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Abstract: The use of quantum correlations between photons to separate
measure even- and odd-order components of polarization mode dispersion
(PMD) and chromatic dispersion in discrete optical elements is investigated.
Two types of apparatus are discussed which use coincidence counting of en-
tangled photon pairs to allow sub-femtosecond resolution for measurement
of both PMD and chromatic dispersion. Group delays can be measured with
a resolution of order 0.1 fs, whereas attosecond resolution can be achieved
for phase delays.
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1. Introduction: Dispersion Measurement - Classical versus Quantum

As optical communication networks migrate towards higher 40 Gbps and 100 Gbps data rates,
system impairments due to dispersion, especially polarization mode dispersion (PMD), become
a primary issue. This includes not only fiber PMD, but also contributions from switches, ampli-
fiers, and all other components in the optical path. The fiber PMD and component PMD tend to
accumulate in different manners as the size of the network grows. In the long length regime, the
differential group delay (DGD) due to fiber PMD has a known dependance on length, growing
as

√
L [1]. In a similar manner, contributions from chromatic dispersion increase linearly in L.

This known length dependence makes the dispersion of the optical fibers themselves relatively
straightforward to measure and to take into account.

In contrast, component PMD was until recently considered to be too small in comparison to
fiber PMD to affect significant penalties at the system level. Since the introduction of recon-
figurable add-drop multiplexers (ROADMs), the number of components that could potentially
contribute to the PMD in a given system has increased significantly. Although the dispersive
contribution of each separate component is relatively small, together they are capable of accu-
mulating and of thereby making a significant contribution to the total system impairment. It is
therefore important to be able to precisely and efficiently measure small values of DGD. How-
ever, since only fiber PMD was important in the past, no measuring techniques were developed
for efficient evaluation of small DGD values. With component PMD starting to play a signifi-
cant role, developing high-resolution evaluation of small PMD values in a single optical switch
or other small discrete optical component represents a new challenge to optical researchers that
must be addressed by modern optical metrology. In this paper, we address the measurement of
dispersive effects in such discrete elements.

Polarization mode dispersion is the difference between wavenumbers of two orthogonal
states of light at fixed wavelength, or equivalently, a polarization-dependent variation of a
material’s index of refraction. A number of methods have been developed for measuring it
[2, 3, 4, 5, 6, 7, 8, 9]. Many traditional techniques for measuring PMD rely on an interfero-
metric approach for high-resolution measurements of absolute values of optical delays. This
approach requires one to use a monochromatic laser source and to keep track of the number
of interference fringes. Therefore, the accuracy of the approach is limited by the stability of
the interferometer, by the signal-to-noise level of the detector, and by the wavelength of the
monochromatic radiation, leading to significant limitations. For example, the use of monochro-
matic classical polarized light does not allow one to measure the relative delay between two
orthogonally polarized waves in a single measurement, so several measurements at different
frequencies must be used to reconstruct the polarization dispersion properties of materials. The
use of highly monochromatic laser sources creates the additional problem of multiple reflec-
tions and strong irregular interference that may have detrimental effect on measuring polariza-
tion dispersion.

White-light or low-coherence interferometry [8] is another widely used approach. The ulti-
mate resolution of such interferometric measurements will depend on the spectral bandwidth
of the light source. Achieving sub-fs resolution in PMD measurement dictates the use of light
sources with bandwidth in excess of 200 nm. Generating light of such a bandwidth with a
smooth spectral profile is not an easy task in itself. Spectral modulations from existing sources
with bumpy spectra produce ’ghost’ features during measurement, leading to complications in
dispersion evaluation. In addition, the visibility of interference with such super-broadband light

0002f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


is diminished due to dispersion effects.
Overall, while classical techniques can provide high-resolution measurement of polariza-

tion mode dispersion they still have limitations in many areas that quantum-based techniques
can address. For example, entangled photon states intrinsically provide an absolute value for
polarization optical delay, in contrast to the conventional (classical) case, which is limited to
determination of delay modulo an integer number of cycles of the light. This is mainly due to
the fact that quantum interferometry exploits both phase and group velocity effects in the same
measurement [10, 11], a feat not possible in classical optics.

