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Other bestselling titles by Andrew S. Tanenbaum 
Structured Computer Organization, 5th edition 
This widely read now in its fifth edition, provides the ideal introduction to 
computer architecture. It covers the topic in an easy-ta-understand way, bottom 
up. There is a chapter on digital logic for beginners, followed by chapters on 
microarchitecture, the instruction set architecture level, operating systems, assem-
bly language, and parallel computer architectures. 

Computer Networks, 4th edition 
This best seHer, curre;tly in its fourth edition, provides the ideal introduction to 
today's and tomorrow's networks. It explains in detail how modem networks are 
structured. Starting with the physical layer and working up to the application 
layer, the book covers a vast number of important topics, including wireless com-
munication, fiber optics, data link protocols, Ethernet, routing algorithms, network 
perfonnance, security, DNS, electronic mail, the World Wide Web, and mul-
timedia. The book has especially thorough coverage ofTCPIIP and the Internet. 

Operating Systems: Design and Implementation, 3rd edition 
This popular text on operating systems is the only book covering both the princi-
ples of operating systems and their application to a real system. All the traditional 
operating systems topics are covered in detail. In addition, the principles are care-
fully illustrated with MINIX, a free POSIX-based UNIX-like operating system for 
personal computers. Each book contains a free CD-ROM containing the complete 
MINIX system, including all the source code. The source code is listed in an 
appendix to the book and explained in detail in the text. 

Distributed Operating Systems, 2nd edition 
This text covers the fundamental concepts of distributed operating systems. Key 
topicS include communication and synchronization, processes and processors, dis-
tributed shared memory, distributed file systems, and distributed real-time sys-
tems. The principles are illustrated using four chapter-long examples: distributed 
object-based systems, distributed file systems, distributed Web-based systems, 
and distributed coordination-based systems. 
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252 MEMORY MANAGEMENT CHAP. 3 

sembly language programming text. Note that doing this perfectly without additional 
information is, in general, an impossible task, because some data words may have 
values that mimic instruction object codes. 

42. Write a program that simulates a paging system using the aging algorithm. The num-
ber of page frames is a parameter. The sequence of page references should be read 
from a file. For a given input file, plot the number of page faults per 1000 memory ref-
erences as a function of the number of page frames available. 

43. Write a program that demonstrates the effect of TLB misses on the effective memory 
access time by measuring the per-access time it takes to stride through a large array. 

(a) Explain the main concepts behind the program, and describe what you expect the 
output to show for some practical virtual memory architecture. 

(b) Run the program on some computer and explain how well the data fit your expec-
tations. 

(c) Repeat part (b) but for an older computer with a different architecture and explain 
any major differences in the output. 

44. Write a program that will demonstrate the difference between using a local page 
replacement policy and a global one for the simple case of two processes. You will 
need a routine that can generate a page reference string based on a statistical model. 
This model has N states numbered from 0 to N-l representing each of the possible 
page references and a probability P I associated with each state i representing the 
chance that the next reference is to the same page. Otherwise, the next page reference 
will be one of the other pages with equal probability. 

(a) Demonstrate that the page reference string generation routine behaves properly for 
some small N. 

(b) Compute the page fault rate for a small example in which there is one process and 
a fixed number of page frames. Explain why the behavior is correct. 

(c) Repeat part (b) with two processes with independent page reference sequences and 
twice as many page frames as in Part (b). 

(d) Repeat part (c) but using a global policy instead of a local one. Also, contrast the 
per-process page fault rate with that of the local policy approach. 

4 
FILE SYSTEMS 

store and
f 

:etrieve a 
dress s ace H amount 0 mfOnnatlOn WIthllllts Own ad-
addrest is to the size of the virtual 
airline reservations banki s SIze IS adequate, but for others, such as 

A second rOblem .ng, or keeping, it is far too small. 
is that when process a process' address space 
(e.g., for the For many applications, 
forever. Havmg it vanish when th . n: or weeks, months, or even 
Furthermore, it must not (TO away process usmg It is unacceptable. 

A third b] . e.. en a computer crash kills the process 
pro em IS that It IS frequently neces £ ] . ] . 

cess (parts of) the infonnation at th . sary or mu tip e processes to ac-
directory stored inside the address s tIIl!e. If we have an online telephone 
access it. The way to solve this onl? th.at can 
dent of anyone process. m orrnatlon Itself mdepen-

Thus we have three essential requirements for long-tenn i-+"o . 
Hl' nnaUon storage: 

L It must be possible to store a very large amount of information. 

2. The infonnation must survive the termination of the process using it. 

3. Multiple processes must be able to access the infonnation concurrently. 

Magnetic disks have been used .£ £ h' 
optical disks are also used but they hor] t IS storage. and 

, uc ower peuonnance. We wIll study 
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254 FILE SYSTEMS CHAP. 4 

disks more in Chap. 5, but for the moment, it sufficient to of a disk as a 
linear sequence of fixed-size blocks and supportmg two operatIOns: 

1. Read block k. 
2. Write block k 

In reality there are more, but with these two operations one could, in principle, 
solve the long-term storage problem. . . 

However, these are very inconvenient espeCially on large systems 
used by many applications and possibly multlple users (e.g., on a server). Just a 
few of the questions that quickly arise are: 

1. How do you find infonnation? 
2. How do you keep one user from reading another user's data? 

3. How do you know which blocks are free? 

and there are many more. 
Just as we saw how the operating system abstracted away the concept of the 

processor to create the abstraction of a process and how it abstracted away the 
concept of physical memory to offer processes (virtual) address spaces, can 
solve this problem with a new abstraction: the file. Together, the abstractlons of 
processes (and threads), address spaces, and files are the most important concepts 
relating to operating systems. If you really understand three from 
beginning to end, you are wen on your way to becommg an operatmg systems 

expert. . k '11 1 Files are 10llical units of information created by processes. A dIS WI usua-
ly contains tho;sands or even millions of them, each one independent of the oth-
ers. In fact if you think of each file as a kind of address space, you are not that 
far off, that they are used to model the disk instead modeling the 

Processes can read existing files and create new ones if need be. Info:matlOn 
stored in files must be persistent, that is, not be affected by process creatIon 
termination. A fIle should only disappear when its owner explicitly removes It. 
Although operations for reading and writing files are the most cornman ones, 
there exist many others, some of which we will examine below. 

Files are managed by the operating system. How they named, 
accessed, used, protected, implemented, and managed are major tOpICS 10 .operat-
ing system design. As a whole, that part of the system dealing WIth files 
is known as the file system and is the subject of thIS chapter. . 

From the user's standpoint, the most important aspect of a file system IS how 
it appears, that is, what constitutes a file, how files are named and what 
operations are allowed on files, and so on. The details of whether hnked or 
bitmaps are used to keep track of free storage and how many sec.tors there are III a 
logical disk block are of no interest, although they are of great Importance to the 
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designers of the file system. For this reason, we have structured the chapter as 
several sections. The first two are concerned with the USer interface to files and 
directories, respectively. Then comes a detailed discussion of how the file system 
is implemented and managed. Finally, we give some examples of real file sys-
tems. 

4.1 FILES 

In the following pages we will look at files from the user's point of view, that 
is, how they are used and what properties they have. 

4.1.1 File Naming 

Files are an abstraction mechanism. They provide a way to store information 
on the disk and read it back later. This must be done in such a way as to shield 
the user from the details of how and where the information is stored, and how the 
disks actually work. 

Probably the most important characteristic of any abstraction mechanism is 
the way the objects being managed are named, so we will start our examination of 
file systems with the subject of file naming. When a process creates a fire, it gives 
the file a name. When the process tenninates, the file continues to exist and can 
be accessed by other processes using its name. 

The exact rules for file naming vary somewhat from system to system, but all 
current operating systems anow strings of one to eight letters as legal file names. 

andrea, bruce, and cathy are possible file names. Frequently digits and spe-
CIal characters are also permitted, so names like 2, urgent!, and Ffg.2-l4 are often 
valid as well. Many file systems support names as long as 255 characters. 

Some file systems distinguish between upper and lower case letters, whereas 
others do not. UNIX falls in the first category; MS-DOS falls in the second. Thus a 
UNIX system can have all of the following as three distinct files: maria, Maria, 
and MARIA. In MS-DOS, all these names refer to the same file. 

An aside on file systems is probably in order here. Windows 95 and Windows 
98 use the MS-DOS file system, called FAT-16, and thus inherit many of its 
properttes, such as how file names are constructed. Windows 98 introduced some 
extensions to FAT-16, leading to FAT-32, but these two are quite similar. In ad-
dition, Windows NT, Windows 2000, Windows XP, and .WV support both FAT 
file systems, which are really obsolete now. These four NT-based operating sys-
tems have a native file system (NTFS) that has different properties (such as file 
names in Unicode). In this chapter, when we refer to the MS-DOS or FAT file 
systems, we mean FAT -16 and FAT -32 as used on Windows unless specified 
otherwise. We will discuss the FAT file systems later in this chapter and NTFS in 
Chap. 11, where we will examine Windows Vista in detail. 
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256 FILE SYSTEMS CHAP. 4 

Many operating systems support file names, th: two parts sepa-
rated by a period, as in prog.c. The part following the penod IS called the file 
extension and usually indicates something about the file. In MS-DOS, for ex-
ample, file names are 1 to 8 characters, plus an optional extension of 1 to 3 char-
'acters. In UNIX, the size of the extension, if any, is up to the user, and a ,fil: may 
even have two or more extensions, as in homepage.html.zip, where .html mdlcates 
a Web page in HTML and .zip indicates that the file (homepage.html) been 
compressed using the zip program. Some of the more common file extensIOns and 
their meanings are shown in Fig. 4-1. 

Extension Meaning 
file.bak Backup file 
file.c C source program 
ffle.gif Compuserve Graphical Interchange Format image 
file.hlp Help file 
We.html World Wide Web HyperText Markup Language document 
ffie.jpg Still picture encoded with the JPEG standard 
file.mp3 Music encoded in MPEG layer 3 audio fonnat 
file.mpg Movie encoded with the MPEG standard 
1ile.o Object file (compiler output, not yet Hnked) 
file.pdf ,Portable Document Format file 
file.ps PostScript f1!e 
file.tex Input for the TEX formatting program 
file.txt General text file 
file.zip Compressed archive 

Figure 4·L Some typical file extensions. 

In some systems (e.g., UNIX), file extensions are just. conventions are not 
enforced by the operating system. A file named file. txt ITIlght be some kind <:f text 
fIle but that name is more to remind the owner than to convey any actual mfor-

to the computer. On the other hand, a C compiler may actually insist that 
files it is to compile end in .c, and it may refuse to compile them if they do not 

Conventions like this are especially useful. when the same program can handle 
several different kinds of files. The C compiler, for example, can be given a list of 
several files to compile and link together, some of them C files and some of them 
assembly language files. The extension then becomes for the compiler to 
tell which are C files, which are assembly files, and WhICh are other files. 

In contrast Windows is aware of the extensions and assigns meaning to them. 
Users (or proc;sses) can register extensions with the operating system and 
for each one which program «owns" that extension. When a user double clicks on 
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a file name, the program assigned to its file extension is launched with the file as 
parameter. double clicking on file.doc starts Microsoft Word with 
file. doc as the lllitlal file to edit 

4.1.2 File Structure 

,Files .can ?e Structured in any of several ways. Three common possibilities are 
depIcted m hg, 4-2., The file in Fig. 4-2(a) is an unstructured sequence of bytes. 
In effect, the operatmg system does not know or care what is in the file. All it 
sees are bytes. Any meaning must be imposed by user-level programs. Both 
UNIX and Windows use this approach. 

(a) 

1 Byte 1 Record 

(b) 
(e) 

Figure Three kinds of files. (a) Byte sequence. (b) Record sequence. 
(c) Tree. 

the regard files as nothing more than byte sequences 
pr0.vIdes the maxImum fleXIbIlity. User programs can put anything they Want in 
thel[ files and. name them any way that is convenient The operating system does 

help. but It also does not get in the way. For users who want to do unusual 
things, the can be very important. All versions of UNIX, MS-DOS, and Win-
dows use thIS file modeL 

The frrst step up in structure is shown in Fig. 4-2(b). In this model, a file is a 
sequence of fixed-length records, each with some internal structure. Central to the 
idea of a file being a s.equence ?f records is the idea that the read operation returns 
one and the wnte operatlOn overwrites or appends one record. As a histori-
cal m gone by, when the 8?-column punched card was king, many 
(mamframe) operatmg systems based theIr file systems on files consisting of 80-
character records, in effect, card images. These systems also supported files of 
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258 FILE SYSTEMS CHAP. 4 

132-character records, which were intended for the line printer (which in those 
days were big chain printers having 132 columns). Programs read input in units 
of 80 characters and wrote it in units of 132 characters, although the final 52 could 
be spaces, of course. No current general-purpose system uses this model as its 
primary file system any more, but back in the days of punched cards 
and 132-character line printer paper this was a common model on mainframe 
computers. 

The third kind of file structure is shown in Fig. 4-2(c). In this organization, a 
file consists of a tree of records, not necessarily a11 the same length, each con-
taining a key field in a fixed position in the record. The tree is sorted on the key 
field, to allow rapid searching for a particular key. 

The basic operation here is not to get the "next" record, although that is also 
possible, but to get the record with a specific key. For the zoo file of Fig. 4-2(c), 
one could ask the system to get the record whose key is pony, for example, with-
out worrying about its exact position in the file. Furthermore, new records can be 
added to the file, with the operating system, and not the user, deciding where to 
place them. This type of file is clearly quite different from the unstructured byte 
streams used in UNIX and Windows but is widely used on the large mainframe 
computers still used in some commercial data processing. 

4.1.3 File Types 

Many operating systems support several types of files. UNIX and Windows, 
for example, have regular files and directories. UNIX also has character and block 
special files. Regular files are the ones that contain user information. All the 
files of Fig. 4-2 are regular files. Directories are system files for maintaining the 
structure of the file system. We will study directories below. Character special 
files are related to input/output and used to model serial I/O devices, such as ter-
minals, printers, and networks. Block special files are used to model disks. In 
this chapter we will be primarily interested in regular files. 

Regular files are generally either ASCn files or binary files. ASCn files con-
sist of lines of text. In some systems each line is terminated by a camage return 
character. In others, the line feed character is used. Some systems (e.g., MS-
DOS) use both. Lines need not all be of the same length. 

The great advantage of ASCII files is that they can be displayed and printed 
as is, and they can be edited with any text editor. Furthennore, if large numbers of 
programs use ASCII files for input and output, it is easy to connect the output of 
one program to the input of another, as in shell pipelines. (The interprocess 
plumbing is not any easier, but interpreting the infonnation certainly is if a stan-
dard convention, such as ASCIL is used for expressing it) 

Other files are binary, which just means that they are not ASCn files. Listing 
them on the printer gives an incomprehensible listing full of random junk. Usual-
ly, they have some internal structure known to programs that use them. 

SEC. 4.1 FILES 259 

For in Fig. 4-3(a) We see a simple executable binary file taken from 
an early verSIOn. of UNIX. Although technically the file is just a se uence of 
bhYtejjs, the system will only execute a file if it has the proper format It 

as lve sectIOns' header te t d I . . . . . ,x, ata, re OcatIOn bIts, and symbol table The h d starts WIth a so-called rna . b'd" . ea er . gIc num er, 1 entlfymg the file as an executable file (to 
prevent the aCCIdental execution of a file not in this fonnat) Then co th . 
of the various piec f th fil h . me e SIzes fl b' . es 0 e I e, t e address at which execution starts and some 

ag Its. F?llowmg the header are the text and data of the program These 
mto and relocated USing the relocation bits. The symbol table 

IS use lor debuggmg. 

Text 

Data 

Relocation 
bits 

SYmbol 
table 

(a) 

/ 
Header 

Object 
module 

Header 

Object 
module 

Header 

Object 
module 

(b) 

Figure (a) An executable file. (b) An archive. 

Module 
name 

Date 

Owner 

Protection 

Size 

Our of a binary file is an archive, also from UNIX. It consists 
a collectIon of lIbrary (modules) compiled but not linked. Each one 

s prefaced by a header tellmg Its name, creation date, owner, protection code, and 
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260 FILE SYSTEMS CHAP, 4 

size. Just as with the executable file., the module headers are full of binary num-
bers. Copying them to the printer would produce complete gibberish. 

Every operating system must recognize at least one file type: its own ex-
ecutable file, but some recognize more. The old TOPS-20 system (for the 
DECsystem 20) went so far as to examine the creation time of any file to be exe-
cuted. Then it located the source file and saw if the source had been modified 
since the binary was made. If it had been, it automatically recompiled the source. 
In UNIX terms, the make program had been built into the shell. The file extensions 
were mandatory, so the operating system could tell which binary program was 
derived from which source. 

Having strongly typed files like this causes problems whenever the user does 
anything that the system designers did not expect. Consider, as an example, a sys-
tem in which program output files have extension .dat (data files). If a user writes 
a program formatter that reads a .c file (C program), transforms it (e.g., by con-
verting it to a standard indentation layout), and then writes the transformed file as 
output, the output file will be of type .dat. If the user tries to offer this to the C 
compiler to compile it, the system will refuse because it has the wrong extension. 
Attempts to copy file.dat to file.c will be rejected by the system as invalid (to pro-
tect the user against mistakes). 

While this kind of "user friendliness" may help novices, it drives experienced 
users up the wall since they have to devote considerable effort to Circumventing 
the operating system's idea of what is reasonable and what is not. 

4.1.4 File Access 
Early operating systems provided only one kind of file access: sequential 

access. In these systems, a process could read all the bytes or records in a file in 
order, starting at the beginning, but could not skip around and read them out of 
order. Sequential files could be rewound, however, so they could be read as often 
as needed. Sequential files were convenient when the storage medium was mag-
netic tape rather than disk. 

When disks came into use for storing files, it became possible to read the 
bytes or records of a file out of order, or to access records by key rather than by 
position. Files whose bytes or records can be read in any order are called random 
access files. They are required by many applications. 

Random access files are essential for many applications, for example, data-
base systems. If an airline customer calls up and wants to reserve a seat on a par-
ticular flight, the reservation program must be able to access the record for that 
flight without having to read the records for thousands of other flights first. 

Two methods can be used for specifying where to start reading. In the first 
one, every read operation gives the position in the file to start reading at. In the 
second one, a special operation, seek, is provided to set the current position. After 
a seek, the file can be read sequentially from the now-current position. The latter 
method is used in UNIX and Windows. 

SEC. 4,1 FILES 261 
4.1.5 File Attributes 

E:ery file ?as a ?ame and its data. In addition, all operating systems associate 
WIt? file, fo: example, the date and time the file was last 

and the file s SIze. We WIll call these extra items the file's attributes 
Some people call them metadata. The list of attributes varies considerably 
system to system. The table of Fig. 4-4 shows some of the poss 'b']'" b th ones also . tN' . 1 1 lues, ut 0 er 

eXlS . 0 eXIstmg system has all of these, but each one is present in 
some system. 

Attribute Meaning 
Protection Who can access the file and in what way 
Password Password needed to access the me 
Creator lD of the person who created the file 
OWner Current owner 
Read-only flag o for read/write; 1 for read only 
Hidden flag o for nonnal; 1 for do not display in listings 
System flag o for normal files; 1 for system file 
Archive flag o for has been backed up; 1 for needs to be backed up 
ASClI/binary flag o for ASCI! file; 1 for binary fi'le 
Random access flag o for sequential access only; 1 for random access 
Temporary flag o for normal; 1 for delete file on process exit 
Lock flags o for unlocked; nonzero for locked 
Record length Number of bytes in a record 
Key position Offset of the key within each record 
Key length Number of bytes in the key field 
Creation time Date and time the file was created 
TIme of last acCess Date and time the file was last accessed 
Time of last change Date and time the tHe was last changed 
Current size NUmber of bytes in the file 
Maximum size Number of bytes the file may grow to 

Figure 4-4. Some possible file attributes. 

. The first four attributes relate to the file's protection and tell who may access 
It and who may not. All kinds of schemes are possible, some of which we will 

later. In some systems the user must present a password to aCcess a file in 
whIch case the password must be one of the attributes. ' 

. The flags are bits or short fields that control or enable some specific property. 
Hidden files, for example, do not appear in listings of all the files. The archive 
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262 FILE SYSTEMS CHAP. 4 

flag is a bit that keeps track of whether the file has been backed up recently. The 
backup program clears it, and the operating system sets it whenever a file is 
changed In this way, the backup program can tell which files need backing up. 
The temporary flag allows a file to be marked for automatic deletion when the 
process that created it terminates. 

The record length, key position, and key length fields are only present in files 
whose records can be looked up using a key. They provide the infonnation re-
quired to find the keys. 

The various times keep track of when the file was created, most recently ac-
cessed, and most recently modified. These are useful for a variety of purposes. 
For example, a source file that has been modified after the creation of the corres-
ponding object file needs to be recompiled. These fields provide the necessary 
information. 

The current size tells how big the file is at present. Some old mainframe oper-
ating systems require the maximum size to be specified when the file is created, in 
order to let the operating system reserve the maximum amount of storage in ad-
vance. Workstation and personal computer operating systems are clever enough to 
do without this feature. 

4.1.6 File Operations 

Files exist to store information and allow it to be retrieved later. Different sys-
tems provide different operations to anow storage and retrieval. Below is a dis-
cussion of the most common system calls relating to files. 

1. Create. The file is created with no data. The purpose of the call is to 
announce that the file is coming and to set some of the attributes. 

2. Delete. When the file is no longer needed, it has to be deleted to free 
up disk space. There is always a system call for this purpose. 

3. Open. Before using a file, a process must open it. The purpose of the 
open call is to allow the system to fetch the attributes and list of disk 
addresses into main memory for rapid access on later calls. 

4. Close. When all the accesses are finished, the attributes and disk ad-
dresses are no longer needed, so the file should be closed to free up 
internal table space. Many systems encourage this by imposing a 
maximum number of open files on processes. A disk is written in 
blocks, and closing a file forces writing of the file's last block, even 
though that block may not be entirely full yet. 

S. Read. Data are read from file. Usually, the bytes come from the CUf-

rent position. The caller must specify how many data are needed and 
must also provide a buffer to put them in. 

SEC 4.1 FILES 

6. Data are written to the file again, usually at the current posi-
If the current is the end of the file, the file's size 

Increases. If current posItion is in the middle of the file, existing 
data are overwntten and lost forever. 

7. Append. This call is a restricted form of write. It can only add data 
to the end of the file. Systems that provide a minimal set of system 
caIls do not have append, but many systems provide multi-
ple ways of domg the same thing, and these systems sometimes have 
append. 

S. Seek. For random access files, a method is needed to specify from 
where to the data. COmmon approach is a system call, seek, 

reposItIOns the fil.e pomter to a specific place in the file. After 
thIS. has completed, data can be read from, or written to that 
posItIOn. ' 

9. Get attributes. Processes often need to read file attributes to do thei 
work. For example the UNIX k' r , rna e program IS commonly used to 
manage software development projects consisting of many Source 
files. When make is called, it examines the modification times of all 
the and files .and arranges for the minimum number of 
compIlations to bnng everything up to date. To do itsjob, it 
must look at the attnbutes, namely, the modification times. 

10. Set attributes. Some of the attributes are user settable and can be 
chan.ged after the file .has been created. This system call makes that 
pOSSIble. The protection mode infonnation is an obvious example. 
Most of the flags also faU in this category. 

11. Rename: !t frequently happens that a user needs to change the name 
of an file. This system call makes that possible. It is not al-
ways necessary, because the file can usually be copied to a 
new file WIth the new name, and the old file then deleted. 

4.1.7 An Example Program Using File System Calls 

263 

this section we will examine a simple UNIX proo-ram that copies one file 
from Its source file to a destination file It is listed in Fig 45Th 
minimal functionality and even worse "error reporting b ·t .-,.'. e program has . de f h f h ' U I gIves a reasonable 
1 a 0 ow some 0 t e system calls related to files work .' 

The program, copyJi-le, can be called, for example, by' the command line 

copyfile abc xyz 

to copy the file abc to xyz. If xyz already exists, it will be overwritten. Otherwise, 
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1* File copy program. Error checking and reporting is minimal. */ 

#include <sysltypes.h:> 
#include <fcntLh> 
#include <stdlib.h> 
#include <unistd.h> 

1* include necessary header files */ 

int main(!nt argc, char *argvO); /* ANSI prototype */ 

#define BUF _SIZE 4096 
#deflne OUTPUT _MODE 0700 

/* use a buffer size of 4096 bytes */ 
{* protection bits for output file */ 

int main(int argc, char *argv[]) 
{ 

int in_fd, ouLfd, rd_count, wLcount; 
char buffer[8UF _SIZE]; 

if (argc!= 3) exit(1); /* syntax error if argc is not 3 *f 

/* Open the input file and create the output tHe */ . 
in_fd = open(argv[1], O_RDONLY); /* open the source file */ . 
if (in_fd < 0) exit(2); 1* if it cannot be */ 
QuLfd "" creat(argv[2], OUTPUT _MODE); /* create the destinatIOn file .*{ 
if (OULfd < 0) exit(3); {* if it cannot be created, eXit */ 

/* Copy loop */ 
while (TRUE) { 

rd count = read(in fd, buffer, BUF _SIZE); /* read a block of data */ 
if <= 0) break;- /* if end of. file or error, exit loop *' 

wLcount::: write(ouLfd, buffer, rd_count}; /* wnte data. *{ 
if (wLcount <= 0) exit(4); /* wLcount <= 0 IS an error */ 

/* Close the files */ 
close(in_fd); 
close(ouLfd); 
if (rd_count == 0) 

exil{O); 
else 

exit(S); 

/* no error on last reaq·*! 

/* error on last read */ 

Figure 4-5. A simple program to copy a file. 

it will be created. The program must be called with exactly two arguments, both 
legal file names. The first is the source; the second is the output file. 

The four #include statements near the top of the program cause a large num-
ber of definitions and function prototypes to be included in the program. These are 
needed to make the program conformant to the relevant international standards, 
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but will not concern us further. The next line is a function prototype for main, 
something required by ANSI C, but also not important for our purposes. 

The first #define statement is a macro definition that defines the character 
string BUF _SIZE as a macro that expands into the number 4096. The program 
will read and write in chunks of 4096 bytes. It is considered good programming 
practice to give names to constants like this and to use the names instead of the 
constants. Not only does this convention make programs easier to read, but it also 
makes them easier to maintain. The second #define statement determines who can 
access the output file. 

The main program is called main, and it has two arguments, argc, and argv. 
These are supplied by the operating system when the program is called. The first 
one tells how many strings were present on the command line that invoked the 
program, including the program name. It should be 3. The second one is an array 
of pointers to the arguments. In the example call given above, the elements of this 
array would contain pointers to the following values: 

argv[O] ::: "copyfile" 
argv[l] "abc" 
argv[2] ::: "xyz" 

It is via this array that the program accesses its arguments. 
Five variables are declared. The first two, in_/d and ouL/d, will hold the fIle 

descriptors, small integers returned when a file is opened. The next two, 
rd_count and wLcount, are the byte counts returned by the read and write system 
calls, respectively. The last one, buffer, is the buffer used to hold the data read and 
supply the data to be written. 

The first actual statement checks argc to see if it is 3. If not, it exits with stat-
us code 1. Any status code other than 0 means that an error has occurred. The 
status code is the only error reporting present in this program. A production ver-
sion would nonnally print error messages as well. 

Then we try to open the source file and create the destination file. If the 
source file is successfully opened, the system assigns a small integer to in_fd, to 
identify the file. Subsequent calls must include this integer so that the system 
knows which file it wants. Similarly, if the destination is successfully created, 
oULfd is given a value to identify it. The second argument to creat sets the pro-
tection mode. If either the open or the create fails, the corresponding file descrip-
tor is set to -I, and the program exits with an error code. 

Now comes the copy loop. It starts by trying to read in 4 K.B of data to buffer. 
It does this by calling the library procedure read, which actually invokes the read 
system call. The first parameter identifies the file, the second gives the buffer, and 
the third tells how many bytes to read. The value assigned to rd_count gives the 
number of bytes actually read. Nonnal1y, this will be 4096, except if fewer bytes 
are remaining in the file. When the end of file ihas been reached, it will be O. If 
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rd_count is ever zero or negative, the copying cannot continue, so the break state-
ment is executed to terminate the (otherwise endless) lOop. 

The call to write outputs the buffer to the destination file. The first parameter 
identifies the file, the second gives the buffer, and the third tells how many bytes 
to write, analogous to read. Note that the byte count is the number of bytes ac-
tually read, not BUF _SIZE. This point is important because the last read will not 
return 4096 unless the file just happens to be a multiple of 4 KB. 

When the entire file has been processed, the first call beyond the end of file 
will return 0 to rd_count, which will make it exit the loop. At this point the two 
files are closed and the program exits with a status indicating normal termination. 

Although the Windows system calls are different from those of UNIX, the 
general structure of a command-line Windows program to copy a file is moderate-
ly similar to that of Fig. 4-5. We will examine the Windows Vista calls in Chap. 
I!. 

4.2 DIRECTORIES 

To keep track of files, file systems normally have directories or folders, 
which in many systems are themselves files. In this section we will discuss direc-
tories, their organization, their properties, and the operations that can be perform-
edon them. 

4.2.1 Single-Level Directory Systems 

The simplest form of directory system is having one directory containing all 
the files. Sometimes it is caned the root directory, but since it is the only one, the 
name does not matter much. On early personal computers, this system was com-
mon, in part because there was only one user. Interestingly enough, the world's 
first supercomputer, the CDC 6600, also had only a single directory for all files, 
even though it was used by many users at once. This decision was no doubt made 
to keep the software design simple. 

An example of a system with one directory is given in Fig. 4-6. Here the di-
rectory contains four files. The advantages of this scheme are its simplicity and 
the ability to locate files quickly-there is only one place to look, after all. It is 
often used on simple embedded devices such as telephones, digital cameras, and 
some portable music players. 

4.2.2 Hierarchical Directory Systems 

The single-level is adequate for simple dedicated applications (and was even 
used on the first personal computers), but for modern users with thousands of 
files, it would be impossible to find anything if all files were in a single directory. 
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Q-ROOI directory 

®®®@ 
Figure 4-6. A single-level directory system containing four [des. 

Consequently, a way is needed to group related files together. A professor, for 
example, might have a collection of files that together fonn a book that he is writ-

for one course, a second collection of files containing student programs sub-
mItted for another course, a third group of files containing the code of an ad-
vanced compiler-writing system he is building, a fourth group of files containing 
grant proposals, as well as other files for electronic mail, minutes of meetinO's 
papers he is writing, games, and so on. t:> , 

What is needed is a hierarchy (i.e., a tree of directories). With this approach, 
there can be directories as are needed to group the files in natural ways. 
Furthermore, If multIple users share a common file server, as is the case on many 
c?mpany networks, each user can have a private root directory for his or her own 
hierarchy. This approach is shown in Fig, 4-7. Here, the directories A Band C 
contained in the root directory each belong to a different user, two of have 
created subdirectories for projects they are working on. 

-- User We 

Figure 4-7. A hierarchical directory system. 

The ability for users to create an arbitrary number of subdirectories provides a 
powerful structuring tool for users to organize their work. For this reason, nearly 
all modem file systems are organized in this manner. 

4.2.3 Path Names 

the file system is organized as a directory tree, some way is needed for 
speclfymg file names. Two different methods are commonly used. In the first 
method, each file is given an absolute path name consisting of the path from the 
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root directory to the file. As an example, the path lusrlastlmailbox means that the 
root directory contains a subdirectory usr, which in tum contains a subdirectory 
ast, which contains the file mailbox. Absolute path names always start at the root 
directory and are unique. In UNIX the components of the path are separated by I. 
In Windows the separator is \. In MULTICS it was >. Thus the same path name 
would be written as follows in these three systems: 

Windows 
UNIX 
MULTICS 

\usr\ast\mailbox 
/usr/astfmallbox 
>usr>ast>mailbox 

No matter which character is used, if the first character of the path name is the 
separator, then the path is absolute. 

The other kind of name is the relative path name. This is used in conjunc-
tion with the concept of the working directory (also called the current direc-
tory). A user can designate one directory as the current working directory, in 
which case all path names not beginning at the root directory are taken relative to 
the working directory. For example, if the current working directory is lusrlast, 
then the file whose absolute path is lusrlastlmailbox can be referenced simply as 
mailbox. In other words, the UNIX command 

cp lusr/astfmaHbox lusr/astfmailbox.bak 

and the command 

cp mailbox maHbox.bak 

do exactly the same thing if the working directory is lusrlast. The relative form is 
often more convenient, but it does the same thing as the absolute form. 

Some programs need to access a specific file without regard to what the"work-
ing directory is. In that case, they should always use absolute path names. For 
example, a spelling checker might need to read lusrllibldictionary to do its work. 
It should use the full, absolute path name in this case because it does not know 
what the working directory will be when it is called. The absolute path name will 
always work, no matter what the working directory is. 

Of course, if the spelling checker needs a large number of files from lusrllib, 
an alternative approach is for it to issue a system call to change its working direc-
tory to lusrllib, and then use just dictionary as the first parameter to open. By 
explicitly changing the working directory, it knows for sure where it is in the di-
rectory tree, so it can then use relative paths. 

Each process has its own working directory, so when it changes its working 
directory and later exits, no other processes are affected and no traces of the 
change are left behind in the file system. In this way it is always perfectly safe for 
a process to change its working directory whenever that is convenient On the 
other hand, if a library procedure Changes the working directory and does not 
change back to where it was when it is finiShed, the rest of the program may not 
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work its assumption about where it is may now suddenly be invalid. For this 
reason'h rary procedures rarely Change the working directory and when they 
must, t ey always Change it back again before retumino- ' 

Mlost that support a hierarchicat'directory system have two 
specla entnes 10 every directory "" and " " II "d d " ,'.. ,genera y pronounced "dot" and 
th ot ot. d' Dot refers. to Current directory; dotdot refers to its parent (except in 
th: It refers to To see how these are used, consider 
t I tree 0 Ig. A certam process has lusrlast as its workino direc-
ory .. t use .. go hIgher up the tree. For example, it can co file 

lusr/lzbldzctLOnary to Its own directory using the command py 

cp . .llib/dictionary . 

firsttKath. instructs the to go upward (to the usr directory) then to go 
own to e duectory lib to find the file dictionary. ' 

bin 

bin 

etc 

Jib 

u" 
tmp 

etc lib 

Root directory 

diet. 

u" 
ast 

Figure 4·8. A UNIX directory tree. 

tmp 

-/usrlfim 

argument (do.t) nan:es the current directory. When the cp Com-
mand t>ets a dIrectory name (mcIudmg dot) as its last argument, it copies an the 
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files to that directory. Of course, a more normal way to do the copy would be to 
use the full absolute path name of the source file: 

cp lusrllib/dlctionary . 
Here the use of dot saves the user the trouble of typing dictionary a second time. 
Nevertheless, typing 

cp !usr/lib/dictionary dictionary 

also works fine, as does 

cp !usr/lib/dictionary lusr/astJdlctionary 

All of these do exactly the same thing. 

4.2.4 Directory Operations 
The allowed system calls for managing directories exhibit more variation 

from system to system than system calls for files. To give an impression of what 
they are and how they work, we will give a sample (taken from UNIX). 

1. Create. A directory is created. It is empty except for dot and dordat, 
which are put there automatically by the system (or in a few cases, 
by the mkdir program). 

2. Delete. A directory is deleted. Only an empty directory can be de-
leted. A directory containing only dot and dotdot is considered em-
pty as these cannot usually be deleted. 

3. OpendiL Directories can be read. For example, to list all the files in 
a directory, a listing program opens the directory to read out the 
names of all the files it contains. Before a directory can be read, it 
must be opened, analogous to opening and reading a file. 

4. Closedir. When a directory has been read, it should be closed to free 
up internal table space. 

5, Readdir. This call returns the next entry in an open directory. Form-
erly, it was possible to read directories using the usual read system 
call, but that approach has the disadvantage of forcing the pro-
grammer to know and deal with the internal structure of directories. 
In contrast, readdir always returns one entry in a standard format, no 
matter which of the possible directory structures is being used. 

6. Rename. In many respects, directories are just like files and can be 
renamed the same way files can be. 

7. Link. Linking is a technique that allows a file to appear in more than 
one directory. This system call specifies an existing file and a path 
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name, and creates a link from the existing file to the name specified 
by the path. In this way, the same file may appear in multiple direc-
tories. A link of this kind, which increments the counter in the file's 
i-node (to keep track of the number of directory entries containing 
the file), is sometimes called a hard link 

8. Unlink. A directory entry is removed. If the file being unlinked is 
only present in one directory (the normal case), it is removed from 
the file system. If it is present in mUltiple directories, only the path 
name specified is removed. The others remain. In UNIX, the system 
call for deleting files (discussed earlier) is, in fact, unlink. 

271 

The above list gives the most important calls, but there are a few others as well, 
for example, for managing the Rrotection information associated with a directory. 

A variant on the idea of linking files is the symbolic link Instead of having 
two names point to the same internal data structure representing a file, a name can 
be created that points to a tiny file naming another file. When the fIrst file is used, 
for example, opened, the file system follows the path and finds the name at the 

Then it starts the lookup process all over using the new name. Symbolic 
Imks have the advantage that they can cross disk boundaries and even name files 
on remote computers. Their implementation is somewhat less efficient than hard 
links though. 

4.3 FILE SYSTEM IMPLEMENTATION 

Now it is time to turn from the user's view of the file system to the imple-
mentor's view. Users are concerned with how files are named, what operations 
are allowed on them, what the directory tree looks like, and similar interface is-
sues. Implementors are interested in how files and directories are stored, how disk 
space is managed, and how to make everything work efficiently and reliably. In 
the fonowing sections we will examine a number of these areas to see what the is-
sues and trade-offs are. 

4.3.1 File System Layont 

File systems are stored on disks. Most disks can be divided up into one or 
more partitions, with independent file systems on each partition. Sector 0 of the 
disk is called the MBR (Master Boot Record) and is used to .boot the computer. 
The end of the MBR contains the partition table. This table'-gives the starting and 
ending addresses of each partition. One of the partitions in the table is marked as 
active. When the computer is booted, the BIOS reads in and executes the MBR 
The first thing the MBR program does is locate the active partition, read in its first 
block, called the boot block, and execute it. The program in the boot block loads 
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the operating system contained in that partition. For uniformity, partition 
starts with a boot block, even if it does not contain a boatable operatmg system. 
Besides, it might contain one in the future. . 

Other than starting with a boot block, the layout of a disk partition vanes a lot 
from file system to file system. Often the file system will contain some of the 
items shown in Fig. 4-9. The first one is the superblock. It contains all the ke'y 
parameters about the file system and is read into memory when the computer IS 
booted or the file system is first touched. Typical infonnation in the 
includes a magic number to identify the file system type, the number of blocks m 
the file system, and other key administrative information. 

Entire disk ------------.... 

Partition table 

\ 

Flies and directories 

Figure 4-9. A possible file system layout. 

Next might come information about free blocks in the file system, for ex-
ample in the form of a bitmap or a list of pointers. This might be followed by the 
i-nodes, an array of data structures, one per file, telling all about the file. After 
that might come the root directory, which contains the top of the file system tree. 
Finally, the remainder of the disk contains all the other directories and files. 

4.3.2 Implementing Files 

Probably the most important issue in implementing file storage is keeping 
track of which disk blocks go with which file. Various methods are used in dif-
ferent operating systems. In this section, we will examine a few of them. 

Contiguous Allocation 

The simplest allocation scheme is to store each file as a contiguous run of disk 
blocks. Thus on a disk with l-KB blocks, a 50-KB file would be allocated 50 con-
secutive blocks. With 2-KB blocks, it would be allocated 25 consecutive blocks. 
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We see an example of contiguous storage allocation in Fig. 4-1O(a). Here the 
first 40 disk blocks are shown, starting with block 0 on the left. Initially, the disk 
was empty. Then a file A, of length four blocks, was written to disk starting at the 
beginning (block 0). After that a six-block file, B, was written starting right after 
the end of file A. 

Note that each file begins at the start of a new block, so that if file A was real-
ly 3Y2 blocks, some space is wasted at the end of the last block. In the figure, a 
total of seven files are shown, each one starting at the block following the end of 
the previous one. Shading is used just to make it easier to tell the files apart. It 
has no actual significance in terms of storage. 

File A 
(4 blocks) 

FileS 
(3 blocks) 

(RleA) 

FileS 

FileC 
(6 blocks) 

(FileC) 

FileD 
(5 blocks) 

5 Free blocKs 

(al 

(bl 

FileE 
(12 blocks) 

(File E) 

FileG 
(3 blocks) 

File F 
(6 blocks) 

(p'ileG) 

6 Free blocks 

Figure 4-10. (a) Contiguous allocation of disk space for seven files .. (b) The 
state of the disk after files D and F have been removed. 

Contiguous disk space allocation has two significant advantages. First, it is 
simple to implement because keeping track of where a file's blocks are is reduced 
to remembering two numbers: the disk address of the first block and the number 
of blocks in the file. Given the number of the first block, the number of any other 
block can be found by a simple addition. . 

Second, the read perfonnance is excellent because the entire file can. be read 
from the disk in a single operation. Only one seek is needed (to the first block). 
After that, no more seeks or rotational delays are needed, so data come in at the 
full bandwidth of the disk. Thus contiguous allocation is simple to implement and 
has high performance. 

Unfortunately, contiguous allocation also has a fairly significant drawback: 
over the course of time. the disk becomes fragmented. To see how this comes 
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about, examine Fig. 4-1O(b). Here two files, D and F, have been removed. When 
a file is removed, its blocks are naturally freed, leaving a run of free blocks on the 
disk. The disk is not compacted on the spot to squeeze out the hole since, that 
would involve copying all the blocks following the hole, potentially millions of 
blocks. As a result, the disk ultimately consists of files and holes, as illustrated in 
the figure. 

Initially, this fragmentation is not a problem, since each new file can be writ-
tell at the end of disk, following the previous one. However, eventually the disk 
will fill up and it will become necessary to either compact the disk, which is 
prohibitively expensive, or to reuse the free space in the holes. Reusing the space 
requires maintaining a list of holes, which is doable. However, when a new file is 
to be created, it is necessary to know its final size in order to choose a hole of the 
correct size to place it in. 

Imagine the consequences of such a design. The user starts a text editor or 
word processor in order to type a document. The first thing the program asks is 
how many bytes the final document will be. The question must be answered or the 
program will not continue, If the number given ultimately proves too small, the 
program has to tenninate prematurely because the disk hole is full and there is no 
place to put the rest of the file. If the user tries to avoid this problem by giving an 
unrealistically large number as the final size, say, 100 MB, the editor may be un-
able to find such a large hole and announce that the file cannot be created. Of 
course, the user would be free to start the program again and say 50 MB this time, 
and so on until a suitable hole was located. Still, this scheme is not likely to lead 
to happy users. 

However, there is one situation in which contiguous allocation is feasible and, 
in fact, widely used: on CD-ROMs. Here all the file sizes are known in advance 
and will never change during subsequent use of the CD-ROM file system. We 
will study the most Common CD-ROM file system later in this chapter. 

The situation with DVDs is a bit more complicated. In principle, a 90-min 
movie could be encoded as a single file of length about 4.5 GB, but the file system 
used, UDF (Universal Disk Format), uses a 30-bit number to represent file 
length, which limits files to 1 GB. As a consequence, DVD movies are generally 
stored as three or four I-GB files, each of which is contiguous. These physical 
pieces of the single logical file (the movie) are called extents. 

As we mentioned in Chap. 1, history often repeats itself in computer science 
as new generations of technology occur. Contiguous allocation was actually used 
on magnetic disk file systems years ago due to its simplicity and high per-
fonnance (user friendliness did not count for much then). Then the idea was 
dropped due to the nuisance of having to specify final file size at file creation 
time. But with the advent of CD-ROMs, DVDs, and other write-once optical me-
dia, suddenly contiguous files are a good idea again. It is thus important to study 
old systems and ideas that were conceptually clean and simple because they may 
be applicable to future systems in surprising ways. 
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Linked List Allocation 

The second method for storing files is to keep each one as a linked list of disk 
blocks, as shown in Fig. 4-11. The first word of each block is used as a pointer to 
the next one. The rest of the block is for data. 

File A 

0 

File File File File File 
block block block block block 

0 1 2 3 4 

Physical 4 7 2 10 12 
block 

FileB 

0 
File File File File 

block block block block 
0 1 2 3 

Physical 6 3 11 14 
block 

Figure 4·11. Storing a file as a linked list of disk blocks. 

Unlike contiguous allocation, every disk block can be used in this method. 
No space is lost to disk fragmentation (except for internal fragmentation in the last 
block). Also, it is sufficient for the directory entry to merely store the disk ad-
dress of the first block. The rest can be found starting there. 

On the other hand, although reading a file sequentially is straightforward, ran-
dom access is extremely slow. To get to block n, the operating system has to start 
at the beginning and read the n - I blocks prior to it, one at a time, Clearly, doing 
so many reads will be painfully slow. 

Also, amount of data storage in a block is no longer a power of two be-
cause the pomter takes up a few bytes. While not fatal, having a peculiar size is 
less efficient because many programs read and write in blocks whose size is a 
power of two, \Vith the first few bytes of each block occupied to a pointer to the 
next block, reads of the full block size require acquiring and concatenating infor-
mation from two disk blocks, which generates extra overhead due to the copying. 

Linked List Allocation Using a Table in Memory 

Both disadvantages of the linked list allocation can be eliminated by taking 
the pointer word from each disk block and putting it in a table in memory. Figure 
4-12 shows what the table looks like for the example of Fig. 4-11. In both figures, 
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we have two files. File A uses disk blocks 4, 7, 2, 10, and 12, in that order, and 
file B uses disk blocks 6, 3, 11, and 14, in that order. Using the table of Fig. 4-12, 
we can start with block 4 and follow the chain all the way to the end. The same 
can be done starting with block 6. Both chains are terminated with a special 
marker (e.g., -1) that is not a valid block number. Such a table in main memory is 
called a FAT (File Allocation Table). 

Physical 
block 

o 

2 
3 
4 
5 
6 
7 
8 
9 
0 
1 
2 
3 
4 
5 

10 
11 
7 - File A starts here 

3 - File B starts here 

2 

12 

" ·1 

·1 
]-.- Unused block 

Figure 4-12. Linked list allocation using a file allocation table in main memory. 

Using this organization, the entire block is available for data. Furthermore, 
random access is much easier. Although the chain must still be followed to find a 
given offset within the file, the chain is entirely in memory, so be 
without making any disk references. Like the previous method, It IS sufficIent for 
the directory entry to keep a single integer (the starting block number) and still be 
able to locate all the blocks, no matter how large the file is. 

