
Implementing Cooperative Prefetching and Caching
in a Globally-Managed Memory System

Geoffrey M. Voelker, Eric J. Anderson, Tracy Kimbrel�,
Michael J. Feeleyy, Jeffrey S. Chasez, Anna R. Karlin, and Henry M. Levy

Department of Computer Science and Engineering
University of Washington

Abstract

This paper presentscooperative prefetching and caching— the use
of network-wide global resources (memories, CPUs, and disks) to
support prefetching and caching in the presence of hints of fu-
ture demands. Cooperative prefetching and caching effectively
unites disk-latency reduction techniques from three lines of re-
search: prefetching algorithms, cluster-wide memory management,
and parallel I/O. When used together, these techniques greatly in-
crease the power of prefetching relative to a conventional (non-
global-memory) system. We have designed and implemented
PGMS, a cooperative prefetching and caching system, under the
Digital Unix operating system running on a 1.28 Gb/sec Myrinet-
connected cluster of DEC Alpha workstations. Our measurements
and analysis show that by using available global resources, coop-
erative prefetching can obtain significant speedups for I/O-bound
programs. For example, for a graphics rendering application, our
system achieves a speedup of 4.9 over a non-prefetching version of
the same program, and a 3.1-fold improvement over that program
using local-disk prefetching alone.

1 Introduction

The past decade has seen a two-order-of-magnitude increase in
processor speed, yet only a two-fold improvement in disk ac-
cess time. As a result, recent research has focused on reduc-
ing disk stall time through several approaches. One approach
is the development of algorithms for prefetching data from disk
into memory [7, 27, 22, 29], using hints from either programmer-

�Kimbrel is at the IBM T.J. Watson Research Center.
yFeeley is at the Department of Computer Science, University of British Columbia.
zChase is at the Department of Computer Science, Duke University.
This work was supported in part by grants from the National Science Foundation
(EHR-95-50429, CCR-9632769, MIP-9632977, and CDA-95-12356), the Advanced
Research Projects Agency (F30602-97-2-0226), the National Science and Engineering
Research Council of Canada, the US-Israel Binational Science Foundation (BSF), and
from Digital Equipment Corporation, Intel Corporation, Myricom, Inc., and the Open
Group. Voelker was supported in part by a fellowship from Intel Corporation, Ander-
son was supported in part by a fellowship from Microsoft Corporation, and Chase was
supported in part by NSF CAREER CCR-96-24857.

annotated [27] or compiler-annotated [25] programs. A second ap-
proach is the use of memory on idle network nodes as an additional
level of buffer cache [13, 14, 16]; thisglobal memorycan be ac-
cessed much faster than disk over high-speed switched networks.
A third approach is to stripe files over multiple disks [26], using
multiple nodes to access the disks in parallel [18, 9, 3].

This paper presentscooperative prefetching and caching— the
use of network-wide global memory to support prefetching and
caching in the presence of optional program-provided hints of fu-
ture demands. Cooperative prefetching and caching combines mul-
tiple approaches to disk-latency reduction, resulting in a system
that is significantly different than one using any single approach
alone. In the presence of global memory, a node has three choices
for data prefetching: (1) from disk into local memory, (2) from disk
into global memory (i.e., the disk and memory ofanothernode),
and (3) from global memory into local memory. When used to-
gether, these options greatly increase the power of prefetching rel-
ative to a conventional (non-global-memory) system.

For example, Figure 1a shows a simplified view of a conven-
tional prefetching system. Node A issues prefetch requests to miss-
ing blocksm andn in advance, so that both blocks are available in
memory just in time for the data references. In this case, buffers
must be freed on node A for blocksm andn about2FD andFD
in advance of their use, respectively, whereFD is the disk fetch
time. There are two possible problems with this scheme. First,
node A's disk may not be free in time to prefetch these blocks with-
out stalling. Second, if prefetched early enough to avoid stalling,
blocks m and n may replace useful data, causing an increase in
misses; whether or not this happens depends on how far in advance
the data is prefetched (which depends onFD) and the access pat-
tern of the program.

