
GOOG-1020-Page 1 of 114

O

"o[L

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE achD

g REQUEST FOR FILING NATIONAL PATENT APPLICATION 05
*> Under 35 use 111(a) and Rule 53(b) with Signed Declaration g:
C V"

20>
1blon. Commissioner of Patents Atty. Dkt. No.: 2618-0011

.0. Box 1450 ‘

lexandria, VA 22313-1450 Date: December 22, 2004
NONPROVISIONAL

NON REISSUE NON PCT NAT PHASE

Sir:

Herewith is the PATENT APPLICATION of:

 _nventor(s): FARBER,_avidA.-_CHMANRonald D

Title' CONTENT DELIVERY NETWORK AND ASSOCIATED METHODS AND
MECHANISMS

Including:

1. Specification: 7_7 pages (only spec. and claims) 2. [:l Specification in non-English language

3. IX Declaration: E] Original [2 Facsimile/Copy 3b. [Z Abstractl page(s); Q claims

4. [XI Drawings: §_1_ sheet(s) ofl] informal; [Z formal size: [:1 A4 IE 11”

5. [:1 Attached an Assignment document and Recordation cover sheets. Please return the recorded
assignment to the undersigned.

6. X Prior application is assigned to SAVVISI Inc. by Assignment recorded on December 3 2004' Reel Unknown
Frame Unknown, and KINETECHI Inc. by Assignment recorded on November 15, 2001; Reel 012313/Frame
04___4_6.

7 FOREIGN_priority is claimed under 35 USC 119(aa-(d)/365(b) based on the following applications:

(No.) Certified copy/copies: |:| attached;l:] previously filed on

9. Small Entity Status: E is NOT claimed I:I i_s claimed.

10. E] See NONPUBLICATION REQUEST under Rule 213(a) attached.

8. in US Application No.

11. DOMESTIC/INTERNATIONAL priority is claimed under 35 USC 1.19(e)/120/365(c) based on the followingprovisional, nonprovisional and/or PCT international application)

Application/Patent No. Filing Date Application/Patent No. Filing Date

(1) 09/987723 11/15/2001 (3) 5, 978791 10/24/1997

(2) 6415280 04/01/1999 (4) 08/425 160 04/11/1995

12. E] This application is being filed under Rule 53(b)(2) since an inventor is named in the enclosed Declaration who
was not named in the prior application.

13. IX] Attached: Information Disclosure Statement and eighteen (18) USPTO Form 1449’s.

14. I] Preliminary Amendment Attached.

GOOG-1020-Page 1 of 114

ll 122204

GOOG-1020-Page 2 of 114

-. ‘

New US. Continuation Application . . Docket No.: 2618-0003

|nventor(s): FARBER, David A. et al.
Title: ENFORCEMENT AND POLICIKNG OF LICENSED

CONTENT USING CONTENT-BASED IDENTIFIERS

Date: December 22, 2004

THE FOLLOWING FILING FEE IS BASED ON CLAIMS AS FILED LESS ANY ABOVE CANCELLED

_ Large [Small

18. Basic Filing Fee Regular Utility Application $790 / $395 $ 790
Design Application $350 / $175

19 TotaICIaIms ”la/$9

20- Ind-Claims --—- X$88I$44 _

21. Ifaany proper multiple dependent claim (ignore improper) is present, add -—(Leave this line b|_aflk if thisIs a r_eissue application)

23. |f"non-Eng|ish" box 2Is X’d add Rule 17k() processing fee ——
24 If"assignment" box 8 isX’d add recording fee —-
25 [:I Attached Is a PetItIon/Fee under Rule No —_
26. Total Fee Enclosed:

27. C] Please charge the total fee to our deposit account below under the stated order no.:
Our Deposit Account No.: 501860.

 $2,086

CHARGE STATEMENT: The Commissioner is hereby authorized to charge any fee specifically authorized hereafter, or
any missing or insufficient fee(s) filed, or asserted to be filed, or which should have been filed herewith or concerning any
paper filed hereafter, and which may be required under Rules 16—18 (missing or insufficient fee only) now or hereafter relative
to this application and the resulting Official document under Rule 20, or credit any overpayment. to our Account/Order Nos.
shown above for which purpose a duplicate copy of this sheet is attached.

This Charge Statement does not authorize charge of the issue fee until/unless an issue fee transmittal form is filed.

CUSTOMER NUMBER

ill ill Ill IllIii ilil
042624*

Registration No.: 37,497

Davidson Berquist Jackson & Gowdey, LLP
4501 N. Fairfax Drive; Suite 920

Arlington, VA 22203
Main: (703) 248-0333
FAX: (703) 248-9558

GOOG-1020-Page 2 of 114

GOOG-1020-Page 3 of 114

O

"o[L

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE achD

g REQUEST FOR FILING NATIONAL PATENT APPLICATION 05
*> Under 35 use 111(a) and Rule 53(b) with Signed Declaration g:
C V"

20>
1blon. Commissioner of Patents Atty. Dkt. No.: 2618-0011

.0. Box 1450 ‘

lexandria, VA 22313-1450 Date: December 22, 2004
NONPROVISIONAL

NON REISSUE NON PCT NAT PHASE

Sir:

Herewith is the PATENT APPLICATION of:

 _nventor(s): FARBER,_avidA.-_CHMANRonald D

Title' CONTENT DELIVERY NETWORK AND ASSOCIATED METHODS AND
MECHANISMS

Including:

1. Specification: 7_7 pages (only spec. and claims) 2. [:l Specification in non-English language

3. IX Declaration: E] Original [2 Facsimile/Copy 3b. [Z Abstractl page(s); Q claims

4. [XI Drawings: §_1_ sheet(s) ofl] informal; [Z formal size: [:1 A4 IE 11”

5. [:1 Attached an Assignment document and Recordation cover sheets. Please return the recorded
assignment to the undersigned.

6. X Prior application is assigned to SAVVISI Inc. by Assignment recorded on December 3 2004' Reel Unknown
Frame Unknown, and KINETECHI Inc. by Assignment recorded on November 15, 2001; Reel 012313/Frame
04___4_6.

7 FOREIGN_priority is claimed under 35 USC 119(aa-(d)/365(b) based on the following applications:

(No.) Certified copy/copies: |:| attached;l:] previously filed on

9. Small Entity Status: E is NOT claimed I:I i_s claimed.

10. E] See NONPUBLICATION REQUEST under Rule 213(a) attached.

8. in US Application No.

11. DOMESTIC/INTERNATIONAL priority is claimed under 35 USC 1.19(e)/120/365(c) based on the followingprovisional, nonprovisional and/or PCT international application)

Application/Patent No. Filing Date Application/Patent No. Filing Date

(1) 09/987723 11/15/2001 (3) 5, 978791 10/24/1997

(2) 6415280 04/01/1999 (4) 08/425 160 04/11/1995

12. E] This application is being filed under Rule 53(b)(2) since an inventor is named in the enclosed Declaration who
was not named in the prior application.

13. IX] Attached: Information Disclosure Statement and eighteen (18) USPTO Form 1449’s.

14. I] Preliminary Amendment Attached.

GOOG-1020-Page 3 of 114

ll 122204

GOOG-1020-Page 4 of 114

-. ‘

New US. Continuation Application . . Docket No.: 2618-0003

|nventor(s): FARBER, David A. et al.
Title: ENFORCEMENT AND POLICIKNG OF LICENSED

CONTENT USING CONTENT-BASED IDENTIFIERS

Date: December 22, 2004

THE FOLLOWING FILING FEE IS BASED ON CLAIMS AS FILED LESS ANY ABOVE CANCELLED

_ Large [Small

18. Basic Filing Fee Regular Utility Application $790 / $395 $ 790
Design Application $350 / $175

19 TotaICIaIms ”la/$9

20- Ind-Claims --—- X$88I$44 _

21. Ifaany proper multiple dependent claim (ignore improper) is present, add -—(Leave this line b|_aflk if thisIs a r_eissue application)

23. |f"non-Eng|ish" box 2Is X’d add Rule 17k() processing fee ——
24 If"assignment" box 8 isX’d add recording fee —-
25 [:I Attached Is a PetItIon/Fee under Rule No —_
26. Total Fee Enclosed:

27. C] Please charge the total fee to our deposit account below under the stated order no.:
Our Deposit Account No.: 501860.

 $2,086

CHARGE STATEMENT: The Commissioner is hereby authorized to charge any fee specifically authorized hereafter, or
any missing or insufficient fee(s) filed, or asserted to be filed, or which should have been filed herewith or concerning any
paper filed hereafter, and which may be required under Rules 16—18 (missing or insufficient fee only) now or hereafter relative
to this application and the resulting Official document under Rule 20, or credit any overpayment. to our Account/Order Nos.
shown above for which purpose a duplicate copy of this sheet is attached.

This Charge Statement does not authorize charge of the issue fee until/unless an issue fee transmittal form is filed.

CUSTOMER NUMBER

ill ill Ill IllIii ilil
042624*

Registration No.: 37,497

Davidson Berquist Jackson & Gowdey, LLP
4501 N. Fairfax Drive; Suite 920

Arlington, VA 22203
Main: (703) 248-0333
FAX: (703) 248-9558

GOOG-1020-Page 4 of 114

GOOG-1020-Page 5 of 114

APPLICATION UNDER UNITED STATES PATENT LAWS

Attorney Docket: 2618-001 1

Invention: CONTENT DELIVERY NETWORK AND ASSOCIATED METHODS AND

MECHANISMS

Inventor(s): FARBER, David A.

LACHMAN, Ronald D.

Davidson Berquist Jackson & Gowdey, LLP
4501 North Fairfax Drive, Suite 920

Arlington, VA 22203

(703) 248-0333 Phone

(703)248-9558 Fax

This is a:

E] Provisional Application

El Regular Utility Application

IX Continuing Application
[Z] The contents of the parent are
incorporated by reference

D PCT National Phase Application

[:I Design Application

E] Reissue Application

El Plant Application

GOOG-1 020-Page 5 of 114

GOOG-1020-Page 6 of 114

CONTENT DELIVERY NETWORK AND ASSOCIATED METHODS

AND MECHANISMS -

RELATED APPLICATIONS

[0001] This is a continuation of and claims priority to co-pending

application no. 09/987,723, filed November 15, 2001 (allowed), (the contents of

which are hereby incorporated herein by reference), which is a continuation of

‘ application NO. 09/283,160, filed April 1, 1999, now US. Patent No. 6,415,280,

which is a division of application Ser. No. 08/960,079, filed Oct. 24, 1997, now

US. Pat. No. 5,978,791 filed Oct. 24, 2001 which is a continuation of Ser. NO.

08/425,160, filed Apr. 11, 1995, now abandoned.

BACKGROUND OF THE INVENTION

1. FIELD OF THE INVENTION

[0002] This invention relates to data processing systems and, more particularly, to

data processing systems wherein data items are identified by substantially unique

_ identifiers which depend on all of the data in the data items and only on the data in‘ . 1"'.".;.— L. .

the data‘items.‘

2. BACKGROUND OF THE INVENTION

[0003] Data processing (DP) systems, computers, networks of computers, or the

like, typically Offer users and programs various ways to identify the data in the

systems.

[0004] Users typically identify data in the data processing system by giving the

data some form of name. For example, a typical operating system (OS) on a

‘ computer provides a file system in which data items are named by alphanumeric .

identifiers. Programs typically identify data in the data processing system using a

location or address. For example, a program may identify a record in a file or

' - database by using a record number which serves to locate that record.

_ 1 _
2618-0011

GOOG-1020-Page 6 of 114

GOOG-1020-Page 7 of 114

[0005] In all but the most primitive operating systems, users and programs are able

to create and use collections of named data items, these collections themselves
being named by identifiers. These named collections can then, themselves, be

made part of other named collections. For example, an OS may provide

mechanisms to group files (data items) into directories (collections). These

directories can then, themselves be made part of other directories. -A data item may

thus be identified relative to these nested directories using a sequenceofnames, or

a so-called pathname, which defines a path through the directories to a particular

data item (file or directory). I

[0006] As another example, a database management system maygroup data

_ records (data items) into tables and then group these tables into database files

(collections). The complete address of any data record can then be specified using

the database file name, the table name, and the record number of that data record.

[0007] Other examples of identifying data items include: identifying files in a

network file system, identifying objects in an object-oriented database, identifying

images in an image database, and identifying articles in a text database.

[0008] In general, the terms "data" and "data item" as used herein refer to

sequences of bits. Thus a data'item may be the contents ofa'file, a portion of a

file, a page in memory, an object in an object-oriented program, a digital message,

a digital scanned image, a part of a video or audio signal, or any other entity which

can be represented by a sequence of bits. The term "data'pr—ocess'ing" herein refers

to the processing of data items, and is sometimes dependent on the type of data

item being processed. For example, a data processor for a digital image may differ

from a data processor for an audio signal. .
[0009] In all of the prior data processing systems the names or identifiers provided

to identify data items (the data items being files, directories, records in the '

database, objects in object-oriented programming, locatiOns in memory or on a

physical device, or the like) are always defined relative to a specificcontext.‘For
' instance, the file identified by a particular file name can only be determined when

- 2 ._
26l8-0011

GOOG-1020-Page 7 of 114

GOOG-1020-Page 8 of 114

the directory containing the file (the context) is known. The file identified by ‘a

pathname can be determined only when the file system (context) is known.

Similarly, the addresses in a process address space, the keys in‘a database table, or

domain names on a global computer network such as the Internet are meaningful

only because they are specified relative to a context.

[0010] In prior art systems for identifying data items there is no direct relationship

_ between the data names and the data item. The same data. name in two different

contexts may refer to different data items, and two different data names in the

same context may refer to the same'data item.

[0011] In addition, because there is no correlation between a data name and the

data it refers to, there is no a priori way to confirm that a given data item is in fact

the one named by a data name. For instance, in a DP system, if one processor

requests that another processor deliver a data item with a given data name, the

requesting processor cannot, in general, verify that the data delivered is the correct

data (given only the name). Therefore it may require further processing, typically

on the part of the requestor, to verify that the data item it has obtained is, in faCt,

the item it requested.

[0012] A common operation in a DP system is adding a new data item to the

system. When a new data item is added to the system, a name can be assigned to it

only by updating the context in which names are defined. Thus such systems

require a centralized mechanism for the management of names. Such a mechanism

is required even in a multi-processing system when data items are created and.

identified at separate processors in distinct locations, and in which there is no

other need for communication when data items are added.

[0013] In many data processing systems or environments, data items are

transferred between different locations in the system. These locations may be

processors in the data processing system, storage devices, memory, or the like. For

example, one.processor may obtain a data item from another procesSor or from an

2618-001]

GOOG-1020-Page 8 of 114

GOOG-1020-Page 9 of 114

external storage device, such as a floppy disk, and may incorporate that data item

into its system (using the name provided with that data item). c

' [0014] However, when a processor*(or some location) obtains a data item from

another location in the DP system, it is possible that this obtained data item is

already present in the system (either at the location of the processor or at some

other location accessible by the processor) and therefore a duplicate of the data

item is created. This situatiOn is common in a network data processing

environment where proprietary software products are installed from floppy disks

onto several processors sharing a common file server. In these systems, it is often

, the case that the same product will be installed on several systems, so that several

copies of each file will reside on the common file server.

[0015] In some data processing systems in which several processors areconnected

.in a network, one system is designated as a cache server to maintain master copies

of data items, and other systems are designated as cache clients to copy local

1 copies of the master data items into a local cache on an as-needed basis. Before

‘ using a cached item, a cache client must either reload the cached item, be informed

of changes to the cached item, or confirm that the master item corresponding to

. the cached item has not changed..In other words, a cache client must synchronize

. its data'items with those on the cache Server. This synchronization may involve

reloading data items onto the cache client. Theneed to keep- the cache

synchronized or reload it adds significant overhead to, existing caching .

mechanisms.

[0016] In View of the above andother problems with prior art systems, it is

therefore desirable to have a mechanism which allows each processor in a -*

multiprocessor system to determine a common and substantially unique identifier

for a data item, using only the data in the data item and not relying onany sort of .

' context.

’ [0017] It is further desirable to have a mechanism forredubing multiple copies of

data items in a data processing system and to have a mechanism which enables the

- 4 _ . _
2618-0011

GOOG-1020-Page 9 of 114

GOOG-1020-Page 10 of 114

‘ identification of identical data items so as to reduce multiple copies. It. is further

desirable to determine whether two instances of a data item arein fact the same

, data item, and to perform various other systems' fimctions and applications on data

items without relying on any context information or properties of the data item.

[0018] It is also desirable to provide such a mechanism in such a way asto make it

transparent to users of the data processing system, and it is desirable that a single

mechanism be used to address each of the problems described above.

SUMMARY OF THE INVENTION

[0019] This invention provides, in a data processing system, a method and
. apparatus for identifying a data item in the system, where the identity of the data

item depends on all of the datain the data item and only on the data1n the data

item. Thus the identity of a data item is independent of its name, origin, location,

address, or other information not derivable directly from the data, and depends

only on the data itself. A

[0020] This invention further provides an apparatus and a method for determining

whether a particular data item is present in the system or at a location in the

system, by examining only the data identities of a plurality of data items. .

