr-

uption, BOOTP requires that UDP use checksums. It also specifies that requests and re-

plies should be sent with the do not fragment bit set to accommodate clients that have

too little memory to reassemble datagrams. BOOTP is also constructed to allow multi-

ple replies; it accepts and processes the first.

To handle datagram loss, BOOTP uses the conventional technique of timeout and

retransmission. When the client transmits a request, it starts a timer. If no reply am'ves

before the timer expires, the client must retransmit the request. Of course, after a power

failure all machines on a network will reboot simultaneously, possibly overrunning the

BOOTP server(s) with requests. If all clients use exactly the same retransmission

timeout, many or all of them will attempt to retransmit simultaneously. To avoid the

resulting collisions, the BOOTP specification recommends using a random delay. In

addition, the specification recommends starting with a random timeout value between 0

and 4 seconds, and doubling the timer after each retransmission. After the timer

reaches a large value, 60 seconds, the client does not increase the timer, but continues

to use randomization. Doubling the timeout after each retransmission keeps BOOTP

from adding excessive traffic to a congested network; the randomization helps avoid
simultaneous transmissions.

Samsung — Exhibit 1016 — Page 316

Samsung - Exhibit 1016 - Page 317

306 Bootstrap Protocol (BOOTP) Chap. 19

19.5 BOOTP Message Format

To keep an implementation as simple as possible, BOOTP messages have fixed-

length fields, and replies have the same format as requests. Although we said that

clients and servers are programs, the BOOTP protocol uses the terms loosely, referring

to the machine that sends a BOOTP request as the client and any machine that sends a

reply as a server. Figure 19.1 shows the BOOTP message format.

0 8 16 24 31

11%

SECONDS

CLIENT HARDWARE ADDRESS (16 OCTETS)

SERVER HOST NAME (64 OCTETS)

BOOT FILE NAME (128 OCTETS)

VENDOR-SPECIFIC AREA (64 OCTETS)

Figure 19.1 The format of BOOTP messages. To keep implementations

small enough to fit in ROM, all fields have fixed length.

Field OP specifies whether the message is a request (I) or a reply (2). As in ARP,

fields HTYPE and HLEN specify the network hardware type and length of a hardware

address (e.g., Ethernet has type 1 and address length 6))‘. The client places 0 in the

HOPS field; if a BOOTP server receives the request and decides to pass the request on

to another machine (e.g., to allow bootstrapping across multiple gateways), it incre-

ments the count. The TRANSACTION ID field contains an integer that diskless

machines use to match responses with requests. The SECONDS field reports the
number of seconds since the client started to boot.

+Values for the HTYPE field can be found in the latest Assigned Numbers RFC.

Samsung — Exhibit 1016 — Page 317

,_.,‘;\f\-1.4’!

~~ ——~—-v.5

Samsung - Exhibit 1016 - Page 318

Sec. 195 BOOTP Message Format 307

Fields beginning with CLIENT IP ADDRESS contain the most important inforrna—

tion. To allow the greatest flexibility, clients fill in as much information as they know

and leave remaining fields set to zero. For example, if a client knows the name or ad-

dress of a specific server from which it wants information, it can fill in the SERVER IP

ADDRESS or SERVER HOST NAME fields. If these fields are nonzero, only the server

with matching name/address will answer the request; if they are zero, any server that re-

ceives the request will reply.

BOOTP can be used from a client that already knows its IP address (e.g., to obtain

boot file information). A client that knows its IP address places it in the CLIENT [P

ADDRESS field; other clients use zero. If the client’s IP address is zero in the request,
a server returns the client’s IP address in the YOUR IP ADDRESS field.

19.6 The Two-Step Bootstrap Procedure

BOOTP uses a two—step bootstrap procedure. It does not provide clients with a

memory image —' it only provides the client with information needed to obtain an image.

The client then uses a second protocol (e.g., TFTP from Chapter 23) to obtain the

memory image. While the two—step procedure many seem unnecessary, it allows a

clean separation of configuration and storage. A BOOTP server does not need to run

on the same machine that stores memory images. In fact, the BOOTP server operates

from a simple database that only knows the names of memory images.

Keeping configuration separate from storage is important because it allows ad-

ministrators to configure sets of machines so they act identically or act independently.

The BOOT FILE NAME field of a BOOTP illustrates this. Suppose an administrator

has several workstations that have different hardware architectures, and suppose that

when users boot one of the workstations, they either choose to run UNIX or a local

operating system. Because the set of workstations includes multiple hardware architec-

tures, no single memory image will operate on all machines. To accommodate such

diversity, BOOTP allows the BOOT FILE NAME field in a request to contain a generic

name like “unix." It means, “I want to boot the UNIX operating system for this

machine.” The BOOTP server consults its configuration database to map the generic

name into a specific file name that contains the UNIX memory image appropriate for

the client hardware, and returns the specific (i.e., fully qualified) name in its reply. Of

course, the configuration database also allows completely automatic bootstrapping in
which the client leaves zeros in the BOOT FILE NAME field, and BOOTP selects a

memory image for the machine. The advantage of this approach is that it allows users

to specify generic names that work on any machine; they do not need to remember

specific file names or hardware architectures.

Samsung — Exhibit 1016 — Page 318

Samsung - Exhibit 1016 - Page 319

308 Bootstrap Protocol (BOOTP) Chap. 19

19.7 Vendor-Specific Field

The VENDOR—SPECIFlC AREA contains optional information to be passed from

the server to the client. Although the syntax is intricate, it is not difficult. The first

four octets of the field are called a magic cookie and define the format of remaining

items; the standard format described here uses a magic cookie value of 99.130.83.99

(dotted decimal notation). A list of items follows the cookie, where each item contains

a one-octet type, an optional one-octet length, and a multi-octet value. The standard de-

fines the following types that have predetermined, fixed length values:

Item Item Value Contents

Type Code Length of Value

Padding 0 Zero - used only for padding
Subnet Mask 1 4 Subnet mask for local net

Time of Day 2 4 Time of day in universal time
End 255 - End of item list

Figure 19.2 Items in the vendor information. The length field must exist for

types 1 and 2; it must not exist for types 0 and 255.

Although a computer can obtain subnet mask information with an ICMP request, the
standard now recommends that BOOTP servers supply the subnet mask in each reply to

eliminate unnecessary ICMP messages.

Additional items in the VENDOR-SPECIFIC AREA all have a type octet, length

octet, and value, as Figure 19.3 shows.

Item Item Length Contents

Type Code Octet of Value

Gateways 3 N IP addresses of N/4 gateways
Time Server 4 N IP addresses of N/4 time servers

lEN116 Server 5 N IP addresses of N/4 IEN116 servers

Domain Server 6 N IP addresses of N/4 DNS servers

Log Server 7 N IP addresses of N/4 log servers
Quote Server 8 N IP addresses of N/4 quote servers

Lpr Servers 9 N IP addresses of N/4 Ipr servers

Impress 10 N IP addresses of N/4 Impress servers
RLP Server 11 N IP addresses of N/4 FILP servers

Hostname 12 N N bytes of client host name

Boot Size 13 2 2-octet integer size of boot file

RESERVED 128-254 - Reserved for site specific use

Figure 19.3 Types and contents of items in the VENDOR—SPECIFIC AREA of

a BOOTP reply that have variable lengths.

Samsung — Exhibit 1016 — Page 319

Samsung - Exhibit 1016 - Page 320

Sec. 19.8 Summary 309

19.8 Summary

The BOOTstrap Protocol, BOOTP, provides an alternative to RARP for a diskless

workstation that needs to determine its IP address. BOOTP is more general than RARP

because it uses UDP, making it possible to extend bootstrapping across a gateway.

BOOTP also allows a machine to detennine a gateway address, a (file) server address,

and the subnet mask. Finally, BOOTP allows administrators to establish a configura-

tion database that maps a generic name, like “unix,” into the fully qualified file name

that contains a memory image appropriate for the client hardware.

BOOTP is designed to be small and simple enough to reside in a bootstrap ROM.
The client uses the limited broadcast address to communicate with the server, and takes

responsibility for retransmitting requests if the server does not respond. Retransmission

uses an exponential backoff policy similar to Ethemet to avoid congestion.

FOR FURTHER STUDY

BOOTP is a standard protocol in the TCP/IP suite. Further details can be found in

Croft and Gilmore [RFC 951], which compares BOOTP to RARP and serves as the of-

ficial standard. Reynolds [RFC 1084] tells how to interpret the vendor—specific area,

and Braden [RFC 1123] recommends using the vendor—specific area to pass the subnet
mask.

EXERCISES

19.1 BOOTP does not contain an explicit field for returning the time of day from the server
to the client, but makes it part of the (optional) vendor—specific information. Should the
time be included in the required fields? Why or why not?

19.2 Argue that separation of configuration and storage of memory images is not good. (See
RFC 951 for hints.)

19.3 The BOOTP message format is inconsistent because it has two fields for client lP ad-
dress and one for the name of the boot image. If the client leaves its IP address field
empty, the server returns the client's IP address in the second field. If the client leaves
the boot file name field empty, the sewer replaces it with an explicit name. Why?

19.4 Read the standard to find out how clients and servers use the HOPS field.

19.5 When a machine obtains its subnet mask with BOOTP instead of ICMP, it places less

load on other host computers. Explain.

Samsung — Exhibit 1016 — Page 320

Samsung - Exhibit 1016 - Page 321

20

The Domain Name System

20.1 Introduction

So far we have used 32-bit integers called lntemet Protocol addresses (IP ad-

dresses) to identify machines. Although such addresses provide a convenient, compact

representation for specifying the source and destination in packets sent across an inter-

net, users prefer to assign machines pronounceable, easily remembered names.

