High-Performance Network and

Channel Based Storage

RANDY H. KATZ, SENIOR MEMBER, [EEE
Invited Paper

In the traditional mainframe-centered view of a computer
aystem, storage devices are coupled to the syslent through complex
hardware subsystems called O channels. With the draniatic
Shift toward weorkstanion-based computing, and its associated
client{server ntodel of computation, storage facilities are now
Jound atiached to file servers and distribused throughout the
network, In this paper, we discuss the underlying rechnology trends
that are lvading o high-performance netvwark-based slorage,
namely advances in networks, storage demlces, and 1,0 controller
and server architectures. We review several commercial sysiems
and rescarch prototypes that are leading e @ new approach fo
high-performance computing based on network-atiached storage.

1. INTRODUCTION

The traditional mainframe-centered model of comput-
ing can be characterized by small numbers of large-scale
mainframe computers, with shared storage devices altached
via /O channel hardware, Today, we are experiencing @
major paradigm shift away fram ceatralized mainframes to
a distributed medel of computation based on workstalions
and file servers connecled via high-performance networks.

Whal makes this new paradigm possible is the rapid
development and acceplance of the client/server model
of computalion. The client/server model is a message-
based protocol in which clicnts make requests of service
providers, which are called servers. Perhaps the most
successful application of this concept fs the widespread
use of file servers in networks of computer workstations
and personal computers, Even a high-cnd worksiation
has rather limited capabilitfes [or data storage. A
distinguished machine on the network, customizzd cither
by hardware, software, or hath, provides a file service. It

Manuscript received October 1, 19915 revised Mareh 24, 1992 This
wotk was supported by the Defense Advanced Research Projects Ageucy
and the Natiops] Acronauties and Spuce Adm sistzation weder cuvacl
NAG2-591 (Diskless Supercompulters: High Perfarmarce 10 for the
Ter.Op Technology Base). Additional support was provided by the Stute
of Califarns MICRO Program in eonjunction with indusirtal matchirg
support provided by DEC, Emulex, kxahyts, [BM, NUR, and Storage
Technelogy corporations,

The suthor is with the Computer Science Division, Depanment of
Eleciricz! Engineering and Compuler Sciences, Univers iy of Californis,
Berkeley, CA 94720,

IEEE Log Number 9203670.

accepts network messages from client machines containing
openfclose/readrwrite file tequests and processes these,
trapsmitting the requested data back and forih across the
newwork.

This is in contrast to the pure distributed sterage model,
in which the files are dicpersed among the storage on work-
stations rather than centralized in a server. The advanlages
of a distributed organization are that resources are placed
near where they are needed, leading to better performance,
and that the environment can be more autonomous because
individual machines continuc to perform useful work cven
in the face of network failures. While (ais has been ¢he
mure popular approach over the last few years, there has
emerged a growing awareness of the advantages of the
centralized view. That is, every user sees the same file
system, independent of the machine they ure currently
using., The view of slorage is pervasive and transpurent.
Further, il is much casier lo administer a centralized system,
to provide software updzies and archival backups, The re-
suiling organization combines disiribuled processing power
with a centralized view of storage.

Admitledly, centralized storage also has its weaknesses.
A server or network failure renders the clienf workstations
unusable and the network represents the critical perfor-
mance bottieneck. A highly tuned remote file system on a
10 megabit (Mhit) per second Ethemnet can provide perhaps
SO0K bytes per second o remote client applications. Sixly
8K byte I:Q's per second would fully utilize this bandwidth.
Obtaining the right balance of workstations 1o servers
depends on their relative processing power, the amount
of memory dedicated Lo file caches on workstations and
scrvers, the available network bandwidth, and {he O
bundwidth of the scrver. It is inieresting 10 nole thal loday’s
servers are not [/O limited: the Ethernet bandwidth can be
fully utilized by the JO bandwidth of only lwo magnetic
disks'

Meanwhile, other lechnology developments in proces-
sors, networks, and storage systems are affecting the re-
lationship between clients and servers. 1t is well known
thal processor performance, us measured in MIPS ratings,

OOIR-921991503.00 € 1692 {REE

1238

1 of 24

PROCETDINGS OF T1F 1EEE, VOI. v NO. # AUGHST 1992

CROSSROADS EXHIBIT 2038

IPR2014-01207 and IPR2014-1209

Oracle Corp,, et al v. Crossroads Systems, Inc.

is increasing at an astonishing rate, doubling on the order of
once every 18 months to two years. The newest generation
of RISC processors has performance in the S0 to 60 MIPS
range. For example, a recent workstalion announced by
the Hewlett-Packard Corporation, the HP 9000/730, has
been rated at 72 SPECMarks (1 SPECMark is roughly the
processing pawer of a single Digital Equipment Corporation
VAX 11/780 on a particular benchmark set). Powerful
shared memory mulliprocessor systems, now available from
companics such as Silicon Graphics and Solborne, provide
well over 100 MIPS performance. One of Amdah!’s famous
laws equaled one MIPS of processing power with one
megabit of 1/O per second. Obviously such processing rates
far exceed anything that can be delivered by existing server,
network, or storage architectures.

Unlike processor power, network technology evolves at
a slower rate, but when it advances, it does so in order
of magnitude sleps. In the last decade we have advanced
from 3 Mbil/second Ethernet to 10 Mbit/second Ethernet.
We are now on the verge of a new generation of network
technology, based on fiber-optic interconnect, called FDDI.
This technology promises 100 Mbits per second, and at
least initially, it will move the server bottleneck from the
network to the server CPU or ils storage system. With
more powerful processors available on the horizon, the
performance challenge is very likely to be in the storage
system, where a typical magnetic disk can service 30 8K
byte 1/O’s per second and can sustain a dala rate in the range
of 1 10 3 Mbytes per second. And even [aster networks and
interconnects, in the gigabit range, are now commercially
available and will become more widespread as ‘their costs
begin to drop [1].

To keep up with the advances in processors and networks,
storage systems are also cxperiencing rapid improvements.
Magnetic disks have been doubling in storage capacity
once every lhree years. As disk form factors shrink from
14 inch to 3.5 inch and below, the disks can be made
to spin faster, thus increasing the sequential transfer rate.
Unfortunately, the random /O rate is improving only very
slowly, owing to mechanically limited positioning delays.
Since [/O and data rates are primarily disk actuator limited,
a new storage system approach called disk arrays addresses
this problem by replacing a small number of large-format
disks by a very large number of small-format disks. Disk
arrays maintain the high capacity of the storage system,
while enormously increasing the system's disk actuators
and thus the aggregate I/O and data rate.

The confluence of developments in processors, networks,
and storage offers the possibility of extending the client/
server model so effectively used in workslation environ-
ments to higher performance environments, which inte-
grate supercompuler, near supercompulers, workstations,
and storage services on a very high performance network.
The technology is rapidly reaching the point where it is
possible to think in terms of diskless supercomputers in
much the same way as we think about diskless workstations.
Thus, the network is emerging as the future “backplane”
of high-performance systems. The challenge is to develop

KATZ. NETWORK AND CHANNEL BASED STORAGE

2 of 24

the new hardware and software architectures that will be
suitable for this world of network-based storage.

The emphasis of this paper is on the integration of storage
and nctwork services, and the challenges of managing
the complex slorage hierarchy of the future: file caches,
on-line disk storage, near-line data libraries, and off-line
archives. We specifically ignore existing mainframe L'O
architectures, as these are well described elsewhere (for
example, in [2]). The rest of this paper is organized as
follows. In the next three sections, we will review the recent
advances in interconnecl, storage devices, and distributed
software, to better understand the underlying changes in
network, storage, and software technologies. Section V con-
tains detailed case studies of commercially available high-
performance networks, storage servers, and file servers, as
well as a prototype high-performance network-attached [/O
controller being developed at the University of California,
Berkeley. Our summary, conclusions, and suggestions for
future research are found in Section VL

II. INTERCONNECT TRENDS

A. Networks, Channels, and Backplanes

Interconnect is a generic term for the “glue” that inter-
faces the components of a computer system. Interconnect
consists of high-speed hardware interfaces and the asso-
ciated logical protocols. The former consists of physical
wires or control registers. The latter may be interpreted
by either hardware or software, From the viewpoint of
the storage system, interconnect can be classified as high-
speed networks, processor-to-storage channels, or system
backplanes that provide ports to a memory system through
direct memory access techniques.

Nerworks, channels, and backplanes differ in terms of
the interconnection distances they can support, the band-
width and latencies they can achieve, and the fundamental
assumptions about the inherent unreliability of data trans-
mission. While no statement we can make is universally
true, in general, backplanes can be characterized by parallel
wide data paths and centralized arbitration, and are oriented
toward read/write “memory mapped” operations. That is,
access to control registers is treated identically to memory
word access. Networks, on the other hand, provide serial
data, distributed arbitration, and support more message-
oriented protocols. The latter require a more complex
handshake, usually involving the exchange of high-level
request and acknowledgment messages. Channels fall be-
tween the two extremes. consisting of wide data paths
of medium distance and often incorporating simplified
versions of networklike protocols.

These considerations are summarized in Table 1.
Networks typically span more than 1 km, sustain
10 Mbit/second (Ethernet) to 100 Mbit/second (FDDI)
and beyond, experience latencies measured in several
milliseconds (ms), and the network medium itself is
considered to be inherently unreliable. Networks include
exiensive data integrity features within their protocols,

1239

Table 1 Comparison of Network, Channcl, and Backplane Altributes Application Detailed information about the data being exchanged
Presentation Dats representation
Nerwork Channe) Backplane Session Management of conncctions between programs
Distance 1000 m 10-100 m 1m Transport Delivery of packet ssyuences
Network Format of individual packets
Bandwidth 10-100 Mb/s 40-1000 Mb/s 320-1000+ Link Access to and control of transmission medium
Mbis —_— e ——— . i
Physical Medium of wransmission
Latency high (>ms) medium low (<us)
s o) - Fig. 1. Seven-layer SO protocol model, The physical layer
Reliability Tow medium high deseribes Lhe actual uansmission medium, be it coax cable, fiber
Extensive Byte Parity Byle Parity optics, or a paralle] backplane. The link layer describes how
CRC

The comparison is based upon the interconnection distance, (trans-
mission bandwidth, trensmission latency, inherent reliability, and typical
techniques for improving data integrity.

including CRC checksums at the packel and message levels,
and the explicit acknowledgment of received packets.

Channels span small 10’s of meters, transmit at anywhere
from 4.5 Mbytes/second (IBM channel interfaces) to 100
Mbyvtes/second (HiPPI channels), incur latencies of under
100 ps per transfer, and have medium reliability, Byte
parity at the individual transfer word is usually supported,
although packel-level check-summing might also be sup-
ported.

Backplanes arc about 1 m in length, transfer from 40
(VME) to over 100 (FutureBus) MBytes/second, incur sub
ps latencies, and the interconnect is considered 1o be
highly reliable. Backplanes typically support byte parity,
although some backplanes (unforlunalely) dispense with
parity altogether.

In the remainder of this section, we will look at cach
of the three kinds of interconnect, network, channel, and
backplane, in more detail.

B. Communications Networks and Network Controllers

An excellenl overview of networking technology can be
found in [3]. For a futuristic view, sce [4] and [3]. The
decade of the 1980’s has seen a slow maturation of network
technology, but the 1990’s promise much more rapid devel-
opments. Today, 10 Mbit/sccond Ethernets are pervasive,
with many environments advancing to the next generation
of 100 Mbit/second networks based on the FDDI (Fiber
Distributed Data Interface) standard [6]. FDDI provides
higher bandwidth, longer distances, and reduced error rates,
largely because of the introduction of fiber optics for data
transmission. Unfortunately cost, especially for replacing
the exisling copper wire network with fiber, coupled with
disappointing transmission latencies, has slowed the accep-
tance of these higher speed networks. The latency problems
have more to do with FDDI's protocols, which are based on
a token passing arbitration scheme, than anything intrinsic
in fiber-optic technology.

A network system is decomposed into multiple protocol
layers, from the application interface down to the method
of physical communication of bits on the network. Fig-
ure 1 summarizes the popular seven-layer ISO protocol
model. The physical and link levels are closely tied to the

1240

stations gain access to the medium, This layer deals with the
protocols for arbitrating for and obtaining grant permission to the
media. The network layer defines the format of data packeis to
be transmitted over the media, including destination and sender
information as well as any check sums. The Iransport luyer is
responsible for the reliable delivery of packets, The session layer
establishes communication berween the sending programi and the
receiving program. The presentation layer determines the detailed
formats of the dala cmbedded within packets. The application layer
has the responsibility of understanding how these data should be
interpreted within an applications context,

underlying transport medium, and deal with the physical
atlachment to the network and the method of acquiring
access o it. The network. transport, and session levels
focus on the detailed formats of communications packets
and the methods for transmitting them from one program
to another. The presentation and applications layers define
the formats of the data embedded within the packets and
the application-specific semantics of thal dala.

A number of performance measurements of network
transmission services point out that the significant aver-
head is not protecol interpretation (approximately 10% of
instructions are spent in interpreting the network headers).
The culprits are memory syslem overheads arising from
data movement and operating system overheads related to
context switches and data copying [7]-{10]. We will see
this again and again in the sections to follow.

The network controller is the collection of hardware
and firmware that implements the interface between the
network and the host processor. It is typically implemented
on a small printed circuit board, and contains its own
processor, memory mapped control registers, interface to
the network, and small memory to hold messages being
transmitted and received. The on-board processor, usvally
in conjunction with VLSI components within the network
interface, implements the physical and link-level protocols
of the network.

The interaction between the network controller and the
hest’s memory is depicted in Fig. 2. Lists of blocks
containing packets lo be sent and packets that have been
received are maintained in the host processor’'s memory.
The locutions of buffers for these blocks are made known
fo the network controller, and it will copy packets to and
from the request/reccive block areas using direct memory
access (DMA) techniques. This means that the copy of data
across the peripheral bus is under the control of the network
controller, and does not require the intervention of the host
processor. The contraller will interrupt the host whencver
a message has been received or sent.

