
Network I/O with Trapeze

Jeffrey S. Chase, Darrell C. Anderson, Andrew J. Gallatin, Alvin R. Lebeck, and Kenneth G. Yocum�

Department of Computer Science
Duke University

fchase, anderson, gallatin, alvy, grantg@cs.duke.edu

Abstract

Recent gains in communication speeds motivate the de-
sign of network storage systems whose performance
tracks the rapid advances in network technology rather
than the slower rate of advances in disk technology.
Viewing the network as the primary access path to I/O
is an attractive approach to building incrementally scal-
able, cost-effective, and easy-to-administer storage sys-
tems that move data at network speeds.

This paper gives an overview of research on high-
speed network storage in the Trapeze project. Our work
is directed primarily at delivering gigabit-per-second
performance for network storage access, using custom
firmware for Myrinet networks, a lightweight messaging
system optimized for block I/O traffic, and a new kernel
storage layer incorporating network memory and paral-
lel disks. Our current prototype is capable of client file
access bandwidths approaching 100 MB/s, with network
memory fetch latencies below 150�s for 8KB blocks.

1 Introduction

Storage access is a driving application for high-speed
LAN interconnects. Over the next few years, new high-
speed network standards — primarily Gigabit Ethernet
— will consolidate an order-of-magnitude gain in LAN
performance already achieved with specialized cluster
interconnects such as Myrinet and SCI. Combined with
faster I/O bus standards, these networks greatly expand
the capacity of even inexpensive PCs to handle large
amounts of data for scalable computing, network ser-
vices, multimedia and visualization.

These gains in communication speed enable a new
generation of network storage systems whose perfor-

�This work is supported by the National Science Foundation (CCR-
96-24857, CDA-95-12356, and EIA-9870724) and equipment grants
from Intel Corporation and Myricom. Anderson is supported by a U.S.
Department of Education GAANN fellowship.

mance tracks the rapid advances in network technology
rather than the slower rate of advances in disk technol-
ogy. With gigabit-per-second networks, a fetch request
for a faulted page or file block can complete up to two
orders of magnitude faster from remote memory than
from a local disk (assuming a seek). Moreover, a storage
system built from disks distributed through the network
(e.g., attached to dedicated servers [11, 12, 10], cooper-
ating peers [3, 13], or the network itself [8]) can be made
incrementally scalable, and can source and sink data to
and from individual clients at network speeds.

The Trapeze project is an effort to harness the power
of gigabit-per-second networks to “cheat” the disk I/O
bottleneck for I/O-intensive applications. We use the
network as the sole access path to external storage, push-
ing all disk storage out into the network. This network-
centric approach to I/O views the client’s file system and
virtual memory system as extensions of the network pro-
tocol stack. The key elements of our approach are:

� Emphasis on communication performance.Our
system is based on custom Myrinet firmware and
a lightweight kernel-kernel messaging layer opti-
mized for block I/O traffic. The firmware includes
features for zero-copy block movement, and uses
an adaptive message pipelining strategy to reduce
block fetch latency while delivering high band-
width under load.

� Integration of network memory as an interme-
diate layer of the storage hierarchy.The Trapeze
project originated with communication support for
a network memory service [6], which stresses net-
work performance by removing disks from the crit-
ical path of I/O. We are investigating techniques
to manage network memory as a distributed, low-
overhead, “smart” file buffer cache between local
memory and disks, to exploit its potential to mask
disk access latencies.

1

Oracle-Huawei-NetApp Ex. 1016, pg. 1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

� Parallel block-oriented I/O storage. We are de-
veloping a new scalable storage layer, called Slice,
that partitions file data and metadata across a col-
lection of I/O servers. While the I/O nodes in our
design could be network storage appliances, we
have chosen to use generic PCs because they are
cheap, fast, and programmable.

This paper is organized as follows. Section 2 gives a
broad overview of the Trapeze project elements, with a
focus on the features relevant to high-speed block I/O.
Section 3 presents more detail on the adaptive message
pipelining scheme implemented in the Trapeze/Myrinet
firmware. Section 4 presents some experimental results
showing the network storage access performance cur-
rently achievable with Slice and Trapeze. We conclude
in Section 5.