This chapter considers a scheme for assigning meaningful high—level names to a

large set of machines, and it discusses a mechanism that maps between high—level
machine names and IP addresses. It considers both the translation from high—level

names to IP addresses and the translation from IP addresses to high-level machine

names. The naming scheme is interesting for two reasons. First, it has been used to as-

sign machine names throughout the connected Intemet. Second, the implementation of

the name mapping mechanism provides a large scale example of the client—server para-

digm described in Chapter 18, because it uses a geographically distributed set of servers

to map names to addresses.

20.2 Names For Machines

The earliest computer systems forced users to understand numeric addresses for ob-

jects like system tables and peripheral devices. Timesharing systems advanced comput-

ing by allowing users to invent meaningful symbolic names for both physical objects

(eg, peripheral devices) and abstract objects (eg, files). A similar pattern has emerged

in computer networking. Early systems supported point—to-point connections between

computers and used l0w—level hardware addresses to specify machines. Intemetworking

introduced universal addressing, as well as protocol software to map universal addresses

3ll

Samsung — Exhibit 1016 — Page 321

Samsung - Exhibit 1016 - Page 322

312 The Domain Name System Chap. 20

into low-level hardware addresses. Users whose computing environment contains mul-

tiple machines want meaningful, symbolic names to identify them.

Early machine names reflected the small environment in which they were chosen.

It was quite common for a site with a handful of machines to choose names based on

the machines‘ purposes. For example, machines often had names like research, produc-

tion, accounting, and development. Users find such names preferable to cumbersome
hardware addresses.

Although the distinction between address and name is intuitively appealing, it is

artificial. Any name is merely an identifier that consists of a sequence of characters

chosen from a finite alphabet. Names are only useful if the system can efficiently map

them to the object they denote. Thus, we think of an IP address as a low-level name,

and we say that users prefer high-level names for machines.

The form of high-level names is important because it determines how names are

translated to lower-level names or bound to objects, as well as how name assignments

are authorized. When only a few machines interconnect, choosing names is easy, and

any form will suffice. On the Internet, to which over one hundred thousand machines

connect, choosing symbolic names becomes difficult. For example, when the Computer

Science Department at Purdue University connected to the Internet in 1980, it chose the

name purdue to identify the connected machine. The list of potential conflicts con-

tained only a few dozen names. By mid 1986, the official list of hosts on the Internet

contained 3100 officially registered names and 6500 official aliases. By 1990, the list

contained nearly 6400 namesl”. Although the list was growing rapidly, most sites had

additional machines (e.g., personal computers) that were not registered.

20.3 Flat Namespace

The original set of machine names used throughout the Internet formed a flat

namespace in which each name consisted of a sequence of characters without any furth-

er structure. In the original scheme, a central site, the Internet Network Information

Center (NIC), administered the namespace and determined whether a new name was ap-

propriate (i.e., it prohibited obscene names or names that conflicted with existing ones).

The chief advantage of a flat namespace is that names are convenient and short; the

chief disadvantage of a flat namespace is that it cannot generalize to large sets of
machines for both technical and administrative reasons. First, because names are drawn

from a single set of identifiers, the potential for conflict increases as the number of sites

increases. Second, because authority for adding new names must rest at a single site,
the administrative workload at that central site also increases with the number of sites.

To understand the severity of the problem, imagine a rapidly growing intemet with

thousands of sites, each of which has hundreds of individual personal computers and

workstations. Every time someone acquires and connects a new personal computer, its

name must be approved by the central authority. Third, because the name-to—address

bindings change frequently, the cost of maintaining correct copies of the entire list at

each site is high and increases as the number of sites increases. Alternatively, if the

fin 1990, the list of names maintained by the NIC was obsolete; at that time the lntemet domain name
system contained more than 137,000 host names.

Samsung — Exhibit 1016 — Page 322

Samsung - Exhibit 1016 - Page 323

Sec. 20.3
 Flat Namespace 3 l 3

name database resides at a single site, traffic to that site increases with the number of
sites.

20.4 Hierarchical Names

How can a naming system accommodate a large, rapidly expanding set of names

without requiring a central site to administer it? The answer lies in decentralizing the

naming mechanism by delegating authority for parts of the namespace andpdistributing

responsibility for the mapping between names and addresses. TCP/IP intemets now use

such a scheme. Before examining the details of the TCP/IP scheme, we will consider
the motivation and intuition behind it.

The partitioning of a namespace must be defined in such a way that it supports ef-

ficient name mapping and guarantees autonomous control of name assignment. Optim-

izing only for efficient mapping can lead to solutions that retain a flat namespace and

reduce traffic by dividing the names among multiple mapping machines. Optimizing

only for administrative ease can lead to solutions that make delegation of authority easy

but name mapping expensive or complex.

To understand how the namespace should be divided, think of the internal structure

of large organizations. At the top, the chief executive has overall responsibility. Be-

cause the chief executive cannot oversee everything, the organization may be partitioned

into divisions, with an executive in charge of each division. The chief executive grants

each division autonomy within specified limits. More to the point, the executive in

charge of a particular division can hire or fire employees, assign offices, and delegate

authority, without obtaining direct permission from the chief executive.

Besides making it easy to delegate authority, the hierarchy of a large organization

introduces autonomous operation. For example, when office workers need infonriation

like telephone numbers of new employees, they begin by asking local clerical workers

(who may contact clerical workers in other divisions). The point is that although au-

thority always passes down the corporate hierarchy, information can flow across the

hierarchy from one office to another.

20.5 Delegation Of Authority For Names

A hierarchical naming scheme works like the management of a large organization.

The namespace is partitioned at the top level, and authority for names in the subdivi-

sions is passed to a designated agent. For example, we might choose to partition the

namespace based on site name and to delegate to each site responsibility for maintain-

ing names within its partition. The topmost level of the hierarchy divides the

namespace and delegates authority for each division; it need not be bothered by changes
within one division.

Samsung — Exhibit 1016 — Page 323

Samsung - Exhibit 1016 - Page 324

314 The Domain Name System Chap. 20

The syntax of hierarchically assigned names often reflects the hierarchical delega«

tion of authority used to assign them. As an example, consider a namespace with
names of the form:

local . site

where site is the site name authorized by the central authority, local is the part of a

name controlled by the site, and the periodT (“.”) is a delimiter used to separate them.

When the topmost authority approves adding a new site, X, it adds X to the list of valid

sites and delegates to site X authority for all names that end in ‘.X ’.

20.6 Subset Authority

In a hierarchical namespace, authority may be further subdivided at each level. In

our example of partition by sites, the site itself may consist of several administrative

groups, and the site authority may choose to subdivide its namespace among the groups. i

The idea is to keep subdividing the namespace until each subdivision is small enough to
be manageable.

Syntactically, subdividing the namespace introduces another partition of the name.

For example, adding a group subdivision to names already partitioned by site produces
the following name syntax: 5

local . group . site

Because the topmost level delegates authority, group names do not have to agree among

sites. A university site might choose group names like engineering, science, and arts,

while a corporate site might choose group names like production, accounting, and per-
sonnel.

The U.S. Telephone system provides another example of a hierarchical naming

syntax. The 10 digits of a phone number have been partitioned into a 3—digit area code,

3—digit exchange, and 4—digit subscriber number within the exchange. Each exchange

has authority for assigning subscriber numbers within its piece of the namespace.

Although it is possible to group arbitrary subscribers into exchanges and to group arbi-

trary exchanges into area codes, the assignment of telephone numbers is not capricious;

they are carefully chosen to make it easy to route phone calls across the telephone net-
work.

The telephone example is important because it illustrates a key distinction between

the hierarchical naming scheme used in a TCP/IP intemet and other hierarchies: parti— .

tioning the set of machines owned by an organization along lines of authority does not A
necessarily imply partitioning by physical location. For example, it could be that at

some university, a single building houses the mathematics department, as well as the

computer science department. It might even turn out that although the machines from

these two groups fall under completely separate administrative domains, they connect to

the same physical network. It also may happen that a single group owns machines on

tln domain names, the period delimiter is pronounced “dot."

Samsung — Exhibit 1016 — Page 324

Samsung - Exhibit 1016 - Page 325

Sec. 20.6 Subset Authority 315

several physical networks. For these reasons, the TCP/IP naming scheme allows arbi-

trary delegation of authority for the hierarchical namespace without regard to physical

connections. The concept can be summarized:

In a TCP/IP internet, hierarchical machine names are assigned ac-

cording to the structure of organizations that obtain authority for

parts of the namespace, not necessarily according to the structure of

the physical network interconnections.

Of course, at many sites the organizational hierarchy corresponds with the structure of

physical network interconnections. At a large university, for example, most depart-

ments that have computers also have their own local area network. If the department is

assigned part of the naming hierarchy, all machines that have names in its part of the

hierarchy will also connect to a single physical network.

20.7 TCP/IP Internet Domain Names

The mechanism that implements a machine name hierarchy for TCP/IP intemets is

called the domain name system (DNS). It has two, conceptually independent, aspects.

The first is abstract: it specifies the name syntax and rules for delegating authority over

names. The second is concrete: it specifies the implementation of a distributed comput-

ing system that efficiently maps names to addresses. This section considers the name

syntax and later sections examine the implementation.

The domain name system uses a hierarchical naming scheme known as domain

names. As in our earlier examples, a domain name consists of a sequence of subnames

separated by a delimiter character, the period. In our examples we said that individual

sections of the name might represent sites or groups, but the domain system simply
calls each section a label. Thus, the domain name

cs . purdue . edu

contains three labels: cs, purdue, and edu. Any suffix of a label in a domain name is

also called a domain. In the above example the lowest level domain is cs. purdue.edu,

(the domain name for the Computer Science Department at Purdue University), the

second level domain is purdue.edu (the domain name for Purdue University), and the

top-level domain is edu (the domain name for educational institutions). As the example

shows, domain names are written with the local label first and the top domain last. As

we will see, writing them in this order makes it possible to compress messages that con-

tain multiple domain names.