In contrast, Figures 1b and 1c show two examples of prefetch-
ing in a global-memory system. From these scenarios, we see that
combining prefetching and global memory has several possible ad-
vantages:

� A prefetching node can greatly delay its final load request
for data that resides in global memory, thereby reducing the
chance of replacing useful local data. In Figure 1b, for ex-
ample, node A requests that node B prefetch pages from disk
into B's memory ahead of time. As a result, node A need not
free a buffer for the prefetched data untilFG (the time for a
page fetch from global memory) before its use. On a 1Gb/sec
network, such as Myrinet,FG may be up to 50 times smaller
thanFD, so this difference is substantial.

� The I/O bandwidth available to a single node is ultimately
limited by its I/O subsystem – in most cases, the disk sub-
system. However, using idle nodes to prefetch data into

Oracle-Huawei-NetApp Ex. 1015, pg. 1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

nmFD

FG

FD

prefetch m from disk prefetch n from disk

nmFD FG

request node B to
prefetch m

request node B to
prefetch n

prefetch m from B

prefetch n from B

FG nm

FD

FG

prefetch m from B

FD

FD

request node C
to prefetch n

request node B
to prefetch m

c. Prefetching via global memory using two remote nodes

b. Prefetching via global memory on a remote node

prefetch n from C

a. Prefetching from disk on conventional prefetching system

Figure 1: Prefetching in conventional and global-memory systems

global memory greatly increases the available I/O bandwidth
by adding in parallel: (1) the bandwidth of the network, (2)
the bandwidth of remote disk subsystems, and (3) the execu-
tion power of the remote CPUs. Use of this parallelism for
the global prefetching shown in Figures 1b and 1c effectively
reduces page prefetch time for I/O-bound processes fromFD
toFG.

� Figure 1c shows that distributing prefetch requests among
multiple nodes in parallel allows those nodes to delay their
own buffer replacement decisions (in this case, node B bene-
fits relative to Figure 1b), thereby making more effective use
of their memories.

� With the high ratio of disk latency to global memory latency,
a highly-conservative process could choose to prefetchonly
into global memory; the process would fault on reference to
a non-resident page, but would still benefit from the 50-fold
reduction in fault time.

� Given that there is idle memory and CPU power in the net-
work, a process could afford to prefetchspeculatively, using
idle global pages as the speculative prefetch cache.

While the idea of using network memory for prefetching is con-
ceptually straightforward, it raises a number of questions. For ex-
ample, how do nodesgloballychoose the pages in which to prefetch
from the global memory pool? When should data be prefetched
and to what level of the storage hierarchy? When should pages be
moved from global memory to local memory? How do we trade off
the use of global memory pages for prefetching versus the use of
those frames to hold evicted VM and file pages for non-prefetching
applications? And finally, how do we value each page in the net-
work, in order to best utilize each page frame?

To answer these questions, we have defined an algorithm for
global memory management with prefetching and implemented
that algorithm in the DEC UNIX operating system, running on
a collection of DEC Alpha workstations connected by a Myrinet
high-speed switched network. Our system, called PGMS (Prefetch-
ing Global Memory System), integrates all cluster memory use, in-
cluding VM pages, mapped files, and file system buffers, for both
prefetching and non-prefetching applications. It effectively unites
techniques from three previous lines of research: prefetching algo-
rithms, including the work of Patterson et al. [27], Cao et al. [7],

Kimbrel et al. [22], and Tomkins et al. [29]; the global memory
system (GMS) of Feeley et al. [14]; and the use of network nodes
for parallel I/O, as in the Zebra system of Hartman and Ouster-
hout [18]. Our measurements of PGMS executing on the Alpha-
based cluster show that prefetching in a global memory system can
produce substantial speedups for I/O-bound programs: e.g., for a
memory-bound graphics rendering application, PGMS achieves a
speedup of 4.3 over a non-prefetching version of the same pro-
gram, and a 2.8-fold improvement over that program using local
disk prefetching alone.

The remainder of the paper is organized as follows. Section 2
presents our algorithm for prefetching in global memory. Section 3
describes the implementation of our algorithm in the DEC UNIX
operating system. Section 4 presents performance results from our
prototype. We compare our work to previous research in Section 5
and conclude in Section 6.

