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Other bestselling titles by Andrew S. Tanenbaum

Structured Computer Organization, 5th edition

This widely read clasgic, now in its fifth edi_tion, provides the ideal (iinr.r(;ciacbti? to

itecture. It covers the topic in an easy-to-understand way, om
O er aFChHecha ter on digital logic for beginners, followed by chapters on
o Thzzt;itﬁr: er:e instruction set architecture level, operating systems, assem-
gli;cigiguage, and’ parallel computer architectures.

Computer Netw?rkg, 41:1[1f ed;tl?;m vides e donl nteoduction 1o
This ?ESt selle, Oﬁfﬁfieiﬁ; ui?ex{;Iains u? detail how modem ﬁetwo?ks are
oy s gi:;tirsg with the physical layer and working up to the application
structoted k covers a vast number of important topics, including wireless comi;
layer, the bogb:r optics, data link protocols, Ethernet, routing atgorithmns, netwoz
P formance, secutity, DNS, elecironic. mail, the World Wids Web, and sl
gilrit;?:a{g; book has especially thorough coverage of TCP/IP and the Internet.

Operating Systems: Design and Implementation, 3rd edition

i i i
This popular text on operating sy.stemsi‘lsai?oenotfi ?:acl:ks igtszni Ecilé ﬂt;:dgif;:nal
o Of' e eton ssi(st?izsai:dcégeelrrezpii 1cfljetail. In addition, the princﬁples are care-
P SYStfimwithpMINIX, a free POSIX-based UNIX-like operating system for
B ol o ters. Each book contains a free CD-ROM containing the complete
persolr;é(ﬂ C?;Itziﬁ inéiading all the source code. The source code is listed in an
I;f)g:ndi; }tre the’book and explained in detail in the text.

Distributed Operating Systems, 2nd e(liltlon - -

i vers the fundamental concepts of distributed operating systems. » jf
Th;'s in Cod ommunication and synchronization, processes and processors, dis
m'PiCS o €dC memory, distributed file systems, and distributed re&l-t'sza sys-
e S?Ial"e_ ciples are, itlustrated using four chapter-long examples: distributed
t?']sc-t E::egn:ysims, distributed file systems, distributed Web-based systems,
gngieéisﬂibaied coordination-based systems.
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252 MEMORY MANAGEMENT CHAP. 3
sembly language programming text. Note that doing this perfectly without additional
information is, in geperal, an impossible task, because some data words may have

values that mimic instruction obiect codes.

42. Write a program that simulates a paging system using the aging algorithm. The aum-
ber of page frames is a parameter. The sequence of page references should be read
from a file. For a given input file, plot the number of page fauits per 1000 memory ref-
erences as a function of the number of page frames available.

43. Write a program that demonstrates the effect of TLB misses on the effective memory
access time by measuring the per-access time it fakes to stride through a large array.

{2) Expiain the main concepts behind the program, and describe what you expect the
output to show for some practical virtual memory architecture,

(1) Run the program on some compuier and expiain how well the data {it your expec-
tations.

(c) Repeat part (b) but for an older computer with a different architecture and explain
any major differences in the output.

44. Write a program that will demonstrate the difference between using a local page
replacement policy and a global one for the simple case of two processes. You will
need a routine that can generate a page reference string based on a statistical model.
This model has N states numbered from O to N-1 representing each of the possible
page references and a probability p; associated with each state ¢ representing the
chance that the next reference is to the same page. Otherwige, the next page reference
will be one of the other pages with equal probability,

(a) Demonstrate that the page reference string generation routine behaves properly for
some small N,

(b) Compute the page fault rate for a small example in which there is one process and
2 fixed number of page frames. Bxplain why the behavior is correct.

(<) Repeat part (b) with two processes with independent page reference sequences and
twice as many page frames as in Part (b).

(d) Repeat part {c) but using a global policy instead of a local one. Also, contrast the
per-process page fault rate with that of the local policy approach.

40
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FILE SYSTEMS

All computer applications need o
process is running, it can store a mited
dress space. However, the storage capa
address space. For some applications ¢

store and retrieve information. While 2
amoumnt of information within its own ad-
hfity 1s restricted to the size of the virtual
dd ' § size is adequate, but fo
e ; r others, such as
ine reservations, banking, or corporate record keeping, it is far too sma’ll
A second problem with i . -

keeping information withi
) g 1 within a process’ a
1s that when the process ierminates, the information i F e

(e.g., for datgbases), the information must be retain
forever. Having it vanish

td

ormatjo t e'd for weeks, months, or even
eh tne process using it terminates is unacceptable.
0 away when a computer crash kills the process,

online telephone
only that process can
tmation itself indepen-

directory stored inside the address space of a single process

access it. The way to solve this i i
problem is to make
dent of any one process. the nfo

Thus we have three essential Tequiremnents for long-term information s

torage:
1. )

It must be possible to store 4 very large amount of information,
2. The information must survive the termination of the process using it

3. Multiple processes must be able to access the information concurrently

Magnetic disks have been used §i i
) ' or years for this long-term storage,
optical disks are also used, but they have much lower performance. ;gﬁfe ﬁﬁezégs
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254 FILE SYSTEMS CHAP. 4

disks miore in Chap. 5, but for the moment, it i sufficient to 'think of a disk as 2
linear sequence of fixed-size blocks and supporting two Operations:

1. Read block k.
2. Write block £

In reality there are more, but with these two operations one could, in principle,
solve the long-term storage problem. . '

Howeverg these are very inconventent operations, especiaily on large sy;tel;nz
used by many applications and possibly multiple users {e.g., on a server). Jus
few of the questions that quickly arise are:

1. How do you find information?

2. How do you keep one user from reading another user’s data?
3. How do yeu know which biocks are free?

and there are many more.
Just as we saw how the operating system abstracted away the concept of the

processor 1o create the abstraction of a process az?d how it abstracted away éﬁi
concept of physical memory to offer processes (virtual} address sp;ctez,c ;:aﬁ o
solve this problem with a new abstraction: the file. Together, the abs rt ° 1nce .
processes (and thieads), address spaces, and files are the most xmponane (t)s frcl:m
relating 1o operating sysiems. If you really understand t_ilese three c?ri:: Ps o
beginning to end, you are well on your way becoming an Operating sy
expt;"ﬂi.les are logical units of information created by processes. A disk w;lﬁhusgéi
ly contains thousands or even millions of tljem, each one independent o et o
ers. In fact, if you think of cach file as a kmé. of ?ddress space, you atge rér:»A -
far off, except that they are used to model the disk instead qf modeling ; v .n
Processes can read existing files and create new ones if need be. In orma sod
stored in files must be persistent, that is, not be affected by process creation ar.zt
termination, A file should only disappegz 'When its owner explicitly remove; ;S .
Although operations for readir;g ;Z}dhwntm'gﬁ S}:;sm?iz bﬂg@\x’:zost €ommon ones,
i others, some of which we wi .
ther%ﬁgs;lzagiaaged by the operating systen. How they are strﬂctgrec_l, nar:eacti:
accessed, used, protected, implemented, and maaage@ are major togci m'?}? f:les
ing system design. As a whole, that part of the operating system dealing wi
is knows as the file system and is the subject of this chapter. -
From the user’s standpoint, the most ';mporltaat aspect of a file system dxs Ev&;
it appears, that is, what constitutes a file, how files are named and pii}ticga 13;\; sr
operations are allowed on files, and so on. The details of whether 11}11 ed I > of
bitmaps are used to keep track of free storage and how many sectors there are Eﬂ;e
logical disk block are of no inderest, although they are of great importance o
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designers of the file system. For this reason, we have structured the chapter as
several sections. The first two are concerned with the user interface to files and
directories, respectively. Then comes a detailed discussion of how the file system

Is implemented and managed. Finally, we give some examples of real file sys-
tems.

4.1 FILES

In the following pages we wili look at files from the user's point of view, that
is, how they are used and what properties they have.

4.1.1 File Naming

Files are an abstraction mechanism. They provide a way to store information
on the disk and read it back later. This must be done in such a way as to shield
the user from the details of how and where the information is stored, and how the
disks actually work.

Probably the most important characteristic of any abstraction mechanism is
the way the objects being managed are named, so we will start our exarmination of
file systems with the subject of file naming. When a process creates a file, it gives
the file a name. When the process terminates, the file continues to exist 2nd can
be accessed by other processes using its name.

The exact rules for file naming vary somewhat from system to system, but all
current operating systems allow strings of one to eight letters as legal file names.
Thus andrea, bruce, and cathy are possible file names. Frequently digits and spe-
cial characters are also permitted, so names like 2, urgent!, and Fig.2-14 are often
valid as well. Many file systems support names as long as 255 characters,

Some file systems distingnish between upper and lower case letters, whereas
others do not. UNIX falls in the first category; MS-DOS falls in the second. Thus a
UNIX system can have all of the following as three distinct files: maria, Maria,
and MARIA. In MS-DOS, all these names refer to the same file.

An aside on file systems is probably in order here. Windows 95 and Windows
98 both use the MS-DOS file system, called F AT-16, and thus inherit many of its
properties, such as how file names are constructed. Windows 98 introduced some
extensions to FAT-16, leading to FAT-32, but these two ate quite similar, In ad-

dition, Windows NT, Windows 2000, Windows XFP, and WV support both FAT
file systems, which are really obsolete now. These four NT-based operating sys-
tems have a native file system (NTES) that has different properties (such as file
names in Unicode). In this chapter, when we refer to the MS.DOS or FAT file
systems, we mean FAT-16 and FAT-32 as used on Windows unless specified
otherwise. We will discuss the FAT file systems later in this chapter and NTFS in
Chap. 11, where we will examine Windows Vista in detail.
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Many operating systemns support two-part file names, with the two pats sepa-
rated by a period, as in preg.c. The part following the period is called the file
extension and usually indicates something about the file. In MS-DOS, for ex-
ample, file names are 1 to 8 characters, plus an optional extension of 1 t¢ 3 char
acters. Jn UNIK, the size of the extension, if any, is up to the user, and a file may
even have two or more extensions, as in homepage.html.zip, where .html indicates
a Web page in HTML and .zip indicates that the file (homepage.himl) has been
compressed using the zip program. Some of the more comumnon file extensions and
their meanings are shown in Fig. 4-1.

Extension Meaning
file.bak Backup file
file.c C source program

fle.gif Compusérve Graphical Interchange Format image
file.hip Help file

file hitmi World Wide Web HyperText Markup Language document
fle.fpg Still picture enceded with the JPEG standard
file.mp3 Music encoded in MPEG layer 3 audio format
file.mpg Movie encoded with the MPEG standard

file.c Object fite {compiler oulput, not yet linked)

file.pdf -Pertable Document Format file

file.ps PostScript lile

file.lex Input for the TEX formatting program

file.txt General text file

file.zip Compressed archive

Figure 4-1. Some typical file extensions.

In some systems (e.g., UNIX), file extensions are just conventions and are not
enforced by the operating system. A file named file.zxt might be some kind of text
file, but that name is more to remind the owner than to convey any actual infor-
matior to the computer. On the other hand, a C compiler may actaally insist that
files it is to compile end in .¢, and it may refuse to compile them if they do not.

Conventions like this are especially useful when the same program cap handle
several different kinds of files. The C compiler, for example, can be given a list of
several files to compile and link together, some of them C files ard some of them
assembly language files. The extension then becomes essential for the compiler to
tell which are C files, which are assembly files, and which are other files.

In contrast, Windows is aware of the extensions and assigns meaning to them.
Users (or processes) can register extensions with the operating system and specify
for each one which program “owns” that extension. When 2 user double clicks on

o

f &
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2 file name, the program assigned to its file extension is launched with the file as

parameter. For example, double clicki i i
Fledoe 2s e sy o, Joubl ng on file.doc starts Microsoft Word with

4.1.2 File Structure

w iixizs 1;&;1? joc Ztrgucmrcci in any qf several ways. Three common possibilities are
g pe P g, 4- g The file in Fig, 4-2(a) is an unstructured sequence of bytes
© operating system does not know or Care what is in the file. Al ii

sees are bytes. Any meaning must be im
¢ osed b -
UNIX and Windows use this approach. i 7 wserlevel programs. Botn

1 Byle 1 Record
L — .

[ o]

(@) (0) ()

Figure 4-2. Th i
prouy ree kinds of files. (a) Byte sequence. (b} Record sequence.

pmvil_it;uégethe operatia% system regard files as nothing more than byte sequences
Mmaximum Hexibility. User programs can i i
their files and name them an i i e opratins oy I
y way that is convenient. The operating s
‘ / . stem d
aot help, but it alse does pot get in the way. For users who want z:o ﬂo unus?zils

2 b atter can Ty p -, =~
anpottant. H
th]-u S, the I be Ve A versions Of {)’N‘IX, MS DOS, and 'l'-\‘ 111

one recorld and the write operation overwrites or appends one record. As a histor.
cal note, in decade§ gone by, when the 80.column punched card was king, man

(Elamframe) operating systems based their file systems on fileg consisting’of 8()>j
Character records, in effect, card images. These systems also supported files of



258 FILE SYSTEMS CHAP. 4

132-character records, which were intended for the line printer (which in those
days were big chain printers baving 132 columns). Programs read input in units
of 80 characters and wrote it in units of 132 characters, although the final 52 could
be spaces, of course. No current general-purpose system uses this model as its
primary file system any more, but back in the days of 80-column punched cards
and 132-character line printer paper this was a common model on mainframe
computers.

The third kind of file structure is shown in Fig. 4-2(¢). In this organization, a
file consists of a tzee of records, not necessarily all the same length, each con-
taining a key field in a fizxed position in the record. The tree is sorted on the key
field, to allow rapid searching for a particular key.

The basic operation here is not to get the “next” record, although that is also
possible, but to get the record with a specific key. For the zoo file of Fig. 4-2(c),
one could ask the system to get the record whose key is pony, for example, with-
out worrying about its exact position in the file. Furthermore, new records can be
added to the file, with the operating systern, and not the user, deciding where to
place them. This type of file is clearly quite different from the unstructured byte
streams used in UNEX and Windows but is widely used on the large mainframe
computers still used in some ¢ommercial data processing.

4.1.3 File Types

Many operating systems support several types of files. UNIX and Windows,
for example, have regular files and directories. UNEX also has character and block
special files. Regular files are the ones that contain user information. All the
files of Fig, 4-2 are regular files. Directories are system files for maintaining the
structure of the file system. We will study directories below. Character special
files are related to input/output and used to model serial VO devices, such as ter-
minals, printers, and networks. Block special files are used to model disks. In
this chapter we will be primarily interested in regular files.

Regular files are generally either ASCI files or binary files. ASCII files con-
sist of lines of text. In some systems each line is terminated by a carriage retum
character. In others, the line feed character is used. Some systems {e.g., MS-
DOS) use both. Lines need not all be of the same length.

The great advantage of ASCII files is that they can be displayed and printed
as is, and they can be edited with any text editor. Furthermore, if large nembers of
programs use ASCII files for input and output, it is easy to connect the output of
one program to the input of another, as in shell pipelines. (The interprocess
plumbing is rot any easier, but interpreting the information certainly is if a stan-
dard convention, such as ASCIL, is used for expressing it.)

Other files are binary, which just means that they are not ASCII files. Listing
them on the printer gives an incomprehensible listing full of random jonk, Usual-
ly, they have some internal structure known to programs that use them.
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For exam?le, in Fig. 4-3(a) we see a simple executable binary file taken from
an early version of UNIX. f_&i%hough technically the file is just a sequence of
bytes, the operating system will only execute a file if it has the proper format. It
has ﬁve_ sections: header, text, data, relocation bits, and symbol table. The hea.cier
starts with a sojcailed magic number, identifying the file as an executable file (to
prevent thg accidental execution of a file not in this format). Then come the s
of the.vanoas pieces of the file, the address at which execution starts, and séxzrfes
flag bits. Fpllowing the header are the text and data of the program its'elf These
are loaded into memory and relocated using the relocation bits, The SymSol table

is used for debugging.
- / .
Magic number nc;cri:ée
Text size Header
Data size
% BSS size Date
o Symbol table size Object
z : module m..;')”j‘if___
Entry point Protection
Flags Sz
Header
= Text X
Object
e ——— module
’J“ Data ‘J
Header
Relocation
bits
Object
Symbot module
table

{a) (&)
Figure 4-3, (2} An executable file. {b) An archj;re.

Our secfond exgmpie of a binary file is an archive, also from UNIX. It consists
pf a collection of library pr'ocedures (modules) compiled but not linked. Each one
is prefaced by a header telling its name, creation date, owner, protection code, and
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size. Just as with the executable file, the module headers are full of binary num-
bers. Copying then to the printer would produce complete gibberish.

Every operating system must recognize at least ope file type: its own ex-
ecutable file, but some recognize more. The old TOPS-20 system (for the
DECsystern 20) went g0 far 28 to examine the creation time of any file 1o be exe-
cated. Then it located the source file and saw if the source had been modified
since the binary was made. If it had been, it antomatically recompiled the source.
In UNIX terms, the make program had been built into the shell. The file extensions
were mandatory, so the operating system counld tell which binary program was
derived from which source.

Having strongly typed files like this causes problems whenever the user does
anything that the system designers did not expect. Consider, as an example, a sys-
tem in which program output files have extension .daf (data files). If a user writes
a program formatter that reads a .c file {C program), transforms it {e.g., by con-
verting it to 2 standard indentation layout), and then writes the transformed file as
output, the output file will be of type .dat. If the user tries to offer this to the C
compiler to compile it, the system will refuse because it hias the wrong extension.
Attemnpts to copy file.dat to file.c will be rejected by the syster as invalid (to pro-
fect the user against mistakes).

While this kind of “user friendliness” may help novices, it drives experienced
users up the wall since they have to devote considerable effort to circumventing
the operating system’s idea of what is reasonable and what is not.

4.1.4 File Access

Early operating systems provided only ope kind of file access: sequential
access. In these systems, a process could read all the bytes or records in a file in
order, starting at the beginning, but could not skip around and read them out of
order. Sequential files could be rewound, however, so they could be read as often
as needed. Sequential files were convenient when the storage medium was mag-
netic tape rather than disk.

When disks came into use for storing files, it became possible to read the
bytes or records of a file out of order, or to access records by key rather than by
position. Files whose bytes or records can be read in any order are called random
access files. They are required by many applications.

Random access files are essential for many applications, for example, data-
base systems. If an airline customer calis up and wants to reserve a seat on a par-
ticular flight, the reservatior program must be able to access the record for that
flight without having to read the records for thousands of other flights first.

Two methods can be used for specifying where to start reading. In the first
one, every read operation gives the position in the file to start reading at. In the
second one, a special opération, seek, is provided to set the current position. After
a seek, the file can be read sequentially from the now-current position. The latter
method is used in UNIX and Windows.
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4.1.5 File Attributes

E\:fery file _has a name and its data. In addition, all operating systems associate
othe; information with each file, for example, the date and time the file was last
modified and the file’s size. We will call these extra jtems the file’s attributes
Some people call them metadata. The list of attributes varies considerably from-
System 10 system. The table of Fig. 4-4 shows some of the possibilities, but other

ones 21?56 ex18t. NO existing Sy f one 8 SCI
= stern has ali (45 thESe bﬂt ﬂach
5 HUA pfﬁ L in

Attribute Meaning
Protection Who can access the file and i what way
Password Password needed 1o access the file
Creator 12 of the person who created the file
Owner Current ownar
Bead-only flag 0 for readfwrite; 1 for read only
Hidden flag € for normal;  for do not display in iistings
System flag G for normal files; 1 for system file
Archive flag 0 for has baen backed up; 1 {or needs to be backed up
ASClibinary fiag G for ASCIi file; 1 for binary file )
Random access flag | 0O for sequential access oniy; 1 for random access
Temporary flag 0 for normal; 1 for delete file on process exit
Lock flags 0 for unlacked; nonzero for locked
Record length Number of bytes in a record
Key position Offset of the key within each record
Key length Number of bytes in the key field
Creation fime ‘ Date and time the file was created
Time of last access Date and time the file was last accessed
Time of last change Date and time the file was last changed
Current size Number of bytes in the file
Maximum size Nurmber of bytes the file may grow to

Figure 4-4. Some possible file attributes.

. The first four attzibutes relate to the file’s protection and tell who may access
it and who may not. All kinds of schemes are possible, some of which we will
stu(_iy later. In some systeras the user must present a password 1o access a file, in
which case the password must be one of the attributes. ’
The flags are bits or short fields that control or enable some specific property.

Hidden files, for example, do not appear in listings of all the files. The archive
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flag is a bit that keeps track of whether the.- file has been i)ac;ked up recenti;;}ic{‘h;
bagkup program clears it, and the operating system sels it whenzvg;ca nx g
changed. In this way, the backup program can tell which fz}esdn]eet. whei gﬁ,
The temporary flag allows a file to be marked for automatic deletion
it terminates. '

pmc’?iset;focr?iendgtb, key position, and key Jength fields are only .prfesent;nnﬁi?
whose records can be looked up using a key. They provide the informatio

i eys.
qmr’afdhéo\i?iiietgtyzs keep track of when ihe file was created, r-nost rfecently acs-
cessed, and most recently modified. These are useful for a vaiety (; :;F:g%?j:s:
For example, a source file that has been F;ochf;ed after the creat:lgn t% the coree
ponding object file needs io be recompiled. These fields provide Iy
mforTH;zflcc:Jnr;:em size tells how big the file is at present. Some old ﬁa;;}frar:et :éze;r-x
ating systems require the maximum size to be spec‘:ﬁed when the If et1s Zz cain ,a n
order to let the operating systene Teserve the maximum ameant of storag e
vance. Workstation and personal computer operating systems are clever enoug

do without this feature.

4.1.6 File Operations

Files exist to store information and allow it 1o be retriev:cd later. Dxffer.ent sg’s—
tems provide different operations to allow storage and retrieval. Below is a dis-
cussion of the most common system calls relating to files.

1. Greate. The file is created with no data. The purpose of t}}e call is to
announce that the file is coming and to set some of the attributes.

3 Delete. When the file is no longer needed, it has tf} be deleted to free
ap disk space. There is always a system cal} for this purpose.

3. Open. Before using a file, 2 process must open 1[ The purpose of rjhe
' open call is to allow the system to fetch the atiribotes and list of disk
addresses into main memory for rapid access on later calls.

4. Ciose. When all the accesses are finished, the attzibutes and disk ad-
dresses are no longer needed, so the fite should be closed to free up
internal teble space. Many systems encouzage tius_ byhlmp{_)smg'a
maximum number of open files on processes. A disk is wriiten in
locks, and closing a file forces writing of the file’s last block, even
though that block may not be eatirely full yet.

5. Read. Data are read from file. Usuaily, the bytes come from the cur-
rent position. The caller must specify how many data are needed and
must also provide a buffer to put them in.
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6. Write. Data are written to the file again, usually at the current posi-
tion. If the current position is the end of the file, the file’s size
increases. If the current position is in the middle of the file, existing
data are overwritten and lost forever.

7. Append. This call is a restrcted form of write, It can only add data
to the end of the file. Systems that provide a minimal set of system
calls do not generally have append, but many systers provide multi-
ple ways of doing the same thing, and these systems sometimes have
append.

8. Seek. For random access files, a method is needed to specify from
where to take the data. One conunon approach is a sysiem call, seek,
that repositions the file pointer to a specific place in the file. After
this cail has completed, data can be read from, or written to, that
position.

9. Get atlributes, Processes often need to read file attributes to do their
work. For example, the UNIX make program is commonly used io
manage software development projects consisting of many source
files. When make is called, it examines the modification times of all
the source and object files and arranges for the minirmum number of
compilations required to bring everything up to date, To do its Jjob, it
must look at the ateributes, namely, the modification times.

10. Set attbutes. Some of the atiributes are user settable and can be
changed after the file has been created. This systern call mekes that
possible. The protection mode information is an obvious example.
Most of the flags alse fall in this category.

11. Rename. It frequently happens that a user needs to change the name
of an existing file. This system call makes that possible. It is not al-
ways strictly mecessary, because the file can usually be copied to a
new file with the new name, and the old file then deleted.

4.1.7 An Example Program Using File System Calls

263

In this section we will examine a simple UNIX program that copies one file
from its source file to a destination file. It is listed in Fig. 4-5. The program has
minimal functionality and even worse error reporting, but it gives a reasonable

idea of how some of the system calls related to files work. -
The program, copyfile, can be called, for example, by the command line

copyfite abe xyz

to copy the file abe to xyz. If xyz aiready exists, it will be overwritten. Otherwise,
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/= File copy program. Error checking and reporting is minimal. */
#include <sys/types.hx x tnclude necessary header files *f
#include <fenil.he>

ginclude <stdiib.h>

#include <urisid.h>

int main(int arge, char =argv(l); /= ANSI prototype */

/+ use a buifer size of 4096 bytes */

e OUTPUT MOD! /x protection bits for output file *f

#define QUTPUT .MODE 0700
int main{int argg, char *argvll)

int in_fd, out_id, rd_count, wi_count;
char buffer{BUF _SIZEL

if (arge 1= 3) exit(1); /+ syntax error if arge is not 3 =
/* Open the input file and create the output file */ )

in_fd = open(argv{1], O_RDONLY); I+ open the source file =/

i (in_fd < 0) exit(2); J* 1 it cannot be qpem_ed, exit *f
out_fd = creat(argvig], QUTPUT_MODE); /* create the destination f;ie.*f
if (out..fd < 0) exit{3); Fe it it cannot be created, exit +f

I+ Copy locp */
while {TRUE) {
r(zmcoum = rgad{in_fd, buffer, BUF_SIZE); /* rea§ a biock of da?a *f
if (rd..count <= Q) break; = if end of file or error, exit loop =/
Tm.mcount = writa(out . fd, buffer, rd_count); f+ write data_ *f
if fwt._count <= 0) exit{4); 1% wi_count <= 0 is an error */ .

}

f+ Close the files */

close{in_fd);

close(out__fd);

if (rd _count == 0}
exitQ);

f* no error on last read-*/

glsg

exit(5); = error on last read */

Figure 4-5. A simple program to Copy 2 file.

it will be created. The program must be called wittli exactly two arguments, both
Tegal file names. The first is the source; the second is the output file.

The four #include statements near the top of the program cause a large nusm-
ber of definitions and function prototypes to be included in _the program. These are
needed to make the program conformant to the relevant international standards,
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but will not concern us further. The next line is a function prototype for main,
something required by ANSI C, but also not important for our purposes.

The first #define statement is a macro definition that defines the character
string BUF_SIZE as a macro that expands into the number 4096. The program
will read and write in chunks of 4096 bytes. It is considered good programming
practice to give names to constants like this and to use the names instead of the
constants. Not only does this convention make programs easier to read, but it also
makes them easier to maintain. The second #define statement determines who can
access the output file.

The main program is called main, and it has two arguments, arge, and argv.
These are supplied by the operating systerm when the program is called. The first
one tells how many strings were present on the command Hne that invoked the
program, including the program name. It should be 3. The second one is an array
of pointers to the arguments. In the example call given above, the elements of this
array would contain pointers to the following values:

argv[0] = "copyfile"
argv[1] = "abe"
al.gviz] = I?xyzil

It is via this array that the program accesses its arguments. v

Five variables are declared. The first two, in_fd and our. fd, will hold the file
descriptors, small integers retwned when a file is opened. The next two,
rd_count and wi._count, are the byte counts returned by the read and write system
calls, respectively. The last one, buffer, is the buffer used to hold the data read and
supply the data to be written. i

The first actual statemnent checks arge to see if itis 3. If not, it exits with stat-
us code 1. Any status code other than O means that an error has occmyed. The
status code is the only error reporting present in this program. A production ver-
sion would normally print error messages as well,

Then we try to open the source file and create the destination file. If the
source file is successfully opened, the system assigns a small integer to in_fd, 0
identify the file. Subsequent calls must include this integer so that the system
knows which file it wants. Similarly, if the destination is successfully created,
out_fd is given a value to identify it. The second argument to creat sets the pro-
tection mode. If either the open or the create fails, the corresponding file descrip-
tor is set to —1, and the program exits with an error code.

Now comes the copy loop. It starts by trying to read in 4 KB of data to buffer.
It does this by calling the library procedure read, which actually invokes the read
system call. The first parameter identifies the file, the second gives the buffer, and
the third tells how many bytes to read. The value assigned to rd_count gives the
rnumber of bytes actually read. Normally, this will be 4096, except if fewer bytes
are remaining in the file. When the end of file ihas been reached, it will be 0. If
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rd_count is ever zero or negative, the copying cannot continue, 50 the break state-
ment is executed to terminate the (otherwise endless) loop.

The call t© write outputs the buffer to the dcstinatio;;'ﬁle. The first parameter
identifies the file, the second gives the buffer, and the thrd telis how many bytes
to write, analogous to read. Note that the byte count is the number of bytgs ac-
wally read, pot BUF _SIZE. This point is important because the last read will not
retura 4096 unless the file just happens to be a multiple of 4 KB.

When the entire file has been processed, the first call beyond_ the }311@ of file
will return 0 to rd_count, which will make it exit the loop. At this point _ihe.two
files are closed and the program exits with a status indicating normal termination.

Although the Windows system calls are different from those off UNIX, the
general structure of a command-line Windows program fo copy 2 file is moderate-
ly similar to that of Fig. 4-5. We will examine the Windows Vista ¢alis in Chap.
1.

4.2 DIRECTORIES

To keep track of files, file systems pormally have directories‘ or fol@ers,
which in many systems are themselves files. In this section we will discuss direc-
torles, their organization, their properties, and the operations that can be perform-
¢d on them.

4.2.1 Single-Level Directory Systems

The simplest form of directory systern is having one éir;cFory containing ail
the files. Sometimes it 1s called the root directory, but since it is the only one, the
name does not mattes much. On early personal compuiers, this sysiem was cozr’xm
mon, in part because there was only one user. Intere§£ingly _enough, the world’s
first supercomputer, the CDC 6600, also had only 2 smgk? directory for ali files,
even though it was used by many users at once. This decision was no doubt made
to keep the software design simple. )

AE example of a sysgem w'gh one directory is given in Fig. 4-6. Here the di-
tectory contains four files. The advantages of this scheme are its simplicity arz_d
the ability to locate files quickly—there is only one place to !pqic, after all. Itis
often used on simple embedded devices such as telephones, digital cameras, and
some portable music players.

4.2.2 Hierarchical Directory Systems
The single-level is adequate for simple dedicated applications (and was even

used on the first personal computers), but for modem users witp thousfands of
files, it would be impossible to find anything if all files were in a single directory.
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. Root directory

OB

Figure 4-6. A single-level disectory system containing four files,

Consequently, & way is nesded to group related files together. A professor, for
example, might have a collection of files that together form a book that he is writ-
ing for one course, a second collection of files containing stadent programs sub-
mitted for another course, a third group of files containing the code of an ad-
vanced compiler-writing system he is building, a fourth group of files containing
grant proposals, as well as other files for electronic mail, minutes of meetings,
papers he is writing, games, and so on.

What is needed is a hierarchy (j.e, a tree of directories). With this approach,
there can be as many directories as are needed to group the files in natural ways.
Furthermore, if multiple users share a common file server, as is the case on many
company networks, each user can have a private root directory for his or her own
hierarchy. This approach is shown in Fig. 4-7. Here, the directories A, B, and C
contained in the root directory each belong to a different user, two of whom have

created subdirectories for projects they are working on. v
. Rt directory
User
diractory.

User subdirectories

e e e "*—Useriile

Figure 4-7. A hierarchical directory system.

The ability for users to create an arbitrary number of subdirectories provides a
powerful structuring tool for users to organize their work. For this reason, nearly
all moderm file systems are organized in this manner.

4.2.3 Path Names

When the file system is organized as a directory tree, some way is needed for
specifying file names. Two different methods are commeonly used. In the first
method, each file is given an absolute path name consisting of the path from the
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root directory to the file. As an example, the path /usr/ast/mailbox means that the
root directory contains a subdirectory usr, which in turn contains a subdirectory
ast, which contains the file mailbox. Absolute path names always start at the root
directory and are unigue. In UNIX the components of the path are separated by /.
In Windows the separator is \. In MULTICS it was >. Thus the same path name
would be written as follows in these three systems:

Windows  \usnastimailbox
UNIX fusrfastimaitbox
MULTICS >usrrast=mailbox

No matter which character is used, if the first character of the path name is the
separator, then the path is absolute.

The other kind of name is the relative path name. This is used in conjunc-
tion with the concept of the working directory (also called the current direc-
tory). A user can designate one directory as the current working directory, in
which case all path names not beginning at the root directory are taken relative to
the working directory. For example, if the current working directory is /usr/ast,
then the file whose absolute path is /usr/astinailbox can be referenced simply as
mailbox. In other words, the UNIX command

¢p fustfastimailbox fusriast/mailbox. bak
and the command
cp maitbox mailbox.bak

do exacily the same thing if the working directory is /usr/ast. The relative form is
often more convenient, but it does the same thing as the absolute form.

Some programs reed to access a specific file without regard to what the‘work-
ing directory is. In that case, they should always use absolute path names. For
example, a spelling checker might need to read Jusr/lib/dictionary to do its work,
It should use the full, absolute path name in this case because it does not know
what the working directory will be when it is called. The absolute path name will
always work, no matter what the working directory is. -

Of course, if the speiling checker needs a large number of files from /fusr/lib,
an alternative approach is for it to issue & system call to change its working direc-
tory to /usr/lib, and then use just dictionary as the fizst parameter to open. By
explicitly changing the working directory, it knows for sure where it is in the di-
rectory tree, so it can then use relative paths.

Each process has its own working directory, so when it changes its working
directory and later exits, no other processes are affected and no waces of the
change are left behind in the file system. In this way it is always perfecly safe for
a process to change its working directory whenever that is convenient. On the
other hand, if & library procedure changes the working directory and does not
change back to where it was when it is finished, the rest of the program may not
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work SInce s asswmption about where it is may now suddenly be invalid. For thi
reason, library procedures rarely change the working directory, and wia i h Y
must, they alwa.ys change it back again before returnine. ’ e
Mosi operating systems that support a hierarchicalcdirectory system have tw
‘s%ecml ez?mes 1n every directory, “.” and “.”, generally pronounced ““dot” aug
. otdot. Dot refers. to thf: cugrent di_rectory; dotdot refers to its parent {except in
the S:}»‘?t directory, whe_ra 1t refers to ftseif). To see how these are used, consider
tOa IIX file tree of Fig. 4-5. A certain process has /usr/ast as its working direc.
. It can use .. to go higher up the tree. For example, it can co ct'he fil
Just/lib/dictionary to its own directory using the command ’ v B

op - Jib/dictionary .

The first path instructs the s i
_ ystem to go upward (to the usr directory), th
down to the directory Ib to find the file dictionary. ) ther o g0

/

bin Root directory
et
lit
usr
tmp *
bin_ e “lib usr tmp
ast
jim
lib
ast b jim
it (o Jusrfim

Figure 4-8. A UNIX directory tree.

'cl;ile secon_d argument {dot) names the current directory. When the cp com-
mand gets a directory name (including dot) as its last argument, it copies al} the
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files to that directory. Of course, a more normz! way to do the copy would be to
use the full absolute path name of the source file:

op fusi/lib/dictionary -

Here the use of dot saves the user the trouble of typing dictionary a second time.
Nevertheless, typing

op fust/lib/dictionary dictionary
also works fine, as does

cp /ustffib/dictionary fusrfast/dictionary
All of these do exactly the same thing.

4.2.4 Directory Operations

The allowed system calls for managing directorie.s exhipiz more variation
from system 1o system than system calis for files. To give an impression of what
they are and how they work, we will give a sample (taken from UNIX).

1. Create. A directory is created. It is empty except for Fiot and dotdot,
which age put there astomatically by the system (or in a few cases,

by the mkdir program}.

9 Delete. A directory is deleted. Only an empty dirfactery can be de-
leted. A directory containing only dot and dotdot is considered em-
pty as these cannot usually be deleted.

3. Opendir. Directories can be read. For examg‘)k, to list all the files in
a directory, a listing program Opens the directory to read out th.e
names of all the files it contains. Before 4 éirfsctory can be read, 1t
must be opened, analogous to opening and reading 2 file.

4. Ciosedic., When a directory has been read, it should be closed to free
up internal table space.

5. Readdir. This call returns the next entry in an open directory. Form-
erly, it was possible to read directories using the usual‘read system
call, but that approach has the disadvantage of forcmg. the pro-
erammer to know and deal with the internal structure of directories.
?n contrast, readdir always retums one eatry in a_stan-dard format, no
matter which of the possible directory structures 15 being used.

6. Rename. In many respects, directories are just like files and can be
renamed the same way files can be.

7. Link. Linking is a technique that allows a file to appear in more than
one directory. This system cafl specifies an existing file and a path
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name, and creates a link from the existing file 0 the name specified
by the path. In this way, the same file may appear in multiple direc-
tories. A link of this kind, which increments the counter in the file’s
i-node (to keep track of the number of directory entries comtaining
the file), is sometimes called a hard bnk.

8. Unlink. A directory entry is removed. If the file being unlinked is
only present in one directory (the normal case), it is removed from
the file system. If it is present in maultiple directories, only the path
name specified is removed. The others remain. In UNIX, the system
call for deleting files (discussed earlier) is, in fact, uniink.

The above list gives the most important calls, but there are a few others as well,
for example, for managing the protection information associated with a directory.

A variant on the idea of linking files is the symbolic link. Instead of having
two names point to the same internal data structure representing z file, a name can
be created that points to a tiny file naming another file. When the first file is used,
for example, opened, the file system follows the path and finds the name at the
end. Then it starts the lookup process all over using the new name. Symbolic
links have the advantage that they can cross disk boundaries and even name files
on rernote computers. Their implementation is somewhat less efficient than hard
links though. .

4.3 FILE SYSTEM IMPLEMENTATION

Now it is time to wm from the user’s view of the file system to the imple-
mentor’s view. Users are concerned with how files are named, what operations
are allowed on them, what the directory tree looks like, and similar interface is-
sues. Implementors are interested in how files and directories are stored, how disk
space is managed, and how to make everything work efficiently and reliably. In
the following sections we will examine a number of these areas to see what the is-
sues and trade-offs are.

4.3.1 File System Layout

File systems are stored on disks. Most disks can be divided up into one or
more partitions, with independent file systems on each partition. Sector 0 of the
disk is called the MBR (Master Boot Record) and is used to boot the computer.
The end of the MBR contains the partition table. This table gives the starting and
ending addresses of each partition. One of the partitions in the table is marked as
active, When the computer is booted, the BIOS reads in and executes the MBR.
The first thing the MBR. program does is locate the active partition, read in its first
block, called the boot block, and execute it. The program in the boot block loads



272 FILE SYSTEMS CHAP. 4
the operating system contained in that partition. For uniformity, every partition
starts with a boot block, even if it does not contain a boctable operating systei.
Besides, it might contain one in the futare. 7 _ . )

Other than starting with a boot block, the layout of a d%sk partition varies a lot
from file system to file system. Often the file system will contain some of the
itemns shown in Fig. 4-9. The first one is the superblock. It contains ali the icey
parameters about the file system and is read into memory \.rvhe:} the computer 18
booted or the file system is first touched. Typical information i the superblogk
includes a magic number to identify the file system type. the number of blocks in
the file system, and other key administrative mformation.

Entire disk

A/i Disk |:1::).{ti%ion‘\L\i’k j
|

Partiticn table

‘ Boot block I Suparb!ock' Free space mgmt l I-nodes l Ruoot dir ! Fites and directories

Figure 4-9, A possible file system layout.
Al

Mext might come information about free blocks in tt.le file system, for ex-
ample in the form of a bitmap or a list of pointers. Th_is might be followed by the
i-nodes, an array of data structures, one per file, telling all about the file. After
that might come the root directory, which contains the top of t‘_ne file system tree.
Finally, the remainder of the disk contains all the other directories and files.

4.3.2 Implementing Files

Probably the most important issue in implementing file storage is k(f,epir-:g
track of which disk blocks go with which file. Van'ou_s methods are used in dif-
ferent operating systems. In this section, we will examune 2 few of them.

Contiguous Allocation

The simplest allocation scheme is to stoze each file as a contiguous run of disk
blocks. Thus on a disk with 1-KB blocks, a 50-KB file would be aliogated 50 con-
secntive blocks. With 2-XB blocks, it would be allocated 25 consecutive blocks.
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We see an example of contiguous storage allocation in Fig. 4-10(z). Here the
first 40 disk blocks are shown, starting with block C on the left. Initially, the disk
was empty. Then a file A, of length four blocks, was written to disk starting at the
beginning (block 0). Afier that a six-biock file, B, was written starting right after
the end of file A.

Note that each file begins at the start of a new block, so that if file A was real-
ly 3% blocks, some space is wasted at the end of the last block. In the figure, a
total of seven files are shown, each one starting at the block following the end of
the previous one. Shading is used just to make it easier to tell the files apart. It
has no actual significance in terms of storage.

File A File C File E File G
(4 blocks) {6 blocks} {12 blocks) (3 blocks)

Fie B File & File F’

(3 blocks) (5 blocks) (6 blocks)

(a)

(File A) (File C} (File E) File G)

gy

LIITPEREL
[
6 Free blocks

File B S Free blocks
)]

Figure 4-16. (a) Contigucas allocation of disk space for seven files.. (b} The
state of the disk after files I? and F have been removed.

Contigeous disk space allocation has two significant advantages. First, it is
simple to implement because keeping track of where a file’s blocks are is reduced
to remembering two numbers; the disk address of the first block and the number
of blacks in the file. Given the number of the first block, the number of any other
block can be found by a simple addition. .

Second, the read performance 15 excellent because the entire file can be read
from the disk in a single operation. Only one seck is needed (to the first block).
After that, no more seeks or rotational delays are needed, so data come in at the
full bandwidth of the disk. Thus contiguous allocation is simple to implement and
has high performance.

Unfortunately, contiguous allocation aiso has a fairly significant drawback:
over the course of time, the disk becomes fragmented. To see how this cornes
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about, examine Fig. 4-10(b). Here two files, D and F, have been removed. When
a file is removed, its blocks are naturally freed, leaving a run of free blocks on the
disk. The disk is not compacted on the spot to squeeze out the hole since, that
would involve copying all the blocks following the hole, potentially millions of
blocks. As a result, the disk ultimately consists of files and holes, as liustrated in
the figure.

Initially, this fragmentation is not a problem, since each new file can be writ-
ten at the end of disk, folowing the previous one. However, eventually the disk
will fill up and it will become necessary to either compact the disk, which is
prohibitively expensive, or o reuse the free space in the holes. Reusing the space
requires maintaining a list of holes, which is doable. However, when a new file is
to be created, it is necessary to know its final size in order to choose a hole of the
cotrect size 1o place it in.

Imagine the consequences of such a design. The user starts a text editor or
word processor in order to type a document. The first thing the program asks is
how many bytes the final document will be. The question must be answered or the
program will not continue, If the number given ultimately proves too small, the
program has to terminate prematurely because the disk hole is full and there is no
place to put the zest of the file, If the user tries to avoid this problem by giving an
unrealistically large rumber as the final size, say, 100 MB, the editor may be un-
able to find such a large hole and announce that the file cannot be created. Of
course, the user would be free to start the program again and say 50 MB this time,
and s0 on until a suitable hole was located. Still, this scheme is not likely to lead
0 happy users.

However, there is one situation in which contiguous allocation is feasible and,
in fact, widely used: on CD-ROMs. Here all the file sizes are known in advance
and will never change during subsequent use of the CD-ROM file system. We
will study the most common CD-ROM file systemn later in this chapter.

The sitnation with DVDs is a bit more complicated. In principle, 2 90-min
movie could be encoded as a single file of length about 4.5 GB, but the file system
used, UDF (Umiversal Disk Format), uses a 30-bit number to represent file
length, which limits files to 1 GB. As a consequence, DVD movies are generally
stored as three or four 1-GB files, each of which is contignous. These physical
pieces of the single logical file (the movie) are called extents.

As we mentioned in Chap. 1, history often repeats itself in computer science
as new generations of technology occur. Contiguous allocation was actually uvsed
on magnetic disk file systems years ago due to its simplicity and high per-
formance {user friendiiness did not count for much then). Then the idea was
dropped due to the nuisance of having fo specify final file size at file creation
time. But with the advent of CD-ROMs, DVDs, and other write-once optical me-
dia, suddenly contiguous files are a good idea again. It is thus important to study
old systems and ideas that were conceptually clean and simple because they may
be applicable to future systems in surprising ways.
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Linked List Allocation

The second mgthod for storing files is to keep each one as a linked list of disk
blecks, as shown in Fig. 4-11. The first word of each block is used as a pointer to
the next one. The rest of the block is for data.

Fia A
- -— G
File File File File Fite
block black block biock biock
0 1 2 3 4
Physical 4 7 2 10 12
block
File B
G
File File File File
block biock biock block
4 1 2 3
Physical 6 3 11 14
black

v

Figure 4-11. Storing a file as a linked list of disk blocks.

Unlike contiguous allocation, every disk black can be used in this method,
No space is lost to disk fragmentation {except for interna] fragmentation in the last
block). Also, it is sufficient for the directory entry to merely store the disk ad-
dress of the first block. The rest can be found starting there.

