
RAID-II: A High-Bandwidth Network File Server

Ann L. Drapeau Ken W. Shirriff John H. Hartman Ethan L. Miller

Srinivasan Seshan Randy H. Katz Ken L~tz David A. Pattersonl

Edward K. Lee* Peter M. Chen3 Garth A. Gibson4

Abstract
In 1989, the RAID (Redundant Arrays of Inexpensive

Disks) group at U. C. Berkeley built a prototype disk ar-
ray called RAID-I. The bandwidth delivered to clients by
RAID-I was severely limited by the menwry system band-
width of the disk array’s host workstation. We designed our
second prototype, RAID-II, to deliver nwre of the disk array
bandwidth to jile server clients. A custom-built crossbar
menwry system called the XBUS board connects the disks
directly to the high-speed network, allowing data for large
requests to bypass the server workstation. RAID-II runs
Log-Structured File System (LFS) software to optinzizeper-
formance for bandwidth-intensive applications.

The RAID-II hardware with a single XBUS controller
board delivers 20 megabyteslsecond for large, random read
operations and up to 31 megabyteslsecond for sequential
read operations. A preliminary implementation of LFS
on RAID-II delivers 21 megabyteslsecond on large read
requests and 15 megabyteslsecond on large write opera-
tions.

1 Introduction
It is essential for future file servers to provide high-

bandwidth 1/0 beeause of a trend toward bandwidth-
intensive applications like multi-media, CAD, object-
oriented databases and scientific visualization. Even in
well-established application areas such as scientific com-
puting, the size of data sets is growing rapidly due to reduc-
tions in the cost of secondary storage and the introduction of
faster supercomputers. These developments require faster
1/0 systems to transfer the increasing volume of data.

High performance file servers will increasingly incorpo-
rate disk arrays to provide greater disk bandwidth. RAIDs,
or Redundant Arrays of Inexpensive Disks [13], [5], use a
collection of relatively small, inexpensive disks to achieve
high performance and high reliability in a seeondary stor-
age system. RAIDs provide greater disk bandwidth to a file
by striping or interleaving the data from a single file across
a group of disk drives, allowing multiple disk transfers to
occur in parallel. RAIDs ensure reliability by calculating

‘ Computer Science Division, University of Cahfomia, Berkeley, CA

94720
7-DEC Systems Research Center, Palo Alto, CA 94301-l@t
3ComputerScience and Engineering Ihvision, University of Michigan,

Ann Arbor, MI 48109-2122

4School of Computer Science, Carnegie Melton Umversity, Pittsburgh,
PA 15213-3891

1063-6897/94 $03.0001994 IEEE

error correcting codes across a group of disks; this redun-
dancy information can be used to reconstruct the data on
disks that fail. In this paper, we examine the efficient de-
livery of bandwidth from a file server that includes a disk
array.

In 1989, the RAID group at U.C. Berkeley built an ini-
tial RAID prototype, called RAID-I [2]. The prototype
was constructed using a Sun 4/280 workstation with 128
megabytes of memory, four dual-string SCSI controllers,
28 5.25-inch SCSI disks and specialized disk striping soft-
ware. We were interested in the performance of a disk array
constructed of commercially-available components on two
workloads: small, random operations typical of file servers
in a workstation environment and large transfers typical
of bandwidth-intensive applications. We anticipated that
there would be both hardware and software bottlenecks
that would restrict the bandwidth achievable by RAID-I.
The development of RAID-I was motivated by our desire
to gain experience with disk array software, disk controllers
and the SCSI protocol.

Experiments with RAID-I show that it performs well
when processing small, random 1/0’s, achieving ap-
proximately 275 four-kilobyte random 1/0s per sec-
ond. However, RAID-I proved woefully inadequate
at providing high-bandwidth 1/0, sustaining at best 2.3
megabytes/second to a user-level application on RAID-I.
By comparison, a single disk on RAID-I can sustain 1.3
megabytes/second. The bandwidth of nearly 26 of the 28
disks in the array is effectively wasted because it cannot be
delivered to clients.

There are several reasons why RAID-I is ill-suited for
high-bandwidth 1/0. The most serious is the memory con-
tention experienced on the Sun 4/280 workstation during
1/0 operations. The copy operations that move data be-
tween kernel DMA buffers and buffers in user space sat-
urate the memory system when 1/0 bandwidth reaches
2.3 megabytes/second. Seeond, because all 1/0 on the
Sun 4/280 goes through the CPU’s virtually addressed
cache, data transfers experience interference from cache
flushes. Finally, disregarding the workstation’s mem-
ory bandwidth limitation, high-bandwidth performance is
also restricted by the low backplane bandwidth of the
Sun 4/280’s VME system bus, which becomes saturated
at 9 megabytes/second.