_[0021] Using the method or apparatus of the present invention, the efficiency and
- integrity of a data processing system can be improved. The present invention
improves the design and operation of a data storage system, file system, relational

database, object-oriented database, or the like that stores a plurality of data items,
by making possible or improving the design and operation ofat least some or all

of the following features: I I I. i I I

.[0022] the system stores at most one copy of any data item at a given location, i
“even when multiple data names in the system refer to the same contents;

[0023] thesystem avoids copying data from source to destination locations when

the, destination locations already have the data;

2618-0011

GOOG-1020-Page 10 of 114

GOOG-1020-Page 11 of 114

[0024] the system provides transparent access to any data item by reference only to

its identity and independent of its present location, whether 'it be local, remote, or

offline;

[0025] the system caches data items from a server, so that only the most recently

accessed data items need be retained;

[0026] when the system is being used to cache data items, problems of maintaining

cache consistency are avoided;

[0027] the system maintains a desired level of redundancy of data items in a

network of servers, to protect against failure by ensuring that multiple copies of

the data items are present at different locations in the system; i

[0028] the system automatically archives data items as they are created or

modified; 1

[0029] the system provides the size, age, and location of groups of data items in

order to decide whether they can be safely removed from a local file system;

[0030] the system can efficiently record and preserve any collection of data items;

[0031] the system can efficiently make a copy of any collection bf data items, to

support a version control mechanism for groups of the data items;

[0032] the system can publish data items, allowing other, possibly anonymOus,

systems in a network to gain access to the data items and to rely on the availability

of the data items;

[0033] the system can maintain a local inventory of all the data items located on a

given removable medium, such as a diskette or CD-ROM, the inventory is I

independent of other properties of the data items such as their'name, location, and

date of creation;

[0034] the system allows closely related sets of data items, such as matching or

' corresponding directories on disconneéted computers, to be periodically i
resynchronized with one another; ‘ i I 1 I
[0035] the system can verify that data retrieved from another location is the desired

or requested data, using only the data identifier used to retrieve the data;

- 6 _
2618-0011

GOOG-1020-Page 11 of 114

GOOG-1020-Page 12 of 114

[0036]‘the system can prove possession of specific data items by content without

; disclosing the content of the data items, for purposes of later legal verification and

to provide anonymity;

[0037] the system tracks possession of specific data items according to content by

owner, independent of the name, date, or other properties of the data item, and

. tracks the uses of specific data items and files by content for accounting purposes.

[0038] Other objects, features, and characteristics of the present invention as well

. as the'methods of operation and functions of the related elements of structure,.and

i the combination ofparts and economies of manufacture, will become more

apparent upon consideration of the following description and the appended claims

with reference to the accompanying drawings, all ofwhich form a part of this

specification.

BRIEF DESCRIPTION OF THE DRAWINGS

, [0039], Figures 1(a) and 1(b) depict a typical data processing system in which a

preferred embodiment of the present invention operates;

‘[0040] Figure 2 depicts a hierarchy of data items stored at any location in such a

data processing system;

‘ V [0041] Figures 3-9 depict data structures used to implement anembodiment of the

present invention; and i I

' 1 [0042] Figures 10(a)-28 areflow charts depicting operation ofvarious aspects of

the present invention.

1 I DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED

EXEMPLARY EMBODIMENTS

, [0043] -An embodiment of the present invention is now. described with reference to

a typical data'processing system 100, which, with reference to FIGS. 1(a) and 1(b),

includes one or more processors (or computers) 102 and various storage devices

104 connected in Some way, for example by a bus'106.‘

2618-0011

GOOG-1020-Page 12 of 114

GOOG-1020-Page 13 of 114

[0044] Each processor 102 includes a CPU 108, a memory. 110 and one or more

local storage devices 112. The CPU.108, memory 1.10, and local'storage device ,

112 may be internally connected, for example by a bus 114. Each processor 102

may also include other devices (not shown), such as a keyboard, a display, a

printer, and the like.

[0045] In a data processing system 100, wherein more than one processor 102 is '

used, that is, in a multiprocessor system, the processors may be in one of various ‘

‘ relationships. For example, two processors 102 may be in a client/server,

client/client, or a server/server relationship. These inter-processor 'relatiOnships

may be dynamic, changing depending on particular situations and functions. Thus, '

a particular processor. 102 may change its relationship to otherproceSSOrs as i

needed, essentially setting up a peer—to-peer relationship with other processors. In

a peer-to-peer relationship, sometimes a particular processor 102 acts as a client

processor,‘whereas at other times the same prOcessor aets'as a server processor. In

other words, there is no hierarchy imposed on or required ofprocessors 102.

[0046] In a multiprocessor system, the processors 102 may be homogeneous or
"heterogeneous. Further, in a multiprocessor data processing system 100, Some or

all of the processors 102 may be disconnected from the network ofprocessors for

' periods Of time. ’Such disconnection may be partrof the norrrial operation of the

system ‘100 or it may be because a particular processor 102 is in need of repair.

[0047] Within a data processing system 100, the data may be organized to form a

' hierarchy of data storage elements, wherein lower level data storage elements are

combined to form higher level elements. This hierarchy can consist of, for

example, processors, file systems, regions, directories, data files,_‘segmer_1ts_,yjandv

the like, For example, with reference to FIG, 2,,the data items on a particular , :

processor 102 may be organized or structured as a file system ,1 1,6 which. ~ _

comprises regions 11'?, each of which comprises directories 118, each of which

~ can contain other directories 118 or files 120. Each file-1‘20 being made up of one

or more data segments 122.

. - 8 — . , _-
2618-0011

GOOG-1020-Page 13 of 114

GOOG-1020-Page 14 of 114

‘ [0048] .In a typical data processing system, some or all of these elements can be

- . named by users given certain implementation specific naming conventions, the

' name (or pathname) of an elementbeing relative to a context..In the context of a

'data processing system 100, a pathname is fully specified by a processor name, a

‘filesystem name, a sequence of zero or more directory names identifying nested

directories, and a final file name. (Usually the lowest level elements, in this case

segments 122, cannot be named by users.)

[0049] ,In other words, a file system 116 is a collection of directories 118. A

directory 118 is a collection of namedfiles 120--both data files 120 and other ‘

directory files 118. A file 120 is a named data item which is either a data file

(which may be simple or compound) or a directory file 118. A simple file 120

consists of a single data segment 122. A compound file 120 consists of a sequence

of data segments 122. A data segment 122 is a fixed sequence of bytes. An

important property of any data segment is its size, the number of bytesvin the

sequence. I

‘ [0050] A single processor 102 may access one or more file systems 116, and a

' single storage device 104 may contain one or more file systems 116, or portions of

a file system 116. For instance, a file system 116 may span several storage devices

' 104. 7

[0051] In'order to implement controls in a file system, file system 116 may be

. divided into distinct regions, where each region is a unit of management and

control: A region consists of a given directory 118 and is identified by the - '

' pathname (user defined) of the directory.

' [0052} In the following, the term "location", with respect to a data processing

system 100, refersto any of a particular processor 102 in the system, a memory of

a particular processor, a storage device, a removablestOrage medium (such as a.

floppy disk or compact disk), or any other physical location in the system. The .

term "local" with respect to a particular processor 102 refers to the memory and

storage devices of that particular processor.

_ 9 -
26l8-OOll

GOOG-1020-Page 14 of 114

GOOG-1020-Page 15 of 114

[0053] In the following, the terms "True Name", "dataidentity" and "data

identifier" refer to the substantially unique data identifier for a'particular data item.

' The term ','True File" refers to the actual file, segment, or data. item. identified by a

True Name.

' [0054] _A file system for a data processing system 100 is now described which is

intended to work with an existing operating system by augmenting some of the

; operating system's file management system codes. The embodiment provided

' relies on the standard file management primitives for actually storing to and

retrieving data items from disk, 'but uses the mechanisms of the present invention

to reference and access those data items.

[0055] The processes and mechanisms (services)provided in this embodiment are

grouped into the following categories: primitive mechanisms, operating system

mechanisms, remote mechanisms, background mechanisms, and extended

mechanisms.

[0056]_Primitive mechanisms provide fimdamental capabilities used to support

other mechanisms. The following primitive mechanisms are described: '

1. Calculate True Name; I

2. Assimilate Data Item;

3. True File;

4. Get True Name from Path;

5. Link path to True Name;

6. Realize True File from Location;

7. Locate Remote File;

8. Make True File Local;

9. Create Scratch File;

10. Freeze Directory;

11. Expand Frozen Directory; ' V

12. Delete True File;

13. Process Audit File Entry; ' '

_ 10-
2618-001]

GOOG-1020-Page 15 of 114

GOOG-1020-Page 16 of 114

14. Begin Grooming;

15. Select For Removal; and '

16. End Grooming.

[0057] Operating system mechanisms provide typical familiar file system

mechanisms, while maintaining the data structures required to offer the.

'mechanisms of the, present invention. Operating system mechanisms arepdesigned

to augment existing operating systems, and in this way tomake the present

_ invention compatible with, and generally transparent to, existing applications. The

following operating system mechanisms are described:

1. Open File;

2. Close File;

3. Read File;

4. Write File;

5.

6

7

8

Delete File or Directory;

. Copy File or DireCtory;

. Move File or Directory;

. Get File Status; and

9. Get Files in Directory.

[0058] Remote mechanisms are used by the operating system in responding to

requests from other processors. These mechanisms enable the capabilities of the

present invention in a peer-to-peer network mode of operation. ‘The- following

remote mechanisms are described:

1.

2.

3.

4.

5.

6.

7.

2618-0011

Locate True File;

Reserve True File;

Request True File;

Retire True File;

Cancel Reservation;

Acquire'True File;

Lock Cache;

-11_

GOOG-1020-Page 16 of 114

GOOG-1020-Page 17 of 114

8. Update Cache; and

9. Check Expiration Date.

‘ [0059] Background mechanisms are intended to run occasionally and at a low

priority; These provide automated management capabilities with respect to the

present invention. The following background mechanisms are described:

1. Mirror True File;

2. Groom Region;

3. Check for Expired Links; and

4. Verify Region; and

5. Groom Source List.

'[0060]'Extended mechanisms run within application .programs over the operating

system. These mechanisms provide solutions to specific problems and

applications. The following extended mechanisms are described:

1. Inventory Existing Directory;

2. Inventory Removable, Read-only Files;

3. Synchronize directories;

4. Publish Region;

5. Retire DirectOry;

6. Realize Directory at location;

7. Verify True File;

8. Track for accounting purposes; and

9. Track for licensing purposes.

[0061], The file system herein described maintains sufficient information to ‘

provide a variety of mechanisms not ordinarily offered by an operating system,

some ofwhich are listed and described here. Various processing performed by this ‘

embodiment of the present invention will now be described in greater detail.

. [0062] In some embodiments, some files 120. in a data processing system 100 do

' not have True Names because they have been recently received or created or

modified, .and thus their True Names have not yet beencomputed. A file that does.

_ 12 _
2618-0011

GOOG-1020-Page 17 of 114

GOOG-1020-Page 18 of 114

not .yet'have a True Name is called a scratch file. The process of assigning a True

. Name to a file is referred to as assimilation, and is described later. Note that a

scratch file may have a user provided name.

[0063] SOme of the processing performed by the present invention can take place

in a background mode or on a delayed or as-needed basis. This background

'processing'is used to determine information that is not immediately required by

the system or which may never be required. As an eXample, in some cases a

. scratch file ,is being changed at a rate greater. than the rate at which it_is.useful to

determine its True Name. In these cases, determining the True Name ofthe file

can be postponed or performed in the background.

DATA STRUCTURES

- [00.64] The following data structures, stored‘in memory 110 of one of more V

processors 102 are used to implement the mechanisms described herein. The data

structures can be local to each processor 102 of the system 100, or they can reside
on only some of the processors 102. V

[0065] The data structures described are assumed to reside on individual peer

processors 102 in the data processing system 100. However, they can also be

' shared by placing them on a remote, shared file server. (for instance, in a local area

‘ network of machines). Inorder to accommodate sharing data structures, it is ,
necessary that the processors accessing theisha'red database. use the appropriate

locking techniques to ensure that changes to the shared database do not interfere

‘ with one another but are appropriately serialized. These locking techniques are
Well understood by ordinarily skilled programmers of distributed applications.

I - [0066] It1s sometimes desirable to allow some regions to be local to a particular
processor 102 and other regions to be shared among processors 102. (Recallthat a

; region is a unit of file system management and control consisting of a given

1 directory. identified by the pathname of the directory.) In the case of local and
shared regions, there would be both local and shared versions of each data

_ 13 _
2618-0011

GOOG-1020-Page 18 of 114

GOOG-1020-Page 19 of 114

structure. Simple changes to the processes described below must be madeto

‘ ensure that appropriate data structures are selected fora given operation.

[0067] The local directory extensions (LDE) table 124 is a' data structure which

provides information about files .120 and directories 118 in the data prbcessing

system 100.:The10cal directory extensions table 124 is indexed by a pathname or

. contextual name (that is, a user provided name) of a file and includes the True

Name for most files. The information in local directory extension table 124 is in

_. addition to that provided by the native file system of the operating system.

[0068] The True File registry (TFR) 126 is a data store for listing actual data items

which have True Names, both files 120 and segments.122. When such data items

' occurin the True File registry 126 they are known as True Files. True Files are

identified in True File registry 126 by their True Names or identities. .The table

True File registry 126 also stores location, dependency, and migration informatiOn

about True Files.

[0069] The region table (RT) 128 defines areas in the network storage which are to

be managed separately. Region table 128 defines the rules for access to and

migration of files 120 among various regions with the local 'file system 116' and

remote peer file systems. i

' [0070]. The source table (ST) 130 is a list of the sources of True Files. other than

the current True File registry 126. The source table 130 includes removable

volumes and remote processors.

[0071] The audit file (AF) 132 is a list of records indicating changes to be made in

10ca1 or remote files, these changes to be processed in background. V

[0072] The accounting log (AL) 134 is a log of file transactions used to create

‘ accounting information in a manner which preserves the identity 'of files being

tracked independent of their name or locatiOn. V i

[0073] The license table (LT) 136 is a table identifying files, which may only be

used by licensed users, in a'manner independent of their name or location, and the
users licensed to use them. i A i A I i V

. . _ 14 _
2618-0011

GOOG-1020-Page 19 of 114

GOOG-1020-Page 20 of 114

DETAILED DESCRIPTIONS OF THE DATA STRUCTURES . ‘

[0074] The following table summarizes the fields of an l‘ocal'directory extensions

table entry, as illustrated by record 138 in FIG. 3. ~ -

_--—
_ identifies the region in which this file is contained.

‘ the user provided name or contextual name of the file or directory,

- relative to the re_ion in which it occurs. '

True Name the computed True Name or identity of the file or directory. This
‘ True Name is not always up to date, and it is set to a special value

* when a file is modified and is’later recom uted in the background.

indicates whether the file is a data file or a directo _

Scratch File the physical location of the file in the file system, when no True

ID 1. =Name has been calculated for the file. As noted above, such a file is

- called a scratch file. '

the last access time to this file. If this file is a directory, this is the

_-. access last access time to any file in the directo . ‘
Time of laSt the time of last change of this file. If this file is a directory, this is
modification the last modification time of an file in the directo .

Safe flag indicates that this file (and, if this file is a directory, all of its

subordinate files) have been backed up on some other system, and it
is therefore safe to remove them.

Lock flag ' indicates whether a file is locked, that is, it is being modified by the

' local processor or a remote processor. Only one processor may

modify a file at a time.

Size the full Size of this directory (including all subordinate files), if all

' ' files in it were fully expanded and duplicated. For 'a file that is not a

directory this is the size of the actual True File.

Owner the identity of the user who owns this file, for'accounting and
license trackin; u oses. ‘ _

' [0075] Each record of the True File registry 126 has the fields shown in the True

_ ‘File registry record 140 in FIG. 4. The True File registry 126 consists of the

' * database described in the table below as well as the actual True Files identified by

the True File IDS below.

.

f Compressed compressed version of the True File may be stored instead of, or in

' File ID. . addition to, an uncompressed version. This field provides the _

identity of the actual representation of the compressed version of
the file.

-15_

2618-0011

GOOG-1020-Page 20 of 114

GOOG-1020-Page 21 of 114

Grooming tentative count of how many references have been selected for
- delete count deletion durin_ . ‘ ‘

Time oflast most recent date and time the content of this file was accessed.
access ~ ~

- date and time after which this filema be deleted b this server.
- .» Dependent processor IDs of other processors which contain references to this

rocessors True File. . - .

i - . Source IDs source ID(s) of zero or more sources- from which this file or data . -
_ item may be retrieved.‘

True File ID identity or disk location of the actual physical representation of the
' ' . file or file segment. ItIS sufficient to use a filename1n the .

' registration directory of the underlying operating system. The True
File ID is absent if the actual file is not currently present at the

' current location.

number of other records on this processor which identify this True
* File. ' '

. [0076] A region table 128, specified by adirectory pathname; records storage

policies which allow files in the file systemto be stored; accessedand migrated in

“different ways. Storage policies are programmed in a configurable way using a set

of rules described below. i i

[0077] Each region table record 142 of region table 128 includes the fields
described1n the following table (with reference to FIG. 5):
Field Descri stion

' Region ID internally used identifier for this re ion.

b Region file file system on the local processor ofwhich thisregion is apart.
I s stem

a pathname relative to the region file system Which defines the

location of this region; The region consists of all files and .

directories subordinate to this pathname, except those in a region

subordinate to this region.

Mirror V . zero or more identifiers ofprocessors Which are to keep mirror or
processor(s) archival copies of all files1n the current region. Multiple mirror

processors can be defined to form a mirrorgrou. .

. Mirror : ' number of copies of eachfile1nthis regionthat should be retained
duplication in a mirror group. ~ ‘ ' - '
count

— 16 — '
2618-0011

GOOG-1020-Page 21 of 114

GOOG-1020-Page 22 of 114

,

- ' specifies whether this region is local to a single processor 102,

shared by several processors 102 (if, for instance, itrresides on a
shared file server , or managed b a remote rocessor.

the migration policy to apply to this region. A single region might

participate in several policies. The policies are as follows
(parameters in brackets are specified as part of the policy):

region is a cached version from [processor ID];
region is a member of a mirror set defined by [processor ID].
region is to be archived on [processor ID].

» region is to be backed up locally, by placing new copies in

[region ID]. . ‘
region is read only and may not be changed.
region is published and expires on [date].

Files in this region should be comressed.

