
Payload Caching: High-Speed Data Forwarding for Network

Intermediaries

Ken Yocum and Je� Chase

Department of Computer Science

Duke University

fgrant,chaseg@cs.duke.edu �

Abstract

Large-scale network services such as data delivery
often incorporate new functions by interposing in-
termediaries on the network. Examples of forward-
ing intermediaries include �rewalls, content routers,
protocol converters, caching proxies, and multicast
servers. With the move toward network storage,
even static Web servers act as intermediaries to for-
ward data from storage to clients.

This paper presents the design, implementation,
and measured performance of payload caching, a
technique for improving performance of host-based
intermediaries. Our approach extends the func-
tions of the network adapter to cache portions of
the incoming packet stream, enabling the system
to forward data directly from the cache. We pro-
totyped payload caching in a programmable high-
speed network adapter and a FreeBSD kernel. Ex-
periments with TCP/IP traÆc ows show that pay-
load caching can improve forwarding performance
by up to 60% in realistic scenarios.

1 Introduction

Data forwarding is increasingly common in large-
scale network services. As network link speeds ad-
vance, networks are increasingly used to spread the
functions of large servers across collections of net-
worked systems, pushing functions such as stor-
age into back-end networks. Moreover, systems
for wide-area data delivery increasingly incorporate
new functions | such as request routing, caching,
and �ltering | by \stacking" intermediaries in a
pipeline fashion.

For example, a typical Web document may pass

�Author's address: Department of Computer Science,

Duke University, Durham, NC 27708-0129 USA. This work is

supported by the National Science Foundation (through EIA-

9870724 and EIA-9972879), Intel Corporation, and Myricom.

through a series of forwarding steps along the path
from its home on a �le server to some client, pass-
ing through a Web server and one or more proxy
caches. Other examples of forwarding intermedi-
aries include �rewalls, content routers, protocol con-
verters [10], network address translators (NAT), and
\overcast" multicast nodes [13]. New forwarding in-
termediaries are introduced in the network storage
domain [14, 2], Web services [12], and other net-
worked data delivery.

This paper investigates a technique called payload

caching to improve data forwarding performance on
intermediaries. In this paper, we de�ne forward-

ing as the simple updating of packet headers and
optional inspection of data as it ows through an
intermediary. Note that data forwarding is more
general than packet forwarding. While it encom-
passes host-based routers, it also extends to a wider
range of these intermediary services.

Payload caching is supported primarily by an en-
hanced network interface controller (NIC) and its
driver, with modest additional kernel support in the
network bu�ering and virtual memory system. The
approach is for the NIC to cache portions of the in-
coming packet stream, most importantly the packet
data payloads (as opposed to headers) to be for-
warded. The host and the NIC coordinate use of
the NIC's payload cache to reduce data transfers
across the I/O bus. The bene�t may be suÆcient
to allow host-based intermediaries where custom ar-
chitectures were previously required. Section 2 ex-
plains in detail the assumptions and context for pay-
load caching.

This paper makes the following contributions:

� It explores the assumptions underlying payload
caching, and the conditions under which it de-
livers bene�ts. Quantitative results illustrate
the basic properties of a payload cache.

Oracle-Huawei-NetApp Ex. 1019, pg. 1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

� It presents an architecture and prototype im-
plementation for payload caching in a pro-
grammable high-speed network interface, with
extensions to a zero-copy networking frame-
work [5] in a FreeBSD Unix kernel. This de-
sign shows how the host can manage the NIC's
payload cache for maximum exibility.

� It presents experimental results from the pro-
totype showing forwarding performance under
payload caching for a range of TCP/IP net-
working traÆc. The TCP congestion control
scheme adapts to deliver peak bandwidth from
payload caching intermediaries.

� It outlines and evaluates an extension to pay-
load caching, called direct forwarding, that im-
proves forwarding performance further when
intermediaries access only the protocol headers.

This paper is organized as follows. Section 2 gives
an overview of payload caching and its assumptions.
Section 3 outlines interfaces and extensions for pay-
load caching at the boundary between a host and
its NIC. Section 4 describes our payload caching
prototype using Myrinet and FreeBSD. Section 5
examines the behavior and performance of payload
caching. Section 6 describes related work and out-
lines future research. Section 7 concludes.

PCI bus

NIC

main memory

host

Figure 1: Forwarding a data payload with payload
caching.

