New U.S. Application
Inventor(s): David A. FARBER and Ronald D. LACHMAN

Title: ACCESSING DATA IN A DATA PROCESSING SYSTEM

‘Date: March 15, 2007

Docket No.: 2618-0015

U.s. PTO
11/724232
03/15/2007

THE FOLLOWING FILING FEE IS BASED ON CLAIMS AS FILED LESS ANY ABOVE CANCELLED

Basis For Fee Largt;tli?;nall Amount
18a. Basic Filing Fee $300/$150 $ 300
18b. Search Fee $500/$250 $ 500
18c. Examination Fee $200/$100 $ 200
Extra Claims
1 19. Total Claims 27 Minus 20 = 7 X $50/ $25 $350
20. Ind. Claims 3 Minus 3 = 0 X $200/$100 $0
21. if any proper multiple dependent claim (ignore improper) is present, add:
Leave this line &ik if thri)s is a reissue (a?)plicatior‘\)) Periep $360 /3180 $360
Application Size Fee (If the specification and drawings exceed 100 sheets of paper (excluding electronically filed
sequence or computer listings under 37 CFR 1.52(e)), the application size fee due is $250 ($125 for small entity) for each
additional 50 sheets or fraction thereof. See 35 U.S.C. 41(a)(1)(G) and 37 CFR 1.16(s).)
Number of each additional
50 or fraction thereof
Total Minus 100 Extra (round up to a whole
Sheets sheets Sheets number) x $250/ $150
22.107 - 100 sheets 7 1 250 $250
23. Total Filing Fee Enclosed: $ 1960
24. If "non-English” box 2 is X'd, add Rule 17(k) processing fee $130 : $0
25. If “assignment” box 9 is X'd, add recording fees ($40 per assignment) $ $0
26. [] Attached is a Petition/Fee under Rule No. $130 $0
27. Total Fee: $ 1960

28. X Please charge the total fee to our deposit account below under the stated order no.: 2618-0015

Our Deposit Account No.: 501860.

CHARGE STATEMENT: The Commissioner is hereby authorized to charge any fee specifically authorized hereafter, or any
missing or insufficient fee(s) filed, or asserted to be filed, or which should have been filed herewith or concerning any paper filed
hereafter, and which may be required under Rules 16-18 (missing or insufficient fee only) now or hereafter relative to this

application and the resulting Official document under Rule 20, or credit any overpayment, to our Account/Order Nos. shown above

for which purpose a duplicate copy of this sheet is attached.

This Charge Statement does not authorize charge of the issue fee until/unless an issue fee transmittal form is filed.

29. Correspondence Address: Use the address associated with customer number 42624.

CUSTOMER NUMBER
42624

Davidson Berquist Jackson & Gowdey, LLP
703.894.6400
703.894.6430 (Facsimile)

By:

Resgegtfully submitted,

"\
Brian Siritzky, Pb.D
Registration No.7~37,497

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

REQUEST FOR FILING NATIONAL PATENT APPLICATION
Under 35 USC 111(a) and Rule 53(b)

Hon. Commissioner of Patents) Atty. Dkt. No.. 2618-0015
P.O. Box 1450 . '
Alexandria, VA 22313-1450 - Date: March 15, 2007

NON-PROVISIONAL - NON REISSUE - NON PCT NAT PHASE

- Sir:
Herewith is the PATENT APPLICATION of:

inventor(s): | David A. FARBER and Ronald D. LACHMAN

Title: ACCESSING DATA IN A DATA PROCESSING SYSTEM

Including:

1. Specification: 75 total pages (only spec. and claims)
[] Specification in non-English language

X Application Data Sheet (3 Pages)

Xl Return Receipt Postcard

o~ 0N

X] Oath or Declaration 1 total pages.

5.a.[] Newly executed ([] Original [] Facsimile/Copy) or 5.b [X] Copy from prior application.

Abstract 1 page(s); 7. 27 claims.

X Drawings: 31 total sheet(s) of drawings

[Attached are assignment papers and cover sheet. Please return the recorded assignment to the undersigned.

X Prior application is assigned to Level 3 Communications, LLC by Assignment recorded on February 2, 2007;
Reel 018847/Frame0077and to KINETECH, Inc. by Assignment recorded on November 15, 2001; Reel
012313/Frame 0446.

10. DOMESTIC/INTERNATIONAL priority is claimed under 35 USC 119(e)/120/365(c) based on the following provisional,
non-provisional and/or PCT international application(s):

© © N O

Application No. / Patent No. Filing Date Application No. / Patent No. Filing Date
(1) 11/017,650 12/22/2004 (2) 10/742,972 12/23/2003
(3) 6,928,442 11/15/2001 (4) 5,978,791 10/24/1997
(5) 6,415,280 04/01/1999 (6) 08/425,160 04/11/1995

11. Small Entity Status: [X] is NOT claimed [] is claimed.
12. [J NONPUBLICATION REQUEST under Rule 213(a) attached.

13. [Preliminary Amendment.

14. [] This application is being filed under Rule 53(b)(2) since an inventor is named in the enclosed Declaration who
was not named in the prior application.

15. X Attached: Information Disclosure Statement; Form PTO-1449.

New U.S. Application Docket No.: 2618-0015
Inventor(s): David A. FARBER and Ronald D. LACHMAN

Title: ACCESSING DATA IN A DATA PROCESSING SYSTEM

Date: March 15, 2007

16. [] Power of Attorney
17. 1f a CONTINUING APPLICATION, check appropriate box and supply the requisite information below and in the first sentence of the
specification following the title, and in the Application Data Sheet under 37 CFR 1.76. This application is a

X Continuation [Divisional (] Continuation-in-part (CIP) of prior application no.: : 11/017,650 filed December 22,2004,
which is a continuation of and claims priority to application no. 09/987,723, filed November 15, 2001, now U.S. Patent No. 6,928,442,
which is a continuation of application No. 09/283,160, filed April 1, 1999, now U.S. Patent No. 6,415,280, which is a division of
application Ser. No. 08/960,079, filed Oct. 24, 1997, now U.S. Pat. No. 5,978,791 filed Oct. 24, 2001 which is a continuation of Ser. No.
08/425,160, filed Apr. 11, 1995, now abandoned, [X the entire contents of which each of these applications are incorporated herein by
reference.

This application is also a

X Continuation [] Divisional [J Continuation-in-part (CIP) of prior application no.: : 10/742,972, filed December 23, 2003,
which is a division of and claims priority to application no. 09/987,723, filed November 15, 2001, now U.S. Patent No. 6,928,442, which
is a continuation of application No. 09/283,160, filed April 1, 1999, now U.S. Patent No. 6,415,280, which is a division of application Ser.
No. 08/960,079, filed Oct. 24, 1997, now U.S. Pat. No. 5,978,791 filed Oct. 24, 2001 which is a continuation of Ser. No. 08/425,160,
filed Apr. 11, 1995, now abandoned, X the entire contents of which each of these applications are incorporated herein by reference.

ACCESSING DATA IN A DATA PROCESSING SYSTEM
RELATED APPLICATIONS

[0001] - This is a continuation of and claims priority to co-pending
application no. 11/017,650, filed December 22, 2004, which is a continuation of
- application No. 09/987,723, filed November 15, 2001, now U.S. Patent No.
6,928,442, which is a continuation of application No. 09/283,160, filed April 1,
1999, now U.S. Patent No. 6,415,280, which is a division of application Ser. No.
08/960,079, filed Oct. 24, 1997, now U.S. Pat. No. 5,978,791, which is a
continuation of Ser. No. 08/425,160, filed Apr. 11, 1995, now abandoned, the
contents of which each of these apﬁlications are hereby incorporated herein by
reference. This is also a continuation of and claims priority to co-pending
application no. 10/742,972, filed December 23, 2003, which is a division of
application No. 09/987,723, filed November 15, 2001, now U.S. Patent No.
6,928,442, which is a continuation of application No. 09/283,160, filed April 1,
1999, now U.S. Patent No. 6,415,280, which is a division of application Ser. No.
08/960,079, filed Oct. 24, 1997, now U.S. Pat. No. 5,978,791, which is a
continuation of Ser. No. 08/425,160, filed Apr. 11, 1995, now abandoned, the

contents of which each of these applications are hereby incorporated herein by

reference.
BACKGROUND OF THE INVENTION
1. FIELD OF THE INVENTION
[0002] This invention relates to data processing systems and, more

particularly, to data processing systems wherein data items are identified by
substantially unique identifiers which depend on all of the data in the data items

and only on the data in the data items.

2618-0015

GOOG-1024-Page 4 of 114

2. BACKGROUND OF THE INVENTION

[0003] Data processing (DP) systems, computers, networks of computers, or
the like, typically offer users and programs various ways to identify the data in the
systems.

[0004] Users typically identify data in the data processing system by giving
the data some form of name. For example, a typical operating system (OS) on a
computer provides a file system in which data items ére named by alphanumetié
identifiers. Programs typically identify data in the data processing system using a
location or add;essl For example, a program may identify a record in a file or
database by using a record number which serves to locate that record.

[0005] In all but the most primitive operating systems, users and programs
are able to create and use collections of named data items, these collections |
themselves being named by identifiers. These named collections can then,
themselves, be made part of other named collections. For example, an OS may
providé mechanisms to group files (data items) into directories (collections).
These directories can then, therhselves be made part of other directories. A data
item may thus be identified relative to these nested directories using a sequencé of
names, or a so-called pathname, which defines a path through the directories to a
particular data item (file or directory). A
[0006] As another example, a database management system may group data
records (data items) into tables and then group these tables into database files
(collections). The complete address of any data record can then be specified using
the database file name, the table name,'an'd the record number of' that data record.
[0007] Other examples of identifying data items include: identifying files in
a network file systém, identifying objects in an object-oriented database,
identifying images in an image database, andf identifying articles in a text database.
10008] | In general, the terrhs "data" and "data item" aé used herein refer to
sequences of bits. Thus a data item may be the confents ofafile, a portion of a
file, a page in memory, an objeét in an object-oriented program, a digital message,

-2
2618-0015

a digital scanned image, a part of a video or audio signal, or any other entity which
can be represented by a sequence of bits. The term "data processing" herein refers
to the proceséing of data items, and is sorhetimes dependent on the type of data
item being processed. For example, a data processor for a-digital image may differ
from a data processor for an audio 'signal‘.

[0009] In all of the prior data processing systems the names or identifiers
provided to identify data items (the data items being files, directories, records in
the database, objects in object-oriented programming, locations in memory or on a
physical device, or the like) are always defined relative to a specific context. For
instance, the file identified by a particular file name can only be determined when
the directory containing the file (the context) is known. The file identified by a
pathname can be determined only when the file system (context) is known.
Similarly, the addresses in a process address space, the keys in a dafabase table, or
ddmain names on a global computer network such as the Internet are meaningful
only because they are specified relative to a context.

[0010] In prior art systems for identifying data items there is no direct
relationship between the data names and the data item. The same-data name in two
different contexts may refer to different data items, and two different data names
in the same context may refer to the same data item.

[0011] In addition, because there is no correlation between a data name and
the data it refers to, there is no a priori way to confirm that a given data item is in
fact the one named by a data name. For instance, in a DP system, if one processor
requests that another processor deliver a data item with a given data name, the
requesting processor cannot, in general, verify that the data delivered is the correct
data (given only the name). Therefore it may require further processing, typically
on the part of the recjuéstor, to verify that the data item it has obtained is, in fact,
the item it requested. | |

[0012] A common operation in a DP system is adding a new data _itém to
the system. When a new data item is added to the system, a name can be assigned

S
2618-0015

GOOG-1024-Page 6 of 114

to it only by updating the context in which names are deﬁned. Thus such systems
require a centralized mechanism for the management of names. Such a mechanism
is required even in a multi-processing system when data items are creéted and
identified at separate processors in distinct locations, and in which there is no
other need for communication when data items are added.

[0013] In many data processing systems or environments, data items are
transferred between different locations in the system. These locations may be
processors in the data processing system, storage devices, memory, or the like. For
example, one processor may obtain a data item from another processor or from an
external sforage device, such as a floppy disk, and may incorpofate that data item
into its system (using the name provided with that data item).

[0014] chever, when a processor (or some location) obtains a data item
from another location in the DP system, it is possible that this obtained data item is
already present in the system (either at the location of the processor or at some
other location accessible by the processor) and therefore a duplicate of the data
item is created. This situation is common in a network data processing
environment where proprietary soﬁware products are installed from floppy disks
onto several processors sharing a common file server. In these syStems, itis oﬁen
the case that the same product will be installed on several systems, so that several
copies of each file will reside on the common file server.

[0015] In some data processing systems in which several processors are
connected in a network, one system is designated as a cache server to maintain
master copies of data items, and other systems are designated as cache cliehts to
copy local coples of the master data items into a local cache on an as-needed basis.
Before using a cached item, a cache client must either reload the cached item, be
informed of changes to the cached item, or confirm that the master item |
corresponding to fhe cached item has not changed. In other words, a cache client
must synchromze its data items with those on the cache server. This

synchronization may 1nvolve reloading data items onto the cache client. The need

-4
2618-0015

to keep the cache synchronized or reload it adds significant overhead to existing
caching mechanisms. |

[0016] In view of the above and other problems with prior art systems, it is
therefore desirable to have a m'echanism'which allows each processor in a
multiprocessor system to determine a cpminon and substantially uniqug: identifier
for.a data item, using only the data in the data item and not relying on any sort of
context. '

[0017] It is further desirable to have a mechanism for reducing multiple
copies of data items in a data processing system and to have a mechanism which
enables the identification of identical data items so as to reduce multiple copies. It
is further desirable to determine whether two instances of a data item are in fact
the same data item, and to perform various other systems' functions and
applications on data items without relying on any cdntext information or
properties of the data item. |

[0018] It is also desirable to provide such a mechanism in such a way as to
make it transparent to users of the data processing system, and it is desirable that a

single mechanism be used to address each of the problems described above.

SUMMARY OF THE INVENTION
[0019] This invention provides, in a data processing system, a method and
apparatus for identifying a data item in the system, where the identity of the data
item depends on all of the data in the data item and only on the data in the data
item. Thus the identity of a data item is independent of its name, origin, locafion,
address; or other informatibn not derivable directly from the data, and depends
only on the data itself. -
[0020] This invention further provides an apparatus and a method for
~ determining whether a particular data item is present in the system or at a locatibn

in the system, by examining only the data identities of a plurality of data items.

2618-0015

[0021] Using the method or apparatus of the present im}ention,'the
efficiency and integrity of a data processing system can be improved. The present
invention improves the design and operation of a data storage system, file system,
relational database, object-oriented database, or the like that stores a plurality of
data items, by making possible or improving the design and operation of at least
some or all of the following features: _

[0022] the syster.n. stores at most one Tcopy of any data item at a given
location, even when multiple data names Vin the system refer to the same contents;
[0023] the system avoids copying data from source to destination locations
when the d.estination locations already have the data;

[0024] the system prbvides transparent access to any data item by reference
only to its identity and independent of its present location, whether it be local,
remote, or offline;

[0025] the system caches data items from a server, so that only the most |
recently accessed data items need be retained;

[0026] when the system is being used to cache data items, problems of
maintaining cache consistency are avoided;

[0027] the system maintains a desired level of redundancy of data items in a
network of servers, to protect against failure by ensuring that multiple copies of

the data items are present at different locations in the system;

[0028] the system automatically archives data items as they are created or
modified; -
[0029] the system provides the size, age, and location of groups of data

items in order to decide whether they can be safely removed'from a local file

system; “

[0030] . the system can efficiently record and preserve any collection of data
items;

[0031] " the system can efficiently make a copy of any collection of data

items, to support a version control mechanism for groups of the data items;

| -6
2618-0015

[0032] the system can publish data items, allowing other, possibly
anonymous, systems in a network to gain access to the data items and to rely on
the availability of the data items;
[0033] the system can maintain a local inventory of all the data items
located on a given removable medium, such as a diskette or CD-ROM, the
inventory is independent of dther properties of the data items such as their name,

| location, and date of creation;
[0034] the system allows closely related sets of data items, such as
matching or corrésponding directories on disconnected computers, to be
periodically resynchronized with one another;
[0035] the system can verify that data retrieved from another location is the
desired or requested data, using only the data identifier used to retrieve the data;
[0036] the system can prove possession of specific data items by content
without disclosing the content of the data items, for purposes of later legal
verification and to provide anonymity; .
[0037] the system tracks possession of specific data items according to
content by owner, independent of the name, date, or other properties of the data
item, and tracks the uses of specific data items and files by content for accounting
purposes. . '
[0038) Other objects, features, and characteristics of the present invention
as well as the methods of operation and functions of the related elements of
structure, and the combination of parts> and economies of manufacture, will
become more apparent upon consideration of the following description and the
appended claims with reference to the accompanying drawings, all of which form

a part of this specification.