Samsung — Exhibit 1016 — Page 325

Samsung - Exhibit 1016 - Page 326

316 The Domain Name System Chap. 20

20.8 Official And Unofficial Internet Domain Names

In theory, the domain name standard specifies an abstract hierarchical namespace

with arbitrary values for labels. Because the domain system dictates only the form of ‘

names and not their actual values, it is possible for any group that builds an instance of

the domain system to choose labels for all parts of its hierarchy. For example, a private

company can establish a domain hierarchy in which the top—level labels specify cor-

porate subsidiaries, the next level labels specify corporate divisions, and the lowest level

labels specify departments.

However, most users of the domain technology follow the hierarchical labels used

by the official Internet domain system. There are two reasons. First, as we will see, the ‘Internet scheme is both comprehensive and flexible. It can accommodate a wide variety

of organizations, and allows each group to choose between geographical or organiza— I
tional naming hierarchies. Second, most sites follow the Internet scheme so they can at-

tach their TCP/IP installations to the connected Internet without changing names. Be-

cause the Internet naming scheme dominates almost all uses of the domain name sys-

tem, examples throughout the remainder of this chapter have labels taken from the In— 1

temet naming hierarchy. Readers should remember that, although they are most likely ‘
to encounter these particular labels, the domain name system technology can be used
with other labels if desired.

The Internet authority has chosen to partition its top level into the domains listed

in Figure 20.1.
Domain Name Meaning f

COM Commercial organizations ‘
EDU Educational institutions i
GOV Government institutions '

MIL Military groups i
NET Major network support centers ,
ORG Organizations other than those above :

ARPA Temporary ARPANET domain (obsolete) i
INT International organizations

country code Each country (geographic scheme)

Figure 20.1 The top—level Internet domains and their meanings. Although la-

bels are shown in upper case, domain name system comparisons

are insensitive to case, so EDU is equivalent to edu.

Conceptually, the top-level names permit two completely different naming hierar-

chies: geographic and organizational. The geographic scheme divides the universe of

machines by country. Machines in the United States fall under the top—level domain

US; when foreign countries want to register machines in the domain name system, the

central authority assigns the country a new top-level domain with the country’s intema-

Samsung — Exhibit 1016 — Page 326

Samsung - Exhibit 1016 - Page 327

Sec. 20.8 Official And Unofficial Internet Domain Names 317

tional standard 2-letter identifier as its label. The authority for the US domain has

chosen to divide it into one second-level domain per state. For example, the domain for

the state of Virginia is

V0.1/(S

As an alternative to the geographic hierarchy, the t0p~level domains also allow or-

ganizations to be grouped by organizational type. When an organization wants to parti-

cipate in the domain naming system, it chooses how it wishes to be registered and re-

quests approval. The central authority reviews the application and assigns the organiza-

tion a subdomainf under one of the existing top-level domains. For example, it is pos-

sible for a university to register itself as a second-level domain under EDU (the usual

practice), or to register itself under the state and country in which it is located. So far,

few organizations have chosen the geographic hierarchy; most prefer to register under

COM, EDU, MIL, or GOV. There are two reasons. First, geographic names are longer

and therefore more difficult to type. Second, geographic names are much more difficult

to discover or guess. For example, Purdue University is located in West Lafayette, In-

diana. While a user could easily guess an organizational name, like purdue.edu, a geo-

graphic name is often difficult to guess because it is usually an abbreviation, like

laf. in . us.

Figure 20.2 illustrates a small part of the Internet domain name hierarchy. As the

figure shows, Digital Equipment Corporation, a commercial organization, registered as

dec.c0m, Purdue University registered as purdue.edu, and the National Science Foun-

dation, a government agency, registered as nsf . gov. In contrast, the Corporation for

National Research Initiatives chose to register under the geographic hierarchy as
nri . restart . va . us.

.*The standard does not define the term “subdomain." We have chosen to use it because its analogy to

“subset" helps clarify the relationship among domains.

Samsung — Exhibit 1016 — Page 327

Samsung - Exhibit 1016 - Page 328

318 The Domain Name System Chap. 20

Figure 20.2 A small part of the Internet domain name hierarchy (tree). In

practice, the tree is broad and flat; over one hundred thousand
host entries appear by the fifth level.

Another example may help clarify the relationship between the naming hierarchy

and authority for names. A machine named xinu in the Computer Science Department

at Purdue University has the official domain name

xinu . cs .purdue . edit

The machine name was approved and registered by the local network manager in the

Computer Science Department. The department manager had previously obtained au-

thority for the subdomain cs.purdue.edu from a university network authority, who had

obtained permission to manage the subdomain purdue.edu from the Internet authority.

The Internet authority retains control of the edu domain, so new universities can only be

added with its permission. Similarly, the university network manager at Purdue Univer-

sity retains authority for the purdue.edu subdomain, so new third-level domains may
only be added with the manager’s permission.

Samsung — Exhibit 1016 — Page 328

__.__._.4-_.___...._.-._._._._._..._..__..._.___...:..____.....___..__...

Samsung - Exhibit 1016 - Page 329

Sec. 20.9
 Items Named And Syntax Of Names

20.9 Items Named And Syntax Of Names

The domain name system is quite general because it allows multiple naming hierar-

chies to be embedded in one system. To allow clients to distinguish among multiple

kinds of entries, each named item stored in the system is assigned a type that specifies
whether it is the address of a machine, a mailbox, a user, and so on. When a client asks

the domain system to resolve a name, it must specify the type of answer desired. For

example, when an electronic mail application uses the domain system to resolve a

name, it specifies that the answer should be the address of a mail exchanger. A remote

login application specifies that it seeks a machine’s IP address. It is important to under-

stand the following:

A given name may map to more than one item in the domain system.

The client specifies the type of object desired when resolving a name,

and the server returns objects of that type.

In addition to specifying the type of answer sought, the domain system allows the

client to specify the protocol family to use. The domain system partitions the entire set

of names by class, allowing a single database to store mappings for multiple protocol
suitesT.

The syntax of a name does not detennine what type of object it names or the class

of protocol suite. In particular, the number of labels in a name does not determine

whether the name refers to an individual object (machine) or a domain. Thus, in our

example, it is possible to have a machine named

gwen . purdue . edu

even though

CS .purdue . edu

names a subdomain. We can summarize this important point:

One cannot distinguish the names of subdomains from the names of

individual objects or the type of an object using only the domain name
syntax.

20.10 Mapping Domain Names To Addresses

In addition to the rules for name syntax and delegation of authority, the domain

name scheme includes an efficient, reliable, general purpose, distributed system for

mapping names to addresses. The system is distributed in the technical sense, meaning

that a set of servers operating at multiple sites cooperatively solve the mapping prob-

lem. It is efficient in the sense that most names can be mapped locally; only a few re-

+Currently, few domain servers use multiple protocol suites.

Samsung — Exhibit 1016 — Page 329

Samsung - Exhibit 1016 - Page 330

320 The Domain Name System Chap. 20

quire intemet traffic. It is general purpose because it is not restricted to machine names

(although we will use that example for now). Finally, it is reliable in that no single

machine failure will prevent the system from operating correctly.

The domain mechanism for mapping names to addresses consists of independent,

cooperative systems called name servers. A name server is a server program that sup-

plies name-to—address translation, mapping from domain names to IP addresses. Often,

server software executes on a dedicated processor, and the machine itself is called the
name server. The client software, called a name resolver, uses one or more name

servers when translating a name.

The easiest way to understand how domain servers work is to imagine them ar-

ranged in a tree structure that corresponds to the naming hierarchy, as Figure 20.3 illus-

trates. The root of the tree is a server that recognizes the top-level domains and knows
which server resolves each domain. Given a name to resolve, the root can choose the

correct server for that name. At the next level, a set of name servers each provide

answers for one top-level domain (e.g., edu). A server at this level knows which
servers can resolve each of the subdomains under its domain. At the third level of the

tree, name servers provide answers for subdomains (e.g., purdue under edu). The con-

ceptual tree continues with one server at each level for which a subdomain has been de-
fined.

Links in the conceptual tree do not indicate physical network connections. Instead,

they show which other name servers a given server knows and contacts. The servers

themselves may be located at arbitrary locations on an intemet. Thus, the tree of
servers is an abstraction that uses an intemet for communication.

server for server for server for

.com .edu .gov

server {or server for server tor server for

dec.com purdue.edu nsf.gov va.us

Figure 20.3 The conceptual arrangement of domain name servers in a tree

that corresponds to the naming hierarchy. In theory, each server
knows the addresses of all lower level servers for all subdomains

within the domain it handles.

Samsung — Exhibit 1016 — Page 330

Samsung - Exhibit 1016 - Page 331

Sec. 20.10 Mapping Domain Names To Addresses 321

If servers in the domain system worked exactly as our simplistic model suggests,

the relationship between connectivity and authorization would be quite simple. When

authority was granted for a subdomain, the organization requesting it would need to es-
tablish a domain name server for that subdomain and link it into the tree.

In practice, the relationship between the naming hierarchy and the tree of servers is

not as simple as our model implies. The tree of servers has few levels because a single

physical server can contain all of the information for large parts of the naming hierar-
chy. In particular, organizations often collect information from all of their subdomains

into a single server. Figure 20.4 shows a more realistic organization of servers for the

naming hierarchy of Figure 20.2.

A root server contains information about the root and top—level domains, and each

organization uses a single server for its names. Because the tree of servers is shallow,

at most two servers need to be contacted to resolve a name like xinu.cs.purdue.edu:

the root server and the server for domain purdue.edu (i.e., the root server knows which

server handles purdue. edu, and the entire domain information for Purdue resides in its
server).

server for server for server for server for

dec.com purdue.edu nsf.gov ' ' ' reston.va.us

Figure 20.4 A realistic organization of servers for the naming hierarchy of
Figure 20.2. Because the tree is broad and flat, few servers need

to be contacted when resolving a name.

