
GOOG-1024-Page 1 of 114

New US Application ' Docket No.: 2618-0015

|nventor(s): David A. FARBER and Ronald D. LACHMAN)
Title: ACCESSING DATA IN A DATA PROCESSING SYSTEM .

Date: March 15, 2007 ' U-S- PTO
11/724232

03/15/2007

THE FOLLOWING FILING FEE IS BASED ON CLAIMS AS FILED LESS ANY ABOVE CANCELLED

. Large ISmall

18a. Basic Filing Fee - $ 300

18b. Search Fee $ 500

18c. Examination Fee $ 200

—__ Extra cm —
——— 7 $350

21. Ifan ro ermulti le de endent claim i noreim ro er is resent. add:_ILP_P_ P P (9 P P) P $360/$180 $360
Leave this line blank if this is a reissue application)

Application Size Fee (lfthe specification and drawings exceed ‘100 sheets of paper (excluding electronically filed
sequence or computer listings under 37 CFR l.52(e)), the application size fee due is $250 ($125 for small entity) for each

additional 50 sheets or fraction thereof. See 35 U.S.C. 4l(a)(l)(G) and 37 CFR 1.16(s).)

Number of each additional

50 or fraction thereof

(round up to a whole
number)

Total Minus 100 Extra
Sheets sheets Sheets

23. Total Filing Fee Enclosed:

24. If “non-English" box 2 is X'd, add Rule 17(k) processing fee

25. If “assignment” box 9 is X’d, add recording fees ($40 per assignment)

26. [I Attached is a Petition/Fee under Rule No.

27. Total Fee:

 x $250l$150

28. XI Please charge the total fee to our deposit account below under the stated order no.: 2618-0015
Our Deposit Account No.: 501860.

CHARGE STATEMENT: The Commissioner is hereby authorized to charge any fee specifically authorized hereafter, or any

missing or insufficient fee(s) filed, or asserted to be filed. or which should have been filed herewith or concerning any paper filed
hereafter, and which may be required under Rules 16-18 (missing or insufficient fee only) now or hereafter relative to this
application and the resulting Official document under Rule 20, or credit any overpayment. to our Account/Order Nos. shown above
for which purpose a duplicate copy of this sheet is attached.

This Charge Statement does not authorize charge of the issue fee until/unless an issue fee transmittal form is filed.

29. Correspondence Address: Use the address associated with customer number 42624.

CUSTOMER NUMBER

42624
Davidson Berquist Jackson & Gowdey, LLP
703.894.6400

703.894.6430 (Facsimile)

GOOG-1024-Page 1 of1’l4

GOOG-1024-Page 2 of 114

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

REQUEST FOR FILING NATIONAL PATENT APPLICATION

Under 35 USC 1111a) and Rule 53(b)

Hon. Commissioner of Patents 1 Atty. Dkt. No.: 2618-0015
PO. Box 1450 . ’

Alexandria, VA 22313-1450 - ‘ Date: March 15, 2007

NON-PROVISIONAL - NON REISSUE - NON PCT NAT PHASE

‘ Sir:

Herewith is the PATENT APPLICATION of:

Title: ACCESSING DATA IN ADATA PROCESSING SYSTEM

Including:

1. Specification: E total pages (only spec. and claims)

2. [:1 Specification in non-English language

3. E] Application Data Sheet (3 Pages)

4. E Return Receipt Postcard

5. IX Oath or Declaration 1 total pages.

5.a. I] Newly executed (El Original [:1 Facsimile/Copy) , or 5.b X Copy from prior application.

’ 6. Abstract 1 page(s); 7. 21 claims.

7. IX} Drawings: fl total sheet(s) of drawings

8. I] Attached are assignment papers and cover sheet. Please return the recorded assignment to the undersigned.

9. [Z Prior application is assigned to Level 3 CommunicationsI LLC by Assignment recorded on February 2, 2007;
Reel 018847/Frame0077and to KINETECHI Inc. by Assignment recorded on November 15 2001; Reel
012313/Frame 0446.

10. DOMESTIC/INTERNATIONAL priority is claimed under 35 USC 119(e)/120/365(c) based on the following provisional,

non-provisional and/or PCT international application(s):

11. Small Entity Status: E is NOT claimed [:1 is claimed.

12. 1:] NONPUBLICATION REQUEST under Rule 213(a) attached.

13. El Preliminary Amendment.

14. E] This application is being filed under Rule 53(b)(2) since an inventor is named in the enclosed Declaration who
was not named in the prior application.

15. Attached: information Disclosure Statement; Form PTO-1449.

GOOG-1024-Page 2 of 1+4

GOOG-1024-Page 3 of 114

New US. Application Docket No.: 2618-0015

lnventor(s): David A. FARBER and Ronald D. LACHMAN
Title: ACCESSING DATA IN A DATA PROCESSING SYSTEM
Date: March 15, 2007

16. El Power of Attorney

17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information below and in the first sentence of the

specification following the title. and in the Application Data Sheet under 37 CFR 1.76. This application is a

[XI Continuation El Divisional C] Continuation-in-part (CIP) of prior application no.: : 11/017,650 filed December 22,2004,
which is a continuation of and claims priority to application no. 09/987,723, filed November 15, 2001, now US. Patent No. 6,928,442,
which is a continuation of application No. 09/283,160, filed April 1, 1999, now US. Patent No. 6,415,280, which is a division of
application Ser. No. 08/960,079, filed Oct. 24, 1997, now US. Pat. No. 5,978,791 filed Oct. 24, 2001 which is a continuation of Ser. No.

08l425,160, filed Apr. 11, 1995, now abandoned, IX the entire contents of which each of these applications are incorporated herein by
reference.

This application is also a .

IE Continuation E] Divisional E] Continuation-in-part (CIP) of prior application no.: : 10/742,972, filed December 23. 2003,
which is a division of and claims priority to application no. 09/987,723, filed November 15, 2001, now US. Patent No. 6,928,442, which
is a continuation of application No. 09/283,160, filed April 1, 1999, now US. Patent No. 6,415,280, which is a division of application Ser.
No. 08/960,079, filed Oct. 24, 1997, now US Pat. No. 5,978,791 filed Oct. 24, 2001 which is a continuation of Ser. No. 08l425,160,

filed Apr. 11, 1995, now abandoned, [Z the entire contents of which each of these applications are incorporated herein by reference.

GOOG-TBZ4-Page 3 of 114

GOOG-1024-Page 4 of 114

ACCESSING DATA IN A DATA PROCESSING SYSTEM

RELATED APPLICATIONS

[0001] _ This is a continuation of and claims priority to co-pending

application no. 11/017,650, filed December 22, 2004, which is a continuation of

application No. 09/987,723, filed November 15, 2001, now US. Patent No.

6,928,442, which is a continuation of application No. 09/283,160, filed April 1,

1999, now US. Patent No. 6,415,280, which is a division of application Ser. No.

08/960,079, filed Oct. 24, 1997, now US. Pat. No. 5,978,791, which is a

continuation of Ser. No. 08/425,160, filed Apr. 11, 1995, now abandoned, the

contents of which each of these applications are hereby incorporated herein by

reference. This is also a continuation of and claims priority to co-pending

application no. 10/742,972, filed December 23, 2003, which is a division of

application No. 09/987,723, filed November 15, 2001, now US. Patent No.

6,928,442, which is a continuation of application No. 09/283,160, filed April 1,

1999, now US. Patent No. 6,415,280, which is a division of application Ser. No.

08/960,079, filed Oct. 24, 1997, now US. Pat. No. 5,978,791, which is a

continuation of Ser. No. 08/425,160, filed Apr. 11, 1995, now abandoned, the

contents of which each of these applications are hereby incorporated herein by

reference.

BACKGROUND OF THE INVENTION

1. FIELD OF THE INVENTION

[0002] This invention relates to data processing systems and, more

particularly, to data processing systems whereindata items are identified by

substantially unique identifiers which depend on all of the data in the data items

and only on the data in the data items.

2618-0015

GOOG-1024-Page 4 of 114

GOOG-1024-Page 5 of 114

2. BACKGROUND OF THE. INVENTION

[0003] Data processing (DP) systems, computers, networks ofcomputers, or

the like, typically offer users and programs various ways to identify the data in the

systems.

[0004] Users typically identify data in the data processing system by giving

the data some form of name. For example, a typical operating system (OS) on a-

computer provides a file system in which data items are named by alphanumeric

identifiers. Programs typically identify data in the data processing system using a

location or address. For example, a program may identify a record in a file or

database by using a record number which serves to locate that record.

[0005] In all but the most primitive operating systems, users and programs

are able to create and use collections of named data items, these collections ‘

themselves being named by identifiers. These named collections can then,

themselves, be made part of other named collections. For example, an OS may

provide mechanisms to group files (data items) into directories (collections).

These directories can then, themselves be made part of other directories. A data

item may thus be identified relative to these nested directories using a sequence of

names, or a so-called pathname, which defines a path through the directories to a

particular data item (file or directory). ‘

[0006] i As another example, a database management system may group data

records (data items) into tables and then group these tables into database files

(collections). The complete address of any data record can then be specified using

the database file name, the table name,'an'd the record number of that data record.

[0007] Other examples of identifying data itemsinclude: identifying files in

a network file system, identifying objects in an object-oriented database,

identifying images in an image database, and identifying articles in a text database.

[0008] i In general, the terrns "data" and Y'data item" as used herein refer to

sequences of bits. Thus a data item may be the contents ofa file, a portion of a
file, a page in memory, an object in an object-oriented program, a digital message,

_ 2 _
2618-0015

GOOG-TBZA-Page 5 of 1+4

GOOG-1024-Page 6 of 114

a digital scanned image, a part of a video or audio signal, or any other entity which

can be represented by a sequence of bits. The term "data processing" herein refers

to the processing of data items, and is sometimes dependent on the type of data

item being processed. For example, a data processor for a'digital image may differ

from a data processor for an audio signal.

[0009] In all of the prior data processing systems the names or identifiers

provided to identify data items (the data items being files, directories, records in

the database, objects in object-oriented programming, locations in memory or on a

physical device, or the like) are always defined relative to a specific context. For

instance, the file identified by a particular file name can only be determined when

the directory containing the file (the context) is known. The file identified by a

pathname can be determined only when the file system (context) is known.

Similarly, the addresses in a process address space, the keys in a database table, or
domain names on a global computer network such as the Internet are meaningful

only because they are specified relative to a context.

[0010] In prior art systems for identifying data items there is no direct

relationship between the data names and the data item. The same data name in two

different contexts may refer to different data items, and two different data names

in the same context may refer to-the same data item.

[0011] In addition, because there is no correlation between a data name and

the data it refers to, there is no a priori way to confirm that a given data item is in

fact the one named by a data name. For instance, in a DP system, if one processor

requests that another processor deliver a data item with a given data name, the

requesting processor cannot, in general, verify that the data delivered is the correct

data. (given'only the name). Therefore it may require further processing, typically
on the part of the requestor, to verify that the data item it has obtained is, in fact,
the item it requested. I l

[0012] A common operation in a DP system is adding a new data item to
the system. When a new data item is added to the system, a name can be assigned

_ 3 _
2618-0015

GOOG-1024-Page 6 of 114

GOOG-1024-Page 7 of 114

to it only by updating the context in which names are defined. Thus such systems

require a centralized mechanism for the management of names. Such a mechanism

is required even in a multi-processing system when data items are created and

identified at separate processors in distinct locations, and in which there is no

other need for communication when data items are added.

[0013] In many data processing systems or environments, data items are

transferred between different locations in the system. These locations may be

processors in the data processing system, storage devices, memory, or the like. For

example, one processor may obtain a data item from another processor or from an

external storage device, such as a floppy disk, and may incorporate that data item
into its system (using the name provided with that data item).

[0014] However, when a processor (or some location) obtains a data item

from another. location in the DP system, it is possible that this obtained data item is

already present in the system (either at the location of the processor or at some

other location accessible by the processor) and therefore a duplicate of the data

item is created. This situation is common in a network data processing

environment where proprietary software products are installed from floppy disks

onto several processors sharing a common file server. In these systems, it is often
the case that the same product will be installed on several systems, so that several

copies of each file will reside on the common file Server.

[0015] In some data processing systems in which several processors are

connected in a network, one system is designated as a cache server to maintain

master copies of data items, and other systems are designated as cache clients to

copy local copies of the master data items into a local cache on an as-n-eeded basis.
Before using a cached item, a cache client must either reload the cached item, be

informed of changes to the cached item, or confirm that the master item 0

corresponding to the cached item has not changed. In other words, a cache client

must synchronize its data items with those on the cache server. This
synchronization may involve reloading data items onto the cache client. The need

_ 4 _
2618-0015

GOOG-TBZA-Page 7 of 1+4

GOOG-1024-Page 8 of 114

to keep the cache synchronized or reload it adds significant overhead to existing

caching mechanisms. I

[0016] In View of the above and Other problems with prior art systems, it is

therefore desirable to have a mechanism'which allows each processor in a

multiprocessor system to determine a common and substantially unique identifier
for-a data item, using only the data in the data item and not relying on any sort of
context.

[0017] It is further desirable to have a mechanism for reducing multiple

copies of data items in a data processing system and to have a mechanism which

enables the identification of identical data items so as to reduce multiple copies. It

is further desirable to determine whether two instances of a data item are in fact

the same data item, and to perform various other systems' functions and

applications on data items without relying on any context information or

properties of the data item. V

[0018] It is also desirable to provide such a mechanism in such a way as to

make it transparent to users of the data processing system, and it is desirable that a

single mechanism be used to address'each of the problems described above.

SUMMARY OF THE INVENTION

[0019] This invention provides, in a data processing system, a method and

apparatus for identifying a data item in the system, where the identity of the data

item depends on all of the data in the data item and only on the data in the data

item. Thus the identity of a data item is. independent of its name, origin, location,

address, or other information not derivable directly from the data, and depends

only on the data itself. -

[0020] This invention further provides an' apparatus and a method for

p determining whether a particular data item is present in the system or at a location

in the system, by examining only the data identities of a plurality of data items.

2618-0015

GOOG-tBZA-Page s of 1+4

GOOG-1024-Page 9 of 114

[0021] Using the method or apparatus of the present invention,'the

efficiency and integrity of a data processing system can be improved. The present

invention improves the design and operation of a data storage system, file system,

relational database, object-oriented database, or the like that stores a plurality of

data items, by making possible or improving the design and operation of at least

some or all of the following features:

[0022] the system. stores at mest one Tcopy of any data item at a'given

location, even when multiple data names in the system refer to the same contents;

[0023] the system avoids copying data from source to destination locations

when the destination locations already have the data;

[0024] the system provides transparent access to any data item by reference

only to its identity and independent of its preSent location, whether it be local,

remote, or offline;

[0025] the system caches data items from a server, so that only the most ‘

recently accessed data items need be retained;

[0026] when the system is being used to cache data items, problems of

maintaining cache consistency are avoided;

[0027] the system maintains a desired level of redundancy of data items in a

network of servers, to protect against failure by ensuring that multiple copies of

the data items are present at different locations in the system;

[0028] the system automatically archives data items as they are created or

modified; -

[0029] the system provides the size, age, and location of groups of data

items. in order to decide whether they can be safely removed-from a local file

system;

[0030] I the system can efficiently record and preserve any collection of data

items;

[0031] ‘ the system can‘efficiently make acopy of any collection of data

items, to support a version control mechanism for groups of the data items;

. - 6 —
2618-0015

GOOG-TBZA-Page 9 of1’l4r

GOOG-1024-Page 10 of 114

[0032] the system can publish data items, allowing other, possibly

anonymous, systems in a network to gain access to the data items and to rely on

the availability of the data items;

[0033] the system can maintain a local inventory of all the data items

located on a given removable medium, such as a diskette or CD-ROM, the

inventory is independent of other properties of the data items such as their name,

. location, and date of creation;

[0034] the system allows closely related sets of data items, such as

matching or corresponding directories on disconnected computers, to be

periodically resynchronized with one another;

[0035] the system can verify that data retrieved from another location is the

desired or requested data, using only the data identifier used to retrieve the data;

[0036] the system can prove possession of specific data items by content ‘
without disclosing the content of the data items, for purposes of later legal

verification and to provide anonymity;

[0037] the system tracks possession of specific data items according to

content by owner, independent of the name, date, or other properties of the data

item, and tracks the uses of specific data items and files by content for accounting

purposes. ,

[0038] Other objects, features, and characteristics of the present invention

as well as the methods of operation and functions of the related elements of

structure, and the combination of parts» and economies of manufacture, will

become more apparent upon consideration of the following description and the

appended claims with reference to the accompanying drawings, all of which form

a part of this specification.

BRIEF DESCRIPTION OF THE DRAWINGS

[0039] Figures 1(a) and 1(b) depict a typical data processing system in

which a preferred embodiment of the present invention operates;

_ 7 _
2618-0015

600%1624-Page T60f1t4

GOOG-1024-Page 11 of 114

[0040] Figure 2 depicts a hierarchy of data items stored at any location in

such a data processing system;

[0041] Figures 3-9 depict data structures used to implement an embodiment

of the present invention; and

[0042] Figures 10(a)-28 are flow charts depicting operation ofvarious

aspects of the present invention.

DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED
EXEMPLARY EMBODIMENTS

[0043] I An embodiment of the present invention is now described with

reference to a typical data processing system 100, which, with reference to FIGS.

1(a) and 1(b), includes one or more processors (or computers) 102 and various

’ storage devices 104 connected in some way, for example by a bus 106.

[0044] Each processor 102 includes a CPU 108, a memory 110 and one or

more local storage devices 112. The CPU 108, memory 110, and local storage

device 112 may be internally connected, for example by a bus 114. Each processOr

102 may also include other devices (not shown), such as a keyboard, a display, a

printer, and the like. I

[0045] In a data processing system 100, wherein more than one processor

102 is used, that is, in a multiprocessor system, the processors may be in one of

various relationships. For example, two processors 102 may be in a client/server,

client/client, or a server/server relationship. These inter-processor relationships

may be dynamic, changing depending on particular situations and fianctions. Thus,

a particular processor 102 may change its relationship to other processors as

needed, essentially setting up a peer-to-peer relationship With other processors. In

a peer—to—peer relationship, sometimes a particular processor 102 acts as a client

processor, whereas at other times the same processor acts as a server processor. In

other words, there is no'hierarchy imposed on or required ofprocessors 102.

2618-0015

600%1624-Page110f1’l4

GOOG-1024-Page 12 of 114

. [0046] In a multiprocessor system, the processors 102* may be homogeneous

or heterogeneous. Further, in a multiprocessor data processing system 100,'some

or all of the processors 102 may be disconnected from the network ofprocessors

for periods of time. Such disconnection may be part of the normal operation of the

system 100 or it maybe because a particular processor 102 is in need of repair.

[0047] Withinva data processing system 100, the data may be organized to

form a hierarchy of data storage elements, wherein lower level data storage

elements are combined to form higher level elements. This hierarchy can consist

of, for example,processors, file systems, regions, directories, data files, segments,

and the like. For example, with reference to FIG. 2, the data items on a particular

processor 102 may be organized or structured as a file system 116 which

comprises regions 117, each of which comprises directories 118, each ofwhich

can contain other directories 1.18 or files 120. Each file 120 being made up of one

or more data segments 122. .

[0048] In a typical data processing system, some or all of these elements

can be named by users given certain implementation specific naming conventions,

the name (or pathname) of an element being relative to a context. In the context of

a data processing system 100, a pathname is fully specified by a processor name, a

filesystem name, a sequence of zero or more directory names identifying nested

directories, and a final file name. (Usually the lowest level elements, in this case

segments 122, cannot be named by users.) V

[0049] In other words, a file system 116 is a collection of directories 118. A

directory 118 is a collection ofnamed files 120--both data files 120 and'other

directory files 118.“A file 120 is a named data item which is either a data file

. (which may be simple or compound) or a directory file 118. A simple file 120

consists of a single data segment 122. A compound file 120 consists of a sequence

of data segments 122. A data segment 122 is a fixed sequence of bytes. An

important property of any data segment is its size, the number of bytes in the

sequence.

2618-0015

600%1624-Page, 12 of1t4

GOOG-1024-Page 13 of 114

[0050] A single processor 102 may access one or more file systems 116,

and a single storage device 104 may contain one or more file systems 116, or"

portions of a file system 116. For instance, a file system 116 may span several

storage devices 104.

[0051] In order to implement controls in a file system, file system 116 may

be divided into distinct regions, where each region is a unit of management and

control. A region consists of a given directory 118 and is identified by the

pathname (user defined) of the directory.

[0052] In the following, the term "location", with respect to a data '

processing system 100, refers to any of a particular processor 102 in the system, a

memory of a particular processor, a storage device, a removable storage medium

(such as a floppy disk or compact disk), or any other physical location in the

system. The term "local" with respect to a particular processor 102 refers to the

memory and storage devices of that particular processor.

[0053] In the following, the terms "True Name", "data identity" and "data

identifier" refer to the substantially unique data identifier for a particular data item.

The term "True File" refers to the actUal file, segment, or data item identified by a

True Name.

[0054] A file system for a data processing system 100 is now described

which is intended to work with an existing operating system by augmenting some

i ofthe operating system's file management system codes. The embodiment

provided relies on the standard file management primitives for actually storing to

and retrieving data items from disk, but uses the mechanisms of the present

invention to reference and access those data items.

[0055] The processes and mechanisms (services) provided in this

embodiment are grouped into the following categories: primitive} mechanisms,

operating system mechanisms, remote mechanisms, background mechanisms, and

extended mechanisms.

_ 10 _
2618-0015

GOO&-’IfiZ4-Page130f1t4

GOOG-1024-Page 14 of 114

[0056] Primitive mechanisms provide fundamental capabilities used to

support other mechanisms. The following primitive mechanisms are described:

[0057].

1. Calculate True Name;

2. Assimilate Data Item;

3. True File;

4. Get True Name from Path;

5. Link path to True Name;

6. Realize True File from Location;

7. Locate Remote File;

8. Make True File Local;

9. Create Scratch File; .

10. Freeze Directory;

11. Expand Frozen Directory;

' 12. Delete True File;

‘ 13. Process Audit File Entry;

14. Begin Grooming;

15. Select For Removal; and

16. End'Grooming.

Operating system mechanisms provide typical familiar file system

mechanisms, while maintaining the data structures required to offer the

mechanisms of the, present invention. Operating system mechanisms are designed

to augment existing operating systems, and in this way to make the present

invention compatible with, and generally transparent to, existing applications. The

following operating system mechanisms are described:

2618-0015

1. Open File;

2. Close File;

3. Read File;

4. Write File;

5. Delete File or Directory;

-11;

GCKX34624$%©e14cfi1+4

GOOG-1024-Page 15 of 114

6. Copy File or Directory;

7. Move File or Directory;

8. Get File Status; and

9. Get Files in Directory.

. [0058] Remote mechanisms are used by the operating system in responding

to requests from other processors. These mechanisms enable the capabilities of the

present invention in a peer-to-peer network mode of operation. The following

remote mechanisms are described:

1. Locate True File;

. Reserve True File;

. Request True File;

. Retire True File;

. Cancel Reservation;

. Acquire True File;

. Lock Cache;

. Update Cache; and

\OOOQONUIJAUJN
. Check Expiration Date.

[0059] Background mechanisms are intended to run occasionally and at a

low priority. These provide automated management capabilities with respect to the

present invention. The following background'mechanisms are described:

1. Mirror True File;

2. Groom Region;

3. Check for Expired Links; and

4. Verify Region; and

5. Groom Source List.

[0060] Extended mechanisms run within application programs over the

operating system. These mechanisms provide solutions to specific problems and

applications. The following extended mechanisms are described: -

1. Inventory Existing Directory;

_ 12 _
2618-0015

600%1624-Page +50=r1+4

GOOG-1024-Page 16 of 114

2. Inventory Removable, Read-only Files;

3. Synchronize directories;

4. Publish Region;

5. Retire Directory;

6. Realize Directory at location;

7. Verify True File;

8. Track for accounting purposes; and

9. Track for licensing purposes.

[0061] The file system herein described maintains sufficient information to

provide a variety of mechanisms not ordinarily offered by an operating system, ‘

some of which are listed and described here. Various processing performed by this

embodiment of the present invention will now be described in greater detail.

[0062] In some embodiments, some files 120 in a data processing system

100 do not have True Names because they have been recently received or created

or modified, and thus their True Names have not yet been computed. A file that

does not yet have a True Name is called a scratch file. The process of assigning a

True Name to a file is referred to as assimilation, and is described later. Note that a

scratch file may have a user provided name.

[0063] Some of the processing performed by the present invention can take

place in a background mode or on a delayed or as-needed basis. This background

_ processing is used to determine information that is not immediately required by

the system or which may never be required. As an example, in some cases a

scratch file is being changed at a rate greater than the rate at which it is useful to

determine its True Name.»In these cases, determining the True Name of the file

can be postponed or performed in the background.

DATA STRUCTURES

[0064] The following data structures, stored in memory 110 of one of more

processors 102 are used to implement the mechanisms described herein. The data

_ 13 _
2618-0015

600%1624-Page t60f1‘r4

GOOG-1024-Page 17 of 114

structures can be local to each processor 102 of the system 100, or they can reside

on only some of the processors 102.

[0065] The data structures described are assumed to reside on individual

peer processors 102 in the data processing system 100. However, they can also be

shared by placing them on a remote, shared file server (for instance, in a 10cal area

network of machines). In order to accommodate sharing data structures, it is

necessary that the processors accessing the shared database use the appropriate

locking techniques to ensure that changes to the shared database do not interfere

with one another but are appropriately serialized. These locking techniques are

well understood by ordinarily skilled programmers of distributed applications.

[0066] It is sometimes desirable to allow some regions to be local to a

particular processor 102 and other regions to be shared among processors 102.

(Recall that a region is a unit of file system management and control consisting of

a given directory identified by the pathname of the directory.) In the Case of local

and shared regions, there would be both local and shared versions of each data

structure. Simple changes to the prOcesses described below must be made to

ensure that appropriate data structures are selected for a given operation.

[0067] The local directory extensions (LDE) table 124 is a data structure

which provides information about files 120 and directories 118 in the data

processing system 100. The local directory extensions table 124 is indexed by a

pathname or contextual name (that is, a user provided name) of a file and includes

the True Name for most files. The information in local directory extension table

124 is in addition to that provided by the native file system of the operating

system.

[0068] The True File registry (TFR) 126 is a data store for listing actual

data items which have True Names, both files 120 and segments 122. When such

data items occur in the True File registry 126 they are known as True Files. True '

Files are identified in True File registry 126 by their True Names or identities. The

_ 14 _
2618-0015

WM-Pagefloflm

GOOG-1024-Page 18 of 114

table True File registry 126 also stores location, dependency, and migration

information about True Files.

[0069] - The region table (RT) 128 defines areas in the network storage

which are to be managed separately. Region table 128 defines the rules for access

to and migration of files 120 among various regions with the local file system 116

and remote peer file systems. i

[0070] ' The source table (ST) 130 is a list of the sources of True Files other

than the current True File registry 126. The source table 130 includes removable

volumes and remote processors.

[0071] The audit file (AF) 132 is a list of records indiCating changes to be.

made in local or remote files, these changes to be processed in background.

[0072] The accounting log (AL) 134 is a log of file transactions used to

create accounting information in a manner which preserves-the identity of files

being tracked independent of their name or location. i

[0073] The license table (LT) 136 is a table identifying files, which may

only be used by licensed users, in a manner independent of their name or location,

and the users licensed to use them.

DETAILED DESCRIPTIONS OF THE DATA STRUCTURES

[0074] The following table summarizes the fields of an local directory

extensions table entry, as illustrated by record 138 in FIG. 3.

Region ID identifies the region in which this file is contained.

the user provided name or contextual name of the file or directory,

relative to the region in which it occurs.

the computed True Name or identity of the file or directory. This

True Name is not always up to date, and it is set to a special value

when a file is modified and is later recom suted in the background.
indicates whether the file is a data file or a directo .

Scratch File the physical location of the file in the file system, when no True
ID Name has been Calculated for the file. As noted above, such a file is

26l8-0015

True Name .

called a scratch file.

-15-

600%1624-Page 1eo=r1+4

GOOG-1024-Page 19 of 114

 Time of last the last access time to this file. If this file is a directory, this is the
access last access time to an file in the directo

Time of last the time of last change of this file. If this file is a directory, this is
modification the last modification time ofan file in the directo .

indicates that this file (and, if this file is a directory, all of its

subordinate files) have been backed up on some other system, and it
is therefore safe to remove them.

indicates whether a file is locked, that is, it is being modified by the

mod1 a file at a time. .

the full size of this directory (including all subordinate files), if all

' files in it were fully expanded and duplicated. Fora file that is not a

directory this is the size of the actual True File.

license trackin_ nu oses.

local processor or a remote processor. Only one processor may

[0075] Each record of the True File registry 126 has the fields shown in the

True File registry record 140 in FIG. 4. The True File registry 126 consists of the

database described in the table below as well as theactual True Files identified by

the True File IDs below.

True Name comuted True Name or identi of the file.

Compressed compressed version of the True File may be stored instead of, or in

File ID addition to, an uncompressed version. This field provides the
identity of the actual representation of the compressed version of
the file. ,

Grooming _ tentative count ofhow many references have been selected for

delete count ' deletion dur1ng a grooming o .eratlon

Time of last most recent date and time the content of thls file was accessed
access

date and time after wh1ch this file ma be deleted by this server.

Dependent processor IDs of other processors which contain references to this

processors True File

source ID(s) of zero or more sources from wh1ch this file or data
item ma be retrieved.

identity or disk location of the actual physical representation of the

file or file segment. It is sufficient to use a filename in the

registration directory of the underlying operatingsystem. The True

File ID is absent if the actual file is not currently present at the
current location. '

 True File ID

-16_
2618-0015

600%1624-Page +90i1+4

GOOG-1024-Page 20 of 114

number of other records on this processor which identify this True
File. .

[0076] A region table 128, specified by a directory pathname, records

storage policies which allow files in the file system to be stored, accessed and

migrated in different ways. Storage policies are programmed inva configurable

way using a set of rules described below.

[0077] Each region table record 142 of region table 128 includes the fields

described in the following table (with reference to FIG. 5):

Region ID internally used identifier for this region. .

Region file file system on the local processor of which this region is a part.

system

Region a pathname relative to the region file system which defines the

pathname location of this region. The region consists of all files and

directories subordinate to this pathname, except those in a region

subordinate to this region.

zero or more identifiers ofprocessors which are to keep mirror or

archival copies of all files in the current region. Multiple mirror

rocessors can be defined to form a mirror grow.

Mirror number of copies of each file in this region that should be retained

duplication in a mirror group.
count i

Mirror ‘

processor(s)

 specifies whether this region is local to a single processor 102,

shared by several processors 102 (if, for instance, it resides on a

shared file server , or mana ed b a remote orocessor.

the migration policy to apply to this region. A single region might

participate in several policies. The policies are as follows

(parameters inbrackets are specified as part of the policy):

, region is a cached version from [processor ID];

region is a member of a mirror set definedby [processor ID].

region is to be archived on [processor ID].

region is to be backed up locally, by placing new copies in

[region ID]. .

region is read only and may not be changed.

region is published and expires on [date].

Files in this region should be comressed.

[0078] A source table 130 identifies a source location for True Files. The

source table 130 is also used to identify client processors making reservations on

_ 17 _
2618-0015

600%1624-Page260f1‘r4

GOOG-1024-Page 21 of 114

the current processor. Each source record 144 of the source table 130 includes the

fields summarized in the following table, with reference to FIG. 6:

internal identifier used to identify a p articular source.

source type type of source location:

Removable Storage Volume

Local Region
Cache Server

Mirror Group Server

Cooperative Server

Publishing Server
Client

includes information about the rights of this processor, such as
rihts . whether it can ask the local rocessor to store data items for it. .

source measurement of the bandwidth, cost, and reliability of the

 availability connection to this source of True Files. The availability is used to

select from among several ossible sources.

source information on how the local processor is to access the source. This

location may be, for example, the name of a removable storage volume, or
the orocessor ID and region path of a re ion on a remote rocessor.

[0079] The audit file 132 is a table of events ordered by timestamp, each

record 146 in audit file 132 including the fields summarized in the following table

(with reference to FIG. 7): ,

Original path of the file in question. '

Name _
whether the file was created, read, written, Coied or deleted.

s ec1fies whether the source is a file or a directo

ID of the remote processor generatmg thls event (if not local).
ID ' '

time and date file was closed (required only for accessed/modified

files). '

Name of the file (re uired only for rename). .

computed True Name of the file. This is used by remote systems to

mirror changes to the directory and is filled in during background

[0080] Each record 148 of the accounting log 134 records an event which

 . rocessing.

may later be used to provide information for billing mechanisms. Each accounting

_ 13 _
2618-0015

600%1624-Page 21 of1‘r4

GOOG-1024-Page 22 of 114

log entry record 148 includes at least the information summarized in the following -

table, with reference to FIG. 8:

owner identity of the user responsible for this action.

[0081] Each record 150 of the license table 136 records a relationship

between a licensable data item and the user licensed to have access to it. Each

license table record 150 includes the information summarized in the following

table, with reference to FIG. 9: ‘

True Name of a data item sub'ect to license validation.

identity of a user authorized to have access to this object.

[0082] Various other data structures are employed on some or all of the

processors 102 in the data processing system 100. Each processor 102 has a global

freeze lock (GFL) 152 (FIG. 1), which is used to prevent synchronization errors

when a directory is frozen or copied. Any processor 102 may include a special

archive directory (SAD) 154 into which directories may be copied for the purposes

of archival. Any processor 102 may include a special media directory (SMD) 156,

into which the directories of removable volumes are stored to form a media ‘

inventory. Each processor has a grooming lock 158, which is set during a

grooming operation. During this period the grooming delete count of True File

registry entries 140 is active, and no True Files should be deleted until grooming is

complete. While grooming is in effect, grooming information includes a table of

pathnames selected for deletion, and keeps track of the amount of space that would

be freed if all ofthe files were deleted. ’

PRIMITIVE MECHANISMS

[0083] The first of the mechanisms provided by the present invention,

primitive mechanisms, are now described. The mechanisms described here depend

on underlying data management mechanisms to create, copy, read, and delete data

_ ,19 _
2618-0015

600%1624-Page 22 of 1+4

GOOG-1024-Page 23 of 114

items in the True File registry 126, as identified by a True File ID. This support

may be provided by an underlying operating system or disk storage manager.