BRIEF DESCRIPTION OF THE DRAWINGS
[0039] Figures 1(a) and 1(b) depict a typical data processing system in
which a preferred embodiment of the present invention operates;

7=
2618-0015

[0040] Figure 2 depicts a hierarchy of data items stored at any location in
such a data processing system;

[0041}) Figures 3-9 depict data structures used to implement an embodiment
of the present invention; and

[0042] Figures 10(a)-28 are flow charts depicting operation of various

aspects of the present invention.

DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED
EXEMPLARY EMBODIMENTS

[0043] | An embodiment of the present invention is now described with
reference to a typical data processing system 100, which, with reference to FIGS.
1(a) and 1(b), includes one or more processors (or computers) 102 and various

- storage devices 104 connected in some way, for example by a bus 106.

[0044] Each processorl 102 includes a CPU 108, a memory 110 and one or
more local storage devices 112. The CPU 108, memory 110, and local storage
device 112 may be internally connected, for example by a bus 114. Each processor
102 may also include other devices (not shown), such as a keyboard, a display, a
printer, and the like. | _

[0045] In a data processing system 100, wherein more than one processor
102 is used, that is, in a multiprocessor system, the processors fnay be in one of
various relationships. For example, two processors 102 may be in a client/server,
client/client, or a server/server relationship. These inter-processor relationships
may be dynamic, changing depending on particular situations and functions. Thus,
a particular processor 102 may change its relationship to other processors as
needed, essentially setting up a peer-tb-peer relationship with other processors. In
a peer-to-peer relationship, sometimes a particular processor 102 acts as a client
processor, whereas at other times the same processor acts as a server processor. In

other words, there is no hierarchy imposed on or required of processors 102.

2618-0015

- [0046] In a multiprocessor system, the processors 102 may be homogeneous
or heterogeneous. Further, in a multiprocessor data processing system 100, some
or all of the processors 102 may be disconnected from the network of processors
for periods of time. Such disconnection may be part of the normal 6peration of the
system 100 or it may be because a particular processor 102 is in need of repair.
[0047] Within a data processing system 100, the data may be organized to
form a hierarchy of data storage elements, wherein lower level data storage
elements are combined to form higher level elements. This hierarchy can consist
of, for example, processors, file systems, regions, diréctories_, data files, segments,
and the like. For example, with reference to FIG. 2, the data items on a particular
processor 102 may be organized or structured as a file system 116 which
comprises regions 117, each of which comprises directories 118, each of which
can contain other directories 118 or files 120. Each file 120 being made up of one
or more data segments 122. |
[0048] In a typical data processing system, some or all of these elements
can be named by users given certain implementation specific naming conventions,
'the name (or pathname) of an element being relative to a context. In the context of
a data processing system 100, a pathname is fully specified by a processor name, a
filesystem name, a sequence of zero or more directory names identifying nested
directories, and a final file name. (Usually the lowest level elements, in this case
segments 122, cannot be named by users.) |
[0049] In other words, a file system 116 is a collection of directories 118. A
directory 118 is a collection of named files 120--both data files 120 and other
directory files 118. A file 120 is a named data item which is cither a data file

- (which may be simple or compound) or a directory file 118. A simple file 120

consists of a single data éegment 122. A compound file 120 consists of a sequence

of data segments 122. A data segment 122 is a fixed sequence of bytes. An
important property of any data segment is its size, the number of bytes in the

sequence.

2618-0015

[0050] A single processor 102 may access one or more file systems 116,
and a sihgle storage device 104 may contain one or more file systems 116, or.‘
portions of a file system 116. For instance, a file system 116 may span several
storage devices 104.
[0051] In order to implement controls in a file system, file system 116 may
be divided into distinct regions, where each region is a unit of management and
control. A region consists of a given directory 118 and is identified by the
pathname (user defined) of the directory.
[0052] In the following, the term "location", with respect to a data
processing system 100, refers to any of a particular processor 102 in the system, a
memory of a particular processor, a storage device, a removable storage medium
(such as a floppy disk or compact disk), or any other physical location in the
system. The term "local" with respect to a particular processor 102 refers to the
memory and storage devices of that particular processor.
[0053] In the following, the terms "True Name", "data identity" and "data
identifier" refer to the substantially unique data identifier for a particular data item.
The term "True File" refers to the actual file, segment, or data item identified by a
True Name.
[0054) A file system for a data processing system 100 is now describéd
which is intended to work with an existing operating system by augmenting some
| of the 6perating system's file management system codes. The embodiment
provided relies on the standard file management primitives for actually storing to
and retrieving data items from disk, but uses the mechanisms of the present
invention to reference and access those data items.
[0055] The processes and mechanisms (services) provided in this
embodiment are grouped into the following categories: primitiveb mechanisms,
operating system mechanisms, remoté mechanisms, background mechanisms, and

extended mechanisms.

10—
2618-0015

[0056] Primitive mechanisms provide fundamental capabilities used to
support other mechanisms. The following primitive mechanisms are described:
1. Calculate True Name;
. Assimilate Data Item;
. True File;
. Get True Name from Path;
. Link path to True Name;

2
3
4
5
6. Realize True File from Location;
7. Locate Remote File;
8. Make True File Local;
9. Create Scratch File;

10. Freeze Directory;

11. Expand Frozen Directory;

| 12. Delete True File;
~ 13. Process Audit File Entry;

14. Begin Grooming;

15. Select For Removal; and

16. End Grooming.
[0057] - l Operating system mechanisms provide typical familiar file system
mechanisms, while maintaining the data structures required to offer the
mechanisms of the, presenf invention. Operating system mechanisms are desj-gned
to augfnent existing operating systems, and in this way to make the present
invenfion compatible with, and generally transparent to, existing applications. The
following operating system mechanisms are described:

1. Open File;

2. Close File;

3. Read File;

4. Write File;

5. Delete File -Qr Directory;

: -11 -
2618-0015

6.
7.
8.
9.

Copy File or Directory;
Move File or Directory;
Get File Status; and
Get Files in Directory.

- [0058] Remote mechanisms are used by the operating system in responding

to requests from other processors. These mechanisms enable the capabilities of the

present invention in a peer-to-peer network mode of operation. The following

remote mechanisms are described:

1

O 00 N O Wn A WD

. Locate True File;

. Reserve True File;

. Request True File;

. Retife True File;

. Cancel Reservation;

. Acquire True File;

. Lock Cache;

. Update Cache; and

. Check Expiration Date.

[0059] Background mechanisms are intended to run occasionally and at a

low priority. These provide automated management capabilities with respect to the

present invention. The following background'mechanisms are described:

1.
2.
3.
4.
5.

Mirror True File;

Groom Region;

Check for Expired Links; and
Verify Region; and

Groom Source‘ List.

[0060] Extended mechanisms run within application programs over the

operating system. These mechanisms provide solutions to specific problems and

applications. The following extended mechanisms are described: -

1.

2618-0015

Inventory Existing Directory;

12—

. Inventory Removable, Read-only Files;
. Synchronize directories;

. Publish Region;

. Retire Directory;

. Realize Directory at location;

. Verify True File;

. Track for accounting purposes; and

O 00 N1 N W AW N

. Track for licensing purposes.

[0061] The file system herein described maintains sufficient information to
provide a variety of mechanisms not ordinarily offered by an operating system, |
some of which are listed and described here. Various processing performed by this
embodiment of the present invention will now be described in greater detail.

[0062] In some embodiments, some files 120 in a data processing system
100 do not have True Names becAaus'e they have been recently received or created
or modified, and thus their True Names have not yet been computed. A file that
does not yet have a True Name is called a scratch file. The process of assigning a
True Name to a file is referred to as assimilation, and is described later. Note that 'a’
scratch file may have a user provided name. |

[0063] Some of the processing performed by the present invention can take
place in a background mode or on a delayed or as-needed basis. This background

_ processing is used to determine information that is not immediately required by
the system or which may never be required. As an example, in some cases a
scratch file is being changed at a rate greater than the rate at which it is useful to
determine its True Name. In these cases, determining the True Name of the file

can be postponed or performed in the background.

DATA STRUCTURES

[0064] The following data structures, stored in memory 110 of one of more

processors 102 are used to implement the mechanisms described herein. The data

-13—
2618-0015

structures can be local to each processor 102 of the system 100, or they can reside
on only some of the processors 102. .

[0065] The data structures described are assumed to reside on individual
peer processors 102 in the data processing system 100. However, they can also be
shared by placing them on a remote, shared file server (for instance, in a local area
network of machines). In order to accommodate sharing data structures, it is
necessary that the processors accessing the shared database use the appropriate
locking techniques to ensure that changes to the shared database do not interfere
with one anothef but are appropriately serialized. These locking techniques are
well understood by ordinarily skilled programmers of distributed applications.
[0066] It is sometimes desirable to allow some regions to be local to a
particular processor 102 and other regions to be shared among processors 102.
(Recall that a region is a unit of file system management and control consisting of
a given directory identified by the pathname of the directory.) In the case of local
and shared regions, there would be both local and shared versions of each data
structure. Simple changes to the processes described below must be made to
ensure that appropriate data structures are selected for a given operation.

[0067] The local directory extensions (LDE) table 124 is a data structure
which provides information about files 120 and directories 118 in the data
processing system 100. The local directory extensions table 124 is indexed by a
pathname or contextual name (that is, a user provided name) of a file and iricludes
the True Name for most files. The information in local directory extension table
124 is in addition to that provided by the native file system of the operating
system.

[0068] The True Filé registry (TFR) 126 is a data store for listing actual
data items which have True Names, both files 120 and segments 122. When such
data items occur in the True File registry 126 they ,ar‘e known as True Files. True

Files are identified in True File registry 126 by their True Names or identities. The

-14—
2618-0015

table True File registry 126 also stores location, dependency, and migration
information about True Files. A

[0069] - The region table (RT) 128 defines éreas in the network storage
which are to be managed separately. Region table 128 defines the rules for access
to and migration of files 120 among various reglons with the local file system 116
and remote peer file systems

[0070] - The source table (ST) 130 is a list of the sources of True Files other
than the current True File registry 126. The source table 130 includes removable
volumes and remote processors. .

[0071] The audit file (AF) 132 is a list of records indicating changes to be
made in local or remote files, these changes to be processed in background.

[0072] The accounting log (AL) 134 is a log of file transactions used to
create accounting information in a manner which preserves the identity of files
being tracked independent of their name or location. |

[0073] The license table (LT) 136 is a table identifying files, which may
only be used by licensed users, in a manner independent of their name or location,

and the users licensed to use them.

DETAILED DESCRIPTIONS OF THE DATA STRUCTURES

[0074] The following table summarizes the fields of an local directory

extensions table entry, as illustrated by record 138 in F1G. 3.

Field Description -

Region ID identifies the region in which this file is contained.

Pathname the user provided name or contextual name of the file or dlrectory,
relative to the region in which it occurs.

True Name . | the computed True Name or identity of the file or directory. This
True Name is not always up to date, and it is set to a special value
when a file is modified and is later recomputed in the background.

Type indicates whether the file is a data file or a directory.
Scratch File | the physical location of the file in the file system, when no True
ID Name has been calculated for the file. As noted above, such a file is

called a scratch file.

-15—
2618-0015

Field

Description

Time of last

the last access time to this file. If this file is a directory, this is the

access last access time to any file in the directory.

Time of last | the time of last change of this file. If this file is a directory, this is

modification | the last modification time of any file in the directory.

Safe flag indicates that this file (and, if this file is a directory, all of its
subordinate files) have been backed up on some other system, and it
is therefore safe to remove them.

Lock flag indicates whether a file is locked, that is, it is being modified by the
local processor or a remote processor. Only one processor may
modify a file at a time. _

Size the full size of this directory (including all subordinate files), if all

' files in it were fully expanded and duplicated. For a file that is not a
directory this is the size of the actual True File.

Owner the identity of the user who owns this file, for accounting and
license tracking purposes.

[0075] Each record of the True File registry 126 has the fields shown in the

True File registry record 140 in FIG. 4. The True File registry 126 consists of the

database described in the table below as well as the actual True Files identified by

the True File IDs below.

Field Description

True Name | computed True Name or identity of the file.

Compressed | compressed version of the True File may be stored instead of, or in

File ID addition to, an uncompressed version. This field provides the
identity of the actual representation of the compressed version of
the file.

Grooming . | tentative count of how many references have been selected for

delete count

deletion during a grooming operation.

Time of last

most recent date and time the content of this file was accessed.

access

Expiration | date and time after which this file may be deleted by this server.

Dependent | processor IDs of other processors which contain references to this .

processors | True File.

Source IDs | source ID(s) of zero or more sources from which this file or data
item may be retrieved.

True File ID | identity or disk location of the actual physical representation of the
file or file segment. It is sufficient to use a filename in the
registration directory of the underlying operating system. The True
File ID is absent if the actual file is not currently present at the
current location. '

-16 -

2618-0015

Field Description

Use count number of other records on this processor which identify this True
File.

[0076] A region table 128, specified by a directory pathname, records

storage policies which allow files in the file system to be stored, accessed and

migrated in different ways. Storage policies are programmed ina configurable

way using a set of rules described below.

[0077] Each region table record 142 of region table 128 includes the fields
described in the following table (with reference to FIG. 5):
Field Description
Region ID | internally used identifier for this region.
Region file | file system on the local processor of which this region is a part.
system
Region a pathname relative to the region file system which defines the
pathname location of this region. The region consists of all files and
directories subordinate to this pathname, except those in a region
subordinate to this region.
Mirror | zero or more identifiers of processors which are to keep mirror or
processor(s) | archival copies of all files in the current region. Multiple mirror
processors can be defined to form a mirror group.
Mirror number of copies of each file in this region that should be retained
duplication | in a mirror group.
count .
Region specifies whether this region is local to a single processor 102,
status shared by several processors 102 (if, for instance, it resides on a
shared file server), or managed by a remote processor.
| Policy the migration policy to apply to this region. A single region might
' participate in several policies. The policies are as follows
(parameters in brackets are specified as part of the policy):
~ region is a cached version from [processor ID];
region is a member of a mirror set defined by [processor ID].
region is to be archived on [processor ID].
region is to be backed up locally, by placing new copies in
[region ID]. : :
region is read only and may not be changed.
region is published and expires on [date].
Files in this region should be compressed.
[0078] A source table 130 identifies a source location for True Files. The

source table 130 is also used to identify client processors making reservations on

2618-0015

-17-

the current processor. Each source record 144 of the source table 130 includes the

fields summarized in the following table, with reference to FIG. 6:

Field Description
source ID internal identifier used to identify a particular source.
source type | type of source location:
Removable Storage Volume
Local Region
Cache Server
Mirror Group Server
Cooperative Server
Publishing Server
Client
source includes information about the rights of this processor, such as
rights whether it can ask the local processor to store data items for it.
source measurement of the bandwidth, cost, and reliability of the
availability | connection to this source of True Files. The availability is used to
select from among several possible sources.
source information on how the local processor is to access the source. This
location may be, for example, the name of a removable storage volume, or
the processor ID and region path of a region on a remote processor.
[0079] The audit file 132 is a table of events ordered by timestamp, each

record 146 in audit file 132 including the fields summarized in the following table

(with reference to FIG. 7):

Field Description :

Original path of the file in question.

Name '

Operation whether the file was created, read, written, copied or deleted.

Type specifies whether the source is a file or a directory.

Processor ID of the remote processor generating this event (if not local).

ID ' ' _

Timestamp | time and date file was closed (required only for accessed/modified
files). '

Pathname Name of the file (required only for rename).

True Name | computed True Name of the file. This is used by remote systems to

' mirror changes to the directory and is filled in during background

processing. |

[0080] Each record 148 of the accounting log 134 records an event which

may later be used to provide information for billing mechanisms. Each accounting

2618-0015

-18—

log entry record 148 includes at least the information summarized in the following

table, with reference to FIG. 8:

Field Description

date of entry | date and time of this log entry.

type of entry | Entry types include create file, delete file, and transmit file.

True Name | True Name of data item in question.

owner identity of the user responsible for this action.