2 The Global Prefetching and Caching Algorithm

This section presents the idealized global prefetching and caching
algorithm that is the basis of PGMS; Section 3 describes how the
PGMS implementation efficiently approximates the algorithm. For
the purposes of defining the algorithm, we make several simplify-
ing assumptions. First, we assume a uniform cluster topology with
network page transfer cost (FG) independent of location. Second,
we assume uniform availability of disk-resident data to all nodes
(e.g., through a network-attached disk [17] or replicated file sys-
tem [24]) and uniform page transfer time from disk into a node's
memory (FD). For cluster systems using high-speed switched net-
works,FG will be significantly smaller thanFD. Third, we assume
a centralized algorithm with completea priori knowledge of the
reference streams of the applications running on all nodes, includ-
ing the pages to be referenced, the relative order in which they are
referenced, and the inter-reference times.

We begin with a description of the algorithm below. In Sec-
tion 2.3, we discuss the theory motivating our design.

2.1 Design principles

The goal of our design is to minimize average memory reference
time across all processes in the cluster. This goal requires that “op-
timal” prefetching and caching decisions be made both for individ-
ual processes and for the cluster as a whole. The algorithm we use
in PGMS has two basic objectives:

� To reduce disk I/Os, maintain in the cluster's global memory
the set of pages that will be referenced nearest in the future.

� To reduce stalls, bring each page in the cluster to the node
that will reference it in advance of the access.

2.2 Detailed description

In our discussion, we use the termlocal pagefor a page that is
resident on a node using that page, and the termglobal pagefor a
page that is cached by one node on behalf of another. A reference
to a global page thus requires a network transfer.

To meet its objectives PGMS must make decisions about both
prefetching and cache replacement. Furthermore, the system must
make (1) global decisions about which pages to keep in global
memory rather than on disk, and (2) local decisions about which
data to keep resident in a node's local memory rather than in global
memory. The PGMS algorithm thus implements four interrelated
policies:

� local cache replacement (transfer of pages from a node's lo-
cal memory to global memory),

Oracle-Huawei-NetApp Ex. 1015, pg. 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

� global cache replacement (eviction from global memory),

� local prefetching (disk-to-local and global-to-local), and

� global prefetching (disk-to-global).

For cache replacement, we modify the algorithms used by
GMS [14] to incorporate prefetching. For local cache replacement,
we first choose to forward to global memory a global page on the
local node (i.e., a page held on behalf of another node); if there is
no global page, we choose the local page whose next reference is
furthest in the future. For global cache replacement in PGMS, we
evict the page in the cluster whose next reference is furthest in the
future.

For prefetching decisions we apply a hybrid algorithm, whose
goal is to be conservative locally but aggressive with resources on
idle nodes. For local prefetching, we adapt the Forestall algorithm
of Kimbrel, et al. [22, 29]. Forestall analyzes the future reference
stream to determine whether the process is I/O constrained; if so,
Forestall attempts to prefetch just early enough to avoid stalling.
In our adaptation, we apply the Forestall algorithm to the node's
local reference stream and take into account the different access
times for network-resident (global) and disk-resident data. This
analysis leads to aprefetch predicate; when the prefetch predicate
is true, Forestall recommends that a page be prefetched either from
global memory or from local disk. Whether the page is actually
prefetched depends on whether a resident page can be found whose
next reference is further in the future.

For prefetching into global memory (disk-to-global) PGMS
uses the Aggressive algorithm of Cao et al. [6]. If a page on disk
will be referenced earlier than a page in cluster memory, then the
disk page is prefetched. To make room, the global eviction pol-
icy chooses for replacement the page (in the cluster) whose next
reference is furthest in the future.

Computing the local prefetch predicate

The local prefetch predicate indicates when prefetching is needed
to avoid additional stalls. In our predicate computation, we assume
that all prefetches into a node and all memory references at a node
are serialized.