[0084] The following primitive mechanisms are described:

1. Calculate True Name; .

2. Assimilate Data Item;

3. True File;

4. Get True Name from Path;

5. Link Path to True Name;

6. Realize True File from Location;

7.

8.

9.

Locate Remote File;

Make True File Local;

Create Scratch File;

10. Freeze Directory;

11. Expand Frozen Directory;

12. Delete True File;

13. Process Audit File Entry;

14. Begin Grooming;

15. Select For Removal; and

‘I 16. End Grooming.

1. Calculate True Name

[0085] A True Name is computed using a function, MD, which reduces a ,

data block B of arbitrary length to a relatively small, fixed size identifier, the True

Name of the data block, such that the True Name of the data block is virtually

guaranteed to represent the data block B and only data block B.

[0086] The function MD must have the following properties:

1. The domain of the function MD is the set of all data items.

The range of the function MD is the set of True Names.

_ 20 _
2618-0015

600%1624-Page230f1‘r4

GOOG-1024-Page 24 of 114

2. The function MD must take a data item of arbitrary length

and reduce it to an integer value in the range 0 to N-l, where N is the

cardinality of the set of True Names. That is, for an arbitrary length

data block B, o s MD(B) < N. i

3. The results of MD(B) must be evenly and randomly

distributed over the range ofN, in such a way that simple or regular

changes to B are virtually guaranteed to produce a different value of

MD(B).

4. It must be computationally difficult to find a different value

B' such that MD(B)=MD03').

5. The function MD(B) must be efficiently computed.

[0087] A family of functions with the above properties are the so-called

message digest functions, which are used in digital security systems as techniques

for authentification of data. These functions (or algorithms) include MD4, MDS,

and SHA. '

[0088] In the presently preferred embodiments, either MDS or SHA is

employed as the basis for the computation of True Names. Whichever of these two

message digest functions is employed, that same function must be employed on a

system-wide basis.

[0089] It is impossible to define a function having a unique output for each

possible input when the number of elements in the range of the function is smaller

than the number of elements in its domain. However, a crucial observation is that

the actual data items that will be encountered in the operation of any system

embodying this invention form a very sparse subset of all the possible inputs.

[0090] A colliding set of data items is defined as a set wherein, for one or

more pairs x and y in the set, MD(x)=MD(y). Since a function conforming to the

requirements for MD must evenly and randomly distribute its outputs, it is ‘

possible, by making the range of the function large enough, to make the

- 21 _
2618-0015

600%1624-Page240f1‘r4

GOOG-1024-Page 25 of 114

probability arbitrarily small that actual inputs encountered in the operation of an

embodiment of this invention will form a colliding set.

[0091] To roughly quantify the probability of a collision, assume that there

are no more than 230 storage devices in the world, and that each storage device has

an average of at most 220 different data items. Then there are at most 250 data items

in the world. If the outputs of MD range between 0 and 2128, it can be

demonstrated that the probability of a collision is approximately 1 in 229. Details

on the derivation of these probability values are found, for example, in P. Flajolet

and A. M. Odlyzko, "Random Mapping Statistics," Lecture Notes in Computer

Science 434: Advances in Cryptology--Eurocrypt ’89 Proceedings, Springer-

Verlag, pp. 329-354. '

[0092] Note that for some less preferred embodiments of the present

invention, lower probabilities ofuniqueness may be acceptable, depending on the

types of applications and mechanisms used. In some embodiments it may also be

useful to have more than one level of True Names, with some of the True Names

having different degrees Of uniqueness. If such a scheme is implemented, it is

necessary to ensure that less unique True Names are not propagated in the system.

[0093] While the invention is described herein using only the True Name of

a data item as the identifier for the data item, other preferred embodiments use

tagged, typed, categorized or classified data items and use a combination ofboth

the True Name and the tag, type, category or class of the data item as an identifier.

Examples of such categorizations are files, directories, and segments; executable

files and data files, and the like. Examples of classes are classes of objects in an

object-oriented system. In such a system, a lower degree of True Name uniqueness

is acceptable over the entire universe of data items, as long as sufficient

uniqueness. is provided per category of data items. This is because the tags

provide an additional level of uniqueness.

[0094] A mechanism for calculating a True Name given a data item is now

described, with reference to FIGS. 10(a) and 10(b).

_ 22 _
2618-0015

600%1624-Page250f1‘r4

GOOG-1024-Page 26 of 114

[0095] A simple data item is a data item whose size is less than a particular

given size (which must be defined in each particular implementation of the l

‘ invention). To determine the True Name of a simple data item, with reference to

FIG. 10(a), first compute the NH) fianction (described above) on the given simple

data item (Step S212). Then append to the resulting 128 bits, the byte length

modulo 32 of the data item (Step 8214). The resulting 160-bit value is the True

Name of the simple data item.

[0096] A compound data item is one whose size is greater than the

particular given size of a simple data item. To determine the True Name of an

arbitrary (simple or compound) data item, with reference to FIG. 10(b), first

determine if the data item is a simple or a compound data item (Step S216). If the

data item is a simple data item, then compute its True Name in step S218 (using

steps S212 and S214 described above), otherwise partition the data item into

segments (Step S220) and assimilate each segment (Step $222) (the primitive

mechanism, Assimilate a Data ‘Item, is described below), computing the True

Name of the segment. Then create an indirect block consisting of the computed

segment True Names (Step S224). An indirect block is a data item which consists

of the sequence of True Names of the segments. Then, in step S226, assimilate the

indirect block and compute its True Name. Finally, replace the final thirty-two

(32) bits of the resulting True Name (that is, the length of the indirect block) by

the length modulo 32 of the compound data item (Step S228). The resultIS the
True Name of the c0mpound data item

[0097] Note that the compound data item may be so-large that the indirect

block of segment True Names is itself a compound data item. In this case the

mechanism is invoked recursively until only simple data items are being

proceSsed. '

[0098] I . Both the use of segments and the attachment of a length to the True

Name are not strictly required in a system using the present invention, but are

currently considered desirable features in the preferred embodiment.

_ 23 _
2618-0015

600%1624-Page260f1t4

GOOG-1024-Page 27 of 114

2. Assimilate Data Item

[0099] A mechanism for assimilating a data item (scratch file or segment)

into a file system, given the scratch file ID of the data item, is now described with

reference to FIG. 11. The purpose of this mechanism is to add a given data item to

the True File registry 126. If the data item already exists in the True File registry

126, this will be discovered and used during this process, and the duplicate will be

eliminated.

[00100] Thereby the system stores at most one copy of any data item or file

by content, even when multiple names refer to the same content.

[00101] ‘ First, determine the True Name of the data item corresponding to the

given scratch File ID using the Calculate True Name primitive mechanism (Step

S230). Next, look for an entry for the True Name in the True File registry 126

(Step $232) and determine whether a True Name entry, record 140, exists in the

True File registry 126. If the entry record-includes a corresponding True File ID or

compressed File ID (Step 8237), delete the file with the scratch File ID (Step

$23 8). Otherwise store the given True File ID in the entry record (step $239).

[00102] If it is determined (in step S232) that no True Name entry exists in

the True File registry 126, then, in Step $236, create a new entry in the True File

registry 126 for this True Name. Set the True Name of the entry to the calculated

True Name, set the use count for the new entry to one, store the given True File ID

in the entry and set the other fields ofthe entry as appropriate.

[00103] Because this procedure may take some time to compute, it is

intended to run in background after a file has ceased to change. In the meantime,

the file is considered an unassimilated scratch file.

3. True File

[00104] The True File process is invoked when processing the audit file 132,

some time after a True File has been assimilated (using the Assimilate Data Item

primitive mechanism). Given a local directory extensions table entry record 138 in

_ 24 _
2618-0015

600%1624-Page270f1‘r4

GOOG-1024-Page 28 of 114

the local directory extensions table 124, the True File process can provide the

following steps (with reference to FIG. 12), depending on how the local processor

is configured: _

f [00105] First, in step S238, examine the local directory extensions table entry

record 138 to determine whether the file is locked by a cache server. If the file is

locked, then add the ID of the cache server to the dependent processor list of the

True File registry table 126, and then send a message to the caChe server to update
the cache of the current processor using the Update Cache remote mechanism

(Step 242).

[00106] If desired, compress the True File (Step $246), and, if desired,

mirror the True File using the Mirror True File background mechanism (Step

8248)

4. Get True Name from Path

[00107] The True Name of a file can be used to identify a file by contents, to

confirm'that a file matches its original contents, or to compare two files. The

mechanism to get a True Name given the pathname of a file is now described with

reference to FIG. 13. _

[00108] First, search the local directory extensions table‘124 for the entry

record 138 with the given pathname (Step 8250). If the pathname is not found, this

process fails and no True Name corresponding to the given pathname exists. Next,

determine whether the local directory extensions table entry record 138 includes a

True Name (Step 8252), and if so, the mechanism's task is complete. Otherwise,

determine whether the local directory extensions table entry record 138 identifies a

. directory (Step $254), and if so, freeze the directory (Step $256) (the primitive

mechanism Freeze Directory is described below).

[00109] Otherwise, in step $258, assimilate the file (using the Assimilate

Data Item primitive mechanism) defined by the File ID field to generate its True

_ 25 _

2618-0015 ,

600%624-Page280f1‘r4

GOOG-1024-Page 29 of 114

Name and store its True Name in the local directory extensions entry record. Then

return the True Name identified by the local directory extensions table 124.

5. Link Path to True Name

[00110] The mechanism to link a path to a True Name provides a way of

creating a new directory entry record identifying an existing, assimilated file. This

basic process may be used to copy, move, and rename files without a need to copy

their contents. The mechanism to link a path to a True Name is now described

with reference to FIG. 14.

[00111] First, if desired, confirm that the True Name exists locally by

searching for it in the True Name registry or local directory extensions table 135

(Step S260). Most uses of this mechanism will require this form ofvalidation.

Next, search for the path in the local directory extensions table 135 (Step 8262).

Confirm that the directory containing the file named in the path already exists

(Step 8264). If the named file itself exists, delete the File using the Delete True

File. operating system mechanism (see below) (Step $268).

[00112] Then, create an entry record in the local directory extensions with

the specified path (Step 8270) and update the entry record and other data

structures as follows: fill in the True Name field of the entry with the specified

True Name; increment the use count for the True File registry entry record 140 of

the corresponding True Name; note whether the entry is a directory by reading the

True File to see if it contains a tag (magic number) indicating that it represents a

frozen directory (see also‘the description of the Freeze Directory primitive

' mechanism regarding the tag); and compute and set the other fields of the local

directory extensions appropriately. For instance, search the region table 128 to

identify the region of the path, and set thetime of last access and time of last

modification to the current time.

_ 26 _
2618-0015

600%1624-Page290f1‘r4

GOOG-1024-Page 30 of 114

6. Realize True File from Location

[00113] This mechanism is used to try to make a local copy of a True File,

given its True Name and the name of a source location (processor or media) that

may contain the True File. This mechanism is now described with reference to

FIG. 15.

[00114] First, in step $272, determine whether the location specified is a '

processor. If it is determined that the location specified is a processor, then send a

Request True File message (using the Request True File remote mechanism) to the

remote processor and wait for a response (Step S274). If a negative response is

received or no response is received after a timeout period, this mechanism fails. If

a positive response is received, enter the True File returned in the True File

registry 126 (Step $276). (If the file received was compressed, enter the True File

ID-in the compressed File ID field.)

[00115] If, on the other hand, it is determined in step 8272 that the location

specified is not a processor, then, if necessary, request the user or operator to

mount the indicated volume (Step S278). Then (Step 8280) find the indicated file

on the given volume and assimilate the file using the Assimilate Data Item

primitive mechanism. If the volume does not contain a True File registry 126,

search the media inventory to find the path of the file on the volume. If no such

file can be found, this mechanism fails.

[00116] At this point, whether or not the location is determined (in step

$272) to be a processor, if desired, verify the True File (in step $282).

7. Locate Remote File

[00117] This mechanism allows a processor to locate a file or data item from

a remote source of True Files, when a specific source is unknown or unaVailable.

A client processor system may ask one of several or many sources whether it can

supply a data object with a given True Name. The steps to perform this

mechanism are as follows (with reference to FIGS. 16(a) and-16(b)).'

_ 27 _
2618-0015

600%1624-Page aeof1+4

GOOG-1024-Page 31 of 114

[00118] The client processor 102 uses the source table 145 to select one or

more source processors (Step 8284). If no source processor can be found, the

mechanism fails. Next, the client processor 102 broadcasts to the selected sources

a request to locate the file with the given True Name using the Locate True File

remote mechanism (Step S286). The request to locate may be augmented by

asking to propagate this request todistant servers. The client processor then waits

for one or more servers to respond positively (Step 3288). After all servers

respond negatively, or after a timeout period with no positive response, the

mechanism repeats selection (Step 3284) to attempt to identify alternative sources.

If any selected source processor responds, its processor ID is the result of this

mechanism. Store the processor ID in the source field of the True File registry

entry record 140 of the given True Name (Step $290).

[00119] If the source location of the True Name is a different processor or

mediumthan the destination (Step 8290a), perform the following steps:

(i) Look up the True File registry entry record 140 for the

corresponding True Name, and add the source location ID to the list of

sources for the True Name (Step SZ90b); and

(ii) If thesource is a publishing system, determine the expiration date on

the publishing system for the True Name and add that to the list of sources.

If the‘source is not a publishing-system, send a message to reserve the True

File on the source processor (Step 82900).

[00120] Source selection in step 8284 may be based on optimizations

involving general availability of the source, access time, bandwidth, and

transmission cost, and ignoring previously selected processors which did not

respond in step 8288.

8. Make True File Local

[00121] ' This mechanism is used when a True Name is known and a locally

accessible copy of the. corresponding file or data item is required. This mechanism

_ 28 _
2618-0015

600%1624-Page 31 of1+4

GOOG-1024-Page 32 of 114

makes it possible to actually read the data in a True File. The mechanism takes a

True Name and returns when there is a local, accessible copy of the True File in

the True File registry 126. This mechanism is described here with reference to the

flowchart of FIGS. 17(3) and 17(b). I

[00122] First, look in the True File registry 126 for a True File entry record

140 for the corresponding True Name (Step $292). If no such entry is found this

mechanism fails. If there is already a True File ID for the entry (Step 8294), this

mechanism‘s task is complete. If there is a compressed file ID for the entry (Step

$296), decompress the file corresponding to the file ID (Step $298) and store the

decompressed file ID in the entry (Step S300). This mechanism is then complete.

[00123] If there is no True File ID for the entry (Step $294) and there is no .

compressed file ID for the entry (Step S296), then continue searChing for the

requested file. At this time it may be necessary to notify the user that the system is

searching for the requested file.

[00124] . If there are one or more source IDs, then select an order in which to

attempt to realize the source ID (Step S304). The order may be based on

optimizations involving general availability of the source, access time, bandwidth,

and transmission cost. For each source in the order chosen, realize the True File

from the source location (using the Realize True File from Location primitive

mechanism), until the True File is realized (Step S306). If it is realized, continue

with step $294. If no known source can realize the True File, use the Locate

'Remote File primitive mechanism to attempt to find the True File (Step S308). If

this succeeds, realize the True File from the identified source location and

continue with step $296.

9. Create Scratch File

[00125] A scratch copy of'a file is required when a file is being created or is

about to be modified. The scratch copy is stored in the file system of the

underlying operating system. The scratch copy is eventually assimilated when the

_ 29 _
2618—0015

600%1024-Page 32 of 1+4

GOOG-1024-Page 33 of 114

audit file record entry 146 is processed by the Process Audit File Entry primitive

mechanism. This Create Scratch File mechanism requires a local directory

extensions table entry record 138. When it succeeds, the local directory extensions

table entry record 138 contains the scratch file ID of a scratch file that is not

contained in the True File registry 126 and that may be modified. This mechanism

is now described with reference to FIGS. 18(3) and 18(b).

[00126] First determine whether the scratch file should be a Copy of the

existing True File (Step S310). If so, continue with step S312. Otherwise,

determine whether the local directory extensions table entry record 138 identifies

an existing True File (Step S316), and if so, delete the True File using the Delete

True File primitive mechanism (Step S318). Then create a new, empty scratch file

and store its scratch file ID in the local directory extensions table entry record 138

(step S320). This mechanism is then complete.

[00127] If the local directory extensions table entry record 138 identifies a

scratch file ID (Step S312), then the entry already has a scratch file, so this
mechanism succeeds. '

[00128] If the local directory extensions table entry record 138 identifies a

True File (S316), and there is no True File ID for the True File (S312), then make

the True File local using the Make True File Local primitive mechanism (Step

S322). If there is still no True File ID, this mechanism fails.