20.11 Domain Name Resolution

Although the conceptual tree makes understanding the relationship between servers

easy, it hides several subtle details. Looking at the name resolution algorithm will help

explain them. Conceptually, domain name resolution proceeds top-down, starting with

the root name server and proceeding to servers located at the leaves of the tree. There

are two ways to use the domain name system: by contacting name servers one at a time

or asking the name server system to perform the complete translation. In either case,

Samsung — Exhibit 1016 — Page 331

Samsung - Exhibit 1016 - Page 332

322 The Domain Name System Chap. 20

the client software forms a domain name query that contains the name to be resolved, a

declaration of the class of the name, the type of answer desired, and a code that speci-

fies whether the name server should translate the name completely. It sends the query
to a name server for resolution.

When a domain name server receives a query, it checks to see if the name lies in

the subdomain for which it is an authority. If so, it translates the name to an address

according to its database and appends an answer to the query before sending it back to

the client. If the name server cannot resolve the name completely, it checks to see what

type of interaction the client specified. If the client requested complete translation (re-

cursive resolution, in domain name terminology), the server contacts a domain name
server that can resolve the name and returns the answer to the client. If the client re-

quested non—recursive resolution (iterative resolution), the name server cannot supply an

answer. It generates a reply that specifies the name server the client should contact next
to resolve the name.

How does a resolver find a name server at which to begin the search? How does a

name server find other name servers that can answer questions when it cannot? The

answers are simple. A resolver must know how to contact at least one name server. To

insure that a domain name server can reach others, the domain system requires that each %

server know the address of at least one root serveri“. In addition, a server may know the

address of a server for the domain immediately above it (called the parent).

Domain name servers use a well-known protocol port for all communication, so i
clients know how to communicate with a server once they know the IP address of the i
machine in which the server executes. There is no standard way for hosts to locate a ‘

machine in the local environment on which a name server runs; that is left to whomever :
designs the resolver softwarei.

In some systems, the address of the machine that supplies domain name service is

bound into application programs at compile time, while in others, the address is config—

ured into the operating system at startup. In others, the administrator places the address i
of a server in a file on secondary storage. ‘

20.12 Efficient Translation

Although it may seem natural to resolve queries by working down the tree of name
sewers, it can lead to inefficiencies for three reasons. First, most name resolution refers

to local names, those found within the same subdivision of the namespace as the

machine from which the request originates. Tracing a path through the hierarchy to

contact the local authority would be inefficient. Second, if each name resolution always

started by contacting the topmost level of the hierarchy, the machine at that point would

become overloaded. Third, failure of machines at the topmost levels of the hierarchy

would prevent name resolution, even if the local authority could resolve the name. The

telephone number hierarchy mentioned earlier helps explain. Although telephone

numbers are assigned hierarchically, they are resolved in a bottom—up fashion. Because
the majority of telephone calls are local, they can be resolved by the local exchange

’rFor reliability, there are multiple servers for each node in the domain server tree.
iSee BOOTP in Chapter 19 for one possible approach,

Samsung — Exhibit 1016 — Page 332

Samsung - Exhibit 1016 - Page 333

Sec. 20.12 Efficient Translation 323

without searching the hierarchy. Furthermore, calls within a given area code can be

resolved without contacting sites outside the area code. When applied to domain

names, these ideas lead to a two-step name resolution mechanism that preserves the ad-

ministrative hierarchy but permits efficient translation.

We have said that most queries to name servers refer to local names. In the two-

step name resolution process, resolution begins with the local name server. If the local

server cannot resolve a name, the query must then be sent to another server in the

domain system.

20.13 Caching: The Key To Efficiency

The cost of lookup for nonlocal names can be extremely high if resolvers send

each query to the root server. Even if queries could go directly to the server that has

authority for the name, name lookup can present a heavy load to an intemet. Thus, to

improve the overall performance of a name server system, it is necessary to lower the
cost of lookup for nonlocal names.

Internet name servers use name caching to optimize search costs. Each server

maintains a cache of recently used names as well as a record of where the mapping in-
formation for that name was obtained. When a client asks the server to resolve a name,

the server first checks to see if it has authority for the name according to the standard

procedure. If not, the server checks its cache to see if the name has been resolved re-

cently. Servers report cached information to clients, but mark it as a nonauthoritative

binding, and give the domain name of the server, S, from which they obtained the bind-

ing. The local server also sends along additional information that tells the client the

binding between S and an IP address. Therefore, clients receive answers quickly, but

the information may be out—of-date. If efficiency is important, the client will choose to

accept the nonauthoritative answer and proceed. If accuracy is important, the client will

choose to contact the authority and verify that the binding between name and address is
still valid.

Caching works well in the domain name system because name to address bindings

change infrequently. However, they do change. If servers cached information the first

time it was requested and never changed it, entries in the cache could become incorrect.

To keep the cache correct, servers time each entry and dispose of entries that exceed a
reasonable time. When the server is asked for the information after it has removed the

entry from the cache, it must go back to the authoritative source and obtain the binding

again. More important, servers do not apply a single fixed timeout to all entries, but al-

low the authority for an entry to Configure its timeout. Whenever an authority responds

to a request, it includes a Time To Live (TTL) value in the response that specifies how

long it guarantees the binding to remain. Thus, authorities can reduce network overhead

by specifying long timeouts for entries that they expect to remain unchanged, while im-

proving correctness by specifying short timeouts for entries that they expect to change

frequently.

Samsung — Exhibit 1016 — Page 333

Samsung - Exhibit 1016 - Page 334

324 The Domain Name System Chap. 20

Caching is important in hosts as well as local domain name servers. Many

timesharing systems run a complex form of resolver code that attempts to provide even

more efficiency than the server system. The host downloads the complete database of

names and addresses from a local domain name server at startup, maintains its own

cache of recently used names, and uses the server only when names are not found. Na-

turally, a host that maintains a copy of the local server database must check with the

server periodically to obtain new mappings, and it must remove entries from its cache

after they become invalid. However, most sites have little trouble maintaining con-

sistency because domain names change so infrequently.

Keeping a copy of the local server’s database in each host has several advantages.

Obviously, it makes name resolution on local hosts extremely fast because it means the

host can resolve names without any network activity. It also means that the local site

has protection in case the local name server fails. Finally, it reduces the computational

load on the name sewer, and makes it possible for a given server to supply names to
more machines.

20.14 Domain Server Message Format

Looking at the details of messages exchanged between clients and domain name

servers will help clarify how the system operates from the view of a typical application

program. We assume that a user invokes an application program and supplies the name

of a machine with which the application must communicate. Before it can use proto-

cols like TCP or UDP to communicate with the specified machine, the application pro-

gram must find the machine’s IP address. It passes the domain name to a local resolver

and requests an IP address. The local resolver checks its cache and returns the answer

if one is present. If the local resolver does not have an answer, it formats a message

and sends it to the server (i.e., it becomes a client). Although our example only in-

volves one name, the message format allows a client to ask multiple questions in a sin-

gle message. Each question consists of a domain name for which the client seeks an IP

address, a specification of the query class (i.e., internet), and the type of object desired

(e.g., address). The server responds by returning a similar message that contains

answers to the questions for which the server has bindings. If the server cannot answer

all questions, the response will contain information about other name servers that the
client can Contact to obtain the answers.

Responses also contain information about the servers that are authorities for the re-

plies and the IP addresses of those servers. Figure 20.5 shows the message format.

Samsung — Exhibit 1016 — Page 334

Samsung - Exhibit 1016 - Page 335

Sec. 20. l4 Domain Server Message Fonnat 325

O 16 31

Figure 20.5 Domain name server message format. The question, answer, au-

thority, and additional information sections are variable length.

As Figure 20.5 shows, each message begins with a fixed header that contains a

unique IDENTIFICATION field that the client uses to match responses to queries. In

the header, the field labeled PARAMETER specifies the operation requested and a

response code, as shown in Figure 20.6 below.

The fields labeled NUMBER OF each give a count of entries in the corresponding

sections that occur later in the message. For example, the field labeled NUMBER OF

QUESTIONS gives the count of entries that appear in the QUESTION SECTION of the
message.

The QUESTION SECTION contains queries for which answers are desired. The

client fills in only the question section; the server returns the questions and answers in

its response. Each question consists of a QUERY DOMAIN NAME followed by QUERY

TYPE and QUERY CLASS fields, as Figure 20.7 shows.

Samsung — Exhibit 1016 — Page 335

Samsung - Exhibit 1016 - Page 336

326 The Domain Name System Chap. 20

Bit of PARAMETER field Meaning ‘Q

0 Operation:
0 Query l_
1 Response 3

1-4 Query Type:
0 Standard

1 Inverse

2 Completion 1 (now obsolete)

3 Completion 2 (now obsolete)

5 Set if answer authoritative

6 Set it message truncated 3
7 Set if recursion desired 3

8 Set if recursion available

9-11 Reserved

12-15 Response Type:
0 No error

1 Format error in query
2 Server failure

3 Name does not exist

Figure 20.6 The meaning of bits of the PARAMETER field in a domain name
server message. Bits are numbered left to right starting at 0.

QUERY DOMAIN NAME

QUERY TYPE QUERY CLASS

Figure 20.7 The format of entries in the question section of a domain name

sewer message. The domain name is variable length. Clients

fill in the questions; servers return them along with answers.

Although the QUERY DOMAIN NAME field has variable length, we will see in the next

section that the internal representation of domain names makes it possible for the re-

ceiver to know the exact length. The QUERY TYPE encodes the type of the question

(e.g., whether the question refers to a machine name or a mail address). The QUERY

CLASS field allows domain names to be used for arbitrary objects because official Inter-

net names are only one possible class. It should be noted that, although the diagram in

Figure 20.5 follows our Convention of showing formats in 32-bit multiples, the query

Samsung — Exhibit 1016 — Page 336

Samsung - Exhibit 1016 - Page 337

Sec. 20.14 Domain Server Message Format 327

domain name field may contain an arbitrary number of octets. No padding is used.