The primary disadvantage of this method is that the entire table must be in 
memory all the time to make it work. With a 200-GB disk and a 1-KB block size, 
the table needs 200 million entries, one for each of the 200 million disk blocks. 
Each entry has to be a minimum of 3 bytes. For speed in lookup, they should be 4 
bytes. Thus the table will take up 600 MB or 800 MB of main memory all the 
time, depending on whether the system is optimized for space or time. Not wildly 
practical. Clearly the FAT idea does not scale well to large disks. 

SEC. 4.3 FILE SYSTEM lMPLEMENTATION 277 

I-nodes 

method for keeping track of which blocks belong to which file is to 
WIth each a data Structure called an i-node (index-node), which lists 

and disk addresses of the file's blocks. A simple example is de-
pIcted In FIg. 4-13 .. Given the i-node, it is then possible to find an the blocks of 
the The big .advantage of this scheme over linked files using an in-memory 
table IS that the I-node need only be in memory when the correspondino- file is 
open. If each i-node occupies n bytes and a maximum of k files may be °open at 
once: the total memory occupied by the array holding the i-nodes for the open 
files IS only kn bytes. Only this much space need be reserved in advance. 

FHe Attributes 

Address of disk block. 0 

Address of disk block 1 

Address of disk block 2 

Address of disk. block 3 1-----+ 
Address of disk block 4 

Address of disk block 5 1-----+ 
Address of disk block 6 1-----+ 
Address of disk block 7 1-----+ 

Address of block of pointers 

Disk block 
containing 
additional 

disk addresses 

Figure 13. An example i-node. 

This array is usually far smaller than the space occupied by the file table de-
s.cribed fn the section. The reason is simple. The table for holding the 
hnked lIst of all dISk blocks is proportional in size to the disk itself. If the disk 
has n blocks, the table needs n entries. As disks grow larger, this table grows line-

:-vith them: In contrast, the i-node scheme requires an array in memory whose 
SIze IS proportIonal to the maximum number of files that may be open at once. It 
does not matter if the disk is 10 GB or 100 GB or 1000 GB. 

One problem with i-nodes is that if each one has room for a fixed number of 
disk addresses, what happens when a file grows beyond this limit? One solution 
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. hit d'sk address not for a data block, but instead for the address 
IS to reserve teas I .. E 
of a block containing more disk block addresses, as 10 13. ven 

d d Id be two or more such blocks contammg dIsk addresses or more a vance WOll . 
even disk blocks pointing to other disk blocks full of addresses. We wIll come 
back to i-nodes when studying UNIX later. 

4.3.3 Implementing Directories 

Before a file can be read, it must be opened. When a file is the oper-
ating system uses the path name supplied by the user to locate the ,directory entry. 
The directory entry provides the infonnation needed t,o find the diSk De-

eudin on the system, this infonnation may be the dISk address of the 
p with allocation), the number of the first blo::k lmked 
(h es) 0 the number of the i-node. In all cases, the mam functIOn of the dI-
scem,r h'f' dd 's to map the ASCII name of the file onto t e m onnaUon nee e rectory system 1 

to locate the data. . 
A closely related issue is where the attributes should be r:very file sys-

. . fil attn'butes such as each file's owner and creatton ume, and they tern rnamtamS 1 e, . .. . . ' th 
must be stored somewhere. One obvious posSIbIlIty IS. to e 
directory entry. Many systems do precisely IS Ill. FIg. 4-
14(a). In this simple design, a directory conSISts of a lIst of one 
per file, containing a (fixed-length) file name,. a of the flle attn?utes, and 
one or more disk addresses (up to some maximum) tellmg where the dISk blocks 

are. 
D 

games i attributes games 

mail 

news 

wmk 

: attributes 

: attributeS 

: attributes 

la) 

mail 

news 

work 

Ib) q Data structure 
"" containing the 

attributes 

Figure 4-14. (a) A simple directory containing with the addresses 
and attributes in the directory entry. (b) A directory m which each entry Just 
refers 10 an i-node. 

For systems that use i-nodes, another pos.sibility for storing the is in 
the i-nodes, rather than in the directory entnes. In that the entry 
can be shorter: just a file name and an i-node number. ThIS approach IS Illustrated 
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in Fig. 4-14(b). As we shall see later, this method has some advantages over put-
ting them in the directory entry. The two approaches shown in Fig. 4-14 corres-
pond to Windows and UNIX, respectively, as we will see later. 

So far we have made the assumption that files have short, fixed-length names. 
In MS-DOS files have a 1-8 character base name and an optional extension of 1-3 
characters. In UNIX Version 7, file names were 1-14 characters, including any 
extensions. However, nearly all modern operating systems support longer, vari-
able-length file names. How can these be implemented? 

The simplest approach is to set a limit on file name length, typically 255 char-
acters, and then use one of the designs of Fig. 4-14 with 255 characters reserved 
for each file name. This approach is simple; but wastes a great deal of directory 
space, since few files have such long names. For effIciency reasons, a different 
structure is desirable. 

One alternative is to give up the idea that all directory entries are the same 
size. With this method, each directory entry contains a fixed portion, typically 
starting with the length of the entry, and then followed by data with a fixed for-
mat, usually including the owner, creation time, protection information, and other 
attributes. This fixed-length header is followed by the actual file name, however 
long it may be, as shown in Fig. 4-15(a) in big-endian fonnat (e.g., SPARe). In 
this example we have three files, project-budget, personnel, and foo. Each file 
name is terminated by a special character (usually 0), which is represen"ted in the 
figure by a box with a croSs in it. To allow each directory entry to begin on a 
word boundary, each file name is filled out to an integral number of words, shown 
by shaded boxes in the figure. 

A disadvantage of this method is that when a file is removed, a variable-sized 
gap is introduced into the directory into which the next file to be entered may not 
fit. This problem is the same one we saw with contiguous disk files, only now 
compacting the directory is feasible because it is entirely in memory. Another 
problem is that a single directory entry may span multiple pages, so a page fault 
may occur while reading a file name. 

Another way to handle variable-length names is to make the directory entries 
themselves all fixed length and keep the file names together in a heap at the end 
of the directory, as shown in Fig.4-15(b). This method has the advantage that 
when an entry is removed, the next file entered will always fit there. Of course, 
the heap must be managed and page faults can still occur while processing file 
names. One minor win here is that there is no longer any real need for file names 
to begin at word boundaries, so no filler characters are needed after file names in 
Fig. 4-J5(b) as they are in Fig. 4-15(a). 

In all of the designs so far, directories are searched linearly from beginning to 
end when a file name has to be looked up. For extremely long directories, linear 
searching can be slow. One way to speed up the search is to use a hash table in 
each directory. Call the size of the table n. To enter a file name, the name is 
hashed onto a value between 0 and n - 1, for example, by dividing it by n and 
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Figure4-1S. Two ways of handling long file names in a directory. (a) In-line. 
(b) In a heap. 

taking the remainder. Alternatively, the words comprising the file name canoe 
added up and this quantity divided by n, or something similar. 

Either way, the table entry corresponding to the hash code is inspected. If it is 
unused, a pointer is placed there to the file entry. File entries follow the hash 
table. If that slot is already in use, a linked list is constructed, headed at the table 
entry and threading through all entries with the same hash value. 

Looking up a file follows the same procedure. The file name is hashed to 
select a hash table entry. All the entries on the chain headed at that slot are 
checked to see if the file name is present. If the name is not on the chain, the file 
is not present in the directory. . 

Using a hash table has the advantage of much faster lookup, but the dlsadvan-
taae of more complex administration. It is only really a serious candidate in sys-

where it is expected that directories will routinely contain hundreds or 
thousands of files. 

A different way to speed up searching large directories is to cache the results 
of searches. Before starting a search, a check is first made to see if the file name 
is in the cache. If so, it can be located immediately. Of course, caching only 
works if a relatively small number of files comprise the majority of the lookups. 
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4.3.4 Shared Files 

When several are working together on a project, they often need to share 
As a It .IS often for a shared file to appear simultaneously 

m different drrectones belongmg to dIfferent users. Figure 4-16 shows th fil 
fF' 47 . e Ie 

0 Ig. - agatn, only with one of C's files now present in one of B's di-
rectones as well. The connection between B's directory and the shared file is call-
ed a link. The file system itself is-now a Directed Acyclic Graph, or DAG, rath-
er than a tree. 

Shared file 

Figure 4·16. File system containing a shared file. 

. is convenient, but it also introduces some problems. To start 
WIth, If really do contain disk addresses, then a copy of the disk ad-
dresses wIll have to be made in B's directory when the file is linked. If either B or 
C subsequently appends to the file, the new blocks will be listed only in the direc-
tory of the user doing the append. The changes will not be visible to the other 
user, thus defeating the purpose of sharing. 

This problem can be solved in two ways. In the first solution, disk blocks are 
not listed in directories, but in a little data structure associated with the file itself. 
The would then point just to the little data structure. This is the ap-
proach used m UNIX (where the little data Structure is the i-node). 

In the second solution, B links to one of C's files by having the system create 
a file, of type LINK, and entering that file in B' s directory. The new file con-
tams Just the path name of the file to which it is linked. When B reads from the 
linked file, the operating system sees that the file being read from is of type 
LINK, looks up the name of the file, and reads that file. This approach is caned 
symbolic linking, to contrast it with traditional (hard) linking. 
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Each of these methods has its drawbacks. In the fIrst method, at the moment 
that B links to the shared file, the i-node records the file's owner as C Creating a 
link does not change the ownership (see Fig. 4-17), but it does the link 
count in the i-node, SO the system knows how many directory entnes currently 
point to the file. 

C's directory C's directory B's directory 

o o o 
(a) (b) (e) 

Figure 4-17. (a) Situation prior to linking. (b) After the link is created. (c) After 
the original owner removes the file. 

If C subsequently tries to remove the file, the system is faced with a problem. 
If it removes the file and clears the i-node, B will have a directory entry pointing 
to an invalid i-node. If the i-node is later reassigned to another flle, B'g link will 
point to the wrong file. The system can see f:om the count in i-node the 
file is still in use, but there is nO easy way for It to find all the dIrectory entrIes for 
the file, in order to erase them. Pointers to the directories be stored in the 
i-node because there can be an unlimited number of directones. 

The only thing to do is remOve C's directory entry, but leav.e th: 
with count set to 1, as shown in Fig. 4-17(c). We now have a sltuatlOn In WhICh B 
is the only user having a directory entry for a owned by C. If does 
accounting Of has quotas, C will continue to be bIlled for the untll B decIdes to 
remove it, if ever, at which time the count goes to 0 and the file IS deleted. 

With symbolic links this problem does not arise because only the true owner 
has a pointer to the i-node. Users who have linked to the file just have path names, 
not i-node pointers. When the owner removes the file, it is destroyed. Subsequent 
attempts to use the file via a symbolic link will fail when the system is unable to 
locate the file. Removing a symbolic link does not affect the file at alL 

The problem with symbolic links is the extra overhead required. The file con-
taining the path must be read, then the path must be 
ponent by component, until the i-node is reached. All of thIS aCtlVlty 
a considerable number of extra disk accesses. Furthermore, an extra I-node IS 
needed for each symbolic link, as is an extra disk block to store the path, although 
if the path name is short, the system could store it in the i-node itself, as a kind of 
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optimization. Symbolic links have the advantage that they can be used to link to 
files on machines anywhere in the world, by simply providing the network address 
of the machine where the file resides in addition to its path on that machine. 

There is also another problem introduced by links, symbolic or otherwise. 
When links are allowed, files can have two Or more paths. Programs that start at a 
given directory and. find- all the files in that directory and its subdirectories will 
locate a linked file multiple times. For example, a program that dumps all the files 
in a directory and its subdirectories onto a tape may make mUltiple copies of a 
linked file. Furthennore, if the tape is then read into another machine, unless the 
dump program is clever, the linked file will be copied twice onto the disk, instead 
of being linked. 

4.3.5 Log-Structured File Systems 

Changes in technology are putting pressure on current file systems. In partic-
ular, CPUs keep getting faster, disks are becoming much bigger and cheaper (but 
not much faster), and memories are growing exponentially in size. The one pa-
rameter that is not improving by leaps and bounds is disk seek time. The combina-
tion of these factors means that a performance bottleneck is arising in many file 
systems. Research done at Berkeley attempted to alleviate this problem by de-
signing a completely new kind of file system, LFS (the Sys-
tem). In this section we will briefly describe how LFS works. For a more com-
plete treatment, see (Rosenblum and Ousterhout, 1991). 

The idea that drove the LFS design is that as CPUs get faster and RAM 
memories get larger, disk caches are also increasing rapidly. Consequently, it is 
now possible to satisfy a very substantial fraction of aU read requests directly 
from the file system cache, with no disk access needed. It follows from this 
observation that in the future, most disk accesses will be writes, so the read-ahead 
mechanism used in some file systems to fetch blocks before they are needed no 
longer gains much performance. 

To make matters worse, in most file systems, writes are done in very small 
chunks. Small writes are highly inefficient, since a 50-J..lsec disk write is often pre-
ceded by a lO-msec seek and a 4-msec rotational delay. With these parameters, 
disk efficiency drops to a fraction of 1%. 

To see where all the small writes come from, consider creating a new file on a 
UNIX system. To write this file, the i-node for the directory, the directory block, 
the i-node for the file, and the file itself must all be written. While these writes 
can be delayed, doing so exposes the file system to serious consistency problems 
if a crash occurs before the writes are done. For this reason; the i-node writes are 
generally done immediately. 

From this reasoning, the LFS designers decided to re-implement the UNIX file 
system in such a way as to achieve the fun bandwidth of the disk, even in the face 
of a workload consisting in large part of small random writes. The basic idea is to 
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structure the entire disk as a log. Periodically, and when there is a 
for it, all the pending writes being buffered in memory are collected lOto a smgle 
segment and written to the disk as a single contiguous segment at the end of the 
log. A single segment may thus contain i-nodes, directory blocks, and data 
blocks, all mixed together. At the start of each segment is a segment summary, 
telling what can be found in the segment. If the average segment can be made to 
be about 1 MB, almost the full bandwidth of the disk can be utilized. 

In this design, i-nodes still exist and have the same structure as in UNIX, but 
they are now scattered allover the log, instead of being at a fixed position on the 
disk. Nevertheless, when an i-node IS located, locating the blocks is done in the 
usual way. Of course, finding an i-node is now much harder, since its address 
cannot simply be calculated from its i-number, as in UNIX. To make it possible to 
find i-nodes, an i-node map, indexed by i-number, is maintained. Entry i in this 
map points to i-node i on the disk. The map is kept on disk, but it is also cached, 
so the most heavily used parts will be in memory most of the time. . 

To summarize what we have said so far, all writes are initially buffered m 
memory, and periodically all the buffered writes are written to the disk in a single 
segment, at the end of the log. Opening a file now consists of using the map to 
locate the i-node for the file. Once the i-node has been located, the addresses of 
the blocks can be found from it. All of the blocks will themselves be in segments, 
somewhere in the log. 

If disks were infinitely large, the above description would be the entire story. 
However, real disks are finite, so eventually the log will occupy the entire disk, at 
which time no new segments can be written to the log. Fortunately, many existing 
segments may have blocks that are no longer needed, for example, if a file is,over-
written, its i-node will now point to the new blocks, but the old ones will· still be 
occupying space in previously written segments. 

To deal with this problem, LFS has a cleaner thread that spends its time scan-
ning the log circularly to compact it. It starts out by reading the summary of the 
first segment in the log to see which i-nodes and files are It then 
current map to see if the i-nodes are still current and fIle blocks are stillm 
use. If not, that infonnation is discarded. The i-nodes and block$ that are still in 
use go into memory to be written out in the next segment. The original segment is 
then marked as free, so that the log can use it for new data. In this manner, the 
cleaner moves along the log, removing old segments from the back and putting 
any live data into memory for rewriting in the next segment. Consequently, the 
disk is a big circular buffer, with- the writer thread adding new segments to the 
front and the cleaner thread removing old ones from the back. 

The bookkeeping here is nontrivial, since when a file block is written back to 
a new segment, the i-node of the file (somewhere in the log) must be located, 
updated, and put into memory to be written out in the next segment. The i-node 
map must then be updated to point to the new copy. Nevertheless, it is possible to 
do the administration, and the performance results show that all this complexity is 
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worthwhile. Measurements given in the papers cited above show that LFS outper-
forms UNIX an order of magnitude on small writes, while having a per-
formance that IS as good as or better than UNIX for reads and large writes. 

4.3.6 Journaling File Systems 

W?ile log-structured file systems are an interesting idea, they are not widely 
used, In part due to their being highly incompatible with existing file systems. 
Nevertheless, one of the ideas inherent in them, robustness in the face of failure 
can be easily applied to more conventional file systems. The basic idea here is 
keep a log of what the file system is going to do before it does it, so that if the sys-

crashes before it can do its planned work, upon rebooting the system can look 
m the Jog to see what was going on at the time of the crash and finish the job. 
Such file systems, called journaling file systems, are actually in use. Microsoft's 
NTFS file and .Linux ext3 and ReiserFS file systems use joumaling. 
Below we WIll gIve a bnef mtroduction to this topic. 

To see the nature of the problem, consider a simple garden-variety operation 
that happens all the time: removing a file. This operation (in UNIX) requires three 
steps: 

1. Remove the file from its directory. 

2. Release the i-node to the pool of free i-nodes. 

3. Return all the disk blocks to the pool of free disk blocks. 

In analogous steps are required. In the absence of system crashes, the 
order 10 WhICh these steps are taken does not matter; in the presence of crashes, it 
does. Suppose that the first step is completed and then the system crashes. The i-
node and file blocks will not be acceSsible from any file, but will also not be 

for reassignment; they are just off in limbo somewhere, decreasing the 
avaIlable resources. If the crash occurs after the second step, only the blocks are 
lost. 

If the order of operations is changed and the i-node is released first, then after 
rebooting, the i-node may be reassigned, but the old directory entry will continue 
to point to it, hence to the wrong file. If the blocks are released first, then a crash 
before the i-node is cleared will mean that a valid directory entry points to an i-
node listing blocks now in the free storage pool and which are likely to be reused 
shortly, leading to two or more files randomly sharing the same blocks. None of 
these outcomes are good. 

. What the journaling file system does is first write a log entry listing the three 
actIons to be completed. The log entry is then written to disk (and for good meas-
ure, possibly read back from the disk to verify its integrity). Only after the log 
entry has been written, do the various operations begin. After the operations 
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complete successfully, the log entry is erased. If the system now crashes, upon re-
covery the file system can check the log to see if any operations were pending. If 
so, all of them can be rerun (multiple times in the event of repeated crashes) until 
the file is correctly removed. 

To make journaling work, the logged operations must be idempotent, which 
means they can be repeated as often as necessary without harm. Operations such 
as "Update the bitmap to mark i-node k Or block n as free" can be repeated until 
the cows come home with no danger. Similarly, searching a directory and remov-
ing any entry called joobar is also idempotent. On the other hand, adding the 
newly freed blocks from i-node K to the end of the free list is not idempotent since 
they may already be there. The more-expensive operation "Search the list of free 
blocks and add block It to it if it is not already present" is idempotent. Journaling 
file systems have to arrange their data structures and loggable operations so they 
all of them are idempotent. Under these conditions, crash recovery can be made 
fast and secure. 

For added reliability, a file system can introduce the database concept of an 
atomic transaction. When this concept is used, a group of actions can be brack-
eted by the begin transaction and end transaction operations. The file system then 
knows it must complete either all the bracketed operations or none of them, but 
not any other combinations. 

NTFS has an extensive journaling system and its structure is rarely corrupted 
by system crashes. It has been in development since its first release with Win-
dows NT in 1993. The first Linux file system to do journaling was ReiserFS, but 
its popularity was impeded by the fact that it was incompatible with the then-stan-
dard ext2 file system. In contrast, ext3, which is a less ambitious project than 
ReiserFS, also does journaling while maintaining compatibility with the previous 
ext2 system. 

4.3.7 Virtual File Systems 

Many different file systems are in use-often on the same computer--even 
for the same operating system. A Windows system may have a main NTFS file 
system, but also a legacy FAT-32 or FAT-16 drive or partition that contains old, 
but still needed, data, and from time to time a CD-ROM or DVD (each with its 
own unique file system) may be required as well. Windows handles these 
disparate file systems by identifying each one with a different drive letter, as in 
C:, D;, etc. When a process opens a file, the drive letter is explicitly or implicitly 
present so WindoWS knows which file system to pass the request to. There is no 
attempt to integrate heterogeneous file systems into a unified whole. 

In contrast, all modern UNIX systems make a very serious attempt to integrate 
multiple file systems into a single structure. A Linux system could have ext2 as 
the root file system, with an ext3 partition mounted on lusr and a second hard disk 
with a ReiserFS file system mounted on /home as well as an ISO 9660 CD-ROM 
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temporarily mounted on Imnt. From the user's· . '. 
system hierarchy. That it happens to enco pomt there IS a smgle file 
terns is not visible to users or processes. mpass multlple (mcompatible) file sys-

However, the presence of multiple fil . . 
implementation, and since the pio _" e IS very visible to the 
1986), most UNIX systems have wor of Sun MlCrosystems (Kleiman, 
to try to integrate multiple file systems of a VFS (virtual file system) 
abstract out that part of the file syste th. edy structure. The key idea is to 
that code in a separate layer that th at ISd com.mon to all file systems and PUt 
tual manage the data The overall stru te un. concrete file systems to ac-. . Cure IS 1 ustrated' F 4 18 . 
CUss1?n below is not specific to Linux or FreeBS mIg. -. . The dIS-
but gIves the general flavor of how . t 1 fil D or any verSlOn of UNIX, VIr ua 1 e systems work 10 UNIX systems. 
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Figure 4-18. Position of the virtual file system. 
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the VFS was to support remote file systems using the NFS (Network File Sys-
tem) protocol. The VFS design is such that as long as the concrete file system 
supplies the functions the VFS requires, the VFS does not know or care where the 
data are stored or what the underlying file system is like. 

Internally, most VFS implementations are essentially object oriented, even if 
they are written in C rather than C++. There are several key object types that are 
normally supported. These include the superblock (which describes a file system), 
the Y¥fiode (which describes a file), and the directory (which describes a file sys-
tem directory). Each of these has associated operations (methods) that the con-
crete file systems must support. In addition, the VFS has some internal data struc-
tures for its own use, including the mount table and an array of file descriptors to 
keep track of all the open files in the user processes. 

To understand how the VFS works, let us run through an example chronologi-
cally. When the system is booted, the root file system is registered with the VFS. 
In addition, when other file systems are mounted, either at boot time or during op-
eration, they, too must register with the VFS. When a file system registers, what 
it basically does is provide a list of the addresses of the functions the VFS :re-
quires, either as one long call vector (table) or as several of them, one per VFS 
object, as the VFS demands. Thus once a file system has registered with the VFS, 
the VFS knows how to, say, read a block from it-it simply calls the fourth (or 
whatever) function in the vector supplied by the file system. Similarly, the VFS 
then also knows how to carry out every other function the concrete file system 
must supply: it just calls the function whose address was supplied when the file 
system registered. 

After a file system has been mounted, it can be used. For example, if a file 
system has been mounted on lusr and a process makes the call 

open("/usrnnclude/unistd.h",O_RDONLY) 

while parsing the path, the VFS sees that a new file system has been mounted on 
lusr and locates its superblock by searching the list of superblocks of mounted file 
systems. Having done this, it can find the root directory of the ,mounted file sys-
tem and look up the path includelunistdh there. The VFS then creates a v-node 
and makes a call to the concrete me system to return all the infonnation in the 
file's i-node. This information is copied into the v-node (in RAM), along with 
other information, most importantly the pointer to the table of functions to call for 
operations on v-nodes, such as read, write, dose, and so on. 

After the v-node has been created, the VFS makes an entry in the file descrip-
tor table for the calling process and sets it to point to the new v-node. (For the 
purists, the file descriptor actually points to another data structure that contains 
the current file position and a pointer to the v-node, but this detail is not important 
for our purposes here.) Finally, the VFS returns the file descriptor to the caller so 
it can use it to read, write, and close the file. 
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IS manner, It relatively straightforward to add new file s stems. 

mru:e one,. the desIgners fIrst get a list of function calls the VFS and 
al;e:;nte .their file system to provide. all of them. Alternatively, if the file system 

y eXIsts, then have to proVIde wrapper functions that do what the VFS 
needs, usually by making one Or more native calls to the concrete file system. 
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4.4 FILE SYSTEM MANAGEMENT AND OPTIMIZATION 

Making the file system work is one thing; making it work efficiently and 
robustly in fealUfe is something quite different. In the following sections we will 
look at some of the issues involved in managing disks. 

4.4.1 Disk Space Management 

Files are TIonnally stored on disk, so management of disk space is a major 
concern to file system designers. Two general strategies are possible for storing an 
n byte file: n consecutive bytes of disk space are allocated, or the file is split up 
into a number of (not necessarily) contiguous blocks. The same trade-off is pres-
eot in memory management systems between pure segmentation and paging. 

As we have seen, storing a file as a contiguous sequence of bytes has the ob-
vious problem that if a file grows, it will probably have to be moved on the disk. 
The same problem holds for segments in memory, except that moving a segment 
in memory is a relatively fast operation compared to moving a file from one disk 
position to another. For this reason, nearly all fIle systems chop flies up into 
fixed-size blocks that need not be adjacent. 

Block Size 

Once it has been decided to store files in fixed-size blocks, the question arises 
of how big the block should be. Given the way disks are organized, the sector. the 
track, and the cylinder are obvious candidates for the unit of allocation (although 
these are all device dependent, which is a minus). In a paging system, the page 
size is also a major contender. 

Having a large block size means that every file, even a I-byte file, ties up an 
entire cylinder. It also means that small files waste a large amount of disk space. 
On the other hand, a sman block size means that most frIes will span multiple 
blocks and thus need multiple seeks and rotational delays to read them, redUCing 
performance. Thus if the allocation unit is too large, we waste space; if it is too 
small, we waste time. 

Making a good choice requires having some information about the file size 
distribution. Tanenbaum et a1. (2006) studied the file size distribution in the 
Computer Science Department of a large research university (the VU) in 1984 and 
then again in 2005, as well as on a commercial Web server hosting a political 
Website (www.electoral-vote.com). The results are shown in Fig. where for 
each file size, the percentage of all files smaller or equal to it is list-
ed for each of the three data sets. For example, in 2005. 59.13% of all files at the 
VU were 4 KB or smaller and 90.84% of all files were 64 KB or smaller. The 
median file size was 2475 bytes. Some people may find this small size surprising. 
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Length VU 1984 VU 2005 Web Length VU 1984 VU 2005 Web 
1 1.79 1.38 6.67 16 KB 92.53 78.92 86.79 
2 1.88 1.53 7.67 32 KB 97.21 85.87 91.65 
4 2.01 1.65 8.33 64 KB 99.18 90.84 94.80 
8 2.31 1.80 11.30 128 KB 99.84 93.73 96.93 

16 3.32 2.15 11.46 256KB 99.96 96.12 98.48 
32 5.13 3.15 12.33 512 KB 100.00 97.73 98.99 
64 8.71 4.98 26.10 1 MB 100.00 98.87 99.62 

128 14.73 8.03 28.49 2MB 100.00 99.44 99.80 
256 23.09 13.29 32.10 4MB 100.00 99.71 99.87 
512 34.44 20.62 . 39.94 8MB 100.00 99.86 99.94 

1 KB 48.05 30.91 47.82 16 MB 100.00 99.94 99.97 
2 KB 60.87 46.09 59.44 32 MB 100.00 99.97 99.99 
4KB 75.31 59.13 70.64 64 MB 100.00 99.99 99.99 
8KB 84.97 69.96 79.69 128 MB 100.00 99.99 100.00 

Figure Percentage of files smaIler than a given size (in bytes). 

What conclusions can we draw from these data? For t . . 
about 30-50% of all files fit in 

oc, e percentage of files that fit in a block goes up to the 
Other data in the paper show that with a 4-KB block 93% of th d' 

oc s are used by the 10% largest files. This means that wast'ing some s :ce
lS 

the e;d each small file hardly matters because the disk is filled up by sm;: 
large files (vIdeos) and the amount of space taken up by the small 

take up the space the smallest 90% of the files 

consist of 
so readmg a file consisting of many small blocks will be slow. ona1 delay, 

with 1 MB per. a time of 8.33 

block of k bytes is the sum of the
5 

a 

5 + 4.165 + (k/lOOOOOO) x 8.33 

of Fig'
t 

shows the data rate for such a disk as a function of 
. e e space efficiency, we need to make an assum tio 

:::,out mean file SIze. For simplicity, let us assume that all files are 4 KB P 
bl t number IS Slightly larger than the data measured at the YU student; 

pay ave more small files than would be present in a corporate center 
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so it might be a better guess on the whole. The dashed curve of Fig. 4-21 shows 
the space efficiency as a function of block size. 

60 , 100% , 
50 

, c , 80% .2 0 , 
" • , 

ill 40 I e , 60% , • 30 , 0 , • , 40% • 20 , , " w 

" , , ;S 
10 , • 20'% , • 
0 

1 KB 4KB 16KB 64KB 256KB 1MB 0"'10 

Figure 4·21. The solid curve (left-hand scale) gives the data rate of a disk. The 
dashed curve (right-hand scale) gives the disk space efficiency. All files are 4 
KB. . 

The two curves can be understood as follows. The access time for a is 
completely dominated by the seek time and rotational delay, so given that it is 
aoing to cost 9 msec to access a block, the more data that are fetched, the better. 
Hence the data rate goes up almost linearly with block size (until the transfers 
take so long that the transfer time begins to matter). 

Now consider space efficiency. With 4-KB files and l-KB, 2-KB, or 4-KB 
blocks, files use 4, 2, and 1 block, respectively, with no wastage. With an 8-KB 
block and 4-KB files, the space efficiency drops to 50%, and with a 16-KB block 
it is down to 25%. In reality, few files are an exact mUltiple of the disk block 
size, so some space is always wasted in the last block of a file. 

What the curves show, however, is that perfonnance and space utilization are 
inherently in conflict. Small blocks are bad for perfonnance but good for disk 
space utilization. For these data, no reasonable compromise is availabl.e. The size 
closest to where the two curves cross is 64 KB, but the data rate IS only 6.6 
ME/sec and the space efficiency is about 7%, neither of which is "Very good. His-
torically, file systems have chosen sizes in the l-KB to 4-KB range, but with disks 
now exceeding 1 TB, it might be better to increase the block size to 64 KB and 
accept the wasted disk space. Disk space is hardly in short supply any more. 

In an experiment to see if Windows NT file usage was appreciably different 
from UNIX file usage, Vogels made measurements on files at Cornell University 
(Vogels, 1999). He observed that NT file usage is more complicated than on 
UNIX. He wrote: 

When we type a few characters in the notepad text editor, saving this to a 
file will trigger 26 system calls, including 3 failed open attempts, 1 file 
overwrite and 4 additional open and close sequences. 
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he ?bserved a median size (weighted by usage) of files just read at 1 

files Just wntten as 2.3 KB, and files read and written as 4.2 KB. Given the 
data sets measurement techniques, and the year, these results are cer-

tamly compatible with the VU results. 

Keeping Track of Free Blocks 

Once a block size has chosen, the next issue is how to keep track of free 
b!ocks. TV:'0 methods are WIdely used, as shown in Fig. 4-22. The first one con-
Sl.sts of usmg a linked of blocks, with each block holding as many free 
dISk block numbers as WIll fit. WIth a l-KB block and a 32-bit disk block number 

block on the. free list holds the numbers of 255 free blocks. (One slot is 
qmred for the pomter to the next block.) Consider a 500-GB disk which has 
about 488 million disk blocks. To store all these address at 255 per requires 
about 1.9 million blocks. Generally, free blocks are used to hold the free list so 
the storage is essentially free. ' 

Free disk blocks' 16 17 18 

42 r 
136 

210 

97 

41 

63 

21 

( 48 

262 

310 

516 V 
A 1-KB disk block can hold 256 

32-bit disk block numbers 

230 r 86 
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214 140 

160 223 

664 223 
216 160 
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1001101101101100 

0110110111.110111 

1010110110110110 

0110110110111011 

1110111011101111 

1101101010001111 

0000111011010111 

1011101101101111 

1100100011101111 

0111011101110111 

1101111101110111 

A bitmap 

(b) 

Figure 4-22. (a) Storing the free list on a linked list. (b) A bitmap. 

The other free space management technique is the bitmap. A disk with n 
blocks requires a bitmap n bits. Free blocks are represented by Is in the map, 

by Os (or VIce versa). For our example 500-GB disk, we need 
488 mIllion bIts for the map, which requires just under 60,000 l-KB blocks to 
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store. It is not surprising that the bitmap requires less space, since it uses 1 bit per 
block, versus 32 bits in the linked list model. Only if the disk is nearly full (i.e., 
has few free blocks) will the linked list scheme require fewer blocks than the bit-
map. 

If free blocks tend to come in long runs of consecutive blocks, the free-list 
system can be modified to keep track of runs of blocks rather than single blocks. 
An 8-, 16-, or 32-bit count could be associated with each block giving the number 
of consecutive free blocks. In the best case, a basically empty disk could be 
represented by two numbers: the address of the first free block followed by the 
CQunt of free blocks. On the other hand, if the disk becomes severely fragmented, 
keeping track of runs is less efficient than keeping track of individual blocks be-
cause not only must the address be stored, but also the count. 

This issue illustrates a problem operating system designers often have, There 
are multiple data structures and algorithms that can be used to solve a problem, 
but choosing the best one requires data that the designers do not have and will not 
have until the system is deployed and heavily used. And even then, the data may 
not be available. For example, our own measurements of file sizes at the VU in 
1984 and 1995, the Website data, and the Cornell data are only four samples. 
While a lot better than nothing, we have little idea if they are also representative 
of home computers, corporate computers, government computers, and others. 
With some effort we might have been able to get a couple of samples from other 
kinds of computers, but even then it would be foolish to extrapolate to an com-
puters of the kind measured. 

Getting back to the free list method for a moment, only one block of pointers 
need be kept in main memory. When a file is created, the needed blocks are taken 
from the block of pointers. When it runs out, a new block of pointers is read in 
from the disk. Similarly, when a file is deleted, its blocks are freed and added to 
the block of pointers in main memory. When this block fills up, it is written to 
disk. 

Under certain circumstances, this method leads to unnecessary disk I/O. Con-
sider the situation of Fig. 4-23(a), in which the block of pointers in memory has 
room for only two more entries. If a three-block file is freed, the pointer block 
overflows and has to be written to disk, leading to the situation of Fig. 4-23(b). If 
a three-block file is now written, the full block of pointers has to be read in again, 
taking us back to Fig. 4-23(a). If the three-block file just written was a temporary 
file, when it is freed, another disk write is needed to write the full block of point-
ers back to the disk. In short, when the block of pointers is almost empty, a series 
of short-lived temporary files can cause a lot of disk I/O. 

An alternative approach that avoids most of this disk I/O is to split the full 
block of pointers. Thus instead of going from Fig. 4-23(a) to Fig. 4-23(b), we go 
from Fig. 4-23(a) to Fig. 4-23(c) when three blocks are freed. Now the system can 
handle a series of temporary files without doing any disk I/O. If the block in 
memory fills up, it is written to the disk, and the half-full block from the disk is 
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Figure 4-23. (a) An ?lock of pointers to free disk blocks in memory 
and three of pomters on dIsk. (b) Result of freeing a three-block file. (c) 
An alternative strategy for handling the three free blocks. The shaded entries 
represent pointers to free disk blocks. 
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The idea here is to keep most of the pointer blocks on disk full (to minim-
IZe dIsk but keep the one in memory about half full, so it can handle both 
file creatIon and file removal without disk I/O on the free list. 

. With a bitmap, it is possible to keep just One block in memory; going to 
dISk for another only when It becomes full or empty. An additional benefit of this 

is by doing all the allocation from a single block of the bitmap, the 
disk blocks wIll be close together, thus minimizing disk ann motion. Since the bit-
map is.a data structure, if the kernel is (partially) paged, the bitmap can 
be put m VIrtual memory and have pages of it paged in as needed. 

Disk Quotas 

To prevent pe?ple from too much disk space, multiuser operating 
systems often proVide a mechafilsm for enforcing disk quotas. The idea is that the 
system administrator assigns each user a maximum allotment of files and blocks 

the operating system makes sure that the users do not exceed their quotas. A 
typICal mechanism is described below. 
. When a user opens file,. the attributes and disk addresses are located and put 
mto an open table mam memory. Among the attributes is an entry telling 
who the owner IS. Any Increases in the file's size will be charged to the owner's 
quota. 

A table contains the quota record for every user with a currently open 
even If the file was opened by someone else. This table is shown in Fig. 4-24. 

It IS an extract from a quota file on disk for the users whose files are currently 
open. When all the files are closed, the record is written back to the quota file. 
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Figure 4.24. Quotas are kept track of on a per-user basis in a quota table. 

When a new entry is made in the open file table, a to owner's 
quota record is entered into it, to make it easy to find the vanous limIts. Ever.y 
time a block is added to a file, the total number of blocks charged owner IS 
incremented, and a check is made against both the hard and soft hnuts. The soft 
limit may be exceeded, but the hard limit may not. An attempt to append to a file 
when the hard block limit has been reached will result in an error. Analogous 
checks also exist for the number of files. . 

When a user attempts to log in, the system examines the quota file to If 
the user has exceeded the soft limit for either number of files or number of dISk 
blockS. If either limit has been violated, a warning is displayed, and the count of 
warnings remaining is reduced by one. If the count ever to zero, user ?as 
i2"IlOred the warning one time too many, and is not perrmtted to log m. 
pC>ennission to log in again will require some discussion with the system admmls-

method has the property that users may go above their soft limits during 
a login session, provided they remove the excess before logging out. The hard 
limitS may never be exceeded. 

4.4.2 File System Backups 

Destruction of a file system is often a far greater disaster than destruction of a 
computer. If a computer is destroyed by fire, lightning surges, or a cup of coffee 
poured onto the keyboard, it is annoying and will cost money, but. generally a 
replacement can be purchased with a minimum fuss: InexpensIve personal 
computers can even be replaced within an hour by Just gomg to a computer store 
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(except at universities, where iSSuing a purchase order takes three committees 
five signatures, and 90 days). ' 

If a computer's file system is irrevocably lost, whether due to hardware or 
software, restoring all the infonnation will be difficult, time consuming, and in 
many cases, impossible. For the people whose programs, documents, tax records, 
customer files, databases, marketing plans, or other data are gone forever, the 

be While the file system cannot offer any protec-
tIOn. agamst destructIOn of the equipment and media, it can help protect 
the mfonnatIOn. It IS pretty straightforward: make backups. But that is not quite 
as simple as it sounds. Let us take a look. 

Most people do not think making backups of their files is worth the time and 
effort-until one fine day their disk abruptly dies, at which time most of them 
undergo a deathbed conversion. Companies, however, (usually) well understand 
the value of their data and generally do a backup at least once a day, usually to 
tape. Modern tapes hold hundreds of gigabytes and cost pennies per gigabyte. 
Nevertheless, making backups is not quite as trivial as it sounds so we will exam-
ine some of the related issues below. ' 

Backups to tape are generally made to handle one of two potential problems: 

1. Recover from disaster. 
2. Recover from stupidity. 

The first one covers getting the computer running again after a disk crash, fire, 
flood, or natural catastrophe. In practice, these things do not happen very 
often, whlch IS why many people do not bother with backups. These people also 
tend not to have fire insurance on their houses for the same reason. 

The second reason is that users often "accidentally remove files that they later 
need again. This problem occurs so often that when a file is «removed" in Win-
dows, it is not deleted at all, but just moved to a special directory, the recycle bin, 
so it can be fished out and restored easily later. Backups take this principle further 
and anow files that were removed days, even weeks, ago to be restored from old 
backup tapes. 

Making a backup takes a long time and occupies a large amount of space so 
doing it efficiently and conveniently is important. These considerations raise 'the 

should the entire file system be backed up or only part of 
It? At many mstallatIOns, the executable (binary) programs are kept in a limited 
part the file system tree. It is not necessary to back up these files if they can all 
be remstalled from the manufacturer's CD-ROMs. Also, most systems have a di-
rectory for temporary files. There is usually no reason to back it up either. In 
UNIX, all the special files (110 devices) are kept in a directory /dev. Not only is 
backing up this directory not necessary, it is downright dangerous because the 
backup program would hang forever if it tried to read each of these to completion. 
In short, it is usually desirable to back up only specific directories and everything 
in them rather than the entire file system. 
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Second it is wasteful to back up fIles that have not changed since the previous 
backup. which leads to the idea of incremental dumps. The. form of in-
cremental dumping is to make a complete dump (backup) penodlcally, say 
or monthly, and to make a daily dump of only those files that have been modIfied 
since the last fun dump. Even better is to dump only those files that have changed 
since they were last dumped. While this scheme minimizes dumping time, it 
makes recovery more complicated, because first the most recent full dump has to 
be restored, followed by all the incremental dumps in reverse order. To ease 
recovery, more sophisticated incremental dumping .schemes are used. . 

Third since immense amounts of data are tYPIcally dumped, It may be deslI-
able to the data before writing them to tape. However,. with many com-
pression algorithms, a single bad spot on the backup tape can fOil the decompres-
sion algorithm and make an entire file or even an entire tape Thus the 
decision to compress the backup stream must be carefully consIdered. 

Fourth, it is difficult to perform a backup on an active file system. If files and 
directories are being added, deleted, and modified during the dumping process, 
the resulting dump may be inconsistent However, making a dump take 
hours, it may be necessary to take the system offlme for much .of the mght to 
make the backup, something that is not always acceptable. For thIS reason, 
rithms have been devised for making rapid snapshots of the file system state by 
copying critical data structures, and then requiring changes to and di-
rectories to copy the blocks instead of updating them m place (Hutchmson et al., 
1999). In this way, the file system is effectively frozen at the moment of the 
snapshot, so it can be backed up at leisure afterward. . . 

Fifth and last, making backups introduces many nontechmcal problems mto 
an organization. The best online security system in the world may be if the 
system administrator keeps all the backup tapes in his office and leaves It open 
and unguarded whenever he walks down the hall to fro.m the printer. 
All a spy has to do is pop in for a second, put tmy m hIS and 
saunter off jauntily. Goodbye security. Also, making a dally backup has lIttle use 
if the fire that bums down the computers also bums up all the backup tapes. For 
this reason, backup tapes should be kept off-site, but that introduces more security 
risks (because now twO sites must be secured). For a thorough discussion of these 
and other practical administration issues, see (Nemeth et al., 2000). Below we 
wiII discuss only the technical issues involved in making file system backups. 

Two strategies can be used for dumping a disk to tape: a physical dump or a 
logical dump. A physical dump starts at block 0 of the disk, writes all the disk 
blocks onto the output tape in order, and stops when it has copied the last one. 
Such a program is so simple that it can probably be made 100% bug free, 
thing that can probably not be said about any other useful program. . . 

Nevertheless, it is worth making several comments about phYSIcal dumpmg. 
For one thing, there is no value in backing up unused disk blocks. If the dumping 
program can obtain access to the free block data structure, it can avoid dumping 
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unused However, skipping unused blocks requires writing the number of 
each block m front of the block (or the equivalent), since it is no longer true that 
block k on the tape was block k on the disk. 

A second concern is dumping bad blocks. It is nearly impossible to manufac-
t?re large disks without any defects. Some bad blocks are always present. Some-
times when a low-level fonnat is done, the bad blocks are detected, marked as 
bad, and :eplaced by spare blocks reserved at the end of each track for just such 
emergenCIes. many cases, t?e disk controller handles bad block replacement 
transparently WIthout the operatmg system even knowing about it. 
. However,. sometimes blocks go bad after formatting, in which case the operat-

sys,:em .eventually detect them. Usually, it solves the problem by creating 
a file consIstmg of all the bad blocks-just to make sure they never appear in 
the free block pool and are never assigned. Needless to say, this file is completely 
unreadable. 

.If all bad are rer.napped the disk controller and hidden from the op-
.as Just descnbed, phYSIcal dumping works fine. On the other hand, 

If they are VIsIble to the operating system and maintained in one or more bad-
block files or it is essential that the physical dumping program 
get access to thIS mforrnatlOn and avoid dumping them to prevent endless disk 
read errors while trying to back up the bad-block file. 

!he advantages of physical dumping are simplicity and great speed 
It run at of the disk). The main disadvantages are the 

mabilIty to skip selected directones, make incremental dumps, and restore indivi-
dual files request. For these reasons, most installations make logical dumps. 

A logIcal dump one or more specified directories and recursively 
dumps all files and dlrectones found there that have changed since some given 
base date (e.g., the last backup for an incremental dump or system installation for 

Th?S in a logical dump, the dump tape gets a series of carefully 
Identified directones and files, which makes it easy to restore a specific file or di-
rectory upon request. 

S.ince logical dumping is the most common form, let us examine a common 
in using the example of Fig. 4-25 to guide us. Most UNIX systems 

use algonthm. In the we see a file tree with directories (squares) and 
files (CIrcles). The shaded Items have been modified since the base date and thus 
need be The unshaded ones do not need to be dumped. 

This also dumps .all directories (even unmodified ones) that lie on 
the path to a modIfied file or directory for two reasons. First, to make it possible 
to restore the files and directories to a fresh file system on a different 

In thIS way, the dump and restore programs can be used to transport 
entIre file systems between computers. 

The second reason for dumping unmodified directories above modified files is 
to make it possible to incrementally restore a single file (possibly to handle re-
covery from stupidity). Suppose that a full file system dump is done Sunday 
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procees. e . ' .' F h d 
( h t < Ibis example) and exarrunes all the entnes m It. or eac rno 1-rectory t eroo m . . 1 k d 
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d
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b 
g< th ontal<n nothinu under them that has been modIfied. They wIll not be ecause eyc >=> • d th hth dumped. By way of contrast, directories 5 and 6 wIll be dumpe even aug ey 
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themselves have not been modified because they will be needed to restore today's 
changes to a fresh machine. For efficiency, phases 1 and 2 can be combined in 
one tree walk. 

(al 

(bl 

(oj 

(dl 11 

Figure +26. Bitmaps used by the logical dumping algorithm. 

At this paint it is known which directories and files must be dumped. These 
are the ones marked in Fig. 4-26(b). Phase 3 consists of scanning the i-nodes in 
numerical order and dumping all the directories that are marked for tlumping. 
These are shown in Fig. 4-26(c). Each directory is prefixed by the directory's at-
tributes (owner. times, etc.) so that they can be restored. Finally, in phase 4, the 
files marked in Fig.4-26(d) are also dumped, again prefixed by their attributes. 
This completes the dump. 

Restoring a file system from the dump tapes is straightforward. To start with, 
an empty file system is created on the disk. Then the most recent full dump is re-
stored. Since the directories appear first on the tape, they are all restored first, giv-
ing a skeleton of the file system. Then the files themselves are restored. This 
process is then repeated with the first incremental dump made after the full dump, 
then the next one, and so on. 