[00129] There is now a local True File for this file. If the use count in the

corresponding True File registry entry record 140 is one (Step S326), save the

True File ID in the scratch file ID of the local directory extensions table entry

I record 138, and remove the True File registry entry record 140 (Step S328). (This

step makes the True File into a scratch file.) This mechanism's task is complete.

[00130] Otherwise, if the use count in the corresponding True File registry

entry record 140 is not one (in step S326), copy the file with the given True File

ID to a new scratch file, using the Read File OS mechanism and store its file ID in

the local directory extensions table entry record 138 (Step S330), and reduce the

_ 30 _
2618-0015

600%1624-Page 330mm

GOOG-1024-Page 34 of 114

use count for the True File by one. If there is insufficient space to make a copy,

this mechanism fails.

10. Freeze Directory

[00131] This mechanism freezes a directory in order to calculate its True

Name. Since the True Name of a directory is a function of the files within the

directory,” they must not change during the computationvof the True Name of the

directory. This mechanism requires the pathname of a directory to freeze. This

mechanism is described with reference to FIGS. 19(a) and 19(b).

[00132] V In step S332, add one to the global freeze lock. Then search the local

directory extensions table 124 to find each subordinate data file and directory of

the given directory, and freeze each subordinate directory found using the Freeze

Directory primitive mechanism (Step S334). Assimilate each unassimilated data

file in the directory using the Assimilate Data Item primitive mechanism (Step

S336). Then create a data item which begins with a tag or marker (a "magic

number") being a unique data item indicating that this data item is a frozen

directory (Step S337). Then list the file name and True Name for each file in the

current directory (Step S338). Record any additional information required, such as

the type, time of last access and modification, and size (Step S340). Next, in step

S342, using the Assimilate Data Item primitive mechanism, assimilate the data

item created in step S338. The resulting True Name is the True Name of the frozen

directory. Finally, subtract one from the global freeze lock (Step S344).

11. Expand Frozen Directory

[00133] This mechanism expands a frozen directory in a given location. It

‘ requires a given pathname into which to expand the directory, and the True Name

of the directory and is described with reference to FIG. 20.

[00134] First, in step S346, make the True File with the given True Name

local using the Make True File Local primitive mechanism. Then-read each

_ — 31 —2618-0015

600%1624-Page 340mm

GOOG-1024-Page 35 of 114

directory entry in the local file created in step S346 (Step S348). For each such

directory entry, do the following:

[00135] Create a full pathname using the given pathname and the file name

of the entry (Step S350); and

[00136] link the created path to the True Name (Step S352) using the Link

Path to True Name primitive mechanism.

12. Delete True File

[00137] This mechanism deletes a reference to a True Name. The underlying

True File is not removed from the True File registry 126 unless there are no

additional references to the file. With reference to FIG. 21, this mechanism is

performed as folloWs:

[00138] g If the global freeze lock is on, wait until the global freeze lock is

turned off (Step S354). This prevents deleting a True File while a directory which

might refer to it is being frozen. Next, find the True File registry entry record 140

given the True Name (Step S356). If the reference count field of the True File

registry 126 is greater than zero, subtract one from the reference count field (Step

S358). If it is determined (in. step S360) that the reference count field of the True
File registry entry record 140 is zero, and if there are no dependent systems listed

in the True File registry entry record 140, then perform the following steps:

[00139] (i) If the True File is a simple data item, then delete the True

File, otherwise,

I [00140] (ii) (the True File is a compound data item) for each True Name

in the data item, recursively delete the True'File corresponding to the True Name

(Step S362).

[00141] (iii) Remove the file indicated by the True File ID and

compressed file ID from the True-File registry 126, and remove the True File

registry entry record 140 (Step S364).

_ 32 _
2618-0015

600%1624-Page 350mm

GOOG-1024-Page 36 of 114

13. Process Audit File Entry

[00142] This mechanism performs tasks which are required to maintain

information in the local directory extensions table 124 and True File registry 126,

but which can be delayed while the processor is busy doing more time-critical

tasks. Entries 142 in the audit file 132 should be processed at a background

priority as long as there are-entries to be processed. With reference to FIG. 22, the

steps for processing an entry are as follows:

[00143] Determine the operation in the entry 142 currently being processed

(Step S365). If the operation indicates that a file Was created or written (Step

S366), then assimilate the file using the Assimilate Data Item primitive

mechanism (Step S368), use the True File primitive mechanism to do additional

desired processing (such as cache update, compression, and mirroring) (Step.

S369), and record the newly computed True Name for the file in the audit file

record entry (Step S370). '

[00144] Otherwise, if the entry being processed indicates that a compound

data item or directory was copied (or deleted) (Step S376), then for each

component True Name in the compound data item or directory, add (or subtract)

one to the use count of the True File registry entry record 140 corresponding to the

component True Name (Step S378).

[00145] ~ In all cases, for each parent directory of the given file, update the

size, time oflast access, and time of last modification, according to the operation

in the audit record (Step S379).

[00146] Note that the audit record is not removed after processing, but is .

retained for some reasonable period so that it may be used by the Synchronize

Directory extended mechanism to allow a disconnected remote processor to update

its representation of the local system.

_ 33 _
2618-0015

600%1624-Page 360f1‘r4

GOOG-1024-Page 37 of 114

14. Begin Grooming

[00147] This mechanism makes it possible to select a set of files for removal

and determine the overall amount of space to be recovered. With reference to FIG.
23, first verify that the global grooming lock is currently unlocked (Step S3 82).

Then set the global grooming lock, set the total amount of space freed during

grooming to zero and empty the list of files selected for deletion (Step S384). For

each True File in the True File registry 126, set the delete count to zero (Step

S3 86).

15. Select For Removal

[00148] . This grooming mechanism tentatively selects a pathname to allow its

corresponding True File to be removed. With reference to FIG. 24, firstfind the

local directory extensions table entry record 138 corresponding to the given -

pathname (Step S388). Then find the True File registry entry record 140

corresponding to the True File name in the local directory extensions table entry

record 138 (Step S390). Add one to the grooming delete count in the True File

registry entry record 140 and add the pathname to a list of files selected for

deletion (Step S392). If the grooming delete count of the True File registry entry

record 140 is equal to the use count of the True File registry entry record 140, and

if the there are no entries in the dependency list of the True File registry entry

record 140, then add the size 'of the file indicated by the True File ID and or

compressed file ID to the total amount of space freed during grooming (Step

S394).

16. End Grooming

[00149] This grooming mechanism ends the grooming phase and removes all

files selected for removal. With reference to FIG. 25, for each file in the list of

files selected for deletion, delete the file (Step S396) and then unlock the global

grooming lock (Step S398).

_ 34 _
2618-0015

600%1624-Page 37 of 1+4

GOOG-1024-Page 38 of 114

OPERATING SYSTEM MECHANISMS

[00150] The next of the mechanisms provided by the present invention,

4 operating system mechanisms, are now described.

[00151] The following operating system mechanisms are described:

. Open File;

. Close File;

. Read File;

. Write File;

. Delete File or Directory;

. Copy File or Directory;

. Move File or Directory;

. Get File Status; and

\OOOQONUI-PUJNr—t
. Get Files in Directory.

1. Open File

[00152] A mechanism to open a file is described with reference to FIGS.

26(a) and 26(b). This mechanism is given as input a pathname and the type of

access required for the file (for example, read, write, read/write, create, etc.) and

produces either the File ID of the file to be opened or an indication that no file

should be opened. The local directory extensions table record 138 and region table

record 142 associated with the opened file are associated with the open file for

later use in other processing functions which refer to the file, such as read, write,

and close. I

[00153] First, determine whether or not the named file exists locally by

examining the local directory extensions table 124 to determine whether there. is

an entry corresponding to the given pathname (Step S400). If it is determined that

the file name does not exist locally, then, using the access type, determine whether

or not the file is being created by this opening process (Step S402). If the file is

not being created, prohibit the open (Step S404). If the file is being created, create

- 35 _
2618-0015

600%1624-Page 380f1‘r4

GOOG-1024-Page 39 of 114

a zero-length scratch file using an entry in local directory extensions table 124 and

produce the scratch file ID of this scratch file~ as the result (Step S406).

WMSQ IflonmeommhMMthdamnmwdmsmpSMMflmHhefibnmne

does exist locally, then determine the region in which the file is-located by

searching the region table 128 to find the record 142 with the longest region path

which is a prefix of the file pathname (Step S408). This record identifies'the

region of the specified file.

[00155] Next, determine using the access type, whether the file is being

opened for writing or whether it is being opened only for reading (Step S410). If

the file is being opened for reading only, then, if the file is a scratch file (Step

S419), return the scratch File ID of the file (Step S424). Otherwise get the True

Name from the local directory eXtensions table 124 and make a local version of

the True File associated with the True Name using the Make True File Local

primitive mechanism, and then return the True File ID associated with the True

Name (Step S420).

[00156] If the file is not being opened for reading only (Step S410), then, if it

is determined by inspecting the region table entry record 142 that the file is in a

read-Only directory (Step S416), then prohibit the opening (Step S422).

[00157] ‘ If it is determined by inspecting the region table 128 that the file is

in a cached region (Step S423), then send a Lock Cache message to the

corresponding cache server, and wait for a return message (Step S418). If the

return message says the file is already locked, prohibit the opening.

[00158] If the access type indicates that the file being modified is being

rewritten completely (Step S419), so that the original data will not be required,

then Delete the File using the Delete File OS mechanism (Step S421) and perform

step S406. Otherwise, make a scratch copy of the file (Step S417) and produce the

scratch file ID of the scratch file as the result (Step S424).

- 36 _
2618-0015

600%1024-Page 390mm

GOOG-1024-Page 40 of 114

2. Close File

[00159] This mechanism takes as input the local directory extensions table

entry record 138 of an open file and the data maintained for the open file. To close

. a file, add an entry to the audit file indicating the time and operation (create, read

or write); The audit file processing (using the Process Audit File Entry primitive

mechanism) will take care of assimilating the file and thereby updating the other

records.

3. Read File

[00160] To read a file, a program must provide the offset and length of the

data to be read, and the location of a buffer into which to copy the data read.

[00161] The file to be read from is identified by an open file descriptor which

includes a File ID as computed by the Open File operating system mechanism

defined above. The File ID may identify either a scratch file or a True File (or

True File segment). If the File ID identifies a True File, it may be either a simple

or a compound True File. Reading a file is accomplished by the following steps:

[00162] In the case where the File ID identifies a scratch file or a simple

True File, use the read capabilities of the underlying operating system.

[00163] In the case where the File ID identifies a compound file, break the

read operation into one or more read operations on component segments as

follows:

. [00164] A. Identify the segmeht(s) to be read by dividing the specified

file offset and length each by the fixed size of a segment (a system dependent

parameter), to determine the segment number and number of segments that must

be read.

[00165] B. For each segment number computed above, do the following:

[00166] i. Read the compound True File index block to

determine the True Name of the segment to be read.

-37-
2618-0015

600%1624-Page460f1‘r4.1

GOOG-1024-Page 41 of 114

[00167] ii. Use the Realize True File from Location primitive

mechanism to make the True File segment available locally. (If that mechanism

fails, the Read File mechanism fails).

[00168] iii. Determine the File ID of the True File specified by the

True Name corresponding to this segment.

[00169] liv. Use the Read File mechanism (recursively) to read

from this segment into the corresponding location in the specified buffer.

4. Write File

[00170] File writing uses the file ID and data management capabilities of the

underlying operating system. File access (Make File Local described above) can

be deferred until the first read or write. ‘

5. ‘ Delete File or Directory

[00171] The process of deleting a file, for a given pathname, is described

here with reference to FIGS. 27(a) and 27(b). I

[00172] First, determine the local directory extensions table entry record 138

and region table entry record 142 for the file (Step S422). If the file has no local

directory extensions table entry record 138 or is locked or is in a read-only region,

prohibit the deletion. I _

[00173] V Identify the corresponding True File given the True Name of the file

being deleted using the True File registry 126 (Step S424). If the file has no True

Name, (Step S426) then delete the scratch copy of the file based on its scratch file

ID in the local directory extensions table 124 (Step S427), and continue with step

S428. '

[00174] If the file has a True Name and the True File's use count is one (Step

S429), then delete the True File (Step S430), and continue with step S428.

[00175] If the file has a True Name and the True File's use count is greater

than one, reduce its use count by one (Step S431). Then proceed with step S428.

_ - 38 —2618-0015

600%1624-Page 41 of1+4

GOOG-1024-Page 42 of 114

[00176] In Step S428, delete the local directory extensions table entry record,

and add an entry to the audit file 132 indicating the time and the operation

performed (delete). ‘ A

6. Copy File or Directory

[00177] A mechanism is provided to copy a file or directory given a source

and destination processor and pathname. The Copy File mechanism does not

actually copy the data in the file, only the True Name of the file. This mechanism

is performed as follows: '

[00178] (A) Given the source path, get the True Name from the path. If

this step fails, the mechanism fails.

[00179] (B) Given the True Name and the destination path, link the

destination path to the True Name.

[00180] (C) If the source and destination processors have different True
File registries, find (or, if necessary, create) an entry for the True Name in the

True File registry table 126 of the destination processor. Enter into the source ID

field of this new entry the source processor identity.

[00181] (D) . Add an entry to the audit file 132 indicating the time and

operation performed (copy).

[00182] ‘ This mechanism addresses capability of the system to avoid copying

data from a source location to a destination location when the destination already

has the data. In addition, because of the ability to freeze a directory, this

mechanism also addresses capability of the system immediately to make a copy of

any collection of files, thereby to support an efficient version control mechanisms

for groups of files.

- 39 _
2618-0015

600%1624-Page 42 of 1+4

GOOG-1024-Page 43 of 114

7. Move File or Directory

[00183] A mechanism is described which moves (or renames) a file from a

source path to a destination path. The move operation, like the copy operation,

requires no actual transfer of data, and is performed as follows:

[00184] (A) Copy the file from the source path to the destination path.

[00185] (B) If the source path is different from the destination path, delete

the source path.

8. Get File Status

[00186] This mechanism takes a file pathname and provides information

about the pathname. First the local directory extensions table entry record 138

corresponding to the pathname given is found. If no such entry exists, then this

mechanism fails, otherwise, gather information about the file and its

corresponding True File from the local directory extensions table 124. The

information can include any information shown in the data structures, including

the size, type, owner, True Name, sources, time of last access, time of last

modification, state (local or not, assimilated or not, compressed or not), use count,

expiration date, and reservations.

9. Get Files in Directory

[00187] This mechanism enumerates the files in a directory. It is used

. (implicitly) whenever it is necessary to determine whether a file exists (is present)
in a directory. For instance, it is implicitly used in the Open File, Delete File,

Copy File or Directory, and Move File operating system mechanisms, because the

files operated on are referred to by pathnames containing directory names. The

mechanism works as follows: _

[00188] The local directory extensions table 124 is searched for an entry 138

with the given directory pathname. Ifno such entry is found, or if the entry found

is not a directory, then this mechanism fails.

_ 40 -
2618-0015

600%1624-Page430f1t4

GOOG-1024-Page 44 of 114

[00189] If there is a corresponding True File field in the local directory

extensions table record, then it is assumed that the True File represents a frozen

directory. The Expand Frozen Directory primitive mechanism is used to expand

the existing True File into directory entries in the local directory extensions table.

> [00190] Finally, the local directory extensions table 124 is again searched,

this time to find each directory subordinate to the given directory. The names

found are provided as the result.

REMOTE MECHANISMS

[00191] The remote mechanisms provided by the present invention are now

described. Recall that remote mechanisms are used by the operating system in

responding to requests from other processors. These mechanisms enable the

capabilities of the present invention in a peer-to-peer network mode of operation.

[00192] In a presently preferred embodiment, processors communicate with

each other using a remote procedure call (RPC) style interface, running over one

of any number of communication protocols such as IPX/SPX or TCP/IP. Each

peer processor which provides access to its True File registry 126 or file regions,

or which depends on another peer processor, provides a number of mechanisms

which can be used by its peers.

[00193] The following remote mechanisms are described:

Locate True File;

Reserve True File;

Request True File;

Retire True File;

Cancel Reservation;

Acquire True File;

Lock Cache;

Update Cache; and

PfiNQMFP’P!‘
Check Expiration Date.

_ 41 _
2618-0015

600%1624-Page4r40f1‘r4

GOOG-1024-Page 45 of 114

1., Locate True File

[00194] This mechanism allows a remote processor to determine .whether the

local processor contains a copy of a specific True File. The mechanism begins

with a True Name and a flag indicating whether to forward requests for this file to

other servers. This mechanism is now described with reference to FIG. 28.

[00195] First determine if the True File is available locally or if thereis some

indication of where the True File is located (for example, in the Source IDs field).

Look up the requested True Name in the True File registry 126 (Step S432). _

. [00196] If a True File registry entry record 140 is not found for this True

Name (Step S434), and the flag indicates that the request is not to be forwarded

(Step S436), respond negatively (Step S43 8). That is, respond to the effect that the

True File is not available. .

