- o
=
o
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE) c:‘\o’
=)
§ REQUEST FOR FILING NATIONAL PATENT APPLICATION 05
= Under 35 USC 111(a) and Rule 53(b) with Signed Declaration %‘;
— : 2
w

—dblon. Commissioner of Patents
.O. Box 1450
lexandria, VA 22313-1450

Atty. Dkt. No.: 2618-0011

Date: December 22, 2004

NONPROVISIONAL
NON REISSUE
NON PCT NAT PHASE

Sir:

Herewith is the PATENT APPLICATION of:

Inventor(s): | FARBER, David A.
M LACHMAN, Ronald D.

Title: CONTENT DELIVERY NETWORK AND ASSOCIATED METHODS AND
' MECHANISMS

Including:

1. Specification: 77 pages (only spec. and claims) 2. [] Specification in non-English language

3. [X Declaration: [] Original [X] Facsimile/Copy 3b. [X] Abstract 1 page(s); 22 claims

4. [X Drawings: 31 sheet(s) of (] informal; [X] formal size: (] A4 [X 11"

5. [J Attached an Assignment document and Recordation cover sheets. Please return the recorded
assignment to the undersigned.

6. [X] Prior application is assigned to SAVVIS, Inc. by Assignment recorded on December 3, 2004; Reel Unknown

Frame Unknown, and KINETECH, Inc. by Assignment recorded on November 15, 2001; Reel 012313/Frame
0446.

7. FOREIGN priority is claimed under 35 USC 119(a)-(d)/365(b) based on the following applications:

Application / Patent No. Filing Date Country

8. (No.) Certified copy/copies: [] attached;[] previously filed on in U.S. Application No. .
9. Small Entity Status: [X] is NOT claimed [] is claimed.

10. [J See NONPUBLICATION REQUEST under Rule 213(a) attached.

11. DOMESTIC/INTERNATIONAL priority is claimed under 35 USC 119(e)/120/365(c) based on the following
provisional, nonprovisional and/or PCT international application(s):

Application/Patent No. Filing Date Application/Patent No. Filing Date
(1) 09/987,723 11/15/2001 (3) 5,978,791 10/24/1997
(2) 6,415,280 04/01/1999 (4) 08/425,160 04/11/1995

12. O This application is being filed under Rule 53(b)(2) since an inventor is named in the enclosed Declaration who
was not named in the prior application.

13. [X] Attached: Information Disclosure Statement and eighteen (18) USPTO Form 1449’s.

14. [] Preliminary Amendment Attached.

GOOG-1020-Page 1 of 114

M

122204

New U.S. Continuation Application .

Inventor
Title:

Date:

(s): FARBER, David A. et al.
ENFORCEMENT AND POLICIKNG OF LICENSED
CONTENT USING CONTENT-BASED IDENTIFIERS

December 22, 2004

Docket No.: 2618-0003

THE FOLLOWING FILING FEE IS BASED ON CLAIMS AS FILED LESS ANY ABOVE CANCELLED

Large /Small

Basis For Fee Entity Amount

18. Basic FilingFeecccoceiiiiinniiiens Regular Util?ty Applipatipn $790/ %395 $790
Design Application $350/ %175
19. Total Claims 46 Minus 20 = 26 X$18/% 9 468
20. Ind. Claims 9 Minus 3 = 6 X $88/ $44 528
21. If any proper multiple depen_de_nt clai_m (ignore fmpfoper) is present, add $300 / $150 300
(Leave this line blank if this is a reissue application)

22. Total Filing Fee Enclosed: $2,086
23. If “non-English” box 2 is X'd, add Rule 17(k) processing fee $130
24. If “assignment’ box 8 is X'd, add recording fee $ 40
25. [Attached is a Petition/Fee under Rule No. $130
26. Total Fee Enclosed: $2,086

27. [Please charge the total fee to our deposit account below under the stated order no.:

Our Deposit Account No.: 501860.

CHARGE STATEMENT: The Commissioner is hereby authorized to charge any fee specifically authorized hereafter, or

any missing or insufficient fee(s) filed, or asserted to be filed, or which should have been filed herewith or concerning any
paper filed hereafter, and which may be required under Rules 16-18 (missing or insufficient fee only) now or hereafter relative
to this application and the resulting Official document under Rule 20, or credit any overpayment, to our Account/Order Nos.
shown above for which purpose a duplicate copy of this sheet is attached.

This Charge Statement does not authorize charge of the issue fee until/unless an issue fee transmittal form is filed.

CUSTOMER NUMBER

Respegtfully submjtted,

AEARAY

Davidson Berquist Jackson & Gowdey, LLP
4501 N. Fairfax Drive; Suite 920

Arlington, VA 22203

Main: (703) 248-0333

FAX: (703) 248-9558

iritzk

Yy

Registration No.: 37,497

GOOG-1020-Page 2 of 114

- o
=
o
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE) c:‘\o’
=)
§ REQUEST FOR FILING NATIONAL PATENT APPLICATION 05
= Under 35 USC 111(a) and Rule 53(b) with Signed Declaration %‘;
— : 2
w

—dblon. Commissioner of Patents
.O. Box 1450
lexandria, VA 22313-1450

Atty. Dkt. No.: 2618-0011

Date: December 22, 2004

NONPROVISIONAL
NON REISSUE
NON PCT NAT PHASE

Sir:

Herewith is the PATENT APPLICATION of:

Inventor(s): | FARBER, David A.
M LACHMAN, Ronald D.

Title: CONTENT DELIVERY NETWORK AND ASSOCIATED METHODS AND
' MECHANISMS

Including:

1. Specification: 77 pages (only spec. and claims) 2. [] Specification in non-English language

3. [X Declaration: [] Original [X] Facsimile/Copy 3b. [X] Abstract 1 page(s); 22 claims

4. [X Drawings: 31 sheet(s) of (] informal; [X] formal size: (] A4 [X 11"

5. [J Attached an Assignment document and Recordation cover sheets. Please return the recorded
assignment to the undersigned.

6. [X] Prior application is assigned to SAVVIS, Inc. by Assignment recorded on December 3, 2004; Reel Unknown

Frame Unknown, and KINETECH, Inc. by Assignment recorded on November 15, 2001; Reel 012313/Frame
0446.

7. FOREIGN priority is claimed under 35 USC 119(a)-(d)/365(b) based on the following applications:

Application / Patent No. Filing Date Country

8. (No.) Certified copy/copies: [] attached;[] previously filed on in U.S. Application No. .
9. Small Entity Status: [X] is NOT claimed [] is claimed.

10. [J See NONPUBLICATION REQUEST under Rule 213(a) attached.

11. DOMESTIC/INTERNATIONAL priority is claimed under 35 USC 119(e)/120/365(c) based on the following
provisional, nonprovisional and/or PCT international application(s):

Application/Patent No. Filing Date Application/Patent No. Filing Date
(1) 09/987,723 11/15/2001 (3) 5,978,791 10/24/1997
(2) 6,415,280 04/01/1999 (4) 08/425,160 04/11/1995

12. O This application is being filed under Rule 53(b)(2) since an inventor is named in the enclosed Declaration who
was not named in the prior application.

13. [X] Attached: Information Disclosure Statement and eighteen (18) USPTO Form 1449’s.

14. [] Preliminary Amendment Attached.

GOOG-1020-Page 3 of 114

M

122204

New U.S. Continuation Application .

Inventor
Title:

Date:

(s): FARBER, David A. et al.
ENFORCEMENT AND POLICIKNG OF LICENSED
CONTENT USING CONTENT-BASED IDENTIFIERS

December 22, 2004

Docket No.: 2618-0003

THE FOLLOWING FILING FEE IS BASED ON CLAIMS AS FILED LESS ANY ABOVE CANCELLED

Large /Small

Basis For Fee Entity Amount

18. Basic FilingFeecccoceiiiiinniiiens Regular Util?ty Applipatipn $790/ %395 $790
Design Application $350/ %175
19. Total Claims 46 Minus 20 = 26 X$18/% 9 468
20. Ind. Claims 9 Minus 3 = 6 X $88/ $44 528
21. If any proper multiple depen_de_nt clai_m (ignore fmpfoper) is present, add $300 / $150 300
(Leave this line blank if this is a reissue application)

22. Total Filing Fee Enclosed: $2,086
23. If “non-English” box 2 is X'd, add Rule 17(k) processing fee $130
24. If “assignment’ box 8 is X'd, add recording fee $ 40
25. [Attached is a Petition/Fee under Rule No. $130
26. Total Fee Enclosed: $2,086

27. [Please charge the total fee to our deposit account below under the stated order no.:

Our Deposit Account No.: 501860.

CHARGE STATEMENT: The Commissioner is hereby authorized to charge any fee specifically authorized hereafter, or

any missing or insufficient fee(s) filed, or asserted to be filed, or which should have been filed herewith or concerning any
paper filed hereafter, and which may be required under Rules 16-18 (missing or insufficient fee only) now or hereafter relative
to this application and the resulting Official document under Rule 20, or credit any overpayment, to our Account/Order Nos.
shown above for which purpose a duplicate copy of this sheet is attached.

This Charge Statement does not authorize charge of the issue fee until/unless an issue fee transmittal form is filed.

CUSTOMER NUMBER

Respegtfully submjtted,

AEARAY

Davidson Berquist Jackson & Gowdey, LLP
4501 N. Fairfax Drive; Suite 920

Arlington, VA 22203

Main: (703) 248-0333

FAX: (703) 248-9558

iritzk

Yy

Registration No.: 37,497

GOOG-1020-Page 4 of 114

APPLICATION UNDER UNITED STATES PATENT LAWS

Attorney Docket: | 2618-0011

Invention: CONTENT DELIVERY NETWORK AND ASSOCIATED METHODS AND
MECHANISMS
Inventor(s): FARBER, David A.

LACHMAN, Ronald D.

Davidson Berquist Jackson & Gowdey, LLP
4501 North Fairfax Drive, Suite 920
Arlington, VA 22203
(703) 248-0333 Phone
(703) 248-9558 Fax

This is a:

(] Provisional Application

[] Regular Utility Application

X Continuing Application
X The contents of the parent are
incorporated by reference

[] PCT National Phase Application

[C] Design Application

[] Reissue Application

[l Plant Application

GOOG-1020-Page 5 of 114

CONTENT DELIVERY NETWORK AND ASSOCIATED METHODS
AND MECHANISMS

RELATED APPLICATIONS

[0001) This is a continuation of and claims priority to co-pending
application no. 09/987,723, filed November 15, 2001 (allowed), (the contents of
which are hereby incorporated herein by reference), which is a continuation of

- application No. 09/283,160, filed April 1, 1999, now U.S. Patent No. 6,415,280,
which is a division of application Ser. No. 08/960,079, filed Oct. 24, 1997, now
U.S. Pat. No. 5,978,791 filed Oct. 24, 2001 which is a continuation of Ser. No.
08/425,160, filed Apr. 11, 1995, now abandoned.

BACKGROUND OF THE INVENTION

1. FIELD OF THE INVENTION

[0002] This invention relates to data processing systems and, more particularly, to
data processing systems wherein data items are identified by substantially unique

~ identifiers which depend on all of the data in the data items and only on the data in

. T L
-

the data items. "

2. BACKGROUND OF THE INVENTION

[0003] Data processing (DP) systems, computers, networks of computers, or the
like, typically offer users and programs various ways to identify the data in the
systems.