Although logical dumping is straightforward, there are a few tricky issues, For 
one, since the free block list is not a file, it is not dumped and hence it must be 
reconstructed from scratch after all the dumps have been restored. Doing so is al-
ways possible since the set of free blocks is just the complement of the set of 
blocks contained in all the files combined. 

Another issue is links. If a file is linked to two or more directories, it is im-
portant that the file is restored only one time and that all the directories that are 
supposed to point to it do so. 

Still another issue is the fact that UNIX files may contain holes. It is legal to 
open a file, write a few bytes, then seek to a distant file offset and write a few 
more bytes. The blocks in between are not part of the file and should not be 
dumped and must not be restored. Core files often have a hole of hundreds of 
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megabytes between the data segment and the stack. If not handled 
restored core file will fill this area with zeros and thus be the same SIze as the VIr-
tual address space (e.g., 232 bytes, or worse yet, 264 bytes). 

Finally, special files, named pipes, and the like should never be dumped, no 
matter in which directory they may occur (they need not be confined to/dev). For 
more information about file system backups, see (Chervenak et aI., 1998; and 
Zwicky, 1991), 

Tape densities are not improving as fast as disk densities. This 
leadina to a situation in which backing up a very large disk may reqUIre multIple 
tapes. While tape robots are available to change tapes automatically, if trend 
continues, tapes will eventually become too small to use as a backup medIUm. In 
that case, the only way to back up a disk will be on another disk. While simply 
mirroring each disk with a spare is one possibility, more sophisticated schemes, 
called RAIDs, will be discussed in Chap. 5. 

4.4.3 File System Consistency 

Another area where reliability is an issue is file system consistency. Many file 
systems read blocks, modify them, and write them out later. If the system 
before all the modified blocks have been written out, the file system can be left III 
an inconsistent state. This problem is especially critical if some of the blocks that 
have not been written out are i-node blocks, directory blocks, or blocks containing 
the free list. 

To deal with the problem of inconsistent file systems, most computers have a 
utility program that checks file system consistency. For example, UNIX has fsck 
and Windows has scandisk. This utility can be run whenever the system is boot-
ed, especially after a crash. The description below tens how Jsck works. Scandisk 
is somewhat different because it works on a different file system, but the general 
principle of using the file system's inherent redundancy to repair it is still valid. 
All file system checkers verify each file system (disk partition) independently of 
the other ones. 

Two kinds of consistency checks can be made: blocks and files. To check for 
block consistency, the program builds two tables, each one containing a counter 
for each block, initially set to O. The counters in the first table keep track of how 
many times each block is present in a file; the counters in the second table record 
how often each block is present in the free list (or the bitmap of free blocks). 

The program then reads all the i-nodes using a raw device, which ignores the 
file structure and just returns all the disk blocks starting at O. Starting from an i-
node, it is possible to build a list of all the block numbers used in the correspond-
ing file. As each block number is read, its counter in the first table is incre-
mented. The program then examines the free list or bitmap to find all the blocks 
that are not in use. Each occurrence of a block in the free list results in its counter 
in the second table being incremented. 
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. If the file system is consistent, each block will have a 1 either in the first table 

or m the second as illustrated in Fig. 4-27(a). However, as a result of a 
c:ash, the tables I?Ight look like Fig. 4-27(b), in which block 2 does not occur in 
either table. It WIll be reported as being a missing block. While miSSing blocks 
do real they waste space and thus reduce the capacity of the disk. The 
solutIon to .blocks is straightforward: the file system checker just adds 
them to the free lIst. 

Block number 

o 1 2 3 4 567 89101112131415 
1,1,101,101,1, hl11010111111 10101 Block, in u,e 
10101 ' 101 ' 10 10 I 010 l' 1,1010101,1,1 F'ee block, 

(a) 

o 1 234 567 8 9101112131415 
11 1,101,101,111,1,10101,1,1,10101 Blocks in u'e 
10101,101210101010111'1010101,1,1 F,ee bbcks 

(c) 

Block number 

o 1 234 5 6 7 8 9101112131415 
111110111011111111101011111110101 Block, in u,e 
101010101110101010111110101011111 Fme blocks 

(b) 

o 1 2 3 4 5 6 7 8 9101112131415 
111110111*111111101011111110101 Block, in u,e 
10101110/1 /01010/0/11110/0101111/F,eeblock' 

(d) 

Figure 4·27. File system states. (a) Consistent. (b) Missing block. (c) Dupii-
cate block in free list. (d) Duplicate data block. 

Another situation that might occur is that of Fig.4-27(c). Here we see a 
block, 4. that i? the list. (Duplicates can OCCur only if 
the free lIst IS really a list; WIth a bItmap It IS impossible.) The soluti h ' 
al ' I b 'ld th on ere IS SO SImp e: re ill e free list. 

The worst thing that can happen is that the same data block is present in two 
or more files, as in Fig. 4-27(d) with block 5. If either of these flies is re-
moved, 5 be put on the free list, leading to a situation in which the 
same IS both In use and free at the same time. If both files are removed, the 
block WIll be put onto the free list twice. 

The appropriate action for the file system checker to take is to allocate a free 
copy the of block 5 into it, and insert the copy into one of the files. 

In thIS way, mfonnation content of the files is unchanged (although almost 
assuredly one IS garbled), but the file system structure is at least made consistent. 
The error s.h.ould be reported, to allow the user to inspect the damage. 

In addItIOn to cheCking to see that each block is properly accounted for, the 
file system checker also checks the directory system. It, too, uses a table of 
counters, these are per file, per block. It starts at the root directory 
and descends the tree, mspectmg each directory in the file system. For 
every I-node m every directory, it increments a counter for that file's usage count. 
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Remember that due to hard links, a file may appear in two or more directories. 
Symbolic links do not count and do not cause the counter for the target file to be 
incremented. . 

When the checker is all done, it has a list, indexed by i-node number, 
hoW many directories contain each file. It then compares these numbers W1tI: 
link counts stored in the i-nodes themselves. These counts start at 1 when a fIle IS 
reated and are incremented each time a (hard) link is made to the file. In a con-

file system, both counts will agree. However, two kinds of errors can oc-
cur: the link count in the i-node can be too high or it can be too }ow. . 

If the link count is higher than the number of directory entnes, then even If all 
the files are removed from the directories, the count will still be nonzero and the 
. _ ode will not be removed. This error is not serious, but it wastes space on the 
1 n . h 1· k disk with' Bles that are not in any directory. It should be fixed by settmg t e m 
count in the to the correct value. 

The other error is potentially catastrophic. If two directory entries are linked 
to a file, but the i-node says that there is only one, when either directory entry is 
removed, the i-node count will go to zero. When an i-node to the 
file system marks it as unused and releases all of its blocks. ThIS actlOn will result 
in one of the directories now pointing to an unused i-node, whose ?locks 
soon be assigned to other files. Again, the solution is just to force the link count 10 

the i-node to the actual number of directory entries. . ' . 
These two operations, checking blocks and checking dlrectones, are often 

inteorated for efficiency reasons (i.e., only one pass over the i-nodes is. required). 
checks are also possible. For example, directories have a defirute format, 

with i-node numbers and ASCII names. If an i-node number is larger than the 
number of on the disk, the directory has been damaged. 

Furthennore, each i-node has a mode, some of which are legal but strange, 
such as 0007, which allows the owner and his group no access at all, but allows 
outsiders to read, write, and execute the file. It might be useful to at least report 
files that give outsiders more rights than the owner. Directories more 
say, 1000 entries are also suspicious. Files located in user directones,. but whl.ch 
are owned by the superuser and have the SETUID bit on, are secunty 
problems because such files acquire the powers of the execute? 
by any user. With a little effort, one can put together a faIrly l?ng lIst of techm-
cally legal but still peculiar situations that might be worth reportmg. . 

The previous paragraphs have discussed the problem of protectmg the user 
ao-ainst crashes. Some file systems also worry about protecting the user against 
himself. If the user intends to type 

rm *.0 

to remove all the files ending with .0 (compiler-generated object files), but ac-
cidentally types 

rm *.0 
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(note the space after the asteriSk), nn will remove all the files in the current direc-
tory and then complain that it cannot find .0. In MS-DOS and some other systems, 
when a file is removed, all that happens is that a bit is set in the directory or i-
node marking the file as removed. No disk blocks are returned to the free list 
until they are actually needed. Thus, if the user discovers the error immediately, 
it is possible to run a special utility program that "unremoves" (i.e., restores) the 
removed files. In Windows, files that are removed are placed in the recycle bin (a 
special directory), from which they can later be retrieved if need be. Of course, 
no storage is reclaimed until they are actually deleted from this directory. 

4.4.4 File System Performance 

Access to disk is much slower than access to memory. Reading a 32-bit mem-
ory word might take 10 nsec. Reading from a hard disk might proceed at 100 
MB/sec, which is four times slower per 32-bit word, but to this must be added 
5-10 msec to seek to the track and then wait for the desired sector to arrive under 
the read head. If only a single word is needed, the memory access is on the order 
of a million times as fast as disk access. As a result of this difference in access 
time, many file systems have been designed with various optimizations to 
improve perfonnance. In this section we will cover three of them. 

Caching 

The most common technique used to reduce disk accesses is the block cache 
or buffer cache. (Cache is pronounced "cash" and is derived from the French 
cacher, meaning to hide.) In this context, a cache is a collection of blocks that 
logically belong on the disk but are being kept in memory for performance rea-
sons. 

Various algorithms can be used to manage the cache, 1 but a common one is to 
check all read requests to see if the needed block is in the cache. If it is, the read 
request can be satisfied without a disk access. If the block is not in the cache it is 
first read into the cache and then copied to wherever it is needed. re-
quests for the same block can be satisfied from the cache. 

Operation of the cache is illustrated in Fig. 4-28. Since there are many (often 
thousands of) blocks in the cache, some way is needed to determine quickly if a 
given block is present. The usual way is to hash the device and disk address and 
look up the result in a hash table. All the blocks with the same hash value are 
chained together on a linked list so that the collision chain can be followed. 

When a block has to be loaded into a full cache, some block has to be re-
moved (and rewritten to the disk if it has been modified since being brought in). 
This situation is very much like paging, and all the usual page replacement algo-
rithms described in Chap. 3, such as FIFO, second chance, and LRU, are applica-
ble. One pleasant difference between paging and caching is that cache references 
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Hash lable Front (LRU) Rear (MAU) 

Figure 4·28. The buffer cache data structures. 

are relatively infrequent, so that it is feasible to keep aU the blocks in exact LRU 
order with linked lists. . . . th h h 

In Fig. we see that in addition to the collisIon chams at e as 
table there is also a bidirectional list running through all the In :e 
usa with the least recently used block on the front. of thIS lIst t e mos 

g '] d bi k at the end of this list When a block IS referenced, It can be fe-
recent y use oc . ]' d t th nd In this way moved from its position on the bidirectional 1St an put a e e . , 
exact LRU order can be maintained. . . . . h t 

Unfortunately there is a catch. Now that we have a SItUatIOn m WhiC 
LRU is ossible, i't turns out that LRU is undesira.ble. The p:oblem h.as to do 
the cras:es and file system consistency m the prevIous a 
ical block such as an i-node block, is read mto the cache mo. I Ie, u n 

'tt n t' the disk a crash will leave the file system in an mconslstent state. If 
rewn eo, U h" b 'te a while before the i-node block is put at the end of the LR: c am, It may e qUI 
it reaches the front and is rewritten to the dISk. 

F rthennore some blocks, such as iwnode blocks, are rarely two 
, u 'th' ' hort l'nterval These considerations lead to a modIfied LRU tlmeswl mas . 

scheme, taking two factors into account: 

1. Is the block likely to be needed again soon? 

2. Is the block essential to the consistency of the file system? 

For both questions, blocks can be divided into categories as i-node 
indirect blocks directory blocks, full data blocks, and partIally full data bloc s. 
Blocks that wili probably not be needed again soon go ?n the front, rather the 

f th LRU list so their buffers will be reused qmckly, Blocks that mlght be 
a;ain soon, as a partly full block. that is being written, go on the end 

of the list so they will stay around for a long tIme. . 
The question is independent of the first one. If the block is to 

the file system consistency (basically, everything except data blocks), and It has 
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been modified, it should be written to disk immediately, regardless of which end 
of the LRU list it is put on. By writing critical blocks quickly, we greatly reduce 
the probability that a crash will wreck the file system. While a user may be 
unhappy if one of his files is ruined in a crash, he is likely to be far more unhappy 
if the whole file system is lost. 

Even with this measure to keep the file system integrity intact, it is undesir-
able to keep data blocks in the cache too long before writing them out. Consider 
the plight of someone who is using a personal computer to write a book. Even if 
our writer periodically tells the editor to write the file being edited to the disk, 
there is a good chance that everything will still be in the cache and nothing on the 
disk. If the system crashes, the file system Structure will not be corrupted, but a 
whole day's work will be lost. 

This situation need not happen very often before we have a fairly unhappy 
user. Systems take two approaches to dealing with it The UNIX way is to have a 
system call, sync, which forces aU the modified blocks Out onto the disk im-
mediately. When the system is started up, a program, usually called update, is 
started up in the background to sit in an endless loop issuing sync calls, sleeping 
for 30 sec between calls. As a result, no more than 30 seconds of work is lost due 
to a crash. 

Although Windows now has a system call equivalent to sync, FlushFileBuff-
ers, in the past it did not. Instead, it had a different strategy that was in ways 
better than the UNIX approach (and in some ways worse). What it did was to 
write every modified block to disk as soon as it has been written to the cache. 
Caches in which all modified blocks are written _back to the disk immediately are 
called caches. They require more disk IJO than nonwrite-through 
caches. 

The difference between these two approaches can be seen when a program 
writes a l-KB block full, one character at a time. UNIX will collect all the charac-
ters in the cache and write the block out once every 30 seconds, or whenever the 
block is removed from the cache. With a write-through cache, there is a disk ac-
cess for every character written. Of course, most programs do internal buffering, 
so they normally write not a character, but a line or a larger unit on each write sys-
tem calL 

A consequence of this difference in caching strategy is that just removing a 
(floppy) disk from a UNIX system without doing a sync will almost always result 
in lost data, and frequently in a corrupted file system as well. With write-through 
caching no problem arises. These differing strategies were chosen because UNIX 
was developed in an environment in which all disks were disks and not 
removable, whereas the first Windows file system was inherited from MS-DOS, 
which started out in the floppy disk world. As hard disks became the norm, the 
UNIX approach, with its better efficiency (but worse reliability), became the 
nonn, and is also used now on Windows for hard disks. However, NTFS takes 
other measures Gournaling) to improve reliability, as discussed earlier. 
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Some operating systems integrate the buffer cache with the page cache. This 
is especially attractive when memory-mapped files are supported. If a me is map-
ped onto memory, then some of its pages may be in memory they were 
demand paged in. Such pages are hardly different from file blocks m the buffer 
cache. In this case, they can be treated the same way, with a single cache for both 
file blocks and pages. 

Block Read Ahead 

A second technique for improving perceived file system perfonnance is to try 
to get blocks into the cache before they are needed to increase the hit rate. In par-
ticular, many files are read sequentially_ When the file system is asked to produce 
block k in a file, it does that, but when it is finished, it makes a sneaky check in 
the cache to see if block k + 1 is already there. If it is not, it schedules read for 
block k + 1 in the hope that when it is needed, it will have already arrived in the 
cache. At the very least, it will be on the way. 

Of course, this read ahead strategy only works for files that are being read se-
quentially. If a file is being randomly accessed, read ahead does not help. In fact, 
it hurts by tyin" up disk bandwidth reading in useless blocks and removing poten-
tially useful from the cache (and possibly tying up more disk bandwidth 
writing them back to disk if they are dirty). To see whether read ahead is worth 
doing, the file system can keep track of the access patterns to each open file. For 
example, a bit associated with each file can keep track of whether the file is in 
"sequential access mode" or «random access mode." Initially, the file is given 
the benefit of the doubt and put in sequential access mode. However, whenever a 
seek is done, the bit is cleared. If sequential reads start happening again, the bit is 
set once again. In this way, the file system can make a reasonable guess about 
whether it should read ahead or not. If it gets it wrong once in a while, it is not a 
disaster, just a little bit of wasted disk bandwidth. 

Reducing Disk Ann Motion 

Caching and read ahead are not the only ways to increase file system per-
formance. Another important technique is to reduce the amount of disk arm 
motion by putting blocks that are likely to be accessed in sequence close to each 
other, preferably in the same cylinder. When an output file is written, the file sys-
tem has to allocate the blocks one at a time, on demand. If the free blocks are 
recorded in a bitmap, and the whole bitmap is in main memory, it is easy enough 
to choose a free block as close as possible to the previous block. With a free list, 
part of which is on disk, it is much harder to allocate blocks close together. 

However, even with a free list, some block clustering can be done. The trick 
is to keep track of disk storage not in blocks, but in groups of consecutive blocks. 
If all sectors consist of 512 bytes, the system could use I-KB blocks (2 sectors) 
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but allocate disk storage in units of 2 blocks (4 sectors). This is not the same as 
having a 2-KB disk blocks, since the cache would still use I-KB blocks and disk 
transfers would still be 1 KB, but reading a file sequentially on an otherwise idle 
syste.m would reduce the number of seeks by a factor of two, considerably 1m-
provmg performance. A variation on the same theme is to take account of rota-

positi.oning. :"hen allocating blocks, the system attempts to place consecu-
tIve blocks m a file m the same cylinder. 

perfonnance bottleneck in systems that use i-nodes Or anything like 
them IS that reading even a short file requires two disk accesses: one for the i-node 
and one for the block. The usual i-node placement is shown in Fig. 4-29(a). Here 
all the i-nodes are near the beginning of the disk, so the average distance between 
an i-node and its blocks will be about half the number of cylinders, requiring long 
seeks. . 

I-nodes are 
located near 
the start ... of the disk 

I 

(a) (b) 

Disk is divided into 
cylinder groups, each 
with its own J-nodes 

Figure 4-29. (a) I-nodes placed at the start of the disk. (b) Disk divided into 
cylinder groups, each with its own blocks and i-nodes. 

One easy perfonnance improvement is to put the i-nodes in the middle of the 
disk, rather than at the start, thus reducing the average seek between the i-node 
and the first block by a factor of two. Another idea, shown in Fig. 4-29(b), is to 
divide the disk into cylinder groups, each with its own i-nodes, blocks, and free 
list (McKusick et aI., 1984). When creating a new file, any i-node can be chosen, 
but an attempt is made to find a block in the same cylinder group as the i-node. If 
none is available, then a block in a nearby cylinder group is used. 

4.4.5 Defragrnenting Disks 

When the operating system is initially installed, the programs and files it 
needs are installed consecutively starting at the beginning of the disk, each one di-
rectly following the previous one. All free disk space is in a single contiguous unit 
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following the installed files. However, as time goes on, are created and re-
moved and typically the disk becomes badly fragmented, WIth files and holes all 
over the place. As a consequence, when a new file is created, the blocks used for 
it may be spread all over the disk, giving poor performance. 

The performance can be restored by moving files ar?und to make them 
tiguous and to put all (or at least most) of the free space In one or more large .con-
tiguous regions on the disk. Windows has a program, dejrag, that does precIsely 
this. Windows users should run it regularly. . 

Defra!ITIlentation works better on file systems that have a faIr amount of free 
space in contiguous region at the end of the partition. This space 
defragmentation program to select fragmente? near the start of .the partJtlOn 
and copy all their blocks to the free space. ThIs actIon frees up a contIguous block 
of space near the start of the partition into which the original or other files can .be 
placed contiguously. The process can then be repeated with the next chunk of dISk 
space, and so on. . . 

Some files cannot be moved, including the paging file, the hibernation file, 
and the journaling log, because the administration that would to .do 
this is more trouble than it is worth. In some systems, these are fixed-sIZe conug-
uous areas anyway, so they do not have to be defragmented. The one time when 
their lack of mobility is a problem is when they happen to be near the end of 
partition and the user wants to reduce the partition size. The only way to solve thIS 
problem is to remove them altogether, resize the partition, and then recreate them 
afterward. 

Linux file systems (especially ext2 and ext3) generally suffer less from 
defragmentation than Windows systems due to the way disk blocks are selected, 
so manual defragmentation is rarely required. 

4.5 EXAMPLE FILE SYSTEMS 
In the following sections we will discuss several example file systems, rang-

ina from quite simple to more sophisticated. Since modern UNIX file systems and 
Windows Vista's native file system are covered in the chapter on UNIX (Chap. 
10) and the chapter on Windows Vista (Chap. 11) we will not cover those systems 
here. We will, however, examine their predecessors below. 

4.5.1 CD·ROM File Systems 

As our first example of a file system, let us consider the file systems used on 
CD-ROMs. These systems are particularly simple because they were designed for 
write-once media. Among other things, for example, they have no provision for 
keeping track of free blocks because on a files cannot be freed added 
after the disk has been manufactured. Below we Win take a look at the mam 
ROM file system type and two extensions to it. 
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Some years after the CD-ROM made its debut, the CD-R (CD Recordable) 
was introduced. Unlike the CD-ROM, it is possible to add files after the initial 
burning, but these are simply appended to the end of the CD-R. Files are never 
removed (although the directory can be updated to hide existing files). As a 
consequence of this "append-only" file system, the fundamental properties are 
not altered. In particular, all the free space is in one contiguous chunk at the end 
of the CD. 

The ISO 9660 FIle System 

The most common standard for CD-ROM file systems was adopted as an 
International Standard in 1988 under the name ISO 9660. Virtually every CD-
ROM currently on the market is compatible with this standard, sometimes with 
the extensions to be discussed below. One of the goals of this standard was to 
make every CD-ROM readable on every computer, independent of the byte order-
ing used and independent of the operating system used. As a consequence, some 
limitations were placed on the file system to make it possible for the weakest op-
erating systems then in use (such as MS-DOS) to read it. 

CD-ROMs do not have concentric cylinders the way magnetic disks do. In-
stead there is a single continuous spiral containing the bits in a linear sequence 
(although seeks across the spiral are possible). The bits along the spiral are divid-
ed into logical blocks (also called logical sectors) of 2352 bytes. Some of these 
are for preambles, error correction, and other overhead. The payload portion of 
each logical block is 2048 bytes. When used for music, CDs have leadins, 
leadouts, and intertrack gaps, but these are not used for data CD-ROMs. Often 
the position of a block along the spiral is quoted in minutes and seconds. It can be 
converted to -a linear block number using the conversion factor of I sec :::::: 75 
blocks. 

ISO 9660 supports CD-ROM sets with as many as 216 - 1 CDs in the set The 
individual CD-ROMs may also be partitioned into logical volumes (partitions). 
However, below we will concentrate on ISO 9660 for a single unpartitioned CD-
ROM. 

Every CD-ROM begins with 16 blocks whose function is not defined by the 
ISO 9660 standard. A CD-ROM manufacturer could use this area for providing a 
bootstrap program to allow the computer to be booted from the CD-ROM, or for 
some other purpose. Next comes one block containing the primary volume 
descriptor, which contains some general information about the. CD-ROM. This 
information includes the system identifier (32 bytes), volume "Identifier (32 bytes), 
publisher identifier (128 bytes), and data preparer identifier (128 bytes). The 
manufacturer can fill in these fields in any desired way, except that only upper 
case letters, digits, and a very small number of punctuation marks may be used to 
ensure cross-platform compatibility. 
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. descri tor also contains the names of three which 
copyright notice, and bibliographic. 

co . . certain key numbers are also present, mcludmg t e oglCa 
tJvely. In 2048 but 4096, 8192, and larger powers of two are allowed 
block (norma Y , f blocks on the CD-ROM, and the creatIon and 
in cases), Finally, the primary volume descriptor also 
expIratiOn dates of e '. tellin where to find it on the 
contains a directory entry fa: the root)d"FectOry;h"S the rest of the fIle 
CD-ROM (i.e., which block It starts at. rom 1 , 

system can be located. . CD ROM may contain a sup-
In addition to the primary volume descnptor, - . . b t 

I descn'ptor It contains similar lllformatlon to the pnmary, u plementary vo ume . 
that will not co?cern us other directories for that matter, consists of a vari-

The root an which contains a bit marking it as the final one. 
able number of the last of 1 variable length. Each directory entry 
The directory entnes themselves a;e e in ASCII and others of which are 
consis:s !2 are encoded twice, once in little-
numenca Ie SIn· . 1 ) and once in big-endian format 
endian format (used on pentIlum) number uses 4 bytes and a 32-bit 
(used on SPARes, for exarnp e . 
number uses 8 bytes. . h' e' s 

Th f th' s redundant coding was necessary to aVOId ,urtmg 
e use old If the tandard had dIctated httle end-

second-c ass
f 

Cl C,zDensROM can thus be quantified and measured exactly III 
tronal content o.a -
k'lobytes!hour of wasted space. . . .' 4 30 S' 

1 f ISO 9660 directory entry IS Illustrated m FIg. - . mce The format 0 an . I1i h 1 g the 
d' t entries have variable-lengths, the firstfleld IS a byte te ng ow 

This byte is defined to have the high-order bit on the left to avOl any 
ambiguity. 

Padding 

Bytes M 8 j Sys .... 
, .... 

Directory entry length 

Figure 4-30. The ISO 9660 directory enty. 

Directory entries may optionally have extended. attributes, 
used, the second byte tells how long the extended attnbutes are. 

If this feature is 
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Next comes the starring block of the file itself. Files are stored as contiguous 
runs of blocks, so a file's location is completely specified by the starting block 
and the size, which is contained in the next field. 

The date and time that the CD-ROM was recorded is stored in the next field, 
with separate bytes for the year, month, day, hour, minute, second, and time zone. 
Years begin to count at 1900, which means that CD-ROMs will suffer from a 
Y2156 problem because the year following 2155 will be 1900. This problem 
could have been delayed by defining the origin of time to be 1988 (the year the 
standard was adopted). Had that been done, the problem would have been post-
poned until 2244. Every 88 extra years helps. 

The Flags field contains a few miscellaneous bits, including one to hide the 
entry in listings (a feature copied from MS-DOS), one to distinguish an entry that 
is a file from an entry that is a directory, one to enable the use of the extended at-
tributes, and one to mark the last entry in a directory. A few other bits are also 
present in this field but they will not concern uS here. The next field deals with 
interleaving pieces of files in a way that is not used in the simplest version of ISO 
9660, so we will not consider it further. 

The next field tells which CD-ROM the file is located on. It is pennitted that 
a directory entry on one CD-ROM refers to a file located on another CD-ROM in 
the set. In this way it is possible to build a master directory on the first 
that lists all the files on all the CD-ROMs in the complete set. • 

The field marked L in Fig. 4-30 gives the size of the file name in bytes. It is 
followed by the file name itself. A file name consists of a base name, a dot, an 
extension, a semicolon, and a binary version number (1 or 2 bytes). The base 
name and extension may use upper case letters, the digits 0-9, and the underscore 
character. All other characters are forbidden to make sure that every computer can 
handle every file name. The base name can be up to eight characters; the exten-
sion can be up to three characters. These choices were dictated by the need to be 
MS-DOS compatible. A file name may be present in a directory multiple times, as 
long as each one has a different version number. 

The last two fields are not always present. The Padding field is used to force 
every directory entry to be an even number of bytes, to align the numeric fields of 
subsequent entries on 2-byte boundaries. If padding is needed, a 0 byte is used. 
Finally, we have the System use field. Its function and size are undefined, except 
that it must be an even number of bytes. Different systems use it in different ways. 
The Macintosh keeps Finder flags here, for example. 

Entries within a directory are listed in alphabetical order except for the first 
two entries. The first entry is for the directory itself. The second one is for its par-
ent. In this respect, these entries are similar to the UNIX. and .. directory entries. 
The files themselves need not be in directory order. 

There is no explicit limit to the number of entries in a directory. However, 
there is a limit to the depth of nesting. The maximum depth of directory nesting is 
eight. This limit was arbitrarily set to make some implementations simpler. 
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ISO 9660 defines what are called three levels. Levell is the most 
and specifies that file names are limited to 8 + 3 characters we have 
and also requires all files to be contiguous as we have Furthermo:e, It 
specifies that directory names be limited to eight characters wIth no extensiOns. 
Use of this level maximizes the chances that a CD-ROM can be read on every 
computer. . . 

Level 2 relaxes the length restriction. It allows files and dlrectones to have 
names of up to 31 characters, but still from the same set of characters. 

Level 3 uses the same name limits as level 2, but partially relaxes the assump-
tion that files have to be contiguous. With this level, a file may consist of several 
sectlQTIs (extents), each of which is a contiguous run of blocks. The same run may 
occur mUltiple times in a file and may also occur in two or more files. 
chunks of data are repeated in several files, level 3 provides some space optimIZa-
tion by not requiring the data to be present multiple times. 

Rock Ridge Extensions 

As we have seen, ISO 9660 is highly restrictive in several ways. Shortly after 
it came out, people in the UNIX community began working on an extensio? to 
make it possible to represent UNIX file systems on a CD-ROM. These extenSIOns 
were named Rock Ridge, after a town in the Gene Wilder movie Blazing Saddles, 
probably because one of the committee members liked the film. . 

The extensions use the System use field in order to make Rock RIdge CD-
ROMs readable on any computer. An the other fields retain their normal ISO 
9660 meaning. Any system not aware of the Rock Ridge extensions just ignores 
them and sees a normal CD-ROM. 

The extensions are divided up into the following fields: 

1. PX - POSIX attributes. 

2. PN - Major and minor device numbers. 

3. SL - SymboliC link. 

4. NM - Alternative name. 

5. CL - Child location. 

6. PL - Parent location. 

7. RE - Relocation. 

8. TF - Time stamps. 

The PX field contains the standard UNIX rwxrwxrwx permission bits for the 
owner, group, and others. It also contains the other bits contained in the mode 
word, such as the SETUID and SETGID bits, and so on. 
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To allow raw devices to be represented on a CD-ROM, the PN field is pres-
ent. It contains the major and minor device numbers associated with the file. In 
this way, the contents of the Idev directory can be written to a CDHROM and later 
reconstructed correctly on the target system. 

The SL field is for symbolic links. It allows a file on one file system to refer 
to a file on a different file system. 

Probably the most important field is NM. It allows a second name to be asso-
ciated with the file. This name is not subject to the character set or length restric-
tions of ISO 9660, making it possible to express arbitrary UNIX file names on a 
CD-ROM. 

The next three fields are used together to' get around the ISO 9660 limit of di-
rectories that may only be nested eight deep. Using them it is possible to specify 
that a directory is to be relocated, and to tell where it goes in the hierarchy. It is 
effectively a way to work around the artificial depth limit. 

Finally, the TF field contains the three timestamps included in each UNIX i-
node, namely the time the file was created, the time it was last modified, and the 
time it was last accessed. Together, these extensions make it possible to copy a 
UN1X file system to a CD-ROM and then restore it correctly to a different system. 

Joliet Extensions 

The UNIX community was not the only group that wanted a way to extend 
ISO 9660. Microsoft also found it too restrictive (although it was Microsoft's 
own MS-DOS that caused most of the restrictions in the first place). Therefore 
Microsoft invented some extensions that were called Joliet. They were designed 
to allow Windows file systems to be copied to CD-ROM and then restored, in pre-
cisely the same way that Rock Ridge was designed for UNIX. Virtually aU pro-
grams that run under Windows and use CD-ROMs support Joliet, including pro-
grams that burn CD-recordables. Usually, these programs offer a choice between 
the various ISO 9660 levels and Joliet. 

The major extensions provided by Joliet are: 

1. Long file names. 

2. Unicode character set. 

3. Directory nesting deeper than eight levels. 

4. Directory names with extensions 

The first extension allows file names up to 64 characters. -1be second extension 
enables the use of the Unicode character set for file names. This extension is im-
portant for software intended for use in countries that do not use the Latin alpha-
bet, such as Japan, Israel, and Greece. Since Unicode characters are 2 bytes, the 
maximum file name in Joliet occupies 128 bytes. 
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Like Rock Ridge, the limitation on directory nesting is removed by Joliet. Di-
rectories can be nested as deeply as needed. Finally, directory names can 
extensions. It is not clear why this extension was included, since Windows dIrec-
tories virtually never use extensions, but maybe some day they wilL 

4.5.2 The MS-DOS File System 

The MS-DOS file system is the one the first IBM PCs came with. It was the 
main file system up through Windows 98 and Windows ME. It is. supported 
on Windows 2000, Windows XP, and Windows Vista, although It IS no longer 
standard on new PCs now except for floppy disks. However, it and an 
of it (FAT-32) have become widely used for many embedded systems. Most ?lgI-
tal cameras use it. Many MP3 players use it exclusively. The popular Apple IPod 
uses it as the default file system, although knowledgeable hackers can reformat 
the iPod and install a different file system. Thus the number of electronic devices 
usina the MS-DOS file system is vastly larger now than at any time in the past, and 

much larger than the number using the more modern NTFS file system. 
For that reason alone, it is worth looking at in some detail 

To read a file, an MS-DOS program must first make an open system call to get 
a handle for it. The open system call specifies a path, which may be either abso-
lute or relative to the current working directory. The path is looked up component 
by component until the final directory is located and read into memory. It is then 
searched for the file to be opened. 

Although MS-DOS directories are variable sized, they use a fixed-size 32-byte 
directory entry. The format of an MS-DOS directory entry is shown in Fig. 4-31. It 
contains the file name, attributes, creation date and time, starting block, and exact 
file size. File names shorter than 8 + 3 characters are left justified and padded 
with spaces on the right, in each field separately. The is ?ew and 
contains bits to indicate that a file is read-only, needs to be archived, IS hIdden, or 
is a system file. Read-only files cannot be written. This is to protect 
accidental damaae. The archived bit has no actual operating system functIOn (I.e., 
MS-DOS does n;t examine or set it). The intention is to allow user-level archive 
programs to clear it upon archiving a file and to have other set. it whe? 
modifying a file. In this way, a backup program can just exanune thIS attnbute bIt 
on every file to see which files to back up. The hidden bit can. be set a 
file from appearing in directory listings. Its main use is to aVOId confusmg nOVIce 
users with files they might not understand. Finally. the system bit also hides files. 
In addition, system files cannot accidentally be deleted using the del command. 
The main components of MS-DOS have this bit set. 

The directory entry also contains the date and time the file was created or last 
modified. The time is aCCurate only to ±2 sec because it is stored in a 2-byte field, 
which can store only 65,536 unique values (a day contains 86,400 seconds). The 
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Figure 4·31. The MS·DOS directory entry. 

block 
number 
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time field is seconds (5 bits), minutes (6 bits), and hours (5 bits). 
The date counts In days usmg three subfields: day (5 bits), month (4 bits), and 
year-:-1980 (7 bits) .. With a number for the year and time beginning in 1980, 
the expressIble year IS 2107. Thus MS-DOS has a built-in Y2108 problem. 
To aVOId ca!astrophe, MS-DOS users should begin with Y2108 compliance as 
early as possIble. If MS-DOS had used the combined date and time fields as a 32-
bit seconds counter, it could have represented every second exactly and delayed 
the catastrophe until 2116. 

MS-DOS stores the file size as a 32-bit number, so in theory files can be as 
large as 4 GE. However, other limits (described below) restrict the maximum file 
size to 2 GB or less. A surprisingly large part of the entry (10 bytes) is unused. 

keeps track o.f file blocks via a file allocation table in main memory. 
The dIrectory entry contams the number of the first file block. This number is 
used as an index into a 64K entry FAT in main memory. By following the chain, 
all the blocks can be found. The operation of the FAT is illustrated in Fig. 4--12. 

FAT file system comes in three versions: FAT-12, FAT-16, and FAT-32, 
dependmg on how many bits a disk address contains. Actually, FAT-32 is some-
thing of a misnomer, since only the low-order 28 bits of the disk addresses are 
used. It should have been called FAT-2S, but powers of two sound so much 
neater. 

all FATs, the disk block can be set to some multiple of 512 bytes (possib-
ly dIfferent for each partition), with the set of allowed block sizes (called cluster 
sizes by Microsoft) being different for each variant. The first version of MS-DOS 
used FAT-12 with 512-byte blocks, giving a maximum partition size of212 x 512 
bytes (actually only 4086 x 512 bytes because 10 of the disk addresses were used 
as markers, such as end of file, bad block, etc.). With these parameters, the 
maXImum disk partition size was about 2 ME and the size of the FAT table in 
memory was 4096 entries of 2 bytes each. Using a 12-bit table entry would have 
been too slow. 

This system worked well for floppy disks, but when hard disks came out, it 
b.ecarne a problem. Microsoft solved the problem by allowing additional block 
SIzes of I KB, 2 KB, and 4 KB. This change preserved the structure and size of 
the FAT-12 table, but allowed disk partitions of up to 16 MB. 
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Since MS-DOS supported four disk partitions per disk d:ive, the FAT-12 
file system worked up to 64-MB disks. Beyond that, had to gn'.e: What 
happened was the introduction of FAT-16, with 16-blt dlsk pOlflters. 
block sizes of 8 KB, 16 KB, and 32 KB were permitted. (32,768 1S the largest 
power of two that can be represented in 16 bits.) The FAT-16 now 
128 KB of main memory all the time, but with the larger memones by then avrul-
able, it was widely used and rapidly replaced the FAT-12 file The largest 
disk partition that can be supported by FAT·16 is 2 GB (64K entnes of 32 KB 
each) and the largest disk, 8 GB, namely four partItIons of 2 GB .. . 

For business letters, this limit is not a problem, for dIgItal vIdeo 
using the DV standard, a 2-GB file holds just over 9 mmutes of.v.ldeo. As a con-
sequence of the fact that a PC disk can support ?nly four partItiOnS, the largest 
video that can be stored on a disk is about 38 mmutes, no matter ?OW 
disk is. This limit also means that the largest video that can be edIted on line IS 
less than 19 minutes, since both input and output files are needed. . 

Starting with the second release of Windows 95, FAT-32 file system, "":lth 
its 28-bit disk addresses, was introduced and the verSlOn of MS-DOS. 
Windows 95 was adapted to support FAT-32. In this system, partltlons could 
theoretically be 228 x 2" bytes, but they are actually limited to 2 TB (2048 GB) 
because internally the system keeps track of partition sizes in .5,12-b7te sectors 
using a 32-bit number, and 29 x 232 is 2!B. The partruon SIze for var-
ious block sizes and all three FAT types IS shown 10 FIg. 4-32. 

Block size FAT-12 FAT·i6 FAT·32 

0.5KB 2MB 
1 KB 4MB 
2KB 8MB 128 MB 
4KB 16 MB 256 MB 1 TB 

8KB 512 MB 2TB 

16 KB 1024 MB 2TB 

32 KB 2048 MB 2TB 

Figure 4-32, Maximum partition size for different block sizes. The empty boxes 
represent forbidden combinations. 

In addition to supporting larger disks, the FAT-32 file system has. two 
advantages over FAT-16. First, an 8-GB disk using FAT-32 can be a partI-
tion. Using FAT-16 it has to be four partitions, which appears to the Wmdo,ws 
user as the C:, D:, E:, and F: logical disk drives. It is up to the user to decIde 
which file to place on which drive and keep track of what is . . 

The other advantage ofFAT-32 over FAT-I 6 is that for a gIven SIze 
tition, a smaller block size can be used, For example, for a 2-GB disk partlllOn, 
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FAT-16 must use 32-KB blocks; otherwise with only 64K available disk ad-
dresses, it cannot cover the whole partition. In contrast, FAT-32 can use, for ex-
ample, blocks for a 2-GB disk partition. The advantage of the smaller block 
size is that most files are much shorter than 32 KB. If the block size is 32 KB, a 
file of 10 bytes ties up 32 KB of disk space. If the average file is, say, 8 KB, then 
with a 32-KB block, % of the disk will be wasted, not a terribly efficient way to 
use the disk. With an 8-KB file and a block, there is no disk wastage, but 
the price paid is more RAM eaten up by the FAT. With a 4·KB block and a 2.GB 
disk partition, there are 5I2K blocks, so the FAT must have SI2K entries in mem-
ory (occupying 2 MB of RAM). 

MS-DOS uses the FAT to keep track of free disk blocks. Any block that is not 
currently allocated is marked with a special code. When needs a new 
disk block, it searches the FAT for an entry containing this code. Thus no bitmap 
or free list is required. 

4.5.3 The UNIX V7 File System 

Even early versions of UNIX had a fairly sophisticated multiuser file system 
since it was derived from MULTICS. Below we will discuss the V7 file system, 
the one for the PDP-ll that made UNIX famous. We will examine -a modem 
UNIX file system in the context of Linux in Chap. 10. 

The file system is in the fonn of a tree starting at the root directory, with the 
addition of links, fanning a directed acyclic graph. File names are up to 14 char-
acters and can contain any ASCII characters except / (because that is the separator 
between components in a path) and NUL (because that is used to pad out names 
shorter than 14 characters). NUL has the numerical value ofO. 

A UNIX directory entry contains one entry for each file in that directory, Each 
entry is extremely simple because UNIX uses the i-node scheme illustrated in 
Fig. 4-13. A directory entry contains only two fields: the file name (14 bytes) and 
the number of the i-node for that file (2 bytes), as shown in Fig. 4-33. These pa-
rameters limit the number of files per file system to 64K. 

Like the i-node of Fig. 4-13, the UNIX i-nodes contains some attributes. The 
attributes contain the file size, three times (creation, last access, and last modifica-
tion), owner, group, protection information, and a count of the number of direc-
tory entries that point to the i-node. The latter field is needed due to links. When-
ever a new link is made to an i-node, the count in the i-node is increased. When a 
link is removed, the count is decremented. When it gets to 0, the i-node is re-
claimed and the disk blocks are put back in the free list. 

Keeping track of disk blocks is done using a generalization of Fig. 4-13 in 
order to handle very large files. The first 10 disk addresses are stored in the i-node 
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Figure A UNIX V7 directory entry. 

information is right in the i-node, which 
itself, so for smal.l files, the neceSS:en the file is opened. For somewhat larg-
is fetched from dISk to roam d' th address of a disk block called a 

f h dd esses in the I-no e IS e . . er files, one 0 tea r . dd','lonal disk addresses If thlS still . ., bi k This block contams a 1 . smgle mdlrect OC. . h' d called a double indirect block, con-
is .not enough, another list of single indirect blocks. of 
tams the address of a o. f. hundred data blocks. If even this IS not 
these single indirect blocks pomts to a1 sed The complete picture is given in 
enough, a triple indirect block can a so e u . 
Fig. 4-34. 

I-node 

Attributes Single 
indirect 
block. 

Double 
indirect 
block 

Triple 
indirect 
block 

Figure 4-34. A UNIX i-node. 

Addresses of 
data blocks 

st take the file name supplied and 
When a file is opened, the path name /usr/ast/mbox is looked 

locate its disk blocks. Let us conSI er ow 

SEC. 4.5 EXAMPLE FILE SYSTEMS 321 

up. We will use UNIX as an example, but the algorithm is basically the same for 
all hierarchical directory systems. First the file system locates the root directory. 
In UNIX its i-node is located at a fixed place on the disk. From this i-node, it 
locates the root directory, which can be anywhere on the disk, but say block L 

Then it reads the root directory and looks up the first component of the path, 
usr, in the root directory to find the i-node number of the file Iusr. Locating an i-
node from its number is straightforward, since each one has a fixed location on 
the disk. From this i-node, the system locates the directory for lusr and looks up 
the next component, ast, in it. When it has found the entry for ast, it has the i-node 
for the directory lusrlast. From this i-node it can find the directory itself and look 
up mbox. The i-node for this file is then read'into memory and kept there until the 
file is closed. The lookup process is illustrated in Fig. 4-35. 

Root directory 

1 

1 .. 
4 bin 

7 dev 

14 lib 

9 elc 

6 us< 
8 Imp 

looking up 
usr yields 
j·node 6 

I-node 6 
is for lusr 

Mode 
size 

times 

132 

I-node 6 
says that 
lusr is in 
block 132 

Block 132 
is lUST 

directory 

6 . 
1 .. 

19 dick 

30 erik 

51 jim 

26 asl 

45 bal 

Iusr/ast 
is i-node 

26 

j-node 26 
is for 

!usr/ast 

Mode 
size 

times 

406 

l·node26 
says that 

lusr/ast is in 
block 406 

Figure 4-35. The steps in looking up lusrlastlmbox. 

Block 406 
is/usr/ast 
directory 

26 

6 . . 
64 grants 

92 books 

60 mbox 

81 minix 

17 sec 

lusr/ast/mbox 
is i-node 

60 

Relative path names are looked up the same way as absolute ones, only start-
ing from the working directory instead of starting from the root directory. Every 
directory has entries for. and.. which are put there when the directory is 
The entry _ has the i-node number for the current directory, and the entry for .. 
has the i-node number for the parent directory. Thus, a procedure looking up 
../dick/prog.c simply looks up .. in the working directory, finds'the i-node number 
for the parent directory, and searches that directory for dick. No special mechan-
ism is needed to handle these names. As far as the directory system is concerned, 
they are just ordinary ASCII strings, just the same as any other names. The only 
bit of trickery here is that _. in the root directory points to itself. 
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4.6 RESEARCH ON FILE SYSTEMS 

File systems have always attracted more research than other parts of the oper-
ating system and that is still the case. While standard file systems are fairly well 
understood, there is still quite a bit of research going on about optimizing buffer 
cache management (Burnett et aI., 2002; Ding et a1., 2007; Gnaidy et aI., 2004; 
Kroeger and Long, 2001; Pai et aL, 2000; and Zhou et al., 2001). Work is going 
on about new kinds of file systems, such as user-level file systems (Mazieres, 
2001), flash file systems (Gal et a!., 2005), joumaling file systems (Prabhakaran et 
aI., 2005; and Stein et al., 2001), versioning file systems (Cornell et a!., 2004), 
peer-ta-peer file systems (Muthitacharoen et al., 2002) and others. The Google 
file system is also unusual due to its great fault tolerance (Ghemawat et aI., 2003). 
Different ways of finding things in file systems are also of interest (Padioleau and 
Ridoux,2003). 

Another area that has been getting attention is provenance-keeping track of 
the history of the data, including where they came from, who owns them, and how 
they has been transformed (Muniswanmy-Reddy et a!., 2006; and Shah et aI., 
2007). This information can be used in a variety of ways. Making backups is still 
getting some attention, too (Cox et aI., 2002; and Rycroft, 2006), as is the related 
topic of recovery (Keeton et a1., 2006). Related to backups is keeping data around 
and usable for decades (Baker et al., 2006; Maniatis et aI., 2003). Reliability and 
security are also far from solved problems (Greenan and Miller, 2006; Wires and 
Feeley, 2007; Wright et aI., 2007; and Yang et al., 2006). And finally per-
formance has always been a research topic and still is (Caudill and Gavrikovska, 
2006; Chiang and Huang, 2007; Srein, 2006; Wang et aI., 2006a; and Zhang and 
Ghose, 2007). 