[0081] Each record 150 of the license table 136 records a relationship
between a licensable data item and the user licensed to have access to it. Each
license table record 150 includes the information summarized in the following

table, with reference to FIG. 9:

Field Description

True Name True Name of a data item subject to license validation.
licensee identity of a user authorized to have access to this object.
[0082] Various other data structures are employed on some or all of the

processors 102 in the data processing system 100. Each processor 102 has a global
freeze lock (GFL) 152 (FIG. 1), which is used to prevent synchronization errors
when a directory is frozen or copied. Any processor 102 may include a special
archive directory (SAD) 154 into which directories may be copied for the purposes
of archivai. Any processor 102 may include a special media directory (SMD) 156,
into which the directories of removable volumes are stored to form a media |
inventory. Each processor has a grooming lock 158, which is set during a
‘grooming operation. During this period the grooming delete count of True File
registry entries 140 is active, and no True Files should be deleted until grooming is
complete. While grooming is in effect, grooming information includes a table of
pathnames selected for deletion, and keeps track of the amount of space that would
be freed if all of the files were deleted. |

PRIMITIVE MECHANISMS
[0083] The first of the mechanisms provided by the present invention,

primitive mechanisms, are now described. The mechanisms described here depend

on underlying data management mechanisms to create, copy, read, and delete data

-19 -
2618-0015

items in the True File registry 126, as identified by a True File ID. This support
may be provided by an underlying operating system or disk storage manager.
[0084] The following primitive mechanisms are described:
1. Calculate True Name; .
2. Assimilate Data Item;
3. True File;
4. Get True Name from Path;
5. Link Path to True Name;
6. Realize True File from Location;
7. Locate Remote File;
8. Make True File Local;
9. Create Scratch File;
10. Freeze Directory;
11. Expand Frozen Directory;
12. Delete True File;
13. Process Audit File Entry;
14. Begin Grooming;
15. Select For Removal; and

" 16. End Grooming.

1. Calculate True Name

[0085] A True Name is cbmputed using a function, MD, which reduces a
data block B of arbitrary length to a relatively small, fixed size identifier, the True
Name of the data block, such that the True Name of the data block is virtually
guaranteed to represent fhe data block B and only data block B.
[0086] The function MD must have the following properties:
1. The domain of the function MD is the set of all data items.
The range of the function MD is the set of True Names.

20—
2618-0015

2. The function MD musf take a data item of arbitrary length

and reduce it to an integer value in the range 0 to N-1, where N is the

cardinality of the set of True Names. That is, for an arbitrary length

data block B, 0 < MD(B) <N. |

3. The results of MD(B) must be evenly and randomly

distributed over the range of N, in such a way that simple or regular

changes to B are virtually guaranteed to produce a different value of

MD(B).

4. It must be computationally difficult to find a different value

B' such that MD(B)=MD(B").

5. The function MD(B) must be efficiently computed.
[0087] A family of functions with the above properties are the so-called
message digest functions, which are used in digital security systems as techniques
for authentification of data. These functions (or aigorithms) include MD4, MDS,
and SHA. |
[0088] In the presently preferred embodiments, either MDS5 or SHA is
employed as the basis for the computation of True Names. Whichever of these two
message digest functions is employed, that same function must be employed on a
system-wide basis. |
[0089] It is impossible to define a fuﬁction having a ﬁnique output for each

_possible input when the number of elements in the range of the function is smaller

than the number of elements in its domain. However, a crucial observation is that
the actual data items that will be encountered in the operation of any system
embodying this invention form a very sparsé subset of all the possible inputs.
[0090] A colliding set of data items is defined as a set wherein, for one or
more pgirs x and y in the set, MD(x)=MD(y). Since a function conforming to the
requirements for MD must evenly and randomly distribute its outputs, it is |

possible, by making the range of the function large enough, to make the

221 -
2618-0015

probability arbitrarily small that actual inputs encountered in the operation of an
embodiment of this invention will form a colliding set.

[0091] To roughly quantify the probability of a collision, assume that there
are no more than 2°° storage devices in the world, and that each storage device has
an average of at most 2%° different data items. Then there are at most 2°° data items
in the world. If the outputs of MD range between 0 and 2128 it can be
demonstrated that the probability of a collision is approximately 1 in 2%°. Details
on the derivation of these probability values are found, for example, in P. Flajolet
and A. M. Odlyzko, "Random Mapping Statistics," Lecture Notes in Computer
Science 434: Advances in Cryptology--Eurocrypt '89 Proceedings, Springer-
Verlag, pp. 329-354. '

[0092] Note that for some less preferred embodiments of the present
invention, lower probabilities of uniqueness may be acceptable, depending on the
types of applications and mechanisms used. In some embodiments it may also be
useful to have more than one level of True Names, with some of the True Names
having different degrees of uniqueness. If such a scheme is implemented, it is
necessary to ensure that less unique True Names are not propagated in the system.
[0093] While the invention is described herein using only the True Name of
a data item as the identifier for the data item, other preferred embodiments use
tagged, typed, categorized or classified data items and use a combination of both
the True Name and the tag, type, category or class of the data item as an identifier.
Examples of such categorizatiorls are files, directories, and segments; executable
files and data files, and the like. Examples of classes are classes of objects in an
object-oriented system. In such a system, a lower degree of True Name uniqueness
is acceptable over the entire unrverse of data items, as long as sufficient
uniqueness. is provided per category of data items. This is because the tags
provide an additional level of uniqueness.

[0094] A mechanism for calculating a True Name given a data item is now
described, with reference to FIGS. 10(a) and 10(b).

22—
2618-0015

[0095] A sirh‘ple data item is a data item whose size is less than a particular
given size (which must be defined in each particular implementation of the ‘

~ invention). To determine the True Name of a simple data item, with reference to
FIG. 10(a), first compute the MD function (described above) on the given simple
data item (Step S212). Then append to the resulting 128 bits, the byte ‘length
modulo 32 of the data item (Step S214). The resulting 160-bit value is the True
Name of the simple data item.

[0096] A compound data item is one whose size is greater than the
particular given size of a simple data item. To determine the True Name of an
arbitrary (simple or compound) data item, with reference to F1G. 10(b), first
determine if the data item is a simple or a compound data item (Step S216). If the
data item is a simple data item, then compute its True Name in step S218 (using
steps S212 and S214 described above), otherwise partition the data item into
segments (Step $220) and assimilate each segment (Step $222) (the primitive
mechanism, Assimilate a Data Ttem, is described below), computing the True
Name of the segment. Then create an indirect block consisting of the computed
segment True Names (Step S224). An indirect block is a data item which consists
of the sequence of True Names of the segments. Then, in step S226, assimilate the
indirect block and compute its True Name. Finally, replace the final thirty-two
'(32) bits of the resulting True Name (that is, the length of the indirect block) by
the length modulo 32 of the compound data item (Step S228). The result is the
True Name of the compound data itern.

[0097] Note that the compound data item may be so.large that the indirect
block of segtﬁent True Names is itself a compound data item. In this case the
mechanism is invoked recursivély until only simple data items are being
processed. |

[0098] . Both the use of segments and the attachment of a length to the True
Name are not strictly required in a system using the present invention, but are
currently considered desirable features in the preferred embodiment.

-23—
2618-0015

2. Assimilate Data Item

[0099] A mechanism for assimilating a data item (scratch file or segment)
into a file system, given the scratch file ID of the data item, is now described With
reference to FIG. 11. The purpose of this mechanism is to add a given data item to
the True File registry 126. If the data item already exists in the True File registry
126, this will be discovered and used during this process, and the duplicate will be
eliminated.

[00100] Thereby the system stores at most one copy of any data item or file
by cohtent, even when multiple names refer to the same content.

[00101] First, determine the True Name of the data item corresponding to the
given scratch File ID using the Calculate True Name primitive mechanism (Step
S230). Next, look for an entry for the True Name in the True File registry 126
(Step S232) and determine whether a True Name entry, record 140, exists in the
True File registry 126. If the entry record includes a corresponding True File ID or
compressed File ID (Step S237), delete the file with the scratch File ID (Step
S238). Otherwise store the given True File ID in the entry record (step S239).
[00102] If it is determined (in step S232) that no True Name entry exists in
the True File registry 126, then, in Step S236, create a new entry in the True File
registry 126 for this True Name. Set the True Name of the entry to the calculated
True Némé, set the use count for the new entry to one, store the given True File ID
in the entry and set the other fields of 'the entry as appropriate.

[00103] Because this procedure may take some time to compute, it is
intended to run in background after a file has ceased to change. In the meantime,

the file is considered an unassimilated scratch file.

3. True File

[00104] The True File process is invoked when processing the audit file 132,
some time after a True File has been assimilated (using the Assimilate Data Item
primitive mechanism). Given a local direc;tory extensions table entry record 138 in

-24—
2618-0015

the local directory extensions table 124, the True File process can providé the
following steps (with reference to FIG. 12), depending on how the local processor
is configured:) |
| [00105] First, in step S238, examine the local directory extensions table entry
record 138 to determine whether the file is locked by a cache server. If the file is
locked, then add the ID of the cache server to the dependent processor list of the
True File registry table 126, and then send a message to the cache servelr to update
the cache of the current processor using the Update Cache remote mechanism
(Step 242).
[00106] If desired, compress the True File (Step S246), and, if desired,
mirror the True File using the Mirror True File background mechanism (Step
S248).

4. Get True Name from Path

[00107) The True Name of a file can be used to identify a file by contents, to
confirm that a file matches its original contents, or to compare two files. The
mechanism to get a True Name given the pathname of a file is now described with
reference to FIG. 13. _

t00108] First, search the local directory extensions table‘124 for the entry
record 138 with the given pathname (Step S250). If the pathname is not found, this
process fails and no True Name corresponding to the given pathname exists. Next,
determine whether the local directory extensions table entry record 138 includes a
True Name (Step S252), and if so, the mechanism's task is complete. Otherwise,
determine whether the local directory extensions table entry record 138 identifies a
~ directory (Step S254), and if so, freeze the directory (Step S256) (the primitive
mechanism Freeze Directory is described below).

[00109] Otherwise, in step 8258, assimilate the file (using the Assimilate

Data Item primitive mechanism) defined by the File ID field to generate its True

_25—
2618-0015

Name and store its True Name in the local directory extensions entry record. Then

return the True Name identified by the local directory extensions table 124.

5. Link Path to True Name

[00110] The mechanism to link a path to a True Name provides a way of
creating a new directory entry record identifying an exiSting, assimilated file. This
basic process may be used to copy, move, and rename files without a need to copy
their contents. The mechanism to link a path to a True Name is now described
with reference to FIG. 14.

[00111] First, if desired, confirm that the True Name exists locally by
se_archihg for it in Fhe True Name registry or local directory extensions table 135
(Step S260). Most uses of this mechanism will require this form of validation.
Next, search for the path in the local directory extensions table 135 (Step S262).
Confirm that the directory containing the file named in the path already exists
(Step S264). If the named file itself exists, delete the File using the Delete True
Filet operating system mechanism (see below) (Step S268).

[00112] Then, create an entry record in the local directory extensions with
the specified path (Step S270) and update the entry record and other data
structures as follows: fill in the True Name field of the entry with the specified
True Name; increment the use count for the True File registry entry record 140 of
the corresponding True Name; note whether the entry is a directory by reading the
True File to see if it contains a tag (magic number) indicating that it represents a
frozen directory (see also the description of the Freeze Directory primitive
" mechanism regarding the tag); and compute and set the other fields of the local
directory extensions appropriately. For instance, search the region table 128 to
identify the region of the path, and set the time of last access and time of last

modification to the current time.

-26—
2618-0015

6. Realize True File from Location

[00113] This mechanism is used to try to make a local copy of a True File,
given its True Name and the name of a source location (processor or media) that
may contain the True File. This mechanism is now described with reference to
FiG. 15.

[00114] First, in step S272, determine whether the location specified is a
processor. If it is determined that the location specified is a processor, then send a
Request True File message (using the Request True File remote mechanism) to the
remote processor and wait for a response (Step S274). If a negative response is
receivéd or no response is received after a timeout period, this mechanism fails. If
a positive response is received, enter the True File returned in the True File
registry 126 (Step S276). (If the file received was compressed, enter the True File
ID in the compressed File ID field.)

[00115] If, on the other hand, it is determined in step S272 that the location
specified is not a processor, then, if necessary, request the user or operator to
mount the indicated volume (Step S278). Then (Step S280) find the indicated file
on the given volume and assimilate the file using the Assimilate Data Item
primitive mechanism. If the volume does not contain a True File registry 126,
search the media inventory to find the path of the file on the volume. If no such
file can be found, this mechanism fails.

[00116] At this point, whether or not the location is determined (in step
S272) to be a processor, if desired, verify the True File (in step S282).

7. Locate Remote File

[00117] This mechanism allows a processor to locate a file or data item from
a remote source of True Files, when a specific source is unknown or unavailable.
A client processor system may ask one of several or many sources whether it can
supply a data object with a given True Name. The steps to perform this
mechanism are as follows (with reference to FIGS. 16(a) and-16(b)). '

_27—
2618-0015

[00118] The client processor 102 uses the source table 145 to select one or
more source processors (Step S284). If no source processor can be found, the
mechanism fails. Next, the client processor 102 broadcasts to the selected sources
a request to locate the file with the given True Name using the Locate True File
remote mechanism (Step S286). The request to locate may be augmented by
asking to propagate this request to distant servers. The client processor then waits
for one or more servers to respond positively (Step S288). After all servers
respond negativeiy, or after a timeout period with no positive response, the
mechanism repeats selection (Step S284) to attempt to identify alternative sources.
If any selected source processor responds, its procéssor ID is the result of this
mechanism. Store the processor ID in the source field of the True File registry
entry record 140 of the given True Name (Step S290).
[00119] If the source location of the True Name is a different processor or
medium than the destination (Step S290a), perform the following steps:
(i) Look up the True File registry entry record 140 for the
corresponding True Name, and add the source location ID to the list of
sources for the True Name (Step S290b); and
(ii)) If the source is a publishing system, determine the expiration déte on
the publishing system for the True Name and add that to the list of sources.
If the source is not a publishing system, send a message to reserve the True
File on the source processor (Step S290c).
[00120] Source selection in step S284 may be based on optimizations
involving general availability of the source, access time, bandwidth, and
transmission cost, and ignoring previously selected processors which did not

respond in step S288.

8. Make True File Local

[00121] “This mechanism is used when a True Name is known and a locally

accessible copy of the corresponding file or data item is required. This mechanism

-28—
2618-0015

makes it possible to actually read the data in a True File. The mechanism takes a
Trué Name and returns when there is a local, éccessible copy of the True File in
the True File registry 126. This mechanism is de.scribed here with reference to the
flow chart of FIGS. 17(a) and 17(b). |

[00122] First, look in the True File registry 126 for a True File entry record
140 for the corresponding True Name (Step S292). If no such entry is found this
mechanism fails. If there is already a True File ID for the entry (Step S294), this
mechanism's task is complete. If there is a compressed file ID for the entry (Step
$296), decompress the file corresponding to the file ID (Step $298) and store the
decompressed file ID in fh'e entry (Step S300). This mechanism is then complete.
[00123] If there is no True File ID for the entry (Step S294) and there is no
compressed file ID for the entry (Step S296), then continue searching for the
requested file. At this time it may be necessary to notify the user that the system is
searching for the requested file.

[00124] . If there are one or more source IDs, then select an order in which fo
attempt to realize the source ID (Step S304). The order may be based on
optimizations irivolving general availability of the source, access time, bandwidth,
and transmission cost. For eaph source in the order chosen, realize the True File
from the source location (using the Realize True File from Location primitive
mechanism), until the True File is realized (Step S306). If it is realized, continue
with step S294. If no known source can realize the True File, use the Locate
‘Remote File primitive mechanism to attempt to find the True File (Step S308). If
this succeeds, realize the True File from the identified source location and

continue with step S296.

9. Create Scratch File

[00125] A scratch copy of a file is required when a file is being created or is
about to be modified. The scratch copy is stored in the file system of the
underlying operating system. The scratch copy is eventually assimilated when the

-29_
2618-0015

audit file record entry 146 is processed by the Process Audit File Entry primitive
mechanism. This Create Scratch File mechanism requires a local directory
extensions table entry record 138. When it succeeds, the local directory extensions
table entry record 138 contains the scratch file ID of a scratch file that is not
contained in the True File registry 126 and that may be modified. This mechanism
is now described with reference to FIGS. 18(a) and 18(b).

[00126] First determine whether the scratch file should be a copy of the
existing True File (Step S310). If so, continue with step S312. Otherwise,
determine whether the local directory extensions table entry record 138 identifies
an existing True File (Step S316), and if so, delete the True File using the Delete
True File primitive mechanism (Step S3 18). Then create a new, empty scratch file
and store its scratch file ID in the local directory extensions table entry record 138
(step S320). This mechanism is then complete.

[00127] If the local directory extensions table entry record 138 identifies a
scratch file ID (Step S312), then the entry already has a scratch file, so this
mechanism succeeds. '

[00128] If the local directory extensions table entry record 138 identifies a
True File (S8316), and there is no True File ID for the True Fiie (S312), then make
the True File local using the Make True File Local primitive mechanism (Step
S322). If there is still no True File ID, this mechanism fails.