Therefore, messages to or from domain name servers may contain an odd number of oc-
tets.

In a domain name server message, each of the ANSWER SECTION, AUTHORITY
SECTION, and ADDITIONAL INFORMATION SECTION consists of a set of resource

records that describe domain names and mappings. Each resource record describes one

name. Figure 20.8 shows the format.

0 16 31

RESOURCE DOMAIN NAME

TYPE CLASS

TIME TO LIVE RESOURCE DATA LENGTH

RESOURCE DATA

Figure 20.8 The format of resource records used in later sections of messages

returned by domain name servers.

The RESOURCE DOMAIN NAME field contains the domain name to which this

resource record refers. It may be an arbitrary length. The TYPE field specifies the type

of the data included in the resource record; the CLASS field specifies it class. The

TIME TO LIVE field contains an integer that specifies the number of seconds infonna-

tion in this resource record can be cached. It is used by clients who have requested a

name binding and may want to cache the results. The last two fields contain the results

of the binding, with the RESOURCE DATA LENGTH field specifying the count of oc-
* tets in the RESOURCE DATA field.

20.15 Compressed Name Format

When represented in a message, domain names are stored as a sequence of labels.

Each label begins with an octet that specifies its length. Thus, the receiver reconstructs

a domain name by repeatedly reading a 1—octet length, n, and then reading a label n oc-

tets long. A length octet containing zero marks the end of the name.

Domain name servers often return multiple answers to a query and, in many cases,

suffixes of the domain overlap. To conserve space in the reply packet, the name servers

compress names by storing only one copy of each domain name. When extracting a

domain name from a message, the client software must check each segment of the name

Samsung — Exhibit 1016 — Page 337

Samsung - Exhibit 1016 - Page 338

counters a pointer, the client must follow the pointer to a new place in the message to
find the remainder of the name.

Pointers always occur at the beginning of segments and are encoded in the count

byte. If the top 2 bits of the 8-bit segment count field are ls, the client must take the

next 14 hits as an integer pointer. If the top two bits are zero, the next 6 bits specify
the number of characters in the label that follow the count octet.

328 The Domain Name System Chap. 20

to see whether it consists of a literal string (in the fomiat of a 1—octet count followed by

the characters that make up the name) or a pointer to a literal string. When it en-

20.16 Abbreviation Of Domain Names ‘
The telephone number hierarchy illustrates another useful feature of local resolu-

tion, viz., name abbreviation. Abbreviation provides a method of shortening names

when the resolving process can supply part of the name automatically. Normally, a

subscriber omits the area code when dialing a local telephone number. The resulting di-

gits form an abbreviated name assumed to lie within the same area code as the

subscriber’s phone. Abbreviation also works well for machine names. Given a name

like xyz, the resolving process can assume it lies in the same local authority as the

machine on which it is being resolved. Thus, the resolver can supply missing parts of .

the name automatically. For example, within the Computer Science Department at Pur-
due, the abbreviated name

xinu

is equivalent to the full domain name

xinu . cs .purdue . edu

Most client software implements abbreviations with a domain suffix list. The local net-

work manager configures a list of possible suffixes to be appended to names during

lookup. When a resolver encounters a name, it steps through the list, appending each

suffix and trying to look up the resulting name. For example, the suffix list for the

Computer Science Department at Purdue includes:

.cs . purdue . edu

. cc . purdue . edu

.purdue . edu
null

Thus, local resolvers first append cs.purdue.edu onto the name xinu. If that lookup

fails, they append cc.purdue.edu onto the name and look that up. The last suffix in

the example list is the null string, meaning that if all other lookups fail, the resolver will

attempt to look up the name with no suffix. Managers can use the suffix list to make

abbreviation convenient or to restrict application programs to local names.

Samsung — Exhibit 1016 — Page 338

Samsung - Exhibit 1016 - Page 339

Sec. 20. l6 Abbreviation Of Domain Names 329

We said that the client takes responsibility for the expansion of such abbreviations,

but it should be emphasized that such abbreviations are not part of the domain name

system itself. The domain system only allows lookup of a fully specified domain name.

As a consequence, programs that depend on abbreviations may not work correctly out-

side the environment in which they were built. We can summarize:

The domain name system only maps full domain names into ad-

dresses,‘ abbreviations are not part of the domain name system itself,

but are introduced by client software to make local names convenient

for users.

20.17 Inverse Mappings

We said that the domain name system can provide mappings other than machine

name to IP address. Inverse queries allow the client to ask a server to map “back-

wards" by taking an answer and generating the question that would produce that

answer. Of course, not all answers have a unique question. Even when they do, a

server may not be able to provide it. Although inverse queries have been part of the

domain system since it was first specified, they are generally not used because there is

often no way to find the server that can resolve the query without searching the entire
set of servers.

20.18 Pointer Queries

One form of inverse mapping is so obviously needed that the domain system sup-

ports a special domain and a special form of question called a pointer query to answer

it. In a pointer query, the question presented to a domain name server specifies an IP

address encoded as a printable string in the form of a domain name (i.e., a textual

representation of digits separated by periods). A pointer query requests the name server

to return the correct domain name for the machine with the specified IP address.

Pointer queries are especially useful for diskless machines because they allow the sys-

tem to obtain a high—level name given only an IP address. (We have already seen in

Chapter 6 how a diskless machine can obtain its IP address.)

Pointer queries are not difficult to generate. If we think of an IP address written in

dotted-decimal form, it has the following format:

aaa . bbb . ccc . ddd

To form a pointer query, the client rearranges the dotted decimal representation of the

address into a string of the fonn:

ddd . ccc . bbb . aaa . in-addr . arpa

Samsung — Exhibit 1016 — Page 339

Samsung - Exhibit 1016 - Page 340

330 The Domain Name System Chap. 20

The new form is a name in the special irz—addr.arpa domaint. Because the local name

server may not be the authority for either the arpa domain or the in-addr.arpa domain,

it may need to Contact other name servers to complete the resolution. To make the

resolution of pointer queries efficient, the Internet root domain servers maintain a data-
base of valid IP addresses along with information about domain name servers that can
resolve each address.

20.19 Object Types And Resource Record Contents

We have mentioned that the domain name system can be used for translating a

domain name to a mail exchanger address as well as for translating a host name to an IP

address. The domain system is quite general in that it can be used for arbitrary

hierarchical names. For example, one might decide to store the names of available

computational services along with a mapping from each name to the telephone number

to call to find out about the corresponding service. Or one might store names of proto-

col products along with a mapping to the names and addresses of vendors that offer

such products.

Recall that the system accommodates a variety of mappings by including a type in

each resource record. When sending a request, a client must specify the type in its

queryT; servers specify the data type in all resource records they return. The type deter- I

mines the contents of the resource record according to the table in Figure 20.9

Type Meaning Contents
A Host Address 32-bit IP address

CNAME Canonical Name Canonical Domain Name for an alias

HINFO CPU & OS Name of CPU and Operating System
MINFO Mailbox info Information about a mailbox or mail list

MX Mail Exchanger 16-bit preference and name of host that

acts as mail exchanger for the domain
NS Name Server Name of authoritative server for domain

PTFl Pointer Domain name (like a symbolic link)

SOA Start of Authority Multiple fields that specify which

parts of the naming hierarchy

a server implements

TXT Arbitrary text Uninterpreted string of ASCII text

Figure 20.9 Domain Name System resource record types.

Most data is of type A, meaning that it consists of the name of a host attached to the In-

ternet along with the host’s IP address. The second most useful domain type, MX, is

assigned to names used for electronic mail exchangers. It allows a site to specify multi-

ple machines that are each capable of accepting mail. When sending electronic mail,

the user specifies an electronic mail address in the form use-r@domain-part. The mail

‘»“The octets of the IP address must be reversed when fonning a domain name because IP addresses have
the most significant octets first while domain names have the least—significant octets first.

+Queries can specify a few additional types (eg, there is a query type that requests all resource records).

Samsung - Exhibit 1016 - Page 340

Samsung - Exhibit 1016 - Page 341

Sec. 20.19 Object Types And Resource Record Contents 331

system uses the domain name system to resolve a'0main—part with query type MX. The

domain system returns a set of resource records that each contain a preference field and

a host’s domain name. The mail system steps through the set from highest preference

to lowest (lower numbers mean higher preference). For each MX resource record, the

mailer extracts the domain name and uses a type A query to resolve that name to an IP
address. It tries to contact the host and deliver mail. If the host is unavailable, the

mailer will continue trying other hosts on the list.

To make lookup efficient, a server always returns additional bindings that it knows

in the ADDITIONAL INFORMATION SECTION of a response. In the case of MX

records, a domain server can use the ADDITIONAL INFORMATION SECTION to return

type A resource records for domain names reported in the ANSWER SECTION. Doing

so substantially reduces the number of queries a mailer sends to its domain server.

20.20 Obtaining Authority For A Subdomain

Before an institution is granted authority for an official second-level domain, it

must agree to operate a domain name server that meets Intemet standards. Of course, a

domain name server must obey the protocol standards that specify message formats and

the rules for responding to requests. The server must also know the addresses of
servers that handle each subdomain (if any exist) as well as the address of at least one
root server.

In practice, the domain system is much more complex than we have outlined. In

most cases, a single physical server may handle more than one part of the naming

hierarchy. For example, a single name server at Purdue University handles both the

second-level domain purdue.edu as well as the geographic domain Iaf.in.us. A sub-

tree of names managed by a given name server forms a zone of authority. Another

practical complication arises because servers must be able to handle many requests,

even though some requests take a long time to resolve. Usually, servers support con-

current activity, allowing work to proceed on later requests while earlier ones are being

processed. Handling requests concurrently is especially important when the server re-

ceives a recursive request that forces it to send the request on to another server for reso-
lution.