[0078] A source table 130 identifies a source location for True Files. The source

- table 130 is also used to identify client processors making reservations on the

current processor. Each source record 144 of the source table 130 includes the

fields summarized1n the following table, with reference to FIG. 6:

. internal identifier used to identi a ,- articular soUrce.

source type type of source location:

Removable Storage Volume -

Local Region
Cache Server

Mirror Group Server

Cooperative Server

Publishing Server
Client

includes information about the rights of this processor, such as

rights -. whether it can ask the local processor to store 'data items for it.

source measurement of the bandwidth, cost, and reliability of the.

availability. connection to this source of True Files. The availability1s used to
select from among several Ossible sources

source ' information on how the local processor is to access the source. This
V location ' 7 may be, for example, the name of aremovable storage volume,,or

: the processor ID and re ' ath of a region on a remote urocessor.

, - 17 —
2618-001]

GOOG-1020-Page 22 of 114

GOOG-1020-Page 23 of 114

[0079] The, audit file 132 is a table of events ordered by timestamp,.each record

146 in audit file 132 including the fields summarized in the following table (with
reference to FIG. 7):

Fie_ld
h path of the file1n question

. Name
whether the file was created, read, written, co ied or deleted.

e s-ecifies whether the source is a file'or a directo . '

' ID of the remote processor generating this event (if not local).

Timestamp time and date file was closed (required onlyfor accessed/modified
files)
Name of the file re-uired onl for rename.

‘ computed True Name of the file. This15 used by remote systems to
mirror changes to the directory andIS filled1n during background

rocessing. '

[0080] 'Each record 148 of the accounting log 134 records an event‘whiCh may

later be used: to provide information for billing mechanisms. Each accounting log

entry record 148 includes at least the information summarized in the following
table, with reference to FIG. 8:

Field

date of ent

tye of ent
True Name

- [0081] Each record 150 of the license table 136 records a relationship between a ‘

licensable data item and the user-licensed to have access toit. Each license table

record 150 includes the information summarized in the following table,'with

reference to FIG. 9:

-' True Name of adata item subject to license Validation.
- I I _identity of a user authorized to have access to this object. -

[0082] Various other data structures are employed on some 0r all of the processors

102 in the data processing system 100. Each processor 102 has a global freeze

.lock (GFL) 152 (FIG. 1), which is used to prevent synchronization errors when a

_ 18-
2618-0011

GOOG-1020-Page 23 of 114

GOOG-1020-Page 24 of 114

directory is frozen or copied. Any processor.102 may include a special archive

; directory (SAD) 154 into which directories may be copied for the purposes of

' archival. Any processor 102 may include a special media directory (SMD) 156, >

into which the directories of removable volumes are stored Ito-form a rnedia

inventory. Each processor has a grooming lock 158, which is set during a

grooming operation. Duringthis period the groomingdeletecount-of True File '

. registry entries 140 is active, and no True Filesshould be del‘eted‘until grooming is

'. :- complete. While grooming is in effect, grooming information includes a table of .
’ ~ pathnames selected for deletion, and keeps track of the arhount of space that Would

' ‘ be freed if all of the files were deleted." ~ ”

PRIMITIVE MECHANISMS

[0083] .The first of the mechanisms provided-by~ the present invention, primitive

mechanisms, are now described. The mechanisms described here depend on

underlying data management mechanisms tocreate, copy, read, and delete data

_ items in the True File registry 126, as identified by a True File ID. This support

may be provided by an underlying operating systen’i'v'or disk’s'torag‘e manager.

[0084] The following primitive mechanisms are described; L i

1. Calculate True Name; '

Assimilate Data Item;

True File;

Get True Name from Path;

Link Path to True Name;

2.

3.

4.

5.

6., Realize True File from LoCatio'n; .

7. Locate Remote File; _ i

8. Make True File Local; _- A'

9. Create Scratch File; -

10. Freeze Directory;

11. Expand Frozen Directory;

. - 19—
2618—0011

GOOG-1020-Page 24 of 114

GOOG-1020-Page 25 of 114

12. Delete True File;

13. Process Audit File Entry,

14. Begin Grooming;

15. Select For Removal; and

16. End Grooming.

Calculate True Name

[0085] A True Name is computed using a fimction, MD, which reducesa data

block B of arbitrary length to a relatively small, fixed size identifier, the True

. Name of the data block, such that the True Name of the data block is virtually~

guaranteed to represent the data block B and only data block B.

[0086] The function MD must have the following properties:

1. - The domain of the function MD is the set of all data‘items.

The range of the function MD is the set of True Names.

2. The fimction MD must take a data item of arbitrary length

and reduce it to an integer value in the range 0 to N-‘l, where N is the

cardinality of the set ofTrue Names. That is, for an arbitrary length

data block B, 0 S MD(B) < N. '

3. The results 'of MD(B) must be evenly and randomly ‘

distributed over the range ofN, in such a way that simple or regular

changes to B are virtually guaranteed to produce a different value of

MD(B). ’ ‘ I

. 4. It must be computationally difficult to find a different value

B' such that MD(B):MD(B‘). .

5'. ' The function MD(B) must be efficiently cOmputed. _

. [0087] A family of functions with the above properties are theso-called message

digest functions, which are used in digital security systems as techniques for

authentification of data. These functions (or algorithms)'include MD4,_MD5, and
SHA.

2618-0011
-20-

GOOG-1020-Page 25 of 114

GOOG-1020-Page 26 of 114

[0088] In the presently preferred embodiments, eitherMDS or SM is employed as

' the basis for the computation of True Names. Whichever of .these twomessage

' digest functions is employed, that same function must be employed on a system-

wide basis. '

[0089] It is impossible to define a function having a unique output for each h

' possible input when the number of elements in the range of the function is smaller

than‘the number of elements in its domain. However, a crucial observation is that

' the actual data items that will be encountered in the operation 'of any system

embodying this invention form a very sparse subset of all the possible inputs.

[0090] A colliding set of data items is defined as a set wherein, for one or more

‘ pairs x and y in the set, MD(x)=MD(y). Since a function conforming to the ‘

requirements for MD must evenly and randomly distribute its outputs, it is

possible, by making the range of the filnction large enough, to make the

. probability arbitrarily small that actual inputs encountered in the operation of an

embodiment of this invention will form a colliding set.

[0091] To roughly quantify the probability of a collision, assume that there are no

more than 230 storage devices in the world, and that each storage device has an

average of at most 220 different data items. Then there are at most 250 data items in
the world. If the outputs of MD range between 0 and 2'28, itcan be demonstrated

. that the probability of-a collision is approximately 1 in 229. Details on the

derivation of these probability values are found, for example, in P. Flajo'let and A. '

M. Odlyzko, "Random Mapping Statistics," Lecture Notes in Computer Science

. 434: Advances in Cryptology--Eurocrypt '89 Proceedings, Springer-Verlag, pp.

329-354. ' ' ‘ ’ ’ ‘

_[0092]'Note that for some less preferred embodiments of the present invention,

lower probabilities of uniqueness maybe acceptable, depending on the types Of

. applications and mechanisms used. In some embodiments it may also be’us‘eful to

have more than one level of True Names, with some of the True Names having

_ 21 _
2613-0011

GOOG-1020-Page 26 of 114

GOOG-1020-Page 27 of 114

different degrees of uniqueness. If such a scheme is implemented, it is necessary

' to ensure that less unique True Names are not propagated in'the system.

[0093] While the invention is described herein using only'the True Namefof a data

item as the identifier for the'data item, other preferred embodiments use tagged,

typed, categorized or. classified data items and use a combination of both the True .

Name and the tag, type, category or class of the data item as an identifier.

Examples ‘of such categorizations are files, directories, and segments; executable

‘ files and data files, and the like. Examples of classes are classes of objects in an

object-oriented system. In such a system, alower degree ofTrue-Name uniqueness

is acceptable over the entire universe of data items, as long as sufficient

uniqueness. is provided per category of data items. This is because the tags

provide an additional level of uniqueness.

[0094} A mechanism for calculating a True Name given a data item is now

described, with reference to FIGS. 10(a) and 10(b). -

[0095] A simple data item is a data item whose size is less than a particular given

size-(which must be defined in each particular implementation of the invention). '

To determine the True Name of a simple data item, with referenceto FIG. 10(a),

' first compute the MD function (described above) on the given simple data item

(Step 8212). Then append to the resulting 128 bits, the byte length modulo 32 of

the data item (Step $214). The resulting 160-bit value. is the True Name of the

simple data item.

[0096] A compound data item is one whose size is greater than the particular given

" . size of a simple data item. To determine the True Name of an arbitrary’(simple or

Compound) data item, with reference to FIG. 10(b), first determine ifthe data item

is a simple or a compound data item (Step 82 16). If the data'item isa simple data

' item, then compute its True Name'in step 8218(Iising steps $212 and $214

3 described above), otherwise partition the data item into segments (Step 8220) and

_ assimilate each Segment (Step 8222) (the primitive mechanism, Assimilate a Data

Item, isdescribed below), computing the True Name of the segment. Then create

_ 22 _
2618-0011

GOOG-1020-Page 27 of 114

GOOG-1020-Page 28 of 114

an indirect block consisting of thecomputed segment True Names (Step S224).

‘ _'-An indirect block is a data item which consists of the sequence ofTrue Names of .

. thesegments. Then, in step $226,_assirnilate the indirect block'and compute its

Tru'e'Name. Finally, replace the final thirty-two (32) bits of the-resulting True

Name (that is, the length of the indirect block) by the length modulo 32 of the

compound data item (Step S228). The result isthe True'Name of the compound

data item.

[0097] Note that the compound data item may be so large that the indirect block of

segment True Names is itself a compound data item. In this case the mechanism is

invoked recursively until only simple data items are being processed.

[0098] Both the use of segments and the attachment of a length to the True Name

' are not strictly required in a system using the present invention, but are currently

considered desirable features in the preferred embodiment.

2. Assimilate Data Item

1 [0099] A mechanism for assimilatinga data item (scratch file or segment) into a

file system, ,given the scratch file ID of the data item, is now described with

reference to FIG. 11. The purpose of this mechanism is to add a given data item to

the-True File registry 126. If the data item already exists in the True File registry

126, this Will be discovered and used during this process, and the duplicate will be

eliminated.

[00100] _ Thereby the system stores at most one copy of any data item or file

by content, even when multiple names refer to the same content. S . .

[00101] ‘ . . First, determine the True Name of the data item corresponding to the

, I given scratch File ID using the Calculate True Name primitive mechanism (Step

S230). Next, look for an entry for the True Name in the True File registry 126‘

(Step 8232) and determine whether a True Name entry, record 140, exists inthe
’ j True File registry 126. If the entry record includes a corresponding True File IDfor

. - 23 —
2618-001]

GOOG-1020-Page 28 of 114

GOOG-1020-Page 29 of 114

compressed File ID (Step 8237),. delete the file with the scratch File ID (Step

S23 8). Otherwise store the given True File ID in the entry record.(step 8239). ‘

. .[00102] ' If it is determined (in step $232) that noTrue Name'. entry exists in

the True File registry 126, then, in ~Step 8236, create a new entry in the True File

registry 126 for. this True Name. Set the True Name of the entry to the'calculated . _

True Name, Set the use count for the new entry to One, store the given True File ID

in the entry and set the other fields of the entry as appropriate.

[00103] Because this procedure may take some time to Compute, it is .

intended to run in background afier a file has ceasedto change. In'the meantime,

the file is considered an unassimilated scratch file. ‘

‘3. True File

- [00104] The True File process is invoked when processing the aUdit file 132,
some time after a True File has been assimilated (using the Assimilate Data Item

primitive mechanism). Given a local directory extensions table entry record 138 in

the local directory extensions table 124, the .True File process can provide the

following steps (with reference to FIG. 12), depending on how the local processor

. is configured:

[00105] ' First, in step 823 8, examine the local directory extensions table entry

record '138 to determine whether the file is locked by a cache server. If the file is

locked, then add the ID of the cache server to the dependent processor list of the

True File registry table 126, and then send a message to the cache server-to update

' the cache of the current processor using the Update Cache remote mechanism
.(Step 242). I

[00106] If desired, compress the True File (Step $246),'and,' if desired,

. ,mirror the True File using the Mirrbr True File background mechanism (Step V

' 8248). '

., -24_
2618-001 1

GOOG-1020-Page 29 of 114

GOOG-1020-Page 30 of 114

4. Get True Name from Path

[00107] _ The True Name of a file can be used toidentify a file by contents, to

confirm that a file matches its original contents, or to compare two files. The

mechanism to get a True Name given the pathname of a file is now described-with
reference to FIG. 13. V

' " [00108] ' First, search the local directory extensions table 124 for the entry

- record 138 with the given pathname (Step 8250). If the pathname is not found, this

' process fails and no True Name corresponding to the given pathname exists. Next,

determine whether the local directory extensions table entry record 138 includes a

True Name (Step $252), and if so, the mechanism's task is complete. Otherwise,

. determine whether the local directory extensions table entry record 138 identifies a

1 directory (Step S254), and if so, freeze the directory (Step $256) (the primitive

mechanism Freeze Directory is described below). .

[00109] Otherwise, in step S258, assimilate the file (using the Assimilate

Data Item primitive mechanism) defined by the File ID field to generate its True

Name. and store its True Name in the local directory extensions entry record. Then

return the True Name identified by the local directory extensions table 124.

5. Link Path to True Name

[00110] The mechanism to link apath to a True Name provides a way of

creating a new directory entry record identifying an existing, assimilated file. This

basicprocess may be used to copy, move, and rename files withorit a need to Copy

their contents. The mechanism to link a path to a True Name is now described

with reference to FIG. 14. i

S [00111] ' First, if desired, confirm that the True Name exists locally by ~

g. searching for it in the True Name registry' or local directory extensions table 135

, .(Step 8260). Most uses of this mechanism will require this form ofvalidation.

Next, search for the path in the local directory extensions table 135 (Step-S262).

Confirm that the directory containing the file named in the path already exists

_ 25 _
2618-0011

GOOG-1020-Page 30 of 114

GOOG-1020-Page 31 of 114

(Step S264). If the named file itself exists, delete the File using the Delete True

File operating system mechanism (see below) (Step S268). .

'.[001]2] Then, create an entryrecord in the local directory extensions with

the specified path (Step S270) and update the entry record and other data

‘ structures as follows: fill in the True Name field'of the entry with the specified

' True Nameg'increment the use count for the True File registry entry record 140 of

the corresponding True Name;.note whether the entry is a directory by readingthe

’ : True File to.see if it contains a tag (magic number) indicating that it represents a

. frozen directory (see also the description of the Freeze Directory primitive .

mechanism regarding the tag); and compute [and set the other fields of the local

directory extensions appropriately. For instance, search the region table 128 to.

identify the region of the path, and set the time of last access and time of last

. modification to the current time.

6. Realize True File from Location

[00113] ». . This mechanism is used to try to make a local copy of a True File,

given its True Name and the name of a source location (processor or media) that

_ may contain the True File. This mechanism is now described with reference to

FIG. 15.

[00114]- First, in step S272, determine whether the location specified is a

- processor. If it is determined thatthe location specified is a processor, then send a

Request True File message (using the Request True File remote mechanism) tothe

remote processor and wait for a response (Step S274). If a negative response is

reCeived 0r no response is received after a timeout period, this mechanism fails. If

'. a positive response is received, enter the True File returned in theTrue File

‘ registry 126 (Step S276). (If the file received was compressed, enter the. True File '

‘ID. in the compressed File ID field.) ; -. _ . _ . ‘_

. [00115] : If, on the other hand, it is determined in stepS272'that thellocation‘

'. specified is not a processor, then, if necessary,request the user or operator to ..

_ 26 ._
2618-0011

GOOG-1020-Page 31 of 114

GOOG-1020-Page 32 of 114

mount the indicated volume (Step. 8278). Then (Step 3280) find the indicated file

' on the given volume and assimilate the file using the Ass'imilate Data Item.

primitive mechanism. If the volume does not contain a True File registry .126,

search the'media inventory to find the path of the file on the volume. If nosuch

file can be found, this mechanism fails.

[00116] At this point, whether or not the location is determined (in step '

_ $272) to be a processor, if desired, verify the True File (in step S282).

7. Locate Remote File _

[00117] This mechanism allows a processor to locate a file or data item from

aremote source of True Files, when a specific source is unknown or unavailable.
A client processor system may ask one of several or many sources whether it can

supply a data object with a given True Name. The steps to perform this

mechanism are as follows (with reference to FIGS. 16(a) and 16(b)).

[00118] The client processor 102 uses the source table 145 to select one or

more source processors (Step S284). If no source processor can be found, the
mechanism fails. Next, the client 'pr0cessor 102 broadcasts to the selected sources

a request to locate the file with the given True Name using the Locate True File

remote mechanism (Step 8286). The request to locate may be augmented by

asking to propagate this request to distant servers. The client processor then waits

.for one or more servers to respond positively (Step 8288). After all servers

respond negatively, or after a timeout period with no positive response, the

mechanism repeats selection (Step $284) to attempt to identify alternative sources;

If anyselected source processor responds, its processor ID is the resultof this

' mechanism. Store the processor ID] in the source field of the True File registry

entry record 140 of the given True Name (Step 8290). '1

[00119] If the source location of the True Name is a different processor or

' medium than the destination (Step 8290a), perform the following steps: ‘

- A — 27—
26l8-0011

GOOG-1020-Page 32 of 114

GOOG-1020-Page 33 of 114

(i) Look up the True File registry entry record 140 for the

corresponding True Name, and add‘ the source location'ID to the list of

sources for the True Name. (Step 8290b); and

(ii) If the source is a publishing system, determine the expiration date on

' the publishing system for the True Name and add that to the list of sources.

. If the‘source is not a publishing system, send a message to reserve the True

File on the source processor (Step 8290c).

[00120] Source selection in step S284 may be based on optimizations

involving general availability of the source, access time, bandwidth, and

transmission cost, and ignoring previously selected processors which did not

respond in step $288.