[00129] There is now a local True File for this file. If the use count in the
corresponding True File registry entry record 140 is one (Step S326), save the
True File ID in the scratch file ID of the local directory extensions table entry

' record 138, and remove the True File registry entry record 140 (Step S328). (This
step makes the True File into a scratch file.) This mechanism's task is complete.
[00130] Otherwise, if the use count in the corresponding True File registry
entry record 140 is not one (in step $S326), copy the file with the given True File
ID to a new scratch file, using the Read File OS mechanism and store its file ID in
the local directory extensions table entry record 138 (Step S330), and reduce the

-30—
2618-0015

use count for the True File by one. If there is insufficient space to make a copy,

this mechanism fails.

10. Freeze Directory

[00131] This mechanism freezes a directory in order to calculate its True
Name. Since the True Name of a directory is a function of the files within the
directory, they must not change during the computation of the True Name of the
directory. Thié mechanism requires the pathname of a directory to freeze. This
mechanism is described with reference to FIGS. 19(a) and 19(b).

[00132] | In step S332, add one to the global freeze lock. Then search the local
directory extensions table 124 to find each subordinate data file and directory of
the given directory, and freeze each subordinate directory found using the Freeze
Directory primitive mechanism (Step S334). Assimilate each unassimilated data
file in the directory using the Assimilate Data Item primitive mechanism (Step
S'336). Then create a data item which begins with a tag or marker (a "magic
number") being a unique data item indicating that this data item is a frozen
directory (Step S337). Then list the file name and True Name for each file in the
current directory (Step S338). Record any additional information required, such as
the type, time of last access and modification, and size (Step S340). Next, in step
S342, using thé Assimilate Data [tem primitive mechanism, assimilate the data
item created in step S338. The resulting True Name is the True Name of the frozen

directory. Finally, subtract one from the global freeze lock (Step S344).

11. Expand Frozen Directory

[00133] This mechanism expands a frozen directory in a given location. It

| requires a given pathname into which to expand the directory, and the True Name
of the directory and is described with reference to FIG. 20.

[00134] First, in step S346, make the True File with the given True Name

local using the Make True File Local primitive mechanism. Then read each

| 31—
2618-0015

directory entry in the local file created in step S346 (Step S348). For each such
directory entry, do the following:

[00135] Create a full pathname using the given pathnam-e and the file name
of the entry (Stép S350); and

[00136] link the created path to the True Name (Step S352) using the Link

Path to True Name primitive mechanism.

12. Delete True File

[00137] This mechanism deletes a reference to a True Name. The underlying
True File is not removed from the True File registry 126 unless there are no
additional references to the file. With reference to FIG. 21, this mechanism is
performed as follows:

[00138]) Ifthe global freeze lock is on, wait until the global freeze lock is
turned off (Step S354). This prevents deleting a True File while a directory which
might refer to it is being frozen. Next, find the True File registry entry record 140
given the True Name (Step S356). If the reference count field of the True File
registry 126 is greater than zero, subtract one from the reference count field (Step
S358). If it is determined (in- step S360) that the referenc¢ count field of the True
File registry entry record 140 is zero, and if there are no dependent systems listed
in the True File registry entry record 140, then perform the following steps:
[00139])] If the True File is a simple data item, then delete the True
File, otherwise,

- [00140] (i) (the True Filé is a compound data item) for each True Name
in the data item, recursively delete the True File corresponding to the True Name
(Step S362).

[00141] (iii)) Remove the file indicated by the True File ID and
compressed file ID from the True File registry 126, and remove the True File

registry entry record 140 (Step S364).

32—
2618-0015

13. Process Audit File Entry

[00142) This mechanism performs tasks which are required to maintain
information in the local directory extensions table 124 and True File registry 126,
but which can be delayed while the processor is busy doing more time-critical
tasks. Entries 142 in the audit file 132 should be processed at a background
priority as long as there are-entries to be processed. With reference to FIG. 22, the
steps for processing an entry are as follows:

[00143] Determine the operation in the entry 142 currently being processed
(Step S365). If the operation indicates that a file was created or written (Step
S366), then assimilate the file using the Assimilate Data Item primitive
mechanism (Step S368), use the True File primitive mechanism to do additional
desired processing (such as cache update, compression, and mirroring) (Step
S369), and record the newly computed True Name for the file in the audit file
record entry (Step S370).

[00144] Otherwise, if the entry being processed indicates that a compound
data item or directory was copied (or deleted) (Step S376), then for each
component True Name in the compound data item or directory, add (or subtract)
one to the use count of the True File registry entry record 140 corresponding to the
component True Name (Step S378).

[00145] - In all cases, for each parent directory of the given file, update the
size, time of-laét access, and time of last modification, according to the operation
in the audit record (Step S379).

[00146] Note that the audit record is not removed after processing, but is .
retained for some reasonable period so that it may be used by the Synchronize
Directory extended mechanism to allow a disconnected rerﬁote processor to u}:;date

its representation of the local system.

-33—
2618-0015

14. Begin Grooming

[00147] This mechanism makes it possible to select a set of files for removal
and determine the overall amount of space to be recqvered. With reference to FIG.
23, first verify that the global grooming lock is currently unlocked (Step S382).
Then set the global grooming lock, set the total amount of space freed during
grooming to zero and empty the list of files selected for deletion (Step S384). For
each True File in the True File registry 126, set the delete count to zero (Step
S386).

15. Select For Removal

[00148] = This grooming mechanism tentatively selects a pathname to allow its
corresponding True File to be removed. With reference to FIG. 24, first find the
local directory extensions table entry record 138 corresponding to the given |
pathname (Step S388). Then find the True File registry entry record 140
corresponding to the True File name in the local directory extensions table entry
record 138 (Step S390). Add one to the grooming delete count in the True File
registry entry record 140 and add the pathname to a list of files selected for
deletion (Step S392). If the grooming delete count of the True File registry entry
record 140 is equal to the use count of the True File registry entry record 140, and
if the there are no entries in the dependency list of the True File registry entry
record 140, then add the size of the file indicated by the True File ID and or
compressed file ID to the total amount of space freed during grooming (Step
S394).

16. End Grooming

[00149] This grooming mechanism ends the grooming phase and removes all
files selected for removal. With reference to FIG. 25, for each file in the list of
files selected for deletion, delete the file (Step S396) and then unlock the global
grooming lock (Step S398).

-34—
2618-0015

OPERATING SYSTEM MECHANISMS

[00150] The next of the mechanisms provided by the present invention,
| operating system mechanisms, are now described.
[00151] The following operating system mechanisms are described:
. Open File;
. Close File;
. Read File;
. Write File;
. Delete File or Directory;
. Copy File or Directory;
. Move File or Directory;
. Get File Status; and

O 00 N1 N kA W

. Get Files in Directory.

1. Open File

[00152] A mechanism to open a file is described with reference to FIGS.
26(a) and 26(b). This mechanism is given as input a pathname and the type of
access required for the file (for example, read, write, read/write, create, etc..) and
produces either the File ID of the file to be opened or an indication that no file
should be opened. The local directory extensions table record 138 and region table
record 142 associated with the opened ﬁlé are associatéd with the open file for
léter use in other processing functions which refer to the file, such as read, write,
and close. |

[00153] First, determine whether or not the named file exists locally by
éxamining the local directory extensions table 124 to determine whether there is
an entry corresponding to the given pathname (Step S400). If it is determined that
the file name does not exist locally, then, using the access type, determine whether
or not the file is being created by this opening process (Step S402). If the file is
not being éreated, prohibit the open (Step S404). If the file is being created, create

-35-—
2618-0015

a zero-length scratch file using an entry in local directory extensions table 124 and
produce the scratch file ID of this scratch file as the result (Step S406).

[00154] IﬂonmcomﬂhMMJthamnmwdmswpSﬂmﬂmﬂheﬁknmne
does exist locally, then determine the region in which the file is located by
searching‘ the region table 128 to find the fecord 142 with the longest region path
which is a prefix of the file pathname (Step S408). This record identifies the
region of the specified file.

[00155] Next, determine using the access type, whether the file is being
opened for writing or whether it is being opened only for reading (Step S410). If
the file is being opened for reading only, then, if the file is a scratch file (Step
S419), return the scratch File ID of the file (Step $424). Otherwise get the True
Name from the local directory extensions table 124 and make a local version of
the True File associated with the True Name using the Make True File Local
primitive mechanism, and then return the True File ID associated with the True
Name (Step S420).

[00156] If the file is not being opened for reading only (Step S410), then, if it
is determined by inspecting the region table entry record 142 that the file is in a
read-only directory (Step S416), then prohibit the opening (Step S422).

[00157] ~ If it is determined by inspecting the region table 128 that the file is
in a cached region (Step S423), then send a Lock Cache message to the
corresponding cache server, and wait for a return message (Step S418). If the
return message says the file is already locked, prohibit the opening.

[00158] If the access type indicates that the file being modified is being
rewritten completely (Step S419), so that the original data will not be required,
then Delete the File using the Delete File OS mechanism (Step S421) and perform
step S406. Otherwise, rﬁake a scratch copy of the file (Step S417) and produce the
scratch file ID of the scratch file as the result (Step S424).

-36—
2618-0015

2. Close File

[00159] This mechanism takes as input the local directory extensions table
entry record 138 of an open file and the data maintained for the open file. To close
. afile, add an entry to the audit file indicating the time and operation (create, read
or write). The audit file processing (using the Process Audit File Entry primitive
mechanism) will take care of assimilating the file and thereby updating the other

records.

3. Read File

[00160] To read a file, a program must provide the offset and length of the
data to be read, and the location of a buffer into which to copy the data read.
[00161] The file to be read from is identified by an open file descriptor which
includes a File ID as computed by the Open File operating system mechanism
defined above. The File ID may identify either a scratch file or a True File (or
True File segment). If the File ID identifies a True File, it may be either a simple
or a compound True File. Reading a file is accomplished by the following steps:
[00162] In the case where the File ID identifies a scratch file or a simple
True File, use the read capabilities of the underlying operating system.

[00163] In the case where the File ID identifies a compound file, break the
read operation into one or more read operations on component segments as
follows:

. [00164] A Identify the segmeht(s) to be read by dividing the specified
file offset and length each by the fixed size of a segment (a system dependent

parameter), to determine the segment number and number of segments that must

be read.
[00165] B. For each segment number computed above, do the following:
[00166) i. Read the compound True File index block to

determine the True Name of the segment to be read.

=37 -
2618-0015

[00167] ii. Use the Realize True File from Location primitive
fnechanism to make the True File segment available locally. (If that mechanism
fails, the Read File mechanism fails).

[00168) iii. Determine the File ID of the True File specified by the
True Name corresponding to this segment.

[00169] iv. Use the Read File mechanism (recursively) to read

from this segment into the corresponding location in the specified buffer.

4. Write File

[00170] File writing uses the file ID and data management capabilities of the
underlying operating system. File access (Make File Local described above) can

be deferred until the first read or write. -

5. Delete File or Directory

[00171] The process of deleting a file, for a given pathname, is described
here with reference to FIGS. 27(a) and 27(b). |

[00172] First, determine the local directory extensions table entry record 138
and region table entry record 142 for the file (Step S422). If the file has no local
directory extensions table entry record 138 or is locked or is in a read-only region,
prohibit the deletion. | _

[00173] | Identify the corresponding True File given the True Name of the file
being deleted using the True File registry 126 (Step S424). If the file has no True
Name, (Step S426) then delete the scratch copy of the file based on its scratch file
ID in the local directory extensions table 124 (Step S427), and continue with step
S428. |
[00174] If the file has a True Name and the True File's use count is one (Step
S429), then delete the True File (Step S430), and continue with step S428.

[00175] If the file has a True Name and the True File's use count is greater
than ore, reduce its use count by one (Step S431). Then proceed with step S428.

| -38-—
2618-0015

[00176] In Step S428, delete the local directory extensions table entry record,
and add an entry to the audit file 132 indicating the time and the operation
performed (delete). | |

6. Copy File or Directory

[00177) A mechanism is provided to copy a file or directory given a source
and destination processor and pathname. The Copy File mechanism does not
actually copy the data in the file, only the True Name of the file. This mechanism
is performed as follows: '

[00178] (A)v Given the source path, get the True Name from the path. If
this step fails, the mechanism fails.

[00179] (B) Given the True Name and the destination path, link the
destination path to the True Name.

[00180] (C) Ifthe so-urce and degtination processors have different True
File registries, find (or, if necessary, create) an entry for the True Name in the
True File registry table 126 of the destination processor. Enter into the source ID
field of this new entry the source processor identity.

[00181] (D) . Add an entry to the audit file 132 indicating the time and
operation performed (copy).

[00182] This mechanism addresses capability of the system to avoid copying
data from a source location to a destination location when the destination already
has the data. In addition, bec‘;ause of the ability to freeze a directory, this
mechanism also addresses capability of the system immediately to make a copy of
any collection of files, thereby to support an efficient version control mechanisms

for groups of files.

-39—
2618-0015

7. Move File or Directory

[00183] A mechanism is described which moves (or renames) a file from a
source path to a destination path. The move operation, like the copy operation,
requires no actual transfer of data, and is performed as follows:

[00184] (A) Copy the file from the source path to the destination path.
[00185] (B) If the source path is different from the destination path, delete

the source path.

8. Get File Status

[00186] This mechanism takes a file pathname and provides information
about the pathname. First the local directory extensions table entry record 138
corresponding to the pathname given is found. If no such entry exists, then this
mechanism fails, otherwise, gather information about the file and its
corresponding True File from the local directory extensions table 124. The
information can include any information shown in the data structures, including
the size, type, owner, True Name, sources, time of last access, time of last
mediﬁcation, state (local or not, assimilated or not, compressed or not), use count,

expiration date, and reservations.

9. Get Files in Directory

[00187] This mechanism enumerates the files in a directory. It is used

: (implicitly) whenever it is necessary to determine whether a file exists (is present)
in a directory. For instance, it is implicitly used in the Open File, Delete File,
Copy File or Directory, and Move File operating system mechanisms, because the
files operated on are referred to by pathnames containing directory names. The
mechanism works as follows: _
[00188] The local directory extensions table 124 is searched for an entry 138
with the given directory pathname. If no such entry is found, or if the entry found

is not a directory, then this mechanism fails.

240 -
2618-0015

[00189] If there is a corresponding True File field in the local directory
extensions table record, then it is assumed that the True File fepresents a frozen
directory. The Expand Frozen Directory primiﬁve mechanism is used to expand
the existing True File into directory entries in the local directory extensions table.
- [00190] Firially, the local directory extensions table 124 is again searched,
this time to find each directory subordinate to the given diréctory. The names

found are provided as the result.

REMOTE MECHANISMS

[00191] The remote mechanisms provided by the present invention are now
described. Recall that remote mechanisms are used by the operating system in
responding to requests from other processors. These mechanisms enable the
capabilifies of the present invention in a peer-to-peer network mode of operation.
[00192] In a presently preferred embodiment, processors communicate with
each other using a remote procedure call (RPC) style interface, running over one
of any number of communication protocols such as IPX/SPX or TCP/IP. Each
peer processor which provides access to its True File registry 126 or file regions,
or which depends on another peer processor, provides a number of mechanisms
which can be used by its peers.

[00193] The following remote mechanisms are described:

Locate True File;

Reserve True File;

Request True File;

Retire True File;

Cancel Reservation;

Acquire True File;

Lock Cache;

Update Cache; and

 ® N bk w -

Check Expiration Date.

-41 -
2618-0015

1.v Locate True File

[00194) This mechanism allows a remote processor to determine whether the
local processor contains a copy of a specific True File. The mechanism begins
with a True Name and a flag indicating whether to forward requests for this file to
other servers. This mechanism is now described with reference to FIG. 28.

[00195] First determine if the True File is available locally or if there'is some
indication of where the True File is located (for example, in the Source IDs field).
Look up the requested True Name in the True File registry 126 (Step S432). |

- [00196] If a True File registry entry record 140 is not found for this True
Name (Step S434), and the flag indicates that the request is not to be forwarded
(Step S436), respond negatively (Step S438). That is, respond to the effect that the
True File is not available. ‘

[00197] One the other hand, if a True File registry entry record 140 is not
found (Step S434), and the flag indicates that the request for this True File is to be
forwarded (Step S436), then forward a request for this True File to some other
processors in the system (Step S442). If the source table for the current processor
identifies one or more publishing servers which should have a copy of this True
File, then forward the requést to each of those publishing servers (Step S436).
[00198] If a True File registry entry record 140 is found for the required True
File (Step S434), and if the entry includes a True File ID or Compressed File ID
(Step S440), respond positively (Step S444). If the entry includes a True File ID
then this provides the identity or disk location of the actual physical representation
of the file or file segment required. If the entry include a Compressed File ID, then
a compressed version of the True File may be stored instead of, or in addition to,
an uncompressed version. This field provides the identity of the actual
representation of the compressed version of the file.