Server implementation is also complicated because the Internet authority requires

that the information in every domain name server be replicated. Information must ap-

pear in at least two servers that do not operate on the same computer. In practice, the

requirements are quite stringent: the servers must have no single common point of

failure. Avoiding common points of failure means that the two name servers cannot

both attach to the same network; they cannot even obtain electrical power from the

same source. Thus, to meet the requirements, a site must find at least one other site that

agrees to operate a backup name server. Of course, at any point in the tree of servers, a

server must know how to locate both the primary and backup name servers for sub-

domains, and it must direct queries to a backup name server if the primary server is
unavailable.

Samsung — Exhibit 1016 — Page 341

Samsung - Exhibit 1016 - Page 342

332 The Domain Name System Chap. 20

20.21 Summary

Hierarchical naming systems allow delegation of authority for names, making it

possible to accommodate an arbitrarily large set of names without overwhelming a cen-

tral site with administrative duties. Although name resolution is separate from delega-

tion of authority, it is possible to create hierarchical naming systems in which resolution

is an efficient process that starts at the local server even though delegation of authority

always flows from the top of the hierarchy downward.

We examined the Internet domain name system, an example of a distributed,

hierarchical naming scheme. Domain name servers map high—level domain names to IP

addresses or to mail exchanger addresses. Clients begin by trying to resolve names 10

cally. When the local server cannot resolve the name, the client must choose to work

through the tree of name servers iteratively or request the local name server to do it re-

cursively. Finally, we saw that the domain name system supports a variety of bindings

including bindings from IP addresses to high—level names.

FOR FURTHER STUDY

Mockapetris [RFC 1034] discusses Internet domain naming in general, giving the

overall philosophy, while Mockapetris [RFC 1035] provides a protocol standard for

domain naming. Mockapetris [RFC 1101] discusses using the domain name system to

encode network names and proposes extensions useful for other mappings. Older ver-

sions appeared in Mockapetris [RFC 882, 883, and 973]. Postel and Reynolds [RFC

920] states the requirements that an Internet domain name server must meet. Stahl

[RFC 1032] gives administrators guidelines for establishing a domain, and Lottor [RFC

1033] provides guidelines for operating a domain name server. Finally, Partridge [RFC

974] relates domain naming to electronic mail addressing.

EXERCISES

20.1 Machine names should not be bound into the operating system at compile time. Explain
why.

20.2 Would you prefer to use a machine that obtained its name from a remote file or from a
name server? Why?

20.3 Why should each name server know the IP address of its parent instead of the domain
name of its parent?

20.4 Devise a naming scheme that tolerates changes to the naming hierarchy. As an example,
consider that two large companies each have an independent hierarchy and they merge.

Can you arrange to have all previous names still work correctly?

20.5 Read the standard and find out how the domain name system uses SOA records.

Samsung — Exhibit 1016 — Page 342

Samsung - Exhibit 1016 - Page 343

Exercises 333

20.6 The Internet domain naming system can also accommodate mailbox names. Find out
how.

20.7 The standard suggests that when a program needs to find the domain name associated
with an IP address, it should send an inverse query to the local server first and use
domain ir1—addr.arpa only if that fails. Why?

20.8 How would you accommodate abbreviations in the domain naming scheme? Sketch
name servers for two departments at each of two universities as well as a top-level name

server. Explain how each server would treat each type of abbreviation.

20.9 Obtain the official description of the domain name system and build a client program‘
Look up the name merlin.cs.purdue.edu.

20.10 Extend the exercise above to include a pointer query. Try looking up the domain name
for address 128.1023 .

20.11 If we extended the domain name syntax to include a dot after the top-level domain,
names and abbreviations would be unambiguous. What are the advantages and disad-

vantages of the extension?

Samsung — Exhibit 1016 — Page 343

Samsung - Exhibit 1016 - Page 344

21

The Socket Interface

21.1 Introduction

So far, we have concentrated on discussing the principles and concepts that under-

lie the TCP/IP protocols without specifying the interface between the application pro-

grams and the protocol software. This chapter reviews one example of an interface

between application programs and TCP/IP protocols. There are two reasons for post-

poning the discussion of interfaces. First, in principle we must distinguish between the

interface and TCP/IP protocols because the standards do not specify exactly how appli-

cation programs interact with protocol software. Thus, the interface architecture is not

standardized; its design lies outside the scope of the protocol suite. Second, in practice,

it is inappropriate to tie the protocols to a particular interface because no single inter-

face architecture works well on all systems. In particular, because protocol software re-

sides in a computer’s operating system, interface details depend on the operating sys-
tem.

Despite the lack of a standard, reviewing an example will help us understand how

programmers use TCP/IP. Although the example we have chosen is from the 4BSD

UNIX operating system, it has become widely accepted and is used in many other sys-

tems. The reader should keep in mind that our goal is merely to give one concrete ex-

ample, not to prescribe how interfaces should be designed. The reader should also

remember that the operations listed here do not comprise a standard in any sense.

Samsung — Exhibit 1016 — Page 344

Samsung - Exhibit 1016 - Page 345

336 The Socket Interface Chap. 2|

21.2 The UNIX I/O Paradigm And Network I/O

Developed in the late 1960s and early 1970s, UNIX was originally designed as a

timesharing system for single processor computers. It is a process-oriented system in

which application programs execute as user level processes. An application program in-

teracts with the operating system by making system calls. From the programmer's point

of view, system calls look and behave exactly like other procedure calls. They take ar-

guments and return one or more results. Arguments can be values (e.g., an integer

count) or pointers to objects in the application program (e.g., a buffer to be filled with
characters).

The UNIX input and output (I/O) primitives, derived from those in Multics and

earlier systems, follow a paradigm sometimes referred to as open—read—write-close. Be-

fore a user process can perform I/O operations, it calls open to specify the file or device

to be used and obtains permission. The call to open returns a small integerfile d€SL‘)‘Ip-

tori’ that the process uses when performing I/O operations on the opened file or device.

Once an object has been opened, the user process makes one or more calls to read or

write to transfer data. Read transfers data into the user process; write transfers data

from the user process to the file or device. Both read and write take three arguments

that specify the file descriptor to use, the address of a buffer, and the number of bytes to

transfer. After all transfer operations are complete, the user process calls close to in-

form the operating system that it has finished using the object (the operating system au-

tomatically closes all open objects if a process terminates without calling close).

21.3 Adding Network I/O to UNIX

Originally, UNIX designers cast all I/O operations in the open-read-write—close

paradigm described above. The scheme included I/O for character-oriented devices like

CRT terminals and block—oriented devices like disks and data files. Early implementa-

tions of TCP/IP under UNIX also used the open—read—write-close paradigm with a spe-

cial file name, /dev/tcp.

The group adding network protocols to 4BSD UNIX decided that because network

protocols are more complex than conventional I/O devices, interaction between user

processes and network protocols must be more complex than interactions between user

processes and conventional I/O facilities. In particular, the protocol interface must al-

low programmers to create both server code that awaits connections passively as well as

client code that fomts connections actively. Furthermore, application programs sending

datagrams may wish to specify the destination address along with each datagram instead

of binding destinations at the time they call open. To handle all these cases, the

designers chose to abandon the traditional UNIX open—read—write-close paradigm and

added several new operating system calls as well as new library routines. Adding net-

work protocols to UNIX increased the complexity of the I/O interface substantially.

’«‘The term “file descriptor" arises because in UNIX all devices are mapped into the file system name
space. In most cases, files, devices, and other I/O operations are indistinguishable.

Samsung - Exhibit 1016 - Page 345

Samsung - Exhibit 1016 - Page 346

Sec. 213 Adding Network 1/0 to UNIX 337

Further complexity arises in the UNIX protocol interface because designers at-

tempted to build a general mechanism to accommodate many protocols. For example,

the generality makes it possible to have protocol software for both the TCP/IP protocols

as well as the Xerox intemet protocols (XNS), and to allow application programs to use

either one or both. As a consequence, the application program cannot merely supply an

address and expect the operating system to interpret it correctly. The application must

explicitly specify that an address is an IP address.

21.4 The Socket Abstraction

The basis for network 1/0 in 4BSD UNIX centers on an abstraction known as the

socketi. We think of a socket as a generalization of the UNIX file access mechanism

that provides an endpoint for communication. As with file access, application programs

request the operating system to create a socket when one is needed. The system returns

a small integer that the application program uses to reference the newly created socket.

The chief difference between file descriptors and socket descriptors is that the operating

system binds a file descriptor to a specific file or device when the application calls

open, but it can create sockets without binding them to specific destination addresses.

The application can choose to supply a destination address each time it uses the socket

(eg, when sending datagrams), or it can choose to bind the destination address to the

socket and avoid specifying the destination repeatedly (e.g., when making a TCP con-
nection).

Whenever it makes sense, sockets perform exactly like UNIX files or devices, so

they can be used with traditional operations like read and write. For example, once an

application program creates a socket and creates a TCP connection from the socket to a

foreign destination, the program can use write to send a stream of data across the con-

nection (the application program at the other end can use read to receive it). To make it

possible to use primitives like read and write with both files and sockets, the operating

system allocates socket descriptors and file descriptors from the same set of integers and

makes sure that if a given integer has been allocated as a file descriptor, it will not also

be allocated as a socket descriptor.

21.5 Creating A Socket

The socket system call creates sockets on demand. It takes three integer arguments

and returns an integer result:

result = socket(af, type, protocol)

Argument af specifies the protocol family to be used with the socket. That is, it speci-

fies how to interpret addresses when they are supplied. Current families include the

TCP/IP intemet (AF_INET), Xerox Corporation PUP intemet (AF_PUP), Apple Com-

+For now, we will describe sockets as pan of the operating system because that is the way 4BSD UNIX
provides them; later sections describe how other operating systems use library routines to provide a socket in-
terface.