PROCEEDINGS OF THE TEEE, VOL. 80, NO. 8. AUGUST 1992

30f24

Network Controller Processor Memory

1 List of t blocks
PrI:cOdC + -Conrol - ‘Qﬁ* .
S ch'/u:]’ﬁ;\ 10 be Transmitied

List of free blocks

_Dﬁequcs:
Net Olock
F Memory List of receive blocks
Receive
lock MA
Media T received

Peripheral Backplane Bus

Fig. 2. Network conwoller/processor memory interaction. The
figure describes the interaction between the network contraller
and the memory of the metwork node. The controller containg
an on-board microprocessor, varions memory-mapped control reg-
isters through which service requesis can be made and status
checked, a physical interface to the network media. and a buffer
memary (o hold request and receive blocks. These contain network
messages to be transmitted or which have been received respec-
tively. A list of pending requests and messages already received
resides in the hos! processor’s memory. Direct memory operations
{DMA's), under the control of the node processor, copy these
biacks 10 and from this memory.

While this presents a particularly clean inferface between
the network controller and the operating system, it points
out some of the inlrinsic memory system latencies that
reduce network performance. Consider a message that will
be transmitted to the network. First the contents of the
message are created within a user applicalion. A call lo the
operating system resulis in a pracess switch and a data copy
from the user’s address space to the operating system's area.
A protocol-specific network header is then appended to the
data to form a packaged network message. This musl be
copied one more time, to place the message into a request
block that can be accessed by the network controller, The
final copy is the DMA operation that moves the message
within the request block to memory within the network
controller,

Data integrity is the aspecl of system reliability concerned
with the transmission of correct data and the explicit
flapging of incorrect data. An overriding consideration of
network protocols is their concern with reliable transmis-
sion. Because of the distances involved and the complexity
of the transmission path, network transmission is inherently
lossy. The solution is to append check-sum protection bils
lo all network packels and to include explicit acknowledg-
ment as part of the network protocols. For example, if the
check sum computed at the receiving end does not match
the transmilted check sum, the receiver sends a negative
acknowledgment to the sender.

C. Channel Architectures

Channels provide the logical and physical pathways
between [fO controllers and slorage devices. They are
medium-distance interconnect that carry signals in parallel,
usually with some parity technique to provide data integrity.
In this subsection, we will describe three alternalive
channel organizations that characterize the opposite ends
of the performance spectrum: SCSI (small computer system

interface), HIPPI (high-performance parallel interface), and
FCS (fibre channel standard).

1) Small Computer System Interface SCSI is the channel
interface most frequently encountered in small form factor
(5.25 in diameter and smaller) disk drives, as well as a
wide variety of peripherals such as tape drives, optical disk
readers, and image scanners. SCSI Lreats peripheral devices
in a largely device-independent fashion. For example, a disk
drive is viewed as a lincar byte stream; its detailed structure
in terms of sectors, tracks, and cylinders is not visible
through the SCSI inlerface. A SCSI channel can support
up 1o cight devices sharing a common bus with an 8-bit-
wide data path, In SCSI terminology, the I/O controller
counts as onc of these devices, and is called the host bus
adapter (HBA). Burst transfers at 4 to 5 Mbytes/s are widely
available today. In SCSI terminology, a device that requests
service from another device is called the master or the
initiator. The device that is providing the service is called
the slave or the target.

SCSI provides a high-level message-based protocol for
communications between initiators and targets. While this
makes it possible to mix widely different kinds on devices
on the same channel, it does lead to relatively high over-
heads. The protocol has been designed to allow initiators
to manage multiple simultaneous operations, Targets are
intelligent in the sense that they explicitly notify the initiator
when they are ready to transmit data or when they need to
throttle a transfer.

It is worthwhile 1o ¢xamine the SCSI protocol in some
detail, to clearly distinguish what 1t does from the kinds of
messages exchanged on a computer network. The SCSI pro-
tocol proceeds in a series of phases, which we summarize
below:

* Bus Free: No device currently has the bus allocated.

* Arbitration: Initiators arbitrate for access 1o the bus. A
device's physical address determines its priority.

« Seclection: The initiator informs the target that it will
participate in an I/O operation.

* Reselection: The target informs the injtiator that an
outstanding operation is to be resumed. For example,
an operation could have been previously suspended
because the 1/O device had 1o obtain more data.

* Command: Command bytes are wrilten lo the target by
the initiator. The target begins executing the operation.

+ Data Transfer: The protocol supports two forms of the
data transfer phase, Data In and Dara Out. The former
refers to lhe movement of data from the target to the
initiator. In the latter, data move from the initiator to
the targel.

Message: The message phase also comes in two forms,
Message In and Message Qut. Message In consists of
several alternatives. /dentify identifies the reselected
target. Save Data Pointer saves the place in the current
data transfer if the target is about to disconnect. Restore
Data Pointer reslores this pointer. Disconnect notifies
the initiator that the targetis about to give up the data
bus. Command Complete occurs when the larget tells
the initiator that the operation has completed. Message

4 of 24

KATZ: NETWORK AND CHANNEL BASED STORAGE

1241

. Command Sewp
Arhatration
| Selection
Mewsagps Out {{dentfy)
i Command
b ol ‘i

Duseonnect © wek/hl? buffer
| Messape In (Lrscooneet)
- Bus Free - «
Arbitration

Reselaction |

31 In i
essage 'naennfy)

If no disconnect is needed

-

™" Command Cx\mpki_‘jnw»
Statos
Messape In (Command Complete)

Discannect 19 fil builer
Message In {Save Dau Puj
Message In (Disconnect)

= - Bus Freg - -]
Arburution
Reselection
Message In (ldeatily)

Message In (Resinee Data Pir)

Fig. 3. SCSI phase transitions on a read. The huasic phase se-
quencing for a read (from disk) operation is shown. First the
initiator sets up the read command and sends it 1o the /0 device,
The larget device disconnects from the SCSI bus to perform a seek
and to begin to /Il its internal buffer. Tt then wansfers the dma to
the initiator. This may be interspersed with additiopal disconnects,
as the transfer gets ahead of the internal buffering. A command
complete message terminates the operation. This figure is adapted
from [40].

Qut has just one form: Identify. This is used to identify
the requesting initiator and its intended target.

+ Status: Just before command completion, the target

sends a stalus message to the initiator.

To better understand the sequencing among the phases,
see Fig. 3. This illustrates the phase transitions for a typical
SCSI read operation. The sequencing of an /O operation
actually begins when the host’s operating system establishes
dara and status blocks within its memory. Next, il issues an
[/O command to the HBA, passing it pointers (o command,
status, and data blocks, as well as the SCSI address of
the target device. These are staged from host memory to
device-specific queues within the HBA's memory using
direct memory access techniques.

Now the /0 operation can begin in carnest. The HBA
arbitrates for and wins control of the SCSI bus. It then
indicates the target device it wishes lo communicate with
during the selection phase. The larget responds by iden-
tifying itself during a following message out phase. Now
the acteal command, such as “read a sequence of bytes,”
is transmitted to the device.

We assume that the target device is a disk. If the disk
must first seek before it can abtain the requested data,
it will disconnect from the bus. It sends a disconnect
message to the initiator, which in turn gives up the bus.
Note that the HBA can communicate with other devices on
the SCSI channel, initiating additional I/O operations, Now
the device will seek to the appropriate track and will begin
to fill its internal buffer with data. At this poinl, it needs
to reestablish communications with the HBA. The device
now arbitrates for and wins control of the bus. [t next enters

1242 50of 24

the reselection phase, and identifies itself to the initiator to
reestablish communications.

The data transfer phase can now begin. Data are
transferred one byte at a time using a simple re-
quest/acknowledgment protocol between Lhe target and the
initiator. This continues unlil the need for a disconnect
arises again, such as when the target’s buffer is emptied,
or perhaps the command has completed. If it is the first
case, the data pointer must first be saved within the HBA,
50 we can restart the transfer at a later time. Once the
data transfer pointer has been saved, the targel sequences
through a disconnect, as described above.

When the disk is once again ready to transfer, it rear-
bitrates for the bus and identifies the initiator with which
to reconnect. This is followed by a restore data pointer
message to reestablish the current position within the data
transfer. The data lransfer phase can now continue where
it left off.

The command complelion phase is entered once the
data transfer is finished. The target device sends a status
message to the initiator, describing any errors that may have
been encountered during the operation, The final command
complelion message completes the /O operation,

The SCSI prolocol specification is currently undergoing
a major revision for higher performance. In the so-called
SCSI-1, the basic clock rale on the channel is 10 MHz. In
the new SCSI-2, “fast SCSI™ increases the clock rate to 20
MHz, doubling the channel’s bandwidth from 5 Mbyte/s
to 10 Mbyte/s. Recently announced high-performance disk
drives support fast SCSI. The revised specification also
supports an alternative method of doubling the channel
bandwidth, called wide SCSI. This provides a 16-bit data
palh on the channel rather than SCSI-1's 8-bit width. By
combining wide and fasl SCSI-2, the channel bandwidth
quadruples to 200 Mbyte/s. Some manufacturers of high-
performance disk controllers have begun to use SCSI-2 to
interface their controllers to a computer host.

2) High-Performance Parallel Interface The high per-
formance parallel interface, HIPPI, was originally devel-
oped at the Los Alamos Nalional Laboratory in the mid
1980's as a high-speed unidirectional (simplex) point-to-
point interface between supercomputers [11]. Thus, two-
way communications requires two HIPPI channels, one for
commands and write data (the write channel) and one for
status and read data (the read channel). Data are transmitted
at a nominal rate of 800 Mbit/s (32-bit-wide data path) or
1600 Mbit/s (64-bit-wide data path) in each direction.

The physical interface of the HIPPI channel was stan-
dardized in the late 1980’s. Its data transfer protocol was
designed to be extremely simple and fast. The source of
the transfer must first assert a request signal to gain access
to the channel. A connection signal grants the channel
to the source. However, the source cannot send until the
destination asserts ready. This provides a simple flow
control mechanism,

The minimum unit of data transfer is the burst, A burst
consists of 1 to 256 words (the width is determined by
the physical width of the channel; for a 32-bit channel, a

PROCEEDINGS OF THE [EEE, VOL. 80, NO. 8, AUGUST 1992

burst is 1024 bytes), sent as a continuous stream of words,
one per clock period. A burst is in progress as long as the
channel’s burst signal is asserted. When the burst signal
goes unasserted, a CRC (cyclic redundancy check) word
computed over the transmitted data words is sent down the
channel. Because of the way the protocol is defined, when
the destination asserts ready, it means that it must be able
to accept a complete burst,

Unfortunately, the upper level protocol (ULP) for per-
forming operations over the channe! is still under discussion
within the standardization committees. To illustrate the
concepts involved in using HIPPI as an interface to storage
devices, we restrict our description to the proposal to layer
the IP1-3 device generic command sel on top of HIPPI, put
forward by Maximum Strategies and IBM Corporation {12].

A logical unit of data, sent from a source lo a destination,
is called a packel. A packet is a sequence of bursis.
A special channel signal delineates the slart of a new
packet. Packets consist of a header, a ULP (upper laver
protocol) data set, and fill. The ULP data consist of a
command/response field and read/write data field.

Packets fall into three types: command, response, or data-
only. A command packet can contain a header burst with an
IPI-3 device command, such as read or write, followed by
multiple data bursts il the command is a write. A response
packet is similar. It contains an IPI-3 response within a
header burst, followed by data bursts if the response is a
read transfer notification. Data-only packets contain header
bursts without command or response ficlds.

Consider a read operation over a HIPPI channel using the
IPL-3 protocol. On the write channel, the slave peripheral
device receives a header burst containing a valid read
command from the master host processor. This causes the
slave to initiate its read operation, When data are available,
the slave must gain access to the read channel. When
the master is ready to receive, the slave will transmit its
response packel, If the response packel contains a transfer
notification status, this indicates that the slave is ready to
transmit a stream of data. The master will pulse a ready
signal to receive subsequent data bursts.

The original HIPPL specification limits the interconnect
distance to 25 m over twisted pair copper cable. A bit serial
version of HIPPT has recently been proposed [13] which
will make it possible to support gigabir’s dala transfers
over a distance of up to 10 km using optical fiber. Mc-
Farland er al [14] describes a VLSI chip set developed by
the Hewlett-Packard Corporation to support serial HIPPI
interconnections.,

3) Fibre Channel Standard The Fibre Channel Standard
is a rapidly emerging specification for high-performance
bit-serial point-to-poin{ communications over optical fiber
[15]. Much like a HIPPI channel, it has been designed to
support high-speed computer or storage device to compuler
communications, albeit over a bil-serial connection. But
unlike HIPPI, FCS purposefully blurs the distinction be-
tween networks and channels. FCS has been designed as a
multilayer series of protocals to make it suitable as the basis
of a high-speed network. A crucial aspect of the standard

KATZ NETWORK AND CHANNEL BASED STORAGE

is its definition of the concept of a swilching “labric,” a
network formed from switched high-speed links that can
be used to communicale between user nodes,

FCS supports three levels of network service: dedicated
connections, multiplexed connections, and datagrams. A
dedicated connection guarantees sequential delivery of data
frames at the full bandwidth of the interconnect, with end-
to-cnd flow control. This level of service is essentially the
same as that provided by HIPPL

At the next level of service, multiplexed connections
allow multiple data transfers 1o time-share the use of a
given fiber channel link within the fabric on a frame or
multiple-frame basis. End-to-end confirmation is optional
and sequential delivery of frames is no longer guaranteed.
Flow control is handled on a hop-by-hop basis by the
internal switches of the fabric.

FCS's datagram service involves the exchange of a single
frame at a time from source to destination through the
switching fabric. The transport provided by the FCS does
not notify that the datagrams have arrived. This is left
to higher level protocols to build on top of the datagram
mechanism.

It is should be noted thal fabrics of switched HIPPI links
can also be constructed [16), but these are severely limited
in terms of interconnect distance, ability to multiplex the
links, and support for network broadcast or multicast.
Because il has been designed from the outset as the basis of
a high-speed network, with planned support for the existing
popular storage device protocols (such as HIPPI, SCSI, and
IP1), many experts believe that FCS will be the predominant
gigabit/s storage interconnect of the mid 1990's.

D. Backplane Architecture

Backplanes are designed to interconnect processors, mem-
ory, and peripheral controllers (such as network and disk
controllers). They are relatively wide, but short distance.
The short distances make it possible to use fast, centralized
arbitration techniques and to perform data transfers at
a higher clock rate. Backplane protocels make use of
addresses and read/write operations, rather than the more
message-oriented protocols to be found on networks and
channels.

