
High-Performance Network and

Channel Based Storage

RANDY H. KATZ, SENIOR MEMBER IEEE

Invited Paper

In rfie traditional mainfi'ame-cemwcd view of a computer
uynlem. storage device: an: coupled to the system Hit-mtg}: complex
hardware :ubsyflems called ”0 dictum-b. Wt'lh (Ire dramalr'c
ski]! Inward workrran‘zm—based comparing. and it: assact'aturf
alignment-er model of computation, manage facilil‘rzs are now
found wracked m fife servers and dt'slrfburcd Iftrouglaam the
network. In. firt‘s paper, WL' discuss the underlying lechrtolvgylremt’s
tlzcrl are landing r0 high-performance zterta'arfc-baml storage,
namely advmtces 1'11 ”swarm, storage dméccs, and [.0 controller
and server arrltérccmrm. We review sen-ml rtmmwrct'a! sysrt-‘m
and I1 wart-ll prototypes ma: an: leading to rt rrt-w appmmlt I0
high-perforrrtancc compurmg based on rtettmrk-arrached storage.

I. INTRODUCTION

The traditional mainfra'mc-canlcrcd model of comput~
ing can be characterized by small numbers of large-settle
mainframe computers, with sharcd storage devices attached
via 1/0 channel hardware. Today, we are experiencing a
major paradigm shift army from camralizod mainframes to
a distributed model of computation based on worksialions
and file servers connected Via high—performance umworks,

Whal makes this new paradigm possible is the rapid
devclopmemt and acceptance of the clienlfisewar model
of commutation. The cliunliburver model is El mumtgu—
bascd protocol in which clients make requusts of service
providers, which are called suntan. Pcrltups the most
successful application of [his Concept Is the Widesprcud
use of file scrvcrs in networks at” computer uorkstutluns
and personal corrtputcru. Even a high-end workbmlion
has rather limited capabilities for data storage. A
distinguished machine: on {he network, customi2:d cilbcr
by hardware, software, or both, provides a file service. It

Manuscript marked chbur I. 1991; revised March 2-3. 1922. Thin
wort was supported by [he 13¢ch mlwttc-t-rl Research Propels Abate):
and lht: Nutiortll Acmnaulics and 5pm Adru'tisxration trader (5.111;ch
NAOZ‘SM (Dis-Hess Supurm-mpulcts: High Pcrlurrnztme 10 for the
Tcr‘Op Technology Em). Addilinnnl support w.” provided by the Sum:
of {hlifamtd MICRO Program in mnjunCIiOn wilh indumlal matc‘irt;
suppon provided by DEC, Emttlcx. baby". (BM. NLR, and Storage
Thchnulugy corporations.

The author is with the (Surnpuuzr Scit‘rtcc Diviuion. Department of
Electrical Engineering and Compulcr Scicnces. Univen 1y uf Culifumtu.
Ectkclcy, CA 94720.

IIEEE Log Number 9203610.

act cpts notwork manages from client machines containing
opuufcloselmadrwfite filc roqucsts and procvsses these,
trawmitting the requested data back and forth across Lht:
network.

This is in contrast [D the pun: dism’bmcd storage model.
in which the files are dirpersud among the storage on work-
sltttioos “thur lhttrt centralized in a mrvor. The: advantages
ttf a distributed organization are that resources are placed
ncur whore tltcy are needed. leading 10 better performance.
and that the. environment can be more autonomous because

individual machines continua tn perform useful work even
in lltc face of network failures. While utis has lawn the

more popular approach over the last {ow years. there has
emerged a growing awareness of the admmagcs of the
centralized View. That is. every user sec-r the same flit:
systurzt. indepurtdcnl of the machine they are curremly
using. The View of stung: is pervasive and lranspurum.
Further, it is much casicr to administer a centralized syslem.
to provide software updatus and archival backups. The n:-
sultlng organization combines dislt-Ibtttcd processing pow ur
with a centralized view of storage.

Admitwtlly, ccntrttlizcd storage also has ils weaknesses.
A server or network failure renders (ht: clicttl WilkalillIGl'lS

unusable and the network represents the critical pertur-
nmnce botllerteck. A htghly tunod remote file system on 'd.

30 megabit (Muir) per second Ethernet can providc perhaps
500K bytes: per wound lo rename client applications. Sixty
8K byre l.»O’5 par Second would fully utilize this bandwidth
Obtaining the right balanct'. of workstations to ‘ICTVBIS
dtpcnds; on their l'CIJIIvc processing power. the umouni
of mumory (indicator! lo file caches on workstations and
erVCl'S, tho availablc nciu ork bandwidth, and {he {/0

bandwidth of tho tuner. 11 is micresiing lu ttolc that today's
servers are not IIO limited: the Ethernet bandwidth can be

fully utilized by the U0 bandwidth of only two magnetic
dislm'

Meanwhile, ulhcr technology developments in proces-
sors, networks, and storagu systems are affecting the re—
lationship between clients and servers. [I is well known

thal proccusor performance. as measured in MlPS ratings.

OGISanH‘JlSUEIflfl b IG‘IZ IEEE

138 FROCE'T'DWG‘I OF Tl ‘r' Ila-1E. VCIL ‘” -. KO. ' AI'G' fi‘ I992

CROSSROADS EXHIBIT 2038

Oracle Corp., et a! u. trousroads Systems, lrtc.
1 of 24

|PR2014-01207 and IPR2014-1209

is increasing at an astonishing rate, doubling on the order of
once every 18 months to two years. The newest generation
of RISC processors has performance in the St) to 60 MEPS
range. For example, a recent workstation announced by
the Hewlett-Packard Corporation. the HP 9900;"?30, has
been rated at 72 SPECMarks (1 SPECMark is roughly the
processing power of a single Dig-ital Equipment Corporation
VAX “[780 on u particular benchmark set). Powerful
shared memory multiprocessor systems. now available from
companies such as Silicon Graphics and Solborne, provide
well over 100 MIPS performance. One of Amdahl‘s famous
laws equaled one MIPS of processing power with one
megabit of HO per second. Obviously such processing rates
far exceed anything that can be delivered by existing server,
network, or storage architectures.

Unlike processor power. network technology evolves at
a slower rate. but when it advances, it does so in order

of magnitude steps. In the last decade we have advanced
from 3 Mirth/second Ethernet to 30 Mbitlsecond Ethernet.

We are now on the verge of a new generation of network
technology, based on fiber-optic interconnect, called FDDl.
This technology promises 1th Mbits per second. and at
least initially. it will move the server bottleneck from the
network to the server CPU or its storage system. With
more powerful processors available on the horizon. the
performance challenge is very likely to be in the storage
system, where a typical magnetic disk can service 30 BK
byte 110’s per second and can sustain a data rate in the range
of 1 lo 3 Mbytes per second. And even faster networks and
interconnects, in the gigabit range, are now commercially

avaiiable and. will become more widespread as their costs
begin to drop [1].

To keep up with the advances in processors and networks.
storage systems are also experiencing rapid improvements.
Magnetic disks have been doubling in storage capacity
once every three years. As disk form factors shrink from
in inch to 3.5 inch and below, the disks can be made

to spin faster, thus increasing the sequential transfer rate.
Unfortunately. the random HO rate is improving only very
slowly. owing to mechanically limited positioning delays.
Since U0 and data rates are primarily disk actuator limited,
:1 new storage system approach called disk arrays addresses
this problem by replacing a small number of large-format
disks by a very large number of small—format disks. Disk
arrays maintain the high capacity of the storage system,
while enormously increasing the system‘s disk actuators
and thus the aggregate lfO and data rate.

The confluence of developments in processors. networks,
and storage offers the possibility of extending the client!
server model so effectively used in workstation environ—

ments to higher performance environments, which inte-
grate supercomputer. nertr supercomputers. workstations,
and storage services on a very high performance network.
The technology is rapidly reaching the point where it is
possible to think in terms of diskless supercomputers in
much the same way as we think about diskless workstations.
Thus, the network is emerging as the future "backptanc”
of high-performance systems. The challenge is to develop

KATZ. NETWORK AND CHANNEL HASH) STGRAGE

the new hardware and software architectures that will be

suitable for this world of network-based storage.
The emphasis of this paper is on the integration of storage

and network services. and the challenges of managing
the complex storage hierarchy of the future: file caches.
on-tine disk storage. near-line data iibraries. and off-line
archives. We specifically ignore existing mainframe L'O
architectures. as these are well described eisewhere (for

example, in [2]). The rest of this paper is organized as
follows. in the next three sections, we will review the recent

advances in interconnect, storage devices, and distributed
software, to better understand the underlying changes in
network, storage, and software technologies. Section V con—
tains detailed case studies of commercially available high-
performancc networks. storage servers, and file servers, as
well as a prototype high-performance network-attached HO
controller being developed at the University of California,
Berkeley. Our summary. conclusions, and suggestions for
future research are found in Section VI.

H. [NTIZRCONNECT TRTNDS

A. Networks. Chaucer’s. and Backpfartcs

interconnect is a generic term for the “glue” that inter-
faces the components of a computer system. Interconnect
consists of high-speed hardware interfaces and the asso-
ciated logical protocols. The former consists of physical
wires or control registers. The latter may be interpreted
by either hardware or software. From the viewpoint of
the storage system. interconnect can he claSsified as high
speed networks, processor-to—storage channels. or system
backplancs that provide ports to a memory system through
direct memory access techniques.

Networks, channels. and backplancs differ in terms of
the interconnection distances they can support, the band~
width and latencies they can achieve, and the fundamental
assumptions about the inherent unreliability of data trans-
mission. Whtle no statement we can make is universally
true, in general. backplanes can be characterized by parallel
wide data paths and centralized arbitration, and are oriented
toward read/write ”memory mapped" operations. That is,
access to control registers is treated identically to memory

word access. Networks. on the other hand, provide serial
data, distributed arbitration. and support more message—
oriented protocols. The latter require a more complex
handshake, usually involving the exchange of highdcvel
request and acknowledgment messages. Channets t‘all be-
tween the two extremes. consisting of wide data paths
of medium distance and often incorporating simplified
versions of networklikc protocols.

These considerations are summarized in Table 1.

Networks typically span more than 1 km. sustain
10 Mbitlsecond (Ethernet) to 100 Mbit/second {FDDI}
and beyond, experience latencies measured in several
miliiseconds (ms), and the network medium itself is
considered to be inherently unreliable. Networks include
extensive data integrity features within their protocols.

i239
2 on4

Table I Comparison of Network. Channel. and Backplanc Attributes

 Network Channel Backplane

Distance >IOOU tn 10-100 m l m

Bandwidth [0—100 Mbt‘s 40—1000 Mbr's JZO—tm
beb

Latency high (>ms) medium low (915)

Reliability low medium high
Extensive Byte ?arity Byte ParityCRC

The comparison is. based upon the interconnection distance. trans-
mission bandwidth. transmission latency. inherent reliability. and typical
techniques for improving data integrity.

including CRC checksums at the packet and message levels,
and the explicit acknowledgment of received packets.

Channels span small EO’s of meters, transmit at anywhere
from 4.5 Mbytesfsecond (lBM channel interfaces) to 100
Mbytesisecond (HiPPl channels), incur latencies of under
100 Its per transfer, and have medium reliability. Byte
parity at the individual transfer word is usually supported.
although packet-level check—summing might also be sup-
ported.

Backpltencs are about I m in length. transfer from 4D
(VME) to over 100 (FutureBus) MBytestccond, incur sub
pit latencies. and the interconnect is considered to be

highly reliable. Backplanes typically support byte parity,
although some backplanes (unfortunately) dispense with
parity altogether,

in the remainder of this section. we will look at each
of the three kinds of interconnect. network. channel, and
hackplane, in more detail.

8. Communications Networks and Network Corttmt’t’em'

An excellent overview of networking technology can be
found in [31. For a futuristic view, see [4} and [5]. The
decade of the 1980’s has seen a slow maturation of network

technology. but the 1990’s promise much more rapid tievelc
upments. Today, it) Minn/second Ethernets are pervasive,
with many environments advancing to the next generation
of 100 Mbitfsecond networks based on the FUDI (Fiber

Distributed Data Interface) standard [6}. FDDl provides
higher bandwidth, longer distances. and reduced error rates,
largely because of the introduction of liher optics for data
transmission. Unfortunately cost, especially for replacing
the existing copper wire network with fiber. coupled with
disappointing transmission latencies. has slowed the accep-
tance of these higher speed networks. The latency problems
have more to do With FDDI's protocols, which are based on
a token passing arbitration scheme. than anything intrinsic
in fiber-optic technology.

A network system is decomposed into multipie protocol
layers", from the application interface down to the method
of physical communication of bits on the network. Fig—
ure l summarizes the popular seven—layer ISO protocol
model. The physical and link levels are closely tied to the

E240
3of24

Appticntinn Detailed information shoot the data being exchanged
Presentation Dot. representation

Session M arraignment of connectiom' between programs
Tramport Delivery of packet sequences
Network Format of individual packets

Link Access to and control oftrnnnnission medium

_P‘?Iysicai Medium of transmission

Fig. l. Seven-layer ISO protocol model. The phystcal layer
describes the actuat transmission medium. he it coax cubic. fiber
optics. or a parallel hackplztne. The link layer describes how
Stations gain access to the medium. This layer deals with [he
protocols for arbitration for and obtaining grant pennission to the
media. The network layer defines the format of data packets to
be transmitted over the media, including destination and sender
information as well as any check sums. The transport layer is
rappomible for the reliable delivory of packets. The amnion layer
establishes communication between the sending program and the
receiving program. The presentation layer determines the detailed
formats ofthc daln cmhcddcd within packets. The application layer
has the responsibility of understanding how these data should be
interpreted within an applications context.

underlying transport medium. and deal with the physical
attachment to the network and the method of acquiring
access to it. The network. transport, and session levels
focus on the detailed formats of communications packets
and the methods for transmitting them from one program
to another. The presentation and applications layers define
the formats of the data embedded within the packets and
the applicationrspecilic semantics of that data.

A number of performance measuremenus of t'tcEWm‘k
transmission services poinl out that the Significant over—
head is not protocol interpretation {approximately 10% of
instructions are spent in interpreting the network headers).
The culprits are memory system overheads arising from
data movement and operating system overheads related to
context switches and data cepying [7H10]. We will see
this again and again in the sections to follow.

The network controller is the collection of hardware

and firmware that implements the interface between the
network and the host processor. It is typically implemented
on a small printed circuit board, and contains its own

processor, memory mapped control registers, interface to
the network, and small mercury to hold messages being
transmitted and received. The tin-board processor. usually
in conjunction with VLSI components within the network
interface. implements the physicai and [ink-level protocols
of the network.