Consider the hinted future reference stream on a nodeP at a
given timeT , and letb[i] be thei-th missing page in the hinted ref-
erence stream that will be accessed after timeT . (Missing pages at
time T are those pages that are not inP 's local memory or in the
process of being prefetched intoP 's local memory at timeT .) Let
tb[i] be the time betweenT and the next access tob[i], assuming no
stalls occur betweenT and this access. LetFi be the time that will
be required to fetchb[i] into local memory:Fi equalsFG (the time
to perform a network fetch) ifb[i] is currently in global memory
and equalsFD (the time to fetch from disk) otherwise. Under these
assumptions, we can readily calculate whether or not we need to be-
gin prefetching immediately in order to avoid stalling: prefetching
is not yet required if for eachj, the time to fetch the firstj missing
pages (

P
1�i�j

Fi) is less than the time until the access to thej-th
missing page (tb[j]). Therefore, we define the local prefetch pred-
icate to be true if there is somej for which

P
1�i�j

Fi � tb[j].
Whenever this prefetch predicate is true for somej, nodeP at-
tempts to prefetch its first missing page.

2.3 Theoretical underpinnings

We begin with a discussion of cache replacement in a three-level
memory hierarchy. Then we summarize theoretical results on
prefetching as it pertains to PGMS. Finally, we touch upon the
problem of buffer allocation among competing processes.

2.3.1 Cache replacement

Our algorithm attempts to minimize the total cost of all memory
references within the cluster. The cost of a memory reference de-
pends on whether, at the time of reference, the data is in local mem-
ory, in global memory (on another node), or on disk. Typically, a
local hit is more than three orders of magnitude faster than a global
memory or disk access, while a global memory hit over a Gb/sec
network is on the order of 50 times faster than a disk access.

It is well known that in a two-level memory hierarchy such as
local memory and disk, the optimal replacement strategy is to re-
place the page whose next reference is furthest in the future [4]. The
analogous replacement strategy for a three-level memory hierarchy
(local memory, global memory, disk) such as PGMS is the Global
Longest Forward Distance (GLFD) algorithm, defined formally
as follows.

On a reference by nodeA to pageg in global memory on
nodeG, bring g into A's memory, where it becomes a lo-
cal page. In exchange, select a page onA for eviction: if
A has a global page, send that page toG, where it remains
a global page; otherwise ifA has no global page, select the
local page whose next reference is furthest in the future on
A, and send that page toG, where it becomes a global page.
On a reference by nodeA to paged on disk, readd intoA's
memory. In exchange, select (1) a pagea on A for evic-
tion to global memory, and (2) a pageg in the cluster for
eviction to disk. Select the pagea on A for eviction us-
ing the same method described above for a global memory
reference. For the cluster-wide eviction, select pageg (say
on nodeG) whose next reference is furthest in the future,
cluster-wide. Writeg to disk, and senda to nodeG, where it
becomes a global page.

The effect of this algorithm is to (1) maintain in the cluster as a
whole the set of pages that will be accessed soonest and (2) main-
tain on each node the set of pages that will be accessed soonest
by processes running on that node. While this algorithm is not al-
ways optimal, it is near optimal as shown by the following theorem
(whose proof we omit for reasons of space):

Theorem
Consider a global memory system with local memory access

costFL, global memory access costFG, and disk access costFD,
whereFL < FG < FD. LetOPT be the offline page replace-
ment algorithm minimizing total memory access cost. We denote
byCOPT (R) the total memory access cost incurred byOPT on
reference streamR, i.e.

COPT (R) = jRjFL +OG(R)FG +OD(R)FD;

whereOG(R) (resp.OD(R)) denotes the number of global mem-
ory references (resp. disk references) made byOPT onR. Simi-
larly, denote byCGLFD(R) the total memory access cost incurred
byGLFD on inputR. Then for anyR,

CGLFD(R) � COPT (R) (1 + 3(FG=FD)) :

The theorem implies that theGLFD algorithm is near optimal
whenever the ratio of network access time to disk access time is
small. For example, in a fast network such as the Myrinet where
(FG=FD) � 0:02, the total I/O overhead incurred by theGLFD
paging algorithm is within 6% of optimal. Therefore, in PGMS we
useGLFD as the cache replacement algorithm.