2 Overview

The payload caching technique optimizes network
communication for forwarding intermediaries. Pay-
load caching targets a typical host-based structure,
in which the forwarding logic runs on a CPU whose
memory is separated from the network interface.

The NIC moves data to and from host memory using
Direct Memory Access (DMA) across an I/O bus,
such as PCI.

A forwarding intermediary receives a stream of
packets from the network. Each packet DMAs
across the I/O bus into one or more bu�ers in host
memory. The network protocol stack inspects the
headers and delivers the data to an application con-
taining the intermediary logic, such as a �rewall or
caching proxy. The application may examine some
of the data, and it may forward some or all of the
data (the payload) to another destination without
modifying it.

Figure 1 shows the potential bene�t of payload
caching in this scenario. Ordinarily, forwarded data
payloads cross the I/O bus twice, once on input
and once on output. Payload caching leaves incom-
ing payloads in place in NIC bu�ers after delivering
them to the host. If the host forwards the data un-
changed, and if the forwarded data is still cached on
the NIC, then the output transfer across the bus is
unnecessary. This reduces the bandwidth demand
of forwarding on the I/O bus and memory system,
freeing these resources for other I/O or memory-
intensive CPU activity. Payload caching can be es-
pecially e�ective for intermediaries that do I/O to
other devices, such as disk-based Web proxy caches.

Payload caching imposes little or no runtime cost,
but it yields a signi�cant bene�t under the following
conditions.

� The intermediary forwards a large share of
its incoming data without modifying it. This
is often the case for intermediaries for Web
delivery, including caching proxies, �rewalls,
content routers, multicast overlay nodes, and
Web servers backed by network storage. Pay-
load caching also naturally optimizes multicast
transmits, such as mirrored writes to a net-
work storage server or to a network memory
cache [9].

� The payload cache on the NIC is large enough
to retain incoming payloads in the cache un-
til the host can process and forward them.
In practice, the amount of bu�ering required
depends on the incoming traÆc rate, traÆc
burstiness, and the CPU cost to process for-
warded data. One contribution of this work is
to empirically determine the hit rates for var-
ious payload cache sizes for TCP/IP streams.
Section 5.3 presents experimental results that
show good hit rates at forwarding speeds up to

Oracle-Huawei-NetApp Ex. 1019, pg. 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1 Gb/s and payload cache sizes up to 1.4 MB.

� Forwarded data exits the intermediary by the
same network adapter that it arrived on. This
allows the adapter to obtain the transmitted
data from its payload cache instead of from
the intermediary's memory. Note that this
does not require that the output link is the
same as the input link, since many recent net-
working products serve multiple links from the
same adapter for redundancy or higher aggre-
gate bandwidths. Payload caching provides
a further motivation for multi-ported network
adapters.

� The NIC supports the payload cache bu�er-
ing policies and host interface outlined in Sec-
tion 3. Our prototype uses a programmable
Myrinet NIC, but the scheme generalizes eas-
ily to a full range of devices including Ethernet
and VI NICs with suÆcient memory.

While the payload caching idea is simple and intu-
itive, it introduces a number of issues for its design,
implementation, and performance. How large must
a payload cache be before it is e�ective? What is
the division of function between the host and the
NIC for managing a payload cache? How does pay-
load caching a�ect other aspects of the networking
subsystem? How does payload caching behave un-
der the networking protocols and scenarios used in
practice? The rest of this paper addresses these
questions.

3 Design of Payload Caching

This section outlines the interface between the host
and the NIC for payload caching, and its role in the
ow of data through the networking subsystem.

The payload cache indexes a set of bu�ers resid-
ing in NIC memory. The NIC uses these memory
bu�ers to stage data transfers between host memory
and the network link. For example, the NIC han-
dles an incoming packet by reading it from the net-
work link into an internal bu�er, then using DMA
to transmit the packet to a bu�er in host memory.
All NICs have suÆcient internal bu�er memory to
stage transfers; payload caching requires that the
NIC contain suÆcient bu�er memory to also serve
as a cache. For simplicity, this section supposes that
each packet is cached in its entirety in a single host
bu�er and a single NIC bu�er, and that the payload
cache is fully e�ective even if the host forwards only
portions of each packet unmodi�ed. Section 4 �lls

in important details of host and NIC bu�ering left
unspeci�ed in this section.