The interaction between the network controller and the

host’s memory is depicted in Fig. 2. Lists of blocks
containing packets to he sent and packets that have been
received are maintained in the host processor's memory.
The locations of buffers for these blocks are made known

to the network controller, and it will copy packets to and
from the requestfreceive block areas using direct memory
access (DMA) techniques. This means that the copy of data
across the peripheral bus is under the control of the network
controller, and does not require the interVention of the host
processor. The controller will interrupt the host whenever
a montage has been received or sent.

PROCEEDINGS OF THE EEK}; VOL 8!). N0 8. AUGUST 1992

thwork lemlicr

Puphcmi Backpianc Bus

Fig. 2. Network contrrillcr.’proccssor memory interaction. The
figure dcbcrihcs the interaction between the network controller
and the memory of thc network node. The controller contains
an on-bourti microprocessor, various memory-mapped control reg-
isters through which service roqucsts can be mad: and status
checked, 3 physical interface to the network media. and a buffer
memory to hold request and receive blocks. Thaw contain network
messages to be transmitted or which havc been rcccivcd respec-
tively, A list of pending requests and mcssagcs already received
rcsidcs in the host processor's memory. [Jircct memory operations
(DMA'slt Undcr the control of the node processor. copy these
blocks in and from this memory.

While this presents a particularly clean interface between
the network controller and the operating system, it points
out some of the intrinsic rncrnory systcm latcncics that
reduce network performance. Consider a message that will
be transmitted to the network. First the contents of the

message are created within a user application. A call to the
operating system results in a process switch and a data copy
from the user's address space to the operating system's area.
A protocol—specific network header is then appended to thc
data to form a packaged network message. This must be
copied one more time, to place the message into a request
block that can be accessed by the network controller. The
final copy is the DMA operation that moves the mcsrsagc
within the request block to memory within the network
controller.

Data integrity is the aspcct of system reliabiIity concerned
with the transmission of correct data and the explicit
flagging of incorrect data. An overriding consideration of
network protocols is their concern with reliable transmis-
sion. Because of the distances involved and the complexity
of the transmission path, network transmission is inherently
lossy. The solution is to append chock—sum protection bits
to all network packets and to include explicit acknowledg~
mcnt as part of the network protocols. For example, if the
check sum computed at the receiving end docs not match
the transmittcd check sum, the receiver sends a negative
acknowledgment to thc scndcr.

C. Cflannel A rchr'recrurcs

Channels provide the logical and physical pathways
between UO controllers and slomgc devices. They are
medium-distance interconnect that carry signals in parallel.
usually with some parity technique to provide data integrity.
In this Subsection, we will describe three alternative

channel organizations that characterize the opposite ends
of the performance spectrum: SCSI (small computer system

interface), HIPPI (high-performance parallel interface}. and
PCS (fibrc channel standard).

1) Small Computer System Interface SCSI is the channel
interface most frequently encountered in small form factor
(5.25 in diameter and smaller) disk drives, as well as a
wide variety of peripherals such as tape drives, optical disk
readers, and image scanners. SCSI treats peripheral devices
in a largely device-independent fashion. For example. a disk
drive is viewed as a linear byte stream; its detailed structure
in tcrms of sectors, tracks. and cylinders is not visible
through the SCSI interface. A SCSI channel can support
up to eight devices sharing a common bus with an 8-bit-
widc data path. in SCSI terminology, the lr'O controller
counts as one of these devices. and is called the host bus

adapter (HBA), Burst transfers at 4 to 5 Mbytcsis arc widely
available today. In SCSI terminology. u dcviCc that requests
service from another device is called the master or the

initiator. The device that is providing the service is called
the slave or the target.

SCSI provides a high—level message—based protocol for
communications between initiators and targets. While this
makes it possible to mix widely different kinds on devices
on the same channel, it does load to relatively high micr—
l'rcads. The protocol has bccn dcsigncd to allow initiators
to manage multiple simultaneous operations. Targets are
intelligent in the sense that they explicitly notify the initiator
when they are ready to transmit data or when they need to
throttle a transfer.

[1 is worthwhile to examine the SCSl protocol in some
detail. to clearly distinguish what it does from the kinds of
messages exchanged on a computer network. The SCSI pro-
tocol proceeds in a series of phases, which we summarize
bclow:

' Bus Free: No dcvicc currently has the bus allocated.
' Arbitration: initiators arbitrate {or access to tho bus. A

dcvicc‘s physical address determines its priority.
' Selection: The initiator informs the target that it will

participate in an l/O operation.
- Rosclcction: The target informs the initiator that an

outstanding operation is to he resumed. For example.
an operation could have been previously soapcndcd
because the HO device had to obtain more data.

- Command: Command bytes are written to the target by
the initiator. The target begins executing the operation.

' Data Transfer: The protocol supports two forms of the
data transfer phase, Data in and Data Out. The former
refers to the movcmcm of data from the target to the
initiator. In the latter, data move from the initiator to

the target.
- Message: The message phase also comes in two forms,

Message In and Message Our. Message In consists of
several alternatives. ldcntrfj’ identifies the ruselcctcd
target. Save Dara Pointer saves the place in the current
data transfer ifthc target is about to disconnect. Restore
Dara Painter restores this pointer. Disconnect notifies
the initiator that the targetis about to give up the data
bus. Command Compicte occurs when the target tells
the initiator that the Operation has completed. Message

40f24KATZ: NETWORK AND CHANNEL BASED STURAC—F. I24!

“w (‘ur'ntmdfictug

Arbitration it Sclccuun i

' Mnap- Out trecnuryt i‘ Curt-mm!

Dacrmflwt to WE' butter
mention: [:2 (Disconnect). - Elm; FM: * <

Arbitnuon
Retelacdm tM In '

c535: (Identity)

Q1 "—5.1” Tm"\ftri— ‘Jatn in C mpiezion

if no dth i: pumice!

..... Curaiiund Cttmpkdon-“MM“5mm
Hemp: In (Command Complete]

U|;C’)l’lh€€l to nil—5.3:?Message In {Save Dru Put
Message In (Disconnect)

. - Bus Fm: - -]Arbuntttun
chiecu'on

< Menage to (Identify:
Manic In (Resume Dull Pit-J

Fin. 3. SCSI phase tmnsiliuna on a read. The basic phase 5:-
qucncing for a read (from disk} operation is shown. First the
initiator sets up the reed command and semis it to the [JD device.
The target device disconnects from the SCSI but to perform a Suck
and to begin to fill its internal buffer. It then transfers the data to
the initiator. 'fitis may be intcrxpcrscd with additional! disconnecm.
as the transfer gets ahead of the internal buffering. A command
complete message terminates the operation. This figure is adapted
from [4D].

Out hasjust one form: Idanttfi'. This is used to identify
the requesting initiator and its intended target.

‘ Status: Just before command compicliun, the target
sends a status message to the initiator.

To better understand the sequencing among the phases.
see Fig. 3. This illustrates the phase :ransiiions [or a typical
SCSI read operation. The sequencing of an I/O operation
actually begins when the host’s operating system establishes
data and status blocks within its memory. Next, it issues an
[/0 command to the HBA, passing it pointers to command,
status, and data biocks, as well as the SCSI address of

the target device. These are staged from host memory to
device~spccific queues within the HBA‘s memory using
direct memory access techniques.

Now the 1/0 operation can begin in earnest. The HBA
arbitrates for and wins control of the SCSI bus. It then

indicates the target device it wishes to communicate with
during the selection phase. The target responds by iden-
tifying itself during a following message out phase. Now
the actual command. such as "read a sequence of bytes.“
is transmitted to the device.

We assume that the target device is a disk. If the disk
must first seek before it can obtain the requested data,
it will disconnect from the bus. It sends a disconnect

message to the initiator. which in turn gives up the bus.
Note that the HBA can communicate with other devices on

the SCSI channel, initiating additional i/O operations. Now
the device will seek to the appropriate track and will begin
to fill its internai buffer with data. At this point, it needs
to reestablish communications with the HBA. The device
now arbitrator: for and wins control of the htts. it next enters

”‘2 5 of 24

the reselection phase, and identifies itself to the initiator to
reestablish communications.

The data transfer phase can now begin. Data are
transferred one byte 3: a time using a simple re-
quest/acknuwledgment protocol between the target and the
initiator. This cominucs until the need for a disconnect

arises again. such as when the target‘s buffer is emptied,
or perhaps the command has cornpicted. If it is the first
case, the data pointer must first he saved within the HBA,
so we can restart the transfer at a later time. Once the

data transfer pointer has been saved, the target sequences
through a disconnect. as described abmre.

When the disk is once again ready to transfer, it rear-
bitrutes for the bus and identifies the initiator with which

to reconnect. This is followed by a restore data pointer
message to reestablish the current position within the data
transfer. The data transfer phase can now continue where
it left off.

The command completion phase is entered (that: the
data transfer is finished. The target device sends a status
message to the initiator. describing any errors that may have
been encountered during the operation. The final command
completion message completes the 1/0 operation.

The SCSI protocol specification is currentiy undergoing
a major revision for higher performance. In the so-called
SCSI-I, the basic clock rate on the channel is 10 MHz. In
the new SCSI-2, “fast SCSI" increases the clock rate to 20

MHz. doubling the channel's bandwidth from 5 Mbytc/s
to 10 Mbyter's. Recently announced high-performance disk
drives support fast SCSI. The rcVised specification also
supports an alternative method of doubling the channei
bandwidth. called wide SCSI. This provides a 16-bit dam
path on the channel rather lhau SCSI—1’s 3-bit width. By
combining wide and fast SCSI-2, the channel bandwidth
quadruples to 2i) Mbyte/s. Some manufacturers of high-
performancc disk controlicrs have begun to us: SCSI-2 to
interface their controllers to a computer host.

2) High-Performance Parade! Interface The high per—
formance parallel interface. HIPI’I, was originally devel-
oped at the Los Aiamos National Laboratory in the mid
3980’s as a high—speed unidirectional (Simplex) point-to-
point interface between supercomputers [it]. Thus. two-
wuy communications requires two HIPPI channels, one for
commands and write data (the write channel) and one for
status and read data (the read channel). Data are transmitted
at a nominal rate of 800 Mbit/s (32-bitvwide data path) or
1600 Mititfs (M—hit-wide data path) in each direction.

The physical interface of the RIP?! channel was stanv
dardizcd in the late 1980’s. Its data transfer protocol was
designed to be extremely simple and fast. The source of
the transfer must first assert a request signal to gain acncss
to the channel. A connection signal grants the channel
to the source. However, the source cannot send until the

destination asserts ready. This provides a simple flow
control mechanism.

The minimum unit of data transfer is the burst. A burst

consists of 1 to 256 words (the width is determined by
the physical width of the channel; for a 32~bit channel, a

PROCEEDINGS OF THE IEEE. VOL. 80. NO. 8, AUGUST 1992

burst is 1024 bytes), Scot as a continuous stream of words.
one per clock period. A burst is in progress as long as the
channel’s burst signal is asserted. When the burst signal
goes unassertcd, a CRC (cyclic redundancy check) word
computed over the transmitted data words is sent down the

channel. Because of the way the protocol is defined, when
the destination asserts ready. it means that it must be able
to accept a complete burst.

Unfortunately. the upper level protocol (UL?) for per-
forming operations over the channel is still under discussion
within the standardization committees. To illustrate the

concepts involved in using HIPPI as an interface to storage
devices, we restrict our description to the proposal to layer
the lPl-3 device generic command set on top of HIPPI, put
forward by Maximum Strategies and lBM Corporation {12].

A logical unit of data, sent from a source to a destination.
is called a packet. A packet is a sequence of bursts.
A special channel signal delineates the start of a new
packet. Packets consist of a header, 3 ULP (upper layer
protocol) data set, and fill, The ULI‘F data consist of a
contmandr’rcsponse field and rcadlwritc data field.

Packets fall into three types: command, response, or data-
only. A command packet can contain a header burst with an

ll’i-3 device command, such as read or write, followed by
multiple data bursts; if the command is a write. A response
packet is similar. it contains an [Pi-3 response within a
header burst, followed by data bursts if the response is a
read transfer notification. Data—only packets contain header
bursts without command or response fields.

Consider a read operation over a HIPPI channel using the
[Pl-3 protocol. 0n the write channel, the slave peripheral
device receives a header burst containing a valid read
command from the master host processor. This causes the
slave to initiate its read operation. When data are available,
the slave must gain access to the read channet. When
the master is ready to receive, the slave will transmit its
response packet. if the response packet contains a transfer
notification status. this indicates that the slave is ready to
transmit a stream of data. The master will pulse a ready
signal to receive subsequent data bursts.

The original HIPI’l Specification limits the interconnect
distance to 25 m over twisted pair copper cable. A bit serial
version of HIPPI has recently been proposed [13] which
will mat-re it possible to support gigabis’s data transfers
over a distance of up to 30 km using optical fiber. Me:
l-‘arland at al, [14] describes a VLSi chip set developed by
the Hewlett-Packard Corporation to sopport serial HIPPI
interconnections.

3) Fibre Channel Standard The Fibre Channel Standard

is a rapidly emerging specification for high-performance
bit—serial point—to-point communications over optical fiber
[15]. Much like a HlPPI channel, it has been designed to
support high-speed computer or storage device to computer
communications, albeit over a bit-serial connection. But

unlike lllPPl. FCS purposefully blurs the distinction be»
tween networks and channels. FCS has been designed as a
multilayer series of protocols to make it suitable as the basis
of a high-speed network. A crucial aspect of the standard

KAT? NE WORK AND CHANNEL BASED STORAGE

is its definition of the concept of a switching “fabric," a
network formed from switched high~speed links that can
be used to communicate between user nodes.

FCS supports three levels of network service: dedicated
connections, multiplexed connections, and datagrams. A
dedicated connection guarantees sequential delivery of data
frames at the full bandwidth of the interconnect, with end-

to~cnd flow control. This level of service is essentially the
same as that provided by lliPPl.

At the next level of service, multiplexed connections
allow multiple data transfers to time-share the use of a
given fiber channel link within the fabric on a frame or

multiple-frame basis. End'to-end continuation is Optional
and sequential delivery of frames is no longer guaranteed.
Flow control is handled on a hop-byvhop basis by the
internal switches of the fabric.

FCS's datagram service involves the exchange of a single
frame at a time from source to destination through the
Switching fabric. The transport provided by the PCS does
not notify that the datagrams have arrived. This is left
to higher level protocols to build on top of the datagram
mechanism.

it is should be noted that fabrics of switched HlPPI links

can also be constructed [16}, but these are severely limited
in terms of interconnect distance, ability to multiplex the
links, and support for network broadcast or melticast.
Because it has been designed from the outset as the basis of
a high-speed nctvvork, with planned support for the existing
popular storage device protocols (such as HIPPI, SCSI, and
IPi). many experts believe that FCS will be the predominant
gigabiir‘s Storage interconnect of the mid 3990‘s.