8. Make True File Local

[00121] ’ ,_ This mechanism is used when a True Name is known and a locally

accessible copy of the corresponding file or data item is required. This mechanism

makes it possible to actually read the data in a True File. The mechanism takes a

I True Name and returns when there is a local, accessible copy Of the True File in

. the True File registry 126. This mechanism is described here with reference to the

flow chart of FIGS. 17(3) and 17(b).

- [00122] ' First, look in the True File registry 126 for a True File entry record

.140 for the corresponding True Name (Step 8292). If no such entry is found this

mechanism fails. If there is already a True File ID for the entry (Step S294), this

mechanism's task is complete. If there is a compressed file ID for the entry (Step

. 'S296), decompress the file corresponding to the fileID (Step 829.8) and store the

decompressed file ID in the entry (Step S300). This mechaniSm is then complete.

' [00123] If there is no True File ID for the entry (Step 'S294) and there is no

' compressed file ID for the entry (Step 8296), then continue searching for the

‘ : requested file. At this time it may be necessary to notify the user that the system is

searching for the requested file. I

. -23_
2618-001]

GOOG-1020-Page 33 of 114

GOOG-1020-Page 34 of 114

[00124.] ' ' ' If there are one or more source IDs, then selectan orderin which to

‘ attempt to realize the source ID (Step S304). The ordermay be based on. . .

_ optimizations involving general availability of the source, acceSs time, bandwidth,

and transmission cost. For each source in the order chosen, realize the‘True File

from the source location (using the Realize True File from Location primitive

-mechanism), until the True File is. realized (Step S306). If it is realized, continue

with step 8294. If no known source can realize the True File,‘ use the Locate

Remote File primitive mechanism to attempt to find theTrue File (Step S308). If‘

this succeeds, realize the True File from the identified source location and

continue with step $296.

9. Create Scratch File

' [00125] . A scratch copy of a file is required when a file is being created or is

' about to be modified. The scratch copy is stored in the file system-of the

underlying operating system. The scratch copy is eventually assimilated when the

' audit file record entry 146 is processed by the Process Audit'File Entry primitive

.- mechanism. This Create Scratch File mechanism requires a local directory

extensions table entry record 138. When it succeeds, the local directory extensions

table entry record 138 contains the scratch file ID of a scratch file'that is not

contained in the True File registry 126 and that may be modified. This mechanism

is now described with reference to FIGS. 18(a) and 18(b).

'[00126] First determine whether the scratch fileshould be a copy of the

existing True File (Step S310). If so, continue with step S312. Otherwise,

_ determine whether the local directory extensions table entry record 138 identifies

an existing True File (Step S316), and if so, delete the True File using the Delete

True File primitive mechanism (Step S318). Then create a new, empty scratch file

_ and store its sCratch'file ID in the local directory extensions table entry record 138 .

. (step S320). This mechanismzis then complete.

- 29 _
2618—0011

GOOG-1020-Page 34 of 114

GOOG-1020-Page 35 of 114

. [00127] , If the local directory extensions table entry record 138 identifies a

scratch file ID (Step S312), then the entry already has a s'cratCh file, so this

mechanism succeeds. .

[00128] - If the local directory extensions table entry record 138 identifies-a

‘ ~ True File (8316), and there is no True File ID for the True File (S312), then make

‘ the True File local using the Make True File Local primitive mechanism (Step

S322). If there is still no True File ID, this mechanism fails. >

[00129] There is now a local True File for this file. If the use count in the

. corresponding True File registry entry record 140 is one (Step S326), save the

True File ID in the scratch file ID of the local directory extensions table entry

recdrd 138, and remove the True File registry entry record 140 (Step S328). (This

.step makes the True File into a scratch file.) This mechanism's task is complete.

[00130] ' Otherwise, if the use count in the corresponding True File registry

' entry record 140 is not one (in step S326), copy the file with the given True File

ID to a new scratch file, using the Read File OS mechanism and store its file ID in

the IOcal directory extensions table entry record 138 (Step S330), and reduce the

use count for the True File by one. If there is insufficient space to make a copy,

this mechanism fails.

10. Freeze Directory

[00131] This mechanism freezes a directory in order to calculate its True .

" Name; Since the True Name of a directory is a function of the files within the

" directory, they must not change during the computation Of the True Name of the

directory..,This mechanism requires the pathname of a directory to freeze. This

mechanism is described with reference to FIGS. 19(3) and 19(b).

[00.132] . ,In step S332, add one to the global freeze lock. Then search the local

. directory extensions table 124 to find each subordinate data file and direCtory of V.

' ‘. the,given directory, and freeze each subordinate directory found using the Freeze

' ' _ Directory primitive mechanism (Step S334). Assimilate each unassimilated data

_ 30-
26l80011

GOOG-1020-Page 35 of 114

GOOG-1020-Page 36 of 114

file in the directory using the Assimilate Data Item primitive “mechanism (Step

' S336). Then create a data item which begins with a tag or marker (a "magic

- number") being a unique data item indicating that this data item is a frozen

' directory (Step S337). Then list the file name and True Name for each file in the

current directory (Step S338). Record any additional information required,‘such as

‘ . the. type, time of last access and modification, and size (Step 8340). Next, in step'

‘ S342, using the Assimilate Data Item primitive mechanism, assimilate the data

item created in step S338. The resulting True Name is the True Name of the frozen

' directory. Finally, subtract one from the global freeze lock (Step S344). .

11. Expand Frozen Directory

[00133] ‘ This mechanism expands a frozen directory in a given location. It

requires a' given pathname into which to expand the directory, and the True Name

of the directory and is described with reference to FIG. 20., _

[00134] First, in step S346, make the True File with thegiven True Name

local using the Make True File Local primitive mechanism. Then read each

- directory entry in the local file created in step S346 (Step S348). For each such .
directory entry, do the following:

[00135] Create a full pathname using the given pathname and the file name

of the entry (Step S350); and

[00136] ‘ link the created pathto the True Name (Step S352) using the Link

Path to True Name. primitive mechanism.

12. Delete True File

‘ . _;‘[00137]' ., . This mechanism delet/es a reference to aTrue Name. The underlying

.. TrueFileis not removed from the True File registry 126 unless there are no

additional references to the file. With reference, to FIG. 21, this mechanism is

. performed as follows:

- 3] _
2618-00“

GOOG-1020-Page 36 of 114

GOOG-1020-Page 37 of 114

[00138] . If the global freeze lock is on, wait until .the global freeze look‘ is

turned off (Step S354). This prevents deleting a True File‘whil‘e'a directOry which

might refer to it is being frozen. Next, find the True File registry entry record 140

' given the True Name (Step S356). If the reference count field ofthe True File

; registry 126 is greater than zero, subtract one from the reference Count field (Step

' £8358). Ifit is determined (in step S360) thatthe reference count'fi'eld of the True.

File, registry entry record 140 is zero, and if there are no dependent systems listed

in 'the'True File registry entry record 140, then perform the folloWing stepsi

[00139] (i) If the True File is a simple data item, then delete the True

File, otherwise,

[00140] (ii) (the True File is a compound data item) for each True Name

in the data item, recursively delete the True File corresponding to the True Name

(Step S362).

[00141] (iii) Remove the file indicated by the True File ID and I

compressed file ID from the True File registry 126, and remove the True File

registry entry record 140 (Step S364). '

13. ‘ Process Audit File Entry

[00142] This mechanism performs tasks which are required to maintain

information in the local directory extensions table 124 and True File registry 126,

but Which can be delayed while the processor is busy doing more time-,critiCal

tasks. Entries 142 in the audit file 132 shou1d be processed at a background

priority as long as there are entries to be processed. With reference to FIG. 22, .the

steps for processing an entry are as follows:

[00143] ' Determine the operation in the entry 142 currently being processed
. (StepS365). If the operation indicates that a file was created or written (Step

: S366), then assimilate the file using the Assimilate Data Item primitive I i

mechanism (Step S368), use the True File primitive mechanism to do additional

’ desired processing (such as cache update, compression, and mirroring) (Step

. — 32 -
2618-001]

GOOG-1020-Page 37 of 114

GOOG-1020-Page 38 of 114

. 'S369),:and record the newly computed TrueName for the file in the audit file

record entry (Step S370). '

. [00144] . Otherwise,.if the entry being processed indicates that a compound

data item or directory was copied (or deleted) (Step S376), then for each

component True Name in the compOund data item or directory, add (or subtract)

’ one to the use count ofthe True File regiStry entry record 140 corresponding to the

component True Name (Step S378).

[00145] In all cases, for each parent directory of the given file, update the

- size, time of last access, and time of last modification, according to the operation

in the audit record (Step S379).

[00146] Note that the audit record is not removed after processing, but is

retained for some reasonable period so that it may be used by the Synchronize

Directory extended mechanism to allow a disconnected remote processor to update

its representation of the local system.

14. Begin Grooming

[00147]. {This mechanism makes it possible to select :a set of files for removal
and determine the overall amount of space to be recovered. With reference to FIG.

23, first'verify that the global grooming lock is currently unlocked (Step S3 82).

Then Set the global grooming lock, set the total amount of space freed, during

grooming to zero and empty the list of files selected for deletion (Step S3 84). For

' . each True File in the True File registry 126, set the delete count to Zero (Step

S386). _

15. Select For Removal

, [00148] .This grooming mechanism tentatively selects a' pathname to allow its

corresponding True File to be removed. With reference to FIG. 24, first find the

local directory extensions table entry. record 138 corresponding to the given

_ .3 pathname (Step S388). Then find the True File registry entry record.140

_ 33 _
261800“

GOOG-1020-Page 38 of 114

GOOG-1020-Page 39 of 114

Corresponding to the True File name in the local directory extensions table entry.

record 138 (Step S390). Add‘one to the grooming delete count in the True File

registry entry record 140 and 'add the pathname to a list of‘files selectedfor

deletion (Step S392). If the grooming delete count of the True (File registry entry

.‘record 140 is equal to the me count of the True File registry entry record 140, and

‘ if the‘there are no entries in the dependency list of theTrue File registry entry'

record 140, then add the size of the file indicated by the True File ID and or

. compressed file ID to the total amount of space freed during grOoming (Step.

S394).

16. End Grooming.

[00149] V 'This grooming mechanism ends the grooming phase and removes all.
files selected for removal. With reference to FIG. 25, for each file in the list of

'files selected for deletion, delete the file (Step S396) and then unlock the global

. grooming lock (Step S398).

OPERATING SYSTEM MECHANISMS

[00150] The next of the mechanisms provided by the present invention,

operating system mechanisms, are now described. I i V -

[00151] _ The following operating system mechanisms are described:

9 1. Open File; I

. Close File;

. Read File;

. Write File;

. Delete File or Directory;

. Copy File or Directory; . j

. Move File or Directory;

. Get File Status; and

\OOOQONUI-bUJN
. Get Files in Directory.

2 - 34—
2618—00“

GOOG-1020-Page 39 of 114

GOOG-1020-Page 40 of 114

1. Open File .

, [00152] A mechanism to open a file is described with reference to FIGS.

' 26(a) and 26(b). This mechanism is given as input a pathname and the type of

..access required for the file (for example, read, write,.read/write, create, etc.) and

’ produces either the File ID of the file to be opened or an indication that no file

Should be opened. The local directory extensions table record 138 and'lregion table

record 142 associated with the opened file are associated with the open file for

later use in other proceSsing functions which refer to the file, such as read, write,

and close.

[00153] First, determine whether ornot the named file exists locally by

examining the local directory extensions table 124 to determine whether there is

an entry corresponding to the given pathn'ame (Step. S400). if it is determined that

the file name does not exist locally, then, using the access type, determine Whether
or not the file is being created by this opening process (Step S402). If the file is

not being created, prohibit the open (Step S404). If the file is being created, create

a Zero-length scratch file using an entry in local directory extensions table 124 and

produce the scratch file ID of this scratch file as the result (Step S406).

[00154] If, on the other hand, it is determined1n step S400 that the file name
does exist locally, then determine the region in which the file1s located by

searChing the region table 128 to find the record 142 with the longest region path
whichIS a prefix of the file pathname (Step S408). This record identifies the

region of the specified file.

[00155] * Next, determine using the accesstype, whether the file is being

opened for writing or whether it is being opened only for reading (Step S410). If

. the file is being opened for reading only, then, if the file isa scratch file (Step
. S419), return the scratch File ID'of the file (Step S424). Otherwise get the True
: Name from the local directory extensions table 124 and make a local version of

the True File associatedwith the True Name using the Make. True File Local

- 35 _
2618-0011

GOOG-1020-Page 40 of 114

GOOG-1020-Page 41 of 114

' primitive mechanism, and then return the True File ID associated with the True

Name (Step S420). ‘ p _

:‘ [00156] '. ' ' ' If the file is not being opened for reading only-(Step S410), then, if it .
x 'is’ deterr'nined by inspecting the region table entry record 142 that the file is in a

'read-only directory (Step S416), then prohibit the opening (Step S422).

. [00157] .4 ‘ If it is determined by inspecting the region table 128 that the file is

. in a cached region (Step S423), then send a Lock_Cache message to the

' corresponding cache server, and wait for a return message (Step S418). If the

return message says the file is already locked, prohibit the opening.

1 [00158] If the access type indicates that the file being modified is being

‘ rewritten completely (Step S419), so that the original data will not be required,

then Delete the File using the Delete File OS mechanism (Step S421) and perform

step S406. Otherwise, make a scratch copy of the file (Step S417) and produce the

scratch file ID of the scratch file as the result (Step S424).

2. Close File

3' [00159] This mechanism takes as input the local direCtory extensions table

entry record 138 of an open file and the data maintained for the open file. To close

a file, add an entry to the audit file indicating the time and operation (create, read

or write). The audit file processing (using the Process Audit File Entry primitive

mechanism) will take care of assimilating the file and thereby updating the other
records.

3. Read File

.[00160]' ' ' To read a file, a program must provide the offset and length of the

7 _ data to be read, and the location of a buffer into which to copy the data read.
V -[00161]- The file to be read from18 identified by an open file descriptor which

1 includes a File ID as computed by the Open File operating system mechanism
- '. defined above. The File ID may identify either a scratch file or a True File (or

. - 36—
2618-0011

GOOG-1020-Page 41 of 114

GOOG-1020-Page 42 of 114

True Filesegment). If the File ID’identifies a True File, it may be either a simple

ora compound True File. Reading a file is accomplished by the following steps:

[00162] '. In the case where the File ID identifies a scratch file or a simple

True File, use the read capabilities of the underlying operating system.

[00163] In the case where the File ID identifies. a compound file, break the

. read operation into one or moreread operations on component segments as ~ :.

. follows:

' ' [001614] A. Identify the segmeht(s) to be'read by dividing the specified

‘ file offset and length each by the fixed size of a segment (a system dependent

parameter), to determine the segment number and number of segments that must

be read.

[00165] = B. For each segment number computed above, do the following:

[00166] , , i. Read the compound True File index block to

determine the True Name of the segment to be read. ‘

[00167] ii. Use the Realize True File from Location primitive

mechanism to make the True File segment available locally. (If that mechanism

fails, the Read File mechanism fails). ‘

[00168] ’ iii. Determine the File ID of the True File specified bythe

True Name corresponding to this segment. I. I

‘ [00169] iv. Use the Read Filemechanism (recursively) to read

" from this segment into the corresponding location in the specified buffer.

4. Write File

[00170] . ' L File writing uses the file ID and data management capabilities of the

underlying Operating system. File access (Make File Localr described‘aboVe)-can

be deferred until the first read or write.

, - 37 —
2618—00“

GOOG-1020-Page 42 of 114

GOOG-1020-Page 43 of 114

5. Delete File or Directory

[00171] The process‘of deleting a file, for a given pathname, is described

here with. reference to FIGS. 27(a) and 27(b).

[00172]. First, determine the local directory extensions table entry record 138

and region table entry record 142 for the file (Step S422). If the 'file has no local

directory extensions table entry record 138 or is locked or is in a read-Only region,

prohibit the deletion. ' '

[00173] Identify the corresponding True File given-the True Name of the file

being deleted using the True File registry 126 (Step S424). If the file has 110 True ‘

Name, (Step S426) then delete the scratch copy of the file based On its scratch-file

ID in the local directory extensions table 124 (Step S427), and continue with step

S428. ' ‘

[00174] * If the file has a True Name and the True File's use count is one (Step I

S429), then delete the True File (Step S430), and continue vvith step S428.

[00175] t * If the file has a True Name and the True File's use count is greater

than one, reduce its use count by one (Step S431). Then proceed with step S428.

[00176] In Step S428, delete the local directory extensions table entry record,

and add an entry to the audit file 132 indicating the time and the operation

performed (delete). ‘ ' I I

6. Copy File or Directory

[00177] . A mechanism is provided to copy a file or directory given a source

and destination processor and pathname. The Copy File mechanism does not

actually .copy the data in the file, only the-True Name of the file. This mechanism

is performed as follows: . V IV ' I i

' t [00178] ._ _ (A) Given the source path, get the True Name from the path. If
this step fails, the mechanism fails. I

' [00179] g (B) Given the True Name and the destination path, link the .
‘ destination path to the True Name. I h '

_ 38 _
2618-0011

GOOG-1020-Page 43 of 114

GOOG-1020-Page 44 of 114

. ‘ [00180] ' ‘ , (C) If the source and destination processors haVe different True

‘File'registries, find (or, if necessary, create) an entry for the True Name in the

True File registry table 126 of the destination processor. Enter into-the source ID

, field of this new entry the source processor identity. . .

[00181] (D) Add an entry. to the audit file 132_indicating the time and

operation performed (copy). ‘ . . . i
' [00182] This mechanism addresses capability of the system to avoid copying

' data from a source location to a destination location when the destination already

has the data. In addition, because of the ability to freeze a directory, this

mechanism also addresses capability of the system immediately to make a copy of

' any collection of files, thereby to support an'efficient version control mechanisms

. for groups of files.