[0004] Users typically identify data in the data processing system by giving the
data some form of name. For example, a typical operating system (OS) on a

- computer provides a file system in which data items are named by alphanumeric
identifiers. Programs typically identify data in the data processing system using a
location or address. For example, a program may identify a record in a file or

- database by using a record number which serves to locate that record.

-1-
2618-0011

GOOG-1020-Page 6 of 114

[0005] In all but the most primitive operating systems, users and programs are able
to create and use collections of named data items, these colleétions themseiyes
being named by identifiers. These named collections can then, themselves, be
made part of other named collections. For éxample, an OS may provide
mechanisms to group files (data items) into directories (collections). These
directories can then, themselves be made part of other directories. A data item may
thus be identified relative to these nested directories using a sequence of names, or
a so-called pathname, which defines a path through the directories to a particular
data item (file or directory). '
[0006] As another example, a database management system may group data
_ records (data items) into tables and then group these tables into database files
(collections). The complete address of any data record can then be specified using
the database file name, thg table name, and the record number of that data record.
[0007] Other examples of identifying data items include: identifying files in a
network file system, identifying objects in an object-oriented database, identifying
images in an image database, and identifying articles in a text database.
[0008] In general, the terms "data" and "data item" as used herein referto
sequences of bits. Thus a data item may be the contents of a file, a porﬁon ofa
file, a page in memory, an object in an object-oriented program, a digital message,
a digital scanned image, a part of a video or audio signal, or any other entity which
can be represented by a sequence of bits. The term "datalpr'ocessing" herein refers
to the processing of data items, and is sometimes dependént on »the type of data
item being processed. For example, a data processor for a digital image may differ
from a data processor for an audio signal.‘ '
[0009] In all of the prior data processing systems the names or id‘entiﬁers pfovided
to identify data items (the data items being files, direc'tories,v records in the
database, objects in object-oriented programming, locations in memory or on a
physical device, or the like) are always defined relative to a speciﬁclcontextiFor
“instance, the file identified by a particular ﬁl‘e narﬁe can only be determined when

-2
2618-0011

GOOG-1020-Page 7 of 114

the directory containing the file (the context) is known. The file identified by a
pathname can be determined only when the file system (context) is known.
Similarly, the addresses in a process address space, the keys in'a database table, or
domain names on a global computer network such as the Internet are meaningful
only because they are specified relative to a context.

[0010] In prior art systems for identifying data items there is no direct relationship
- between the data names and the data item. The same data name in two different
contexts may refer to different data items, and two different data names in the
same context may refer to the same data item.

[0011] In addition, because there is no correlation between a data name and the
data it refers to, there is no a priori way to confirm that a given data item is in fact
the one named by a data name. For instance, in a DP system, if one processor
requests that another processor deliver a data item with a given data name, the
requesting processor cannot, in general, verify that the data delivered is the correct
data (given only the name). Therefore it may require further processing, typically
on the part of the requestor, to verify that the data item it has obtained is, in fact,
the item it requested. '

[0012] A common operation in a DP system is adding a new data item to the
system. When a new data item is added to the system, a name can be assigned to it
only by updating the context in which names are defined. Thus such systems
require a centralized mechanism for the management of names. Such a mechanism
is required even in a multi-processing system when data items are created and‘
identified at separate processors in distinct locations, and in which there is no
other need for communication when data items are added.

[0013] In many data processing systems or environments, data items are
transferred between different locations in the system. These locations may be
processors in the data processing system, storage devices, memory, or the like. For

example, one processor may obtain a data item from another processor or from an

2618-0011
GOOG-1020-Page 8 of 114

external storage device, such as a floppy disk, and may incorporate that data item
into its system (using the name provided with that data item). .

- [0014] However, when a processor-(or some location) obtains a data item from
another location in the DP system, it is possible that this obtained data item is
already present in the system (either at the location of the processor or at some
other location accessible by the processor) and therefore a duplicate of the data
item is created. This situation is common in a network data processing
environment where proprietary software products are installed from floppy disks
onto several processors sharing a common file server. In these systems, it is often
~ the case that the same product will be installed on several systems, so.that several
copies of each file will reside on the common file server.

[0015] In some data processing systems in which several processors are connected
in a network, one system is designated as a cache server to maintain master copies
of data items, and other systems are designated as cache clients to copy local

- copies of the master data items into a local cache on an as-needed basis. Before

- using a cached item, a cache client must either reload the cached item, be informed
of changes to the cached item, or confirm that the master item corresponding to

- the cached item has not changed. In other words, a cache client must synchronize

_ its data-items with those on the cache server. This synchronization may involve
reloading data items onto the cache client. The need to keep the cache
synchronized or reload it adds significant overhead to existing caching .
mechanisms.

[0016] In view of the above and other problems with prior art systems, it is
therefore desirable to have a mechanism which allows each processor in a -
multiprocessor system to determine a common and substantially unique identifier
for a data item, using only the data in the data item and not relying on.any sort of .
- context.

" [0017] It is further desirable to have a mechanism for reducing multiple copies of

data items in a data processing system and to have a mechanism which enables the

-4 o
2618-0011

GOOG-1020-Page 9 of 114

- identification of identical data items so as to reduce multiple copies. It is further
desirable to determine whether two instances of a data item are.in fact the same

. data item, and to perform various other systems' functions and applications on data
items without relying on any context information or properties of the data item.
[0018] It is also desirable to provide such a mechanism in such a way as to make it
transparent to users of the data processing system, and it is desirable that a single

mechanism be used to address each of the problems described above.

SUMMARY OF THE INVENTION
[0019] This invention provides, in a data processing system, a method' and
. apparatus for identifying a data item in the system, where the identity of the data
item depends on all of the data in the data item and only on the data in the data
item. Thus the identity of a data item is independent of its name, origin, location,
address, or other information not derivable directly from the data, and depends
only on the data itself. . |
[0020] This invention further provides an apparatus and a method for determining
whether a particular data item is present in the system or at a location in the
system, by examining only the data identities of a plurallty of data 1tems '
,[0021] Using the method or apparatus of the present 1nvent10n the efﬁcrency and
| 1ntegr1ty of a data processing system can be 1mproved The present invention
1mpr0ves the design and operation of a data storage system, file system relational
-database object-oriented database, or the like that stores a plurallty of data 1tems
by making possible or improving the design and operation of at least some or all
of the following features: | ' S
.[0022] the system stores at most one copy of any data item at a glven location
‘even when multiple data names in the system refer to the same contents
[0023] the system avoids copying data from source to destmatlon locations when

the destination locations already have the data;

2618-0011
GOOG-1020-Page 10 of 114

[0024] the system provides transparent access to any data item by reference only to
its identity and independent of its present location, whether it be local, remote, or
offline;

[0025] the system caches data items from a server, so that only the most recently
accessed data items need be retained;

[0026] when the system is being used to cache data items, problems of maintaining
cache consistency are avoided,;

[0027] the system maintains a desired level of redundancy of data items in a
network of servers, to protect against failure by ensuring that multiple copies of
the data items are present at different locations in the system; |

[0028] the system automatically archives data items as they are created or
modified; |

[0029] the system provides the size, age, and location of groups of data items in
order to decide whether they can be safely removed from a local file system;
[0030] the system can efficiently record and preserve any collection of data items;
[0031] the system can efficiently make a copy of any collection of data items, to
support a version control mechanism for groups of the data items;

[0032] the system can publish data items, allowing other, possibly anohymdus,
‘sy'stems in a network to gain access to the data items and to rely on the availability
of the data items;

[0033] the system can maintain a local inventory of all the data items located on a
given removable medium, such as a diskette or CD-ROM, the inventory is |
independent of other properties of the data items such as their name, location, and
date of creation;

[0034] the system allows closely related sets of data items, such as matching or

~ corresponding directories on disconnected computers, to be periodiﬂéally |
resynchronized with one another; ; | 4 |

[0035] the system can verify that data retrieved from another location is the desired
or requested data, using only the data identifier used to retrieve the data;

-6—
2618-0011

GOOG-1020-Page 11 of 114

[0036] the system can prove possession of specific data items by content without

. disclosing the content of the data items, for purposes of later legal verification and

to provide anonymity;

[0037] the system tracks possession of specific data items according to content by

owner, independent of the name, date, or other properties of the data item, and

. tracks the uses of specific data items and files by content for accounting purposes.

[0038] Other objects, features, and characteristics of the present invention as well

. as the' methods of operation and functions of the related elements of structure, and

- the combination of parts and economies of manufacture, will become more
apparent upon consideration of the following description and the appended claims
with reference to the accompanying drawings, all of which form a part of this

specification.

BRIEF DESCRIPTION OF THE DRAWINGS

. [0039] Figures 1(a) and 1(b) depict a typical data processing systém in which a
preferred embodiment of the present invention operates;

“[0040] Figure 2 depicts a hierarchy of data items stored at any location in such a
data processing system,;

- [0041] Figures 3-9 depict data structures used to implenient anrembodimen‘t' of the
present invention; and .

- . [0042] Figures 10(a)-28 are flow charts depicting operation of various aspects of

the present invention.

. DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED
EXEMPLARY EMBODIMENTS

. [0043]-An embodiment of the present invention is now.described with reference to
a typical data processing system 100, which, with reference to FIGS. 1(a) and 1(b),
includes one or more processors (or computers) 102 and various storage devices

104 connected in some way, for example by a bus 106.

2618-0011
GOOG-1020-Page 12 of 114

[0044] Each processor 102 includes a CPU 108, a memory. 110 and one or more
local storage devices 112. The CPU 108, memory 110, and local storage device -
112 may be internally connected, for example by a bus 114. Each processor 102
‘may also include other devices (not shown), such as a keyboard, a display, a
printer, and the like.
[0045] In a data processing system 100, wherein more than one processor 102 is
used, that is, in a multiprocessor system, the processors may be in one of various
- relationships. For example, two processors 102 may be in a client/server;
client/client, or a server/server relationship. These inter-processor relationships
may be dynamic, changing depending on particular situations and functions. Thus, -
a particular processor 102 may change its relationship to other processors as -
needed, essentially setting up a peer-to-peer relationship with other processors. In
a peer-to-peer relationship, sometimes a particular processor 102 acts as a client
processor, whereas at other times the same processor acts as a server processor. In
other words, there is no hierarchy imposed oh or required of pro'céssbrs 102.
[0046] In a multiprocessor system, the processors 102 may be homQéeﬁéous or
'heterdgene,bus; Further, in a multiprocessdr data processing system 100, some dr
all of the processors 102 may be disconnected from the network of processors for
' peridds of time. Such disconnection may be part'of the normal dperatibn of the
system 100 or it may be because a particular processor 102 is in need of repair.
[0047] Within a data processing systein 100, the data may be orgarﬁzéd to form a
- hierarchy of data storage elements, wherein lower level data storage elements are
combined to form higher level elements. This hierarchy can cqnsis-t of, for
example, processors, file systems, regions, directories, daiai ﬁl-eé,_‘_segme_r_l'ts-, -and
the like. For example, with reference to FIG. 2, the data items on a particular _ -
processor 102 may be organized or structured as a file system 116 which -
comprises regions 117, each of which comprises directories 118; each of which
- can contain other directories 118 or files 120. Each file- 120 being made up of one
or more data segments 122.