[00199] If the True File registry entry record 140 is found (Step S434) but
does not include a True File ID (the File ID is absent if the actual file is not

currently presént at the current location) (Step S440), and if the True File registry

-40
2618-0015

- GOOG-1024-Page 45 of 114

entry record 140 includes one or more source processors, and if the request can be
forwarded, then forward the request for this True File to one or more of the source

processors (Step S444).

2. Resel;ve True File

[00200] This mechanism allows a remote processor to indicate that it
depends on the local processor for access to a specific True File. It takes a True
Name as input. This mechanism is described here.

[00201] (A) Find the True File registry entry record 140 associated with
the given True File. If no entry exists, reply negatively.

[00202] (B) Ifthe True File registry entry record 140 does not include a
True File ID or compressed File ID, and if the True File registry entry record 140
includes no source IDs for removable storage volumes, then this processor does
not have access to a copy of the given file. Reply negatively.

[00203] (C) Add the ID of the sending prdcessor to the list of dependent
processors for the True File registry entry record 140. Reply positively, with an

indication of whether the reserved True File is on line or off line.

3. Request True File

[00204] This mechanism allows a remote processor to request a copy of a
True File from the local processor. It requires a True Name and responds
positively by sending a True File back to the requesting processor. The mechanism

operates as follows:

[00205) (A) Find the True File registry entry record 140 associated with
the given True Name. If there is no such True File registry entry record 140, reply |
negatively.
[00206) (B) Make the True File local using the Make True File Local |
primitive mechanism. If this mechanism fails, the Request True File mechanism
also fails.

- -43-
2618-0015

[00207) (C) Send the local True File in either it is uncompressed or
compressed form to the requesting remote processor. Note that if the True File is a
compound file, the components are not sent.

[00208] (D) If the remote file is listed in the dependent process list of the

‘True File registry entry record 140, remove it.

4. Retire True File

[00209] This mechanism allows a remote processor to indicate that it no

longer plans to maintain a copy of a given True File. An alternate source of the

True File can be specified, if, for instance, the True File is being moved from one

server to another. It begins with a True Name, a requestiﬁg processor ID, and an

optional alternate source. This mechanism operates as follows:

[00210] (A) Find a True Name entry in the True File registry 126. If there

is no entry for this True Name, this mechanism's task is complete.

[00211] (B) Find the requesting processor on the source list and, if it is

there, remove it.

[00212] (C) If an alternate source is provided, add it to the source list for

the True File registry entry record 140.

[00213] (D) If'the source list of the True File registry entry record 140 has
“no items in it, use the Locate Remote File primitive mechanism to search for

‘another copy of the file. If it fails, raise a serious error.

5. Cancel Reservation

[00214] This mechanism allows a remote processor to indicate that it no
longer requires access to a True File stored on the local processor. It begins with a
True Name and a requesting processor ID and proceeds as follows:

[00215] (A) Find the True Name entry in the True File registry 126. If

there is no entry for this True Name, this mechanism's task is complete.

-44 —
2618-0015

[00216] (B) Remove the identity of the requesting processor from the list
of dependent processors, if it appears.
[00217] (C) Ifthe list of dependent processors becomes zero and the use

count is also zero, delete the True File.

6. Acquire True File

[00218] This mechanism allows a remote processor to insist that a local
processor make a copy of a specified True File. It is used, for example, when a
cache client wants to write through a new version of a file. The Acquire True File
mechanism begins with a data item and an optional True Name for the data item

and proceeds as follows:

[00219] (A) Confirm that the requesting processor has the right to require
the local processor to acquire data items. If not, send a negative reply.'

[00220] (B) Make a local copy of the data item transmitted by the remote
Processor. |

[00221] (C) Assimilate the data item into the True File registry of the

local processor:

[00222] (D) If a True Name was provided with the file, the True Name
calculation can be avoided, or the mechanism can verify that the file received
matches the True Name sent.

[00223] (E) Add an entry in the dependent processor list of the true file
registry record indicatihg that the reqﬁesting processor depends on this copy of the
given True File.

[00224] (F) Send a positive reply.

7. Lock Cache

[00225] This mechanism allows a remote cache client to lock a local file so
that local users or other cache clients cannot change it while the remote processor

is using it. The mechanism begins with a pathname and proceeds as follows:

-45—
2618-0015

[00226] (A) Find the local directory extensions table entry record 138 of
the specified pathname. If no such entry exists, reply negatively.

[00227] (B) Ifan local directory extensions table entry record 138 exists
and is already locked, reply negatively that the file is already locked.

[00228] O 'If an local directory extensions table entry record 138 exists
and is not locked, lock the entry. Reply positively.

8. Update Cache

[00229] This mechanism allows a remote cache cliént to unlock a local file
and update it with new contents. It begins with a pathname and a True Name. The
file corresponding to the True Name must be accessible from thé remote
processor. This mechanism operates as follows:

[00230] Find the local directory extensions table entry record 138
corresponding to the given pathname. Reply negatively if no such entry exists or if
the entry is not locked. |

[00231] Link the given pathname to the given True Name using the Link
Path to True Name primitive mechanism.

[00232] Unlock the local directory extensions table entry record 138 and |
return positively.

9. Check Expiration Date

[00233] Return current or new expiration date and possible alternative source

to caller.

BACKGROUND PROCESSES AND MECHANISMS

[00234] The background processes and mechanisms provided by the present
invention are now described. Recall that background mechanisms are intended to
run occasionally and at a low priority to provide automated management
capabilities with respect to the present invention.

[00235] The following background mechanisms are described:

-46 —
2618-0015

Mirror True File;

Groom Region;

Check for Expired Links;
Verify Region; and |

A

Groom Source List.

1. Mirror True File

| [00236] This mechanism is used to ensure that files are available in alternate
locations in mirror groups or archived on archival servers. The mechanism
depends on application-specific migration/archival criteria (size, time since last
access, number of copies required, number of eXisting alternative sources) which
determine under what conditions a file should be moved. The Mirror True File
mechanism operates as follows, using the True File specified, perform the
fbllowirig steps:

[00237] (A) Count the number of available locations of the True File by
inspecting the source list of the True File registry entry record 140 for the True
File. This step determines how many copies of the True. File are available in the
system. _
[00238] (B) If the True File meets the specified migration criteria, select a
mirror group server to which a copy of the file should be sent. Use the Acquire
True File remote mechanism to copy the True File to the selected mirror group

server. Add the identity of the selected system to the source list for the True File.

2. Groom Region

- [00239] This mechanism is used to automatically free up space in a processor
by deleting data items that may be available elsewhere. The mechanism depends
on application-specific grooming criteria (for instance, a file may be removed if
there is an alternate online source for it, it has not been accessed in a given number

of days, and it is larger than a given size). This mechanism operates as follows:

-47 —
2618-0015

[00240] - Repeat the following steps (i) to (iii) with more aggressive grooming
~ criteria ﬁntil sufficient space is freed or until all grooming criteria have been
exercised. Use grooming information to determine how much space has been
freed. Recall that, while grooming is in effect, grooming information includes a
table of pathnames selected for deletion, and keeps track of the amount of space
that would be freed if all of the files were deleted.

[00241] (i) Begin Grooming (using the primitiv_e mechanism).

[00242] (ii)) For each pathname in the specified region, for the True File
corresponding to the pathname, if the True File is present, has at least one
alternative source, and meets application speciﬁc grooming criteria for the region,
select the file for removal (using the primitive mechanism).

[00243] (iii) End Grooming (using the primitive rhechanism).

[00244] If the region is used as a cache, no other processors are dependent on
True Files to which it reférs, and all such True Files are mirrored elsewhere. In
this case, True Files can be removed with impunity. For a cache region, the
grooming criteria would ordinarily eliminate the least recently accessed True Files
first. This is best done by sorting the True Files in the region by the most recent
access time before performing step (ii) above. The épplication specific criteria
would thus be to select for removal every True File encountered (beginning with

the least recently used) until the required amount of free space is reached.

3. Check for Expired Links

[00245] This mechanism is used to determine whether dependencies on
published files should be refreshed. The following steps describe the operation of
this mechanism:

[00246] For each pathname in the specified region, for each True File

corresponding to the pathname, perform the following step:

-48 —
2618-0015

[00247] If the True File registry entry record 140 corresponding to the True
File contains at least one source which is a publishing server, and if the expiration
date on the dependency is past or clbse, then perform the following steps:

[00248] (A) Determine whether the True File registry entry record
contains other sources which have not expired.

[00249] (B) Check the True Name expiration of the server. If the
expiration date has been extended, or an alternate source is suggested, add the
source to the True File registry entry record 140.

[00250] (C) Ifno acceptable alternate éource was found in steps (A) or (B)
above, make a local copy of the True File.

[00251] - (D) Remove the expired source.

4. Verify Region

[00252] This mechanism can be used to ensure that the data items in the True
File registry 126 have not been damaged accidentally or maliciously. The

operation of this mechanism is described by the following steps:

[00253] (A) Search the local directory extensions table 124 for each
pathname in the specified region and then perform the following steps:
[00254]) Get the True File name corresponding to the
pathname;

[00255] (i1) If the True File registry entry 140 for the True File

does not have a True File ID or compressed file ID, ignore it.
[00256] (iii) Use the Verify True File mechanism (see extended

mechanisms below) to confirm that the True File specified is correct.

5. Groom Source List

[00257] - The source list in a True File entry should be groomed sometimes to
ensure there are not too many mirror or archive copies. When a file is deleted or

when a region definition or its mirror criteria are changed, it may be necessary to

-49 —
2618-0015

inspect the affected True Files to determine whether there are too many mirror
copies. This can be done with the following steps:

[00258] For each affected True File,

[00259] (A) Search the local directory extensions table to find each region
that refers to the True File.

[00260] (B) Create a set of "required sources", initially empty.

[00261] (C) For each region found,

[00262] (a) determine the mirroring criteria for that region,

[00263] (b) determine which sources for the True File satisfy the
mirroring criteria, and

[00264] (c) add these sources to the set of required sources.
[00265] (D) For each source in the True File registry entry, if the source

identifies a remote processor (as opposed to removable media), and if the source is
not a publisher, and if the source is not in the set of required sources, then
eliminate the source, and use the Cancel Reservation remote mechanism to
eliminate the given processor from the list of dependent processors recorded at the

remote processor identified by the source.

EXTENDED MECHANISMS

[00266] The extended mechanisms provided by the present invention are
now described. Recall that extended mechanisms run within application programs

over the operating system to provide solutions to specific problems and

applications.
[00267] The following extended mechanisms are described:
1. Inventory Existing Directory;
2. Inventory Removable, Read-only Files;
3. Synchronize Directories;
4. Publish Region;
5. Retire Directory;
-50—
2618-0015

Realize Directory at Location;
Verify True File;

Track for Accounting Purposes; and

o *® 2

Track for Licensing Purposes.

1. Inventory Existing Directory

[00268] This mechanism determines the True Names of files in an existing
on-line directory in the underlying operating system. One purpose of this
mechanism is to install True Name mechanisms in an existing file system.
[00269] An effect of such an installation is to eliminate immediately all
duplicate files from the file system being traversed. If several file systems are
inventoried in a single True File registry, duplicates across the volumes are also
eliminated.

[00270] (A) Traverse the underlying file system in the operating system.
For each file encountered, exclﬁding directories, perform the followingf

[00271] (i) Assimilate the file encountered (using the Assimilate
File primitive mechanism). This process computes its True Name and moves its
data into the True File registry 126.

[00272] (ii)) Create a pathname consisting of the path to the volume
directory and the relative path of the file on the media. Link this path to the

computed True Name using the Link Path to True Name primitive mechanism.

2. Inventory Removable, Read-only Files

[00273] A system with access to removable, read-only media volumes (such
as WORM disks and CD-ROMs) can create a usable inventory of the files on these
disks without having to make online copies. These objects can then be used for
archival purposes, directory overlays, or other needs. An operator must request

that an inventory be created for such a volume.

-51 -
2618-0015

[00274] This mechanism allows for maintaining inventories of the contents
of files and data items on removable media, such as diskettes and CD-ROMs,
independent of other properties of the files such as name, location, and date of
creation. |
[00275] The mechanism creates an online inventory of the files on one or
more removable volumes, such as a floppy disk or CD-ROM, when the data on the
volume is represented as a directory. The inventory service uses a True Name to
identify each file, providing a way to locate the data independent of its name, date
of creation, or location.
[00276) The inventory can be used for archival of data (making it possible to
avoid archiving data. When that data is already on a separate volume), for
grooming (making it possible to delete infrequently accessed files if they can be
retrieved from removable volumes), for version control (making it possible to
generate a new version of a CD-ROM without having to copy the old version), and
for other purposes.
[00277] The inventory is made by creating a volume directory in the media
inventory in which each file named identifies the data item on the volume being
inventoried. Data items are not copied from the removable volume during the

| inventory process.
[00278) An operator must request that an inventory be created for a specific
volume. Once created, the volume directory can be frozen or copied like any other
directory. Data items from either the physical volume or the volume directory can
be accessed using the Open File operating system mechanism which will cause
them to be read from the physiéal volume using the Realize True File from _
Location primitive mechanism.
[00279] To create an inventory the following steps are taken:
[00280] (A) A volume directory in the media inventory is created to
correspond to the volume being inventoried. Its contextual name identifies the
specific volume. |

52—
2618-0015

[00281] (B) A source table entry 144 for the volume is created in the
source table 130. This entry 144 identifies the} physical source volume and the
volume directory created in step (A). ‘

[00282] (C) The filesystem on the volume is traversed. For each file
| encountered, excluding directories, the following steps are taken:
[00283] (1) The True Name of the file is computed. An entry is
created in the True Name registry 124, including the True Name of the file using
the primitive mechanism. The source field of the True Name registry entry 140
 identifies the source table entry 144.
[00284] (i) A pathname is created consisting of the path to the
volume directory and the relative path of the file on the media. This path is linked
to the computed True Name using Link Path to True Namé primitive mechanism.
[00285] (D) Atfter all files have been inventoried, the volume directory is
frozen. The volume directory serves as a table of contents for the volume. It can be
copied using the Copy File or Directory primitive mechanism to create an
"overlay" directory which can then be modified, making it possible to edit a virtual

copy of a read-only medium.

3. Synchronize Directories

[00286] Given two versions of a directory derived from the same starting
point, this mechanism creates a new, synchronized version which includes the
changes from each. Where a file is changed in both versions, this mechanism
provides a user exit for handling the discrepancy. By using True Names,
comparisons are instantaneous, and no copies of files are necessary.

[00287] This mechanism lets a local processor synchronize a directory to
account for changes made at a remote processor. Its purpose is to bring a local
copy of a directory up to date after a period of no communication between the

local and remote processor. Such a period might occur if the local processor were

-53—
2618-0015

-a mobile processor detached from its server, or if two distant Processors were run
independently and updated nightly.

" [00288] An advantage of the described synchronization process is that it does
not depend on synchronizing the clocks of the local and remote processors.
However, it does require that the local processor track its position in the remote
processor's audit file. |

[00289] This mechanism does not resolve changes made simultaneously to
the same file at several sites. If that occurs, an external resolution mechanism such
as, for example, operator intervention, is required.

[00290] The mechanism takes as input a start time, a local directory
pathname, a remote processor name, and a remote directory pathname name, and it
operates by the following steps:

[00291] (A) Request a copy of the audit file 132 from the remote
processor using the Request True File remote mechanism.

[00292] (B) For each entry 146 in the audit file 132 after the start time, if
the entry indicates a change to a file in thé remote directory, perform the following
steps:

[00293] () Compute the pathname of the corresponding file in the
local directory. Determine the True Name of the corresponding file.

[00294] (ii)) If the True Name of the local file is the same as the old
True Name in the audit file, or if there is no local file and the audit entry indicates
a new file is being created, link the new True Name in the audit file to the local
pathname using the Link Path to True Name primitive mechanism.

[00295] (iii) Otherwise, note that there is a problem with the
synchronization by sending a message to the operator or to a problem resolution
program, indicating the local pathname, remote pathname, remote processor, and

time of change.

-54—
2618-0015

[00296] (C) After synchronization is complete, record the time of the final
change. This time is to be used as the new start time the next time this directory is

synchronized with the same remote processor.

4. Publish Region

[00297] The publish region mechanism allows a processor to offer the files in
a region to any client processors for a limited period of time.