4.7 SUMMARY 

When seen from the outside, a file system is a collection of files and direc-
tories, plus operations on them. Files can be read and written, directories can be 
created and destroyed, and files can be moved from directory to directory. Most 
modem file systems support a hierarchical directory system in which directories 
may have subdirectories and these may have subsubdirectories ad infinitum. 

When seen from the inside, a file system looks quite different. The file system 
designers have to be concerned with how storage is allocated, and how the system 
keeps track of which block goes with which file. Possibilities include contiguous 
files, linked lists, file allocation tables, and i-nodes. Different systems have dif-
ferent directory structures. Attributes can go in the directories or somewhere else 

i-??de? Disk space can be managed using free lists of bitmaps. File sys-
elmbillty 1$ enhanced by making incremental dumps and by hay' 

gram that can repair sick file systems. File system performance is 
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can .be enhanced in several ways, including caching, read ahead, and carefully 

the blocks of a file. close to each other. Log-structured file systems also 
Improve by domg writes in large units. 
. Examples of fIle systems include ISO 9660, MS-DOS, and UNIX. These differ 

many ways, mcludmg how they keep track of which blocks go with which file 
rectory structure, and management of free disk space. ' 

PROBLEMS 

1. Give different path names for the file /etc/passwd. Hint: Think about the d;rec-
tory entnes "." and " .. ". , 

2. In Windows, when a user double clicks on a file listed by Windows Expl gram 's d' h fi orer, a pro-
syst 1 run1daknn glYen

h
. t at lie as a parameter. List two different ways the operating 

em cou ow w leh program to run. 

3. In early UNIX systems, executable files (a.out files) began with a very specific ma ic 
number, not One chosen at random. These files began with a header followed b 

segments. Why do you think a very specific number chosen 

th
Cll c: e whereas other file types had a more-or-less random magic number as e 11rst wor . • 

4. In Fig. 4-4, one of the attributes is the record length. Why does the 0 . 
ever care about this? peranng system 

S. Systems that support sequential files always have an operation to rewind fl 
systems that support random access files need this too? I es. Do 

6. In SOme systems it is possible to map part of a file into memory What tr" 
must such syste' ? H . . . res lctlons ms Impose. ow IS thIS partial mapping implemented? 

7. system supports a single directory but allows that directory to 
ar I?any files WIth arbitrarily long file names. Can somethin a ._ 

matmg a hIerarchical file system be simulated? How? g pproxl 

8. In UNIX Windows: access is done by having a special system call that 
moves the posinon pomter associated with a file to a given byte in the file. 
Propose an alternatlve way to do random access without having this system call. 

9. Consider the directory tree of Fig. 4-8. If /usrljim is the working directory what is the 
absolute path name for the file whose relative path name is ..!ast/x? ' 

10. ;ontiguous of fJles to disk fragmentation, as mentioned in the text 
. ecause some space III the last diSk block will be wasted in filei whose leno-th is not 
Illtegral number of.blocks. this. internal fragmentation or external fragmentation? 
Make an analogy wlth somethmg dlscussed in the previous chaplCr. 

11. In light of the answer to the . ' 
any sense? prevlOUS 9uestiQn, comnacllna l'he d' ,/, 

f 5 II 1SK eVer make J 
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12. Some digital consumer devices need to store data, for example as files. Name a mod-
ern device that requires file storage and for which contiguous allocation would be a 
fine idea. 

13. How does MS-DOS implement random access to files? 

14. Consider the i-node shown in Fig. 4-13. If it contains 10 direct addresses of 4 bytes 
each and all disk blocks are 1024 KB, what is the largest possible file? 

15. It has been suggested that efficiency could be improved and disk space saved by stor-
ing the data of a short file within the i-node. For the i-node of Fig. 4-13, how many 
bytes of data could be stored inside the i-node? 

16. Name one advantage of hard links over symbolic links and one advantage of symbolic 
links over hard links. 

17. Free disk space can be kept track of using a free list or a bitmap. Disk addresses re-
quire D bits. For a disk with B blocks, F of which are free. state the condition under 
which the free list uses less space than the bitmap. For D having the value 16 bits, 
express your answer as a percentage of the disk space that must be free. 

IS. What would happen if the bitmap or free list containing the information about free 
disk blocks was completely lost due to a crash? Is there any way to recover from this 
disaster, or is it bye-bye disk? Discuss your answers for UNIX and the FAT-16 file 
system separately. 

19. Oliver Owl's night job at the university computing center is to change the tapes used 
for overnight data backups. While waiting for each tape to complete, he works on 
writing his thesis that proves Shakespeare's plays were written by extraterrestrial visi-
tors. His text processor runs on the system being backed up since that is the only one 
they have. Is there a problem with this arrangement? 

20. We discussed making incremental dumps in some detail in the text. In Windows it is 
easy to tell when to dump a file because every me has an archive bit. This bit is miss-
ing in UNIX. How do UNIX backup programs know which mes to dump? 

21. Suppose that file 21 in Fig. 4-25 was not modified since the last dump. In what way 
would the four bitmaps of Fig. 4-26 be different? 

22. It has been suggested that the first part of each UNIX file be kept in the same disk 
block as its i-node. What good would this do? 

23. Consider Fig.4-27. Is it possible that for some particular block number the counters 
in both lists have the value 2? How should this problem be corrected? 

24. The performance of a file system depends upon the cache hit rate (fraction of blocks 
found in the cache). If it takes 1 msec to satisfy a request from the cache, but 40 msec 
to satisfy a request if a disk read is needed, give a formula for the mean time required 
to satisfy a request if the hit rate is h. Plot this function for values of h varying from 0 
to 1.0. 

25. Consider the idea behind Fig.4¥21, but now for a disk with a mean seek time of 8 
msec, a rotational rpm, and 262,144 bytes per track. What are the data 
rates for block sizes ofl KB, 2 KB, and 4 KB, respectively? 
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26. A certain file system uses disk blocks. The median file size is I KB. If all files 
were exactly 1 KB, fraction of the disk space would be wasted? Do YOll think 
the for a real fde system will be higher than this number or lower than it? 
Explam your answer. . 

27. The MS-DOS FAT-16 table contains 64K entries. Suppose that one of the bits had been 

28. 

29. 

needed for some other: purpose and that the table contained exactly 32 768 " 
stead W·th th h ' entries . . :. no 0 er c anges, what would the largest MS-DOS file have been under 
thIS condltlOn? 

Files in have t? compe.te for space in the FAT-16 table in memory. If one 
file ,uses k enmes, that 1S k entrIes that are not available to any other file what con-
stramt does this place on the total length of all files combined? ' 

A system has !-KB and 4-byte disk addresses, What is the maximum 
file size If I-nodes contam 10 dIrect entries, and one sino-Ie, double and triple i d· t 
entry each? b , n uec 

30. How many disk operations are needed to fetch the i-node for the file 
Assume that the i-node for the root directory is in 

nothmg else along the path is in memory. Also assume that all directories 
fit 10 one disk block. 

31. I? UNIX systems, the i-nodes are kept at the start of the disk, An alternative de-
Sign IS to allocate an i-node when a file is created and put the i-node at the start of the 
first block of the file. Discuss the pros and cons of this alternative. • 

32. Write a that reverses the bytes of a file, so that the last byte is now first and 
the first byte last. It must work with an arbitrarily lono file, but try to make 't 
reasonably effIcient. ., I 

33. a starts at a given directory and descends the file tree from that 
P?tnt recordlOg the SIzes of all the files it finds. When it is all done it should . t 
hlsto?ram of the file sizes using a bin width specified as a paramete; (e 0-

file Sizes of 0 to 1023 go in one bin, 1024 to 2047 go in the next bin, etc.r' , 

34. a that all directories in a UNIX file system and finds and locates 
aU I-nodes wIth a ha:d hnk count of two or more. For each such file, it lists tooether 
all file names that pomt to the file. b 

35. Write new version of the UNIX is program. This version takes as an argument one or 
more dIrectory names and for each directory lists aU the files in that directory one line 
per file. field should be formatted in a reasonable way given its type. List only 
the first diSk address, if any. 

,.:_,...,";;2; 
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5 
INPUT/OUTPUT 

In addition to providing abstractions such as processes (and threads), address 
spaces, and files, an operating system also controls all the computer's I/O 
(Input/Output) devices. It must issue commands to the devices, catch interrupts, 
and handle errors. It should also provide an interface between the devices and the 
rest of the system that is simple and easy to use. To the extent possible, the inter-
face should be the same for all devices (device independence). The JiO code rep-
resents a significant fraction of the total operating system. How the operating sys-
tem manages I/O is the subject of this chapter. 

This chapter is organized as follows. First we will look at some of the princi-
ples of I/O hardware, and then we will look at I/O software in general. I/O soft-
ware can be structured in layers, with each layer having a well-defined task We 
will look at these layers to see what they do and how they fit together. 

Following that introduction, we will look at several I/O devices in detail: 
disks, clocks, keyboards, and displays. For each device we win look at its hard-
ware and software. Finally, we will consider power management. 

5.1 PRINCIPLES OF I/O HARDWARE 

Different people look at I/O hardware in different ways. Electrical engineers 
look at it in terms of chips, wires, power supplies, motors, and all the other physi-
cal components that make up the hardware. Programmers look at the interface 
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presented to the software-the commands the hardware accepts, the functions it 
carries out, and the errors that cao be reported back. In this book we are con-
cerned with programming I/O devices, not designing, building, or maintaining 
them, so our interest will be restricted to how the hardware is programmed, not 
how it works inside. Nevertheless, the programming of many I/O devices is often 
intimately connected with their internal operation. In the next three sections we 
will provide a little general background on lIO hardware as it relates to pro-
gramming. It may be regarded as a review and expansion of the introductory 
material in Sec. 1.4. 

5.1.1 I/O Devices 

110 devices can be roughly divided into two categories: block devices and 
character devices. A block device is one that stores information in fixed-size 
blocks, each one with its own address. Common block sizes range from 512 bytes 
to 32,768 bytes. All transfers are in units of one or more entire (consecutive) 
blocks. The essential property of a block device is that it is possible to read or 
write each block independently of all the other ones. Hard disks, CD-ROMs, and 
USB sticks are common block devices. 

If you look closely, the boundary between devices that are block addressable 
and those that are not is not well defined. Everyone agrees ,that a disk is a block 
addressable device because no matter where the arm currently is, it is always pos-
sible to seek to another cylinder and then wait for the required block to rotate 
under the head. Now consider a tape drive used for making disk backups. Tapes 
contain a sequence of blocks. If the tape drive is given a command to read block 
N, it can always rewind the tape and go forward until it comes to block N. This 
operation is analogous to a disk doing a seek, except that it takes much longer. 
Also, it mayor may not be possible to rewrite one block in the middle of a tape. 
Even if it were possible to use tapes as random access block devices, that is 
stretching the point somewhat: they are nonnally not used that way. 

The other type of I/O device is the character device. A character device de-
livers or accepts a stream of characters, without regard to any block structure. It 
is not addressable and does not have any seek operation. Printers, network inter-
faces, mice (for pointing), rats (for psychology lab experiments), and most other 
devices that are not disk-like can be seen as character devices. 

This classification scheme is not perfect. Some devices just do not fit in. 
Clocks, for example, are not block addressable. Nor do they generate or accept 
character streams. All they do is cause interrupts at wen-defined intervals. Mem-
ory-mapped screens do not fit the model well either. Still, the model of block and 
character devices is general enough that it can be used as a basis for making some 
of the operating system software dealing with I/O device independent. The file 
system, for example, deals just with abstract block devices and leaves the device-
dependent part to lower-level software. 
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h 
11°f devices cover a huge range in speeds, which puts considerable pressure on 

t e so tware to perfonn wen 0 d .. ver many or ers of magmtude 10 data rates. Fig. 5-

f
l shows tJ:e data rates of some common devices. Most of these devices tend to O'et 
aster as tIme goes on. b 

Device Data rate 
Keyboard 10 bytes/sec 
Mouse 100 bytes/sec 
56K modem 7 KB/sec 
Scanner 400 KB/sec 
Digital camcorder 3.5 MB/sec 
802.11g Wtre!ess 6.75 MB/sec 
52x CD-ROM 7.8 MB/sec 
Fast Ethernet 12.5 MB/sec 
Compact flash card 40 MB/sec 
FireWire (IEEE 1394) 50 MB/sec 
USB 2.0 60 MB/sec 
SONET OC-12 network 78 MB/sec 
SCSI Ultra 2 disk 80 MB/sec 
Gigabit Ethernet 125 MB/sec 
SATA disk drive 300 MB/sec 
U!trium tape 320 MB/sec 
PCf bus 528 MB/sec 

Figure 5·1. Some typical device, network, and bus data rates. 

5.1.2 Device Controllers 

I/O uni.ts typically consist of a mechanical component and an electronic com-
It IS possible to the two portions to provide a more modular 

nd general desIgn. The electromc component is called the device controller or 
adapter. On it often takes the fonn of a chip on the ar-
entboard or a pnnted CIrcUIt card that can be inserted into a (PCI) e . PI The mecha . c I' xpanslOn s ot. 

F
. ill a component IS the device itself. This arrangement is shown in 
19. 1-6. 

h card usually has a connector on it, into which a cable leading to 
t . e de.vIce .Itself be plugged. Many controllers can handle two, four or even 
eIght If the interface between the controller and is a 
standard mterface, eIther an official ANSI, IEEE, or ISO standard or a de facto 
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one, then companies can make controllers or devices that fit that interface. Many 
companies, for example, make disk drives that match the IDE, SATA, SCSI, 
USB, Of FireWire (IEEE 1394) interface. 

The interface between the controller and the device is often a very low-level 
interface. A disk, for example, might be formatted with 10,000 sectors of 512 
bytes per track. What actually comes off the drive, however, is a serial bit stream, 
starting with a preamble, then the 4096 bits in a sector, and finally a checksum, 
also called an Error-Correcting Code (ECC). The preamble is written when the 
disk is formatted and contains the cylinder and sector number, the sector size, and 
similar data, as well as synchronization information. 

The controller's job is to convert the serial bit stream into a block of bytes and 
perform any error correction necessary. The block of bytes is typically first as-
sembled, bit by bit, in a buffer inside the controller. After its checksum has been 
verified and the block has been declared to be error free, it can then be copied to 
main memory. 

The controller for a monitor also works as a bit serial device at an equally low 
level. It reads bytes containing the characters to be displayed from memory and 
generates the signals used to modulate the CRT beam tq cause it to write on the 
screen. The controller also generates the signals for making the CRT beam do a 
horizontal retrace after it has finished a scan line, as well as the signals for mak-
ing it do a vertical retrace after the entire screen has been scanned. If it were not 
for the CRT controller, the operating system programmer would have to explicitly 
program the analog scanning of the tube. With the controller, the operating system 
initializes the controller with a few parameters, such as the number of characters 
or pixels per line and number of lines per screen, and lets the controller take care 
of actually driving the beam. Flat-screen TFT displays are different, but just as 
complicated. 

5,1,3 Memory-Mapped I/O 

Each controller has a few registers that are used for communicating with the 
CPU, By writing into these registers, the operating system can command the de-
vice to deliver data, accept data, switch itself on or off, or otherwise perform 
some action. By reading from these registers, the operating system can leam what 
the state is, whether it is prepared to accept a new command., and so on. 

In addition to the control registers, many devices have a data buffer that the 
operating system can read and write. For example, a common way for computers 
to display pixels on the screen is to have a video RAM, which is basically just a 
data buffer, available for programs or the operating system to write into. 

The issue thus arises of how the CPU communicates with the control registers 
and the device data buffers. Two alternatives exist. In the first approach, each 
control register is assigned an I/O port number, an 8- or 16-bit integer. The set of 
all the I/O ports form the I/O port space and is protected so that ordinary user 
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cannot access it (only the operatino system can) U 

struchon such as t:>. sing a special I/O in-

IN REG, PORT, 

register PORT and store the result in CPU register 

OUT PORT,REG 

the CPU can write the contents of REG to a Cont 1 . 
including nearly all mainframes, such as the Most ea:1y computers, 
worked this way. 1 .:) and all of ItS successors, 

In this scheme, the address spaces f . 
in Fig. 5-2(a). The instructions or memory and I/O are dIfferent, as shown 

IN RD,4 

and 

MOV RD,4 

are completely different in this des' Th f 
and puts it in RO whereas the the contents of I/O POrt 4 
it in RO. The 4s in these examples refer to different 

Two address One address space Two address spaces 

OxFFFF V Memory ..•. 

I/O ports 

I 
o L--...l 1·+/ 

(al (b) (c) 

Figure 5·2. (3) Separate 1/0 and memo"" space (bl M d (c) Hybrid, ''/ ' emory-mappe I/O. 

. The approach, introduced with the PDP-ll, is to map all th 1 
regIsters mto the memory space as show ' F e cOntro 
assigned a unique memory to Ig. 5-2(b) .. control register is 
is called memory-rna ed I/O 0 IS This system 
the add PP.' Usually, the assIgned addresses are at the top of ress space. A hybnd scheme with 
separate I/O ports for the control I/O data buffers .and 
uses this architecture, with addresse; 640K t 1M b . !\;,.5-2(C). The 
buffers in IBM PC compatibles in addit,·on lOolfO rtse1nt:>O fheserved for deVIce data 

, po trough 64K. 
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How do these schemes work? In aU cases, when the CPU wants to read a 
word either from memory or from an lIO port, it puts the address it needs on the 
bus' lines and then asserts a READ signal on a bus' control line. A second 
sio-nal line is used to tell whether I/O space or memory space is needed. If it is 

space, the memory responds to the request. If it is 1I0. the I/O de-
vice responds to the request. If there is only memory space [as III .Flg. 5-2(b)], ev-
ery memory module and every I/O device compares the hnes to the range 
of addresses that it services. If the address falls in its range, It responds to the re-
quest. Since no address is ever assigned to both memory and an I/O device, there 
is no ambiguity and no conflict. 

The two schemes for addressing the controllers have different strengths and 
weaknesses. Let us start with the advantages of memory-mapped I/O. First, if 
special I/O instructions are needed to read and wri.te the control registers, 
access to them requires the use of assembly code smce there IS no way to execute 
an IN or OUT instruction in C or C++. Calling such a procedure adds overhead to 
controlling I/O. In contrast, with memory-mapped 1/0; device control registers 
are just variables in memory and can be addressed in the .same way as other 
variables. Thus with memory-mapped 110, a I/O devIce dnver can be wntten en-
tirely in C. Without memory-mapped I/O, some assembly code is .. 

Second, with memory-mapped I/O, no special protection mechamsm IS need-
ed to keep user processes from performing I/O. All the system has to do 
is refrain from putting that portion of the address space contammg the control reg-
isters in any user's virtual address space. Better yet, if each .device has its co?trol 
reo-isters on a different page of the address space, the operatmg system can gIVe a 

control over specific devices but not others by simply including the desired 
pages in its page table. Such a scheme can aUo,: different drivers to. be 
placed in different address spaces, not only reducmg kernel SIze but also keepmg 
one driver from interfering with others. 

Third, with memory-mapped I/O, every instruction that can reference memory 
can also reference control registers. For example, if there is an instruction, TEST, 
that tests a memory word for 0, it can also be used to test a control register for 0, 
which might be the signal that the device is idle and can accept a new command. 
The assembly language code might look like this: 

lOOP: TEST PORT _4 
BEQ READY 
BRANCH LOOP 

READY: 

/I check if port 4 is 0 
II if it is 0, go to ready 
II otherwise, continue testing 

If memory-mapped I/O is not present, the control register must first be read into 
the CPU, then tested, requiring two instructions instead of one. In the case of the 
loop given above, a fourth instruction has to be added, slightly slowing down the 
responsiveness of detecting an idle device. 
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In computer design, practically everything involves trade-offs, and that is the 
case here too. Memory-mapped I/O also has its disadvantages. First, most com-
puters have some of caching of memory words. Caching a device 
contrOl. regIster would be dIsastrous. Consider the assembly code loop given 
above m the presence of caching. The first reference to PORT _4 would cause it to 
be cached. Subsequent references would just take the value from the cache and 
not even ask the device. Then when the device finally became ready, the software 
would have no way of finding out. Instead, the loop would go on forever. 

.To prevent this situation with memory-mapped lIO, the hardware has to be 
eqUIpped. With. the ability to selectively disable caching, for example, on a per 

baSIS. ThIS adds extra complexity to both the hardware and the oper-
atmg system, WhICh has to manage the selective caching. 

Sec?nd, if there is .only one address space, then all memory modules and all 
I/O deVIces must all memory references to see which ones to respond to. 
If the computer has a smgle bus, as in Fig. 5-3(a), having everyone look at every 
address is straightforward. 

CPU 

\ 

Memory I/O 

All addresses (memory 
and flO) go here 

(a) 

Bus 

CPU reads and writes 01 memory 
go over this high-bandwidth bus 

(b) 

This memory port is 
to allow JIO devices 
access to memory 

Figure (a) A single-bus architecture. (b) A dual-bus memory architecture. 

. However, the trend in modem personal computers is to have a dedicated 
hIgh-speed memory bus, as shown in Fig. 5-3(b), a property also found in main-
frames, This bus is tailored to optimize memory performance, with 

compromIses for the sake of slow I/O devices. Pentium systems can have mul-
uple buses (memory, PCI, SCSI, USB, ISA), as shown in Fig. 1-12. .-.... - .-... 
. The trouble wi.th having a separate memory bus on memory-mapped machines 
IS that the I/O deVIces have no way of seeing memory addresse,s as they go by on 
the memory bus, so they have no way of responding to them. Again, special 
ures have to be taken to make memory-mapped I/O work on a system with multi-
ple buses. One .possibility is to first send all memory references to the memory. If 
the memory falls to respond, then the CPU tries the other buses. This design can 
be made to work but requires additional hardware complexity. 
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A second possible design is to put a snooping device on the memory bus to 
pass all addresses presented to potentially interested lIO devices. The problem 
here is that lIO devices may not be able to process requests at the speed the mem-
ory can. 

A third possible design, which is the one used on the Pentium configuration of 
Fig. 1-12, is to filter addresses in the PCl bridge chip. This chip contains range 
registers that are preloaded at boot time. For example, 640K to 1 M CQuid be 
marked as a nonmemory range. Addresses that fall within one of the ranges mark-
ed as nonmemory are forwarded onto the PCl bus instead of to memory. The 
disadvantage of this scheme is the need for figuring out at boot time which mem-
ory addresses are not really memory addresses. Thus each scheme has arguments 
for and against it, so compromises and are inevitable. 

5.1.4 Direct Memory Access (DMA) 

No matter whether a CPU does or does not have memory-mapped I/O, it 
needs to address the device controllers to exchange data with them. The CPU can 
request data from an I/O controller one byte at a time but doing so wastes the 
CPU's time, so a different scheme, called DMA (Direct Memory Access) is 
often used. The operating system can only use DMA if the hardware has a DMA 
controller, which most systems do. Sometimes this controller is integrated into 
disk controllers and other controllers, but such a design requires a separate DMA 
controller for each device. More commonly, a single DMA controller is available 
(e.g., on the parentboard) for regulating transfers to multiple devices, often 
concurrently. 

No matter where it is physically located, the DMA controller has access to the 
system bus independent of the CPU, as shown in Fig. 5-4. It contains several reg-
isters that can be written and read by the CPU. These include a memory address 
register, a byte count register, and one or more control registers. The control reg-
isters specify the I/O port to use, the direction of the transfer (reading from the I/O 
device or writing to the IJO device), the transfer unit (byte at a time or word at a 
time), and the number of bytes to transfer in one burst. 

To explain how DMA works, let us first look at how disk reads occur when 
DMA is not used. First the disk controller reads the block (one or more sectors) 
from the drive serially, bit by bit, until the entire block is in the controller's inter-
nal buffer. Next, it computes the checksum to verify that no read errors have oc-
curred. Then the controller causes an interrupt. When the operating system starts 
running, it can read the disk block from the controller'S buffer a byte or a word at 
a time by executing a loop, with each iteration reading one byte or word from a 
controller device register and storing it in main memory. 

WheQ DMA is used, the procedure is different. First the CPU programs the 
DMA controller by setting its registers so it knows to transfer where (step 1 
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1 CPU 
8..k""DriVe 

prOgrams OMA O;sk J Main 
CPU theDMA controller controller memory 

controller Buffer 
/' 

irAddress I L 
I Control! 4.Ack 

.; " r----±. 
III Interrupt when Jr' l 2. DMA requests J J1 done transfer to memory 3. Data transferred 

-Bu 

Figure 5-4. Operation of a DMA transfer. 

in Fig. 5-4). It also issues a command to the disk controller telling it to read data 
from the disk into its internal buffer and verify the checksum. When valid data are 
in the disk controller's buffer, DMA can begin. 

The controller initiates the transfer by issuing a read over the 
bus to the dISk controller (step 2). This read request looks like any other read re-
quest, and the disk controller does not know or care whether it came from the 
CPU or from a DMA controller. Typically, the memory address to write to is on 
the bus' address lines so when the disk controller fetches the next word from its 
internal buffer, it knows where to write it. The write to memory is another stan-
dard bus cycle (step 3). When the write is complete, the disk controller sends an 
acknowledgement signal to the DMA controller, also over the bus (step 4). The 
DMA controller then increments the memory address to use and decrements the 

count. If the byte count is still greater than 0, steps 2 through 4 are repeated 
the count reaches O. At that time, the DMA controller interrupts the CPU to 

It know that the transfer is. now complete. When the operating system starts up, 
It does not have to copy the dISk block to memory; it is already there. 

DMA controllers vary considerably in their sophistication. The simplest ones 
handle one transfer at a as described above. More complex ones can be pro-
gramI?-ed to. handle mUltIple transfers at Once. Such controllers have multiple sets 

mternally, one for each channeL The CPU starts by loading each set of 
regISters WIth the relevant parameters for its transfer. Each transfer must use a dif-

device controller. After each word is transferred 2 through 4) in 
FIg. 5-4, the DMA controller decides which device to service next. It may be set 
up to use a round-robin algorithm, or it may have a priority scheme design to 
favor some devices over others. Multiple requests to different device controllers 
may be pending at the same time, provided that there is an unambiguous way to 
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tell the acknowledgements apart. Often a different acknowledgement line on the 
bus is used for each DMA channel for this reason. 

Many buses can operate in two modes: word-at-a-time mode and block mode. 
Some DMA controllers can also operate in either mode. In the former mode, the 
operation is as described above: the DMA controller requests for the transfer of 
one word and gets it. If the CPU also wants the bus, it has to wait. The mechan-
ism is called cycle stealing because the device controller sneaks in and steals an 
occasional bus cycle from the CPU once in a while, delaying it slightly. In block 
mode the DMA controller tells the device to acquire the bus, issue a series of 
transiers, then release the bus. This fonn of operation is calle? burst mode. It 
more efficient than cycle stealing because acquiring the bus takes time and 
pIe words can be transferred for the price of one bus acquisition. The to 
burst mode is that it can block the CPU and other devices for a substantIal penod 
of time if a long burst is being transferred. 

In the model we have been discussing, sometimes called fly-by mode, the 
DMA controller tells the device controller to transfer the data directly to main 
memory. An alternative mode that some DMA controllers use is to have the de-
vice controller send the word to the DMA controller, which then issues a second 
bus request to write the word to wherever it is supposed to go. This scheme re-
quires an extra bus cycle per word transferred, but is more flexible in it can 
also perform device-to-device copies and even memory-to-memory (by 
first issuing a read to memory and then issuing a write to memory at a dIfferent 
address). 

Most DMA controllers use physical memory addresses for their transfers. 
Using physical addresses requires the operating system to convert t?e vi:tual 
dress of the intended memory buffer into a physical address and wnte this phySi-
cal address into the DMA controller's address register. An alternative scheme 
used in a few DMA controllers is to write virtual addresses into the DMA con-
troller instead. Then the DMA controller must use the MMU to have the virtual-
to-physical translation done. Only in the case that the MMU is part of the memory 
(possible, but rare) rather than part of the CPU, can virtual addresses be put on the 
bus. 

We mentioned earlier that the disk first reads data into its internal buffer be-
fore DMA can start. You may be wondering why the controller does not just store 
the bytes in main memory as soon as it gets them from the disk. In other words, 
why does it need an internal buffer? There are two reasons. First, by doing inter-
nal buffering, the disk controller can verify the checksum before starting a trans-
fer. If the checksum is incorrect, an error is signaled and no transfer is done. 

The second reason is that once a disk transfer has started, the bits keep arriv-
ing from the disk at a constant rate, whether the controller is ready for them or 
not. If the controller tried to write data directly to memory, it would have to go 
over the system bus for each word transferred. If the bus were busy due to some 
other device using it (e.g., in burst mode), the controller would have to wait. If 

SEC. 5.1 PRINCIPLES OF I/O HARDWARE 337 

the next disk word arrived before the previous one had been stored, the controller 
would have to store it somewhere. If the bus were very busy, the controller might 
end up storing quite a few words and having a lot of administration to do as well. 
When the block is buffered internally, the bus is not needed until the DMA 
begins, so the design of the controller is much simpler because the DMA transfer 
to memory is not time critical. (Some older controllers did, in fact, go directly to 
memory with only a small amount of internal buffering, but when the bus was 
very busy, a transfer might have had to be terminated with an overrun error.) 

Not all computers use DMA. The argument against it is that the main CPU is 
often far faster than the DMA controller and can do the job much faster (when the 
limiting factor is not the speed of the I/O device). If there is no other work for it 
to do, having the (fast) CPU wait for the (slow) DMA controller to finish is point-
less. Also, getting rid of the DMA controller and having the CPU do all the work 
in software saves money, important on low-end (embedded) computers. 

S.l.S Interrupts Revisited 

We briefly introduced interrupts in Sec. 1.4.5, but there is more to be said. In 
a typical personal computer system, the interrupt structure is as shown in Fig. 5-5. 
At the hardware level, interrupts work as fonows. When an I/O device ·has fin-
ished the work given to it, it causes an interrupt (assuming that interrupts have 
been enabled by the operating system). It does this by asserting a signal on a bus 
line that it has been assigned. This signal is detected by the interrupt controller 
chip on the parentboard, which then decides what to do. 

CPU 3. CPU acks 
interrupt 

2. Controller 
issues 
interrupt 

Interrupt 
controller 

Device is finished 

= = = 

\ 8u, 

Figure 5 v S. How an interrupt happens. The connections between the devices 
and the interrupt controller actually use interrupt lines on the bus rather than 
dedicated wires. . 

If no other interrupts are pending, the interrupt controller processes the inter-
rupt immediately. If another one is in progress, or another device has made a si-
multaneous request on a higher-priority interrupt request line on the bus, the 

46 of 94



338 INPUT/OUTPUT CHAP. 5 

device is just ignored for the moment. In this case it continues to assert an inter-
rupt signal on the bus until it is serviced by the CPU. . 

To handle the interrupt, the controller puts a number on the address hues 
specifying which device wants attention and asserts a signal to interrupt the CPU. 

The interrupt signal causes the CPU to stop what it is doing and start doing 
something else. The number on the address lines is used as an index into a table 
called the interrupt vector to fetch a new program counter. This program counter 
points to the start of the corresponding interrupt service procedure. typically traps 
and interrupts use the same mechanism from this point on, and frequently share 
the same interrupt vector. The location of the interrupt vector can be hardwired 
into the machine or it can be anywhere in memory, with a CPU register (loaded 
by the operating system) pointing to its origin. 

Shortly after it starts running, the interrupt service procedure acknowledges 
the interrupt by writing a certain value to one of the interrupt controller's I/O 
ports. This acknowledgement tells the controller that it is free to issue another in-
terrupt. By having the CPU delay this acknowledgement until it is ready to hand-
le the next interrupt, race conditions involving multiple (almost simultaneous) in-
terrupts can be avoided. As an aside, some (older) computers do not have a cen-
tralized interrupt controller, so each device controller requests its own interrupts. 

The hardware always saves certain information before starting the service 
procedure. Which information is saved and where it is saved varies greatly from 
CPU to CPU. As a bare minimum, the program counter must be saved, so the in-
terrupted process can be restarted. At the other extreme, all the visible registers 
and a large number of internal registers may be saved as welL 

One issue is where to save this information. One option is to put it in internal 
registers that the operating system can read out as needed. A problem with this 
approach is that then the interrupt controller cannot be acknowledged until all 
potentially relevant information has been read out, lest a second interrupt over-
write the internal registers saving the state. This strategy leads to long dead times 
when interrupts are disabled and possibly lost interrupts and lost data. 

Consequently, most CPUs save the information on the stack. However, this 
approach, too, has problems. To start with: whose stack? If the current stack is 
used, it may well be a user process stack. The stack pointer may not even be legal, 
which would cause a fatal error when the hardware tried to write some words at 
the address pointed to. Also, it might point to the end of a page. After several 
memory writes, the page boundary might be exceeded and a page fault generated. 
Having a page fault occur during the hardware interrupt processing creates a 
bigger problem: where to save the state to handle the page fault? 

If the kernel stack is used, there is a much better chance of the stack pointer 
being legal and pointing to a pinned page. However, switching into kernel mode 
may require changing MMU contexts and will probably invalidate most or all of 
the cache and TLB. Reloading all of these, statically or dynamically will increase 
the time to process an interrupt and thus waste CPU time. 
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Precise and Imprecise Interrupts 

. problem is caused by the fact that most modern CPUs are heavily 
and superscalar (internally parallel). In older systems, after each 

was firushed executing, the microprogram or hardware checked to see 
If there was an intenupt pending. If so, the program counter and PSW were 
pushed onto the stack and the interrupt sequence begun. After the interrupt hand-
ler ran, the reverse process took place, with the old PSW and program counter 
popped from the stack and the previous process continued. 

makes implicit assumption that if an interrupt occurs just after 
some mstructlOn, all the mstructions up to and-including that instruction have been 
executed completely, and no instructions after it have executed at alL On older 
machines, this assumption was aJways valid. On modem ones it may not be. 
. For starters, model of Fig. 1-6(a). What happens if an 

occurs while the plpelme IS full (the usual case)? Many instructions are 
In vanous stages of execution. When the interrupt occurs, the value of the pro-
gram counter may not reflect the correct boundary between executed instructions 
and In fact, many instructions may have been partially 

Wlth dIfferent lllstructions being more or less complete. In this situa-
tIOn, the program counter most likely reflects the address of the next instruction to 
be fetched and pushed into the pipeline rather than the address of the iru;truction 
that just was processed by the execution unit. 

On .a superscalar machine, such as that of Fig. 1-7 (b), things are even worse. 
InstructlOns may be decomposed into micro-operations and the micro-operations 
may execute out of order, depending on the availability of internal resources such 
as functional units and registers. At the time of an interrupt, some instructions 
started long ago may :lOt have sta:ted and others started mOre recently may be al-

?one .. At the pomt when an mterrupt is signaled, there may be many instruc-
tlOns III vanous states of completeness, with less relation between them and the 
program counter. 
. An interrupt that leaves the machine in a well-defined State is called a precise 
mterrupt (Walker and Cragon, 1995). Such an interrupt has four properties: 

1. The PC (Program Counter) is saved in a known place. 

2. All instructions before the one pointed to by the PC have fully executed. 

3. No instruction beyond the one pOinted to by the PC has been executed. 

4. The execution state of the instruction pointed to by the PC is known. 

Note that is no on instructions beyond the one pointed to by the 
PC from startIng. It IS Just. that any changes they make to registers or memory 

be undone before the Interrupt happens. It is permitted that the instruction 
pOInted to has been executed. It is also permitted that it has not been executed. 
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However it must be clear which case applies. Often, if the interrupt is an I/O in-
terrupt, the instruction will not yet have started. Howev:f, if interrupt is really 
a trap or page fault, then the PC generally points to the that caused :he 
fault so it can be restarted later. The situation of Fig. 5-6(a) illustrates a preCIse 
interrupt All instructions up to the program counter (316) have and 
none of those beyond it have started (or have been rolled back to undo theIr ef-
fects). 

(a) (b) 

Figure 5-6. (a) A precise interrupt. (b) An imprecise interrupt. 

An interrupt that does not meet these requirements is called an imprecise 
interrupt and makes life most unpleasant for the operating system writer, who 
now has to figure out what has bappened and what still bas to happen. Fig.5-6(b) 
shows an imprecise interrupt, where different instructions near the program count-
er are in different stages of completion, with older ones not necessarily more 
plete than younger ones. Machines with interrup.ts usually vormt a 
large amount of internal state onto the stack to glve the operatmg system the pos-
sibility of figuring out what was going on. The code necessary to restart th: ma-
chine is typically extremely complicated. Also, saving a large amount of mfor-
mation to memory on every interrupt makes interrupts slow and recovery even 
worse. This leads to the ironic situation of having very fast superscalar CPUs 
sometimes being unsuitable for real-time work due to slow interrupts. 

Some computers are designed so that some kinds of interrupts and traps are 
precise and others are not. For example, having I/O be precise but traps 
due to fatal programming errors be imprecise is not so bad Slllce no attempt 
be made to restart a running process after it has divided by zero. Some machllles 
have a bit that can be set to force all interrupts to be precise. The downside of set-
tinO" this bit is that it forces the CPU to carefully log everything it is doing and . . . 
maintain shadow copies of registers so it can generate a preCIse lllterrupt at any 
instant. All this overhead has a major impact on performance. 

Some superscalar machines, such as the Pentium series have precise interrupts 
to allow old software to work correctly. The price paid for precise interrupts is 
extremely complex interrupt logic within the CPU to make sure that when the in-
terrupt controller signals that it wants to cause an interrupt, all instructions up to 
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some pOint are allowed to finish and none beyond that point are allowed to have 
any noticeable effect on the machine state. Here the price is paid not in time but 
in chip area and in complexity of the design. If precise interrupts were re-
quired for backward compatibility purposes, this chip area would be available for 
larger on-chip caches, making the CPU faster. On the other hand, imprecise inter-
rupts make the operating system far more complicated and slower, so it is hard to 
tell which approach is really better. 

5.2 PRINCIPLES OF I/O SOFTWARE 

Let liS now turn away from the I/O hardware and look at the I/O software. 
First we will look at the goals Qf the I/O software and then at the different ways 
lIO can be done from the point of view of the operating system. 

5.2.1 Goals of the I/O Software 

A key in t.he design of I/O software is known as device indepen-
dence. What It means IS that it should be possible to write programs that can ac-
cess any I/O device without having to specify the device in advance. For example, 
a program that reads a file as input should be able to read a file on a hard disk a 
CD-ROM, a DVD, or a USB stick without having to modify the program for 
different device. Similarly, one should be able to type a command such as 

sort <input >output 

and have it work with input coming from any kind of disk or the keyboard and the 
output going to any kind of disk or the screen. It is up to the operating system to 
take care of the problems caused by the fact that these devices really are different 
and require very different command sequences to read or write. 

Closely related to device independence is the goal of uniform naming. The 
name of a !lIe. or a device should simply be a string or an integer and not depend 
on the deVIce m any way. In UNIX, all disks can be integrated in the file system 
hierarchy in arbitrary ways so the user need not be aware of which name 

to which device. For example, a USB stick can be mounted on top of 
d1rectory so that copying a file to lusrlastlbackuplmonday cop-

Ies the file to the USB slick. In this way, all files and devices are addressed the 
same way: by a path name. 

Another important issue for I/O software is error handling. In general, er-
rors should be handled as close to the hardware as possible.· If the controller dis-
covers a read error, it should try to correct the error itself if it can. If it cannot, 
then the device driver should handle it, perhaps by just trying to read the block 
again. Many errors are transient, such as read errors caused by specks of dust on 
the read head, and will frequently go away if the operation is repeated. Only if the 
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lower layers are not able to deal with the problem should the upper layers be told 
about it. In many cases, eITor recovery can be done transparently at a low level 
without the upper levels even knowing about the error. 

Still another key issue is that of synchronous (blocking) versus asynchro-
nous (interrupt-dtiven) transfers. Most physical I/O is asynchronous-the 
starts the transfer and goes off to do something else until the interrupt amves. 
User programs are much easier to write if the I/O operations are a 
read system call the program is automatically suspended until the data are avrul-
able in the buffer. It is up to the operating system to make operations that are ac-
tually interrupt-driven look blocking to the user programs. 

Another issue for the lIO software is buffering. Often data that come off a 
device cannot be stored directly in its final destination. For example, when a 
packet comes in off the network, the operating system does not know where to put 
it until it has stored the packet somewhere and examined it. Also, some devices 
have severe real-time constraints (for example, digital audio devices), so the data 
must be put into an output buffer in advance to decouple the rate at which the 
buffer is filled from the rate at which it is emptied, in order to avoid buffer under-
runs. Buffering involves considerable copying and often has a major impact on 
lIO performance. . 

The final concept that we will mention here is sharable versus dedIcated de-
vices. Some lIO devices, such as disks, can be used by many users at the same 
time. No problems are caused by multiple users having open files on. the same 
disk at the same time. Other devices, such as tape drives, have to be dedIcated to a 
single user until that user is finished. Then another user can have the tape drive. 
Havino- two or more users writing blocks intermixed at random to the same tape 
will d:finitely not work. Introducing dedicated (unshared) devices also introduces 
a variety of problems, such as deadlocks. Again, the operating system must be 
able to handle both shared and dedicated devices in a way that avoids problems. 

5.2.2 Programmed 110 

There are three fundamentally different ways that I/O can be performed. In 
this section we will look at the first one (programmed I/O). In the next two sec-
tions we will examine the others (interrupt-driven I/O and I/O using DMA). The 
simplest form of I/O is to have the CPU do all the work. This method is called 
programmed I/O. . 

It is simplest to illustrate programmed I/O by means of an example. ConSIder 
a user process that wants to print the eight-character string o?- the 
printer. It first assembles the string in a buffer in user space, as shown In FIg. 5-
7(a). 

The user process then acquires the printer for writing by making a system can 
to open it. If the printer is currently in use by another process, this call will fail 
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String to 
User be printed 

space t Printed Printed 
page page I ABeD I t t EFGH 

D D D Kemel{ 
space ABeD. ABeD 

EFGH EFGH 

(a) (b) (e) 

Figure 5·7. Steps in printing a string. 

and return an error code or will block until the printer is available, depending on 
the operating system and the parameters of the call. Once it has the printer, the 
user process makes a system call telling the operating system to print the string on 
the printer. 

The operating system then (usually) copies the buffer with the strtng to an 
array, say, p, in kernel space, where it is more easily accessed (because the kernel 
may have to change the memory map to get at user space). It then checks to see if 
the printer is currently available. If not, it waits until it is available. As soon as 
the printer is available, the operating system copies the first character to the print-
er's data register, in this example using memory-mapped lIO. This action 
activates the printer. The character may not appear yet because some printers buf-
fer a line or a page before printing anything. In Fig. 5-7(b), however, we see that 
the first character has been printed and that the system has marked the "B" as the 
next character to be printed. 

As soon as it has copied the first character to the printer, the operating system 
checks to see if the printer is ready to accept another one. Generally, the printer 
has a second register, which gives its status. The act of writing to the data register 
causes the status to become not ready. When the printer controller has processed 
the current character, it indicates its availability by setting some bit in its status 
register or putting some value in it. 

At this point the operating system waits for the printer to become ready again. 
When that happens, it prints the next character, as shown in Fig, 5-7(c). This loop 
continues until the entire string has been printed. Then control returns to the user 
process. 

The actions followed by the operating system are summarized in Fig. 5-8. 
First the data are copied to the kernel. Then the operating system enters a tight 
loop outputting the characters one at a time. The essential aspect of programmed 
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I/O, clearly illustrated in this figure, is that after outputting a character, the. CPU 
continuously polls the device to see if it is ready to accept another one. ThIs be-
havior is often called polling or busy waiting. 

copy_from_user(buffer, p. count); 
for (i :::: 0; i < count; i++) { 

while (*printer _status_reg 1= READY) ; 
*printer _data_register"" p[i]; 

/* p is the kernel butter */ 
/* loop on every character */ 

/* loop until ready */ 
1* output one character */ 

} 
return_to_user{ ); 

Figure 5-8. Writing a string to the printer using programmed lIO. 

Programmed IrO is simple but has the disadvantage of tying. up the CPU full time 
until all the I/O is done. If the time to "print" a character IS very short (because 
all the printer is doing is copying the new character to an internal buffer), 
busy waiting is fine. Also, in an embedded system, where the CPU has nothmg 
else to do, busy waiting is reasonable. However, in more complex systems, 
the CPU has other work to do, busy waiting is inefficient. A better I/O method IS 
needed. 

5.2.3 Interrupt-Driven I/O 

Now let us consider the case of printing on a printer that does not buffer char-
acters but prints each one as it arrives. If the printer can print, say 100 charac-
ters/sec each character takes 10 msec to print. This means that after every charac-
ter is w'ritten to the printer's data register, the CPU will sit in an idle loop for 10 
rnsec waiting to be allowed to output the next character. This is more than enough 
time to do a context switch and run some other process for the 10 msec that would 
otherwise be wasted. . 

The way to allow the CPU to do something else while for the 
to become ready is to use interrupts. When the system call to the strmg IS 
made, the buffer is copied to kernel space, as we showed eariter, and the first 
character is copied to the printer as soon as it is willing to accept a character. At 
that point the CPU calls the scheduler and some is ru.n. The pr?cess 
that asked for the string to be printed is blocked un111 the enUre stnog has prInted. 
The work done on the system can is shown in Fig. 5-9(a). 

When the printer has printed the character and is prepared to accept the ne.xt 
one, it generates an interrupt. This interrupt stops the current process saves 
state. Then the printer interrupt service procedure is run. A of thIS 
code is shown in Fig. 5-9(b). If there are no more characters to prInt, the mterrupt 
handler takes some action to unblock the user. Otherwise, it outputs the next char-
acter, acknowledges the interrupt, and returns to the process that was running just 
before the interrupt, which continues from where it left off. 
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copy_from_user(buffer, p, count}; 
enable_interrupts{ ); 
while (*printer _status_reg 1= READY) ; 
*printer _data_register = prO]; 
scheduler( ); 

if (count == 0) { 
unblock-user( ); 

} else { 

} 

*printer _data_register = p[i]; 
count = count - 1; 

acknowledge_interrupt( ); 
return_from_interrupt( }; 

(b) 

Figure 5·9. Writing a string to the printer using interrupt-driven TIO. (a) Code 
executed at the time the print system call is made. (b) Interrupt service 
dure for the printer. 