7. ' Move File or Directory

[00183] A mechanism is deseribed which moves (or renames) a file from a

source path to a destination path. The move operation, like the copy operation,

requires no actual transfer of data, and is performed as follows: i

' [00184] (A) Copy the file from the source path to the destination path.

I [00185], - ‘ (B) If the source path is different from the destination path, delete

the source path.

8. Get File Status

[00186] This mechanism takes a file pathname and provides information

' . about the pathname. First the local directory extensions table entry record 138

cor'resp‘Onding to the'pathname given is found. If no such entry exists, then this

“mechanism fails, otherwise, gather infoMation about the file and its

‘ corresponding True File from the localdirectory extensions table 124. The

" . information can include any information shown in'the data structures, including

‘ thelsi'ze, type, owner, True Name, sources, time of last access, time of last

- 39 _
2618-0011

GOOG-1020-Page 44 of 114

GOOG-1020-Page 45 of 114

m‘odification,,state (local or not, assimilated or not, compressed or not), use count,

expiration date, and reserVations.

9. Get Files in Directory

[00187] This mechanism enumerates the files in a directory. It is. used ,

(implicit-1y) whenever it is necessary to determine whether a file exists (is present)

'in a directory. For instance, it is implicitly used-in the Open File, Delete File,

. Copy File or Directory, and Move File operating system mechanisms, because the

files operated on-are referred to by pathnames containing directory names. The

mechanism works as follows: 7
[00188], ' The local directory extensions table 124 is searched for an entry 138

with the given directory pathname. Ifno such entry is found, or if the entry found

is not a directory, then this mechanism fails.

[00189] If there is a corresponding True File field in the local directory

extensions table record, then it is assumed that the True File represents a frozen

directory. The Expand Frozen Directory primitive mechanism is used to expand

the existing True File into directory entries in the loCal directory extensions table;

[00190] Finally, the local directory extensionstable 124 is again searched,

this time to find each directory subordinate to the given directory. The names

found are provided as the result.

REMOTE MECHANISMS

[00191]. . The remote mechanisms provided by the present invention are now

. described. Recall that remote mechanisms are used by the operating system in

respOnding to requests from other_processors. These mechanisms enable the -

capabilities of the present invention in a peer-to-peer network mode ofoperation. -

[00192] In a presentlyprefer‘red embodiment, processors communicate with 9

each other using a remote procedure call (RPC) style interface, running over one

' of any' number of cOmmunication protocols suchlas IPX/SPX orTCP/I‘P; Each ,

_ 40 _
26l8-0011

GOOG-1020-Page 45 of 114

GOOG-1020-Page 46 of 114

- peer processor which provides access to its True File registry 126 or file regions,

I . or whichdepends on another peer processor; providesa number of mechanisms

which can be used by its peers.

[00193] The following remote mechanisms are described:

1. i Locate True File;

Reserve True File;

Request True File;

Retire True File;

Cancel Reservation; '

Acquire True File;

Lock Cache;

Update Cache; and i
pwfieweww

Check Expiration Date.

1. Locate True File

[00194] . ‘ This mechanism allows a remote processor to determine whether the

local processor contains a copy of a specific True 'File. The mechanism begins

with a True Name and a flag indicating whether to forward requests for this file to

' other servers. This mechanism is now described with reference to FIG. 28.

[00195] First determine if the True File is available 10cally or if there is some

indication of where the True File is located (for example, in the Source IDs field).

Look up the requested True Namein the True File registry 126 (Step S432).
' [00196] . If a True File registry entry record 140IS not found for this True

Name (Step S434), and the flag indicates that the'request1s not to'be fOrwarded

(Step S436), respond negatively (Step S438) ThatIs, respond to the effeCt that the
True File18 not available ‘ ‘

' , [00197] One the other hand, if a True File registry entry record 140 is not

found (StepfS434), and the flag indicates that the request for this True File is to be

forwarded (Step S436), then forward a request for this True File to some other i

_ 41 _
2618-0011

GOOG-1020-Page 46 of 114

GOOG-1020-Page 47 of 114

processors, in the system (Step S442). If the source table for the current processor ~

identifies one or more publishing servers which should have a copy of this True

i File,vtlien forward the request to each of those publishing servers (Step S436).

‘ [00198]. If a True File registry entry record 140 is found for the required True

File (Step S434), and if the entry includes a True File ID or Compressed File ID

' (Step -S440), respond positively (Step S444). If the entry includes a True File ID

' . then this provides the identity or disk location of the actual physical representation

of the file or file segment required. If the entry include a'Compressed File ID, then

' a'compressed version of the True File may be stored instead of, or in addition to,

an uncompressed version. This field provides the identity of the actual

representation of the compressed version of the file.

[00199]” ' If the True File registry entry record 140 is found (Step S434) but

. does not include a True File ID (the File ID is absent if the actual file is not

currently present at the current location) (Step S440), and if the True File registry

entry record. 140 includes one or more source processors, and if the request can be

forwarded, then forward the request for this True File to one or more of the source 3

processors (Step S444).

2. Reserve True File

[00200] This mechanism allows a remote processor toindicate that it

depends .on the local processor for access to a specific True File. It takes a True

Name asinput. This mechanism is described here. .

. [00201] ' (A) Find the True File registry entry record 140 associated with

the given True File. If no entry exists, reply negatively. I i

' [00202] ' ‘ (B) If the True File registry entry record 140 does not include a

= True “File ID or compressed File ID, and if the TrueFile registry entry record 140

inclUdes no source IDs for removable storage volumes, then this precessor'does

not have access to a copy of the giVen file. Reply negatively. . .

_ 42 _
2618-00“

GOOG-1020-Page 47 of 114

GOOG-1020-Page 48 of 114

’ [00203] . (C) Add the ID of the sending processor to the list‘of dependent

processors for the True File registry entry record 140. Reply positively, with an

indication of whether the reserved True File is 'on line or off line. _

3. Request True File

1 [00204]; , This mechanism allows a remote processor to request alcopy of a .
. True File from the local processor. It requires a True Name and responds

positively by sending a True File back to the requesting processor. The mechanism

operates as follows: _

[00205] . (A) Find the True File registry entry record 140 associated with

the given True Name. If there is no such True File registry entry record 140, reply

negatively. ,

[00206] (B) Make the True File local using the Make True File Local

primitive mechanism. If this mechanism fails, the Request True File mechanism

also fails. , _

[00207] (C) Send thelocal TrUe File in either it is uncompressed or _

compressed form to the requesting remote processor. Note that if the True File is a

compound file, the components are not sent.

[00208] . (D) If the remote file is listed in the dependent process list of the

True File registry entry record 140, remove it.

i 4. Retire True File

[00209] This mechanism allows a remote processor to indicate that it no

longer plans to maintain a copy of a given True File. An alternate source of the . .

. True File can be specified, if, for instance, the True File18 being moved from one

server to another. It begins with a True Name, a requesting processor ID, and an» \-

optional alternate source. This mechanism operates as follows. .

[00210] (A) Find a True Name entry in the True File registry 126. If there ,.
is no entry for this True Name, this mechanism’5 task18 complete.

_ 43 _
2618-001!

GOOG-1020-Page 48 of 114

GOOG-1020-Page 49 of 114

[00211] * ' (B) ‘Find the requesting processor on the source list and, if it is

‘ there, remove it.

' ; [00212] ' ' ' (C) If an alternate source is provided, add it to the source list for

the True File registry entry record 140.

‘ [00213] (D) If the source list of the True File registry entry record 140 has

no items in it, use the Locate Remote File primitive mechanism to search for

another copy of the file. If it fails, raiSe a serious error.

5. Cancel Reservation

[00214] This mechanism allows a remote processor to indicate that it no

longer requires access to a True File stored on the local processor. It begins with a

‘ True Name and a requesting processor ID and proceeds as follows:

[00215] ‘ (A) Find the True Name entry in the True File registry 126. If

‘ there is no entry for this True Name, this mechanism's task is complete.

[00216] (B) Remove the identity of the requesting processor from the list

of dependent processors, if it appears.

[00217] - (C) If the list of dependent processors becomes zero and the use

count is also zero, delete the True File.

. 6. Acquire True File

[00218] This mechanism allows a remote [processor to insist that a local

processor make a copy of a specified True File. It is used, for example, when a

’ cache clientwants to write through a new version of a file. The Acquire True File

‘ ' mechanism begins with a data item and an optional True Name for the data item

and proceeds as follows:

[00219] :p (A) Confirm that the requestingprocessOr has the right to require

.the local'processor to acquire data items. If not, send anegative reply.

[00220]: (B) Make a local Copy of the data item transmitted by the remote

processor. i

. V _ 44 _
2618—001]

GOOG-1020-Page 49 of 114

GOOG-1020-Page 50 of 114

[00221]. (C). Assimilate the data item intothe True File registry. ofthe

local processor.

[00222] (D) If a True Name was provided with the file, the True Name

- calculation can be avoided, or the mechanism can verify that the file received

matches the True Name sent. I

’ [00223] ‘ (E) Add an entry in the dependent processor liSt ofthe true file

registry record indicating that the requesting processordepends on this copy of the

given True File.

[00224] (F) Send a positive reply.

7. Lock Cache

[00225] This mechanism allows a remote cache client to lock a local file so

that local users or other cache clients cannot change it while the remote processor

is usihg it. The mechanism begins with a pathname and proceeds as follows:

[00226]“ (A) Find the local directory extensions table entry recordl38 of

the specified pathname. If no such entry exists, reply negatively;

[00227] . (B) If an local directory extensions table entry record 138 exists

and is already locked, reply negatively that the file is already locked.

[00228] _ (C) If an local directory extensions table entry record 138 exists

and is not locked, lock the entry. Reply positively.

.8. ‘ Update Cache

[00229] This mechanism allows a remote cache client to unlock a local file

and update it with new contents. It begins with a pathname and a- True Name. The

file corresponding to the True Name must be accessible from the remote

- processor. Thismechanism operates as follows:

._ [00230] ' ' Find the local directory extensions table entry rec0rd.l38

correSponding to the given pathname. Rep’ly negatively if no.such" entry exists or if "

the entry is not locked.

, — 45 —
2618-00”

GOOG-1020-Page 50 of 114

GOOG-1020-Page 51 of 114

[00231] Link the given pathname to the given True Name using the Link

Path to True Name primitive mechanism.

[00232] ' Unlock the local directory extensions table entry record 138 and

return positively.

9. Check Expiration Date '

[00233] Return current or new expiration date and possible alternative source

to caller.

BACKGROUND PROCESSES AND MECHANISMS

[00234] - » The background processes and mechanisms provided by the present

invention are now described. Recall that background mechanisms are intended to

run occasionally and at a low priority to provide automated management

capabilities with respect to the present invention.

’ [00235] The following background mechanisms are described:

1. Mirror True File;

2. Groom Region;

3. Check for Expired Links;

4. Verify Region; and

5. Groom Source List.

1. Mirror True File

[00236] This mechanism18 used to ensure that files are available1n alternate

locations1n mirror groups or archived on archival servers. The mechanism
depends on application-specific migration/archival criteria (size, time since last

; access, number of copies required, number of existing alternative sources) which
_ determine under what conditions a file should be moved. The Mirror True File

' . mechanism operates as follows, usingthe True Filespecified, perform the ;
following steps:

_ 46 _
2618-0011

GOOG-1020-Page 51 of 114

GOOG-1020-Page 52 of 114

[00237.] ‘- _ (A) Count the number of available locationsof the True File. by

' inspecting the source list of the True File registry entry record 140 for the True

1 File. This 'step determineshow many copies .of the True. File are available in the

system.

[00238] ' (B) If the True File meets the specified migration criteria, select a

mirror group server to which a copy of the file should be sent. Use the Acquire

True File-remote mechanism to copy the. True File to the selected mirror group

serVer. Add the identity of the selected system to the source list for the True File.

2. Groom Region

[00239]“ g , This mechanism is used to automatically free up space in a processor '

by deleting .data items that may be available elsewhere. The mechanism depends

.on application-specific grooming criteria (for instance, a file may be removed if

. there is an alternate online source for it, it has not been accessed in a given number

. ofdays, and it is larger than a given size). This mechanism operates as follows:
[00240] . - Repeat the following steps (i) to (iii) with more aggressive grooming ~

' » . criteria until sufficient space is freed or until all grooming criteria have been

’ exercised. Use grooming information to determine how much space has been

freed. Recall that, while grooming is in effect, grooming information includes a

' table ofpathnames selected for deletion, and keeps track of the amount of space

that would be freed if all of the files were deleted.

[00241] (i) Begin Grooming (using the primitive mechanism). _ .

[00242] ’ (ii) For each pathname1n the specified region, fOr the True File

corresponding to the pathname, if the True File15 present, has at least one
I . alternative source, and meets application specific grooming criteria for the region,

select the file for removal (using the primitive mechanism). A
:[00243] A (iii) End Grooming (using the primitive mechanism).
[00244] f. .A ;.If the region is used as a cache, no other processors are dependent on

' True Files to which it refers, and all such True Files are mirrored elsewhere. In

.,.. -47_
2618-0011

GOOG-1020-Page 52 of 114

GOOG-1020-Page 53 of 114

this case, True Files can be removed with impunity. For a cache region, the

grooming criteria would ordinarily'eliminate the least recently aécessed True Files

first. This is best done by sorting the True Files in the region by the most recent.

access time before performing step (ii) above. The application specific criteria

would thus be to select for removal every True File, encountered (beginning with

the least recently used) until the required amount of free space is reached. 1

3. Check for Expired Links

[00245] This mechanism is used to determine whether dependencies on
published files should be refreshed. The following steps describe the operation of

this mechanism: ‘

[00246] For each pathname in the specified region, for each True File

corresponding to the pathname, perform the following step:

[00247] If the True File registry entry record. 140 corresponding .to the True

’ File contains at least one source which is a publishing server, and'if. the expiration

date on the dependency is past or close, then perform the following steps:

[00248] (A) Determine whether the True File registry entry record

contains other sources which have not expired.

[00249] (B) Check the True Name expiration of the server. Ifthe

expiration date has been extended, or an alternate source is Suggested, add the

source to the True File registry entry record 140.'

[00250] , (C) Ifno acceptable alternate source was found in steps (A) or (B)

above, make a local copy of the True File. '

[00251] i (D) Remove the expired source, .

4. Verify Region

I: [00252] This mechanism can be used to ensure that the data items in the True

- _ File registry 126 have not been damaged accidentally or maliciousllehe'i

~_operat~ion of this mechanism is described by the following steps:.

,, -48—
261841011

GOOG-1020-Page 53 of 114

GOOG-1020-Page 54 of 114

[00253]- (A) ' Search the local directory extensions table 124 for. each .

* pathname in the specified region and then perform the f0110wing steps:

_ [00254] ' . (i) Get the 'True File name corresponding to the

pathname; _

[00255] . (ii) If the True File registry entry 140 for the True File

does not havea True File ID or compressed file ID, ignore it.

[00256] . (iii) ‘ Use the Verify True File mechanism (see extended

mechanisms below) to confirm that the True File specified is correct.

5. Groom Source List

[00257] The source list in a True File entry should be groomed sometimes to

_ ensure there are not too many mirror or archive copies. When a file is deleted or

when a region definition or its mirror criteria are changed, it may be necessary to

inspect the affected True Files to determine whether there are too many mirror . ‘

copies.'This can be done with the following steps:

[00258] For each affected True File,

: . [00259] (A) Search the local directory extensions table to find each region

that refers to the True File.

[00260] (B) Create a set of "required sources", initially empty.

[00261] (C) For each region found,

[00262] (a) determine the mirroring criteria for that region, .

[00263] (b) determine which sources for the True File satisfy the

mirroring criteria, and

[00264] ' (c) add these sources to the set of required sources.

[00265] 1 (D) For each source in the True File registry entry, if the source

identifies a remote processor (as opposed to removable media), and if the source is

' not a publisher, and if the source is not in the set of required sources, then

eliminate the source, and use the Cancel Reservation remote mechanism to

- 49 _
2618-0011

GOOG-1020-Page 54 of 114

GOOG-1020-Page 55 of 114

eliminate the given processor from the list of dependent processors recorded at the

remote processor identified by the source.

EXTENDED MECHANISMS

[00266] The extended mechanisms provided by the present invention are
‘ now described. Recall that extended mechanismsrun within application programs

over the operating system to provide solutions to 'specific problems and

applications.

[00267] The following extended mechanisms are described:-

1. Inventory Existing Directory; ‘

Inventory Removable, Read-only Files;

Synchronize Directories;

Publish Region;

Retire Directory;

Realize Directory at Location;

Verify True File;

Track for Accounting Purposes; and

>0?°.\‘.°\.U‘:'>S”!"
Track for Licensing Purposes.

1. Inventory Existing Directory

‘ [00268] 2 This mechanism determines the True Names of files in anexisting

on—line directory in the underlying operating system. One purpose of this,

mechanism is to install True Name mechanisms in an existing file system.

[00269] An effect of such an installation is to, eliminate immediately all
dUplicate files from the file system being traversed. If several file systems are
inventoried1n a single True File registry, duplicates across the volumes are also
eliminated. I _- I

[00270] _ , (A) Traverse theunderlying file system in the operating system.
.For each file encountered, excluding directories, perform the following:

- 50 _
2618-0011

GOOG-1020-Page 55 of 114

GOOG-1020-Page 56 of 114

[00271] ' (i) . Assimilate the file encountered (using the .Assimilate

File primitive mechanism). This process computes its True Name. and moves its

data into the True File registry 126. p p .