[00197] One the other hand, if a True File registry entry record 140 is not

found (Step S434), and the flag indicates that the request for this True File is to be

forwarded (Step S436), then forward a request for this True File to some other

processors in the system (Step S442). If the source table for the current processor

identifies one or more publishing servers which should have a copy of this True

File, then forward the request to each of those publishing servers (Step S436).

[00198] If a True File registry entry record 140 is found for the required True

File (Step S434), and if the entry includes a True File ID or Compressed File ID

(Step S440), respond positively (Step S444). If the entry includes a True File ID

then this provides the identity or disk location of the actual physical representation

of the file or file segment required. If the entry include a Compressed File ID, then

a compressed version of the True File may be stored instead of, or in addition to,

an uncompressed version. This field provides the identity of the actual}

representation of the compressed version of the file.

[00199] If the True File registry entry record 140 is found (Step S434) but

does not include a True File ID (the File ID is absent if the actual file is not

currently present at the current location) (Step S440), and if the True File registry

_ 42 __
2618-0015

600%1624-Page450f1‘r4

GOOG-1024-Page 46 of 114

entry record 140 includes one or more source processors, and if the request can be

forwarded, then forward the request for this True File to one or more of the source

processors (Step S444).

2. Reserve True File

[00200] This mechanism allows a remote processor to indicate that it

depends on the local processor for access to a specific True File. It takes a True

Name as input. This mechanism is described here.

[00201] (A) Find the True File registry entry record 140 associated with

the given True File. If no entry exists, reply negatively.

[00202] (B) If the True File registry entry record 140 does not include a

True File ID or compressed File ID, and if the True File registry entry record 140

includes no source IDs for removable storage volumes, then this processor does

not have access to a copy of the given file. Reply negatively.

[00203] (C) Add the ID of the sending processor to the list of dependent

processors for the True File registry entry record'140. Reply positively, with an

indication ofwhether the reserved True File is on line or off line.

3. Request True File

[00204] This mechanism allows a remote processor to request a copy of a

True File from the local processor. It requires a True Name and responds

positively by sending a True File back to the requesting processor. The mechanism

operates as follows:

[00205] (A) Find the True File registry entry record 140 associated with

the given True Name. If there is no such True File registry entry record 140, reply .

negatively.

[00206] (B) Make the True File local using the Make True File Local _

primitive mechanism. If this mechanism fails, the Request True File mechanism

also fails.

_ - 43 —2618-0015

600%1624-Page460f1‘r4

GOOG-1024-Page 47 of 114

[00207] (C) Send the local True File in either it is uncompressed or

compressed form to the requesting remote processor. Note that if the True File is a

compound file, the components are not sent.

[00208] (D) If the remote file is listed in the dependent process list of the

True File registry entry record 140, remove it.

4. Retire True File

[00209] This mechanism allows a remote processor to indicate that it no

longer plans to maintain a copy of a given True File. An alternate source of the

True File can be specified, if, for instance, the True File is being moved from one

server to another. It begins with a True Name, a requesting processor ID, and an

optional alternate source. This mechanism operates as follows:

[00210] (A) Find a True Name entry in the True File registry 126. If there

is no entry for this True Name, this mechanism's task is complete.

[00211] (B) Find the requesting processor on the source list and, if it is

there, remove it.

[00212] (C) If an alternate source is provided, add it to the source list for

the True File registry entry record 140.

[00213] (D) If the source list of the True File registry entry record 140 has

. no items in it, usethe Locate Remote File primitive mechanism to search for

another copy of the file. If it fails, raise a serious error.

5. Cancel Reservation

[00214] This mechanism allows a remote processor to indicate that it no

longer requires access to a True File stored on the local processor. It begins with a

True Name and a requesting processor ID and proceeds as follows:

[00215] (A) Find the True Name entry in the True File registry 126. If

there is no entry for this True Name, this mechanism's task is complete.

_ 44 _
2618-0015

600%1624-Page 47 of 1+4

GOOG-1024-Page 48 of 114

[00216] (B) Remove the identity of the requesting processor from the list

of dependent processors, if it appears.

[00217] (C) If the list of dependent processors becomes zero and the use

count is also zero, delete the True File.

6. Acquire True File

[00218] This mechanism allows a remote processor to insist that a local

processor make a copy of a specified True File. It is used, for example, when a

cache client wants to write through a new version of a file. The Acquire True File

mechanism begins with a data item and an optional True Name for the data item

and proceeds as follows:

[00219] (A) Confirm that the requesting processor has the right to require

the local processor to acquire data items. If not, send a negative reply.

[00220] (B) Make a local copy of the data item transmitted by the remote

processor.

[00221] (C) Assimilate the data item into the True File registry of the

local processor.

[00222] (D) If a True Name was provided with the file, the True Name

calculation can be avoided, or the mechanism can verify that the file received

matches the True Name sent.

[00223] (E) Add an entry in the dependent processor list of the true file

registry record indicating that the requesting processor depends on this copy of the

given True File.

[00224] (F) Send a positive reply.

7. Lock Cache

[00225] This mechanism allows a remote cache client to lock a local file so

that local users or other cache clients cannot change it while the remote processor

is using it. The mechanism begins with a pathname and proceeds as follows:

_ 45 _
2618-0015

600%1624-Page4r80f1‘r4

GOOG-1024-Page 49 of 114

[00226] (A) Find the local directory extensions table entry record 138 of

the specified pathname. If no such entry exists, reply negatively.

[00227] (B) If an local directory extensions table entry record 138 exists

and is already locked, reply negatively that the file is already locked.

[00228] (C) 'If an local directOry extensions table entry record 138 exists

and is not locked, lock the entry. Reply positively.

8. Update Cache

[00229] This mechanism allows a remote cache client to unlock a local file

and update it with new contents. It begins with a pathname and a True Name. The

file corresponding to the True Name must be accessible from the remote

processor. This mechanism operates as follows:

[00230] Find the local directory extensions table entry record 138

corresponding to the given pathname. Reply negatively ifno such entry exists or if

the entry is not locked. V

[00231] Link the given pathname to the given True Name using the Link

Path to True Name primitive mechanism.

[00232] Unlock the local directory extensions table entry record 138 and _

return positively.

9. CheckVExpiration’ Date

[00233] Return current or new expiration date and possible alternative source

to caller.

BACKGROUND PROCESSES AND MECHANISMS

[00234] The background processes and mechanisms provided by the present

invention are now described. Recall that background mechanisms are intended to

run occasionally and at a low priority to provide automated management

capabilities with respect to the present invention.

[00235] The following background mechanisms are described:

_ 46 _
2618-0015

600%1624-Page490f1‘r4

GOOG-1024-Page 50 of 114

Mirror True File;

Groom Region;

Check for Expired Links;

Verify Region; and9:59.531"
Groom Source List.

1. Mirror True File

[00236] This mechanism is used to ensure that files are available in alternate

locations in mirror groups or archived on archival servers. The mechanism

depends on application-specific migration/archival criteria (size, time since last

access, number of copies required, number of enisting alternative sources) which
determine under what conditions a file should be moved. The Mirror True File

mechanism operates as follows, using the True File specified, perform the

following steps:

[00237] (A) ' Count the number of available locations of the True File by

inspecting the source list of the True~ File registry entry record 140 for the True

File. This step determines how many copies of the True. File are available in the

system.

[00238] (l3) If the True File meets the specified migration criteria, select a

mirror group server to which a copy of the file should be sent. Use the Acquire

True File remote mechanism to copy the True File to the selected mirror group

server. Add the identity of the selected system to the source list for the True File.

2. Groom Region

> [00239] This mechanism is used to automatically free up space in a processor

by deleting data items that may be available elsewhere. The mechanism depends

on application-specific grooming criteria (for instance, a file may be removed if

there is an alternate online source for it, it has not been accessed in a given number

of days, and it is larger than a given size). This mechanism operates as follows:

_ 47 _
2618-0015

600%1624-Page seof1+4

GOOG-1024-Page 51 of 114

[00240] . Repeat the following steps (i) to (iii) with more. aggressive grooming

‘ criteria until sufficient space is freed or until all grooming criteria have been
exercised. Use grooming information to determine how much space has been

freed. Recall that, while grooming is in effect, grooming information includes a

table ofpathnames selected for deletion, and keeps track of the amount of spaCe

that would be freed if all of the files were deleted.

[00241] (i) Begin Grooming (using the primitive mechanism).

[00242] (ii) For each pathname in the specified region, for the True File

corresponding to the pathname, if the True File is present, has at least one

alternative source, and meets application specific grooming criteria for the region,

select the file for removal (using the primitive mechanism).

[00243] (iii) End Grooming (using the primitive mechanism).

[00244] If the region is used as a cache, no other processors are dependent on

True Files to which it refers, and all such True Files are mirrored elsewhere. In

this case, True Files can be removed with impunity. For a cache region, the

grooming criteria would ordinarily eliminate the least recently accessed True Files

first. This is best done by sorting the True Files in the region by the most recent

access time before performing step (ii) above. The application specific criteria

would thus be to select for removal every True File encountered (beginning with

the least recently used) until the required amount of free space is reached.

3. Check for Expired Links

[00245] This mechanism is used to determine whether dependencies on

published files should be refreshed. The following steps describe the operation of

this mechanism:

[00246] For each pathname in the specified region, for each True File

corresponding to the pathname, perform the following step:

_ 48 _
2618-0015

600%1624-Page 51 of1’l4

GOOG-1024-Page 52 of 114

[00247] If the True File registry entry record 140 corresponding to the True

File contains at least one source which is a publishing server, and if the expiration

date on the dependency is past or close, then perform the following steps:

[00248] (A) Determine whether the True File registry entry record

contains other sources which have not expired.

[00249] (B) Check the True Name expiration of the server. If the

expiration date has been extended, or an alternate source is suggested, add the

source to the True File registry entry record 140.

[00250] (C) If no acceptable alternate source was found in steps (A) or (B)

above, make a local copy of the True File.

[00251] . (D) Remove the expired source.

4. Verify Region

[00252] This mechanism can be used to ensure that the data items in the True

File registry 126 have not been damaged accidentally or maliciously. The

operation of this mechanism is described by the following steps:

[00253] (A) Search the local directory extensions table 124 for each

pathname in the specified region and then perform the following steps:

[00254] (i) Get the True File name corresponding to the

pathname;

[00255] (ii) If the True File registry entry 140 for the True File

does not have a True File ID or compressed file ID, ignore it.

[00256] (iii) Use the Verify True File mechanism (see extended

mechanisms below) to confirm that the True File specified is correct.

5. Groom Source List

[00257] . The source list in a True File entry should be groomed sometimes to

ensure there are not too 'many mirror or archive copies. When a file is deleted or

when a region definition or its mirror criteria are changed, it may be necessary to

_ 49 _
2618-0015

600%1624-Page 52 of 1+4

GOOG-1024-Page 53 of 114

inspect the affected True Files to determine whether there are too many mirror

copies. This can be done with the following steps:

[00258] For each affected True File,

[00259] (A)‘ Search the local directory extensions table to find each region

that refers to the True File.

[00260] (B) Create a set of "required sources", initially empty.

[00261] (C) For each region found,

[00262] (a) determine the mirroring criteria for that region,

[00263] (b) determine which sources for the True File satisfy the

mirroring criteria, and

[00264] (c) add these sources to the set of required sources.

[00265]] (D) For each source in the True File registry entry, if the source

identifies a remote processor (as opposed to removable media), and if the source is

not a publisher, and if the source is not in the set of required sources, then

eliminate the source, and use the Cancel Reservation remote mechanism to

eliminate the given processor from the list of dependent processors recorded at the

remote processor identified by the source.

EXTENDED MECHANISMS

[00266] The extended mechanisms provided by' the present invention are

now described. Recall that extended mechanisms run within application programs

over the operating system to provide solutions to specific problems and

applications.

[00267] The following extended mechanisms are described:

1 Inventory Existing Directory;

2 Inventory Removable, Read-only Files;

3. Synchronize Directories;

4 Publish Region;

5 Retire Directory;

_ 50 _
2618—0015

600%1624-Page 5so=r1+4

GOOG-1024-Page 54 of 114

Realize Directory at LocatiOn;

Verify True File;

Track for Accounting Purposes; and99°99
Track for Licensing Purposes.

1. Inventory Existing Directory

[00268] This mechanism determines the True Names of files in an existing

on-line directory in the underlying operating system. One purpose of this

mechanism is to install True Name mechanisms in an existing file system.

[00269] An effect of such an installation is to eliminate immediately all

duplicate files from the file system being traversed. If several file systems are

inventoried in a single True File registry, duplicates across the volumes are'also

eliminated.

[00270] (A) Traverse the underlying file system in the operating system.

For each file encountered, excluding directories, perform the following:

[00271] (i) Assimilate the file encountered (using the Assimilate

File primitive mechanism). This process computes its True Name and moves its

data into the True File registry 126.

[00272] (ii) Create a pathname consisting of the path to the volume

directory and the relative path of the file on the media. Link this path to the

computed True Name using the Link Path to True Name primitive mechanism.

2. Inventory Removable, Read-only Files

[00273] A system with access to removable, read-only media volumes (such

as WORM disks and CD-ROMs) can create a usable inventory of the files on these

disks without having to make online copies. These objects can then be used for

archival purposes, directory overlays, or other needs. An operator must request

that an inventory be created for such a volume.

_ 51 _
2618-0015

600%1624-Page 540mm

GOOG-1024-Page 55 of 114

[00274] This mechanism allOws for maintaining inventories of the contents

of files and data items on removable media, such as diskettes and CD-ROMS,

independent of other properties of the files such as name, location, and date of

creation. I

[00275] The mechanism creates an online inventory of the files on one or

more removable volumes, such as a floppy disk or CD-ROM,'when the data on the

volume is represented as a directory. The inventory service uses a True Name to

identify each file, providing a way to locate the data independent of its name, date

ofcreafion,orlocafion.

[00276] The inventory can be used for archival of data (making it possible to

avoid archiving data. When that data is already on a separate volume), for

grooming (making it possible to delete infrequently accessed files if they can be

retrieved from removable volumes), for version control (making it possible to

generate a new version of a CD-ROM without having to copy the old version), and

for other purposes.

[00277] Theinventory is made by creating a volume directory in the media

inventory in which each file named identifies the data item on the volume being

inventoried. Data items are not copied from the removable volume during the

I inventory process.

[00278] An- operator must request that an inventory be created for a specific

volume. Once created, the volume directory can be frozen or copied like any other

directory. Data items from either the physical volume or the volume directory can

be accessed using the Open File operating system mechanism which will cause

them to be read from the physical volume using the Realize True File from _
Location primitive mechanism.

[00279] To create an inventory the following steps are taken:

[00280] (A) A volume directory in the media inventory is created to

correspond to the volume being inventoried. Its contextual name identifies the

specific volume. 4

_ 52 _
2618-0015

600%1624-Page 550=r1+4

GOOG-1024-Page 56 of 114

[00281] (B) A source table entry 144 for the volume is created in the

source table 130. This entry 144 identifies the physical source volume and the

volume directory created in step (A). ,

[00282] (C) The filesystem on the volume is traversed. For each file

‘ encountered, excluding directories, the following steps are taken:

[00283] (i) The True Name of the file is computed. An entry is

created in the True Name registry 124, including the True Name of the file using

the primitive mechanism. The source field of the True Name registry entry 140

' identifies the source table entry 144.

[00284] . (ii) A pathname is created consisting of the path to the

volume directory and the relative path of the file on the media. This path is linked

to the computed True Name using Link Path to True Name primitive mechanism.

[00285] (D) After all files have been inventoried, the volume directory is

frozen. The volume directory serves as a table of contents for the volume. It can be

copied using the Copy File or Directory primitive mechanism to create an

"overlay" directory which can then be modified, making it possible to edit a virtual

copy of a read-only medium.

3. Synchronize Directories

[00286] Given two versions of a directory derived from the same starting

point, this mechanism creates a new, synchronized version which includes the

changes from each. Where a file is changed in both versions, this mechanism

provides a user exit for handling the discrepancy. By using True Names,

comparisons are instantaneous, and no copies of files are necessary.

[00287] This mechanism lets a local processor synchronize a directory to

account for changes made at a_ remote processor. Its purpose is to bring a local

copy of a directory up to date afier a period of no communication between the

local and remote processor. Such a period might occur if the local processor were

_ 53 _
2618-0015

600%1624-Page 560f1‘r4

GOOG-1024-Page 57 of 114

a mobile processor detached from its server, or if two distant processors were run

independently and updated nightly.-

' [00288] An advantage of the described synchronization process is that it does

not depend on synchronizing the clocks of the local and remote processors.

However, it does require that the local'processor track its position in the remote

processor's audit file. ‘

[00289] This mechanism does not resolve changes made simultaneously to

the same file at several sites. If that occurs, an external resolution mechanism such

as, for example, operator intervention, is required.

[00290] The mechanism takes as input a start time, a local directory

pathname, a remote processor name, and a remote directory pathname name, and it

operates by the following steps: _

[00291] (A) Request a copy of the audit file 132 from the remote

processor using the Request True File remote mechanism.