Samsung — Exhibit 1016 — Page 346

Samsung - Exhibit 1016 - Page 347

338 The Socket Interface Chap. 21

puter Incorporated Appletalk network (AF_APPLETALK), and UNIX file system
(AF_UNIX) as well as many others.

Argument type specifies the type of communication desired. Possible types in—

clude reliable stream delivery service (SOCK_STREAM) and connectionless datagram

delivery service (SOCK_DGRAM), as well as a raw type (SOCK_RAW) that allows

privileged programs to access low-level protocols or network interfaces. Two additional

types have been planned but not implemented.

Although the general approach of separating protocol families and types may seem

sufficient to handle all cases easily, it does not. First, it may be that a given family of

protocols does not support one or more of the possible service types. For example, the

UNIX family has an interprocess communication mechanism called a pipe that uses a

reliable stream delivery service, but has no mechanism for sequenced packet delivery.

Thus, not all combinations of protocol family and service type make sense. Second,

some protocol families have multiple protocols that support one type of service. For

example, it may be that a single protocol family has two connectionless datagram

delivery services. To accommodate multiple protocols within a family, the socket call

has a third argument that can be used to select a specific protocol. To use the third ar-

gument, the programmer must understand the protocol family well enough to know the

type of service each protocol supplies.

Because the designers tried to capture many of the conventional UNIX operations

in their socket design, they needed a way to simulate the UNIX pipe mechanism. It is

not necessary to understand the details of pipes; only one salient feature is important:

pipes differ from standard network operations because the calling process creates both

endpoints for the communication simultaneously. To accommodate pipes, the designers

added a socketpair system call that takes the form:

socketpair(af, type, protocol, sarray)

Sockelpair has one more argument than the socket procedure, sarray. The additional ar-

gument gives the address of a 2—element integer array. Socketpair creates two sockets
simultaneously and places the two socket descriptors in the two elements of sarray.

Readers should understand that socketpair is not meaningful when applied to the

TCP/IP protocol family (it has been included here merely to make our description of the

interface complete).

21.6 Socket Inheritance And Termination

UNIX uses the fork and exec system calls to start new application programs. It is a

two-step procedure. In the first step, fork creates a separate copy of the currently exe-

cuting application program. In the second step, the new copy replaces itself with the

desired application program. When a program calls fork, the newly created copy inher-

its access to all open sockets just as it inherits access to all open files. When a program

calls exec, the new application retains access to all open sockets. We will see that mas-

ter servers use socket inheritance when they create slave servers to handle a specific

Samsung — Exhibit 1016 — Page 347

TI

Samsung - Exhibit 1016 - Page 348

Sec. 21.6 Socket Inheritance And Termination 339

connection. Internally, the operating system keeps a reference count associated with

each socket, so it knows how many application programs (processes) have access to it.

Both the old and new processes have the same access rights to existing sockets,

and both can access the sockets. Thus, it is the responsibility of the programmer to en-

sure that the two processes use the shared socket meaningfully.

When a process finishes using a socket it calls close. Close has the form:

close(socket)

where argument socket specifies the descriptor of a socket to close. When a process ter-

minates for any reason, the system closes all sockets that remain open. Internally, a call

to close decrements the reference count for a socket and destroys the socket if the count
reaches zero.

21.7 Specifying A Local Address

Initially, a socket is created without any association to local or destination ad-

dresses. For the TCP/IP protocols, this means no local protocol port number has been

assigned and no destination port or IP address has been specified. In many cases, appli-

cation programs do not care about the local address they use and are willing to allow

the protocol software to choose one for them. However, server processes that operate at

a well—known port must be able to specify that port to the system. Once a socket has

been created, a server uses the bind system call to establish a local address for it. Bind

has the following fonn:

bind(socket, localaddr, addrlen)

Argument socket is the integer descriptor of the socket to be bound. Argument [0-

caladdr is a structure that specifies the local address to which the socket should be

bound, and argument addrlen is an integer that specifies the length of the address meas-

ured in bytes. Instead of giving the address merely as a sequence of bytes, the

designers chose to use a structure for addresses as Figure 21.1 illustrates.

16 310

Figure 21.1 The sockaddr structure used when passing a TCP/IP address to
the socket interface.

Samsung — Exhibit 1016 — Page 348

Samsung - Exhibit 1016 - Page 349

340 The Socket Interface Chap. 21

The structure, generically named sockaddr, begins with a 16-bit ADDRESS FAMI-

LY field that identifies the protocol suite to which the address belongs. It is followed

by an address of up to 14 octets. When declared in C, the socket address structure is a

union of structures for all possible address families.

The value in the ADDRESS FAMILY field detennines the fonnat of the remaining
address octets. For example, the value 21‘ in the ADDRESS FAMILY field means the

remaining address octets contain a TCP/IP address. Each protocol family defines how it
will use octets in the address field. For TCP/IP addresses, the socket address is known

as sockaddr_in. It includes both an IP address and a protocol port number (i.e., an in-

temet socket address structure can contain both an IP address and a protocol port at that

address). Figure 21.2 shows the exact format of a TCP/IP socket address.

l

S:
5.

la.
‘ii’

16 31 ’

Figure 21.2 The format of a socket address structure (sockaddr_in) when used
with a TCP/IP intemet address. The structure includes both an

IP address and a protocol port at that address.:.—..-.§?.'a_f_gC‘l‘.’t'¢.
Although it is possible to specify arbitrary values in the address structure when cal-

ling bind, not all possible bindings are valid. For example, the caller might request a

local protocol port that is already in use by another program, or it might request an in-
valid IP address. In such cases, the bind call fails and returns an error code.

21.8 Connecting Sockets To Destination Addresses

Initially, a socket is created in the unconnected state, which means that the socket

‘» is not associated with any foreign destination. The system call connect binds a per-

il manent destination to a socket, placing it in the connected state. An application pro-

gs ' gram must call connect to establish a connection before it can transfer data through a re-

liable stream socket. Sockets used with connectionless datagram services need not be

connected before they are used, but doing so makes it possible to transfer data without

specifying the destination each time.

The connect system call has the form:

connect(socket, destaddr, addrlen)

‘IUNIX uses the symbolic name AF_INET to denote TCP/II’ addresses.

 iV . _ . .

Samsung - Exhibit 1016 - Page 349

Samsung - Exhibit 1016 - Page 350

Sec. 21.8 Connecting Sockets To Destination Addresses 341

Argument socket is the integer descriptor of the socket to connect. Argument destaddr

is a socket address structure that specifies the destination address to which the socket

should be bound. Argument addrlen specifies the length of the destination address

measured in bytes.

The semantics of connect depend on the underlying protocols. Selecting the reli-

able stream delivery service in the AF_INET family means choosing TCP. In such
cases, connect builds a TCP connection with the destination and returns an error if it

cannot. In the case of connectionless service, connect does nothing more than store the

destination address locally.

21.9 Sending Data Through A Socket

Once an application program has established a socket, it can use the socket to

transmit data. There are five possible operating system calls from which to choose:

send, sendto, sendmsg, write, and writev. Send, write, and writev only work with con-

nected sockets because they do not allow the caller to specify a destination address.

The differences between the three are minor. Write takes three arguments:

write(socket, buffer, length)

Argument socket contains an integer socket descriptor (write can also be used with other

types of descriptors). Argument bufler contains the address of the data to be sent, and

argument length specifies the number of bytes to send. The call to write blocks until

the data can be transferred (e.g., it blocks if internal system buffers for the socket are

full). Like most system calls in UNIX, write returns an error code to the application

calling it, allowing the programmer to know if the operation succeeded.

The system call writev works like write except that it uses a “gather write” form,

making it possible for the application program to write a message without copying the

message into contiguous bytes of memory. Writev has the form:

writev(socket, iovector, vectorlen)

Argument iovector gives the address of an array of type iovec that contains a sequence

of pointers to the blocks of bytes that form the message. As Figure 21.3 shows, a

length accompanies each pointer. Argument vectorlerz specifies the number of entries in
iovector.

Samsung — Exhibit 1016 — Page 350

Samsung - Exhibit 1016 - Page 351

342 The Socket Interface Chap. 21

O 31

Figure 21.3 The format of an iovector of type iovec used with wrirev and
readv.

The send system call has the form:

send(socket, message, length, flags)

where argument socket specifies the socket to use, argument message gives the address

of the data to be sent, argument length specifies the number of bytes to be sent, and ar-

gumentflags controls the transmission. One value forflags allows the sender to specify

that the message should be sent out-of-band on sockets that support such a notion. For

example, recall from Chapter 12 that out-of-band messages correspond to TCP’s notion

of urgent data. Another value for flags allows the caller to request that the message be

sent without using local routing tables. The intention is to allow the caller to take con-

trol of routing, making it possible to write network debugging software. Of course, not

all sockets support all requests from arbitrary programs. Some requests require the pro-

gram to have special privileges; others are simply not supported on all sockets.

System calls sendto and sendmsg allow the caller to send a message through an un-

connected socket because they both require the caller to specify a destination. Sendto,

which takes the destination address as an argument, has the form:

sendto(socket, message, length, flags, destaddr, addrlen)

The first four arguments are exactly the same as those used with the send system call.

The final two arguments specify a destination address and give the length of that ad-

dress. Argument destaddr specifies the destination address using the s0ekaddr_in struc-

ture as defined in Figure 21.2.

A programmer may choose to use system call sendmsg in cases where the long list

of arguments required for sendto makes the program inefficient or difficult to read.