[00272] ‘ (ii) Create a pathname consisting of the path to the volume

directory and the relative path of the file on the media. Link this path to the

computed True Name using the Link Path to True Name primitive mechanism.-

2. Inventory Removable, Read—only Files

[00273] ' A system with access to removable”, readeonly media Volumes (such

as WORM disks and CD-ROMs) can create a usable inventory of the files on these

disks without having to make online copies. These objects can then be used for

‘ archival purposes, directory overlays, or other needs. An operator must'request

that an inventory be created for such a volume.

[00274] 4 This mechanism allows for maintaining inventories of the contents

of files and data items on removable media, such as diskettes and CD-ROMS, '

independent of other properties of the files such as name, location, and date of

creation.

[00275] The mechanism creates an online inventory of the'files on one or

more removable volumes, such as a floppy disk or CD-ROM,'when the data on the

volume is ”represented as a directory. The inventory service uses a True Name to

identify each file, providing away to locate the data independent of its name, date

of creation, or location. I i ‘ 2

[00276] ' The inventory can be used for archival of data (making it possible to

‘ ' avoid archiving data. When that data is already on a separate volume),for ‘ :

grooming (making it possibleto delete infrequently'accéssed. files if they can be

. ‘ retrievediifrom removable volumes), for version control (making‘it possible to t

' generate a new version of a CD-ROM without having to copy the old version), and I

for otherpurposes.

_ 51 _
2618—001]

GOOG-1020-Page 56 of 114

GOOG-1020-Page 57 of 114

[00277] The inventory is made by creating a volume directory in the media

inventory in which .each file named identifies the data item on the volume being

inventoried. Data items are not copied from the removable volume during the

inventory process.

[00278] An operator must request that an inventory be Created for a specific

volume. Once created, the volume directory can be frozen or copied like any other

directory. Data items from either the physical volume or the volume directory can

be accessed using the Open File operating system mechanism which Will cause

‘ them to be read from the physical volume using the Realize True File from

Location primitive mechanism.

[00279] To create an inventory the following steps are taken:

[00280] (A) A volume directory in the media inventory is' created to

correspond to the volume being inventoried. Its contextual name identifies the

specific volume.

[00281] (B) A source table entry 144 for the volume1s created1n the

source table 130. This entry 144 identifies the physical source volume and the

volume directory createdin step (A).

[00282] (C) The filesystem on the volume is traversed. For each file

encountered, excluding directories, the following steps are taken: - -

[00283] (i) The True Name of the file is computed. An entry is

created in the True Name registry. 124, including the True Name of the file using

the primitive mechanism. The source field of the True Name registry entry 140

identifies the source table entry 144

[00284] (ii) A pathname is created consisting of the path to the .

volume directory and the relative path of the file on the media. This path is linked

" . tothe computed True Name using Link Path to True Name primitive mechanism.
[00285] . (D) After all files have been inventoried, the volume directory1S

frozen. The volume directory serves as a table of contents for the volume. It can be

copied using the Copy File or Directory primitive mechanism to create an

_ 52 _
2618-001]

GOOG-1020-Page 57 of 114

GOOG-1020-Page 58 of 114

"overlay'.' directory which can then be modified, making it possible to edit'a virtual .

copy of a read—only medium.

, 3. Synchronize Directories

. [00286] Given two versions of a directory derived from the same starting

point, this mechanism creates, a new, synchronized version which includes the

. changes from each. Where a file is changed in both versions, this mechanism

provides a user exit for handling the discrepancy. By using True Names, .

comparisons are instantaneous, and no copies of files are necessary-

[00287] ' . This mechanism lets a local processor synchronize a directory to

account for changes made at a. remote processor. Its purpose is to bring-a local

copy of a directory up to date afler a period of no communication between the

, _ localand remoteprocessor. Such a period might occur ifthe local processor were

. a mobile processor detached from its server, or if two distant processors were run

independently and updated nightly.

' [00288] '. . An advantage of the described synchronization process is that it does

not depend on synchronizing the clocks of the local and remote processors- ‘

; However,.it does require that the local processor track its position in the remote

processor's audit file. . 0 .

- [00289] This mechanism does not resolve changes made simultaneously to

the'same file at several sites. If that occurs, an external resolution mechanism such .

as, for example, operator intervention, is required. ,

' [00290] The mechanism takes as input a start time, a local directory’

- pathname, a remote processor name, and a remote directory pathname name, and it
operates by the following steps: ’ _

_ [00291] . (A) Request a copy of theaudit file 132 from the remote

. processor using the Request True File remote mechanism. ~ _

_, - 53 ..
2618-0011

GOOG-1020-Page 58 of 114

GOOG-1020-Page 59 of 114

[00292]. ' (B) For each entry 146 in‘ the audit file 132’after the start time, if

. . the entry indicates a change to a file in the remote directory, perform the following

steps:

[00293] (i) Compute the pathname of the corresponding file1n the
local directory. Determine the True Name of the corresponding file

- [00294] ‘ (ii) If the True Name of the local file1s the same asthe old

True Name1n the audit file, or if there18 no local file and the audit entry indicates

a new file18 being created, link the new True Name1n the audit fileto the local ’

pathname using the Link Path to True Name primitive mechanism.

. [00295] (iii) Otherwise, note that thereIS a problem with the

synchronization by sending a message to the operatOr or to a problem resolution

program, indicating the local pathname, remote pathname, remote processor, and

time of change.

* [00296] ' ' (C) Afier synchronization is complete, record the time of the final

change. This time is to be used as the new start time the next time this directory is

I synchronized with the same remote processor.‘

.4. Publish Region

[00297] The publish region mechanism allows a processor to offer the files in

a region to any client processors for a limitedperiod of time."

[00298] The,purpose-ofthe service is to eliminate any. needfor client .

_ processors to make reservations with the publishing processor. This in turn makes

it possible for the publishing processor to service a much larger number of clients.

[00299] ' ’ When a region is published, an expiration'date is defined for all files

in the region, and is propagated into the publishing system'sTrue Fileregistry

entry record 140 for each file. .

[00300] When a remote file18 copied, for instance uSing the CopyFile

operating system mechanism, the expiration date18 copiedinto the source field of

.. 1 - 54 —
2618-0011

GOOG-1020-Page 59 of 114

GOOG-1020-Page 60 of 114

the Client's True File registry entry record 140. When the source is "a publishing .

system, no dependency need be created.

[00301] . .The client processor must occasionally and in background, check for

. expired links, to make sure it still has access to these files. This is described in the

background mechanism Check for Expired Links.

5. Retire Directory

f [00302] ‘ This mechanism makes it possible to eliminate safely-the True Files

. in a directory, or at least dependencies on them, after ensuring that any client

processors. depending on those files remove their dependencies. The files in the

directory are not actually deleted by this process. The directory can be deleted

with the Delete File operating system mechanism. 1

[00303] The mechanism takes the pathname of a giyen directory, and

optionally, the identification of a preferred alternate source processor for clients to

use. The mechanism performs the following steps:

[00304] (A) Traverse the directory. For each file in the directory, perform

the following steps:

[00305] _ (i) Get the True Name of the file from its path and find

the True File registry entry 140 associated with the True Name.

[00306] ' (ii) Determine an alternate source for the True File. If the

source IDs field of the TFR entry includes the preferred alternate source, that is

the alternate source. If it does not, but includes some other source, that is the

alternate source. If it contains no alternate sources, there is no alternate source.

“- [00307] . . (iii) For each dependent processor in th'ejTrue File registry

entry 140, ask that processor to retire the True File, specifying an alternate-source

if one was determined, using theremote mechanism. .

_ 55 _
2618-0011

GOOG-1020-Page 60 of 114

GOOG-1020-Page 61 of 114

6. Realize Directory at Location

1 [00308] ‘ This mechanism allows the user or Operating system to force copies

f Offiles-from some source location to the True File'registry 126 at a‘given location.

The purpose of the mechanism is to ensure'that files are accessible in the event the

source. location becomes inaccessible-This can happen for instance-if the source or

. given location are on mobile computers, or are on removable media, or if the

network connection to the source is expected to become unavailable, or if the

"source is being retired. 1

[00309] This mechanism is provided in the following Steps for each file in

the given directory, with the exception of subdirectories: I 1

[00310] (A) Get the local directory extensions table entry record 138

given the pathname of the file. Get the True Name of the local directory

extensions table entry record 138. This service assimilates the file if it has not

already been assimilated.

[00311] 03) Realize the corresponding True File at the given location.

This service causes it to be copied to the given location from a remote system or

removable media.

7. ' Verify True File

[00312] This mechanism is used to verify that the data item in a True File

registry 126 is indeed the correct data item given its True Name. Its purpose is to

guard against device errors, maliCious changes, or other problems. ' I

[00313] If an error is found, the system has the ability to 'I'heal" itself by

finding another source for the True File with the given name. It may also be-

desirable to verify that the error has riot propagated to other systems, and to log the

prOblem or indicate it to the computer Operator. These details are not described

here.

[00314] To verify a data item that is not in a True File registry 126, use the

Calculate True Name primitive mechanism described above.

» A — 56—
2618-0011

GOOG-1020-Page 61 of ’114

GOOG-1020-Page 62 of 114

[00315] The basic mechanism begins with a True Name, and Operates in the

following steps: ‘

[00316]". ' (A) Find the True File registry entry record 140 corresponding to

. the given True Name. ‘ , . ‘

[00317] , (B) If there is a True File ID for the True File registry entry

record 140 then use it. Otherwise, indicate that 'no file exists to verify..

[00318] . . (C) Calculate the True Name of the data item given the file ID of

the data item. I

[00319] , (D) Confirm that the calculated True Name is equal to the given

True Name. C

[00320] (E) If the True Names are not equal, there is an error in the True

File registry 126. Remove the True File ID from the True File registry entry record

140 and place it somewhere else. Indicate that the True File registry entry record

140 contained an error.

8. Track for Accounting Purposes

[00321] This mechanism provides a way to know reliably which files have

been stored on a system or transmitted from one system to another. The

mechanism can be used as a basis for a value-based accounting system in which

charges are based on the identity of the data stored or transmitted, rather than .

simply on the number of bits.

[00322] This mechanism allows the system to track possession of specific

data items according to content by owner, independent of the name, date, or other

' properties of the data item, and tracks the uses of specific data items and files by

'content for accounting purposes. True names make it possible to identify each file
briefly yet uniquely for this purpose.

.[00323] ', Tracking the identities of files requires maintaining an accounting

_ log 134 and processing it for accounting or billing purposes. The mechanism

operates in the following steps: p

_ , - 57 -
2618-0011

GOOG-1020-Page 62 of 114

GOOG-1020-Page 63 of 114

[00324] ' (A) Note every time a file is created or deleted, forins'tance by .

monitoring audit entries in the Process Audit File Entry primitive mechanism.

Whenisuch an event is encountered, .createan entry 148 in theaCC'ounting log 134

that ShoWs the responsible party and the identity 'of the file created or deleted.

[00325] . (B) Every time a file is transmitted; for instance Whena file is

’ copied with a Request True File remote'mechanism or an Acquire TrueFile

‘ remote mechanism, create an entry. in the accounting log 134 that shows the

responsible party, the identity of the file, and the source and destination '

processors.

' [00326] (C) Occasionally run an accounting program to process the

accounting log 134, distributing the events to theaccount records of each

responsible party. The account records can eventually be summarized for billing

purposes.

9. Track for Licensing Purposes

[00327] This mechanism ensures that licensed files are not used by

unauthorized parties. The True Name provides a safe way to identify licensed

material; This service allows proof of possession of specific files according to

their contents without disclosing their contents.

[00328] Enforcing use of valid licenses can be active (for example, by

refusing to provide access to a file without authorization) or passive (for example,

by creating a report of users who do not have proper authorization).

1 [00329] One possible way to perform license validation is to perform

occasional audits of employee systems. The service described herein relies on '

True Names to support such an audit, as in the following steps: -

. [00330] , . _ (A) For. each licensed product, record in the license table 136 the - '

_ True Name of key files in the product (that 'is, files which are required in order to

_use.the product, and which do not occur in other products) Typically, :for a . _ .

software product, this would‘include the main executable image and perhaps other

. - 58 —
2618-00”

GOOG-1020-Page 63 of 114

GOOG-1020-Page 64 of 114

- major files such as clip-art, scripts, or online help. Also record the. identity .of each

system which is authorized to have a copy of the 'file.

. [00331] . (B) occasionally, compare the contents of each user‘processor

against the license table 136. For each True Name in the license table do the

following:

. [00332]_' (i) Unless the user processOr is aUthorized to have a copy

ofthe file, confirm that the user processor does not have a copy of the file using

the Locate True File mechanism.

[00333] (ii) If the user processor is found to have a file that it is not

authorized to have, record the user processor and True Name in.a license violation

table.

THE SYSTEM IN OPERATION

[00334] 1 Given the mechanisms described above, the operation of a typical

DP system employing these mechanisms is now described in order to demonstrate

how the present invention meets its requirements and capabilities.

[00335] In operation, data items (for example, files, database recOrds,

messages, data segments, data blocks, directories, instances of object classes, and

the like) in‘ a DP system employing the present invention are identified by

substantially unique identifiers (True Names), theidentifiers depending on all of

the data in the data items and only on the data in the data items. The primitive

mechanisms Calculate True Name and Assimilate Data Item support this property.

For any given data item, using the Calculate True Name primitive mechanism, a

substantially unique identifier or True Name for thatjdata item. can .be' determined. -

[00336] Further, in operation of a DP system incorporatingthe preSent

V invention; multiple copies of data items are avoided (unleSs-they are required for __

’~ "some reason such as backups or mirror copies in a fault¢tolerant-system). Multiple "

. copies of data items are avoided even when multiple names refer, to the samedata. V

, item. The primitive mechanisms Assimilate Data Items and True ‘Filesupport this ,

. - 59 —
26l8-0011

GOOG-1020-Page 64 of 114

GOOG-1020-Page 65 of 114

' property. Using the Assimilate Data Item primitive mechanism, if a data'item

already exists in the system, as indicated by an entry in the True File registry 126,

this existence will be discovered by this mechanism, and the duplicate data item

(the new data item) will be eliminated (or not added). Thus, for example, if a data

file is being copied onto a system from a floppy disk, if, based on the True Name

'. of the data file, it is determined that the data file already exists in the system (by

the'same Or some other name), then the duplicate copy will not be installed. If the

data item was being installed on the system by some name other than its current

name,.then’, using the Link Path to True Name primitive mechanism, the other (or

new) name can be linked to the already existing data item.

, [00337] ' In general, the mechanisms of the present invention operate in such a

way as to avoid recreating an actual data item at a location when a copy of that

data item is already present at that location. In the case of a copy from a floppy

disk, the data item (file) may have to be copied (into a scratch file) before it can be

determined that it is a duplicate. This is because only one processor is involved.

. On the other hand, in a multiprocessor environment or DP system, each processor

has a record of the True Names of the data items on that processor. When a data

item is to be copied to another location (another processor) in the DP system, all

. that is necessary is to examine the True Name of the data item prior to the

copying. If a data item with the same True Name already exists at the destination

location (processor), then there is no need to copy the data item; Note that if a data
item which already exists locally at a destination location is still copied to the

destinatiOn location (for example, because the remote system did not have a True

.,Name for the data item Or because it arrives as a Streamiof‘un-named’ data), the I

VAssimilate Data Item primitive mechanism will prevent multiple cOpies of the data

item from being created. I i

_ [00338] T, Since the True Name of a large data item (a compound data item) is

. derived from and based on the True Names of components of the data item, I

'cOpying of an entire data item can be avoided. ‘Since some‘(or all) ‘of the

. - -60—
2618-0011

GOOG-1020-Page 65 of 114

GOOG-1020-Page 66 of 114

‘ ' components of a large data item may already be present at'a destination location,

'only those components which are not present there need be‘copied- This property

derives from the manner in which’ True Names are determined. '. ._ _

[00339] When a file is copied by the Copy File or Directory operating system

mechanism, only the True Name of the file is'actually replicated.

-. [00340] . When a file is opened (using the open File operating system.

mechanism), it uses the Make True File Local primitive mechanism (either.

directlyor indirectly through the Create Scratch File primitive mechanism) to

create a local copy of the file. The Open File operating system mechanism uses the

. Make True File Local primitive mechanism, which uses the Realize True File

- from Location primitive mechanism, which, in turn uses the RequeSt True File

remote mechanism.

[00341] . The Request True File remote mechanism copies only a single data

,. item .from one processor to another. If the data item is a compound file, its

' component segments are not copied, only the indirect block is copied. The

, segments are copied only when they are read (or otherwise needed). -

, [00342] , The Read File operating system mechanism actually reads data. The

. Read File mechanism is aware of compound files and indirect bIOCks, and it uses

" the Realize True File from Location primitive mechanism to make sure that

.component segments are locally available, and then 'uses the operating system file

" mechanisms to read data from the local file. " ~

[003.43] ’ Thus, when a-conipOund file is copied from a remotesystem, only its

' . True Name is copied. When it is opened, only its indirect block is copied. When

' ' the cofiesponding file is read, the required Component segm‘entsare realized and ‘

therefore copied.

‘ '[00344] In operation data items can be accessed by reference to their

' identities: (True Names) independent of their present location. The actual‘data item

' or True File corresponding to a given data identifier or True Name may-reside

-‘ ‘.-anyWh'er’e.in the system(that‘_is, locally, remOtely, offline,.etc). If a' required True

. - 61 —
2618—0011

GOOG-1020-Page 66 of 114

GOOG-1020-Page 67 of 114

Fileis present locally, then the data in the file can be accessed..If the data item is

not presentlocally, there are a number of ways in which it can be obtained from

wherever it is present. Using the source IDs field of the TrueFile registry table,

' the lOcation(s) of copiesof the True File Corresponding 'to a giVen True Name can

be determined. The Realize True File from Location primitive mechanism tries to

make a local copy of a True File, given its True Name and the name of a source

location (processor or media) that may contain the True File. If, On the. other hand,

for some reason it is not known where there is a copy of the True File, or if the

processors identified in the source IDs field do not respondwith the required True

File, the processor requiring the data item can make a general request for the data

item using the Request True File remote mechanism from all processors in the

system that it can contact.