The problems RAID-I experienced are typical of many
workstations that are designed to exploit large, fast caches
for good processor performance, but fail to support ade-
quate primary memory or 1/0 bandwidth [8], [12]. In such

234

Oracle-Huawei-NetApp Ex. 1018, pg. 1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

workstations, the memory system is designed so that only
the CPU has a fast, high-bandwidth path to memory. For
busses or backplanes farther away from the CPU, available
memory bandwidth drops quickly. Thus, file servers incor-
porating such workstations perform poorly on bandwidth-
intensive applications.

The design of hardware and software for our second
prototype, RAID-II [1], was motivated by a desire to de-
liver more of the disk array’s bandwidth to the file server’s
clients. Toward this end, the RAID-II hardware contains
two data paths a high-bandwidth path that handles large
transfers efficiently using a custom-built crossbar intercon-
nect between the disk system and the high-bandwidth net-
work, and a low-bandwidth path used for control operations
and small data transfers. The software for RAID-II was
also designed to deliver disk array bandwidth. RAID-II
runs LFS, the Log-Structured File System [14], developed
by the Sprite operating systems group at Berkeley. LFS
treats the disk array as a log, combining small accesses
together and writing large blocks of data sequentially to
avoid inefficient small write operations. A single XBUS
board with 24 attached disks and no file system delivers
up to 20 megabytes/second for random read operations and
31 megabytes/second for sequential read operations. Whh
LFS software, the board delivers 21 megabytes/second on
sequential read operations and 15 megabyteskcond on se-
quential write operations. Not all of this data is currently
delivered to clients because of client and network limita-
tions described in Section 3.4.

This paper describes the design, implementation and
performance of the RAID-II prototype. Section 2 describes
the RAID-II hardware, including the design choices made
to deliver bandwidth, architecture and implementation de-
tails, and hardware performance measurements. Section
3 discusses the implementation and performance of LFS
running on RAID-II. Section 4 compares other high per-
formance 1/0 systems to RAID-II, and Section 5 discusses
future directions. Finally, we summarize the contributions
of the RAID-II prototype.

2 RAID-II Hardware

Figure 1 illustrates the RAID-II storage architecture.
The RAID-II storage server prototype spans three racks,
with the two outer racks containing disk drives and the
center rack containing custom-designed crossbar controller
boards and commercial disk controller boards. The center
rack also contains a workstation, called the host, which
is shown in the figure as logically separate. Each XBUS
controller board has a HIPPI connection to a high-speed
Ultra Network Technologies ring network that may also
connect supercomputers and client workstations. The host
workstation has an Ethernet interface that allows transfers
between the disk array and clients connected to the Ethernet
network.

In this section, we discuss the prototype hardware. First,
we describe the design decisions that were made to deliver
disk array bandwidth. Next, we describe the architecture
and implementation, followed by microbenchmark mea-
surements of hardware performance.

2.1 Delivering Disk Array Bandwidth
2.1.1 High and Low Bandwidth Data Paths

Disk array bandwidth on our first prototype was limited by
low memory system bandwidth on the host workstation.
RAID-II was designed to avoid similar performance limi-
tations. It uses a custom-built memory systeml called the
XBUS controller to create a high-bandwidth datapath. This
data path allows RAID-II to transfer data dweetly between
the disk array and the high-speed, 100 megabytes/second
HIPPI network without sending data through the host work-
station memory, as occurs in traditional disk array storage
servers like RAID-I. Rather, data are temporarily stored in
memory on the XBUS board and transferred using a high-
bandwidth crossbar interconnect between disks, the HIPPI
network, the parity computation engine and memory.

There is also a low-bandwidthdata path in RAID-II that
is similm to the data path in RAID-I. This path transfers
data across the workstation’sbackplane between the XBUS
board and host memory. The data sent along tlhis path in-
clude file metadata (data associated with a file other than
its contents) and small data transfers. Metadata are needed
by file system software for file management, name trans-
lation and for maintaining consistency between file caches
on the host workstation and the XBUS board. The low-
bandwidth data path is also used for servicing data requests
from clients on the 10 megabits/second Ethemlet network
attached to the host workstation.

We refer to the two access modes on RAID-11 as the high-
bandwidth mode for accesses that use the high-performance
data path and standard mode for requests serviced by the
low-bandwidth data path. Any client request can be ser-
viced using either access mode, but we maximize utilization
and performance of the high-bandwidth data path if smaller
requests use the Ethernet network and larger requests use
the HIPPI network.