. -8- -
2618-0011

GOOG-1020-Page 13 of 114

" [0048] In a typical data processing system, some or all of these elements can be

- named by users given certain implementation specific naming conventions, the

- name (or pathname) of an element being relative to a context. In the context of a
‘data processing system 100, a pathname is fully specified by a processor name, a
filesystem name, a sequence of zero or more directory names identifying nested
directories, and a final file name. (Usually the lowest level elements, in this case
segments 122, cannot be named by users.)
[0049] In other words, a file system 116 is a collection of directories 118. A
directory 118 is a collection of named files 120--both data files 120 and other |
directory files 118. A file 120 is a named data item which is either a data file
(which may be simple or compound) or a directory file 118. A simple file 120
consists of a single data segment 122. A compound file 120 consists of a sequence
of data segments 122. A data segment 122 is a fixed sequence of bytes. An
impprtant property of any data segment is its size, the number of bytes in the
sequence. |

- [0050] A single processor 102 may access one or more file systems 116, and a

- single storage device 104 may contain one or more file systems 116, or portions of
a file system 116. For instance, a file system 116 may span several storage devices

104, |

[0051] In order to implement controls in a file system, file system 116 may be

. divided into distinct regions, where each region is a unit of management and

control. A region consists of a given directory 118 and is identified by the

- pathname (user defined) of the directory.

- [0052] In the following, the term "location", with respect to a daté processing

system 100, refers to any of a particular processor 102 in the system, a memory of

a particular processor, a storage device, a removable storage medium (such as a.

floppy disk or compact disk), or any other physical location in the system. The

term "local" with respect to a particular processor 102 refers to the memory and

storage devices of that particular processor.

-9
2618-0011

GOOG-1020-Page 14 of 114

[0053] In the following, the terms "True Name", "data identity" and "data
identifier" refer to the substantially unique data identifier for a particular data item.
- The term "True File" refers to the actual file, segment, or data item identified by a
True Name.
' [0654] A file system for a data processing system 100 is now described which is
intended to work with an existing operating system by augmenting some of the
‘operating system's file management system codes. The embodiment provided
" relies on the standard file management primitives for actually storing to and
retrieving data items from disk, but uses the mechanisms of the present invention
to reference and access those data items.
[0055] The processes and mechanisms (services) provided in this embodiment are
grouped into the following categories: primitive mechanisms, operating system
mechanisms, remote mechanisms, background mechanisms, and extended
mechanisms.
[0056] Primitive mechanisms provide fundamental capabilities used to support
other mechanisms. The following primitive mechanisms are described:
1. Calculate True Name; |
. Assimilate Data Item;
. True File;
. Get True Name from Path;
. Link path to True Name;

2
3
4
5
6. Realize True File from Location;
7. Locate Remote File;

8. Make True File Local,

9. Create Scratch File;

10. Freeze Directory;

11. Expand Frozen Directory; -

12. Delete True File;

13. Process Audit File Entry; - -

-10 -
2618-0011

GOOG-1020-Page 15 of 114

14. Begin Grooming;

15. Select For Removal; and -

16. End Grooming.

[0057] Operating system mechanisms provide typical familiar file system'

mechanisms, while maintaining the data structures required to offer the.

‘mechanisms of the, present invention. Operating system mechanisms are designed

to augment existing operating systems, and in this way to make the present

~ invention compatible with, and generally transparent to, existing applications. The

following operating system mechanisms are described:

1.
2. Close File;
3. Read File;
4. Write File;
5.
6
7
8

Open File;

Delete File or Directory;

. Copy File or Directory;
. Move File or Directory;
. Get File Status; and

9.

Get Files in Directory.

[0058] Remote mechanisms are used by the operating system in responding to

requests from other processors. These mechanisms enable the capabilities of the

présent invention in a peer-to-peer network mode of operation. The. following

remote mechanisms are described:

1.
2.
3.
4.
5.
6.
7.

2618-0011

Locate True File;
Reserve True File;
Request True File;
Retire True File;
Cancel Reservation;
Acquire True File;
Lock Cache;

-11-

GOOG-1020-Page 16 of 114

8. Update Cache; and
9. Check Expiration Date.
- [0059] Background mechanisms are intended to run occasionally and at a low
priority: These provide automated management capabilities with respect to the
present invention. The following background mechanisms are described:

1. Mirror True File;

2. Groom Region;

3. Check for Expired Links; and

4. Verify Region; and

5. Groom Source List.
'[0060] Extended mechanisms run within application programs over the operating
system. These mechanisms provide solutions to specific problems and
applications. The following extended mechanisms are described:

1. Inventory Existing Directory;

2. Inventory Removable, Read-only Files;

3. Synchronize directories;

4. Publish Region;

5. Retire Directory;

6. Realize Directory at location;

7. Verify True File;

8. Track for accounting purposes; and

9. Track for licensing purposes.
[0061] The file system herein described maintains sufficient information to
provide a variety of mechanisms not ordinarily offered by an operating system,
some of which are listed and described here. Various processing performed by this -
embodiment of the present invention will now be described in greater detail.
. [0062] In some embodiments, some files 120 in a data processing system 100 do
“not have True Names because they have been recently received or created or
modified, and thus their True Names have not yet been computed. A file that does .

-12 -
2618-0011

GOOG-1020-Page 17 of 114

not yet-have a True Name is called a scratch file. The process of assigning a True
- Name to a file is referred to as assimilation, and is described later. Note that a
scratch file may have a user provided name.

[0063] Some of the processing performed by the present invention can take place
in a background mode or on a delayed or as-needed basis. This background
processing is used to determine information that is not immediately required by
the system or which may never be required. As an example, in some cases a

.- scratch file is being changed at a rate greater.than the rate at which it is.useful to
determine its True Name. In these cases, determining the True Name of the file

can be postponed or performed in the background.

DATA STRUCTURES

- '[0064] The following data structures, storedin niemory 110 of one of more
processors 102 are used to implemen;t the mechanisms described herein. The data
structures can be local to each processor 102 of the system 100; or they can reside
on only some of the processors 102. |
[0065] The data structures described are aséumed to reside on individual peer
processors 102 in the data processing system 100. However; they can also be
- shared by placing them on a remote, shared file server (for instance, in a local area
" network of machines). In order to accomraodate sharing data structures, it is
necessary that the processors accessing the‘shared database ase the appropriate
locking techniques to ensure that changes to the shared database do not interfere
- with one another but are appropriately serlallzed These lockmg techmques are
well understood by ordmarlly skilled programmers of dlstnbu_ted apphcatlon_s.
. [0066] 1t is sometlmes desirable to allow some reglons to be local to a partlcular
processor 102 and other regions to be shared among processors 102 (Recall that a
- region is a unit of file system management and control con51st;ng of a given
. directory identified by the pathnarfle of the directory.) In the Vcase of iocai and

jshar,ed'regions, there would be both local and shared versions of each data

-13 -
2618-0011

GOOG-1020-Page 18 of 114

structure. Simple changes to the processes described below must be made.to
- ensure that appropriate data structures are selected fora given operation.
[0067] The local directory extensions (LDE) table 124 is a data structure which
provides information about files 120 and directories 118 in the data processing
system 100. The local directory extensions table 124 is indexed by a pathname or
. contextual name (that is, a user provided name) of a file and includes the True
Name for most files. The information in local directory extension table 124 is in
_addition to that provided by the native file system of the operating system.
[0068] The True File registry (TFR) 126 is a data store for listing actual data items
which have True Names, both files 120 and segments 122. When such data items
- occur.in the True File registry 126 they are known as True Files. True Files are
identified in True File registry 126 by their True Names or identities. The table
True File régistry 126 also stores location, dependenéy; and migration information
about True Files.
[0069] The region table (RT) 128 defines areas in the network storagé which are to
be managed separately. Region table 128 defines the rules for access to and
migration of files 120 among various regions with the local file system 116 and
remote peer file systems. ' '
~ [0070] The source fablé (ST) 130 is a- list of thé sources of True Files other than
 the current True File registry 126. The source table 130 includes removable
volumes and remote processors.
[0071] The audit file (AF) 132 is a list of records indiéating changes to be made in
local or remote files, these changes to be processed in background. -
[0072] The accounting log (AL) 134 is a log of file transactions used to create
- accounting information in a manner which preserves the idéntity of files Béing
tracked independent of their name or location. | |
[0073] The license tabie (LT) 136 is a table idehtifyihg ﬁles, which méSi only be
used by licensed hsers, in a manner independeﬁt of fheir name or 'loéati(.)n, and thé
users licensed to use them. | A T |

L -14 -
2618-0011

GOOG-1020-Page 19 of 114

DETAILED DESCRIPTIONS OF THE DATA STRUCTURES . -

[0074] The following table summarizes the fields of an local directory extensions

table entry, as illustrated by record 138 in FIG. 3.

| Field Description
| RegionID | identifies the region in which this file is contained.
‘| Pathname the user provided name or contextual name of the file or dlrectory,
: relative to the region in which it occurs.
True Name | the computed True Name or identity of the file or directory. This
‘ True Name is not always up to date, and it is set to a special value
when a file is modified and is later recomputed in the background.
Type indicates whether the file is a data file or a directory.
Scratch F 1le the physical location of the file in the file system, when no True
ID ‘Name has been calculated for the file. As noted above, such a file is

called a scratch file.

Time of last

the last access time to this file. If this file is a directory, this is the

access last access time to any file in the directory.
Time of last | the time of last change of this file. If this file is a directory, this is
modification | the last modification time of any file in the directory.
Safe flag indicates that this file (and, if this file is a directory, all of its
subordinate files) have been backed up on some other system, and it
i§ therefore safe to remove them.
- | Lock flag | indicates whether a file is locked, that is, it is being modified by the
' ' local processor or a remote processor. Only one processor may
modify a file at a time.
Size the full size of this directory (including all subordinate files), if all
g files in it were fully expanded and duplicated. For a file that is not a
) directory this is the size of the actual True File.
| Owner the identity of the user who owns this file, for accounting and

license tracking purposes.

-[0075] Each record of the True File registry 126 has the fields shown in the True
- File registry record 140 in F1G. 4. The True File registry 126 consists of the

~ database described in the table below as well as the actual True Files identified by

-the True File IDs below.
‘A Field Description
True Name | computed True Name or identity of the file.

‘| Compressed | compressed version of the True File may be stored instead of, or in
| File ID. addition to, an uncompressed version. This field provides the
o identity of the actual representation of the compressed version of
the file.
-15-—
2618-0011

GOOG-1020-Page 20 of 114

| Field { Description

Grooming | tentative count of how many references have been selected for
delete count | deletion during a grooming operation.

Time of last | most recent date and time the content of this file was accessed.
access

.|-Expiration | date and time after which this file may be deleted by this server.

Dependent | processor IDs of other processors whrch contam references to this
processors | True File.

' Source IDs - | source ID(s) of zero or more sources- from whlch thls file or data -
item may be retrieved.

"| True File ID | identity or disk location of the actual physwal representation of the
S file or file segment. It is sufficient to use a filename in the

| registration directory of the underlymg operating system. The True

File ID is absent if the actual file is not currently present at the

current location.

Use count - | number of other records on th1s processor which 1dent1fy thlS True
File.

. [0076] A region table 128, specified by a directory pathname, records storage
policies which allow files in the file system to be _store_d; accessed»and migrated in
- different ways. Storage policies are programmed in a ccnﬁgurable wdy ~usin’g a set
of rules described below. | |

[0077] Each region table record 142 of region table 128 1ncludes the ﬁelds

described in the followmg table (w1th reference to FIG 5):

Field Description

‘| Region ID internally used identifier for this region.

- | Region file | file system on the local processor of which this region is a part.
| system - o

Region. - . | a pathname relative to the region file system which defines the
| pathname location of this region. The region consists of all files and

' directories subordinate to this pathname, except those in a region
subordinate to this region.