[00292] (B) For each entry 146 in the audit file 132 after the start time, if

the entry indicates a change to a file in the remote directory, perform the following

steps:

[00293] (i) Compute the pathname of the corresponding file in the

local directory. Determine the True Name of the corresponding file.

[00294] (ii) If the True Name of the local file is the same as the old

True Name in the audit file, or if there is no local file and the audit entry indicates

a new file is being created, link the new True Name in the audit file to the local

pathname using the Link Path to True Name primitive mechanism.

[00295] (iii) Otherwise, note that there is a problem with the

synchronization by sending a message to the operator or to a problem resolution

program, indicating the local pathname, remote pathname, remote processor, and

time of change.

_ 54 _
2618-0015

600%1624-Page 570=r1+4

GOOG-1024-Page 58 of 114

[00296] (C) After synchronization is complete, record the time of the final

change. This time is to be used as the new start time the next time this directory is

synchronized with the same remote processor.

4. Publish Region

[00297] The publish region mechanism allows a processor to offer the files in

a region to any client processors for a limited period of time.

' [00298] The purpose of the service is to eliminate any need for client

processors to make reservations with the publishing processor. This in turn inakes

it possible for the publishing processor to service a much larger number of clients.

[00299] When a region is published, an expiration date is defined for all files

in the region, and is propagated into the publishing system's True File registry

entry record 140 for each file. F

[00300] When a remote file is copied, for instance using the Copy File -

operating system mechanism, the expiration date is copied into the source field of

the client's True File registry entry record 140. Whenthe source is a publishing

system, no dependency need be created. I

[00301] The client processor must occasionally and in background, check for

expired links, to make sure it still has access to these files. This is described in the

background mechanism Check for Expired Links.

5. Retire Directory

[00302] This mechanism makes it possible to eliminate safely the True Files

in a directory, or at least dependencies on them, after ensuring that any client

processors depending on those files remove their dependencies. The files in the

directory are not actually deleted by this process. The directory can be deleted

with the Delete File operating system mechanism.

_ 55 _
2618-0015

600%1624-Page 5eo=r1+4

GOOG-1024-Page 59 of 114

[00303] I V The mechanism takes the pathname of a given directory, and

optionally, the identification of a preferred alternate source processor for clients to

use. The mechanism performs the following steps:

[00304] (A) Traverse the directory. For each file in the directory, perform

the following steps:

[00305] (i) Get the True Name of the file from its path and find

' the True File registry entry 140 associated with the True Name.

[00306] (ii) Determine an alternate source for the True File. If the

source IDs field of the TFR entry includes the preferred alternate source, that is

the alternate source. If it does not, but includes some other source, that is the

alternate source. If it contains no alternate sources, there is no alternate source.

[00307] (iii) For each dependent procesSor in the True File registry

entry 140, ask that processor to retire the True File, specifying an alternate source

if one was determined, using the remote mechanism.

6. Realize Directory at Location

[00308] This mechanism allows the user or operating system to force copies

of files from some source location to the True File registry 126 at a given location.

The purpose of the mechanism is to ensure that files are accessible in the event the

source location becomes inaccessible. This can happen for instance if the source or

given location are on mobile computers, or are on removable media, or if the

network connection to the source is expected to become unavailable, or if the

source is being retired.

[00309] This mechanism is provided in the following steps for each file in

the given directory, with the exception of subdirectories:

[00310] (A) Get the local directory extensions table entry record 138

given the pathname of the file. Get the True Name of the local directory

extensions table entry record 138. This service assimilates the file if it has not

already been assimilated.

_ 56 _
2618-0015

600%1624-Page 590mm

GOOG-1024-Page 60 of 114

[00311] (B) Realize the corresponding True File at the given location.

This service causes it to be copied to the given location from a remote system or

removable media.

7. Verify True File

[00312] This mechanism is used to verify that the data item in a True File

registry 126 is indeed the correct data item given its True Name. Its purpose is to

guard against device errors, malicious changes, or other problems.

[00313] If an error is found, the system has the ability to "heal" itself by

finding another source for the True File with the given name. It may also be

desirable to verify that the error has not propagated to other systems, and to log the

problem or indicate it to the computer operator. These details are not described

here.

[00314] To verify a data item that is not in a True File registry 126, use the

Calculate True Name primitive mechanism described above.

[00315] The basic mechanism begins with a True Name, and operates in the .

following steps:

[00316] (A) Find the True File registry entry record 140 corresponding to

the given True Name.

[00317] (B) If there is a True File ID for the True File registry entry

record 140 then use it. Otherwise, indicate that no file exists to verify. [

[00318] (C) » Calculate the True Name of the data item given the file ID of

the data item.

[00319] (D) Confirm that the calculated True Name is equal to the given

True Name. ' C

[00320] (E) If the True Names are not equal, there is an error in the True

File registry 126. Remove the True File ID from the True File registry entry record

140 and place it somewhere else. Indicate that the True File registry entry record

140 contained an error.

_ 57 _
2618-0015

600%1624-Page Geof1+4

GOOG-1024-Page 61 of 114

8. Track for‘Accounting Purposes

[00321] This mechanism provides a way to know reliably which files have

been stored on a system or transmitted from one system to another. The

mechanism can be used as a basis for a value-based accounting system in which p

charges are based on the identity of the data stored or transmitted, rather than

simply on the number of bits.

[00322] This mechanism allows the system to track possession of specific

data items according to content by owner, independent of the name, date, or other

properties of the data item, and tracks the uses of specific data items and files by

content for accounting purposes. True names make it possible to identify each file

briefly yet uniquely for this purpose. I

[00323] Tracking the identities of files requires maintaining an accounting

log 134 and processing it for accounting or billing purposes. The mechanism

operates in the following steps:

[00324] (A) Note every time a file is created or deleted, for instance by

monitoring audit entries in the Process Audit File Entry primitive mechanism.

When such an event is encountered, create an entry 148 in the accounting log 134

that Shows the responsible party and the identity of the file created or deleted.

[00325] (B) Every time a file is transmitted, for instance when a file is

copied With a Request True File remote mechanism or an Acquire True File

remote mechanism, create an entry in the accounting log 134 that shows the

responsible party, the identity of the file, and the source and destination

processors.

[00326] (C) Occasionally run an accounting program to process the

accounting log 134, distributing the events to the account records of each

responsible party. The account records can eventually be summarized for billing

purposes.

_ 53 _

2618-0015

600%1624-Page 61 of1’t4

GOOG-1024-Page 62 of 114

9. Track for Licensing Purposes

[00327] This mechanism ensures that licensed files are not used by

unauthorized parties. The True Name provides a safe way to identify licensed

material. This service allows proof ofpossession of specific files according to

their contents without disclosing their contents.

[00328] Enforcing use ofvalid licenses can be active (for example, by

refusing to provide access to a file without authorization) or passive (for example,

by creating a report of users who do not have proper authorization). .

[00329] One possible way to perform license validation is to perform

occasional audits of employee systems. The service described herein relies on

True Names to support such an audit, as in the following steps:

[00330] (A) For each licensed product, record in the license table 136 the

True Name of key files in the product (that is, files which are required in order to

use the product, and which do not occur in other products) Typically, for a

software product, this would include the main executable image and perhaps other

major files such as clip-art, scripts, or online help. Also record the identity of each

system which is authorized to have a copy of the file.

[00331] (B) occasionally, compare the contents of each user processor

against the license table 136. For each True Name in the license table do the

fellowing:

[00332] (i) Unless the user processor is authorized to have a copy

of the file, confirm that the user processor does not have a copy of the file using

the Locate True File mechanism.

[00333] (ii) If the user processor is found to have a file that it is not

authorized to have, record the user processor and True Name in a license violation

table.

_ 59 _
2618-0015

600%1624-Page 62 of 1+4

GOOG-1024-Page 63 of 114

THE SYSTEM IN OPERATION

[00334] Given the mechanisms described above, the operation of a typical

DP system employing these mechanisms is now described in order to demonstrate

how the present invention meets its requirements and capabilities.

[00335] In operation, data items (for example, files, database records,

messages, data segments, data blocks, directories, instances of object classes, and

the like) in a DP system employing the present invention are identified by

substantially unique identifiers (True Names), the identifiers depending on all of

the data in the data items and only on the data in the data items. The primitive

mechanisms Calculate True Name and Assimilate Data Item support this property.

For any given data item, using the Calculate True Name primitive mechanism, a

substantially unique identifier or True Name for that data item can be determined.

[00336] Further, in operation of a DP system incorporating the present

invention, multiple copies of data items are avoided (unless they are required for

some reason such as backups or mirror copies in a fault-tolerant system). Multiple

copies of data items are avoided even when multiple names refer to the same data

item. The primitive mechanisms Assimilate Data Items and True File support this

property. Using the Assimilate Data Item primitive mechanism, if a data item

already exists in the system, as indicated by an entry in the True File registry 126,

this existence will be discOvered by this mechanism, and the duplicate data item

(the new data item) will be eliminated (or not added). Thus, for example, if a data

file is being copied onto a system from a floppy disk, if, based on the True Name

of the data file, it is determined that the data file already exists in the system (by

the same or some other name), then the duplicate copy will not be installed. If the

data item was being installed on the system by some name other than its current

name, then, using the Link Path to True Name primitive mechanism, the other (or

new) name can be linked to the already existing data item.

[00337] In general, the mechanisms of the present invention operate in such'a

way as to avoid recreating an actual data item at a location when a copy of that

’_ 60 _
2618-0015

600%1624-Page 630f1‘r4

GOOG-1024-Page 64 of 114

data item is already present at that location. In the case of a copy from a floppy

disk, the data item (file) may have to be copied (into a scratch file) before it can be

determined that it is a duplicate. This is because only one processor is involved.

on the other hand, in a multiprocessor environment or DP system, each processor ’
has a record of the True Names of the data items .on that processor. When a data

item is to be copied to another location (another processor) in the DP system, all

that. is necessary is to examine the True Name of the data item prior to the

copying. If a data item with the same True Name already exists at the destination

location (processor), then there is no need to copy the data item. Note that if a data

item which already exists locally at a destination location is still copied to the

destination location (for example, because the remote system did not have a True

Name for the data item or because it arrives as a stream of un—named data), the.

Assimilate Data Item primitive mechanism will prevent multiple copies of the data

item from being created.

[00338] Since the True Name of a large data item (a compound data item) is

derived from and based on the True Names of components of the data item,

copying of an entire data item can be avoided. Since some.(or all) of the

components of a large data item may already be present at a destination location,

only those components which are not present there need be copied. This property

derives from the manner in which True Names are determined.

[00339] When a file is copied by the Copy File or Directory operating system

mechanism, only the True Name of the file is actually replicated.

[00340] When a file is opened (using the open File operating system

mechanism), it uses the Make True File Local primitive mechanism (either

directly or indirectly through the Create Scratch File primitive mechanism) to

create a local copy of the file. The Open File operating system mechanism uses the

Make True File Local primitive mechanism, which uses the Realize True File

from Location primitive mechanism, which, in turn uses the Request True File

remote mechanism.

_ 61 _
2618-0015

600%1624-Page 640f1‘r4

GOOG-1024-Page 65 of 114

[00341] The Request True File remote mechanism copies only a single data

item from one processor to another. If the data item is a compound file, its

component segments are not copied, only the indirect block is copied. The

segments are copied only when they are read (or otherwise needed).

[00342] The Read File operating system mechanism actually reads data. The

Read File mechanism is aware of compound files and indirect blocks, and it uses

the Realize True File from Location primitive mechanism to make sure that

componentsegments are locally available, and then uses the operating system file

mechanisms to read data from the local file.

[00343] Thus, when a compound file is copied from a remote system, only its

True Name is copied. When it is opened, only its indirect block is copied. When

the corresponding file is read, the required component segments are realized and

therefore copied.

[00344] In operation data items can be accessed by reference to their

identities (True Names) independent of their present location. The actual data item

or True File corresponding to a given data identifier or True Name may reside

anywhere in the system (that is, locally, remotely, offline, etc). If a required True

File is present locally, then the data in the file can be accessed. If the data item is

not present locally, there are a number ofways in which it can be obtained from

wherever it is present. Using the source IDs field of the True File registry table,

the location(s) of copies of the True File corresponding to a given True Name can

be determined. The Realize True File from Location primitive mechanism tries to

make a local copy of a True File, given its True Name and the name of a source

location (processor or media) that may contain the True File. If, on the other hand,

for some reason it is not known where there is a copy of the True File, or if the

processors identified in the source IDs field do not respond with the required True

File, the processor requiring the data item can make a general request for the data
item using the Request True File remote mechanism from all processors in the

system that it can contact.

_ 62 _
2618-0015

600%1624-Page 65of1‘r4

GOOG-1024-Page 66 of 114

[00345] As a result, the system provides transparent access to any data item

by reference to its data identity, and independent of its present location.

[00346] I In operation, data items in the system can be verified and have their

integrity checked. This is from the manner in which True Names are determined.

This can be used for security purposes, for instance, to check for viruses and to

verify that data retrieved from another location is the desired ,and requested data.

For example, the system might store the True Names of all executable applications

on the system and then periodically redeterminethe True Names of each of these

applications to ensure that they match the stored True Names. Any change in a

True Name potentially signals corruption in the system and can be further

investigated. The Verify Region background mechanism and the Verify True File

extended mechanisms provide direct support for this mode of operation. The

Verify Region mechanism is used to ensure that the data items in the True File

registry have not been damaged accidentally or maliciously. The Verify True File

mechanism verifies that a data item in a True File-registry is indeed the correct

data item given its True Name.

[00347] Once a processor has determined where (that is, at which other

‘ processor or location) a copy of a data item is in the DP system, that processor

might need that other processor or location to keep a copy of that data item. For

example, a processor might want to delete local copies of data items to make space

available locally while knowing that it can rely on retrieving the data from

somewhere else when needed. To this end the system allows a processor to ~

Reserve (and cancel the reservation of) True Files at remote locations (using the

remote mechanism). In this way the remote locations are put on notice that another

location is relying on the presence of the True File at their location.

[00348] A DP system employing the present invention can be made into a
fault-tolerant system by providing a‘ certain amount of redundancy of data items at ,

multiple locations in the system. Using the Acquire True File and Reserve True

File remote mechanisms, a particular processor can implement its own form of

_ 63 _
2618-0015

600%1624-Page 660f1‘r4

GOOG-1024-Page 67 of 114

fault-tolerance by copying data items to other processors and then reserving them

there. However, the system also provides the Mirror True File background

mechanism to mirror (makecopies) of the True File available elsewhere in the

system. Any degree of redundancy (limited by the number ofprocessors or

locations in the system) can be implemented. As a result, this invention maintains

a desired degree or level of redundancy in a network ofprocessors, to protect

against failure of any particular processor by ensuring that multiple copies ‘of data
items exist at different locations.

[00349] The data structures used to implement various features and

mechanisms of this invention store a variety of useful information which can be

used, in conjunction with the various mechanisms, to implement storage schemes

and policies in a DP system employing the invention. For example, the size, age

and location of a data item (or of groups of data items) is provided. This

information can be used to decide how the data items should be treated. For

example, a processor may implement a policy of deleting local copies of all data

items over a certain age if other copies of those data items are present elsewhere in

the system. The age (or variations on the age) can be determined using the time of

last access or modification in the local directory extensions table, and the presence

of other copies of the data item can be determined either from the Safe Flag or the

source IDs, or by checking which other processors in the system have copies of

the data item and then reserving at least one of those copies.

‘ [00350] In operation, the system can keep track of data items regardless of

how those items are named by users (or regardless ofwhether the data items even

have names). The system can also track data items that have different names (in ‘

different or the same location) as well as different data items that have the same

name. Since a data item is identified by the data in the item, without regard for the

context of the data, the problems of inconsistent naming in a DP system are

OVCI'COIIIC.

_ 64 _
2618-0015

600%1624-Page 670f1‘r4

GOOG-1024-Page 68 of 114

[00351] In operation, the system can publish data items, allowing other,

possibly anonymous, systems in a network to gain access to the data items and to

rely on the availability of these data items. True Names are globally unique

identifiers which can be published simply by copying them. For example, a user

might create a textual representation of a file on system A with True Name N (for

instance as a hexadecimal string), and post it on a computer bulletin board.

Another user on system B could create a directory entry F for this True Name N

by using the Link Path to True Name primitive mechanism. (Alternatively, an

application could be developed which hides the True Name from the users, but

provides the same public transfer service.) i

[00352] When a program on system B attempts to open pathname F linked to

True Name N, the Locate Remote File primitive mechanism would be used, and

would use the Locate True File remote mechanism to search for True Name N on

one or more remote processors, such as system A. If system B has access to

system A, it would be able to realize the True File (using the Realize True File

from Location primitive mechanism) and use-it locally. Alternatively, system B

could find True Name N by accessing any publicly available True Name server, if

the server could eventually forward the request to system A.

[00353] Clients of a local server can indicate that they depend on a given

True File (using the Reserve True File remote mechanism) so that the True File is

not deleted from the server registry as long as some client requires access to it.

(The Retire True File remote mechanism is used to indicate that a client no longer

needs a given True File.)