On the other hand, although reading a file sequentiaily is straightforward, ran-
dom access i3 extremely slow. To get to block n, the operating system has to start
at the beginning and read the n ~ 1 blocks prior to it, one at a time, Clearly, doing
50 many reads will be painfully slow,

Also, the amount of data storage in a block is no longer a power of two be-
cause the pointer takes up a few bytes. While not fatal, having a peculiar size is
less efficient because many programs read and write in blocks whose size is a
power of two. With the first few bytes of each block occupied to a pointer to the
next block, reads of the full block size require acquiring and concatenating infor-
mation from two disk blocks, which generates extra overhead due to the copying.

Linked List Allocation Using a Table in Memory

Bc_;th disadvantages of the linked list allocation can be eliminated by taking
the pointer word from each disk biock and putting it in a table in memory, Figure
4-12 shows what the table looks like for the example of Fig, 4-11. In both figures,
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we have two files. File A uses disk blocks 4, 7, 2, 10, z_md 12, in that orfler, and
file B uses disk blocks 6, 3, 11, and 14, in that order. Using the table of Fig. 4-12,
we can start with block 4 and follow the chain all the way o the an.d. The same
can be done starting with block 6. Both chains are termmat.ed wgh a spec;z_zi
marker {e.g., ~1) that is not a valid block number. Such a table in main memory 18
called a FAT (File Allocation Table).

Physical
plock
0
1
2 10
3 11
4 7 L« File A starts here
E]
6 3 - e B staris here
ki
8
9
10 2
" 4
12 1
i3
14 -1
% ts—— Unused block

Yigure 4-12. Linked list allocation using a file aliccation table in main memory.

Using this organization, the eatire block is availab}e_for data. Furthermore,
random access is much easier. Although the chain must still be _‘_foilowed tofinda
given offset within the file, the chain is entirely in memoiy, so 1F can be ft?liowed
without making any disk references. Like the previc_;us method, it 1§ sufﬁmex}t for
the directory entry to keep a single integer (the starting b.iock number) and still be
able to locate ajl the blocks, no matter how large the file is. . )

The primary disadvantage of this method is that tl}e entire table must be in
teemory all the time to make it work. With a 200-GB disk and 2 1.~KB _b}ock size,
the table needs 200 million entries, one for each of the 200 miltion disk blocks.
Each entry has to be a minimum of 3 bytes. For speed in ieoku;_), they should be 4
bytes. Thus the table will take up 600 MB or 800 MB of main memory all the
time, depending on whether the system is optimized for space or tme. Not wildly
practical. Clearly ihe FAT idea does not scale well to large disks.
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I-nodes

Our last method for keeping track of which blocks belong to which file is to
associate with each file a data structure ¢alled an i-node (index-node), which lists
the attributes and disk addresses of the file’s blocks. A simple example is de-
picted in Fig. 4-13. Given the i-node, it is then possible to find all the blocks of
the file. The big advantage of this scheme over linked files using an in-mermory
table is that the i-node need only be in memory when the corresponding file is
open. If each i-node occupies n bytes and a maximum of k files may be cpen at
once, the total memory occupied by the array holding the i-nodes for the open
files is only k» bytes. Only this much space need be reserved in advance.

File Attributes

Address of disk block 0 >

Address of disk block 1 =

Address of disk block 2 S

Address of disk block 3 —

Address of disk block 4 ey

Address of disk block 5 EE—

Address of disk block 8 ———

Address of disk block 7 p————

Address of block of pointers

Disk block

containing

additional
disk addresses

Figure 4-13. An example i-node.

This array is useally far smaller than the space occupied by the file table de-
scribed in the previous section. The reason is simple. The table for holding the
linked list of al} disk blocks is proportional in size to the disk itself. If the disk
has n blocks, the table needs » entries. As disks grow larger, this table grows line-
arly with them. In contrast, the i-node scheme requires an-array in memory whose
size is proportional to the maximum number of files that may be open at once. It
does not matter if the disk is 10 GB or 100 GB or 1000 GB.

One problem with i-nodes is that if each one has room for a fixed number of
disk addresses, what happens when a file grows beyend this limit? One solution
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not for a data bleck, but instead for the address
block addresses, as shown in Fig. 4-13. Even
h blocks containing disk addresses or
cks full of addresses. We will come

is to reserve the last disk addrc?ss
of a block containing more disk
more advanced would be two Or 1ore SUS
even disk blocks pointing to other disk blo
back to i-nodes when studying UNIX iater.

4.3.3 Implementing Directories

Refore a file can be read, it must be opened. When a file is opened, the oper-
ating system uses the path name supplied by the user to locate the 'dlzectorg engy:
The directory entry provides the information needed to find the disk blocks. e
formation may be the disk address of the entire fite

ding on the system, this in . '
I()\i?thl cg:ozztiguousy allocation), the number of the first biock (both linked list

schemes), or the number of the i-node. In all cases, the ma'm‘ funct';og of thedde]é
rectory $ystem is to map the ASCII name of the file cnto the information nee

N lozaft:?;?;;i;teé issue is where the attributes should be stored. Every f11§: tsg&
tem Tnaintains file atiributes, such as each ﬁle.’s.o-wn-er and creation time, ;Im i tﬁ)é
must be stored somewhere. One obvious possibility i fo store {hcm d1rec_ ¥ Fm e
directory entry. Many systefis do precisely }hat. ’Fhis: option is shown m‘e;g(.me
14¢a). In this simple design, a directory consists of a list of f;xed;s1ze e};}mt s one
per file, containing a {fixed-length) file name, a structure of the file attril 1;{ esi, d
one or more disk addresses (up to some maximum) telling where the disk bioc

are.
- ”“—”“?““—7/’/f
gamaes | attributes games ! /D
; T ]
1 atiributes mail :
3
| attributes news 1 _\"'Ij
1
i attributes work 1 \\
(0} D\\ Data structure
© containing the
atiributes

Figure 4-14. (a) A simple directory containing fixed-size en%?ies with the éisl_c addresses
and attributes in the directory emiry. {b) A dirgctory in which each entry just
refers o an i-node.

For systems that use i-nodes, another possibility for storing the gttributes isin
the i-nodes, rather than in the directory eniries. In that case, the dlrfacthory entr}é
can be shorter: just a file name and an i-node number. This approach s illustrate
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in Fig. 4-14(b). As we shall sce later, this method has some advantages over put-
ting them in the directory entry. The two approaches shown in Fig. 4-14 corres-
pond to Windows and UNIX, respectively, as we will see later.

So far we have made the assumption that files have short, fixed-length names.
In MS-DOS files have a 1-8 character base name and an optional extension of 1-3
characters. In UNIX Version 7, file names were 1-14 characters, including any
extensions. However, nearly all modern operating systems support longer, vari-
able-length file names. How can these be implemented?

The simplest approach is to set a limit on file name length, typically 255 char-
acters, and then use one of the designs of Fig. 4-14 with 235 characters reserved
for each file name. This approeach is simple, but wastes a greal deal of directory
space, since few files have such long names. For efficiency reasons, a different
structure is desirable.

One alternative is to give up the idea that all directory entries are the same
size. With this method, each directory entry contains a fixed portion, typically
starting with the length of the eatry, and then followed by data with a fixed for-
mat, usually inciuding the owner, creation time, protection information, and other
attributes. This fixed-length header is followed by the actual file name, however
long it may be, as shown in Fig. 4-15(a) in big-endian format (e.g., SPARC). In
this example we have three files, project-budget, personnel, and foo. Each file
name is termirated by a special character (usually 0), which is represenfted in the
figure by a box with a ¢ross in it. To allow each directory entry to begin on a
word boundary, each file name is filled out to an integral namber of words, shown
by shaded boxes in the figure.

A disadvantage of this method is that when a file is removed, a variable-sized
gap i introduced into the directory into which the next file to be entered may not
fit. This problem is the same one we saw with contiguous disk files, only row
compacting the directory is feasible because it is entirely in memory. Another
problem is that a single directory eatry may span multiple pages, so a page fault
may oceur while reading a file name.

Another way to handle variable-length names is to make the directory entries
themselves all fixed length and keep the file pames together in a heap at the end
of the directory, as shown in Fig. 4-15(b). This methed has the advantage that
when an eniry is removed, the next file entered will always fit there. Of course,
the heap must be managed and page faults can still vccur while processing file
names. One minor win here is that there is no longer any real need for file names
to begin at word boundaries, so no filler characters are needed after file names in
Fig. 4-15(b} as they are in Fig. 4-15(a). g

In afl of the designs so far, directories are searched linearly from beginning to
end when a file name has to be looked up. For extremely long directories, linear
searching can be slow. One way to speed up the search is to use a hash table in
each directory. Call the size of the table n. To enter a file rame, the name is
hashed onto a value between O and r - 1, for example, by dividing it by » and
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Figure 4-15. Two ways of handling long file names in a directory. (a) In-line.
(&) In & heap.

taking the remainder. Alternatively, the wozds cqmpr%sir}g the file name can’be
added up and this quantity divided by n, or something similar, o .

Either way, the table entry corresponding to the has}l code is inspected. Ifit 1;1
unused, a pointer is placed there to the file entry. File entries follow the hagl
table. If that slot is already in use, a linked list is coastruhctecli, headed at the table

threading through all entries with the same hash value. '

en{riﬁiiiﬂg up agﬁle fo%iows the same procedure. T}?e file name is bashed to
select a hash table entry. All the entries on the chain headed at tha}t slot are
checked to see if the file name is present. If the name is not on the chain, the file
is not present in the directory. _
° m;i}sgng a hash table has ﬁ;e advantage of much faster Eool_cup, but tl?e dlsgdvan-
tage of more complex administration. It is oniy_ really_a Serious ca}nd:date in sys-
tems where it is expected that directories will routinely contain hundreds or
thousands of files. o

A different way to speed up searching large directories is to cgche the results
of searches. Before starting a search, a check is first made to see if the ﬁle name
is in the cache. If so, it can be located immediately. Of course, caching only
works if a relatively small number of files comprise the majority of the lookups.

4
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4,34 Shared Files

‘When several users are working together on a project, they often need to share
files, As a result, it is often convenient for a shared file to appear sinnultaneously
in different directories belonging to different users. Figure 4-16 shows the file
system of Fig. 4-7 again, only with one of C’s files now present in one of B's di-
rectories as well. The connection between B’s directory and the shared file is call-

ed a link. The file system itself is now a Directed Acyclic Graph, or DAG, rath-
er than a tree,

. Roat directory

Shared fie

Figure 4-16, File system containing a shared file.

Sharing files is convenient, but it also introduces some problems. To start
with, if directories really do contain disk addresses, then a copy of the disk ad-
dresses will have to be made in B’s directory when the file is linked. If either B or
C subsequently appends to the file, the new blocks will be listed only in the direc-
tory of the user doing the append. The changes will not be visible to the other
user, thus defeating the purpose of sharing.

This problem can be solved in two ways. In the first solution, disk blecks are
not listed in directories, but in a Httle data structure associated with the file itself.
The directories would then point just to the little data structure. This is the ap-
proach used in UNIX (where the little data structure is the i-node).

In the second solution, B links to one of C’s files by having the system create
a new file, of type LINK, and entering that file in B’s directory. The new file con-
tains just the path name of the file to which it is linked. When B reads from the
linked file, the operating system sees that the file being read from is of type
LINK, looks up the name of the file, and reads that file. This approach is called
symbelic linking, to contrast it with traditional (hard) linking,
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Each of these methods has its drawbacks. In the first method, at the mo?nent
that B links to the shared file, the i-node Tecords the file's owner as C. Creatmg a
Yink does not change the ownership (see Fig. 4-17), but it does iﬂcrc?ase the link
count i the -node, so the system knows how many directory enfries currently
point to the file.

B's ditectory  G's directory B's directory

QOwner=C Owner=C
Count =2 Count = 1

Owaer=C
Count = 1

{a} &) ()

C's directory

Figare 4-17. (a) Situation prior to linking. {b) After the link is created. (c) After
the original owner removes the file.

If C subsequently tries to remove the file, the system is faced with a pro})igm.
I it removes the file and clears the i-node, B will have a directory entry pointng
to an invalid i-node. If the i-node is later reassigned to another ﬁig, B’s link will
point to the wrong file. The system can see from the count in the i-node El?at the
file is still in use, but there is no easy way for it to find all the directory entnies for
the file, in order (o erase them. Pointers to the directories cannot be stored in the
i-node because there can be an unlimited number of directories. ' .

The only thing to do is remove (s directory entry, but lea\{e th‘? 1—rz_ode intact,
with count set to 1, as shown in Fig. 4-17(c}. We now have a situaion 1n which B
is the only user having a directory entry for a file owned by C. If the system does
accounting or has quotas, C will continue to be billed for the ﬁIg until B decides to
remove it, if ever, at which time the count goes 0 0 and the file is deleted.

With symbolic links this problem does not arise because only the true owner
has a pointer to the i-node. Users who have linked to the ﬁle just have path names,
pot i-node pointers. When the owner removes the file, it is destroyed. _Subsequent
attempts to use the file via a symbolic link will fail when the system is unable to
locate the file. Removing a symbolic iink does not affect the file at all.

The problem with symbolic links is the extra overhesd required. The file con-
tainiag the path must be read, then the path must be parseté anc_l followed, com-
ponent by component, until the i-node is reached. All of this activity may require
a considerable number of extra disk accesses. Furthermore, an exira i-node is
aeeded for each symbolic link, as is an extra disk block to store the path, alﬂ}ough
if the path name is short, the system couid store it ir: the i-node itself, as a kind of
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optimization. Symbolic links have the advantage that they can be used to link to
files on machines anywhere in the world, by simply providing the network address
of the machine where the file resides in addition to its path on that machine.

There is also another problem introduced by links, symbolic or otherwise,
When links are allowed, files can have two or more paths. Programs that start at a
given directory and.find all the files in that directory and its subdirectories will
locate a linked file maultiple times. For example, a program that dumps all the files
in a directory and its subdirectories onto a tape may make multiple copies of a
linked file. Purthermore, if the tape is then read into another machine, unless the
dump program is clever, the linked file will be copied twice onto the disk, instead
of being linked. :

4.3.5 Log-Structured File Systems

Changes in technology are putfing pressure on current file systems. In partic.
ular, CPUs keep getting faster, disks are becoming much bigger and cheaper (but
not much faster), and memories are growing exporentially in size. The one pa-
rameter that is not improving by leaps and bounds is disk seek time. The combina-
tion of these factors means that a performance bottleneck is arising in many file
systems. Research done at Berkeley attempted to alleviate this problem by de-
signing a completely new kind of file system, LES (the Log-structured’File Sys-
tem). In this section we will briefly describe how LES works. For a more com-
plete treatment, see (Rosenblum and Ousterhout, 1991).

The idea that drove the LES design is that as CPUs get faster and RAM
memones get larger, disk caches are also increasing rapidly. Consequently, it is
now possible to satisfy a very substantial fraction of all read requests direcily
from the file system cache, with no disk access needed. It follows from this
observation that in the future, most disk accesses will be writes, so the read-ahead
mechanism used in some file systems to fetch blocks before they are needed no
longer gains much performance.

To make matters worse, in most file systems, writes are done in very small
chunks. Small writes are highly inefficient, since a 50-psec disk write is often pre-
ceded by a 10-msec seek and a 4-msec rotational delay. With these parameters,
disk efficiency drops to a fraction of 1%.

To see where all the small writes come from, consider creating 2 new file on a
UNIX system. To write this file, the i-node for the directory, the directory block,
the i-node for the file, and the file itself must all be written. While these writes
can be delayed, doing so exposes the file system to serious consistency problems
if a crash occurs before the writes are done. For this reasor, the i-node writes are
generally done immediately.

From this reasoning, the LEFS designers decided to re-implement the UNIX file
system in such a way as to achieve the full bandwidth of the disk, even in the face
of a workload consisting in large part of small random writes. The basic idea is to
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structure the entire disk as a log. Periodically, and when there is 2 §pe<:1a1 pezsld
for it, all the pending writes being buffered in memory are collected into : s?lzghz
segment and writien to the disk as a single cpnﬁguous segment at ttlz(e en do e
log. ‘A single segment may thus contain i-nodes, dlre§t0ry blocks, an
blocks, all mixed together. At the start of each segment is a segment sum.rzary,
telling what can be found in the segment. If the average segment can be made to
be about 1 MB, almost the full bandwidth of the disk can be utilized. )

In this design, i-nodes still exist and have the same structure as in pNIX, ltj;:t
they are now scattered all over the log, instead of be.mg at a fixed ppzutmn on ile
disk. Nevertheless, when an i-node is located, locating the biock:_s is d_one in the
usual way. Of course, finding an i-node is now_much harder, since 1ts ac'iéllreis
cannot simply be calculated from its i-nurber, as in I_JNIX.' Tg make it possi Zl 0
find i-nodes, an i-node map, indexed by i-number, Is mjamtamec.l. Entsy iin és
map points to i-node 7 on the disk. The map is kept on disk, t?ut it is also cached,
$0 the most heavily used parts will be in memory most of the time. )

To summarize what we have said so far, all writes are mmally b}lffer:f,d in.
memory, and periodicatly all the buffered writes are writtf:n o ihe §hsk in 2 single
segment, at the end of the jog. Opening a file now consists of usiag the map to
locate the i-node for the file. Once the i-node has been located, the _addresses of
the blocks can be found from it. All of the blocks will themselves be 1n segments,

mewhere in the log. _
* If disks were int%nitely large, the above description would be the entite story.
However, real disks are finite, so eventually the log will cccupy the entire dl:Skj at
which time no new segmenis can be wriiten to the log. Fortur;ately,_ many f_:x1stmg
segments may have blocks that are no Ionger needed, for example, if a ﬂ1.€ Is\gvebr—
written, its i-node will now point to the new blocks, but the old ones will-still be

ccupying space in previously written segments. o
° ’"Fg déﬂ zvith thii probierrsz(, LFS has a cleaner thread th_at spends its time scz&x:—
ning the log circularly to compact it. It starts out by reading the summary of he
first segment in the log to see which i-nodes and files are therf_:. It then checkg t.e
current i-nede map to see if the i-nodes are still current and file blocks are sqll in
use. If not, that information is discarded. The i-nodes and b}oci(:s Fhat are still in
use go into memory to be written out in the next segment. The ongipal segment 1§
then marked as free, so that the log can use it for new data, In this manner, .the
cleaner moves along the log, removing old segments from the back and putting
any live data into memory for rewriting in the next segment. Consequentiy, tlﬁe
disk is a big circular buffer, with the writer thread adding new segments (o the
front and the cleaner thread removing old ones from the back. _ _

The bookkeeping here is nontrivial, since when a file block is written back to
a new Segment, the i-node of the file (somewhere in the log) must be lo.cated,
updated, and put into memory to be writien out in the next segment. The %-noée
map must then be updated to point to the new copy. Nevertheless, itis posszb}e o
do the administration, and the performance results show that all this complexity is
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worthwhile. Measurements given in the papers cited above show that LES outper-
forms UNIX by an order of magnitude on small writes, while having a per-
formance that is as good as or better than UNIX for reads and large writes.

4.3.6 Journaling File Systems

While log-siructured file systems are an interesting idea, they are not widely
used, in part due to their being highly incompatible with existing file systems.
Nevertheless, one of the ideas inherent in themn, robustness in the face of failure,
can be easily applied to more conventional file systems. The basic idez here is to
keep a log of what the file system is going to do before it does it, so that if the §y8-
tem crashes before it can do its planned work, upon rebooting the system can look
in the log to see what was going on at the time of the crash and finish the job.
Such file systems, called journaling file systems, are actually in use. Microsoft's
NTFS file system and the Linux ext3 and ReiserFS file systems use journaling.
Below we will give a brief introduction to this topic.

To see the nature of the probler, consider a simple garden-variety operation

that happens all the time: removing a file. This operation (in UNIX) requires three
steps:

1. Remove the file from its directory.
2. Release the i-node to the pool of free i-nodes.

3. Return all the disk blocks to the pool of free disk blocks.

In Windows analogous steps are required. In the absence of systemn crashes, the
order in which these steps are taken does not matter; in the presence of crashes, it
does. Suppose that the first step is completed and then the system crashes. The i-
node and file blocks will not be accessible from any file, but will also not be
available for reassignment; they are just off in limbo somewhere, decreasing the
available resources. If the crash occurs after the second step, only the blocks are
lost.

If the order of operations is changed and the i-node is released first, then after
rebooting, the i-node may be reassigned, but the old directory entry will continue
to point to it, hence to the wrong file. If the blocks are released first, then a crash
before the i-node is cleared will mean that a valid directory entry peints to an i-
node listing blocks now in the free storage pool and which are likely to be reused
shortly, leading to two or more files randomly sharing the same blocks. None of
these outcomes are good, '

What the journaling file system does is first write a log entry listing the three
actions to be completed. The log entry is then written to disk {and for good meas-
ure, possibly read back from the disk to verify its integrity). Only after the log
entry has been written, do the various operations begin. After the Operations
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complete successfully, the log entry is erased. If the system now crashes, upon re-
covery ihe file system can check the log to see if any operations were pending. If
50, 21l of them can be rerun {multiple times in the event of repeated crashes) until
the file is correctly removed.

To make journaling work, the logged operations must be idempotent, which
means they can be repeated as often as necessary without harm. Operations such
as “Update the bitmap to mark i-node k or block  as free” can be repeated until
the cows come home with no danger. Similarly, searching a directory and remov-
ing any entry called foobar is also idempotent. On the other hand, adding the
newly [reed blocks from i-node K to the end of the free list is not idempotent since
they may already be there. The more-expensive operation “Search the list of free
blocks and add block x to it if it is not already present” is idempotent. Journaling
file systems have 1 arrange their data structures and loggable operations so they
all of them are idempotent. Under these conditions, crash recovery can be made
fast and secure.

For added refiability, 2 file system can introduce the database concept of 2n
atomic transaction. When this concept is used, a group of actions can be brack-
eted by the begin transaction and end transaction operations. The file system thexn
knows it must complete either all she bracketed operations or none of them, but
not any other combinations.

NTES has an extensive journaling system and its structure js rarely corrupted
by system crashes. It has been In development since its first release with Win-
dows NT in 1993. The first Linux file system to do journaling was ReiserFS, but
its popularity was impeded by the fact that it was incompatible with the then-stan-
dard ext? file systern. [n contrast, ext3, which is a less ambitious project than
ReiserES, also does journaling while maintaining compatibility with the previous
ext2 system.

4,37 Virtual File Systems

Many different file systems are in use—often on the same computer—even
for the same operating system. A Windows system may have a main NTFS file
system, but also a legacy FAT-3Z or FAT-16 drive or partition that conains old,
but still needed, data, and from time to time a CD-ROM or DVD (each with its
own unique file systemn) may be required as well. Windows handles these
disparate file systems by identifying each one with a different drive letter, as in
C:, D, etc. When a process opens a file, the drive letter is explicitly or implicitly
present so Windows knows which file system to pass the request to. There is no
attempt to integrate heterogeneous file systems inte a unified whole.

In contrast, all modern UNIX systems make a very serfous attempt to integrate
multiple file systems into a single structure. A Linux system could have ext2 as
the root file system, with an ext3 partition mounted on /usr and a second hard disk
with & ReiserFS file system mounted on /home as well as an IS0 9660 CD-ROM
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Figure 4-18. Position of the virtual file system.

il Arzéczyst'em calls refating to ﬁles are directed to the virtual file system for ini-
o Sp Sucflszar;g;x';[‘ehnes?ecagls, c%;)msng from user processes, are the standard POSD;(
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. the VES was to support remote file systems using the NFS (Network File Sys-

temn) protocol. The VES design is such that 2s long as the concrete file system
supplies the functions the VFS requires, the VFS does not know or care where the
data are stored or what the underlying file systern is like.

Internally, most VES implementations are essentially object oriented, even if
they are written in C rather than C++. There are several key object types that are
normally supported. These include the superblock (which describes a file system),
the v-node {which describes a file), and the directory (which describes a file sys-
tem directory). Each of these has associated operations (methods) that the con-
crete file systems must support. In addition, the VFS has some internal data strac-
tares for its own use, including the mount table and an array of file descriptors to
keep track of all the open files in the user processes.

To understand how the VIS works, let us run through an example chronologi-
cally. When the system is booted, the root file system is registered with the VES.
In addition, when other file systems are mounted, either at boot time or during op-
eration, they, too must register with the VES. When a file system registers, what
it basically does is provide a list of the addresses of the functions the VIS re-
quires, either as one long call vector (table) or as several of them, one per VES
abject, as the VFS demands. Thus once a file system has registered with the VES,
the VES knows how to, say, read a block from it—it simply calls the fourth (or
whatever} function in the vector supplied by the file system. Similarly, the VES
then alse knows how to carry out every other function the concrete file system
mest supply: it just calls the function whose address was supplied when the file
system registered.

After a file system has been mounted, it can be used. For example, if a file
system has been mounted on /usr and a process makes the call .

open{“fustfincludefunistd.h”, O_RDONLY}

while parsing the path, the VFS sees that a new file system has been mounted on
fusr and locates its superblock by searching the list of superblocks of mounted file
systems. Having done this, it can find the root directory of the mounted file sys-
tem ard look up the path include/unistd h there. The VFS then creates a v-node
and makes a call to the concrete file system to return all the information in the
file’s i-node. This information is copied into the v-node (in RAM), along with
other information, most importantly the pointer to the table of functions to cali for
operations on v-nodes, such as read, write, ciose, and so on.

After the v-node has been created, the VFS makes 2n entry in the file descrip-
tor table for the calling process and sets it to point to the new v-node. (For the
putists, the file descriptor actually points to another data structure that contains
the current file position and a pointer to the v-node, but this detail is not important
for our purposes here.) Finally, the VFS returns the file descriptor to the caller so
it can use it to read, write, and close the file.
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m ‘i;ate; when the process does a read using the file descriptor, the VES locates
th: ;;:;z eff;om t_he process and file descriptor tables and follows the pointer to
Of Tunctions, all of which are addresses within the
> b concrete file gyst
on which the requested file resides. The function that handles read is now zalg:il

VES has no idea whether the data are coming from
system over the network, a CD-ROM, 2 USR stick, i i

: . or something diffs
data structures involved are shown in Fig. 4-19, Starting with thecz:aﬂe:f;;oii:

number and _the ﬁ}e Flcscriptor, successively the v-node, read function pointer, and
access function within the concrete file system are located ’

the local disk, 2 remote file

VES
oroces Fia
OCEss dagerj
b, Seriptors
V-nedes
: e
. Function
. e 07t
: : pointers
e
———
e o
—— e Tead
Call frem
e \IES it
FS 1
Read
function Fe 1

Figure 4-19. A simplified view of

the data structures and
and concrete file system to do 2 rea el cote used by the VFS

To In aiiins manner, it })ecome§ relatively_ straightforward to add new file systems.
maxe one, the designers first get a list of function calls the VFS expects and
then write .the;r file system to provide all of them. Alternatively, if the file system
already exists, then they have to provide wrapper functions that1 do what theyVFS
needs, usually by making one or more native calls to the concrete file system.
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4.4 FILE SYSTEM MANAGEMENT AND OPTIMIZATION

s one thing; making it work efficiently and

: k i - -
Maldng e e o nething te different. In the following sections we will

robustly in real life is somgthjsg qu% at. |
fook atysome of the issues invoived in managing disks.

4.4.1 Disk Space Management

ored on disk, so management of disk space is a major

iles are normally st ; ' :
conim to file system designers. Two general strategies are possible for stormg an

n byte file: n consecutive bytes of disk space ai¢ e;{llo?ged, ar tl:rcageieeg 2;;; ;13;-;
i ’ ily) contiguous blocks. The same -of!

nto a aumber of (not necessariy ‘

1ent in memory managemmnent systems between pure segmentation and paging.

As we have seen, storing & file as a contiguous sequence of bytes has the ob-

vious problem that if & file grows, it will probsbly have to be moved on the disk.

The same problem holds for segments in MEMmory, except.that mov;r:cg) a seir;;:::;
in memory is 4 relatively fast operation compared to moving & file from on

position t¢ another. For this reason, nearly all file systems chop files up into

fixed-size blocks that need not be adjacent.

Block Size

Once it has been decided to store files in fixed-size blecks,. ;23 q;]estiorz anfgz
y . Given the way disks are organized, e sector,
of how big the block should be ! . he sector, the
i i for the umit of allocation {(althoug
d the cylinder are obvious car;ginlazag ]
g:aecsi’ :;3 all dei’rice dependent, which 1s 2 minus). In a paging system, the page
ize is also 2 major contender. . _
Size}?aiing a lazjge block size means that every file, even a 1-byte file, ties up an

tire cylinder. Tt also means that small files waste a farge amou_nt of disk s?gc;:.
gl 1the other hand, a small block size means that most fijes will span multiple
blicks and thus need multiple seeks and rotationai delays to read them, reducing
performance. Thus if the allocation unit is too large, we waste space; if it is too
small, we waste time.

Making a good choice requires having some information about the file size

istribut nenbaum et al. (2006) studied the_ﬁie _size dzstﬂbu_non in the
c(ljlit;:sttgrgd;f;ce Department of a farge researf:h university (the V('I) 1;;3193;?;{;
then aeain in 2005, as well as on a commercial Web SCIYGIF -}fsfg% w%ere cal
Websitoc (www.electoml-vote.cc)m). The resuits are shown 10 k38 &- 1} here Tor
each power-of-two file size, the pe};centage olf al? ﬁ;%sogm;lélelg (;; c:)c;u:%] gles st

ata sets. For example, 11 , 59

:Iélfoxi'::; ljisigiéhz;h;;zger and 90.84% of all files were_64 KJ;%E or smaik::i;i:he

median file size was 2475 bytes. Some people may find this smali size surpnsHIg.

23 of 94—

SEC. 4.4 FILE SYSTEM MANAGEMENT AND OPTIMIZATION 291
Length | VU 1884 | VU 2005 | Web Length { VU 1884 | VU 2005 Weh
1 1.79 138 | 667 16 KB 92.53 78.92 | 86.79

2 1.88 1.53 { 7.67 32 KB 97,21 85.87 | 9165

4 2,01 1.65 1 833 64 KB 99.18 90.84 | 94.80

8 231 180 | 11.30 128 KB 99.84 9373 | 96.93

16 332 215 | 11.46 256 KB 99.96 96,712 | 98.48

32 513 3.15 | 12.33 512 KB 100.00 97.73 | 98.99

64 8,71 4,88 | 26.10 1 MB 100.00 98.87 | ©9.62

128 14.73 803 | 2848 Co2MB 100.00 99.44 | 8980
256 23.09 13.29 | 32.10 4 MB 100.00 9871 | 9987
§12 34.44 20.62 7} 39.94 8 MB 100.00 99.86 | 99.84

1 KB 48.05 3091 | 47.82 16 MB 100.00 99.94 | 98.97
2KB 60.87 46.08 | 59,44 32 MB 100.00 99.97 | 99.99
4KB 75.31 5913 | 70.64 84 MB 100.00 99.96 | 99.99
KB 84,97 69.96 | 79.60 128 MB 100.00 99.99 | 100.00

Figure 4-28. Percentage of files smaller than 2 given size (in bytes).

What conclusions can we draw from these data? For one thing, with a block
size of 1 KB, only about 30-50% of all files fit in a single block, whereas with a
4-KB block, the percentage of files that fit in a block goes up to the 60-70%
range. Other data in the paper show that with a 4-KB biock, 93% of the disk
blocks are used by the 10% largest files. This means that wasting some space at
the end of each small file hardly matters because the disk is filled up by a small
number of large files (videos) and the total amount of space taken up by the smali
files hardly matters at all. Even doubling the space the smallest 90% of the files
take up would be barely poticeable.

On the other hand, using a small block means that each file will consist of
many blocks. Reading each block normally requires 2 seek and a rotational delay,
so reading a file consisting of many small blocks will be slow.

As an example, consider a disk with 1 MB per track, a rotation time of 8.33
msec, and an average seek time of 5 msec. The time in milliseconds to read a
block of k bytes is then the sum of the seek, rotational delay, and transfer times:

5+ 4.165 + (k/1000000) x 8.33

The solid curve of Fig. 4-21 shows the data rate for such a disk as a function of
block size. To compute the space efficiency, we need to make an assumption
about the mean file size. For simplicity, let us assume that ail files are 4 KB. Al-
though this number is slightly larger than the data measured at the VU, students
probably have more small files than would be present in a corporate data center,
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50 it might be a better guess on the whole. The dashed curve of Fig. 4-21 shows
the space efficiency as a function of block size.

g0~ 0%

50 !—180%

400

60%
30
A0%

~
i

20

Data rate {MEB/sec)
Disk space wtilization

» - 20%

10—

SO W WY S Lo
0 iKB 4KB 16KB B4KB 256KB 1MB

0%

Figure 4-21. The solid curve (feft-hand scale) gives the da_ta rate of a disk. The
dashed curve {(right-hand scale) gives the disk space efﬁcxency_. All files are 4
KB.

The two curves can be understood as follows. The access tume .for a‘b}oc_k 1s
completely dominated by the seek time and rotational delay, s0 gwenm!h%; stteirs
going to cost & msec to access 4 block, the more data that are fetck-led, e efer;’
Hence the data rate goes up almost linearly wm)l block size (until the trans

so long that the transfer time begins to matter).
{akeNow c:nsider space efficiency. With 4-KB files and 1-XB, 2—KB, or 4»%
blocks, files use 4, 2, and 1 block, respectively, with no wasta.ge‘ With an 8; 0
block and 4-KB files, the space efficiency drops to 50%, an.d with a 16~}_(B block
it is down 10 25%. In reality, few files are an exact multiple of the disk bloc!
size, so some space is always wasted in the last block of a file. o

What the curves show, however, is that performance and space utilization are
ipherently in conflict. Small blocks are bad for perfom'.ianrje but‘ good for d%sk
space utilization. For these data, no reasonable compromise is avmiabl-e. The stzg
closest to where the two curves cross is 64 KB, but the .ciata_l rate is only .
MB/see and the space efficiency is about 7%, neither of which is very ge'oci.dﬁzli-
toricaily, file systems have chosen sizes in the 1-KB to 4-KB range, but with dis (Sg
now exceeding 1 'TB, it might be better to increas'c the block size to 64 KB an
accept the wasted disk space. Disk space is hardly in short supply any more. .

In an experiment to see if Windows NT file usage was appreciably é}fferefn
from UNIX file usage, Vogels made measurements on files at Cor{leli University
{Vogels, 1999), He observed that NT file usage is more complicated than on
UNIX. He wrote:

When we type a few characters in the notepad text editor, saving this to a
file will trigger 26 system calls, including 3 failed open artempts, 1 file
overwrite and 4 additional open and close sequences.
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Nevertheless, he observed a median size (weighted by usage) of files just read at 1
KB, files just written as 2.3 KB, and files read and written as 4.2 KB. Given the
different data sets measurement techniques, and the vear, these results are cer-
tarnly compatible with the VU results.

Keeping Track of Free Blocks

Once a block size has been chosen, the next issue is how to keep track of free
blocks. Two methods are widely used, 2s shown in Fig. 4-22. The first one con-

- sists of using 2 Iinked Hst of disk blocks, with each block holding as many free

disk block numbers as will fit. With a 1-XB block and a 32-bit disk block number,
cach block on the free list holds the numbers of 255 free blocks. (One slot is re-
quired for the pointer to the next block.) Consider 2 500-GB disk, which has
about 488 million disk blocks. To store all these address at 255 per block requires

about 1.9 million blocks. Generally, free blocks are used to hold the free list, so
the storage is essentially free.

Frae disk blocks: 15, 17, 18

42 (-» 230 (» 86 1601101101101106
136 162 234 01 1011{)211}10111
210 8i2 8g7 HWI0H0T10110110
97 342 422 O110110116111011
41 214 14¢ T1G1110111011 14
83 16¢ 223 1101101310001111
21 664 223 Q0001110110107 ¥4
48 218 80 101116t 101161111
262 320 126 1100100011101 13
e B S A P o A A
F i I
3G 180 142 01110t3102110111
516 /J 482 J 141 1011111011101 11
A 1-KB disk block can hold 256 A bitrap

32-bit disk block numbers

(a) (&)

Figure 4-22. (a} Storing the free list on a linked list. (b) A bitraap.

The other free space management technique is the bitmap. A disk with n
blocks requires a bitmap with n bits. Free blocks are represented by 1s in the map,
aflocated blocks by 0s {or vice versa), For our example 500-GB disk, we need
488 million bits for the map, which requires just under 60,000 1.KB blocks to
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store. It Is not surprising that the bitmap requires less space, since it uses | bit per
biock, versus 32 bits in the linked list model. Only if the disk is nearly full (ie.,
has few free blocks) will the linked list scheme require fewer blocks than the bit-
map.

If free blocks terd to come in long runs of consecutive blocks, the free-list
system can be modified to keep track of runs of blocks rather than single blocks.
An 8-, 16-, or 32-bit count could be associated with each block giviag the number
of consecutive free blocks. In the best case, a basically empty disk could be
represented by two numbers: the address of the first free block followed by the
count of free blocks. On the other hand, if the disk becomes severely fragmented,
keeping track of runs is less efficient than keeping track of individual blocks be-
cause not only raust the address be stozed, but also the count.

This issue illustrates a problem operating system designers often have, There
are multiple data structures and algorithms that can be used to solve a problem,
but choosing the best one requires data that the designers do not have and will not
have until the system is deployed and beavily used. And even then, the data may
not be available. For example, our own measurements of file sizes at the VU in
1984 and 1995, the Website dara, and the Cornell data are only four samples.
While a lot better than nothing, we have little idea if they are also representative
of home computers, corporate computers, government computers, and others.
With some effort we might have been able to get a couple of samples from other
kinds of computers, but even then it woulkl be foolish to extrapolate 10 all com-
puters of the kind measured.

Getting back to the free list method for a moment, only one block of pointers
need be kept in main memory. When a file is created, the needed blocks are taken
from the block of pointers. When it runs out, a new block of pointers is read in
from the disk. Similarly, when a file is deleted, its blocks are freed and added to
the block of pointers in main memory. When this block fills up, it is written to
disk.

Under certain circumstances, this method leads to unnecessary disk FO. Con-
sider the situation of Fig. 4-23(a), in which the block of pointers in memory has
room for only two more entries. I a three-block file is freed, the pointer block
overflows and has o be written to disk, leading to the situation of Fig. 4-23(b). If
a three-block file is now written, the full block of pointers has to be read in again,
taking us back to Fig. 4-23(a). If the three-block file just written was a temporary
file, when it is freed, another disk write is needed to write the full block of point-
ers back to the disk. In short, when the block of pointers is almost empty, a series
of shott-lived temporary files can cause a lot of disk I/O,

An zlternative approach that avoids most of this disk T/O js to split the full
block of pointers. Thus instead of going from Fig. 4-23(a) to Fig. 4-23(b), we go
from Fig. 4-23(a) to Fig. 4-23(c) when three blocks are freed. Now the system can
handle a series of temporary files without doing any disk /Q. If the block in
memory fills up, it is written to the disk, and the half-full block from the disk is
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Main Disk
memory ?l
D D
( T D
2] (o} ’ (c}

Figure 4-23. (a} An a;most:fuii block of pointers o free disk blocks in memory
and three blocks of pointers on disk. (b) Result of freeing a three-biock file. (<)

An aitemaii‘)fe Strategy for handling the three free blocks. The shaded entries
represent poiaters to free disk biocks,

read m, The idea here is to keep most of the puinter blocks on disk full (to minim-
ize disk usage), but keep the one in memory about haif full, so it can handle both
file ;;e_:z:on and file removel without disk I/O on the free list.
 With a bitmap, it is also possible to keep just ene block in ) goi

disk for ar_mther only when it becomes full 05 é]mpty. An aédiﬁoﬁgrzzziﬁ%o;?%hg
approach is that by doing all the allocation from a single block of the bitmap, the
disk F;Iocks will be close together, thus minimizing disk arm motion. Since the’ bit-
map is & ﬁ?;ed—size data structure, if the kernel is (partially) paged, the bitmap can
be put in virtual memory and have pages of it paged in as needed. ’

Disk Quotas

To prevent people from hogging too much disk space, muliuser operating
systems oftgn provide a mechanism for enforcing disk quotas, The idea is that the
system administrator assigns each user a maximum aflotment of files and blocks.
and the operating system makes sure that the users do not exceed their quotas A;
typical mechanism is described below. -

When a user opens a file, the attributes 2nd disk addresses are located and put

nto an open file table in main memory. Ameng the attributes is an entry tefling

who the owner is. Any increases in the file’s size will be charged to the owner’s
quota. i

A secgné table contains the quota record for every user with a currently open
ﬁh?, even if the file was opened by someone else. This table is shown in Fig. 4-24,
It is an extract from a quota file on disk for the users whose files are currently
open. When all the files are closed, the record is written back to the quota file.
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Open file table Quota table
Soft block limit l
ributes —-
git;k addresses Hazd blogk fima
User=§

Gurrent # of blocks

. Quota
Quota pointer —| # Blosk warnings left record
Soft file Timit for user &
Hard fie imit
l Current # of files

# Fite warnings left

[

Figure 4-24, Quotas are kept track of of & per-user basis in a quota table.
Rl
When a new estry is made in the open file table, a point‘er 10 ‘{hf_: magsf;s
quotd record is entered into it, to make it easy to find the vanczluj htxseltcs).w o ii
time a block is added to & file, the t{}tail number of blocks chau"gef 1.o e ot
incremented, and a check s made against both the hard and soft hmil s.d e sot
liit may be exceeded, but the hard limit may not. An attgmpt o] apper;n o
when the hard block Limit hss b??l reached will result in an emror. i
exist for the sumber of files. _
Chec\},(\fhaelsea user attempts to log in, the system examines the quota file to ;eg_ 1}£
the user has exceeded the soft fimit for either a‘smb_er gf files or ﬁzmt?er ountli .
blocks. If either limit has been violated, a warning is displayed, as tme f;(')s,er o
warmings remaining is reduced by one. If the count ever gets to Zﬁ]i(), he e e
jenored the warning one time too many, and is not permitted to log in. g

1 - . - - - . . - _
pemgssion to log in again will require some discussion with the systemn adminis

{01, . o '
ifa This method has the propesty that users may go above their soft limits du;ngl
a login session, provided they remove the excess before logging out. The har

o
limnits may never be exceeded,

4.4.2 File System Backups

Destruction of a file system is often a far gr.eater_disasier than destrucot}fon o?ffe:
computer. If a computer is destroyed by fire, hgh.tmng surges, or & cup : r{; ottes
poured onto the keyboard, it is a;moying'a_nd will cost money, but gen erso{l 2
replacement can be purchased withla minimuimn <_)f fuss. Inexpensive Itjer onal
compuiers can even be replaced within an hour by just going to a compu

g o
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{except at universitics, where issuing a purchase order takes three committees,
five signatures, and 90 days).

If a computer’s file system is irrevocably lost, whether due to hardware or
software, restoring all the information will be difficult, time consuming, and in
many cases, impossible. For the people whose programs, documents, tax records,
customer files, databases, marketing plans, or other data are gone forever, the
consequences can be catastrophic. While the file system cannot offer any protec-
tion against physical destruction of the equipment and media, it can help protect
the information. It is pretty straightforward: make backups. But that is not quite
as simple as it sounds. Let us take a look.

Most peopie do not think making backups of their files is wosth the time and
effort—until one fine day their disk abruptly dies, at which time most of them
undergo a deathbed conversion. Companies, however, (usually) well understand
the value of their data and generally do a backup at least once a day, usually to
tape. Modem tapes hold hundreds of gigabytes and cost pennies per gigabyte.
Nevertheless, making backups is not quite as trivial as it sounds, so we will exam-
ine some of the related issues below.

Backups to tape are generally made to handle one of two potential problems:

1. Recover from disaster.
2. Recover from stupidity.

The first one covers getting the computer running again after a disk crash, fire,
flood, or other natural catastrophe. In practice, these things do not happen very
often, which is why many people do not bother with backups. These people also
tend not to have fire insurance on their houses for the same reason.

The second reason is that users often accidentally remove files that they later
need again. This problem occurs so often that when a file is “removed” in Win-
dows, it is not deleted at all, but just moved 10 a special directory, the reeycle bin,
so it can be fished out and restored easily Jater. Backups take this principle further
and allow files that were removed days, even weeks, ago to be restored from old
backup tapes.