Mirror . | zero or more identifiers of processors which are to keep mirror or
processor(s) | archival copies of all files in the current region. Multiple mirror
processors can be defined to form a mirror group.-

Mirror ' number of copies of each. file in this reglon that should be retalned
duplication | in a mirror group. :
count
-16 - -
26180011

GOOG-1020-Page 21 of 114

Field Description

Region specifies whether this region is local to a single processor 102,

status shared by several processors 102 (if, for instance, it resides on a
o shared file server), or managed by a remote processor.

Policy " | the migration policy to apply to this region. A single region might

participate in several policies. The policies are as follows
(parameters in brackets are specified as part of the pollcy)

region is a cached version from [processor ID];

reglon is a member of a mirror set defined by [processor LD].

region is to be archived on [processor ID].

- region is to be backed up locally, by placing new copies in

[region ID].

region is read only and may not be changed.

region is published and expires on [date].

Files in this region should be compressed.

[0078] A source table 130 identifies a source location for True Files. The source
~ table 130 is also used to identify client processors making reservations on the
current processor. Each source record 144 of the source table 130 includes the

fields summarized in the following table, with reference to FIG. 6:

Field Description

source ID internal identifier used to identify a particular source.

source type | type of source location:

Removable Storage Volume -
Local Region

Cache Server

Mirror Group Server
Cooperative Server

Publishing Server
Client
source includes information about the rights of th1s processor such as
rights . whether it can ask the local processor to store data items for it.
source measurement of the bandwidth, cost, and reliability of the

‘availability | connection to this source of True Files. The ava11ab111ty is used to
select from among several possible sources..

source '| information on how the local processor is to access the source. Th1s
| location | may be, for example, the name of a removable storage volume, or

-| the processor ID and region path of a region on a remote processor.

, -17-
2618-0011

GOOG-1020-Page 22 of 114

[0079] The audit file 132 is a table of events nr_dered by tirne"stén)p,.eéch record

- 146 in audit file 132 including the fields summarized in the following table (with

- reference to FIG. 7):

| Field Description
Original path of the file in question.
Name
Operation whether the file was created, read, written, copied or deleted
Type specifies whether the source is a file or a directory.
Processor ID of the remote processor generating this event (if not local).
ID
| Timestamip t1me and date file was closed (required only for accessed/modlﬁed
files). :
Pathname Name of the file (required only for rename)
True Name -| computed True Name of the file. This'is used by remote systems to

mirror changes to the directory and is filled in during background
processing.

[0080] Each record 148 of the accounting log 134 re_cords an event which may

later be used to provide information for billing mechanisms. Each accounting log

entry record 148 includes at least the information summarized in the following

table, with reference to FIG. 8:

Field

Description

date of entry

date and time of this log entry.

type of entry

Entry types include create file, delete file, and transmit file.

True Name -

True Name of data item in question.

| owner

identity of the user responsible for this action.

[0081] Each record 150 of the license table 136 records a relationship between a

licensable data item and the user licensed to have access to.it. Each license table

‘record 150 includes the information summarized in the following table, with

reference to FIG. 9:

| Field

‘Description
| True Name True Name of a data item subject to license validation.
licensee .identity of a user authorized to have access to this object.

[0082] Various other data structures are employed on some or all of the processors

102 in the data processing system 100. Each processor 102 has a global freeze

lock (GFL) 152 (FIG. 1), which is used to prevent synchronization errors when a

2618-0011

-18-

GOOG-1020-Page 23 of 114

directory is frozen or copied. Any processor.102 may include a special archive
- directory (SAD) 154 into which directories may be copied for the purpdses of
© archival. Any processor 102 may include a special media directory (SMD) 156,
into which the directories of remov_éble \.loll._lm_es» Aa'r_éf: stored “t(-).foi_'_-fh a medla
inventory. Each processor has a grooming lock’ 158, which is set during a
grooming operation. During this period the grooming delete count of True File -
- registry entries 140 is active, and no True ‘Fi_less'houAld be dhel‘ete'd'until grooming is
.« complete. While grooming is in effect, grooming ipfphn;it@on includes a table of
pathnames selécted for delétion, and ke¢p$ track of the amount of space that 'Wf)uld

~ be freed if all of the files were deleted. -+~

PRIMITIVE MECHANISMS '
[0083] The first of the mechanisms p‘rovided-by. the present invention, primitive
mechanisms, are now described. The mechanisms described here depend on
underlying data management mechanisms to create, copy, read, and delete data
.items in the True File registry 126, as identified by a True File ID. This support
may be provided by an underlying operating systeni or disk storage manager.
[0084] The following primitive méchanisﬁlé are d_escr_i_bc_d_f) »
1. Calculate True Name; -
2. Assimilate Data I.trerri;‘
3. True File;
4. Get True Namé from Path;
5. Link Path to True Name;
6. Realize True File from Location;
7. Locate Remote File; ‘
- 8. Make True File Local; -
9. Create Scratch File; '
10. Freeze Directory;
11. Expand Frozen Directory; -

: -19-
2618-0011

GOOG-1020-Page 24 of 114

12. Delete True File;

13. Process Audit File Entry;
14. Begin Grooming;

15. Select For Removal; and

16. End Grooming.

1 Calcu‘late True Name . . e
[0085] A True Name is computed using a function, MD, which reduces a data
block B of arbitrary length to a relatively small, fixed Size idéntiﬁer the True

. Name of the data block, such that the True Name of the data block is v1rtually
guaranteed to represent the data block B and only data block B.

[0086] The function MD must have the following properties:
1. - The domain of the function MD is the set of all data items.
The range of the function MD is the set of True Names.
2. The function MD must take a data item of arbitrary length
and reduce it to an integer value in the range 0 to N-1, where N is the
cardinality of the set of True Names. That is, for an arbitrary length
data block B, 0 <MD(B) <N. '
3. The results of MD(B) must be evenly and randomly _
distributed over the range of N, in such a way that simple or regular
changes to B are virtually guaranteed to produce a different value of
MD(B). | | |

- 4. It must be computationally difficult to find a differént value

B’ such that MD(B)=MD(B'). - .
5. The function MD(B) must be efﬁciently éOmput'ed. _

. [0687] A farhily of functions with the above properties are the‘so-called meséage
digest functions, which are used in digital seéurity systems as techniques for
authentification of data. These functions (6r algorithms) include MD4, MD5, and
SHA.

-20-—
2618-0011

GOOG-1020-Page 25 of 114

[0088] In the presently preferred embodiments, either MDS5 or SHA is employed as
- the basis for the computation of True Names. Whichever of these two message
- digest functions is employed, that same function must be employed on a system-
wide basis. _ |
[0089] It is impossible to define a function having a unique output for each |
“possible input when the number of elements in the range of the function is smaller
than the number of elements in its domain. However, a crucial observation is that
- the actual data items that will be encountered in the operation 'of any system
embodying this invention form a very sparse subset of all the possible inputs.
[0090] A colliding set of data items is defined as a set wherein, for one or more
" pairs x and y in the set, MD(x)=MD(y). Since a function conforming tothe
requirements for MD must evenly and randomly distribute its outputs, it is
possible, by making the range of the function large enough, to make the
~ probability arbitrarily small that actual inputs encountered in the operation of an
embodiment of this invention will form a colliding set.
[0091] To roughly quantify the probability of a collision, assumé that there are no
more than 2*° storage devices in the world, and that each storage device has an
average of at most 2°° different data items. Then there are at most 2% data items in

128 it. can be demonstrated

the world. If the outputs of MD range between 0 and 2
. that the probability of'a collision is approximately 1 in 2%°. Details on the
~derivation of these probability values are found, for example, in P. Flajolet and A. -
M. Odlyzko, "Random Mapping Statistics," Lecture Notes in Computer Science
- 434: Advances in Cryptology--Eurocrypt '89 Proceedings, Springer-Verlag, pp.
329-354, | S
_[0092]‘N0te that for some less preferred embodiments of the present invention,
lower probabilities of uniqueness may be acceptable, depending on the types of

. applications and mechanisms used. In some embodiments it may also be useful to

have more than one level of True Names, with some of the True Names having

-21-—
2618-0011

GOOG-1020-Page 26 of 114

different degrees of uniqueness. If such a scheme is implemented, it is necessary

- to ensure that less unique True Names are not propagated in the system.
[0093]) While the invention is described herein using only the True Name of a data
item as the identifier for the data item, other preferred embodimént's use tagged,
typed, categorized or classified data items and use a combination of both the True
Name and the tag, type, category or class of the data item as an identifier.
Examples of such categorizations are files, directories, and segments; executable
-files and data files, and the like. Examples of classes are classes of objects in an
object-oriented system. In such a system, a.lower degree of T rueNé.nie uniqueness
is acceptable over the entire universe of data items, as long as sufficient
uniqueness. is provided per category of data items. This is because the tags
provide an additional level of uniqueness.
[0094] A mechanism for calculating a True Name given a data iterﬁ is noW
described, with reference to FIGS. 10(a) and 10(b). |
[0095] A simple data item is a data item whose size is less than a particular given
size-(which must be defined in each particular implementation of the invention).
To determine the True Name of a simple data item, with reference to FIG. 10(a),

first corhpute the MD function (described above) on the given simple data item
(Step S212). Then append to the resulting 128 bits, the byte length modulo 32 of
the data item (Step S214). The resulting 160-bit value is the True Name of the
simple data item.

[0096] A compound data item is one whose size is greater than the particular given

- size of a simple data item. To determine the True Name of an arbitrary (simple or

compound) data item, with reference to FIG. 10(b), first determine if the data item
is a simple or a compound data item (Step S216). 1f the data item is a simple data

- item, then compute its True Name in step S218 (using steps S212 and S214

- described above), otherwise partition the data item into segments (Step S220) and
. ~assimilate each segment (Step S222) (the primitive mechanism, Assimilate a Data
Item, is described below), computing the True Name of the segment. Then create

-22 —
2618-0011

GOOG-1020-Page 27 of 114

an indirect block consisting of the.computed segment True Names (Step S224).

-.An indirect block is a data item which consists of the sequence of True Names of

- the segments. Then, in step S226, assimilate the indirect block and compute its
True' Name. Finally, replace the final thirty-two (32) bits of the resulting True
Name (that is, the length of the indirect block) by the length modulo 32 of the

“compound data item (Step S228). The result is the True Name of the compound
data item.
[0097] Note that the compound data item may be so large that the indirect block of
segment True Names is itself a compound data item. In this case the mechanism is
invoked recursively until only simple data items are being processed.
[0098] Both the use of segments and the attachment bf a length to the True Name

- are not strictly required in a system using the present invention, but are currently

considered desirable features in the preferred embodiment.

2. Assimilate Data Item

- [0099] A mechanism for assimilating a déta item (scratch file or segment) into a
file system, given the scratch file ID of the data item, is now described with
reference to FIG. 11. The purpose of this mechanism is to add a given data item to
the True File registry 126. If the data item already exists in the True File registry
126, this will be discovered and used during this process, and the duplicate will be
eliminated.

t00100] ~ Thereby the system stores at most one copy of any data item or file
by content, even when multiple names refer to the same content.