Table 2 gives some of the metrics of three popular
backplane buses: VME, FutureBus, and Multibus [T (this
table is adapted from [2]). For purposes of comparison,
we include the same metrics for the SCSI-I channel spec-
ification. The two numbers reported for SCSI bandwidth
represent the synchronous transfer rate (5 Mbyte/s) and
the asynchronous transfer rate (1.5 Mbyte/s) respectively.
The table includes the width of the interconnect (includ-
ing control and data signals), whether the address and
data lincs are multiplexed, the data width, whether the
transfer size is a single or multiple word, the number
of bus masters supported, whether split transactions are
supported (these are networklike request and acknowledg-
menl messages), the clocking scheme, the interconnect’s
bandwidth under a variety of assumptions (single versus
multiple word fransfers, 0 ns access time memorics versus

6 of 24

1243

Table 2 Comparisons of Popular Backplanc and Channel Interconnects

Meltric VME FutureBus MultiBus SCSL-I
Bus width (signals) 128 96 96 25
Address/data multiplexed? ne yes yes na
Data width 16-32 32 32 g
Xfer size single ‘multipe single/multiple single/multiple single/multiple
MNumber of bus masters multiple multiple multiple multiple
Split transactions no optiona] optional optional
Clocking asyne asyne sync cither
Bandwidrh, single word (0 ns mem) 25 37 20 5 TS
Bandwidth, single word (150 ns 12.9 15.5 10 5 NE
mem)
Bandwidth, multiple word (0 ns 219 952 40 LT
mem}
Bandwidth, multiple word (150 ns 13.6 20.8 133 5; 5
mem)
Maximum no. devices 21 20 21 7
Max bus length 0.5 m 0.5 m 0.5m 25 m
Standard IEEE 1014 IEEE 896 A\jSi,;IéEFT ANSI X3.131

150 ns access time), the maximum number of controllers
or devices per bus, the maximum bus length, and the
relevant ANSI or [EEE standard that defines the intercon-
nect.

The most dramatic differences are in the interconnect
width and the maximum bus width. In general, channel in-
terconnects are narrow and long distance while backplanes
are wide but short distance,

However, some of the distinctions are being to blur.
The SCSI channel has many of the auributes of a
bus, FutureBus has certain aspects that make it behave
more like a channel than a bus, and nobody could
describe a 64-bit HIPPI channel as being narrow! For
cxample, let’s consider FutureBus in a little more detail.
The bus supports distributed arbitration, asynchronous
signaling (that is, no global clocks), single source/muliple
destination “broadcast”™ messages, and request/acknowledge
split bus transactions [17]. The latter are very much like
SCSI disconnect/reconnect phases. A host issucs a read
request message (o a memory or I/O controller, and then
detaches from the bus. Later on, the memory sends a
response message (o the host, containing the requested
data.

In addition, there are several evolving serial bus and
device interfaces that further blur the distinction between
the kinds of interconnects we have been discussing. Among
these proposals are the IEEE Standard P1394 Serial Bus
[18] and the Scalable Coherent Interface [19]. Both scek to
define high speed, medium distance bit-serial interconnects

1244 7 of 24

that can be used to lash together boxes of hardware con-
taining more traditional parallel backplanes. These are still
backplane interconnects, however, because the protocols are
based on memory-oriented read/write operations rather than
the exchange of network messages.

[II. STORAGE TRENDS

A. The Storage Hierarchy

1) Concept of Storage Hierarchy: The storage hierarchy
is traditionally modeled as a pyramid, with a small amount
of expensive, fast storage at the pinnacle and larger capac-
ity, lower cost, and lower performance storage as we move
toward the base. In general, there are order of magnitude
differences in capacily, access time, and cost among (he
layers of the hierarchy. For example, main memory is
measured in megabytes, costing approximately $50/Mbyte,
and can be accessed in small numbers of microseconds.
Secondary storage, usually implemented by magnetic disk,
is measured in gigabytes, costs below $5/Mbyte, and is
accessed in tens of milliseconds. These costs are “order
of magnitude” for workstations and personal computers;
the costs for mainframes and supercomputers are typically
much higher. The operating system can create the illusion of
a large fast memory by judiciously staging data among the
levels. However, the organization of the storage hierarchy
must adapt as magnetic and optical recording methods
conlinue lo improve and as new storage devices become
available.

PROCEEDINGS OF THE IEEE, VOL. 80, RO. 8, AUGUST 1992

Declining

Increasing
S/MByte

Access Time

Magnetc Disk

Maugnetic Tape

Capacity

Fig. 4. Typical slorage hierarchy, circa 1980. The microsecond
access is provided by the file cache, a smali number of bytes
stored in semiconductor memory. Medivm eapacity, denominated
in several hundred megabyles with tens of millisecond access, is
provided by disk Tape provides unlimited capacity, bul access is
resiricied (o tens of seconds lo minutes.

Figure 4 depicts the storage hierarchy of a typical mini-
computer of 1980. (It should be noted that lurge mainframe
and supercompuler storage hierarchies were more complex
than whal is depicted here.) A small file cache (or buffer),
allocated by the operating system from the machine’s semi-
conductor memory, provides the fastest but most expensive
access. The job of the cache is to hold data likely 1o be
accessed in the near future, because it is near data recently
accessed (spalial locality) or because it has recently been
accessed itself (temporal locality), Prefetching is a strategy
thal accesses larger chunks of file data than requested by
an application, in the hope that it will soon access spatially
local data.

Either a buffer or a cache can be used to decouple appli-
cation accesses in small unils from the larger units needed
to cfficiently utilize secondary storage devices. It is not
efficient to amortize the millisecond latency cost 1o access
secondary storage for a small number of bytes. Accesses
in the range of 512 to 8192 byles are more appropriate.
The primary distinction between application memory and a
cache is the lalter's ability lo keep resident cerlain data. For
example, frequently accessed file directories can be held in
a cache, thus avoiding slow accesses to (he lower levels of
the hicrarchy.

Secondary storage is provided by magnetic disk. Data
are recorded on concentric tracks on stacked platters, which
have been coated with magnetic materials. The same track
position across the platters is called a cylinder. A mechan-
ical actuator positions the read-write heads to the desired
recording track, while a motor rotates the platters containing
the data under the heads.

Tertiary storage, provided primarily for archive/backup,
is implemented by magnetic tape. A spool of magnetic tape
is drawn across the read-write mechanism in a sequential
fashion. A good rule of thumb for a unit of tertiary storage
media, such as a tape spool, is that it should have as much
capacity as the secondary storage devices it is meant to
back up. As disk devices continue to improve in capacity,
tertiary storage media are driven to keep pace.

In 1980, a typical machine of this class would have one to

KATZ: NETWORK AND CHANNEL BASED STORAGE

Client
Workstation

Local
Magnetic Disk
2 ; Laocal Area
¢ Network
£ / Server Cache \
e

Server / Server "Remate” Mugnetic Disk \

/ Magnetic Tape \

Fig. 5. Typical storage hicrarchy, circa 1990. The file cache has
become substantially larger, and may be pantially duplicated at the
client in addition 10 the server. Secondary storage is split between
local and remote disk. Tape continues to provide the third level
of slorage.

two megabytes of semiconductor memory, of which only
a few thousand bytes might be allocated for input/output
buffers or file system caches. The secondary storage level
might include a few hundred megabytes of magnetic disk.
The tape storage level is limited only by the amount of
shelf space in the machine room.

2) Evolution of the Storage Hierarchy: Figure S shows
the storage hierarchy distributed across a workstation/server
environment of today. Most of the semiconducter memory
in the server can be dedicated to the cache function because
a server does not host conventional user applications. The
file system “metadata,” that is, the data structures describing
how logical files are mapped onto physical disk blocks,
can be held in fast semiconductor memory. This represents
much of the active portion of the file system. Thus, disk
latency can be avoided while servicing user reguests,

The critical challenge for workstation/server environ-
ments is the added latency of network communications.
These are comparable fo those of magnetic disk, and are
measured in small tens of millisecands. The figure shows
one possible solution, which places small high-performance
disks in the workstation, with larger potentially slower disks
at the server.

If most accesses can be serviced by the local disks, the
network latencies can be avoided altogether, improving
client performance and responsiveness. However, there are
several choices for how to partition the file system between
the clients and the servers. Each of these partitionings
represents a different trade-off between system cost, the
number of clients per server, and the ease of managing the
clients” files,

A swapful client allocates the virtual memory swap space
and temporary files to its local disk. The operating system’s
files and user files remain on the server. This reduces
some of the network traffic to the scrver, leaving the
issues of system management relatively uncomplicated. For
example, in this configuration, the local disk does not need
to be backed up. However, executing an operating sysicm
command still requires an access to the remote server.

A dataless client adds the operaling system’s files to the
client’s local disk. This further reduces the client’s demand

8 of 24

1245

One-line Storage L

Near-line Stwrage L

Off-line Sworage L

Disk Array 5
o Wide Ama
Nowork
Optical Disk Jukebox
Magactic tsr?}-ri.‘cal Tape Library \

Fig. 6. Typical storage hierarchy, circa 1995, Conventional disks
have been replaced by disk arrays, a method of obtaining muach
higher IO bandwidith by siriping data across multiple disks, A
new level of storage, “near ling,” emerges between disk and tape.
It provides very high capacity, but at access times measured in
seconds

on the server, thus making it possible for a single scrver
and network to support mare clients. While it is still not
necessary 10 back up the local disk, the system is more
difficult to administer. For example, system updales must
now be distributed to all of the workstations.

A diskfull client places all but some frequently shared
files on the clienl. This yields the lowest demands on
the server, but represents the biggest problems for system
management. Now the personal files on the local disk need
to be backed up, leading to significant network traffic during
backup operations.

An alternative approach leverages the lower cost semi-
conductor memory to make feasible large file caches (ap-
proximately 25% of the available memory within the work-
station) in the client workstation. These “clicnt” caches
provide an effective way to circumvent network latencies,
if the network protocols allow file writes 1o be decoupled
from communications with the server (sce the discussion
of NFS protocols in the next section). The approach, called
diskless clients, has been used with great success in the
Sprite Nerwork Operating System [20], where they report
an ability to support five to fen times as many clients per
server as more conventional client/server organizations,

Figure 6 depicts one possible scenario for the storage
hierarchy of 1995. Three major technical innovations shape
the organization: disk arrays, near-line storage subsystems
based on optical disk or automated tape libraries, and
network disiribution, We concentrate on disk arrays and
near-line slorage system technology in the remainder of this
subsection. Network distribution is covered in Section TV.

B. Storage Technology

1) Disk Arrays: Because of the rapidly decreasing form
factor of magnetic disks, it is becoming atiractive to replace
a small number of large disk drives with very many small
drives. The resulting secondary storage syslem can have
much higher capacity since small format drives traditionally
obtain the highest areal densities. And since the perfor-
mance of both large and small disk drives is limited by
mechanical delays, it is no surprise that performance can
be dramatically improved if the data (0 be accessed are

1246

9 of 24

spread across many disk actuators. Disk arrays provide a
method of organizing many disk drives to appear logically
as a very reliable single drive of high capacity and high
perfarmance [21].

Disk array organizations are organized into 2 multilevel
taxonomy. Here, we concentrate on the two most prevalent
RAID organizations: RAID level 3 and RAID level 5. Each
of these spreads data across N data disks and an N + 1st
redundancy disk. The group of .V «- 1 disks is called a stripe
sel. In a RAID Jevel 3 organization, data are interleaved
in large blocks (for example, a track or cylinder) across
all of the disks within a stripe set. The redundancy disk
confains a parity bit computed bitwise across the rows of
bits on the associated data disks. If a disk should fail,
ils conlents can be reconstructed simply by examining the
surviving N disks and restoring the sense of the parity
computed across the bit rows. Suppose that the redundancy
disk contained odd parity before the failure. If afler a disk
failure, the examination of a bit row yields even parity,
then the failed disk must have had a | in that bit row.
Similarly, if the row has odd parity, then the missing bit
must have been a (L RAID level 3 organizations are read
and written in full stripe units, simultaneously accessing al)
disks in the stripe. The organization is most suitable for
high-bandwidth applications such as image processing and
scientific computing.

If RAID level 3 is organized for high bandwidth, then
RAID level 5 is organized for high [/O rate. The basic
organization is the same: a stripe set of N data disks
and one redundancy disk. However, data are accessed in
smaller units, thus making il possible 1o support multiple
simuitancous accesses. Consider a data write operation 1o a
single disk sector. This requires the parity redundancy 1o be
updated as well. We accomplish this by first determining the
bit changes to the data sector and then invert exactly these
bits in the associated parity sector. Thus a logical single
sector write may involve four physical disk accesses: read
old data, read old parity, write new dala, and write new
parity. Since placing all parity sectors on a single disk drive
would limit the array to a single write operation at a time,
the parity sectors are actually interlcaved across all disks of
the stripe. A RAID level 5 can perform N+ | simultaneous
reads and simultancous writes (in the best case).

2) Near-Line Storage A compurable revolution has taken
place i tertiary storage: the arrival of ncar-line storage
systems. These provide relatively rapid access to enormous
amounts of data. frequently stored on removable, easy
to handle optical disk or magnetic tape media. This is
accomplished by storing the high-capacity media on shelves
that can be accessed by robotic media “pickers.” When a
file needs to be accessed, special file management software
identifies where it can be found within the tape or optical
disk library. The picker exchanges the currently loaded
media with the one containing the file to be accessed.
This is accomplished within a small number of seconds,
without any intervention by human operators. By carefully
exploiting caching techniques, in particular, using the sec-
ondary storage devices as a cache for the near-line store,

PROCFEDINGS OF THE IEEE, VOL. 80, NO. 8, AUGLST 1992

the very large storage capacity of a tertiary storage system
can appear to have access times comparable lo magnetic
disks at a fraction of the cost. We describe the underlying
storage technologies next.

3) Oprical Disk Technology for Near-Line Storage: Optically
recorded disks have long been thought to be ideal for
filling the near line level of the storage hicrarchy [22].
They combine improved storage capacity (2 Gbhytes per
platter surface originally to over 6 Gbytes per side today)
with access times that are approximately a factor of 10
slower than conventional magnetic disks (several hundred
milliseconds). The first generation of optical disks were
written once, but could be read many times, leading to
the term “WORM” to describe the technology. The disk
is written by a laser beam. When it is turned on, it records
data in the form of pits or bubbles in a writing layer within
the disk. The data are read back by detecting the varialions
of reflectivity of the disk surface.