- [00298] The purpose of the service is to elimiﬁate any need for client
processors to make reservations with the publishing processor. This in turn makes
it possible for the publishing processor to service a much larger number of clients.
[00299] When a region is published, an expiration date is defined for all files
in the region, and is propagated into the publishing system's True File registry
entry record 140 for each file. |

[00300] When a remote file is copied, for instance using the Copy File -
operating system mechanism, the expiration date is copied into the source field of
the client's True File registry entry record 140. When the source is a publishing
system, no dependency need be created. |

[00301) The client processor must occasionally and in background, check for
expired links, to make sure it still has access to these files. This is described in the

background mechanism Check for Expired Links.

5. Retire Directory

[00302] This mechanism makes it possible to eliminate safely the True Files
in a directory, or at least dependencies on them, after ensuring that any client
processors depending on those files remove their dependencies. The files in the
directory are not actually deleted by this process. The directory can be deleted

with the Delete File operating system mechanism.

-55—
2618-0015

[00303] " The mechanism takes the pathname of a given directory, and
optionally, the identification of a preferred alternafe source processbr for clients to
use. The mechanism performs the following steps:

[00304] (A) Traverse the directory. For each file in the directory, perform
the following steps:

[00305] (i) Get the True Name of the file from its path and find
the True File registry entry 140 associated with the True Name.

[00306] (1) Determine an alternate source for the True File. If the
source 1Ds field of the TFR entry includes the preferred alternate source, that is
the alternate source. If it does not, but includes some other source, that is the
alternate source. If it contains no alternate sources, there is no alternate source.
[00307] (i) For each dependent processor in the True File registry
entry 140, ask that processor to retire the True File, specifying an alternate source

if one was determined, using the remote mechanism.

6. Realize Directory at Location

[00308] This mechanism allows the user or operating system to force copies
of files from some source location to the True File registry 126 at a given location.
The purpose of the mechanism is to ensure that files are accessible in the event the
source location becomes inaccessible. This can happen for instance if the source or
given location are on mobile computers, or are on removable media, or if the
network connection to the source is expected to become unavailable, or if the
source is being retired.

[00309] This mechanism is provided in the following steps for each file in
the given directory, with the exception of subdirectories:

[00310] (A) Get the local directory extensions table entry record 138
given the pathname of the file. Get the True Name of the local directory
extensions table entry record 138. This service assimilates the file if it has not
already been assimilated.

-56—
2618-0015

[00311] (B) Realize the corresponding True File at the given location.
This service causes it to be copied to the given location from a remote system or

removable media.

7. Verify True File

[00312] This mechanism is used to verify that the data item in a True File
registry 126 is indeed the correct data item given its True Name. Its purpose is to
guard against device errors, malicious changes, or other problems.

[00313] If an error is found, the system has the ability to "heal" itself by
finding another source for the True File with the given name. It may also be
desirable to verify that the error has not propagated to other systems, and to log the
problem or indicate it to the computer operator. These details are not described
here.

[00314] To verify a data item that is not in a True File registry 126, use the
Calculate True Name primitive mechanism described above.

[00315] The basic mechanism begins with a True Name, and operates in the |

following steps:

[00316] (A) Find the True File registry entry record 140 corresponding to
the given True Name.

[00317] (B) Ifthere is a True File ID for the True File registry entry
record 140 then use it. Otherwise, indicate that no file exists to verify. \
[00318] (C) Calculate the True Name of the data item given the file ID of
the data item.

[00319] (D) Confirm that the calculated True Name is equal to the given
True Name. ' |
[00320] (E) Ifthe True Names are not equal, there is an error in the True

File registry 126. Remove the True File ID from the True File registry entry record
140 and place it somewhere else. Indicate that the True File registry entry record
140 contained an error.

-57—
2618-0015

8. Track for Accounting Purposes

[00321] This mechanism provides a way to know reliably which files have
been stored on a system or transmitted from one system to another. The
mechanism can be used as a basis for a value-based accounting system in which |
charges are based on the identity of the data stored or transmitted, rather than
simply on the number of bits.

[00322] This mechanism allows the system to track possession of specific
data items according to content by owner, independent of the name, date, or other
properties of the data item, and tracks the uses of specific data items and files by
content for accounting purposes. True names make it possible to identify each file
briefly yet uniquely for fhis purpose. |

[00323] Tracking the identities of files requires maintaining an accounting
log 134 and processing it for accounting or billing purposes. The mechanism
operates in the following steps:

[00324] (A) Note every time a file is created or deleted, for instance by
monitoring audit entries in the Process Audit File Entry primitive mechanism.
When such an event is encountered, create an entry 148 in the accounting log 134
that Shows the responsible party and the identity of the file created or deleted.
[00325] (B) Every time a file is transmitted, for instance when a file is
copied with a Request True File remote mechanism or an Acquire True File
remote mechanisrh, create an4 entry in the accounting log 134 that shows the
responsible party, the identity of the file, and the source and destination
processors.

[00326] (C) Occasionally run an accounting program to process the
accounting log 134, distributing the events to the account records of each
responsible party. The account records can eventually be summarized for billing

purposes.

-58 —
2618-0015

9, Track for Licéhsing Purposes

[00327) This mechanism ensures that licensed files are not used by
unauthorized parties. The True Name provides a safe way to identify licensed
material. This service allows prodf of possession of specific files according to
their contents without disclosing their contents.

[00328] Enforcing use of valid licenses can be active (for example, by
refusing to provide access to a file without authorization) or passive (for example,
by creating a report of users who do not have proper authorization). |

[00329] One possible way to perform license validation is to perform
occasional audits of employee systems. The service described herein relies on
True Names to support such an audit, as in the following steps:

[00330] (A) For each licensed product, record in the license table 136 the
True Name of key files in the product (that is, ﬁleé which are required in order to
use the product, and which do not occur in other products) Typically, for a
software product, this would include the main executable image and perhaps other
major files such as clip-art, scripts, or online help. Also record the identity of each
system which is authorized to have a copy of the file.

[00331] (B) occasionally, compare the contents of each user processor
against the license table 136. For each True Name in the license table do the
following: '
[00332]) Unless the user processor is authorized to have a copy
of the file, confirm that the user processor does not have a copy of the file using
the Locate True File mechanism.

[00333] (i1) Ifthe user processor is found to have a file that it is not
authdrized to ha?e, record the user processor and True Name in a license violation

table.

-59 —
2618-0015

THE SYSTEM IN OPERATION

[00334] Given the mechanisms described above, the operation of a typical
DP system employing these m.echanisms is now described in order to demonstrate
how the present invention meets its requirements and capabilities.
[00335] In operation, data items (for example, files, database records,
messageé, data segments, data blocks, directories, instances of object classes, and
the like) in a DP system employing the present invention are identified by
substantially unique identifiers (True Names), the identifiers depending on all of
the data in the data items and only on the data in the data items. The primitive
mechanisms Calculate True Name and Assimilate Data Item support this property.
For any given data item, using the Calculate True Name primitive mechanism, a
substantially unique identifier or True Name for that data item can be determined.
[00336] Further, in operation of a DP system incorporating the present
invention, multiple copies of data items are avoided (unless they are required for
some reason such as backups or mirror copies in a fault-tolerant system). Multiple
copies of data items are avoided even when multiple names refer to the same data
item. The primitive mechanisms Assimilate Data Items and True File support this
property. Using the Assimilate Data Item primitive mechanism, if a data item
already exists in the system, as indicated by an entry in the True File registry 126,
this existence will be discovered by this mechanism, and the duplicate data item
(the new data item) will be eliminated (or not added). Thus, for example, if a data
file is being copied onto a system from a floppy disk, if, based on the True Name
of the data file, it is determined that the data file already exists in the systefn (by
the same or some other name), then the duplicate copy will not be installed. If the
data item was being installed on the system by some name other than its current
~name, then, using the Link Path to True Name primitive mechanism, the other (or
new) name can be linked to the already existing data item.
[00337] In general, the mechanisms of the present invention operate in such a
way as to avoid recreating an actual data item at a location when a copy of that

- 60'—
2618-0015

~ GOOG-1024-Page 63 of 114

data item is already present at that location. In the case of a copy from a floppy
disk, the data item (file) may have to be copied (into a scratch file) before it can be
determined that it is a duplicate. This is because only one processor is involved.
Oh the other hand, in a multiprocessor environment or DP system, each processor '
has a record of the True Names of the data items on that processor. When a data
item is to be copied to another location (another processor) in the DP system, all
that is necessary is to examine the True Name of the data item prior to the
copying. If a data item with the same True Name already exists at the destination
location (processor), then there is no need to copy the data item. Note that if a data
item which already exists locally at a destination location is still copied to the
destination location (for example, because the remote system did not have a True
Name for the data item or because it arrives as a stream of un-named data), the
Assimilate Data Item primitive mechanism will prevent multiple copies of the data
item from being created.

[00338] Since the True Name of a large data item (a compound data item) is
derived from and based on the True Names of components of the data item,
copying of an entire data item can be avoided. Since some (or all) of the
components of a large data item may already be present at a destination location,
only those components which are not present there need be copied. This pfoperty
derives from the manner in which True Names are determined. '
[00339] When a file is copied by the Copy File or Directory operating system
mechanism, only the True Name of the file is actually replicated.

[00340] When a file is opened (using the open File operating system
mechanism), it uses the Make True File Local primitive mechanism (either
directly or indirectly through the Create Scratch File primitive mechanism) to
create a local copy of the file. The Opén File operating system mechanism uses the
Make True File Local primitive mechanism, which uses the Realize True File
from Location primitive mechanism, which, in turn uses the Request True File
remote mechanism.

-61 -
2618-0015

[00341] The Request True File remote mechanism copies only a single data
item from one processor to another. If the data item is a compound file, its
component segments are not copied, only the indirect block is copied. The
segments are copied only when they are read (or otherwise needed).

[00342] The Read File operating system mechanism actually reads data. The
Read File mechanism is aware of compound files and indirect blocks, and it uses
the Realize True File from Location primitive mechanism to make sure that
component segments are locally available, and then uses the operating system file
mechanisms to read data from the local file.

[00343] Thus, when a compound file is copied from a remote system, only its
True Name is copied. When it is opened, only its indirect block is copied. When
the corresponding file is read, the required component segments are realized and
therefore copied.

[00344) In operation data items can be accessed by reference to their
identities (True Names) independent of their present location. The actual data item
or True File corresponding to a given data identifier or True Name may reside
anywhere in the system (that is, locally, remotely, offline, etc). If a required True
File is present locally, then the data in the file can be accessed. If the data item is
not present locally, there are a number of ways in which it can be obtained from
wherever it is present. Using the source IDs field of the True File registry table,
the location(s) of copies of the True File corresponding to a given True Name can
be determined. The Realize True File from Location primitive mechanism tries to
make a local copy of a True File, given its True Name and the name of a source
location (processor or media) that may contain the True File. If, on the other hand,
for some reason it is not known where there is a copy of the True File, or if the
processors identified in the source IDs field do not respond with the required True
File, the processor requiring the data item can make a general request for the data
item using the Request True File remote mechanism from all processors in the
system that it can contact. |

-62 —
2618-0015

[00345) As a result, the system provides transparent access to any data item
by reference to its data identity, and independent of its present location.

[00346] " In operation, data items in the system can be verified and have their
integrity checked. This is from the manner in which True Names are determined.
This can be used for security purposes, for instance, to check for viruses and to
verify that data retrieved from another location is the desired ,and requested data.
For example, the system might store the True Names of all executable applications
on the system and then periodically redetermine the True Names of each of these
applications to ensure that they match the stored True Names. Any change in a
True Name potentially signals corruption in the system and can be further
investigated. The Verify Region backgfound mechanism and the Verify True File
extended mechanisms provide direct support for this mode of operation. The
Verify Region mechanism is used to ensure that the data items in the True File
registry have not been damaged accidentally or maliciously. The Verify True File
mechanism verifies that a data item in a True File registry is indeed the correct
data item given its True Name.

[00347] Once a processor has determined where (that is, at which other

" processor or location) a copy of a data item is in the DP system, that pfoéessor
might need that other processor or location to keep a cdpy of that data item. For
example, a processor might want to delete local copies of data items to make space
available locally while knowing that it can rely on retrieving the data from
somewhere else when needed. To this end the system allows a processor to .
Reserve (and cancel the reservation of) True Files at remote locations (using the
remote mechanism). In this way the remote locations are put on notice that another
location is relying on the presence of the True File at their location.

[00348] A DP system employing the present invention can be made into é
fault-tolerant system by providing a certain amount of redundancy of data items at -
multiple locations in the system. Using the Acquire True File and Re_serve True

File remote mechanisms, a particular processor can implement its own form of

-63 —
2618-0015

fault-tolerance by copying data items to other processors and then reserving them
there. However, the system also provides the Mirror True File background
mechanism to mirror (make copies) of the True File available elsewhere in the
system. Any degree of redundancy (limited by the number of processors or
locations in the system) can be implemented. As a result, this invention maintains
a desired degree or level of redundancy in a network of processors, to protect
against failure of any particular processor by ensuring that multiple copies of data
items exist at different locations.

[00349] The data structures used to implement various features and
mechanisms of this inventioﬁ store a variety of useful information which can be
used, in conjunction with the various mechanisms, to implement storage 'schemes
and policies in a DP system employing the invention. For example, the size, age
and location of a data item (or of groups of data items) is provided. This
information can be used tb decide how the data items should be treated. For
example, a processor may implement a policy of deleting local copies of all data
items over a certain age if other copies of those data items are present elsewhere in
the system. The age (or variations on the age) can be determined using the time of
last access or modification in the local directory extensions table, and the presence
of other copies of the data item can be determined either from the Safe Flag or the
source IDs, or by checking which other processors -in the system have copies of
the data item and then reserving at least one of those copies.

" [00350] In operation; the system can keep track of data items regardless of
how those items are named by users (or regardless of whether the data items even
have names). The system can also track data items that have different names (in -
different or the same location) as well as different data items that have the same
name. Since a data item is identified by the data in the item, without regard for the
context of the data, the problems of inconsistent naming in a DP system are

overcome.

- 64—
2618-0015

[00351] In operation, the system can publish data items, allowing other,
possibly anonymous, systems in a network to gain access to the data items and to
rely on the availability of these data items. True Names are globally unique
identifiers which can be published simply by copying them. For example, a user
might create a textual representation of a file on system A with True Name N (for
instance as a hexadecimal string), and post it on a computer bulletin board.
Another user on system B could create a directory entry F for this True Name N
by using the Link Path to True Name primitive mechanism. (Alternatively, an
application could be developed which hides the True Name from the users, but
provides the same public transfer service.) |

[00352] When a program on system B attempts to open pathname F linked to
True Name N, the Locate Remote File primitive mechanism would be used, and
would use the Locate True File remote mechanism to search for True Name N on
one or more remote processors, such as system A. If system B has access to
system A, it would be able to realize the True File (using the Realize True File
from Location primitive mechanism) and use it locally. Alternatively, system B
could find True Name N by accessing any publicly available True Name server, if
the server could eventually forward the request to system A.

[00353] Clients of a local server can indicate that they depend on a given
True File (using the Reserve True File remote mechanism) so that the True File is
not deleted from the server registry as long as some client requires access to it.
(The Retire True File remote mechanism is used to indicate that a client no longer
needs a given True File.)

[00354] A publishing server, on the other hand, may want to provide access
to many clients, and possibly anonymdus ones, without incurring the overhead of
- tracking dependencies for each client. Therefore, a public server can provide
expiration dates for True Files in its registry. This allows client systems to safely

maintain references to a True File on the public server. The Check For Expired

- 65—
2618-0015

Links background mechanism allows the client of a publishing server to
occasionally confirm that its dependencies on the publishing server are safe.
[00355] In a variation of this aspect of the invention, a prbcesSor that is
newly connected (or reconnected after some absence) to the system can obtain a
current version of all (or of needed) data in the system by requesting it from a
server processor. Any such processor can send a request to update or
resynchronize all of its directories (starting at a root directory), simply by using
the Synchronize Directories extended mechanism on the needed directories.
[00356] Using the accounting log or some other user provided mechanism, a
user can prove the existence of certain data items at certain times. By publishing
(in a public place) a list of all True Names in the system on a given day (or at
some given time), a user can later refer back to that list to show that a particular
data item was present in the system at the time that list was published. Such a
mechanism is useful in tracking, for example, laboratory notebooks or the like to
prove dates of conception of inventions. Such a mechanism also permits proof of
possession of a data item at a particular date and time.

[00357] The accounting log file can also track the use of specific data items
and files by content for accounting purposes. For instance, an information utility
company can determine the data identities of data items that are stored and
transmitted through its computer systems, and use these identities to provide bills
to its customers based on the identities of the data items being transmitted (as
defined by the substantially unique identifier). The assignment of prices for storing
and transmitting specific True Files would be made by the information utility
and/dr its data suppliers; this information would be joined periodically with the
information in the accounting log file to produce customer statements.