2 Overview of Trapeze and Slice

The Trapeze messaging system consists of two compo-
nents: a messaging library that is linked into the kernel
or user programs, and a firmware program that runs on
the Myrinet network interface card (NIC). The firmware
defines the interface between the host CPU and the net-
work device; it interprets commands issued by the host
and masters DMA transactions to move data between
host memory and the network link. The host accesses
the network using the Trapeze library, which defines
the lowest-level API for network communication. Since
Myrinet firmware is customer-loadable, any Myrinet site
can use Trapeze.

Trapeze was designed primarily to support fast kernel-
to-kernel messaging alongside conventional TCP/IP net-
working. Figure 1 depicts the structure of our current
prototype client based on FreeBSD 4.0. The Trapeze
library is linked into the kernel along with a network de-
vice driver that interfaces to the TCP/IP protocol stack.
Network storage access bypasses the TCP/IP stack, in-
stead usingNetRPC, a lightweight communication layer
that supports an extended Remote Procedure Call (RPC)
model optimized for block I/O traffic. Since copying
overhead can consume a large share of CPU cycles at
gigabit-per-second bandwidths, Trapeze is designed to
allow copy-free data movement, which is supported by
page-oriented buffering strategies in the socket layer,
network device driver, and NetRPC.

We are experimenting with Slice, a new scalable net-
work I/O service based on Trapeze. The current Slice
prototype is implemented as a set of loadable kernel
modules for FreeBSD. The client side consists of 3000
lines of code interposed as a stackable file system layer
above the Network File System (NFS) protocol stack.
This module intercepts read and write operations on

file vnodes and redirects them to an array of block I/O
servers using NetRPC. It incorporates a simple striping
layer and cacheable block maps that track the location
of blocks in the storage system. Name space operations
are handled by a file manager using the NFS protocol,
decoupling name space management (and access con-
trol) from block management. This structure is similar
to other systems that use independent file managers, in-
cluding Swift [4], Zebra [10], and Cheops/NASD [9].
To scale the file manager service, Slice uses a hashing
scheme that partitions the name space across an array of
file managers, implemented in a packet filter that redi-
rects NFS requests to the appropriate server.

2.1 The Slice Block I/O Service

The Slice block I/O service is built from a collection of
PCs, each with a handful of disks and a high-speed net-
work interface. We call this approach to network storage
“PCAD” (PC-attached disks), indicating an intermedi-
ate approach between network-attached disks (NASD)
and conventional file servers (server-attached disks, or
SAD). While the CMU NASD group has determined that
SAD can add up to 80% to the cost of disk capacity [9],
it is interesting to note that the cost of the CPU, mem-
ory, and network interface in PCAD is comparable to the
price differential between IDE and SCSI storage today.
Our current IDE PCAD nodes serve 88 GB of storage
on four IBM DeskStar 22GXP drives at a cost under
$60/GB, including a PC tower, a separate Promise Ul-
tra/33 IDE channel for each drive, and a Myrinet NIC
and switch port. With the right software, a collection
of PCAD nodes can act as a unified network storage
volume with incrementally scalable bandwidth and ca-
pacity, at a per-gigabyte cost equivalent to a medium-
range raw SCSI disk system.1 Moreover, the PCAD
nodes feature a 450 MHz Pentium-III CPU and 256MB
of DRAM, and are sharable on the network.

The chief drawback of the PCAD architecture is that
the I/O bus in the storage nodes limits the number of
disks that can be used effectively on each node, pre-
senting a fundamental obstacle to lowering the price per
gigabyte without also compromising the bandwidth per
unit of capacity. Our current IDE/PCAD configurations
use a single 32-bit 33 MHz PCI bus, which is capable
of streaming data between the network and disks at 40
MB/s. Thus the PCAD/IDE network storage service de-
livers only about 30% of the bandwidth per gigabyte of
capacity as the SCSI disks of equivalent cost. Even so,
the bus bandwidth limitation is a cost issue rather than a
fundamental limit to performance, since bandwidth can

1Seagate Barracuda 9GB drives were priced between $50/GB and
$80/GB in April 1999, with an average price of $60/GB.