0. Backpr’mre Am‘ltrrccmrc

Backplancs are rlesigned to interconnect processors, mem-
ory, and peripheral controllers (such as network and disk
controllers). They are relatively wide, but short distance.
The short distances make it possible to use fast, centralized
arbitration techniques and to perform data transfers at
a higher clock rate. Bachplane protocols make use of
addresses and rcadjwrite operations, rather than the more
message—oriented protocols to be found on networks and
channels.

Table 2 gives some of the metrics of three popular
backplane hoses: VME, FuturoBus. and Muliibos II (this
table is adapted from [2]). For purposes of comparison,
we include the same metrics for the 8081-1 channel spec-
ification. The two numbers reported for SCSI bandwidth
represent the synchronous transfer rate (5 Mbyte/s) and
the asynchronous transfer rate (1.5 Mbyter's) respectively.
The table includes the width of the interconnect (includ-
ing control and data signals), whether the address and
data lines are multiplexed, the data width, whether the
transfer size is a single or multiple word, the number
of bus masters supported, whether split transactions are
supported (these are networklike request and acknowledg-
ment messages), the clocking scheme, the interconnect‘s
bandwidth ends: a variety of assumptions (single versus
multiple word transfers, 0 as access time memories versus

60f24 1243

Table 2 Comparisons of Popular Baekplunc and Channel Interconnects

Metric VME

Bus width (signals) ‘ 128
Addreserdata multiplexed? no

Data width [6-32

Xfer size single'multipe

Number of bus masters multiple

Split transactions no

Clocking nsync

Bandwidth, single word (0 n5 meta) 25

Bandwidth, single word (150 m 12.9
mm)

Bandwidth. multiple word (0 ns 27.9
mere)

Bandwidth, multiple word (156 ns 13.6
mum)

Maximum no. devices 21

Max bus length 0.5 at

Standard IEEE IOH

Futureflus MultiBus SCSE-l

06 9t: ZS

>165 yes 7 ml

32 32 8

single/multiple singleimolltple singlclmulliplc

multiple multiple multiple

optional optional optional

async sync either

3? ll) 5. LS

15.5 10 5. 1.5

95.2 40 5, LS

20.8 [3 3 5, 1.5

20 21 '1'

0.5 m 0.5 m ‘15 to

{BEE 896 ANSUIEEF. ANSI X1331
1296

150 as access time), the maximum number of controllers
or devices per bus, the maximum bus length, and the
relevant ANSI or lEEE standard that defines the intercon-
nect.

The most dramatic differences are in the interconnect

width and the maximum bus width. In general. channel in-
tcrconnccts are narrow and long distance while backplanes
are wide but short distance.

However, some of the distinctions are being to biur.
The SCSI channel has many of the attributes of a
bus, Futuchus has Certain aspects that make it behave
more like a channel than a bus, and nobody could
describe a 64-bit HIPPI channel as being narrow! For
example, let's consider FutoreBus in a little more detail.

The bus supports distributed arbitration, asynchronous
signaling (that is, no global clocks), single sourcct'muliple
destination “broadcast" messages, and rcquestfacknowledge
split bus transactions [17]. The latter are very much like
SCSI disconnect/reconnect phases. A host issues a read
request message to a memory or U0 controller, and then

detaches from the bus. Later on, the memory sends a
response message to the host. containing the requested
data.

In addition, there are several evolving serial bus and
device interfaces that further blur the distinction between

the kinds of interconnects we have been discussing. Among
these proposals are the [BEE Standard P1394 Serial Bus

[18] and the Scalable Coherent Interface {19]. Both seek to
define high speed, medium distance bit-serial interconnects

12M 7 of 24

that can be used to lash together boxes of hardware con-
taining more traditional parallel backplancs. These are still

backplane interconnects, however, because the protocols are
based on memory-oriented readiwrite operations rather than
the exchange of network messages.

lll. STORAGE TRENDS

A. The Storage Hierarchy

1) Concept tJfStomgc Hierarchy: The Storage hict’arCh}l
is traditionally modeled as a pyramid, with a small amount
of expensive, fast storage at the pinnacle and larger capac-
ity, lower cost, and lower performance storage as we move
toward the base. In general. there are order of magnitude
differences in capacity, access time, and cost among the
layers of the hierarchy. For example, main memory is
measured in megabytes, costing approximately SSG/Mbytc,
and can be accessed in small numbers of microseconds.

Secondary storage, usually implemented by magnetic disk,
is measured in gigabytes. costs below SSbete, and is
accessed in tens of milliseconds. These costs are “order

of magnitude" for workstations and personal computers;
the costs for mainframes and supercomputers are typically
much higher. The operating system can create the illusion of

a large fast memory by judiciously staging data among the
levels. However, the organization of the storage hierarchy
must adapt as magnetic and optical recording methods
continue to improve and as new storage devices become
available.

PROCEEDINGS OF THE llzliE, VOL. 30. M), B, AUGL ST I992

Declining
S/MByre

Increasing
Access Time

Magnetic Disk

Magnetic Tape

CapacityP——‘—~—'~—————-——————)

Fig. 4. Typical storage hierarchy, circa 192st]. The microsecond
access is provided by the lite Lac-he, a small number of bytes
stored in semiconductor memory. Medium capacity. denominated
in several hundred megabytes with tens of millisecond access. is
provided by disk ”tripe provides unlimited capacity. but act‘s-st. is
restricrcd to tens of seconds to minutes.

Figure 4 depicts the storage hierarchy of a typical mini-
computer of 1980. (It should be noted that large mainframe
and supercomputer storage hierarchies were more complex
than what is depicted here.) A small file cache (or buffer),
allocated by the Operating system from the machine’s semi—
conductor mcmory, provides the fastest but most expensive
access. The job of the cache is to hold data likely to be
accessed in the near future, because it is near data recently
accessed (spatial locality) or because it has recently been
accessed itself (temporal locality}. Prcictching is a strategy
that accches larger chunks of file data than requested by
an application, in the hope that it will soon access spatially
local data.

Either a buffer or a cache. can be used to decouple appli-
cation aeccsscs in Small units from the larger units needed

to efficiently utilize secondary storage devices. It is not
efficient to amortize the millisecond latency cost to access
secondary storage for a small number of bytes. Accesses
in the range of 512 to 3l92 bytes are more appropriate.
The primary distinction between application memory and a
cache is the latter's ability to keep resident certain data. For
example, frequently accessed file directories can be held in
a cache. thus avoiding slow acccsws to the lower levels of
the hierarchy.

Secondary storage is provided by magnetic disk. Data

are recorded on concentric tracks on stacked platters, which
hava been coated with magnetic materials. The same track

position across the platters is called a cylinder. A mechan-
ical actuator positions the read-write heads to the desired
recording track, while a motor rotates the platters containing
the data under the heads.

Tertiary storage, provided primarily for archivo'backup,
is implemented by magnetic tape. A spool of magnetic tape
is drawn across the read-write mechanism in a sequential
fashion. A good rule of thumb for a unit of tertiary storage
media, such as a tape spool. is that it should have as much
capacity as the secondary storage devices it is meant to
back up. As disk devices continue to improve in capacity,
tertiary storage media are driven to keep pace.

to 1980, a typical machine of this class would have one to

Mt! NEI‘WURK AND CHANNEL BASED STORAGE

l—
Cliem
Wrrrhrmrirm

 Local
Magnetic Disk

L"- 2 ; Locaifitrca5— Network

Server "Remote" Magnetic Disk
Magnetic Tape

Fig. 5. Typical storage hieraIChy, circa l990. The file cache has
become substantially larger. and may be partially duplicated hi the
client in addition to the servct‘. Secondary storage is split between
ion] and remote disk. Tape continues to provide the third level
of storage.

two megabytes of semiconductor memory, of which only
a few thousand bytes might be allocated for input/output
buffers or file system caches. The secondary storage level
might include a few hundred megabytes of maimed: disk.
The tape storage level is limited only by the amount of
shelf space in the machine room.

2) Evolution affix-Storage Hierarchy: Figure 5 shows
the storage hierarchy distributed across a workstatiOniset-vct
environment of today. Most of the semiconductor memory
in the server can be dedicated to the cache function because

a server does not host conventional user applications. The
file system “orctadttta,” that is, the data structures describing
how logical files are mapped onto physical disk blocks,
can be held in fast semiconductor memory. This represents
much of the active portion of the file system. Thus, disk
latency can be avoided while servicing user requests.

The critical challenge for Workstationlscn'er environ-
ments is the added latency of network communications.
These are comparable to those of magnetic disk, and are
measured in small tens of milliseconds. The figure shows
one possible solution. which places small highmperformahce
disks in the workstation. with larger potentially slower disks
at the server.

If most accesses can be serviced by the local disks, the

network latencies can be avoided altogether, improving
client performance and responsiveness. However, there are
several choices for how to partition the file system between
the clients and the servers. Each of these partitionings
represents a different trade-off between system cost, the
number of clients per server, and the ease of managing the
clicnts‘ files.

A swopfigl client allocates the virtual memory swap space
and temporary files to its local disk. The operating system’s
files and utter files remain on the. server. This reduces

some of the network traffic to the server, leaving the
issues of system management relatively uncomplicated. For
example, in this configuration, the local disk does not need
to be backed up. However. executing an operating system
command still requires an access to the remote server.

A stateless client adds the operating system’s files to the
client’s local disk. This further reduces the client's demand

8 of 24 I245

071- line Storage L

Near-line Sta-rag: L
Ofirlrrtr Swing! L

Disc Amy :
"""""""— n .Je AreaN "10.16:

Britten} Disk tukEiC-k

Fig. 6. Typical storage hierarchy. circa 1905. Cnm‘etlllumil disks
have been replaced by disk arrays, a method of obtaining much
higher L‘O bandwidth by striping data across multiple disks. A
new level of storage. "near line." emerges between disk and tape,
It provides very high capacity, but at acrcss times measured in
seconds

on the server, thus making it possible for El single server
and network to support more clients. While it is still not
necessary to back up the local disk, the system is more
difficult to administer. For example. system updates must
now be distributed to all of the workstations.

A diskfull client places all but some frequently shared
tiles on the client. This yields the lowest demands on
the server. but represents the biggest problems for system
management. Now the personal files on the local disk need
to be backed up, leading to significant network traffic during
backup operations.

An alternative approach leverages the lower cost semi-
conductor memory to make feasible large tile caches (ap-
proximately 15% of the available: memory within the work-
station) in the client workstation. These “client" caches

provide an effective way to circumvent netwurk latencies.
if the network protocols allow tile writes to be decoupled
from communications with the server (see the discussion

of NFS protocols in the next section). The approach, called
diskless clients, has been used with great success in the
Sprite Network Operating System [Ell], where they report
an ability to support five to ten times as many ciients per
server as more conventional clientiserver organizations.

Figure 6 depicts one possible scenario for the storage
hierarchy of 1995. Three major technical innovations shape
the organization: disk arrays. near-line storage subsystems
based on optical disk or automated tape libraries, and
network distribution. We concentrate on disk arrays and
near—line storage system technology in the remainder of this
subsection, Network distribution is covered in Section iv.

13. Storage Technology

1) Disk Arrays: Because of the rapidly decreasing form
factor of magnetic disks, it is becoming attractive to replace
a small number of large disk drives with very many small
drives. The resulting secondary storage system can have
much higher capacity since small format drives traditionally
obtain the highest areal densities. And since the perfor-
mnnce of both large and small disk drives is limited by
mechanical delays, it is no surprise that performance can
be dramatically improved if the data to be accesaed are

31.16

spread across many disk actuators. Disk arrays provide a
method of organizing many disk drives to appear logically
as a very reliable single drive of high capacity and high
performance [21}.

Disk array organizations are organized into a multilevel
taxonomy. Here, we concentrate on the two most prevalent
RAID organizations: RAID level 3 and RAID level 5.. Each
of these spreads data across N data disks and an N -i- 1st
redundancy disk. The group of N --:-l disks is called a stripe
set. In a RAID level 3 organization, data are interleaved
in large blocks (for example, a track or cylinder) across
all of the disks within a stripe set. The redundancy disk
contains a parity hit computed bitwise across the rows of
bits on the associated data disks. II a disk should fail.

its contents can be reconstructed simply by examining the
surviving N disks and restoring the sense of the parity
computed across the bit rows. Suppose that the redundancy
disk contained odd parity before the failure. If. after a disk
failure, the examination of a bit row yields even parity,
then the failed disk must have had a l in that bit row.

Similarly, if the row has odd parity, then the missing bit
must have been a 0. RAID level 3 organizations are read
and written in full stripe units, simultaneously accessing all
disks in the stripe. The organization is most suitable for
high-bandwidth applications such as image processing and
scientific computing.

If RAID level 3 is organized for high bandwidth, then
RAID level 5 is organized for high [/0 rate. The basic
organization is the same: a stripe set of .-*\-' data disks
and one redundancy disk. However. data are accessed in
smaller units. thus making it possible to support multiple
simultaneous accesses. Consider a data write operation to a
single disk sector. This requires the parity redundancy to be
updated as well. We aecomplish this by first determining the
hit changes to the data sector and then invert exactly these
bits in the associated parity sector. Thus a logical single
sector write may involve four physical disk accesses: read
old data. read old parity. write new data. and write new
parity. Since placing all parity sectors on a single disk drive
would limit the array to a single write operation at a time,
the parity sectors are actually interieavcd across all disks of
the stripe. A RAID level 5 can perform N 2" i simultaneous
reads and simultaneous writes (in the best case).

2) Neaerinr Storage A cpntparable revolution has taken
place in tertiary storage: the arrival of near-line storage
systems. These provide relatively rapid access to enormous
amounts of data. frequently stored on removable. easy
to handle optical disk or magnetic tape media. This is
accomplished by storing the high-capacity media on shelves
that can be accessed by robotic media "pickers." When a
tile needs to be accessed, special tile management software
identities where it cart be found within the tape or optical
disk library. The picker exchanges the currently loaded
media with the one containing the file to be accessed.
This is accomplished within a small number of seconds.
without any intervention by human operators. By carefully-
exploiting caching techniques, in particular, using the Set:—
ondary storage devices as a cache for the near-line store,

PROCFEDINGS OF THE IEIEE, Vfll fill. NI). 8, Allfil'fil 10')?
9 of24

the very large storage capacity of a tertiary storage system
Can appear to have access times comparable to magnetic
disks at a fraction of the cost. We describe the underlying
storage technologies next.
3) Optical Disk Technology for Machine Storage: Optically
recorded disks have long been thought to be ideal for
filling the near line level of the storage hierarchy [22].
They combine improved storage capacity (2 Ghytes per
platter surface originally to over 6 Gbytcs per side today}
with access times that are approximately a factor of If)
slower than conventional magnetic disks (several hundred

milliseconds). The first generation of optical disks were
written once. but could he read many times, leading to
the term “WORM" to describe the technology, The disk
is Written by a laser beam. When it is turned on. it records

data in the form of pits or bubbles in a writing layer within
the disk. The data are read back by detecting the variations
of reflectivity of the disk surface.