The current practical resolution of conventional dispersion evaluation techniques is limited
to a few femtoseconds (fs). The primary goal here is to use an interferometric setup with an
entangled photon source to measure the component PMD of a small, discrete optical element
to sub-femtosecond precision. Ideally, it would be desirable to measure chromatic dispersion
with the same device, while allowing for the polarization and chromatic effects to be easily
separable. We will show that this is indeed possible. Due to the frequency-anticorrelation in
the entangled downconversion source used as illumination, we may independently determine
the even-order and odd-order parts of the PMD’s frequency dependence. Due to the reliance on
the frequency anticorrelations within pairs of photons, the separation method is intrinsically a
two-photon quantum effect, and is not present in the classical interferometer.

Classical attempts to simulate this even-odd separation effect by symmetrical chirping and
anti-chirping of femtosecond laser pulses are constrained to a very narrow size of wavepacket
thus making it not very practical. The availability of such a separation is useful in a number
of circumstances. One example is when there is enough pulse broadening (second-order dis-
persion) to make accurate measurement of group velocity (first order dispersion) difficult. In a
fiber, group velocity and broadening effects can be separated to some extent by simply taking
a sufficiently long length of fiber as sample; the longer the fiber, the more accurately each can
be measured. When dealing with switching elements or other small discrete optical elements,
this option is not available. Another means must be found to prevent accurate measurement of
the first-order group delay from being obscured by second-order broadening effects. That is
what is accomplished here: the location of a dip in the coincidence rate may be used to find
the group velocity, and this location is unaffected by the second-order broadening as a result
of the even-order dispersion cancellation. Conversely, although the amount of broadening in
a single small component may seem negligible, the total broadening from many such compo-
nents present in a large network may be significant; thus high-accuracy measurements of these
very small second-order dispersive contributions is important. Separating them off from the
generally larger first-order contributions makes accurate measurements much easier.

We note that since the component being analyzed is assumed to be relatively small, the prin-
cipal polarization axes may be assumed to remain constant over the longitudinal length of the
object and to be independent of frequency, with the dispersive contributions of the two polar-
ization components remaining independent of each other. This greatly simplifies the analysis.

After a review of background and notation in section 2, three measurement methods will be
discussed in sections 3-5. The apparatus of section 3 uses a single detector to make a classical
measurement; the system is illuminated with a broadband classical light source. In contrast,
quantum measurements are made using two detectors connected in coincidence with illumina-
tion provided by a source of entangled photon pairs (spontaneous parametric downconversion,
(SPDC)). We will examine two quantum measurement setups in sections 4 and 5. In addition,
in section 5 we give a qualitative analysis that allows the positions of dips (or peaks) indepen-
dently of the mathematical formalism.

The two quantum configurations will be distinguished from each other by referring to them
as type A or type B. They differ only in the presence or absence of a final beam splitter before
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detection, so they may both be implemented in a single apparatus by allowing a beam splitter
to be switched in or out of the optical path. Similarly, by adding an additional polarizer and
counting the singles rate at one detector instead of coincidence events, the classical setup may
also be implemented in the same device. Thus, a single apparatus could be made which is
capable of performing any of the three types of measurements to be discussed.

This paper builds on two previous lines of work. The apparatus used for the type A setup was
introduced previously [10, 11], where it was shown that quantum interferometry can achieve
higher resolution than classical methods in measurements of PMD. Separately, the segregation
of even- and odd-order chromatic dispersion effects was demonstrated in [14]. Here, we bring
the two strands together in a single device (type B), showing that we can separate even- and
odd-order effects in PMD, as well as in chromatic dispersion, and that we can do so with the
resolution available to the type A device.

As a further benefit of the quantum devices over classical methods, note that for the quantum
cases there is no need to know in advance the principal axis directions of the device or ob-
ject being measured. Although the incoming photons are aligned along particular axes that are
linked to a birefringent crystal orientation, their projections onto any rotated pair of orthogonal
axes (including the principle axes of the sample) will remain equally entangled, allowing the
method to work without any need to align the axes of the source and the device under test.