2

Oracle-Huawei-NetApp Ex. 1016, pg. 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

code data

PCI bus

host
kernel

NIC

user space

raw Trapeze message layer

Trapeze network driver

TCP/IP stack

socket layer

NFS
Slice

file/VM

Trapeze Firmware

User Applications

NetRPC

Send Ring Receive Ring

Incoming
Payload

Table

System Page Frame Pool

User Data Pages

payload
buffer
pointers

Figure 1: A view of the Slice/Trapeze prototype.

be expanded by adding more I/O nodes, and bus laten-
cies are insignificant where disk accesses are involved.

In our Slice prototype, the block I/O servers run
FreeBSD 4.0 kernels supplemented with a loadable
module that maps incoming requests to collections of
files in dedicated local file systems. Slice includes fea-
tures that enable I/O servers to act as caches over NFS
file servers, including tertiary storage servers or Internet
gateways supporting the NFS protocol [2]. In other re-
spects, the block I/O protocol is compatible with NASD,
which is emerging as a promising storage architecture
that would eliminate the I/O server bus bottleneck.

One benefit of PCAD I/O nodes is that they support
flexible use of network memory as a shared high-speed
I/O cache integrated with the storage service. Trapeze
was originally designed as a messaging substrate for the
Global Memory Service (GMS) [6], which supports re-
mote paging and cooperative caching [5] of file blocks
and virtual memory pages, unified at a low level of the
operating system kernel. The GMS work showed sig-
nificant benefits for network memory as a fast tempo-
rary backing store for virtual memory or scratch files.
The Slice block I/O service retains the performance em-
phasis of the network memory orientation, and the basic
protocol and mechanisms for moving, caching, and lo-
cating blocks are derived from GMS. We are investigat-
ing techniques for using the I/O server CPU to actively
manage server memory as a prefetch buffer, using spec-
ulative prediction or hinting directives from clients [13].

2.2 Trapeze Messaging and NetRPC

Trapeze messages are short (128-byte)control messages
with optional attachedpayloadstypically containing ap-
plication data not interpreted by the messaging system,
e.g., file blocks, virtual memory pages, or TCP seg-
ments. The data structures in NIC memory include two
message rings, one for sending and one for receiving.
Each message ring is a circular producer/consumer array
of 128-byte control message buffers and related state,
shown in Figure 1. The host attaches a payload buffer to
a message by placing its DMA address in a designated
field of the control message header.

The Trapeze messaging system has several features
useful for high-speed network storage access:

� Separation of header and payload. A Trapeze
control message and its payload (if any) are sent as
a single packet on the network, but they are handled
separately by the message system, and the separa-
tion is preserved at the receiver. This enables the
TCP/IP socket layer and NetRPC to avoid copying,
e.g., by remapping aligned payload buffers. To sim-
plify zero-copy block fetches, the NIC can demulti-
plex incoming payloads into a specific frame, based
on a token in the message that indirects through an
incoming payload tableon the NIC.

� Large MTUs with scatter/gather DMA. Since
Myrinet has no fixed maximum packet size (MTU),
the maximum payload size of a Trapeze network is
easily configurable. Trapeze supports scatter/gather
DMA so that payloads may span multiple noncon-

3

Oracle-Huawei-NetApp Ex. 1016, pg. 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Host fixed pipeline store & forward adaptive pipeline

450 MHz Pentium-III 124�s / 77 MB/s 217�s / 110 MB/s 112�s / 110 MB/s
500 MHz Alpha Miata 129�s / 71 MB/s 236�s / 93 MB/s 119�s / 93 MB/s

Table 1: Latency and bandwidth of NIC DMA pipelining alternatives for 8KB payloads.

tiguous page frames. Scatter/gather is useful for
deep prefetching and write bursts, reducing per-
packet overheads for high-volume data access.

� Adaptive message pipelining. The Trapeze
firmware adaptively pipelines DMA transfers on
the I/O bus and network link to minimize the la-
tency of I/O block transfers, while delivering peak
bandwidth under load. Section 3 discusses adaptive
message pipelining in more detail.