[00358] = Backing up data items in a DP system employing the present
invention can be done based on the True Names of the data items. By tracking
backups using True Names, duplication in the backups is prevented. In operation,

the system maintains a backup record of data identifiers of data items already

-66—
2618-0015

backed up, and invokes the Copy File or Directory operating system mechanism to
copy only those data items whose data identifiers are not recorded in the backup
record. Once a data item has been backed up, it can be restored by retrieving it
from its backup location, based on the identifier of the data item. Using the backup
record produced by the backup to identify the data item, the data item can be
obtained using, for example, the Make True File Local primitive mechanism.
[00359] In operation; the system can be used to cache data items from a
server, so that only the most recently accessed data items need be retained. To
operate in this way, a cache client is configured to have a local registry (its cache)
with a remote Local Directory Extensions fable (from the cache server). Whenever
a file is opened (or read), the Local Directory Extensions table is used to identify
the True Name, and the Make True File Local primitive mechanism inspects the
local registry. When the local registry already has a copy, the file is already
cached. Otherwise, the Locate True File remote mechanism is used to get a copy
of the file. This mechanism consults the cache server and uses the Request True
File remote mechanism to make a local copy, effectively loading the cache.
[00360] The Groom Cache background mechanism flushes the cache,
removing the least-recently-used files from the cache client's True File registry.
While a file is being modified on a cache client, the Lock Cache and Update
Cache remote mechanisms prevent other clients from trying to modify the same
file.

[00361] In operation, when the system is being used to cache data items, the
problems of maintaining cache consistency are avoided.

[00362] To access a cache and to fill it from its server, a key is required to
identify the data itém desired. Ordinarily, the key is a name or address (in this
case, it would be the pathname of a file). If the data associated with such a key is
changed, the client's cache becomes inconsistent; when the cache client refers to

that name, it will retrieve the wrong data. In order to maintain cache consistency it

-67—
2618-0015

is necessary to notify every client immediately whenever a change occurs on the
server.

[00363] By using an embodiment of the present invention, the cache key
uniquely identifies the data it represents. When the data associated with a name
changes, the key itself changes. Thus, when a cache client wishes to access the
modified data associated with a given file name, it will use a new key (the True
Name of the new file) rather than the key to the old file contents in its cache. The
client will always request the correct data, and the old data in its cache will be
eventually aged and flushed by the Groom Cache background mechanism.

[00364) Because it is not neceséary to immediately notify clients when
changes on the cache server occur, the present invention makes it pbssible for a
single server to support a much larger number of clients than is otherwise possible.
[00365] In operation, the system automatically archives data items as they
are created or modified. After a file is created or modified, the Close File
operating system mechanism creates an audit file record, which is eventually
processed by the Process Audit File Entry primitive mechanism. This mechanism
uses the True File primitive mechanism for any file which is newly created, which
in turn uses the Mirror True File background mechanism if the True Fileisina
mirrored or archived region. This mechanism causes one or more copies of the
new file to be made on remote processors.

[00366] In operation, the system can efficiently record and preserve any
collection of data items. The Freeze Directory primitive mechanism creates a True
File which identifies all of the files in the directory and its subordinates. Because
this True File includes the True Names of its constituents, it represents the exact
contents of the directory tree at the time it was frozen. The frozen directory can be
copied with its components preserved.

[00367] The Acquire True File remote mechanism (used in mirroring and
archiving) preserves the directory tree structure by ensuring that all of the
component segments and True Files in a compound data item are actually copied

-68 —
2618-0015

to a remote system. Of course, no transfer is necessary for data items already in
the régistry of the remote system.

[00368) In operation, the system can efficiently make a copy of any
collection of data items, to support a version control mechanism for groups of the
data items.

[00369] The Freeze Directory primitive mechanism is used to create a
collection of data items. The constituent files and segments referred to by the
frozen directory are maintained in the registry, without any need to make copies of
thé constituents each time the directory is frozen.

[00370] Whenever a pathname is traversed, the Get Files in Directory
operating system mechanism is used, and when it encounters a frozen directory, it
uses the Expand Frozen Directory primitive mechanism,

[00371] A frozen directory can be copied from one pathname to another
efficiently, merely by copying its True Name. The Copy File operating system
mechanism is used to copy a frozen directory.

[00372] ’mmﬁmmmmbmdﬁmmWMmmwmmMHMﬁmumwmmf
a directory, thereby creating a record of its history (hence a version control
system). |

[00373] In operation, the system can maintain a local inventory of all the data
items located on a given removable medium, such as a diskette or CD-ROM. The
inventory is independent of other properties of the data items such as their name,
location, and date of creation.

[00374] The Inventory Existing Directory extended mechanism provides a
way to create True File Registry entries for all of the files in a directory. One use
of this inventory is as a way to pre-load a True File registry with backup record
information. Those files in the registry (such as previously installed software)
which are on the volumes inventoried need not be backed up onto other volumes.
[00375] The Inventory Removable, Read-only Files extended mechanism not
only determines the True Names for the files on the medium, but also records

- 69 —
2618-0015

GOOG-1024-Page 72 of 114

directory ehtries for each file in a frozen directory structure. By copying and
modifying this directory, it is possible to create an on line patch, or small
modification of an existing read-only file. For example, it is possible to create an
online representation of a modified CD-ROM, such that the unmodified files are
actually on the CD-ROM, and only the modified files are online. |
[00376] In operation, the system tracks possession of specific data items
according to content by owner, independent of the name, date, or other properties
of the data item, and tracks the uses of specific data items and files by content for
accounting purposes. Using the Track for Accounting Purposes extended
mechanism provides a way to know reliably which files have been stored on a

system or transmitted from one system to another.

TRUE NAMES IN RELATIONAL AND OBJECT-ORIENTED DATABASES

[00377] Although the preferred embodiment of this invention has been
presented in the context of a file system, the invention of True Names would be
equally valuable in a relational or object-oriented database. A relational or object-
oriented database system using True Names would have similar benefits to those
of the file system employing the invention. For instance, such a database would
permit efficient elimination of duplicate records, support a cache for records,
simplify the process of maintaining cache consistency, provide location-
independent access to records, maintain archives and histories of records, and
synchronize with distant or disconnected systems or databases.

[00378] The mechanisms described above can be easily modified to serve in
such a database environment. The True Name registry would be used as a
repository of database records. All references to records would be via the True
Name of the record. (The Local Directory Extensions table is an example of a
primary index that uses the True Name as the unique identifier of the desired

records.)

-70 -
2618-0015

[00379] In such a database, the .operations of inserting, updating, and deleting
records would be implemented by first assimilating records into the registry, and
then updating a primary key index to map the key of the record to its contents by
using the True Name as a pointer to the contents.

[00380] - The mechanisms described in the preferred embodiment, or similar
mech_an'isms, would be employed in such a system. These mechanisms éould
include, for example, the mechanisms for calculating true names, assimilating,
locating, realizing, deleting, copying, and moving True Files, for mirroring True
Files, for maintaining a cache of True Files, for grooming True Files, and other
mechanisms based on the use of substantially unique identifiers.

[00381] While the invention has been described in connection with what is
presently considered to be the most practical and preferred embodiments, if is to
be understood that the invention is not to be limited to the disclosed embodiment,
but on the contrary, is intended to cover various modifications and equivalent

arrangements included within the spirit and scope of the appended claims.

-71 -
2618-0015

GOOG-1024-Page 74 of 114

WHAT IS CLAIMED:

1. In a system in which a plurality of data items are distributed

across a plurality of computers, a method comprising:
at a first computer,

(a) receiving from a requesting computer, a request for a

data item, the request including a True Name of the data item; and

(b) causing said requesting computer to obtain said data

item from a second computer, distinct from said first computer.

2. A method as in claim 1 wherein the first computer does not

have a copy of the requested data item.

3. Amethod as in claim 1 wherein the first computer knows the

location of the data item.

4. A method as in claim 1 wherein the first cdmputér forwards

the request for the data item to at least one other computer.

5. A method as in claim 4 wherein the at least one other

computer includes the second computer.

6. In a system in which a plurality of data items are distributed

across a plurality of computers, a method comprising:

at a first computer,

-T2 —
2618-0015

(a) receiving from a requesting computer, a request for a

data item, the request including a True Name of the data item;

(b) identifying a second computer, distinct from the first

computer, that should have a copy of the réquested data item; and

(¢) forwarding the request to the second computer.

7. A method as in claim 1 or claim 6 wherein the data item may
comprise a file, a portion of a file, a page in memory, a digital message, a digital

image, a video signal or an audio signal.

8. A method as in claim 1 or claim 6 wherein at least some of
said computers communicate with each other using a TCP/IP communication

protocol.

9. A method as in claim 1 or claim 6 wherein the True Name is

computed using a message digest function or a hash function.

10. A method as in claim 1 or claim 6 wherein the True Name is

computed ilsing a function selected from: MD4, MDS5, and SHA.

11. A method as in claim 1 or claim 6 wherein the True Name is

computed using a function that randomly distributes its outputs.

-73—
2618-0015

12. A mefhod as in claim 1 or claim 6 wherein the True Name is
computed using a function that produces a substantially unique value based on the

data comprising the data item.

13. A method as in claim 1 or claim 6 wherein a data item may
comprise a file, a portion of a file, a page in memory, a digital message, a digital

image, a video signal or an audio signal.

14. A method as in claim 1 or claim 6 wherein said True Name

for said data file will change when the data file is modified.

15. | A method as in claim 1 or claim 6 wherein at least some of

the plurality of computers make up part of a peer-to-peer network of computers.

16. A method as in claim 1 wherein said data item is a portion of
a file, and wherein said first computer causes said requesting computer to obtain

the data item from a location having a copy of the file.

17. A method as in claim 6 wherein said data item is a portion of
a file, and wherein said first computer forwards said requesting computer to a

location having a copy of the file.

18. Ina system in which a plurality of data items are distributed
across a plurality of computers, at least some of the plurality of computers forming

part of a peer-to-peer (P2P) network of computers, a method comprising:

-74 —
2618-0015

GOOG-1024-Page 77 of 114

~at a first computer,

(a) receiving from a requesting computer in said peer-to-
peer network, a request for a data item, the request including a True Name of the

“data item;

(b) identifying a second computer in said P2P network
that should have a copy of the requested data item, séid second computer being

distinct from the first computer; and
(¢) forwarding the request to the second computer,

wherein the data item may comprise a file, a portiori of a file, a page
in memory, a digital message, a digital image, a video signal or an audio signal,
and wherein the True Name is computed using an algorithm that applies a message

digest function or a hash function to the cohtents of the data item.

-75—
2618-0015

ABSTRACT OF THE DISCLOSURE

A plurality of data items are distributed across a plurality of
computers, some of which may form a peer-to-peer network. A first computer
receives a réquest for a data item from a requesting computer. The request
includes a True Name of the data item. The first cdmputer causes the requesting
computer to obtain the data item from a second computer, distinct from the first
computer. The first computer may not have a copy of the requested data item.
The first computer may know the location of the data item. The first computer

may forward the request for the data item to at least one other computer.

-76 —
2618-0015

BesM\(éilable Copy (ﬂg) ("

FOR UTILITY/DESIGN RULE 63 (37 C.E.R. 1.63) CUSHMAN
. CIP/PCT NATIONAL/PLANT . DECLARATION AND POWER OF ATTORNEY . FORM
ORIGINAL/SUBSTITUTE/SUPPLEMENTAL FOR PATENT APPLICATION - ’

DECLARATIONS IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

As a below named inventor, [hereby declare that my residence, post office address and citizenship are as stated below next to my name, and I beljeve I am
the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject
matter which is claimed and for which. a patent is sought n the INVENTION ENTITLED v : . X .
IDENTIFYING DATA IN A DATA PROCESSING SYSTEM | -
* the specification of which (CHECK applicable BOX(ES)) o ' o 8
-> []isattached hereto. - L o ’
. -> [x] was filed on _April 11, 1995 as U.S. Application No. 0.8 / 425,160
BOX(ES)->_[] was filed as PCT Intemational Application No. PCT/____._/ __on__ :
-> -> and (if applicable.to U.S. or PCT application) was amended on ‘ :

e

- I'hereby state that I have reviewed and understand the contents of the above identificd specification, including the claifn#, as aménded by any amendment
referred to above. I acknowledge the duty to disclose all information known to me to be materiaf to patentability as defined in.37 CF.R. 1.56. I hereby
claim foreign priority benefits under 35 U.S.C. 119/365 of any foreign application(s) for patent or inventor's certificate listed below dnd have alsg identified
below any foreign application for patent or inventor's certificate filed by me or my assignee disclosing the subject matter claimed in this application and having '

a filing date (1) before that of the application on which priority is claimed, or (2) if ao p‘r'io‘rity claimed, before the filing datc of this application: -
PRIOR FOREIGN APPLICAT'IQN(S)) Date first Laid- Date Patented ‘. " Prigrity Claimed

Number : Country Day/MONTH/Year Filed open or Published or Granted ’ Yes No

I hereby claim the benefit under-35 U.S.C. 1207365 of all United States applications listed below and PCT internationat applications listed above or below
and, if this is a continuation-in-part(CIP) application, insofar as the subject matter disclosed and claimed in this application is in addition to that disclosed
in such prior applications, I acknowledge the duty to disclose all information known to me to be material to patentability as defined in 37 CF.R. 1.56 which
became available between the filing date of cach such prior application and the hational or PCT intemational filing date of this application:” -

PRIOR U.S. OR PCT APPLICATION(S) , - Stats
Application No. (series code/serial no.) _ Day/MONTH/Year Filed pending. abandoried, paténted

I hereby declare that all statements made herein of my own knowledge are true and that all staterhents made on information and bélief are belicved to be
truc; and further that these statements were made with the knowledge that willful false’ statements and the’ like so' made are punishable by finc or
imprisonment, or both, under Section 1001 of Titlé 18 of the United States Code and that such willful false statements may jeopardize the validity of the
application or any patent issued thereon, - . . .

And I hereby appoint Cushman Darby & Cushman,L.L.P. 1100 New York Avenue, N.W., Ninth Floor, East Tower Washington, D.C. 20005-3918, telephone
number 861-3000 (to whom all communications are to be directed), and the below-named persons (of the same address) individually and collcctively my
attorneys to prosccute this application and to transact all business in the Patent and Trademark Office connected therewith and with the resulting patent,
and [hereby authorize them to act and rely on instruétions from and communicaté directly with the person/assignee/gttofncy/ﬁnn/ organization who/which
first sends/sent this case to them and by whom/which 1 hereby declare that I have consented after full disclosure to be represented unless/until I instruct

Cushman, Darby & Cushman in writing to the contrary.

Paul N. Kokulis 16773 Edward M, Prince 22429 Dale S. Lazar 28872 Michelie N. Lester 32331
Raymond F. Lippitt 17519 Donald B. Deaver 23048 Glean J. Perry 28458 Jeffrey A. Simenauer 31933
G. Lloyd Knight 17698 . David W, Brinkman 20817 Kendrew H. Colton 30368 - Robert A. Molan 29834
Carl G, Love - 18781 George M. Sirilla 18221 Chris Comuntzis 31097 G. Paul Edgell 24238
Edgar H. Martin 20534 Donald J. Bird 25323- Wallace G. Walter 27843 Lynn E. Eccleston’ 35861
William K West, Jr. 22057 W. Warren Taltavull . 25647 Lawrence Harbin 27644 Frederick 8. Frei” . 27105
Kevin E. Joyce . 20508 cter W, Gowd . 25872 Paul E. White, Jr. - 32011 id A Jakopi

. INVENTOR'S SIGNATURE: ¥ Lzeo 2l (G s IR TNt Date .6‘}7!‘153%_‘3‘. & pabeRip 3

Inventor's Name (typed) David - : A. - FARBER) US.A. SN
First - Middle Initial,« . Family Name Country of Citizenship

Residence (City)___Opai . - _(State/Foreign Country) . CA
Yost Office Address (Inchide Zip Code) 398N-Caritto-fid Oiai, CA 93023 '

’ { 2 s — R
202€ M. '1»—‘\. [CL) o Ol7]%3 B / -

. INVENTOR'S SIGNATURE: 4/?..« A - __Dae___C{1Y/§ - :

Inventors Name (typed)_Ronald 7 © Y- D. . LACHMAN' - US.A, _ -

o First . " Middle Initial : Family Name Country of Citizenship

Residence (City)__Northbrook : : (State/Foreign Country) 1t -
ost Office Address (Include Zip Code) 3140 Whisperwoods Court, Northbrook. If. 60062 :
. INVENTOR'S SIGNATURE: Date, SRR : .