The host and NIC coordinate use of the payload
cache and cooperate to manage associations be-
tween payload cache entries and host bu�ers. A key
goal of our design is to allow the host | rather than
the NIC | to eÆciently manage the placement and
eviction in the NIC's payload cache. This simpli�es
the NIC and allows exibility in caching policy for
the host.

Figure 2 depicts the ow of bu�er states and control
through the host's networking subsystem. Figure 3
gives the corresponding state transitions for the pay-
load cache. The rest of this section refers to these
two �gures to explain interactions between the host
and the NIC for payload caching.

The dark horizontal bar at the top of Figure 2 repre-
sents the boundary between the NIC and the host.
We are concerned with four basic operations that
cross this boundary in a typical host/NIC interface.
The host initiates transmit and post receive opera-
tions to send or receive packets. For example, the
host network driver posts a receive by appending an
operation descriptor to a NIC receive queue, speci-
fying a host bu�er to receive the data; the NIC de-
livers an incoming packet header and payload by ini-
tiating a DMA operation from NIC memory to the
host bu�er. In general, there are many outstand-
ing receives at any given time, as the host driver
attempts to provide the NIC with an adequate sup-
ply of host bu�ers to receive the incoming packet
stream. When a transmit or receive operation com-
pletes, the NIC signals receive and transmit com-

plete events to the host, to inform it that the NIC
is �nished �lling or draining bu�ers for incoming or
outgoing packets.

Payload caching extends these basic interactions to
enable the host to name NIC bu�ers in its com-
mands to the NIC. This allows the host to directly
control the payload cache and to track NIC bu�ers
that have valid cached images of host bu�ers. To
avoid confusion between host memory bu�ers and
internal NIC bu�ers, we refer to NIC bu�ers as pay-
load cache entries. For the remainder of this paper,
any use of the term bu�er refers to a host memory
bu�er, unless otherwise speci�ed.

Each payload cache entry is uniquely named by an
entry ID. The host network driver speci�es an entry
ID of a NIC bu�er to use for each host bu�er in a
newly posted transmit or receive. This allows the
host to control which internal NIC bu�ers are used
to stage transfers between host memory and the net-

Oracle-Huawei-NetApp Ex. 1019, pg. 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

unmapped
(host-owned)

mapped
(NIC-owned)

Deliver host buffer, e.g.,
map it into the file cache
or process address space.

Unpin host buffer if
last/only pending
send completes.

bind/pin for I/O

receive
payload

no
payload

post
receive

uncached
transmit

cached
transmit

valid/bound
pcache entries

invalid/free
pcache entries

transmit
complete

invalidate/unbind

receive post receive transmit transmit complete

Figure 2: The ow of host bu�ers and payload cache entries through the networking subsystem.

work links. The NIC retains the data from each
transfer in the corresponding entry until the host
commands the NIC to reuse that entry for a subse-
quent transfer. Thus each transfer e�ectively loads
new data into the payload cache; the host main-
tains an association between the host bu�er and its
payload cache entry as long as the entry's cached
image of the bu�er remains valid. If the host then
initiates a subsequent transmit from the same bu�er
without modifying the data, the host sets a �eld in
the descriptor informing the NIC that it may trans-
mit data cached in the speci�ed entry rather than
fetching the data from the host bu�er using DMA.
This is a payload cache hit.

By specifying the entry ID for a transmit or receive,
the host also controls eviction of data from the pay-
load cache. This is because I/O through a payload
cache entry may displace any data previously cached
in the target entry. It is easy to see that most-
recently-used (MRU) is the best replacement policy
for the payload cache when the host forwards data in
FIFO order. This is discussed further in Section 5.3.

We use the following terminology for the states of
payload cache entries and host bu�ers. An entry is
valid if it holds a correct copy of some host bu�er,
else it is invalid. A host bu�er is cached if some valid
entry holds a copy of it in the payload cache, else
it is uncached. An entry is bound if it is associated
with a bu�er, else it is free. A bu�er is bound if
it is associated with an entry, else it is unbound.

A bound (bu�er,entry) pair is pending if the host
has posted a transmit or receive operation to the
NIC specifying that pair and the operation has not
yet completed. Note that a bound bu�er may be
uncached if it is pending.