Oracle-Huawei-NetApp Ex. 1015, pg. 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2.3.2 Prefetching strategy

Effective prefetching into local memory eliminates stall time while
minimizing computational overhead. Previous studies of prefetch-
ing [6, 7] have shown that for a fully-hinted process with a single
disk, the Aggressive prefetching algorithm achieves near-optimal
reduction in stall time. Unfortunately, Aggressive's early prefetch-
ing may result in suboptimal replacements, which can increase the
total number of I/Os performed. Although these I/Os are over-
lapped with computation, a significant overhead (the computational
overhead of issuing fetches) can result. The Forestall algorithm has
been shown in practice to match the reduction in I/O stall achieved
by the Aggressive algorithm, while avoiding the computational
overhead of performing unnecessary fetches [22, 29]. Forestall is
therefore the method of choice for local prefetching.

In contrast to local prefetching, disk stall time is much more im-
portant than computational overhead for disk-to-global prefetching,
where the prefetching is performed by otherwise idle nodes. By
analogy with the problem of prefetching from a single disk into a
single memory [6], the problem of prefetching from multiple disks
into global memory, under the assumption that disk-resident data
is available uniformly on all disks, can be shown to achieve near-
optimal reduction in disk stall time.1 Further, where the pages
to be evicted will not be referenced until significantly later, if ever,
aggressive prefetching's drawback of less accurate cache replace-
ment decisions is relatively unimportant. Little harm results from
displacing these pages aggressively in order to gain the benefits of
prefetching.2

There are two other important reasons to prefetch aggressively
into global memory. First, pressure onlocal memory is signifi-
cantly reduced through aggressive global prefetching. Indeed, the
times at which the local prefetch predicate for a process is true
depends directly on how many of the process' missing pages are
in global memory (as opposed to disk); the greater the fraction
of missing pages that are in global memory, thelater the times at
which the predicate will first be true. Delaying the times at which
the local prefetch predicate is true allows better replacements to be
made on a busy node running the hinted process, reducing unneces-
sary fetches and associated overhead on that node. Second, hinted
processes cannot rely on access to the full CPU and disk band-
width of idle nodes, because of competition with other prefetching
processes for these resources. Aggressive prefetching gives these
processes some leeway for dealing with this uncertainty whereas
more conservative global-memory prefetching could result in un-
necessary stall.

2.3.3 Allocating bu�ers among competing processes

Our assumption of complete advance knowledge of the combined
reference streams of the applications in the cluster allows us to view
each node as executing a single process. This simplifies the algo-
rithm and conceptual framework. In practice, any prefetching sys-
tem must allocate buffers among multiple independent processes
with differing hint capabilities.

Policies for allocating buffers among competing processes on
a single node have been extensively studied [27, 29, 8, 7]. These
studies show that proper buffer allocation among competing pro-
cesses on a single node must consider working set sizes, hinted
reference patterns, cache behavior of unhinted processes, variabil-
ity of inter-reference CPU times between different processes, the

1This is in sharp contrast to the case where different pages reside on different disks,
in which case aggressive prefetching can be far from optimal.

2It should also be noted that in contrast to the results of [29], a page cannot be
prefetched into global memory and then evicted before it is referenced: a page chosen
for prefetch into global memory is always the then soonest non-resident page to be
referenced by any process in the cluster, so the next global fault will not occur until
after that page is referenced.

prefetching and cache replacement policies used and processor
scheduling. For example, the benefit of the prefetch recommen-
dations made by hinted processes can be compared to the cost of
LRU cache replacement decisions for unhinted processes [27, 29].
An interesting direction for future research is to analyze these al-
gorithms in the context of a prefetching global memory system.

Processes on different nodes will also compete for global mem-
ory and prefetching resources. The prefetching system must simi-
larly allocate resources among competing nodes. As noted above,
the aggressive prefetching policy in PGMS reduces the impact of
this competition on individual prefetching processes, both by re-
ducing the likelihood of disk faults and by reducing the uncertainty
resulting from independent competing prefetching requests.