Making a backup takes a Jong time and occupies a Jarge amount of space, 30
doing it efficiently and conveniently is important. These considerations raise the
following issues, First, should the entire file system be backed up or only part of
#? At many installations, the executable (binary) programs are kept in 2 limited
part of the file system tree. It is not necessary to back up these files if they can all
be reinstalied from the manufacturer's CD-ROMs. Also, most systems have z di-
rectory for temperary files. There is usually no reason to back it up either. In
UNIX, ail the special files (VO devices) are kept in a directory /dev. Not only is
backing up this directory not necessary, it is downright dangerous because the
backup program would hang forever if it tried to read each of these to completion.
In short, it is usually desirable to back up only specific directories and everything
in them rather than the entire file system.
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Second, it is wasteful to back up files that have not changed- since t}}fe prev;oiis
backup, which leads to the idea of incremental dumps. Thg snppg,m (}m;' zekl
cremental dumping is to make a complete dump (backup) periodica by, say od;ﬁeﬁ
or monthly, and to make a daily dump of only those files thgt have been mh ifie
since the last full dump. Even better is to dump only those f}if:S that have ct hang ¢
since they were last dumped. While this scherpe munimizes dﬂmpéng 1?11;2 B
makes recovery more complicated, because first the m?st recent fall um'f]? s 10
be restored, foliowed by alt the incremental _dumps in reverse order. ; 0
recovery, more sophisticated incremental dumgmg.schemes are oft_en use b sesir.
Thizd, since immense amounts of data are typically dumped, it may be tesir-
able to compress the data before writing them to tape. Hewcvcr,'lw;fh ;nar;jz(n o
pression algorithns, 2 single bad spot on the backup tape can foil t eb : ecThﬂ}; &
sion aigorithm and make an entire file or even an entire tape ugread; e.
decision to compress the backup stream naust be carcfu}ly considered. ¢ files and
Fourth, it is difficult to perform a backup on an active file system. If file
directories are being added, deleted, and mod1ﬁed_éurmg t?xe dumping procteakss{;
the resulting dump taay be inconsistent. However, since making a él;mg mgyht ‘e
hours, it may be necessary to (ake the system offline for much of the n;gal o
make the backup, something that is not always acceptable. Fof this reasont, tE:gb
rithms have been devised for making rapid sr}gpshots of the file Systell’il Saad ! 1)_#
copying critical data structures, and then requiring futgre chang;s tohf} esnz o
rectories to copy the blocks instead of updatuEg them in place (Hutc msot o m;
1999). In this way, the file system is eff;:tctweij{fi frozen at the momen
i e backed up at leisure afterward. )
Snap;?f(t)}i’ Zﬁétlﬁ, brz;aking baci‘{ups introduces many nontechnical problems_ fl?tzz
an organization. The best online security system in ihe_ world may be useles‘st I e
systern admimistrator keeps all the backup tapes in his office aad 1eav§s 1 plzer
and unguarded whenever he walks down the hall to get output frqm t ekplt'manci
Alf a spy has to do is pop in for a secord, put one uny tape in %‘11shpoci ‘fﬂ’e e
saunter off jauntily. Goodbye security. Also, making a daily backup has it b
if the fire that bumns down the computers also bumns up a‘ll the backup tapes. °
this reason, backup tapes should be kept off-site, but that meroéuf:es more S(;C:;;ns};
risks (because now two sites must be secured}. For a thorough dzscassm; (1) a e;v ¢
and other practical administration issues, see_(Nemc?rh et al., 2000). ke 0
will discuss only the technical issues involved in _makmg file system ba;cd 1ps. e
Two strategies can be used for dumping a disk to tape: a phys_:ca un;p o
logical dump. A physical dump starts at block O of the disk, writes alilt Z: ze
blocks onto the output tape in order, and stops when it has copied the las ir:e_.
Such a program is so simple that it can probably be made 100% bug free, 50
thing that can probably not be said about any other useful program. -
Nevertheless, it is worth making several comments about physical ;mpng.
For one thing, there is no value in backing up unused disk blf)cks. It ti}e dump%ng
program can obtain access to the free block data structure, i can avoid dumping

27 0

SEC. 44 FILE SYSTEM MANAGEMENT AND OPTIMIZATION 259
unused blocks. However, skipping unused blocks requires writing the number of
each block in front of the block (or the equivalent), since it is no longer true that
block & on the tape was block k on the disk,

A second concern is dumping bad blocks. It is nearly impossible to mannfac-
tuge large disks without any defects. Some bad blocks are always present. Some-
times when a low-level format is done, the bad blocks are detected, marked as
bad, and replaced by spare blocks reserved at the end of each track for just such
emergencies. In many cases, the disk controller handles bad block replacement
transparently without the operating system even knowing about it.

However, sometimes blocks go bad after formatting, in which case the operat-
ing system will eventually detect them. Usually, it solves the problem by creating
a “file” consisting of all the bad blocks—just to make sure they never appear in
the free block pool and are never assigned. Needless to say, this file is completely
unreadable.

If ail bad blocks are remapped by the disk controller and hidden from the op-
erating systermn as just described, physical dumping works fine. On the other hand,
if they are visible to the operating system and maintained in one or more bad-
block files or bitmaps, it is absolutely essential that the physical dumping program
get access to this information and avoid dumping them to prevent endless disk
read errors while rying to back up the bad-block file.

The main advaatages of physical dumping are simplicity and great speed
(basically, it can run at the speed of the disk). The main disadvantages are the
inability to skip selected directories, make incremental dumps, and restore indivi-
dual files upon request. For these reasons, most instaliations make logical durmnps.

A logical dump starts at one or more specified directories and recursively
dumps all files and directories found there that have changed since some given
base date (e.g., the last backup for an incremental durap or systern installation for
a full dump). Thus in a logical dump, the dump tape gets a series of carefully
identified directories and files, which makes it easy to restore a specific file or di-
rectory upon request.

Since logical dumping is the most common form, let us examine a common
algorithm in detail using the example of Fig. 4-25 to guide us. Most UNEX systems
use this algorithm. In the figure we see a file tree with directories {squares) and
files {circles). The shaded items have been modified since the base date and thus
need to be dumped. The unshaded ones do not need to be dumped.

This algorithm also dumps all directories (even unmodified ones) that lie on
the path to a modified file or directory for two reasons. First, to make it possible
to restose the dumped files and directories to a fresh file sysiem on a different
computer. In this way, the dump and restore programs can be used o {ransport
entire file Systems between computers.

The second reason for dumping unmodified directories above modified files is
to make it possible to incrementally restore a single file (possibly to handle re-
covery from stupidity). Suppose that a full file system dump is done Sunday
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i .35, A file system to be dumped. The squares are
S:r%:‘l:: :r: ?ﬂes. ’i‘he syhadeé items have been modified since the last dump. Eack

dirsctory and file i labeled by its i-rode number.

evening and an incremental dump is done on Monday evening. On Tuesday the
gl

directory /usr/jhs/proj/nr3 is removed, along with all the directories and files

under it. On Wednesday morning bright and ef:zly the user wants o res;:orz g—iz
file /usr/jhs/proj/nr3/p£ans/summary However, 15 not pc:;mblte Fo ;us:srzi gr he
file summary because there is no place to put it Tl}e irec gﬂe;: :ve: Coi- a:
must be restored first. To get their owners, modes, times, an g i ) ﬂ; mselvc;
these directories must be present 0a tthE (inmp tape even though they the

i i vious fult dump.
weréigzt;;fﬁmpﬁ;g;:iri;ﬁl:aﬁains 4 bitmap ilzldexe;d by i-node number with sev-

eral bits per i-node. Bits will be set and cleared in this map as the algorithm

proceeds. The algorithm operates in four ppases. Phase 1 l.)egi.ns. at the stalltlmg :.i:
{the soot in this example) and examines all the eptmes m 1t ‘FOI each mo -
;ecctiorf{ie its 1node is marked in the bitmap. Ea{:h dnjectory is also markel
{izhethe; or not it has been modified) and then rccursn_fely m(spe(;{ed, ) e
At the end of phase 1, all modified ﬁlps and all directories have eexixl rked
in the bitmap, as shown {by shading) in Fig. flu26{a?. Phase 2 conceptu;g (1; our
ively watks the tree again, unmarking any d;rectones_that havg no modified i
swfiiiectoﬁes in them or under them. This phase leaves the bitmap as shown in
IO-Trig. 4.26(b). Note that directories 16, 11, 14, 27, 29, and ;30 are Now u'r:marked
thing under them that has been modified. They will not be

tain no .
322;:3 m]% :voat of contrast, directories 3 and 6 will be dumped even though they
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themselves have not been modified because they will be needed to restore today’s

changes to a fresh machine. For efficiency, phases 1 and 2 can be combined in
one tree wailk.

@ [1]z]3]+]5]

HEREED

R

@[3 {8510k frzhaia]is]i SR eslpaofaifoe]

B

@ [1[=]g]=]s]s[7]E
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y1oj11 zis[14fisfieji7re]19]zof21]ealesfzdfes[Ee 7 ]oafes]a0]a1]a2]

Figure 4.26, Bitmaps used by the logical dumping algorithm.

At this point it is known which directories and files must be dumped. These
are the ones marked in Fig. 4-26(b). Phase 3 consists of scanning the i-nodes in
numerical order and dumping all the directories that are marked for Yumping.
These are shown in Fig. 4-26(c}. Bach directory is prefized by the directory’s at-
tributes (owner, times, etc.) so that they can be restored. Finally, in phase 4, the
files marked in Fig. 4-26{d) are also dumped, again prefizxed by their atiributes.
This completes the durap.

Restoring a file system from the dump tapes is straightforward. To start with,
an empty file system is created on the disk. Then the most recent full dump is re-
stored. Since the directories appear first on the tape, they are all restored first, giv-
ing a skeleton of the file system. Then the files themselves are restored. This
precess is then repeated with the first incremental dump made after the full durp,
then the next one, and so on.

Although logical duraping is straightforward, there are a few tricky issues. For
one, since the free block st is not z file, it is not dumped and hence it must be
reconstiucted from scratch after all the dumps have been restored. Doing so is al-
ways possible since the set of free blocks is just the complement of the set of
blocks contained in all the files combined.

Another issue is links, If a file is linked to two or more directories, it is im-
portant that the file is restored only one time and that all the directories that are
suppesed to point to it do so.

Still another issue is the fact that UNTX files may contain holes. 1t is legal to
open a file, write a few bytes, then seek to a distant file offset and write a few
more bytes. The blocks in between are not part of the file and should not be
dumped and must not be restored, Core files often have a hole of hundreds of
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megabytes between the data segment and the stack. If not handled properly, each
restored core file will fill this area with zeros and thus be the same size as the vir-
tual address space (e.g., 2°2 bytes, or worse yet, 2% bytes).

Finally, special files, named pipes, and the like should never be dumped, no
matter in which directory they may oceur (they need not be confined to /dev). For
more information shout file system backups, see (Chervenak et al., 1998; and
Zwicky, 1991),

Tape densities are not Improving as fast as disk densities. This is gradually
leading to a situation in which backing up a very large disk may require multiple
tapes. While tape robots are available to change tapes automatically, if this trend
continues, tapes will eventually become too small to use as & backup mediumn. In
that case, the only way to back up a disk wili be on another disk. While simply
mirroring each disk with a spare is one possibility, more sophisticated schemes,
calied RAIDs, will be discussed in Chap. 5.

4.4.3 File System Consistency

Another area whese reliability is an issue is file system consistency. Many file
systems read blocks, modify ther, and write them out later. I the system crashes
before all the modified biocks have been written out, the file system can be left in
an jnconsistent state. This problem is especiaily critical if some of the blocks that
have not been written out are i-node blocks, directory blacks, or blocks contating
the free list.

To deal with the problem of inconsistent file systems, most computers have a
utility program that checks file system consistency. For exammple, UNIX has fsck
and Windows has scandisk. This utility can be run whenever the system is boot-
ed, especially after a crash. The description below tells how fsck works. Scandisk
is somewhat different because it works on a different file system, but the general
principle of using the file system’s inherent redundancy to repair it is still valid.
All file system checkers verify each file system (disk partition) independently of
the other ones.

Two kinds of consistency checks can be made: blocks and files. To check for
block consistency, the program builds two tables, each one containing a counter
for each block, initially set to 0. The counters in the first table keep track of how
many times each block is present in & file; the counters in the second table record
how ofters each block is present in the free list (or the bitmap of free blocks).

The program then reads all the i-nodes using a raw device, which ignores the
file structure and just returns afl the disk blocks starting at 0. Starting from an i-
node, it is possible to build 2 List of ail the block numbers used ia the correspond-
ing file. As each block number is read, its counter in the first table is incre-
mented. The program then examines the free list or bitmap to find all the blocks
that are rot in use. Fach occurrence of a block in the free list results in its counter
in the second table being incremented.
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If the file system is consistent, each block wi i i

. " will have a } either in the first tab
or in the second igble, as illustrated in Fig. 4-27(a). However, as 2 re:;ixsli ?)f EZ
c;ash, the tables rplght look like Fig. 4-27(b}, in which block 2 does not occur in
zﬁher table. It will be reported as being a missing block. While missine blocks
i {c;l ltlzt(l) real har_m, they waste space and thus reduce the capacity of the ci?sk The

on to missing blocks is straightforward: th iust
oluon o missng oh e file system checker just adds
Biock number

012345678 9101312151415

Block number
123485678 9101112131415

§1|1[o{1[a[1{1{a[1§0{0f1|1i1§o{e]slocksmuse_ [?Moh{oh]1§1{1§e|o]z§1|1[o_ﬁiamcksmuse

loio[1]o}1]ofo]o]o]1]1]o]o]o]1]1] Free biocis {o]ofofo[s{e[ofo[o]1T1o[olo]iTr] Free biocks

(& o

012345678 93101112131415 1234567 89101112131415

{1]1]ol1fo[1]1T+ s]o[o[*T1[r]o]o] Bocks in use I(:h]e{;§0|2i%§1|§fn]o{?i1£1]c[5§8|ccks in use

[o{e]1]o]z]o[ofe]o]1]1]o]e]o]1]7] Free biocks

{c} (d)

Figure 4.27, File system states. (a) Copsist issi it
! : X ent. (b) Missing block. i-
cate block in free list. {d) Duplicate data block. - () Dupl

Another situation that might occur is that of Fig. 4-27(c). Here we se
block, nu_mb.er 4, that occurs twice in the free list. (Dup]icates.can oceur ozﬂé3 '??
the frge List is really a list; with a bitmap it is impossible.} The solution h li
also simple: rebuild the free list. . onhere s

The worst thing that can happen is that the same data block i i
or more files, as shown in Fig. 4-27(d) with block 5. If either oflfhgls-casi"ﬁésn;stlo
moved, onc}c 5 will be put on the free list, leading to a situation in which Eh-
same biqci( 1s both in use and free at the same time. If both files are re d .
block will be put onto the free list twice, moves. te

The appropriate action for the file sysiem checker to take is to allocate a free
biock_, copy the contents of block 5 into it, and insert the copy into one of the files
In this way, tt_xe information content of the files is unchanged (although almosi
assuredly one Is garbled), but the file system structure is at least made consistent
The error s};puld be reported, to allow the user to inspect the damage. -

In addition to checking to see that each block is properly accox-mted for, th
file system checker also checks the directory system. It, too, uses a tab}}: 0?’
counters, E}ut these are per file, rather than per block. It starts at ’the root director
and ref:urswe‘ly descends the tree, inspecting cach directory in the file system FOZ’
every i-node in every directory, it increments a counter for that file’s usage céunt

{ofof1[o[1Jofo]ofolr 1 JofaTeTi 1] Free biocks
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Remember that due to hard links, a file may appear in iwo or more directories.
Symbolic links do not count and do not cause the counter for the target file to he
i ed. .
mcr?;in;:rtx the checker is all done, it has a list, indexed by i-node number, Feihng
now many directories contain each file. It then compares these numbers wzz.‘r_l the
link counts stored in the i-nodes themselves, 'I‘he;e cpan{s start at 1 when a file i3
created and are incremented each time a (hard) link is madg to the file. In a con-
sigtent file system, both counts will agree. Howe\{e;, two kinds of errors can oc-
cur: the link count in the i-node can be too high or it can be too }ow. _

If the lisk count is higher than the number of directc_)ry e'ntnes, then even if all
the files are removed from the directories, the copnt will st‘xll be nonzero and the
;.node will not be removed. This error is not serious, but it wastes space on Phe:
disk with files that are not in any directory. It shonld be fixed by setting the link
count in the i-node to the correct value. ) _ -

The other error is potentially catastrophic. If two dxrec;ory er_xmes are Emkqd
to 2 file, but the i-pode says that there is only one, When either directory entry is
removed, the i-node count will go to zero. When an i-node couz.ﬁ goes to zero, the
file system marks it as unused and releases all of its blqcks. This action will result
in one of the ditectories now pointing to an unused i-node, whose blocks may
soon be assigned to other files. Again, the solutif)n is just to force the link count in
the j-niode to the actual number of directory entries. ) _ .

These two operations, checking blocks and checking d{rector;eg are pften
integrated for efficiency reasons {ie., only one pass over the i-nodes is required).
Other checks are also possible. For example, directories have a definite format,
with i-ode numbers and ASCII names. If an i-node number 1 larger than the
number of i-nodes on the disk, the directory bas been damaged.

Furthermore, each i-node has a mode, some of which are legal but strange,
such as 0007, which allows the owner and his group no access at ail, but allows
outsiders to read, write, and execute the file. It might l')e usef_ul to at least report
files that give outsiders more rights than the OWRer- D;rectoges w;'th more th:cm,
say, 1000 entries are also suspicious. Files located in user directories, but which
are owned by the superuser and have the SETUID bit on, are po;cntsai security
problems because such files acquire the powers of the sugeruses W’{lﬁﬁ executefi
by any user. With a little effort, one can pu't together a fairly lpﬂg list of techni-

cally legal but still peculiar situations that might be worth reporting.

The previous paragraphs have discussed the problem of_ protecting the user
against crashes. Some file systems also worry about protecting the user against
himself. If the user intends to type

m *.0

to remove all the files ending with .0 (compiler-generated object files), but ac-
cidentally types

tm* .0

A
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(note the space after the asterisk), rm will remove al} the files in the current direc-
tory and then complain that it cannot find .0. In MS-DOS and some other systems,
when a file is removed, all that happens is that a bit is set in the directory or i-
node marking the file as removed. No disk blocks are returned to the free list
until they are actually needed. Thus, if the user discovers the ervor immediately,
it is possible o run a special utility program that “unremoves” (i.e., restores) the
removed files. In Windows, files that are removed are placed in the recycle bin (a
special directory), from which they can later be retrieved if need be. Of course,
1o storage is reclaimed until they are actually deleted from this directory.

4.4.4 Tile System Performance

Access to disk is much slower than access to memory. Reading a 32-bit mem-
ory word might take 10 nsec. Reading from a hard disk might proceed at 100
MB/sec, which is four times slower per 32-bit word, but to this must be added
5-10 msec to seek to the track and then wait for the desired sector to amive under
the read head. If only a single word is needed, the memory access is on the order
of a million times as fast as disk access. As a result of this difference in access
time, many file systems have been designed with various optimizations o
improve performance. In this section we will cover three of them.

*

Caching

The most common technique used to reduce disk accesses is the block cache
or buffer cache. (Cacheispronounced “cash™ and is derived from the French
cacher, meaning to hide.} In this context, a cache is a collection of blocks that
logically belong on the disk but are being kept in memory for performance rea-
SOTS.

Various algorithms can be used to manage the cache,l but a common one is to
check all read requests to see if the needed block is in the cache. ¥ it is, the read
request can be satisfied without & disk access. If the block is not in the cache, it is
first read into the cache and then copied to wherever it is needed. Subsequent re-
quests for the same block can be satisfied from the cache.

Operation of the cache is illustrated in Fig. 4-28. Since there are many (often
thousands of) blocks in the cache, some way is needed to determine quickly if &
given block is present. The usual way is to hash the device and disk address and
look up the result in a hash table. All the blocks with the same hash value are
chained together on a linked list so that the collision chain can be followed,

When a block has to be loaded into a full cache, some block has to be e~
moved {and rewritten to the disk if it has been modified since being brought in).
This situation is very much like paging, and ali the usual page replacement algo-
rithms described in Chap. 3, such as FIFO, second chance, and LRU, are applica-
ble. One pleasant difference between paging and caching is that cache references
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Rear (MAY}

Hash table Front {LRU)

Figure 4-28. The bufffer cache data structures.

are relatively infrequent, so that it is feasible to keep all the blocks in exact LRU
ith 1i ists. )
ordeirn\%;itg. lﬁgdﬁz see that in addition to the collision chains starting ;t thedhask;
table, there is also a bidirectional list running through all the b.loci_cs in tdettr;)r ero(;t
usage, with the least recently used block on the frontvof this hséd ar_1t o eb?ge_
recently used block at the end of this 1is§. Whep a block is refzrencd , ;;1 mr;ls e
moved from its position on the bi:llirectional list and put at the end. ,
be maintained. o )

exacltliflzzu?lri:yc,atﬂhefe is a catch. Now that we have a situatien in whicg eﬁfg
LRI is possible, it turns out that LRU is undesugbie. The problem hgs toIfo wi
the crashes and fife system consistency discs@ed in the previous sectfon.d bat T3 :
ical block, such as an i-node block, is read into the ca_che apd moshﬁe , bul nc;f
rewsitten to the disk, 2 crash will leave the file syste.m In an mcgnszste;t}sta{.}{eéom
the i-node block is put at the end of the LiUkcha:n, it may be quite a while be

i i i e disk.

’ fﬂ;ﬂg{fﬁzg:n;gg?ggfgf tzgctk?gé i-node blocks, are rarely geferf:nceé two
times within a ’short interval. These comsiderations iead to a modified LRU

scheme, taking two factors into account:

1. Is the block likely to be needed again soon?
2. Ts the block essential to the consistency of the file system?

jons, blocks can be divided into categories S}lch as i-node blocks,
iiirirzgihb?;lc?li:odésectory blocks, full data plocks, and partially full data ltjlocisé
Blocks that will probably not be needed again soon go on the front, rz;itlher t_a:Lt v
rear of the LRU list, so their buffers will be reused_ qmc}dy. B_iocks at m!t% ¢
needed again soon, such as a partly fuil Iblock_ that is being written, go on the en
1 will stay around for a long time. . .
o th?é:;izﬁesaestion ijs( independent of the i?rst one. If the block is esse;qta;taz
the file systern consistency (basically, everything except data blocks), and i
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been modified, it should be written to disk immediately, regardless of which end
of the LRU list it is put on. By writing critical blocks quickly, we greatly reduce
the probability that & crash will wreck the file system. While a user may be
unhappy if one of his files is ruined in a crash, he is likely to be far more unhappy
if the whole file system is lost.

Even with this measure to keep the file system mtegrity intact, it is undesir-
able to keep data blocks in the cache o long before writing them out, Consider
the plight of someone who is using a personal computer to write a book. Even if
our wiriter periedically twlls the editor to write the file being edited to the disk,
there is a good chance that everything will still be in the cache and nothing on the
disk. If the system crashes, the file system structure will not be corrupted, but a
whole day’s work will be lost.

This situation need not happen very ofter before we have a fairly unhappy
user. Systerns take two approaches to dealing with it. The UNIX way is to have a
system call, syne, which forces all the modified blocks out onto the disk im-
rediately, When the system is started up, a program, ustally called updaze, is
started up in the background to sit in an endless loop issuing sync calls, sieeping
for 30 sec between calls. As a result, no more than 30 seconds of work is lost due
o a crash.,

Although Windows now has a system call equivalent to syne, FlushFileBuff-
ers, in the past it did not. Instead, it had a different strategy that was in seme ways
better than the UNIX approach (and in some ways worse). What it did was to
wiite every modified block to disk as soon as it has been written to the cache.
Caches in which all modified blocks are written back to the disk immediately are
called write-through caches. They require more disk I/O than nonwrite-through
caches.

The difference between these two approaches can be seen when 2 program
writes a I-KB block full, one character at a time. UNIX will collect ali the charac-
ters in the cache and write the block out onee every 30 seconds, or whenever the
block is removed from the cache. With a write-through cache, there is a disk ac-
cess for every character written. Of cousse, most programs do internat buffering,
$0 they normally write not a character, but a line or 2 larger unit on each write sys-
tem call.

A consequence of this difference in caching strategy is that just removing a
(floppy) disk from a UNIX system without doing a sync will almost always result
in lost data, and frequently in a corrupted file system as well, With write-through
caching no problem arises. These differing strategies were chosen because UNIX
was developed in an environment in which all disks were hard disks and not
removable, whereas the first Windows file system was inherifed from MS-DOS,
which started out in the floppy disk world. As hard disks became the norm, the
UNIX approach, with its better efficiency (but worse reliability), became the
norm, and is also used now on Windows for hard disks. However, NTFS takes
other measures (journaling) to improve reliability, as discussed earlier.
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Some operating systems integrate the buffer cache with the page c'ach.e. This
is especially stiractive when memory-mapped files are supported. If a file is map-
ped onto memory, ther some of its pages may be in memory becau§e they were
demand paged in. Such pages are hardly different from file t?ieci(s in the buffer
cache. In this case, they can be treated the same way, with a single cache for both
file blocks and pages.

Block Read Ahead

A second technique for improving perceived file systen pcrfon_nauce is to try
to get blocks into the cache before they are needed to increase t_%xe hit rate. In par-
ticular, many files are read sequentially. When the file system is asked to prodli(':e
block k in a file, it does that, but when it is finished, it makes a sneaky check in
the cache to see if block % + 1 is already there. Tf it is not, it scheduies_ a,rea}é for
block & + 1 in the hope that when it is needed, it will have already armrived in the
cache. At the very least, it will be on the way. )

Of course, this read ahead strategy only works for files that are being read se-
quentially. If a file is being randomly accessed, read ahead does not heip. In fact,
it hurts by tying up disk bancwidth reading in useless blocks and removing poter-
tially useful blacks from the cache (and possibly tying up more disk b@dwxdth
writing them back to disk if they are dirty). To see whether read ahead is worth
doing, the file system can keep track of the access patterns to each open ﬁie.‘ Fgr
example, a bit associsted with each file can keep track O,f 'whether the f:ile is in
“sequential access mode” or “random access mode.”” Initially, the file is given
the benefit of the doubt and put in sequential access mode. However, whenever a
seek is done, the bit is cleared. If sequential reads start happening again, the bit is
set once again, In this way, the file system can make a reasonablg guess about
whether it should read ahead or ot. If it gets it wrong once in a while, itis nota
disaster, just a little bit of wasted disk bandwidth.

Reducing Disk Arm Motion

Caching and read ahead are not the only ways to increase file system pet-
formance. Another important technigue is to redace the amount of disk arm
motion: by patting blocks that are likely to be accessed in sequence close to each
other, preferably in the same cylinder. When an output file is written, the file sys-
tern has to allocate the biocks one at a time, on demand. If the free blocks are
recorded in a bitmap, and the whole bitmap s in main memory, it is easy enoggh
i choose a free block as close as possible to the previous block. With a free list,
part of which is on disk, it is much barder to allocate blocks close together. )

However, even with a free list, some block clustering can be done: The trick
is to keep track of disk storage not in blocks, but i groups of consecutive blocks.
If all sectors consist of 512 hytes, the systern could use 1-KB blocks (2 sectors)
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but allocate disk storage in wnits of 2 blocks {4 sectors). This is not the same as
having a 2-KB disk blocks, since the cache would still use 1-KB blocks and disk
transfers would still be 1 KB, but reading a file sequentially on an otherwise idle
system would reduce the number of seeks by a factor of two, considerably im-
proving performance. A variation on the same theme is to take account of rota-
tional positioning. When allocating blocks, the system attempis to place consecu-
tive blocks in a file in the same cylinder,

Another performance bottleneck in systems that use j-nodes or anything like
them is that reading even a short file requires two disk accesses: one for the i-node
and one for the block. The usual i-node placement is shown in Fig. 4-29(a). Here
all the i-nodes are near the beginning of the disk, so the average distance between

an i-node and its blocks will be about half the number of cylinders, requiring long
seeks.

i-nodes are Disk is divided into
located near cylinder groups, each

the start with its own i-nodes
of the disk .

Cylinder group

{a} &}

Figure 4-29. (a) L-nodes placed at the start of the disk. (b) Disk divided into
cylinder groups, each with its own blocks and i-nodes.

One easy performance improvement is to put the i-nodes in the middle of the
disk, rather than at the start, thus reducing the average seek between the i-node
and the first block by a factor of two. Another idea, shown in Fig. 4-29(b), is to
divide the disk into cylinder groups, each with its own i-nodes, blocks, and free
list (McKusick et al., 1984). When creating a new file, any i-node can be chosen,
but an attempt is made to find a block in the same cylinder group as the i-node. If
none is available, then a block in a nearby cylinder group is used.

4.4.5 Defragmenting Disks

When the operating system is initially installed, the programs and files it
needs are installed consecutively starting at the beginning of the disk, each one di-
rectly following the previous one. All free disk space is in a single contiguous unit
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sno the installed files. However, as time goes on, files ar¢ created and re-
fggsg; I;id typically the disk becomes badly fragmgnted, with files and holes fali
over the place. As a consequence, when & new ﬁ;e is created, the blocks used for
i ad all over the disk, giving poor performance.
‘ m?f“{h:epigfrzrmance can be sesio?ed by moving files arpund to make them con-
tiguous and to put all (or at least most} of the free space in one or more large con-
tiguous regions on the disk. Windows has a program, defrag, that does precisely
this. Windows users should run it regularly. -

Defragmentation works better on file systems tha'i ‘have a ‘fa;r amount of free
space in a contiguous region at the end of the partition. This space allows 'the
defragmentation program io select f;agmentegi f‘x}e§ near the start of .thc ;amtmz
and copy all their blocks to the free space. Ttn.s action ffe?s up 4 contiguous blo;
of space near the start of the pastition into which the or;gmal or other files can be
placed contiguousty. The process can then be repeated with the next chunk of disk

and so on. .
Spa{:;(,)me files cannot be moved, including the paging file, the hibem_at;on fite,
and the journaling log, because the administration that would bfe requ'sred to _do
this is more trouble than it is worth. In some systems, these are f;xed»sge contig-
aous areas anyway, so they do not have to be defragmented. The one time when
their lack of mobility is a problem is when they happen to be near the end of th&e
partition and the user wants to reduce the partition size. The only way to solve this
problem is to remove them altogether, resize the partition, and then recreate them
aftegiidx. file systems {especially ext2 and ext3) gene_rally suffer less from
defragmentation than Windows systems due to the way disk blocks are selected,
so manual defragmentation is rarely required.

4.5 EXAMPLE FILE SYSTEMS

In the following sections we will discuss several example file systems, rang-
ing from quite simple to more sophisticated. Since modern UNIX file systems and
Windows Vista’s native file system are covered in the chapter on UNIX {Chap.
10) and the chapter on Windows Vista (Chap. 11) we will not cover those systems
here. We will, however, examine their predecessors below.

451 CD-ROM File Systems

As our first example of a file system, let us consider the file systems used on
CD-ROMs. These systems are particularly simple because they were dem_gz_led for
write-once media. Among other things, for example, they have ro provision for
keeping track of free blocks because on a CD-ROM files cannot be freed or added
after the disk has been manufactured. Below we will take a look at the main CD-
ROM file systern type and two exiensions to it.
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Some years after the CD-ROM made its debut, the CD-R (CD Recordable)
was introduced. Unlike the CD-ROM, it is possible to add files after the initial
burning, but these are simply appended to the end of the CD-R. Files are never
removed {although the directory can be updated to hide existing files). As a
consequence of this “append-oniy” file systemn, the fundamental properties are

not altered. In particular, all the free space is in one contiguous chunk at the end
of the CD.

The ISO 9660 File System

The most common standard for CD-ROM file systems was adopted as an
Internatiopal Standard in 1988 under the name ISO 9660. Virwally every CD-
ROM currently on the market is compatible with this standard, sometimes with
the extensions fo be discussed below. One of the goals of this standard was to
make every CD-ROM readable on every corputer, independent of the byte order-
ing used and independent of the operating system used. As a consequence, some
limitations were placed on the file system to make it possible for the weakest op-
erating systems then in use (such as MS-DOS) to read it.

CD-ROMs do not have concentric cylinders the way magnetic disks do. In-
stead there i a single continuous spiral containing the bits in a linear séquence
(although seeks across the spiral are possible). The bits along the spiral are divid-
ed into logical blocks (also called logical sectors) of 2352 bytes. Some of these
are for preambles, error correction, and other overhead. The payload portion of
each logical block is 2048 byies. When used for music, CDs have leadins,
leadouts, and intertrack gaps, but these are not used for data CD-ROMs. Often
the position of a block along the spiral is quoted in minutes and seconds, It can be
converted to-a linear block number using the conversion factor of 1 sec = 75
blocks,

IS0 9660 supports CD-ROM sets with as many as 2'% — 1 CDs in the set. The
individual CD-ROMs may also be partitioned into logical volumes (partitions).
However, below we will concentrate on 1SO 9660 for a single unpartitioned CD-
ROM.

Every CD-ROM begins with 16 blocks whose function is not defined by the
150 9660 standard. A CD-ROM manufacturer could use this area for providing a
beotstrap progrm to allow the computer to be booted from the CD-ROM, or for
some other purpose. Next comes one block containing the primary velume
descriptor, which contains some general information about the. CD-ROM. This
information includes the system identifier (32 bytes), volume identifier (32 bytes),
publisher identifier (128 bytes), and data preparer identifier (128 bytes). The
manufacturer can £ll in these fields in any desired way, except that only upper
case letters, digits, and a very small number of punctuation marks may be used to
ensure cross-platform compatibility.
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Figure 4-30. The ISO G660 directory enty.

Directory entries may optionally have extended-atmbutes. If this feature is
used, the second byte tells how long the extended attributes are.
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Next comes the starting block of the file itself. Files are stored as contiguous

runs of blocks, so a file’s location is completely specified by the starting block
and the size, which is contained in the next field.

The date and time that the CD-ROM was recorded is stored in the next field,
with separate bytes for the year, month, day, hour, minute, second, and time zone.
Years begin to count at 1900, which means that CD-ROMs will suffer from a
Y2156 problem because the year following 2155 will be 1900. This problem
could have been delayed by defining the origin of fime to be 1988 (the year the
standard was adopted). Had that been done, the problem would have been post-
poned until 2244. Every 88 extra years helps.

The Flags field contains a few miscellaneous bits, including one to hide the
entry in listings {(a feature copied from MS-DOS), one to distinguish an entry that
is a file from an entry that is a directory, one to enable the use of the extended at-
tributes, and one to mark the last entry in a divectory. A few other bits are also
present in this field but they will not concern us here. The next field deals with
interleaving pieces of files in a way that is not used in the simplest version of ISO
9660, so we will not consider it further.

The next fieid tells which CD-ROM the file is Jocated on. It is permitted that
a directory entry on one CD-ROM refers to a file located on another CD-ROM in
the set. In this way it is possible to build a master directory on the first CD-ROM
that lists all the files on all the CD-ROMs in the complete set. :

The field marked L in Fig. 4-30 gives the size of the file name in bytes. It is
followed by the file name itself. A file name consists of & base name, a dot, an
extension, a semicolon, and a binary version number (1 or 2 bytes). The base
name and extension may use upper case letters, the digits 09, and the underscore
character. All other characters are forbidden to make sure that every computer can
handle every file name. The base name can be up to eight characters; the exten-
sion can be up to three characters. These choices were dictated by the need to be
MS-DOS compatible. A file name may be present in a directory multiple times, as
long as each one has a different version number.

The last two ficlds are not always present. The Padding field is used to force
every directory enfry to be an even number of bytes, to align the numeric fields of
subsequent entries on 2-byte boundaries. If padding is needed, a 0 byte is used.
Finally, we have the System use field. its function and size are undefined, except
that 1t must be an even number of bytes. Different systems use it in different ways.
The Macintosh keeps Finder flags here, for example.

Entries within a directory are listed in aiphabetical order except for the first
two entries. The first entry is for the directory itself. The second one is for its par-
ent. In this respect, these entries are similar to the UNIX . and ., directory entries.
The files themselves need not be in directory order.

There is no explicit limit to the number of entries in a directory. However,
there is a limit to the depth of nesting. The maximum depth of directory nesting is
eight. This limit was arbitrarily set to make some implementations simpler.
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1SO 9660 defines what are called three levels. Level 1 is the most restrictive
and specifies that file names are limited to 8 + 3 characters as we have descrﬂ}eq,
and also requires all files to be contiguous as we have éescnbeq. Furthermo%‘e, it
specifies that directory names be limited to eight characters with no extensions.
tise of this level maximizes the chances that a CD-ROM can be read on gvery
Comll.},:ireei 2 relaxes the length restriction. It altows files and directories to have
names of up to 31 characters, but still from the same set of characters.

Level 3 uses the same name limils as level 2, but partially reiaxes. the asswmp-
tion that files have to be contiguous. With this level, a file may consist of several
sections (extents}, each of which is a contiguous run of blocks. The same run may
occar nualtiple times in & file and may also occur in two or more files. Ef large
chumks of data are repeated in several files, level 3 provides some space optimiza-
tion by not requiring the data to be present multiple times.

Rock Ridge Extensions

As we have seen, ISO 9660 is highly restrictive in several ways, Shortly after
it came out, people in the UNIX community began working on an ex{enslon to
make it possible to represent UNIX file systems on a CDﬁROM.' Thes«? extensions
were named Rock Ridge, after a town in the Gene Wilder ?fjv;e Blazing Saddles,

ecanse one of the committee members liked the mlm.
pmb’?Eiy;qtensioas use the Systerm use field in order to make ch%c Ridge CD-
ROMs readable on any compater. All the other fields retain tl?ezr I}Qm{ai 150
0660 meaning. Any system not awage of the Rock Ridge extensions just :gnores
them and sees a normal CD-ROM.

The extensions are divided up into the following fields:

1. PX - POSIX attributes.

.

PN - Major and minor device numbers.
SL. - Symbolic link.

NM - Alterpative name.

CL - Child location.

PL - Parent location.

S

RE - Relocation.
8. TF - Time staimps.
The PX field contains the standard UNIX rwxrwxrwx permission bits for the

owner, group, and others. Tt also contains the other bits contained in the mode
word, sach as the SETUID and SETGID bits, and so on.
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To allow raw devices to be represented on a CD-ROM, the PN field is pres-
ent. It contains the major and minor device numbers associated with the file. In
this way, the contents of the /dev directory can be written to a CD-ROM and later
reconstructed cormectly on the target system.

The SL field is for symbolic links. It allows a file on one file system to refer
to a file on a different file system.

Prebably the most important field is MM, It allows a second name to be asso-
ciated with the file. This name is not subject to the character set or length restric-
tions of ISO 9660, making it possible to express arbitrary UNIX file names on a
CD-ROM.

The next three fields are used together to get around the ISO 9660 limit of di-
rectories that may only be nested eight deep. Using them it is possible to specify
that a directory is to be relocated, and to tell where it goes in the hierarchy. Itis
effectively a way to work around the artificial depth limit.

Finally, the TF field contains the three timestamps included in cach UNIX -
node, namely the time the file was created, the time it was last modified, and the
time it was last accessed, Together, these extensions make it possible to copy a
UNIX file system to a CD-ROM and then restore it cogrectly to a different syster.

Joliet Extensions

The UNIX commmumity was not the only group that wanted a way to extend
ISG 9660. Microsoft also found it too restrictive (althongh it was Microsoft’s
own MS-DOS that caused most of the restrictions in the first place). Therefore
Microsoft invented some extensions that were called Joliet. They were designed
to allow Windows file systems to be copied to CD-ROM and then restored, in pre-
cisely the same way that Rock Ridge was designed for UNIX. Virtually all pro-
grarus that run under Windows and use CD-ROMs support Joliet, including pro-
grams that burn CD-recordables. Usually, these programs offer a choice between
the various ISO 9660 levels and Joliet,

The major extensions provided by Joliet are:

1. Long file names.
2. Unicode character set.
3. Directory nesting deeper than eight levels.

4. Directory names with extensions

The first extension allows file names up to 64 characters. The second extension
enables the use of the Unicode character set for file names. This extension is im-
portant for software interded for use in countries that do not use the Latin alpha-
bet, such as Fapan, Israel, and Greece. Since Unicode characters are 2 bytes, the
maximum file name in Joliet occupies 128 bytes.
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1.ike Rock Ridge, the limitation on directory nesting -is removed by Jolieti.ng
rectories can be nested as deeply as needed. Fmgﬂy, dmactgry names cand‘ av
extensions. It is not clear why this extension was inciuded, since Windows direc-
tories virtaally never use extensions, but maybe some day they will.

4.5.2 The MS-DOS File System

The MS-DOS file system is the one the first I_BM PCs came wztbE 1 It v.rasrtth(e1
rain file system up through Windows 98 and Wmdpws ME It is sti supi;) e:e !
on Windows 2000, Windows XP, and Windows Vista, althmtlgh it is not ngon
standard on new PCs now except for floppy disks. However, it and an 1\2}; ;n;: n
of it (FAT-32) have become widely used fgr many f:mbedded systen;s. Alost iP%ld
tal cameras use it. Many MP3 players use it exclusively. The popular ppe o ibod
uses it as the defsult file system, although knowledgeable hackers can rdev’cas
the iPod and install a different file system. ‘Thus the number of elec.:trogalc ¢ land
using the MS-DOS file system is vastly Iaxger now than at any t1m<,=,r ;1;;1 p}S S,tem
certainly much larger than the number using the m(zir; &xgodem N ile sy .

one, it is worth looking at in some .
For E[r‘lstrer:zzszi%?i, an MS-DOS program must first make an open system call tobget
a handle for it. The open system call specifies a path, wh}ch may be either a so—t
lute or relative to the current working directory. The path is {ooked up co;zg:rt;le;
by component until the final dirzctory is located and read into memory. It1
r the file to be opened. ]
Sear%:lfoffgh MS-DOS direftories are variable sized, they use a ﬁxc?d-S{ze jé»lbyt;
directory entry. The format of an MS-DOS directory entry is shpwn in };:ig. é . X
contains the file name, attributes, creation date and time, stazt.mg'bioc y a(xln eﬁ. '
file size. File names shorter than 8 + 3 characters are let?t 3ust;ﬁedda_n pa ed
with spaces on the right, in each field separately. The Attrzbute.? fiel 1 }i; _r:;w ar'; !
contains bits to indicate that a file is zead—only,_ needs to b{j, archived, is hi e?,o
is a system file. Read-only files cannot be written. ThlS. is to protect them fr :’1
accidental damage. The archived bit has no actue_xl operating system_functlmn gl "
MS-DOS does not examine or set it). The intention is to allow user-leve arc hve
programs to clear it upon archiving a file and to havF: other programs s;-t.;; \:; E:;
modifying a file. In this way, a backup program can just examine this & neu o
on every file to see which files to back up. Thc=j h1dde§ bit can be se; to pr ven.ce
file from appearing in directory listings. Its main use is to avoid con us;:?g n(;_v};
users with files they might not understand. Finally, the sysu?m bit alse hides fi 3
In addition, system files cannot accidentallybr be deleted using the del command.
in components of MS-DOS have this bit set.

The’lf];:iiractgry entry also contains the date and iime_ tl_1e file was created or l?gt
modified. The time is accurate only to 22 sec because it is stored in a 2-byte fleld,
which can store onby 65,536 unigue values (a day contains 86,400 seconds). The
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Figure 4-31. The MS-DOS directory entry.

time field is subdivided into seconds (5 bits), minutes {6 bits), and hours (5 bits),
The date counts in days using three subfields: day (3 bits), month (4 bits), and
year—1980 (7 bits). With a 7-bit number for the year and time beginning in 1980,
the highest expressible year is 2107. Thus MS-DOS has a built-in Y2108 probiem.
To avoid catastrophe, MS-DOS users should begin with Y2108 compliance as
early as possible. If MS-DOS had used the combined date and time fields as a 32-
bit seconds counter, it could have represented every second exactly and delayed
the catastrophe until 2116,
MS-DOS stores the file size as a 32-bit number, so in theory files can be as
iarge as 4 GB. However, other limits {described below) restrict the maximum file
size to 2 GB or less. A surprisingly large part of the entry (10 bytes) is utosed.

MS-DOS keeps track of file blocks via a file allocation table in main TNernory.

The directory entry contains the number of the first file block. This number is
used as an index into a 64K entry FAT in main memory. By following the chain,
all the blocks can be found. The operation of the FAT is iltustrated in Fig_4.12.

The FAT file system comes in three versions: FAT-12, FAT-16, and FAT-32,
depending on how many bits a disk address contains, Actually, FAT-32 is some-

thing of a misnomer, since only the low-order 28 bits of the disk addresses are
used. It should have been called FAT-28, but powers of two sound so much
neater,

For alt FATs, the disk block can be set to some multiple of 512 bytes {possib-
Iy different for each partition), with the set of allowed block sizes (called cluster
sizes by Microsoft) being different for each variant. The first version of MS-DOS
used FAT-12 with 512-byte blocks, giving a maximum partition size of 2'7 % 512
bytes (actually only 4086 x 512 bytes because 10 of the disk addresses were used
as special markers, such as end of file, bad block, etc.). With these parameters, the
maximum disk partition size was about 2 MB and the size of the FAT table in
memory was 4096 entries of 2 bytes each, Using a 12-bit table entry would have
been too siow. '

This system worked well for floppy disks, but when hard disks came oui, it
became a problem. Microsoft solved the problem by allowing additional block
sizes of 1 KB, 2 KB, and 4 KB. This change preserved the structure and size of
the FAT-12 table, but allowed disk partitions of up to 16 MB.
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Since MS-DOS supported four disk partitions per disk d;we, the new FA\}]—;;
file system worked up to 64-MB disks. Beyond that, gon}ethmg had toA ildv'?i-onau
happened was the introduction of FAT- 16, with 16—b1£. digk pointers. 2 hle o e};
block sizes of § KB, 16 XB, and 32 KB were permitted. (32,768 is ¢ ugied
power of two that can be represented in 16 bits.) The FAT-16 tat.ﬂe nowhocca‘;:aﬂ_
128 KB of main memory all the time, but with the larger memones by r;her;lar o
able, it was widely used and rapidly replaced the _FAT«IZ file system. ; o gKB
disk partition that can be supported by FAT-16 is 2 GB (64K ent;xes o
each) and the largest disk, 8 GB, namely four partitions of 2 GB eas .d_ L video

For business letters, this limit is not a problem, bls_t for siom}g 1g;1 oo
using the DV standard, 2 2-GB file holds just over 9 minutes of ‘v.1deo. N sla: n
sequence of the fact that a PC disk can support ::)niy four partmoz;s, 1e egthe
video that can be stored on 2 disk is about 38 l.*mnutes, no matter | o:lv arig1 e
disk is. This limit also means that the izrgest vxf_eio that szsdzz edited on lin

mirutes, since both input and output files are . .
e ,;}:2212 with the second release of Windows 95, the FAT-32 file systeé'nél\.v;;h
its 28-bit disk addresses, was introduced and the version of MS~DOS_ unde ng
Windows 95 was adapted to support FAT-32. In th1§ s.ystem, pamngr(l}i BCGB)
theoretically be 2% x 253 bytes, but they are actua}ly hmgted to 2TB { B
because internally the system keeps track of partition sizes 1n .5.12-b‘yte fse o
using a 32-bit number, and 2% % 2% 1§ 2 TB. The maximum partition size for v
ious block sizes and all three FAT types is shown in Fig. 4-32.