[00345] As a result, the system provides transparent access to any data item

by reference to its data identity, and independent of its present’location.

[00346] In operation, data items in the system can be verified and have their

integrity checked. This is from the manner in which True Names aredetermined.

This can be used for security purposes, for instance, 'to check for viruses and to

verify that data retrieved from another location is the desired ,and requested data.

For example, the system might store the True Names of all executable applications

on the system and then periodically redetermine the True Names of eachof these.

applications to ensure that they match the stored True Names. Any change in a

True Name potentially signals corruption in the system and can‘be further

investigated. The Verify Region background mechanism and the Verify. True File

' eXtended mechanisms provide direct support for this mode of operatiOn‘: The .

Verify, Region mechanism is used to ensure that the data items in the True File .

~ ' registry have not been damaged accidentally or malicioUsly. The Verify True File

mechanism verifies that a data' item in a True File registry is indeed the, correct

data item givenits True Name.

. . - 62—
26l8-0011

GOOG-1020-Page 67 of 114

GOOG-1020-Page 68 of 114

" [00347] 3 Once a processor has determined where (that is, at which other ‘

processor or location) a copy of a data item is “in the DP system,: that .proces'sor

. might need that other processor or location to keep a copy ofthat data item. For

example, a processor might want to delete local copies of data items to make space

available locally while knowing that it can rely on retrieving the data from

somewhere else when needed. To this end the system allows a processor to

Reserve (and cancel the reservation of) True Files at remote locations (using the

remote mechanism). In this way the remote locations are put on notice that another

location is relying on the presence of the True File at their location.

‘ [00348] A DP system employing the present invention can be made into a

fault-tolerant system by providing a certain amount of redundancy Of data items at

multiple locations in the system. Using the Acquire True File and Reserve True

File remote mechanisms, a particular processor can implement its own form of

fault-tolerance by copying data items to other processors and then reserving them

there. However, the system also provides the Mirror True File background

mechanism to mirror (make copies) of the True File available elsewhere in the

system. Any degree of redundancy (limited by the number ofprocessors or

locations in the system) .can be implemented. As a result, this invention maintains

_ a desired degree or level of redundancy in a network ofprocessors, to protect

against failure of any particular processor by ensuring that multiple copies of data

items exist at different locations.

[00349] . The data structures'used to implement various features and .

_ mechanisms of this invention store a variety ofUseful informatiOn which Can be

used,'in conjunction with the various mechanisms, to implement storageschemes. .

, and policies in a DP system employing the invention. For example, the size, age

"and location of a data item (or of’grodps of data items) is provided. This

information can be used to decide how the data items should be treated. For

“MW;memmmfimfiflfiamkwmmwwbuhwmmwwwr

items oVer a Certain age if other cOpies of those data items are present elsewhere in

_ 63 _
2618—001]

GOOG-1020-Page 68 of 114

GOOG-1020-Page 69 of 114

the System. The age (or variations on the age) can be determined using the time of

last access or modification in the local directory. extensions table, and the presence

.of other copies of the data item can be determined either from the safe Flag or the

source IDs, or by checking which other processors in the system have copies of

the data item and then reserving at least one of thosecopies,

[00350] ' ‘ In operation, the system can keep track of data items regardless of

how those items are named by_ users (or regardless of Whether the dataitems even

have‘names). The system can alsotrack data items that have different names (in '

different or the same location) as well as different data'items that have the same

name. Since a data item is identified by the data in.the item, without regard for the

context of the data, the problems of inconsistent naming in a DP system are

overcome.

[00351] In operation, the system can publish data items, allowing other,

possibly anonymous, systems in a network to gain access to the data items and to

rely on the availability of these data items. True Names are glObally unique

identifiers which can be published simply by copying them. For example, a user

might create a textual representation'of a file on system A with True Name N (for

instance as a hexadecimal string), and post it on a computerbulletin board.

. 'Anbther user on system B could create a directory entry F for this True Name N

by using the Link Path to True Name primitive mechanism. ,(Altematively, an.

application could be developed which hides the True Name from the users, but

provides the same public transfer service.)

[00352] . -When a program on system B attempts to open pathnar'neF linked to

True Name N, the Locate Remote Fileprimitive mechanism would be .used, and .

would use the Locate True File remote mechanism to search for True Name N on

one or more remote processors, such as system A. If syStem B' has access to

'system A, it would be able to realize the True File (using the Realize True‘File

'. from Location primitive mechanism) and use it .locally._.Altematively, system B

. - 64 _
2618-0011

GOOG-1020-Page 69 of 114

GOOG-1020-Page 70 of 114

could find True Name N by accessing any publicly available True Name server, if

the server could eventually forward the request to system A.

[00353] 2 Clients of a local server can indicate that they depend on a given"

True File (using the Reserve True File‘remote mechanism) so that the True File is

. not deleted from the server registry as long as some client requires access to 'it.

(The Retire .True 'File remote mechanism is used to indicate that a client no longer

needs a given True File.)

[00354] ‘ . A publishing server, on the other hand, may want to provide access

‘ _to many clients, and possibly anonymous ones,‘without incurring the overhead of

tracking dependencies for each client. Therefore, a public server can provide

expiration dates for True Files in its registry. This allows client systems to safely

, maintain references to a True File. on the public server. The Check For Expired

Links background mechanism allows the client of a publishing server to

_ occasionally confirm that its dependencies on the publishing server are safe.

[00355] In a variation of this aspect of the invention, a processor that is

nery connected (or reconnected after some absence) to the system'can obtain a

current version of all (or of needed) data in the system by requesting it from a

server processor. Any such processor can send arequest to update or

_resynchronize all of its directories (starting at a root direCtory), simply by using

the Synchronize Directories extended mechanism on the needed directories.

[00356] , Using the accounting log'or some other user provided mechanism, a

fl user can prove the existence of certain data items at certain times. By publishing

(in a public place) a list of all True Names in the system on a given day (or at

somegiven time), a user can later refer back to that list to show that a particular

data item was present in the system at the time that list was published. Such a

" mechanism is useful in tracking, for example, laboratory notebooksor the like to

. prove. dates of conception of inventions. Such a mechanism also permits proof.of

possession of a data item at a particular date and time.

‘ - 65 —
2618-00”

GOOG-1020-Page 70 of 114

GOOG-1020-Page 71 of 114

[00357] f , The accounting log file Can also track the use .of specific .data items

and files by content for accounting purposes. For instance, an information utility

'*':;company can determine the data identities of data items that are stored and

-' transmitted through its computer Systems, and use these identities to provide bills'

to its customers based on the identities of the data items being transmitted (as

defined -by the substantially unique identifier). The assignment ofprices for storing

and transmitting specific True Files would be made by the information utility

and/Or its data suppliers; this information would be joined periodically with the

1 information in the accounting log file to produce customer statements.

.[00358] Backing up data items in a DP system employing the present.

' invention can be done based on the True Names of the data items. By tracking

backups using True Names, duplication in the backups is prevented. In operation,

. the system maintains a backup record of data identifiers of data items already

* . backed up, and invokes the Copy File or Directory operating system mechanism to

copy only those data items whose data identifiers are not recorded in the backup

' . record. Once a data item has been backed up, it can be restored by retrieving it

" from its backup location, based on the identifier of the data item. Using the backup

record produced by the backup to identify the data item, the data item can be '

obtained using, for example, the Make True File Local primitive mechanism.

[00359] In operation, the system can be used to cache data items from a

server, '30 that only the most recently accessed data items need be retained. To

" operate .in' this way, a cache client is configured to have a local registry (its cache)

with a'remote Local Directory Extensionstable (from the Cache server). Whenever '

: a file is opened (or read), the Local Directory Extensions table-is uSed to identify

7 ‘ theTrue Name, and the Make True File Local primitive mechanism inspects the

local’registry. When the local registry already has a' copy, the file is already

- “cached. Otherwise, the Locate True File remote mechanism is used to get a copy

of the file. This mechanism. consults. the cache serverand uses the Request True

‘ Filefremote mechanism to make a local copy, effectively loading the cache.

_ 66 __
2618-0011

GOOG-1020-Page 71 of 114

GOOG-1020-Page 72 of 114

[00360] The Groom Cachebackground mechanism flushes the cache,

"removing the least-recently-used files from the cache client's True'File registry.

While a file is being modified on a cache client, the Lock CaChe and Update

"Cache remote mechanisms prevent other clients from trying to modify the same

file.

. ([00361] . - In operation, when the system is being used to cache data ite'rns,~ the

' . problems of maintaining cache consistency are avoided.

[00362]. . To access a cache'and to fill it from itsserver,‘a key} is..required to

identify the data item desired. Ordinarily, the key is a name or" address (in this

case, it would be the pathname of a file). If the data associatedwith such a key is

changed, the client's cache becomes inconsistent; when the cache client refers to

that name, it will retrieve the wrong data. In order to maintain cache consistency. it

is necessary to notify every client immediately whenever a change occurs on the

server.

[00363] .By using an embodiment of the present invention, the Cache key

uniquely identifies the data it represents. When the data associated with a name

changes, the key itself changes. Thus, when a cache client wishes to access the

modified data associated with a given 'file name, it will use a new key (the True

Nameof the new file) rather than the key to the old file contents in its cache; The

- client Will always request the correct data, and the old data in its cache will be.

eventually aged and flushed by the 'Groom Cache background mechanism.

[00364], Because it is not necessary to immediately notify clients when"

changes‘on the cache server occur, the preSent invention makes it possible for-a

single server to support a much larger number of clients than is otherwiseipossible. ., '

[00365] ' In operation, the system automatically archives data items as they '-

‘» 'are created or modified. After a file is created or modified, the Close 'File‘ i

- operating system mechanism creates‘an' audit file record, Which'i'seventually'

: processed by the Process Audit File Entry primitive mechanism. .This mechanism ,

- _ uses the True File primitive mechanism for any file which is newly‘created, which . ~

. - 67 _
26l8-0011

GOOG-1020-Page 72 of 114

GOOG-1020-Page 73 of 114

in turn uses the Mirror True File background mechanism if the True File is in a

mirrored or archived region. This mechanism causes one or more copies of the

new file to be made on remOte processors.

[00366] ' In operation, the systemcan efficiently record and preserve any

collection of data items. The Freeze Directory primitive mechanism creates a True

File which identifies all of the files in the directory and its subordinates. Because :

this True File includesthe True Names of its constituents, it represents the exact

contents of the directory tree at the time it was frozen. The frozen directory can be

copied with its components preserved;

[00367] The Acquire True File remote mechanism (used in. mirroring and

archiving) preserves the directory tree’structure by ensuring that all of the

component segments and True Files in a compound data item are actually copied

to a remote system. Of course, no transfer is necessary for data items already in

the registry of the remote system.

[00368] In operation, the system can efficiently make a copy of any

collection of data items, to support a version control mechanism for groups of the

data items.

[00369] The Freeze Directory primitive mechanism is used to create a

' collection of data items. The constituent files and segments referred to by the

. frozen directory are maintained in the registry, without any need to make copies of

the constituents each time the directory is frozen.

[00370] . Whenever a pathname is traversed, the Get Files in' DirectOry

operating system mechanism is used, and when it encounters a frozen directory, it

uses the Expand Frozen Directory primitivemechanism.‘

[00371] A frozen direCtory can be copied from one pathname to another

efficiently, merely by copying its True Name. The Copy File operating system

mechanism is used to copy a frozen directory.

- 68 _
2618-0011

GOOG-1020-Page 73 of 114

GOOG-1020-Page 74 of 114

[00372] . .‘ Thus it is possible to efficiently createcopies of different versions of

a' directory, thereby creating a record of its 'history- (hencea version control

system).

. [00373] ‘7 In operation,.the system can maintain a local inventory of- all the data

.items located on a given removable medium, such as' a diskette or CD-ROM. The

.. inventory is independent of other properties of the data items such as their name,

location, and date of creation. .’ .'

;, [00374] .. The Inventory ExistingDirectory extended mechanism provides a

way to create True File Registry entries for all of the files in a directory. One use

of this inventory is as a way to pre-load a True File registry with backup record

' information. Those files in the registry (such as previously installed software)

which are on the volumes inventoried need not be backed up onto other volumes.

[00375] . The Inventory Removable, Read-only Files extended mechanism not

only determines the True Names for the files on the medium, but also records

directory entries for each file in a frozen directory structure. By copying and

modifying this directory, it is possible to create an on line patch, or small

modification of an existing read-only file. For example, it is possible to create an

. online representation of a modified CD-ROM, such that the unmodified files are

actually on the CD—ROM, and only the modified files are online.

[00376] In operation, the system tracks possession of specific data items

. according to content by owner, independent of the name, date, or other properties

of the data item, and tracks the uses of specific data‘items and files by content for

accounting purposes. Using the Track‘for Accounting Purposes extended -

'mechanism provides a way to know reliably which. files have been stored on a

’ - system or transmitted from one system to another.

1 TRUE NAMES IN RELATIONAL AND OBJVECT-ORIEI‘ITED'DATA-BAS-ES. I

‘ [00377]. Although the preferred embodiment of this invention has been

_ presented in the context of a file system, the invention of True Names would be

.. - 69 —-
2618-001]

GOOG-1020-Page 74 of 114

GOOG-1020-Page 75 of 114

equally valuable in a relational or object-oriented database. A relational or objeCt-

. oriented database system using True Names would have similar benefits to those

. of the file system employing the invention. For instance, such a database would

permit efficient elimination of duplicate records, supporta cache‘for records, *

simplify the process of maintaining cache consistency, provide location-

independent access .to records, maintain archives and histories ofrecords, and

synchronize with distant or disconnected systems or databases.

[00378] . The mechanisms described above can be easily modified to serve in

‘. such a database environment. The True Name registry would be used as a

repository of database records. All references to records would be via the True

Name of the record. (The Local Directory Extensions table is an example of a

primary index that uses the True Name as the unique identifier of the desired

records.)

[00379] In such a database, the operations of inserting, updating, and deleting

records would be implemented by first assimilating records into the registry, and

'then updating a primary key index to map the key of the record to its contents by

using the True Name as a pointer to the contents.

[00380] ' ’ The mechanisms described in the preferred embodiment, or similar

mechanisms, would be employed in such a system. These mechanisms could'

include, for example, the mechanisms for calculating true names, assimilating,

locating,’realizing, deleting, copying, and moving True Files, for mirroring True

Files, for maintaining a cache of True Files, for grooming True Files, and other

mechanisms based on the use of substantially unique identifiers.

[00381]. ' . While the invention has been described in connectiOn with what is

presently considered to be the most practicaland preferred embodiments, it is to

. be.understood that the invention is not to be limited to the disclosed embodiment,

but on the contrary, is intended to cover various mOdifications and equivalent.

arrangements included within the spirit and scdpe of the appended 'c1airris. H

- 70 _
2618-0011

GOOG-1020-Page 75 of 114

GOOG-1020-Page 76 of 114

WHAT IS CLAIMED:

1. .A content delivery method comprising:

. . causing a plurality of files to be distributed across 'a plurality of computers;

responsive to a request, the request including at least a name for a file, the

name having been determined, at least in part, using a given function of the data

that comprises the contents of the file, causing a copy of thefile to be provided

from a given one of the plurality of computers, wherein the request for the file is

resolved based, at least in part, on a measure of availability of at least one of the

computers.

2. A method, in a system in which a plurality of files are distributed

across a plurality of computers, the method comprising:

obtaining a name for a file, the name having been determined at least in part

as a given function of the data that comprises the contents of the file, wherein the

V contents of the particular file may represent a digital message, a digital image, a

video signal or an audio signal; and

responsive to a request, the request including at least the name, providing a

, copy of the file from a given one of the computers, wherein the request for the file

is resolved based, at least in part, on a measure of availability of at least one '

cOmputer having a copy of the requested file.

3. A method comprising:

distributing a set of files from a first computer across'a network of

computers distinct from the first computer,

_ 71 _
2618—0011

GOOG-1 020-Page 76 of 114

GOOG-1020-Page 77 of 114

. ' for at least one file in the set of files, applying an MDS function to the

contents of a file to obtain a True Name for the file;

in response to a request, the request including at least the True Name ofthe

. particular file, causing a copy of the particular file to be provided from a given one

' of the'COmputers, wherein the request for the particular file is resolved based,'at

. least in part, on a measure of availability of at least one of the computers. -

4. A content delivery method comprising:

distributing a plurality of files across a network of computers;~

for a particular file, determining a True Name using at least a given

function of the data, wherein the data used by the function to determine the name

comprises the contents of the particular file;

obtaining a request, the request including at least the True Name of the

particular file; and

responsive to the request, causing the particular file to be provided from

one of the servers of the network of computers,

' . wherein the request for the file is resolved-based, at least in part, on a

. measure of availability of at least one of the computers having a copy of the file.

5. A content delivery method, comprising:

distributing a set of files across a network of servers; _

fora particular file representing a digital image, the file having'a contextual

name Specifying at least one location in the network at which'the file may be

located, determining another name for the particular file, the other name including

*. a True Namefor the file whichwasdetermined usinga message digest fiinction of

- 72 _
2618-001]

GOOG-1020-Page 77 of 114

GOOG-1020-Page 78 of 114

the data, where the data used by the given function comprises the. contents of the '

particular file;

_ _ obtaining a request for the particular file, the request including'at least the

True Name of the particular file; and

responsive to the request, providing the particular file-from one of the

servers of the network of servers, said providing being based at'l‘east inpart on the

True Name of the particular file, wherein the request for the file is resolved based,

at least in part, on a measure of availability of at least one of the servers having a

copy of the requested file.