2.4 Summary

We have outlined an algorithm for prefetching and caching in
global memory systems. PGMS prefetches into local memory con-
servatively (delaying as long as possible) and into global mem-
ory aggressively. The objective of this two-pronged scheme is to
maintain valuable blocks in local memory, while sacrificing global
blocks to speedup prefetching. We make this tradeoff because it
has been shown that in a global memory system performance is
relatively insensitive to which of the oldest global pages are re-
placed [30]. Therefore, we replace the least valuable global pages
in order to reduce stall time through prefetching, without risking
local performance.The ability to make this tradeoff is the key ad-
vantage of combining prefetching and global memory.

3 Implementation

The previous section presented an idealized algorithm for prefetch-
ing in global memory systems. We now describe the prototype
PGMS implementation that approximates the ideal algorithm for
cooperative prefetching and caching. In brief, we implemented
PGMS by taking the Digital-UNIX-based GMS global memory
system [14], adding prefetching support, and then implementing an
approximation to the prefetching algorithm presented above. We
begin by giving an overview of GMS for background.

3.1 Overview of GMS

GMS is a global memory system for a clustered network of work-
stations. The goal of GMS is to use global memory to increase the
average performance of all cluster applications. Programs benefit
from global memory in two ways. First, on a page replacement,
the evicted page is sent to global memory rather than disk; a reload
of that page may therefore occur much faster. Second, programs
benefit from access to shared pages, which may be transferred over
the network rather than from disk.

GMS is implemented as a low-level operating system layer, un-
derneath both the file system and the virtual memory system. All
getpagerequests issued by both the VM and file systems to fetch
pages from long-term storage, and allputpagerequests issued to
send pages to long-term storage, are intercepted by GMS. Each
page in the GMS system has a network-wide unique ID, determined
by its location on disk (i.e., the UID consists of the IP address, de-
vice number, inode number, and block offset). GMS maintains a
distributed directory that when given the UID for a page, can lo-
cate that page in global memory, if it exists. The key structures
of that database are: (1) a per-nodepage-frame-directory(PFD)
that describes every page resident on the node, (2) a replicated
page-ownership-directory(POD) that maps a page UID to a man-
ager node responsible for maintaining location information about
that page, and (3) theglobal-cache-directory(GCD), a distributed
cluster-wide data structure that maps a UID into the IP address of

Oracle-Huawei-NetApp Ex. 1015, pg. 4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

disk

FAD

GCD

POD
hash
UID global

pages

prefetch_to_local (UID)

prefetched block

prefetch_to_global (UID)

prefetch_to_global (UID)

disk
read

Node A
(prefetching node)

Node B
(prefetched page manager)

Node C
(global memory and

replica on disk)

Figure 2: Communications for prefetch into global memory

a node caching a particular page. On agetpagerequest, GMS finds
the manager node for that page and sends a request to that node;
the manager checks whether that page is cached in the network,
and sends a message to the caching node if so, requesting that it
transfer the page to the original requester.

3.2 Mechanisms for implementing prefetching

PGMS extends the GMS implementation in three key ways. First,
PGMS adds operations for prefetching blocks into any node's
memory from disk or global memory. Second, PGMS modifies
GMS mechanisms for distributing and maintaining global page in-
formation. Third, the PGMS policy module follows a hinted appli-
cation through its predicted reference stream and uses epoch-based
prefetch information for scheduling prefetching operations. The
remainder of this section describes these three key aspects of our
implementation.

At the lowest level, prefetching in PGMS is handled by two
operations. Theprefetchto local operation prefetches a page into
local memory – if that page is in global memory, the page is
fetched over the network, otherwise it is read from local disk. The
prefetchto global operation prefetches into global memory from
the disk on the global node. In our current prototype, prefetched
files are replicated on the disks of multiple cluster nodes, thus al-
lowing each of these nodes to prefetch from the same file indepen-
dently. (Alternatively, the files could be striped across the disks.)