Block size | FAT-12 | FAT-16 | FAT-32

0.5 KB 2MB

1KB 4 MB

2KB 8 MB 128 MB

4 K8 16 MB 256 MB 178
8 KB 512 MB 278
16 KB 1024 MB 278
32 KB 2645 MB 278

Figure 4-32. Maximum partition size for different block sizes. The empty boxes
represent forbidden combinations.

addition to supporting larger disks, the FAT-32 file system has‘ two oihafr
adv:;r:tages over FATI'D‘Iiﬁ. First, an 8-GB disk using IT"AT—32 canbea sm\gx}g p()lar\t;;
tion. Using FAT-16 it has to be four parti{';or_ls, WhiClti appears to the né Side
user as the C:, D, E:, and F: logical disk drives. It is up to the user to de
which file to place on which drive and keep track gf what i3 whe;e. sk oar.
The other advantage of FAT-32 over FAT-16 is that for a given size disk p
tition, a smaller block size can be used. For example, for a 2-GB disk partiion,
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FAT-16 must use 32-KB blocks; otherwise with only 64K available disk ad-
dresses, it cannot cover the whole partition. In contrast, FAT-32 can use, for ex-
ample, 4-KB blocks for a 2-GB disk partition. The advantage of the smaller block
size is that most files are much shorter than 32 KB. If the block size is 32 KB, a
file of 10 bytes ties up 32 KB of disk space. If the average file is, say, 8 KB, then
with a 32-KB block, % of the disk will be wasted, not a terribly efficient way to
use the disk. With an 8-KB file and a 4-KB block, there is no disk wastage, but
the price paid is more RAM eaten up by the FAT. With a 4-KB block and a 2-GB
disk partilion, there are 512K blocks, so the FAT must have 512K entries in men1-
ory (occupying 2 MB of RAM).

MS-POS uses the FAT to keep track of free disk blocks. Any block that is not
currently allocated is marked with a special code. When MS-DOS needs a new
disk black, it searches the FAT for an entry containing this code. Thus no bitmap
or free list is required.

4.5.3 The UNIX V7 File Systemn

Even earty versions of UNIX had a fairly sophisticated multiuser file systern,
since it was derived from MULTICS. Below we will discuss the V7 file system,
the one for the PDP-11 that made UNIX famous. We will examine 3 modern
UNIX file system in the context of Linux in Chap. 10.

The file syster is in the form of a tree starting at the root directory, with the
addition of links, forming a directed acyclic graph. File names are up to 14 char-
acters and ¢aa contain any ASCII characters except / (because that is the separator
between components in a path) and NUL (because that is used to pad out names
shorter than 14 characters). NUL has the numerical value of (.

A UNIX directory entry contains one entry for each file in that directory. Each
entry is extremely simple because UNIX uses the i-node scheme illustrated in
Fig. 4-13. A directory entry contains only two fields: the file name (14 bytes) and
the number of the i-node for that file (2 bytes), as shown in Fig. 4-33. These pa-
rameters limit the number of files per file system to 64K.

Like the i-node of Fig. 4-13, the UNIX i-nodes contains some attributes. The
attributes contain the file size, three times {creation, last access, and last modifica-
tion), owner, group, protection information, and a count of the number of direc-
tory entries that point to the i-node. The latter field is needed due to links. When-
ever a new link is made to an i-node, the count in the i-node is increased. When a
link is removed, the count is decremented. When it gets to 0, the i-node is re-
claimed and the disk blocks are put back in the free Iist.

Keeping track of disk blocks is done using a generalization of Fig. 4-13 in
order 10 handle very large files. The first 10 disk addresses are stored jn the i-node
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up. We will nse UNIX as an example, but the algorithm is basically the same for
. 14 all hierarchical directory systems. First the file system locates the root directory.
Bytes In UNIX its i-node is located at a fixed place on the disk. From this i-node, it
File name locates the oot directory, which can be anywhere on the disk, but say block 1.
i Then it reads the root directory and looks up the first component of the path,
_T usr, in the root directory to find the i-node number of the file /usr. Locating an i-
é;“nﬁ’ggr node from its number is straightforward, since each one has a fixed location on

the disk. From this i-node, the system locates the directory for /usr and looks up
the next component, asé, in it. When it has found the entry for ast, it has the i-node
for the directory /usr/ast. From this i-node it can find the directory itself and look

Figure 4-33. A UNIX V7 directory eairy.

‘ T : i up mbox. The i-node for this file is then read into memory and kept there untii the
| ; ht in the i-node, which :
! - the necessary information 18 11 . - e
itself, s0 f(;r Smfil.k ;ﬂ::s}n ﬂin omory i‘:ﬁen the file is opened. For somewhat larg- file is closed. The lookup process is illustrated in Fig. 4-35.
is fetched from disk to A . i called a
::Sr files, one of the addresses in the i-node is the addrle? Ef ?1 {;hsi:;(}cli; s atill
: : i ditional disk addresses.
. i di tock. This block contains ad A 3 '
.Slngifelxrll:;ri‘:ta:other address in the i-node, calied 2 doul?le }ndlrect bio%g ;los{l)f Lrode 6 Bfic;c'llz ; r32 i nicszc;z rze g%;};ﬁ
o h (;Dyd ’ess of a block that contains a list of single indirect blocks. kac Root directory is for fusr directory fustiast directory
taing the addr is is not
these single indirect blocks points to a few tundred data blociks. I‘fc::::eni;h; o T - s - oae PP
enough, a triple indirect block can 2lso be used. The compiete pr 1. size 1. size 6]
B times ti
Fig. 4-34. 4 [ oin ' 19 | dick imes 64 | grants
7§ dev 132 30 | erik 406 92 | books
-node - —
Arioutes Single 14 | #b 51 | jim 60 i mbox
7 indieat g et 26 | ast 81§ minix
- ind
) e b}ackﬂ T Double "‘éﬁ?ﬁ&if G | usr 43 | bai 17 | src
i
8l e T2 Sndirect ol [ 8 | imp
= () IEE——— black ] b -node 6 l-node 26
kS e tooking up says that fusrfast says that fusrfastimbox
5 E e usr yields fusrisin is Fnode fustfastisin ig i-pnode
8 T— o inode & plock 132 26 block 406 60
npe P -
indirect R S
block’ Figure 4-35. The steps in looking up /usr/astimbox.
™ y |~
— / Relative path names are looked up the same way as absolute ones, only start-
' — ing from the working directory instead of starting from the root directory. Every
directory has entries for. and .. which are put there when the directory is created.
3 - The entry . has the i-node number for the current directory, and the entry for ..
] has the i-node number for the parent directory. Thus, a procedure looking up
dick/prog.c simply looks up .. in the working directory, finds the i-node number
for the parent directory, and searches that directory for dick. No special mechan-
Figure 4-34, A UNIX i-node. ism is needed to handle these names. As far as the directory system is concerned,
) they are jfust ordinary ASCII strings, just the same as any other names. The only
g When a file is opened, the file system must take the file name ;up?ilggoiﬁ bit of trickery here Is that .. in the root directory points to itselfl
: 1ocate its disk blocks. Let us consider how the path name /usr/asy/mpox 1
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4.6 RESEARCH ON FILE SYSTEMS

File systems have always attracted more research than other parts of the oper-
ating system and that is still the case. While stapdard file systems are fairly well
understoad, there is still quite a bit of research going on about optimizing buffer
cache management {Burnett et al., 2002; Ding et al., 2007; Gnaidy et al., 2004;
Kroeger and Long, 2001; Pai et al., 2000; and Zhou et al, 2001). Work is going
on gbout new kinds of file systems, such as user-level file systems (Maziéres,
2001}, flash file systems (Gal et al., 2005), journaling file systems (Prabhakaran et
ak., 2005; and Stein et al., 2001), versioning file systerns {Cornell et al., 2004),
peer-to-peer file systems (Muthitacharcen et al., 2002) and others. The Google
file system is also unusual due to its great fauit tolerance (Ghemawat et al., 2G03).
Different ways of finding things in file systems are also of interest (Padiolean and
Ridoux, 2003).

Another area that has been getting attention is provenance—keeping track of
the history of the data, including where they came from, who owns them, and how
they has been transformed (Muniswarmy-Reddy et al, 2008; and Shah et al.,
2007). This information can be used in a variety of ways. Making backups is still
getting some attention, too (Cox et al., 2002; and Rycroft, 2006), as is the related
topic of recovery (Keeton et al., 2006}, Related to backups is keeping data around
and usable for decades (Baker et al., 2006; Maniatis et al.,, 2003). Reliability and
security are also far from solved problems (Greenan and Miller, 2006; Wires and
Feeley, 2007, Wright et al., 2007, and Yang et al, 2006). And finally per-
formance has always been a research topic and still is (Caudill and Gavrikovska,
2006; Chiang and Huang, 2007; Stein, 2006; Wang et al., 20064; and Zhang and
Ghose, 2007).

4.7 SUMMARY

‘When seen from the outside, a file system is a collection of files and direc-
tories, plus operations on them. Files can be read and written, directories can be
created and destroyed, and files can be moved from directory to directory. Most
modemn file systems support a hierarchical directory system in which directories
may have subdirectories and these may have subsubdirectories ad infinitum.

When seen from the inside, a file system looks quite different. The file system
designers have to be concerned with how storage is allocated, and how the system
keeps track of which block goes with which file. Possibilities include contiguous
files, linked lists, file allocation tables, and i-nodes, Different systems have dif-
ferent directory structures. Attributes can go in the directories or somewhere else
r(:r.;g,,rea;{x ;‘)—;ﬁf)dc.). Dilsk space can be managed using free lists of bitmaps. File sys-

1abuiity is en i i .
b Canyrepair ;z;egl?; ;;;z::;g ;ﬂzrzf;izle dumps and by having a pro-
performance is unportant and
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can be enhanced in several wa $, including caching,

piacing the blocks of a fije closye to each ogzher. L;Z;;;ii?uf:j at%e a;;(i{zﬁ:g f:ilsiz
Improve performance by doing writes in large units,

_ Examples o_f file systems include 1SO 9660, MS-DOS, and UNEX. These differ
I many ways, mcluding how they keep track of which blocks go with which file
directory siructure, and management of free disk space. ’

PROBLEMS

1 GJVS five dlfferen{ patll names fo[ the fil /e . - =
] EZC/PG.S Wil jilril Think ab¢ ut the direc
- g3 d . s

2. In Windows, when a user double clicks on a file listed by Windows Explorer, a pro-

gram is tun and given that file as a parameter. Lj i i
. - List two different ways th
system coutd know which program to run. Yo e operating

3. In early UNIX systems, execntable files (a.out files) began with a very specific magic
number, not one chosen at random. These files began with a header, followed by the
text and data segments. Why do Yyou think a very specific number was chosen for ex-

ecutable files, whe i
ool fites, reas other file types had a more-or-Jess randomn magic nymber as

. Iﬁ Fég ~&, Ofie of the a{ﬂ.’i tes is the record len f ¥ ¥
- e ating ern
4 4 4 ! ; bul g h Wh does the Ope {1?5 Y5t

5. Systems that support sequential files always have an operation to rewind files. Do
systems that support randor access files need this too? .

6. In some systems ﬂ. is possible to mag part of a file into memory. What restrictions
must such systems impose? How is this partial mapping implemented?

7. A simple operating system onl i i
- ope 'y SUPpOIts a single directory but allows that directory t
hav; arblt{ar;ly mwany files with arbitrarily long file names. Can something a pgxi?
mating a hierarchical file system be simulated? How? i

8. In UNIX an“d Winéows,‘ ;‘anfiom‘access is done by having a special system call that
Pmoves the current position™ pointer associated with a file 1o a given byte in the file.
ropose a alternative way to do random access without having this system call.

9. Consider the directory tree of Fig. 4-8. If Ausreiim i ing di
g 4-&. Il /usrijim is the working directo hat i
absclute path name for the file whose relative path name is ../asf’x? o i the

10. Contiguous a[iocatiqn of files leads to disk fragmentation, as mentioned in the text
pecause some space in the last disk block will be wasted in files whose leagth is not ari

- . =
Integral number of blocks. Is this internal fragmentation or external fragmentation?

Make an analogy with sometbing discusseq i fhe JIEVIOUS CMP{@[

11 In light of the answer
dogy Compacting fhe sk Ever make

— fo the previgus qucstiOﬁ,‘



324 FILE SYSTEMS CHAP. 4
12. Some digital consumer devices need to store data, for example as files. Name a mod-
ern device that requires file storage and for which contigucus allocation would be a

fine idea.
13. How does MS-DOS implement random access Lo files?

14. Consider the i-node shown in Fig. 4-13. If it contains 10 direct addresses of 4 bytes
eech and all disk blocks are 1024 KB, what is the largest possible file?

15. It has been suggested that efficiency could be improved and disk space saved by stor-
ing the data of a short file within the i-node. For the i-node of Fig. 4-13, how many
bytes of data could be stored inside the i-node? .

16. Name one advantage of hard links over symboiic links and one advantage of symbolic
links over hard links.

17. Free disk space can be kept track of using a free Hist or a bitmap. Disk addresses re-
quire [ bits. For a disk with B blocks, F of which are free, state the condition under
which the free list uses less space than the bitmap. For ) having the value 16 bits,
EXpress yOour answer as a percentage of the disk space that must be free.

18. What would happen if the bitmap or free list containing the information about free
disk blocks was completely jost due to a crash? Is there any way to recover from this
disaster, or is it bye-bye disk? Discuss your answers for UNIX and the FAT-16 file
system separately.

19. Oliver Owl's night job at the university computing center is to change the tapes used
for overnight data backups. While waiting for each tape to complete, he works on
writing his thesis that proves Shakespeare’s plays were written by extratesrestzial visi-
tors. His text processor runs on the system being backed up since that is the only one
they have. Ts there a problem with this arrangement?

20. We discussed making incremental dumps in some detail in the text. In Windows it is
easy to tell when to dump a file because every file has an archive bit. This bit is miss-
ing in UNIX. How do UNIX backup programs know which files to dump?

21, Suppose that file 21 in Fig. 475 was not modified since the last dump. In what way
waould the four bitmaps of Fig. 4-26 be different?

22. It has been suggested that the first part of each UNIX file be kept in the same disk
block as its i-node. What good would this do?

23, Consider Fig. 4-27. Is it possible that for some particular block number the counters
in boik lists have the value 27 How should this problem be corrected?

24. The performance of a file system depends upon the cache hit rate {fraction of blocks
found in the cache), If it takes 1 msec to satisfy a request from the cache, but 40 msec
to satisfy a request if a disk read is needed, give a formula for the mean time required
to satisfy a request if the hit rate is & Plot this function for values of h varying from 0
10 1.0

95, Consider the idea behind Fig. 4-21, but now for a disk with a mean seek time of &
msec, 4 rotational rafe of15,000 rpm, and 262,144 bytes per track. What are the data
rates for block sizes of 1 KB, 2KB, and 4 KB, respectively?
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26. A certain file system uses 2-KB disk blocks. The med: ize i
: . ian file size is 1 KB. If all files
were exactly 1 KB, what fraction of the disk space would be wasted? Do you think

the wastage for a real file system will be higher than this number or lower than it?
Explain your answer. )

27. The MS-DOS FAT-16 table contains 64K entries. Suppose that one of the bits had been
needed for some other purpose and that the table contained exactly 32,768 entries in-

stead. With no other changes, what would the larges
: it , t MS-DOS fi
AR gest ] ile have been under

28, Files in MS-DOS have to compere for space in the FAT-16 table in memory. I one
ﬁle_uses k entries, that is k entries that are not available to any other file, what con-
straint does this place on the total length of all files combined?

29. A UNiX file system has [-KB biocks and 4-byte disk addresses. What 1s the maximum

file size if i-nodes contain 10 direct entries, and one SII].UIE, double, and tIIp]E indirec
=3 e t

30. How many disk operations are needed to fetch the i-node for the file
Jfusr/asticourses/osthandout.t?  Assume that the i-node for the root directory is in

mermory, but nothing eise along the path is in memory. Also as: i i
emary, but aoting y sume that all directories

31 Zp many UNIX systems, the i-nodes are kept at the start of the disk. An alternative de-
sign is to allocate an ;-qade when a file is created and put the i-node at the start of the
first block of the file. Discuss the pros and cons of this alternative. )

32. :ﬁ’ri? a };}rog{am that reverses the bytes of a file, so that the last byte is now first and
e first byte is now last. i must work with an arbitrarily long file, but t i
. . * t
reasonably efficient. vone i to male i

33, WI“lie a program that starts at a given directory and descends the file tree from that
point recording the sizes of all the files it finds. When it is all done, it should print a
hlstogram of the file sizes using a bin width specified as a paramete; (e.g., with 1024
file sizes of ( to 1023 go in one bin, 1024 to 2047 go in the next bin, etc.—}t.’-, '

34. Write a program that scans all directories in a UNIX file systern and finds and locates

all i-nodes with a hard link count of two or more. For ea it
. ch such file,
all file names that point o the file. e 1t Hts together

35, Write a new version of the UNIX is program. This version takes as an argument one or
mor; ;i:rzcto;yfn??es and for each directory lists all the files in that directory, one line
per file. Each field should be formatted in a reasonable way given i Li
: ts .
the first disk address, if any. vE e type. List only




41 of 94

INPUT/OUTPUT

*

In addition to providing abstractions such as processes (and threads), address
spaces, and files, an operating system also controls all the computer’s /0
{Input/Output) devices. Tt must issue commands to the devices, catch interrupts,
and handle errors. It should also provide an interface between the devices and the
rest of the system that is simple and casy to use. To the extent possibie, the inter-
face should be the same for all devices (device independence). The HO code rep-
resents a significant fraction of the total operating system. How the operating sys-
tem manages /O is the subject of this chapter. g

This chapter is organized as follows. First we will look at some of the princi-
ples of IO hardware, and then we will Iook at VO software in general. /O soft-
ware can be structured in layers, with each layer having a well-defined task. We
will look at these layers to see what they do and how they fit together,

Following that introduction, we will look at several /O devices in detail:
disks, clocks, keyboards, and displays. For each device we will look at its hard-
ware and software. Finally, we will consider power management.

5.1 PRINCIPLES OF /O HARDWARE

Different people look at ¥O hardware in different ways. Electrical engineers
Took at it in terms of chips, wires, power supplies, motors, and all the other physi-
cal components that make up the hardware, Programmess look at the interface
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presented to the software-—the commands the hardware accepts, the functions it
carries out, and the errors that can be reported back. In this book we are con-
cerned with programming VO devices, not designing, building, or matntaining
them, so our interest will be restricted to how the hardware is programmed, not
how it works inside. Nevertheless, the programming of many 1O devices is often
intimately connected with ¢heir internal operation. In the next three sections we
will provide a little general background on 1/C hardware as 1t relates w0 pro-
gramming. It may be regarded as a review and expansion of the introductory
material in Sec. 1.4.

5.1.1 YO Devices

1O devices can pe roughly divided into two categories: block devices and
character devices. A block device is one that stores information in fixed-size
blocks, each one with its own address. Common block sizes range from 512 bytes
to 32768 bytes. All transfers are in umits of one or more entire (consecutive)
blocks. The essential property of a block device is that it is possible to read or
write each block independently of all the other ones. Hard disks, CD-ROMs, and
USB sticks are common block devices.

If you look closely, the boundary between devices that are block addressable
and those that are not is not well defined. Everyone agrees that a disk is a block
addressable device because no matter where the arm currently is, it is always pos-
sible o seek to another cylinder and then wait for the required biock to rotaie
under the head. Now consider a tape drive used for making disk backups. Tapes
contain 2 sequence of blocks. If the tape drive is given a command to read block
N, it can always rewind the tape and go forward until it comes o block N. This
operation is analogous o & disk doing a seek, except that it takes much longer.
Also, it may or may not be possible to rewrite one block in the middle of a tape.
Ever if it were possible 1o use tapes as random access block devices, that is
stretching the point somewhat: they are normally not used that way.

The other type of 1O device is the character device. A charzcter device de-
livers or accepts a streamn of characters, without regard to any block structure. It
is not addressable and does not have any seek operation. Printers, network inter-
faces, mice (for pointing}, rats (for psychology lab experiments), and most othex
devices that are not disk-like can be seen as character devices.

This classification scheme is not perfect. Some devices just do not fit in.
Clocks, for example, are not block addressable. Nor do they generate or accept
character Streams. All they do is cause interrupts at well-defined intervals. Mem-
ory-mapped screens do not fit the model well either. Still, the model of block and
character devices is general enough that it can be used as a basis for making some
of the operating system software dealing with /O device independent. The file
system, for example, deals just with abstract block devices and leaves the device-

dependent part to lower-level software.
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" T/O devices cover a huge range in speeds, which puts considerable pressure on
the software to perform well over many orders of magnitede in data rates, Fig. 5-

1 shows the data rates of 50 i
me common devices. Most of these devi
faster as time goes on. iocs tend to get

Device Data rate
Keyboard 10 bytes/sec
Mouse 100 bytes/sec
56K modem 7 KB/sec
Scarner 400 KB/sec
Digital camcorder 3.5 MB/sec
802.11g Wireless 6.75 MB/sec
52x CO-ROM 7.8 MB/sec
Fast Ethermnet 12.5 MBfsec
Compact flash card 40 MB/sec
FireWire {IEEE 1394) 50 MB/sec
Uss 2.0 60 MB/sec
SONET OC-12 network 78 MB/sec
SCSI Ulira 2 disk 80 MB/sec .
Gigabit Ethernet 125 MB/sec

SATA disk drive 300 MB/sec
Uttrium tape 320 MB/sec
PCi bus 528 MB/seg

Figare 5-1. Some typical device, network, and bus data rates,

5.1.2 Device Controllers

YO units typicaily consist of a mechanical component and an electronic com-
ponent. Itis often possible (o separate the two portions to provide a more modular
and general design. The electronic component is called the device controller or
adapter. On personal computers, it often takes the form of a chip on the par-
;xllltboard ;}r a printed circuit card that can be inserted into a (PCI) expansion s%et
o ; lmﬁec anical component is the device itself. This arrangement is shown in

The_ cor_l{mller card ustally has a connector on it, into which a cable leading to
tlr_le deyme -ztself can be plugged. Many controllers can handle two, four, or even
eight 1d€1}tlcal devices. If the interface between the controller a;Ié de',\féce is a
standard interface, either an official ANSI, IEEE, or ISO standard or a de facto
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one, then companies can make controllers or devices that fit that interface. Many
companies, for example, make disk drives that match the IDE, SATA, SCSI,
USB, or FireWire (IEEE 1394) interface. .

The interface between the controller and the device is offen a very low-level
interface. A disk, for example, might be formatted with 10,000 sectors of 312
bytes per track. What actually comnes off the drive, however, is a serial bit stream,
starting with a preamble, then the 4096 bits in a sector, and finally a checksum,
also called an Error-Correcting Code (ECC). The preamble is written when the
disk is formatted and contains the cylinder and sector number, the sector size, and
similar data, as well as synchronization information.

The controller’s job is to convert the serial bit stream into a block of bytes and
perform any error comrection necessary. The block of bytes is typically first as-
sembied, bit by bit, in a buffer inside the contrelier. After its checksum has been
verified and the block has been declared to be ervor free, it can then be copied to
main memory.

The controller for a monitor also works as a bit serial device at an equally low
level. It reads bytes containing the characters to be displayed from memory and
generates the signals used to modulate the CRT beam to cause it to write on the
screen. The controller also generates the signals for making the CRT beam do a
horizontal retrace after it has finished a scan line, as well as the signals for mak-
ing it do a vertical retrace after the entire screen has been scanned. If it were not
for the CRT controller, the operating system programmer would have to explicitly
program the analog scanning of the tube. With the controller, the operating system
initializes the controller with a few parameters, such as the number of characters
or pixels per line and number of lines per screen, and lets the controller take care
of actually driving the beam. Flat-screen TFT displays are different, but just as
complicated.

5.1.3 Memory-Mapped VO

Each controller has a few registers that are used for communicating with the
CPU, By writing into these registers, the operating system can command the de-
vice to deliver data, accept data, switch iiself on or off, or otherwise perform
some action. By reading from these registers, the operating system can learn what
the device’s state is, whether it is prepared to accept a new command, and $o on.

In addition to the control registers, many devices have a data buffer that the
operating system can read and write. For example, a common way for computers
to display pixels on the screen is to have a video RAM, which is basically just a
data buffer, available for programs or the operating system to write into.

The issue thus arises of how the CPU communicates with the contzol registers
and the device data buffers. Two altematives exist. In the first approach, each
control register is assigned an YO port number, an §- or 16-bit integer. The set of
all the YO ports form the YO port space and is protected so that ordinary user
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Prografs cannot ac i i :
access it {only the Operating sysiem can). Using a special /0 in-

struction such as
iN REG,PORT,

the CPU can read in control re

- ister PORT - .
REG. Similarly, using. 8 and store the result in CPU register

OUT POAT,REG

the CPU can write the contents of &

Including nearly alf majnframes, s
worked this way.

) Ir; this scheme, the address
n Fig. 5-2(a). The instructions

IN Rg,4
and

EG to 4 control register. Most early computers
uch as the IBM 360 and all of its successors

Spaces for memory and VO are different, as shown

MOV RO,4

are completely different ip this
ga_d puts 1t in RO whereas the la
itin RC. The 4s in thege examp

design. The former reads the contents of ¥O port 4
tter reads thg contents of memory word 4 and puts
les refer to different and unrelated address gpaces.

Two addre
S5 One address space Two address spaces

OxEFFF,,

Memaory

/0 ports

(@} &) ) N

Figure 5-2. (2) Separate I
sy } Separate /O and menory space. {b) Memory-mapped /0,
The second approach, intr i
, oduced with the PDP-11, ;
y S . » 15 10 map sll the contr
registers into .the mEOry space, as shown in Fig. 5-2(b). Each cgntrol register ?i
A N f=l

Sosign ! Aemory 1s assigned. This system

ed memory.mapped /O, Usually, the assigned addresses are at the i)p of

the address space. A hybrid scheme, with memory-mapped IO data buffers and

separate /O ports for the control registers is shown in Fig. 5-2(c). The Pentium

uses this architecture, with addresses 640K to 1M being reserved for device data
orts O through 64K,
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How do these schemes work? In all cases, when the CPU wants to read a
word, either from memory of from an /O port, it puts the address it needs on the
bus’ address lines and then asserts a READ signal on a bus’ control line. A second
signal line is used to tell whether /O space or memery space is needed. I itis
memory space, the memory responds to the request. If it is /O space, the YO de-
vice responds to the request. If there is only memory space [as in Fig. 5-2(b}l, ev-
ery memory module and every 1O device compares the address lnes 10 the range
of addresses that it services. If the address falls in its range, it responds to the re-
quest. Since no address is ever assigned to both memory and an I/O device, there
is no ambiguity and no conflict.

The two schemes for addressing the controllers have different strengths and
weaknesses. Let us start with the advantages of memory-mapped V0. First, if
special O instructions are needed to read and write the device control registers,
access to them requires the use of assembly code since there is no way (o execute
an iN oF OUT instruction in C or C+. Calling such a procedure adds overhead to
controiling /0. In contrast, with memory-mapped 1/ device control registers
are just variables in memory and can be addressed in C the same way as any other
varizbles, Thus with memory-mapped 1O, 2 IO device driver can be written en-
tirely in C. Without memory-mapped 10, some assembly code is needed.

Second, with memory-mapped VO, no special protection mechanism is need-
ed to keep user processes from performing VO. All the operating system has to do
is refrain from putting that portion of the address space containing the control reg-
isters in any user’s virtual address space. Beteer vet, if each device has its control
registers on a different page of the address space, the operating system can give a
user control over specific devices but not others by simply inciuding the desired
pages in its page table. Such 2 scheme can allow different device drivers to be
placed in different address spaces, not only reducing kernel size but also keeping
one driver from interfering with others.

Third, with memory-mapped /0, every instuction that can reference memory
can also reference control registers. For example, if there is an instruction, TEST,
that tests a memory word for 0, it can aiso be used to test a control register for 0,
which might be the signal that the device is idle and can accept a new commaind.
The assembly language code might look like this:

/f eheck if port 4is O
Jifitis 0, go to ready
if otharwise, continue testing

LOOP: TEST PORT._4
SEQ READY
BRANCH LOOP

READY:

If memory-mapped /O is not present, the control register must first be read into
the CPU, then tested, requiring two instructions instead of one. In the case of the
loop given above, & fourth instruction has to be added, slightly slowing down the
responsiveness of detecting an idle device.
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In computer design, practically everything involves trade-offs, and that is the
case here too. Memory-mapped /0 also has its disadvantages. F7irst most com-
puters nowe_zdays have some form of caching of memory woc:'ds. Cachinc a device
control‘ register would be disastrous. Consider the assembly code lgo iv
above in the presence of caching. The first reference to PORT._4 would caiseg 'aeﬁ
be cached. Subsequent references would just take the value }rom the cache Earig
not even ask the device. Then when the device finally became ready, the softwa
would have ne way of finding out. Instead, the loop would go on fore’ver *
_’E‘o prevent this situation with memory-mapped 1/0, t?le hardware -has to b
eqmpped_ w;th‘ the ability to selectively disable caching, for example, on a0 ;
page basis. This feature adds extra complexity to both the’ hardware anc’l the o oo
ating system, which has to manage the selective caching. .
Secpnd, if there is only one address space, then all memory modules and ail
I/O devices must examine all memory references to see which ones to respond to

If {he Computel h&S a Slfigle bLiS, as 1n Flg. 5"3 a), haw;]g e\'ely()llﬁ look at e Cry
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Figure 5-3. (a) A single-bus architecture. {b} A dual-bus memory architecture

_ However, the trend in modern personal computers is b i
h1gh~spe_ed memory bus, as shown in Fig. 5-3(b), § property glsk;a\f,zu?lddiitd;i?}
frames, mctc%eﬂzal[y. This bus is tailored to optimize memory performance, with
1o compromises for the sake of slow IO devices. Pentium systems can havé ]
tiple buses (memo;’y, PCI, SCSI, USB, ISA), as shown in Fig. [-12 =
) The trouble w1_t§1 having a separate memory bus on memery-ma-ppcd machines
is that the KO devices have no way of seeing memory addresses as they go by on
the memory bus, so they have no way of responding to them. Aéain special mias«
ures have to be taken to make memory-mapped /O work on a syst:am with multi
ple buses. One 'possibility is to first send all memory references to the memo ;%
the rnemory fails to respond, then the CPU tries the other buses. This desi 11'1}/.(:&111
be made to work but requires additional hardware complexity. :
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ossible design is to put a srooping device on the memory bus to
passAalsleZ?lz(rlegses presentebc% to potentiafly interested YO devices. The problem
here is that /O devices may not be able to process requests at the speed the mem-
Ory ff{:l:;ird possible design, which is the one used on Fhe ?eptium} conﬁgl_lraiion of
Fig. 1-12, is to filter addresses in the.PCI bridge chip. This chip contains range
registers that are preloaded at hoot time. For exarz‘l;ﬂ-e, 640K to 1M could be
marked as a nonmemory range. Addresses that fall w;%hm one of the ranges mark-
ed as nonmemory are forwarded onto the PCI 'bus instead of to memory. The
disadvantage of this scheme is the need for figuring out at boot time which mem-
ory addresses are not really memory addresses. ’I'hus_ eac.h scheme has arguments
for and against it, 50 compromises and trade-offs are inevitable.

5.1.4 Direct Memory Access (DMA)

No matter whether a CPU does or does not have memory-mapped VO, it
needs to address the device controllers to exchange @ata with thfam. The CPU can
request data from an IO controller one byte at a ﬂmfa put doing so wastes th_e
CPUs time, so a different scheme, called DMA (i}_hrect Memory Aeccess) is
often used. The operating system can only use DMA if the hard.wa_re has 2 D’MA
controller, which most systems do. Sometimes this coniroil_er is integrated into
disk controllers and other controllers, but such a design requires 2 separate ]_DMA
controller for each device. More commonly, a single DMA co_ntroller is available
{e.g., on the parentboard) for regulating transfers to multiple devices, often
Cogigfil;i)t(er where it is physically located, the DMA controller hgs access o the
system bus independent of the CPU, as shown in Fig. 5-‘4. It contains several reg-
isters that can be written and read by the CPU. These mcl}lde a memory address
register, a byte count register, and one or more control registers. The control reg-
isters specify the YO port to use, the direction of the transfer (seading from the VO
device or writing to the VO device), the transfer unit (byte at a time or word at a
time), and the number of bytes to transfer in one burst. ‘

To explain how DMA works, let us ficst look at how disk reads occur when
DMA is not used. First the disk controller reads the bloc%q {one or more fe?tors)
from the drive serially, bit by bit, until the entire block is in the controller’s inter-
nal buffer. Next, it computes the checksum to verify that no reac_i errors have oc-
curred. Then the controller causes an interrupt. When the operating system starts
running, it can read the disk block from the controile_r’s buffer a byte or a word at
a time by executing a loop, with each iteration reading one byte or word from a
controller device register and storing it in main memory.

When DMA is used, the procedure is different. First the CPU programs the
DMA controller by setting its registers so it knows wfxat to transfer where (step 1
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Figure 5-4. Operation of 2 DMA transfer.

in Fig. 5-4). It also issues a command to the disk controller telling it to read data
from the disk into its internal buffer and verify the checksum. When valid data are
in the disk controller’s buffer, DMA can begin,

The DMA controller initiates the wransfer by issuing a read request over the
bus to the disk controller (step 2). This read request looks iike any other read re-
guest, and the disk controller does not know or care whether it came from the
CPU or from a DMA controller. Typically, the memory address to write to is on
the bus’ address lines so when the disk controller fetches the next word from its
internal buffer, it knows where to write it. The write to memory is another stan-
daed bus cycle {step 3). When the write is complete, the disk controller sends an
acknowledgement signal to the DMA centroller, also over the bus (step 4). The
DMA controller then increments the memory address to use and decrements the
byte count. If the byte count is still greater than 0, steps 2 through 4 are repeated
until the count reaches 0. At that time, the DMA. controlier interrupts the CPU to
let it know that the transfer is now complete. When the operating system starts up,
it does not have to copy the disk black to mernory; it is already there.

DMA. controllers vary considerably in their sophistication. The simplest ones
handle one transfer at a time, as described abave. More complex ones can be pro-
grammed to handle multiple wransfers at once. Such controllers have muliiple sets
of registers internally, one for each channel. The CPU starts by loading each set of
registers with the relevant parameters for its transfer, Fach transfer must use a dif-
ferent device controller. After each word is transferred (steps 2 through 4) in
Fig. 5-4, the DMA controlier decides which devics to service next. It may be set
up to use a round-robin algorithm, or it may have a priority scheme design to
favor some devices over others. Multiple requests to different device controllers
may be pending at the same time, provided that there is an unambiguous way to
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tell the acknowledgements apart. Often a different acknowledgement line on the
bus is used for each DMA channel for this reason. )

Many buses can operate in two modes: word-at-a-time mode and block mode.
Some DMA controllers can also operate in either mode. In the former mode, the
operation js as described above: the DMA controlier‘requests fG_r the transfer of
one word and gets it. If the CPU also wants the bus, it kas to wait. The mechan-
ism is called cycle stealing because the device controller _sneellks in and steals an
occasional bus cycle from the CPU once in a while, delaying it s_hghtly. In _block
mode, the DMA. controller tells the device to acquire the bus, issue a sefies gf
transfers, then release the bus. This form of operation is called burst mode. Itis
more efficient than cycle stealing because acquining the §u§ _takes tirne and r_nulﬂ-
ple words can be transferred for the price of one bus acquisition. The dov_vn md; 1o
burst mode is that it can block the CPU and other devices for a substantial period
of time if a long burst is being transferred.

1a the model we have been discussing, sometimes called fly-by mode, t%}e
DMA controller tells the device controller to transfer the éata_ directly to main
memory. An alternative mode that some DMA. controlers use is 10 have the de-
vice controdler send the word to the DMA controller, which then issues a second
bus request to write the word to wherever it is supposed to go. Th1§ schen_le re-
quires an extra bus cycle per word transferred, but is more flexible tha§ it can
also perform device-to-device copies and even merpory—to-memory copies {by
first issuing a read to memory and then issuing a write to memory at a different
address). .

Most DMA controllers use physical memory addresses for their ‘transfers.
Using physical addresses requires the operating system 1o convert t}ze vgtual aé.-
dress of the intended memory buffer into a physical address and write this physi-
cal address into the DMA controller's address register. An alternative scheme
used in a few DMA controliers js to write virtual addresses into the DMA con-
troller instead. Then the DMA controller must use the MMU to have the virtual-
to-physical translation done. Only in the case that £he.MMU is part of the memory
{possible, but rare) rather than part of the CPU, can virtual addresses be put on the
bus.

We mentioned carlier that the disk first reads data into its internal b.uffer be-
fore DMA can start. You may be wondering why the controfler does not just store
the bytes in main memory as soon as it gets them from the disk. In other w.ords,
why does it need an internal buffer? There are two reasons. First, by Slemg inter-
nal buffering, the disk controller can verify the checksum before starting a trans-
for. If the checksum is incorrect, an error is signaled and no transfer is done. .

“The second reason is fiat once a disk transfer has started, the bits keep arriv-
ing from the disk at a constant rate, whether the controller is ready for them or
not. If the controller tried to write data directly to merory, it would have to g0
over the systern bus for each word transferred. If the bus were busy due to some
other device using it (e.g., in burst mode), the controller would have to wait. If
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the next disk word arrived before the previous one had been stored, the controller
would have to store it somewhere. If the bus were very busy, the controller might
end up storing quite a few words and having a lot of administration to do as well.
When the block is buffered internally, the bus is not needed uatil the DMA
begins, so the design of the controller is much simpler because the DMA transfer
to memory is not time critical. {Some older controllers did, in fact, go directly to
memory with only a small amount of internal buffering, but when the bus was
very busy, a fransfer might have had to be terminated with an overrun error.}

Not all computers use DIMA. The argument against it is that the main CPU is
often far faster than the DMA controller and car do the job much faster (when the
limnitiag factor is not the speed of the I/O device). If there is no other work for it
to do, having the (fast) CPU wait for the (slow) DMA controller to finish is point-
fess. Also, getting rid of the DMA controller and having the CPU do all the work
in software saves money, important on low-end (embedded) computers.

5.1.5 Interrupts Revisited

We briefly introduced interrupts in Sec, 1.4.5, but there is more to be said. In
4 typical personal computer system, the interrupt structure is as shown in Fig. 5-5.
At the hardware level, interrupts work as follows. When an YO device *has fin-
ished the work given to it, it causes an interrapt (assuming that interrupts have
been enabled by the operating system). It does this by asserting a signal on a bus
ling that it has been assigned. This signal is detected by the interrupt controller
chip on the parentboard, which then decides what to do.

Interrupt 1. Device is finished
CPU 3. CPU acks centroller
intersupt *—"“@ Disk
P N Keyboard
 — 4——. Clack
2, Controller — Byt
X issues ; e

intemzv

X

Bus

Figure 5-53. How an intemrupt happens. The comections between the devices

and the interropt controller actually use interrupt fines on the bus rather than
dedicated wires. :

If no other interrupts are pending, the interrupt controller processes the inter-
rupt immediately. If another one is in progress, or another device has made 2 si-
multaneous request on a higher-priority interrupt request line on the bus, the
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device is just ignored for the moment. In this case it continues to assert an inter-
rupt signal on the bus until it is serviced by the CPU. )

To handle the interrapt, the controller puts a nup}ber on the address 11%63
specifying which device wants attention and asserts a signal to interrupt the CP_ .

The intersupt signal causes the CPU to stop v:'hat it is dom_g and'start den;g
something else. The number on the address lines is used as an index into a table
called the interrupt vector to fetch a new program counter. This program counter
points o the start of the corresponding interrupt service procedure. Typically traps
and interrupts use the same mechanism from tt_sis point on, and frequently st_;ar;
the same interrupt vector. The location of the interrupt vector can pe hardwire
into the machine or it can be anywhere in memory, with a CPU register (Joaded

ing system) pointing to its origin.

” ﬂ'é;::ﬁ?;a :t;']t:r i(t sta;ispmnni;g, the interrupt service _pmcedure acknow%edlgg
the interrupt by writing a certain value to one of the_miermpt_controller s I
ports. This acknowledgement tells the controller that it is fse§ to issue another :g
terrupt. By having the CPU delay thi.s ackn_owledge'ment until jt is ready to hand-
le the next interrapt, race conditions involving multiple (almost simultaneous) m-
terrupts can be avoided, As an aside, some (older) computers_do not _have 2 cen-
tralized interrupt controller, so each device costroﬂer requests its own jnterrupts.

The hardware always saves Certain iuformaﬂqn hefore starting the service
procedure. Which information is saved and where it is saved varies greatly frc?m
CPU to CPU. As a bare minimumn, the program counter must be salv.ed, 50 t}§e in-
terrupted process can be restarted. Al the other extreme, ail the visible registers
and a large pumber of internal registers may pe saved as \fveﬂ: o

One issue is where to save this information. One option is to put it in internal
registers that the operating system can read out as needed. A problem wath. thxls
appreach is that then the interrupt controller cannot be acknowle-dged unt} ali
potentially relevant information has been read out, lest a second interrapt over-
wiite the internal registers saving the state. Tk_lis strategy leads to long dead times
when interrupts are disabled and ;Jossibly'lost mte‘rrupts and lost data. .

Consequently, most CPUs save the %nformanon on the stack. However, t is
approach, too, has problems, To start with: whose stgck? I the current stack alls
used, it may wel! be a user process stack. The stack pointer may not even be legal,
which would cause a fatal error when the hardware tried to write some words at
the address pointed to. Also, it might point to the end of a page. After sever;i
memory writes, the page boundary might be exceec?ed and a page fayit generated.
Maving a page fauit occur during the hardware interrupt prgcessmg creates a
bigger problemy: where to save the state to handle the page fault? _

If the kernel stack is used, there is a rouch better chance of the stack pointer
being legal and pointing to a pinned page. However, sw:Atcilm‘g mto kemmnel modz
may require changing MMU contexts and will probabiy :nvaix§ate most or all o
the cache and TLB. Reloading all of these, statically or dynarnically will increase
the time t0 process an interrupt and thus waste CPU time.

47 of 94

SEC. 5.1 PRINCIPLES OF /O HARDWARE 339

Frecise and Imprecise Interrupts

Another problem is caused by the fact that most modem CPUs are heavily
pipelined and often superscalar (internally paraflel). In older systems, after each
instruction was finished executing, the microprogram or hardware checked to see
if there was an interrupt pending. If so, the program counter and PSW were
pushed onto the stack and the interrupt sequence begun. After the interrupt hand-
ler ran, the reverse process took piace, with the old PSW and program counter
popped from the stack and the previous process continued.

This mode} makes the implicit assumption that if an nntterrupt oceurs just after
some instruction, all the instructions up o and inciuding that instruction have been
execeted completely, and no instructions after it have executed at all. On older
machines, this assuinption was always valid. On modern ones it may not be.

For starters, consider the pipeline model of Fig. 1-6(a). What happens if an
interyupt occurs while the pipeline is full (the usual case)? Many instructions are
in various stages of execution. When the interrupt occuss, the value of the pro-
gram counter may not reflect the correct boundary between executed instructions
and nonexecuted instructions. In fact, many instructions may have been partially
executed, with different instructions being more or less complete. In this situa-
tion, the program counter most likely reflects the address of the next instraction to
be fetched and pushed into the pipeline rather than the address of the instruction
that just was processed by the execution unit.

On a superscalar machine, such as that of Fig. 1-7(b), things are even worse.
Instructions may be decomposed into micro-operations and the micro-operations
may execute out of order, depending on the availability of internal resources such
as functional units and registess. At the time of an interrupt, some instructions
started long ago may not have started and others started more recently may be al-
most done. At the point when an interrupt is signaled, there may be many instruc-
tions in various states of completeness, with less relation between them and the

program counter.

An interrupt that leaves the machine in a well-defined state is called a precise
interrupt (Walker and Cragon, 1995}, Such an interrupt has four properties:

1. The PC (Program Counter) is saved in a known place.
2. All instructions before the one pointed to by the PC have fully executed.
3. No instruction beyond the one pointed to by the PC has been executed.