The NetRPC package based on Trapeze is derived
from the original RPC package for the Global Memory
Service (gmsnet), which was extended to use Trapeze
with zero-copy block handling and support for asyn-
chronous prefetching at high bandwidth [1].

To complement the zero-copy features of Trapeze,
the socket layer, TCP/IP driver, and NetRPC share a
common pool of aligned network payload buffers allo-
cated from the virtual memory page frame pool. Since
FreeBSD exchanges file block buffers between the vir-
tual memory page pool and the file cache, this allows
unified buffering among the network, file, and VM sys-
tems. For example, NetRPC can send any virtual mem-
ory page or cached file block out to the network by at-
taching it as a payload to an outgoing message. Simi-
larly, every incoming payload is deposited in an aligned
physical frame that can mapped into a user process or
hashed into the file cache or VM page cache. This uni-
fied buffering also enables the socket layer to reduce
copying by remapping pages, which significantly re-
duces overheads for TCP streams [7].

High-bandwidth network I/O requires support for
asynchronous block operations for prefetching or write-
behind. NFS clients typically support this asynchrony by
handing off outgoing RPC calls to a systemI/O daemon
that can wait for RPC replies, allowing the user process
that originated the request to continue. NetRPC supports
a lower-overhead alternative usingnonblocking RPC, in
which the calling thread or process supplies acontin-
uation procedure to be executed — typically from the
receiver interrupt handler — when the reply arrives. The
issuing thread may block at a later time, e.g., if it refer-
ences a page that is marked in the I/O cache for a pend-
ing prefetch. In this case, the thread sleeps and is awak-
ened directly from the receiver interrupt handler. Non-
blocking RPCs are a simple extension of kernel facilities

already in place for asynchronous I/O on disks; each net-
work I/O operation applies to a buffer in the I/O cache,
which acts as a convenient point for synchronizing with
the operation or retrieving its status.

3 Balancing Latency and Bandwidth

From a network perspective, storage access presents
challenges that are different from other driving applica-
tions of high-speed networks, such as parallel computing
or streaming media. While small-message latency is im-
portant, server throughput and client I/O stall times are
determined primarily by the latency and bandwidth of
messages carrying file blocks or memory pages in the 4
KB to 16 KB range. The relative importance of latency
and bandwidth varies with workload. A client issuing
unpredicted fetch requests requires low latency; other
clients may be bandwidth-limited due to multithreading,
prefetching, or write-behind.

Reconciling these conflicting demands requires care-
ful attention to data movement through the messaging
system and network interface. One way to achieve
high bandwidth is to use large transfers, reducing per-
transfer overheads. On the other hand, a key technique
for achieving low latency for large packets is to frag-
ment each message and pipeline the fragments through
the network, overlapping transfers on the network links
and I/O buses [16, 14]. Since it is not possible to do
both at once, systems must select which strategy to use.
Table 1 shows the effect of this choice on Trapeze la-
tency and bandwidth for 8KB payloads, which are typi-
cal of block I/O traffic. The first two columns show mea-
sured one-way latency and bandwidth using fixed-size
1408-byte DMA transfers and 8KB store-and-forward
transfers. These experiments use raw Trapeze messag-
ing over LANai-4 Myrinet NICs with firmware config-
ured for each DMA policy. Fixed pipelining reduces la-
tency by up to 45% relative to store-and-forward DMA
through the NIC, but the resulting per-transfer overheads
on the NIC and I/O bus reduce delivered bandwidth by
up to 30%.

To balance latency and bandwidth, Trapeze uses an
adaptive strategy that pipelines individual messages au-
tomatically for lowest latency, while dynamically adjust-
ing the degree of pipelining to traffic patterns and con-
gestion. The third column in Table 1 shows that this

4

Oracle-Huawei-NetApp Ex. 1016, pg. 4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

0 20 40 60 80 100
microseconds

HostRcv

NetTx

HostTx do forever
for each idle DMA sink in { }

waiting = words awaiting transfer to sink
if (waiting > MINPULSE)

initiate transfer of waiting words to sink
end
for each idle DMA source in { }

if (waiting transfer and buffer available)
initiate transfer from source

end
loop

NetTx, HostRcv

HostTx, NetRcv

Figure 2: Adaptive message pipelining policy and resulting pipeline transfers.

yields both low latency and high bandwidth. Adaptive
message pipelining in Trapeze is implemented in the
NIC firmware, eliminating host overheads for message
fragmentation and reassembly.