The write-once nature of optical storage actually makes it
better suited for an archival medium than near-line storage,
since it is impossible to accidently overwrite data once
they have been written. A problem has been its relatively
slow transfer rate, 100K - 200K bytes per second. Newer
generations of optical drives now exceed one megabyte per
second (ransfers.

Magneto-optical lechnologics, based on a combination of
optical and magnetic recording techniques, have recently
led to the availability of erasuble oplical drives. The disk
is made of a material that becomes more sensitive to
magnetic fields at high temperatures. A laser beam is used
to selectively heat up the disk surface, and once heated, a
small magnetic field is used Lo record on the surface. Oplical
techniques are used for reading the disk, by detecting how
the laser beam is deflected by different magnetizations of
the disk surface. Read transfer rates are comparable to
those of conventional magnetic disks. Access times are still
slower than a magnelic disk owing to the more massive
read/write mechanism holding the laser optics, which takes
longer to position than the equivalent low mass magietic
read/write head assembly. The write transfer rate is worse
in optical disk systems because (1) the disk surface must
first be erased before new data can be recorded, and (2)
the written data must be reread Lo verify that they were
written correctly to the disk surface. Thus, a write operation
could require three disk revolutions before it completes,
(The study [23] details the trends and technology challenges
for fulure optical disk technologies).

Nevertheless, as the form factor and price of optical
drives continue to decrease, optical disk libraries are be-
coming more pervasive. Sony's recent announcement of
a consumer-oriented recordable music compact disk could
lead to dramatic reductions in the cost of optical disk
technology. As an example of an inexpensive optical disk
system, let’s examine the Hewlett-Packard Series 6300
Model 20GB/A Optical Disk Library System [24]. Based
on 5.25 in rewritable optical disk technology, the system
provides two optical drives, 32 read/wrile optical disk
cartridges (approximately 600 Mbytes per cartridge), and a

KATZ: NETWORK AND CHANNEL BASED STORAGLE

robotic disk changer that can move cartridges to and from
the drives, all in a desk side unil the size of a three-drawer
filing cabinet. The optical cartridges can be exchanged in 7
s, and require a 4 s load time and 2.4 s spin-up time. The
unload uand spin-down times are 2.8 and 0.8 s respectively.
An average seck time requires 95 ms, The drives can sustain
680 Kbytes/s transfers on reads and 340 Kbyies/s transfers
on writes.

The Kodak Optical Disk System 6800 Automated Disk

Library is characteristic of the high end [25). The system
can be configured with 50 to 150 optical disk platters, and
one to three optical disk drives. It is capable of storing from
340 Gbytes to 1020 Gbyles (3.4 Gbytes for each side of a
14 in platter). The average disk change time is 6.5 s. The
optical disk surface is organized into five bands of varying
capacity, with a certain number of tracking windows per
band. The drives can sustain 1 Mbyte/s transfers, with 100
ms access times for data anywhere within the current band
to 700 ms for data anywhere on the surface.
4) Magnetic Tape Technology for Near-Line Storage The
sequential nature of the access to magnetic tape has tradi-
tionally dictated that it be used as the medium for archive.
However, the success of automated tape libraries from
Storage Technology Corporation has demonstrated that tape
can be used lo implement a near-line storage system. The
most pervasive magnetic tape lechnology available today is
based on the IBM 3480 half-inch tape cartridge, storing 200
Mbytes and providing transfer rates of 3 Mbytes per sec-
ond. A second generation technology recently introduced
doubles the tape capacity and transfer rate.

However, there has been an cnormous increase in tape ca-
pacity, driven primarily by helical scan recording methods.
In a conventional tape recording system, the tape is pulled
actoss stationary read/write recording heads. Recorded data
tracks run in parallel along the length of the tape. On the
other hand, helical scan methods slowly move the tape past
a rapidly rotating head assembly to achieve a very high
tape to head speed. The tape is wrapped at an angle around
a rotor assembly, vielding densely packed recording tracks
running diagonally across the (ape. The technology is based
on the same (ape transport mechanisms developed for video
cassette recorders in the VHS and 8 mm tape formats and
the newer digital audie tape (DAT) systems.

Each of these systems provides a very high storage
capacity in a small, easy-to-handle cartridge. The small
form factor make these tapes particularly attractive as
the basis for automated data libraries. Tape systems from
Exabyte, based on the 8 mm video tape format, can store
2.3 Gbytes and transfer al approximately 250 Kbytes per
second. A second generation system now available doubles
both the capacity and the transfer rate. A tape library system
based on a 19 in rack can hold up to four tape readers and
over one hundred 8 mm cartridges, thus providing a storage
capacity of 250-500 GB’s [26].

DAT tape provides smaller capacily and bandwidth than
8 mm, but enjoys certain other advantages [27]. Low-
cost tape readers in the 3.5 in form factor, the size of a
personal computer floppy disk drive, are readily available,

10 of 24

1247

This makes possible the construction of tape libraries with
4 higher ratio of tape readers to lape media, increasing
the aggregale bandwidth to the near-line storage system.
In addition, the DAT tape formats support subindex fields
which can be searched at a speed 200 times greater than
the normal read/write speed. A given file can be found on a
DAT tape in an average search time of only 20 s, compared
with over 10 min for the 8 mm format.

VHS-based tape systems can transfer up to 4 Mbylesss

and can hold upto 15 Gbyles per carlridge. Tape robotics in
use for the broadcas! industry have been adapted to provide
a near-line storage function. Helical scan techniques arc
not limited to consumer applications, but have alsa been
applied for certain instrument recording applications, such
as salellite telemetry, which require high capacity and high
bandwidth. These lape systems arc called DD and DD2.
A single lape cartridge can hold up to 150 Gbytes, and
can transfer at a rate of up to 40 Mbyte/s. However, such
syslems are very expensive, and a good rule of thumb is that
the tape recorder will cost $100000 for each 10 Mbytes/s
of recording bandwidth it can support,
5} Optical Tape Technology for Near-Line Storage A record-
ing technology thal appears to be very promising is optical
tape [28]. The recording medium is called digital paper,
a material constructed from an optically sensitive layer
that has been coated onto a substrate similar to magnetic
tape. The basic recording technique is similar to write-once
optical disk storage: a laser beam wriles pils in the digital
paper to indicate the presence (or absence) of a bit. Since
the pits have lower reflectivity than the unwritten tape, a
reflected laser beam can be used to detect their presence.
One 12 inch by 2400 ft reel can hold 1 TB of data, can be
read or written at the rate of 3 Mbyle/s, and can be accessed
in a remarkable average time of 28 s,

Two companies are developing tape readers for digital
paper: the CREO Corporalion and the LaserTape Corpo-
ration. CREQ makes use of a 12 inch tape reel and a
unique luser scanner array to read and write multiple tracks
32 bits at a time [29]). The system is rather expensive,
selling for over $200 000, LaserTape places digital paper in
a conventional 3480 tape cartridge (50 Gbyte capacity and
3 Mbyle/s transfer rate), and replaces a 3480 fape unit’s
magnelic read/write heads with an inertialess laser beam
scanner. The scanner operates by using a high-frequency
radio signal of known frequency to vibrate a crystal, which
is then transferred (o a laser beam to steer it 10 the desired
read/write location. A 3480 tape reader can be “retrofitied”
for approximately $20 000, Existing tape library robotics for
the 3480 cartridge form faclor can be adapted (o LaserTape
without changes.

6) Summary: Table 3 summarizes the relevant meirics
of the alternative storage technologies, with a special
emphasis on helical scan tapes. The metrics displayed are
the capacity, hits per inch (BPT), tracks per inch (TPI), areal
density (BPI*TPI in millions of bits per square inch), data
transfer rate (Kbytes per second sustained transfers), and
average positioning times. The latter is especially important
for evaluating near-line storage media. An access time

1248

11 of 24

Appicalinn Address Space

Meworys-Memory Copy Heat Processor
OF Bu'fers (> Wi MBytc) &
DMA over Peripheral Bus - S R S R SRR
L) Contreller

HBA Buffers (1 M- 4 MByiex)
Xfzr over Disk Channel —

Track Bullers (2K - 256KByws) Binbedded Conuoller
Xfer over Serial Inorface e

L0 Devas Head Tk Assembly

Fig. 7. 170 duta Alow. In response 1o 4 read operalion, data move
from the device, to the embedded controller. to the 1O controller,
to operating system buffers, and finally 1o the application across a
variely of different interfaces.

measured in a small number of seconds begins to make
lape technology attractive for near-line storage applications,
since the robotic access times tend (o dominate the time it
lakes to pick, Joad, and access data on near-linc storage
media,

C. Storuge Controller Architecture

1) 10 Data Flow: Figure 7 shows the various interfaces
across which a typical 170 request must flow. The actual
flow of data starts at the /O device. In the following
discussion, we will assume that the device is an intelligent
magnetic disk for something like a SCSI interface and
that we are considering a read operation. The mechanical
portion of the disk drive is called the head/disk assembly,
or HDA. The control and interface to the outside world is
provided by an cmbedded controller,

Data move across a bit-serial interface from the disk
signal processing clectronics lo track buffers associated
with the embedded controller. The amount of memory
associated with the track buffers varies from 32 Kbytes to
256 Kbytes. Since the typical track on today’s small form
factor disks is in the range of 32 K - 64 Kbytes, a typical
embedded controller can buffer more than one track.

The interface between the embedded controller and the
host is provided by an 1/O controller. We called such a
controller a host bus adapter, or HBA, in subsection I1-C. It
couples the host peripheral bus to the disk channel interface.
Data are staged into buffers within the HBA, from which
they are copied out via direct memory access techniques
to the host’s memory. The typical size of I/O controller
buffers is in the range of 1 to 4 Mbytes.

The host’s memory is coupled to the processor via a high-
speed cache memory. The connection to the I/O controllers
is through a slower speed peripheral bus. Direct memory
access operations copy data from the controller’s buffers
to operating system buffers in main memory. Before the
data can be used by the application, they may need to
be copied once again, to stage them into a portion of the
memory address space that is accessible to the application,
Note that the same memory and operating system overheads
that limit network performance also affect 1/O performance,
This is critically important in file and slorage servers, where
both the /O and network traffic must be routed through the
memory system bottleneck.

If the host is actually a file server, the size of the operating
system’s buffers may be quite large, perhaps as large as

PROCEEDINGS OF THE IEEE, VOL. 80, NO. 8, AUGUST 1992

Table 3 Relevant Metrics (or Alternative Storage Technologies

Technology Capacily BPI TPl BPI*TPI Data Avcess Time
(MB) (million) Transfer
(Kbytess)
Conventional Tape
Rell-lo-reel (172 in) 140 6250 18 011 549 minutes
Cartridge (1/4 in) 150 12000 104 1.25 92 minutes
IBM 3480 (1,2 in) 200 22860 38.1 0.87 3000 seconds
Helical Scan Tape
VHS (12 in) 15000 not not unknown 4000 minutes
Video (8 mm) 46(K) spc-fiigf)(‘; chlig.gg 70,56 492 minutes
DAT (4 mm) 1300 61000 1870 11407 183 208
Optical Tape
CREO (35 mm) 1 TB 9336000 24 224 3000 28 s
Magnen Disk
Scagate Elite-1 (5.25 in) 1350 33528 1880 63.01 3000000 16 ms
[BM 3390 (10.5 in) 3800 27940 2235 62.44 4250 20 my
Floppy Disk (3.5 in) 2 17434 135 2L 92 s
Optical Disk
CD ROM (3.5 in) 540 27600 15875 438,15 143 1s
Sony MO (5.25 in) 640 24130 15796 453.54 875 100 ms
Kodak (14 in) 3200 21000 14111 296.33 HKH) 100°s ms

128 Mbytes. In addition, the data flow must be extended
to include transfers across the nelwork interconnect inlo
the application’s address space on the client. A detailed
cxamination of the operating system management of the
I/O path will be left until Section 1V.

2) Internal Organization of I/O Controller: Figure 8 shows
the internal organization of a typical high-performance
host bus adapter /O controller. Interestingly cnough, it
is not very different in ils internal architecture from the
network controller of Figure 2. Usually implemented on
a single printed circuit board. the conrtroller contains a
microprocessor, a modest amount of memory dedicated to
buffers and run-time data structures, 4 ROM to hold the
controller firmware, a DMA/peripheral bus interface, and
an /O channel interface.

The system interface is also similar to the network
controller described previously. Request blocks containing
1/0 commands and data are organized into as a linked list
in the host memory. The hast writes to @ memory-mapped
command register within the 1/O controller to initiate an
operation. Using DMA techniques, the controller fetches
the request blocks into its own memory. The on-board
microprocessor unpackages the I/O commands and write
data, and sends these over the /O channel interface. Status
and read data are repackaged into response blocks that are
copied back to reserved buffers in the host memory. The
host can choose whether the I/O controller will interrupt
the host whenever an operation has been completed,

Peripheral Bus (VME, FutgreBus, ew.)

I L
Host Poripheral Bus interface/DMA] =
oo j— Bulfer
P Proe | —
Eessor F T - - st
SR ROM a
fos [" Y0 Channel tnterlace]]
I L0 Cantroller

Fig. 8. Internal organization of an 'O conltroller. The /O con-
troller couples a peripheral bus 10 the 1/O channel via a buffer
memory. Hardware in the peripheral interface implements di-
rect memory access belween this buffer memory and the host's
memory. The FO channel interface implements the handshaking
protocols with the 1) devices. The microprocesser is the “iraffic
cop,” coordinaling the actions of the two interfaces.

The controller of Fig. 8 is notable because of its sup-
porl for direct memory access. Some lower performance
controllers require that commands and data be written a
word (or half word) at a time to memory-mapped controller
registers over the peripheral bus. Since a typical command
block can be 16 Lo 32 bytes in length, simply down-loading
a command may take tens of microseconds, requiring a
good deal of host processor intervention.

In implementing a high-performance file service on a
network, a critical relationship exists between the network

12 of 24

KATZ: NETWORK AND CHANNFEL BASED STORAGE

1249

and [/O controller architectures. The network interface and
the I/O controller must be coupled by a high-performance
interconnect and memory system, This key observation
provides the motivation for several of the systems reviewed
in Section V, especially the prototype being developed at
U. C. Berkeley described in subsection V-F.