The \vritc‘once nature of optical storage actualiy makes it
better suited for an archival medium than nearuline storage,
since it is impossible to accidently overwrite data once
they have been written. A problem has been its. relatively
slow transfer talc, 100K — 200K bytes per second. Newer
generations of optical drives now cxcocd one megabyte per
second transfers,

Magneto-optical technologies, based on a combination of
optical and magnetic recording techniques. have recently
led to the availability of erasable optical drives. The disk
is made of a material that becomes more sensitive to

magnetic fields at high temperatures. A laser beam is used
to selectively heat up the disk surface, and once heated. a

small magnetic field is used to record on the surface. Optical
techniques are used for reading the disk. by detecting how
the laser beam is deflected by different magnetizations of
the disk surface. Read transfer rates are comparable to
those of conventional magnetic disks. Access times are still
slower than a magnetic disk owing to the more massive
readiwrite mechanism holding the laser optics, which takes

longer to position than the equivalent low mass magnetic
read/write head assembly. The write transfer rate is worse
in optical disk systems because (i) the disk surface must

first be erased before new data can be recorded, and {2)
the written data must be reread to verify that they were
written correctly to the disk surface. Thus. a write operation
could require three disk revolutions before it completes.
(The study [23] details the trends and technology challenges
for future optical disk technologies).

Nevertheless, as the form factor and price of optical
drives continue to decrease. optical disk libraries are be-
coming more pervasive. Sony‘s recent announcement of
a consumer—oriented recordable music compact disk could
lead to dramatic reductions in the cost of Optical disk
technology. As an example of an inexpensive optical disk
system, let‘s examine the Hewlett-Packard Series 6300

Model ZOGB/A Optical Disk Library System [24]. Based
on 5.25 in rewritabte optical disk technology. the system
provides two optical drives, 32 rcadiwrile optical disk
cartridges (approximately 500 Mhytes per cartridge), and a

KAT? NETWORK AND CHANNEL BASED STORAGE

robotic disk changer that can move cartridges to and from
the drives, all in a desk side unit the size of a three~drawer

filing cabinet. The optical cartridges can be exchanged in 7
s, and require a 4 5 load time and 2.4 s spin—up time. The
unload and spin-down times are 2.8 and 0.8 5 respectively.
An average seek time requires 95 ms. The drives can sustain
680 Kbytesis transfers on roads and 340 Kbytcs/s transfers
on writes.

The Kodak Optical Disk System 6800 Automated Disk

Library is characteristic of the high end [25]. The system
can be configured with 50 to 150 optical disk platters, and
one to three optical disk drives. It is capable of storing from
340 Gbytes to 1020 Gbytcs (3.4 Gbytes for each side of a
14 in platter}. The average disk change time is 6.5 s. The
optical disk surface is organized into live bands of varying
capacity, with a certain number of tracking windows per
band. The drives can sustain t Mbytei's transfers, with 100
ms access times for data anywhere within the current band
to 700 ms for data anywhere on the surface.
4) Magnetic: Tape Technology for Near—Litre Storage The
sequential nature of the access to magnetic tape has tradi.
tionally dictated that it be used as the medium for archive.
However, the success of automated tape libraries from
Storage Technology Corporation has demonstrated that tape
can be used to implement a nearwline storage system. The
most pervasive magnetic tape technology available today is
based on the EBM 3480 half-inch tape cartridge, storing 200
Mbytes and providing transfer rates of 3 Mbytes per sec-
ond. A second generation technology recently introduced
doubles the tape capacity and transfer rate.

However, there has been an enormous increase in tape ca-
pacity, driven primarily by helical scan recording methods.

in a conventional tape recording system, the tape is pulled
across stationary rcadiwrite recording heads. Recorded data
tracks ran in parallel along the length of the tape. On the
other hand, helical scan methods slewly move the tape past
a rapidly rotating head assembly to achieve a very high
tape to head Speed. The tape is wrapped at an angle around
a rotor assembly, yielding densely packed recording tracks
running diagonally across the tape. The technology is based
on the same tape transport mechanisms developed for video
cassette recorders in the VHS and 8 mm tape formats and
the newer digital audio tape (DAT) systems.

Each of these systems provides a very high storage
capacity in a small. easy-to—handle cartridge. The small
form factor make these tapes particularly attractive as
the basis for automated data libraries. Tape systems from
Exabytc. based on the 8 mm video tape format. can store
2.3 Gbytes and transfer at approximately 250 Kbytes per
second. A second generatmn system now available doubles
both the capacity and the transfer rate. A tape library system
based on a 19 in tact: can hold up to four tape readers and
over one hundred 8 mm cartridges, thus providing a storage
capacity of 250500 68’s [26].

DAT tape provides smaller capacity and bandwidth than
8 mm, but enjoys certain other advantages {27]. Low-
cost tape readers in the 3.5 in form factor, the size of a
personal computer floppy disk drive, are readily available.

100f24 124?

This makes possible the construction of tape libraries with
a higher ratio of tape readers to tape media, increasing
the aggregate bandwidth to the near-line storage system.
In addition. the DAT tape formats support subindex fields
which can be searched at a speed 200 times greater than
the normal read/write speed. A given file can be found on a
DAT tape in an average search time of only 20 3, compared
with over 10 min for the 8 mm format.

VHS‘hased tape systems can transfer up to 4 Mbytests
and can hold upto 15 (ibytcs per cartridge. Tape robotics in
use for the broadcast industry have been adapted to provide
a near-line storage function. Helical scan techniques are
not limited to consumer applications, but have also been
applied for certain instrument recording applications, Such
as satellite telemetry. which require high capacity and high
bandwidth. These tape systems are called DIN and DDE.
A single tape cartridge can hold up to 150 Gbytcs, and
can transfer at a rate of up to 40 Mbytet’s. However, such
systems are very expensive, and a good rule of thumb is that
the tape recorder will cost $30thth for each It) Mbytesis
of recording bandwidth it can suppon.
5) Oprr'cul Tape Ethnology for NmzrvLEHc Storage A record—
ing technology that appears to be very promising is optical
tape [23]. The recording medium is called digital paper,
a material constructed from an optically sensitive layer
that has been coated onto a substrate similar to magnetic
tape. The basic recording- technique is similar to write—once
optical disk storage: a laser beam writes pits in the digital
paper to indicate the presence (or absence) of a bit. Since
the pits have lower reflectivity than the unwritten tape, a
reflected laser beam can be used to detect their presence.
One 12 inch by 2400 ft rccl can hold 1 TB or data, can he
read or written at the rate of 3 Mbytefs, and can be accessed
in a remarkable average time of 28 5.

"l‘wo companies are developing tape readers for digital
paper: the CREO Corporation and the Laschape Corpo-
ration. CREO makes use of a 12 inch tape reel and a
unique laser scanner array to read and write multiple tracks
32 bits at a time [29]. The system is rather expensive,
selling for over $200060. LaserTapc places digital paper in
a conventional 3480 tape cartridge {50 Ghyte capacity and
3 Mbylea’s transfer rate), and replaces a 3480 tape unit’s
magnetic readrwrite heads with an inertialess laser beam
scanner. The scanner operates by using a high-frequency
radio signal of knoWn frequency to vibrate a crystal, which
is then transferred to a laser beam to steer it to the desired

readr‘write location. A 3480 tripe reader can be "retrofitted“
for approximately $20000. Existing tape library robotics for
the 3480 cartridge form factor can be adapted to LaserTape
without changes.

6) Summary: Table 3 summarizes the relevant metrics
of the alternative storage technologies, with a special
emphasis on helical scan tapes. The metrics displayed are
the capacity, bits per inch (BFI), tracks per inch (TPI), areal
density (BPl‘TPl in millions of bits per square inch), data
transfer rate (Kbytcs per second sustained transfers), and
average positioning times. The latter is especially important
for evaluating near-line storage media. An access time

”‘3 11 of 24

A”; cation Address Space

HW-‘tyv'rl‘eanm? Copy H, ”mm

OS [to .nutlIMHyIc} 4’DMA over Peripheral Bu: - — _—_._._w
no CanariesH54 Suffers“ M diniEytcttllife: over DISK mane: —-—»—~ u A . ..-_—

"track Hui ru (JIK - Esokliyml Eartl'vedded CmuoltcrHer ever Serial interraci- _._.._.._ -
L'ii it w - . chtln'tosk Aswmhiy

Fig. 7. HO data flow. in response to a read operation, data move
from the device, to the embedded controller. to the HO controller,
to operating system buffers. and finally to the application across a
variety of driferenl interfaces.

measured in a small number of seconds begins to make
tape technology attractive for near~linc storage applications,
since the robotic access times tend to dominate the time it

takes to pick, load, and access data on near-line storage
media.

(I. Storage Controller Architecture

1) HO Dara Flow: Figure 7 shows the various interfaces
across which a typical ir'O request must flow. The actual
flow of data starts at the HO device. In the following
discussion, we will assume that the device is an intelligent
magnetic disk {or something like a SCSI interface and
that we are considering a read operation. The mechanical
portion of the disk drive is called the headfdisk assembly,
or HDA. The control and interface to the outside world is

provided by an embedded controller.
Data move across a bit-serial interface from the disk

signal processing electronics to track buffers associated
with the embedded controller. The amount of memory
associated with the track buffers varies from 32 Khytes to
256 Khytes. Since the typical track on today’s smali form
factor disks is in the range of 32 K — 64 Kbytes, a typical
embedded controller can buffer more than one track.

The interface between the embedded controller and the

host is provided by an “0 controller. We called such a
comroller a host bus adapter, or HBA, in subsection Iii-C. it
couples the host peripheral bits to the disk channel interface.
Data are staged into buffers within the HBA, from which
they are copied out via direct memory access techniques
to the host‘s memory. The typical size of 110 controller
buffers is in the range of l to 4 Mbytcs.

The host’s memory is coupled to the processor via a high-
specd cache memory. The connection to the 110 controllers
is through a slower speed peripheral bus. Direct memory
access operations copy data from the controller’s buffers
to operating system buffers in main memory. Before the
data can be used by the application, they may need to
be copied once again, to stage them into a portion of the
memory address Space that is accessible to the application.
Note that the same memory and operating system overheads
that limit network performance also affect U0 pcrforrnartce.
This is critically important in file and storage servers, where
both the 1/0 and network traffic must be routed through the
memory system bottleneck.

lfthe host is actually a file server, the size of the operating
system’s buffers may be quite large, perhaps as large as

PROCEEDINGS OF THE lEEE. VOL. 50, NO. 8, AUGUST E992

Table .3 Relevant Metrics for Alternative Storage Technologies

Technology Capacity EH '1'?! BPI‘TPI Data Atccss Time
(MB) (million) Transfer

(Kbytct's)

Conventional Tape

Rcl|7|u~rcel (la in) Ml) (1250 I3 ll. ll 54') minutes

Cartridge (U4 in) 150 12000 104 1.25 92 minutes

IBM 348D (la‘l in) 209 2M) 38 i (Ill? 3000 seconds

Helical'Srnn Tape

VHS (1:2 in) 25000 not not unknowrt 4WD minutes

Video (8 mm) 4500 Spc-tcilgtclll chlggg 70.56 492, minutes
DAT (4 mm) 1309 fililOU 1570 114.07 183 20 S

Opttrral Tape

CREO (35 mm) l TB 9335000 24 224 3000 28 9

Magnetic Disk

Scagatc Elitcd [5.15111] 1350 33528 18510 63.01 HMO—4000 it) m5

IBM 3390 (H15 in) 3500 27940 235 62.44 450 20 ms

Floppy Disk (15 in) 2 17434 135 2.35 92 l 5

Optical [)tsk

FD ROM (3.5 m) 540 17600 15875 433.15 153 1 5

Sony $105.25 in] 540 24130 $795 453.54 87.5 100 ms

Kodak {14 in) 31130 21000 141 ll 396.33 llJtll] llltl's ms

128 Mbytcs. in addition, the data flow must be extended
to include transfers acres the network interconnect into

the application‘s address space on the client. A detailed
examination of the Operating system management of the
HO path will be left until Section IV.

2} Internal Organization DINO Controller‘JFigurc 8 shows
the internal organization of a typical high-performance
host bus adapter 110 controller. Interestingly enough. it
is not very different in its internal architecture from the

network controller of Figure 2. Usually implemented or:
a single printed circuit board. the controller contains a
microprocessor, a modest amount of memory dedicated to
buffets and run-time data structures, it ROM to hold the

controller firmware. 3 DMAfperipheral bus interface. and
an U0 channel interface.

The system interface is also similar to the network

controller described previously. Request blocks containing
[/0 commands and data are organized into as a linked list
in the host memory. The host writes to u memory-mapped
command register within the 1/0 controller to initiate an
operation. Using DMA techniques, the controller fetches
the request blocks into its own memory. The tin-board
microprocessor unpackagcs the HO commands and write
data, and sends theoc over the 110 channel interface. Status

and read data are repackaged into response blocks that are
copied back to reserved buffers in the lrost memory. The
host can choose whether the HO controller will interrupt
the host whenever an operation has been completed.

Pcriphcrui Bus (VME, chrclius. etc)

 l. -110 Gran-nit] Interface '
1/0 Lunrrofler

Fig. 8. Internal organization of :n L.-'0 controller. The 110 con—
troller couples t1 peripheral has to the U0 channel via a buffer
memory. Hardware in the peripheral interittcze implcmewts di—
rect memory access between this b trier memory and the host‘s
memory. The L‘U channel interface implements the handshaking
protocols with the [10 device». The microprocessor is the “traffic
cup," coordinating It; actions of the two interfaces.

The controller of Fig. 8 is notable because of its sup-
port for direct memory access. Some lower performance
controllers require that commands and data be written a
word (or half word) at a time to memory-mapped controller
registers over the peripheral bus. Since rt typical command

block can he 16 to 32 bytes in length, simply dowu-loading
a command may take tens of microseconds, requiring a
good deal of host processor intervention.