[00101] - . . First, determine the True Name of the data item corresponding to the
- given scratch File ID using the Calculate True Name primitive mechanism (Step
S230). Next, look for an entry for the True Name in the True File registry 126
(Step S232) and determine whether a True Name entry, record A1,4(-), Jexists in the

- True File registry 126. If the entry record includes a corresponding True File ID or

: -23 -
2618-0011

GOOG-1020-Page 28 of 114

compressed File ID (Step S237), delete the file with the scratch File ID (Step

S238). Otherwise store the given True File ID in the entry record (step S239).
~.[00102] - If it is determined (in step S232) that no True Name entry exists in

the True File registry 126, then, in Step S236, create a new entry in the True File
registry 126 for this True Name. Set the True Name of the entry to the calculated = .
True Name, set the use count for the new entry to one, store the given True File ID
in the entry and set the other fields of the entry as appropriate.

'[00103) Because this procedure may take some time to compute, it is .

intended to run in background after a file has ceased to change. In'the meantime,

the file is considered an unassimilated scratch file.

3. True File

- [00104] The True File process is invoked when processing ther audit file 132,
some time after a True File has been assimilated (using the Assimilate Data Item
primitive mechanism). Given a local directory extensions table entry record 138 in
the local directory extensions table 124, the True File process can provide the
following steps (with reference to FIG. 12), depending on how the local processor

-is configured:

[00105] - First, in step S238, examine the local directory extensions table entry
record 138 to determine whether the file is locked by a cache server. If the file is
locked, then add the ID of the cache server to the dependent processor list of the
True File registry table 126, and then send a message to the cache server to update

- the cache of the current processor using the Update Cache remote mec.hanism

(Step 242). |
[00106] If desired, compress the True File (Step S246), and, if desired,

- mirror the True File using the Mirror True File background mechanism (Step
©$248). |

. -24 —
2618-0011

GOOG-1020-Page 29 of 114

4, Get True Name from Path

[00107] . - The True Name of a file can be used to~identify a file by contents, to
confirm that a file matches its original contents, or to compare two files. The
‘mechanism to get a True Name giveh the pafhname ofa ﬁle‘ is now described with
reference to FIG. 13. |
" [00108] First, search the local directory extensions table 124 for the entry
-record 138 with the given pathname (Step S250). If the pathname is not found, this
- process fails and no True Name corresponding to the given pathname exists. Next,
determine whether the local directory extensions table entry record 138 includes a
‘True Name (Step S252), and if so, the mechanism's task is complete. Otherwise,
. determine whether the local directory extensions table entry record 138 identifies a
directory (Step S254), and if so, freeze the directory (Step S256) (the primitive
meché.nism Freeze Directory is described below). ‘
[00109] Otherwise, in step S258, assimilate the file (using the Assimilate
Data Item primitive mechanism) defined by the File ID field to generate its True
Name.and store its True Name in the local directory extensions entry record. Theh

return the True Name identified by the local directory extensions table 124.

5. Link Path to True Name

[00110] The mechanism to link épath to a True Name provides a way of
creating a new directory entry record identifying an existing, assimilated file. This
basic process may be used to copy, move, and rename files without a need to copy
their contents. The mechanism to link a path to a True Name is now described:
with reference to FIG. 14. |

| [oo111] - First, if desired, confirm that the True Name exists locally by ~

- searching for it in the True Name registry or local directory extensions table 135

~ (Step S260). Most uses of this mechanism will require this form of validation.
Next, search for the path in the local directory extensions table 135 (Step S262).
Confirm that the directory containing the file named in the path already exists

-25—
2618-0011

GOOG-1020-Page 30 of 114

(Step S264). If the named file itself exists, delete the File using the Delete True
File operating system mechanism (see below) (Step S268). . _ _
~[00112] -° Then, create an entry.record in the local directory extensions with
.the specified path (Step S270) and update the entry record and other data
structures as follows: fill in the True Name field of the entry with the specified
- True Name; increment the use count for the True File registry entry record 140 of

the corresponding True Name; note whether the entry is a directory by reading the

- . TrueFile to.see if it contains a tag (magic number) indicating that it represents a

. frozen directory (see also the description of the Freeze Directory primitive .
mechanism regarding the tag); and compute and set the other fields of the local
directory extensions appropriately. For instance, search the regio_n table 128 to.
identify the region of the path, and set the time of last access and time of last

- modification to the current time.

6. Realize True File from Location

[00113] . This mechanism is used to try to make a local copy of a True File,
given its True Name and the name of a source location (processor or media) thét

_ ‘'may contain the True File. This mechanism is now described with reference to
FiG. 15.

[00114] First, in step S272, determine whether the location specified is a

- processor. If it is determined that the location specified is a proce_ssdf, then send a
Request True File message (using the Request True File remote mechanism) to.the
remote processor and wait for a response (Step S274). If a négaﬁve response is
received or no response is received after a timeout period, this mechanism fails. If

" apositive response is received, enter the True File returned in the True File -

- . registry 126 (Step S276). (If the file received was compressed, enter the True File- -

ID in the compressed File ID field.) - - o L)
[00115] - If, on the other hand, it is determined in step S272 that the location
: 'spepiﬁed isnot a processor, then, if necessary, request the user or operator to .

-26 -
2618-0011

GOOG-1020-Page 31 of 114

mount the indicated volume (Step. S278). Then (Step S280) find the indicated file
-on the given volume and assimilate the file using the Assimilate Data Item
‘primitivé mechanism. If the volume does not contain a True File registry 126,
search the media inventory to find the path of the file on the volume. If nosuch
file can be found, this mechanism fails.
[00116] At this point, whether or not the location is determined (in step -
- S272) to be a processor, if desired, verify the True File (in step S282).

7. ‘Locate Remote File ;

[00117] This mechanism allows a processor to locate a file or data item from
a remote source of True Files, whén a specific source is unknown or unavailable.
A client processor system may ask one of several or many svources whether it can
supply a data object with a given True Name. The steps to perform this
mechanism are as follows (with reference to FIGS. 16(a) and 16(b)).

[00118] The client processor 102 uses the source table 145 to select one or
more source processors (Step S284). If no source processor can be found, the
mechanism fails. Next, the client processor 102 broadcasts to the selected sources
a request to locate the file with the given True Name using the Locate True File

‘remote mechanism (Step S286). The request to locate may be augmented by
asking to propagate this request to distant servers. The client processor then waits
for one or more servers to respond positively (Step S288). After all servers
respond negatively, or after a timeout period with no positive response, the.
mechanism repeats selection (Step S284) to attempt to identify alternative sources.
If any selected source processor responds, its processor ID is the result of this

- mechanism. Store the processor ID in the source field of the True File registry
entry record 140 of the given True Name (Step $290). _

[00119] If the source location of the True Name is a different processor or

“medium than the destination (Step S290a), perform the following steps: -

- 27—
2618-0011

GOOG-1020-Page 32 of 114

(i) Look up the True File registry entry record 140 for the
corresponding True Name, and add the source location ID to the list of
sources for the True Name (Step S290b); and
(i1) Ifthe source is a publishing system, determine the expiration date on
“the publishing system for the True Name and add that to the list of sources.
. If the'source is not a publishing system, send a message to reserve the True
File on the source processor (Step S290c).
[00120] Source selection in step S284 may be based on optimizations
involving general availability of the source, access time, bandwidth, and
transmission cost, and ignoring previously selected processors which did not

respond in step S288.

8. Make True File Local

‘[00121] -~ This mechanism is used when a True Name is known and a locally
accessible copy of the corresponding file or data item is required. This mechanism

makes it possible to actually read the data in a True File. The mechanism takes a

 True Name and returns when there is a local, accessible copy of the True File in

. the True File registry 126. This mechanism is described here with reference to the
flow chart of FIGS. 17(a) and 17(b).
- [00122] - First, look in the True File registry 126 for a True File entry record
140 for the corresponding True Name (Step S292). If no such entry is found this
mechanism fails. If there is already a True File ID for the entry (Step S294), this
mechanism's task is complete. If there is a compressed file ID for the entry (Step
-'S5296), decompress the file corresponding to the file ID (Step S298) and store the
decompressed file ID in the entry (Step S300). This mechanism is then complete.
-[00123] If there is no True File ID for the entry (Step $294) and there is no
~ compressed file ID for the entry (Step S296), then continue searching for the
.. requested file. At this time it may be necessary to notify the user that the system is
searching for the requested file. |

: -28—
2618-0011

GOOG-1020-Page 33 of 114

[00124] - - If there are one or more source IDs, then select.an order in which to

~ attempt to realize the source ID (Step S304). The order.may be based on . .

~ optimizations involving general availability of the source, access time, bandwidth,
and transmission cost. For each source in the order chosen, realize the True File
from the source location (using the Realize True File from Location primitive

_mechanism), until the True File is.realized (Step S306). If it is realized, continue
with stép S294. If no known source can realize the True File; use the Locate
Remote File primitive mechanism to attempt to find the True File (Step S308). If
this succeeds, realize the True File from the identified source location and

continue with step S296.

9. Create Scratch File

- [00125] - A scratch copy of a file is required when a file is being created or is

- about to be modified. The scratch copy is stored in the file system-of the

underlying operating system. The scratch copy is eventually assimilated when the

- audit file record entry 146 is processed by the Process Audit File Entry primitive

-mechanism. This Create Scratch File mechanism requires a local directory
extensions table entry record 138. When it succeeds, the local directory extensions

table entry record 138 contains the scratch file ID of a scratch file that is not
contained in the True File registry 126 and that may be modified. This mechanism

.is now described with reference to FIGS. 18(a) and 18(b).

-[00126] First determine whether the scratch file should be a copy of the
existing True File (Step S310). If so, continue with step S312. Otherwise,

. determine whether the local directory extensions table entry record 138 identifies
an existing True File (Step S316), and if so, delete the True File using the Delete
True File primitive mechanism (Step S318). Then create a new, empty scratch file

- and store its scratch file ID in the local directory extensions table entry record 138 .

_ (step S320). This mechanism:is then complete. -

: -29-
2618-0011

GOOG-1020-Page 34 of 114

. [00127] - Ifthe local directory extensions table entry record 138 identifies a
scratch file ID (Step S312), then the entry already has a scratch file, so this
mechanism succeeds.

[00128] - Ifthe local directory extensions table entry record 138 identifies-a

".+ True File (S316), and there is no True File ID for the True File (S312), then make

- the True File local using the Make True File Local primitive mechanism (Step
S322). If there is still no True File ID, this mechanism fails.

[00129} There is now a local True File for this file. If the use count in the

: 'corrésponding True File registry entry record 140 is one (Step S326), save the
True File ID in the scratch file ID of the local directory extensions table entry
record 138, and remove the True File registry entry record 140 (Step S328). (This
step makes the True File into a scratch file.) This mechanism's task is complete.
[00130] - Otherwisé, if the use count in the corresponding True File registry

~ entry record 140 is not one (in step S326), copy the file with the given True File
ID to a new scratch file, using the Read File OS mechanism and store its file ID in
the local directory extensions table entry record 138 (Step S330), and reduce the
-use count for the True File by one. If there is insufficient space to make a copy,

this mechanism fails.