5.2.4 I/O Using DMA 

345 

An obvious disadvantage of interrupt-driven I/O is that an interrupt occurS on 
every character. Interrupts take time, so this scheme wastes a certain amount of 
CPU time. A solution is to use DMA. Here the idea is to let the DMA control1er 
feed the characters to the printer one at time, without the CPU being In 
essence, DMA is programmed I/O, only with the DMA controller doing all the 
work, instead of the main CPU. This strategy requires special hardware (the 
DMA controller) but frees up the CPU during the 110 to do other work. An out-
line of the code is given in Fig. 5-10. 

copy_from_user(buffer, p, count); 
seLup_DMA_contro!ler( ); 
scheduler( ); 

{a} 

aCknowledge_interrupt( ); 
unblock_user( ); 
return_from_interrupt( ); 

(b) 

Figure 5-10. Printing a string using DMA. (a) Code executed when the print 
system call is made. (b) Interrupt service procedure. 

The big win with DMA is reducing the number of interrupts from one per cha-
racter to one per buffer printed. If there are many characters and interrupts are 
slow, this can be a major improvement. On the other hand, the DMA controller is 
usually much slower than the main CPU. If the DMA controller is not capable of 
driving the device at full speed, or the CPU usually has nothing to do anyway 
while waiting for the DMA interrupt, then interrupt-driven 110 or even pro-
grammed I/O may be better. Most of the time DMA is worth it though. 
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5.3 I/O SOFTWARE LAYERS 

I/O software is typically organized in four layers, as shown in Fig. 5-11. Each 
layer has a well-defined function to perform and a well-defined. interface to the 
adjacent layers. The functionality and interfaces differ from system to system, s.o 
the discussion that follows, which examines all the layers startmg at the bottom, IS 

not specific to one machine. 

User-Ieve! 110 software 

Device-independent operating system software 

Device drivers 

Interrupt handlers 

I Hardv-rere I 
Figure 5-11. Layers of the IlO software system. 

5.3.1 Interrupt Handlers 

While programmed If 0 is occasionally useful, for most I/O,. interrupts are an 
unpleasant fact of life and cannot be avoided. They should be away, deep 
in the bowels of the operating system, so that as little of the operatmg as 
possible knows about them. The best way to hide them is to have. the dnver start-
ing an I/O operation block until the I/O has completed and the l?terrupt 
The driver can block itself by doing a down on a semaphore, a walt on a condition 
variable, a receive on a message, or something similar, for example.. . 

When the interrupt happens, the interrupt procedure does whatever It has to 10 
order to handle the interrupt. Then it can unblock the driver that started it. In 
some cases it will just complete up on a semaphore. In others it will do a signal 
on a condition variable in a monitor. In still others, it will send a message to the 
blocked driver. In aU cases the net effect of the interrupt will be that a driver that 
was previously blocked will now be able to run. This model works best if drivers 
are structured as kernel processes, with their own states, stacks, and program 
counters. 

Of course, reality is not quite so simple. Processing an interrupt is not a 
matter of taking the interrupt, doing an up on some semaphore, and then 
an IRET instruction to return from the interrupt to the previous process. There IS a 
(Treat deal more work involved for the operating system. We will now give an 

of this work as a series of steps that must be perfonned in software after 
the hardware interrupt has completed. It should be noted that the details are very 
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system dependent, so some of the steps listed below may not be needed on a par-
ticular machine and steps not listed may be required. Also, the steps that do occur 
may be in a different order on some machines. 

1. Save any registers (including the PSW) that have not already been 
saved by interrupt hardware. 

2. Set up a context for the interrupt service procedure. Doing this may 
involve setting up the TLB, MMU and a page table. 

3. Set up a stack for the interrupt service procedure. 

4. Acknowledge the interrupt controller. If there is no centralized inter-
rupt controller, reenable interrupts. 

5. Copy the registers where they were saved (possibly some stack) 
to the process table. 

6. Run the interrupt service procedure. It will extract information from 
the interrupting device controller's registers. 

7. Choose which process to run next. If the interrupt has caused Some 
high-priority process that was blocked to become ready, it may be 
chosen to run now. 

8. Set up the MMU context for the process to run next. Some TLB set-
up may also be needed. 

9. Load the new process' registers, including its PSW. 

10. Start running the new process. 

As can be seen, interrupt processing is far from trivial. It also takes a consid-
erable number of CPU instructions, especially on machines in which virtual mem-
ory is present and page tables have to be set up or the state of the MMU stored 
(e.g., the Rand M bits). On some machines the TLB and CPU cache may also 
have to be managed when switching between user and kernel modes, which takes 
additional machine cycles. 

5.3.2 Device Drivers 

Ear1ier in this chapter we looked at what device controllers do. We saw that 
each controller has some device registers used to give it commands or SOme de-
vice registers used to read out its status or both. The number of device registers 
and the nature of the commands vary radically from device to device. For ex-
ample, a mouse driver has to accept information from the mouse telling how far it 
has moved and which buttons are currently depressed. In contrast, a disk driver 
may have to know all about sectors, tracks, cylinders, heads, arm motion, motor 
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drives, head settling times, and all the other mechanics of making the disk work 
properly. Obviously, these drivers will be very different. ' 

As a consequence, each 1/0 device attached to a computer needs some de-
vice-specific code for controlling it. This code, called the device is 
erally written by the device's manufacturer and delivered along wIth the device. 
Since each operating system needs its own drivers, device manufacturers com-
monly supply drivers for several popular operating systems. 

Each device driver normally handles one device type, or at most, one class of 
closely related devices. For example, a SCSI disk driver can usually handle multi-
ple SCSI disks of different sizes and different speeds, and perhaps a SCSI C?-
ROM as well. On the other hand, a mouse and joystick are so different that dIf-
ferent drivers are usually required. However, there is no technical restriction on 
having one device driver control multiple unrelated devices. It is just not a good 
idea. 

In order to access the device's hardware, meaning the controller'S registers, 
the device driver normally has to be part of the operating system kernel, at least 
with current architectures. Actually, it is possible to construct drivers that run in 
user space, with system calls for reading and writing the device registers. de-
sian isolates the kernel from the drivers and the drivers from each other, ebmmat-
in: a major source of system crashes-buggy drivers that interfere with the kernel 
in ""one way or another. For building highly reliable systems, this is definitely the 
way to go. An example of a system in which the device drive:s run as user proc-
esses is MINIX 3. However, since most other desktop operatlOg systems expect 
drivers to run in the kernel, that is the model we will consider here. 

Since the designers of every operating system know that pieces of code (driv-
ers) written by outsiders will be installed in it, it needs to have an architecture 
allows such installation. This means having a well-defined model of what a dnver 
does and how it interacts with the rest of the operating system. Device drivers are 
normally positioned below the rest of the operating system, as is illustrated in 
Fig. 5-12. 

Operating systems usually classify drivers into one of a small number of cat-
egories. The most common categories are the block devices, such as disks, which 
contain multiple data blocks that can be addressed independently, and the 
ter devices, such as keyboards and printers, which generate or accept a stream of 
characters. 

Most operating systems define a standard interface that all block drivers must 
support and a second standard interface that all character drivers must suPP?rt. 
These interfaces consist of a number of procedures that the rest of the operatmg 
system can call to get the driver to do work for it. Typical procedures are those to 
read a block (block device) or write a character string (character device). . 

In some systems, the operating system is a single binary program that contaInS 
all of the drivers that it will need compiled into it. This scheme was the nonn for 
years with UNIX systems because they were run by computer centers and I/O de-
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Figure 5-12. Logical positioning of device drivers. In reality all communica-
tion between drivers and device controllers goes over the bus. 
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vices ra.rely changed. If a new device was added, the system administrator simply 
recompIled the kernel with the new driver to build a new binary. 

With the advent of personal computers. with their myriad VO devices, this 
model no longer worked. Few users are capable of recompiling or relinkinCT the 
kernel, even if they have the SOurce code or object modules, which is not al:'ays 
the case. Instead, operating systems, starting with MS-DOS, went over to a model 
in which drivers were dynamically loaded into the system during execution. Dif-
ferent systems handle loading drivers in different ways. 

A device driver has several functions. The most obvious one is to accept 
abstract read and write requests from the device-independent· software above it 
and see that they are carried out. But there are also a few' other functions they 
must perform. For example, the driver must initialize the device, if needed. It 
may also need to manage its power requirements and log events. 

Many device drivers have a similar general structure. A typical driver starts 
out by checking the input parameters to see if they are valid. If not, an error is 
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returned. If they are valid, a translation from abstract to concrete terms may be 
needed. For a disk driver, this may mean converting a linear block' number into 
the head, track, sector, and cylinder numbers for the disk's geometry. 

Next the driver may check if the device is currently in use. If it is, the request 
will be queued for later processing. If the device is idle, the hardware status will 
be examined to see if the request can be handled now. It may be necessary to 
switch the device on or start a motor before transfers cao be begun. Once the de-
vice is on and ready to go, the actual control can begin. 

Controlling the device means issuing a sequence of commands to it. The driv-
er is the place where the command sequence is determined, depending on what 
has to be done. After the driver knows which commands it is going to issue, it 
starts writing them into the controller's device registers. After writing each com-
mand to the controller, it may be necessary to check to see if the controller ac-
cepted the command and is prepared to accept the next one. This sequence contin-
ues until all the commands have been issued. Some controllers can be given a 
linked list of commands (in memory) and told to read and process them all by it-
self without further help from the operating system. 

After the commands have been issued, one of two situations will apply. In 
many cases the device driver must wait until the controller does some work for it, 
so it blocks itself until the interrupt comes in to unblock it. In other cases, howev-
er, the operation finishes without delay, so the driver need not block. As an ex-
ample of the latter situation, scrolling the screen in character mode requires just 
writing a few bytes into the controller's registers. No mechanical motion is need-
ed, so the entire operation can be completed in nanoseconds. 

In the former case, the blocked driver will be awakened by the interrupt. In 
the latter case, it will never go to sleep. Either way, after the operation has been 
completed, the driver must check for errors. If everything is all right, the driver 
may have data to pass to the device-independent software (e.g., a block just read). 
Finally, it returns some status information for error reporting back to its caller. If 
any other requests are queued, one of them can now be selected and started. If 
nothing is queued, the driver blocks waiting for the next request. 

This simple model is only a rough approximation to reality. Many factors 
make the code much more complicated. For one thing, an 1I0 device may com-
plete while a driver is running, interrupting the driver. The interrupt may cause a 
device driver to run. I"Q. fact, it may cause the current driver to run. For example, 
while the network driver is processing an incoming packet,· another packet may 
arrive. Consequently, drivers have to be reentrant, meaning that a running driver 
has to expect that it will be called a second time before the first call has com-
pleted_ 

In a hot pluggable system, devices can be added or removed while the com-
puter is running. As a result, while a driver is busy reading from some device, the 
system may inform it that the user has suddenly removed that device from the sys-
tem. Not only must the current I/O transfer be aborted without damaging any 
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kernel data structures, but any pending requests for the now-vanished device must 
also be gracefully removed from the system and their callers O"iven th b d 
Furthermore, the addition of new devices may the k:rn:l 
gle (e.g., mterrupt request lines), taking old ones awa f th d g 
and gIvmg It new ones in their place. y rom e nver 

Drivers are not allowed to make t 11 
with the rest of the kernel. Usually, cs.x:s 

FO; example, there are usually calls to allocate and deallocate 
0 . memory for use as buffers. Other useful calls are needed to manage the 
, tImers, the DMA controller, the interrupt controller d ,an so on. 

5.3.3 Device·Independent 11.0 Software 

v.ce someTof the I/O software is device specific, other parts of it are de-
l m epen ent. he exact boundary between the dn-vers and th d - - d pend t f . e eVICe-In e-

c IS sys.tem. (and device) dependent, because some functions that 
o e. one In a devlCe-mdependent way may actually be done in the driv 

for or other reasons. The functions shown in Fio- 5-13 . 
done m the device-independent software. b· are typIC y 

Uniform interiacing for device drivers 
Buffering 
Error reporting 
Allocating and releasing dedicated devices 
Providing a device-independent block size 

Figure 5·13. Functions of the 110 software. 

f basic function of the device-independent software is to perform the I/O 
unct;ons that are common to all devices and to provide a uniform interface to the 

user- eve1 software. Below we. will look at the above issues in more detail. 

Uniform Interfacing for Device Drivers 

A major issue in an operating system is how to make alllJO d - d dr-e s 1 k eVlces an IV-
d less the same. If printers, keyboards, and so on, are all in-

e In I erent ways, every tIme a new device comes along the 0 eratin 
must be the new device. Having to hack on th; operat1no-

tern lor each new deVIce IS not a good idea. b 

One aspect this issue is the interface between the device drivers and the 
rest of the operatmg system. In Fig. 5-l4(a) we illustrate a situation in which each 
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device driver has a different interface to the operating system. What thIs means is 
that the driver functions available for the system to call differ from driver to driv-
er. It might also mean that the kernel functions that the driver needs also differ 
from driver to driver. Taken together, it means that interfacing each new driver re-
quires a lot of new programming effort. 

SATA disk driver IDE disk driver SCS! disk driver SATA disk driver IDE disk driver SCSI disk driver 

Figure 5-14. (a) Without a standard driver interface. (b) With a standard driver 
interface. 

In contrast, in Fig. 5-14(b), we show a different design in which all drivers 
have the same interface. Now it becomes much easier to plug in a new driver, pro-
viding it conforms to the driver interface. It also means that driver writers know 
what is expected of them. In practice, not all devices are absolutely identical, but 
usually there are only a small number of device types and even these are generally 
almost the same. 

The way this works is as follows. For each class of devices, such as disks or 
printers, the operating system defines a set of functions that the driver ,must 
ply. For a disk these would naturally include read and write, but also turning the 
power On and off, formatting, and other disky things. Often the driver contains a 
table with pointers into itself for these functions. When the driver is loaded, the 
operating system records the address of this table of function pointers, so when it 
needs t<jfall one of the functions, it can make an indirect call via this table. This 
tab1e oMunction pointers defmes the interface between..the driver and the rest of 
the operating system. All devices of a given class (disks, printers, etc.) must obey 
it. 

Another aspect of having a uniform interface is how I/O devices are named. 
The d.ndependent software takes care of mapping symb.oIic device names 
onto t,.."er driver. For example, in UNIX a device name, such as /dev/diskO, 
uniquely specifies the i-node for a special file, and this the major 
device number, which is used to locate the appropriate drh he i-node also 
contains the minor device number, which is passed as a parameter to the driver 
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in order to specify the unit to be read or written A' . 
numbers, and all drivers are accessed b .' h 11 devices have major and minor 
the driver. y usmg t e major device number to select 

Closely related to naming is protection How d 
from accessing devices that they are t"tl does the system prevent users 
Windows, devices appear in the file s no, ent! e to access? In both UNIX and 
th a! ys em as named objects which h e uSu protection rules for files also apply to 1/0 d' ' means t at 
trator can then set the proper permissions for each The system adminis-

Buffering 

Buffering is also an issue, both for block d . 
of reasons. To See one of them co'd an character devIces, for a variety 
modem. One possible strategy for a:.rocess .that v.:ants to read data from a 
the user process do a read system call the m.c?mmg characters is to have 
arriving character causes an interru t Th . lock waItmg for One character. Each 
character to the user process and !bIOCk: procedure hands the 
where, the process reads another chara er the. character some-
cated in Fig. 5-15(a). cter and blocks agam. ThIS model is 

User process 

{ 
""mel { 1---!----1 
space 

Modem 
(a) 

Modem 
(b) 

Modem 
(e) 

Modem 
(d) 

Figu['e (a) Unbuffered' (b) B f . . 
the kernel followed by u fer('dn)gDIO user space. (C) Buffering in 

.. r space. ouble buffering in the kernel. 

The trouble with this way of doin b' . 
started up for every inCOming characteg 

1S that the user process has to be 
short runs is inefficient so this des,'gn ,rs' n towmgda. process to run many times for 

. .' 0 agoo one. 
An Improvement IS shown in Fig H 

buffer in user space and do . d ere the user process provides an 

. c erne IS ar more effiCIent than the previous 
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one, but it has a drawback: what happens if the buffer is paged Qut when a charac-
ter arrives? The buffer could be locked in memory, but if many proceSses start 
locking pages in memory, the pool of available pages will shrink and perfonnance 
will degrade. Yet another approach is to create a buffer inside the kernel and have the inter-
rupt handler put the characters there, as shown in Fig. 5-15(c). When this buffer 
is full, the page with the user buffer is brought in, if needed, and the buffer copied 
there in one operation. This scheme is far more efficient. 

However, even this scheme suffers from a problem: What happens to charac-
ters that arrive while the page with the user buffer is being brought in from the 
disk? Since the buffer is full, there is no place to put them. A way out is to have 
a second kernel buffer. After the first buffer fills up, but before it has been emp-
tied, the second one is used, as shown in Fig. 5-15(d), When the second buffer 
fiUs up, it is available to be copied to the user (assuming the user has asked for it). 
While the second buffer is being copied to user space, the first one can be used for 
new characters. In this way, the two buffers take turns: while one is being copied 
to user space, the other is accumulating new input. A buffering scheme like this is 
called double buffering. 

Another form of buffering that is widely used is the circular buffer, It con-
sists of a region of memory and two pointers. One pointer points to the next free 
word, where new data can be placed. The other pointer points to the first word of 
data in the buffer that has not been removed yet. In many situations, the hardware 
advances the first pointer as it adds new data (e.g., just arriving from the network) 
and the operating system advances the second pointer as it removes and processes 
data. Both pointers wrap around, going back to the bottom when they hit the top, 

Buffering is also important on output. Consider, for example, hoW output is 
done to the modern without buffering using the model of Fig. 5-15(b). The user 
process executes a write system call to output n characters, The system has two 
choices at this point. It can block the user until all the characters have been writ-
ten, but this could take a very long time over a slow telephone line. It could also 
release the user immediately and do the I/O while the user computes some more, 
but this leads to an even worse problem: how does the user process know that the 
output has been completed and it can reuse the buffer? The system could generate 
a signal or software interrupt, but that style of programming is difficult and prone 
to race conditions, A much better solution is for the kernel to copy the data to a 
kernel buffer, analogous in Fig. 5-15(c) (but the other way), and unblock the caller 
immediately, Now it does not matter when the actual I/O has been completed. 
The user is free to reuse the buffer the instant it is unblocked. 

Buffering is a widely used technique, but it has a downside as well. If data 
get buffered too many times, performance suffers. Consider, for example, the net-
work of Fig. 5-16. Here a user does a system call to write to the network. The 
kernel copies the packet to a kernel buffer to allow the user to proceed immediate-
ly (step 1). At this point the user program can reuse the buffer. 
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2) is called, it copies the packet to the controller for output (step 
. I oes not output to the wire directly from kernel m . 

dapacket transmission has been started, it must continue at a u:t:;,: 
e nver cannot guarantee that it can get to memory at a unifonn speed b . 

other lIO devices may be stealing many cycles. Failihg 
troller, this packet. By buffering the packet inside the con-

out been cop!ed to. the controller's internal buffer, it is copied 
e ne wor step 3). BIts anwe at the recei h 1 af ' 

so just after the last bit has been sent that b't . ver short y . ter bemg sent, 

in the cont:oller. 
er (step 5) Usuall P 4). Fmally, lt lS copled to the receiving process' buff-

d . y, e receIver then sends back an acknowledgement Wh th 
it is free to send the next packet. 

considerably because an the the transmission rate 

Error Reporting 

Errors are far more in the context of I/O than in other context 
When the

d
y o.ccur, operatmg system must handle them as best it can Many er

s
. 

rors are eVIce-specific and t b h dl .-
framework for error handling appropriate driver, but the 

One class II? errors is programming errors. These occur when a roce 
asks for somethmg lmpos.sible, such as writing to an input device (keyboard 
ner, mouse, or readmg from an output device (printer plotter etc) 'Othe 
errors are provldmg an invalid buffer address or other 
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. . h the s stem has only two disks), and so on. 
an invalid devIce (e.g., dlsk 3 w.en . hYf ard" J"ust report back an error code 
The action to take on these errors IS stralg t orw . 
to the caller. . f t a1 I/O errors, for example, trying to 

Another class of errors IS the class 0 ac u. ead from a camcorder that 
- bl k h t has been damao-ed or trymg to r . write a dISk OC t a . '=' °t is up to the driver to determllle 

has been switched In these do it may pass the problem back 
what to do. If the drIver does not know w a , 
up to software. h nvironment and the nature of the er-

What thIS software does depends t e an "nteractive user available, it may 
fOr. If it is a simple error and t :r; tIS do options may include retrying 
display a dialog box asking w ha 

0 - 0 killin<:r the calling process. If 
. b f times lo-nonno- t e error, r b II a certam num er a ,b b 1 1 option is to have the system ca 

there is no user available, probably the on y rea 
fail with an error code. b handled this way. For example, a critical 

However, some errors e f ee block list may have been des-
data structure, such as the root splay an message and termi-
troyed. In this case, the system may ave 0 1 

nate. 

Allocating and Releasing Dedicated Devices 

Some such as 
esS at any gIven moment. It IS up t P d- hether the requested de-

d t reject them depen mg on w device usage an accep or. ' h dle these requests is to require proc-
vice is available or not. A snnple devices directly. If the is 
esses to perform opens .on the ch a dedicated device then releases It. 
unavailable, the open falls. Cl?smg su cial mechanisms for requesting and 

An alternative approach IS to have spe . a device that is not available 
. d di d devices An attempt to acqUIre releasmg e cate . .. rocesses are put on a queue. Sooner 

blocks the caller instead a! frulmg. and the first process on the queue 
or later, the requested deVIce becomes aval.a 
is allowed to acquire it and continue execution. 

Device-Independent Block Size 

. It . p to the device-indepen-
Different disks may have different size to higher layers, 

dent software to hide this fact and provIde a loo-ical block In this way, the 
for example, by treating several as. a Slr;; all use the logical block 
higher layers only deal with some character devices 
. - ddt of the phYSical sector SIze. 1, . . slze, m epen en . ( d IDS) while others deliver thelfs m 

deliver their data one byte at a time e.g., mo.e, also be hidden. 
larger units (e.g., network interfaces). These dIfferences may 
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5.3.4 User-Space I/O Software 

Although most of the I/O software is within the operating system, a small por-
tion of it consists of libraries linked together with user programs, and even whole 
programs running outside the kernel. System calls, including the I/O system calls, 
are nonnall y made by library procedures. When a C program contains the call 

count = write(fd, buffer, nbytes); 

the library procedure write will be linked with the program and contained in the 
binary program present in memory at run time. The collection of all these library 
procedures is clearly part of the I/O system. 

While these procedures do little more than put their parameters in the 
appropriate place for the system can, there are other I/O procedures that actually 
do real work. In particular, fonnatting of input and output is done by library pro-
cedures. One example from C is printf, which takes a fonnat string and possibly 
some variables as input, builds an ASCn string, and then calls write to output the 
string. As an example of printf, consider the statement 

printf("The square of %3d is %6d\n", i, i*i); 

It fonnats a string consisting of the 14-character string "The square of" followed 
by the value i as a 3-character string, then the 4-character string " is ", then i 2 as 
six characters, and finally a line feed. 

An example of a similar procedure for input is scan! which reads input and 
stores it into variables described in a format string using the same syntax as printf. 
The standard I/O library contains a number of procedures that involve I/O and all 
run as part of user programs. 

Not all user-level I/O software consists oflibrary procedures. Another impor-
tant category is the spooling system. Spooling is a way of dealing with dedicated 
I/O devices in a multiprogramming system. Consider a typical spooled device: a 
printer. Although it would be technically easy to let any user process open the 
character special file fOf the printer, suppose a process opened it and then did 
nothing for hours. No other process could print anything. 

Instead what is done is to create a special process, called a daemon, and a 
special directory, called a spooling directory. To print a file, a process first gen-
erates the entire file to be printed and puts it in the spooling directory. It is up to 
the daemon, which is the only process having pennission to use the printer's spe-
cial file, to print the files in the directory. By protecting the special file against 
direct use by users, the problem of having someone keeping it open unnecessarily 
long is eliminated. 

Spooling is not only used for printers. It is also used in other I/O situations. 
For example, file transfer over a network often uses a network daemon. To send a 
file somewhere, a user puts it in a network spooling directory. Later on, the net-
work daemon takes it out and transmits it. One particular lise of spooled file 
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.' . T News system. This network consists of millions of 
transmISSiOn 15 the USENE . u'" us,'ng the Internet Thousands of news . d th world commumca no . machmes e 'cs To ost a news message, the user invokes a news 
groups eXIst ?O many tOpI . essaP e to be posted and then deposits it in a 
program, whICh accepts m to machines later. The entire news system 
ino- directory for transffilSSlOfl 

outside the operatio? SYSlhemJj' 0 t m showino- all the layers and the princi-. 517 mmanzest e syse, I:;J • 
FIgure - su . at the bottom the layers are the hardware, m-

pal functions of each,layer: Startldog . _. depende'nt software, and finally the user 
terropt handlers, devIce dnvers, eVice m 
processes. 

I/O 
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I/O 
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. f the I/O system and the main functions of each layer. 
FIgure 5·17. Layers 0 

. Pi 5-17 show the flow of control. When a user program tries 
The arrows ill Ig. Ie the 0 erating system is invoked to carry 

to read a block from.a for looks for it in the buffer cache, for 
out the calL The not there, it calls the device driver to issue the 
example. If the ne . f the disk The process is then blocked untIl 
quest to the hardware to go get It rom . 
the disk generates an interrupt. The interrupt 

Whe.n the dISk?S 1:: has happened, that is, which device wants atten-
handler IS run to diSCOV h t to from the device and wakes up the sleep· . . ht It then extracts t e s as. 

ng h ff the I/O request and let the user process contlUue. 
lUg process to lUllS 0 

5.4 DISKS 

Now we will begin some real.l!O 
which are conceptually SImple, yet very Imp . 
clocks, keyboards, and displays. 
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5.4.1 Disk Hardware 

Disks come in a variety of types. The most common ones are the magnetic 
disks (hard disks and floppy disks). They are characterized by the fact that reads 
and writes are equally fast, which makes them ideal as secondary memory (pag-
ing, file systems, etc.). Arrays of these disks are sometimes used to provide high-
ly reliable storage. For distribution of programs, data. and movies, various kinds 
of optical disks (CD-ROMs, CD-Recordables, and DVDs) are also important. In 
the following sections we will fIrst describe the hardware and then the software 
for these devices. 

Magnetic Disks 

Magnetic disks are organized into cylinders, each one contammg as many 
tracks as there are heads stacked vertically. The tracks are divided into sectors, 
with the number of sectors around the circumference typically being 8 to 32 on 
floppy disks, and up to several hundred on hard disks. The number of heads varies 
from 1 to about 16. 

Older disks have little electronics and just deliver a simple serial bit stream. 
On these disks, the controller does most of the work. On other disks, in particular, 
IDE (Integrated Drive Electronics) and SATA (Serial ATA) disks: the disk 
drive itself contains a microcontroller that does considerable work and allows the 
real controller to issue a set of higher-level commands. The controller often does 
track caching, bad block remapping, and much more. 

A device feature that has important implications for the disk driver is the pos-
sibility of a controller doing seeks on two or more drives at the same time. These 
are known as overlapped seeks. While the controller and software are waiting 
for a seek to complete on one drive, the controller can initiate a seek on another 
drive. Many controllers can also read or write on one drive while seeking on one 
or more other drives, but a floppy disk controller cannot read or write on two 
drives at the same time. (Reading or writing requires the controller to move bits 
on a microsecond time scale, so one transfer uses up most of its computing pow-
er.) The situation is different for hard disks with integrated controllers, and in a 
system with more than one of these hard drives they can operate simultaneously, 
at least to the extent of transferring between the disk and the controller's buffer 
memory. Only one transfer between the controller and the main memory is pos-
sible at once, however. The ability to perform two or more operations at the same 
time can reduce the average access time considerably. 

Figure 5-18 compares parameters of the standard storage medium for the orig-
inal IBM PC with parameters of a disk made 20 years later to show how much 
disks changed in 20 years. It is interesting to note that not aU parameters have 
improved as much. Average seek time is seven times better than it was, transfer 
rate is 1300 times better, while capacity is up by a factor of 50,000. This pattern 
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has to do with relatively gradual improvements in the moving parts, but much 
higher bit densities on the recording surfaces. 

Parameter IBM 360w KB floppy disk WD 18300 hard disk 
Number of cylinders 40 10601 
Tracks per cylinder 2 12 
Sectors per track 9 281 (avg) 
Sectors per disk 720 35742000 
Bytes per sector 512 512 
Disk capacity 360KS 18.3 GS 
Seek time (adjacent cylinders) 6 msec 0.8 msec 
Seek time (average case) 77 msec 6.9msec 
Rotation time 200 msec 8.33 msec 
Motor stop/start time 250msec 20 sec 
Time to transfer 1 sector 22 msec 17 IlSec 

Figure Disk parameters for the original reM PC 360-KB floppy disk and 
a Western Digital WD 18300 hard disk. 

One thing to be aware of in looking at the specifications of modern hard disks 
is that the geometry specified, and used by the driver software, is almost always 
different from the physical fonnat. On old disks, the number of sectors per track 
was the same for all cylinders. Modern disks are divided into zones with more 
sectors on the outer zones than the inner ones. Fig. 5-19(a) iilustrates a tiny disk 
with two zones. The outer zone has 32 sectors per track; the inner one has 16 sec-
tors per track. Areal disk, such as the WD 18300, typically has 16 or more zones, 
with the number of sectors increasing by about 4% per zone as one goes out from 
the innermost zone to the outennost zone. 

To hide the details of how many sectors each track has, most modem disks 
have a virtual geometry that is presented to the operating system. The software is 
instructed to act as though there are x cylinders, y heads, and z sectors per track. 
The controller then remaps a request for (x, y, z) onto the real cylinder, head, and 
sector. A possible virtual geometry for the physical disk of Fig. 5-19(a) is shown 
in Fig. 5-19(b). In both cases the disk has 192 sectors, only the published arrange-
ment is different than the real one. 

For PCs, the maximum values for these three parameters are often (65535, 16, 
and 63), due to the need to be backward compatible with the limitations of the 
original IBM PC On this machine, 16-. 4-, and 6-bit fields were used to specify 
these numbers, with cylinders and sectors numbered starting at 1 and heads num-
bered starting at O. With these parameters and 512 bytes per sector, the largest 
possible disk is 31.5 GB. To get around this limit, all modem disks now support a 
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5·19. (a) Physical geometry of a disk with two zo 
vlItual geometry for this disk. nes. (b) A possible 

system called logical block addreSSing in which d· k .• 
consecutively starting at 0 without regar'd to th d' kIS sectors are Just numbered , e IS geometry. 
RAID 

WejXthPodinsekntialrflY over the past decade, 
k . . . ' pe onnance. In the 1970s average see tImes On mmicOmputer disks were 50 to 100 s N k" :re under 10 msec. In most technical industries 

, a actor of 5 to 10 perfonnance improvement in t 
major news (imagine 300 MPG cars), but in the computer 

CPU performance and disk perfonnance has 

CPU As wrfe have seen
j
, parallel processing is being used more and more to speed up 

pe ormance. t has occurred to ar' I 
I/O :night .be a good idea too. In their that 
specific dISk organizations that could be us d; . . . suggested SIX 
reliability, or both (Patterson et a1 1988) The Oct Improve performance, 
. ., . ese 1 eas were qUickly ad t d b 
Industry and have led to a new class of I/O device called a RAID P op e y 
defined RAID as Redundant Arra fl" . atterson et at 
the I be ."Indepe?de.nt" rather th:n 
more.). Smce a vlllam was also needed (as in RISC versus I d g 
Patterson), the bad guy here was the SLED (Single Large Expensive' ue to 
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. . RAID is to install a box full of disks next to the corn-

The basic Idea behmd a epiace the disk controller card with a RAID con-

P
uter typically a large server, hr RAID and then continue normal operation. In 

, h dataoverto t e, . b h 
troller, copy t hould look like a SLED to the operatmg system ut ave 
other words, a _ S d better reliability. Since SCSI disks have per-
better e the ability to have up to seven driv.es on a smgie 
forrnance, low SCSI) it is natural that most RAIDs consIst of a RAID . 
troller (15 for wIde f SCSI disks that appear to the operating system as a 
controller plus a 0 ftware chancres are required to use the RAID, a bIg 

d" sk In thiS way, no so 0 

large 1 : f an system administrators. h 
selling pomt or my. l'ke a sinale disk to the software, all RAIDs have.t e 

In addition to the drives, to allow parallel operatlOn. 
roperty that the data ar . a his were defined by Patterson et al., and they 

different for RAID level 5. In addition, there. are a 
are noW known as RA eve '11 not discuss The term "level" is somethmg of 
few other min?r levels we there are simply six different 

, o ....... er smce there IS no 
.' ' 

organIzatlons POSS1? .' d' F 5-20(a) It consists of vlewmg the vIrtual 
RAID 0 IS Illustrate being 'divided up into strips of k sectors 

single strip 0, sectors k to 2k - 1 as strip 1, and so 
each, wIth sectors . o. sector- for k "'" 2 a strip is two sectors, etc. The RAI. 
For k := 1, each stnp IS , u've strips over the drives in round-robm 

. ation wntes consecu . 
level 0 . . 20(a) for a RAID with four disk dnves. 
fashion, as 10 Fig. 5- ltiple drives like this is called striping. For ex-

Distributmg data mu and to read a data block consisting of four 
ample, if the s?ftware .Issues a the RAID controller will break this 
consecutive stnpS startmg at a stnp ands 'one for each of the four disks, and 
cornIDand up into parallel I/O without the. software 
have them 10 par e. 

works best with 
the number of drives tImes the stnp SIze, 

quest is larger than th t when they finish the first request they start the second 
so to split the request up and feed the proper 

one. It IS up to t e con . h ence and then assemble the results III memory 
to the proper disks in ng and the implementation is straightforward. 
correctly. with operating systems that habitually ask -:or data 

RAID level . wor results will be correct, but there is n? and 
one sector at a hme. T . Another disadvantage of this orgamzauon. IS that the 
hence no performance gam. h· SLED If a RAID consIsts of four 

. -' f ally worse than avmg a· 5000 reliabIlIty IS poten 1 . f 'I re of 20 000 hours about once every h ·th a mean time to 31 u , -' ED 'h 
disks, eac . WI. . d all the data will be completely lost. A SL WIt a 
hours a dnve fallfa2nO 000 hours would be four times more reliable. Because 

f me to faIlure 0 , RAID 
is present in this design, it is not really a true . 
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The next option, RAID levell, shown in Fig.5-20(b), is a true RAID. It 
duplicates all the disks, so there are four primary disks and four backup disks. On 
a write, every strip is written twice. On a read, either copy can be used, distribut-
ing the load over more drives. Consequently, write performance is no better than 
for a single drive, but read performance can be up to twice as good. Fault toler-
ance is excellent: if. a drive crashes, the copy is simply used instead. Recovery 
consists of simply installing a new drive and copying the entire backup drive to it. 

Unlike levels 0 and 1, which work with strips of sectors, RAID level 2 works 
on a word basis, possibly even a byte basis. Imagine splitting each byte of the sin-
gle virtual disk into a pair of 4-bit nibbles, then adding a Hamming code to each 
one to form a 7-bit word, of which bits 1, 2,- and 4 were parity bits. Further ima-
gine that the seven drives of Fig. 5-20( c) were synchronized in tenns of arm POS!-
tion and rotational position. Then it would be possible to write the 7-bit Hamming 
coded word over the seven drives, one bit per drive. 

The Thinking Machines CM-2 computer used this scheme, taking 32-bit data 
words and adding 6 parity bits to fonn a 38-bit Hamming word, plus an extra bit 
for word parity, and spread each word over 39 disk drives. The total throughput 
was immense, because in one sector time it could write 32 sectors worth of data. 
Also, losing one drive did not cause problems, because loss of a drive amounted 
to losing 1 bit in each 39-bit word read, something the Hamming code could hand-
le on the fly, 

On the down side, this scheme requires all the drives to be rotationally syn-
chronized, and it only makes sense with a substantial number of drives (even with 
32 data drives and 6 parity drives, the overhead is 19%). It also asks a lot of the 
controller, since it must do a Hamming checksum every bit time. 

RAID level 3 is a simplified version of RAID level 2. It is illustrated in 
Fig.5-20(d). Here a single parity bit is computed for each data word and written 
to a parity drive. As in RAID level 2, the drives must be exactly synchronized, 
since individual data words are spread over multiple drives. 

At fITst thought, it might appear that a single parity bit gives only error detec-
tion, not error correction. For the case of random undetected errors, this observa-
tion is true. However, for the case of a drive crashing, it provides full I-bit error 
correction since the position of the bad bit is known. If a drive crashes, the con-
troner just pretends that all its bits are Os. If a word has a parity error, the bit from 
the dead drive must have been a 1, so it is corrected. Although both RAID levels 2 
and 3 offer very high data rates, the number of separate I/O requests per second 
they can handle is no better than for a single drive. 

RAID levels 4 and 5 work with strips again, not individual-words with parity, 
and do not require synchronized drives. RAID level 4 [se-e Fig. 5-20(e)} is like 
RAID level 0, with a strip-for-strip parity written onto an extra drive. For ex-
ample, if each strip is k bytes long, all the strips are EXCLUSNE ORed together, 
resulting in a parity strip k bytes long. If a drive crashes, the lost bytes can be 
recomputed from the parity drive by readinK entire set of drives. 
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Strip 0 Strip 1 Strip 2 

(a) SIrip4 StripS Strip 6 Strip? RAID leve! 0 

StripS Strip 9 Strip 10 Strip 11 

Strip 0 Strip 1 ,Str)"p,-? 
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(b) SIrip4 StripS Strip 6 Strip? l3triR4 __ , ;$!rip level 1 

StripS Strip 9 Strip 10 Strip 11 Strip'_S' " -S.trip':1o' 

§B'" '. GB,t2 8't3 8it4 " 
RAID leve!2 (e) 

§it1 Bit 
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't3 .• 
RAID level 3 (d) 

(e) SIrip4 StripS Strip 6 Strip? RAID level 4 

StripS Strip 9 Strip 10 Strip 11 

Strip 0 Strip 1 Strip 2 Strip 3 , 
SIrip4 StripS Strip 6 P4-7 Strip 7 

(D Strip 8 Strip 9 P$'11 Strip 10 Strip 11 RAID levelS 

Strip 12 Pi2-15 Strip 13 Strip 14 Strip 15 

P16-19 Strip 16 Strip 17 Strip 18 Strip 19 

Figure 5·20. RAID levels 0 through 5. Backup and parity drives are shown shaded. 
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This design protects against the loss of a drive but performs poorly for small 

updates. If one sector is changed, it is necessary to read ail the drives in order to 
recalculate the parity, which must then be rewritten. Alternatively, it can read the 
old user data and the old parity data and recompute the new parity from them. 
Even with this optimization, a small update requires two reads and two writes. 

As a consequence of the heavy load on the parity drive, it may become a 
bottleneck. This bottleneck is eliminated in RAID level 5 by distributing the par-
ity bits uniformly over all the drives, round robin fashion, as shown in Fig. 5-
20(£). However, in the eVent of a drive crash, reconstructing the contents of the 
failed drive is a complex process. 

CD-ROMs 

In recent years, optical (as opposed to magnetic) disks have become available. 
They have much higher recording densities than conventional magnetic disks. 
Optical disks were originally developed for recording television programs, but 
they can be put to more esthetic use as computer storage devices. Due to their 
potentially enonnous capaCity, optical disks have been the subject of a great deal 
of research and have gone through an incredibly rapid evolution. 

First-generation optical disks were invented by the Dutch electronics 
conglomerate Philips for holding movies. They were 30 cm across and marketed 
under the name LaserVision, but they did not catch on, except in Japan. 

In 1980, Philips, together with Sony, developed the CD (Compact Disc), 
which rapidly replaced the 33 1/3-RPM vinyl record for music (except among 
connoisseurs, who still prefer vinyl). The precise technical details for the CD 
were published in an official International Standard (IS 10149), popularly called 
the Red BOOk, due to the color of its caver. (International Standards are issued by 
the International Organization for Standardization, which is the international 
Counterpart of national standards groups like ANSI, DIN, etc. Each one has an IS 
number.) The paint of publishing the disk and drive specifications as an Interna-
tional Standard is to allow CDs from different music publishers and players from 
different electronics manufacturers to work together. All CDs are 120 mm across 
and 1.2 rum thick, with a 15-mm hole in the middle. The audio CD was the first 
successful mass market digital storage medium. They are supposed to last 100 
years. Please check back in 2080 for an update On how well the first batch did. 

A CD is prepared in several steps. The step consists of using a high-power 
infrared laser to burn 0.8-micron diameter holes in a coated glass master disk. 
From this master, a mold is made, with bumps where the laser..holes were. Into 
this mold, molten polycarbonate resin is injected to fonn a CD with the same pat-
tern of holes as the glass master. Then a very thin layer of reflective aluminum is 
deposited on the polycarbonate, topped by a protective lacquer and finally a label. 
The depressions in the polycarbonate substrate are called pits; the unburned areas 
between the pits are called lands. 
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When played back, a low-power laser diode shines infrared light
1
with.a 

. h' and lands as they stream by. The aser IS on e 
length of 0.78 nucron on t e laser as bumps in the otherwise 
polycarbonate side, so the the wavelength of the 

=Jitais 
the than light bouncing a 

the :::: a 1 .and absence a 0, so :== 
The pits and lands are written m a smgle contmuollS Spif Th ;:' 1 ak s 

hole and working out a distanc.e of 32 mm toward the 
22,188 revolutions around the dIsk 600 per mm). , 
5.6 km long. The spiral is illustrated III Fig. 5-21. 

Spiral groove 

Pit 
Land 

2K block of 
user data 

Figure 5.21. Recording structure of a compact disc or CD-ROM. 

. c la at a uniform rate, it is necessary for the pits and lands 
to velocity. consequendtlY, the 

. d d th eadina hea moves rom CD must be contmuously re uce as e r . 0 • 530 RPM to achieve the 
the CD to the outside. At the inside, the ihS d to 200 RPM to 

. f 120 rnJ . at the outside It as to rop 
A constant linear velocity drive is 

gIve the same me .. . . h tes at a constant angular velocity, 
different than a magnetlc dIsk willc d Also 530 RPM is a far cry 
. de endent of where the head IS currently posltlOne. . ' 
fm Pth 3600 to 7200 RPM that most magnetic disks Whlrl at. rom e .'a! f . ng CDs to store com-In 1984 Philips and Sony reahzed the potentl USl . d d f 
puter data, 'so they published the Yellow Book definmg a precIse stan ar or 
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what are now called CD-ROMs (Compact Disc - Read Only Memory). To pig-
gyback on the by-then already substantial audio CD market, CD-ROMs were to 
be the same physical size as audio CDs, mechanically and optically compatible 
with them, and produced using the same polycarbonate injection molding ma-
chines. The consequences of this decision were not only that slow variable-speed 
motors were but also that the manufacturing cost of a CD-ROM would 
be well under one dollar in moderate volume. 

What the Yellow Book defined was the formatting of the computer data. It 
also improved the error-correcting abilities of the system, an essential step be-
cause although music lovers do not mind losing a bit here and there, computer 
lovers tend to be Very Picky about that. The basic format of a consists 
of encoding every byte in a 14-bit symbol, which is enough to Hamming encode 
an 8-bit byte with 2 bits left Qver. In fact, a more powerful encoding system is 
used. The 14-to-8 mapping for reading is done in hardware by table lookup. 

At the next level up, a group of 42 consecutive symbols forms a 588-bit 
frame. Each frame holds 192 data bits (24 bytes). The remaining 396 bits are 
used for error correction and controL Of these, 252 are the error-correction bits in 
the 14-bit symbols and 144 are carried in the 8-bit symbol payloads. So far, this 
scheme is identical for audio CDs and CD-ROMs. 

What the Yellow Book adds is the grouping of 98 frames into a CD-ROM 
sector, as shown in Fig. 5-22. Every CD-ROM sector begins with"a 16-byte 
preamble, the first 12 of which are OOFFFFFFFFFFFFFFFFFFFFOO (hexade-
cimal), to allow the player to recognize the start of a CD-ROM sector. The next 3 
bytes contain the sector number, needed because seeking on a CD-ROM with its 
single data spiral is much more difficult than on a magnetic disk with its uniform 
concentric tracks. To seek, the software in the drive calculates approximately 
where to go, moves the head there, and then starts hunting around for a preamble 
to see how good its guess was. The last byte of the preamble is the mode. 

CI CI r::::l ••• CI CI CI Each symbol holds 8 data bits and 6 error-correction bits 

142 Symbols make 1 frame of 14 x 42 '" 588 bits 
+ Each frame contains 192 

Cl CI t::l t::l t::l CJ Cl c:l t::l CI t::l CJ Cl CJ Cl Cl data bits (24 bytes) and 
396 error-correction bits 

Preamble 98 Frames make 1 sector 
Mode 1 

Data sector 
LL _______________ -'---,-:c--'(2352 bytes) 

288 Bytes 16 2048 

Figure 5-22. Logical data layout on a CD-ROM. 

The Yellow Book defines two modes. Mode 1 uses the layout of Fig. 5-22, 
with a l6-byte preamble, 2048 data bytes, and a 288-byte error-correcting code (a 
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crossinterleaved Reed-Solomon code). Mode 2 combines the data and ECC fields 
into a 2336-byte data field for those applications that, do not, need (or cannot 
afford the time to perform) error correction, such as audIo ,and vIdeo. Note that 
provide excellent reliability, three error-correctmg sche,mes ar:e used. 
within a symbol, within a frame, and wlthm a CD-ROM sector. Smgle-bit errOrs 
are corrected at the lowest level, short burst errors are corrected the ff,arne 
and any residual errors are caught at the sector leveL The pnce prud for, thIs 
reliability is that it takes 98 frames of 588 bits (7203 bytes) to carry a smgle 
2048-byte payload, an efficiency of only 28%. . . 

Single-speed CD-ROM drives operate at 75 sectors/sec,. WhICh gIves a data 
rate of 153,600 bytes/sec in mode 1 and 175,200 bytes/sec ill mode 2. Double-
speed drives are twice as fast, and so on up to the hIghest speed. Thus a ?rive 
can deliver data at a rate of 40 x 153,600 bytes/sec, assuming that the drive.mter-
face, bus, and operating system can all hand.Ie this data rate. A audiO CD 
has room for 74 minutes of music, which, If used for mode 1 data, gIVes a capa-
city of 681,984,000 bytes. This figure is usually reported as 650 MB because 1 
MB is 220 bytes (1,048,576 bytes), not 1,000,000 bytes. . 

Note that even a 32x CD-ROM drive (4,915,200 bytes/sec) IS no match for a 
fast SCSI-2 maonetic disk drive at 10 MB/sec, even though many 
drives use the SCSI interface (IDE CD-ROM drives also exist). When you realIze 
that the seek time is usually several hundred milliseconds, it should be 
CD-ROM drives are not in the same performance category as magnetIc disk 
drives, despite their large capacity. . ' 

In 1986, Philips struck again with the Green Book, addmg graphICS and 
ability to interleave audio, video, and data in the same sector, a feature essentIal 
for multimedia CD-ROMs. . . 