In implementing a high-performance file service on a
network, a critical relationship exists between the network

120f24KATL. Niii'WURK AND ('HANlNl-l. EASlzl) STORAGE 1249

and [1'0 controller architectures. The network interface and

the HO controller must be coupled by a high-performance
interconnect and memory system. This key observation
provides the motivation for several of the systems reviewed
in Section V, especially the prototype being developed at
U. C. Berkeley described in sobscctitm V-F.

lV. SOFFWARE TRENDS

A. Neovork File Systems

One of the most important software developments over
the past decade has been the rapid development of the
concept of remote fill: services. in a location transparent
manner, these systems provide a client with the ability to
access remote files without the need to resort to special
naming conventions or special methods for access.

It is important to distinguish between the related concepts
of block server and file server. A block server (sometimes
called a network disk) provides the client with a physical
device inlerface over a network. The block server supports
read and write requests to disk blocks, albeit to a disk at-
tached to a remote machine. A file server support: a higher
level interface. providing the complete file abstraction to the
client. The interface supports file creation, logical reads and
writes, tile deletion, etc. in a file server, file system related
functions are centralized and performed by the server. In
a block server, these functions must be handled by the
clients. and if the disks are to be shared across machines.

this requires distributed coordination among them.
The most ubiquitous file system model is based on that

of UNIX, and so we begin our discussion with its structure.
A file is uniquely named within a hierarchical narne space
based on directories. As far as the user is concerned, a file

is nothing more than an uninterprcted stream of bytes. The
file system provides operations for positioning within the
file for the purpose of reading and writing bytes. internally,
the file system keeps track of the mapping between the file’s
logical byte stream and their physical placement within
disk blocks through a data structure called an inode. The
inodc is “metadata.” that is, data about data. and contains

information such as the device containing the file, a list
of the physical disk blocks. containing the file‘s data, and
pointers to additional disk blocks (called indirect blocks)
should the file be large enough to exceed the mapping
space of a single inode.

From the operating system perspective, tracing an U0
request from the application to disk proceeds as follows.
The application program must make a system call, such as

read or write, to request service from the operating system.
This is bandied by the UNIX system call layer, which in
turn calls the file system to handle the request in detail.
Within the file system are block l/O routines which handle
read or write requests. These call a particular disk driver
to schedule the actual disk transfers. The software layers
are shown in Fig. 9.

The figure shows the software architecture for a file

system on the same machine as the client application. The

'3” 13 of 24

Application 553d}

UNtx System Call Layer____1

ithtx File System

r“ Block no Function
Elect: Device Driver

Fig. 9. Software layers in the UNIX tile systenrfl‘he 15le
system crtli layer dispatches a read or wrile request to the file
system, which in turn calls a block [:0 routine. This calls a specific
device dimer to handle the scheduling the 1.10 request.

Application Program

UNIX System Cell Layer

Virtual File System interface

NFS Client UNIX File System

Block Device Driver

Fig. 10. Software layers in the UNIX tilt: sy~turn cilcnded for
NFS. The VH5 interface allows requests to be mapped transparently
among local file systems and rcmt :c file systems,

Network Fr: acct St i .k4P-M .—"

[max System cut Lay?—

l out): System our UK;-
Virtual Frtc System truerl‘ace

WWI—ms...

ii Virt 'z'.lc Systumlnterrace
Serve r Roulmn

l

NIT: File Syitcm

JM"
:IRPCfii-ansmissaen Pmtot; ';

 F l

RPUl’ra-‘rmiision Protocols.

Client : Server
Ne aulk

Fig. 11. Path of an NFS client to server request. A request to
ECCCRS a remote file is handled by the client‘s VFS. which maps
the request through the NFS layer into RPC‘ rails to the server over
the network At the server end. the requests are presented in the
\‘FS. this time to be mapped into calls on the server's local UNIX
tilt: system.

major innovation of SUN's network file system. or NFS,
is its ability to map remote file systems into the directory
structure of the client‘s machine. That is, it is transparent to
the user whether the referenced file is available locally or
is being accessed over the network. This is accomplished
through the new abstraction of a virtual file system, or VFS
[30]. The VFS interface allows file system requesls to be
diapatched to the local file system, or sent to a remote server
across the network. The generic software layers are shown
in Fig. 10 and the path through the software taken between
the client and the server is shown in Fig. l].

The access to the remote machine is implemented via a
synchronous remote procedure call (Rl’C) mechanism. This
is a communicatiuns abstraction that behaves much like a

conventional procedure call. except that the procedure being
invoked may be on a remote “server" machine. Since the

FROCLEDINUS OF THE iEEE. VOL 30. NO. it. AUGUST 1‘39:

RFC is synchronous, the client must wait or block until the
server has completed the call and returned the requested
data or status

The NFS protocol is a collection of procedure calls and
parameters built on top of such 3 RFC mechanism. One of
the key design decisions of NFS is to make this protocol
stateless. This means that each procedure call is completely
self-describing; the server keeps track of no past requests.
This choice was made to drastically reduce the complexity
of recovery. In the event ofa server crash, the Client simply
rctries its request until it is successfully serviced. As far
as the client is concerned. there is no difference between it

crashed server and one that is merely slow. The server need
not perform any recovery processing. Contrast this with a
“statefui” protocol, in which both servers and clients must
be able to detect and recover from crashes.

However, the stateless protocol has significant implica—
tions for file system performance. In order to be stateless,
the server must commit any modified user data and file
system metadata to stable storage before returning, results.
This implies that tile writes cause the affected data blocks,
inodes, and indirect blocks to be written from in-memory
caches to disk. In addition. housekeeping operations such as
file creation, tile removal. and modifications to tile attributes

must all be performed synchronously to disk.
Some controversy surrounds the real source of hottic-

necks in NFS performance. Network protocol overheads
and server processing are possible culprits. However, it has
now become clear that the real problem is the stateless
nature of the NFS protocol, and its associated forced disk
writes. By making file system operations synchronous with
disk, the performance of the file system is (overly) coupled
to the performance of the disk system [31].

B. File Sewer Architecture

In this subsection, we examine the flow of a networkv

based [[0 request as it arrives at the network interface,
through the file server‘s hardware and software. to the
storage devices and back again to the network. Our goal
is to bring together the discussions of network interface.
ItO controller, and network lilo system processing of an
lr‘O request. initiated by a client on the network.

Figure IE shoWs the hardware/software architecture of
a conventional workstation—based tile servur. A data read

request arrives at the Ethernet controller. The network
messages are copied from the network controller to the

server‘s primary memory. Control passes through the soft-
ware levels of the network driver and protocol interpretation
to process the request. A! the file system level. to avoid
unnecessary disk accesses. the server's primary memory is
interrogated to determine if the requested data have already
been cached from disk.

If the request cannot be satisfied from the lite cache, the
file system will issue a request to the disk controller. The
retrieved data are then staged by the disk controller from
the lt’O device to the primary memory along the backplane
bus. Usually it must be cepied (at least) one more time, into
templates for lhe response network messages. The software

KATE: NETWORK AND CHANNEL BASED 5 IURAGIZ

5 Re ' FS Protocol t'lt File Prooessmg l SEML‘ ”0‘1“" file 5”"?
“tempercmns, Unix rite Sywm ‘

Ethernet Eg‘w‘ “kaE‘”
Ms ...J , mate:R equect

Fig. 12. Conventional file sewer architecture. An NSF HO re-
quest arrives at the Ethernet interface of the server. The request
is passed through to the network driver, the protocol processing
software. and the file system. The request may be satisfied by
data cached in the primary memory; if not, the data must be
accessed from disk. At this point, the process is reversed to send
the requested data back over the network. This figure is adapted
from [371.

path returns through the file system, protocol processing,
and network drivers. The network response messages are
transmitted from the memory out through the network
interface.

There are two key problems with this architecture. First.
there is the long instruction path associated with processing
a network-batted U0 request. Second. as we have already
seen. the memory system and the backplane bus form
a serious performance bottleneck. Data must flow from

disk to memory to network. passing through the memory
and along the backplane several times. in general, the
architecture has not been specialized for fast processing
between the network and disk interfaces. We will examine

some approaches that address this limitation in Section V.

C. Mass Storage System Reference Model

Supercomputer users have long had to deal with the
problem that high-performance machines do not come
with scalable l/‘O systems. As a result, each of the major
supercomputer centers has been forced to develop its own
mass storage system. a network-based storage organiZa-
tion in which files are staged from the back-end storage
server, usually from a near-line subsystem, to the front-end
supercomputer.

The mass storage system (MSS) reference model was de—
veloped by the managers of these supercomputer centers, to
promote more interoperability among mass storage systems
and influence Vendors to build such systems to a ”standard”

(32!. The purpose of the reference model is to provide a
framework within which standard interfaces can be defined.

They begin with the underlying premise that the storage
system will he distributed over heterogeneous machines
potentially running different operating systems. The model
firmly endorses the clienti'sewer model of computation.

The MSS reference model defines six elements of the

mass Storage system: name server, hillile client, bitfilc
server, storage server, physical volume repository, and
hitlile mover (see Fig. 13}. Bit files are the model's ter-
minology for uninterprcted bit data streams. There are
different ways to assign these elements to underlying hard»
ware. For example, the name server and hitfile server may
run a single mass storage control processor, or they may
run on independent communicating machines.

14 of 24 llSI

Chem ; Mm Slnragc System

- MR l -

" 5:? ~31” '-.- :1 Brlfilc . ‘ Storage Patio:‘. ”5" 5m" If 3 Server a“. Server , Bert-emery_ r ‘— sum." ,,their“? : - wowhim New
Name
Server l

Fig. 13. Elements of the mass storage system reference model
The figure shows the interactions among the elements of the model.
Command flows are shown in light lines while data flows are
”1 heavy lines. The reference model clearly distinguisms among
the software functions of name service. mapping of logical files
Onto physical devices. management 05 the physicai media, and the
transfer ot’ files between the storage system and ciicnts. The figure
has been adapted from |32l.

Art application‘s request for I/O service begins with a
conversation with the name server. The name service maps
a user readable file name into an internally recognized and
unique bitfilc ID. The client‘s requests [or data are now sent
to the bitfilc server, identifying the desired files through
their lD's. 'l‘he bitfilc server maps these into requests to
the storage server, handling the logical aspects of file
storage and retrieval, such as directories and descriptor
tables. The storage Server handles the physical aspects of
file storage, and manages the physical data volumes. [1
may request the physical data repository to mount voiumes
if they are currently offline. Storage servers may be
specialized for the kinds of volumes they need to manage.
For example, one storage server may be specialized for tape
handling while another manages disk. The bitfilc mover
is responsible [or moving data between the storage server
and the client. usually over a network. It provides the
components and protocols for high~speed data transfer.

The MSS reference model has been incorporated into at
least one commercial product: the Unitrce file management
system sold by General Atomics. inc. This is a UNlX~bu3cd

hierarchical storage management system. based on software
originally developed at the Lawrence Livcrmorc National
Laboratory.

v. CASE S‘ruotEs

in this section. we look at a variety of commercial
architectures and research prototypes for high-performance
networks, file servers, and storage Servers. Within these
systems, we will see a common concern for providing
high bandwidth between network interfaces and U0 device
controllers.

A. Ulrmnet

IlGenemlOrgt-miznrian; The UltraNetwork is a hub-

based multihop network capable of achieving up to 1 Gbitls
transmission rates. Its most frequent application is as a
local area network for interconnecting workstations, storage
servers, and supercomputers.

11‘? ‘15 of 24

Hub

Workstation

[Jill
lion-based

Adapter

Fig. 14. Ultrath configuration. The network interconnection
topology is formed by hubs connected by optical serial links. The
maximum link Speed is 250 Mh's”. higher transmission bandwidth is
obtained by interleaving across multiple links, ltosbbascd adapters
plug into computer backplancv while adapters for channels such asHEPPI reside within the hub.

Figure 14 depicts a typical Uitranet configuration. The
hubs provide the basis of the high—Speed interconnect.
by providing special hardware and software for routing
incoming network packets to output connections. Hubs are
physically connected by serial links, which consist of two
unidirectional connections, one for each direction. If optical
fiber is chosen for the links, data can be transmitted at rates

of up to 250 Mbit.’s and distances to 4 km. The Ghit trans—
mission rate is achieve by interleaving transmissions across
four serial links. The point-to-potnt links are terminated by
link adapters within the hubs, special hardware that routes
the transmissions among input and output serial links. These
are described in more detail below,

Computers are connected to the network in two di§fercnt
ways: through host adapters and hub—resident adapters.
A host-based adapter is similar to the network controller
described in Fig. 2, and resides within the host comv
putcr’s buckplane. This kind of interface is appropriate
for machines with industry standard backplanes, such as
workstations and mini-supercomputers. In these kinds of
clients, processors and L’O controllers, including the net-
work interface. are treated as equals with respect to memory
access. The adapter contains an on—board microprocessor
and can perform its own direct memory accesses. just like
any other peripheral controller.

A different approach is needed for mainframe and su—
percomputers, since these classes of machines connect to
peripherals through special channel interfaces rather than
standard backplanes. IfO devices are not peers. but are
treated as slaves by the processor. The hub-resident adapters
place the network interface to the Ultrunct within the hub
itseit'. These provide a standard channel interface to the
computer, Such as l-llPPl or the IBM block multiplexer
inLcrface.

2) UlrmNer Hub Organization: The heart of the UltraNet
hub is a 64~bit wide (plus 8 parity bits). high~bandwidth
backplanc called the UltraBus. Its maximum bandwidth
is 125 Mbytet’s. The serial links from other hubs and
host-based adapters are interfaced to the UirraBus through
link multiplexers, which in turn are controlled by the link
adapters. The link adapters route the serial data to the
parallel interface of the UitraBus. Physicaliy, it is a bus, but
logically, the interconnect is treated more like a local area
network. Packets are written to the bus by the source link

PROCEEDINGS OF THE lEL‘E. VOL. 80. N0 El. AUGUST 1999

MPH Source HIPPI Death»: on

Hub Hated
lll'PPl ‘ ' Sail} Links

Adaptor _ in one: Runs on;.. . 7 - Host Adapter
5:03? alrrtwl m

PL'JJM mrum out

Fig. 15. Internal organization of the L'ltraNeI Mb. The serial
links. on: {or each direction, connect to the link multiplexers.
Each link rnux can handle up to four serial link pairs. The link
adapter interfaces the link multiplexer» to the wide. fasl Ulttath
boat. The link adopter has enough intelligence to do its own routing
of network traffic among the link multiplexers it manages With
a “ell-configured huh. ittttc traific should Let-d levees to the
“[111th

adapter and are intercepted by the destination link adapter.
If the output link is controlled by the same link adapter
as the input link. the transfer can be accomplished without
access to the UltraBus. Figure 15 illustrates the internal
organization of the hub.