1V. SOFrWARE TRENDS

A. Network File Systems

One of the most important software developments over
the past decade has been the rapid development of the
concept of remote file services. In a location transparent
manner, these systems provide a client with the ability to
access remole files without the need to resort to special
naming conventions or special methods for access.

It is important to distinguish between the related concepts
of block server and file server. A block server (sometimes
called a network disk) provides the client wilh a physical
device inlerface over a network. The block server supports
read and write requests to disk blocks, albeit to a disk at-
tached to a remote machine. A file scrver supports a higher
level interface, providing the complete file abstraction to the
client. The interface supports file creation, logical reads and
writes, file deletion, etc. In a file server, file system related
functions are centralized and performed by the server. In
a block server, these functions must be handled by the
clients, and if the disks are to be shared across machines,
this requires distributed coordination among them.

The most ubiquitous file system model is based on that
of UNTX, and so we begin our discussion with its structure.
A file is uniquely named within a hierarchical name space
based on directories. As far as the user is concerned, a file
is nothing more than an uninterpreted stream of byles, The
file system provides operations for positioning within the
file for the purpose of reading and wriling bytes. Internally,
the file system keeps track of the mapping between the file's
logical byte stream and their physical placement within
disk blocks through a data structure called an inode. The
inode is “metadata,” that is, data about data, and contains
information such as the device containing the file, a list
ol the physical disk blocks containing the file's data, and
pointers to additional disk blocks (called indirect blocks)
should the file be large enough to exceed the mapping
space of a single inode.

From the operating system perspective, tracing an [/O
request from the application to disk proceeds as follows,
The application program must make a system call, such as
read or write, o request service from the operating system.
This is handled by the UNIX system call layer, which in
wrn calls the file system to handle the request in detail.
Within the file system are block 1/O roulines which handle
read or wrile requests. These call a particular disk driver
to schedule the actual disk transfers. The software layers
are shown in Fig. 9.

The figure shows the software architecture for a file
system on the same machine as the client application. The

1250 13 of 24

| Application Program

[UNIX System Call Layer :

UNIX File System
rm Block VO Function
[- Block Device Driver

Fig. 9. Software layers in the UNIX file system.The UNIX
system call layer dispatches a read or wrile request to the file
system, which in turn calls a block 1'O routine. This calls a specific
device driver to handle the scheduling the /O request.

[Application Program |
 §

1]
| UNIX Sysiem Call Layer |
|

Virtal File System Interface
NFS Client | UNDXFile Sysiem

-

{ Netwark Prooco! Stk T Block Device Driver

Fig. 10. Software layers in the UNIX file system extended for
NFS. The VFS interface allows requests to be mapped transparently
among local file systems and remote file systems,

[o ey]

] UNIX System Call Layer

Virtual Prie System Inierface

!—1{ Vinwal File S:,lcm Inerface]
NI Tile System ‘—‘ Server Routines I }
FERE S

: RPC/Transmission Protocels 3 RPC/Trassmission Protocols
Client } Servee -Tw o

Nelwuk

Fig. 11. Path of an NFS client (o server request. A request o
access a remote file is kandled by the client’s VFS, which maps
the request through the NFS layer into RPC calls to the server over
the network. At the server end, the requests are presented o the
VFS, this lime to be mapped into calls on the server's local UNIX
file system.

major innovation of SUN's network file system, or NFS,
is its ability to map remote file systems into the directory
structure of the client’s machine. Thal is, it is transparent to
the user whether the referenced file is available locally or
is being accessed over the network. This is accomplished
through the new abstraction of a virtual file system, or VFS
[30]. The VFS interface allows file system requests to be
dispatched to the local file system, or sent to a remote server
across the network. The generic software layers are shown
in Fig. 10 and the path through the software taken between
the client and the server 1s shown in Fig, 11,

The access 1o the remote machine is implemented via a
synchronous remote procedure call (RPC) mechanism. This
is a communicalions abstraction that behaves much like a
conventional procedure call, except that the procedure being
invoked may be on a remote “server” machine. Since the

PROCEEDINGS OF THE [EEE, VOL. 80, NO. 8. AUGUST 1992

RPC is synchronous, the client must wait or block until the
server has completed the call and returned the requested
data or status.

The NFS protocol is a collection of procedure calls and
parameters built on top of such a RPC mechanism. One of
the key design decisions of NFS is to make this protocol
stateless. This means that each procedure call is complelely
self-describing; the server keeps track of no past requests.
This choice was made to drastically reduce the complexity
of recovery. In the evenl of a server crash, the client simply
retries its request wntil it is successfully serviced. As far
as the client is concerned, there is no difference belween a
crashed server and one that is merely slow. The server need
not perform any recovery processing. Contrast this with a
“stateful” protocol, in which both servers and clicnls must
be able to detect and recover from crashes.

However, the stateless protocol has significant implica-
tions for file system performance. In order to be stateless,
the server must commil any modified user data and file
system metadata to stable storage before returning results.
This implies that file writes cause the affected data blocks,
inodes, and indirect blocks to be written {rom in-memory
caches to disk. In addition, housckeeping operations such as
file creation, file removal, and modifications to file attributes
must all be performed synchroncusly to disk.

Some controversy surrounds the real source of bottle-
necks in NFS performance. Network protocal overheads
and server processing are possible culprits. However, it has
now become clear that the real problem is the stateless
nalure of the NFS protocol, and its associated forced disk
writes. By making file system operations synchronous with
disk, the performance of the file system is (overly) coupled
to the performance of the disk system [31].

B. File Server Architecture

In this subsection, we e¢xamine the flow of a network-
based [/O request as it arrives al the network interface,
through the file server's hardware and software, lo the
storage devices and back again to the network, Our goal
is to bring together the discussions of network interface,
/O controller, and network file system processing of an
1/O request, initiated by a client on the network.

Figure 12 shows the hardware/software architecture of
a conventional workstation-based file server. A data read
request arrives at the Ethernet controller. The network
messages are copied from the network controller to the
server's primary memory. Control passes through the sofi-
ware levels of the network driver and protocol interpretation
lo process the request. At the file system level, to avoid
unnecessary disk accesses, the server's primary memory is
interrogated to determine if the requested data have already
been cached from disk.

If the request cannot be satisfied from the file cache, the
file system will issuc a request to the disk controller. The
retrieved dala are then staged by the disk controller from
the 1/Q device to the primary memory along the hackplane
bus. Usually it must be copied (al least) onc more time, into
lemplates for the response network messages. The software

KAT7Z: NETWORK AND CHANNELL DASED STORAGL

; Kernel NFS Protocol & File Pracessing Single Processor File Server
mssibhgn il Bt Eible iR Soatht
TCPAP Pretacols (2 Unix File Sysiem

!
Backplane Bus |

Reguest I ‘;I
3
Disk
Conraller i

Fig. 12. Conventional file server architeclure. An NSF LO re-
quest arrives at the Ethernel interface of the server. The request
is pussed through to the network driver, the protocol processing
software, and the file system. The request may be satisfied by
data cached in the primary memory; if not, the data must be
accessed from disk. At this point, the process is reversed to send
the requested data back over the network. This figure is adapled
from [37}.

path returns through the file system, protocol processing,
and network drivers. The network response messages are
transmitted from the memory out through the network
interface.

There are two key problems with this architectore. First,
there is the long instruction path associated with processing
a network-based I/O request. Second, as we have already
seen, the memory system and the backplane bus form
a serious performance bottleneck. Data must flow from
disk to memory to network, passing through the memory
and along the backplane several times. In general, the
architecture has not been specialized for fast processing
between the network and disk interfaces. We will examine
some approaches that address this limitation in Section V.

C. Mass Storage System Reference Model

Supercompuler users have long had to deal with the
problem that high-performance machines do not come
with scalable I/O systems. As a result, each of the major
supercomputer centers has been forced to develop its own
mass storage sysiem, a network-based storage organiza-
tion in which files are staged from the back-end storage
server, usuvally from a near-line subsystem, to the front-end
supercompuler.

The mass storage system (MSS) reference model was de-
vcloped by the managers of these supercomputer centers, (o
promote more interoperability among mass storage systems
and influence vendors (o build such systems to a “standard”
[32]. The purpose of the reference model is to provide a
framework within which standard interfaces can be defined.
They begin with the underlying premise that the storage
system will be distributed over heterogeneous machines
polentially running different operaling systems. The model
firmlv endorses the client/server model of computation.

The MSS reference model defines six elements of the
mass storage system: name server, bitfile client, bitfile
server, storage server, physical volume repository, and
bitfile mover (see Fig. 13). Bit files are the model’s ter-
minology for uvninterpreted bit data streams. There are
different ways to assign these elements 1o underlying hard-
ware. For example, the name server and bitfile server may
fun a single mass slorage control processor, or they may
run on independent communicating machines,

14 of 24

Chents i Mags Storage System

Rigaie Bitfile ! Bl
Xfer Maver : Mover jeem X
one Adove | | Mot
Cooad (Move Conpiese | Connd | [Corg
... Chiers Requests - S5 PV Req
Applicaga |, Bafile T Storupe | 7y Repas’] Phy. V.
Chherit Bufle Server Reptéer | Server S Server g bt Reposiory
. . e * ¥ P Physeal
Cser-Levet [ty H Wl
Hane) Hove
iy
Name ;
Server |

Fig. 13. Elements of the mass storage system reference model.
The figure shows the interactions among the elements of the model,
Command flows are shown in light lines while data flows are
in heavy lines. The reference model clearly distinguishes among
the software functions of name service, mapping of logical files
onto physical devices, management of the physical medis, and the
transfer of files between the storage system and clienés. The figure
has been adapted from [32].

An application’s request for [/O service begins with a
conversation with the name server. The name service maps
a user readable file name into an internally recognized and
unique bitfile ID. The client’s requests for data are now sent
to the bitfile server, identifying the desired files through
their ID's. The bitfile server maps these into requests to
the storage server, handling the logical aspects of file
storage and retrieval, such as directories and descriptor
tables. The starage server handles the physical aspecis of
file storage, and manages the physical data volumes. It
may request the physical data repository to mount volumes
if they are currently off-line. Storage servers may be
specialized for the kinds of volumes they need to manage.
For example, one storage server may be specialized for lape
handling while another manages disk. The bitfile mover
is responsible for moving data between the storage server
and the client, usually over a network. It provides the
components and protocols for high-speed data transfer.

The MSS reference model has been incorporated into at
least one commercial product: the Unitree file management
system sold by General Atomics, Inc. This is 8 UNIX-based
hierarchical storage management system, based on software
originally developed at the Lawrence Livermore National
Laboratory.

V. CASE STUDIES

In this section, we look at a variely of commercial
archilectures and rescarch prototypes for high-performance
networks, file servers, and storage servers, Within these
systems, we will see a common concern for providing
high bandwidth between network interfaces and /O device
contrallers.

A, Ultranet

1) General Organization: The UltraNetwork is a hub-
based multihop network capable of achieving up to 1 Gbivs
transmission rates, Its most frequent application is as a
local area network for interconnecting workstations, storage
servers, and Supercompulers.

1252 15 of 24

Workstuuon

=

Hom-based e
Adaper

Fig., 14. UltraNet configuration. The nerwork interconnection
topology is formed by hubs connected by optical serial links. The
maximum link speed is 250 Mb/s; higher transmission bandwidth is
obtained by interleaving across multiple links, Host-based adapters
plug into computer backplanes while adapters for channels such as
HiPPI reside within (he hub.

Figure 14 depicts a typical Ultranet configuration. The
hubs provide the basis of the high-speed interconnect,
by providing special hardware and sofrware for routing
incoming network packets 1o output connections. Hubs are
physically connected by serial links, which consist of (wo
unidirectional connections, one for each direction. [f optical
fiber is chosen for the links, data can be transmitted al rates
of up to 250 Mbit/s and distances to 4 km. The Gbit trans-
mission rate is achieve by interleaving transmissions across
four serial Jinks, The point-to-point links are terminated by
link adapters within the hubs, special hardware that routes
the transmissions among input and output serial links. These
are described in more detail below.

Computers are connected {o the network in two different
ways: through host adapters and hub-resident adapters.
A host-based adapter is similar to the network controller
described in Fig. 2, and resides within the host com-
puter’s backplane. This kind of interface is appropriate
for machines with industry standard backplanes, such as
workstations and mini-supercomputers. In these kinds of
clients, processors and U'O controllers, including the net-
work interface, are trealed as equals with respect 1o memory
access. The adapter contains an on-board microprocessor
and can perform its own direct memory accesscs, just like
any other peripheral controller,

A different approach is needed for mainframe and su-
percomputers, since these classes of machines connect to
peripherals through special channel interfaces rather than
standard backplanes. I/O devices are nat peers, but are
treated as slaves by the processor. The hub-resident adapters
place the network interface to the Ultranet within the hub
itself. These provide a standard channel interface to the
computer, such as HIPPI or the IBM block multiplexer
interface.

2) UltraNet Hub Organization: The heart of the UltraNet
hub is 2 64-bit wide (plus 8 parity bits), high-bandwidth
backplane called the UltraBus. Its maximum bandwidth
is 125 Mbyte/s. The serial links from other hubs and
host-based adapters are interfaced to the UltraBus through
link muitiplexers, which in turn are controlled by the link
adapters, The link adapters routc the serial dala fo the
parallel interface of the UltraBus. Physically, it is a bus, but
logically, the interconnect is treated more like a local area
network, Packets are written to the bus by the source link

PROCELDINGS OF THE IELE, VOL. 80, NO. 8, AUGUST 1992

HIPP} Snumc'r HIFPI Deginaran

it B, it
. I IT L . 1 3 eeinl 1
Adapier AEEINRANREEREE o Uther Hubs ans

111 Flost Adapser
Link Lk Lank Lark Senal sieunt in

Muz Mux Mux Mux | Peoalle] sreum vui
Linx Mux Perenality Module
Pivioeel Proceysor

UlruBus Personaline Modele

Lank Adaplers e UlraB g - e

Fig. 15. Internal organization of the UlaNet kub. The serial
links, one for each direction, connect to the link multiplexers.
Each link mux can hardle up to four serial link pairs. The link
adapter interfaces the link multiplexers o the wide, fasi UltraNet
bus. The link adapter has cnough intelligence 1o do its bwa rouling
of network traffic among the link multiplexers it manages. With
a well-configured hub. little tralfic should! need access 10 the
UltraBus

adapter and are intercepted by the destination link adapter.
If the output link s controlled by the same link adapter
as the input link. the transfer can be accomplished without
access to the UltraBus, Figure 15 illustrates the internal
organization of the hub,

The link adapler contains a protocol processor and two
modules that interface to the link multiplexers on the one
hand and the UltraBus on the other. The protocol processor
is responsible for handling the network tratfic. The data
path that couples the personality modules on either side of
the protecol processor consists of two unidirectional 64-
bit-wide buses with speed matching FIFO's at the interface
boundaries. The buses operate independently and achieve
peak transfers of 100 Mbyte/s.