4. The execution state of the instruction pointed to by the BC is known.

Note that there is 1o prohibition on instructions beyond the one pointed to by the
PC from starting. It is fust that any changes they make to registers or memory
st be undone before the interrupt happens. It is permitted that the instruction
pointed to has been executed. It is also permitted that it has not been executed.
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However, it must be clear which case applies. Often, if the interrupt is an YO in-
terrupt, the instruction will not yet have started. However, if the interrupt is really
a trap or page fault, then the PC generally points to the instruction that caused the
fault so it can be restarted later. The situation of Fig. 5-6{a) illustrates a precise
interrupt. All instructions up to the program Counter (316) have completed and
none of those beyond it have started (or have been rolled back to undo their ef-

fects).

332
Not execyuted

MNot executed
Mot executed
Not executed a

PG

Figure 5-6. {a) A precise interrupt. (b) An imprecise interrupt.

An interrupt that does not meet these requirements is called an imprecise
interrupt and makes life most unpleasant for the operating system writer, who
now has to figure out what has happened and what still has to happen. Fig. 5-6(%)
shows an imprecise interrupt, where different instructions near the program count-
er are in different stages of completion, with older ones not recessarily more com-
plete than younger ones. Machines with imprecise interzupts usually vomit a
large amount of internal state onto the stack to give the operating system the pos-
sibility of figuring out what was going on. The code necessary Lo restart the ma-
chine is typically extremely complicated. Also, saving a large amount of infor-
mation to memory on every interrupt makes interrupts slow and recovery even
worse. This leads to the ironic sifuation of having very fast superscalar CPUs
sometimes being unsuitable for real-time wosk due to slow interrupts.

Some computers are designed so that some kinds of interrupts and traps are
precise and others are not. For example, having ¥Q interrupts be precise but traps
due to fatal programming errors be imprecise is not so bad since no attempt need
be made to restart a running process after it has divided by zero. Some machines
have a bit that can be set to force all interrupts to be precise. The downside of set-
ting this bit is that it forces the CPU to carefully log everything it is doing and
maintain shadow copies of registers so it can gencraw a precise interrupt af any
instant. All this overhead has a major impact on performance.

Some superscalar machines, such as the Pentium series have precise interrupts
to aliow old software to work correctly. The price paid for precise interrupts is
extremely complex interrupt logic within the CPU to make sure that when the in-
terrupt controlier signals that it wants to cause an interrupt, all instructions ap o
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some p(?int are allowed to finish and none beyond that point are allowed to have
any n_onccable effect on the machine state. Here the price is paid not in time, but
in _ch1p area and in complexity of the design. If precise interrupts were no’t e~
guired for i’)gckward compatibility purposes, this chip area would be available for
larger on-chip caches, making the CPU faster. On the other hand, imprecise inter-
rupts make the operating system far more complicated and slower, so it is hard to
tell which approach is really better. ’

5.2 PRINCIPLES OF I/O SOFTWARE

. Let us now turn away from the 1O hardware and Jook at the I/O software.
First we will look at the goals of the YO software and then at the different ways
I/O can be done from the point of view of the operating system.

5.2.1 Goals of the /O Software

A key concept in the design of /O software is known as device indepen-
dence. What it means is that it should be possible to write programs that can ac-
cess any /O device without having to specify the device in a{iv;ﬂce. For example
a program that reads a file as input should be able to read a file on a hard disi :;
QD—ROM, a DVD, or a USB stick without having to modify the program for ea’ch
different device. Similarly, one shouid be able to type a command suZh as

sort <input >output

and have ?t work with input coming from any kind of disk or the keyboard and the
output going to any kind of disk or the screen. It is up to the operating system to
take care of the problems caused by the fact that these devices really are different
and require very different command sequences to read or write.

Closely related to device independence is the goal of uniform naming. The
name of a .ﬁle‘or a device should simply be a string or an integer and not depend
on the dEV{CE inany way. In UNIX, all disks can be integrated in the file system
hierarchy in arbiirary ways so the user need not be aware of which name
corre_syencis to which device. For example, a USB stick can be mounted on top of
Fhe directory /usr/ast/backup so that copying a file to Jusr/as/backup/monday cop-
ies the file to the USB stick. In this way, all files and devices are addressed the
same way: by a path name.

Another important issue for YO software is error handling. -
rors should be handled as close to the hardware as possible.’ l;;l%he ?offrz(;lr:}d?:-
covers a read error, it should try to correct the error itself if it can. If it cannot
thex_l the device driver should handle it, perhaps by just trying t read the bloci;
again. Many errors are transient, such as read errors caused by specks of dust on
the read head, and will frequently go away if the operation is repeated. Only if the
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lower layers are not abie to deal with the problem should the upper layers be told
about it. In many cases, error recovery can be done transpatently at a low level
without the upper levels even knowing about the emor.

Still another key issue is that of synchronous {(blocking) versus asynchro-
neus (interrupt-driven) transfers. Most physical VO is as_ynchrqaous—thc (;PU
starts (he transfer and goes off to do something else until the interrupt arves.
User programs are much easier 10 write if the IO operations are bloclung—after_ a
read system call the program is astomaticatly suspended until the_ data are avail-
able in the buffer. It is up to the operating system to make operations that are ac-
tually interrupt-driven look blocking to the user prograss.

Another issue for the /O software is buffering. Often data that come oif a
device cannot be stored directly in its final destination. For example, when 2
packet comes in off the network, the operating system does not know where to put
it until it has stored the packet somewhere and examined it. Also, some devices
have severe real-time constraints (for example, digital audio devices), so ﬂ_}e data
must be put into an ourput buifer in advance to decouple the rate at which the
huffer is flfed from the rate at which it is emptied, in order to avmd.buf_fer under-
runs. Buffering involves considerable copying and often has a major mpact on
T/O performance. ‘

The final concept that we will mention here is sharable versus dedicated de~
vices. Some /O devices, such as disks, can be used by many users at the same
time. No problems are caused by maltiple users having open files on the same
disk at the same time. Other devices, such as tape drives, have to be dedicated }‘0 a
single user until that user is finished. Then another user can have the tape drive.
Having two or more users writing blocks intermixed at rando}n to the same tape
witl definitely not work. Introducing dedicated {unshared) dev_zces also introduces
a variety of problems, such as deadlocks. Again, the operating §ystem must be
able to handle both shared and dedicated devices in a way that avoids problems.

5.2.2 Programmed I/O

There are three fundamentally different ways that YO can be performed. In
this section we wilt look at the first one (programmed V/O). In the next tw¢ sec-
tions we will examine the others (interrupt-driven VO and VO using DMA). The
simplest form of 1) is to have the CPU do ali the work. This method is calied
programmed IO, '

It is simplest to illustrate programmed IO by means of an example. (,lfmsxcier
a user process that wants to print the eight-character stiing “ABCDEFG 17 on the
printer. It first assembles the string in a buffer in wser space, as shown in Fig. 5-
Hajz.

( }The user process then acquires the printer for writing by making a system ca%l
to open it. If the printer is cwrently in use by another process, this call will fail
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Figure 5-7. Steps in printing a string.

and return an error code or will block until the printer is available, depending on
the operating system and the parameters of the call. Once it has the printer, the
user process makes a system call telling the operating system to print the siring on
the printer.

The operating system then (usually) copies the buffer with the sttfng to an
array, say, p, in kernel space, where it is more easily accessed (becanse the kermel
may have to change the memory map to get at user space). It then checks to see if
the printer is cumrently available. If not, jt waits until it 5 available. As soon as
the printer is available, the operating systern copies the first character to the print-
er’s data register, in this example using memory-mapped O. This action
activates the printer. The character may not appear yet because some printers buf-
fer a line or a page before printing anything. In Fig. 5-7(b), however, we see that
the first character has been printed and that the system has marked the “B” as the
next character to be printed.

As soon as it has copied the first character to the printer, the operating system
checks to see if the printer is ready to accept another one. Generally, the printer
has a second register, which gives its status. The act of writing to the data register
causes the status to become not ready. When the printer controller has processed
the current character, it indicates its availability by setting some bit in its status
register or putting some value in it

At this point the operating system waits for the printer to become ready again,
When that happens, it prints the next character, as shown in Fig. 5-7{c). This lcop
continues until the entire string bas been printed, Then control returns to the user
process.

The actions followed by the operating system are summarized in Fig. 5-8.
First the data are copied to the kernel. Then the operating system enters a tight
loop outputting the characters one at a time. The essential aspect of programmed
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V0, clearly illustrated in this figare, is that after outputtiag a character, the_CPU
continuously polls the device to see if it is ready to accept another ore. This be-
havior is often called polling or busy waiting.

+ pis the kemel buffer +/

+ loop on every character /
/= joop until ready

= output one character */

copy_from_user{buffer, p, count);

for {i = G; | < count; i++) {
while (*printer_status..reg k= READY) ;
*printer_data_tegister = plil;

return_to_user{},

Figure 5-8. Writing a string to the priater using programmed VO.

Programmed IO is simple but has the disadvantage of tying up the CPU full time
angil all the O is done. If the time fo “print” a character is very short (because
all the printer is doing is copying the new character o an internal buffer), t%}en
busy waiting is fine. Also, in an embedded system, where the CPU has nothing
else to do, busy waiting is reasonable. However, in more complex systems, wh{:@
the CPU has other work to do, busy waiting is inefficient. A better VO method is
needed.

5.2.3 Interrupt-Driven YO

Now let us consider the case of printing on a printer that does 10t buffer char-
acters but priats each one as it arrives. If the printer can print, say 100 charac-
ters/sec, each character takes 10 msec to print. This means that aft{?r every charac-
ter is written to the prinier’s data register, the CPU will sit' ig an idle loop for 10
msec waiting to be allowed to output the next character. This is more than enough
time 1o do a context switch and run some other process for the 10 msec that would
otherwise be wasted. ) N _

The way to allow the CPU to do something else while waiting for the printer
to become ready is to use interrapts. When the system call to gnnt the string 18
made, the buffer is copied to kemel space, as we showed earlier, and the first
character is copied to the printer as soon as it Is willing to accept & character. At
that point the CPU calls the scheduler and some other process is ran. The process
that asked for the string to be printed is blocked untif the entire string has printed.
The work done on the system call is shown in Fig. 5-9(a).

When the printer has printed the character and is prepared 1o accept the next
one, it generates an interrupt. This interrupt stops the current process anfi saves its
state. Then the priuter interrupt service procedure is run. A crud\_e version of this
code is shown in Fig. 5-9¢b). If there are no more characters (o print, the interrupt
handler takes some action to unblock the user. Otherwise, it cutputs the next ck}ar-
acter, acknowledges the interrupt, and returns to the process that was running just
before the interrupt, which continues from where it left off.
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copy__from_user(buffer, p, count); if {count == Q) {
enable_intercupts(); unblock_user{ };
while {xpriner _status_reg l= READY) ; }else {
=printer _data..regisier = pl0}; =printer__data.register = pfi};
scheduler( ), count = count — 1,
i=i+1;
acknowledge_interrupt( };
return_from__interrupt{);
@ _ (&)

Figure 5-9. Writing a string to the printer using interrupt-driver /O, (a) Code
executed at the time the print system cali i8 made. (b) Interrupt service proce-
dure for the printer. -

5.2.4 /O Using DMA

An obvious disadvantage of interrupt-driven IO is that an interrapt occurs on
every character. Interrupts take time, so this scheme wastes a certain amount of
CPU time. A solution is to use DMA. Here the idea is to let the DMA controlier
feed the characters to the printer one at time, without the CPU being bothered. In
essence, DMA is programmed I/0, only with the DMA controller doing all the
work, instead of the main CPU. This strategy requires special hardware (the

DMA. controlier) but frees up the CPU during the YO to do other work. An out-
line of the code is given in Fig. 5-10.

copy_from_uses(buffer, p, count);
set_up_DMA_controller{ );
scheduter();

acknowledge_interrupt{ );
unblock_user(;
return_from_interrupi{ };

{a) )

Figure 5-10. Printing a string using DMA. (3) Code executed when the priat
system cail is made, (b} Interrupt service procedure,

The big win with DMA is reducing the number of interrupts from one per cha-
racter to one per buffer printed. If there are many characters and interrupts are
slow, this can be 2 major improvement. On the other hand, the DMA controller is
usually much slower than the main CPU. If the DMA controller is not capable of
driving the device at full speed, or the CPU usually has nothing to do anyway
while waiting for the DMA interrupt, then interrupt-dven VO or even pro-
grammed IO may be better. Most of the time DMA is worth it though.
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1O software is typically organized in four layers, as shown in Ij"ig. 5-11. EBach
layer has a well-defined function to perform and a well-defined interface to the
adjacent jayers. The functionality and interfaces differ from systesm to system, so
(he discussion that follows, which exarnines all the layers starting at the bottom, is
not specific to one machine.

User-level 170 software

Davice-independent operating system software

Device drivers

inferupt handlers
r Hardware J

Figure 5-11. Layers of the VO software system.

5.3.1 Interrupt Handlers

While programmed VO is occasionally useful, for most L’O,. interropts are an
unpleasant fact of life and cannot be avoided. They should be hidden away, deep
in the bowels of the operating system, so that as little qf the operating §ystem as
possible knows about them. The best way to hide them is 0 have‘ the driver start-
ing an /O operation block until the O has completed and the 1ptenapt 0CCuss.
The driver can block iself by doing a down on a semaphore, a wait on & condition
variable, a receive on a message, Of something similar, for example. ) .

When the interrupt happens, the interrupt procedure deel:s whatever i has_ to int
order to handle the intesrupt. Then it can unblock the driver t.hat .started 1t.' In
some cases it will just complete up on a semaphore. In f)ihers it wili do a signal
on a condition variable in a monitor. In still others, it will §end a message to the
blocked driver. In all cases the net effect of the interrupt will be that a d?wer_ that
was previously blocked will now be able to run. This model works best if drivers
are stroctured as kernel processes, with their own states, stacks, and program
counters. . . .

Of course, reality is not quite so simple. Processing an interrupt 18 not just a
matter of taking the interrupt, doing an up on some semaph.ore, and then executing
an IRET instruction to return from the interrupt to the previous process. The;e isa
great deal more work involved for the operating systerm, We vyﬂi now give an
outline of this work as a sexies of steps that must be performed in software after
the hardware interrupt has completed. It should be noted that the details are very
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system dependent, 50 some of the steps listed below may not be needed on a par-

ticular machine and steps not listed may be required. Alsoe, the steps that do occur
may be in a different order on some machines.

1. Save any registers (including the PSW) that have not aiready been
saved by the interrupt hardware.

2. Set up a context for the interrupt service procedure. Doing this may
involve setting up the TLB, MMU and a page table.

Set up a stack for the interrupt service procedure.

4. Acknowledge the interrupt controller. If there is no centralized inter-
rupt controlier, reenable interrupts.

5. Copy the registers from where they were saved (possibly some stack)
to the process table.

6. Run the intertupt service procedure. It will exiract information from
the interrupting device controller’s registers.

7. Choose which process to run next. If the interrupt has caused some
high-priority process that was blocked to become ready, it may be
chosen o run now.

8. Set up the MMU context for the process to run next. Some TLB set-
up may also be needed.

9. Load the new process’ registers, including its PSW,

10. Start running the new process.

As can be seen, interrupt processing is far from trivial. It also takes a consid-
erable number of CPU instructions, especially on machines in which virtual mem-
ory is present and page tables have to be set up or the state of the MMU stored
(e.g., the R and M bits). On some machines the TLB and CPU cache may also

have to be managed when switching between user and kernel modes, which takes
additional machine cycles.

5.3.2 Device Drivers

Earlier in this chapter we looked at what device controllers do, We saw that
each controller has some device registers used to give it commands or some de-
vice registers used to read out its status or both. The number of device registers
and the nature of the commands vary radically from device to device. For ex-
ample, a mouse driver has to accept information from the mouse telling how far it
has moved and which buttons are currently depressed. In contrast, a disk driver
may have to know all about sectors, tracks, cylinders, heads, arm motion, motor
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drives, head settling tirnes, and all the other mechanics of making the disk work
properly. Obviously, these drivers will be very different. '

As 2 consequence, sach I/0 device attached to a computer needs some de-
vice-specific code for controlling it. This code, called the device driver, is gen-
erally written by the device’s manufacturer and delivered along with the device.
. Since each operating system needs its own drivers, device manufacturers com-
menty supply drivers for several popular operating systems,

Bach device driver normally handles one device type, or at most, one class of
closely related devices. For example, a SCSI disk driver can usuzlly handle multi-
ple SCSI disks of different sizes and different speeds, and perhaps a SCSI CD-
ROM as well. On the other hand, a mouse and joystick are so different that dif-
ferent drivers are usually required. However, there is no technical restriction on
having one device driver control multiple unrelated devices. It is just not 2 good
idea.

In order to access the device’s hardware, meaning the controiler’s registers,
the device driver normally has to be part of the operating system kernel, at least
with curent architectures. Actually, it is possible to construct drivers that run in
user space, with system calls for reading and writing the device registers. This de-
sign isolates the kernel from the drivers and the drivers from each other, eliminat-
ing a major source of system crashes—buggy drivers that interfere with the kernel
in one way or another. For building highly reliable systems, this is definitely the
way to go. An example of a system in which the device drivers run as user proc-
esses is MINIX 3. However, since most other desktop operating systems expect
drivers to run in the kemnel, that is the model we will consider here.

Since the designers of every operating system know that pieces of code (driv-
ers) written by outsiders will be installed in it, it needs to havé an architectuze that
allows such installation. This means having a well-defined mode] of what a driver
does and how it interacts with the rest of the operating system. Device drivers are
normally positioned below the rest of the operating system, as is illustrated in
Fig. 5-12. :

Operating systems usually classify drivers into one of a smail number of cat-
egories. The most common categories are the block devices, such as disks, which
contain multiple data blocks that can be addressed independently, and the charac-
ter devices, such as keyboards and printers, which generate or accept a stream of
characters.

Most operating systems define a standard interface that all block drivers must
support and a second standard interface that all character drivers must support.
These interfaces consist of a number of procedures that the rest of the operating
systemn can call to get the driver to do work for it. Typical procedures are those to
read a block (block device) or write a character string (character device).

In some systems, the operating system is a single binary program that contains
all of the drivers that it will need compiled into it. This scheme was the norm for
years with UNIX systerns because they were run by computer centers and IO de-
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If‘igure 5-12. L_ogica] positioning of device drivers. In reality ail communica-
tion between drivers and device controliers goes over the bus.

vices ra‘rely changed. If a new device was added, the system administrator simply
recom;_)zled the kemel with the new driver to build a new binary.

With the advent of personal computers, with their myriad VO devices, this
model no longer worked. Few users are capable of recompiling or relinking the
kernel, even if they have the source code or object modules, which is not al:vays
Fhe case. Instead, operating systems, starting with MS-DOS, went over 1o a model
in which drivers were dynamicaily loaded into the system during execution, Dif-
{erent systems handle loading drivers in different ways. ‘

A device driver has several functions. The most obvions one is to accept
abstract read and write requests from the device-independent - software above it
and see that they are carried out. But there are also a fow other functions they
must perform. For example, the driver must initialize the device, if needed, It
may also need to manage its power requirements and log events. .

Many device drivers have a similar general structure. A typical driver starts
out by checking the input parameters to see if they are valid. If not, an error is
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rewrned. If they are valid, a translation from absfrac[ tq concrete erms :;,:yi ntzz
needed. For a disk driver, this may mean converting 2 ’imeaf block num) ,
the head, irack, sector, and cylinder numbersl for the dlslg s geomeqy: . st

Next the driver may check if the device i c.um_ant'ly inuse. ifitis, the ::gwm
will be queued for later processing. If the device 1S idle, the hardware sta o
be examined to see if the regquest can be handled now. It may be geccsth yde‘
switch the device on or start & mMotor beforelz iranls)fer§ can be begun. Once the

ice i nd ready to go, the actual control can begin. ) )
mceéiﬁ?r(?%ling they dev?ce means issuing a sequence of c_ommanés t(; it. TSE i}l;:—t
er is the place where the command sequence 1s determmecfl, ‘depep ing e
has to be done. After the driver knows wh.wh cox}'zmanés it is ggl_ng“ ] ) co,mﬁ
starts writing them into the controfler’s device regisiers. Afte; Writing eacﬁe:r -
mand to the controller, it may be necessary to check o see 11? the controc g
cepted the command and is prepared to accept the nexi one. This sequex;;ce ; -
ues until ali the commands have been issued. Some controllers can be aigi won &
linked list of commands {in Memory) ax.Id told to read and process them. Y
i er heip from the operating system. _
et K;?elf Lz;igzglmmaﬂgs have been issueé{ one of two situations will ap};:l%gr }li?
many cases the device driver must wait uanl the controil-er does some worh Wev:
so it blocks itself until the interrupt comes 1o to ani‘)lock it. In other case;: o o
ex, the operation finishes without é_elay, so the cin-ver need not blgcks,e L;r:: P
ample of the latter situation, scrolking the screen in chara{:ter‘ m;:: c " qn e
writing a few bytes into the cogt;oﬂe:’i re§11§ters. i\lsc; gzigigamca motio
tire operation can be compicted 1n nan . )

“ Si{r)t t?tfeef[:rrmespcase, the blocked driver will be awakened by the }ntertl;uptl.) eii
the latter case, it will never go to sleep. Either way, aft-er t§:18 oper‘attxlonmasdﬁver
completed, the driver must check for errors. If everything is all {:Eg tk ! :t )
may have data to pass (o the device-independent softwarel(e.g., a blac] 3uaner I.f
Finally, it returns some status information for error reporting baczc 0 zlts : ;ed- i
any other requests are quened, one of ‘tt.zem can now be selected and staried.
nothing is quened, the driver blocks waiting for the next request. Many factors

This simple model is only 2 rough approximation to reality. Many olors
make the code much more complicated. For one 'thmg, an yO device may com
plete while a driver is running, interrupting the driver. Tpe ingerrupt may cam -
device driver to run, In fact, it may cause the cuqen& driver to run. For e::at 11131 . 2
while the network driver is processing an incoming pacllcet,'another pac cedrive{'
arrive. Consequently, drivers have © be reentr-ant, meaning that a ruthlrllo her
has to expect that it wiil be called a second time before the first call has
Piet‘;i. a hot pluggable system, devices can ?)e added or removed whx!i thi ;Zogﬁ;
puter is running. As a result, while a driver is busy reading from @mfe ev;h e,s e
system may inform it that the user has suddenly removed that- device from | gﬂy
tern. Not only must the current VO transfer be aborted without damaging
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kernel data structures, but any pending requests for the now-varished device must
also be gracefully removed from ihe system and their callers given the bad news.
Furthermore, the unexpected addition of new devices may cause the kernel to jug-
gle resources (e.g., interrupt request lines), taking old ones away from the driver
and giving it new ones in their place.

Drivers are not allowed to make system calls, but they often need to interact
with the rest of the kernel. Usnally, calls to certain kernel procedures are permit-
ted. For example, there are usually calls to allocate and deallocate hardwired
pages of memory for use as buffers. Other useful calls are needed to manage the
MMU, timers, the DMA controller, the interrupt controlier, and so on.

533 Device-Independent 1/O Software

Although some of the FO software is device specific, other paris of it are de-
vice independent. The exact boundary between the drivers and the device-inde-
pendent software is system {(and device) dependent, because some functions that
could be done in a device-independent way may actuaily be done in the drivers,

for efficiency or other reasons. The functions shown in Fig. 5-13 are typically
done in the device-independent software.

Uniferm interfacing for device drivers
Buffering )

Error reporting

Adlocating and releasing dedicated devices
Providing a device-independent block size

Figure 5-13. Functions of the device-independent O software.

The basic function of the device-independent software is to perform the 1O
functions that are common to all devices and to provide a uniform interface to the
user-level software, Below we will look at the above issues in more detail.

Uniform Interfacing for Device Drivers

A major issue in an operating system is how to make all YO devices and driv-
ers look more or less the same. If disks, printers, keyboards, and so on, are all in-
terfaced in different ways, every time a new device comes along, the operating
system must be modified for the new device. Having to hack on the operating sys-
tem for each new device is not a good idea.

One aspect of this issue is the interface between the device drivers and the
rest of the operating system. In Fig. 5-14(a) we illustrate a situation in which each
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device driver has a different interface to the operating systern, What this means is
that the driver functions available for the system to call differ from daver to driv-
er. It might also mean that the kernel functions that the driver needs also differ
from driver to driver. Taken together, it means that interfacing each new driver re-

guires a lot of new programming effort.

SATA disk driver 1DE disk driver SCSi disk driver SATA disk driver  1DE disk driver SCSI disk driver
(a) {0}

Figure S.14. (a) Without a standard driver interface. (b} With a standard driver
interface.

I contrast, in Fig. 5-14(b), we show a different design in which all drivers
have the same interface. Now it becomes much easier to plug in a new driver, pro-
viding it conforms to the driver interface. It also means that driver writers know
what is expected of them. In practice, not all devices are absolutely identical, but
usually there are only a small number of device types and even these are generally
almost the same.

The way this works is as follows. For each class of devices, such as disks or
printers, the operating system defines a set of functions that the driver must sup-
ply. For a disk these would naturally inchade read and write, but also furning the
power on and off, formatting, and other disky things. Often the driver contains a
table with pointers into itself for these functions. When the driver is loaded, the
operating sysiem records the address of this table of function pointers, so when it
needs tgerall one of the functions, it can make an indirect call via this table. This
table O%Jnciion pointers defines the interface betweenothe driver and the rest of
the operating system. All devices of a given class {disks, printers, etc.) must obey

it.
Ancther aspect of having a uniform interface is how /O devices are named.
The deggmindependent software takes care of mapping symbolic device names
onto ¢ er driver. For example, in UNEX a device name, such as /dev/disk0,
uniquely specifies the i-node for a special file, and this i-node gontains the magor
device number, which is used to locate the appropriate driv e i-node also
contains the minor device number, which s passed as & parameter to the driver
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in ord i i i
C1 10 specify the unit to be read or written, All devices have major and minor

nlimbers, and ali drll‘ers are aCCﬁSSed Y us O V
lng the ma; T de ce HumbCf 1¢] Select

Buffering

Buffering i i
o r€asﬁ’m?—;n%oxss :;sgnznolfsge, both fg; block and character devices, for a variety
o reaso (jm oo s em, consui‘er a process that wants to read data from a
e oo preeb oele o ;cz t;gy ticnr dealing with the incoming characters is to have
aovivins Dpeess. ysterm call and I?iocic waiting for one character. Bach
T Causes an interrupt. The Interrupt service procedure hands the

User process

User
space

Kernel
space

Modem
()

Figure 5-15, (2) Unbuffered in ing i
< aput. {b} Buffering in user space. (¢} Buffering ;
the kernel followed by copying to user space. (d) Double ht.ltjfferini }m [‘;ifil‘::fe;ﬂ

The ¢ i i i i
o upr?;;?iei‘ :g:h [:hls way <}Jlf doing business is that the user process has to be
comng character. Allowing a i
for every _ -Process to
short runs is inefficient, so this design is not a good oie T Ay times for

Ani . -
R improvement is shown in Fig. 5-15(b). Here the user process provides an

vice i i
wakesroceg}ure Pputs mcoming characters in this buffer untii it fills up. Then it
UPp e user process. This scheme is far more efficient than the -previous
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one, but it has a drawback: what nappens if the buffer is pa%ed out when c_sasztsza;fa;
arri 4 in memory, but if many proc
amives? The buffer could be locke ) _ T
izrck'mﬁ pages in memory, the poot of available pages will shrink and performance
=
i rade. o o
vl ‘3’2% another approach is to create 8 buffer inside the kentel) ar;\;iﬁtllavi y?le };E;?;-
hown in Fig. 5-13(c). en this
¢ handler put the characters there_, as s in Fig 1
E: i;”uli the page with the ser buffer is brought mf,;f_ .neP;ded, and the buffer copied
in one operation. This scheme is far more eTiicient. ]
ther?oweve: peven this scheme suffers from a probiem-i) Whatb hapgg?g ntof{tz)llxirztx;e
iv i ith the nser buffer is being brougit 1
ters that arrive while the page with from he
i i i i lace to put them. A way outis
disk? Since the buffer is full, there 1 10 D R
buffer fills up, but before it has be i
a second kemnel buffer. After the first buffer o D
i Fig. 5-15(d). When the secon
ied. the second one is used, as shown i g ¢ -
;11611131 up, it is available o be copied o the user {zssuming the user has aséced fo; ;fi).
While Ehe second buffer is being copied 10 USEr space, the fgr;.;i one csar;} 3;1 :sce; o ;};
i ke turns: while one 1 g
characters. In this way, the twe buffegs‘ta : : i
?c? \:ser space, the other is accumulating new input. A buffering scheme like this is
4 double buffering. _ . . ]
caucAnether form of buffering that is widely used s t&}e c;rcu}ar buffer. It cfcmfs
sists of a region of memory and two pointers. One_pomter‘pemts to the next dref
word wherz: sew data can be placed. The other pointer pomis to the fhxrs;l wgr afrje
; d yet. In muany situations, the hardw
data in the buffer that has not been Temove ' sit e
i i data (e.g., just arriving from the
advances the first pointer as it adds new . ; e neword)
i he second pointer as it removes and pr
and the operating system advances t A
i the bottom when they hit the top.
_Both pointers wrap around, going back to ‘ _
da{aBuffe:ilzlg is also importasnt ;n output. Consides, for exz.ample, how output is
done 1o the modem without buffering using the model of F“?ﬁf”ls(?' ’I;gcs %S::;
i haracters. The system
ess executes a write system call to ouiput 7 ¢ Vo
p‘:;(;ces at this point. It can block the user until ali the characters have been writ
fen but this could take a very long time over & stow telephone line. It could alse
;eic:,ase the user immediately and do the VO while the user compute}sms:;nzhx;otr;é
i blem: how does the user process
but this leads to an even worse pro o b e
d it can reuse the buffer? The system could g
output has been compieted an e e a8 prone
i i but that style of programming 1 o1
4 signal or software interrupt, yle O1P I an prone
iti the kernel to copy the daia t0
ace conditions. A much better sclution is for
icoerrnel wuffer, analogous in Fig. 5-15(c) {but the other way), and unblock the gagizr
immediately, Now it does not matter when the actual E(é has been compietec.
is f i ¢ it is unblocked.
he user is free 1o reuse the buffer the mstant it .

k eBuffering is a widely used technique, but it has a QOwnmde as well, 1Ir;f datﬁ
et buffered too many times, performance suffers. Cozsszégr, for example, the r’;(;
%vo:k of Fig. 5-16. Here a user does a system call to write to the r;e?woﬁc._ &
kemel copizs the packet to a kernel buffer to allow the user to proceed immediate-

Iy (step 1). Atthis point the user program ¢an reuse the buffer.
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Figure 5-16. Networking may involve many copies of a packer.

‘When the driver is calied, it copies the packet to the controller for output (step
2}. The reason it does not output to the wire directly from kernel memory is that
once a packet transmission has been started, it must continue at a uniform speed.
The driver cannot guarantee that it can get to memory at a uniform speed because
DMA channels and other /O devices may be stealing many cycles. Failing to get
a word on time would ruin the packet. By buffering the packet inside the con-
troller, this problem is avoided.

After the packet has been copied to the controller’s internal buffer, it i3 copied
out onto the network (step 3). Bits amrive at the receiver shorily after being sent,
s0 just after the last bit has been sent, that bit arrives at the receiver, where the
packet has been buffered in the controller. Next the packet is copied to the re-
ceiver’s kernel buffer (step 4). Finally, if is copied to the receiving process’ buff-
er (step 5). Usually, the receiver then sends back an acknowledgement. When the
sender gets the acknowledgernent, it is free to send the next packet. However, it
should be clear that ail this copying is going to slow down the transmission rate
considerably because all the steps must happen sequentially.

Error Reporting

Errors are far more common in the context of I/O than in other contexts.
‘When they occur, the operating system must handle them as best it can. Many er-
rors are device-specific and must be handled by the appropriate driver, but the
framework for error handling is device independent. i

One class of 1O errors is programming errors. These occur when a process
asks for something impossible, such as writing to an input device (keyboard, scan-
ner, mouse, etc.} or reading from an output device (printer, piotier, etc.). Other
errors are providing an invalid buffer address or other parameter, and specifying
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system has onty two disks), and so on.

an inalid devico (e8, O e htforward: just report back an erfor code

The action to take on these errors is straig

N th;r?zg:r. class of errors is the class of actyal VO ermors, for exama[;l;,o :dy;%h:;
write a disk block that has been damaged or trylng o read tg:?ﬂi- ; T e
has been switched off. In these circumstances, it is up © e
wa;at to do. If the deiver does not know what to do, it may pass the pro

device-independent software. ' o et

up t(zwhat this sotgware doss depends on the env1_r0nmenF and té;e;s;i;;:ﬂzf ey
it i i 4 there is an interactive us ) It m

. If it is & simple read eiTor am : \ e

fi(i);ﬂay a dialog ng asking the user what 10 do. The options may include retrying

illi i cess. If
a certain number of times, ignoring the error, oF killing the calling pro

jon i call
there is no user available, probably the only real option is to have the systemn

il with an exror code. _ irical
o However, some errors cannot be handled this way. For exampie, a
E

i cen des-
data structure, such as the 100t directory of fr‘ee block list, may hav: ;:;d r dor
royed. In tili; case, the system may have t© display an error Messag

nate.
Allocating and Releasing Dedicated Devices

Some devices, such as CD-ROM recorders, can be used only by a single proc-

v i 1 Ot 3] X y & ex [ I'equests fOr
y he oper ting system 1o ATNTE
es5 at an gl €n momen[. tis p ji g

d?ViC'e ﬂsag;biﬂdof ?ciptAersg;;; ::;ﬂ ;odtfsrclgfe these requests is 1o require ontf-
VlCs:s1 Stg vaér?omen opené on the special files for devices fiirectiy. Iif th:s d;tevzce is
i?lavaﬂal:?le, the open fails. Closing such a dec'l_xcated dev:«?e tl;egozerzi:uesﬁhg aad

An alternative approach is to have special ‘mechams.m e e ble
releasing dedicated devices. Amn attempt to acquire 2 devmet Bt i e ooner
blocks the catler instead of failing. Blocke_é processeshar; pl; on e Scé o e qumte
or later, the requested device becomes available and the first p

is allowed to acquire it and continue execution.

Device-Independent Block Size

Different disks may have different sector s1zes. Itisup i{to 'th: 2}6}\1;;; ;:?:f:;ls 1
dent software to hide this fact and provide & l_maform picc bi&czk O e
for example, by ireating several sectors as a single logical ho - I e ok
higher layers only deal with abstract devices thffxt gil use the sa?macxt,er e
si;c independent of the physical sector S1Ze. Smularly_, son;e c e it i
deli;er their data one byte at a time (e.g., modems), while others

. den.
larger units (e.g., network interfaces). These differences may also be hidde
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5.3.4 User-Space I/0 Software

Although most of the /O softwaze is within the operating system, a small por-
tion of it consists of libraries linked together with user programs, and even whole
programs running outside the kernel. System cails, including the I/O system calls,
are norinally made by library procedures. When a C program contains the call

count = write(fd, buffer, nbytes);

the library procedure write will be linked with the program and contained in the
binary program present in memory at run time. The collection of all these library
procedures is clearly part of the IO system.

While these procedures do little more than put their parameters in the
appropriate place for the systemn cali, there are other O procedures that actually
do real work. In particular, formatting of input and output is dene by library pro-
cedures. One example from C is pringf, which takes a format string and possibly
some variables as input, builds an ASCII string, and then calls write to output the
string. As an example of printf, consider the statement

print("The square of %3d is %BdAWn", |, i*i);

1t formats a string consisting of the I4-character string “The square of ” followed
by the value i as a 3-character string, then the 4-character string “ is , then i 2 as
six characters, and finally a line feed.

An example of a similar procedure for input is scanf which reads input and
stores it into variables described in a format string using the same syntax as printf.
The standard /O library contains a number of procedures that invelve IO and all
Tun as part of user programs.

Not all user-level /O software consists of library procedures. Another impor-
tant category is the spooling systern. Spooling is a way of dealing with dedicated
YO devices in a multiprogramming system. Consider a typical spooled device: a
printer. Although it would be technically easy w let any user process open the
character special file for the printer, suppose a process opened i and then did
nothing for hours. No other process could print anything,

Instead what is done I$ [0 create a special process, called a daemon, and a
special directory, called a spooling directory. To print a file, a process first gen-
erates the entire file to be printed and puts it in the spooling directory. It is up to
the daemon, which is the only process having permission to use the printer’s spe-
cial file, to print the files in the directory. By protecting the special file against
direct use by users, the problem of having someone keeping it open unnecessarily
ong is eliminated.

Spoeling is not only used for printers. It is also used in other YO situations.
For example, file transfer over a network often uses a network daemon. To send a
file somewhere, a user puts it in a network spooling directory. Later on, the net-
work daemon takes it out and transmits it. One particular use of spooled file
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ransmission is the USENET News s

machines around the world communic

ystern. This network consists of millions of
ating using the Internet. Thousands of news
invokes a news
: ics, To post a news message, the user invok

ups exist on many topics. . o
grgcir)am which accepts the message 10 be posted znd then depo§1ts it in ass;; oo

e ,t for transmmssion to other machines later. The enfire news sy

o direc'gryth crating system

e the o . ) -
;aﬁch?x:tSie 5-17 sgmmazizes the VO system, showing al} the layers and the pnnf::I
o yer. Starting at the bottom, the layers are the hardware, in-

i f each la ;
it)eaﬁnfl;?c‘rti;zsleis device dnivers, device-independent software, and finally the user

PIOCESSEs.
Layer Irg:iy YO functions
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] . .
1 Deviceindepencent Naring, protection, biocking, buffering, allocation
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|
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J Hardware Periorm O operation

L

Figure 5-17. Layess of the U0 system and th

e main functions of each layer.

The arrows in Fig. 5-17 show the flow of control. When a user program tries

ead a block from a file, for example, the operating syst‘em is invoked tc;l ecalfg
ot all. The device-independent software looks for it in the baffe_r cache,
o it calls the device deiver to 1558€ the re-

needed block is not there, : : ‘
:Tlirsr:ptic?'thg ttxliidware to go get it from the disk. The process 18 then blocked until

i tion has been completed. . .
o ﬁe;pféz 1dois);c is finished, the hardware generates an interrupt. The interrupt

1 i i atten-
wandler is run to discover what has happened, that is, which dexgce wa?htz Seen.
tion right now. It then extracts the status from the device and wakes up
ifg prgcess to .ﬁnish off the /O request and let the user process continue.

5.4 DISKS

Now we will begin studying some real VO devices, We will begin l;’itl; :éﬂ;sé
which are conceptually simple, yet very important. After that we wiil €

clocks, keyboards, and displays.
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5.4.1 Disk Hardware

Disks come in a vatiety of types. The most common ones are the magnetic
disks (hard disks and floppy disks). They are characterized by the fact that reads
and writes are equally fast, which makes them ideal as secondary memory {pag-
ing, file systems, etc.). Arrays of these disks are sometimes used to provide high-
ly reliable storage. For distribution of programs, data, and movies, various kinds
of optical disks (CD-ROMs, CD-Recordables, and DVDs) are also important. In
the following sections we will first describe the hardware and then the software
for these devices.

Magnetic Disks

Magpetic disks are organized into cylinders, each one containing as many
tracks as there are heads stacked vertically. The tracks are divided into sectors,
with the number of sectors around the circumference typically being & to 32 on
floppy disks, and up to several hundred on hard disks. The number of heads varies
from 1 to about 16.

Older disks have little electronics and just deliver a simple serial bit stream.
On these disks, the controller does most of the work. On other disks, in particular,
IDE (Integrated Drive Electronics) and SATA (Serial ATA) disks; the disk
drive itself contains a microcontroller that does considerable work and allows the
real controller to issue a set of higher-level commands. The controller often does
track caching, bad block remapping, and much more.

A device feature that has important implications for the disk driver is the pos-
sibility of a controller doing seeks on two or more drives at the same time. These
are known as overlapped seeks. While the controller and software are waiting
for a seek to complete on one drive, the controller can initiate a seek on another
drive. Many controllers can also read or write on one drive while seeking on one
or more other drives, but a floppy disk controller cannot read or write on two
drives at the same time. (Reading or writing requires the controller to move bits
on a ricrosecond Hme scale, so one transfer uses up most of its computing pow-
er.) The situation is different for hard disks with integrated controllers, and in a
system: with more than one of these hard drives they can operate simultanecusly,
at least to the extent of transferring between the disk and the controiler’s buffer
memory. Only one transfer between the controller and the main memory is pos-
sibie at once, however. The ability to perform two or more operations at the same
time can reduce the average access time considerably.

Figure 5-18 compares parameters of the standard storagé medium for the orig-
inal IBM PC with parameters of a disk made 20 years later to show how much
disks changed in 20 years. It is interesting to note that not all parameters have
improved as much. Average seek time is seven times better than it was, transfer
rate is 1300 times better, while capacity Is up by a factor of 50,000. This pattern
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has to do with relatively gradual improvements in the moving parts, but mach
higher bit densities on the recording surfaces,

Parameter iBM 360-KB floppy disk] WD 18300 hard disk
Number of cylinders 40 10601
Tracks per cylinder 2 12
Sectors per track <] 281 (avyg)
Sectors per disk 720 35742000
Bytes per sector 512 512
Disk capacity 360 KB 18.3GB
Seek lime {adjacent cyfinders) 6 msec 0.8 msec
Seek time (average case} 77 msec 4.9 msac
Fotation time 200 msec 8.33 msec
Motor stopfstart time 250 msec 20 sec
Time fo transfer 1 sector 22 msec 17 psec

¥igure 5-18. Disk parameters for the original TBM PC 360-K3B floppy disk and
a Western Digitai WD 18300 hard disk.

One thing to be aware of in looking at the specifications of modern hard disks
is that the geometry specified, and used by the driver software, is almost always
different from the physical format. On old disks, the number of sectors per track
was the same for all cylinders. Modern disks are divided into zones with more
sectors on the outer zones than the inner ones. Fig. 5-19(a) illustrates a tiny disk
with two zones. The outer zone has 32 sectors per track; the inner one has 16 sec-
tors per track. A real disk, such as the WD 18300, typically has 16 or more zones,
with the number of sectors increasing by about 4% per zone as one goes out from
the innermost zone to the outermost zone.

To hide the details of how many sectors each track has, most modem disks
have a virtual geometry that is presented to the operating system. The software is
instructed to act as though there are x cylinders, y heads, and z sectors per track.
The contzoller then remaps a request for (x, y, z) onto the real cylinder, head, and
sector. A possible virtual geometry for the physical disk of Fig. 5-19(a) is shown
in Fig. 5-19(b}. In both cases the disk bas 192 sectors, only the published arrange-
ment is different than the real one.

For PCs, the maximum values for these three parameters are often (65533, 16,
and 63), due to the need to be backward compatible with the limitations of the
original IBM PC. On this machine, 16-, 4-, and 6-bit fields were used to specify
these numbers, with cylinders and sectors numbered starting at 1 and heads num-
bered starting at 0. With these parameters and 512 bytes per sector, the largest
possible disk is 31.5 GB. To get around this limit, 2ll modem disks now support 2

of 94

SEC. 54 DISKS 361

Figure 5-19. (a) Physical geometry of a2 di j
’ a disk i
virtual geometry for this disk. ! il o zones. (b) A possibie

system called logical block addressing, | i i f
: ‘ 2, in which disk sectors are i
consecutively starting at 0, without regard to the disk geometry st mmbered

RAID

CPU performance has been increasin
roughly denbh'ng every 1_8 months. Not so with digk performance. In the 19705

come much larger over time.
CPUAS \,rvfe have seen, paraflel processing is being used more and more o speed u
o m?gehto;nzngg. dItdhas occu;red to various people over the years that parallefl)
n Q¢ 1dea t00. In their 1988 paper, Patterson e al i
specific disk organizations that could be o i K porbmanee.
=Cific used to improve disk perfo
Teliability, or both (Patterson et al., 1988). These ideas were quicklg adoglt}:cril C;‘:};

S;ﬁlmte: ;%eﬁ%g ;:pRe;im:fIanthArray of Inexpensive Disks, but industry redefined
‘ enden " rather than “Inexpensive” (maybe s0 the
r;lore?). Since a villain was also needed (as in RISC versus CISE(? CZI?: ZEL]IZI%;
atterson), the bad guy here was the SLED {Single Large Expensive, Disk)
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; 1 any system admin:
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other words, a
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The next option, RAID level 1, shown in Fig. 3-20(b), is a true RAID. It
duplicates all the disks, so there are four primary disks and four backup disks. On
a write, every strip is written twice. On a read, either copy can be used, distribut-
ing the load over more drives. Consequently, write performance is no better than
for a single drive, but read performance can be up to twice as good. Fault 10ler-
ance is excellent: if a drive crashes, the copy is simply used instead. Recovery
consists of sirnply installing a new drive and copying the entire backup drive to it.

Unlike levels (0 and 1, which work with stzips of sectors, RAID level 2 works
on a word basis, possibly even a byte basis. Imagine splitting each byte of the sin-
gle virtual disk into a pair of 4-bit nibbles, then adding a Hamming code to each
one to form a 7-bit word, of which bits I, 2, and 4 were parity bits. Further ima-
gine that the seven drives of Fig. 5-20{c) were synchronized in terms of atm posi-
tion and rotational position. Then it would be possible to write the 7-bit Hamming
coded word over the seven drives, one bit per drive.

The Thinking Machines CM-2 computer used this scheme, taking 32-bit data
words and adding 6 parity bits to form a 38-bit Hamming word, plus an exira bit
for word parity, and spread each word over 39 disk drives. The total thronghpat
was mmense, becange in one sector time it could write 32 sectors worth of data.
Also, losing one drive did not cause problems, because loss of a drive amounted
to losing 1 bit in each 39-bit word read, something the Hamming code could hand-
le on the fly.