Inventor's Name (typed) : : L - i
First - Middle Initial i Family. Name Cpuntr}' of Clt{zcnsh:p

. (S_tatc/Forcign Cquntrv)_

Residence (City)___~__.
st Office Address (Include Zip Code)

<R ADDITIONAL INVENTORS, check box [| and attach sheet (CDC-116.2) for same information for each re signature, name, date, citizenship,

sidence and address.) .

GOOG-1024-Page 80 of 114

@c-116 1/95

~

(o)1 014

000
- |Moss3004d HOSSaO0oNd| mommmoomm
c0l) 20k -
901
i | = a0IA3a ..
mommmowmn [|doss300¥d OVHOLS
. 201 A 2oL

m , gbo) vLL
" avs 851
! $Gl :
| 1 301A3Q
| | a0 _
_“ 149 ap| | Fovdols
v_. 4} — i
. . AN
' aws 0g}
' _9G1 .
“ | ,. -—-m ~
“ v 8zl
! rel do
4V 9z1
“ zel .
! 3a7
.” AMONaW rel
- 01 A
] 20k ¥0SSI00Md
e _H I i ————]

GOOG-1024-Page 82 of 114

INIWo3s

ccl

9Ll

W3LSAS
74

GOOG-1024-Page 83 of 114

FIG.3

Region ID
’ Pathhame

38 . .

True Name
Type
File ID

Time of last access

Time ofllést modification
Safe flag
Lock flag

‘Size

Owner

FI1G. 4

- | _ 140

True Name

File ID

Compressed File ID : :

Source IDs

Deperident processors

Use count

Time of last access ' ‘ _ ‘ o B

Expiration

Grooming delete count

42 .

Region'iD

Region fileVSYstem

Region paﬁhname

Region status S

Mirror processor(s)

Mirror duplication count

Policy

FIG. 5

GOOG-1024-Page 84 of 114

®9S5U8DI[

smeN onxy,

oc¢r .

smeN eniy,

Axjua jo adXy .

au%cw 30 o3°p.

8bl

aweN onay

.mamnzuwm

msmummﬁwa

aI Iossadoag

adAg,

uotjexado

ameN am:ﬂmﬂuo

ovi

UOT3eO0T @20anos

muﬂHHQmAﬂmba 90anos

munmau,mouﬂow

?adA3} @03Inos

dl ooanos

747

6014

w...o 14

2914

9914

GOOG-1024-Page 85 of 114

 FIG.10(a)

il R B T e R

§212
COMPUTE MD FUNCTION ON
DATA ITEM -

T s214
| APPEND LENGTH MODULO 32 OF
DATAITEM

GOOG-1024-Page 86 of 114 .

~ (- "

5216
DATA ITEM -
SIMPLE?

°—l FIG. 10(b).

$220

PARTITION DATA ITEM INTO
SEGMENTS

$222 4
- ASSIMILATE EACH SEGMENT
(COMPUTING ITS TRUE NAME)

| COMPUTE TRUE |
| NAME OF SIMPLE ! |
{ DATAMEM ! | T —
CREATE INDIRECT BLOCK OF
SEGMENT TRUE NAMES

5226
ASSIMILATE INDIRECT BLOCK
(COMPUTING ITS TRUE NAME)

5228
' REPLACE FINAL 32 BITS OF TRUE
NAME WITH LENGHT MOD 32 OF DATA|
ITEM

GOOG-1024-Page 87 of 114

e

4

a1 3714 3¥ols
6£2S

A

201 3714 3AVH
AYLNZ $300

¢

ai 3714 313730

8€¢S

SIA

AYLSIOaY

SIA

_FAWVYN 3INYLs3oa

| awvNanuL
ELUTHETER

0ECS

_» |

374 INYL NI LSIXT

*

$a7314 ¥IHLO 135 . |

a1 3714 FYOLS 4

} OLINNOO 3SN 13S .,
- AYINT MIN JLVINO .

_9ecs

ON—

11914

FIG.I12

S238 . S240
FILE . YES | uPpatE
A — DEPENDENCY
LOCKED? - LIsT
no !
. T S247
| | SEND MESSAGE TO
v » | CACHE SERVER TO
S48] UPDATE CACHE
COMPRESS — -
(IF DESIRED)
5246
~ MIRROR
(IF DESIRED)

GOOG-1024-Page 89 of 114

m

$250
SEARCH FOR ,
) NOT EOLIND
THE ' »1 FalL
PATHNAME | -
| Founp -
LDE INCLUDES NO

TRUE NAME?

YES .

[s
€] ASSIMILATE

FILEID .

S254

“” LDE IDENTIFIES
DIRECTORY?

FREEZE

DIRECTORY

5260

CONFIRM THAT
TRUE NAME
EXISTS LOCALLY

S FIG.14
| SEARCHFOR
| PATHNAME IN
LDE TABLE

S264

CONFIRM THAT
DIRECTORY
EXISTS

5266

: 5268
. : YES . : ,
NAMED FILE »{ DELETE
EXISTS? TRUE FILE

"NO

~5270
_CREATE
ENTRY IN LDE
& UPDATE

GOOG-1024-Page 91 of 114

+

(aayisaa

o wdL
OLNI GaN¥NLIY
3714 INYL ¥ILINT

- 9128

p| AFM (g

EEER

JNYL AdRE3A
¢8¢s

A

dSNOdS3y
JAILISOd

Tvd

dSNOdS3y
YOd Lvm
'? 3OYSSIAN
414 dN3s
v.2S

| 3sNods3d

A

3NILVO3N

S3A

ERIE Qz_.n_
08¢s

3

ANNOW
1s3n03y

8.2S

ON .

4

(D)9I 914

Tiv4

ON

- 3SNOdSTY
FAIfISOd
suvm |
NS [T
982$ © 1nQamIL
4 _¥0
ISNOJSTY
sisvoavousa | 3AyeIN
NEmo | -
082S

S A
a3.1o313
SHOSSAD0Ud

ANV
§8¢S

S103138
INTD
pgzs

(s)Mossaooud|

AA

GOOG-1024-Page 93 of 114

181701 gav anv

JLVA NOILVAIdXE g >.A ONIHSITENd

ANINYITL3Q

PL6ZS

N

. ¢INFLSA

S ERN 1o
20628

JWVN INYL

Y04 sai 30¥NOS OL
| Qi NOILYDO1 324N0S
aav 2 IWVN-INYL
HOL Y41 dN MO0

AY

oN—P

_~"!NOILYNILS3Q
" INO¥S SuIId IWYN
_ZNYL 30-304N0S

H0SS300Nd
33UNOS NO
T4 INYL IAYISIY
OL3OVSSIN aN3S

216¢S

(@)91°914

IY4ols
062S

|aruossaooudl

A

GOOG-1024-Page 94 of 114

. —

SSIdN0D3a

_86¢S

dai3iid
a3assaU4dN0D

962S

SIA

¢AYINT SIHL
¥o4 al 34

!

GOOG-1024-Page 95 of 114

(D)L1°914

(4)L191d

. (s)aoyunos
Woud 3714
INYL 3ZIVIY

90€s

Qi 3¥oLs
00€S

Armmnv

.

[SAUIVAOS | cqp F04¥N0S_y

103713s
y0ES

- 3YOW ON

A

d3sn

¢0€s

1

AdILON |

3714 3LOWaY

CFLVYI0T

80€S

GOOG-1024-Page 96 of 114

o | o o | anoa
_ ki | 1
o013 |. R 114 HOLVHOS
INYL INVI _ »| M3N 3LYINO
oCES | 0ces
» 34 3NUL T
313730 0
_8l€S
ﬁl a4
NO0 tesu<_woa a3 STA SHL ONILSIXI

STHILNIAI AT
| oles

CLES

34
~ 3nyuL 40 AdOD 38
~ "\\JINOHS HOLVYO:

SIA ON—

._ (0)8I 914

GOOG-1024-Page 97 of 114

A INNOD

AYLN3 asn LNIW3¥o3a

dd4L 3A0ON3Y . ‘379VLIATIN
*? 41 3714 IAVS| di 374 3¥olLs ‘I
8¢ES : | . MaN OL 34 AdOD

A : __oees- -
(Q)81'914
STA 1INNOD 3sn (o)

gzes

GOOG-1024-Page 98 of 114

/’A’_

——

W3l VivVa |
M3N ILVI™D
166

3

AdOLOTMIa zm>._my
IHL NI AYOLO3NIA
anvad

314 : _
| A¥oLoayia
QILVTINISSYND [. |
awvwissy | A <
968 | .
(D)6l 914

LVYNIQHO8Ns
-HOV3 HOod

3007 azazud |
FZ.NEMMOZ_
2608

I

GOOG-1024-Page 99 of 114

G

~ (2)el'9l4
NOILYIWNOANI
a3yis3a < <h@m¢mz
VNoLLIaay |'oL x¥1LN3 aav
ay¥093y R
-~ 0bES BLLS
T

/

MO0
3Z3344 JHL
LNIWIHO3a

_bves

W31l VLVQ M3N |
SHLILVINISSY|

2ES

f

A¥OLo3MIa zm.>_y

aNv3Id | -
JLVNIqHO8ns.
HOV3 404

1

THL NI A¥OLo3uIal

GOOG-1024-Page 100 of 114

JINVYN 3NYL

OLHLVJ MNIT |

¢SES

4

'IWVYNHLYY

TN ILVIIO

0S€ES

)

A¥oLoaNIg
avay
_8ves

| ¢——STNYINT
IHOW

Y

| AvoLoaMia

AYLN3

HOVI HOd
£5ES

%

V20134 |

ANYL INVIN
9VES.

I

_ STIMING
JYOW ON "

02914

GOOG-1024-Page 101 of 114

5354
WAITFOR
FREEZE LOCK

TO TURN OFF

5356 o .
FIND TFR FIG.21

ENTRY

5358

| DECREMENT

‘| REFERENCE
COUNT

S360

-~ REFERENCE COUNT IS YES Dgﬁger R
- ZERO & NO DEPENDENT DEEE L
- SYSTEMS INTFR? Le L
|
NO |
v .
TS364
REMOVE FILEID .
< — AND COMPRESSED

- | FILE ID |
|

GOOG-1024-Page 102 of 114

~ O DO
S365
GET
OPERATION
8366 o a—
CREATEOR' YES_ . - |
N l;\{m’)Duwa YES—— —» ASSIMILATE
S369-
NEW TRUE
COPY OR DELETE YES. FILE
COMPOUND? l
S378 . S370 |
NO MODIFY USE - RECORD TRUE | |
| COUNT OF EACH NAME IN AUDIT
| compONENT FILE !
Bt , ,
<4 l
- A
— S319 ,
FOR EACH PARENT
DIRECTORY ORFILE,
UPDATE USE COUNT,
LASTACCESSAND |
MODIFY TIMES |

l'

GOOG-1024-Page 103 of 114

FIG. 23

!

S382

VERIFY

- GROOMING
LOCK OFF

~ 5384

SET
GROOMING
LOCK . .

5386
SET GROOM

COUNTS

GOOG-1024-Page 104 of 114

5388
FIND LDE
- RECORD

5390

_ FIND TFR
RECORD

5392

INCREMENT
, GROOMING
| DELETE count

S394
ADJUST FILE
SIZES

FIG. 24

GOOG-1024-Page 105 of 114

FIG. 25

5396
DELETE

FILE

S398
UNLOCK
GROOMING
LOCK

:

GOOG-1024-Page 106 of 114

o’
" a3
HOLYYOS - N3do
6L¥S ._._m._IOMQ
eys
.Pmm\a

NOIOzZ™

NI L3
808

N3do
lIgIHOYd
14

00¥S

(0)9Z 914

ZATIVOOTN
SLSIX3 314

2Q3Lv3ND
ONIZg
Z0bS

ON

GOOG-1024-Page 107 of 114

a

(9)92

DIE

>

T

H4L WOy

arad NYNLay

'? NOISYH3A
VOO0 IMYIN

0cysS
—A

Ad0D -

HOLVYOS

3LV3Yo
LI¥S

:

ON

a3axoon

LON dIMOOT

8LbS

A

S3A

ar
3714 HOLVHOS | ¢
NunLIy | |
¥eys | —
3714 HOLVYOS
| 3iwvayo
90%S
Fnaasvua[|
12ys

ONI3g
BLHS

A131317dN0D

GOOG-1024-Page 108 of 114

(P)L2 ol

~ NoliI13a
- LigiHOYd

INVN
3NYL WONL 31
3NYL AJLLNZAI

yeysS
A

ON

¢AYOLO3YIgN
AINO-avay

NI ¥O aaxo01 3714
NO Q¥093Y 3071 0)

XA

314
Y04 SAYOo3Y
AMINT 1Y
*? 307 INIWNT13Q
_whs

!

GOOG-1024-Page 109 of 114

—————— e

LIWVYN INYL

ON ON SVYH 3714

T4 Lianv _ |aNo Ag 1NnoD
OL AMINT agv| ¢« asnaonaay
 9TYS . _LepS
374 3nyuL
113713a
omvm . ON
3714 40 . aNo |
Ad02 HOLVYDS a1k SILNNO2 3N
31313a CEYEENT
L2ys v

S3aX

GOOG-1024-Page 110 of 114

/p\)

ISNOJSTY
JALLYO3N
8eysS

%

0

¢a3aQUVMHOL

9 0L 1s3noay - SIA—P

i1sanoay |
ayvmyod [¢—o

ON

TS

ASNOJSTY
IAILISOd

yrys

4

SIA

A aarama N\
Q2$STNANOD WO

a1 3714 S3aN1oNL
N\ 0¥¥S

82014

IWVN INYL
' dAMoo1
ZEVS

T

S3A

GOOG-1024-Page 111 of 114 .

Application Data Sheet

Correspondence Information

Correspondence Customer Number::

Representative Information

Representative Customer Number::

Application Information

Application Type::

Subject Matter::

Title

Attorney Docket Number::

Regular

Utility

42624

42624

ACCESSING DATA IN A DATA

PROCESSING SYSTEM
2618-0015

Request for Early Publication?:: No

Request for Non-Publication?:: No
Suggested Drawing Figure:: 10 (b)
Total Drawing Sheets:: 31
Small Entity?:: No
Petition included?:: No

Domestic Priority information
Application Continuity Parent Parent Filing
Type: : Application |Date::
This Continuation 11/017,650 12/22/04
Application of
"11/017,650 Continuation 09/987,723 11/15/01
of

Page #1

Initial 03/15/2007

 GOOG-1024-Page 112 of 114

09/987,723 Continuation 09/283,160 04/01/99
of

09/283,160 Division of 08/960,079 10/24/97

08/960,079 Continuation 08/425,160 04/11/95
of ,

This Continuation 10/742,972 12/23/03

Application of

10/742,972 Division of 09/987,723 11/15/01

09/987,723 Continuation 09/283,160 04/01/99
of

09/283,160 Division of 08/960,079 10/24/97

08/960,079 Continuation 08/425,160 04/11/95
of

Assignee Information

Assignee name::

Street of mailing address::

City of mailing address::

State or Province of mailing address::
Country of mailing address::

Postal or Zip Code of mailing address::

Assignee name::

Street of mailing address::

City of mailing address::

State or Province of mailing address::

Country of mailing address::

Kinetech, Inc.

14011 Ventura Boulevard, Suite 501

Sherman Oaks

us

Level 3 Communications,

CA

91423

1025 Eldorado Blvd.

Broomfield

U.S.

Colorado

Postal or Zip Code of mailing address:: 80021

Page #2

LLC

Initial 03/15/2007

 GOOG-1024-Page 113 of 114

Applicant Information

Applicant Authority Type:: Inventor
Primary Citizenship Country:: Us
Status:: Full Capacity

Given Name:: David

Middle Name:: A.

Family Name:: Farber

City of Residence:: Ojai

State or Province of Residence:: CA

Country of Residence:: us

Street of mailing address:: 202E N. Carillo Road
City of mailing address:: Ojai

State 6r Province of mailing address:: CA

Country of mailing address:: us

Postal or Zip Code of mailing address:: 93023

Applicant Authority Type:: Inventor
Primary Citizenship Country:: us
Status:: Full Capacity

Given Name:: Ronald

Middle Name:: D.

Family Name:: Lachman

City of Residence:: Northbrook

State or Province of Residence:: IL

Country of Residence:: us

Street of mailing address:: 3140 Whisperwoods Ct
City of mailing address:: Northbrook

State or Province of mailing address:: IL

Country of mailing address:: uUs

Postal or Zip Code of mailing address:: 60062

Page #3 Initial 03/15/2007

 GOOG-1024-Page 114 of 114