The protocol processor consists of three components:
the data acknowledgment and command block processor
(DACP), the control processor (CP), and the transfer engine
(TE). The DACP performs fusl processing of protocol
headers and request blocks. The CP is responsible for
managing the network, such as setting up and deleting
connections between network nodes. The TE rapidly moves
data through the protocol processor.

Figure 16 depicts the protocol architecture supported by
the UltraNet. The combination of the UltraNel firmware
and software implements the industry standard TCP/IP
pretocols on top of the UliraNet, as well as UltraNet specific
protocols. The lower levels of the network protocol. namely
the transport, network, dala link, and physical link, are
implemented with the assistance of the UliraNet prolocol
processor and host or hub-resident adapter hardware.

B. Digital Equipment Corporation’s
VAXCluster and HSC-70

1) VaxCluster Concept: Digital Equipment Corporation’s
VAXCluster coneept represents one approach for providing
networked storage service 1o client computers [33], {34].
The VAXCluster is a collection of hardware and software
services that closely couple together VAX computers and
hierarchical storage controllers (HSC's). A VAXCluster lies
somewhere beiween a “long distance™ peripheral bus and a
communications network: a high-speed physical link cou-

[l Lovel FI Sl Tiios A o i
e s (BF e D)
Kenel Level [Sl Corratiiy Uiy)

Ry {Faid i

T o 1

i |

Pt Ressoest TRTRY 1] -
Frotooats == {UwaietDuver)
Toata L .
Drivers Eiheenet | T Vist! _l
. ! T
Natwirk Etlicerer Conedler Setwork Laver
150 Lok Tayer

Hardwar Astisted
Protocol Engine

frascal Lank ((

Fig. 16. UlraNe1 profocol archileciure access to the UltraNet
is through the vandard UNIX socket interface. It is possible
to use standard TCPAP protocols on 1op of the UitraNet or
UlizaNet-specific protocols, The lower levels of the network are
implemented with the assivtance of the protocol engines and
adapters throughout the UliraNet system

ples together the processors, but message-oriented protocols
are used to request and receive services. The VAXCluster
concept is characterized by (1) a complete communications
archilecture, (2) a message-oriented computer interconnect,
(3) hardware support for the connection to the interconnect,
and (4) message-oriented storage controllers.

The hardware organization of a VAXCluster is shown in
Fig. 17. Its clements include VAX processors, HSC storage
controllers, and the computer interconnect (CI). The latter is
a high-speed interconnect (dual path connections, 70 Mbit/s
each), similar in operation to an Ethernet, although the
detziled methods for media access are somewhar different.
Physically, the C[is arganized as a star network, but
appears 10 processors as though it were a simple broadcast
bus like the Ethernet. Up to 16 nodes can be imerconnected
by a single star coupler, with each link being no more than
45 min length. A processor is connected to the Cl via a Cl
port. a cotlection of hardware and software that provides the
physical connection to the Cl on one side and a high-level
queue-based interface (o client software on the other side.

The ecommunications protocols layered onto the CI and
CI ports support three methods of transmission: datagrams,
messages, and blocks. Dalagrams are shart transmissions
meant 1o be used for stalus and information requests, and
are not guaraniced to be delivered. Messages arc similar
to datagrams except that delivery is guaranteed, Read/write
requests and other device control transmissions to slorage
controllers are handled via messages, The hardware in the
Cl1 ports provides special support for block transfers: an
ability to copy sequential large blocks of data from the
virtual address space of a process on one processar 1o the
virtual address space of another process on another Cl node.
Block transfers are exploited to move data back and forth
between client nodes and the storage controllers.

An interesting aspect of the VAXClusier architecture is
its support for a mass storage control protocol (MSCP),
through which clients request slorage services from stor-
age controllers attached (o the CI. A message-based ap-
proach has several advanlages in the distributed environ-
ment embaodied by the cluster concept. First, data sharing
is simplified, since storage controllers can extract requests

16 of 24

KATZ: NETWORK AND CHANNIL BASLD STORAGE

1253

VAX
Cl Port
]
VAX VAX
= CI Star CI
€1 Pori Coupler t ClPort | pocalDbk
ci (4]
CI Port CI Port
HSC HSC
Shared Disks

Fig. 17. VAXClusier block diagram. A VAXCluster consiss
of client processors (VAX), server storage controllers (HSC), o
high-speed interconnect (CI), adapters (Cl port), and coupling
hardware {Star Coupler) A messanc-oriented pratoco] is lavered
onto the interconnect hardware w implement clientserver access
lo storage services

from message queucs and service them in any order they
choose. Second, the prolocols enforce a high degree of
device independence, thus making it easier to incorporate
new devices into the slorage system without a substantial
rewrite of existing software, Finally, the decoupling of a
request from its servicing allows the storage controllers
to apply sophisticated methods for optimizing 1/0O perfor-
mance, including rearranging requests and breaking large
requests into fragments that can be processed indepen-
dently.

2) HSC-70 Internal Organization The internal organiza-
tion of an HSC is shown in Fig. 18. The HSC was originally
designed in the latc 1970°s, and has becn in service for
a decade, Its internal architecture was determined by the
technology limits of that time. Nevertheless, there are a
number of notable aspects about its organization. An HSC
is actually a heterogeneous multiprocessor, with individual
processors dedicated to specific functions. The three major
subsystems are (1) the host interface, (2) the 1/0 control
processor, and (3) the [/ device controllers. They commu-
nicate via shared control and data memories accessed via a
conlrol and data bus respectively.

The host interface, called a K.CI, is responsible for
managing the transfer of messages over the CI bus, The
hardware is based on an AMD bit-slice processor, The
device controllers, called K.SDI's for disk interfaces and
K.STT's for lape interfaces, use the same bit-slice processor.
They implement device-specific read and write operations,
as well as format, status, and seek operafions (for disk) over
Digital’s proprietary device interfaces. Up to four devices
can be controlled by a single K.X device coutroller, and up
1o eight K.X controllers can be attached to an HSC, for a
total of 24 devices. All policy decisions are handled by the
1/0 control processor, which is based on a microprocessor
implementation of the PDP-11 [35].

1254 17 of 24

-qm;ﬂj 1 Centrnl Bud (€6 3 Bisrcond)
Mamary l l

Up 10 8 par RSC

Host VO Contrat S

©F bue fatartucs Processor Bevien
— Fris PO Controllert bosm——
Fxsm»:x.nr
{ |
l 1—-—[“ Up o 4 par
Cantroller

[11
Mumary Memory Hus (13.) Mivsecond)

Fip, 18. HSC inernal architecture, The host interface is managed
by a dedicaled bil slice processor culled the K.CI. Devices are
attuched tn K.SDI (disk) and K.STI (lape) device controllers.
High-level control is performed by the PIO, a PRP-11 micro-
processor programmed to coordinate the activities of the device
contrallers and the host interface.

The shared memory subsystem of the HSC plays a critical
role in its ability to sustain /O taffic. Private memorics
deliver instructions and data to the various processors,
keeping them off the shared memory buses. Data structures
used [or interprocessor communications are located in the
contrel memory. The contral memory and bus support
interlocked operation, making it possible to implement an
atomic two-cycle read-modify-write. Data moving between
I[/O devices and the computer interconnect must be staged
through the data memory. The sizes of both memaries are
rather modest by today’s standards: 256K bytes in each,

The performance bottlenecks within the I1SC come from
two primary sources: bus contention and processar con-
lention [36). We examine bus contention first. Internal
bus contention affects the maximum data rate that the
controller can support. The controller’s transfer bandwidth
(Mbytes/s) is limited by its memory architecture and the
implementation of the CI interface, both on the controller
and on a processor with which it communicates. Because
data must traverse the memory bus twice. the effective
internal bandwidth to /O devices is limited to 6.6 Mbyte/s.
For example, on a device read. data must be staged from
the device controller to the data memory over the memory
bus, and then transferred once again over the bus to the
Cl interface. The HSC’s software includes mechanisms
for accounting for the amount of internal bandwidth that
has been allocated to outstanding /0 requests. Tt will
throttle [/O activity by delaying some requests if it detects
saturation,

While this may appear (o be a limitation, a more serious
restriction is imposed by the HSC's CI interface itself.
In general, it is designed to sustain on the order of 2
Mbvie/s. For some low-cnd members of the VAX family,
even this may exceed the bandwidth of the host's CI
interface. To avoid overrunning a host, and thus limit CI
bandwidth wasted on retransmissions, the Cl imerface will
only transmit a single buffer to a given client as long as
there are buffers waiting to be sent Lo it

Next we turn to processor contention, This is duc to
some extent to the design of the SDI disk interfaces. Each
disk has a dedicated control bus, but a single data bus is
shared among the devices attached 1o a controller. Thus,

PROCEEDINGS OF THE IEEE, VOIL. 80. NO R, AUGUST 1992

high data bandwidth can be sustained by spreading disks
among as many controllers as possible. For example, two
disks on a single K.SDI will transfer fewer bytes per second
than a configuration with one disk on each of two disk
controllers.

3) Bypical 110 Operation Sequencing: To understand the
flow of data and processing through the MSC, we shall
examine the processing steps of a typical disk read opera-
tion. The steps that we outline next are described at a high
level. Considerably more detail, including the detailed data
structures used, can be found in [35].

The first step is the arrival of the MSCP command over
the CI bus, The message is placed in a K.CI reception
buffer, where it is checked for well-formedness and validity.
If it passes these checks, il is copied to a special data
structure in the control memory, and pointers to this data
structure are placed on a queue of work for the [/O policy
Processor.

The next step involves the exccution of MSCP server
software on the policy processor. The software is structured
as a process that wakes up whenever therc are pending
requests in the work queue. The software examines the
queuc of commands, choosing the next one to execute based
on the currently executing commands. It constructs a data
structure that maps the MSCP command into physical disk
operations, such as the disk seek command and a sequence
of sector iransfer requests. The original MSCP command
message is modified to become a response message. The
last phase is to place a pointer to the disk request dala
structure on a K.SDI work queue, to be found in the control
memory.

The next thing that happens is the disk portion of the
transfer, The K.SDI firmware reads the request on its work
queue, extracts the scek command, and issues it to the
appropriate drive. When the drive is ready to transfer, it
indicales its status to the K.SDI. At this point the disk
controller allocates buffers in the data memory, and stages
the data as it comes in from disk to these buffers. When the
list of sector transfers is complete, a completion message
is placed on the work queuc for the K.CL

We are now rteady to transfer the data from the con-
troller’s data memory to the host. The K.CI software wakes
up when new work appears in its qucue. It then gencrates
the necessary CI message packets 1o transfer data from data
memory out over the CT to the originally requesting host
processor. As a data buffer is emptied, it is returned 10
a list of frec buffers maintained in the control memory.
When the last buffer of the transmission has been sent, the
K.CI now transmits the MSCP completion message that was
built by the /O policy processor from the original request
message.

The steps outlined above have assumed that processing
conlinues without error. There are a number of error
recovery routines that may be invoked at various points
in the process described above. For example, if the transfer
request within a K.SDI fails, the software is structured to
route the request lo error handling software to make the
decision whether to retry or abort the request.

DHI!(TW\:N
P ¥ dentans SRR sty
3 Tn.-::.“ji '-E-‘I?I-:i & i
I el /LS =) o
. 2
i
3 i
t

Independent Ditvas
m-x!@“"jf' -
25
i)

e ®

-2
e

High VO Rae/ihigh Capacity
Siesplex Cantroller

,__#4
UAS Controller
| DAS Controtier

N

High Bandwidth/H gh Availataty
Simplax Controtier

Fig. 19. Alternative disk organizations for the CDC DAS. The
DAS ean be configured in three aliernative organizations: duplexed
controller parity array for extremely high system availability, sim-
plex parity array for high media availability, and a novredundant
organization for maximum ['O rate and cupacity.

C. Control Data Corporation Disk Array Subsystem (DAS)

1) General Organization: The CDC disk array subsystem
is an example of an I/O controller design targeted for high-
bandwidth environments. To this end, it supports multiple
(4) IPI-2 interfaces (o disks, which can burst at 10 Mbyte/s
each, and multiple (2—-4) IPI-3 interfaces to the host, each of
which can burst transfer at 25 Mbyte/s. (The IPI interface
is similar in concept to the SCSI protocols described in
subsection 1I-C, but provide higher performance though
they are more cxpensive o implement.) A single controller
can handle up 10 32 disk drives, organized into eight stripe
units (called drive clusters by CDC) of four disks each.

The controller supports three alternative disk organi-
zations: a high transfer rate/high availability mode with
duplexed conlrollers, a simplex version of this organiza-
tion, and a high transaction rate/high capacily organization.
These are summarized in Fig. 19. The first organization,
for high transfer rale and very high system availability,
is distinguished by duplexed controllers, dual ported and
spindle synchronized disk drives, and a 3 + 1 RAID level
3 parity scheme,

Enhanced system availability is achieved by the duplexed
controllers and dual ported drives: if a single controller
fails, then a path still exists from the host lo a device
through a functional controller. CDC claims 99.999% avail-
abilily with a mean time to data loss (MTTDL) that exceeds
1 million hours with this configuration. This is probably a
conscrvative cstimate. A lost drive ean be reconstructed
within four minutes, assuming 1 Gbyte Seagate Sabre disk
drives. The organization can sustain 36 Mbyte/s, assuming
a sustained transfer bandwidth of 6 Mbyte/s per drive.