The link adapter contains zt protocol processor and two
modules that interface to the link multiplexers on the one
hand and the UltraBtts on the other. The protocol processor
is responsible for handling the network traffic. The data
path that couples the personality modules on either side of
the protocol processor consists of two unidirectional 6'4-
bit»wide buses with speed matching FIFO'S at the interface
boundaries. The buses operate independently and achieve
peak transfers of Hit) Mhyte/s.

The protocol processor consists of three components:
the data acknowledgment and command block processor
{DACPL the control processor (CP), and the transfer engine
(TE). ‘I'hc DACP performs {it"il processing of protocol
headers and request blocks. The Cl’ is responsible for
managing the network, such as setting up and deleting
connections between network nodes. The TI: rapidly moves
data through the protocol processor.

Figure to depict: the protocol architecture supported by
the UltraNet. The combination of the UltraNet firmware

and software implements the industry standard TCPr'lP
protocols on top ofthe UltraNet, as well as Ultrai‘ict specific
protocols. The lower levels of the network protocol. namely
the transport. network. data link. and physical link, are
implemented with the assistance 01' the UltraNet protocol
processor and host or hub-resident adapter hardware.

11. Digital Equipment Corporation ’2;
VAXCiustcr and HSC—7t}

I) WxClustr’r Concept: Digital Equipment Corporation's
VAXC‘luster concept represents one approach for providing
netwurked storage service to cl'ent computers [33], {34].
The VAXClustor is a collection of hardware and software

services that cloSely couple together VAX computers and
hierarchical storage controllers (HSC’s). A VAXC‘luttter lies
somewhere between a ”long distance" peripheral has and a
communications network: it high-Speed physical link cou~

L'Wi- -" (if; F”: "t :ij t' ”Applets-P

.-. . . —— r, ,

fimtelevel

I 4.. 11—5
I «F‘ t} tr . .r“ r 7- t

9.. . - , “1 l
l‘ u flaunt-I l lT‘ . ‘ i
Lot!» is L 7| .. 'LL ” —1Dn:=:t]
nmm Pp“ “‘ "A ‘

. t“ i I-"K ”15L. "'
.‘l. tweak l Harri-.m- Anti-mud

Elltcm {MW '1 Protocnlfinyine
Fig. 16. l‘ltra‘iet protocol arehiteetute ocean to the Ultrabict
it. thro‘gh ihk t anriartl UNIX socket interface. It is possible
to um: standard 'tL‘t’rl? prutocola on top at the UltraNet or
l‘ltrath-speclfic protocols. The lower level“. of the network are
implemented With "it :tssss‘:tr.—_ or the protocol engines and
adapters throughout the UllraNrt sworn

pies together the processors. but message-oriented protocols
are used to request and receive services. The VAXCluster
concept is characterized by (i) a complete communications
architecture, (2) it message-oriented computer interconnect.
(3) hardware support for the connection to the interconnect,
and {4) mensage-oriented storage controllers.

The hardware organization of a VAXCluster is shown in
Fig. 17. its elements include VAX processors, HSC storage
controllers. and the computer interconnect (CI). The lzttter is
a hiphopeed interconnect (dual path connections, 70 Mbitis
each), similar in operation to an Ethernet. although the
detailed methods for media access are somewhat different.

Physically, the Cl is organized as. a star network. but
appears to processors as though it were a simple broadcast
bus like the Ethernet. Up to 16 nodes can be interconnected
by a single strtr coupler. with each link being no more than
45 nt in length. A processor is; connected to the Cl via a Cl
port. a collection of hardware and software that provides the
physical connection to the Cl on one side and a highwlcvel
queue—based interface to client software on the other side.

The communications protocols layered onto the C] and
Cl ports support three methods of transmission: datagrams,
messages, and blocks. Datagrams are short transmissions
meant to be used for status and information requests, and
are not guaranteed to be delivered. Messiages are similar
to datagrarns except that delivery is guaranteed. Readfwritc
requests and other device control transmissions to storage
controllers are handled via messages. The hardware. in the
C1 ports provides special support for block transfers: an
ability to copy sequential large blocks of data from the
virtual address space of a process on one processor to the
virtual address space of another process on another Cl node.
Block transfers are exploited to move data back and forth
between client nodes and the storage controllers.

An interesting aspect of the VAXCluster architecture is
its support for a mass Storage control protocol (MSCP),
through which clients request storage services from stor-
age controllers attached to the Cl. A message-based ap-
proach has several advantages in the distributed environ—
ment embodied by the cluster concept. First. data sharing
is simplified, since storage controllers can extract requests

16of24
KATE: NETWORK AND L'llANNl' l. HASLD STORAGE ll‘il

Fig. [7. VAXCIustcr blocl: diagram. A VAXCluster comims
of client processors (VAX), server storage controllers [H30]. :1
high-speed interconnect (Cl). adapters (Cl port). and coupling
hardware {Star Coupler) A meson-oriented protocol is layered
onto the interconnect hardware to implement client’servcr access
to storage services

from message queues and service them in any order they
choose. Second. the protocols enforce a high degree of
device independence. thus making it easier to incorporate
new devices into the storage system without a substantial
rewrite of existing software. Finally. the decoupling of a
request from its servicing allows the storage controllers
to apply sophisticated methods for optimizing U0 perim-
mance. including rearranging requests and breaking large
requests into fragments that can be processed indepen-
dently.

2) HSCJO Internal Organization The internal organiza-
tion ofan HSC is shown in Fig. 18. The HSC was originally
designed in the late 1970‘s. and has been in service for
a decade. its internal architecture was determined by the
technology limits of than time. Nevertheless, there are a
number of notable aspects about its organization. An liSC
is actually a heterogeneous multiprocessor, with individual
processors dedicated to specific functions. The three major
subsystems are (l) the host interface. (2] the l.’0 control
processor. and [3) the [[0 device controllers. They commu-
nicate Via shared control and Lialfl memories accessed via tt

control and data bus respectively.
The host interface. called a KCE. is responsible for

managing the transfer of messages over the CI bus. The
hardware is based on an AMI) bit—slice processor. The
device controllers. called K.Si31's for disk interfaces and

KSTl‘s for tape interfaces, use the some bit—slice processor.
They implement device-Specific read and write operations.
as well as format, status. and seek operations (for disk) over
Digital's proprietary device interfaces. Up to four devices
can be controlled by a single K.X device controller. and up
to eight KX controllers can be attached to an HSC. for a
total of 24 devices. All policy decisions are handled by the
IIO control processor. which is based on a microprocessor
implementation of the PDP-ll [35].

um 17 of 24

ltenlrul B“ M fill-W}
tip In I purl-EC

hiuwylruilu Mlvvroudl

Fig. 18. HSC inremat architecture. The host interface is managed
by a dedicated bit slice processor united the KCI. Devices are
attached in KJSDI (disk) and KSTE {tape} device controllers.
High-level control is performed by the N0. a PDP-ll micro-
processor programmed to coordinate the activities of the devicecontrollers and the host interface.

The shared memory subsystem of the HSC plays a critical
role in its ability to sustain lr'O traffic. Private memories
deliver instructions and data to the various processors.
keeping them off the shared memory buses. Data structures
used for interproccssor communications are located in the
Control memory. The control memory and bus support
interlocked operation, making it possible to implement an
atomic two-cycle read-rttotlify-writc. Dani moving between
{/0 devices and the computer interconnect must be staged
through the data memory. The sizes of both memories are
rather modest by today‘s standards: 256K bytes in each.

The performance bottlenecks within the IISC come from
two primary sources: bus contention and processor con-
lentiort [36]. We examine bus contention first. Internal
bus contention affects the maximum data rate that the

controller can support. The controller‘s transfer bandwidth
(Mbytcsl's) is limited by its memory architecture and the
implementation of the Cl interface, both on the controller
and on a processor with which it communicates. Because
data must traverse the memory bus twice. the effective
internal bandwidth to 1/0 devices is limited to 6.6 Mbyters.
For example, on a device read. data must be staged from
the device controller to the data memory over the memory
bus, and then transferred once again over the bus to the
Cl interface. The HSC’s software includes mechanisms

for accounting for the ambunt of internal bandwidth that
has been allocated to outstanding #0 requests. It will
throttle lr‘O activity by delaying some requests if it detects
saturation.

While this may appear to be a limitation, a more serious
restriction is imposed by the HSC‘S CI interface itself.
In general, it is designed to sustain on the order of 2
Mbyteg‘s. For some low-end members of the VAX family.
even this may exceed the bandwidth of the host's Cl
interface. To avoid overrunning rt host, and thus limit CI
bandwidth wasted on retransmissions, the Cl interface will

only transmit a single buffer to it given client {is iOng as
there are buffers waiting to be sent to it.

Next we turn to processor contention. This is due to
some extent to the design of the SD! dist: interfaces. Each
disk hes. a dedicated control bus. but a single data bus is
shared among the devices attached to a controller. Thus.

PROCEED'MJS OF THE 155?... V01 H0. NO ti. AUGUST 1093

high data bandwidth can be sustained by spreading disks
among as many controllers as possible. For example. two
disks on a single KSDI will transfer fewer bytes per second
than a configuration with one disk on each of two disk
controllers.

3} Typical 110 Operation Sequencing: To understand the
flow of data and processing through the NSC, we shall
examine the processing steps of a typical disk read opera-
tion. The steps that we outline next are described at a high
level. Considerably more detail, including the detailed data
structures used, can be found in [35].

The lirsr step is the arrival of the MSCP command over
the Cl bus. The message is placed in a K.Cl reception
buffer, where it is checked for welt-formedness and validity.
If it passes these checks, it is copied to a special data
structure in the control memory, and pointers to this data
structure are placed on a queue of work for the HO policy
processor.

The next step involves the execution of MSCP server
software on the policy processor. The software is structured
as H process that wakes up whenever there are pending
requests in the work queue. The software examines the
queue ofcommands, choosing the next one to execute based
on the currently executing commands. it constructs a data
structure thul maps the MSCP command into physical disk
operations, such as the disk seek command and a sequence
of sector transfer requests. The original MSCP command
message is modified to become a response message. The
last phase is to place a pointer to the disk request data
structure on a KSDI work queue, to be found in the control
memory.

The next thing that happens is the disk portion of the
transfer. The KSDI firmware reads the request on its work
queue, extracts the seek command. and issues it to the
appropriate drive. When the drive is ready to transfer. it
indicates its status to the KSDI. At this point the disk
controller allocates buffers in the data memory, and stages
the data as it comes in from disk to these buffers. When the

list of sector transfers is complete, a completion message
is placed on the work queue for the K.{_II.

We are now ready to transfer the data from the con-
trollcr’s data memory to the host. The K.Cl software wakes
up when new work appears in its queue. It then generates
the necessary CI message packets to transfer data from data
memory out over the Cl to the originaily requesting host
processor. A5 a data buffer is emptied, it is returned to
a list of free buffers maintained in the control memory.
When the last buffer of the transmission has been sent, the

K.Cl now transmits the MSCP completion message that was
built by the I/O policy processor from the original request
message.

'llte steps outlined above have assumed that processing
continues without error. There are a number of error

recovery routines that may be invoked at various points
in the process described above. For example, if the transfer
request within a K.SD1 fails, the software is structured to
route the request to error handling software to make the
decision whether to retry or abort the request.

Drill (Twm

atE

r;i
.. ity Our used Controllers

High Eundwidm‘High Av.

Urtw Chan-u

F...“ __ \ m. ., ind-swam Duh-l

- ‘gF—tgi- "orig“? -i j iFl-lr* 'v ‘ A! 3 ‘ a
‘ r - ‘53; it: t '

i :3 "'1 e-i“ l 5
I § mink—J " g- -.._@Lh, .-., witem or;

High Bandwidthll'i tr. Avast? .tty High r 0 Rate/l It,-h Capacity
51mph! C runs or Sir. glen C-a-nttollcr

Fig. 19. Alternative disk organizations for the CDC DAS. The
DAS can he configured in three alternative organizations; duplexed
controller purity array tur extremely high system availability. sim-
plex parity array for high media availability. and a nooruundant
organization for maximum ['0 rate and capacity,

C. Control Data Corporation Disk Array Subsystem (DASJ'

1} General Organization: The CDC disk array subsystem
is an example of an iiO controller design targeted for high-
bandwidth environments. To this end, it supports multiple
(4} lPl-2 interfaces to disks, which can burst at 10 Mbyte/s
each, and multiple (2-4) lPI-3 interfaces to the hostr each of
which can burst transfer at 25 Mbyte/s. (The 1P1 interface
is similar in concept to the SCSI protocols described in
subsection ll-C, but provide higher performance though
they are more expensive to implement.) A Single controller
can handle up to 32 disk drives. organized into eight stripe
units (called drive clusters by CDC) of four disks each.

The controller supports three alternative disk organi-
zations: a high transfer ratei'h‘tgh availability mode with
duplexed controllers. a simplex version of this organiza-
tion, and a high transaction ratclhiglt capacity organization.
These are summarized in Fig. 19. The first organization,
for high transfer rate and very high system availability.
is distinguished by duplexed controllers, dual ported and
spindle synchronized disk drives, and a 3 + 1 RAID level
3 parity scheme.

Enhanced system availability is achieved by the duplexed
controllers and dual ported drives: if a single controller
fails, then a path still exists from the host It} a device
through a functional controller. CDC claims 99.999% avail-
abilily with a mean time to data loss(MT1'IJL) that exceeds
1 million hours with this configuration. This is probably a
conservative estimate. A lost drive can be reconstructed

within four minutes, assuming 1 Gbyte Seagate Sabre disk
drives. The organization can sustain 36 Mbytei's, assuming
a sustained transfer bandwidth of 6 Mbytc/s per drive.

The second organization is characterized by single ported
drives, organized into the RAID level 3 scheme, and a
single controller. System availability is not as good as
the previous organization: a failure within the controller
renders the disk subsystem unavailable. However, media

18on4KAT}; NETWORK AND CHANNLL BASED S‘I'ORAGE IISS

To Drive Clusters

Parity Calculation Data Path

am
Egg/11%?" Supportlflgi- M6302 ass enPROM BufferH

I-Pl‘SHF

Fig. 2!). internal organizntlun of CDC disk array controller. The BACK. internal structure consists
of the disk interfaces. host interfaces, purity calculation logic. and a “traffic cop“ microprocessor to
determine the [IG strategy. IE'O processors associated with each r-l the interfaces handIc the lowland
details of the interface protocols. Data movement is controlled by direct memory access enginesassociated with the dist: interfaces.

availability is just as good because of the parity encoding
scheme. This organization can sustain 18 Mbytesr‘s and also
claims a 1 million hour MTTDL.