[00354] A publishing server, on the other hand, may want to provide access

to many clients, and possibly anonymous ones, without incurring the overhead of

_ tracking dependencies for each client. Therefore, a public server can provide

expiration dates for True Files in its registry. This allows client systems to safely

maintain references to a True File on the public server. The Check For Expired

_ 65 __
2618-0015

600%1624-Page 68of1‘r4

GOOG-1024-Page 69 of 114

Links background mechanism allows the client of a publishing server to

occasionally confirm that its dependencies on the publishing server are safe.

[00355] In a variation of this aspect of the invention, a processor that is

newly connected (or reconnected afier some absence) to the system can obtain a

current version of all (or of needed) data in the system by requesting it from a

server processor. Any such processor can send a request to update or

resynchronize all of its directories (starting at a root directory), simply by using

the Synchronize Directories extended mechanism on the needed directories.

[00356] Using the accounting log or some other user provided mechanism, a

user can prove the existence of certain data items at certain times. By publishing

(in a public place) a list of all True Names in the system on a given day (or at

some given time), a user can later refer back to that list to show that a particular

data item was present in the system at the time that list was published. Such a

mechanism is useful in tracking, for example, laboratory notebooks or the like to

prove dates of conception of inventions. Such a mechanism also permits proof of

possession of a data item at a particular date and time.

[00357] The aCcounting log file can also track the use of specific data items

and files by content for accounting purposes. For instance, an information utility

company can determine the data identities of data items that are stored and

transmitted through its computer systems, and use these identities to provide bills

to its customers based on the identities of the data items being transmitted (as

defined by'the substantially unique identifier). The assignment ofprices for storing

and transmitting specific True Files would be made by the information utility

and/or its data suppliers; this information would be joined periodically with the

information in the accounting log file to produce customer statements.

[00358] . Backing up data items in a DP system employing the present

invention can be done based on the True Names of the data items. By tracking

backups using True Names, duplication in the backups is prevented. In operation,

the system maintains a backup record of data identifiers of data items already

- 66 _
2618-0015

600%1624-Page 690f1‘r4

GOOG-1024-Page 70 of 114

backed up, and invokes the Copy File or Directory operating system mechanism to

copy only those data items whose data identifiers are not recorded in the backup

record. Once a data item has been backed up, it can be restored by retrieving it

from its backup location, based on the identifier of the data item. Using the backup

record produced by the backup to identify the data item, the data item can be

obtained using, for example, the Make True File Local primitive mechanism.

[00359] In operation, the system can be used to cache data items from a

server, so that only the, most recently accessed data items need be retained. To

operate in this way, a cache client is configured to have a local registry (its cache)

with a remote Local Directory Extensions table (from the cache server). Whenever

a file is opened (or read), the Local Directory Extensions table is used to identify

the True Name, and the Make True File Local primitive mechanism inspects the

local registry. When the local registry already has a cOpy, the file is already

cached. Otherwise, the Locate True File remote mechanism is used to get a copy

of the file. This mechanism consults the cache server and uses the Request True

File remote mechanism to make a local copy, effectively loading the cache. -

[00360] The Groom Cache background mechanism flushes the cache,

removing the least-recently-used files from the cache client's True File registry.

While a file is being modified on a cache client, the Lock Cache and Update

Cache remote'mechan‘isms prevent other clients from trying to modify the same

file.

[00361] In operation, when the system is being used to cache data items, the

problems of maintaining cache consistency are avoided.

[00362] To access a cache and to fill it from its server, a key is required to

identify the data item desired. Ordinarily, the key is a name or address (in this

case, it would be the pathname of a file). If the data associated with such a key is

changed, the client's cache becomes inconsistent; when the cache client refers to

that name, it will retrieve the wrong data. In order to maintain cache consistency it

_ 67 _
2618-0015

600%1624-Page 700mm

GOOG-1024-Page 71 of 114

is necessary to notify every client immediately whenever a change occurs on the

server.

[00363] By using an embodiment of the present invention, the cache key

uniquely identifies the data it represents. When the data associated with a name

changes, the key itself changes. Thus, when a cache client wishes to access the

modified data associated with a given file name, it will use a new key (the True

Name of the new file) rather than the key to the old file contents in its cache. The

client will always request the correct data, and the old data in its cache will be

eventually aged and flushed by the Groom Cache background mechanism.

[00364] Because it is not necessary to immediately notify clients when

changes on the cache server occur, the present invention makes it possible for a

single server to support a much larger number of clients than is otherwise possible.

[00365] In operation, the system automatically archives data items as they

are created or modified. After a file is created or modified, the Close File

operating system mechanism creates an audit file record, which is eventually

processed by the Process Audit File Entry primitive mechanism. This mechanism

uses the True File primitive mechanism for any file which is newly created, which

in turn uses the Mirror True File background mechanism if the True File is in a

mirrored or archived region. This mechanism causes one or more copies of the

new file to be made on remote processors.

[00366] In operation, the system can efficiently record and preserve any

collection of data items. The Freeze Directory primitive mechanism creates a True

File which identifies all of the files in the directory and its subordinates. Because

this True File includes the True Names of its constituents, it represents the exact

contents of the directory tree at the time it was frozen. The frozen directory can be

copied with its components preserved.

[00367] The Acquire True File remote mechanism (used in mirrorng and

archiving) preserves the directory tree structure by ensuring that all of the

component segments and True Files in a compound data item are actually copied

_ 68 _
2618-0015

600%1624-Page 71 of1+4

GOOG-1024-Page 72 of 114

to a remote system. Of course, no transfer is necessary for data items already in

the registry of the remote system.

[00368] In operation, the system can efficiently make a copy of any

collection of data items, to support a version control mechanism for groups of the

data items.

[00369] The Freeze Directory primitive mechanism is used to create a

collection of data items. The constituent files and segments referred to by the

frozen directory are maintained1n the registry, without any need to make copies of

the constituents each time the directory1s frozen.

[00370] Whenever a pathname is traversed, the Get Files in Directory

operating system mechanism is used, and when it encounters a frozen directory, it

uses the Expand Frozen Directory primitive mechanism.

[00371] A frozen directory can be copied from one pathname to another

efficiently, merely by copying its True Name. The Copy File operating system

mechanism is used to copy a frozen directory.

[00372] Thus it is possible to efficiently create copies of different versions of

a directory, thereby creating a record of its history (hence a version control

system). '

[00373] In operation, the system can maintain a local inventory of all the data

items located on a given removable medium, such as a diskette or CD-ROM. The
inventory is independent of other properties of the data items such as their name,

location, and date of creatiOn.

[00374] The Inventory Existing Directory extended mechanism provides a

Way to create True File Registry entries for all of the files in a directory. One use

of this inventory is as a way to pre-load a True File registry with backup record

information. Those files in the registry (such as previously installed software)

which are on the volumes inventoried need not be backed up onto other volumes.

[00375] The Inventory Removable, Read-only Files extended mechanism not

only determines the True Names for the files on the medium, but also records

_ 69 _
2618-00l5

GOOG-1024-Page 72 of 114

GOOG-1024-Page 73 of 114

directory entries for each file in a frozen directory structure. By copying and

modifying this directory, it is possible to create an on line patch, or small

modification of an existing read-only file. For example, it is possible to create an

online representation of a modified CD-ROM, such that the unmodified files are

actually on the CD-ROM, and only the modified files are online. ‘

[00376] In operation, the system tracks possession of specific data items

according to content by owner, independent of the name, date, or other properties

of the data item, and tracks the uses of specific data items and files by content for

accounting purposes. Using the Track for Accounting Purposes extended

mechanism provides a way to know reliably which files have been stored on a

system or transmitted from one system to another.

TRUE NAMES IN RELATIONAL AND OBJECT-ORIENTED DATABASES

[00377] Although the preferred embodiment of this invention has been

presented in the context of a file system, the invention of True Names would be

equally valuable in a relational or object-oriented database. A relational or object-

oriented database system using True Names would have similar benefits to those

of the file system employing the invention. For instance, such a database would

permit efficient elimination of duplicate records, support a cache for records,

simplify the process ofmaintaining cache consistency, provide location-

independent access to records, maintain archives and histories of records, and

synchronize with distant or disconnected systems or databases.

[00378] The mechanisms described above can be easily modified to serve in

such a database environment. The True Name registry would be used as a

repository of database records. All references to records would be via the True

Name of the record. (The Local Directory Extensions table is an example of a

primary index that uses the True Name as the unique identifier of the desired

records.)

_ 7O _
2618—0015

600%1624-Page 73 of 1+4

GOOG-1024-Page 74 of 114

[00379] In such a database, the operations of inserting, updating, and deleting

records would be implemented by first assimilating records into the registry, and

then updating a primary key index to map the key of the record to its contents by

using the True Name as a pointer to the contents.

[00380] * The mechanisms described in the preferred embodiment, or similar

mechanisms, would be employed in such a system. These mechanisms could
include, for example, the mechanisms for calculating true names, assimilating,

locating, realizing, deleting, copying, and moving True Files, for mirroring True

Files, for maintaining a cache of True Files, for grooming True Files, and other

mechanisms based on the use of substantially unique identifiers.

[00381] While the invention has been described in connection with what is

presently considered to be the most practical and preferred embodiments, it is to

be understood that the invention is not to be limited to the disclosed embodiment,

but on the contrary, is intended to cover various modifiCations and equivalent

arrangements included within the spirit and scope of the appended claims.

_ 7] _2618-0015

GOOG-1024-Page 74 of 114

GOOG-1024-Page 75 of 114

WHAT IS CLAIMED:

1. In a system in which a plurality of data items are distributed

across a plurality of computers, a method comprising:

at a first computer,

(a) receiving from a requesting computer, a request for a

data item, the request including a True Name of the data item; and

(b) causing said requesting computer to obtain said data

item from a second computer, distinct from said first computer.

2. A method as in claim 1 wherein the first computer does not

have a copy of the requested data item.

3. i A method as in claim 1 wherein the first computer knows the

location of the data item.

4. A method as in claim 1 wherein the first computer forwards

the request for the data item to at least one other computer.

5. A method as in claim 4 wherein the at least one other

computer includes the second computer.

6. In a system in which a plurality of data items are distributed

across a plurality of computers, a method comprising:

at a first computer,

_ 72 _
2618-0015

600%1624-Page 750mm

GOOG-1024-Page 76 of 114

(a) receiving from a requesting computer, a request for a

data item, the request including a True Name of the data item;

(b) identifying a second computer, distinct from the first -

computer, that should have a copy of the requested data item; and

(c) forwarding the request to the second computer.

7. A method as in claim 1 or claim 6 wherein the data item may

comprise a file, a portion of a file, a page in memory, a digital message, a digital

image, a video signal or an audio signal.

8. A method as in claim 1 or claim 6 wherein at least some of

said computers communicate with each other using a TCP/IP communication ‘

protocol. '

9. . A method as in claim 1 or claim 6 wherein the True Name is

computed using a message digest fimction or a hash function.

10. A method as in claim 1 or claim 6 wherein the True Name is

computed using a function selected from: MD4, MDS, and SHA.

11. A method as in claim 1 or claim 6 wherein the True Name is

computed using a function that randomly distributes its outputs.

_ 73 _
2618-0015

600%1624-Page 760f1‘r4

GOOG-1024-Page 77 of 114

12. A method as in claim 1 or claim 6 wherein the True Name is

computed using a function that produces a substantially unique value based on the

data comprising the data item.

13. ' A method as in claim 1 or claim 6 wherein a data item may

comprise a file, a portion of a file, a page in memory, a digital message, a digital

image, a video signal or an audio signal.

14. A method as in claim 1 or claim 6 wherein said True Name

for said data file will change when the data file is modified.

15. i A method as in claim 1 or claim 6 wherein at least some of

the plurality of computers make up part of a peer-to-peer network of computers.

16. A method as in claim 1 wherein said data item is a portion of

a file, and wherein said first computer causes said requesting computer to obtain

the data item from a location having a copy of the file.

17. A method as in claim 6 wherein said data item is a portion of

a file, and wherein said first computer forwards said requesting computer to a

location having a copy of the file.

18. In a system in which a plurality of data items are distributed

across a plurality of computers, at least some of the plurality of computers forming

part of a peer—to-peer (P2P) network of computers, a method comprising:

_ 74 _
2618-0015

GOOG-1024-Page 77 of 114

GOOG-1024-Page 78 of 114

' at a first computer, '

(a) receiving from a requesting computer in said peer-to-

peer network, a request for a data item, the request including a True Name of the

"data item;

(b) identifying a second computer in said P2P network

that should have a copy of the requested data item, said second computer being

distinct from the first computer; and

(c) forwarding the request to the second computer,

wherein the data item may comprise a file, a portion of a file, a page

in memory, a digital message, a digital image, a Video signal or an audio signal,

and wherein the True Name is computed using an algorithm that applies a message

digest function or a hash function to the contents of the data item.

_ 75 _
2618-0015

600%1624-Page 7L80f1+4./
.;K .

GOOG-1024-Page 79 of 114

ABSTRACT OF THE DISCLOSURE

A plurality of data items are distributed across a plurality of

computers, some ofwhich may form a peer-to-peer network. A first computer

receives a request for a data item from a requesting computer. The request

includes a True Name of the data item. The first computer causes the requesting

computer to obtain the data item from a second computer, distinct from the first

computer. The first computer may not have a copy of the requested data item.

The first computer may know the location of the data item. The first computer

may forward the request for the data item to at least one other computer.

_ 76 _
2618-0015

600%1624-Page 790mm

GOOG-1024-Page 80 of 114

u

ABestfifailable Copy :—
FOR UTILITY/DESIGN RULE 63 (37 can. 1.53) ‘ .;.‘ CUSHMAN

_ ClP/PCI’ NATIONAL/PLANT . DECLARATION AND POWER OF ATTORNEY _ FORM
QRlGlNAUSUBSTIWTE/SUPPLEMENTAL son PATENT APPLlCATION ' ' ’

DECLARATIONS . IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

. ' ' - . ‘ F ' I . .
As a belownamed Inventor, I hereby declarethat my residence, post office address and citizenship are as stated below next to my name. and I believe _I am
the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject
matter which is claimed and for which. a patent is sought on the INVENTIONm ’ " ' ‘
LDEN'I'IFYING DATA IN' A D TA PROCESSING SYSTEM ' - ' ' ‘

' the specification of which (CHECK applicable BOX(E_S))

-> [] is attached hereto. ' . A p ' _ .
I -,> [x] was filed on April 11l 1995 as US. Application No. 01/ 425,160 . " ' .

- BOX(ES) -> |] was filed as PCI‘ International Application No. PCF/ ' v Z ' on ‘ : ‘i I‘ ' 7
-> -> and (if applicableto US. or PCI‘ application) was amended on i - ' ‘ '

- I hereby state that I have reviewed and understand the contents of the above identified spedfimtion, including the claims, as amended by any amendment
referred to above. I acknowledge the duty to disclose all information kndwn to me to be material to patentabilityas defined i‘n.37 GER. 1.56. I hereby
claim foreign. priority benefits under 35 U.S.C. 119/365 of any foreign application(s) for patent or inventors certificate listed below and have also identified
below any foreign application for patent or inventors certificate filed by me or my assignee disclosing the subject matter claimed in this application and having .
a filing date (1) before that of the application on which priority is claimed, or (2) if no priority claimed, before the filing date of this application: —-.

 '“9

l

PRIOR FOREIGN APPLICATIQMS) " V Date first Iaid- Date Patented .- ' Priorig Claimed
Number ‘ County DaszON'I'HZXear Filed opgn or Published or Granted ' leg E).

I hereby claim the benefit under-35 U.S.C. 120/365 of all United States applications listed beldw and PCI‘ internationalapplications listed above or below
and, if (this is a continuation-in-pari§(ClP) application, insofar as the subject matter disclosed and claimed in this application is in addition to that disclosed
in such prior applications, l acknowledge the duty to disclose all information known to me to be material to patentability as defined in 37 CPR. 156 which
became available between the filing date of each such prior application and the national or PCI‘ international filing date of this application? ’

PRIOR us. OR PCT APPLICATIONS) p . ' Status
Application No. (series code(serial no.) " . DayZMON'I'I-lflear Filed E'ndina. abandoned; patented

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on informaticsn and belief- are believed to be
true; and further that these statements were made with the knowledge that willful false‘ statements and the‘ like so made are punishable by fine or
imprisonment, or both, under Section 1001 of Title’18 of the United States Code and that such willful false statements may jeopardize the validity of theapplication or any patent issued thereon, ' . '

And I hereby appoint Cushman Darby & Cushman,I..L.P. 1100 New York Avenue. N.W.. Ninth Floor, East Tower Washington, DC. 20005-3918. telephone
number 861~3000 (to whom all communications are to be directed). and the below-named persons (of the same address) individually and collectively iny
attorneys to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith and with the resulting patent,
and I hereby authorize them to act and rely on instruétions from andcommunicate directly with the person/assignee/attorney/finn/ organization who/which
first sends/sent this case to them and by whom/which I hereby declare that I have consented after full disclosure to be represented unless/until I instruct
Cushman, Darby 8: Cushman in writing to the contrary. .