2.1.2 Scaling to Provide Greater Bandwidth

The bandwidth of the RAID-II storage server can be scaled
by adding XBUS controller boards to a host workstation.
To some extent, adding XBUS boards is like adding disks
to a conventional file server. An important distinction is
that adding an XBUS board to RAID-II increases the I/O
bandwidth available to the network, whereas adding a disk
to a conventional file server only increases the 1/0 band-
width available to that particular file server. Ile latter is
less effective, since the file server’s memory !system and
backplane will soon saturate if it is a typical workstation.

Eventually, adding XBUS controllers to a host worksta-
tion will saturate the host’s CPU, since the host manages
all disk and network transfers. However, since the high-
bandwidth data path of RAID-II is independent of the host
workstation, we can use a more powerful host to continue
scaling storage server bandwidth.

2.2 Architecture and Implementation of RAID-11
Figure 2 illustrates the architecture of the RAID-II file

server. The file server’s backplane consists of two high-
bandwidth (HIPPI) data busses and a low-latency (VME)
control bus. The backplane connects the high-bandwidth
network interfaces, several XBUS controllers and a host
workstation that controls the operation of the XBUS con-
troller boards. Each XBUS board contains interfaces to the

Oracle-Huawei-NetApp Ex. 1018, pg. 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Client Workstations

. -----

\
Ethernet

(10 Mb/s)
I

I
z------------------l----- ----- ---

1 4
1 1 ?

1

I

1

I

I

1

I Client Workstations
I Workstation ~
1
I I
I
L -------------------- RAID-n File Server-~

Figure 1: The RAID-II File Server and its Clients. RAID-II, shown by dotted lines, is composed of three racks. The
host workstation is connected to one or more XBUS controller boards (contained in the center rack of RAID-II) over
the VME backplane. Each XBUS controller has a HIPPI network connection that connects to the Lfltranet high-speed
ring network; the Ultranet also provides connections to client workstations and supercomputers. The XBUS boards
also have connections to SCSI disk controller boards. In addition. the host workstation has an Ethernet network
interface that connects it to client workstations.

HIPPI backplane and VME control bus, memory, a parity
computation engine and four VME interfaces that conneet
to disk controller boards.

Figure 3 illustrates the physical packaging of the
RAID-II file server, which spans three racks. To min-
imize the design effort, we used commercially available
components whenever possible. Thinking Machines Cor-
poration (TMC) provided a board set for the HIPPI inter-
face to the Ultranet ring network; Interphase Corporation
provided VME-based, dual-SCSI, Cougar disk controllers;
Sun Microsystems provided the Sun 4/280 file serve~ and
IBM donated disk drives and DRAM. The center rack is
composed of three chassis. On top is a VME chassis con-
taining eight Interphase Cougar disk controllers. The center
chassis was provided by TMC and contains the HIPPI inter-
faces and our custom XBUS controller boards. The bottom
VME chassis contains the Sun4/280 host workstation. Two
outer racks each contain 72 3.5-inch, 320 megabyte IBM
SCSI disks and their power supplies. Each of these racks
contains eight shelves of nine disks. RAID-II has a total
capacity of 46 gigabytes, although the performance results
in the next section are for a single XBUS board controlling
24 disks. We will achieve full array connectivity by adding
XBUS boards and increasing the number of disks per SCSI
string.

Figure4 is a block diagram of the XBUS disk array con-
troller board, which implements a 4x8, 32-bit wide cross-
bar interconnect called the XBUS. ‘Ehe crossbar connects
four memory modules to eight system components called
ports. The XBUS ports include two interfaces to HIPPI
network boards, four VME interfaces to Interphase Cougar
disk controller boards, a parity computation engine, and a
VME interface to the host workstation. Each XBUS trans-
fer involves one of the four memory modules and one of
the eight XBUS ports. Each port was intended to support
40 megabytes/second of data transfer for a total of 160
megabytes/second of sustainable XBUS bandwidth.

The XBUS is asynchronous, multiplexed (address/data),
crossbar-based interconnect that uses a centralized,
priority-based arbitration scheme. Each of the eight 32-
bit XBUS ports operates at a cycle time of 80 nanoseconds.
The memory is interleaved in sixteen-word blocks. The
XBUS supports only two types of bus transactions: reads
and writes. Our implementation of the crossbar intercon-
nect was fairly expensive, using 192 16-bit transceivers.
Using surface mount packaging, the implementation re-
quired 120 square inches or approximately 20% of the
XBUS controller’s board area. An advantage of the im-
plementation is that the 32-bit XBUS ports are relatively
inexpensive.