Initially, all entries are in the free state. The host
driver maintains a pool of entry IDs for free payload
cache entries, depicted by the cloud near the center
of Figure 2. The driver draws from this pool of free
entries to post new receives, and new transmits of
uncached bu�ers. Before initiating the I/O, the op-
erating system pins its bu�ers, binds them to the
selected payload cache entries, and transitions the
entries to the pending state. When the I/O com-
pletes, the NIC noti�es the host with a correspond-
ing receive or transmit complete noti�cation via an
interrupt. A receive may complete without deposit-
ing valid cacheable data into some bu�er (e.g., if it
is a short packet); in this case, the driver immedi-
ately unbinds the entry and returns it to the free
pool. Otherwise, the operating system delivers the
received data to the application and adds the bound
(buffer; entry) pair to its bound entry pool, repre-
sented by the cloud in the lower right of Figure 2.

On a transmit, the driver considers whether each
bu�er holding the data to be transmitted is bound
to a valid payload cache entry. If the bu�er is un-
bound, the driver selects a new payload cache entry
from the free pool to stage the transfer from the
bu�er. If the bu�er is already bound, this indicates

Oracle-Huawei-NetApp Ex. 1019, pg. 4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

that the host is transmitting from the same bu�er
used in a previous transmit or receive, e.g., to for-
ward the payload data to another destination. This
yields a payload cache hit if the associated entry
is valid. The host reuses the payload cache entry
for the transmit, and sets a �eld in the operation
descriptor indicating that the entry is still valid.

After the transmit completes, the driver adds the
entry and bu�er pairing to the bound entry pool.
Regardless of whether the transmit was a payload
cache hit, the entry is now valid and bound to the
host bu�er used in the transmit. A subsequent
transmit of the same data from the same bu�er (e.g.,
as in a multicast) yields a payload cache hit.

Host
Unbound

Host
Bound

Receive
Bound

Send
Bound

transmit

all transmits
complete receive complete

(payload)

receive complete
(no payload)

recycle/modify/uncache
host buffer

transmit

receive

initial

transmit

Figure 3: Payload cache entry states and transi-
tions.

Figure 3 summarizes the states and transitions for
payload cache entries. Initially, all entries are in the
free state at the top of the �gure. If the driver posts
a transmit or a receive on an unbound/uncached
host bu�er, it selects a free NIC payload cache entry
to bind to the bu�er and stage the transfer between
the network link and host memory. This causes the
selected entry to transition to the left-hand send-

bound state for a pending transmit, or to the right-
hand receive-bound state for a pending receive.

In the send-bound and receive-bound states in
Figure 3, the entry and bu�er are bound with a
pending I/O operation. For a transmit, the en-
try is marked valid as soon as the transfer initi-
ates; this allows subsequent transmits from the same
bu�er (e.g., for a multicast) to hit in the payload
cache, but it assumes that the NIC processes pend-
ing transmits in FIFO order. For a receive, the entry
is marked valid only on completion of the received

packet, and only if the received packet deposited
cacheable data in the posted bu�er (a short packet
might not occupy all posted bu�ers).

A valid payload cache entry transitions to the bot-
tom host-bound state when the pending transmit
or receive completes. In this state, the entry retains
its association with the host bu�er, and caches a
valid image of the bu�er left by the completed I/O.
Subsequent transmits from the bu�er in this state
lead back to send-bound, yielding a payload cache
hit.

Once a binding is established between a host bu�er
and a valid payload cache entry (the host-bound

state in Figure 3, and the bottom cloud in Figure 2),
the operating system may break the binding and
invalidate the payload cache entry. This returns the
payload cache entry to the free pool, corresponding
to the initial host-unbound state in Figure 3, or
to the top cloud in Figure 2. This system must take
this transition in the following cases:

� The system delivers the payload data to some
application, which subsequently modi�es the
data, invalidating the associated payload cache
entry.

� The system links the data bu�er into the sys-
tem �le cache, and a process subsequently mod-
i�es it, e.g., using a write system call.

� The system releases the bu�er and recycles the
memory for some other purpose.

� The system determines that the cached entry
is not useful, e.g., it does not intend to forward
the data.

� There are no free payload cache entries, and
the driver must evict a bound entry in order to
post a new transmit or receive operation.

The payload cache module exports an interface to
higher levels of the OS kernel to release or invalidate
a cache entry for these cases. In all other respects
payload caching is hidden in the NIC driver and is
transparent to upper layers of the operating system.

4 Implementation

This section describes a prototype implementation
of payload caching using Myrinet, a programmable
high-speed network interface. It extends the design
overview in the previous section with details relating
to the operating system bu�ering policies.

Oracle-Huawei-NetApp Ex. 1019, pg. 5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