The last organization represents a trade-off between per-
lormartce, availability, and capacity. It gains capacity by
dispensing with the parity drives, supporting a maximum
of 32 Gbytcs versus 24 Gbytes in the other two organiza-
tions. assuming 1 Ghyte drives. However, there is also no
protection against data loss in the case of a disk crash. Data
are no longer interleaved, thus sacrificing data bandwidth
for a higher U0 rate. in the previous organizations, up to 8
”0’5 can he in progress at the same time, one for each drive

cluster. In this organization, 32 IlO’s can simultaneously be
in program. The controller supports 500 random ”0'5 per
second, approximately 16 [IO‘s per second per disk drive
(this represents a disk utilization of 50” J.

The controller’s designers have placed considerable cm-
phasis on providing support for very high data integrity
within the controller and disk system. All internal data
paths are protected by parity, data are written to disk with

an enhanced ECC‘. coding scheme (a no hit Reed~Solomon
code that can correct up to 17 bit errors and even some 32

bit errors), and a large number of retrtes are attempted in the
event of an [/0 failure (three attempts at normal offset, all
with ECC; three attempts at late and early date Strobes with

nominal carriage offset. all with ECC; three attempts at +£-
carriagc offset with nominal data strokes, all with ECC).
All rctries include possible correction from the RAID level
3 redundancy schemes.

2} Controller Internal Organization: Figure 20 shows the

internal organization of the DAB controller. An L’O request
can be traced as follows. The host issues the appropriate
command to one of the lPl-3 interfaces. This is staged lo a
command buffer within the controller. The central control

use 19 of 24

microprocessor examines the command and determines how
to implement it in detail.

Suppose that the command is a data write and that the
array is organized into a RAID level 3 scheme. The control
processor maps this logical write request into a stream of
physical writes to the disks within a drive cluster. As the
data stream across the host interface. they pass through
the parity calculation data path, where the horizontal parity
is computed. DMA controllers move data and parity from
this data path to buffers associated with individual disk
interfaces. L’O processors local to the [PI-2 disk interfaces
manage the details of staging data from the buffers to
particular disk drives. Read operations are performed in
much the some manner, but in reverse.

Note that reconstruction operations can be performed
without host intervention. Assume that the failed disk has

been replaced by a new one. Under the control of the central

microprocessor, data are read from the surviving members
of the drive cluster. The data are streamed through the
parity calculation data path, with the resuit being directed
to the disk interface associated with the failed disk. The

reconstitnted data are then written to their replacement.

D. Madman? Strategies HIPPI—2 Array Controller

Maximum Strategies offers a family of storage products
oriented toward scientific visualization and data storage ap-
plications for high-performance computing environments.
The products offer a trade-off between performance and
capacity, Spanning from high Mbytc/s but low Mbytcs
(based on parallel transfer disks) to high-performancelhigh-
capacity (based on arrays of disk arrays). In the following
discussion, we concentrate on their HIPPI-based storageserver.

PROCEEDINGS OF THE 5555. VOL. 80, N0. fl. AUGUST 1992

Dal: Dkks Parity Ho! Spare

Fig. 21. Strategy HiE’Pi controller block diagram. The Strategy
controller couples multiple Hil‘Pi interfaces to an S a l + 1 RAID
level 3 disk brganizzlion.

Figure 2! shows the basic configuration of the Strategy-2
array controller. It supports one or two 1in Mbyter‘s hosl
HIPPI interfaces or a single 200 Mbyter’s interface.'l'hc con—
troller supports a RAID level 3 organization calculated over
eight data disks and one parity disk. Optionally, hot spares
can be configured into the array. This allows reconstruction
to take place immediately. without needing to wait for a
replacement disk. it also helps the system achieve an even
higher level of availability. Since reconstruction is first.
the system becomes unavailable only when two disks have
crashed within a short period.

The controller can be configured in a number of different
ways, representing, alternative trade—offs between perfor-
mance and capacity. The low capacilyfhigh performance
comigurution stripes its data across four parallel transfer
disks. This yields 3.2 Gbytes of capacity and can reach a
60 Mbyle/s data transfer rate. it provides no special support
for high availability, such as RAID parity.

A second organization stripes across 8 + 1 parallel
transfer disks implementing a RAID level 3 organization.
This organization provides 6A Gbytcs and achieves a 120
Mbytels transfer rate. Both configurations are called the
Strategy HIPPI-SM storage server.

These organizations Provide relatively little capacity for
the level of performance provided. in addition, parallel
transfer disks are quite expensive per Mbyte and have a
poor reputation for reliability. An alternative configuration
uses multiple rattle; of 8 + 1 + 1 commodity disk drives.
Maximum Srrategies‘ l-llPPl-SZ storage server is shown
in Fig. 22. Back-end controllers (called 32’s in Maximum
Strategies’ terminology) manage strings of eight disks each.
Maximum Strategies makes use of older technology ESDI
drives (5.25 in form factor, 1.2 Gbyle capacity each), which
can share a common control path but require dedicated data
paths. A maximum configuration can support ten of these:
eight data strings. one parity string, and an optional hot
spare string. The back ends are connected to the front end
l-lIPPl interfaces through a 250 Mbytc/s data hackplanc and
a conventional VME backplanc used for control. Note the
separation of control and data path. The high-bandwidth
data transfer path is over HIPPI; the control path uses a
lower latency (and lower bandwidth) VME interconnect.
Parity calculations are handled in the front end. This
organization can provide a 300 Gbyte capacity and a 144

Kan". NETWORK AND CHANNEL BASED STORAGE

“' "an: ‘ hir'V-I ~v ,q—' \If— - 1 t)-
w, Ir- "J ,_ _.

urn. "Uw nm Adamo;vM'. tux-m: Due

Fig. 22. High capacily strategy array. High capecily is achieved
by using large number» 01 commodity disk daves. These are
coupled to the l-tll’Pl from and: through a high-handwidth data
has and a VME-bttsud control bus.

Mbyte/s transfer rate.
Maximum Strategies also provides a storage server based

on a VME-based host interface. The 82R storage server

supports up to 40 x 5.25 in ESDI drives, organized into
an 3 + l + l RAlD level 3 scheme that is four stripe units
deep. This organization yields 38.4- Gbytcs of capacity and
an 18 Mhyte.’s transfer rate.

The highest capacityl'highest performance system com-
bincs the SZR-based arrays with the l'llPT’l-atzachcd con-
troller of Fig. 21. The result is an “array of disk arrays."
The architecture calls for replacing the 8?. controllers with
82R disk controllers. l-‘ach 32R array contains 37 disks,
organized into four stripe units of eight data disks and one
parity disk, plus one spare for the entire subarrny. Up to ten
subarrays can be controlled by a single lllPPi controller,
yielding a system configured from a total of 370 disk drives.
a 345 Gbyte data capacity. and a 144 Mbytel’s transfer rate.

E. AUSPEX NSSUOO File Server

1) General Overview: AUSPEX has developed a special
hardware and software architecture specifically for provid-
ing very high performance NFS file service. The system
provides a file system function integrated with an ability
to bridge multiple local area networks. They claim to have
achieved a performance level of 1000 N53 8 Kbyte read
UO operations per second, compared with approximately
100—400 [IO operations per second for more conventional
Server architectures [37‘].

They call their approach functional multiprocessing.
Rather than building a server around a single processor that
must simultaneously run the UNIX operating system and
manage the network and disk interfaces, their architecture
incorporates dedicated processors to separately manage
these functions. By running specialized software within
the network, file, and storage processors, much of the
normal overhead associated with the operating system can
be eliminated.

A functional block ditgram ofthe NS5tlt'lU appears in Fig.
23. The system backbone is an enhanced VME bus that has
been twaalced to achieve a high aggregate bandwidth (55
Mbylcs's). A conventional UNIX host processor (a. SUN-
3 or SUN Sparcstation board). the various Special-purrmse

20 of 24 I157

i__w ‘jfl! llt-il ' tint Single Board

froccssor I Mc-"ory R Computer
Enhance .

VME Backpizne

Eric

i‘rot {\wl ‘ J
c . Perm . r

lmtegehient i re: Ea 8C3! Channels. yst. :n

Fig. 23. ussooo block diagram. The server incorporates four
diFfercnl kinds of processors. dedicated to network, file. storage.
and general-purpose processing. The server can integlrttc up to
eight independent Ethernets through the incorporation of multiple
network processors. The storage processor supports ten SCSI
channels. making il possible to mulch up to 2t? disks to the server.

processors, and up to 96 Mbytcs of semiconductor memory
{the primary memory) can be installed in the backplttno.
We examine each of the special processors in the next
subsection.

2) Dedicated Processors: A dedicated network processor
board contains the hardware and software needed to manage
two independent Ethernet interfaces. Up to four of these can
be incorporated into the server to integrate a reasonably
large number of independent networks. The board executes
all of the necessary protocol processing to implement the
NFS standard. Because the network boards implement their
own packet routing functions. it is possible to pass packets
from one network to another without intervention by the
host. Some cached network packet headers are buffered in
the primary memory.

The file processor board runs dedicated file system soft-
ware factored out of the standard UNIX operating system.
The board incorporates a large cache memory, partitioned
between user data and file system metadata, such as direc-

tories and inodes. This makes it possible for the file system
code to access critical file system information without going
to disks.

The storage processor manages ten SCSI channels. Disks
are organized into four racks of five 5.25 in disks each (20
disks per server). It is also possible to organize these into
a RAID—style disk array, although the currently released
software does not support the RAID organization at this
time. Most of the primary memory is used as a very large
disk cache. Because of the way the system is organized.
most of the memory system and backplant: bandwidth is
dedicated to supporting data transfers between the network
and disk interfaces.

The host processor is either a standard SUN—3 08020“
based prooessor board or a Sparcstation host processor
board. These run the standard Sun Microsystcms’ UNIX,
as well as the utilities and diagnostics associated with the
rest of the system.

3) Software Organization: A significant portion of Aus—
pex's improved performance comes from the way in which
the network and file processing software are layered onto
the multiprocessor organization described above. The basic

software architecture, its mapping onto the processors. and
their interactions are shown in Fig. 24.

1258

E M 7-: ii. ‘A. £st! Earth}: ‘ 7 ‘l

cm
_ TE. _. H ‘ 'Hts l. mam

_Li:$ Client

Host PITXKISHI ;

{Ethanol Prose-9o:

l l tarot,
. , mu . t—l

File FIDCESJ r

prim—1‘
r"

:[tic Jillt‘lLScn-fl‘ l i,__.—.,__......_.. ' l[5-me Memory E .3k Arrays
L.-. H _ .

Fig. 24. Amour NSStrOt] software architecture. The main data
flow is represented by the heavy black line. with data being
transmitled from the disks to the primary memory to the network
interi'aceThc primary control flow is shown by a heavy gray line.
File system requests are passed between Ll-‘S [11ml lite system)
client software on the Ethernet processor to server software on
the file processor. These are mapped onto detailed requests to
the storage processor by the file system server. Limited control
interactions int aim: the virtual tile system interfaces on the host.
and are denoted by dashed lines

Consider an NFS read Operation. initially, it arrives
at an Ethernet processors, where the network details are
handled. The actual data read request is forwarded to a
file processor. where it is transformed into physical read
requests, assuming that the request cannot be satisfied by
cached data. The read request is passed to the storage
processor, which turns it into the detailed operations to he
executed by the disk drives. Retrieved data are transferred
from the storage processor to primary memory, from which
the Ethernet processor can construct data packets to be sent
to the client. Note the minimal intervention from the host

processor and software.

F. Berkeley RAID-I} Disk Army Flie Server

Our research group at the University ofCalifornia, Berke-
ley, is implementing a high~periormancc lr'O controller
architecture that connects a disk array to an Ultreth net-
work via a HIPPl channel. We call it RAID-ll to distinguish
it from our first prototype. RAID-l, which was constructed
from pilots-shelf controllers {38]. Given the observations
about the critical performance bottlenecks in file server
architectures throughout this paper. our controller has been
specifically designed to provide considerable bandwidth
between the network. disk. and memory interfaces.

A block diagram for the controller is shown in Fig. 25.
The controller makes use of a two-board set from Thinking
Machines Corporation (’l‘MC) to provide the HlPPI channel
interface to the UitraNet interfaces. The disk interfaces are

provided by a VME-based multiple SCSI string board from
Array Technologies Corporation (ATC). The major new el~
ement ol the controller, designed by our group. is the X»bus
board, a crossbar that connects the HIPPJ hoards, multiple
VME buses. and an interleaved, multipurtcd semiconductor

memory. The X-bus board provides the high-bandwidth
data path between the network and the disks. The data
path is controlled by an external tile server through a
memory—mapped control register interface.

The X-bus board is organized as follows. The board
implements an S by 8 32-bit-wide crossbar bus. All crossbar

PROCEEDINGS OF THE IEEE, VOL. 30. N0 8. AUGUST 1‘}?!
210f24

 zit-.31

THC M___ u
SUP Bus . X Hun r—‘—— "“ l

I align: it Pun InlclkavcdMu:- .ytlall MEyte) m:
! .._ l t . Scwnrl

flan” ’ l Elihu-st ' ‘ l'lath-glut}? ' Emu”?

Fig. 25. MIDI: organization A high-bandwidth crossbar inter-
connection ties the network interface (llil’Pl) to the disk controllers
(Array Tech} via a multiported memory system Hatdwarc to
perform the parity calculation is associated with the memory
system.

transfers involve the org-board memory as either the source
or the destination of the transfer. The ports are designed
to burst transfer at 50 Mbyter’s, and sustain transfers of 40
Mbyte/s. The crossbar is designed to provide an aggregate
bandwidth of 320 Mbytc/s.

The controller memory is allocated eight of the crossbar
ports. Data are interleaved across the eight banks in 32
word interleave units. Although the crossbar is designed to
moire large blocks from memory to or from the network
and disk interfaces, it is still possible to access a single
word when necessary. For example, the external file server
Can access the on-board memory through the X-bus board’s
VME control interface. 'l'vvo of the remaining eight ports
are dedicated as interfaces to the Thinking Machine lfO
processor bus. The TMC liIPl’l board set also interfaces
to this bus. Since these X-bus ports are dedicated by their
direction, the controller is limited to a sustained transfer

rate to the network of 40 Mbytet’s.
Four more ports are used to couple to single board

multistring disk controllers via the industry standard VME
bus, one disk controller per VME bus. Because of the
physical packaging of the array, 15 disks can be attached to
each of these, in three stripe units of live disks each. Thus,
no disk drives can be connected to each X—bus board, and a

two X-bus board configuration consists of 120 disk drives.
0f the remaining two ports. one is dedicated for special

hardware to compute the horizontal parity {or the disk array.
The last port links the X—bus board to the external iiie
server. It provides access to the tan-board memory‘as well
as the board’s control registers (through the board‘s control
bus). This makes it possible for file server software, running
off of the controller. to access network headers and file
metadata in the controller cache.