The last piece of the CD-ROM puzzle is the file system. To make It pOSSIble 
to use the same CD-ROM on different computers, agreement was needed on .CD-
ROM file systems. To get this agreement, of .many computer 
companies met at Lake Tahoe in the High Sierras on the CalIfOrnIa-Nevada 
dary and devised a file system that they called High Sierra. It later evolved mto 
an International Standard (IS 9660). It has three levels. Level 1 uses file names of 
up to 8 characters optionally followed by an extension of uP. to 3 characters (the 
MS-DOS file naming convention). File names may contam only upper case 
letters, digits, and the underscore. Directories may be up to eIght deep, but 
directory names may not contain 1 requITes all files to be con-
tiguous which is not a problem on a medlUm wntten only once. Any CD-ROM 

to IS 9660 level I can be read using MS-DOS, an Apple. computer, a 
UN1X computer, or just about any other computer. CD-ROM publIshers regard 
this property as being a big plus. 

IS 9660 level 2 allows names up to 32 characters, and level 3 allows 
tiguous files. The Rock Ridge extensions (whimsically named after the town m 
the Gene Wilder film Blazing Saddles) allow very long names (for UNIX), UIDs, 
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Gills, and symbolic links, but CD-ROMs not confonning to level 1 will not be 
readable on all computers. 

CD-ROMs have become extremely popular for publishing games, movies, 
encylopedias, atlases, and reference works of all kinds. Most commercial software 
now comes on CD-ROMs. Their combination of large capacity and low manufac-
turing cost makes them well suited to innumerable applications. 

CD-Recordables 

Initially, the equipment needed to produce a master CD-ROM (or audio CD, 
for matter) was .extremely expensive. But as usual in the computer industry, 
nothmg stays expenSIVe for long. By the mid 1990s, CD recorders no bigger than 
a CD player were a common peripheral available in most computer stores. These 
devices were still different from magnetic disks because once written, CD-ROMs 
could not be erased. Nevertheless, they quickly found a niche as a backup medium 
for larg: hard disks and also allowed individuals Or startup companies to manufac-
ture theIr own small-run CD-ROMs or make masters for delivery to hioh-volume 
commercial CD duplication plants. These drives are known as (CDw 
Recordables). 

Physically, CD-Rs start with 120-rom polycarbonate blanks that are like CD-
ROMs, except that they contain a 0.6-mm wide groove to guide the laser for writ-
ing. The groove a excursion of OJ mm at a frequency of exactly 
22.0? kHz to prov.lde feedback so the rotation speed can be accurately 
momtored and adjusted If need be. CD-Rs look like regular CD-ROMs, except 
that they are gold colored on top instead of silver colored. The gold color comes 
from the use of real gold instead of aluminum for the reflective layer. Unlike 
silver wh.ich have physical depressions on them, on CD-Rs the differing 
reflectlv1ty of pItS and lands has to be simulated. This is done by adding a layer of 
dye the pOlycarbonate and the reflective gold layer, as shown in Fig. 5-
23. Two kinds of dye are used: cyanine, which is green, and ptbalocyanine, which 
is a yellowish orange. Chemists can argue endlessly about which one is better. 
These dyes are similar to those used in photography, which explains why Eastman 
Kodak and Fuji are major manufacturers of blank CD-Rs. 

In its initial state, the dye layer is transparent and lets the laser light pass 
and reflect off the gold layer. To write, the CD-R laser is turned up to 

high power (8-16 mW). When the beam hits a spot of dye, it heats up, breaking a 
chemical bond. This change to the molecular structure creates a dark spot. When 
read back (at 0.5 mW), photodetector sees a difference between the dark spots 
where the dye has been hIt and transparent areas where it is·intact. This difference 
is interpreted as the difference between pits and-lands, even when read back on a 
regular reader or even on an audio CD player. 

No new kind of CD could hold up its head with pride without a colored book, 
so CD-R has the Orange BOOk, published in 1989. This document defines CD-R 
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Printed label 
/ 

Dark spot in the Reflective old Ja er dye layer burned 
Dye layer by laser when !., writing 
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--of motion rLens 

Photodetecto' -o--+pnsm 

lJ- lnfrared 
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Figure 5.23. Cross section of a CD·R disk and laser (not to scale): A 
CD-ROM has a similar structure, except without the dye layer and WIth a pltted 
aluminum layer instead of a gold layer. 

and also a new fonnat, XA, which allows CD-Rs to be written incre-
mentally, a few sectors today, a few tomorrow, and a few next month. A group of 
consecutive sectors written at once is called a track. . 

One of the first uses of CD-R was for the Kodak PhotoeD. In tius system the 
customer brings a roll of exposed film and his old PhotoCD to the photo processor 
and gets back the same PhotoCD with the new pictures .the old ones. 
The new batch, which is created by scanning in the negatIves, IS wntten onto the 
PhotoCD as a separate CD-ROM track. Incremental writing was ne.eded 
when this product was introduced, the CD-R blanks were too expenSIve to provlde 
a new one for every film roll. . 

However, incremental writing creates a new problem. Pnor to the Orange 
Book, all CD-ROMs had a single VTOC (Volume Table of Contents) at the 
start That scheme does not work with incremental (i.e., multItrack) wntes. The 
Orange Book's solution is to give each CD-ROM track its own 'YTOc. The files 
listed in the VTOC can include some or all of the files from preVIOUS tracks. After 
the CD-R is inserted into the drive, the operating system searches through all the 
CD-ROM tracks to locate the most recent VTOC, which gives the current status 
of the disk. By including some, but not all, of the files from previous tracks in the 
current VTOC, it is possible to give the illusion that files have been deleted. 
Tracks can be grouped into sessions, leading to multisession CD-ROMs. 
dard audio CD players cannot handle multisession CDs since they expect a smgle 
VTOC at the start. Some computer applications can handle them, though. 
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CD-R makes it possible for individuals and companies to easily copy CD-
ROMs (and audio CDs), generally in violation of the publisher's copyright. Sever-
al schemes have been devised to make such piracy harder and to make it difficult 
to read a CD-ROM using anything other than the publisher's software. One of 
them involves recording all the file lengths on the CD-ROM as multigigabyte, 
thwarting any attempts to copy the files to hard disk using standard copying soft-
ware. The true lengths are embedded in the publisher's software or hidden (pos-
sibly encrypted) on the CD-ROM in an unexpected place. Another scheme uses 
intentionally incorrect ECCs in selected sectors, in the expectation that CD copy-
ing software will "fix" the errors. The application software checks the ECCs it-
self, refusing to work if they are correct. Using nonstandard gaps between the 
tracks and other physical «defects" are also possibilities. 

CD-Rewritables 

Although people are used to other write-once media such as paper and photo-
graphic film, there is a demand for a rewritable CD-ROM. One technology now 
available is CD-RW (CD-ReWritable), which uses the same size media as CD-
R. However, instead of cyanine or pthalocyanine dye, CR-RW uses an alloy of 
silver, indium, antimony, and tellurium for the recording layer. This alloy has two 
stable states: crystalline and amorphous, with different reflectivities. 

CD-RW drives use lasers with three different powers. At high power, the 
laser melts the alloy, converting it from the high-reflectivity crystalline state to 
the low-reflectivity amorphous state to represent a pit. At medium power, the 
alloy melts and reforms in its natural crystalline state to become a land again. At 
low power, the state of the material is sensed (for reading), but no phase transition 
occurs. 

The reason CD-RW has not replaced CD-R is that the CD-RW blanks are 
more expensive than the CR-R blanks. Also, for applications consisting of back-
ing up hard disks, the fact that once written, a CD-R cannot be accidentally erased 
is a big plus. 

DVD 

The basic CD/CD-ROM format has been around since 1980. The technology 
has improved since then, so higher-capacity optical disks are now economically 
feasible and there is great demand for them. Hollywood would dearly love to 
eliminate analog video tapes in favor of digital disks, since disks have a higher 
quality, are cheaper to manufacture, last longer, take up less sht;::'lf space in video 
stores, and do not have to be rewound. The consumer electronics companies are 
always looking for a new blockbuster product, and many computer companies 
want to add multimedia features to their software. 

This combination of technology and demand by three immensely rich and 
powerful industries led to DVD, originally an acronym for Digital Video Disk, 
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but now officially Digital Versatile Disk. DVDs use the same as 
CDs, with 120-mm injection-molded polycarbonate disks contammg PIts 
lands that are illuminated by a laser diode and read by a photodetector. What IS 

new is the use of 
1. Smaller pits (0.4 microns versus 0.8 microns for CDs). 

2. A tighter spiral (0.74 microns between tracks versus 1.6 microns for CDs). 

3. A red laser (at 0.65 microns versus 0.78 microns for CDs). 

Together, these improvements raise the capacity sevenfold, to 4.7 GB. A Ix DVD 
drive operates at 1.4 ME/sec (versus 150 KB/sec for CDs). Unfortunately: the 
switch to the red lasers used in supermarkets means that DVD players reqUire a 
second laser or fancy conversion optics to be able to read existing COs and CD-
ROMs. But with the drop in price of lasers, most of them now iive both of them 
so they can read both kinds of media. . ' . 

Is 4.7 GB enough? Maybe. Using MPEG-2 compressIOn (standardIzed m. IS 
13346), a 4.7 GB DVD disk can hold 133 minutes of full-screen, full-motIOn 
video at high resolution (720 x 480), as wen as soundtracks III up to eIght lan-
guages and subtitles in 32 more. About 92% of all the Hollywood 
made are under 133 minutes. Nevertheless, some apphcatlOns such as multlmedla 
games or reference works may need more, and Hollywood like to put mul-
tiple movies on the same disk, so four formats have been defmed: 

1. Single-sided, single-layer (4.7 GB). 

2. Single-sided, dual-layer (8.5 GB). 

3. Double-sided, single-layer (9.4 GB). 

4. Double-sided, dual-layer (17 GB). 

Why so many formats? In a word: politics. Philips and Son.y wanted 
dual-layer disks for the high capacity version, but ToshIba and Tune Warner 
wanted double-sided, single-layer disks. Philips and Sony did not think people 
would be willing to turn the disks over, and Time Warner did not pu:ting 
two layers on one side could be made to work. The compromise: all combmahons, 
but the market will determine which ones survive. 

The dual layering technology has a reflective layer at the bottom, topped with 
a semireflective layer. Depending on where the laser is focused, it bounces off 
one layer or the other. The lower layer needs slightly larger pits and lands to be 
read reliably, so its capacity is slightly smaller than the upper layer's. 

Double-sided disks are made by taking two 0.6-mm single-sided disks and 
gluing them together back to back. To make the. thicknesses of all versions the 
same, a single-sided disk consists of a 0.6-mro dIsk bonded to a blank substrate 
(or perhaps in the future, one consisting of 133 minutes of advertising, in the hope 
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that people will be curious as to what is down there). The structure of the 
double-sided, dual-layer disk is illustrated in Fig. 5-24. 

Semireflective 

Aluminum 
reflector 

Aluminum 
reflector 

Figure A double-sided, dual-layer DVD disk. 

Semireflectlve 
layer 

DVD was devised by a consortium of 10 consumer electronics companies, 
seven of them Japanese, in close cooperation with the major Hollywood studios 
(some of which are owned by the Japanese electronics companies in the Consor-
tium). The computer and telecommunications industries were not invited to the 
picnic, and the resulting focus was on using DVD for movie rental and sales 
shows. For example, standard features include real-time skipping of dirty scenes 
(to allow parents to turn a film rated Ne17 into one safe for toddlers), six-channel 
sound, .and for Pan-and-Scan. The latter feature allows the DVD player to 
dynamIcally deCIde how to crop the left and right edges off movies (whose 
width:height ratio is 3:2) to fit on current television sets (whose aspect ratio is 
4:3). 

Another item the computer industry probably would not have thought of is an 
intentional incompatibility between disks intended for the United States and disks 
intended for Europe and yet other standards for other continents. Hollywood de-
manded this "feature" because new films are always released first in the United 
States and then shipped to Europe when the videos come out in the United States. 
The idea was to make sure European video stores could not buy videos in the U.S. 
too early, thereby reducing new movies' European theater sales. If Hollywood 
had been running the computer industry, we would have had 3.5-inch floppy disks 
in the United States and 9-cm floppy disks in Europe. 

The folks who brought you single/double-sided DVDs and single/double-layer 
are It agam. !he next generation also lacks a single staQ-dard due to polit-

Ical blckenng by the mdustry players. One of the new devices is Blu-ray, which 
uses a 0.405 micron (blue) laser to pack 25 GB onto a single-layer disk and 50-
GB onto a double-layer disk. The other one is HD DVD, which uses the same 
blue laser but has a capacity of only 15 GB (single layer) and 30 GB (double 
layer). This fonnat war has split the movie studios, the computer manufacturers, 
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and the software companies. As a result of the lack of standardization, this gen-
eration is takino off rather slowly as consumers wait for the dust to settle to see 
which fonnat ;ill win. This stupidity on the part of the industry brings to mind 
George Santayana's famous remark: "Those who cannot learn from history are 
doomed to repeat it." 

5.4.2 Disk Formatting 

A hard disk consists of a stack of aluminum, alloy, or glass platters 5.25 inch 
or 3.5 inch in diameter (or even smaller on notebook computers). On each 
is deposited a thin magnetizable metal oxide. After manufacturing, there IS no 
infonnation whatsoever on the disk. 

Before the disk can be used, each platter must receive a low-level format 
done by software. The format consists of a series of concentric tracks, each con-
taining some number of sectors, with short gaps between the sectors. The fonnat 
of a sector is shown in Fig. 5-25. 

! Preamble I Data 

Figure A disk sector. 

The preamble starts with a certain bit pattern that allows the hardware to 
recocrnize the start of the sector. It also contains the cylinder and sector numbers 
and other information. The size of the data portion is determined by the 
low-level formatting program. Most disks use 5l2-byte sectors. The Eee field 
contains redundant information that can be used to recover from read errors. ",fhe 
size and content of this field varies from manufacturer to manufacturer, depending 
on how much disk space the designer is willing to give up for higher reliabilit.y 
and how complex an Bee code the controller can handle. A 16-byte Eee field IS 
not unusuaL Furthermore, all hard disks have some number of spare sectors allo-
cated to be used to replace sectors with a manufacturing defect. . 

The position of sector 0 on each track is offset from the preVIOUS when 
the low-level format is laid down. This offset, called cylinder skew, IS done to 
improve performance. The idea is to allow the disk to read multiple tracks in one 
continuous operation without losing data. The nature of the problem be seen 
by looking at Fig. 5-19(a). Suppose that a request needs 18 sectors at 
tor 0 on the innermost track. Reading the first 16 sectors takes one dISk 
but a seek is needed to move outward one track to get the 17th sector. By the lime 
the head has moved one track, sector 0 has rotated past the head so an entire rota-
tion is needed until it comes by again. That problem is eliminated by offsetting the 
sectors as shown in Fig, 5-26. 
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Figure 5-26. An illustration of cylinder skew. 

Direction of disk 
rotation 

375 

The amount of cylinder skew depends On the drive geometry. For example, a 
lO,OOO-RPM drive rotates in 6 msec. If a track contains 300 sectors a new sector 
passes under the head every 20 If the seek is 800 !-,-sec, 
40 sectors will pass by during the seek, so the cylinder skew should be 40 sectors, 
rather than the three sectors shown in Fig. 5-26. It is worth mentioning that 
switching between heads also takes a finite time, so there is head skew as well as 
cylinder skew, but head skew is not very large. 

a result of the low-Ie:el formatting, disk capacity is reduced, depending on 
the SIZes of the preamble, mtersector gap, and Eee, as wen as the number of 
spare sectOrs reserved. Often the formatted capacity is 20% lower than the unfor-
matted capacity. The spare sectors do not count toward the formatted capacity, so 
all disks of a given type have exactly the same capacity when shipped, indepen-
dent of how many bad sectors they actually have (if the number of bad sectors 
exceeds the number of spares, the drive will be rejected and not-shipped). 

There is considerable confusion about disk capacity because some manufact-
urers advertised the unformatted capacity to make their drives look larger than 
they really are. For example, consider a drive whose unfonnatted capacity is 
200 x 109 bytes. This might be sold as a disk. However after formattincr 9 ' b' perhaps only 170 x 10 bytes are available for data. To add to the confusion, the 
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. . b bi re ort this capacity as 158 GB, not 170 GB be-
operatmg system will pro a Y p B b 230 (I 073741 824) bytes, not 
cause software considers a memory of 1 G to e ", 
10' (1,000,000,000) bytes. . the world of data communications, 1 Gbps means 

To make thmgs worse, In . es mean 109 (a kilometer 
1,000,000,000 bits/sec because the prefix glga do nd disk sizes do 
is 1000 meters not 1024 meters, after all)·o Only 'Zolth 

. ' 210 220 23 and 2 respecttve y. 
kilo, mega, glga, and tera meanrf' , If a 10000-RPM disk has 300 sectors 

Formatting also affects pe orrnance. • d the I S3 600 bytes on a track 
f SI2 b t ch it takes 6 msec to rea , per track 0 Y es ea, I r 24 4 MB/sec. It is not possible to go 

for a data of is present, even if it a SCSI inter-
faster than thIS, nO matter w 

face at 
troller. Consider, for example, a contro . t After readina the first sector . d t d twO consecuttve sec ors. <:.> • 

ECC calculation, the data must be 
. . fi' taki g place the next sector WI 

memory. WhIle this trans e: IS the 'controller will have to wait almost an 
When the copy to memory IS comp , d . 

. . f th d sector to come aroun agam. 
entire rotatIOn tIme or e d b b 'ng the sectors in an interleaved 

This problem can, be y a we see the usual numbering 
fashion when formattmg the S( i7(b) we see single interIeav-

consecutive sectors 
in order to copy the buffer to roam memory. 

7 0 2 3 
6 1 3 4 

6 1 7 6 
5 2 

2 5 4 1 
4 3 

(c) 
(a) (b) 

" S· I . t I VI "no (c) Double interleaving. Figure 5-27. (a) No interleaving, (b) mg e m er ea 0' 

in rocess is very slow, the double of Fig. 5-28(c) 
a fr ihe controller has a buffer of only sector, It does not 

the copying from. the. to main 
. CPU or a DMA ChIP' It sull takes some ume. 0 

controller shouid be able to buffer an entire track. Many modern con-

formatting is completed, the disk is partitioned. I 
each partition is like a separate disk. Partitions are needed to allow mu up e 0 
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ating systems to coexist. Also, in some cases, a partition can be used for swap-
ping. On the Pentium and most other computers, sector 0 contains the master 
boot record, which contains some boot code plus the partition table at the end. 
The partition table gives the starting sector and size of each partition. On the Pen-
tium, the partition table has room for four partitions. If all of them are for Win-
dows, they will be ca.lled C:, D:, E:, and F: and treated as separate drives. If three 
of them are for Windows and one is for UNIX, then Windows will call its parti-
tions C:, D:, and E:. The first CD-ROM will then be F:. To be able to boot from 
the hard disk, one partition must be marked as active in the partition table. 

The final step in preparing a disk for use is to perform a high-level format of 
each partition (separately). This operation lays down a boot block, the free stor-
age administration (free list or bitmap), root directory, and an empty file system. 
It also puts a code in the partitipn table entry telling which file system is used in 
the partition because many operating systems support multiple incompatible file 
systems (for historical reasons). At this point the system can be booted. 

When the power is turned on, the BIOS runs initially and then reads in the 
master boot record and jumps to it. This boot program then checks to see which 
partition is active. Then it reads in the boot sector from that partition and runs it. 
The boot sector contains a small program that general loads a larger bootstrap 
loader that searches the file system to find the operating system kernel. That pro-
gram is loaded into memory and executed. 

5.4.3 Disk Ann Scheduling Algorithms 

In this section we will look at some issues related to disk drivers in general. 
First, consider how long it takes to read or write a disk block. The time required is 
detennined by three factors: 

1. Seek time (the time to move the arm to the proper cylinder). 

2. Rotational delay (the time for the proper sector to rotate under the head). 

3. Actual data transfer time. 

For most disks, the seek time dominates the other two times, so reducing the mean 
seek time can improve system performance substantially. 

If the disk driver accepts requests one at a time and carries them out in that 
order, that is, First-Come, First-Served (FCFS), little can be done to optimize 
seek time. However, another strategy is possible when the disk is heavily loaded. 
It is likely that while the ann is seeking on behalf of one other disk re-
quests may be generated by other processes. Many disk drivers maintain a table, 
indexed by cylinder number, with all the pending requests for each cylinder 
chained together in a linked list headed by the table entries. 

Given this kind of data structure, we can improve upon the first-come, first-
served scheduling algorithm. To see how, consider an imaginary disk with 40 
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t comes in to read a block on cylinder 11. While the seek to 
A. new requests corne in for cylinders 1,36, 16, .34,9, and 

11 are entered into the table of pending requests, WIth a sepa-
12, that efr. ach cylinder. The requests are shown in Fig. 5-28. 
rate hoked lIst or e 

Inllial Pending 
position requests 

[I I I I I I I I Ixl I I I I I I I I I I I I I I I I Ixl Ixl II I 
_.X. _ . . . . . . 15 20 25 30 35 Cylinder 

5 10 

• 0 ..?' 
E =- Sequence of seeks 

F ____________ ! 
I 

Figure 5.28. Shortest Seek First (SSP) disk scheduling algorithm. 

h urrentrequest (for cylinder 11) is finished, the disk driver has a 
Whentec . ' I"d . which request to handle next. Usmg FCFS, It would go next to cy m er 

ChOlee of 36 d so on This algorithm would require arm motions of 10, 35, 20, 
1 then to ,an· . d , d 3 res ectively for a total of 111 cylm ers. 
18,25, an .' I P t could always handle the closest request next, to minimize 

Alternative y, J " 9 6 1 34 d 36 
0 " the requests of Fio 5-28 the sequence IS 12, ,1 " , an , k time Iven ""., . .' th see '. d line at the bottom of FIg. 5-28. WIth thIS sequence, e arm 

as the t;ge7 15 33 and 2, for a total of 61 cylinders. This algorithm, 
mottOns arSe k' F: st' (SS' F) the total arm motion almost in half compared to 
Shortest ee Ir , 

FCFS. 1 SSF has a problem. Suppose more requests keep corning in 
Unfortunate y, I "f f "t " ts of Fl" v 5-28 are beinG processed. For examp e, 1 , a ter gomg 0 

h Ie the reques "". "" . ' . w 16 a new request for cylinder 8 is present, that request wIll pnonty 
cylInder. 1 If a request for cylinder 13 then comes in, the ann next go. to 

Cyllll
d 

f i With a heavily loaded disk, the ann will tend to stay III the 
13, 'most of the time, so requests at either extreme will have to walt 
dIe .of thtatistical fluctuation in the load causes there to be no requests the 
untll a sR ts far from the middle may get poor service. The goals of rmmmal 
middle. eques . ' 

time and fairness are m conflIct here. . 
responsleb "Id"nvs also have to deal with this trade-off. The problem of schedulmg 

Tal U1 1 "" f I" d" k R sts " tall buildinG is similar to that 0 schedu mg a IS arm. eque 
n elevator m a "" . d Th a in continuously calling the elevator to floors (cylmders) at ran ?m. . e 

come . g the elevator could easily keep track of the sequence m whlch 
computer runnm . CFS SSF hed the call button and service them usmg For. . 
customers pus most elevators use a different algorithm in order to reconclle the 

However, . k "" th 
II fll"ctina Goals of efficiency and faIrness. They eep movmg 1fi e 

mutua yean :;:> "" 
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same direction until there are no more outstanding requests in that direction, then 
they switch directions. This algorithm, known both in the disk world and the 
elevator world as the elevator algorithm, requires the software to maintain 1 bit: 
the current direction bit, UP or DOWN. When a request finishes, the disk or 
elevator driver checks the bit. If it is UP, the arm or cabin is moved to the next 
highest pending request. If no requests are pending at higher positions, the direc-
tion bit is reversed. When the bit is set to DOWN, the move is to the next lowest 
requested position, if any. 

Figure 5-29 shows the elevator algorithm using the same seven requests as 
Fig. 5-28, assuming the direction bit was initially UP. The order in which the cyl-
inders are serviced is 12, 16, 34, 36, 9, and 1, which yields arm motions of 1, 4, 
18, 2, 27, and 8, for a total of 60 cylinders. In this case the elevator algorithm is 
slightly better than SSF, although it is usually worse. One nice property that the 
elevator algorithm has is that given any conection of requests, the upper bound on 
the total motion is fixed: it is just twice the number of cylinders. 

• E ;= 

I 

Initial 
position 

\ 
I Ixl I I I I I I Ixl Ixlxl I I Ixl I I I I I I I I I I I I I I I I Ixl Ixl I I I 
o 5 10 15 20 25 30 35 Cylinder 

Sequence of seeks 

-----
Figure The elevator algorithm for scheduling disk requests. 

A slight modification of this algorithm that has a smaller variance in response 
times (Teory, 1972) is to always scan in the same direction. When the highest 
numbered cylinder with a pending request has been serviced, the arm goes to the 
lowest-numbered cylinder with a pending request and then continues moving in an 
upward direction. In effect, the lowest-numbered cylinder is thought of as being 
just above the highest-numbered cylinder. 

Some disk controllers provide a way for the software to inspect the current 
sector number under the head. With such a controller, another optimization is pos-
sible. If two or more requests for the same cylinder are pending, the driver can 
issue a request for the sector that will pass under the head next. Note that when 
multiple tracks are present in a cylinder, consecutive requests can be for different 
tracks with no penalty. The controller can select any of its heads almost instan-
taneously (head selection involves neither arm motion nor rotational delay). 
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If the disk has the property that seek time is much faster than the rotational 
delay, then a different optimization should be used. Pending requests should be 
sorted by sector number, and as soon as the next sector is about to pass under the 
head, the ann should be zipped over to the right track to read or write it 

With a modem hard disk, the seek and rotational delays so dominate -perM 
farmance that reading one or twO sectors at a time is very ineffIcient. For this rea-
son, many disk controllers always read and cache multiple sectors, even when 
only one is requested. Typically any request to read a sector will cause that sector 
and much or all the rest of the current track to be read, depending upon how much 
space is available in the controller's cache memory. The disk described in Fig. 
5-18 has a 4-MB cache, for example. The use of the cache is determined dynami-
cally by the controller. In its simplest mode, the cache is divided into two sec-
tions, one for reads and one for writes. If a subsequent read can be satisfied out of 
the controller's cache, it can return the requested data immediately. 

It is worth noting that the disk controller's cache is completely independent of 
the operating system's cache. The controller's cache usually holds blocks that 
have not actually been requested, but which were convenient the read because 
they just happened to pass under the head as a side effect of some other read. In 
contrast, any cache maintained by the operating system will consist of blocks that 
were explicitly read and which the operating system thinks might be needed again 
in the near future (e.g., a disk block holding a directory block). 

When several drives are present on the same controller, the operating system 
should maintain a pending request table for each drive separately. Whenever any 
drive is idle, a seek should be issued to move its arm to the cylinder where it will 
be needed next (assuming the controller allows overlapped seeks). When the cur-
rent transfer finishes, a check can be made to see if any drives are positioned on 
the correct cylinder. If one or more are, the next transfer can be started on a drive 
that is already on the right cylinder. If none of the arms is in the right place, the 
driver should issue a new seek on the drive that just completed a transfer and wait 
until the next interrupt to see which arm gets to its destination first. 

It is important to realize that all of the above disk scheduling algorithms 
tacitly assume that the real disk geometry is the same as the virtual geometry. If it 
is not, then scheduling disk requests makes no sense because the operating system 
cannot really tell whether cylinder 40 or cylinder 200 is closer to cylinder 39. On 
the other hand, if the disk controller can aceept multiple outstanding requests, it 
can use these scheduling algorithms internally. In that case, the algorithms are 
still valid, but one level down, inside the controller. 

5.4.4 Error Handling 

Disk manufacturers are constantly pushing the limits of the technology by 
increasing linear bit densities. A track midway out on a S.2S-inch disk has a cir-
cumference of about 300 mm. If the track holds 300 sectors of 512 bytes, the 
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linear recording density may be about 5000 bit / ale" . 
that some space is lost to preambles ECC dS

.
mm 

t mg mto account the fact 
bits/mm reqUires an extremely unl;o s'ban mtersector gaps. Recording 5000 
U 

l' nn su strate and a very fi e'd . 
nfortunately, it is not possible to man f d' 10 OXl e coatmg. 

out defects. As soon as f . u acture a Isk to such specifications with-
manu actunng technology has . d 

whe:e it is possible to operate flawlessly at such densities . to the 

d
to +:hIgher densities to increase the capacity. Doing so will WId go 
elects. y re1Otro uce 

Manufacturing defects introduce bad s . recdy read back the val' . ectors, that IS, sectors that do not cor-
ue Just wntten to them If the defect' 

only a few it is possible to use the bad and just let small, say, 
errors every hme. If the defect is bigg th e correct the Th er, e error cannot be masked 
troller to bad blocks: deal with in the con-
the disk is shipped from the system. In fonner approach, before 
Onto the disk. For each bad sector y, tehsted and lIst bad sectors is written 

Th ' one 0 t e spares IS substItuted for it 
. ere are two ways to do this Substitution I F 5 30( . . 

dISk track with 30 data sectors and tw . Ig. a), w.e see a smgle 
controller can do is rema 0 spares. ctor 7 IS defectIve. What the 
The other way is to 7 in Fig. S-30(b). 
cases the controller has to know which P t : s s. own 10 FIg. S-30(c). In both . f . sec or IS which It can keep traCk f th' 
In onnatlOn through internal tables (one er track) . . . 0 IS 
to give the remapped sector numbers If by rewntmg the preambles 
of Fig. 5-30(c) is more work e pream es are rewritten, the method 
mately gives better beca:;3 prean:bles must be but ulti-
rotation. e an entIre track can sull be read in one 

(aJ (bJ (cJ 

Figure 5-30. (a) A disk track with a bad (b) .. . 
bad sector. (c) Shifting all the sectors to a spare for the 

Errors can also develop during n 1 . installed. The fi t l' f d D operatIOn after the drive has been 
Ie is to just try Be, . C cannot hand-, a IS, are caused by 
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. 1 a second attempt. If the COll-specks of dust ,the and Wil go away 0; certain sector, it can switch to 
troller notices that It IS gettmg. repeated th' way no data are lost and the 
a spare before the sector has dIed y. hil IS

bl 
ro' Usually the method of 

operating system and user do not even notice t e pro. e t data. Using 
Fig, 5-30(b) has to be used Since1dthe 0tI:er the preambles, but the method of Fig. 5-30(c) wou reqmre no 
copying all the data as welL handlin

a 
errors: handle 

Earlier we said there .were two does not have 
them in the controller or In the operatmg have discussed, the operating 
the capability to means that it must first acquire a 
system must do the same thmg software. 1S

th 
di k or simply testing the en-

list of bad sectors, either by them from b 'tSc:m build remapping tables. 
tire disk itself. Once it knows whIch sectors. are : f 1FiO" 5-30(c), it must shift the 
If the operating system wants to use the approac 0 t;:>. _ 

data in sectors 7 through 29 one 'n it must make sure that bad 
If the operating system IS handlmg the remappl g, . the free list or bitmap. 

. files and also do not occur m . sectors do not occur many 1 fil . ti of all the bad sectors. If this 
One way to do this is to create a secret 1 e n; ccidentally read it (or worse 
file is not entered into the file system, users WI no a 

yet, free it). .. . k:u s If the disk is backed up file 
However, there IS still another p co y the bad block file. To 

by file, it is important the backup bloIk file so well that even a 
prevent the operattng backed up sector by sector rather 
backup uuhty It I . e 1 . 'bl to prevent read errors dunng 
me by file, it WIll be dIfficult, If not Impossl e, h ugh smarts to give up 
backup. The only hope is that the backup program as eno 
after 10 failed reads and continue with the next errors caused by mechani-

Bad sectors are not the only source of tr ck of the arm pOSition 
cal problems in the ann also oc:u:. The ;:r:es the arm motor, one 
internally. To perform a seek. It ISSUes a sen r d r When the arm gets to its 
pulse per cylinder, to move the arm to from the preamble of 
destination, the controller reads the actua cy 10 r k has occurred. 

f h .. th wrong place a see error the next sector. I t e arm IS 10 e , t' ally but most floppy 
Most hard disk controllers correct seek errors aut°bI?a IC

d 
the rest to the 

. . p" ) J'ust set an error It an controllers (mc1udmg the s . . a recalibrate command, to move 
driver. The driver handles thIS error by Issumg ,. 1 idea of the current 
the arm as far out as it go and reset the drive must be cylinder to O. Usually thIS solves the pro m. 1 

have seen, the controller is really a 
plete with software, variables, and Zive simultan-
unusual sequence of events, such as an d . in trigger a bug and cause 
eously with a recaHbrate command for ano er fIve w eo'" 
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the controller to go into a loop or lose track of what it was dOing. Controller de-
signers usually plan for the worst and provide a pin On the chip which, when 
asserted, forces the controller to forget whatever it was doing and reset itself. If all 
else fails, the disk driver can set a bit to invoke this signal and reset the controller. 
If that does not help, all the driver can do is print a message and give up. 

ReCalibrating a disk makes a funny noise but otherwise nonnally is not dis-
turbing. However, there is one situation where recalibration is a serious problem: 
systems with real-time constraints. When a video is being played off a hard disk, 
or files from a hard disk are being burned onto a CD-ROM, it is essential that the 
bits arrive from the hard disk at a unifonn rate. Under these circumstances, recali-
brations insert gaps into the bit stream and are therefore unacceptable. Special 
drives, Called A V disks (Audio Visual disks), which never recalibrate are avail-
able for such applications. 

5.4.5 Stable Storage 

As we have seen, disks sometimes make errOrs. Good sectors can suddenly 
become bad sectOrs. Whole drives can die unexpectedly. RAIDs protect against 
a few sectors going bad or even a drive falling out. However, they do not protect 
against write errors laying down bad data in the first place. They also do not pro-
tect against crashes during writes corrupting the original data without replacing them by newer data. 

For some applications, it is essential that data never be lost or corrupted, even 
in the face of disk and CPU errors. Ideany, a disk should simply work all the time 
with no errors. Unfortunately, that is not achievable. What is achievable is a disk 
subsystem that has the following property: when a write is issued to it, the disk ei-
ther correctly writes the data or it does nothing, leaving the existing data intact. 
Such a system is called stable storage and is implemented in software (Lampson 
and Sturgis, 1979). The goal is to keep the disk consistent at all costs. Below we 
will describe a slight variant of the Original idea. 

Before describing the algorithm, it is important to have a clear model of the 
possible errors. The model aSSumes that when a disk writes a block (one or more 
sectors), either the write is correct or it is incorrect and this error can be detected 
On a subsequent read by examining the values of the ECC fields. In principle, 
guaranteed error detection is never possible because with a, say, BCe 
field guarding a 512-byte sector, there are 24096 data values and only 2144 BCC 
values. Thus if a block is garbled during Writing but the BCC is not, there are bil-
lions upon billions of incorrect combinations that yield the same ECC. If any of 
them occur, the errOr will not be detected. On the whole, the probability of ran-
dom data having the proper 16-byte ECC is about rl44, which is small enough 
that we will call it zero, even though it is really not. " 

The model also assumes that a correctly written sectOr can spontaneously go 
bad and become unreadable. However, the assumption is that such events are so 
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rare that having the same sector go bad on a second (independent) drive during a 
reasonable time interval (e.g., 1 day) is small enough to ignore. 

The model also assumes the CPU can fail, in which case it just stops. Any 
disk write in progress at the moment of failure also stops, leading to incorrect data 
in one sector and an incorrect Eee that can later be detected. Under all these con-
ditions, stable storage can be made 100% reliable in the sense of writes either 
working correctly or leaving the old data in place, Of course, it does not protect 
against physical disasters, such as an earthquake happening and the computer fal-
ling 100 meters into a fissure and landing in a pool of boiling magma. It is tough 
to recover from this condition in software. 

Stable storage uses a pair of identical disks with the corresponding blocks 
working together to form one error-free block. In the absence of errors, the cor-
responding blocks on both drives are the same. Either one can be read to get the 
same result To achieve this goal, the following three operations are defined: 

1. Stable writes. A stable write consists of first writing the block on 
drive 1, then reading it back to verify that it was written correctly. If 
it was not written correctly, the write and reread are done again up to 
n times until they work After n consecutive failures, the block is 
remapped onto a spare and the operation repeated until it succeeds, 
no matter how many spares have to be tried. After the write to drive 
I has succeeded, the corresponding block on drive 2 is written and 
reread, repeatedly if need be, until it, too, [mally succeeds. In the 
absence of CPU crashes, when a stable write completes, the block 
has correctly been written onto both drives and verified on both of 
them. 

2. Stable reads. A stable read first reads the block from drive 1. . If this 
yields an incorrect ECC, the read is tried again, up to n times. If all 
of these give bad BCCs, the corresponding block is read from drive 
2. Given the fact that a successful stable write leaves two good copw 
ies of the block behind, and our assumption that the probability of the 
same block spontaneously going bad on both drives in a reasonable 
time is negligible, a stable read always succeeds. 

3. Crash recovery. After a crash, a recovery program scans both disks 
comparing corresponding blocks. If a pair of blocks are both good 
and the same, nothing is done. If one of them has an ECC error, the 
bad block is overwritten with the corresponding good block If a pair 
of blocks are both good but different, the block from drive 1 is writ-
ten onto drive 2. 

In the absence of CP_ashes, this scheme always works. because stable 
writes always write two valid copies of every block and spontaneous errors are as-
sumed never to occur on both corresponding blocks at the same time. What about 1 
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10 the presence of CPU crashes dunno- stable w' ? 
when the crash occurs. There are five p. ntes. y on precisely 

1 lIes, as depIcted 10 Fig. 5-31. 
ECG 

Disk error . 

BB 'B t t 
Crash Crash 

(a) (b) 

Figure 5·3L An 1 . f 
a YSIS 0 the influence of crashes on stable writes. 

In Fig. 5-31(a), the CPU crash bappens before e. 
ten. Dunng recovery neither WI·!! b h dIther copy of the block is writ-. ..' ec ange andth !d aI . eXIst, WhIch IS allowed. e 0 v ue WIll continue to 

In Fig. 5-31 (b), the CPU crasbes duri . . 
contents of the block. However th ng the wnte to dnve 1, destroying the 
stores the block on drive 1 from program detects this error- and re-
and the old state is fully restored . hus the effect of the crash is wiped out 

. In Fig. 5-31 (c), the CPU c;ash ha en ... 
dnve 2 IS written. The point of n t pp h s after dnve 1 IS wntten but before 
gram copies the block from drive : been here: the recovery prow 

Fig. 5-31(d) is like Fig 5-31(b). dunve . Tbe Wnte Succeeds. 
th b db· . rmo- recovery the d bl e a lock. Again, the final value of b h bi .' goo ock overwrites 

Finally, in Fig. 5-31(e) the recover ot ocks IS the new one. 
same, so neither is chano-ed and th . y program sees that both blocks are the 

Various ti· . to • e Wnte succeeds here too. 
op rruzatIons and Improvements . . 

ters, comparing all the block .. are pOSSIble to thIS scheme. For star-
h . s paIrWIse after a crash' d b 
uge is to keep track of which block IS oa but .expensive. A 

stable wnte so that only One block has to be ch bemg WrItten during a 
puters have a small amount of nonvolatile ecked recovery. Some com-
ory powered by a lithium battery Such b WhICh IS a special CMOS rnem-

life of the computer. Unlike main last .for 'years., pOSSibly even the 
volatile RAM is not lost after h Th . cry, whIch IS lost after a crash, non-. aCras etlmeofd· 

by a special circuit), which is w ay IS nor:mally kept here (and 
IS even after having been unplugged. hy computers still know what time it 

Suppose that a few bytes of nonvolatile R ' 
tern purposes. The stable write can t th AM are ava1lable for operating sys-
date in nonvolatile RAM b £ e number of the block it is about to up-e ore starttno- the writ Aft 

to e. er successfully completing 
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. volatile RAM is overwritten with an 

the stable write, the block number these conditions, after a c:ash the 
invalid block number, for example, 1'1 RAM to see if a stable wnte hap-heck the nCTIve aU e . . recovery program can C h d 'f so which block was bemg wntten . d ring the eras ,an 1 , df pened to be III progress u . f the block can then be checke or 
when the crashed happened. The two copIes 0 
correctness and "I ble it can be simulated as follows. At the 

If nonvolatile RAM IS not. avaIl a k' d' ve 1 is overwritten with the number 
start of a stable write, a dISk then read back to it. After 
of the block to be stably wntten: lock on drive 2 is written and venfied .. 
getting it correct, the correspondmJ b b th blocks are overwritten with an InvalId 
the stable write y, e °after a crash it is easy to determine wh.eth-
block number and venfted. Agam her 'd' the crash Of course this techmque . as in progress unng . , d er or not a stable wnte w .. . t stable block, so it should be use 
requires eight extra disk operatlons to wn e a 
exceedingly . We assumed that only one spontaneous decay 

One last pomt IS worth making. er block air per day. If enough days go 
of a good block to bad block happ;;.; Pefore on:e a day a complete scan .of both 
by, the other one Ill1ght bad too. way, every morning both disks are 
disks must be done repamng any dam . . a bad within a period of a few 
always identical. Even if both blocks m a palf g 
days, all errors are repaired correctly. 

5.5 CLOCKS 
, 1 to the operation of any multipro-

Clocks (also called timers) are essenTtlha ';ntain the time of day and pre-
f 'ety of reasons. ey m= . 1 k O'rarruned system or a van ,. h CPU among other thmgs. The c oc 

one process from t edri 'even thouO'h a clock is neither a 
ak th form of a deVIce ver, 0 • • f software can tee d' 11'ke a mouse Our exammatlon a . . d' k a character eVlce, . k block deVIce, like a IS ,nor . th previous section: ftrst a look at cloc 

clocks will folloW the same pattern as In e 
hardware and then a look at the clock software. 

5,5,1 Clock Hardware 
1 used in computers, and both are quite dif-

Two types of clocks are common Y b Ie The simpler clocks are tied to 
ferent from the clocks and dused Y on every voltage cycle, at 
the 110- or 220-volt power hne an are rare nowadays. 
50 or 60 Hz. These clocks t? components: a crystal oscillator, a 

The other kind of clock IS bUllt out a . F' 5 32 When a piece of quartz . 'tr asshownm Ig. - . counter, and a holdmg regIS e , d t 'on l't can be made to generate a . d mounted un er enSl , d crystal IS properly cut an t . cally in the ranO'e of several hundre 
periodic signal of very great accuracy, ypl 0 
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megahertz, depending on the crystal chosen. Using electronics, this base signal 
can be multiplied by a small integer to get frequencies up to 1000 MHz or even 
more. At least one such circuit is usually found in any computer, providing a syn-
chronizing signal to the computer's various circuits. This signal is fed into the 
counter to make it count down to zero. When the counter gets to zero, it causes a 
CPU interrupt. 

Crystal oscillator 

IIII 
Counter is decremented at each pulse 

t 
I I I I I I I I I I I I I I I I I Holding register is used to load the counter 

Figure 5-32. A programmable clock, 

Programmable clocks typically have several modes of operation. In 
mode, when the clock is started, it copies the value of the holding register into the 
counter and then decrements the counter at each pulse from the crystal. When the 
counter gets to zero, it causes an interrupt and stops until it is explicitly started 
again by the software. In mode, after getting to zero and causing the 
interrupt, the holding register is automatically copied into the counter, and the 
whole process is repeated again indefinitely. These periodic interrupts are called 
clock ticks. 

The advantage of the programmable clock is that its interrupt frequency can 
be controlled by software. If a 500-MHz crystal is used, then the counter is pulsed 
every 2 nsee. With (unsigned) 32-bit registers, interrupts can be programmed to 
occur at intervals from 2 nsec to 8.6 sec. Programmable clock chips usually con-
tain two or three independently programmable clocks and have many other 
options as well (e.g., counting up instead of down, interrupts disabled, and more). 

To prevent the current time from being lost when the computer's power is 
turned off, most computers have a battery-powered backup clock, implemented 
with the kind of low-power circuitry used in digital watches. The battery clock 
can be read at startup. If the backup clock is not present, the software may ask the 
user for the current date and time. There is also a standard_ way for a networked 
system to get the current time from a remote host. In any case the time is then 
translated into the number of clock ticks since 12 A.M. UTC (Universal Coordiw 
nated Time) (formerly known as Greenwich Mean Time) on Jan. 1, 1970, as 
UNIX does, or since some other benchmark moment. The origin of time for Win-
dows is Jan. 1, 1980. At every clock tick, the real time is incremented by one 
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count. Usually utility programs are provided to manually set the system clock and 
the backup clock and to synchronize the two clocks. 