Figure 2 outlines the message pipelining policy and
the resulting overlapped transfers of a single 8KB packet
across the sender’s I/O bus, network link, and receiver’s
I/O bus. The basic function of the firmware running in
each NIC is to move packet data from a source to a sink,
in both sending and receiving directions. Data flows into
the NIC from the source and accumulates in NIC buffers;
the firmware ultimately moves the data to the sink by
scheduling a transfer on the NIC DMA engine for the
sink. When sending, the NIC’s source is the host I/O bus
(hostTx) and the sink is the network link (netTx). When
receiving, the source is the network link (netRcv) and
the sink is the I/O bus (hostRcv). The Trapeze firmware
issues large transfers from each source as soon as data
is available and there is sufficient buffer space to accept
it. Each NIC makes independent choices about when to
move data from its local buffers to its sinks.

The policy behind the Trapeze pipelining strategy is
simple: if a sink is idle, initiate a transfer of all buffered
data to the sink if and only if the amount of data exceeds
a configurable threshhold (minpulse). This policy pro-
duces near-optimal pipeline schedules automatically be-
cause it naturally adapts to speed variations between the
source and the sink. For example, if a fast source feeds
a slow sink, data builds up in the NIC buffers behind
the sink, triggering larger transfers through the bottle-
neck to reduce the total per-transfer overhead. Similarly,
if a slow source feeds a fast sink, the policy produces a
sequence of small transfers that use the idle sink band-
width to reduce latency.

The adaptive message pipelining strategy falls back
to larger transfers during bursts or network congestion,
because buffer queues on the NICs allow the adaptive
behavior to carry over to multiple packets headed for the
same sink. Even if the speeds and overheads at each
pipeline stage are evenly matched, the higher overhead
of initial small transfers on the downstream links quickly
causes data to build up in the buffers of the sending and

receiving NICs, triggering larger transfers.
Figure 3 illustrates the adaptive pipelining behavior

for a one-way burst of packets with 8KB payloads. This
packet flow graph was generated from logs of DMA ac-
tivity taken by an instrumented version of the Trapeze
firmware on the sending and receiving NICs. The trans-
fers for successive packets are shown in alternating shad-
ings; all consecutive stripes with the same shading are
from the same packet. The width of each stripe shows
the duration of the transfer, measured by a cycle counter
on the NIC. This duration is proportional to the transfer
size in the absence of contention. Contention effects can
be seen in the long first transfer on the sender’s I/O bus,
which results from the host CPU contending for the bus
as it initiates send requests for the remaining packets.

Figure 3 shows that both the sending and receiving
NICs automatically drop out of pipelining and fall back
to full 8KB transfers about one millisecond into the
packet burst. While the pipelining yields low latency for
individual packets at low utilization, the adaptive behav-
ior yields peak bandwidth for streams of packets. The
policy is automatic and self-tuning, and requires no di-
rection from the host software. Experiments have shown
that the policy is robust, and responds well to a range of
congestion conditions [15].

4 Performance

Our goal with Trapeze and Slice is to push the per-
formance bounds for network storage systems using
Myrinet and similar networks. Although our work with
Slice is preliminary, our initial prototype shows the per-
formance that can be achieved with network storage sys-
tems using today’s technology and the right network
support.

Figure 4 shows read and write bandwidths from
disk for high-volume sequential file access through the
FreeBSDreadandwrite system call interface using the
current Slice prototype. For these tests, the client was
a DEC Miata (Personal Workstation 500au) with a 500
MHz Alpha 21164 CPU and a 32-bit 33 MHz PCI bus

5

Oracle-Huawei-NetApp Ex. 1016, pg. 5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