Serzdmsg has the form:

sendmsg(socket, messagestruct, flags)

where argument messagestruct is a structure of the form illustrated in Figure 21.4. The

Samsung — Exhibit 1016 — Page 351

Samsung - Exhibit 1016 - Page 352

Samsung - Exhibit 1016 - Page 353

Samsung - Exhibit 1016 - Page 354

Samsung - Exhibit 1016 - Page 355

Samsung - Exhibit 1016 - Page 356

Samsung - Exhibit 1016 - Page 357

Samsung - Exhibit 1016 - Page 358

Samsung - Exhibit 1016 - Page 359

Samsung - Exhibit 1016 - Page 360

Samsung - Exhibit 1016 - Page 361

Samsung - Exhibit 1016 - Page 362

Samsung - Exhibit 1016 - Page 363

Samsung - Exhibit 1016 - Page 364

Samsung - Exhibit 1016 - Page 365

Samsung - Exhibit 1016 - Page 366

Samsung - Exhibit 1016 - Page 367

Samsung - Exhibit 1016 - Page 368

Samsung - Exhibit 1016 - Page 369

Samsung - Exhibit 1016 - Page 370

Samsung - Exhibit 1016 - Page 371

Samsung - Exhibit 1016 - Page 372

Samsung - Exhibit 1016 - Page 373

Samsung - Exhibit 1016 - Page 374

Samsung - Exhibit 1016 - Page 375

Samsung - Exhibit 1016 - Page 376

Samsung - Exhibit 1016 - Page 377

Samsung - Exhibit 1016 - Page 378

Samsung - Exhibit 1016 - Page 379

Samsung - Exhibit 1016 - Page 380

Samsung - Exhibit 1016 - Page 381

Samsung - Exhibit 1016 - Page 382

Samsung - Exhibit 1016 - Page 383

Samsung - Exhibit 1016 - Page 384

Samsung - Exhibit 1016 - Page 385

Samsung - Exhibit 1016 - Page 386

Samsung - Exhibit 1016 - Page 387

Samsung - Exhibit 1016 - Page 388

Samsung - Exhibit 1016 - Page 389

Samsung - Exhibit 1016 - Page 390

Samsung - Exhibit 1016 - Page 391

Samsung - Exhibit 1016 - Page 392

Samsung - Exhibit 1016 - Page 393

Samsung - Exhibit 1016 - Page 394

Samsung - Exhibit 1016 - Page 395

Samsung - Exhibit 1016 - Page 396

Samsung - Exhibit 1016 - Page 397

Samsung - Exhibit 1016 - Page 398

Samsung - Exhibit 1016 - Page 399

Samsung - Exhibit 1016 - Page 400

Samsung - Exhibit 1016 - Page 401

Samsung - Exhibit 1016 - Page 402

Samsung - Exhibit 1016 - Page 403

Samsung - Exhibit 1016 - Page 404

Samsung - Exhibit 1016 - Page 405

Samsung - Exhibit 1016 - Page 406

Samsung - Exhibit 1016 - Page 407

Samsung - Exhibit 1016 - Page 408

Samsung - Exhibit 1016 - Page 409

Samsung - Exhibit 1016 - Page 410

Samsung - Exhibit 1016 - Page 411

Samsung - Exhibit 1016 - Page 412

Samsung - Exhibit 1016 - Page 413

Samsung - Exhibit 1016 - Page 414

Samsung - Exhibit 1016 - Page 415

Samsung - Exhibit 1016 - Page 416

Samsung - Exhibit 1016 - Page 417

Samsung - Exhibit 1016 - Page 418

Samsung - Exhibit 1016 - Page 419

Samsung - Exhibit 1016 - Page 420

Samsung - Exhibit 1016 - Page 421

Samsung - Exhibit 1016 - Page 422

Samsung - Exhibit 1016 - Page 423

Samsung - Exhibit 1016 - Page 424

Samsung - Exhibit 1016 - Page 425

Samsung - Exhibit 1016 - Page 426

Samsung - Exhibit 1016 - Page 427

Samsung - Exhibit 1016 - Page 428

Samsung - Exhibit 1016 - Page 429

Samsung - Exhibit 1016 - Page 430

Samsung - Exhibit 1016 - Page 431

Samsung - Exhibit 1016 - Page 432

Samsung - Exhibit 1016 - Page 433

Samsung - Exhibit 1016 - Page 434

Samsung - Exhibit 1016 - Page 435

Samsung - Exhibit 1016 - Page 436

Samsung - Exhibit 1016 - Page 437

Samsung - Exhibit 1016 - Page 438

Samsung - Exhibit 1016 - Page 439

Samsung - Exhibit 1016 - Page 440

Samsung - Exhibit 1016 - Page 441

Samsung - Exhibit 1016 - Page 442

Samsung - Exhibit 1016 - Page 443

Samsung - Exhibit 1016 - Page 444

Samsung - Exhibit 1016 - Page 445

Samsung - Exhibit 1016 - Page 446

Samsung - Exhibit 1016 - Page 447

Samsung - Exhibit 1016 - Page 448

Samsung - Exhibit 1016 - Page 449

Samsung - Exhibit 1016 - Page 450

Samsung - Exhibit 1016 - Page 451

Samsung - Exhibit 1016 - Page 452

Samsung - Exhibit 1016 - Page 453

Samsung - Exhibit 1016 - Page 454

Samsung - Exhibit 1016 - Page 455

Samsung - Exhibit 1016 - Page 456

Samsung - Exhibit 1016 - Page 457

Samsung - Exhibit 1016 - Page 458

Samsung - Exhibit 1016 - Page 459

Samsung - Exhibit 1016 - Page 460

Samsung - Exhibit 1016 - Page 461

Samsung - Exhibit 1016 - Page 462

Samsung - Exhibit 1016 - Page 463

Samsung - Exhibit 1016 - Page 464

Samsung - Exhibit 1016 - Page 465

Samsung - Exhibit 1016 - Page 466

Samsung - Exhibit 1016 - Page 467

Samsung - Exhibit 1016 - Page 468

Samsung - Exhibit 1016 - Page 469

Samsung - Exhibit 1016 - Page 470

Samsung - Exhibit 1016 - Page 471

Samsung - Exhibit 1016 - Page 472

Samsung - Exhibit 1016 - Page 473

Samsung - Exhibit 1016 - Page 474

Samsung - Exhibit 1016 - Page 475

Samsung - Exhibit 1016 - Page 476

Samsung - Exhibit 1016 - Page 477

Samsung - Exhibit 1016 - Page 478

Samsung - Exhibit 1016 - Page 479

Samsung - Exhibit 1016 - Page 480

Samsung - Exhibit 1016 - Page 481

Samsung - Exhibit 1016 - Page 482

Samsung - Exhibit 1016 - Page 483

Samsung - Exhibit 1016 - Page 484

Samsung - Exhibit 1016 - Page 485

Samsung - Exhibit 1016 - Page 486

Samsung - Exhibit 1016 - Page 487

Samsung - Exhibit 1016 - Page 488

Samsung - Exhibit 1016 - Page 489

Samsung - Exhibit 1016 - Page 490

Samsung - Exhibit 1016 - Page 491

Samsung - Exhibit 1016 - Page 492

Samsung - Exhibit 1016 - Page 493

Samsung - Exhibit 1016 - Page 494

Samsung - Exhibit 1016 - Page 495

Samsung - Exhibit 1016 - Page 496

Samsung - Exhibit 1016 - Page 497

Samsung - Exhibit 1016 - Page 498

Samsung - Exhibit 1016 - Page 499

Samsung - Exhibit 1016 - Page 500

Samsung - Exhibit 1016 - Page 501

Samsung - Exhibit 1016 - Page 502

Samsung - Exhibit 1016 - Page 503

Samsung - Exhibit 1016 - Page 504

Samsung - Exhibit 1016 - Page 505

Samsung - Exhibit 1016 - Page 506

Samsung - Exhibit 1016 - Page 507

Samsung - Exhibit 1016 - Page 508

Samsung - Exhibit 1016 - Page 509

Samsung - Exhibit 1016 - Page 510

Samsung - Exhibit 1016 - Page 511

Samsung - Exhibit 1016 - Page 512

Samsung - Exhibit 1016 - Page 513

Samsung - Exhibit 1016 - Page 514

Samsung - Exhibit 1016 - Page 515

Samsung - Exhibit 1016 - Page 516

Samsung - Exhibit 1016 - Page 517

Samsung - Exhibit 1016 - Page 518

Samsung - Exhibit 1016 - Page 519

Samsung - Exhibit 1016 - Page 520

Samsung - Exhibit 1016 - Page 521

Samsung - Exhibit 1016 - Page 522

Samsung - Exhibit 1016 - Page 523

Samsung - Exhibit 1016 - Page 524

Samsung - Exhibit 1016 - Page 525

Samsung - Exhibit 1016 - Page 526

Samsung - Exhibit 1016 - Page 527

Samsung - Exhibit 1016 - Page 528

Samsung - Exhibit 1016 - Page 529

Samsung - Exhibit 1016 - Page 530

Samsung - Exhibit 1016 - Page 531

Samsung - Exhibit 1016 - Page 532

Samsung - Exhibit 1016 - Page 533

Samsung - Exhibit 1016 - Page 534

Samsung - Exhibit 1016 - Page 535

Samsung - Exhibit 1016 - Page 536

Samsung - Exhibit 1016 - Page 537

Samsung - Exhibit 1016 - Page 538

Samsung - Exhibit 1016 - Page 539

Samsung - Exhibit 1016 - Page 540

Samsung - Exhibit 1016 - Page 541

Samsung - Exhibit 1016 - Page 542

Samsung - Exhibit 1016 - Page 543

Samsung - Exhibit 1016 - Page 544

Samsung - Exhibit 1016 - Page 545

Samsung - Exhibit 1016 - Page 546

Samsung - Exhibit 1016 - Page 547

Samsung - Exhibit 1016 - Page 548

Samsung - Exhibit 1016 - Page 549

Samsung - Exhibit 1016 - Page 550

Samsung - Exhibit 1016 - Page 551