The second organization is characterized by single ported
drives, organized into the RAID level 3 scheme, and a
single controller. System availability is nol as good as
the previous organization: a failure within the controller
renders the disk subsystem unavailable. However, media

18 of 24

KATZ: NETWORK AND CHANNLL BASED STORAGE

1255

To Drive Cluslers

Parity Calculation Data Path

To DMA Unils, ~
and 1OPs Support Logis MEE020) - -

Cmnd Buffer

Cmnd Buffer

Cmrd Buffer Cmnd Buffer

10F| IPL-3 L/F

- Ir-3 1T [OP] IPI-3 E [roP] 1713 UF]
[RAM [RAM [RAML- RAM

To Hos!(s)

Fig. 20. Internul organization of CDC disk armay controlles. The DAC's internal structure consists
of the disk inferfaces, host interfaces, parity calculation logic, and a “traffic cop” microproccssor (o
determine the [/O strategy. 170 processors associated with cach of the interfaces handle the low-level
details of the lerface protocals. Data movemeni is controlied by direct memory access engines

assaciated with the disk interfaces.

availability is just as good because of the parity encoding
scheme. This organization can sustain 18 Mbytes/s and also
claims a 1 million hour MTTDL.

The last organization represents a trade-off between per-
formance, availability, and capacity. It gains capacity by
dispensing with the parity drives, supporting a maximum
of 32 Gbytes versus 24 Gbytes in the other (wo organiza-
tions, assuming 1 Gbyte drives. However, there is also no
protection against data Joss in the case of a disk crash. Data
are no longer interleaved, thus sacrificing data bandwidth
for a higher I/O rale. In the previous organizations, up to 8
1/O’s can be in progress at the same time, one for each drive
cluster. In this organization, 32 I/0’s can simultancously be
in progress. The contraller supports 500 random [/O’s per
second, approximately 16 [/0's per second per disk drive
(this represents a disk utilization of 507).

The controller’s designers have placed considerable em-
phasis on providing support for very high data integrity
within the controller and disk system. All internal data
paths arc protected by parity, data are writien o disk with
an enhanced ECC coding scheme (a 96 hit Reed-Solomon
code that can correct up to 17 bit errors and even some 32
bit errors), and a large number of retries are atlempted in the
event of an /O failure (three atempts at normal offset, all
with ECC; three atlempts at late and early data strobes with
nominal carriage offset, all with ECC; three allempis at +/-
carriage offset with nominal data strobes, all with ECC).
All retries include possible carrection from the RAID level
3 redundancy schemes.

2) Controller Internal Organization: Figure 20 shows the
internal organization of the DAS controller. An /O request
can be traced as follows. The host issucs the approprizte
command to one of the IPI-3 interfaces. This is staged 10 a
command buffer within the controller. The central control

1256 19 of 24

microprocessor examines the command and determines how
tc implement it in detail.

Suppose that the command is a data write and that the
array is organized into a RAID level 3 scheme. The control
processor maps this logical write request into a stream of
physical writes to the disks within a drive cluster. As the
data stream across the host interface, they pass through
the parity calculation data path, where the horizontal parity
is computed. DMA controllers move data and parity from
this data path to buffers associated with individual disk
interfaces. /O processors local to the [PI-2 disk interfaces
manage the details of slaging data from the buffers to
particular disk drives. Read operations are performed in
much the same manner, but in reverse.

Nole that reconstruction operalions can be performed
without host intervention. Assume that the failed disk has
been replaced by a new one. Under the control of the central
microprocessor, data are read from the surviving members
of the drive cluster. The data are streamed through the
parity calculation data path, with the result being directed
to the disk interface associated with the failed disk. The
reconstituted data arc then written to their replacement.

D. Maximum Strategies HIPPI-2 Array Controller

Maximum Strategics offers a family of storage products
oriented toward scientific visualization and data storage ap-
plications for high-performance computing envirenments.
The products offer a trade-off between performance and
capacity, spanning from high Mbyte/s but low Mbytes
(based on parallel transfer disks) to high-performance/high-
capacity (based on arrays ol disk arrays). In the following
discussion, we concentrate on their HIPPI-based storage
server.

PROCEEDINGS OF THE (EEE, VOL. B0, NO. 8, AUGUST 1992

To Host

Strategy HIPPI Controller

S E ok

Data Disks Parlty Hot Spare

Fig. 21. Strategy HiPPI controller block diagram. The Stratepy
controller couples multiple HiPPI interfaces to an 8 + 1 + 1 RAID
fevel 3 disk organization.

Figure 21 shows the basic configuration of the Strategy-2
array controller. It supporis one or two 100 Mbyte/s hosl
HIPPI interfaces or a single 200 Mbyte/s interface. The con-
troller supparts a RAID level 3 organization calculated over
eight data disks and one parity disk. Optionally, hot spares
can be configured into the array. This allows reconstruction
to take place immediately, without needing 1o wail for a
replacement disk. It also helps the system achieve an even
higher level of availability. Since reconstruction is fast,
the system becomes unavailable only when two disks have
crashed within a short period.

The controller can be configured in a number of different
ways, representing altemnative trade-offs between perfor-
mance and capacity. The low capacity/high performance
configuration stripes its data across four parallel transfcr
disks. This yields 3.2 Gbytes of capacity and can reach 2
60 Mbyte/s data transfer rate. It provides no special support
for high availability, such as RAID parity.

A second organization stripes across 8 + 1 parallel
transfer disks implementing a RAID level 3 organization.
This organization provides 6.4 Gbytes and achieves a 120
Mbyte/s transfer rate. Both configurations are called the
Strategy HIPPI-SM storage server.

These organizations provide relatively little capacity for
the level of performance provided. In addition, parallel
transfer disks are quite expensive per Mbyte and have a
poor reputation for reliability. An alternative configuration
uses multiple ranks of 8 + 1 + 1 commodity disk drives.
Maximum Strategies’ HIPPI-S2 storage server is shown
in Fig. 22. Back-end controllers (called $2’°s in Maximum
Strategies’ terminology) manage strings of eight disks each.
Maximum Strategies makes usc of older technology ESDI
drives (5.25 in form factor, 1.2 Gbyle capacity each), which
can share a common control path but require dedicated data
paths. A maximum configuration can support ten of these:
eight data strings, one parity string, and an optional hot
spare string, The back ends are connected to the front end
HIPPI interfaces through a 250 Mbyte/s data backplane and
a conventional VME backplane used for control. Note the
separation of control and data path. The high-bandwidth
data transfer path is over HIPPI; the control path uses a
lower latency (and lower bandwidth) VME interconnect.
Parity calculations are handled in the [ront end. This
organization can provide a 300 Gbyte capacity and a 144

KATZ NETWORK AND CHANNEL BASED STORAGE

u.;l. 20 Bus 1250 MBAG
VML Corgat D

Fig. 22. High capacity strategy array. High capacily is schieved
by using large numbers of commodily disk diives. These are
coupled to the HIPPI front ends through a high-bancwidth data
bus and a VME-based control bus.

Mbyte/s transfer rate.

Maximum Strategies also provides a storage server based
on a VME-based host interface. The S2R storage server
supports up to 40 x 5.25 in ESDI drives, organized into
an 8 + 1 + 1 RAID level 3 scheme thai is four stripe unils
deep. This organization yields 38.4 Gbytes of capacity and
an 18 Mbyte/s transfer rate.

The highest capacity/highest performance system com-
bines the S2R-based arrays with the HIPPl-attached con-
trolter of Fig. 21. The resull is an “array of disk arrays.”
The architecture calls for replacing the 82 controllers with
S§2R disk controllers. Each S2R array contains 37 disks,
organized into four stripe units of eight data disks and one
parity disk, plus one spare for the entire subarray. Up to ten
subarrays can be controlled by a single HIPPI controller,
yielding a system configured from a total of 370 disk drives,
1 345 Gbyte data capacity, and a 144 Mbytz/s transfer rate.

E. AUSPEX NS5000 File Server

1) General Overview: AUSPEX has developed a special
hardware and software architecture specifically for provid-
ing very high performance NFS file service. The system
provides a file system function integrated with an ability
to bridge multiple local area networks. They claim to have
achieved a performance level of 1000 NFS 8 Kbyte read
1/O operations per second, compared with approximately
100-400 I/O operations per second for more conventional
server architectures {37].

They call their appreach functional multiprocessing.
Rather than building 4 server around a single processor that
must simultaneously run the UNIX operating system and
manage the network and disk interfaces, their architecture
incorporates dedicaled processors to separately manage
these functions. By running specialized software within
the network, file, and slorage processors, much of the
normal overhead associated with the operating system can
be eliminated.

A functional block diagram of the NS5000 appears in Fig.
23, The system backbune is an enhanced VME bus that has
been tweaked to achieve a high aggregate bandwidth (35
Mbytess), A conventional UNIX host processor (@ SUN-
3 or SUN Sparcstation board), the various special-purpose

20 of 24 1257

Host | Host Single Doard
Processor Memary [7™~ Computer

Erhanced
T T VME Backplane
Eihcmct ‘ﬂ File Storage
Processor ! Processor Processar
i Paralje]
lm‘.e;;:’;;{‘iu‘t‘v]l Fiie SCS! Channels

Fig. 23, NSS5000 block disgram. The server incorporates four
different kinds of processors, dedicated 1o network, file, storage,
and general-purpose processing. The server can integrale up to
cight independent Ethernets through the Incorporation of multiple
network processors. The storage processor supports ten SCSI
channels, making it possible to attach up to 20 disks to the server.

processors, and up to 96 Mbytes of semiconductor memory
(the primary memory) can be installed in the backplane.
We examine cach of the special processors in the next
subsection.

2) Dedicated Processors: A dedicated network processor
board contains the hardware and software needed to manage
two independent Ethernet interfaces. Up to four of these can
be incorporated into the server to integratc a reasonably
large number of independent networks. The board executes
all of the necessary protocol processing to implement the
NFS standard. Because the network boards implement their
own packet rouling functions, it is possible {0 pass packets
from one network to another without intervention by the
host. Some cached network packet headers are buffered in
the primary memory.

The file processor board runs dedicated file system sofl-
ware factored out of the standard UNIX operating system.
The board incorporates a large cache memory, partitioned
between user data and file system metadata, such as direc-
tories and inodes. This makes it possible for the file system
code to access critical file system information without going
1o disks.

The slorage processor manages ten SCS1 channcls. Disks
are organized into four racks of five 5.25 in disks each (20
disks per server). It is also possible to organize these into
a RAID-style disk array, although the currently released
software does not support the RAID organization at this
time. Most of the primary memory is used as a very large
disk cache. Because of the way the syslem is organized,
most of the memory system and backplane bandwidih is
dedicated to supporting data transfers between the network
and disk interfaces.

The host processor is either a standard SUN-3 68020-
based processor board or a Sparcstation host processor
board. These run the standard Sun Microsystems’ UNIX,
as well as the utilities and diagnostics associaled with the
rest of the system.

3) Sofrware Organization: A significant portion of Aus-
pex’s improved performance comes from the way in which
the network and file processing software are layered onto
the multiprocessor organization described above. The basic
software architecture, its mapping onto the processors, and
their interactions are shown in Fig. 24,

1258

Haost Processor §

- e
File Fm.».s] "Storage Peocessor 1

rua ysum Server l

l‘mmr Memory }—l .,k r\rmys
L_

Fip. 24, Auspex NS5000 software architecture. The main data
fiow is represented by the heavy black line, with data being
transrmitled from the disks to the primary memory to the network
interfuce. The primary control flow is shown by a heavy gray line.
File system requests are passed between LFS (local file system)
client software on the Ethernet processor to server soflware on
the file processor. These are mapped onto detailed requests to
the storage processor by the file system server. Limited control
interactions invalve the virtual file system interfaces on the host,
and are denoted by diashed lines

Consider an NFS read operation. Initially, it arrives
at an Ethernct processors, where the network details are
handled. The actual data read request is forwarded to a
file processar, where it is transformed into physical read
requests, assuming that the request cannot be satisfied by
cached data. The read request is passed to the storage
processor, which turns it into the detailed operations to be
executed by the disk drives. Retrieved data are transferred
from the storage processor 1o primary memory, from which
the Ethernet processor can construct dala packets Lo be sent
to the client, Note the minimal intervention from the host
processor and software.

F. Berkeley RAID-II Disk Array File Server

Our research group at the University of California, Berke-
ley, is implementing a high-performance I/0 controller
architecture that connects a disk array to an UltraNet net-
work via a HIPPI channel. We call it RAID-IT to distinguish
it from our first prototype, RAID-1, which was constructed
from off-the-shelf controllers [38]. Given the observations
about the critical performance bottlenecks in file server
architectures throughout this paper, our controlier has been
specifically designed to provide considerable bandwidth
between the network. disk, and memory interfaces.

A block diagram for the controller is shown in Fig. 25.
The controller makes use of a two-board set from Thinking
Machines Corporation (TMC) to provide the HIPPI channel
interface to the UltraMet interfaces. The disk interfaces are
provided by a VME-based multiple SCSI string board from
Array Technologies Corporation (ATC). The major new el-
ement of the controller, designed by our group, is the X-bus
board, a crossbar that connects the HIPPI boards, multiple
VME buses, and an interleaved, multiported semiconductor
memory. The X-bus board provides the high-bandwidth
data path between the network and the disks, The data
path is controlled by an external file server through a
memory-mapped control register interface.

The X-bus board is organized as follows. The board
implements an 8 by 8 32-bit-wide crossbar bus. All crossbar

PROCEEDINGS OF THE IEEE, VOL. 80, NO. 8, AUGUST 1992

210f 24

X-Bui 3

TMC Pamid L
LT i ﬁ‘iﬁ i_._!(_l’.m Intererved !
My (128 MBye) T
— mr ! TR :[:Ef‘ Seeve
Hippi’ T_ LT o I, oy
HIPPD 2 Crobar :
—-h O Lt} 5 (VAT
L.1 EELCTTIPPTE SRPTE T PENSPIREY o, PISPEPPPIOI H

Fig. 25. RAID-1I orgunization. A high-bandwidth crossbar inter-
conngction ties the network interface (14iPPI) 1o the disk controlicrs
(Array Tech) via a multiported memory system. Hardware to
perform the parity calculation is associaled with the memory
sysiem.

transfers invalve the on-board memary as either the source
or the destination of the transfer. The ports are designed
to burst transfer at 50 Mbyte/s, and sustain transfers of 40
Mbyte/s. The crossbar is designed to provide an aggregate
bandwidth of 320 Mbyte/s.