[1 may seem strange that there is no processor within
the X-bus board. Actually, the configuration of Fig. 25
contains no less than seven microprocessors: one in each
of the llIl’Pl interface boards, one in each of the ATC

boards, and one in the file server (we are also investigating
multiprocessor file server organizations). The processors

KATZ' NLI'WURK AND CHANNH, BASED STORAGE

within the HIPP! boards are being used to handle some
of the network processing normally performed within the
server. The processors within the disk interfaces handle the
lowllcvcl details of managing the SCSI interfaces. The file
server CPU must do most of the conventional file system
processing. Since it is executing file server code, the file
server needs access only to the file system metadata, not
user data. This makes its possible to locate the file server
cache within the X-bus board. close to the network and
disk interfaces.

Since a single thus board is limited to 40 Mbytc/s,
we are examining system organizations that interleave data
transfers across multiple X-hus boards (as well as multiple
file servers, each with its own HIPP] interface). Multiple
X—bus boards can share a common HIPPI interface through
the lOP bust 'l‘vvo X-bus boards should be able to sustain

80 Mbytei’s, more fully utilizing the available bandwidth of
the HIP?! interface.

The controller architecture described in this subsection

should perform well for large data transfers that require
high bandwidth. But it will not do so well for small
transfers where latency dominates performance more than
transfer bandwidth. Thus we are investigating organizations
in which the file server remains attached to a more conven-

tional network, such as FDDI. Requests for small files will
be serviced over the harvest latency network available to
the server. Only very large files will be transferred through
the X—bus board and the Ultrath.

VI. SUMMARY AND RESEARCH DIREC’HUNS

In this paper, we have made the case for generalizing
the workstation—server storage architecture to the mainframe
and high—performance computing environment. The concept
of network-based storage is Very compelling. It has been
said that the difference between a workstation and a main-

frame is the 110 system. The distinctirm will become blurred
in the new system architectures made possible by high-
bandwidth, low-latency networks coupled to the correct use
of caching and buffering throughout the path from service
requester to service provider.

Nevertheless. many research challenges remain before
this vision of ubiquitous network—based storage can be
achieved. First, new methods are needed to effectively
manage the complete and complex storage hierarchy as
described in this paper. How should data be staged from ter-
tiary to secondary storage? What are the effective prefetch~
ing strategies? How are data to be extracted from such large
storage systems?

Second, it is time to apply a system-level perspective
to storage system design. Throughout the [/0 path, from
host to embedded disk controller, we find buffer memories

and processing capabilities. The current partitioning of
functions may not be correct for future high-performance
systems. For example, some searching and filtering capabil-
ities could be migrated from applications into the devices.
The memory in the l/O path could be better organized as
caches rather than speed matching buffers, given enough

22 Of 24 1259

local intelligence about U0 patterns. A better approach for
error handling is also possible given a system perspective.
For example. in response to a device read error, a disk
array controller could choose between retrying the read or
exploiting horizontal parity techniques to reconstitute the
data on the fly.

Third, new architectures are needed to break the bottle-
necks. both hardware and software. between the network,
memory, and 1.10 interfaces. The RAlDrll controller tackles

this at the hardware level, by providing a high—bandwidth
interconnection among these components. At the software
level. new methods need to he developed to reduce the
amount of copying and memory remapping currentiy re-
quired for controlling them: interfaces.

Fourth, today‘s higltubandwidth networks. such as FBI)!
and Ultruth. exhibit latencies that are somewhat worae

than conventional Ethernets. Unfortunately, latency be-
comes a dominating factor :15 the overheads of data transfer

scale down in higher bandwidth networks. New methods
need to be developed to reduce this latency. One Strategy
is to increase the packet sizes. to better amortize the

start-up latencies. A Second Sitmlegy. demonstrated by [he
Autonet project at Digital Equipment Corporation's System
Research Laboratory. is to construct u high-bandwidth
network using point-to—point connections and an active
switching network [39].

Finally. the whole issue ol'diotributetl and multiprocessor
tile/storage server-.1 and their role in high-performance stor-
age systems must be addressed. The technicai issues include

the methods for how to partition the tilt: server software
functions among the processors of a multiprocessor or a dis-
tributed collection of processors. The AUSPEX controller
architecture is one approach to the former. The IEEE Mass
Storage System Reference offers one model for the latter.

ACKNOWLthiittEN'r‘

The author appreciates the careful reading of this manu-
script and the detailed comments by P. Chen. A. Chervenak.
E. Lee, E. Miller. S. Scshen. 5. Strange. and the referees.

REFERENCES

[1] Newark Opt-rations Manual. L'Itrr. \‘ctwurlt Technologist. Part-
Number ilo-tltltll-thl. Revision A. 1990. t'l't‘s. 2'. unJ 3.

[2] J. Hertnessy and 1). Patterson. Computer Architecturr: A Qumr-
trtatlt'e Approach. San Mateo, ("Az M01"."trl Kaufmtrttn. limit

[3] V Cerf.‘Networks.“ .S'c-t‘crtrrfrt-American. vol. 265. no. 3. pp.72—85. Set 1991.

[4] L. Tcsla.‘'lfetwnrketl cnntpotinginthe Willie,” .S't'lc'llt'lfit'flmt'rr
it-an. vol. 265 no. 3. pp. aid-n93. Sept. 19111.

[S] N. Negrapontc. “Productx and \cl’V‘lL‘ds {or computer network"
.StW'itrtrifir American. vol. 255. no. 3. pthlo—lls. Sept. {99}.

[o] S. i’ JL-shi 'l'ligh performance neiworkx: locus: on the fiber
distributed (lat: l interlacc standard.“ IEE'L! Wren-o pp. 8 14 June1986

[7| D. Clark. V Jacobson. J. Romltcgr. and H. Salwen. "Art analvsis
of TCP processing overhead." IEEJ-I (ommtmtr‘arium Muga-
:t'rtc.p§123-?.9 June l‘Jd‘J.

[8] S. Heady and D. Sioltesbcrry. "Analysis of transport mea-
surements over a local area network." {fibril Communicauuux
Margarine. pp l6r22. June 1989.

[9] ll é'Kat1altitt.‘iiigh performance host interfacing for packet-
switched networlu Pb.D. dissertation, Department oft}.E.C.5..
Stanford i.‘ diversity, l.‘)9ll

l 357-)

[10] R. Wilson and S. Mamralt. “Gaining efficiency in tmnsport
services bv appropriate design and implementation choicesfl
ALM Trims. {'.t.sr11put Syn.” vol. 5.110. lwpp 97—120.May1987.

[1]] E. Orensteln. " HPPl-based storage system. " Cumpmt‘r Technot.
Rn: . Apr. 1990.

[12] Anon. Strategy HPI’.’ Dirk Array Subsyrtttrrt Operation Manual.
Maximum Strategies. Part Number #HPPlUi]. 19.91].

[13] I). E. Tnlmic and M. (i. Halvorson, "illi’l’l i serial-HIPPL" in
Pmc. IEEE Spring Compton C'mtfi. Felt. l992. pp. 222428.

[14] W, McFarland or. at. "HP‘s link interface chipset for serial-
IlIPi‘l,“ in Free. {ESE Spring Common Confi. Feb. 1992. pp.REEL-233.

t15| Anon. “Fiber channel . Physical layer (FC-PH)." ANSt X3T9.3
Working Document. Revision 2.]. May 1991.

[lo] K. Hardv-ieh. "Hil’f’l world — The switch is the network." in
Prov. IfiEE Sprint: (foamed. Carr]. (San Francisco, CA), Feb.
1992. pp. 234—238.

[17] P. Borrill and J. Thous. “A11 advanced communications protocol
for the proposed iEEili 89o Fuluchus." IEEE Micro, pp. 43-56.
Aug. 1984.

[18[M. chncr. “A Bus on a diet — The serial bus altermttive.‘
in Pmr‘ IEEE Spring C'twtpul. (‘mtfl (San Francisco. CA), Fob.
199:. an 3te-321.

[19] D. Citroen-son ttrt(|._3. Kristinnscn. “Scalable coherent interface:
Links to the future.” in Prue. II:M: Springéumpur. Conf. (Sun
Franny». CA]. I-eh. lU‘Jl. pp .322 321‘.

[EU] M. Nelson. .5. K. O'l-sterhuut. and B. Welcli. “Caching in the
Sprite network lite system. 'rlCM fruits. Compur. Sysn. vol. 6.
no.1 pp. 134—154. Feb HHS.
R Kati (1. Gibson and D. Patterson. "Disk system architec-
tures for high perfort-zancc computing.“ Proc. .78th (Special
15911.: on Supercomputing). Dec. 108‘).
S. Ranade and J. Ng. systems integration for Write-Once Oprr'r
eulStomgv. Wes‘tport. CT: Morklcr, 19%.
M. H. Kryder. “Data storage in Zilllllm'l‘rends in data storage
tcchrnlogies." JEEP} Trrms. Magm. vol. 25. pp. 4358~~4363.Nov. 198‘}.

[24] Hewlett-Packard Corporation, “Hi” Series 6366 Model TGGBIA
rewritztble optical disk library 1;); stern product brief." 198‘).

[25] Kodak Curporation. "Opticai disk System 6800 product descript
lion." 1990.

[26] Exahytc CorporatiOn, "EXB-120 cartridge handling subsystem
product SpCCli‘lL'Aiil n." Port No. Sill 3ilfldL-llill. KKK).

[27] 1;. Tan and B. Vermeulcn. "Digital audio tape for data storage.”
11%5 .S'purtrmn, vol. 261. pp. 34 538, Oct. 105-}.

[28[B. I‘. chct. “The best of tapes and disks.“ N. Y. Times (Sunday
Business Section]. p. 9. Sept. 1. 1091.

[29} K. Spencer. "The oil-second terabyte." Communities. Mega.fun: l985l.

[30] R. Sandburg. D Gotdbcrg. S. Kenn-to. D. Walsh. and 8 Lyon
“Design 1nd implementation of the SUN Network Fiiesyxlem"
in Free. USlENt’X Sunrmcrflouj. June 1985.51.21110—130.

[31] M. Rosenblum and J. Oustcrhout. "The design and implemen-
tation at a lug-Structured hie system." AC‘M Trans. Camper.
first. Feb. 2992.

[3'2] S. W. Miller. "A reftrencc model for mass storage systems.”
Arft'tmret in Computers. mi. 27. pp. 157—210. 1988.

[33] N. P. Kronenhcrg. ll. Levy. 11d W. l). Streoker. “VAXClusters:
A closely coupled distributed system," ACM Tram. Comput.
Stare. vol. 4, no. 2. pp. 130—145. May lgdo.

[34; N. P. Kronenberg. ll. M. Levy. W. E). Strccker. and R. .l. Mere-
wood. “The VAXCiuster concept: An overview of a distributed
system." Digital Tech. .L vol. 5. pp 1-2]I Sept. 1987,

[35] R. 1.. Lary and R. G. llenn, "The hierarchical atorage controltcr:
A lightly married tilttltiproctssor as storage server.” Digital
Tech. J.. vol. 8. pp. 3—24. Feb. l98‘).

[lib] K. H. Bates. 'Pert'ortnance aspects of the HSC controller,"
Digital Tcrl1.J.. vol. 8. pp.25.~37 Feb.1989.

[37] it lichen.An oxcrvicw ofl'unctlonul multiprocessing for NFS
network servers: AUSI’EX Tech Rep. 1 iulv 1990.

[38] A Chencnak and R. H. KaLz.‘‘l’erformaucc measurements ofa
disk array prototype.“ presenter! at ACM SIUMEIRICS Conf..
San Diego. CA. May J‘ir‘Oll.

[J‘H M. Schroeder at al.. "Autonct: A high»spet:d self-configuring.
local area network using point-to-poiut links." DEC SRC Tech.
Rep. 59. Apr. 1990.

[all] A. Clict‘venak. “Performance measurements of the first RAID
prototype.“ Uti. Berkeley Computer Science Division Report
No. UCBFCSD 90.5%, 3:111. 1990.

i l~3

"to:3

,__.. L) :44

PROCEEDINGS OF THE IHE. VOL SJ. N0. 8. AUUI'ST I992

23 of 24

Randy H. Kulz (Senior Mcmhcr, iEEE) was
born in Brooklyn. NY, rm August 19. 1955.
From 3973 :hmugb 1976 he attcttdud Comtil
University. remitting a AR. degree in math!
cavities and mmputcr SciCnCc‘. and gruduaring
Phi Beta Kappa with distinction in all subjects.
He. was :r gtaduatc student at the. Univnrsity
of Catifomia. Berkeley, receiving tit: MS. and
PhD. degms m compum science in 1978 and
1980 reapcctivcly. He held an IBM prcdocrnral
feliowship.

In the period Him—WEI he ltcid research scicnlist prm'liuns HI Bruit.
Bennett, and Ncwman. inc.. and lit: Cmnputcr Corporation of America.
Iac.. in Cambridge. MA. From WEI la l983 he was tin assistant profcssar
in the Computer Sciences; Dcpurtment at the Univcrsiry of Wisconsin-
Madimn. [:1 1.983 he joined 111: faculty of the Univusity of California,
Berkciey. at; an assistant ptofcsgurr He was promoted to associate profess-01
in 1985 and to fuli professor in 1939.

Prof, K312. was awarded an IBM Faculty Development Award and n Na-
tional Sciatica: Foundation Presidential Ynung investigator Award in HEM,
H9. serves (in the advisory panel 91' the Micmclcctranics and Information
Ptooassing (M.1.P.S.] division of the Computnr and informalian Sciences.
{(11.5.52) directorate. of the Naurmat Science Feumiation. He has won
three bcsl papa: awards and four best prescnlaiiun awards at conferences
in his technical ficldt He has published over 80 papers in the fields of data-
base managemr, computer-aided ticsign of cl¢clrortics syslcms, parallel
computer architecrutw. and high-performance mass manage systems. He
is principal investigator or“ a NASA. and DARPA sponsored mutract tn
buiid a pmtotypc high~pcriurmanw disk subsystem fut teraop computers.
His current rcseartzh interests include HO cuntrolicr dcsign and high-
pcrlermancc Slripcd disk and rape subsystems. He is a faculty investigatnr
on the chuuia 2.006 Ptojcct, an cffort to apply advanced storage tech-
nologics in support of Global Chang: Researchers thraughout the state
of California. In addition. he has sun-ad as a consultant to intcnrgctrics.
the Us. Air Force, Xerox. Texas instruments. Hambrecht and Quist. and
numerous firm]! high lcchnolugy firms. Pml. K312 i: rt member of the
Associatiun of Computing Machmcry.

mn- NEIWORK AND CHANNEL BASED mount; 24 of 24 1261