10. Freeze Directory

[00131] This mechanism freezes a directory in order to calculate its True
‘Name: Since the True Name of a directory is a function of the files within the
- directory, they must not change during the computation of the True Name of the
directory. This mechanism requires the pathname of a directory to freeze. This
mechanism is described with reference to FIGS. 19(a) and 19(b).
[00132] = .Instep S332, add one to the global freeze lock. Then search the local

~ directory extensions table 124 to find each subordinate data file and directory of)

" . the given directory, and freeze each subordinate directory found using the Freeze

-+ Directory primitive mechanism (Step S334). Assimilate each unassimilated data

-30 -
2618-0011

GOOG-1020-Page 35 of 114

file in the directory using the Assimilate Data Item primitive ' mechanism (Step -
- 8336). Then create a data item which begins with a tag or marker (a "magic

- number") being a unique data item indicating that this data item is a frozen
- directory (Step S337). Then list the file name and True Name for each file in the

current directory (Step S338). Record any additional information required, such as

" the type, time of last access and modification, and size (Step S340). Next, in step

- S342, using the Assimilate Data Item primitive mechanism, assimilate the data
item created in step S338. The resulting True Name is the True Name of the frozen

- directory. Finally, subtract one from the global freeze lock (Step S344).

11. Expand Frozen Directory

[00133] =~ This mechanism expahds a frozen directory in a given location. It

requires a given pathname into which to expand the directory, and the True Name

of the directory and is described w1th reference to FIG. 20.

[00134] First, in step S346, make the True File with the given True Name
local using the Make True File Local primitive mechanism. Then read each

| directory entry in the local file created in step S346 ‘(Step S348). For each such |

directory entry, do the following;:

[00135] -~ Create a full pathname using the given pathname and the file name

of the entry (Step S350); and '

[00136] link the created path to the True Name (Step S352) using the Link

Path to True Name primitive mechanism.

12. Delete True File

- _;‘[00137]' .- This mechanism deletes a reference to a True Name. The underlying
- True File is not removed from the True File registry 126 unless there are no
additional references to the file. With reference to FIG. 21, this mechanism is

~ performed as follows:

-31 -
2618-0011

GOOG-1020-Page 36 of 114

[00138] . If the global freeze lock is on, wait until the global freeze lock:is
turned off (Step S354). This prevents deleting a True File while a directory which

.. . might refer to it is being frozen. Next, find the True File registry entry record 140

- given the True Name (Step S356). If the reference count field of the True File

- registry 126 is greater than zero, subtract one from the reference count field (Step

- -S358). If'it is determined (in step S360) that the reference count field of the True.

File registry entry record 140 is zero, and if there are no dependent systems listed
in the True File registry entry record 140, then perform the following steps:
[00139] (1) If the True File is a simple data item, then delete the True
File, otherwise,

[00140] (ii) . (the True Fileis a compoﬁnd data item) for each True Name
in the data item, recursively delete the True File corresponding to the True Name
(Step S362). ' ’
“[00141] (iii) Remove the file indicated by the True File ID and
compressed file ID from the True File registry 126, and remove the Trué File
registry entry record 140 (Step S364). |

13. Process Audit File Entry

[00142] This mechanism performs tasks which are required to maintain
information in the local directory extensions table 124 and True File registry 126,
but which can be delayed while the processor is busy doing more time-critical
tasks. Entries 142 in the audit file 132 should be processed at a background
priority as long as there are entries to be processed. With reference to FIG. 22, the
steps for processing an entry are as follows:
[06143] ~ Determine the operation in the entry 142 currently being processed
. (Step S$365). If the operation indicates that a file was created or written (Step
: S366) ‘then assimilate the file using the Assimilate Data Item pr1m1t1ve o
mechanism (Step S368), use the True File primitive mechanism to do additional
" desired processing (such as cache update, compression, and mirroring) (Step

: -32-
2618-0011

GOOG-1020-Page 37 of 114

o S369),5a{1d record the newly computed True Name for the file in the audit file
-record entry (Step S370).

. [00144] = . Otherwise, if the entry being processed indicates that a compound

data item or directory was copied (or deleted) (Step S376), then for each

component True Name in the compound data item or directory, add (or subtract)

- one to the use count of the True File registry entry record 140 corresponding to the

component True Name (Step S378).

[00145) In all cases, for each parent directory of the given file, update the

- size, time of last access, and time of last modification, according to the operation

in the audit record (Step S379).

[00146] Note that the audit record is not removed after processing, but is

retained for some reasonable period so that it may be used by the Synchronize

Directory extended mechanism to allow a disconnected remote processor to update

its representation of the local system.

14. Begin Grooming

[00147). "This mechanism makes it possible to select :a set of files for removal
and determine the overall amount of space to be recovered. With reference to FIG.
23, first verify that the global grooming lock is currently unlocked (Step S382).
Then set the global grooming lock, set the total amount of space freed during

grooming to zero and empty the list of files selected for deletion (Step S384). For

- . each True File in the True File registry 126, set the delete count to zero (Step

S386).

15. Select For Removal

-[00148] - .This grooming mechanism tentatively selects a pathname to allow its
corresponding True File to be removed. With reference to FIG. 24, first find the

local directory extensions table entry record 138 corresponding to the given

=~ pathname (Step S388). Then find the True File registry entry record. 140

=33~
2618-0011

GOOG-1020-Page 38 of 114

corresponding to the True File name in the local directory extensions table entry.
record 138 (Step S390). Add one to the grooming delete count in the True File
-registry entry record 140 and add the pathname to a list of files selected. for
deletion (Step S392). If the grooming delete count of the True File registry entry
~record 140 is equal to the use count of the True File registry entry record 140, and
- if the there are no entries in the dependency list of the True File registry entry
record 140, then add the size of the file indicated by the True File ID and or
. compressed file ID to the total amount of space freed during grooming (Step.
S394).

16. End Grooming

[061‘49] ‘This grooming mechanism ends the grooming phase and removes all
files selected for removal. With reference to FIG. 25, for each file in the list of
files selected for deletion, delete the file (Step S396) and then unlock the global

- grooming lock (Step S398).

OPERATING SYSTEM MECHANISMS

[00150] The next of the mechanisms provided by the present invention,
operating system mechanisms, are now described. | . o
[00151] The following operating system mechanisms are deécribed:

| 1. Open File; |

. Close File;

. Read File;

. Write File;

. Delete File or Directory;

. Copy File or Directory; . -

. Move File or Directory;

. Get File Status; and

O 0 N N U A WN

. Get Files in Directory.

2 -34 -
2618-0011

GOOG-1020-Page 39 of 114

1. Open File .

. [00152] A mechanism to open a file is described with reference to FIGS.
- 26(a) and 26(b). This mechanism is given as input a pathname and the type of
. access required for the file (for example, read, write, read/write, create, etc.) and
" produces either the File ID of the file to be opened or an indication that no file
should be opened. The local directory extensions table record 138 and region table
record 142 associated with the opened file are associated with the open file for
later use in other processing functions which refer to the file, such as read, write,
and close.
[00153] First, determine whether or not the named file exists locally by
examining the local directory extensions table 124 to determine whether there is
an entry corresponding to the given pathname (Step. S400). If it iks determined that
the file name does not exist locally, then, using the access type, determine whether
or not the file is being created by this opening process (Step S402). If the file is
not being created, prohibit the open (Step S404). If the file is being created, create
a zero-length scratch file using an entry in local directory extensions table 124 and
produce the scratch file ID of this scratch file as the result (Step S406).
[00154] If, on the other hand, it is determined in step S400 that the file name
does exist locally, then determine the region in which the file is located by
searchmg the region table 128 to find the record 142 with the longest region path
which is a prefix of the file pathname (Step S408) This record identifies the
region of the specified file.
[00155] Next, determine usihg the access‘type,: whether the file is being
opened for writing or whether it is being opened 'only' for reading (Step S410). If
the file is being opened for reading only, then, if the file is-a scratch file (Step
- S$419), return the scratch File ID of the ﬁle (Step S424). Otherwise get the True
. Name from the local directory extensions table 124 and make a local version of

the True File associated_,with the True Name using the Make True File Local

. -35-
2618-0011

GOOG-1020-Page 40 of 114

- primitive mechanism, and then return the True File ID associated with the True

Name (Step S420). . o

1'[00156] - - " If the file is not being opened for reading only.(Step S410), then, if it
~is'determined by inspecting the region taBlé entry record 142 that the fileis in a
‘read-only directory (Step S416), then prohibit the openihg (Step S422).

[00157]. - - Ifit is determined by inspecting the region table 128 that the file is

- in a cached region (Step S423), then send a Lock Cache messagé to the

- corresponding cache server, and wait for a return message (Step S418). If the
return message saysA the file is already locked, prohibit the opening.

-[00158] If the access type indicates that the file being modified is being

- rewritten completely (Step S419), so that the original data will not be requiréd,
then Delete the File using the Delete File OS mechanism (Step S421) and perform
step S406. Otherwise, make a scratch copy of the file (Step S417) and produce the
scratch file ID of the scratch file as the result (Step S424).

2. Close File

-+ [00159] This mechanism takes as input the local directory extensions table
entry record 138 of an open file and the data maintained for the open file. To close
a file, add an entry to the audit file indicating the time and operation (create, read
or write). The audit file proéessing (using the Process Audit File Entry primitive
mechanism) will take care of assimilating the file and thereby _updafing the other

records.

3. Read File

[00160] . - To read a file, a program must prbvide the offset -and length of the
. data to be read, and the location of a buffer into which to copy the data read.
~[00161] - - " The file to be read from is identified by an dpen file ‘d‘escript'or' which

- includes a File ID as computed by the Open File operating 'systém ‘mechanism

- defined above. The File ID may identify either a scratch file or a True File (or

. -36-
2618-0011

GOOG-1020-Page 41 of 114

True File segment). If the File ID identifies a True File, it may be €ither a simple
or a compound True File. Reading a file is accomplished by the following steps:
[00162] - In the case where the File ID identifies a scratch file or a simple
True File, use the read capabilities of the underlying operating System. ‘
[00163] In the case where the File ID identifies a compound file, break the
~.read operation into one or more read operations on component segments as
. follows: A L .
"~ [00164] A. Identify the segmeht(s) to be read by dividing the. specified
- file offset and length each by the fixed size of a segment (a system dependent

parameter), to determine the segment number and number of segments that must

be read.
[00165] - B. - For each segment number computed above, do the following:
[00166] e Read the compound True File index block to

determine the True Name of the segment to be read.

[00167] il. Use the Realize True File from Location primitive
mechanism to make the True File segment available locally. (If that mechanism
fails, the Read File mechanism fails). | .

[.00168] ‘ ili. Determine the File ID of the True F ile spe01ﬁed by the
True Name corresponding to this segment

‘ [00169] iv. Use the Read File mechanism (recursrvely) to read

" from this segment into the corresponding location in the spemﬁed buffer.

4. Write File

[00170] . . File writing uses the file ID and data management capabilities of the
underlying operating system. File access (Make File Local descrlbed above) can

be deferred until the first read or wr1te

: -37-
2618-0011

GOOG-1020-Page 42 of 114

S. Delete File or Directory

[00171] The process‘of deleting a file, for a given pathname, is described
here with reference to FIGS. 27(a) and 27(b).

[00172]. First, determine the local directory extensions table entry record 138
and region table entry record 142 for the file (Step S422). If the file has no local
directory extensions table entry record 138 or is locked or is in a read-only region,
prohibit the deletion. ' | '
[00173] Tdentify the corresponding True File given the True Name of the file
being deleted using the True File registry 126 (Step S424). If the file has no True
Name, (Step S426) then delete the scratch copy of the file based on its scratch file
ID in the local directory extensions table 124 (Step S427), and continue with step
S428. | |

[00174] ~ If the file has a True Name and the True File’s use count is one (Step :
S429), then delete the True File (Step S430), and continue with step S428.