PGMS stores file replication information in a distributed direc-
tory called thefile-alias-directory(FAD). For each replicated file,
the FAD contains an entry that lists the IP address and local file
name for each node storing a replica. The FAD entry for a file is
stored on the manager node for the file's blocks (the FAD entry for
shared files is replicated on every manager node). The FAD serves
two key purposes: (1) PGMS uses the FAD to pick the nodes used
to prefetch a file, and (2) the FAD extends the GMS UID to per-
mit on-disk replication. While pages in GMS are named by a UID,
the UID does not allow a page to be replicated on multiple disk
locations, because each copy would be given a different name. In
PGMS, a replicated file is assigned a primary location that deter-
mines the UID assigned to each of its pages; the FAD is then used
in conjunction with the UID to support aliasing of a file to multiple
storage locations.

Figure 2 shows the communications and data structures for the
most general prefetch to global memory (a shared page). The
thin arrows show the actions performed when node A issues a
prefetchto global request. The request is first directed to the
page's managing node, which knows if and where the page is

cached in the network. If the page is not cached, PGMS picks
the prefetching node from among the idle nodes that replicate the
page's backing file. When a node receives a prefetch request, it
reads the page from disk and caches the page in its own memory
(as illustrated by node C in Figure 2).

The thick arrows show the actions performed later when the
page is prefetched from global memory on node C to local memory
on node A. Both actions must pass through the manager, because
in the interim the global page may have moved.

3.3 Approximating the prefetching and caching algorithm

Our goal in approximating the algorithm of Section 2 is to provide
a reasonable tradeoff between accuracy and efficiency. The key
issue is guaranteeing the validity of global knowledge used by the
algorithm and deciding when it must be updated.

We give only a high-level description of our algorithm approx-
imation here due to length considerations. Our approach is similar
to that used in GMS. The algorithm divides time intoepochs, where
each epoch has a maximum durationT (in practice,T is between 5
and 10 seconds). A coordinator node is responsible for collecting
and distributing global information at the beginning of each epoch;
the coordinator for the next epoch is elected as the “least loaded”
node at the start of the current epoch.

At the start of the epoch, each node sends to the coordinator its
CPU load and a summary of itsbuffer values. The CPU load on a
node is an estimate of the CPU utilization seen by locally running
processes. The value of a buffer, or equivalently the value of a
page, is an estimate of the time until the next reference to the page
stored in that buffer. The time until the next reference to a page is
estimated on a per-process basis as follows. Future inter-reference
CPU time is estimated from inter-reference CPU times measured
in the recent past scaled by the percentage of time that the process
was scheduled on the processor. The estimated time until the next
reference to a hinted page is then the number of hinted references
preceding it multiplied by the estimated future inter-reference CPU
time. For unhinted processes, the time until the next reference to a
page is estimated to be the time since the previous reference.

Using the information collected and the recent rates of evic-
tions and prefetches, the coordinator computes a weightwi for each
node, representing the number of buffers on nodei that are can-
didates for replacement by global prefetch requests and putpages
(evictions) from other nodes during the epoch. Nodes whose CPUs
are fully utilized are assigned awi value of 0, regardless of whether
or not they have buffers of low value. The coordinator also deter-
mines the maximum buffer value,MaxValue, that will be replaced
in the new epoch. To start the epoch, the coordinator sends the
weight vectorswi, and the valueMaxValue, to all nodes in the clus-
ter. The epoch terminates when either (1) the duration of the epoch,
T , has elapsed, (2)

P
i
wi global pages have been replaced, or (3)

the buffer value information is detected to be inaccurate.
During the epoch, nodes perform replacement and prefetching

as follows:

� Replacements:When a page on a node must be replaced,
the node selects its least-valuable page,p, for eviction. The
node then forwardsp to nodei, wherep becomes a global
page ini's memory, replacingi's least valuable page. The
target nodei is chosen with probability proportional towi=N
(N =

P
i
wi). (If p is a shared page and a copy exists in

another node's local memory, thenp is simply discarded.)
Roughly then, over an epoch the system will replace theN
least valuable pages in the network.

� Prefetching into local memory: For each nodej, whenever
the prefetch predicate for a hinted process onj is true, and
there are buffers onj of lower value than the ones that it

Oracle-Huawei-NetApp Ex. 1015, pg. 5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