2. Chromatic Dispersion and Polarization Mode Dispersion

First consider a material for which the index of refraction is independent of polarization. The
frequency dependence of the wavenumber k = 2πn(λ )

λ is given by a dispersion relation, which
can be written near some central frequency Ω0 as

k(Ω0 ±ω) = k0 ±αω +β ω2 ± γω3 + . . . (1)

for |ω | << Ω0. The coefficients α , β , . . . characterize the chromatic dispersion or variation of
the refractive index with frequency. Explicitly,

k0 = k(Ω0), α =
dk(ω ′)

dω ′

∣∣∣∣
ω ′=Ω0

, (2)

β =
1
2!

d2k(ω ′)
dω ′2

∣∣∣∣
ω ′=Ω0

, γ =
1
3!

d3k(ω ′)
dω ′3

∣∣∣∣
ω ′=Ω0

, . . . (3)

Rather than looking at the individual terms in the expansion (1), we may also collect together
all terms containing even powers of ω and all terms containing odd powers to arrive at an
expansion containing only two terms:

k(Ω0 +ω) = keven(ω)+ kodd(ω), (4)

where
keven(ω) = k0 +β ω2 +O(ω4), (5)

and
kodd(ω) = αω + γω3 +O(ω5). (6)

In the case of nonzero polarization mode dispersion (PMD), the index of refraction varies
with polarization. We now have two copies of the dispersion relation, one for each independent
polarization state:

kH(Ω0 ±ω) = kH0 ±αHω +βHω2 + . . . (7)
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= kH,even(ω)+ kH,odd(ω) (8)
kV (Ω0 ±ω) = kV0 ±αV ω +βV ω2 + . . . (9)

= kV,even(ω)+ kV,odd(ω), (10)

where H,V denote horizontal and vertical polarization.
To describe the PMD, we must define quantities that measure the differences between the

two polarization states:

Δk0 = kV0 − kH0, Δα = αV −αH , Δβ = βV −βH . (11)

These parameters are defined per unit length. For the case of primary interest to us, discrete
fixed-size objects, the formulas should really be written in terms of the relevant lumped quan-
tities

Δφ ≡ lΔk0, ΔA ≡ lΔα, ΔB ≡ lΔβ , (12)

where l is the axial thickness of the device under study. However, we will continue to use the
α , β , and Δk0 parameters of eq. 11, both because they are more commonly used, and because
they allow easy comparison to the formulas used in fiber optics.

Note that Δk0 = Ω0Δn(Ω0)
c is a measure of the difference in phase velocity between the two

polarization modes, while Δα and Δβ are related to the difference in group velocity. Also, it
should be pointed out that the PMD and the chromatic dispersion are not entirely independent
effects; in particular, the PMD coefficients themselves (Δk0, Δα, Δβ ) are frequency dependent.

In the quantum cases, it is convenient to also define τ− = DL, where L is the thickness of the
nonlinear downconversion crystal and D = u−1

0 − u−1
e is the difference of the group velocities

of the two polarizations inside the crystal. We will restrict ourself to the simplest case of a
bulk crystal, so the spectral distribution of the downconverted pairs is described by the function
[12, 13]

Φ(ω) = sinc
(

1
2

τ−ω
)
, (13)

where the sinc function is defined by sinc(x) = sin(x)
x . Photons are emitted from the downconver-

sion process in frequency- anticorrelated pairs: the frequencies Ω0 ±ω in each pair are shifted
equally, but in opposite directions, from the central frequency Ω0 = ωpump/2, with the distribu-
tion of frequency shifts ω being given by Φ(ω) of eq. 13. The downconversion time scale,
τ−, is inversely proportional to the spectral width of the source, and therefore determines the
precision of the resulting measurements. The spectrum may be made wider by using a thinner
nonlinear crystal, but this occurs at the expense of reducing the intensity of the downconverted
light. High intensity and large bandwidth may be obtained simultaneously by use of a chirped
crystal, although some of the details of the following analysis will then be changed.

3. Classical PMD Measurement

An apparatus equivalent to that shown schematically in fig. 1 [8] is commonly used to measure
polarization mode dispersion. The illumination may be provided by any sufficiently broadband
light source. For easier comparison with the later sections, we will assume the illumination is
provided by type II parametric downconversion, but this is not necessary; since we use a single
detector, the entanglement of the downconverted photons will play no role.

Assume an arbitrary amount of H and V polarization out of the downconversion crystal, so
that the incident field in Jones vector notation is proportional to

∫ (
AH(ω)
AV (ω)

)
dω , (14)
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