5.5.2 Clock Software 
All the clock hardware does is generate interrupts at known intervalS. Every-

thing else involving time must be done by the software, the clock driver. The eX-
act duties of the clock driver vary among operating systems, but usually include 

most of the following: 

1. Maintaining the time of day. 
2. Preventing processes from running longer than they are allowed to. 

3. Accounting for CPU usage. • 
4. Handling the alarm system call made by user processes. 

5. Providing watchdog timers for parts of the system itself. 

6. Doing profiling, monitoring, and statisticS gathering. 

The first clock function, maintaining the time of day (also called the real 
time) is not difficult. It just requires incrementing a counter at each clock tick, as 
mentioned before. The only thing to watch out for is the number of bits in the 
time-of-day counter. With a clock rate of 60 Hz, a 32-bit counter will overflow in 
just oyer 2 years. Clearly the system cannot store the real time as the number of 
ticks since Jan. 1, 1970 in 32 bits. Three approaches can be taken to solve this problem. The first way is to use a 
64-bit counter, although doing so makes maintaining the counter more expensive 
since it has to be done many times a second. The second way is to maintain the 
time of day in seconds, rather than in ticks, using a subsidiary counter to count 
ticks until a whole second has been accumulated. Because 2

32 
seconds is more 

than 136 years, this method will work until the twenty-second century. 
The third approach is to count in ticks, but to do that relative to the time the 

system was booted, rather than relative to a fixed extemal moment. When the 
backup clock is read 'i the user types in the real time, the boot time is cal-
culated from the current time-of -day value and stored in memory in any con-
venient form. Later, when the time of day is requested, the stored time of day is 
added to the counter to get the current time of day. All three approaches are 
shown in Fig. 5-33. The second clock function is preventing processes from running too long. 
Whenever a process is started, the scheduler initializes a counter to the value of 
that process' quantum in clock ticks. At every clock interrupt, the clock driver 
decrements the quantum counter by 1. When it gets to zero, the clock driver calls 
the scheduler to set up another procesS. 
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Time of day in ticks 
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CLOCKS 
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Number of licks 
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(b) 

Figure 5·33. Three ways to maintain the time of da y. 
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I Counter in ticks I 

/ 
System boot lime 

in seconds 

(c) 

The third clock function is doing CPU ace . do it is to start a second timer d" f ountmg. The most accurate way to · ' lstmct rom the ma' s . process IS started When that process' In ystem tImer, whenever a 
how long the has run. To do the timer be read out to tell 
when an interrupt occurs and restored the second timer should be saved 

A less accurate, but simpler, way to do .' .. the process table entry for the curre tl IS to mamtam a pointer to 
every clock tick a field l'n th n y runmng process in a global variable. At , e current process' .. every clock tick is "charged" t h entry IS mcremented. In-this way 

. 0 t e process runn' t h . ' 
mmor problem with this strategy i th t . f . mg ate tIme of the tick. A 
run, it is still charged for a full occur during a process' 
Properly accounting for the CPU durin' g It. dId not get much work done. 
done. g mterrupts IS too expensive and is rarely 

many systems, a process can reque th h . warnmg after a certain interval The .st. at t e operatmg system give it a 
sage, or somethinc similar One' apPl,weamt' mg IS usually a signal, interrupt, mes-
.• t>. 1 a Ion requiring s h ' . 
mg, III which a packet not acknowled ed . , IS network-
retransmitted. Another applicatI'o . g a certam tIme mterval must be · . n IS computer-aIded 'n t . h not provIdmg a response within a cert' .. 1 S ructIon, were a student 

If th
· am time IS told the answe 

e clock dnver had enough clock . r. quest. This not being the case it m t a clock for each re-
gIe physical clock. One way to ,vIrtual clocks with a sin-
pending timers is kept, as well as a l.n whIch signal time for all 
Whenever the time of day is updated, the d . v g vmg the tlm.e of the next one. 
has occurred. If it has the table is sear h d erhchecks to see If the closest Signal If . ' c e lor t e next one to oc u 

many SIgnals are expected it is mar ffi' . . ·c r. 
by chaining all the pending clock'requests tee to clocks 
as shown in Fig. 5-34 Each entry 0 th l.oget er, sorted on time, 10 a linked list · . n e 1St tells how rna I k' . ' 
the prevIOUS one to wait before ca s',' . ny c oc tIcks foIlowmg 
ing for 4203, 4207, 4213, 4215, In thIS example, signals are pend-
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Current time Next signa! 

4200 CD 

Figure Simulating multiple timers with a single clock. 

In Fig. 5-34, the next interrupt occurs in 3 ticks. each tick, 

the 
1 1 . n the ;ntry now at the head of the list, in this example, 4. . 
va that durina a clock interrupt, the clock driver has several thmgs to dO-; 

increment the real time, decrement theHquantum and 
• 0" d decrement the alarm counter. owever, eae . 

arranged to be very fast because they have to be repeated many tImes a 

second. . Th e are called watch-Parts of the operating system also need to set tImers. es. void 
. s For exam Ie floppy disks do not rotate when not In use, to a 

dog timer. h Pd' ' m and disk head. When data are needed from a floppy 
wear and tear on t e me lU fl disk is rotatinll" at full 
d' k the motor must first be started, Only when the oppy , 0 d' k 

IS 'd lJO begin When a process attempts to read from an Idle floppy IS, 
spee can . hd 0- timer to cause an the floppy disk driver starts the motor and then sets a watc ?o 'd' _ 
interrupt after a sufficiently long time interval (because there IS no up-to-spee m 

driver to handle timers. is the 
same as for user signals. The only difference is that when a 
of causing a signal, the clock driver calls a procedure Ie y d is 
rocedu; is part of the caller's code. The called proce ure can ts are 

even causing an interrupt, although within the kernel 
often and signals do not exist. That is why the .watchdo: when 
. 'ded It is worth nothing that the watchdog rnechamsm wor s on y 

driver and the to called are in same address me-
The last thing in our list IS profilmg. Some operatmg systems ?fO 1 f . t 

h . m by which a user program can have the system build up a o. 1 S 
cams . . . When profilmg IS a 
proo-ram counter so it can see where it is spendmg Its tIme. . be' ng 

os;ibility at e;ery tick the driver checks to see if the current process IS 
Pprofiled if so computes the bin number (a range of addresses) cTohr:esponhanmg 

" . th t b'n by one IS mec -to the current program counter. It then a 1 . 
ism can also be used to profile the syster11'Tt'Self .. 
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5.5.3 Soft Timers 

Most computers have a second programmable clock that can be set to cause 
timer interrupts at whatever rate a program needs. This timer is in addition to the 
main system timer whose functions were described above. As long as the inter-
rupt frequency is low, there is no problem using this second timer for application-
specific purposes, The trouble arrives when the frequency of the application-spe-
cific timer is very high. Below we will briefly describe a software-based timer 
scheme that works well under many circumstances, even at fairly high frequen-
cies. The idea is due to Aron and Druschel (1999). For more details, please see 
their paper. 

Generally, there are two ways to manage lIO: interrupts and polling, Inter-
rupts have low latency, that is, they happen immediately after the event itself with 
little or no delay, On the other hand, with modem CPUs, interrupts have a 
stantial overhead due to the need for context switching and their influence on the 
pipeline, TLB, and cache. 

The alternative to interrupts is to have the application poll for the event 
expected itself. Doing this avoids interrupts, but there may be substantial latency 
because an event may happen directly after a poll, in which case it waits almost a 
whole polling interval. On the average, the latency is half the polling interval. 

For certainapplications, neither the overhead of interrupts nor the Hltency of 
polling is acceptable. Consider, for example, a high-perfonnance network such as 
Gigabit Ethernet. This network is capable of accepting or delivering a full-size 
packet every 12 J1sec. To run at optimal performance on output, one packet 
should be sent every 12 Ilsec. 

One way to achieve this rate is to have the completion of a packet transmis-
sion cause an interrupt or to set the second timer to interrupt every 12 J1sec. The 
problem is that this interrupt has been measured to take 4.45 J1sec on a 300 MHz 
Pentium II (Aron and Druschel, 1999). This overhead is barely better than that of 
computers in the 1970s. On most minicomputers, for example, an interrupt took 
four bus cycles: to stack the program counter and PSW and to load a new program 
counter and PSW. Nowadays dealing with the pipeline, MMU, TLB, and cache 
adds a great deal to the overhead. These effects are likely to get worse rather than 
better in time, thus canceling out faster clock rates. 

Soft timers avoid interrupts. Instead, whenever the kernel is running for some 
other reason, just before it returns to user mode it checks the real time clock to see 
if a soft timer has expired. If the timer has expired, the scheduled event (e.g., 
packet transmission or checking for an incoming packet) is performed, with no 
need to switch into kernel mode since the system is already -there. After the work 
has been performed, the soft timer is reset to go off again. All that has to be done 
is copy the current clock value to the timer and add the timeout interval to it. 

Soft timers stand or fall with the rate at which kernel entries are made for 
other reasons. These reasons include: 
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1. System calls. 

2. TLB misses. 

3. Page faults. 

4. I/O interrupts. 

5. The CPU going idle. 

A d Druschel made measurements 
To see how often these Web server, a Web server with a 
with several CPU loads, I . Y real-time audio from the Internet, and 
compute-bound background Job, p aymg t ,Onto the kernel varied from 2 

"I" h UNIX kernel The average entry ra e 
recompl I s:c with about' half of these entries being system calls. !hUdS tbo

l 
a 

!1sec to t"' '.. . oft timer go off every 12 !lsec IS oa e, 
For applications like sending packets or 

WI b . (J 10 ! I sec late from time to time is better than pollmg for mcommg packets, emt> l'"" 

having interrupts eat there are no system calls, TLB misses, 
Of course, there WI p . ff T per bound on 

f It ·,n which case no soft timers WIn go o. 0 put an up 
or page au s, . ff say every 1 msec. cond hardware timer can be set to go 0, , 
these the se. . h I 1000 packets/sec for occasional intervals, 
If the . can on y d a low-frequency hardware timer may be 
then the combmation 0 so t timers an . 
better than either pure interrupt-driven I/O or pure pollmg. 

5.6 USER INTERFACES: KEYBOARD, MOUSE, MONITOR 

has a keyboard and monitor (and usually a 
Every general-purpose. 't Although the keyboard and monitor are 

mouse) to allow people to mterac WI 1. On mainframes there 
technically separate devices, they wor; a keyboa'rd and 
are frequently. many :ave historically b:en called 
an attached dlfsplay astla that term even when discussing personal com-nals. People requen Y , ) 
puter keyboards and monitors (mostly for lack of a better term . 
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keyboard driver extracts the information about what happens from the VO p0I1 as-
sociated with the keyboard. Everything else happens in software and is pretty 
much independent of the hardware. 

Most of the rest of this section can be best understood when thinking of typing 
commands to a shell window (command line interface). This is how programmers 
commonly work. We will discuss graphical interfaces below. 
Keyboard Software 

The number in the I/O port is the key number, called the scan code, not the 
ASCII code. Keyboards have fewer than 128 keys, so only 7 bits are needed to 
represent the key number. The eighth bit is set to 0 on a key press and to 1 on a 
key release. It is up to the driver to keep track of the status of each key (up or 
down). 

When the A key is struck, for example, the scan code (30) is put in an I/O reg-
ister. It is up to the driver to determine whether it is lower case, upper case, 
CTRL-A, ALT-A, CTRL-ALT-A, or Some other combination. Since the driver 
can tell which keys have been struck but not yet released (e.g., SHIFf), it has 
enough infonnation to do the job. 

For example, the key sequence 

RESS SHIFT, DEPRESS A, RELEASE A, RELEASE SHIFT 

indicates an upper case A. However, the key sequence 

RESS SHIFT, DEPRESS A, RELEASE SHIFT, RELEASE A 

also indicates an upper case A. Although this keyboard interface puts the full bur-
den on the software, it is extremely flexible. For example, user programs may be 
interested in whether a digit just typed came from the top row of keys or the 
numeric key pad on the side. In principle, the driver can provide this information. 

Two possible philosophies can be adopted for the driver. In the first one, the 
driver's job is just to accept input and pass it upward unmodified. A program 
reading from the keyboard gets a raw sequence of ASCII cOdes. (Giving user pro-
grams the scan codes is too primitive, as well as being highly keyboard depen-
dent.) 

This philosophy is well suited to the needs of sophisticated screen editors such 
as emacs, which allow the user to bind an arbitrary action to any character or se-
quence of characters. It does, however, mean that if the user types dste instead of 
date and then corrects the error by typing three backspaces and ate, followed by a 
carriage return, the user program will be given all 11 ASCII codes typed, as fo]-
lows: 

dste f- f- f- a te CR 

Not all detaiL Often they just want the corrected 
input, not the exact sequence"c)thow it was produced. This observation leads to 
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the second philosophy: the driver handles all the intraline editing, and just delivers 
corrected lines to the user programs. The first philosophy is character-oriented; 
the second one is line oriented. Originally they were referred to as raw mode and 
cooked mode, respectively. The POSIX standard uses the less-picturesque tenn 
canonical mode to describe line-oriented mode. Noncanonical mode is equi va-
lent to raw mode, although many details of the behavior can be changed. 
POSIX-compatible systems provide several library functions that support select-
ino- either mode and changing many parameters. 

e> If the keyboard is in canonical (cooked) mode, characters must be stored until 
an entire line has been accumulated, because the user may subsequently decide to 
erase part of it. Even if the keyboard is in raw mode, the program may not 
have requested input, so the characters must be buffered to allow type ahead. EI-
ther a dedicated buffer can be used or buffers can be allocated from a pool. The 
former puts a fixed limit on type ahead; the latter does not. This issue arises most 
acutely when the user is typing to a shell window (command line window in Win-
dows) and has just issued a command (such as a compilation) that has not yet 
completed. Subsequent characters typed have to be buffered because the shell is 
not ready to read them. System designers who do not permit users to type far 
ahead ought to be tarred and feathered, or worse yet, be forced to use their own 
system. . 

Although the keyboard and monitor are logically separate deVices, many users 
have O'rown accustomed to seeing the characters they have just typed appear on 
the This process is called echoing. 

Echoing is complicated by the fact that a program may be to the 
screen while the user is typing (again, think about typing to a shell wmdow). At 
the very least, the keyboard driver has to figure out where to put th:e new input 
without it being overwritten by program output. . 

Echoing also gets complicated when more than 80 characters have to be dis-
played in a window with 80-character lines (or number). ?epending 
on the application, wrapping around to the next lme may be appropnate. Some 
drivers just truncate lines to 80 characters by throwing away all characters beyond 
column 80. 

Another problem is tab handling. It is usually up to the driver to compute 
where fhe cursor is currently located, taking into account both output from prow 
grams and output from echoing, and compute the proper number of spaces to be 
echoed. 

Now we come to the problem of device equivalence. Logically, at the end of a 
line of text, one wants a carriage return, to move the cursor back to column 1, and 
a linefeed, to advance to the next line. Requiring users to type both at the end of 
each line would not sell well. It is up to the device driver to convert whatever 
comes in to the fonnat used by the operating system. In UNIX, the ENTER key is 
converted to a line feed for internal storage; in Windows it is converted to a car-
riage return followed by a line feed. 
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. If the standard form is just to store a linefeed (the UNIX convention), then car-

nage returns (created by the Enter key) should be turned into linefeeds. If the in-
ternal format is to store both (the Windows convention), then the driver should 
generate a linefeed when it gets a carriage return and a carnage -return when it 
gets a No matter ;-rhat the internal convention, the monitor may require 
both a lmefeed and. a carnage return to be echoed in order to O'et the screen 
update? properly. On systems such as mainframes, diffe:ent users may 
have dIfferent types oftermmals connected to it and it is up to the keyboard driver 
to get all the different carriage returnllinefeed combinations converted to the in-
ternal system standard and arrange for all echoing to be done right. 
. operating in canonical mode, some input characters have special mean-
mgs. FIgure 5-35 shows all of the special characters required by POSIX. The de-
faults are all control characters.. that should not conflict with text input or codes 
used by programs; all except the last two can be changed under program contro1. 

Character POSIXname Comment 
CTRL-H ERASE Backspace one character 
CTRL-U KILL Erase entire line being typed 
CTRL-V LNEXT Interpret next character literally 
CTRL-S STOP Stop output 
CTRL-Q I START Start output 
DEL I INTR Interrupt process (S!G1NT) I 
CTRL-\ QUIT Force core dump (SlGQU1T) 
CTRL-D EOF End of me 
CTRL-M CR Carriage return (unchangeable) 
CTRL-J NL Linefeed (unchangeable) 

Figure 5*35. Characters that are handled specially in canonical mode. 

The ERASE character allows the user to rub out the character just typed. It is 
usually the backspace (CTRL-H). It is not added to the character queue but in-
stead removes the previous character from the queue. It should be echoed as a se-
quence of three characters, backspace, space, and backspace, in order to remove 
the previous character from the screen. If the previous character was a tab eras-
ing it on how it was processed when it was typed. If it is ex-
panded Into spaces, some extra infonnation is needed to determine how far to 
back up. If the tab itself is stored in the input queue, it can be .·removed and the 
entire line just output again. In most systems, backspacing will only erase charac-
ters on the current line. It will not erase a camaO'"e return and back up into the 
previous line. t> 

When the user notices an error at the start of the line being typed in, it is often 
convenient to erase the entire line and start again. The KILL character erases the 
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entire line. Most systems make the erased line vanish from the screen, but a few 
older ones echo it plus a carriage return and }inefeed because some users like .to 
see the old line. Consequently, how to echo KILL is a matter of taste. As with 
ERASE it is usually not possible to go further back than the current line. When a 
block of characters is killed, it mayor may not be worth the trouble for the driver 
to return buffers to the pool, if one is used. 

Sometimes the ERASE or KILL characters must be entered as ordinary data. 
The LNEXT character serves as an escape character. In UNIX CTRL-V is the 
default. As an example, older UNIX systems often used the @ sign for KILL, but 
the Internet mail system uses addresses of the form linda@cs.washington.edu. 
Someone who feels more comfortable with older conventions might redefine 
KILL as @, but then need to enter an @ sign literally to address e-mail. This can 
be done by typing CTRL-V @. The CTRL-V itself can be entered literally by typ-
ing CTRL-V CTRL-V. After seeing a CTRL-V, the driver sets a flag that 
the next character is exempt from special processing. The LNEXT character Itself 
is not entered in the character queue. 

To allow users to stop a screen image from scrolling out of view, control 
codes are provided to freeze the screen and restart it later. In UNIX these are 
STOP, (CTRL-S) and START, (CTRL-Q), respectively. They are not stored but 
are used to set and clear a flag in the keyboard data structure. Whenever output 
attempted, the flag is inspected. If it is set, no output occurs. Usually, echoing lS 
also suppressed along with program output. 

It is often necessary to kill a runaway program being debugged. The INTR 
(DEL) and QUIT (CTRL-\) characters can be used for this purpose. In UNIX, 
DEL sends the SIGINT signal to all the processes stal1ed up from that keyboard. 
Implementing DEL can be quite tricky because UNIX was designed from the 
beginning to handle mUltiple users at the same time. Thus in the general case, 
there may be many processes running on behalf of many users, and the DEL key 
must only signal the user's own processes. The hard part is getting the information 
from the driver to the part of the system that handles signals, which, after all, has 
not asked for this information. 

CTRL-\ is similar to DEL, except that it sends the SIGQUIT signal, which 
forces a core dump if not caught or ignored. When either of these keys is struck, 
the drilier should echo a carriage return and linefeed and all 
input to allow for a fresh start. The default value for INTR IS often CTRL-C 
stead of DEL, since many programs use DEL interchangeably with the backspace 
for editing. 

Another special character is EOF (CTRL-D), which in 
pending read requests for the terminal to be satisfied with whatever IS avaIlable m 
the buffer, even if the buffer is empty. Typing CTRL-D at the start of a line 
causes the program to get a read of 0 bytes, which is conventionally interpreted as 
end-of-file and causes most programs to act the same way as they would upon 
seeing end-of-file on an input file. 
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. Most PCs have a mouse, or sometimes a trackball, which is just a mouse lying 
on ItS back. common type of mouse has a rubber ball inside that protrudes 
through a hole In the bottom and rotates as the mouse is moved over a rough sur-
face. As the baIl rotates, it rubs against rubber rollers placed on orthoCTonal shafts. 
Mot.ion .in the east-west direction causes the shaft paralIel to the y-a:is to rotate; 
motion In the north-south direction causes the shaft parallel to the to rotate. 

popular mouse type is the optical mouse, whiCh is equipped with one 
or more lIght-emitting diodes and photodetectors on the bottom. Early ones had to 
operate On a special mousepad with a rectangular grid etched onto it so the mouse 
could COunt lines Modern optical mice have an image-processing chip in 
them and make contmuous low-resolution photos of the surface under them look-
ing for changes from image to image. ' 

Whenever a mouse has moved a certain minimum distance in either direction 
or. button. is or released, a message is sent to the computer. The 
mInImUm dIstance IS about 0.1 mm (although it can be set in software). Some 
people calI this unit a mickey. Mice (or occasionally, mouses) can have one, two, 
or three buttons, depending on the designers' estimate of the users' intellectual 
ability to keep track of more than one button. Some mice have wheels that can 
send additional data back to the computer. Wireless mice are the same wired 
mice except of sending their data back to the computer over a wire, they 
use low-power radIOS, for using the Bluetooth standard. 
. message to the computer contains three items: llx, fly, buttons. The first 
Item 1.S .the c.hange in x position since the last message. Then comes the change in 
y pOSItIOn smce the last message. Finally, the status of the buttons is included. 
The format of the message depends on the system and the number of buttons the 
T?ouse has. Usually, it takes 3 bytes. Most mice report back a maximum of 40 
times/sec, so the mouse may have moved mUltiple mickeys since the last report. 
. Note that the only indicates changes in position, not absolute pOSition 
Itself. If the mouse IS pIcked up and put down gently without causing the ball to 
rotate, no messages will be sent. 

Some GUIs distinguish between single clicks and double clicks of a mouse 
?utt?n. If clicks are close enough in space (mickeys) and also close enough 
III tlme (mIllIseconds), a double click is signaled. The maximum for "close 
enough" is up to the software, with both parameters usually being user settable. 

5.6.2 Output Software 

let us output software. First we will look at simple output to a 
text WIndow, whIch IS what programmers normally prefer to use. Then we will 
consider graphical user interfaces, which other users often prefer. 
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Text Windows 

Output is simpler than input when the output is sequentially in a single font, 
size, and color. For the most part, the program sends characters to the current win-
dow and they are displayed there. Usually, a block of characters, for example, a 
line, is written in one system call. 

Screen editors and many other sophisticated programs need to be able to 
update the screen in complex ways such as replacing one line in the middle of the 
screen. To accommodate this need, most output drivers support a series of com-
mands to move the cursor, insert and delete characters or lines at the cursor, and 
so on. These commands are often called escape sequences. In the heyday of the 
dumb 25 imes 80 ASCII tenninal, there were hundreds of tenninal types, each 
with its own escape sequences. As a consequence, it was difficult to write soft-
ware that worked on more than one terminal type. 

One solution, which was introduced in Berkeley UNIX, was a terminal data-
base called termcap. This software package defined a number of basic actions, 
such as moving the cursor to (row, column). To move the cursor to a particular 
location, the software, say, an editor, used a generic escape sequence which was 
then converted to the actual escape sequence for the terminal being written to. In 
this way, the editor worked on any terminal that had an entry in the termcap data-
base. Much UNIX software still works this way, even on personal computers. 

Eventually, the industry saw the need for standardization of the escape se-
quence, so an ANSI standard was developed. A few of the values are shown in 
Fig. 5-36. 

Consider how these escape sequences might be used by a text editor. Suppose 
that the user types a command telling the editor to delete all of line 3 and then 
close up the gap between lines 2 and 4. The editor might send the following 
escape sequence over the serial line to the terminal: 

ESC[3; 1 H ESC[OKESC [1 M 

(where the spaces are used above only to separate the symbols; they are not trans-
mitted). This sequence moves the cursor to the start of line 3, erases the entire 
line, and then deletes the now-empty line, causing all the lines starting at 5 to 
move up one line. Then what was line 4 becomes line 3; what was line 5 becomes 
line 4, and so on. Analogous escape sequences can be used to add text to the mid-
dle of the display. Words and be added or removed in a similar way. 

The X Window System 

Nearly all UNIX systems base their user interface on the X Window System 
(often just called X), developed at M.I.T. as part of project Athena in the 1980s. 
It is very portable and runs entirely in user space. It was originally intended for 
connecting a large number of remote user terminals with a central compute server, 
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Escape sequence Meaning 
ESC[nA Move up n lines 
ESC [n8 Move down n Hnes 
ESC [nC Move right n spaces 
ESC [nO Move left n spaces 
ESC[m;nH Move cursor to (m,n) 
ESC [sJ Clear screen from cursor (0 to end, 1 1 from start, 2 all) 
ESC [sK Clear line from cursor (0 to end, 1 from start, 2 all) 
ESC [nL insert n lines at cursor 
ESC [nM Delete n Hnes at cursor 
ESC[nP Delete n cl:!ars at cursor 
ESC [n@ Insert n chars at cursor 
ESC [nm Enable rendition n (O=normal, 4-bold, 5 blinking, 7 reverse) 
ESCM Sera!! the screen backward if the cursor is on the top line 

Figure 5-36. The ANSI escape sequences accepted by the terminal driver on 
ESC denotes the ASCII escape character (OxIB), and n, /11, and s are op-

tIOnal numeric parameters. 

so it is split into client software and host software, which can potentially 
run on dIfferent computers. On modem personal computers, both parts can run on 
the same machine. On Linux systems, the popular Gnome and KDE desktop envi-
ronments run on top of X. 

When X is running on machine, the software that collects input from the 
keyboard and mouse and wntes output to the screen is called the X server. It has 
to track window is currently selected (where the mouse pointer is), 
so. It kno,:""s whIch clIent to send any new keyboard input to. It communicates 
WIth runnmg programs (possible over a network) called X clients. It sends them 
keyboard and mouse input and accepts display commands from them. 

It seem odd that the X server is always inside the user's computer while 
the X chent may be off on a remote compute server, but just think of the X ser-
ver's main job: displaying bits on the screen, so it makes sense to be near the user. 
F:om the program' s of view, it is a client telling the server to do things, like 
d1splay text and geometrIC figures. The server (in the local PC) just does what it is 
told, as do all servers. 

The .arrangement of client and server is shown in Fig. 5-37 the case where 
the X chent and X server are on different machines. But when runnino- Gnome or 

on a machine, the client is just some application program the X 
lIbrary talkmg to the X server on the same machine (but using a TCP connection 
over sockets, the same as it would do in the remote case). 
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Figure 5.37. Clients and servers in the M.l.T. X Window System. 

The reason it is possible to run the X Window System on t?P of UNIX (or an· 
other operating system) on a single machine or over a network IS that what X rea!-
ly defines is the X protocol between the X client and the X server, as shown III 
Fig. 5-37. It does not matter whether the client and server are on the same ma-
chine separated by 100 meters over a local area network, or are thousands of 
kilorr:eters apart and connected by the Internet. The protocol and operation of the 
system is identical in all cases. 

X is just a windowing system. It is not a complete GUr. T? get 
GUI, others layer of software are run on top of. it. layer is Xlib, whtch IS a set 
of library procedures for accessing the X functionalIty. These procedures form the 
basis of the X Window System and are what we will examine below, but they are 
too primitive for most user programs to directly. Fo: example, each mouse 
click is reported separately, so that determmmg that two clICks really form a 
bIe click has to be handled above Xlib. . . 

To make programming with X easier, a toolkit consisting of the IntrinSICS IS 
supplied as part of X. This layer manages buttons, scroll bars, and other OUI ele-
ments, called widgets. To make a true GUI interface, with a uniform .look 
feel, yet another layer is needed (or several of them). One IS Motif, 
shown in Fig. 5-37, which is the basis of the Common Deskt?p used 
on Solaris and other commercial UNIX systems Most applIcatIOns make use of 
calls to Motif rather than Xlib. Gnome and KDE have a similar structure to 
Fig. 5-37, only with different libraries. Gnome uses the GTK+ .library and KDE 
uses the Qt library. Whether having two GUIs is better than one IS debatable. 
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Also worth noting is that window management is not part of X itself. The 
decision leave it out waS fully intentionaL Instead, a separate X client process, 
called a wmdow manager, controls the creation, deletion, and movement of win-
dows on the screen. To manage windows, it sends commands to the X server tel-
ling what to do. It often runs on the same machine as the X client, but in theory 
can run anywhere. . 

This modular design, consisting of several layers and mUltiple programs, 
makes X highly portable and flexible. It has been ported to most versions of 

including Solaris, all variants of BSD, AIX, Linux, and so on, making it 
pOSSIble for application developers to have a standard user interface for multiple 
platforms. It has also been ported to other operating systems. In contrast, in Win-
dows, the windowing and QUI systems are mixed together in the GDI and located 
in the kernel, which makes them harder to maintain, and of, course, not portable. 

Now let us take a brief look at X as viewed from the Xlib level. When an X 
program starts, it opens a connection to one or more X servers-let us call them 
workstations even though they might be collocated on the same machine as the X 
program itself. X considers this connection to be reliable in the sense that lost and 
duplicate messages are handled by the networking software and it does not have 
to worry about communication errors. Usually, TCPIIP is used between the client 
and server. 

Four kinds of messages go over the connection: 

1. Drawing commands from the program to the workstation. 

2. Replies by the workstation to program queries. 

3. Keyboard, mouse, and other event announcements. 

4. Error messages. 

Most drawing commands are sent from the program to the workstation as 
messages. No reply is expected. The reason for this design is that when 

the chent and server processes are on different machines, it may take a substantial 
period of time for the command to reach the server and be carried out. Blocking 
the application program during this time would slow it down unnecessarily. On 
the other hand, when the program needs information from the workstation, it sim-
ply has to wait until the reply comes back. 

Like Windows, X is highly event driven. Events flow from the workstation to 
the program, usually in response to some human action such as keyboard strokes, 
mouse movements, or a window being uncovered. Each event messacre is 32 

the fi:st byte giving the event type and the next 31 bytes providing ad-
dItIOnal mformatIOn. Several dozen kinds of events exist, but a program is sent 
only those events that it has said it is willing to handle. For example, if a program 
does not want to hear about key releases, it is not sent any key release events. As 
in Windows, events are queued, and programs read events from the input queue. 
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However, unlike Windows, the operating system never calls procedures within the 
application program on its own. It does not even know which procedure handles 
which event. 

A key concept in X is the resource. A resource is a data structure that holds 
certain infonnation. Application programs create resources on workstations. Re-
sources can be shared among multiple processes on the workstation. Resources 
tend to be short-lived and do not survive workstation reboots. Typical resources 
include windows, fonts, colormaps (color palettes), pixmaps (bitmaps), cursors, 
and graphic contexts. The latter are used to associate properties with windows and 
are similar in concept to device contexts in Windows. 

A rough, incomplete skeleton of an X program is shown in Fig. 5-38. It 
begins by including some required headers and then declaring some variables. It 
then connects to the X server specified as the parameter to XOpenDisplay. Then 
it allocates a window resource and stores a handle to it in win. In practice, some 
initialization would happen here. After that it tells the window manager that the 
new window exists so the window manager can manage it. 

The can to XCreateGC creates a graphic context in which properties of the 
window are stored. In a more complete program, they might be initialized here. 
The next statement, the call to XSelectlnput, tells the X server which events the 
program is prepared to handle. In this case it is interested in mouse clicks, key-
strokes, and windows being uncovered. In practice, a real program would be 
interested in other events as well. Finally, the call to XMapRaised maps the new 
window onto the screen as the uppermost window. At this point the window be-
comes visible on the screen. 

The main loop consists of two statements and is logically much simpler than 
the corresponding loop in Windows. The first statement here gets an event and 
the second one dispatches on the event type for processing. When some event 
indicates that the program has finished, running is set to 0 and the loop terminates. 
Before exiting, the program releases the graphic context, window, and connection. 

It is worth mentioning that not everyone likes a GUL Many programmers 
prefer a traditional command-line oriented interface of the type discussed in Sec. 
5.6.2 above. X handles this via a client program caned xterm. This program 
lates a venerable VTI02 intelligent terminal, complete with all the escape se-
quences. Thus editors such as vi and emacs and other software that uses termcap 
work in these windows without modification. 

Graphical User Interfaces 

Most personal computers offer a GUI (Graphical User Interface). The 
nym GUI is pronounced «gooey." 

The GUI was invented by Douglas Engelbart and his research group at the 
Stanford Research Institute. It was then at Xerox P ARC. 
One fine day, Steve Jobs, cofounder of PARC and saw a GUI 
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#inc!ude <X111XIib.h> 
#indude <Xl1/XutiLh> 

main(int arge, char *argv[]) 
( 

Display disp; 
Window win; 
GCge; 
XEvent event; 
int running = 1; 

/* server identifier */ 
/* window identifier */ 
/* graphic context identifier */ 
/* storage for one event */ 

403 

disp "" XOpenDisplay(Hdisplay_nameU
); /* connect to the X server */ 

win -= XCreateSimpleYVind?w(disp, ... ); /* allocate memory for new window */ 
... ); /* announces window to window mgr */ 

gc - XCreateGC(d!sp, Win, 0;0); 1* create graphic context */ 
wi.n, ButtonPressMask I KeYPressMask I ExposureMask); 

XMapRa!sed(d!sp, WIO); /* display window; send Expose event */ 

whlfe (running) { 
XNextEvent(disp, &event); 
switch (event type) { 

case Expose: 
case ButtonPress: 
case Keypress: 

XFreeGC(disp, gel; 
XDestroyWindow(disp, win); 
XCloseDisp!ay(disp); 

/* get next event */ 

break; 
break; 
break; 

/* repaint window */ 
/* process mouse click */ 
/* process keyboard input Y/ 

/* release graphic context */ 
/* deallocate window's memory space */ 
/* tear down network connection *! 

Figure 5-38. A skeleton of an X Window application program. 

on a Xerox and said something to the effect of '<Holy mackereL This is 
the future of The gave him the idea for a new computer, which 

Apple LIsa. The Lisa was too expensive and was a commercial 
faIlure, but successor, the Macintosh, was a huge success. 

. When. M.lcrosoft got a prototype so it could develop Microsoft 
OffIce on It, It .begged Apple to lIcense the interface to all comers so it would 
come the new llldustry. standard. (Microsoft made much more money from Office 
than from so It was to abandon to a better platfonn 
for Office.) The Apple executive III charge of the Macintosh, Gassee, 
refused and. Steve Jobs was no longer around to overrule him. Eventually, 
soft got a lIcense for elements of the interface. This formed the basis of 
dows. When Windows ?egan to catch on, Apple sued Microsoft, claiming 
soft had exceeded the lIcense, but the judge disagreed and Windows went on to 
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overtake the Macintosh. If Gassee had agreed with the many people within Apple 
who also wanted to license the Macintosh software to everyone and his uncle, 
Apple would probably have become immensely rich on licensing fees and Win-
dows would not exist now. 

A GUI has four essential elements, denoted by the characters WIMP. These 
letters stand for Windows, Icons, Menus, and Pointing device, respectively. Win-
dows are rectangular blocks of screen area used to run programs. Icons are little 
symbols that can be clicked on to cause some action to happen. Menus are lists of 
actions from which one can be chosen. Finally, a pointing device is a mouse, 
trackball, or other hardware device used to move a cursor around the screen to se-
lect items. 

The GUI software can be implemented in either user-level code, as is done in 
UNIX systems, or in the operating system itself, as in the case in Windows. 

Input for systems stiU uses the keyboard and mouse, but output almost 
always goes to a special hardware board called a graphics adapter. A graphics 
adapter contains a special memory called a video RAM that holds the images that 
appear on the screen. graphics adapters often have powerful 32- or 64-
bit CPUs and up to 1 OB of their own RAM, separate from the computer's main 
memory. 

Each graphics adapter supports some number of screen sizes. Common sizes 
are 1024 x 768, 1280 x 960, 1600 x 1200, and 1920 X1200. All of these except 
1920 x 1200 are in the ratio of 4:3, which fits the aspect ratio of NTSC and PAL 
television sets and thus gives square pixels on the same monitors used for televi-
sion sets. The 1920 x 1200 size is intended for wide-screen monitors whose aspect 
ratio matches this resolution, At the highest resolution, a color display with 24 
bits per pixel requires about 6.5 MB of RAM just to hold the image, so with 256 
MB or more, the graphics adapter can hold many images at once. If the' full 
screen is refreshed 75 timesfsec, the video RAM must be capable of delivering 
data continuously at 489 MBfsec. 

Output software for GUIs is a massive topic. Many IS00-page books have 
been written about the Windows GUI alone (e.g., Petzold, 1999; Simon, 1997; and 
Rector and Newcomer, 1997). Clearly, in this section, we can only scratch the 
surface and present a few of the underlying concepts. To make the discussion 
concrete, we will describe the Win32 APL which is supported by all 32-bit ver-
sions of Windows. The output software for other OUIs is roughly comparable in a 
general sense, but the details are very different. 

The basic item on the screen is a rectangular area called a window. A win-
dow's position and size are uniquely detennined by giving the coordinates (in pix-
els) of two diagonally opposite corners. A window may contain a title bar, a 
menu bar, a tool bar, a vertical scroll bar, and a horizontal scroll bar. A typical 
window is shown in Fig. 5-39. Note that the Windows coordinate system puts the 
origin in the upper lefthand comer and has y increase downward, which is dif-
ferent Cartesian coordinates used in mathematics, 
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Figure 5-39. A sample window lOcated at (200, 100) on an XGA display. 

When a window is .created, the parameters specify whether the window can be 
user, resIzed by the user, or scrolled (by draoging the thumb On the 

scro ar by the user. The main window produced b 
:O;;d, and which has enonnous 

about 
of theIr wmdows at any time, even when they least expect it w e contents 

Windows programs are message User actions 
r or are captured by Windows and converted int 

messages to the owmng the window being addressed. Each rooram 
queue to messages relating to all its windows are se!t. The main 

0 t e, program consists of fishing Out the next message'and 'processing it by 
tng an mternal procedure for that message type. In some cases, Windows it-

these bypassing the message queue. This model 
:s qUIte dIfferent than the UNIX model of procedural code that makes system calls 
o mteract wIth the operatmg system. X, however, is event oriented. 
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1 "d the example of pia. 5-40. To make this programming model c earer, conSI er. I:> d 
Here we see the skeleton of a main program for Windows. It IS not complete an 
does no error checking, but it shows enough for Qur purposes. It 
including a header me, windows.h, which contams many data tyPo 5, 
stants, function prototypes, and other information needed by Wmdows proorams. 

#include <windows.h:> 

lnt WINAPI WinMain(H1NSTANCE h, H1NSTANCE, hprev, char *szCmd, lnt iCmdShow) 

( 
WNDCLASS wndclass; 
MSGmsg; 
HWND hwnd; 

/* class object for this window *1 
1* incoming messages are stored here */ 
1* handle (pointer) to the window object */ 

1* Initialize wndclass */ n */ 
wndclass.lpfnWndProc =: WndProc; /* tells which procedure to ca 
wndc1assJpszClassName = "Program name"; f* Text for title bar */ 
wndclass.h lcon = Loadlcon(NULL, !DLAPPLlCAT!ON); /* load program Icon */ 

ARROW) /* load mouse cursor */ wndclass.hCursor "" LoadCursor(NULL, IOC_ ; 

RegisterClass(&wndc1ass); 
hwnd = CreateWindow ( ... ) 
ShowWindow(hwnd, iCmdShow); 
UpdateWindow(hwnd}; 

/* teH Windows about wndc1ass */ 
/* allocate storage for the window */ 
/* display the window on the screen */ 
/* tell the window to paint itself */ 

while (GetMessage(&msg, NULL, 0, 0)) { /* get message from queue */ 
TranslateMessage(&msg); /* translate the message */. * 
DispatchMessage(&msg); /* send msg to the appropnate procedure I 

} 
retum(msg.wParam); 

long CALLBACK WndProc(HWND hwnd, UINT message, UINT wParam, long lParam) 

{ 
/* Declarations go here. */ 

switch (message) { 
case WM_CREATE: 
case WM_PA1NT: 
case WM_DESTROY: 

return 
re'U.1rn .. 
return . 

/* create window */ 
1* repaint contents of window */ 
/* destroy window */ 

message, wParam, IParam)); /* default */ 

Figure 540. A skeleton of a Windows main program. 

The main proe-ram starts with a declaration giving its name and. parameters. 
The WINAPI is an instruction to the compiler to use a certam 

. . d ·11 further concern to us. The first parameter, , passmg conventlQn an WI ., 
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is an instance handle and is used to identify the program to the rest of the system. 
To some extent, Win32 is object oriented, which means that the system contains 
objects (e.g., programs, files, and windows) that have some state and associated 
code, called methods, that operate on that state. Objects are referred to using 
handles, and in this case, h identifies the program. The second parameter is pres-
ent only for reasons of backward compatibility. It is no longer used. The third pa-
rameter, szCmd, is a zero-tenninated string containing the command line that 
started the program, even if it was not started from a command line. The fourth 
parameter, iCmdShow, tells whether the program's initial window should occupy 
the entire screen, part of the screen, or none of the screen (task bar only). 

This declaration illustrates a widely used Microsoft convention caned Hun-
garian notation. The name is a pun on Polish notation, the postfix system inven-
ted by the Polish logician J. Lukasiewicz for representing algebraic formulas 
without using precedence or parentheses. Hungarian notation was invented by a 
Hungarian programmer at Microsoft, Charles Simonyi, and uses the first few 
characters of an identifier to specify the type. The allowed letters and types in-
clude c (character), W (word, now meaning an unsigned 16-bit integer), i (32-bit 
signed integer), 1 (long, also a 32-bit signed integer), s (string), sz (string termi-
nated by a zero byte), p (pointer), fn (function), and h (handle). Thus szCmd is a 
zero-terminated string and iCmdShow is an integer, for example. Many pro-
grammers believe that encoding the type in variable names this way haS little 
value and makes Windows code exceptionally hard to read. Nothing analogous to 
this convention is present in UNIX. 

Every window must have an associated class object that defines its properties. 
In Fig. 5-40, that class object is wndclass. An object of type WNDCIASS has 10 
fields, four of which are initialized in Fig. 5-40. In an actual program, the other 
six would be initialized as well. The most important field is IpfnWndProc, which 
is a long (i.e., 32-bit) pointer to the function that handles the messages directed to 
this window. The other fields initialized here tell which name and icon to use in 
the title bar, and which symbol to use for the mouse cursor. 

After wndclass has been initialized, RegisterClass is called to pass it to Win-
dows. In particular, after this call Windows knows which procedure to call when 
various events occur that do not go through the mesS-age queue. The next call, 
Create Window, allocates memory for the window's data structure and returns a 
handle for referencing it later. The program then makes two more calls in a row, 
to put the window's outline on the screen, and finally fill it in completely. 

At this point we come to the program's main loop, which consists of getting a 
message, having certain translations done to it, and then passing it back to Win-
dows to have Windows invoke WndProc to process it. To answer the question of 
whether this whole mechanism could have been made simpler, the answer is yes, 
but it was done this way for historical reasons and we are now stuck with it. 

Following the main program is the procedure vVndProc, which handles the 
various messages that can be sent to the window. The use of CALLBACK here, 
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like WINAPI above, specifies the calling sequence to use for parameters. The first 
parameter is the handle of the window to lise. The second parameter is the mes-
sage type. The third and fourth parameters can be used to provide additional infor-
mation when needed. 

Message types WM_CREATE and WM_DESTROY are sent at the start and 
end of the program, respectively. They give the program the opportunity, for ex-
ample, to allocate memory for data structures and then return it. 

The third message type, WM_PAINT, is an instruction to the program to fill in 
the window. It is not only called when the window is first drawn, but often during 
program execution as welL In contrast to text-based systems, in Windows a pro-
gram cannot assume that whatever it draws on the screen will stay there until it re-
moves it. Other windows can be dragged on top of this one, menus can be pulled 
down over it, dialog boxes and tool tips can cover part of it, and so on. When 
these items are removed, the window has to be redrawn. The way Windows tells 
a program to redraw a window is to send it a WM_PAINT message. As a friendly 
gesture, it also provides infonnation about what part of the window has been over-
written, in case it is easier to regenerate that part of the window instead of redraw-
ing the whole thing. 

There are two ways WindowS can get a program to do something. One way is 
to post a message to its message queue. This method is used for keyboard input, 
mouse input, and timers that have expired. The other way, sending a message to 
the window, involves having Windows directly call WndProc itself: This method 
is used for all other events. Since Windows is notified when a message is fully 
processed, it can refrain from making a new call until the previous one is finished. 
In this way race conditions are avoided. 

There are many more message types. To avoid erratic behavior should an 
unexpected message arrive, the program should call DefWindowProc at the end of 
WndProc to let the default handler take care of the other cases. 

In summary, a Windows program nonnal1y creates one or more windows with 
a class object for each one. Associated with each program is a message queue and 
a set of handler procedures. Ultimately, the program's behavior is driven by the 
incoming events, which are processed by the handler procedures. This is a very 
different model of the world than the more procedural view that UNIX takes. 

The actual drawing to the screen is handled by a package consisting of hun-
dreds of procedures that are bundled together to form the GDI (Graphics Device 
Interface). It can handle text and all kinds of graphics and is designed to be plat-
form and device independent. Before a program can draw (i.e., paint) in a win-
dow, it needs to acquire a device context, which is an internal data structure con-
taining properties of the window, such as the current font, text color, background 
color, and so on. Most GDI cans use the device context, either for drawing or for 
getting or setting the properties. 

Various ways exist to acquire the device context. A simple example of its 
acquisition and use is 
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hdc GetDC(hwnd); 
TextOut(hdc, x, y, psText, iLength); 
ReleaseDC(hwnd, hdc); 

409 

The first statement gets a handle to a device content hdc Th d h d . ' . e secon one uses 
t e eVIce context to a line of text on the screen, specifying the (x, y) coordi-

of where the stnng, starts, a pointer to the string itself, and its length. The 
call releases the deVIce context to indicate that the program is th ollcrh d -

mg. for the moment. Note that hdc is used in a way analogous to a 
scr!ptor. Also !10te that.ReieaseDC contains redundant information (the use of hdc 
umquely s?eclfies a wmdow). The use of redundant information that has no ac-
tual value IS common in Windows. 

Another interesting note is that when hdc is acquired in this way the p 
can only 't' th I' f ' rogram . wn e 10 e c lent area 0 the window, not in the title bar and other parts 

It. Internally, the data structure, a clipping region is main-
tamed. Any outSIde the chppmg region is ignored. However, there is an-
other way to acqUIre a device context, GetWindowDC which sets the I' , . h . . ,c lppmg re-
gIOn. to t e wmdow. Other calls restrict the clipping region in other ways. 
Havmg multIple calls that do almost the same thing is characteristic of Windows. 

A complete of the GDI is out of the question here. For the interested 
reader, the references cited above provide additional information. Nevertheless a 

about the GDI are probably worthwhile given how important it is .• GDI 
as procedure calls to get and release device contexts, obtain information 

about contexts, get and set device context attributes (e.g., the backcrround 
mampul.ate GDI objects such as pens, brushes, and fonts, each otwhich 

has Its own attnbutes. Finally, of course, there are a large number of GDI calls to 
actually draw on the screen. 

drawing procedures fall into four categories: drawincr lines and c 
filled areas, managing bitmaps, and displaying text. We saw an 

of drawmg text above, so let us take a quick look at one of the others. The call p 

Rectangle(hdc, xleft, ytop, xright, ybottom); 

rectangle whose comers are (xleft, ytop) and (xright. ybottom). For 

Rectangle(hdc, 2, 1, 6, 4); 

will draw the shown in Fig. 5-41. The line width and color and fill color 
are taken from the deVIce context. Other GDI calls are similar in flavor. 

Bitmaps 

The .GDI procedures are examples of vector graphiCS. They are used to place 
geometrIC figures text on the screen. They can be scaled easily to larger or 
smaller screens (proVlded the number of pixels, on the screen is the same), They 

82 of 94



410 

o 

2 

3 

4 

o 

INPUT/OUTPUT 

345678 

CHAP. 5 

Figure 5.41. An example rectangle drawn using Rectangle. Each box represents 

one pixel. 

. .' d nt A conection of calls to GDI procedures 
are also relatively devlce mdepen de '"b complex drawinO" Such a file is ca1l-
can be itan to transmit from one Win-
ed a WIll ows me I , . if 

ther Such files have extenSIOn .wm . 
daws to ana. How the user to copy (part at) a drawing and put 

Many Wmdows programs a other rooram and paste 
in on the Windows .. The way doing this is for 
the contents of the clIpboard mto ;no . (;r a Windows metafile and put it on the 
the first program to represent the rawmt> as . 