236

Oracle-Huawei-NetApp Ex. 1018, pg. 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

HIPPI (1 Gb/s)
,

HIPPI (1 Gb/s) Host Workstation

I

1

/’

I

+.

..................

-------#e -- ‘\ * m/ \\ .,,:; ;: Ethernet\ .\
TMC-HIPPIS BUS’*-- --------.
‘- - bits, 100 MB/s) \

I

I

I

I

1

1

\

\

\
\

\
\

.
%9 --------– I

---.-,- - RAID-II main chassis. ----.-”

Scsll
Scslo

Figure 2: Architecture of RAID-II File Server. The host workstation may have several XBUS controller boards
attached to its VME backplane. Each XBUS controller board contains interfaces to HIPPI network source and
destination boards, buffer memory, a high-bandwidth crossbar, a parity engine, and interfaces to four SCSI disk
controller boards.

Two XBUS ports implement an interface between the
XBUS and the TMC HIPPI boards. Each port is unidi-
rectional, designed to sustain 40 megabytes/second of data
transfer and bursts of 100 megabytes/seeond into 32 kilo-
byte FIFO interfaces.

Four of the XBUS ports are used to connect the XBUS
board to four VME busses, each of which may connect to
one or two dual-string Interphase Cougar disk controllers.
In our current configuration, we connect three disks to each
SCSI string, two strings to each Cougar controller, and
one Cougar controller to each XBUS VME interface for
a total of 24 disks per XBUS board. The Cougar disk
controllers can transfer data at 8 megabytes/second, for a
maximum disk bandwidth to a single XBUS board of 32
megabytes/second in our present configuration.

Of the remaining two XBUS ports, one interfaces to a
parity computation engine. The last port is the VME control

interface linking the XBUS board to the host workstation. It
provides the host with access to the XBUS board”s memory
as well as its control registers. This makes it possible for
tile server software running on the host to access network
headers, file data and metadata in the XBUS memory.

2.3 Hardware Performance

In this section, we present raw performance of the
RAID-II [1] hardware, that is, the performance of the hard-
ware without the overhead of a file system. In Section 3.4,
we show how much of this raw hardware performance can
be delivered by the tile system to clients.

Figure 5 shows RAID-II performance for ramdom reads
and writes. We refer to these performance measurements
as hardware system level experiments, since they involve
all the components of the system from the disks to the
HIPPI network. For these experiments, the disk system is

237

Oracle-Huawei-NetApp Ex. 1018, pg. 4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Figure 4: Structure of XBUS controller board. The board contains four memory modules connected by a 4x8 crossbar
interconnect to eight XBUS ports. Two of these XBUS ports are interfaces to the HIPPI network. Another is a parity
computation engine. One is a VME network interface for sending control information, and the remaining four are
VME interfaces connecting to commercial SCSI disk controller boards.

Figure 3: The physical packaging of the RAID-II File
Server. Two outer racks contain 144 disks and their
power supplies. The center rsck contains three chas-
sis: the top chassis holds VME disk controller boards;
the center chassis contains XBUS controller boards
and HIPPI interface boards, and the bottom VME chas-
sis contains the Sun4/280 workstation.

configured as a RAID Level 5 [13] with one parit y group of
24 disks. (This scheme delivers high bandwidth but exposes
the array to data loss during dependent failure modes such
as a SCSI controller failure. Techniques for maximizing
reliability are beyond the scope of this paper [4], [161, [61.)

For reads, data are read from the disk array into the
memory on the XBUS board; from there, data are sent over
HIPPI, back to the XBUS board, and into XBUS mem-
ory. For writes, data originate in XBUS memory, are sent
over the HIPPI and then back to the XBUS board to XBUS
memory; parity is computed, and then both data and parity
are written to the disk array. For both tests, the system
is configured with four Interphase Cougar disk controllers,
each with two strings of three disks. For both reads and
writes, subsequent fixed size operations are at random lo-
cations. Figure 5 shows that, for large requests, hardware
system level read and write performance reaches about 20
megabytes/seeond. The dip in read performance for re-
quests of size 768 kilobytes occurs beeause at that size
the striping scheme in this experiment involves a second
string on one of the controllers; there is some contention
on the controller that results in lower performance when
both strings are used. Writes are slower than reads due
to the increased disk and memory activity associated with
computing and writing parity. While an order of magni-
tude faster than our previous prototype, RAID-I, this is still
well below our target bandwidth of 40 megabytes/second.
Below, we show that system performance is limited by that
of the commercial disk controller boards and our disk in-
terfaces.

Table 1 shows peak performance of the system when

238

Oracle-Huawei-NetApp Ex. 1018, pg. 5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