On the down side, this scheme requires all the drives to be rotationally syn-
chronized, and it only makes sense with a substantial number of drives (even with
32 data drives and 6 parity drives, the overhead is 199%). It also asks a lot of the
controller, since it must do a Hamming checksum every bit time.

RATID level 3 15 a simplified version of RAID level 2. It is illustrated in
Fig. 5-20{d). Here a single parity bit is computed for each data word and written
to a parity drive. As in RAID Jevel 2, the drives must be exactly synchronized,
since individual data words are spread over multipie drives.

At first thought, it might appear that a single parity bit gives only error detec-
tion, ot error correction. For the case of random undetected errors, this observa-
tion is true. However, for the case of a drive crashing, it provides full 1-bit emror
correction since the position of the bad bit is known. If a drive crashes, the con-
troller just pretends that all its bits are 0s. If a word has a parity error, the bit from
the dead drive must have been a 1, so it is corrected. Although both RAID levels 2
and 3 offer very high data rates, the number of separate I/O requests per second
they can handle is no better than for a single drive.

RAID levels 4 and 5 work with strips again, not individual -words with parity,
and do not require synchronized drives. RAID level 4 {see Fig. 5-20(e)] is like
RAID level 0, with a strip-for-strip parity written onto an extra drive. For ex-
ample, if each strip is k bytes long, all the staps are EXCLUSIVE ORed together,

resulting in a parity steip & bytes long. ¥ a drive crashes, the lost bytes can be
recomputed from the parity drive by reading the entire set of drives.
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Figure 5.20. RAID leveis O through 5. Backup and parity drives are shown shaded.
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This design protects against the loss of a drive but performs poorty for smail
updates. If one sector is changed, it is necessary to read all the drives in order to
reczlculate the parity, which must then be rewritten. Alternatively, it can read the
old user data and the old parity data and recompute the new parity from them,
Even with this optimization, a small Update requires two reads and two writes.

As a consequence of the heavy load on the parity drive, it may become 2
bottleneck. This botieneck is eliminated in RAID level 5 by distributing the par-
ity bits uniformly over all the drives, round robip fashion, as shown in Fyg. 5-
20(f). However, in the event of a drive crash, reconstructing the contents of the
failed drive is a complex process.

CD-ROMs

In recent years, optical (as opposed to magnetic) disks have become available,
They have much higher recording densities than conventional magnetic disks.

potentially enormous capacity, optical disks have been the subject of a great deal
of research and have gone through an incredibly rapid evolution.

First-generation optical disks were invented by the Dutch electronics
conglomerate Philips for helding movies. They were 30 om across and 'marketed
under the name LaserVision, but they did not catch on, except in Japan,

In 1980, Philips, together with Sony, developed the CD {Compact Dise),
which rapidly replaced the 33 1/3-RPM vinyl record for music {except among

and 1.2 mm thick, with a 15-mm hole in the middle. The audio CD was the first
successful mass market digital Storage medium. They are supposed to last 100
years. Please check back in 2080 for an update on how well the first batch did.
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land. This is how the player telis a pit from a land. Although it might seem sim-

pler to use a pit t0 record a 0 and a land © record a 1, it is more reliable o use a

pit/land or 1and/pit transition for a 1 and its absence as & 0, so this scheme 18 used.

The pits and lands are written in a single continuous spiral T:ﬁaﬂing;;.e;r aﬁ;z
i i d the edge. The spir
te and working out a distance of 32 mm towar :
g.; 288 revolutions around the disk (about 600 per mm). If unwound, it would be

5.6 kum long, The spiral is itlustrated in Fig. 5-21.

Spiral groove

2K block of
user data

Tigure 5-21. Recording structee of 2 compact disc or CD-ROM.
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to stream by at .
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what are now calied CD-ROMs (Compact Disc - Read Only Memory). To pig-
gyback on the by-then already substantial andio CD market, CD-ROMs were to
be the same physical size as audio CDs, mechanically and optically compatible
with them, and produced using the same polycarbonate Injection molding ma-
chines. The consequences of this decision were not only that slow variable-speed
motors were required, but also that the manufacturing cost of a CD-ROM would
be well under one dollar in moderate volume.

What the Yellow Book defined was the formatting of the computer data. It
also improved the error-correcting abilities of the system, an essertial step be-
cause although rnusic lovers do not mind losing a bit hiere and there, computer
lovers tend to be Very Picky about that. The basic format of a CD-ROM consists
of encoding every byte in a 14-bit symbol, which is enough to Hamming encode
an 8-bit byte with 2 bits left over. In fact, a more powerful encoding system is
used. The 14-to-8 mapping for reading is done in hardware by table lockup.

At the next level up, a group of 42 consecutive symbols forms a 588-bit
frame, Each frame bolds 192 data bits {24 bytes). The remaining 396 bits are
used for ervor correction and control. Of these, 252 are the error-correction bits in
the 14-bit symbols and 144 are carried in the 8-bit symbol payloads. So far, this
scheme is identical for audio CDs and CD-ROMs.

What the Yellow Book adds is the grouping of 98 frames into a CD-ROM
sector, as shown in Fig. 5-22. Every CD-ROM sector begins withra 16-byte
preamble, the first 12 of which are GOFFFFFFFFFFFFFFFFFEFFO0 (hexade-
cimal), to allow the player to recognize the start of a CD-ROM sector. The next 3
bytes contain the sector number, needed because seeking or a CD-ROM with its
single data spiral is much more difficult than on a magnetic disk with its uniform
concentric tracks. To seek, the software in the drive calculates approximately
where to go, moves the head there, and then starts hunting around for a preamble
to see how good its guess was, The last byte of the preamble is the mode.

DO - e Each symbot holds 8 data bits and 6 error-correction bits

{42 Symbois make 1 frarme of 14 X 42 = 588 bits
Each frame contains 192

e o Tk e e v 3 £ £ 21 03 £ 03 53 data bits {24 byles) and
386 error-correction bits

Preambie 98 Frames make 1 sector
; Mode 1
i i Data | ’ secior
(2352 bytes)
Bytes 16 2048 288 ..

Figure 5-22. Logical data layoet on a CD-ROM.

The Yellow Book defines two modes. Mode 1 uses the layout of Fig. 5-22,
with a 16-byte preamble, 2048 data bytes, and a 288-byte error-correcting code (a
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crossinterleaved Reed-Solomon code). Mode 2 combines the data and ECC fields
into a 2336-byte data field for those applications that do not need (or cannot
afford the time to perform) error comection, such as audic and video. Note that to
provide excellent reliability, three separate eITOT-COITECting schemes are used:
within a symbol, within a frame, and within a CD-ROM sector. Single-bit errors
are corrected at the lowest level, short burst errors are corrected at the frame level,
and any residual errors are caught at the sector level. The price paid for this
reliability is that it takes 98 frames of 588 bits (7203 bytes) to cary a single
2048-byie payload, an efficiency of only 28%.

Single-speed CD-ROM drives operate at 75 sectorsfsec, which gives a data
rate of 153,600 bytes/sec in mode 1 and 175,200 bytesfsec in mode 2. Double-
speed drives are twice as fast, and s0 on up to the highest speed. Thus a 40x drive
can deliver data at a rate of 40 x 153,600 bytes/sec, assuming that the drive inter-
face, bus, and operating systern can a1l handle this data rate. A standard audio CD
has room for 74 minutes of music, which, if used for mode 1 data, gives a capa-
city of 681,984,000 bytes. This figure is usuaily reported as 650 MEB because 1
MB is 22 bytes (1,048,576 bytes), not 1,000,000 bytes.

Note that even a 32x CD-ROM drive (4,915,200 bytesfsec) is no match for a
fast SCSI-2 magnetic disk drive at 10 MB/sec, even though many CD-ROM
drives use the SCSI interface (IDE CD-ROM drives also exist). When you realize
that the seek time is usually several hundred milliseconds, it should be clear that
CD-ROM drives are not in the same performance category as magnetic disk
drives, despite their large capacity. :

Tn 1986, Philips struck again with the Green Book, adding graphics and the
ability to interleave audio, video, and data in the same sector, a feature essential
for multimedia CD-ROMSs.

The last piece of the CD-ROM puzzle is the file system. To make it possible
to use the same CD-ROM on different computers, agreement was needed on CD-
ROM file systems. To get this agreement, representatives of many computer
companies met at Lake Tahoe in the High Sierras on the California-Nevada bourt-

dary and devised a file system that they called High Sierra. Ii later evolved into
an International Standard (IS 9660). It has three levels, Level 1 uses file names of
up to 8 characters optionally followed by an extension of up to 3 chazacters (the
MS.DOS file naming convention). File names may contain only upper case
letters, digits, and the underscore. Directories may be nested up to eight deep, but
diectory names may Dot contain extensions. Level 1 requires all files to be con-
tignous, which is not & problem on 2 medium written only once. Any CD-ROM
conformant to IS 9660 level 1 can be tead using MS-DOS, an Apple computer, &
UNIX computer, or just about any other computer. CD-ROM publishers regard
this property as being 2 big plus.

1S 9660 level 2 allows names up to 32 characters, and level 3 allows noncon-
tiguous files. The Rock Ridge extensions (whimsically named after the town in
the Gene Wilder film Blazing Saddles) allow very long names (for UNIX), UlDs,
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GIDs, and symbolic links, but CD-ROM i
. 3 - 3 Dot i
eadbls o ol et conforming to level I will not be
CD-ROMs have become extremel ishi
( ¥ popular for publishing games i

:gfylopedms, aéi}a;e;ib?:&d reference works of all kinds. Most co;m%ercial’ s;(;}?\ilsfe’

¥ comes or CD- . Their combination of lar i

v . ge capacity and I -
turing cost makes them well suited to innumerable applicaFt’ionsy o magufae

CD-Recordables

Initially, the equipment needed to produce 2 master CD-ROM {or audio CD
for that matter) was exiremely expensive. But as usual in the computer iniio t ’
nothing stays expensive for long. By the mid 1990s, CD recorders 1o bivgaru fh;y
a CD player were a common peripheral available in most computer storzs. Thes::
Szzigezsmme}re stifl ;izf;';are:;t from magnetic disks because once written, CD-ROMs

e erased. Nevertheless, they quickly found a ni [ i
for largr:: hard disks and also allowed ing[ividugis or sta?tg;cggz;;:n?:g lzggnrzgd;um
S;r:; :;exr‘ olwré Is)mall-n_m (.L‘D-ROMS or make masters for delivery to highwvolllu:;t;
Reegrdx:;?es). duplication plapts, These drives are known as CD-Rs {(CD-
RO\I:Ihysxcaﬂy, CD-Rs start thth 120-mm polycarbonate blanks that are like CD-
ROMs, except that they contain a 0.6-mm wide groove to guide the lase? for wri
ing. The groove hfas a sinusoidal excursion of 0.3 mm at a frequency of exac?lt-
22.0_5 kHz to prov_lde continuous feedback so the rotation speed can be accurat ly
monitored and adjusted if need be. CD-Rs look like regular CD-ROMs cept
that they are gold colored o top instead of silver colored. The cold c:oi-:;i~ comes
ffom the use o? real gold instead of aluminum for the rsﬂecsic\:fe fayer éOI;l;S
silver CDs wh_rch have physical depressions on them, on CD-Rs the c—iiff: ing
reflectivity of pits and lands has to be simulated. This is ’done by adding a la Ungf
dye betwegn the polycarbonate and the reflective gold layer, as showﬁ in gcr g
_23. Two kg:ds of dye are used: cyanine, which is green, and ﬁmﬁocyanine \:xilck;
15 a yellowish orange. Chemists can argue endlessly about which one is’ better
These dyes are similar to those used in photography, which explains why E ‘
KodIak gnd Fuji are major manufacturers of blank CD-Rs s

n its initial state, the dye layer is transparent and' lets the laser lig

Ezzug{})l ‘:;-d( éetllgcl;:l ‘?g T}l‘;hgoicihla%er. To write, the CD-R laser is rrurﬁzigtu;afs
ghr -16 mW). en the beam hits a spot of dye, it heats up, breaki

chemjcal bond. This change to the molecular steucture cre " hen
read back (at 0.5 mW), the photodetector sees a differenceatt:“?gif l:thc?;;th;n
yvyere the dye has been hit and transparent areas where it is intact. This differe? X
is interpreted as the difference between pits and.lands, even W[’lf:l:i read back ol
regular CD-ROM reader or even on an audio CD piayc,r. ons

No new kind of CD could hold up its head with pride without a colored book
$0 CD-R has the Orange Book, published in 1989. This document defines CD?R,
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Figure 5-23. Cross section of 2 CPH-R disk and laser (not to scale}: A s%lver
CD-ROM has a similar structure, except without the dye layer and with a pitted
aluminum layer instead of a gold layes.

and also a new format, CD-ROM XA, which allows CD-Rs to be written incre~
mentally, a few sectors today, a few tomomow, and a few next month. A group of
consecutive sectors written at once is called a CD-ROM track. '

One of the first uses of CD-R was for the Kodak PhotoCD. In this system the
customer brings a roil of exposed film and his old PhotoCD to the phioto processor
and gets back the same PhotoCD with the new pictures added _after 'the old ones.
The new batch, which is created by scanning in the negatives, is written onto the
PhotoCD as a separate CD-ROM track. Incremental writing was nge_ded because
when this product was introduced, the CD-R blanks were too expensive to provide
a new one for every film roll.

However, incremental writing creates a new problem. Prior to the Orange
Book, all CD-ROMs had a single VTOC (Volume Table of Conten%s) at the
start. That scheme does not work with incremental (i.e., multitrack) writes. The
Orange Book’s solution is to give each CD-ROM track its own \_ZTOC. The files
listed in the VTOC can include some or all of the files from previous tracks. After
the CD-R is inserted into the drive, the operating system searches through all the
CD.ROM tracks fo locate the most recent VTOC, which gives the current .?tatﬂs
of the disk. By including some, but not all, of the files from previous tracks in the
current VTOC, it is possible to give the illusion that files have been deleted.
Tracks can be grouped into sessions, leading to mu!iisgssion CD-ROMs, Stan-
dard audio CD players cannot handle multisession CDs since they expect a single
VTOC at the start. Some computer applications car handle them, though.
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CD-R makes it possible for individuals and companies to easily copy CD-
ROMs (and audio CDs), generally In violation of the publisher’s copyright. Sever-
a} schemes have been devised to make such piracy harder and to make it difficult
to read a CD-ROM using anything other than the publisher’s software. One of
them involves recording all the file lengths on the CD-ROM as mualtigigabyte,
thwarting any attempts to copy the files to hard disk using standard copying soft-
ware. The true lengths are embedded in the publisher’s software or hidden (pos-
sibly encrypted) on the CD-ROM in an unexpected place. Another scheme uses
intenticnally incorrect ECCs in selected sectors, in the expectation that CD copy-
ing software will “fix” the errors. The application software checks the ECCs it-
self, refusing to work if they are comrect. Using nonstandard gaps between the
tracks and other physical “defects” are also possibilitics.

CD-Rewritables

Although people are used to other write-once media such as paper and photo-
graphic film, there is a demand for a rewritable CD-ROM. One technology now
available is CD-RW (CD-ReWritable), which uses the same size media as CD-
R. However, instead of cyanine or pthalocyanine dye, CR-RW uses an alloy of
silver, indium, aatinony, and tellurium for the recording layer. This alloy has two
stable states: crystalline and amorphous, with different reflectivities. .

CD-RW drives use lasers with three different powers. At high power, the
laser melts the alloy, converting it from the high-reflectivity crystalline state to
the low-reflectivity amorphous state to represent a pit. At medium power, the
alloy melts and reforms in its natural crystalline state to become a land again. At
low power, the state of the material is sensed {for reading), but no phase transition
CCCurs.

The reason CD-RW has not replaced CD-R is that the CD-RW blanks are
more expensive than the CR-R blanks., Also, for applications consisting of back-
ing up hard disks, the fact that once written, a CD-R cannot be accidentally erased
is a big plus.

DVD

The basic CD/CD-ROM format has been around since 1980. The techrology
has improved since then, so higher-capacity optical disks are now economically
feasible and there is great demand for them. Hellywood would dearly love to
eliminate analog video tapes in favor of digital disks, since disks have a higher
quality, are cheaper to manufacture, last longer, take up less shelf space in video
stores, and do not have to be rewound. The consumer electronics companies are
always looking for a new blockbuster product, and many computer companies
want 10 add multimedia features to their software.

This combination of technology and demand by three immensely rich and
powerful industries led to DVD, originally an acronym for Digital Video Disk,
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but now officially Digital Versatile Disk. DVDs use the same general design as
CDs, with 120-mm injection-molded polycarbonate disks containing pits and
tands that are illuminated by a laser diode and read by a photodetector. What is

that people will be curious as to what is down th
: ere). The structure of th
double-sided, dual-layer disk is illustrated in Fig. 5-24. e

new is the use of
0.8 mm Polycarbonate substrate 1 . i
1. Smaller pits (0.4 microns versus 0.8 micrens for CDs). Single-sided 4 i‘::glreﬂecuve
. . . , di s
2. A tighter spiral (0.74 microns between tracks versus 1.6 microns for CDs). sk
= L
. . «~ teflector
3. A red laser (at 0.65 microns versus 0.78 microns for CDs). Adhesive layer
Together, these improvements raise the capacity sevenfold, to 4.7 GB. A 1xDVD 0.6 mm : "1™~ Alumingm
drive operates at 1.4 MB/sec (versus 150 KB/sec for CDs). Unfortunately, the Single-sided ¢ reflector
switch to the red lasers used in supermarkets means that DVD players require a disk ™~ Semireflective
second laser or fancy conversion optics to be able to read existing CDs and CD- Polycarbonate substrate 2 tayer

ROMSs. But with the drop in price of lasers, most of them now ggve both of them
50 they can read both kinds of media.

Is 47 GB enough? Maybe. Using MPEG-2 compression {standardized in IS
13346), a 4.7 GB DVD disk can hold 133 minutes of full-screen, full-motion
video at high resolution (720 x 480), as well as soundtracks in up to eight lan-
guages and subtitles in 32 more. About 92% of all the movies Hollywood has ever
made are under 133 minates. Nevertheless, some applications such as muitimedia
games or reference works may need more, and Hollywood would like to put roul-
tiple movies on the same disk, so four formats have been defined:

1. Single-sided, single-layer (4.7 GB).
2. Single-sided, dual-layer (8.5 GB).
3. Double-sided, single-layer (9.4 GB).
4. Double-sided, dual-layer (17 GB).

Why so many formats? In a word: politics. Philips and Sony wanted single-sided,
dual-layer disks for the high capacity version, but Toshiba and Time Warmer
wanted double-sided, single-layer disks. Philips and Sony did not think people
would be willing to turn the disks over, and Time Warner did not believe putiing
two layers on one side could be made to work. The compromise: all combinations,
hut the market will determine which ones survive.

The dual layering technology has a reflective layer at the bottom, topped with
a semjreflective layer. Depending on where the laser is focused, it bounces off
one layer or the other. The lower layer needs slightly larger pits and lands to be
read relisbly, so its capacity is slightly smaller than the upper layer’s.

Double-sided disks are made by taking iwo 0.6-mm single-sided disks and
gluing them together back to back. To make the thickniesses of all versions the
same, a single-sided disk consists of a 0.6-mm disk bonded to a blank substrate
{or perhaps in the fiture, one consisting of 133 minutes of advertising, in the hope
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Figure 5-24. A double-sided, dual-layer DV disk.

DVD was devised by a consortium of 10 consumer electronics companies
seven of ahex_n Japanese, in close cooperation with the major Hollywood studio:;
(_some of which are owned by the Japanese electronics companies in the consor-
n_um'). The computer and telecommunications industries were not invited to the
picnic, and the resulting focus was on using DVD for movie rental and sales
shows. For example, standard features include real-time skipping of disty scenes
(to allow parents to turn a film rated NC17 into one safe for toddl?:rs), six-channel
sound, -and support for Pan-and-Scan. The Jatter feature atlows the DVD player to
d}fnamlcefslly decide how to crop the left and right edges off movies (whose
ng)th:he;ght ratio is 3:2) to fit on current television sets (whose aspect ratio is
' A‘nothef item the computer industry probably would not have thought of is an
fntentlonal incompatibility between disks intended for the United State:z and disks
tntended fgr Europe and yet other standards for other continents. Hellywood de-
manded this “feature’” because new films are always released first in the United
State_s and ther shipped to Europe when the videos come out in the United States
The idea was to make sure European video stores could not buy videos in the U S.
o0 early, theyeby reducing new movies” Buropean theater sales. If Hoilywo;)(i
?ad been running the computer industry, we would have had 3.5-inch floppy disks
in the United States and 9-cm floppy disks in Europe.

The folks_ who ‘brought you single/double-sided DVDs and single/double-layer
pVD§ are at it again. The next generation also lacks a single standard due to polit-
kcal bickering by the industry players. One of the new devices is Blu-ray, which
uses a 0.405 micron (blue) laser to pack 25 GB onto a single-layer disk ;Lnd 50-
GB onio a double-layer disk. The other one is HD DVD, which uses the same
biue laser 'but has a capacity of only 15 GB (single layer) and 30 GB (double
layer). This format war has split the movie studios, the computer manufacturers,
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and the software companies. As a result of the lack‘ of standardization, this gen-
eration is taking off rather slowly as consumers wait for Fhe dust to_settle to §eg
which format will win. This stupidity on the part of the industry bﬂng§ to min
George Santayana's famous remark: “Those who cannot learn from history are
doomed to repeat it.”’

5.4.2 Disk Formatting

A hard disk consists of a stack of aluminum, alloy, or glass platters 5}.12511:1;1;
or 3.5 inch in diameter (or even smaller on notebook computers). 'Oil eac p_at i
is deposited a thin magnetizable metal oxide. After manufacturing, there is n
information whatsoever on the disk. )

Before the disk can be used, each platter must receive a low-level fgrmat
done by software. The format consists of a series of concentric tracks, c-:ac:f cox;—t
taining some number of sectors, with short gaps between the sectors. The form:
of a sector is shown in Fig. 5-25.

I ECCJ

! Preambie I Data

Figure 5-25. A disk sector.

The preamble starts with a certain bit pattern that allows the hardwa.r% to
recognize the start of the sector. It also contains the cyl}mie‘r and SECLOT BUDERS
and some other information. The size of the data portion is determined by ﬁ{z
low-level formatting program. Most disks use 512-byte sectors. The ECC fie
contains redundant information that can be used to recover from read egors. "I"he
size and content of this field varies from manufacturer to manufactfxrer, dep'enq;pg
on how much disk space the designer is willing to give up for higher zehabllgi_y
and how complex an ECC code the controller can handle. A 16-byte ECC fie 11s
not unusual. Furthermore, all hard disks have some nurnber of spare sectors ajlo-
cated to be used to replace sectors with a manufacturing defect. ‘ wh

The position of sector 0 on each track is offset from the previous track when
the low-level format is laid down. This offset, cailed cylinder 'skew, is dgne to
improve performance. The idea is to allow the disk to read multiple tracicsi) in 0::
continuous operation without losing data. The nature of the problem can ta:t:,3 5
by Iooking at Fig. 5-19(a). Suppose that a request needs 15 sectors starting at sec-
tor 0 on the innermost track. Reading the fisst 16 sectors takes one disk rotation,
but a seek is needed to move outward one track to get the 17th sector. By Fhe time
the hiead has moved one track, sector 0 has rotated past the head so an entire rota-
tion is needed until it comes by again. That problem is eliminated by offsetting the
sectors as shown in Fig, 5-26.
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Direction of disk
rolation

Figure 5-26. An illustration of eylinder skew.

The amount of cylinder skew depends on the drve geometry. For example, a
10,000-RPM drive rotates in 6 msec. If a track contains 200 $eCtors, a new Sector
passes under the head every 20 Usec. If the rack-to-track seek time is 800 Lsec,
40 sectors will pass by duting the seek, so the cylinder skew should be 40 sectors,
rather than the three sectors shown in Fig. 5-26. It is worth mentioning that
switching between heads also takes a finite time, so there is head skew as well as
cylinder skew, but head skew is not very large.

As a result of the low-level formatiing, disk capacity is reduced, depending on
the sizes of the preamble, intersector gap, and ECC, as well as the number of
spare sectors reserved. Often the formatied capacity is 20% lower than the unfor-
matted capacity. The spare sectors do not count toward the formatted capacity, so
all disks of a given type have exactly the same capacity when shipped, indepen-
dent of how many bad sectors they actually have (if the number of bad sectors
exceeds the number of spares, the drive will be rejected and not shipped).

There is considerable confusion about disk capacity betause some manufact-
urers advertised the unformatied capacity to make their drives look larger than
they really are. For example, consider a drive whose unformatted capacity is
200 x 10° bytes. This might be sold as a 200-GB disk. However, after formatting,
perhaps only 170 x 10% bytes are available for data. To add to the confusion, the
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s capacity as 158 GB, not 170 GB be-

operating system will probably report thi 3 (7541 824) byes, not

cause software considers a memory of 1 GB to be

? 0) bytes. .
0 '{1“}‘(;01212’2?3 (t)h?gﬂg vforsc, in the world of data communications, 1 Gbps means

9 -
1,000,000,000 bits/sec because the prefix giga rea!ly does mean 11(; cfgfgl;;zsetgé
is’ 1000 meters, not 1024 mete:sfi aftggoalgﬁ Zﬁ;yz\%xt};esslzgggli
kﬂo,l;g;iz’tﬁza;las?atg;cg e;élrfon’nanc’e. If 4 10,000-RPM disk has 300 secto(fls(

er track of 512 bytes each, it takes 6 msec to read the 153,_600 bytes (.:});11 ea {t;ago
?or 4 data rate of 25,600,000 biytes/sec of 244 MB/sec. itis n?)ft'?osss;t: le t0 &0
faster than this, no matter what kind of interface is present, even 171t a

face:tci@aﬂ?gjszzigz i?)i?sfﬁf)fﬁiy at this rate ﬂr}equires sz;gfi-&?iieih;f ;22 1(;22;—1
wroller. Consider, for example, & controil.er wil t;;n;—f et D et scctor
%j;re: £603§1?;;§ ;giéegaglé\%%éoi];ffizgz:,e;m data{ ;1;2:;:; gﬁf;e;r;c: ht;) };;Zg;.
I\}?"l\?;lgrtyﬁe‘z[ggz t?i;;{riziierislsc;ﬁ;gtzit?: ::to};irgflz; '»;vlill ‘r;ja;/e to wait almost an
e o mated by numbering the sctors i an ineleaed
. When'fcmalt'ﬁﬁg thieﬁsi;eré? ilfli:’iﬁ(z%{gi i’ﬁ: stis suiilugale interleav-
?r?;e\ilhi(éin;iﬁzg t(;lyfr: Ic?o:trrosller some hreathing space between consecutive sectors

S A
Y Y

{c)
@) (b}

Figure 5-27. {a) No interleaving. (b) Single interleaving. (¢} Double interfeaving.

If the copying process is very stow, the double interieavin'gt, ;f fii; tﬁii(tgz
lier has a buffer of only one sector, 10 d0&

sy be needer ing from he i is done by the controller, the
whether the copying from the buffer to main memoty . b e
ip; it sti . To avoid the need for inter

in CPU, or a DMA chip; it still takes some time. -
I;;Z:Eng the controller should be able to buffer an entire track. Many modezn cOn

n do this. o B '
tmﬁi’%gf low-level formatting is completed, the disk is partitioned. Logmalky,
each partition is like a separate disk. Partitions are needed Lo allow multiple oper-
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ating systems to coexist. Also, in some cases, a partition can be used for swap-
ping. On the Pentium and most other computers, sector () contains the master
boot record, which contains some boot code plus the partition table at the end.
The partition table gives the starting sector and size of each partition. On the Pen-
tium, the partition table has room for four partitions. If all of them are for Win-
dows, they will be called C:, D:, E:, and F: and treated as separate drives. If three
of them are for Windows and one is for UNIX, then Windows will calil its parti-
tions C:, D, and E:. The first CD-ROM will then be F:. To be able to boot from
the hard disk, one partition rnust be marked as active in the partition table.

The final step in preparing a disk for use is to perform a high-level format of
each partition (separately}. This operation lays down a boot block, the free stor-
age administration (free list or bitmap), root directory, and an empty file system.
It also puts & code in the partition table entry felling which file system is used in
the partition because many operating systems support multiple incompatible file
systems (for historical reasons). At this point the system can be booted.

When the power is turned on, the BIOS runs initially and then reads in the
master boot record and jumps to it. This boot program then checks to see which
partition is active. Then it reads in the boot sector from that partition and runs it.
The boot sector contains & small program that general loads a larger bootstrap
loader that searches the file system to find the operating system kernel. That pro-
gram is loaded into memory and executed. .

5.4.3 Disk Arm Scheduling Algorithms

In this section we will look at some issues related to disk drivers in general,
First, consider how long it takes to read or write a disk block. The time required is
determined by three factors:

1. Seck time (the time to move the arm to the proper cylinder).

2. Rotationa] delay (the time for the proper sector to rotate under the head).
3. Actual data transfer time.

For most disks, the seck time dominates the other two times, so reducing the mean
seek time can improve system performance sabstantially.

If the disk driver accepts requests one at 2 time and carries them out in that
order, that is, First-Come, First-Served (FCFS), little can be done to optimize
seek time. However, another strategy is possible when the disk is heavily loaded.
It is Iikely that while the arm is seeking onr behalf of one request, other disk re-
quests may be generated by other processes. Many disk drivers maintain a table,
indexed by cylinder number, with all the pending requests for each cylinder
chained together in a linked list headed by the table entries.

Given this kind of data structure, we can improve upon the first-come, first-
served scheduling algorithme. To see how, consider an imaginary disk with 40
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i linder 11. While the seek to
i uest comes in to read 2 biock_ on cyling
cylfndefs'nA isr ?2 progress, IEW requests come i for cylinders 1, 36, 16, 34, 9, and
cym'ldi%rlat order Tth are entered into the table of pendlpg requests, with a sepa-
lzt‘ellr;nked Tist for each cy}inder.' The reguests are shown in Fig. 5-28.
T2

- lndtial Pending

posiion  requests
gaj:[mj]?ﬂ\?rfﬂ/i?ximummmmxlmu
5 5 10 15 20 25 3G 3% Cylinder

Sequence of seeks

e TIME

Figare 5-28. Shortest Seek First (SSF) disk scheduling algorithm.

or cylinder 11) is finished, the disk driver has a
-W hen ﬁ;:? ;ﬂgﬁ;e?s zf;ngle ne);t. Using FCFS, it would go next to cylinder
chaice of v;é iF;mci sqe on. This algorithm would require arm moUons of 10, 35, 20,
1, den ted 3’ respectively, for a total of 111 cylinders. o
18,25, a0 o ely, it could always handle the closest request next, O IMHMEMIZE
A%temaéi_\;ei}he requests of Fig. 5-28, the sequence 1s 12, 9, 16, 1, 34, and 36,
seek time. d line at the bottom of Fig. 5-28. With this sequence, the' arrm
Sho".vn as the Ja%g 7. 15,33, and 2, for 2 total of 61 cylinders. This algorithm,
r;r? uﬂitaézei;’ Fi,rst! {SS;F}, ,cuts the total arm motion almost in half compared 1o
or
FCTS. coblem. Suppose more requests Keep coming in
‘Unfomnit:sit}: osfslﬁ}:-i:fgi’.?.as i:;rt: being p;oiissed. For example, if, after goi‘ng'to
Whi.ie the ng new seqqut for cylinder & is present, that request will l_zave prionty
Cylméer'ld’ al If a request for cylinder 13 then comes in, the arm will next go 1o
ne i erf } With a heavily loaded disk, the arm will tend to stay in the rmd_—
2 mSteaddq k .most of the time, so requests at either extreme will have to wail
éle'& e ‘ifical fluctuation in the load causes there to be no requests near the
un'nina Sgé;suests far from the middle may get poor service. The goals of minimal
mid e.e Hime and falrness are in conflict hc?re. _
respony ‘dings also have to deal with this trade-off. The problem of scheduling
Tall bm_n abtall building is stmilar to that of scheduling 2 disk arm. Requests
an elevator ltmuously calling the elevator to fioors (cylinders) at random. The
o cm;niﬂg the elevaror could easily keep track of the sequence in which
o mushed the call button and service them using FCFS or SSE. )
customersvir most elevators use a different algorithm in order to reconc;}e the
mu{ﬁﬂaggfecor;ﬂicting goals of efficiency and fairness. They keep moving in the
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same direction until there are no more ouistanding requests in that direction, then
they switch directions. This algorithm, known both in the disk world and the
elevator world as the elevator algoritham, requires the software to maintain 1 bit:
the current direction bit, UP or DOWN. When a request finishes, the disk or
elevator driver checks the bit. If it is UP, the arm or cabin is moved to the next
highest pending reguest. If no reguests are pending at higher positions, the direc-
tion bit is reversed. When the bit is set to DOWN, the move is to the next lowest
requested position, if any.

Figure 5-29 shows the elevator algorithm using the same seven requests as
Fig. 5-28, assuming the direction bit was initially UP. The order in which the cyl-
inders are serviced is 12, 16, 34, 36, 9, and 1, which yields arm motions of 1, 4,
18, 2, 27, and 8, for a total of 60 cylinders. In this case the elevator algorithm is
slightly better than SSF, although it is usually worse. One nice property that the
elevator algorithm has is that given any collection of requests, the upper bound on
the total motion is fixed: it is just twice the number of cylinders.

initial
position
LR LR LT pex L e T e T T X
0 3 1¢ 15 20 25 30 35 Cylinder
g wence of seeks
E
| .

—

Figure 5-28. The elevator ajgorithm for scheduling disk requests.

A slight modification of this algorithm that has a smaller variance in response
times (Teory, 1972) is to always scan in the same direction. When the highest
mambered cylinder with a pending request has been serviced, the arm goes to the
lowest-numbered cylinder with a pending request and then continues moving in an
upward direction. In effect, the lowest-numbered cylinder 1s thought of as being
just above the highest-numbered cylinder.

Some disk controliers provide a way for the software to inspect the cumrent
sector number under the head. With such a controller, another optimization is pos-
sible. If two or more requests for the same cylinder are pending, the driver can
issue a request for the sector that will pass under the head next. Note that when
multiple tracks are present in a cylinder, consecutive requests can be for different
tracks with no penalty. The controller can select any of its heads almost instan-
taneously (head selection involves neither arm motion nor rotational delay).
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If the disk has the property that seek time is much faster than the rotational
delay, then a different optimization should be used. Pending requests should be
sorted by sector number, and as soon as the next sector is about to pass under the
head, the arm should be zipped over to the right track to read or write it.

With 2 modemn hard disk, the seek and rotational delays so dominate . pexr-
formance that reading one or [wo sectors at a time is very inefficient. For this rea-
son, many disk controllers always read and cache multiple sectors, ever: When
only one is requested. Typically any request 10 read 2 sector will cause that sector
and much or all the rest of the current track to be read, depending upon how much
space is available in the controller’s ¢ache memory. The disk described in Fig.
5-18 has 2 4-MB cache, for example. The use of the cache is determined dynami-
cally by the controller. In its simplest mode, the cache is divided into two sec-
tions, one for reads and one for writes. If a subsequent read can be satisfied out of
the controller’s cache, it can return the requested data immediately.

Tt is worth noting that the disk controller's cache is completely independent of
the operating system’s cache. The controller’s cache usually holds blocks that
have not actually been requested, but which were convenient the read because
they just happened to pass under the head as a side effect of some other read. In
contrast, any cache maintained by the operating system will consist of blocks that
were explicitly read and which the operating system thinks might be needed again
in the near future (e.g., a disk block holding a directory block).

When several drives are present on the same controller, the operating system
should maintain a pending request table for each drive separately. Whenever any
drive is idle, 2 seek should be issued to move its arm to the cylinder where it wiil
be needed pext (assuming the controller allows overlapped seeks). When the cur-

rent transfer finishes, a check can be made to see if any drives are positioned on -

the correct cylinder, If ene or more are, the next transfer can be started on a drive
that is already on the right cylinder. If none of the arms is in the right place, the
driver should issue a new seek on the drive that just compieted a transfer and wait
until the next interrupt to see which arm gets to its destination first.

It is important to realize that all of the above disk scheduling algorithms
tacitly assume that the real disk geometry is the same as the virtual geometry. Ifit
is not, then scheduling disk requests makes no Sense because the operating system
cannot really tell whether cylinder 40 or cylinder 200 is closer to cylinder 39. On
the other hand, if the disk controlier can aceept muitiple outstanding reguests, it
can use these scheduling algorithms internally. In that case, the algorthms are
still valid, but one level down, inside the controller.

5.4.4 Error Handling

Disk manufacturers are comstantly pushing the limits of the technology by
increasing linear bit densities. A track midway out on a 5.25-inch disk has a cir-

cumference of about 300 mm. If the track holds 300 sectors of 512 bytes, the
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the contraller to £0 into a loop or lose track
signers usually plan for the worst and provide a pin on the chip which, when

else fails, the disk driver can set a bit to invoke this sigral and reset the controller.
If that does not help, al} the driver can do is print a message and give up.

systems with reak-time constraints. When a video is being played off 2 hard disk,
or files from a hard disk are being burned onto a CD-ROM, it is essential that the
bits arrive from the hard disk at a uriform rate. Under i

5.4.5 Stable Storage

As we have seen, disks sometimes make errors. Good sectors can suddenly
become bad sectors. Whole drives can die unexpectedly. RAIDs Protect against
a few sectors going bad or even a drive falling out. However, they do not protect
against write errors laying down bad data in the first place. They also do not pro-
tect against crashes during writes corrupting the original data without Teplacing
them by newer dara.

For some applications, it is essential that data never be lost or corrupted, even
in the face of disk and CPU errors. Ideally, a disk should stmply work all the time
with no errors. Unfortunately, that is not achievable, What is achievable is a disk
stbsystem that has the following property: when a write Is issued to it, the disk ei.
ther correctly writes the data or it does nothing, leaving the existing data intact.
Such a system is called stable storage and is implemented i software (Lampson
and Swrgfs, 1979). The goal 18 to keep the disk consistent at all costs. Below we
will describe a slight variant of the original idea.

Before describing the algorithm, it is Important to have a clear model of the
possible errors. The model assumes that when 2 disk writes a block (one or more

guaranteed error detection is never possible because with a, say, 16-byte BCC
field guarding a 512-byte sector, there are 2909 data values and only 2'% gCC
values. Thus if a block is garbled during writing but the ECC is not, there are bil-
Hons wupon billions of incorrect combinations that yvield the same ECC, If any of
them occur, the error will not be detected. On the whole, the probability of rap-
dom data having the proper 16-byte ECC is about 27" which is small enough
that we will call it zero, even though it is really not.

The model also assumes that a correctly written sector can spontanecusly go
bad and become unreadable, However, the assumption is that such events are so
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rare that having the same sector go bad on a second (independent) drive during a
reasonable time interval {(e.g., 1 day) is small enough t0 ignore, '

The model also assumes the CPU can fail, in which case it just siops. Any
disk write in progress at the moment of failure also stops, leading to incorrect data
in one sector and an incorrect ECC that ¢an later be detected. Under all these con-
ditions, stable storage can be made 100% reliable in the sense of writes either
working correctly or leaving the old data in place, Of course, it does not protect
against physical disasters, such as an earthquake happening and the computer fal-
ling 100 meters into a fissure ard landing in a pool of boiling magma. It {s tough
10 recover from this condition in software.

Stable storage uses a pair of identical disks with the comesponding blocks
working together to form one error-free block. In the absence of errors, the cor-
responding blocks on both drives are the same. Either one car be read to get the
same result. To achieve this goal, the following three operations are defined:

1. Stable writes. A stable write consists of first writing the block on
drive 1, then reading it back to verify that it was written correctly. If
it was not written correctly, the write and reread are done again up to’
n times until they work. After n consecutive failures, the block is
remapped onto a spare and the operation repeated until it succeeds,
no matter how many spares have to be tried. After the write to drive
1 has succeeded, the corresponding block on drive 2 is written and
reread, repeatedly if need be, until it, too, finally succeeds, In the
absence of CPU crashes, when a stable write completes, the block
fas correctly been written onto both deives and verified on both of

them.

2. Stable reads. A stable read first reads the block from drive 1. I this
yields an incorrect ECC, the read is tied again, up to » times. If all
of these give bad ECCs, the corresponding block is read from drive
2. Given the fact that a successful stable write leaves two goed cop-
1es of the block behind, and our assumption that the probability of the
same block spontaneously going bad on both drives in a reasonable
time interval is negligible, a stable read always succeeds.

3. Crash recovery. After a crash, a recovery program scans both disks
comparing comesponding blocks. If a pair of blocks are both good
and the same, nothing is done. If one of them has an BECC ervor, the
bad block is overwritten with the corresponding good block. H a pair
of blocks are both good but different, the block from drive 1 is writ-

ten onto drive 2.

In the absence of CP ,ashes, this scheme always works because stable
writes always write two valid copies of every block and spontaneous ervors are as-
sumed never to occur on both corresponding blocks at the same time. What about
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5.5 CLOCKS

Clocks (also called timexs) are essential 0 tt‘ie qpe;l;ut)i;:n gfogxgymail;gz_
arammed system for a variety of reasons. They maintatn e . The ' ore
:’em o B e mompUhgmg‘c::hiln'c\:fzg’eizxaﬁough a clock is neither a
ook device ?111;: aﬁéi?sil:)rrﬁro: ;m:fter devicé, like a movse. Our exami::a?g; ((:Jl:f:
bieisd;gg;ﬂlow the sa:me pattern as in the previous section: first a look 2
;a(:éware and then a look at the clock software.

5.5.1 Clock Hardware

; ite dif-
Two types of clocks are commonly used in COMpPUETs, n?ii:}:glc?: aqf:fi > o
B et & s ‘?tcmsdui:lxszyaie?rﬁ{:r}g;cosnl egery voltage cycle, at
- or 220-volt power e an .
EJ'%;)eolr}tg() I?Irz These cIl}ocks used to dominate, but are rare ntox.:v:(iayz.{al sscillator, &
The other kind of clock is built out of three componen \.‘:fh rz o s
and a holding register, as shown it F§g. 5-.32. en dp cce o
COUEEC?,. operly cut and mounted under tension, i can be made 10 gl et
;?r?;fiiiéssfjngk oz very great accuracy, typically in the range of severa
F)
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megahertz, depending on the crystal chosen. Using electronics, this base signal
can be multiplied by a small integer to get frequencies up to 1000 MHz or even
more. At least one such circuit is usually found in any computer, providing a syn-
chronizing signal to the computer's various circuits. This signal is fed into the

counter to make it count down to zero. When the counter gets to zero, it causes a
CPU interrupt.

Crystal oscillator

—{I
ENRERNREERARERD

Coaunter is decremented at each pulse

HEEERERERENRERER

Figure 5-32. A programmable clock.

Holding register is used to load the counter

Programmabie clocks typically have several modes of operation. In one-shot
mode, when the clock is started, it copies the value of the holding register into the
counter and then decrements the counter at each pulse from the crystal. When the
counter gets to zero, it causes an interrupt and stops until it is explicitly started
again by the software. In square-wave mode, after getting to zero and causing the
interrupt, the holding register is automatically copied into the counter, and the
whole process is repeated again indefinitely. These periodic interrupts are called
clock ticks.

The advantage of the programmable clock is that its interrupt frequency can
be controiled by software. If a 560-MHz crystal is used, then the counter is pulsed
every 2 nsec. With {unsigned) 32-bit registers, interrupts can be programmed to
occur at intervals from 2 nsec to 8.6 sec. Programmable clock chips usually con-
tain two or three independently programmable clocks and have many other

options as well (e.g., counting up instead of down, interrupts disabled, and more).

To prevent the current time from being lost when the computer’s power is
tarned off, most computers have a battery-powered backup clock, implemented
with the kind of low-power circuitry used in digital watches. The battery clock
can be read af startup. If the backup clock is not present, the software may ask the
user for the current date and time. There is also a standard way for a networked
system to get the current time from a remote host. In any case the time is then
transiated into the number of clock ticks since 12 AM. UTC (Universal Coordi-
nated Time) (formerly known as Greenwich Mean Time) on Jan. 1, 1970, as

UNIX does, or since some other benchmark moment. The origin of time for Win-
dows is Jan. 1, 1980. At every clock tick, the real time is incremented by one
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count. Usually utility programs are provided to manually set the system clock an
the ba;ckup clock and to synchronize the two clocks.

5.58.2 Ciock Software
A 1 i i . Bvery-
terrupts at known intervals
11 the clock hardware does 18 generate 1o e 3
thing else involving time must be done by the software, the clock driver The ¢
tal

act duties of the clock driver vary among operating systems, but usually include
most of the following:

Maintaining the time of day.

Preventing processes from running longer than they are allowed to.
Accounting for CPU usage. 9

Handling the alarm system call made by user processes.