The controller memory is allocated eight of the crossbar
ports. Data are interleaved across the eight banks in 32
word interleave units. Although the crossbar is designed Lo
move large blocks from memory to or from the network
and disk interfaces, it is still possible to access a single
word when necessary. For example, the external file server
can access the on-board memory through the X-bus board’s
VME cantrol interface. Two of the remaining cight ports
are dedicated as interfaces to the Thinking Machine 1/0
processor bus. The TMC HIPPI board sct also interfaces
to this bus. Since these X-bus ports are dedicated by their
direction, the controller is limited to a sustained transfer
rate to the network of 40 Mhbytess,

Four more ports are used to couple to single board
multistring disk controllers via the industry standard VME
bus, one disk controller per VME bus. Becausc of the
physical packaging of the array, 15 disks can be attached to
each of these, in three stripe units of five disks each. Thus,
60 disk drives can be connected 10 each X-bus board, and a
two X-bus board configuration consists of 120 disk drives,

Of the remaining two ports, one is dedicated for special
hardware to compute the horizontal parily for the disk array.
The last port links the X-bus board to the external file
server, It provides access to the on-board memory-as well
as the board’s control registers (through the board’s control
bus). This makes it possible for file server sofiware, running
off of the controller, to access network headers and file
metadata in the controller cache.

It may seem strange that there is no processor within
the X-bus board. Actually, the configuration of Fig. 25
contains no less than seven microprocessors: one in each
of the HIPPI interface boards, one in each of the ATC
boards, and one in the file server (we are also investigating
multiprocessar file server organizations), The processors

KATZ: NETWORK AND CHANNEL BASED STORAGE

within the HIPPI boards are being used lo handle some
of the network processing normally performed within the
server. The processors within the disk interfaces handle the
low-level details of managing the SCSI interfaces. The file
server CPU must do most of the conventional file system
processing. Since it is executing file server code, the file
server needs access only to the file system metadata, not
user data. This makes its possible to locate the file server
cache within the X-bus board. close to the network and
disk interfaces.

Since a single X-bus board is limited to 40 Mbyte/s,
we are examining system organizations that interleave data
transfers across multiple X-bus boards (as well as multiple
file servers, each with its own HIPPI interface). Multiple
X-bus boards can share a common HIPPI interface through
the 10P bus. Two X-bus boards should be able 1o sustain
80 Mbyte/s, more fully utilizing the available bandwidth of
the HIPPT interface.

The controller architecture described in this subseclion
should perform well for large data transfers that require
high bandwidth. But it will not do so well for small
transfers where latency dominates performance more than
transfer bandwidth. Thus we are investigating organizations
in which the file server remains attached to a more conven-
tional network, such as FDDI. Requests for small files will
be serviced over the lowest latency network available to
the server, Only very large files will he transferred through
the X-bus board and the UltraNet.

VI SUMMARY AND RESEARCH DIRECTIONS

In this paper, we have made the case for generalizing
the workslation-server storage architecture to the mainframe
and high-performance computing environment. The concept
of network-based storage is very compelling. It has been
said that the difference between a workstation and a main-
frame is the 1/0 system. The distinction will become blurred
in the new system architectures made possible by high-
bandwidth, low-latency networks coupled to the correct use
of caching and buffering throughout the path from service
requestor to service provider,

Nevertheless, many research challenges remain before
this vision of ubiquilous network-based storage can be
achieved. Firsl, new methods arc needed to effectively
manage the complete and complex storage hierarchy as
described in this paper. How should data be staged from ter-
tiary to secondary storage? Whar are the effective prefetch-
ing strategies? How are dala to be extracted from such large
storage systems?

Second, it is time to apply a system-level perspective
to storage system design. Throughout the [/O path, from
host to embedded disk controller, we find buffer memories
and processing capabilities. The current partitioning of
functions may not be correct for future high-performance
systems. For example, some searching and filtering capabil-
ities could be migrated from applications into the devices.
The memory in the I/O path could be better organized as
caches rather than speed matching buffers, given enough

22 of 24 1259

local intelligence about [/O patterns. A better approach for
error handling is also possible given a system perspective.
For example, in response to a device read crror, a disk
array controller could choose between retrying the read or
exploiting horizontal parity techniques to reconstitute the
data on the fly.

Third, new architecturces are needed to break the boltle-
necks, both hardware and software, between the network,
memory, and /O interfaces. The RAID-I1 controller tackles
this at the hardware level, by providing a high-bandwidth
interconnection among these components. AL the software
level, new methods need to be developed to reduce the
amount of copying and memory remapping currently re-
quired for controlling these interfaces.

Fourth, today’s high-bandwidth nctworks, such as FDDI
and UltraNet, exhibit latencics that arc somewhat worse
than conventional Ethernets. Unforiunately, latency be-
comes @ dominating factor as the overheads of data transfer
scale down in higher bandwidth networks. New methods
need to be developed to reduce this latency. One stratepy
is to increase the packel sizes, (o better amortize the
start-up latencies. A sccond stralegy, demonstrated by the
Autonel project at Digital Equipment Corporation’s System
Research Laboratory, is to construct a high-bandwidih
neiwork using point-to-point connections and an active
switching network [39].

Finally, the whole issuc of distributed and multiprocessor
file/storage servers and their role in high-performance stor-
age systems must be addressed, The technical issues include
the methods for how 1o partition the file server software
functions among the processors of a multiprocessor or a dis-
tribuled collection of processors. The AUSPEX controller
architecture is one approach to the former, The IEEE Mass
Storage System Reference offers ene model for the latter.

ACKNOWLEDGMENT

The author appreciates the careful reading of this manu-
script and the detailed comments by P. Chen, A. Chervenak,
E. Lee, E. Miller, S. Seshen, S. Strange, and the referces.

REFERENCES

[1] Nenvork Operations Manual, UltraNetwork Technologies, Part-

Number 06-00001-0G1, Revision A, 1990, chs. 2 and 3.

1. Hennessy and D, Patterson, Computer Architecture; A Quan-

titative Approach, San Mateo, CA: Morpan Kaufmann, 1990,

[3] V. Cerf, “Networks," Scientific American. vol. 263, no. 3, pp.
72-85, Sepr. 1991,

[4] L. Tesla, "?Jetwnrked computing in he 1990-." Seeentific Aner-

ican, vol, 265, no. 3, pp. 86-93. Sept. 1991,

[5] N. Negraponte, “Products and services for computer networks,”
Scientific American. vol. 265, no, 3, pp.106-115, Sept. 1991,

[6] S. P. Joshi, “High performance networks: Focus on the fiber
distributed data interlace standard,” {EFE Micro, pp. 8-14, June
1986,

[7] D. Clark. V. Jacobson, J. Romkey, and H. Sakwen, “An analysis
of TCP processing overhead,” JEEE Communicativns Maga-
Zine, pp. 23-29, June 1989,

|8] S. Heatly and D. Stokesberry, "Analysis of transport mea-

surements over a local area aetwork,” [EEE Communicanons

Magazine, pp. 16-22, June 1989,

H. Kanakia,"High performance host interfacing for packet-

switched networks * Ph.D. dissertation, Department of E.E.C.S.,

Stanfard University, 1990,

12

(9

1260

[10] R. Watson and S. Mamrak, “Gaining efficiency in transport
services by appropriate design and implementstion choices,”
ACM Trans. Comput. Syst., vol. 5, no. 2, pp. 97-120, May 1987.

[11] E. Orenstein, “HPPI-based storage system,” Computer Technol.
Rev., Apr. 1990,

[12] Anon, Strategy HPPI Disk Array Subsystem Qperation Manual,
Maximum Strategics, Part Number #HPP1U), 1990,

[13] D. E. Tolmie and M. G. Halvorson, “HIPPL { serial-HIPPL" in
Proc. IEEE Spring Compcon Conf., Feb. 1992, pp. 222-228,

[14] W. McFarland er. al., “HP's link interface chipset for scrial-
HIPPL™ in Proc. IEEE Spring Compcon Conf., Feb, 1992, pp.
220-233.

[15] Anon, “Fiber channel ~ Physical layer (FC-PH),” ANSI X3T9.3
Working Document, Revision 2.1, May 1991,

[16] K. Hardwick, “HIPPl world — The swilch is the network,” in
Proc. [EEE Spring Comput. Conf. (San Francisco, CA), Feb.
1992, pp. 234-238.

[17] P. Borrill and J. Theus, “An advanced communications protocol
for the proposcd IEEE 896 FuturcBus,” IEEE Micro, pp. 42-56,
Aug. 1984,

[18] M. Teener. "A Bus on # diet — The serial bus alternative,”
in Proc JEEE Spring Comput. Conf. (San Francisco, CA), Feb.
1992, pp. 316321

[19] D. Gustavson and E. Kristiansen, “Scalable coherent interface:
Links to the futare,” in Proc. IEEE Spring Comput. Conf. (San
Francisco, CA), Feb. 1992, pp. 322-327.

[20] M. Nelson, J. K. Ousterbout, and B. Welch, “Caching in the
Sprite network fle system.” ACM Trans. Comput. Syst., vol. 6,
no. 1, pp. 134-154, Feh. 1988

[21] R. Katz, G. Gibson, and D. Patterson, “Disk system architec-
tures for high performance computing,™ Proc. IEEE (Special
Issue on Supercomputing), Dec. 1989,

122] S. Ranade and J. Ng, Sysrems Integration for Write-Once Opti-
cal Storage. Westport, CT: Meckler, 1990,

{23} M. H. Krvder, "Data storage in 2000—Trends in dala storage
techpologies,” IEEE Trans, Magn., vol. 25, pp. 4358-4363,
Nov. 1989

[24] Hewlett-Packard Corporation, “HP Series 6300 Model 20GB/A
rewritable optical disk library sysiem preduoet brief,” 1989,

[25] Kodak Corporation, “Optical disk System 6800 product descrip-
tion," 1990,

[26] Exabyte Corporation, "EXB-120 cartridge handling subsystem
product specification,” Part No. §10 300&-002, 19%0),

[27] L. Tan and B. Vermeulen, “Digital audio tape for data storage,”
IELE Spectrum, vol. 26, pp. 34-38, Oct. 1989,

|28} B. F, Feder, “The best of lapes and disks.” N. Y. Times (Sunday
Business Section), p. 9, Sept. 1, 1991,

[29] K. Spencer, “The 60-second terabyle,” Canadian Res. Mag.,
June 1988.

[30] R. Sandberg, D. Goldberg. 8. Keiman, D. Walsh, and B. Lyon,
“Design and implementation of the SUN Network Filesystem,”
in Proc. USENIX Sununer Conf., June 1985, pp. 119-130.

[31] M. Rosenblum and J. Ousterhout, “The design and implemen-
tation of a log-structured file system,” ACM Trans. Compur.
Swst., Feh. 1992,

[32] S. W. Miller, “A reference model for mass storage systems,”
Advances in Computers, vol. 27, pp. 157-210, 1988,

[33] N.P. Rronenberg, H, Levy, snd W, D. Strecker, “VAXClusters:
A closely coupled distributed system,” ACM Trans. Comput.
Svse, vel 4, no. 2, pp. 130-146, May 1986,

[34] N.P. Kronenberg, 1. M. Levy, W. D). Strecker, and R, J, Mere-
woud, "The VAXCluster concept; An overview of a distributed
system,” Digeeal Tech. J., vol. 5, pp. 7-21, Sept. 1987,

[35] R. L. Lary and R. G. Bean, “The hierarchical storage controller:
A tightly coupled multiprocessor as storage server,” Digital
Tech. J., vol. 8, pp. 8-24. Feb. 1989.

[36] K. H. Bates, “Performance aspects of the HSC controller,”
Digital Tech. J., vol. 8, pp. 25-37, Feb. 1989,

[37] B. Nelson, “An overview of functional multiprocessing for NFS
network servers,” AUSPEX Tech, Rep. 1, July 1990,

[38] A. Chervenak and R. H. Kalz, "Performance measurements of a
disk arruy prototype.” presented at ACM SIGMETRICS Conf.,
San Diego, CA, May 1590,

[39] M. Schroeder et al, “Autonet: A high-specd self-configuring
local arca netwerk using point-to-point links,” DEC SRC Tech.
Rep. 59, Apr. 1990,

[40] A. Chervenak, “Performance measurements of the first RAID
prototype,” U.C. Berkeley Computer Science Division Report
No. UCB/CSD 90/574, Jan. 1990.

PROCEEDINGS OF THE 1EEE, VOL. 0, NO. 8, AUGUST 1992

23 of 24

Randy H, Katz (Senior Mcember, {EEE) was
born in Brooklyn, NY, on Augusl 19, 1955,
From 1973 through 1976 he attended Corneil
University, receiving 4 A.B. degree in math-
ematics and compuler science, and graduating
Phi Beta Kappa with distinction in all subjects.
He was a graduate studenl at the University
of California, Berkeley, receiving the M.S. and
Ph.D. degrees in computer science in 1978 and
1980 respectively, He held an IBM predoctaral
fellowship.

In the period 1980-1981 he held research scientist positions at Bolt,
Beranek, and Newman, [nc., and the Computer Corporation of America,
Inc., in Cambridge, MA. From 1981 to 1983 he was an assistant professor
in the Computer Sciences Depariment al the University of Wisconsin-
Madison. In 1983 he joined the faculty of the University of California,
Berkeley, as an assislant professor, He was promoded to associate professor
in 1985 and to full professor in 1989.

Prof, Katz was awarded an TBM Faculty Development Award and n Na-
tional Science Foundation Presidential Young Investigator Award in 1984,
He serves on the advisory panel of the Microclectronics and Information
Processing (M.LP.S.) division of the Computer and Information Scicnces
(CLS.E.) direciorate of the National Science Foundation. He has won
three best paper awards and four best presentation awards at conferences
in his rechnical field, He has published over 80 papers in the fields of data-
base management, computer-aided design of elecironics systems, paraliel
computer architectures, and high-performance mass storage systems. He
is principal investigator of & NASA and DARPA sponsored contract o
build a prototype high-performance disk subsystem for teraop computers.
His current research interests include 10 controller design and high-
performance siriped disk and tape subsystems, He is a faculty investigator
on the Sequoia 2000 Project, an effort to apply advanced storage tech-
nologies in suppont of Global Change Researchers throughout the stak
of California. In addition, he has served as a consultant 10 Intermetrics,
the U.S. Air Farce, Xerox, Texas [nstruments, Hambrecht and Quist, and
numerous small high technology firms. Prof. Kaw is a member of the
Association of Computing Machinery.

KATZ: NETWORK AND} CHANNEL BASED STORAGE 24 of 24