[001'75] - If the file has a True Name and the True File's use count is greater
than one, reduce its use count by one (Step S431). Then proceed with step S428.
[00176] In Step S428, delete the local directory extensions table entry record,
‘and add an entry to the audit file 132 iridicating the time and the operation
performed (delete). - | |

6. Copy File or Directory

[00177] = A mechanism is provided to copy a file or directory given a source
and destination processor and pathname. The Copy File mechanism does not
actually copy the data in the file, only the True Name of the file. This mechanism
is performed as follows: | ‘] . -

- . [00178]) .. (A) Given the source path,‘ get the Tfue Name from the path. If
this step fails, the mechanism fails. |

- [00179] (B) Given the True Name and the destination path, link the .
destination path to the True Name. | -

-38—
2618-0011

GOOG-1020-Page 43 of 114

" [00180] = . (C) Ifthe source and destination processors have different True

‘File registries, find (or, if necessary, create) an entry for the True Name in the
True File registry table 126 of the destination processor. Enter into-the source ID

~ field of this new entry the source processor identity.

[00181] (D) Add an entry to the audit file 132 indicating the time and

operation performed (copy). ‘ . , _

- [00182] This mechanism addresses éapability of the system to avoid copying

- data from a source location to a destination location when the destination already

has the data. In addition, because of the ability to freeze a directory, this

mechanism also addresses capability of the system immediately to make a copy of

- any collection of files, thereby to support an efficient version control mechanisms

. for groups of files.

7. Move File or Directory

[00183] A mechanism is described which moves (or ferianies) a file from a
‘source path to a destmatlon path. The move operation, like the copy operation,
requires no actual transfer of data, and is performed as follows:
~ [00184] (A) Copy the file from the source path to the destination path.
| [00185] - - (B) If the source path is different from the destinétior_l path, delete

the source path.

8. Get File Status

.[00186] This mechamsm takes a file pathname and pr0v1des 1nformat10n
- about the pathnamg. First the local directory extensions table cntry record 138
corresponding to thelpathname given is found. If no such entry exists, then this
" 'mechanism fails, otherwise, gather information about the file and its
- corresponding True File from the loqal_direétory éxténsions __téble 124. The
o informa’tion can include any _information shown in.the (iata structures, including

- -the size, type, owner, True Name, sources, time of last access, time of last

-39 —
2618-0011

GOOG-1020-Page 44 of 114

modification, state (local or not, assimilated or not, compressed or not), use count,

expiration date, and reservations.

9. Get Files in Directory

[00187] This mechanism enumerates the files in a dircctory. It is used ‘
(implicitly) whenever it is necessary to ,determine whether a file exists (is present)
‘in a directory. For instance, it is implicitly used_in the Opeq File, Delete File,

. Copy File or Directory, and Move File operating system mechanisms, because the
files operated on are referred to by pathnames containing directory names. The
mechanism works as folloWs: |

[00188]. - The local directory extensions table 124 is searched for an entry 138
with the given diréctory pathname. If no such entry is found, or if the entry found
is not a directory, then this mechanism fails.

[00189] If there is a corresponding True File field in the local directory
extensions table record, then it is assumed that the True File represents a frozen
directory. The Expand Frozen Directory primitive mechanism is used to expand
the existing True File into directory entries in the local directory extensions table.
[00190] Finally, the local directory extensions table 124 is again searched,
this time to find each directory subordinate to the given directory. The names

found are provided as the result.

REMOTE MECHANISMS

[00191]. . The remote mechanisms provided by the present invention are now
-described. Recall that remote mechanisms are used by the operating system in
responding to requests from other processors. These mechanisms enable the -
capabilities of the present invention in a peer-to-peer netwofk mode of operation. -
[00192] . In a presently preferred embodiment, prbcessors communicate with |
each other using a remote procedure call (RPC) style interface, running over one

" _of any number of communication protocols such as IPX/SPX or TCP/IP. Each .

-40—
2618-0011

GOOG-1020-Page 45 of 114

- peer processor which provides access to its True File registry 126 or file regions,

- or which depends on another peer processor; provides'a number of mechanisms

which can be used by its peers.

[00193] The following remote mechanisms are described:
1. | Locate True File;

Reserve True File;

Request True File;

Retire True File;

Cancel Reéer(zation; '

Acquire True File;

Lock Cache;

Update Cache; and |

0 ® N kW

Check Expiration Date.

1. Locate True File

[00194] = This mechanism allows a remote processor to determine whether the
local processor contains a copy of a specific True File. The mechanism begins

with a True Name and a flag indicating whether to forward requests for this file to

- other servers. This mechanism is now described with reference to FIG. 28.

[00195] First determine if the True File is available locally or if there is some
indication of where the True File is located (for example, in the Source IDs field).
Look up the requested True Name in the True File registry 126 (Step S432)

- [00196] - If a True File registry entry record 140 is not found for this True
Name (Step S434), and the ﬂag indicates that the request is not {o be forwarded
(Step S436), respond negatively (Step S438). That is, respond to the efféct that the

True File is not avallab]e

o -[00197] One the other hand, if a True File registry entry record 140 i is not

found (Step S434) and the flag indicates that the request for this True File is to be
forwarded (Step S436), then forward a request for this True File to some other

-41 —
2618-0011

GOOG-1020-Page 46 of 114

-processors. in the system (Step S442). If the source table for the current processor -
identifies one or more publishing servers which should have a copy of this True

- File, then forward the request to each of those publishiﬁg servers (Step S436).

" [00198) If a True File registry entry record 140 is found for the required True
File (Step S434), and if the entry includes a True File ID or Compressed File ID

(Step S440), respond positively (Step S444). If the entry includes a True File ID

- then this provides the identity or disk location of the actual physical representation

of the file or file segment required. If the entry include a Compressed File ID, then

~ a.compressed version of the True File may be stored instead of, or in addition to,
an uncompressed version. This field provides the identity of the actual
representation of the compressed version of the file. A
[00199] - If the True File registry entry record 140 is found (Step S434) but

- does not include a True File ID (the File ID is absent if the actual file is not
currently present at the current location) (Step S440), and if the True File registry
entry record 140 includes one or more source procéssors, and if the request can be
forwarded, then forward the request for this True File to one or more of the source

_processors (Step S444).

2. Reserve True File

[00200] This mechanism allows a remote processor to indicate that it
depends on the local processor for access to a specific True File. It takes a True
Name as input. This mechanism is described here.
- [00201] - (A) Find the True File registry entry record 140 associated with
the given True File. If no éntr'y exists, reply negatively. | | .
[00202] - - (B) Ifthe True File registry entry record 140 does not include a
- True File ID or compressed File ID, and if the True File registry entry record 140
includes no source IDs for removable storage volumes, then this processor does

not have access to a copy of the given file. Reply negatively. .

-42 —
26180011

GOOG-1020-Page 47 of 114

[00203]) - (C) Add the ID of the sending processor to the list of dependent
processors for the True File registry entry record 140. Reply positively, with an

indication of whether the reserved True File is on line or off line. .

3. Request True File

© [00204]: . This mechanism allows a remote processor to request a4copy ofa

. True File from the local processor. It requires a True Name and responds)
positively by sending a True File back to the requesting processor. The mechanism
operates as follows: _ .

[00205) . (A) Find the True File registry entry rec;ord 140 assqciated with
the given True Name. If there is no such True File registry entry record 140, reply
negatively. '

[00206] (B) Make the True File local using the Make True Fil_e Local
primitive mechanism. If this mechanism fails, the Request True File mechanism
also fails. | ‘

[00207] (C) Send the local True File in either it is uncompressed or
compressed form to the requesting remote processor. Note that if the True File is a
compound file, the components are not sent.

[00208] . (D) Ifthe remote file is listed in the dependent process list of the

True File registry entry record 140, remove it.

‘4. Retire True File

[00209] This mechanism allows a remote processdr to indicate that it no
longer plans to maintain a copy of a given True File. An alternate source ofthe .

_ _Trué F ile can be specified, if, for instance, the True File»ié being moved frgfn one
server to anothgr. It begins with a True Name, a requesting processor ID, _and an .
optional alternéte source. This mechanism operates as follows: - .

[00210] ~ (A) Find a True Name entry in the True File registry 126. If there .

is no entry for this True Name, this mechanism's task is complete.

-43 —
2618-0011

GOOG-1020-Page 48 of 114

[00211] - - (B) -Find the requesting processor on the source list and, if it is
_there, remove it. .

. [00212] © - (C) Ifan alternate source is provided, add it to the source list for

the True File registry entry record 140.

- [00213] (D) Ifthe source list of the True File registry entry record 140 has

no items in it, use the Locate Remote File primitive mechanism to search for

another copy of the file. If it fails, raise a serious error.

5. Cancel Reservation

[00214] This mechanism allows a remote processor to indicate that it no
longer requires access to a True File stored on the local processor. It begins with a
- True Name and a requesting processor ID and proceeds as follows:

[00215] - (A) Find the True Name entry in the True File registry 126. If

- there is no entry for this True Name, this mechanism's task is complete.

[00216] (B) Remove the identity of the requesting processor from the list
of dependent processors, if it appears.

[00217] ~ (C) Ifthe list of dependent processors becomes zero and the use

count is also zero, delete the True File.

6. Acquire True File

[00218] This mechanism allows a remote processor to insist that a local
processor make a copy of a specified True File. It is used, for example, when a

- cache client wants to write through a new version of a file. The Acquire True File

* mechanism begins with a data item and an optional True Name for the data item

and proceeds as follows:

[00219] : (A) Confirm that fhe requesting processor has -'the right to require
‘the local processor to acquire data items. If not, send a negative réply.

[00220]: (B) Make a local copy of the data item transmitted by the remote
processor. ' ‘

. - 44 —

2618-0011

GOOG-1020-Page 49 of 114

[00221] (C). Assimilate the data item into'the True File registry. of the
local processor.
[00222] (D) If a True Name was provided with the file, the True Name
- calculation can be avoided, or the mechanism can verify that the file received
matches the True Name sent. |
- [00223] - (E) Add an entry in the dependent processor list of the true file
registry record indicating that the requesting processor depends on this copy of the
given True File.

[00224] (F) Send a positive reply.

7. Lock Cache

[00225] This mechanism allows a remote cache client to lock a local file so
that local users or other cache clients cannot change it while the remote processor
is usihg it. The mechanism begins with a pathname and proceeds as follows:
[00226] (A) Find the local directory extensions table entry record 138 of
the specified pathname. If no such entry exists, reply negatively.

[00227] (B) If an local directory extensions table entry record 138 exists
and is already locked, reply negatively that the file is already locked.

[00228] . (C) Ifan local directory extensions table entry record 138 exists
and is not locked, lock the entry. Reply positively.

8. Update Cache

[00229] This mechanism allows a remote cache client to unlock a local file

and update it with new contents. It begins with a pathname and a True Name. The

file corresponding to the True Name must be accessible from the remote

- processor. This mechanism operates as follows:

.[00230] - - Find the local directory extensions table entry record 138
corresSponding to the given pathname. Reply negatively if no such entry exists or if -

the entry is not locked.

| -45-
2618-0011

GOOG-1020-Page 50 of 114

[00231] Link the given pathname to the given True Name using the Link
Path to True Name primitive mechanism.
[00232] ©~ Unlock the local directory extensions table entry record 138 and

return positively.

9. Check Expiration Date

[00233] Return current or new expiration date and possible alternative source

to caller.

BACKGROUND PROCESSES AND MECHANISMS

[00234] - The background processes and mechanisms provided by the present
invention are now described. Recall that background mechanisms are intended to
run occasionally and at a low priority to provide automated management

capabilities with respect to the present invention.