Lo oo

Providing watchdog timers for parts of the system itself.
6. Doing profiling, monisoring, and statistics gathering-

. . ,
The first clock function, maintaining the time of day {a;lsoacialcléciktkgc ;e:s
i i i ires 1 ting a counter at € <k,

i ot difficult. It just requires incremed . :
::1?;)';(;81;1 before. The only thing to watch out for is _the number_lolf bltlsﬂ 1(1;1 wtt:g
time-of-day counter. With a clock rate of 60 Haz, a 32-bit counter wlth szmhez "
just over 2 years. Clearly the system cannot store the real time as the i

thksTsl;?;: jaﬂrlolz\,cfe:i; ?328 ?;ien to solve this problem. The figst way is lo usgvz
64-bit counﬁi, although doing s0 makes maintaining the counter r::)er; :j;f;zsth °
i e it has to be done many tmes a second. The second way is e
?:ﬁfe of day in seconds, rather than in ticks, using 2 subsidiary counter to ¢

kvl -
232 geconds 18 more
i i has been accumulated. Because
ticks until a whole second e

than 136 years, this method wilk work until the twergy-s;ctone}aﬁve - e the
id 2 i in ticks, but to do that ¥
The third approach is to count 151 , ; e the
than telative to a fized external moment. WIe
system was booted, rather ) ¢ e e cal.
i the real time, the Mstem
backup clock is read g the user types I ; e s o
ime-of- lue and stored in memory y con
d from the current Ume of-day value ' -
iléﬁs:nt form, Later, when the time of day 15 requested, the stored time cni1 ;1821);‘Ie
added to the counter to get the current time of day. All three approac
y in Fig. 5-33. ‘ _ .
Shmyl‘he sec%)nd clock function is preventng proc;asses from g{n?;ﬁietzzliznif
i duler initializes 4 coun
ever a process 18 started, the sche _ c of
XES I;rocess’pquanmm in clock ticks. At every clock nterrupt, t}he;l(;)c;t;lr;ails
decrements the guanmum counter by 1. When it gets Lo 28190, the clock dn

the scheduler to set up another process.
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i 64 bits ; b 32 bits >} 32 bits
oo ] [ [

Time of day Number of ticks

in seconds in current second

System boot tme
in seconds

{a} ® o

Figure 5-33. Three ways to maintain the time of day.

The third clock function is doing CPU accounting. The most accurate way to
do it is to start a second timer, distinct from the main system timer, whenever a
process is started. When that process is stopped, the timer can be read out to tell
how long the process has run. To do things right, the second timer should be saved
when an interrupt occurs and restored afterward,

A less accurate, but simpler, way to do accounting is to raintain a pointer to
the process table entry for the curently running process in a global variable. At
every clock tick, a field in the current process’ entry is incremented. In'this way,
every clock tick is “charged” to the process running at the time of the tick. A
minor problem with this strategy is that if many interrupts ocour doring a process’
ran, it is still charged for a full tick, even though it did not get much work done.
Properly accounting for the CPU during interrupts is too expensive and is rarely
done.

If] many systems, a process can request that the operating system give it a
warning after a certain interval. The waming is usvally a signal, interrupt, mes-
sage, or something similar. One application requiring such warnings is network-
ing, in which a packet not acknowledged within a certain time interval must be
retransmitted. Another application is computer-aided instruction, where a student
not providing a response within a certain time is told the answer,

If the clock driver had enough clocks, it could set a separate clock for each re-
quest. This not being the case, it must simulate multiple virtaal clocks with a sin-
gle physical clock. One way is to maintain a table in which the signal time for all
pending timers is kept, as well as a variable giving the time of the next one.
‘Whenever the time of day is updated, the driver checks to see if the closest signal
has occurred. If it has, the table is searched for the next one to gccur.

If many signals are expected, it is more efficient to simulate multiple clocks
by chaining all the pending clock requests together, sorted on time, In a linked list,
as shown in Fig. 5-34. Each entry on the list tells how many clock ticks following
the previous one to wait before causing a signal. In this example, signals are pend-

ing for 4203, 4207, 4213, 4215, and 4216.
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Current time Next signal

ol e

Figure 5-34. Simulating multiple timers with & single clock.

Clock
headert

In Fig. 5-34, the next interrupt occurs in 3 ricks. On each tick, Neiz ;fgq:flt liz
decremented. When it gets to 0, the signal corzes.pondmg, to the _ﬁrstl1_ :SH o
Hist is caused, and that item is remo;etfll} frl?m §heﬂ$st. Tah;;; gezr signal 1

i entry now at the head of the list, 1o this ex L 4. )
vam;g;e&tﬁat (;tzy:ing a clock interrupt, the elock driver has several %ﬁ;lés at:c SE;
increment the real time, decrement the quantum and check for 0, do : e
ing, and decrement the alarm counter. However, each of these epergtzcns 2 been
ca?efz;lly arranged to be very fast because they have to be repeated many
Seco;im of the operating system also need to set timers. These are caliecit ;v:icoii;
deg timers. For example, floppy disks do not rotate when BOt 11 fuse, ooy
wear and tear on the medium and disk head. When data are ngedgd rfrgm " ?ﬁll
disk, the motor must first be started. Only when the floppy disk 15;1 iro faio g ey
speed can VO begin. When a process attempts to read froxr:.1 an t11 & topcpai o a:;
the floppy disk driver starts the m‘otor.and then sets a watch og n&ernto-speéd g
wnterrupt after a sufficiently 10;1§ f;ame interval (because there 18 nO Up

floppy disk itself). _ .

imu’lgiie&?;gct}f:aisr?gsed by the clock driver to handle wa_tchdog nm?frs_ ;:t ;;12
same as for user signals. The only difference is that when a liner go;s o 1’1;1 nons
of causing a signal, the clock driver calls a procedure supplied by ; e cgate‘.rer e
procedure is part of the caller’s code. The called ‘pﬂ_)cedure can1 o :eru rer
necessary, even causing an intersupt, a-lthozigh Wﬁhm the kemﬁd 1i1 ecganism
often inconvenient and signals do not exist. That 15 why the walc 01? ﬂ;nl e
is provided. It is worth nothing that the watchdog mechanism WoOIKSs c};
the clock driver and the procedure to be called are in tht? same address Sp‘il .a e

The last thing in our list is profiling. Some operating systems P:cmr afn ol
chanism by which a user program cain ha_ve the system bl_nld upa hxstogﬁﬁn e
program counter, so it can see where it is spendmg_g its time. When p:s v % ins
possibility, at every tick the driver checks to see if the current proc e
profiled, and if so, computes the bin number (a range of atlddresses) (51(");: §1 echan?
to the current program counter. It then @t ments that bin by one. 1his
ism can also be used to profile the system iiself. .
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5.5.3 Soft Timers

Most computers have a second programmable clock that can be set to cause
timer interrupts at whatever rate 2 program needs. This timer is in addition to the
main system timer whose functions were described above. As long as the inter-
rupt frequency is low, there is no problem using this second timer for application-
specific purposes. The trouble arrives when the frequency of the application-spe-
cific timer is very high. Below we will briefly describe a software-based timer
scheme that works well under many circumstances, even at fairly high frequen-
cies. The idea is due 10 Aron and Druschel (1999). For more details, please see
their paper. ‘

Generally, there are two ways to manage I/O: interrupts and polling. Inter-
Tupts have low latency, that 1s, they happen immediately after the event itself with
fittle or no delay. On the other hand, with modem CPUs, interrupts have a sub-
stantial overhead due to the need for context switching and their influence on the
pipeline, TLB, and cache. )

The alternative to interrapts is to have the application poll for the event
expected itself. Doing this avoids interrupts, but there may be substantial latency
because an event may happen directly after a poll, in which case it waits almost a
whole polling interval. On the average, the latency is half the polling interval.

For certainapplications, neither the overhead of interrupts nor the Iitency of
polling is acceptable. Consider, for example, a high-performance network such as
Gigabit Ethernet. This network is capable of accepting or delivering a full-size
packet every 12 psec. To run at optimal performance on outpuf, cne packet
should be sent every 12 usec.

One way to achieve this rate is to have the completion of a packet transmis-
sion cause an interrupt or to set the second timer to interrupt every 12 psec. The
problem is that this interrupt has been measured to take 4.45 usec on a 300 MHz
Pentium If (Aron and Druschel, 1999). This overhead is barely better than that of
computers in the 1970s. On most minicomputers, for example, an inierrupt took
four bus cycles: to stack the program counter and PSW and to load a new program
counter and PSW, Nowadays dealing with the pipeline, MMU, TLB, and cache
adds a great deal to the overhead. These effects are likely to get worse rather than
better in time, thus canceling out faster ciock rates.

Soft timers avoid interrupts. Instead, whenever the kemel is runring for some
other reason, just before it returns to user mode it checks the real time clock to see
if a soft timer has expired. If the timer has expired, the scheduled event (e.g.,
packet transmission or checking for an incoming packet) is performed, with no
need to switch into kernel mode since the system is alveady there. After the work
has been performed, the soft timer is reset to go off again. All that has to be done
is copy the current clock value to the timer and add the timeout interval to it.

Soft timers stand or fail with the rate at which kemel entries are made for
other reasons. These reasons include:
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p—

System calls.
TLB misses.

Page faults.

3e]

170 interrupts.
The CPU going idle.

s W

T see how often these events happen, Aron and Druschel mi;ire bn;:it;rre‘x;ieiﬁtz
i i i joaded Web server, a Wel
with several CPU loads, including 2 fally : - é
i i - dio from the Internet, an
ute-bound background job, playing real-time au (
?géiﬁlpilinc the UNIX kernel. The average entry rate into the kernel 1\{&1;;11 liog}a ’:‘1
¥ i tries being system calls.
sec to 18 usec, with about half of these.en ‘
%rs{-order as-:}proximati{)n, having a soft timer gcl) off cve}r_i 133;51??;; ;sa ic;afl:;
i i i ications like
it with an occasional missed deadline. For applicatior endir
globlgilrtlg for jncoming packets, being 10 psec late from time o fime is better than
ing nterrupts eat up 35% of the CPU. .
haVlg?% icil:'ursepthere will be periods when there are no sysiem calls, TLB rmséses,
or page faui{s’ in which case no soft timers will go off. To p;lft an u;;%:rr;)olu; : ;)é’i
i ; i be set to go off, say, .
these intervals, the second bardware timer can  overy | Tsee
icati i i 000 packets/sec for occasional in X
If the application can five with only 1 :
then t‘hepsombination of soft timers and a low-frequency hardware timer may be
better than either pure interrupt-driven O or pure polling.

5.6 USER INTERFACES: KEYBOARD, MOUSE, MONITOR

board and monitor (and usually a
Every general-purpose computer ha§ a key !
mouse} ti :llow people to interact with it. Although th}? keygoaré a\lncg.r:[;{l):;to;'hgz
i i k closely together. {n main ,
technically separate devices, they wor I g o es, there
device containing a keyboard an
frequently many remote users, each Wzth a ce CC d
Z;eatrtzghed gisplay as & unit. These devices have htstorxtfaliy ‘t?een calied 1terrm
nals. People frequently still use that term, even when discussing personal com-
puter keyboards and monitors {mostly for lack of a better term}.

5.6.1 Input Software

User input comes primarily from the keyboard gnd mouse, 50 let us lookoit
those. Or a personzl computer, the keyboard contains an eqxbedded r{ﬂgﬂ;pfon-
essor which usually communicates through a sp_ec;ahzed serial porl witl tcd v
trobler chip on the parenthoard (although increasingly keyboarcli{s ar;c1 Zciosrérégi § 1o

interrupt is g6 wher key is struck an
a USB port). An interrupt is generated whenever a ‘
is frenegteg whenever a key is released. At each of these keyboard interrupts, the
o
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keyboard driver extracts the information about what happens from the I/Q port as-
sociated with the keyboard. Bverything else happens in software snd is preuy
much independent of the hardware.

Most of the rest of this section can be best understood when thinking of typing
commands to a shell window (command line interface). This is how programmers
commoniy work. We will discuss graphical interfaces below.

Keyboard Seftware

The number in the VO port is the key number, called the scan code, not the
ASCIL code. Keyboards have fewer than 128 keys, so only 7 bits are needed 1o
represent the key number. The eighth bit is set to O on a key press and to 1 on a
key release. It is up to the driver to keep track of the status of each key (up or
down). .

When the 4 key is struck, for example, the scan code (30) is put in an O reg-
ister. It is up to the driver to determine whether it is lower case, upper case,
CTRL-A, ALT-A, CTRE-ALT-A, or some other combination. Since the driver

can tell which keys have been struck but not yet released {e.g., SHIFT}, it has
enough infermation to do the job. ’

For exarple, the key sequence

RESS SHIFT, DEPRESS A, RELEASE A, BELEASE SHIFT
indicates an upper case A. However, the key SEqUEnce

RESS SHIFT, DEPRESS A, RELEASE SHIFT, RELEASE A

also indicates an upper case A. Although this keyboard interface puts the full bur-
den on the software, it is extremely flexible. For example, user programs may be
interested in whether a digit just typed came from the top row of keys or the
numetic key pad on the side. In principle, the driver can provide this information.

Two possible philosophies can be adopted for the driver. In the firge one, the
driver’s job is just to accept input and pass it upward unmodified. A program
reading from the keyboard gets a raw sequence of ASCIH codes. {Giving user pro-
grams the scan codes is too primitive, as well as being highly keyboard depen-
dent.)

This philosophy is well suited to the needs of sophisticated screen editors such
as emacs, which allow the user to bind an arbitrary action to any character or se-
quence of characters. It does, however, mean that if the user types dste instead of
date and then corrects the error by typing three backspaces and are, followed by a

catriage return, the user program will be given all 11 ASCH codes typed, as fol-
lows: ’

dstee— ¢ ateCR

Not all prograims™s/4HE4Ms much detail. Often they just want the corrected
input, not the exact sequencé of how it was produced. This observation leads to
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the second philosophy: the driver handles ali the int:raline edi_iing, and just d_e}ivegs
corrected lines to the user programs. The first philosophy is character-oriente {,1
the second one js line orlented, Originally they were referred to as raw mode an
cooked mode, respectively. The POSIX standard uses the l-ess»plctures_que term
canonical mode to describe line-oriented mode. Noncanoxycal mode is cqmvz—
lent to raw mode, although many details .of the beh.avxor can be changed.
POSIX-compatible systems provide several library functions that support select-
ing e and changing many parameters. ‘
" i?lt}ger E;ii)ard isin ct:’amgmical (cooked) mode, characters must be Stor@@ until
an entire line has been accumulated, becal_.lse the user may subsequently decide to
erase part of it. Even if the keyboard is in raw mode, the program may not ée':t
have requested input, so the characters must be buffered to allow type ahead. hx
ther a dedicated buffer can be used or buffers can be allocaiec% from a pool. The
former puts a fixed limit on type ahead; the_ latter does not. TI:LIS issue arises \;;t‘)st
acutely when the user is typing to a shell window (comma_nd .lme window in Win-
dows) and has just issued a command (such as a compilation) that has nlftl;f:at
completed. Subsequent characters typed have to be buffered because the she f1s
not ready to read them. System designers who do not permit users to type far
ahead ought to be tarred and feathered, or worse yet, be forced to use their own
Sys{fi:heugh the keyboard and monitor are logically separate. devices, many users
have grown accustomed to seeing Ele characters they have just typed appear on
. This process is called echoing. N
e Sgélﬁag is fomplicated by the fact that 2 program. may be writing to the
screen while the user is typing {again, think about typing to a shell wmdew}-. At
the very least, the keyboard driver has to ﬁgl:re out where 10 put th}e new input
i it being overwritten by program oulput. N
wnh‘gg;l:ir?g aizo gets compligateé when more than 80 characters have to be é_ls;
played in a window with 80-character lines (or sa;ne,othe: number). Dependma
on the application, wrapping around to the next 11’rze may be appropriate. SomzaE
drivers just truncate lines to 80 characters by throwing away all characters beyon
COluKl:ofk?er problem is tab bandling. It is ugual]y up to the driver to compute
where the cursor is currently located, taking into account both cutput from pro-
grams and output from echoing, and compute the proper number of spaces to be
ecmfli-w we come to the problem of device equivalence. Logically, at the end of a
line of text, one wants a carriage return, to move the cursor back to column 1, and
a Hinefeed, to advance to the next line. Requiring users to type both at the end of
each line would not sell well. It is up to the device driver to convert whatevefr
comes in to the format used by the operating system. In UNLX the ENTER key is
converted to a line feed for internal storage; in Windows it is converted to a car-
riage return followed by a line feed.
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If the standard form is just to store 2 linefeed {the UNIX convention), then car-
riage returns {created by the Enter key) should be tarned into linefeeds. If the in-
ternal format is to store both (the Windows convention), then the driver showld
generate a linefeed when it gets a carriage return and a carriage teturn when it
gels a linefeed. No matter what the internal convention, the monitor may require
both a linefeed and. a carriage return o be echoed in order to get the screen
updated properly. On multiuser systems such as mainframes, different users may
have different types of terminals connected to it and it is ap 1o the keyboard driver
to get all the different carriage return/linefeed combinations converted to the in-

ternal system standard and arrange for all echoing to be done right.

When operating in canonical mode, some input characters have special mean-
ings. Figure 5-35 shows all of the special characters required by POSIX. The de-
faults are all control characters. that should not conflict with text input or codes
used by programs; all except the last two can be changed under program control.

i Character | POSIX name Comment
CTRL-H ERASE
CTRL- Kil_L

CTRL-V LNEXT

Backspace one character
Erase entire line being typed
Interpret next character litecally

CTRL-S STOP Stop output .
CTRL-Q START Start output

DEL INTR intenrupt process (SIGINT

CTRLA CQUAT Force core durnp (SIGQUIT)
CTRL-D EQF £nd of file

CTRL-M CR Carriage return (unchangeabie)
CTRL-J [N

Linefeed (unchangeable)

Figure 5-35. Characters that are handled specially ir canonical mode.

The ERASE character allows the user to rub out the character Jjust typed. Itis
usuaily the backspace (CTRL-H). It is not added to the character queue but in-
stead removes the previous character from the queue. It should be echoed as a se-
quence of three characters, backspace, space, and backspace, in order to remove
the previous character from the screen. If the previous character was a tab, eras-
Ing it depends on how it was processed when it was typed. Ifit is immediately ex-
panded into spaces, some extra information is needed to determine how far to
back up. If the tab itself is stored in the input queue, it can be removed and the
entize line just output again. In most systems, backspacing will only erase charac-
ters on the current line. It will pot erase a carriage return and back up into the
previous line,

When the user notices an error at the start of the line being typed in, it is often
convenient to erase the entire line and start again. The KILL character erases the



396 INPUT/OUTPUT CHAP. 3
entire line. Most systems make the erased line_ vanish from the screen, butl_a\kfe:v
older ones echo it pius a carriage return and ]mefee_d because some LESBIZ i e_tg
see the old line. Consequently, how to echo KILL is a matter of taste. shm
ERASE it is usually not possible to go further back than the current line. Wd en a
block of characters is killed, it may or may not be worth the trouble for the driver
¢ pool, if one is used. ‘
° reélérrg;z?g:?t;ztgﬁiSE or KILL characters must be entered as ordmasy‘data.
The LNEXT character serves as an escape character. In UNIX CTRL-V 15 ;he:
default. As an example, oider UNIX systems often used @e @ sign for‘ KILL, dut
the Internet mail system uses addresses of the form lmda(‘@cs.wa:?kmgtom? .
Someone who feels more comfortable with older conventions rmgbt rec?e ine
KILL as @, but then need to enter an @ sign literally to address e-.maﬂ. This can
be done by typing CTRL-V @. The CTRL-V itself can be entered literally by %1;;
ing CTRL-Y CTRL-V, After seeing a CTRL-V, the driver sets a flag saying "
the next character is exempt from special processing. The LNEXT character itse
i in the character quene., .
® E?IE: n;{clr(;:i ll.?se['S to stop aqscreeﬂ image from sc;olling out of view, control
codes are provided to freeze the screen and restart it later. In UNIX thesg g;e{
STOP, (CTRL-S) and START, (CTRL-Q), respectively. They are not store :
are used to set and clear a flag in the keyboard data structure, Whenever output is
attempted, the flag is inspected. If it is set, no ontput occurs. Usaally, echoing s
Te: along with program output.
alseliugpoffzzdneccsgsary tcf ki%l a runaway program being _debugged. The IN?;?
(DEL) and QUIT (CTRL-\) characters can be used for this pupose. In UNE é,
DEL sends the SIGINT signal to all the processes stqr}ed up frorq that keyboarh .
Implementing DEL can be quite tricky because_UNIX was designed fmlm atse
heginning to handle muoitiple users at the same time. Thus in the gene};aE Lckee,
there may be many processes running on behalf of many users, and {ffef tioy
must only signal the user's own processes. The hard par't is getting the in omgla A 0
from the driver to the part of the system that handles signals, which, after all, has
is information. _
" ?%?L?ri;h;sir;ﬂar to DEL, except that it sends the SIGQUIT signe?l, which
forces a core dump if not caught or ignored. When either qf these keys is struck,
the driwer should echo a carriage return and linefeed and discard all accumula{.ed
input to allow for a fresh start. The default value for INTR is o_ften CTRL-C in-
stead of DEL, since many programs use DEL interchangeably with the backspace
for editing. o
Anotl%er special character is EOF (C’I‘RIT-}_)}, w_hzch in UNI)F cauiezlagy
pending read requests for the terminal to be sa_txsf:ed with whatever is availa ? in
the buffer, even if the buffer is empty. Typing (;TRL-D at the start of a dzne
causes the program to get a read of O bytes, which is conventionally interpreted as
end-of-file and causes most programs to act the same way as they would upon
seeing end-of-file on an nput file.
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Mouse Software

Most PCs have 2 mouse, or sometimes 2 trackball, which is just 2 mouse lying
on its back. One common type of mouse has a rubber bali inside that protrudes
through a hole in the bottom and rotates as the mouse is moved over a rough sur-
face. As the ball rotates, it rubs against rubber rollers placed on orthogonal shafts,
Motion in the cast-west direction causes the shaft parallel to the y-axis to fotate;
motion in the north-south direction causes the shaft paraliel to the x-axis to rotate.

Another popular mouse type is the optical mouse, which is equipped with one
or more light-emitting diodes and photodetectors on the bottom, Early ones had to
aperate on a special mousepad with 4 rectanguilar grid etched onto it 50 the mouse
couid count lines crossed. Modern optical mice have an image-processing chip in
them and make continuous low-tesolution photos of the surface under them, look-
ing for changes from image to image.

Whenever a mouse has moved a certain minimun distence in either direction
or a bution is depressed or released, a message is sent to the computer. The
minimum distance is about 0.1 mm (although it can be set in software). Some
people call this unit a mickey. Mice (or Occasionally, mouses) can have one, two,
or three buttons, depending on the designers’ estimate of the users’ inteliectual
ability to keep track of more than one button. Some mice have wheels that can
send additional data back to the computer. Wireless mice are the same 3s wired
mice except instead of sending their data back to the computer over a wire, they
use low-power radios, for example, using the Bluetooth standard.

The message to the computer contains three items: Ax, Ay, buttons. The first
item is the change in x position since the Jast message. Then comes the change in
Y position since the last message. Finally, the statns of the buttons is included.
The format of the message depends on the system and the number of buttons the
mouse has. Usually, i takes 3 bytes. Most mice report back a maximum of 40
times/sec, so the mouse may have moved multiple mickeys since the last report.

Note that the mouse oaly indicates changes in position, not absolute position
itself. If the mouse is picked up and put down gently without causing the ball 1o
rotate, no messages will be sent,

Some GUIs distinguish between single clicks and double clicks of a mouse
button. If two clicks are close enough in space (mickeys) and also close enough
in time {milliseconds), a double click is signaled. The maximum for “cloge
enough” is up to the software, with both parameters usually being user settable,

5.6.2 Output Software

Now let us consider output software. First we will look at simple output to a
text window, which is what programmers normally prefer to use. Then we will
censider graphical user interfaces, which other users often prefer.
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Text Windows

Output is simpler than imput when the output is sequentially in a single fo.nt,
size, and color. For the most patt, the program sends characters t© the current 'Ivmﬂ
dow and they are displayed thelxia. Usually, a block of characters, for example, 2

ine, is wri in one system call.
kne,Slzr:e:ltiﬁzziltgrs ang many othet sophisticated_ programs geed to .be abife ktlo
update the screen in complex ways such as replacmg one line in the m.}ddl&f() the
screen. To accommodate this need, most ouiput drivers Support a series o COHI(;
mands to move the cursor, insert and delete characters or lines at the curser, m}l1
so on. These commands ate often called escape sequences. In th-e heyday of & 12
dumb 25 imes 80 ASCH terminal, there were hund_reds of ?emnnal types, eag
with its own escape sequences. Asa cws;:quence, it was difftcult to write soft-
n more than one terminat type. .
War%t:ea ts\gl?fi(sgﬁﬂhich was introduced in Berkeley UNIX, was a tem?mal (}ata-
base called termeap. This software package defined a number of basic ac_tmzlls,
such as moving the cursor to (row, column). To move the cursor to a paricular
location, the software, say, an editor, used a genenic escape seq}lence ‘wkuch WeIis
then converted to the actual escape sequence for the terminal %Jemg written tc;i n
this way, the editor worked on any tersm_nal that had an entry in the termeap data-
base. Much UNIX software still works this way, even on Perspnai computers.

Eveniually, the industry saw the need for standardization of the escape se-
guence, SO ain ANSI standard was developed. A few of the values are shown 1a
Flg—(sioii'ider how these escape sequences might be used by a text e_di&or. Suppose
that the user types a command teiling the editor to deict.e ali of line 3 anid [1.}82
close up the gap between lises.?, and 4. ’I‘hf: editor might send the following
escape sequence over the serial line to the terminal:

ESC{3;1HESC{GKESC[1 M

(where the spaces are used zbove only to separate the symt?ois; they are not trans-
mitted). This sequence moves the cursor to the‘staft of 11ne‘3, crases the eritu;e
line, and then deletes the now-smpty line, causing all the lines statting at o 10
move up one line. Then what was fine 4 becomes line 3; what was line 5 becon%s
line 4, and 5o on. Analogous escape Sequences can E?e us;d tf’ add text to the mid-
dle of the display. Words and be added or removed in a similar way.

The X Window System

Nearly al} UNIX systems base their user interface on the X Winflow System
{often just called X}, developed at MULT. as part of project {Xt_hﬁrsa in the E%S?S.
It is very portable and runs entirely in user space. It_was criginally intended for
connecting a large number of remote user terminals with a central compute server,
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Escape sequence Meaning
ESC{nA Move up nlines
ESC{nS Mave down nlines
ESC{nC Move right n spaces
ESCinD Move left n spaces
ESCi{m;nH Mave cursor to {m,n)
ESCi{sd Clear scraen from cursor (0 {o end, 1 1from start, 2 all)
ESC{sK Clear line from cursor (0 to end, 1 from start, 2 all)
ESC{nl Insert n lines at cursor
ESC inM Delate nlines at cursor
ESCEnP Delete nchars at cursor
ESCGin@ Insert n chars at cussor
ESC{nm Enable rendition; i (O=normal, 4=boid, 5=blinking, 7=reverse)
ESC M Scroli the screen backward if the cursor is on the fop line

Figure 5.36. The ANSI escape sequences accepted by the terminal driver on
output. ESC denotes the ASCH escape character (0x1B), and n, m, and s are op-~
tional numeric parameters.

50 it Is logically split into client software and host software, which can potentiaily
run on different computers. On modern personal computers, both parts can run on
the same machine. On Linux systems, the popular Gnome and KDE desktop envi-
ronments run on top of X.

When X is running on a machine, the software that collects input from the
keyboard and mouse and writes output to the screen is called the X server. It has
to keep track of which window is currently selected (where the mouse pointer is),
50 it knows which client to send any new keyboard input to. It communicates
with running programs (possible over a network) called X clients. It sends them
keyboard and mouse input and accepts display commands from them.

It may seem odd that the X server is always inside the user’s computer while
the X client may be off on a remote compuie server, but just think of the X ser-
ver’s main job: displaying bits on the screen, so it makes sense to be near the user.
From the program’s point of view, it is a client telling the server to do things, like
display texi and geometric figures. The server (in the local PC) just does what it is
told, as do all servers. .

The arrangement of client and server is shown in Fig. 5-37 for the case where
the X client and X server are on different machines. But when running Gnome or
KDE on a single machine, the client is just some application program using the X
library talking to the X server on the same machine (but using a TCP connection
over sockets, the same as it would do in the remote case),
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Remote host
o
W Window Apptication
manages program
Mot
User Iniringics
space
Xl
X client N A server
UNIX Uhix
Kernel
space Hardware Hardware
X protoce! ‘/
-
Network

Figure 5-37. Clients and servers in the MLLT, X Window System.

The reason it is possible to run the X Window System on tpp of U}\;}X;. }(;)rrea;}:
other operating systerm) on a single machine or.over a network is that wi ahown -
ly defines is the X protocol between the X ghent and the X sc:ver,has $ wo
Fie. 5-37. It does not maatter whether the client and server are on ¢ t;;. sam e
ch?ne, separated by 100 meters over a local area network, or are 01‘zsan e
kilometers apart and connected by the Internet. The protocol and operation O

is 1 jcal in all cases. .
Sys{{;zniésj;d;ns c\J\:\Eflilndowing system. It is not a gompiete GU_{. 'E‘? get 1:3_ ChOfniizz
GUI, others layer of software are run on top of.n. O_ne layer is Xh‘n,{i whic ! c:rsm -
of library procedures for accessing the X functxonal.lty. ’I‘hgse proce ur;st e
wasis of the X Window System and are what we .w111 examine below, bu \ yo o
too primitive for most user programs to access directly. Fo§ example, ?ac I:dgw
click is reported separately, so tha;t( lf-lioiterrmmng that two clicks really form

i led above Xlib. L

e ??Zﬁit;zt;z?aa;img with X easier, a tooikit consisting of the Intrg;j;c:l :
supplied as part of X. This layer manages bi.lti:()ﬂs, scroil b_ars, and.other i
ments, called widgets. To make a true GUI interface, with a uniform 'GOM o
feel, yet another layer i needed (or several of them). One exargple is tuseé
shown in Fig. 5-37, which is the hasis of the Comumon Desi(tgp I}nwmnngen e
on Solaris znd other commercial UNIX systems Most apphc;&qns make us3 o
calls 1o Motif rather than Xlib. Grnome and KDE have a sm:%lar struc(tiui{D “
Fig. 5-37, only with different libraries. Gnome uses the GTK+ ‘hbrat;;ytagle

uses the Qt library. Whether having two GUIs is better than one is debatable.
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Also worth noting is that window management is not part of X itself. The
decision to leave it out was fully intentional. Instead, a separate X client process,
called a window manager, controls the creation, deletion, and movement of win-
dows on the screen. To manage windows, it sends conumands to the X server tel-
ling what to do. It often runs on the same machine as the X client, but in theory
can run anywhere.

This modular design, consisting of several layers and muliiple programs,
makes X highly portable and flexible. It has been ported to most versions of
UNIX, including Solaris, all variants of BSD, AIX, Linux, and so on, making it
possible for application developers to have a standard user interface for multiple
platforms. It has also been ported to other operating systems. In contrast, in Win-
dows, the windowing and GUI systems are mixed together in the GDI and located
in the kemel, which makes them harder to maintain, and of, course, not portable.

Now let us take a brief look at X as viewed from the Xlib level. When an X
program starts, it opens a connection to one or more X servers—iet us call them
workstations even though they might be collocated on the same machine as the X
program itself. X considers this connection to be reliable in the sense that lost and
duplicate messages are handled by the networking software and it does not have

to worry about communication errors. Usually, TCP/IP is used between the client
and server,

Four kinds of messages go over the connection: v
Drawing commands from the program to the workstation.
Replies by the workstation to program queries.

Keyboard, mouse, and other event announcements.

L S e

Error messages.

Most drawing commands are sent from the program fo the workstation as
one-way messages. No reply is expected. The reason for this design is that when
the client and server processes are on different machines, it may take & substantial
period of time for the command to reach the server and be carried out. Blocking
the application program during this time would slow it down unnecessarily. On
the other hand, when the program needs information from the workstation, it sim-
ply has to wait until the reply comes back.

Like Windows, X is highiy event driven. Events flow from the workstation to
the program, usually in response to some human action such as keyboard strokes,
mouse movements, or a window being uncovered. Each event message is 32
bytes, with the first byte giving the event type and the next 31 bytes providing ad-
ditional information. Several dozen kinds of events exist, but a program is sent
only those events that it has said it is willing to handle. For example, if a program
does not want o hear about key releases, it is not sent any key release events. As
in Windows, events are queuned, and programs read events from the input queue,
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However, unlike Windows, the operating system never calls procedures within the
application program on its own. It does not even know which procedure handles
which event.

A key concept in X is the resource. A resource is a data structure that holds
certain information. Application programs create resources on workstations. Re-
sources can be shared among multiple processes on the workstation. Resources
tend 1o be short-lived and do not survive workstation reboots. Typical resources
include windows, fonts, colormaps (color palettes), pixmaps (bitmaps), cursors,
and graphic contexts. The latter are used to associate properties with windows and
are similar in concept to device contexts in Windows.

A rough, incomplete skeleton of an X program is shown in Fig. 5-38. It
begirs by including some required headers and then declaring some variables. It
then connects to the X server specified as the parameter to XOpenDisplay. Then
it allocates a window resource and stores a handle to it in win. In practice, some
initialization would happen here. After that it tells the window manager that the
new window exists so the window manager can manage it

The call to XCreateGC creates a graphic context in which properties of the
window are stored. In a more complete program, they might be initialized here.
The next statement, the call to XSelectinpur, tells the X server which events the
program is prepared to handle. In this case it is interested in mouse clicks, key-
strokes, and windows being uncovered. In practice, a real program would be
interested in other events as well. Finally, the call to XMapRaised maps the new
window onto the screen as the uppermost window. At this point the window be-
comes visible on the screen.

The main loop consists of two staterments and is logically much simpler than
the corresponding loop in Windows. The first statement bere gets an event and
the second one dispatches on the event type for processing. When some event
mdicates that the program has finished, running is set to O and the loop terminates,
Before éxiting, the program releases the graphic context, window, and connection.

It is worth mentioning that not everyone likes 2 GUL Many programmers
prefer a traditional command-line oriented interface of the type discussed in Sec.
5.6.2 above. X handles this via a client program called xterm. This program emu-
lates a venerable VT102 intelligent terminal, complete with all the escape se-
guences. Thus editors such as vi and emacs and other software that uses termcap
work in these windows without modification.

Graphical User Interfaces

Most personal computers offer a GUI (Graphical User Interface). The acro-
aym GUI is pronounced “gooey.”

The GUI was invented by Douglas Engelbart and his research group at the
Stanford Research Institate. It was then co*&s&archers at Xerox PARC.
One fine day, Steve Jobs, cofounder of Apple, was touring PARC and saw a GUI
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#include <X11/Xlib.h>
#include <X11/Xutil.h>

main{int arge, char *argv})

?Q;pé:{vﬁ?g, /* server identifier »/

GO o0 ; I+ window identifier «/
Xiéven; event /= graphic context identifier +/
it reming ;; #* storage for one event +/

disp = )(OpenDispiay("dispéay_name“)' 1%
win = XCreateSimpieWincﬁow(disp, ; lo0ato memon orves

v ; ; * allocate memory for new winde
XSetStandardPropertses(dlsp, ok /* announces windaw to window mgr =/ o

ge = XCreateGC(disp, win, 0 -0); /* create I
i P , 0,-0); graphic context */
ifﬂe&ectir_sput(d[s;;, win, BultonPressMask | KeyPrassiask | Exposurepask):;
ap Raised(disp, win); /* display window; send Expose eve;n =

white (running) {

XNextEvent(disp, &event); * get next event »/
switch (event.type) {

case Expose: i break; /= int wi

; repaint window +/
case BultonPress: .; break; /* process mouse click +/
case Keypress: -;  break; /* process keyboard input /

}

XFreeGC{disp, go;

i ] ) /= release graphic context #/
))églestrog{Wmdow(drsp, winj; + deallocate window's Memory space =/
} oseDisplay(disp); /* tear down netwark connection */

Figure 5-38. A skeleton of an X Window application program.

on a Xerox computer and said something to the effect of “Ho is i
the future of computing.” The GUI gave him the idea for a néi ch;i:jtee}; q:fl}ijcllf
bgcame the Apple Lisa. The Lisa was tog expensive and was a com;ner ial
failure, but its successor, the Macintosh, was a huge success. .
. ‘When_M.:crosoft got a Macintosh prototype so it could develop Microsoft
Office on it, it .bc‘:gged Apple to license the interface to all comers so it would be-
come the new industry standard, (Microsoft made much more money from Office
than from MS-DOS, so it was willing to abandon MS-DOS to have z better platform
for Office.) The Apple exscutive in charge of the Macintosh, ;Téan-Louis Gassée
refused and_ Steve Jobs was no longer around to ovemrule him, Eventually Mi{;mj
soft got a hcen;e for elements of the interface. This formed the basis ,of Win-
dows. When Windows began to catch on. Apple sued Microsoft, claiming Micro-
soft had exceeded the license, but the Jjudge disagreed and Windows went on to
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overtake the Macintosh. If Gassée had agreed with the many people within Apple
who also wanted to license the Macintosh software to everyone and his uncle,
Apple would probably have become immensely rich on licensing fees and Win-
dows would not exist now.

A GUI has four essentia] elements, denoted by the characters WIMP. These
letters stand for Windows, Icons, Menus, and Pointing device, respectively. Win-
dows are rectangular blocks of screen area used to run programs. Icons are liule
symbols that can be clicked on to cause some action to happen. Menus are lists of
actions from which one can be chosen. Finally, a pointing device is a mouse,
trackball, or other hardware device used to move a cursor around the screen to se~
lect items.

The GUI software can be mmplemented in either user-level code, as is done in
UNIX systems, or in the operating system itself, as in the case In Windows.

Input for GUI systems still uses the keyboard ard mouse, but ouiput almost
always goes to a special hardware board called a graphics adapter. A graphics
adapter contains a special memory called a video RAM that holds the fmmages that
appear on the screen. High-end graphics adapters often have powerful 32- or 64-
bit CPUs and up to 1 GB of their own RAM, separate from the computer’s main
Memory.

Each graphics adapter supports some pumber of screen sizes. Comumon sizes
are 1024 x 768, 1280 x 960, 1600 x 1200, and 1920 x1200. All of these except
1920 3¢ 1200 are in the ratio of 4:3, which fits the aspect ratio of NTSC and PAL
television sets and thus gives square pixels on the same monitors used for televi-
sion sets. The 1920 x 1200 size is intended for wide-screen monitors whose aspect
ratio matches this resolution. At the highest resolution, a color display with 24
bits per pixel requires about 6.5 MB of RAM just to hold the image, so with 256
MB or more, the graphics adapter can hold many images at once. I the full
screen 15 refreshed 75 timesfsec, the video RAM must be capable of delivering
data continuously at 489 MB/sec.

Output software for GUIs is a massive topic. Many 1500-page books have
been writien about the Windows GUI alone (e.g., Petzold, 1999; Simon, 1997; and
Rector and Newcomer, 1997). Clearly, in this section, we can only scratch the
surface and present a few of the underlying concepts. To make the discussion
concrete, we will describe the Win32 APIL, which is supported by all 32-bit ver-
stons of Windows. The output software for other GUIs is roughly comparable in 2
general sense, but the details are very different.

The basic item on the screen is a rectangular area called a window, A win-
dow’s position and size are uniquely determined by giving the coordinates (in pix-
els) of two diagonally opposite corners. A window may contain a title bar, a
menu bar, a tool bar, a vertical scroll bar, and 2 horizontal scroll bar. A typical
window is shown in Fig. 5-39. Note that the Windows coordinate system puts the
oxigin in the upper lefthand corner and has v increase downward, which is dif-
ferent fromythe Cartesian coordinates used in mathematics.
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Figure 5-39. A sample window located at (200, 100) on an XGA display

Whea a window is created, the
moved by the user, resized by the
scroll bar) by the user. The mai
moved, resized, and scrolled, whi

Parameters specify whether the window can he
user, or scrolled (by dragging the thumb on the
z;l ;vmdow produced by most programs can be
€l 188 enormious conseque i
dows programs_are written. In particular, programs Emsrzczse f?;;;lgn\:zy V[;fm»
chang‘es to the size of their windows and must be prepared to redraw th onts
of their windows at any time, even when they least expect it © contens
_ A§ a4 consequence, Windows programs age message oriented, User act
Izvolving the keyhoard or mouse are captured by Windows and ;:onverted '(:1{{13
messages o the program owning the window being addressed. Bach program Ih .
& message queuve 0 which messages relating to all its wirzdows. are seﬂ?*{ '?h in
loop of the program consists of fishing out the next message and ‘proce.ssinz ?ﬁi;

calling an internal procedure for that message type. In some cases, Windows it

self may call these procedures directly, bypassing the message queue. This model

is quite different than the UNIX model of
; ! _ procedural code that make
to interact with the Operaling systern. X, however, is event oriented, " ysiem call
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To make this programming model clearer, cens_ider the exgmple of Fli(ji?&
Here we see the skeleton of & main program for Wméows. It is not cozInp ote a2
does no error checking, but it shows e_raough de}aﬁ for our pulpoi::st.a t ses C(m)_r
including a header file, windows.h, which containg many macros, data types,

stants, function prototypes, ard other information needed by Windows programs.

#include <windows.h>
int WINARL WinMain{HINSTANCE h, HINSTANCE, hprev, char *sz(md, int iCmdShow)

/* ciass object for this window ®f

‘Jf\;\‘lfggcm-ss vndctass /+ incoming messages are _sioreci hgre =
HWNS;?A:nd' /= handle {pointer) to the window object */

/* Initialize wndclass */

wndclass. ipfnWndProc = Wnc;l}Proc; o
wndclass.lpszClassName = "Program name , ]
wndeiass.hleon = Loadlcon{NULL, !DS_APF'&ICAT%ON)',
wndclass.hCursor = LoadCursor(NULL, DC_ARBOW);

/* tells which procedure to cali %/

j* Text for title bar */

J load program icars */
/* load mouse cursor */

f+ talt Windows about wndclass */

/% ailocate storage for the window */
* display the window on the screen */
/= tell the window to paint itself »/

RegisterClass{@wndclass);

hwnd = CreateWindow { ... }
ShowWindow{hwnd, iCrmdShow);
UpdateWindow(hwnd);

while (GetMessage(&msg, NULL, 0, B} { /« get message from queus >/

. of
lateessage(&msg); /= transiate the message */
E:;Ztcmﬂessagge((&msg); /= send msg to the appropriate pracedurg */

return{msg.wParam);

}
long CALLBACK WndProc{HWND hwnd, UINT message, UINT wParam, long Param)

/* Declarations go here. */

S o GF /* create window */

TE: [(=HE (I )
2222 gmmgﬁﬁr .o relum .. /= repaint copients of window */
case WM:DESTROY: .t orelum ../ desiroy window */

zeiurn(DefWinéomec{hwnd, message, wParam, IParam)); 1= default =/

Figure 5-40. A skeleton of a Windows main program.

The main program starts with a declaration giving its name and‘ paramet:;
The WINAPI macro is an instruction to the compiler to use a certain pa:ainr h
passing convention and will n('c)f further concern to us. The first parameter, 7,
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Is an instance handie and is used to identify the program to the rest of the system.
To some extent, Win32 is object oriented, which means that the system contains
objects (e.g., programs, files, and windows) that have some state and associated
code, called methods, that operate on that state. Objects are referred to using
handles, and in this case, h identifies the program. The second parameter is pres-
ent only for reasons of backward compatibility. It is no longer used. The third pa-
rameter, szCmd, 18 a zero-terminated string containing the command line that
started the program, even if it was not started from a comunand line. The fourth
parameter, iCmdShow, tells whether the program’s initial window should occupy
the entire screen, part of the screen, or none of the screen (task bar only).

This declaration illustrates a widely used Microsoft convention called Hun-
garian notation. The name is a pun on Polish notation, the postfix system inven-
ted by the Polish logician J. Lukasiewicz for representing algebraic formulas
without using precedence or parentheses. Hungarian notation was invented by a
Hungarian programmer at Microsoft, Charles Simonyi, and uses the first few
characters of an identifier fo specify the type. The allowed letters and types in-
clude ¢ (character}, w (word, now meaning an unsigned 16-bit integer), i (32-bit
signed integer), 1 (Jong, alse a 32-bit signed integer), s (string), sz (string termi-
nated by a zero byte), p (pointer), fn (function), and h (hardle). Thus szCmd is a
zero-terminated string and iCmdShow is an integer, for example. Many pro-
grammers believe that encoding the type in variable names this way has little
value and makes Windows code exceptionally hard to read. Nothing analogous to
this convention is present in UNIX.

Every window must have an assoclated class object that defines its properties.
In Fig. 5-40, that class object is wndelass. An object of type WNDCLASS has 10
fields, four of which are initialized in Fig. 5-40. In an actual program, the other
six would be initialized as well. The most important field is IpfmWndProc, which
is a long (i.e., 32-bit) pointer to the function that handles the messages directed to
this window, The other fields initialized here tell which name and icon to use in
the title bar, and which symbol to use for the mouse cursor.

After wndelass has been initialized, RegisterClass is called to pass it to Win-
dows. In particular, after this call Windows knows which procedure to call when
various events occur that do not go through the message gueue. The next call,
CreateWindow, allocates memory for the window’s data structure and returns a
handie for referencing it later. The program then makes two more calls in a row,
to put the window’s outlineg on the screen, and finally fill it in completely.