Paul N. Kokulis 16773 Edward M. Prince 2429 Dale S. Lazar 28872 Michelle N. Lester 32331
Raymond F. Lippitt 17519 Donald B. Deaver 23048 Glenn J. Perry 284$8_ Jeffrey A. Simenauer 31933
0. Lloyd Knight 17598 - David W. Brinkman 20817 Kendrew H. Colton 30368 ‘ Robert A. Molan 29834
Carl G,.I‘.ove . 18781 George M. Sirilla 1821 Chris Comuntzis 31097 G. 'Paul Edgcll 24238
Edgar H. Martin 20534 Donald 1. Bird 3323‘ Wallace G. Walter 27843' Lynn E. Eccleston' 35861
William K. West, It. 22057 W. Warren Talt‘ayull . 15647 Lawrence Harbin 27644 Frederick S. Frei" ‘ 27105
Kevin E .Io cc ~ 20508 5872 Paul E. White. It? 320 1 ‘39 ($113me £33;

 INVENT R'S SIGNATURE V' Date . ' _.
Inventors Name (typed) David ' > A ' FARBER . -' U.S.A. ' - -»—-——————————_._________.._______

. First . ' Middle Initial” Family Name Country of Citizenship

Residence (City) O'ai I - ' . State FOrei CA ‘
’ost Office Address (Include Zip moment CA 93023 ' ,

2:26 9- “ll: . DB

. INVENTOR'S SIGNATURE ' - . _ V H - _
Inventor‘s Name (typed) Ronald C - ‘ D.‘ . LACHMAN , *' U.S.A. . . .

I ' First ‘ Middle Initial ‘ Family Name Country of CIIIZCnShlP
Residence (City) Northbrook ‘ ' V (StateZForeiwnn Countrv) ll. . i______,‘

Ost Office Address (Include Zip Code) 3140 Whisperwoods Court. Notthbrook. ll. 6006?. _ ._

‘ lNVENI‘OR‘S SIGNATURE: ‘ ' l ' Date . . " . : . t
Inventor's Name (typed) ' ' ‘ p .. . _

First - Middle Initial _ Family. Name Country of Citizenship

——————————————_—____——————-———

Residence (City)__—__.__—l&l_tsfllggn_Cgln_tm_____—_______
‘st Office Address'(l'nclude Zip Code)________________—____________

UR ADDITIONAL INVENTORS. Chctk box [] and attach sheet (CDC-116.2) for same information for each re‘signature, name. dalc- citizenship,
sidcnce and address.) ‘ ’ ' .' I I

GOOG-1024-Page 80 of -114ax—tlb ll“

GOOG-1024-Page 81 of 114

cor

mowmmoomn.

mommmoomn......HmOmmmoomm

«2..

MOmmmoomQ.NOV

mommmoommwow,

24-Page 8_1 of1+4

GOOG-1024-Page 82 of 114

GOOG-1024-Page 82 of 114

GOOG-1024-Page 83 of 114

Hzmzomm
NNv

m:

Emhw>mmin.

Hm:

NNr

GOOG-1024-Page 83 of 114

GOOG-1024-Page 84 of 114

[38-6 . .

“Time of last access

Time of last modif1cation_.
_

-_
FuG. 4 I40

GOOG-1024-Page 84 of 114

GOOG-1024-Page 85 of 114

ommcwowawamzwauamsmz.osua,oamnzuum.BmummfiwaOHHowmmooumcoaumooamousommanuau.oouaoum.wuwouaom0Hmousou

m9”.

myo;_

GOOG-1024-Page 85 of 114

GOOG-1024-Page 86 of 114

- ” FIG. low) ' '

SIMPJE
DA TA ITEM

' 3212 .

COMPUTE MD FUNCTION 0N-
DATA ITEM ‘

_ ,. $214 ' H ‘
4 APPEND LENGTH- MODuLp 32 OF

DATA ITEM '

'_ .. '—’

TRUE NAME "

l

GOOG-1024-Page 86 of 114 ‘

GOOG-1024-Page 87 of 114

$216

DATA ITEM »

SIMPLE?

YES '

' . FIG. IOI'b);
$220

PARTITION DATA rrEM INTo
- SEGMENTS

$222 '

’ ASSIMILATE EACH SEGMENT
(COMPUTING ITS TRUE NAME)

,"""§2133"""" F,_ I

COMPUTE TRUE :
NAME OF SIMPLE :-

8224

CREATE INDIRECT BLOCK OF-
SEGMENT TRUE NAMES

IDATA ITEM
_____________ ’

I

322$
ASSIMILATE INDIRECT BLOCK
(00 MP UTING‘rrs-TRUE NAME)

' 8228‘

V REPLACE FINAL 32 BITS OF TRUE

NAME WITH LENGHT MOD 32 OF DATA ‘
ITEM

GOOG-1024-Pa‘ge 87 of 114

GOOG-1024-Page 88 of 114

9BE$553%3.m3;m><=>Ezmmmon

mm»

n:m.=u_whw4mnmme

um:

«fir—hamm—Vm._2<zmam—Hummon,.ms<zm=mh. mzimmmaomww

m.=..._mama—.2—.__.m_xm.

may".$25.5?.a.ma".mac;.__.0...5.2300mmDme«‘>Ezmamzmzmmo.‘‘mmmw

__..o_u_.

24-Page88of1‘r4

GOOG-1024-Page 89 of 114

 8240

UPDATE

DEPENDENCY

LIST '

 8242.

SEND MESSAGE TO
CACHE SERVERTO

UPDATEWCACHE

' $244

COMPRESS
(IF DESIRED)

. ’ 324s
' MIRROR-

(IF DESIRED)-

GOOG-1024-Page 89 of 114

GOOG-1024-Page 90 of 114

FIG.I3‘

 $250

SEARCH FOR A . . ‘ ' ‘ ' ,
THE ' ' ‘ '. FAIL

PATHNAME “ ‘ .

FOUND

LDE INCLUDES

TRUE NAME?

 7 . $2758: -

3254 i

ASSIMILATE L-DEE'IDENTIFIES
FILE ID . DIRECTORY?

'YS

8256

FREEZE :
DIRECTORY

ecmx3462¢FEgegecfi1+4

GOOG-1024-Page 91 of 114

8260

CONFIRM THAT

TRUE NAME
EXISTS LOCALLY

- FIG.|4 3262 _
_ SEARCH FOR

‘ PATHNAME IN

LDE TABLE

$264

CONFIRM THAT
DIRECTORY

EXISTS.

8266‘

NAMED FILE
EXISTS?

$268 »
DELETE

TRUE FILE

‘NO

‘ 3270

. CREATE
ENTRY IN LDE

& UFOATE

GOOG-1024-Page 91 of 114

GOOG-1024-Page 92 of 114

A"
|I.

mmZOn—mmmNah—won.

.9.9m

ammamo."am...“may:tam;

.a":$3Ez.nmzmammwe”.ozEBEmay;mmhzm8mm
.2mmwaOmmmm

m0."—.._._<>>,F2205—.wm6<mmm=2Emu—40mm,
“3.x02mm

._.mmzonammEum
m>_._.<0m2

ENW

$0333..,.,<‘zo_._.<o‘04w.
mm>..

24-Page 920=r1+4

GOOG-1024-Page 93 of 114

...|-|l.fl-ll,..vmmzom_mm.mamom

w._._<>>kzm30wmmw

h:ME:

..mommzomwmmmhm<on<ommm>txmmzx.pszQ..

comm
 >wm>AnmhomemmOmwmoomm>z<mmmw

.mEOmmmooEwhomempzmzvvmwm

GOOG-r1024-Page 93 of 114

GOOG-1024-Page 94 of 114

w._.<DzO_._.<m_n_xm :53O...00<02<szmmEouvmww

>.SEE»wzimjmammm:,QmomDOm8me£2235mo”.8..35.8Ega.2958..8.5.8n93magma”:.mEm":"5x0395%

‘«20.22.53,5.0.x".mmmnmamgz..may:momomaow.

.mommmuoE.momsowzomu=wmay:m>mmwmmO...m0<mwm202mm38%

., SE.9:

,mmohwommw

.“a.mewwmoomm‘

GOOG-1024-Page 94 of 114

GOOG-1024-Page 95 of 114

an:MAEQmmwmmmfiou8mm

mmmmms—Oomo

.mmeWW> 3
oz.

~>mhzwmi...MOmn:m..=u_

. mm»

.«was.....V.MDMHEOm«E...:—>MHzm.m..__n_mam“mum

.oz‘_

3.:.9“.

GOOG-1024-Page 95 of 114

GOOG-1024-Page 96 of 114

“£5.07...

Qumopw.88.

.avmomaom50m...BEmay:mNjfimcommme$58_komem.3mm

 mm> .

Qmomsow_mac:oz
 . _Hr...whosmm.32.304.88

GOOG-1024-Page 96 of 114

GOOG-1024-Page 97 of 114

4(004wu=mNwa;

3...".may:«on..23—”.~me
mm:

ms”;525 .

_ .4Ssozm:upéo.

we".zoEmomEzmango.88

we".max...5.33.30w

3...".Vuse."6Ecomm28

«men—98 met.02.55..mmEFzQOS

GOOG-1024-Page 97 of 114

GOOG-1024-Page 98 of 114

>m:.zmmnFm>OEmmaa.we".m><m_mmmm

mm>

 #2200mm:hzmfimmomo.m._m§m32.‘a.man.585..m.__"_.>>mzGunman.—>m00ommw,,

GOOG-1024-Page 98 of 114

GOOG-1024-Page 99 of 114

1m.

5m:<29‘Ezmkfimo5mm

E0535zm>._o
m2"..._‘m52.EoSmmE8.53.2522:. _fiwwwmenz<m4£.155.253..5mmmEzamOmam8mm.:05.mo".

‘50..Human... .FZHEMMOE«Sm

GOOG-1024-Page 99 of 114

GOOG-1024-Page 100 of 114

20.5582.‘ommamo._<zoEoo<38mm.8.8

MNmmmn—MIHHzmsmmowo..vvmw

2m:<anmz,.at$5.262_«Sm, .

EchommaE20

:05MO",— Emt.mrhz.>mOhOMM=Q.q<._..<D3m:.DZ<min.,., .O._.>MHZm.QD<mH<ZEmOmDW
.mmmw

GOOG-1024-Page 100 of 114

GOOG-1024-Page 101 of 114

mE<Zm3mkNmmm

_ms<zi<mommw

Echomma9mm.38 ohIt:22.... ... 4.5".mbmmo.

 >mkzm..,EoBmmE:05mo"..mmmm..203mi._maE.mxsz..mwmm.1

..mmptzmmac:oz...

mzoa.$8._om.2"..
GOOG-1024-Page 101 of 114

GOOG-1024-Page 102 of 114

 $354

WAIT FOR _
FREEZE LOCK

TO TURN OFF

HNDTFR

”ENTRY

 . A $3.58
- DECREMENT
"' REFERENCE

COUNT

$360

1 REFERENCE COUNT IS
- ZERO'& NO DEPENDENT

- SYSTEMS IN TFR? .

' FI-GLZI

 S362_
DELErE

TRUE FILE '

1 $364

REMOVEFflEID.

AND COMPRESSED
FflElD

GOOG-1024-Page 102 of 114

GOOG-1024-Page 103 of 114

8365

GET

OPERATION

FIG. 22

$366

, :CREATEOR“
, MODIFY?

$368

'YES' ASSIMILATE

COPY OR DELETE "
COMPOUND?

YES

8378 . 3370 I
MODIFY USE " - RECORD TRUE l

I

:

COUNT OF EACH NAME IN. AUDIT

. ‘ COMPONENT FILE

' $379] _

FOR EACH PARENT
DIRECTORY OR FILE,

UPDATE USE COUNT,

LAST ACCESS AND" ‘ "
MODIFY TIMES :

GOOG-1024-Page 103 of 114

GOOG-1024-Page 104 of 114

$382

VflflFY

:GROOMNGP
LOCKOFF‘

 $384 A

'SET

GRoomms

LOCK,.

~ 3386 '

'SETGROOM
COUNTS

GOOG-1024-Page 104 of 114 ,

GOOG-1024-Page 105 of 114

 S388

FIND LDE

RECORD

 $390

FIND TFR
RECORD

S392

INCREMENT

, GROOMING

, DELETE coum‘

$394 '

ADJUST FILE

SIZES

FIG. 24

GOOG-1024-Page 105 of 114

GOOG-1024-Page 106 of 114

$398

UNLOCK

GROOMING

LOCK

FIG. 25

GOOG-1024-Page 106 of 114

GOOG-1024-Page 107 of 114

. zmmo:mEomm«NE,

...~.>._.._<oo,.._.mpmam.HE

E053..520.3%.

_zmmo.:miomn.._85..
oovw

Swimmoozmm..«Sm

GOOG-1024-Page 107 of 114

GOOG-1024-Page 108 of 114

m”:.205.9.3.”.zmamm..wzQme>.200.—m¥<2owvw

36mg:

a..mi235.8.53mm._vuvm

m.=.u_5:381$558%

MAEmw<mm.
szmsm.Submizoo02mm,$5

DmxoOJF02n:v.00:—

GOOG-1024-Page 108 of 114

GOOG-1024-Page 109 of 114

-zoEuma.:mEoE

am3mzimmfia. m5<2may:20EmEm3:{fizmevwvm

wiEmea..Ezoéfim.z_moamzoodeu.oamoowmm30.mwvm

.we".mo".momouma>EzmEV3%.

GOOG-1024-Page 109 of 114

GOOG-1024-Page 110 of 114

5.".:22op55m2?..mwvm.

‘mzoAE5:8manmonamm.anm
msmmsrhmhmqmoomvm.

mi.".5Koo.zoEmowwhinemwvm

mzo_m.5:8mm:.when.may;

$522may: _oz.0221mg".
wm>

GOOG-1024-Page 110 of 114

GOOG-1024-Page 111 of 114

)V

mmZOmwmmm>_.._.<0m2mmvw

mmzommmmmatwon.vvvm.,.

,_.M8_m.__"_;.ommmmmmsoouoQue".mmoioz__.ovvm;

«Engage;.

Emacmm,

mm9pmmzamm”

DEER..vam.

mm>

m2<zm=MH.max004..maa

mm.0:

GOOG-1024-Page 111 of 114 _

GOOG-1024-Page 112 of 114

Application Data Sheet

Correspondence Information

Correspondence Customer Number:: 42624

Representative Information

Representative Customer Number:: 42624

Application Information

Application Type:: Regular

Subject Matter:: Utility

Title :: ACCESSING DATA IN A DATA

PROCESSING SYSTEM

Attorney Docket Number:: 2618-0015

Request for Early Publication?::No

Request for Non-Publication?:: No

Suggested Drawing Figurez: 10(b)

Total Drawing Sheets:: 31

Small Entity?:: No

Petition included?:: No

Domestic Priority information

Application :: Continuity Parent Parent Filing

Type:: Application Date::

This Continuation 11/017,650 12/22/04

Application of -
'11/017,650 Continuation 09/987,723 11/15/01

cf -
Page #1 Initial 03/15/2007

eooemn4amemza1m

GOOG-1024-Page 113 of 114

09/987,723 Continuation 09/283,160 04/01/99

09/283, 160 08/960, 079 10/24/97

08/960, 079 Continuation 08/425, 160 04/11/95

of

This Continuation 10/742, 972 12/23/03

10/742, 972 09/987, 723 11/15/01

09/987, 723 Continuation 09/283, 160 04/01/99

09/283, 160 08/960, 079 10/24/97

08/960, 079 Continuation 08/425, 160 04/11/95

‘ of

Assignee Information

 Application

Assignee name:: Kinetech, Inc.

Street of mailing address:: 14011 Ventura Boulevard, Suite 501

City of mailing address:: Sherman Oaks

State or Province of mailing address:: CA

Country of mailing address:: US

Postal or Zip Code of mailing address:: 91423

Assignee name:: Level 3 Communications, LLC

Street of mailing address:: 1025 Eldorado Blvd.

City of mailing address:: Broomfield

State or Province of mailing address:: Colorado

Country of mailing address:: U.S.

Postal or Zip Code of mailing address:: 80021

Page #2 Initial 03/15/2007

GCKX34024$%©€113Cfi1T4

GOOG-1024-Page 114 of 114

Applicant Information

Applicant Authority Type:: Inventor

Primary Citizenship Country:: US

Status:: Full Capacity

Given Name:: David

Middle Name:: A.

Family Name:: Farber

City of Residence:: Ojai

State or Province of Residence:: CA

Country of Residence:: Us

Street of mailing address:: 202E N. Carillo Road

City of mailing address:: Ojai

State or Province of mailing address:: CA

Country of mailing address:: US

Postal or Zip Code of mailing address:: 93023

Applicant Authority Type:: Inventor

Primary Citizenship Country:: US

Status:: Full Capacity

Given Name:: Ronald

Middle Name:: D.

Family Name:: Lachman

City of Residence:: Northbrook

State or Province of Residence:: IL

Country of Residence:: US

.Street of mailing address:: 3140 Whisperwoods Ct

City of mailing address:: Northbrook

State or Province of mailing address:: IL

Country of mailing address:: US

Postal or Zip Code of mailing address:: 60062

Page #3 Initial 03/15/2007

eooomnwamem4a1m