6. A method comprising:

applying an MDS function to the contents of an image file containing data

representing a digital image to obtain a True Name for the file;

distributing copies of the image file from a first server across anetwork of

I servers distinct from the firSt server;

obtaining a request for the image file, the request including at least the True

Name of the file; and

responsive to the request, causing a copyof the image file to be provided

from one of the servers of the network of servers, wherein the request for the file

. . is resolved based, at least in part, on a measure of availability of at least one of the

servers having a copy of the file.

7. A method as in any one of claims 1,2, 3, 4, 5, and 6 wherein the
measure of availability for a computer is based on at least one of the
measurements selected from:

(a) a measurement of bandwidth to the computer;

. - 73 —
2618-0011

GOOG-1020-Page 78 of 114

GOOG-1020-Page 79 of 114

(b) a measurement of a cost of a connection to the computer, and‘

(c) a measurement of reliability of a connection to the computer.

1 8; A method as in claim 1 wherein at least some of the plurality of

computers form a peer-to-peer network.

9. A method comprising: ‘

distributing a set of files from a first computer across a network of

computers;

in response to a request for a file, causing the file to be provided from a

given one of the computers in the network, wherein the request for the file is

resolved based, at least in part, on a measure of availability of at least one of the

computers in the network, and wherein the measure ofavailability for a computer

' is based, at least in part, on at least one of the measurements selected from:

(a) a measurement of bandwidth to the computer;

(b) a measurement of a cost of a connection to the computer, and

(c) a measurement of reliability of a connection to the computer.

10'; A method as in claim 9 wherein the request for the file is resolved

based, at least in part, on a measure of availability of at least one of the computers

in the network that is supposed to have a copy of the file.

“112 A method as in claim 9 wherein the request forthe particular file

7 includes at least a name determined as a function of the contents of the file.

_ 74 _
2618—0011

GOOG-1020-Page 79 of 114

GOOG-1020-Page 80 of 114

, '12. . ‘ ' A method as in claim 9 wherein at least some of.the plurality

of computers form a peer—to-peer network.

13.‘ ‘ ' A method as in claim 9 wherein the network of computers are

distinct from the first computer.

14. A method as in any one of claims 1 to 6, further comprising:

maintaining accounting information relating to data. files in the system; and

using the accounting information as a basis for a system in which charges

are based on an identity of the data files.

15. A method as in claim 9, further comprising:

maintaining accounting information relating to data files in the system; and

using the accounting information as a‘basis for a system in Which charges

are based on an identity of the data files.

16. A method as in claim' 15 , wherein the maintaining of accmnting

information includes at least some of activities selected from:

(a) tracking which files have been stored on a computer; and

(b) tracking which files have been transmitted from a computer. .

17. A method c0mprising:

. 2‘ causing a set of files to be distributed from a first computer across a '

network of computers distinct from theifirst computer; ‘

‘maintaining accounting information relating to data files in the system; and

_ 75 _
2618-0011

GOOG-1020-Page 80 of 114

GOOG-1020-Page 81 of 114

in response to a request for a file, causing the file to be provided from a1

“given one of the computers, wherein the request for the file. is resolved based, at

. least in part, on a measure of availability of at least one of the computers that is

supposed to have a copy of the file, and wherein the measure ofavailability for a

computer-is based, at least in part, on at least one of the measurements selected

from:

(a) a measurement ofbandwidth to the computer;

(b) a measurement of a cost of a connection to the computer, and

(c) a measurement of reliability of a connection to the computer. 1

18. A method as in claim 17, further comprising:

using the accounting information as a basis for a system in which charges

’ are based on an identity of the data files.

19. A method as in claim 18, wherein the maintaining of aCcounting

information includes at least some of activities selected from:

(a) tracking which files have been stored on a computer; and ‘ . '.

(b) tracking which files have been transmitted from a computer.

20. A method comprising:

' (A) distributing a set of files from a first computer across a network of

computers distinct from the first computer;

(B) maintaining accounting information relating to files‘in‘ the System, ‘ a.

' . wherein the maintaining of accounting information'includes at leastsome‘ of * ‘

activities selected from:

.. - 76 __
2618-0011

GOOG-1020-Page 81 of 114

GOOG-1020-Page 82 of 114

(b1) tracking which files have been stored on a computer; and

. _ (b2) tracking which files have been transmitted from a computer;

and

(C) in response to a request for a file, causing the file to be provided

1 from a given one of the computers in the network, wherein the request for the file

. is resolved based, at least in part, on a measure of availability of at least one of the

computers in the network that is supposed to have a copy of the file, and wherein

the measure of availability for a computer is based, at least in part, on at least one

of the measurements selected from:

(c1) a measurement of bandwidth to the computer;

(02) a measurement of a cost of a connection to the computer, and

(c3) a measurement of reliability of a connection to the, computer.

21. A method as in claim 20, wherein some of the computers

communicate with each other using a TCP/IP communication protocol.

22. A method as in any one of claims 1-6 or claim 9 or claim 17 or claim

20, wherein. a copy of the requested file is not provided to unlicensed parties or to

unauthorized parties.

_ 23. A method as in any one of claims 1 to 6 or 9, filrther comprising:

, “not allowing an unauthorized or unlicensed copy of a file to be provided

from one of the computers.

- 77 _
2618-0011

GOOG-1020-Page 82 of 114

GOOG-1020-Page 83 of 114

ABSTRACT OF THE DISCLOS URE‘ .

A plurality of files are distributed across a plurality of computers, some of which

may form a peer-to-peer network. In response to a request for a file, the file is

caused to be provided from a given one of the computers, wherein the request for

the file is resolved based, at least in part, on a measure of availability of at least

one of the computers that is supposed to have a copy of the file, and wherein the
‘measure of availability for a computer is based, at least1n part, on at least one of
-the measurements selected from: (a) a measurement of bandwidth to the computer,
(b) a measurement of a cost of a connection to the computer, and(c) a

measurement of reliability of a connection to the computer. A copy of the

' requested file may not be provided to unlicensed parties or to unauthorized parties.

An unauthorized or unlicensed copy of a file may not be allowed to be provided.

_ 73 _
2618-001]

GOOG-1020-Page 83 of 114

GOOG-1020-Page 84 of 114

mommmoommNS

2:

momwmoomn.N2 ,

mOmmeOMENo.‘3:a:

mommmoomn—Nov
mo_>mom0<m0hw

No...
GOOG-1020-Page 84 of 114

GOOG-1020-Page 85 of 114

r’ a

NO— mIIImIIWmiuuinnulnn
Omwmoomm

GOOG-1020-Page 85 of 114

GOOG-1020-Page 86 of 114

hzmfiomw
NNv

Ami...
oww

.Eopomma.
m2.

55:FE

..._hzmsomwEwsamm.N3.NSv
9.2....€0,835EoBmmE.”FF.«FFEmhm>wAN.0-l .

w—.—.mun—E

lIIul—Fu—mlu—n—VONw
GOOG-1020-Page 86 of 114

GOOG-1020-Page 87 of 114

FIG.3

Time of last access

Time of last modification
FIG. 4

True Name

I40

 Com-ressed File ID

 Source-IDs

 De-endent orocessors

Time of last access

 Groomin- delete count

I42

 Re-ion ID

 Re-ion file‘s stem

Re-ion oathname

Re-ion status .

 Mirror crocessot s

 Mirror du-lication count

FIG.5

GOOG-1020-Page 87 of 114

GOOG-1020-Page 88 of 114

I!m3_09.4
..wfiflzmam—w

.‘.o
I]!mom

mv.

mamz.waua

.‘ ..Emumwawa
.V:ofiuauw.o

h.07..

mamzHmcwHuo

m3

:owumooamousommun.wuwouzoma;umounom
DH00H50mwr0_L

GOOG-1020-Page 88 of 114

GOOG-1020-Page 89 of 114

FIG. lO(d)

simple
DA TA ITEM

COMPUTE MD FUNCTION ON

DATA lTEM

. . .3214
APPEND LENGTH MODULO 32 OF

DATA ITEM

TRUE NAME

1

GOOG-1020-Page 89 of 114

GOOG-1020-Page 90 of 114

”x - WI

8216

DATA ITEM

SIMPLE? ‘

 YES

8220

PARTITION DATA ITEM INTo
SEGMENTS

$222 .

ASSIMILATE EACH SEGMENT

(COMPUTING ITS TRUE NAME)

,"""§21's"""~.I

COMPUTE TRUE : _

NAME OF SIMPLE :. I

‘ DATA ITEM II 3224 . ,
\—---_ ------- CREATE INDIRECT BLOCK OF

 SEGMENT TRUE NAMES

$225

ASSIMILATE INDIRECT BLOCK
(COMPUTING ITS‘TRUE NAME)

. 8228‘
REPLACE FINAL 32 BITS OF TRUE

NAME WITH LENGHT MOD 32 OF DATA
ITEM

GOOG-1020-Page 90 of 114

GOOG-1020-Page 91 of 114

9m4:985mmmmS.we".m><z>Ezmmmoo

mm>

«.9»

n:m.=n_mhmqwa

mmww

w>m._.m_0mmm.=n_may;2.chmmE<zmam—Hmmoo_m5<zm=mhmas—ammoommw

won—MEEur—POhum.n:w..=.._mmOhw..rO._..FZDOOumDme.>mhzm>>mzwh<wmo..mmwm

__.OE

GOOG-1020-Page 91 of 114

GOOG-1020-Page 92 of 114

FIG. l2

 8240

UPDATE

DEPENDENCY

LIST '

8242

SEND MESSAGE TO

CACHE SERVERTO

UPDATEPCACHE

$244

COMPRESS

(IF DESIRED)

$246

" MIRROR

(IF DESIRED)

GOOG-1020-Page 92 of 114

GOOG-1020-Page 93 of 114

 8250

SEARCH FOR ‘ . . ‘ ' »
THE » FAIL

PATHNAME

LDE INCLUDES

TRUE NAME?

’ $258 ‘

ASSIMILATE LDE-IDENTIFIES
FILE ID . DIRECTORY?

YS

8256'

FREEZE

DIRECTORY

GOOG-1020-Page 93 of 114

GOOG-1020-Page 94 of 114

 . 8260

CONHRMTHAT

TRUE NAME

EXISTS LOCALLY

8262

SEARCH FOR

PATHNAME IN

LDE TABLE

FIG. l4

$264

CONFIRM THAT
DIRECTORY

EXISTS

8266

NAMED FILE

EXISTS?

$268

DELETE

TRUE FILE

'No

8270

, CREATE

ENTRY IN LDE

& UPDATE

GOOG-1020-Page 94 of 114

GOOG-1020-Page 95 of 114

i3x

meOn—wmm

.m:.6;
SE53"5we".may:ismsNmmw

mmhth_omzm:hmmmdmmsmkkazm.ofimw

m..=.,._Dz."—omNm

m>_._._m0n_

mmZOn—mwm

mo".t<>>F2292am0<mww2.hmMDOmm_“Fm02mm_,ENmmszmwmmmnww
.m>_._.<0mz

GOOG-1020-Page 95 of 114

GOOG-1020-Page 96 of 114

.....n+l.ilmmzommmmmanon

5:ME:

to
$283:

m5<oa<ommkzmfiOommw

mm>

$5me«memmmoomn.>z<mwNw

Exemmmoomm384mmpzmaovowm

W>P.0m2 .

GOOG-1020-Page 96 of 114

GOOG-1020-Page 97 of 114

km:0...00¢.oz<m._.<o295?:memas—"EEO3.me

mm>

5.0m".may—”=0mE<z >‘h5fihfl>muzim—JMDLIm.momDOmOoonmE<zmam...m0...—m9mom-40wO._.n:zo_._.<00._morn—OmQo<..wmE<2.m:m._.m0".m":n5x00.—momww

NZO_.—.<z_._.mmomsmhmomomaom

memmmoommmomaomzoMAEmam...m>mwwmmO...m0<wwm202mmovmwm
.mmOhwomNm

n:mOmwNOOm—m.

35..9“.
GOOG-1020-Page 97 of 114

GOOG-1020-Page 98 of 114

«a.m..=n_mewmmmEOU.mmww

mwmmfizoomo_8%mm: _
02

w>m._.zm.m=1:.m0”.n:m..."—
mm;

$522.Husage".E5.2.>Ezmwe”.mam«mum

 3Ea:,

GOOG-1020-Page 98 of 114

GOOG-1020-Page 99 of 114

EVE.oE

oonw 9$55.

Amvmomaom56Ewe“.may:madammomw. mg.358PUNmevomm

 ma".5.05m.$50...88

GOOG-1020-Page 99 of 114

GOOG-1020-Page 100 of 114

.3004MAE.mam...mXSzNNmm.

we".20.5.352E55owmw

ma".mam...mmfimomvmw

«BE.may:02.55mmmpzmem3

«mi...—mam...mo".n:m.=n_

, «men.m3:".0toomm

GOOG-1020-Page 100 of 114

GOOG-1020-Page 101 of 114

>mh2mmurm>osmmaa.we".m><m3mm

mm;

 #2200mm:hzmsmmowo.59:m32.a.m...»$65.m.__”_>>mz0...w..__..._>m00ommw

[I

Em..9“.

GOOG-1020-Page 101 of 114

GOOG-1020-Page 102 of 114

2m:<53262355S3

>m0.._.0mm=02m>_0
m...”—w:._.z.>mOHommE >mOH0mEQ

85.5.2592:oz<man.5555?_n:wwwmfimEzEmomaw88.zo<mmo".

A50...mNmmEFzmsmmozNmmw

GOOG-1020-Page 102 of 114

GOOG-1020-Page 103 of 114

x004.mNmmEm5.thEmM—Omnvvmw

.35..07..

am:SheEmz.mE.35.5.69Nvmw.

>m0k0mM=DZm>_0

ZO_.—.<Emon_z_

2m:m5.2.50555

N:m0

JQWQWQE<55Ez.nz<mam2.EEm2:.3.2.20me
980$.88

ovmw

10%m0".

GOOG-1020-Page 103 of 114

GOOG-1020-Page 104 of 114

w_2<zmay;0...I._.<n_¥z_.._Nmmw

. ms_<2_.:.<m. 4.5”.whfimoommw

>1ChommaQ<mmwvmm

>mhzm>m0homm=n:05mo...—.mmmw.._<00.—m..."—mnmz.m¥<5_mvmw._

myEzwmacs.oz

om.m....___
GOOG-1020-Page 104 of 114

GOOG-1020-Page 105 of 114

5354

WAWFOR

FREEZELOCK

TO TURN OFF

S356

FIND TFR

ENTRY

$353
_ DECREMENT

"- REFERENCE

COUNT

REFERENCE COUNT IS

' ZERO 8: NO DEPENDENT

SYSTEMS IN TFR?

FIGLZI

$362

DELETE

TRUEEmE

S364

REMOVE FILE ID .

AND COMPRESSED

FILE ID

GOOG-1020-Page 105 of 114

GOOG-1020-Page 106 of 114

S365

GET

OPERATION

FIG. 22

$366

CREATE OR

MODIFY?

$368

ASSIMILATE

. YES

COPY OR DELETE ‘

COMPOUND?

YES

S378 3370

MODIFY USE " RECORD TRUE [
COUNT OF EACH NAME IN AUDIT :I
 COMPONENT FILE

' S379

FOR EACH PARENT
DIRECTORY OR FILE,

UPDATE USE COUNT,

LAST ACCESS AND
MODIFY TIMES .

GOOG-1020-Page 106 of 114

GOOG-1020-Page 107 of 114

 $382

VERIFY
- GROOMING

LOCK OFF

8384

SET

GROOMING

LOCK ‘ .

 S386

SET GROOM

COUNTS

GOOG-1020-Page 107 of 114

GOOG-1020-Page 108 of 114

 S388

FIND LDE

RECORD

S390

FIND TFR
RECORD

S392

INCREMENT

, GROOMING

DELETE COUNT

8394

ADJUST FILE

SIZES

FIG. 24

GOOG-1020-Page 108 of 114

GOOG-1020-Page 109 of 114

FIG. 25

S398

UNLOCK

GROOMING

LOCK
GOOG-1020-Page 109 of 114

GOOG-1020-Page 110 of 114

«mg—n.I0h<m0wmvvw

zmmOhum—10mm«Nvm

.~.>.._<oS, >420.o<mm.

zmmO.#5505.31m

955MAE

«kadflmo"oz—mm:movw

GOOG-1020-Page 110 of 114

GOOG-1020-Page 111 of 114

owvw Epsom“.9.3.".255:.wzo_mmm>._<oo._mx<s

3.3mmGE

o.,m..=n.IOP<mow2m:hmmvwvm

Biropéow55585

Md...—mw<mm.

 zmtEZfi...>I_m._.m._n=200“oz—mmmwvw

0950..._.Ozn:v.00...

GOOG-1020-Page 111 of 114

GOOG-1020-Page 112 of 114

GKN.9...

.zo_E._mn:mEoE

mE<Zmay;5.0m"—MAEmay;>u=._.zmn=vuvm

w>m0hom~=a>420.0<Mm2.moDuv—OOJm..."—.Oamoummmo.—0.mwvm

.we".mo".mamoomm>Ezm.Eam3mzfimmmovaw.

GOOG-1020-Page 112 of 114

GOOG-1020-Page 113 of 114

3'I

3115.9“.

MAE.._._QD<O._.>m._.zwDD<..mwvw.

.mzo>mhz=oommamoaommwmvw.

 memmzmhmhmgmoomvw

MAE.".0>m00Ickévwwhmeo.35

wZOm.#2300mm:‘9min.mam...

mm>
«ms—<2mam...4ozm<xm4cmm»

GOOG-1020-Page 113 of 114

GOOG-1020-Page 114 of 114

)5
z' \.

waOmwmmm>_._.<0m2mmvm

.mwzonammm>Emon_131%

.., wewe". .omwmmmmzoonoa.m...“mmoaoz

Swamsfiou _mmotmmacmm"

thDOmmmum—(amon—vam

«QZDOLvmvmOzmm>msizmay;.$50..gm

mm.9“.

GOOG-1020-Page 114 of 114