At this point we come 10 the program’s main loop, which consists of getting a
message, having certain transiations done to it, and then passing it back to Win-
dows to have Windows invoke WndProc to process it. To answer the question of
whether this whole mechanism could have been made simpler, the answer is yes,
but it was done this way for historical reasons and we are now stuck with it.

Following the main program is the procedure WndProc, which handles the
various messages that can be sent to the window. The use of CALLBACK here,
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like WINAPT above, specifies the calling sequence to use for parameters. The first
parameter is the handle of the window to use. The second pa;ameterv is thle‘n}fes—_
sage type. The third and fourth parameters can be used to provide additional infor
i ed.
manl(\)/lge:::; ftl;;gs WM __CREATE and WM__DESTROY are sent at the st;;rt ;:;d
end of the program, respectively. They give thedpt;(l%razr:utrhneito;)portumty, or ex-
emory for data structures an e . )

am?”ll?t;g;ilri{? jzsssI:ge tyge, W _PAINT, is an insir‘uction to the program to ﬂIl_ 11(17
the window. It is not only called when the window is first drawn, bult often during
program execution as well. In contrast to text-based systerns, in Wmdows. ;1_;;)1-0:
gram cannot assume that whatever it draws on the screen will stay there unti iured
moves it. Other windows can be dragged oz 1op of this one, menus can be %txrhe
down over it, dialog boxes and tool tips can cover part of it, and S0 on. Eﬂ
these items are removed, the window has to be redrawn. The way Wmdo;xf_s &C:i ls
a program to redraw a window is to send it a WM_PAINT mf?ssage.hAsba ruz; ! r}i
gesture, it aiso provides information about what part of th wmd{.)w a8 e;:end
written, in case it is easier to regenerate that pact of the window instead of redraw-
. o - '
" t'?;e":: ziz ttl\:;zbways Windows can get a program: to do something. One way 1:
to post 4 message 1o its message Guele. This method is used fof keyboard ;Llput(;
mouse input, and timers that have expired. The other way, serfdmg a m‘essat,c;,1 °
the window, involves having Windows directly call WndProc itself, This metho
is used for all other events. Since Windows i3 notx'ﬁed when a message 15 i;llﬂidy
pracessed, it can refrain from making a new cali until the previous one 1s finished.

i conditions are avoided. .

" ﬁ}llf‘s;l;zy;??nany more message types. To avoid eng&c behavior should‘3 ar;
unexpected message asrive, the program should call DefWindowProc at the ené O
WndProc to let the default handler take care of the other cases. . )

In summary, a Windows program normally creates one or more windows w;ig
a class object for each one. Associated with each program 1s a message gueue a;
a set of handler procedures. Ultimately, the program’s behavior is dr%ve_n by the
incoming events, which are processed by the handier Pmccdures. This is a very
different model of the world than the more procedural view that UNIX t_akes.

The sctual drawing to the screen is handied by a package COBS;SEH‘]g of ht.m—
dreds of procedures that are bundied together to fors_n the GDI (Graphics Delece
Interface). It can handle text and all kinds of graphics and 15 desgqed to be p at-
form and device independent. Before a program can c}raw (i.e., paint} in a win-
dow, it needs to acquire a device context, which is an internal data structure con(«l
taining properties of the window, such as thg carrent font,.taxt color, balci(groufn
color, and so on, Most GDI calls use the device context, either for drawing or fox
getting or setsing the properties. )

Various ways exist to acquire the device context-
acquisition and use is e

A simple sxample of its

N
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hde = GetDC(hwnd);
TextQut(hde, X, v, psText, iLength);
ReleaseDC{hwnd, hdg);

The first staternent gets a handle to a device content, hde. The second one uses
the device context to write a line of text on the screen, specifying the (x, ¥) coordi-
nates of where the string starts, a pointer to the string itself, and its length. The
third call releases the device context to indicate that the program is through draw-
ing for the moment. Note that hdc is used in a way analogous to 2 UNIX file de-
scriptor. Also note that ReleaseDC contains redundant information (the use of hdc
uniguely specifies a window). The use of redundant information that has no ac-
tual value is common in Windows.

Another interesting note is that when hdc is acguired in this way, the program
can only write in the client area of the window, not in the title bar and other parts
of it. Internally, in the device context’s data structure, 2 clipping region is main-
tained. Any drawing outside the clipping region is ignored. However, there is an-
other way to acquire a device context, GetWindowDC, which sets the clipping re-
gion to the entire window. Other calls restrict the clipping region in other ways.
Having multiple calls that do almost the same thing is characteristic of Windows.

A compiete treatment of the GDI is out of the question here. For the interested
reader, the references cited above provide additional information. Nevertheless, a
few words about the GDI are probably worthwhile given how important it is. 'GDI
has various procedure calls to get and release device contexts, obtain information
about device contexts, get and set device context attributes {e.g., the background
color), manipulate GDI objects such as pens, brushes, and fonts, each of which
has i#s own attributes. Finally, of course, there are a large number of GDI calls o
actually draw on the screen.

The drawing procedures fall into four categories: drawing lines and curves,
drawing filled areas, managing bitmaps, and displaying text. We saw an example
of drawing text above, so let us take a quick look at one of the others. The call

Rectangle(hdc, xleft, ytop, xright, ybottom);

draws a filled rectangle whose corners are (xleft, ytop) and {xright, ybottom). For
example,

Rectangle(hdc, 2, 1, 6, 4);

will draw the rectangle shown in Fig. 5-41. The line width and color and fill color
are taken from the device context. Other GDI calls are stmilar in flavor.

Bitmaps

The GDI procedures are examples of vector graphics. They are used to place
geometric figures and text on the screen. They can be scaled easily to larger or

smaller screens (provided the number of pixels-on the screen is the same}. They
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Figure 5-41. An example rectapgle drawn using Recrangie. Each box represents
one pixel.

are also relatively device independent. _A collection of ca}ls 10 GESI [;_ri(;c;asd;z;;s_
can be asserbled in a file that can describe a complex :l}zrawmg.g. Suchafi o
ed a Windows metafile, and is widely used to t_ransmxt drawings from one
dows program to another. Such files have extension .wmf. £ & drawing and put
Many Windows programs allow the user to copy {part of) a 5 :mé e
in on the Windows clipboard. The user can then go to another pma,r_ari; an ?3 e
the contents of the clipboard nto another document. One way of do:lb 9 t:;On or
the first program to 1:epn-3s§:)rzi;1 the draw;ng as z;ﬁm@wg metafile and pu
i i rmat. Other ways also £Xist. )
Chp?gc?:cilliniﬁg?x:f:ges that computers manipulate can b generated usn;gic:ecizi
graphics. Photographs and videos, for exam_ple:, do ‘r;ot use v.ector grréf avéra -
:tead these iterns ave scanned in by overlaying 4 grid on the image. 1he . tge
red, g,;recn, and biue values of each grid square are then sampled arfci ngﬂi;i e
value of one pixel. Such a file Is called 2 bitmap. There are exiensive
i ipulating bitmaps. ‘
Wmi?z:hfe?unsl: r%o% bitm;ps is for text. On§ way to represent a pamcaltz;r ct::;e;c;
ter in some font is as a small bitmap. Adding texi 0 the screen then beco
ing bitmaps. . .
mattgazfg::s;;:lu\x; topuse bitmaps is through a procedure called pithlr. Itis call-

ed as follows:
bitblt{dsthdc, dx, dy, wid, ht, srchdc, sx, sy, rasteroph;

In its simplest form, it copies a bitmap from a rectangle in one wmé;wr StoS aeiz,g;
tangle in another window (or the same one). The ﬁr;t three pafar; E.;I tpcome
the destination window and position. Then come the_w1éth and pexg . Nex come
the source window and position. Note that each window has is OWI COOTUID:

2
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system, with (0, 0) in the upper left-hand corner of the window. The last parame-
ter will be described below. The effect of

BitBit(hdc2, 1, 2, 5, 7, hdci, 2, 2, SRCCOPY);

is shown in Fig. 5-42. Notice carefully that the entire 5 x 7 area of the letter A
has been copied, including the background color.
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Figure 5-42. Copying bitmaps using BirBl1. (a) Before. (b) After.

BitBit can do more than just copy bitmaps. The last parameter gives the possi-
bility of performing Boolean operations to combine the source bitmap and the
destination bitmap. For example, the source can be ORed into the destination to
merge with it. It can also be EXCLUSIVE ORed into i, which maintains the
characteristics of both source and destination.

A problem with bitmaps is that they do not scale. A character that is in a box
of 8 x 12 on a display of 640 x 480 will look reasonable. However, if this bitmap
is copied to a printed page at 1200 dotsfinch, which is 10200 bits x 13200 bits, the
character width (8 pixels) will be 8/1200 inch or (.17 mm wide. In addition,
copying between devices with different color properties or between monochrome
and color does not work well.

For this reason, Windows also supports a data structure called a DIB (Device
Independent Bitmap). Files using this format use the extension .bmp. These
files have file and information headers and a color table before the pixels. This
information makes it easier to move bitmaps between dissimilar devices.

Fonts

In versions of Windows before 3.1, characters were represented as bitmaps
and copied onto the screen or printer using BitBlr. The problem with that, as we
Just saw, is that a bitmap that makes sense on the screen is too small for the print-
er. Also, a different bitmap is needed for each character in each size. Ia other
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Figare 5-43. Some examples of characier outlines at different point sizes.
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QOver the years, the main computing paradigm has oscillated between central-
ized and decentralized compuating. The first computers, such as the ENIAC, were,
in fact, personal computers, albeit large ones, because only one person could use
one at once. Then came.timesharing systems, in which many remote users at sim-
ple terminals shared a big central computer. Next came the PC era, in which the
users had their own personal computers again.

While the decentralized PC mode! has advantages, it also has some severe
disadvantages that are only beginning to be taken seriously. Probably the biggest
problem is that each PC has a large hard disk and complex software that must be
maintained. For example, when a new release of the operating system comes out,
a great deal of work has to be done.to perform the upgrade on each machine sepa-
rately. At most corporations, the labor costs of doing this kind of software main-
tenance dwarf the actual hardware and software costs. For home users, the labor is
technically free, but few people are capable of doing it correctly and fewer still
enjoy doing it. With a centralized system, only one or a few machines have to be
updated and those machines have a staff of experts to do the work.

A related issue is that users should make regular backups of their gigabyte file
systems, but few of them do. When disaster strikes, a great deal of moaning and
wringing of hands tends to follow. With a centralized system, backups can be
made every night by automated tape robots,

Another advantage is that resource sharing is easier with centralized systems.
A system with 256 remote users, each with 256 MB of RAM will have most of
that RAM idle most of the time. With a centralized system with 64 GB of RAM, it
never happens that some user temporarily needs 2 ot of RAM but cannot get it
because it is on someone else’s PC. The same argument holds for disk space and
other resources.

Finally, we are starting 1o see a shift from PC-centric computing to Web-
centric computing. One area where this shift is very far along is e-mail. People
used to get their e-mail delivered to their home machine and read it there. Nowa-
days, many people log into Gmail, Hotmail, or Yahoo and read their mail there.
The next step is for people to log into other Websites to do word processing, build
spreadsheets, and other things that used to require PC software. It is even possible
that eventually the only software people run on their PC is 2 Web browser, and
maybe not even that.

It is probably a fair conclusion to say that most users wani high-performance
interactive computing, but do not really want to adrninister a computer. This has
ted researchers to reexamine timesharing using dumb terminals (now politely call-
ed thin clients) that meet modern terminal expectations. X was a step in this
direction and dedicated X terminals were popular for a little while but they fell
out of favor because they cost as much as PCs, couid do less, and still needed
some software maintenance. The holy grail would be a high-performance interac-
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The paper gives extensive performance measurements rupning numerous
common applications on servers at distances ranging from 10 km to 10,000 km
from the client. In general performance exceeded other wide-area network sys-
tems, even for real-time video. For more information, we refer you to the papers.

5.8 POWER MANAGEMENT

The first general-purpose electronic computer, the ENIAC, had 18,000
vacuum tubes and consumed 140,000 watts of power. As a result, it ran up a non-
trivial electricity bill. After the invention of the transistor, power usage dropped
dramatically and the compater industry lost interest in power requirements. How-
ever, nowadays power management is back in the spotlight for several reasons,
and the operating system is playing-a role here.

Let us start with deskiop PCs. A desktop PC often has a 200-watt power sup-
ply (which is typically 85% efficient, that is, loses 15% of the incoming energy to
heat). If 100 miilion of these machines are turned on at once worldwide, together
they use 20,000 megawatts of electricity. This is the total output of 20 average-
sized nuclear power plants. If power requirements could be cut in half, we could
get rid of 10 ruclear power plants. From an environmental point of view, getting
rid of 10 nuclear power plants (or an equivalent number of fossil fuel plants) is a
big win and well worth pursuing. b

The other place where power Is a big issue is on battery-powered compaters,
including notebooks, handhelds, and Webpads, among others. The heart of the
problem is that the batteries cannot hold enough charge to last very long, a few
hours at most. Furthermore, despite massive research efforts by battery com-
panies, computer companies, and consumer electronics companies, progress is
glacial. To ap industry used to a doubling of performance every 18 months
(Moore’s law), having no progress at afl seems like a violation of the laws of phy-
sics, but that is the cumrent situation. As a consequence, making computers use
less energy so existing batteries last longer is high on everyone’s agenda. The op-
erating system plays a major role here, as we will see below.

At the lowest level, hardware vendors are trying to make their electronics
more energy efficient. Techniques used tnclude reducing transistor size, employ-
ing dynamic voltage scaling, using low-swing and adiabatic buses, and similar
techniques. These are ouiside the scope of this book, but interested readers can
find a good sugvey in a paper by Venkatachalam and Franz (2005).

There are two general approaches to reducing energy consumption. The first
one is for the operating system to tumn off parts of the computer {mostly 1/O de-
vices) when they are not in use because a device that is off uses little or no ener-
gy. The second one is for the application program to use less energy, possibly
degrading the quality of the user experience, in order to stretch out battery time.
We will look at each of these approaches in turn, but first we will say a little bit
about hardware design with respect to power usage.

E
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5.8.1 Hardware Issues

Batteries come in two generai types: disposable and rechargeable. Disposable
batteries (most commonly AAA, AA, and D cells) can be used to run handheld
devices, but do not have encugh energy to power notebook computers with large
bright screens. A rechargeable battery, in contrast, can store enough energy to
power a noiebook for a few hours. Nickel cadmium batteries used to dominate
here, but they gave way 10 nickel metal hydride batteries, which last longer and do
not pollute the environment quite as badly when they are eventually discarded.
Lithium jon batteries are even better, and may be recharged without first being
fuily drained, but their capacities are also severely limited.

The general approach most computer vendors take to battery conservation is
to design the CPU, memory, and O devices to have rmaltiple states: on, sleeping,
hibernating, and off. To use the device, it must be on. When the device will not
be needed for a short time, it can be put to sleep, which reduces energy consump-
flon. When it is not expected to be needed for a longer interval, it can be made to
hibernate, which reduces energy consumption even more. The trade-off here is
that getting a device out of hibernation often takes more time and energy than get-
fing it out of sleep state. Finally, when a device is off, it does nothing and con-
sames no power. Not all devices have all these states, but when they do, it is up
1o the operating system to manage the state transitions at the right moments.

Some computers have two or even three power buttons. One of these may put
the whole computer in sleep state, from which it can be awakened quickly by typ-
ing a character or moving the mouse. Another may put the computer into hiberna-
tion, from which wakeup takes much longer. In both cases, these buttons typi-
cally do nothing except send a signal to the operating systeen, which does the rest
in software. In some countries, electrical devices must, by law, have a mechani-
cal power switch that breaks a circuit and removes power from the device, for
safety reasons. To comply with this law, another swiich may be needed.

Power management brings up a number of questions that the operating system
must deal with. Many of them deal with resource hibernation—selectively and
temporarily turning off devices, or at least reducing their power consumption
when they are idle. Questions that must be answered include these: Which devices
can be controlied? Are they on/off, or do they have intermediate states? How
much power is saved in the low-power states? Is energy expended to restart the
device? Must some context be saved when going to a low-power state? How
long does it take to go back to full power? Of course, the answers to these ques-
tions vary from device to device, so the operating systern must be able to deal
with a range of possibilities.

Various researchers have examined notebook computers to see where the
power goes. Li et al. (1994) measured various workloads and came to the conclu-
sions shows in Fig. 5-43, Lorch and Smith (1998) made measurements on other
machines and came to the conclusions shown in Fig. 5-45. Weiser et al. (1994)
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disk is hibernating rather than sleeping because it takes guite a few seconds to
spin it up again, which causes noticeable delays for the user.

In addition, restarting the disk consumes considerable exua energy. As a
consequence, every disk has a characteristic time, Ty, that is its break-even point,
often in the range 5 to 15 sec. Suppose that the next disk access is expected to
come some time ¢ in the fature. If £ < Ty, it takes less energy to keep the disk
spinning rather than spin it down and then spin it up so quickly. If ¢ > T, the en-
ergy saved makes it worth spinning the disk down and up again much later. I a
good prediction could be made (e.g., based on past access patterns), the operating
system could make good shutdown predictions and save energy. In practice, most
systems are conservative and only stop the disk after a few minutes of inactivity,

Another way to save disk energy is to have a substantial disk cache in RAM.
If a needed block is in the cache, an idle disk does not have to be restarted to
satisfy the read. Similarly, if a write to the disk can be buffered in the cache, a
stopped disk does pot have to restarted just to haadle the write. The disk can
remain off until the cache fills up or a read miss happens.

Another way to avoid unnecessary disk starts is for the operating system to
keep ranning programs informed about the disk state by sending it messages or
signals. Some programs have discretionary writes that can be skipped or delayed.
For example, a word processor may be set up to write the file being edited to disk
every few minutes. If the word processor knows that the disk is off at the moment
it would normally write the file out, it can delay this write until the disk is next
turned on or unti! 2 certain additional time has elapsed.

The CPU

The CPU can also be managed to save energy. A notebook CPU can be put to
sleep in software, reducing power usage to almost zero. The only thing it can do
in this state is wake up when an interrupt occurs. Therefore, whenever the CPU
goes idle, either waiting for IO or because there is no work to do, it goes to sleep.

On many computers, there is a relationship between CPU voltage, clock
cycle, and power usage. The CPU voltage can often be reduced in software, which
saves energy but also reduces the clock cycle {approximately linearly). Since
power conswmed is proportional to the square of the voltage, cutting the voltage in
half makes the CPU about half as fast but at 1/4 the power.

This property can be exploited for programs with well-defined deadlines, such
as multimedia viewers that have to decompress and display a frame every 40
msec, but go idle if they do it faster. Suppose that a CPU uses x joules while run-
ning full blast for 40 msec and x/4 joules running at haif speed. If a multimedia
viewer can decompress and display a frame in 20 msec, the cperating system can
run at full power for 20 msec and then shut down for 20 msec for a total energy
usage of x/2 joules. Alternatively, it can run at half power and just make the dead-
line, but use only x/4 joules instead. A comparison of running at full speed and
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order to listen for incoming e-mail, the battery may drain fairly quickly. On the
other hand, if the radio is switched off after, say, I minute of being idle, incoming
messages may be missed, which is clearly undesirabile.

One efficient solution to this problem has been proposed by Kravets and
Krishnan (1998). The heart of their solution exploits the fact that mobile com-
puters communicate with fixed base stations that have large memories and disks
and no power constraints. What they propose 1s to have the mobile computer send
a message to the base station when it is about to turn off the radio. From that time
on, the base station buffers incoming messages on its disk. When the mobile
computer switches on the radio again, it tells the base statior. At that point any
accumulated messages can be sent to it.

Outgoing messages that are generated while the radio is off are buffered on
the mobile computer. If the buffer threatens to £ill up, the radio is tumed on and
the queue transmitted to the base station.

When should the radio be switched off? One possibility is to let the user or
the application program decide. Another is turn it off after some number of sec-
onds of idle time. When should it be switched on again? Again, the user or pro-
gram could decide, or it could be swiiched on pericdically to check for inbound
traffic and transmit any quened messages. Of course, it also shoutld be switched
on when the output buffer is close to full. Various other heuristics are possible.

Thermal Management

A somewhat different, but still energy-refated issue, is thermal management.
Modern CPUs get extzemely hot due to their high speed. Desktop machines nor-
mally have an internal electric fan to blow the hot air out of the chassis. Since
reducing power consumption is usually not a driving issue with desktop machines,
the fan is usually on all the time.

With notebooks, the situation is different. The operating system has to moni-
tor the temperature continuously. When it gets close to the maximum allowable
temperature, the operating system has a choice. [t can switch on the fan, which
makes noise and consumes power. Alternatively, it can reduce power consump-
tion by reducing the backlighting of the screen, slowing down the CPU, being
more aggressive about spinning down the disk, and so on.

Some input from the user may be valuable as 2 guide. For example, a user
could specify in advance that the noise of the fan is objectionable, so the operating
system would reduce power consumption instead.

Battery Management

In ye olde days, a battery just provided cumrent until it was drained, at which
time it stopped. Not any more. Laptops use smart batteries now, which can com-
municate with the operating system. Upon request they can report on things like
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S%mc ncgnebooks have muoitiple batteries. When the c)p?r:;xtm% iyst:gu ﬁ;l:tj;ﬂ
i i to arrange for a graceful cutover :
that one battery is about to go, it has I
i i the final battery is
i i hes during the transition. When
one, without causing any glhitc! : N e [nal battery s
i it ting system 1¢ warn the user
on its last legs, it is up to the opera ing : "
orderly shutgawn, for example, making sure that the file system is not corrapt

Driver Interface

The Windows systern has an elaborate mfachanism for doing p});v:.; m;;é
agement called ACPI (Advanced Configu;:atmn and I-‘ower_Int_erm(;e .Ort he
o;eratiag system can send any cozfegﬁ}ant dnvirsc;;)g:l%ﬁiss a;seiltr;feﬁis esp?e vially

capabilities of its devices and their curren - e
g:ag)ortint when combined with plug and play begaﬂse just after:tlést ?g;idé::ii
operating system does not even kaow whgi devices are pie:e;lb,‘ut
propetties with respect to energy consumption Or pOWEr manage tlhelyr. et ev.

It can also send commands to drivers instructing them to Ct:;:: s‘spaiso lev
els (based on the capabilities that it learned eaﬁ?er, of c:m.irse)i.c Se: dl s 2is0 some
traffic the other way. In particular, when a c}eyxce s_uch as ahey :{em o mouse
detects activity after a period of idleness, this is 2 signal to the sy g

to {near) normal operation.
5.8.3 Application Program Issues

So far we have looked at ways the operating system can redm;aI .eﬂeggtyh :sarie:

by varions kinds of devices. But these is 2nother a‘.iapmach as wi SérteeX?ed g:l o
if thi viding a poorer
grams to use less energy, even if this means pro ] |
{(jbetter a poorer experéeance than no experience when the ba{)tery diesh an;etli;ebls(i;nws
i isi ion i tery char
formation is passed on when the bat :

go out). Typically, this in . doniading por.

i s to decide between deg g
some threshold. It is then up fo the program: . _ -
formance to lengthen batiery life or to maintain performance and risk rgzmmg o
of energy. )

On%yof the questions that comes up here asks how a program cgn d;ig;idealxltés
performance to save energy. This question has been studied dgc dleé e
Satyanarayanan {2004). They provided four examples of how degra p

i k at these.
formance can save energy. We will now loo ] )

In this study, information is presented to the user in various f('grrhnil?;lizc;?
degradation is present, the best possible inforzpanon is presented. : ethe Eser i
ton is present, the fidelity (accuracy) of ti'le information presente ht?-t !
worse than what it could have been. We will see examples of this shortly.
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In order to measure energy usage, Flinn and Satyanarayanan devised a soft-
ware tool called PowerScope. What it does is provide a power usage profile of a
pregram. To use it, a computer must be hooked up to an external power supply
through 2 software-controlled digital multimeter. Using the multimeter, software

1o give the energy usage of each procedure. These measurements formed the basis
of their observations. Hardware énelgy saving measures were also used and
formed the baseline against which the degraded performance wag meastred.

The first program measured was a video player. In undegraded mode, it plays
30 framesisec in full resolution and in color, One form of degradation is to aban-
don the color information and display the video in black and white. Another form

Computer or sent over a radio lnk for analysis on a fixed computer. Dolng this
saves CPU energy but uses energy for the radio. Degradation was accomplished

by using a smaller vocabulary and a simpler acoustic model. The win here was
about 35%.

the remote server to omit smaller roads, thus requiring fewer bits to be trans-
mitted. Again here a gain of about 35% was achieved,

The fourth experiment was with transmission of JPEG images 0 a Web
browser. The JPEG standard allows various algorithms, trading image quality
against file size. Here the gain averaged only 9%, 5tll, all in afl, the experiments

showed that by accepting some quality degradation, the user can run longer on a
given baltery.

5.9 RESEARCH ON INPUT/OUTPUT

There s a fair amount of research on jnput/output, but most of it is focused on
specific devices, rather than HO ip general. Ofien the goal is to improve per-
formance in one way or ancther.

Disk systems are a case in point. Disk arm scheduling algorithms are ap ever-
popular research area {Bachmat and Braverman, 2006; and Zarandioon and Tho-
masian, 2006) and so are disk arrays {Arnan et al., 2007). Optimizing the full YO
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path is also of interest (Riska et ab., 2007). There is also research on disk work-
load characterization {Riska and Riedel, 2006). A new disk-related research area
is high-performance flash disks (Birrell et al.,, 2007; and Chang, 2007). Device
drivers are also getting some needed atiention (Ball et al., 2006; Ganapathy ct al.,
2007 Padioleau et al., 2006).

Another new storage technology is MEMS (Micro-Electrical-Mechanical Sys-
tems), which potentially can replace, or at least supplement, disks (Rangaswanii et
al,, 2007; and Yu et al,, 2007). Another up-and-coming research area is how to
best utilize the CPU inside the disk controfler, for example, for improving per-
formance (Gurumurthi, 2007) or for detecting viruses (Paul et al, 20035).

Somewhat surprisingly, the lowly clock is still a subject of research. To pro-
vide good resolution, some operating systems run the clock at 1000 Hz, which
leads to substantial overhead. Getting rid of this overhead is where the research
comes in {Ftsion et al., 2003; and Tsafir et al., 2005).

Thin clients are also a topic of consierable interest (Kissier and Hoyt, 2003;
Ritschard, 2006; and Schwartz and Guerrazzi, 2005).

Given the large number of computer scientists with notebook computers and
given the microscopic battery lifetime on most of them, it should come as 1o
surprise that there is remendous interest in using software techniques to reduce
power consumption. Among the specialized topics being looked at are writing ap-
plication code to maximize disk idle times (Son et ai., 2006), having disks spin
slower when lightly used (Gurumurthi et al, 2003), using program modeis to
predict when wireless cards can be powered down (Hom and Kremer, 2003}, pow-
er saving for VoIP {Gleeson et al, 2006}, examining the energy cost of security
{Aaraj et al., 2007}, deoing multimedia scheduling in an energy-efficient way
(Yuan and Nahrstedt, 2006), apd even having a built-in camera detect whether
anyone is looking at the display and turning it off when no one is (Dalton and
Elfis, 2003}, At the low end, another hot topic is energy use in sensor nerworks
{Min et al., 2007; and Wang and Xiao, 2006) At the other end of the spectrum,
saving energy in large server farms is also of interest (Fan et al., 2007; and Tolen-

tino et al., 2007).

5.10 SUMMARY

Input/ontput is an often neglected, but important, topic. A substantial fraction
of any operating system is concerned with FO. T/ can be accomplished in one of
three ways. First, there is programimed 10, in which the main CPU inputs or out-
pats each byte or word and sits In 2 tight loop waiting until it can get or send the
next one. Second, there is interrupt-driven ¥/O, in which the CPU starts an /O
transfer for a character or word and goes off to do something else until an inter-
rupt asrives signaling completion of the /O, Third, there is DMA, in which a sep-
arate chip manages the complete transfer of z block of data, given an interrupt
only when the entire block bas been transferred.
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§ I/dO can be stmctu{ed ‘in four levels: the interrupt service procedures, the de-
; ;(;Z ;e r;vtirst, the ) device-independent /O software, and the 170 libra;'ies and
rs that run in user space. The device driver i
5 1s¢ s handle the details of i
the devices and providing uni i aing syston
iform interfaces to the rest of th i Y
The device-independent O i < buffering wnd o e
softw i i
o P , are does things like buffering and eror report-
oo %:1152 c?me m ? ?r]i(ety of types, including magnetic disks, RAIDs, and vari
of optical disks, Disk arm scheduling algord ’ , >
_ ¢ orithms can often b
improve disk performance, but the o v e
presence of virtual geometri i
matters. By pairing two disks, a stab} i i o ey e
: . e storage i i
o, By paiting two ge medium with certain useful prop-
Clocks are used for keepi
ping track of the real time, lmiting b
L I S ow lon -
esseé Ean un, hgndhng waichdog timers, and doing accounting. ; & proe
e tz;x}r:{cgzrl;obr;egt;dt tenczlnnais hlave a variety of issues concerning special char-
input and special escape sequences that b
be in raw mode or cooked i ueh Conaet the propen
mode, depending on how much
] \ contro} the pro
x Tam
al{ants over the_mput. Escape sequences on outpat control cugsor movenfentg and
ow for inserting and deleting text on the screen.
faceM;)tsf: éﬁiﬁssg;tgigi Y;j:: th};‘: X Window System as the basis of the user inter-
. grams that are bound to special libraries that i i
commands and an X server that writes on the display pat fssue 'drawmg
Wlhiapagzrsgfsonal Focrlnputers use GUIs for their output. These are based on the
igm: windows, icons, menus, and a pointi i
» 1C0nS, . ing device. GUI-based -
grams are generally event driven, with ki i
, eyboard, mouse, and oth i
sent to the program for processin , : X ayetoms
g as soon as they h
GUIs almost always ran on top of X. Y bappen. In UNIX systems, the
. Thlp clients have some acivarzﬁages over standard PCs, notably simplicity and
thzé r;;ftl;]{?nancg foi users. Experiments with the THINC thin client have shown
ith five simple primitives it is possible t i i i
0
formance, even for video. b Polld 8 client with good per-
bmi?l;lg;iiower mﬁna_gc;nev\s;t is a major issue for notebook computers because
es are limited. Various techniques can be
‘ employed by the o -
ing system to reduce power consumptio d bfic
i | . Programs can alsoe hel i
Ing some quality for longer battery lifetimes. ” P out by sacrific:

PROBLEMS

S;;en _the hsjapraec;s listed in Fig. 5-1, is it possible t¢ scan documents from a scanner and
st them over an 802.11g network at full speed? Defend your answer

2. f;ﬁ::é-ggi:?aws oné way ;n;f gavirsg memory-mapped YO even in the presence of
O fRemory an devices, namely, o first try the me i
¢ 5 s mory bus aad
that fails try the ¥0 bus. A clever computer science student has th?ught o? alri:
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t on this idea: &y both in paraliel, to speed up the Process of accessing VO
325{:;:{@::& do you think of this idea?

3. A DMA contro::e i ing a 32-bit
Yier is capabie of requesung 2
has four channels. The contro
i M very IOGunsrec A response takes equally long. How fast does the bus have 10 he

i 9
1o avoid being 2 pottleneck?

i i . Also suppose
- write a memory word in 10 nsec
computer can read or wit : > SUppOse
4. Suppose that a_mm_lppt occurs, all 32 CPU registers, plus the prfogr{ammcezs o and
thal v irslheé onto the stack, What is the maximuam numbes of miemupts B
PSW are P

i i acess?
4 this machine can pr | n
o the intersupt is not acknowledged until after the next Cha‘raﬁter[ll;i h_::ri
5, in Fig. 5-9(b), ouid it have equally well been acknowledged right a

inter. C R Py ad, as in
output 1o thelf'."rs::rv'u:e procedure? If so, give one reason for doing itat the e
of the mterty

text. If not, why not? o

the has a three-stage pipeline a3 shew::{;]n };ilg& r;i(gz; in(tzré :gcgyczﬁ ski)gie é
i i [

o o iﬁSfo_CUC{‘ﬁ lsaf:cticﬁg ggmagzzr[rlgi aE.ach instruction occupies exactly 0: 3
put 16t0 the Plp%ﬁ:einssructions already in the pipeline are each advanced one stage.
ren \?Qrd- curs, the current PC is pushed onto the stac]f, and the PC is Sgt ;o
When an mterrupf_zferru;;t tandler, Then the pipeline is shifted right one stage an hj :
the ﬂfidrteisct(:(f);hs;the interrupt handler is ferched into the pipeline. Does this machin
first Instr

have precise interrapts? Defend your answer.

; . . Tmagine that a

1oal printed page of text contains 30 lines of 80 c§macter5 tfich {;Ehar::ter o the

7. A ypice ¥ I can pﬁm 6 pages per minute and that the time o write 2 e o thie
certain Pnntfpm cegister is so short it can be ignored. Does it make sens

T's oul 4

: . : jres an interrupt that
pOMETS driven /O if each character printed regul

- sing interrupt-
printer SIS

takes S0 tsec all-in to service?

. A computel

L. .
g, Whatis “device independence””

i i i d for
Jsin how an OS can facilitate installation of a new device without any nee
¢, Explaii
recompiing the 0S.

Hich of the four VO software layers is each of the following done.
10, In wht

(a) Computing the track, SeCtor, and head for a disk read.
a,

16 the device registers.
vine commands o . > )
® gﬁcﬁw to see if the user 1S permitted 0 qse_the device.
Eii)) Convert?zlg binary integers © ASCTI for printing. L
i wrlfe data
a network is used as follows. The user 1ssutes a system call l:me; ©
11, A locel o6 ne network. The operating system then copies the data [0; ety
Paﬁker tz;§es the data to the network controller board. When ?ié éhe : ::g;;rs e
Toen £ ver the network at a rate O meg .
insi ontroller, they are sent © 4 ¢ Or e e
mSiqe-m: :etwork controller stores each bit a microsecond after 1t1 is se_l;is When ihe
recm;‘l: :r;"'wes the destination CPU is interrupted, and tb; ker;if c?%zrhic:h C o
fast | inspect it. Once it has figured oW :

; ket to a kernel buffer to insp . h user e
wrived iEafor the kernel copies the data 10 the user space. [ we aSilégl: éhtes e
pack;t[ and 1%’5 associated processisg takes 1 msec, that packets are y g
terTyy
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the headers), and that copying a byte takes I usec, what is the maximum rate at which
one process car pump data to another? Assume that the sender is blocked until the
work is finished at the receiving side and an acknowiedgement comes back. For sim-

plicity, assume that the time to get the acknowledgement back is so small it can be
ignored.

12. Why are output files for the printer normally spooled on disk before being printed?

13, How much cylinder skew is needed for a 7200-RPM disk with a track-to-track seek
time of 1 msec? The disk has 200 sectors of 512 bytes each on each track.

14. Calculate the maximum data rate in MB/sec for the disk described in the previous
problem.

15, RAID level 3 is able to correct single-bit errors using only one parity drive, What is

the point of RAID level 27 After alt, it also can only correct one error and takes more
drives to do s0. )

16. Compare RAID level 0 through 5 with respect to read performance, write per-
formasnce, space overhead, and reliabilify.

17. What are the advantages and disadvantages of optical disks versus magnetic disks?

18. If a disk controller writes the bytes it receives from the disk to memory as fast as it
receives them, with no internal buffering, is interleaving conceivably useful? Discuss.

19. If a disk has double interleaving, does it also need cylinder skew in order to avoid
missing data when making a track-to-track seek? Discuss your answer.

20. A disk manufacturer has two 5.25-inch disks that each have 10,000 cylinders. The

newer one has double the linear recording density of the older ore. Which disk prop-
erties are better on the newer drive and which are the same?

21. A computer manufacturer decides to redesign the partition table of a Pentium hard
disk to provide more than four partitions. What are some consequences of this change?

22. Disk requests come in to the disk driver for cylinders 10, 22, 20, 2, 40, 6, and 38, in
that order. A seek takes 6 msec per cylinder moved. How much seek time is needed
for :

(a) First-come, first served.

{b) Closest cylinder next.

{c) Elevator algorithm. (initially moving vpward}.

In ail cases, the arm is initially at cylinder 20.

23. A slight modification of the elevator algorithm for scheduling disk reguests is to al-

ways scan in the same direction. In what respect is this modified algorithm better than
the elevator algorithm?

24. A personal computer salesman visiting a university in South-West Amsterdam
remarked during his sales pitch that his company had devoted substantial effort 10
making their version of UNIX very fast, As an example, ke noted that their disk driver
used the elevator algorithm and also queued multiple requests within a cylinder in sec-
tor order. A student, Harry Hacker, was impressed and bought ore. He took it home




CHAP. 5
UT
428 INPUT/OUTP

isk. his
and wrote a program (o rapdomiy read 10,000 blocks sp_ffdead‘ aclro:s [Ej-; ;dtlsl;m']flg ‘;e
hat he measured was dentical 10
amazement, the performance 1 tic
expected from first-come, first-served. Was the salesman lying?

i i ing point was
25, In the discussion of stable storage using nonvolaui;: &Agﬁi :lh:r afsoéigc\?;u; gefme s
. i ite cotmpie
ver. What bappens if the stable wri : : fore e
ilc::i\:i?ng system can Write an invalid block number in the nogvolatd:ﬁli;ﬁ\r/{
tifis raceacondition ruin the abstraction of stable storage? Explain your .

i i ed to a
26. In the discussion on stable storage, it was shown that the disk ca?aﬁf)z ;fe:og;% o8
. consistent state (a write either completes or does got take place a g
occurs during a wiite. Does this property hold if the CPU cras g g
recovery procedure. Expiain your answer.

i ires 2 msec (including process
snterrupt handler orl & ceriain computer reguires ! s
- E\Tfi:}f:f ;terhegd) per clock tick. The clock tuns at 60 Hz. What fraction of th
CPUis c;c%vmed 1o the clock?

i - ode, If 2 500 MHz crystai i
ses a programmable clock in square-wave mog g
® ﬁssgmxf:;frssould bpe ﬂfe value of the holding register 10 achieve 2 clock resolution of

(@)ya millisecond (a clock tick once every millisecond)?
{b) 100 microseconds?

i S
29, A system simulates multiple clocks by chaizing alloggndizg ;Eoc};mr?%ii%sntgo%;lgr rf; ;
. ime i there
i Fio. 5-34. Suppose the cusrent tme 18 5 it ’
222;: gﬁfm 5008 5%%2 5015, 5029, and 5037. Show téxe?)vegues of C;‘l?lc;l;bf;;e;
ext Sig i 5, and 5013. Suppose -
ime, and Next signal at imes 5009, 5003, :
ii;{?;‘i;?:}rwes at time 5017 for 5033. Show the values of Clock header, Curren
E=1 £

tme and Next signal at time 5023.

i d

5 . The driver outputs one charactes an
sder the performance of a 56-Ebps mode_m . ”

39. %c:;sﬁircks p\:fhen the character has been printed, an interupt OCCUIS at;cil a I:geass:fﬁ
is sent to tb;e blocked driver, which outputs the next charali:t‘er 1&;;1 ut%a;:: wﬁ:t fra(g:[im;

and block is sec,

ime to pass a message, output a character, "

iff{tt;zee t::ﬁ% is ia{en by the ;mdem handling? Assume that each character has one st

o

bit and one stop bit, for 10 bits in alk

. . on-

31. A bitmap terminal contains 1280 by 960 pixels. Toscroll 2 wu}écsﬁ, t’?z r(rlx?;i e{o;a; "

. troller) must move all the lines of text upward lcaly quyéggl'm:sﬂhi; 151 bry T s

i icular window 18 im ¢ :
the video RAM to another. If a particu . : e b e,
i d a character’s box is 8 pixels wide by 10 P g

wide {5280 characters, otal}, an s B e of plncls gk

s it take to scroll the whole window at a copy 4

Zm[z?ml[;‘gag??nes are 80 characters long, what is the equivalent ball.}d rateefi; :Z ;:flrrcr:n
nzl‘J‘Pu%ting a character on the screen takes 5 psec, How many lines p

a be displayed? | -
32. After receiving a DEL (SIGINT) character, the display driver discards ali outpu
rently quened for that display. Why?

i b ine 5 occu-
33, Auserata terrninal issues @ command to an ec%;tor to delete tg'-ie {decoul':‘s‘slii ot on
‘ py.ﬁl(f character positions 7 LhI'Oﬁgh and iﬁc}udmg 12, Assurming the O Ot O
=

CHAP. 5 PROBLEMS 429

line 5 when the comnand is given, what ANST escape sequence should the editor emit
to delete the word?

34. On the original IBM PC’s color display, writing to the video RAM at any time other
than during the CRT beam’s vertical retrace caused ugly spots to appear ail over the
screen. A screen image is 25 by 80 characters, each of which fits in a box 8 pixels by
8 pixels. Each row of 640 pixels is drawn on a single horizontal scan of the beam,
which takes 63.6 usec, inclading the horizontal retrace. The screen is redrawn 60
times 2 second, each of which requires a vertical retrace period to get the beam back
to the top. What fraction of the time is the video RAM available for writing in?

35. The designers of a computer system expected that the mouse could be moved at a
maximum rate of 20 cmfsec. If a mickey is 0.1 mm and each mouse message is 3

bytes, what js the maximum data rate of the mouse assurning that each mickey is re-
ported separately?

36, One way to piace a character on a bitmapped screen is to use bitbit from a font table.
Assume that a particular font uses characters that are 16 x 24 pixels in true RGB color.

{a) How much font table space does each character take?

{b) I copying a byte takes 100 nsec, including overhead, what is the output rate to the
screen in characters/sec?

37. Assuming that it takes 10 nsec fo copy a byte, how much time does it take to com-
pletely rewrite the screen of an 80 character x 25 line text mode memory-mapped
screen? What about a 1024 x 768 pixel graphics screen with 24-bit color?

38. In Fig. 5-40 there s a class to RegisterClass. In the corresponding X Window code, in
Fig. 5-38, there is no such call or anything fike it. Why not?

39. In the text we gave an example of how to draw a rectangle on the screen using the
Windows GDI:

Rectangle(hdc, xteft, ytop, xright, ybottom);

Is there any real need for the first parameter (hdc), and if so, what? After all, the coor-
dinates of the rectangle are explicitly specified as parameters.

40. It has been observed that the THINC system works well with a 1-Mbps network in a
test. Are any problems likely in a multiuser situation? Hinr: Cousider a large nusmber

of users watching a scheduled TV show and the same number of users browsing the
World Wide Web.

41. ¥ a CPU’s maximum voltage, V, is cut to V/a, its power consumption drops to 1/n? of
its original value and its clock speed drops to 1/n of its original value. Suppose that a
user is typing at 1 char/sec, but the CPU time required to process each character is 100
msec. What is the optimal value of 7 and what is the corresponding energy saving in

percent compared to not cutting the voltage? Assume that an idle CPU consumes no
energy at ail.

42. A notebook computer is set up to take maximum advantage of power saving features
including shutting down the display and the hard disk after periods of inactivity. A
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programs in text mode, and at other times uses the X Win-

3 3
T e o is significantly better when she

dow System. She is surprised to find that battery life
uses text-only programs. Why?

43. Wi i gt = 1 your
3. ite a progra that si niates stable storage. Use two lﬂi‘gﬁ fixed k:ngth files 0 ¥
. =)

disk to simglate the two disks. .
thres disk-arm scheduling algorithms. Write a dn;:»
ec program that generaies & sequence of c)fliﬂder numbe;sl({()l-_—s‘atzzzeat{ ;i;;ggjs, ;:2; 12“?
three algorithros for this sequence and prinis ot the total di

ders) the arm needs 10 traverse 10 the three algorithms.

44, Write a program io implement the

At muttiple timers using a single clock. Tnput fqr shzsp;;ms-
i of commands (8 <int>, T, B <int>, P):
consists of a sequence of four types 1 . >

pA s the current time to <int>; Tisa clock tick: and E <iat> sche_dules a signal tz
~ocus e values of Current time, Next signal, and Cloc

. o . h .
at time <int>; P prints out { L sign:
ﬁii:::r Your prograr should also print out a statement whenever it is time to raise a
- (=4

signal.

45. Write a program to impleme
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DEADLOCKS

Compater systems are full of resources that can only be used by one process
at a time, Common examples include printers, tape drives, and slots in the sys-
tem’s internal tables. Having two processes simultzneously writing to the printer
leads to gibberish. Having two processes using the same file system table slot in-
variably will lead to a corrupted file system. Consequently, all operating systems
have the ability to {temporarily} grant a process exclusive access fo certain re-
sourees.

For many applications, a process needs exclusive access to not one resource,
but several. Suppose, for example, two processes each want to record a scanned
document on & CD. Process 4 requests permiission to use the scanner and is grant-
ed it. Process B is programmed differently and requests the CD recorder first and
is also granted it. Now A asks for the CD recorder, but the request is denied until
B releases it. Unfortunately, instead of releasing the CD recorder B asks for the
scanner. At this point both processes are blocked and will remain so forever.
This situation is called a deadlock.

Dreadlocks can also occur across machines. For example, many offices have a
local area network with many computers connected to it. Often devices such as
scanners, CD recorders, printers, and tape drives are connected to the network as
shared resources, available to any user on any machine. If these devices can be
reserved remotely (1.e., from the user’s home machine), the same kind of dead-
locks can occur as described above. More complicated situations can cause dead-
locks invelving three, four, or more devices and users.
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