. • ,F f at Other ways also eXISt. clIpboard In . wmJ orm . . late can be crenerated using vector 
Not all the images that do not vector QIaphics. In-

graphics. Photographs and or 'a grid on the image.t> The average 
stead, these items are In are then sampled and saved as the 
red, green, and blue values 0 ?ac Sb-tmap There are extensive facilities in 
value of one pixel. Such a file IS ca e a 1 • 

Windows for One way to represent a particular charac-
Another use bItmaps 111\ . Adding text to the screen then becomes a 

ter in some font IS as a sma I . 

matter of moving bitmaps. b' . throuO"h a procedure called bilblt. It is call-
One general way to use Itmaps IS t> 

ed as followS: 

bitblt(dsthde, dx, dy, wid, ht, srehde, sx, sy, rasterop); 

. ies a bitmap from a rectangle in one window to a rec-
In its simplest form,. It cop ) The first three parameters specify 
tangle in another. wmdow (or same one the width and height. Next come 
the destination wmdow and window has its own coordinate 
the source window and pOSItIOn. ote t .. 
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system, with (0, 0) in the upper left-hand corner of the window. The last parame-
ter will be described below. The effect of 

BitBlt(hde2, 1, 2, 5, 7, hde1, 2, 2, SRCCOPY); 

is shown in Fig. 5-42. Notice carefully that the entire 5 x 7 area of the letter A 
has been copied, including the background color. 

(a) (b) 

Figure 5-42. Copying bitmaps using BitElI. (a) Before. (b) After. 

BitBlt can do more than just copy bitmaps. The last parameter gives the possi-
bility of performing Boolean operations to combine the source bitmap and the 
destination bitmap. For example, the source can be ORed into the destination to 
merge with it. It can also be EXCLUSIVE ORed into it, which maintains the 
characteristics of both source and destination. 

A problem with bitmaps is that they do not scale. A character that is in a box 
of 8 x 12 on a display of 640 x 480 will look reasonable. However, if this bitmap 
is copied to a printed page at 1200 dots/inch, which is 10200 bits x 13200 bits, the 
character width (8 pixels) will be 811200 inch or 0.17 mm wide. In addition, 
copying between devices with different color properties or between monochrome 
and color does not work wel1. 

For this reason, Windows also supports a data structure called a DIB (Device 
Independent Bitmap). Files using this format lise the extension .bmp. These 
files have file and information headers and a color table before the pixels. This 
information makes it easier to move bitmaps between dissimilar devices. 

Fonts 

In versions of Windows before 3.1, characters were represented as bitmaps 
and copied onto the screen or printer using BilEll. The problem with that, as we 
just saw, is that a bitmap that makes sense on the screen is too small for the print-
er. Also, a different bitmap is needed for each character in each size. In other 
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. . 10- oint type, there is no way to compute it. for 

words, given the bitmap for A 10 P f ry Cont might be needed for SIzes 
. B e every character 0 eve l' Th 12-pomt type. eeaus . t umber of bitmaps were needed. e 

ranoina from 4 point to 120 pom!, a vas n 
o 0 • t cumbersome for text. . 

whole system was Just 00. . n of TrueType fonts, which are not bitmaps 
The solution was the mtroduCtl°T T e character is defined by a sequence 

but outlines of the. are relative to the (0, 0) origin. 
of points around It.s ?enmeter. A Ie the up or down. All that has to be 
Using this system, It IS easy to, sea the same scale factor. In this way, a True-
done is to multiply each coordmate blown to any point size, even fractional point 
Type character can be up or oints can be connected using the well-known 
sizes. Once at the kindergarten (note that modern kindergartens 
follow-.the-dots algonthm tau After the outline has been completed, char-
use spimes for smoother results). 1 f e characters scaled to three different 
acter can be filled in. An examp e 0 som 
point sizes is given in Fig. 5-43. 

Figure Some examples of character outlines at different point sizes. 

. . h t' 1 form, it can be raster-
Once .the filled character. is desired. By first scal-

ized, that IS, to a that the characters displayed on the 
ing and then rastenzmg, we can. e be as close as possible, differing only In 
and those that appear o.n the n I still more it is possible to embed hints 
quantization error. Improve t deo For example, both serifs on 
in each character tellmg hOW

d 
bto.d t. 1 sometbino- that mioht not otherwise be 

h of the letter T shoul e 1 en lca , 0 e 
due to roundoff error. Hints improve the final appearance. 
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5.7 THIN CLIENTS 

Over the years, the main computing paradigm has oscillated between central-
ized and decentralized computing. The first computers, such as the ENIAC, were, 
in fact, personal computers, albeit large ones, because only one person could use 
one at once. Then came. timesharing systems, in which many remote users at sim-
ple tenninals shared a big central computer. Next came the PC era, in which the 
users had their own personal computers again. 

While the decentralized PC model has advantages, it also has some severe 
disadvantages that are only beginning to be taken seriously. Probably the biggest 
problem is that each PC has a large hard disk arid complex software that must be 
maintained. For example, when a new release of the operating system comes out, 
a great deal of work has to be done. to perfonn the upgrade on each machine sepa-
rately. At most corporations, the labor costs of doing this kind of software main-
tenance dwarf the actual hardware and software costs. For home users, the labor is 
technicallY free, but few people are capable of doing it correctly and fewer still 
enjoy doing it. With a centralized system, only one or a few machines have to be 
updated and those machines have a staff of experts to do the work. 

A related issue is that users should make regular backups of their gigabyte file 
systems, but few of them do. When disaster strikes, a great deal of moaning and 
wringing of hands tends to follow. With a centralized system, backups can be 
made every night by automated tape robots. 

Another advantage is that resource sharing is easier with centralized systems. 
A system with 256 remote users, each with 256 ME of RAM will have most of 
that RAM idle most of the time. With a centralized system with 64 GB of RAM, it 
never happens that some user temporarily needs a lot of RAM but cannot get it 
because it is on someone else's Pc. The same argument holds for disk space and 
other resources. 

Finally, we are starting to see a shift from PC-centric computing to Web-
centric computing. One area where this shift is very far along is e-mail. People 
used to get their e-mail delivered to their home machine and read it there. Nowa-
days, many people log into Gmail, Hotmail, or Yaboo and read their mail there. 
The next step is for people to log into other Websites to do word processing, build 
spreadsheets, and other things that used to require PC software. It is even possible 
that eventually the only software people run on their PC is a Web browser, and 
maybe not even that. 

It is probably a fair conclusion to say that most users want high-performance 
interactive computing, but do not really want to administer a computer. This has 
led researchers to reexamine timesharing using dumb tenninals -(now politely call-
ed thin clients) that meet modem tenninal expectations. X was a step in this 
direction and dedicated X terminals were popular for a little while but they fell 
out of favor because they cost as much as pes, could do less, and stilI needed 
some software maintenance. The holy grail would be a high-performance interac-
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. h' had no software at all. Interest-. . whlch the user mac mes . -1' 

tive computmg system In B 1 will describe one such thm C lent . 1 - h' vable e ow we ingly enough, thIS goa IS ac le db' archers at Columbia University (Baratto 
system, called THING, develope Y N' h 2006). 
et at, 2005; Kim et a1., 2?06; au? of all it smarts and software 

The basit idea here IS to stnp tee Ie t'" (J·ncludin ..... building the bitmap 
. d' 1 w' th all the compu to and just use It as a lSP ay, 1 . de The protocol between the client and 

to be displayed) done on the server 51 d the video RAM nothing more. FIve 
server just tells the display hoW to up ate the two side;. They are listed in 
commands are used in the protocol between 
Fig. 5-44. 

Command Description 

Raw Display raw pixel data at a given location . 

Copy 
Copy frame buffer area to specified coordmates 

Sfill Fill an area with a given pixel color value 

Pfil! Fill an area with a given pixel pattern 

Bitmap Fill a region using a bitmap image 

Figure 5-44. The THINe protocol display commands. 

. ow Raw is used to transmit pixel data and 
Let us examme the n . I rinciple this is the only command 

have them display verbatIID on. n p 
needed. The others are just f one part of its video RAM to an-

Copy instructs the display to. move ata rOID.thout havino- to retransmit all the 
other part. It is useful for scrollmg the screen WI. to 

data. ·th sino-Ie pixel value. Many screens have a 
Sfi1l fills a region of the screen WI d tha . t> mand is used to first generate the 

k d in some color an IS com uniform bac groun . . and other items can be painted. 
background, after WhICh, text, Icons, . It is also used for backgrounds, but 

Pfill replicates a over some regIa In. than a single color, in which case 
some backgrounds are slIghtly more comp ex 
this command does the job.. . b t w·th a foreo-round color and a back-

Finally, Bitmap also pamts a regIOn, ; requiring very little 
ground color. All in all, these are verYI building the bitmaps that fin the 
software on the client side. All the multiple commands can be 
screen are done on the server. TfO Imp . ssion over the network from server to 
aoo-regated into a single packet or tranSml 
00 

client. . . aros use hio-h-Ievel commands to paint the 
On the server s!"de, graphIcal and translated into COffi-

screen. These are mtercepted ands may be reordered to improve 
mands that can be sent to the clIent. e comm 
efficiency. 
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The paper gives extensive performance measurements running numerous 
common applications on servers at distances ranging from 10 km to 10,000 km 
from the client. In general performance exceeded other wide-area network sys-
tems, even for real-time video. For more information, we refer you to the papers. 

5.8 POWER MANAGEMENT 
The first general-purpose electronic computer, the ENIAC, had 18,000 

vacuum tubes and consumed 140,000 watts of power. As a result, it Ian up a non-
trivial electricity bill. After the invention of the transistor, power usage dropped 
dramatically and the computer industry lost interest in power requirements. How-
ever, nowadays power management is back in the spotlight for several reasons, 
and the operating system is playing.a role here. 

Let us start with desktop pes. A desktop PC often has a 200-watt power sup-
ply (which is typically 85% efficient, that is, loses 15% of the incoming energy to 
heat). If 100 million of these machines are turned on at once worldwide, together 
they use 20,000 megawatts of electricity. This is the total output of 20 average-
sized nuclear power plants. If power requirements could be cut in balf, we could 
get rid of 10 nuclear power plants. From an environmental point of view, getting 
rid of 10 nuclear power plants (or an equivalent number of fossil fuel plants) is a 
big win and well worth pursuing. • 

The other place where power is a big issue is on battery-powered computers, 
including notebooks, handhelds, and Webpads, among others. The heart of the 
problem is that the batteries cannot hold enough charge to last very long, a few 
hours at most. Furthermore, despite massive research efforts by battery com-
panies, computer companies, and consumer electronics companies, progress is 
glacial. To an industry used to a doubling of performance every 18 months 
(Moore's law), having no progress at all seems like a violation of the laws of phy-
sics, but that is the current situation. As a consequence, making computers use 
less energy so existing batteries last longer is high on everyone's agenda. The op-
erating system plays a major role here, as we will see below. 

At the lowest level, hardware vendors are trying to make their electronics 
more energy efficient. Techniques used include reducing transistor size, employ-
ing dynamic voltage scaling, using low-swing and adiabatic buses, and similar 
techniques. These are outside the scope of this book, but interested readers can 
find a good survey in a paper by Venkatachalam and Franz (2005). 

There are two general approaches to reducing energy consumption. The first 
one is for the operating system to turn off parts of the computer (mostly I/O de-
vices) when they are not in use because a device that is off uses little or no ener-
gy. The second one is for the application program to use less energy, possibly 
degrading the quality of the user experience, in order to stretch out battery time. 
We will look at each of these approaches in turn, but first we will say a little bit 
about hardware design with respect to power usage. 
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5.8.1 Hardware Issues 

Batteries come in two general types: disposable and rechargeable. Disposable 
batteries (most commonly AAA, AA, and D cells) can be used to run handheld 
devices, but do not have enough energy to power notebook computers with large 
bright screens. A rechargeable battery, in contrast, can store enough energy to 
power a notebook for a few hours. Nickel cadmium batteries used to dominate 
here, but they gave way to nickel metal hydride batteries, which last longer and do 
not pollute the environment quite as badly when they are eventually discarded. 
Lithium ion batteries are even better, and may be recharged without first being 
fully drained, but their capacities are also severely limited. 

The general approach most computer vendors take to battery conservation is 
to design the CPU, memory, and 1/0 devices to have multiple states: on, sleeping, 
hibernating, and off. To use the device, it must be on. When the device will not 
be needed for a short time, it can be put to sleep, which reduces energy consump-
tion. When it is not expected to be needed for a longer interval, it can be made to 
hibernate, which reduces energy consumption even more. The trade-off here is 
that getting a device out of hibernation often takes more time and energy than get-
ting it out of sleep state. Finally, when a device is off, it does nothing and con-
sumes no power. Not all devices have all these states, but when they do, it is up 
to the operating system to manage the state transitions at the right moments. 

Some computers have two or even three power buttons. One of these may put 
the whole computer in sleep state, from which it can be awakened quickly by typ-
ing a character or moving the mouse. Another may put the computer into hiberna-
tion, from which wakeup takes much longer. In both cases, these buttons typi-
cally do nothing except send a signal to the operating system, which does the rest 
in software. In some countries, electrical devices must, by law, have a mechani-
cal power switch that breaks a circuit and removes power from the device, for 
safety reasons. To comply with this law, another switch may be needed. 

Power management brings up a number of questions that the operating system 
must deal with. Many of them deal with resource hibernation-selectively and 
temporarily turning off devices, or at least reducing their power consumption 
when they are idle. Questions that must be answered include these: Which devices 
can be controlled? Are they on/off, or do they have intermediate states? How 
much power is saved in the low-power states? Is energy expended to restart the 
device? Must some context be saved when going to a low-power state? How 
long does it take to go back to full power? Of course, the answers to these ques-
tions vary from device to device, so the operating system must be able to deal 
with a range of possibilities. 

Various researchers have examined notebook computers to see where the 
power goes. Li et a1. (1994) measured various workloads and came to the conclu-
sions shown in Fig. 5-45. Lorch and Smith (1998) made measurements on other 
machines and came to the conclusions shown in Fig. 5-45. Weiser et a1. (1994) 
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also made measurements but did not ublish th . 
"ad ted that .the top three energy sinks :ere the 
or er. While these numbers d ' > III t at 
brands of computers possibly because the different 
seems clear that the display, hard disk and 1 ferebnt. energy it 
ergy. ' are a VIOUS targets for savmg en-

Device Li et al. (1994) Lorch and Smith (1998) 
Display 68% 39% 
CPU 12% 18% 
Hard disk 20% 12% 
Modem 6% 
Sound 2%, 
Memory 0.5% 1% 
Other 22% 

Figure 5-45_ Power consumption of various parts of a notebook computer. 

5.8.2 Operating System Issues 

The operating system plays a k I· 
the devices, so it must decide what e?o energy management. controls all 
shuts down a device and that devie. to Shut It down. If it 
annoying delay while it is restarted. there may be an 
down a energy is wasted for nothing. ,1 It Waits too long to shut 

The tnck is to find algorithms and heuristics that let the . 
make good decisions about what to shut d d operatmg system F 
Another user may Swear a blue stre n s or It to respond to a keystroke. 
of audio input the computer cannot aktellUtnhder the same conditions. In the absence , ese users apart. 

The Display 

look at the .big of the energy budget to see what can be 
To get a Item III everyone's budget is the display. 

, screen must be backht and that tak b . 1 
Mhany operating systems attempt to save energy here by 

some of minutes. Often the 
frequent blanking of the screen ad. hIS, thus pushmg .the between 

n usmg t e battery up qmckly back to the user 
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want it) TurniuO" off the display is a sleep state be-
(who probably really does not . 'd RAM) almost instantaneously when 
cause it can be regenerated (from eo 

. k th ointin<r devIce IS moved. any key IS strue or e P t> d by Flinn and Satyanarayanan 
One possible improvement was propose . 5t of some number of zones that 

(2004). They suggested having the 5-46 we depict 16 zones using 
can be independently powered up or OWhTI, n 1 . l's l'n' wl'ndow 2 as shown in 

. th m When t e cursor '. dashed lmes to separate e . . h I 'ghthand corner have to be lIt up. 
F 5-46(a), only the four zones 10 t e ower n 

19. k . 3/4 of the screen power. 
The other 12 can be dar , savmg . d 1 the zoneS for window 2 can be 

When the user moves be turned on. However, because 
darkened and the zones behmd wm , d d If the window manager can 

dl 9 s more power IS nee e . , window 1 strad eS zone, . II w'ndow 1 to fit mto four 
. .' t can automanca Y move 1 sense what IS happenmg, I . h' FiO" 5-46(b). To achieve 

·th ki d f snap to-zone actIon, as sown m o' 
zones, WI . a n 0 - ower to 4/16 of full power, the window manager 
this reductIon from 9/16 of full p b able of acceptinO' instructions from 
has to understand power e more sophisti;ated would be the 
some other piece o.f the.system t. at oes. :as not completely full (e.g., a win-
ability to partially lllu:nmatef a dark on the right-hand side). 
dow containing short hnes 0 text cou e 

'--y--' 
Zone 

(a) 
(b) 

. h' th d' lay (a) When window 2 
Fi 5 46 The use of zones for backhg tmg e lSP • d 

gure - .-. ed (b) When window 1 is selected, it moves to re uce 
is selected it IS not mOV • 
the number of zones illuminated, 

The Hard Disk 

. 'n' is th'" hard disk It takes substantial energy to keep it 
l\nother :naJor VI am . '-' are aCcesses. Many computers, especially 

spinmng at hIgh speed, even If there . mber of seconds or minutes of 
notebooks, spin the disk down afte: certaIn Unfortunately, a stopped 
inactivity. When it is next needed, It IS spun u . 
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disk is hibernating rather than sleeping because it takes quite a few seconds to 
spin it up again, which causes noticeable delays for the user. 

In addition, restarting the disk consumes considerable extra energy. As a 
consequence, every disk has a characteristic time, Td , that is its break-even point, 
often in the range 5 to 15 sec. Suppose that the next disk access is expected to 
come some time t in the future. If t < Td, it takes less energy to keep the disk 
spinning rather than spin it down and then spin it up so quickly. If t > Td , the en-
ergy saved makes it worth spinning the disk down and up again much later. If a 
good prediction could be made (e.g., based on past access patterns), the operating 
system could make good shutdown predictions_and save energy. In practice, most 
systems are conservative and only stop the disk after a few minutes of inactivity. 

Another way to save disk energy is to have a substantial disk cache in RAM. 
If a needed block is in the cache, an idle disk does not have to be restarted to 
satisfy the read. Similarly, if a write to the disk can be buffered in the cache, a 
stopped disk does not have to restarted just to handle the write. The disk can 
remain off until the cache fills up or a read miss happens. 

Another way to avoid unnecessary disk starts is for the operating system to 
keep running programs infonned about the disk state by sending it messages or 
signals. Some programs have discretionary writes that can be skipped or delayed. 
For example, a word processor may be set up to write the file being edited to disk 
every few minutes. If the word processor knows that the disk is off at the t"noment 
it would nonnaIly write the file out, it can delay this write until the disk is next 
turned on or until a cel1ain additional time has elapsed. 

The CPU 

The CPU can also be managed to save energy. A notebook CPU can be put to 
sleep in software, reducing power usage to almost zerO. The only thing it can do 
in this state is wake up when an interrupt occurs. Therefore, whenever the CPU 
goes idle, either waiting for I/O or because there is no work to do, it goes to sleep. 

On many computers, there is a relationship between CPU voltage, clock 
cycle, and power usage. The CPU voltage can often be reduced in software, which 
saves energy but also reduces the clock cycle (approximately linearly). Since 
power consumed is proportional to the square of the voltage, cutting the voltage in 
half makes the CPU about half as fast but at 1/4 the power. 

This property can be exploited for programs with wen-defined deadlines, such 
as multimedia viewers that have to decompress and display a frame every 40 
msec, but go idle if they do it faster. Suppose that a CPU uses. x joules while run-
ning full blast for 40 msec and x/4 joules running at half speed. If a multimedia 
viewer can decompress and display a frame in 20 msec, the operating system can 
run at full power for 20 msec and then shut down for 20 msec for a total energy 
usage of x/2 joules. Alternatively, it can run at half power and just make the dead-
line, but use only x/4 joules instead. A comparison of running at full speed and 
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. . al d at half speed and one quarter power for 

full power for, some allln both caseS the same work is done, but in 
twice as long IS shown m FIg.· . . 
Fig. 5-47(b) only half the energy is consumed domg It. 

Time-+--

(a) 

1.00 

0.75 

Time-

(b) 

Figure 5-47. (a) Running at full clock (b) Cutting voltage by twO cuts 
dock speed by twO and power consumption by four. 

.' .' at 1 char/sec, but the work needed to proe-
In a similar vem, If a user IS for the operating system to detect 

ess the takes 100 down by a factor of 10. In short, runnmg 
long idle penods and slow the . ' 
slowly is more energy efficient than runnmg qUICkly. 

The Memory 
. . with the memory. First, the 

Two possible options eXIst always be reloaded from main 
cache can be flushed and e load can be done dynamically and 
memory with no loss of mformatlon. e re 

, h h' s entering a sleep state. 
quickly, so turmng off t e cac e 1. h tents of main memory to the disk, 

d . t' n is to wnte t e con . . A more rasUc °P.IO . . a roach is hibernation, smce Vlrtu-
then switch off the mam memory Itself. T:IS of a substantial reload time, 
ally all power can be cut to memory at tee . cut off the CPU either has to 

, d' k' ff toO When the memory IS , especially If the IS IS o· f ROM If the CPU is off, the interrupt 
be shut off as well or has to execute out 0 d: ROM so the memory can be 

. 't to jump to co em a 
that wakes It up to cause I . all the overhead, switching off the memory 
reloaded before bemg used. DeSPIte) b orth ,'t ,'f restarting in a few seconds 

'd ff (e g hours may e w . k for long peno s 0 IIDe . ". bl th ebootino- the operating system from dIS , 
is considered much more deSlra e an r ;0 

which often takes a minute or more. 

Wireless Communication 
. I uters have a wireless connection to the out-

Increasmgly many portab e d' transmitter and receiver required are 
side world (e.g., the Internet)]. e .ra 110 if the radio receiver is always on in 
often first-class power hogs. n pamcu ar, 
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order to listen for incoming e-mail, the battery may drain fairly quickly. On the 
other hand, if the radio is switched off after, say, 1 minute of being idle, incoming 
messages may be missed, which is clearly undesirable. 

One efficient solution to this problem has been proposed by Kravets and 
Krishnan (1998). The heart of their solution exploits the fact that mobile com-
puters communicate with fixed base stations that have large memories and disks 
and no power constraints. What they propose is to have the mobile computer send 
a message to the base station when it is about to turn off the radio. From that time 
on, the base station buffers incoming messages on its disk. When the mobile 
computer switches on the radio again, it tells the base station. At that point any 
accumulated messages can be sent to it. 

Outgoing messages that are generated while the radio is off are buffered on 
the mobile computer. If the buffer threatens to fiU up, the radio is turned on and 
the queue transmitted to the base station. 

When should the radio be switched off? One possibility is to let the user or 
the application program decide. Another is turn it off after some number of sec-
onds of idle time. When should it be switched on again? Again, the user or pro-
gram could decide, or it could be switched on periodically to check for inbound 
traffic and transmit any queued messages. Of course, it also should be switched 
on when the output buffer is close to fulL Various other heuristics are poss!ble. 

Thermal Management 

A somewhat different, but still energy-related issue, is thermal management. 
Modern CPUs get extremely hot due to their high speed. Desktop machines nor-
mally have an internal electric fan to blow the hot air out of the chassis. Since 
reducing power consumption is usually not a driving issue with desktop machines, 
the fan is usually on all the time. 

With notebooks, the situation is different. The operating system has to moni-
tor the temperature continUOUSly. When it gets close to the maximum allowable 
temperature, the operating system has a choice. It can switch on the fan, which 
makes noise and consumes power. Alternatively, it can reduce power consump-
tion by reducing the backlighting of the screen, slowing down the CPU, being 
more aggressive about spinning down the disk, and so on. 

Some input from the user may be valuable as a guide. For example, a user 
could specify in advance that the noise of the fan is objectionable, so the operating 
system would reduce power consumption instead. 

Battery Management 

In ye olde days, a battery just provided current until it was drained, at which 
time it stopped. Not any more. Laptops use smart batteries now, which can com-
municate with the operating system. Upon request they can report on things like 
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their maximum voltage, current voltage, maximum charge, current charge, maxi-
mum drain rate, current drain rate, and more. Most notebook computers have pro-
grams that can be run to query and display all these parameters. Smart batteries 
can also be instructed to change various operational parameters under control of 
the operating system. 

Some notebooks have multiple batteries. When the operating system detects 
that one battery is about to go, it has to arrange for a graceful cutover to the next 
one, without causing any glitches during the transition. When the final battery is 
on its last legs, it is up to the operating system to warn the user and then cause an 
orderly shutdown, for example, making sure that the file system is not corrupted. 

Driver Interface 

The Windows system has an elaborate mechanism for dOing power man-
agement called ACPI (Advanced Configuration and Power Interface). The 
operating system can send any conformant driver commands asking it to report on 
the capabilities of its devices and their current states. This feature is especially 
important when combined with plug and play because just after it is booted, the 
operating system does not even know what devices are present, let alone their 
properties with respect to energy consumption or power manageability. 

It can also send commands to drivers instructing them to cut their power lev-
els (based on the capabilities that it learned earlier, of course). There is also some 
traffic the other way. In particular, when a device such as a keyboard or a mouse 
detects activity after a period of idleness, this is a signal to the system to go back 
to (near) normal operation. 

5.8.3 Application Program Issnes 

So far we have looked at ways the operating system can reduce energy usage 
by various kinds of devices. But there is another approach as well: tell the pro-
grams to use less energy, even if this means providing a poorer user experience 
(better a poorer experience than no experience when the battery dies and the lights 
go out). Typically, this information is passed on when the battery charge is below 
some threshold. It is then up to the programs to decide between degrading per-
formance to lengthen battery life or to maintain performance and risk running out 
of energy_ 

One of the questions that comes up here asks how a program can degrade its 
performance to save energy. This question has been studied by Flinn and 
Satyanarayanan (2004). They provided four examples of how degraded per-
formance can save energy. We will now look at these. 

In this study, information is presented to the user in various forms. When no 
degradation is present, the best possible information is presented. When degrada-
tion is present, the fidelity (accuracy) of the information presented to the user is 
worse than what it could have been. We will see examples of this shortly_ 
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In order to measure eneray usa e Fl· d 

ware tool called PowerScope"" Wh tg·t' d an S,atyanarayanan devised a soft-
program. To use it, a compu·ter a power usage profile of a 
through a software-controlled digital multimet:r IT .to power supply 
can read out the number of milliam e . . . smg t e mulumeter, software 
thus determine the instantaneous m from the power supply and 
PowerScope does is sam 1: th emg consumed by the computer. What 
and write these data to a file After e and the power usage 

formed the baseline against which were also used and 
Th fi 0 pellormance was measured e Irst program measured was a video I I . 

30 frames/sec in full resolution and in color p n it plays 
don the color information and display the vide 0 egra?anon IS to aban-
of degradation is to reduce the frame rat o.m ack and form 

jerky quality_ Still another fonn flIdcker thand gIVes the 
pIxels III both di t· . h 0 re uce e number of 
displayed image making the 

The second program was a speech reco . e energy. 
construct a waveform. This wavefonn the microphone to 
computer or sent over a radio link fl' nalyzed on the notebook 

about 35%. s mp r acous!J.c mode1. The win here was 

The next example was a map viewer that fet h d h . . 
Degradation consisted of either croppina the rna; t radIO hnk. 
the remote server to omit smaller roads t er or telling 
mitted. Again here a gain of about 3501. ,hush. requmng fewer bits to be trans-

'rO was ac leved. 
The fourth experiment was with transmission of JPEG . 

browser. The JPEG standard allows variou . ' to a Web 
against file size. Here the gain avera<red only Image 9uality 
showed thar by acce tin s C; o. t1, a III all, the expenments 
given battery. p g orne quality degradation, the USer can run longer on a 

5.9 RESEARCH ON INPUT/OUTPUT 

There is a fair amount of research on in uti ' , 
specific devices rather than I/O . output, but most of lt IS focused on 
formance in One 'way or another. In genera. Often the goal'is to improve per-

Disk systems are a case in point Disk ann ch d . . 
research area (Bachmat and- are an ever-

maSlan 2006) d· "n aran won and Tho-, an so are dISk arrays (Arnan et al 2007) 0 . . . . , . ptlIDlzmg the full I/O 
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. . 1 2007) There is also research on disk work-
path is also del 2006) A new research area 
load charactenzatlOll (Rlska .an 11 t l' 2007- and Chang, 2007). Device 
is flash dIsks :t a1., 2006; Ganapathy et aI., 
drivers are also gettmg some nee e 
2007; Padioleau et a\., 2006). is MEMS (Micro-Electrical-Mechanical Sys-

Another new storage technology 1 t pplement disks (Rano-aswami et 
terns), which potentially ;e:

t are: is how to 
controller, for example, for improving per-

est ut11ze rth" 2007) Or for detecting viruses (Paul et a1., 2005). 
formance (Gurumu . 01 the lowly clock is still a subject of research. To 

Somewhat suryJnSlfi>:> y, . 0- s stems run the clock at 1000 Hz, which 
vide good resolu.non, some 7d of this overhead is where the research 
leads to substantIal overhead. ettlOo . n 

. . I 2003· and Tsafrr et aI., 2005). 
comes et a '1' a to' PI'C of consierable interest (Kissler and Hoyt, 2005; ThlO clIents are a so 

. d 2006· and Schwartz and Guerrazzi, 2005). d 
" f uter scientists with notebook computers an 

Glven th: large 0 c,omrme on most of them, it should come as no 
given, the in using software techniques ,reduce 
surpnse that e:e IS 1 0- th s ecialized to ics being looked at are wntmg 
power consumptlon, ,e I. (Sp n et al 2006) having disks spm .. d ax'mize dISk ld e urnes 0 " , 
plIcatIOn co e to m 1 h' t al 2003) using program models to 
slower when used (Gurumurt led d" n and Kremer, 2003), 
predict when WIreless clards can bel P200wOe6re) the energy cost of security 

, for VoIP (G eeson et a., ,>:> . 
er savmg . ltimedia scheduling in an energy-efficient way 
(Aaraj et aI., 2007), dOlOg mu h' a built in camera detect whether 
(Yuan and Nahrstedt, 2006), and off no one is (Dalton and 

is is energy use in sensor networks 
EllIS, 2003). At , d Xi 2006) At the other end of the spectrum, 
(Mi,n et aI., 20,On

7
1;aargned of interest (Fan et ai., 2007; and Tolen-savmg energy 1 

tino et aI., 2007). 

5.10 SUMMARY . 

Input/output is an 
of any system. IS concern d 1I0 in' which the main CPU inputs or out-

S d there IS mterrupt- nven , III 
next one. econ, d nd oes off to do something else until an inter-
transfer for a or Wj o.r a f thge I/O Third there is DMA, in which a sep-. s· o-nalmo- comp ehon 0 ., .. 
rupt arnves Ie >:> f: f a block of data O-lven an mterrupt arate chip manages the complete trans er 0 , 0 

only when the entire block has been transferred. 
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1/0 can be structured in four levels: the interrupt service procedures, the de-
vice drivers, the device-independent I/O software, and the I/O libraries and 
spoolers that run in user space. The device drivers handle the details of running 
the devices and providing uniform interfaces to the rest of the operating system. 
The device-independent 1I0 software does things like buffering and error report-
ing. 

Disks come in a variety of types, including magnetic disks, RAIDs, and vari-
ous kinds of optical disks. Disk arm scheduling algorithms can often be used to 
improve disk performance, but the presence of virtual geometries complicates 
matters. By pairing two disks, a stable storage medium with certain useful prop-
erties can be constructed. 

Clocks are used for keeping track of the real time, limiting how long proc-
esses can run, handling watchdog timers, and doing accounting. 

Character-oriented terminals have a variety of issues concerning special char-
acters that can be input and special escape sequences that can be output. Input can 
be in raw mode or cooked mode, depending on how much control the program 
wants over the input. Escape sequences on output control cursor movement and 
allow for inserting and deleting text on the screen. 

Most UNIX systems use the X Window System as the basis of the user inter-
face. It consists of programs that are bound to special libraries that issue drawing 
commands and an X server that writes on the display, • 

Many personal computers use aUIs for their output. These are based on the 
WIMP paradigm: windows, icons, menus, and a pointing device. QUI-based pro-
grams are generally event driven, with keyboard, mouse, and other events being 
sent to the program for processing as Soon as they happen. In UNIX systems, the 
aUIs almost always run on top of X. 

Thin clients have some advantages over standard PCs, notably simplicity and 
less maintenance for users. Experiments with the THINC thin client have shown 
that with five simple primitives it is possible to build a client with good per-
formance, even for video. 

Finally, power management is a major issue for notebook computers because 
battery lifetimes are limited. Various techniques can be employed by the operat-
ing system to reduce power consumption. Programs can also help out by sacrific-
ing some quality for longer battery lifetimes. 

PROBLEMS 

1. Given the speeds listed in Fig. 5-1, is it possible to scan documents from a scanner and 
transmit them over an 802.11g network at full speed? Defend your answer. 

2. Figure 5-3(b) shows one way of having memory-mapped I/O even in the presence of 
separate buses for memory and I/O devices, namely, to first try the memory bus and if 
that fails try the VO bus. A clever computer science student has thought of an 
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426 . VO 
th

's idea' try both in parallel, to speed up the process of accessmg 
. . veroent on 1 . . . 

What do you think of thts Idea? . 
devices. hannels The controner is capable of requesting a 32-blt 
A DMA controller has fOUf C k' U 10no How fast does the bus have to be 

3. 100 osee. A response ta es equa Y 0" 
word every '1 

"d beinO' a bottleneck. 
to avO! I:> d . rite a memory word in 10 usee. Also suppose 

computer can rea ot W tef and 4. Suppose that a. all 32 CPU registers, plus the program coun 
that when an lOtcn'Upt occursic What is the maximum number of interrupts per sec-
PSW are pushed onto the stae . 

. machine can process? 
and thiS . wledo-ed until after the next character has been 

S. In Fig. 5-9(b), been right at the sta.rt 
output to the pnntel: 0 d ? If so oive one reason for domg It at the end, as m 
of the interrupt serVlce proce ure. , <:> 

If not why not? 
the text.' .' h . Fio 1-6(0) On each clock cycle, 

h staoe plpelme as s own III e" PC d 
6. A computer t from memory at the address pointed to by the I an e 

one new instru.c lO.n the PC advanced. Each instruction occupies exact Y on 
put into the ctions already in the pipeline are each advanced stage. 
memory word. The ms ru t PC is pushed onto the stack, and the PC IS set to 
When an interrupt.occurs, the pipeline is shifted one and 
the address handler is fetched into the pipelme. Does thiS machine 

. tucttOno t emel 
first lOS r. . t,rrupts? Defend your answer. 
h e precIse 10 . . h av . 50 r nes of 80 characters each. Imagl.Oe t at a 
A typical printed page of text tid that the time to write a character to the 

7. print 6 paoes per mmu e an th's certain printer can <:> • be ionored Does it make sense to run 1 t eoister is so short It can <:>' • t that 
printer's r <:> d' I/O if each character printed requires an mterrup 

rinter using mterrupt- nv.en? 
p 50 "sec all-in to servIce. takes I"' 

. "device independence"? 
8. What OS can facilitate installation of a new device without any need for 
9. Explam how an 

recompiling the OS. . 
f I/O software layers is each of the followmg done. 

10 In which of the our 
• muting the track, sector, and head for a disk read. 

(a) Co . ? "commands to the device registers. . 
(b) Wnun? 'f the user is permitted to use the deVIce. 
( ) Checkino to see I . . 
c ? binary inteOers to ASCII for pnntmg. 

(d) Converting I:> II 'te data . as followS The user issues a system ca to wn 
A local area network IS used . . tem then copies the data to a kernel buffer. 

11. packets to the network. The board. When aU the bytes are safely 
Then it copies the data to the the network at a rate of 10 I?egabits/sec. The 
inside the controller, they tre s ch bit a microsecond after it IS sent. When the 
receiving network interrupted and the kernel copies the newly 

. . es the destmatlOn 'd h' h user the last bit amv, k I b ffer to inspect it. Once it has figure out w IC • 
arrived packet to a erne th data to the user space If we assume that each m-
packet is for, the coples.e k I msec that p;ckets are 1024 bytes (ignore 

t and its assocIated processmg ta es , terrup 
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the headers), and that copying a byte takes 1 )..!.Sec, what is the maximum rate at which 
one process can pump data to another? Assume that the sender is blocked until the 
work is finished at the receiving side and an acknowledgement comes back. For sim-
plicity, assume that the time to get the acknowledgement back is so small it can be 
ignored. 

12. Why are output for the printer normally spooled on disk before being printed? 

13. How much cylinder skew is needed for a nOO-RPM disk with a seek 
time of 1 msec? The disk has 200 sectors of 512 bytes each on each track. 

14. Calculate the maximum data rate in MB/sec for the disk described in the previous 
problem. 

15. RAID level 3 is able to correct single-bit errors using only one parity drive. What is 
the point of RAID level 2? After all, it also can only correct one error and takes more 
drives to do so. . 

16. Compare RAID level a through 5 with respect to read performance, write per-
formance, space overhead, and reliability. 

17. What are the advantages and disadvantages of optical disks versus magnetic disks? 

18. If a disk controller writes the bytes it receives from the disk to memory as fast as it 
receives them, with no internal buffering, is interleaving conceivably useful? Discuss. 

19. If a disk has double interleaving, does it also need cylinder skew in order to avoid 
missing data when making a track-to-track seek? Discuss your answer. 

20. A disk manufacturer has two 5.25-inch disks that each have ro,ooo cylinders. The 
newer one has double the linear recording density of the older one. Which disk 
erties are better on the newer drive and which are the same? 

21. A computer manufacturer decides to redesign the partition table of a Pentium hard 
disk to provide more than four partitions. What are some consequences of this change? 

22. Disk requests come in to the disk driver for cylinders 10,22,20,2,40,6, and 38, in 
that order. A seek takes 6 msec per cylinder moved. How much seek time is needed 
for 

(a) First-come, first served. 
(b) Closest cylinder next. 
(c) Elevator algorithm (initially moving upward). 

In all cases, the arm is initially at cylinder 20. 

23. A slight modification of the elevator algorithm for scheduling disk requests is to al-
ways scan in the same direction. In what respect is this modified algorithm better than 
the elevator algorithm? 

24. A personal computer salesman visiting a university in Amsterdam 
remarked during his sales pitch that his company had devoted substantial effort to 
making their version of UNIX very fast. As an example, he noted that their disk driver 
used the elevator algorithm and also queued multiple requests within a cylinder in sec-
tor order. A student, Harry Hacker. was impressed and bought onc. He took it home 
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and wrote a program to randomly read 10,000 blocks spread across the disk. To his 
amazement, the performance that he measured was identical to what would be 
expected from flrst-come, Was the salesman lying? 

25. In the discussion of stable storage using nonvolatile RAM, the following point was 
glossed over. What happens if the stable write completes but a crash occurs before the 
operating system can write an invalid block number in the nonvolatile RAM? Does 
this race condition fuin the abstraction of stable storage? Explain your answer. 

26. In the discussion on stable storage, it was shown that the disk can be recovered to a 
consistent state (a write either completes or does not take place at all) if a CPU crash 
occurs during a write. Does this propetty hold if the CPU crashes again during a 
recovery procedure. Explain your answer, 

27. The clock interrupt handler on a certain computer requires 2 msec (including process 
switching overhead) per clock tick. The clock runs at 60 Hz. What fraction of the 
CPU is devoted to the clock? 

28. A computer uses a programmable clock in square-wave mode. If a 500 MHz crystal is 
used, what should be the value of the holding register to achieve a clock resolution of 

(a) a millisecond (a clock tick once every millisecond)? 
(b) 100 microseconds? 

29. A system simulates multiple clocks by chaining all pending clock requests together as 
shown in Fig. 5-34. Suppose the current time is 5000 and there are pending clock re-
quests for time 5008, 5012, 5015, 5029, and 5037. Show the values of Clock header, 
Current time, and Next signal at times 5000, 5005, and 5013. Suppose a new (pend-
ing) signal arrives at time 5017 for 5033. Show the values of Clock header, Current 
time and Next signal at time 5023. 

30. Consider the performance of a 56-Kbps modem. The driver outputs one character and 
then blocks. When the character has been printed, an interrupt occurs and a message 
is sent to the blocked driver, which outputs the next character and then blocks again. 
If the time to pass a message, output a character, and block is 100 Jlsec, what fraction 
of the CPU is eaten by the modem handling? Assume that each character has one start 
bit and one stop bit, for 10 bits in all. 

31. A bitmap terminal contains l280 by 960 pixels, To scroll a windOW, the CPU (or con-
troller) must move all the lines of text upward by copying their bits from one part of 
the video RAM to another. If a particular window is 60 lines high by 80 characters 
wide (5280 characters, total), and a character's box is 8 pixels wide by l6 pixels high, 
how long does it take to scroll the whole window at a copying rate of 50 nsec per 
byte? If all lines are 80 characters long, what is the equivalent baud rate of the termi-
nal? Putting a character on the screen takes 5 JlSec. How many lines per second can 

be displayed? 
After receiving a DEL (SIGINT) character, the display driver discards all output cur-
rently queued for that display. Why? 

33. A user at a terminal issues a command to an editor to delete the word on line 5 occu-
pying character positions 7 through and induding 12. Assuming the cursor is not on 

1 
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line 5 when the command is o-iven what ANSI to delete the word? <:>' escape sequence should the editor emit 

34. On the original IBM PC's color dis la writ" . than during the CRT beam's ve t' PI y, mg to the Video RAM at any time other rica retrace caused uoly s at t 
screen. A screen imaO'e is 25 by 80 h <:> P s a appear all over the 

8 
_ I <:> C aracters each of which fits' b 8-

plxe s. Each row of 640 pixels' d' 1 m a ox pixels by 
which takes 63.6 )lSec, includin t:he a single horizontal scan of the beam, 
times a second, each of which reg uires a v ?tal retrace. TI:e screen is redrawn 60 
to the top. What fraction of the 's th retrace to get the beam back 

1 e VI eo AM aVailable for writino- in? 

35. The designers of a computer system ex ected th <:> • 
maximum rate of 20 cm/sec If a . kP . 0 at the mouse could be moved at a 

36. 

b h 
. mlc ey IS 1 nun and each 0 

ytes, w at is the maximum data ra'te f h' . m use message is 3 
ported separately? 0 t e mouse assummg that each mickey is 

One way to place a character on a bitma ed . Assume that a particular font uses char fP IS to use bitbIt from a font table. ac ers at are 16 x 24 pixels in true ROB color 

(a) How font table space does each character take? . 
(b) If copymg a byte takes 100 nsec includino v . . screen in characters/sec? ' <:> a erhead, what tS the output rate to the 

37. Assuming that it takes 10 nsec to co a b . pletely rewrite the screen of an 80 yte, how much time does it take to com-
screen? What about a 1024 x 768 aracthe:- x 25 line :ext mode memory-mapped grap ICS screen wtth 24-bit color? 

38. Fig. 5-40 there is a class to RegisterClass. In the carre . . 
Fig. 5-38, there is no such call or anyth- I-k' W spondmg X Wmdow code, in mg 1 e It. hy not? 

39. In the text we gave an example of how Windows OD1: to draw a rectangle on the screen using the 

Rectangle(hdc, xleft, ytop, xright, ybottom); 

there any real need for the first parameter (hdc) and if h? 
dmates of the rectangle are explicitly specified as at. After aU, the 

40. It has been observed that the THINe test. Are any problems likely in a m l?stem well with a I-Mbps network in a 
of users watchinc a scheduled TV lUser ;tthuatlOn? Hillt: Consider a large number 
World Wide Web. s ow an t e same number of users browsing the 

41. If a CPU's maximum voltao-e V is cut to VI . 
its original value and its dro s drops to 1//1

2 
of 

user is typing at 1 char/sec, but the CPU .of ItS ongmal :alue. Suppose that a 
msec. What is the optimal value of d hreq.Ulred to each character is 100 

/1 an w at IS the correspondin . . 
percent compared to not cutting the voltaoe? A . g energy savmg m energy at all. <:>' ssume that an Idle .CPU consumes no 

42. notebook computer is set up to take maximum d . 
mcluding shuttino down the display a d th h dad:antage of P?wer savmg features 

<:> near Isk after penods of inactivity. A 
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• t [0 rams in text mode, and at other times uses the X Win-
user sometimes P d g fi d that battery life is significantly better when she 
dow System. She IS surpnse to III 

uses text-only programs. Why? 
. h . lates stable storaO"e. Use two large fixed-length files on your 43. Wnte a program t at Stffill I:> 

disk to simulate the two disks. 
. . t the three disk-arm scheduling algorithms. Write a driv-

44. Wnte a program to uenee of cylinder numbers (0-999) at random, runs 
er program that a q d prints out the total distance (number of cyltn-
three aloorithms for thIS sequence an . 
defS) ann needs to traverse in the three algoflthms. . 

. I ent multiple timers using a single clock. Input for thIS pro-
45. Write a to Imp of four t es of commands (S <int>, T, E <int>, P): S 

gram consIsts of a sequen 't T clock tick' and E <lnt> schedules a signal to 
<lnt> sets the current time, to <10 >;h I s of Cun"ent time Next sianal, and Clock 

"t'Ppnntsouttevaue ' '''. 
occur at time <m >, h Id Iso print out a statement whenever it is time to raise a 
header. Your program s ou a 
signaL 

-" I 

6 
DEADLOCKS 

Computer systems are full of resources that can only be used by one process 
at a time. Common examples include printers, tape drives, and slots in the sys-
tem's internal tables. Having two processes simultaneously writing to the printer 
leads to gibberish. Having two processes using the same file system table slot in-
variably will lead to a corrupted file system. Consequently, all operating systems 
have the ability to (temporarily) grant a process exclusive access to certain re-
sources. 

For many applications, a process needs exclusive access to not one resource, 
but several. Suppose, for example, two processes each want to record a scanned 
document on a CD. Process A requests permission to use the scanner and is grant-
ed it. Process B is programmed differently and requests the CD recorder first and 
is also granted it. Now A asks for the CD recorder, but the request is denied until 
B releases it. Unfortunately, instead of releasing the CD recorder B asks for the 
scanner. At this point both processes are blocked and will remain so forever, 
This situation is called a deadlock. 

Deadlocks can also occur across machines. For example, many offices have a 
local area network with many computers connected to it. Often devices such as 
scanners, CD recorders, printers, and tape drives are connected to the network as 
shared resources, available to any user on any machine. If these devices can be 
reserved remotely (i.e., from the user's home machine), the same kind of dead-
locks can occur as described above. More complicated situations can cause dead-
locks involving three, four, or more devices and users. 
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