- [00235] The following background mechanisms are described:
1. Mirror True File;
2. Groom Region;
3. Check for Expired Links;
4, Verify Region; and
5. Groom Source List.

1. Mirror True File

[00236] This mechanism is used to ensure that files are available in alternate
‘locations in mirror groups or archlved on archlval servers. The mechanism
depends on application- spe01ﬁc mlgratlon/archlval crlterla (size, time since last

- access, number of copies required, number of existing altematlve sources) whlch
' determme under what conditions a file should be moved The Mirror True File
mechanlsm operates as follows, using the True F 1le spec1ﬁed perform the

following steps:

- 46 —
2618-0011

GOOG-1020-Page 51 of 114

[00237] - (A) Count the number of available locations.of the True File by
~ inspecting the source list of the True File registry entry record 140 for the True
- File. This step determines how many copies of the True. File are available in the
system.
[00238] ~(B) Ifthe True File meets the specified migration criteria, select a
‘mirror group server to which a copy of the file should be sent. Use the Acquire
True File remote mechanism to copy the True File to the selected mirror group

server. Add the identity of the selected system to the source list for the True File.

2. Groom Region

2[00239]; . This mechanism is used to automatically free up space in a processor
by deleting data items that may be available elsewhere. The mechanism depends

oon application-specific grooming criteria (fer instance, a file may be removed if

~ there is an alternate online source for it, it has not been accessed in a given number
of .days, and it is larger than a given size). This mechanism operates as follows:

[00240] . - Repeat the following steps (i) to (iii) with more aggressive grooming -

- criteria until sufficient space is freed or until all grooming criteria have been

“exercised. Use grooming information to determine how much space has been
freed. Recall that, while grooming is in effect, grooming information includes a
" table of pathnames selected for deletion, and keeps track of the amount of space
that would be freed if all of the files were deleted.
[00241) (i) Begin Grooming (using the primitive mechanism) .
.[00242] ' (i) For each pathname in the specified region, for the True Flle
correspondlng to the pathname, if the True File i is present has at least one
. glternative source, and meets appllcatlon spec1ﬁc grooming crlterla for the region
select the ﬁle for removal (usmg the prlmmve mechanlsm) A |
‘:[00_243] | (iii) End Grooming (using the prlmltive mechanism).
[602_44] " Ifthe region is used as a cache, no other Processors are dependent on
- True Files to which it refers, and all such True Files are mirrored elsewhere. In
L -47 —
2618-0011
GOOG-1020-Page 52 of 114

this case, True Files can be removed with impunity. For a cache region, the
.grooming criteria would ordinarily eliminate the least recently accessed True Files
first. This is best done by sorting the True Files in the region by the most recent.
access time before performing step (ii) above. The application specific criteria
would thus be to select for removal every True File encountered (beginning with

the least recently used) until the required amount of free space is reached. .

3. Check for Expired Links

- [00245] This mechanism is ﬁsed to determine whether dependencies on
published files should be refreshed. The following steps describe the operation of
this mechanism: '

[00246] For each pathname in the specified region, for each True File
corresponding to the pathname, perform the following step:

[00247] If the True File registry entry record 140 corresponding to the True
- File contains at least one source which is a publishing server, and if the expiration
date on the dependency is past or close, then perform the following steps:

[00248] (A) Determine whether the True File registry entry record
contains other sources which have not expired.

[00249] (B) Check the True Name expiration of the server. If the
expiration date has been extended, or an alternate source is suggested, add the
source to the True File registry entry record 140.
100250] . (C) Ifno acceptable alternate source was found in steps (A) or (B)
above, make a local copy of the True File. | |

[00251] (D) Remove the expired source. .
4 Verify Region
- [00252] This mechanism can be used to ensure that the data items in the True

- File registry 126 hav_eA not been damaged accidentally or ma‘licioqsly.:The._

- operation of this mechanism-is described by the following steps:.

i -48 —
2618-0011

GOOG-1020-Page 53 of 114

100253)- (A) - Search the local directory extensions table 124 for each .

- pathname in the specified region and then perform the following steps:

. [00254] :) Get the True File name corresponding to the
pathname; _
[00255] . (i) If the True File registry entry 140 for the True File

does not have a True File ID or compressed file ID, ignore it.
[00256] . (iii) - Use the Verify True File mechanism (see extended

mechanisms below) to confirm that the True File specified is correct.

5. Groom Source List

[00257] The source list in a True File entry should be groomed sometimes to
. ensure there are not too many mirror or archive copies. When a file is deleted or
when a region definition or its mirror criteria are changed, it may be necessary to
inspect the affected True Files to determine whether there are too many mirror .

copies. This can be done with the following steps:

[00258] For each affected True File,

.. [00259] (A) Search the local directory extensions table to find each region
that refers to the True File.
[00260] (B) Create a set of "required sources", initially empty.
'[00261] (C) For each region found,
[00262] (@) determine the mirroring criteria for that region, .
[00263] (b) determine which sources for the True File satisfy the
mirroring criteria, and
[00264] - (c) add these sources to the set of réquired sources.
[00265] - (D) For each source in the True File registry entry, if the source

identifies a remote processor (as opposed to removable media), and if the source is
* not a publisher, and if the source is not in the set of required sources, then

eliminate the source, and use the Cancel Reservation remote mechanism to

.49 —
26180011

GOOG-1020-Page 54 of 114

.eliminate the given processor from the list of dependent processors recorded at the

remote processor identified by the source.

EXTENDED MECHANISMS

[00266] The extended mechaniéms provided by the present invention are
- now described. Recall that extended mechanisms. run within application programé
over the operating system to provide solutions to épeciﬁc problems and
applications.
[00267] The following extended mechanisms are described:l
1. Inventory Existing Directory;
Inventory Removable, Read-only Files;
Synchronize Directories;
Publish Region;
Retire Directory;
Realize Directory at Location;
Verify True File;

Track for Accounting Purposes; and

W e N AL

Track for Licensing Purposes.

1. Inventory Existing Directory

[00268] :© This mechanism determines the True Names of files in an existing
on-line directory in the underlying operating systerh. One purpose of this

- mechanism is to install True Name mechanisms in an existing file system.

[00269] An effect of such an installation ié to eliminate ifnmediately all
duplicate files from the file system being traversed. If several ﬁle.systems are
inventoried in a single True File registry, dupl’icates across the Volumesl are also
eliﬁminated. | ' _ | - '_ - |
[00270] .. (Aj Traverse the.unde-rlying file system ih the 6perating system.

.For each file encountered, excluding directories; perform the following:

-50—
2618-0011

GOOG-1020-Page 55 of 114

[00271] - (i) . Assimilate the file encountered (using the Assimilate
File primitive mechanism). This process computes its True Name.and moves its
data into the True File registry 126. |

[00272] ' (i1)) Create a pathname eonsistiog of the path to the volume
directory and the relative path of the file on the media. Link this path to the

‘computed True Name using the Link Path to True Name primitive mechanism.

2. Inventory Removable, Read-only Files

[00273] - A system with access to removable, read-only media volumes (such

as WORM disks and CD-ROMs) can create a usable inventory of the files on these

disks without having to make online copies. These objects can then be used for

- archival purposes, directory overlays, or other needs. An operator must request

that an inventory be created for such a volume. ‘

[00274] - This mechanism allows for maintaining inventories of the contents

of files and data items on removable media, such as diskettes and CD-ROMs, -

independent of other properties of the files such as name, location, and date of

~ creation.

[00275] The mechanism creates an online inventory of the files on one or

more removable volumes, such as a floppy disk or CD-ROM, when the data on the

volume is represented as a directory. The inventory service uses a True Name to

identify each file, prov1d1ng a way to locate the data 1ndependent of its name, date

of creatlon or location.

[00276] " The inventory can be used for archlval of data (makmg it p0531ble to

"~ avoid archiving data. When that data is already on a separate volume) for

grooming (making it p0551b1e to delete mfrequently accessed files if they can be

'. retrieved from removable volumes) for version control (rtt'&kingtt jpo'ss"ible to
“generate a new version of a CD- ROM w1thout havmg to copy the old version), and

for other purposes.

-51—
2618-0011

GOOG-1020-Page 56 of 114

[00277] The inventory is made by creating a volume directory in the media
inventory in which each file named identifies the data item on the volume being
inventoried. Data items are not copied from the removable volume during the
inventory process.

[00278) An operator must request that an inventory be created for a specific
volume. Once créated, the volume directory can be frozen or copied like any other
directory. Data items from either the physical volume or the volume directory can
be accessed using the Open File operating system mechanism which will cause

" them to be read from the physical volume using the Realize True File from
Location primitive mechanism.

[00279] To create an inventory the following steps are taken:

[00280] (A) A volume directory in the media inventory is created to
correspond to the volume being inventoried. Its contextual name identifies the
specific volume.

[00281) (B) A source table entry 144 for the volume is created in the
source table 130. This entry 144 identifies the physica1> source volume and the
volume directory created in step (A).

[00282] (C) The filesystem on the volume is traversed. For each file
encountered, excluding directories, the following steps are taken: - |

[00283] (1) The True Name of the file is computed. An entry is
created in the True Name registry‘ 124, including the True Name of the file using
the primitive mechanism. The source field of the True Name registry entry 140
identifies the source table entry 144. :

[00284] (i) A pathname is created consisting of the path to the
volume directory and the relative path of the file on the media. This path is linked
" to the computed True Name using Link Path to True Name primitive mechanism.
[00285] (D) After all files have been inventoried, the volume directory is
frozen. The volume directory serves as a table of contents for the volume. It can be
copied using the Copy File or Directory primitive mechanism to create an

-52 —
2618-0011

GOOG-1020-Page 57 of 114

"overlay" directory which can then be modified, making it possible to edit-a virtual .

copy of a read-only medium.

3. Synchronize Directories

. [00286] . Given two versions of a direptory derived frqm the same starting

point, this mechanism creates a new, synchronized version which includes the

. changes from each. Where a file is changed in both versions, this mechanism

provides a user exit for handling the discrepancy. By using True Names, |
comparisons are instantaneous, and no copies of files are necessary..

[00287] -~ This mechanism lets a local processor synchronize a directory to

account for changes made at a remote processor. Its purpose is to bring a local
copy of a directory up to date after a period of no communication between the

- local and remote processor. Such a period might occur if the local processor were

.a mobile processor detached from its server, or if two distant processors were run
independently and updated nightly.

- [00288] . = An advantage of the described synchronizat_ion process is that it does

not depend on synchronizing the clocks of the local and remote processors.. |

- Howeyver, it does require that the local processor track its position in the remote

processor's audit file. | .

- [00289] This mechanism does not resolve changes made simultaneously to
fhe;same file at several sites. If that occurs, an external resolution mechanism such .
as, for example, operator intervention, is required. B

'[00290] The mechanism takes as input a start _‘;ime, a local directory’

- pathname, a remote processor nzime, and a remote directory pathname name, and it

operates by the folldwing sféps: ’ _ _

. [00291] . (A) Requesta copy of the,aud_it file 132 from the remote

- processor using the Request True File remote mechanism. -

. -53-
2618-0011

GOOG-1020-Page 58 of 114

[00292). ~ (B) For each entry 146 in the audit file 132 after the start time, if

_the entry indicates a change to a file in the remote.directory, perform the following
steps:

[00293] @) Compute the pathname of the corresponding file in the
local directory. Determine the True Name of the corresponding file. o

- [00294] - (i1) If the True Name of the local file is the same asv‘the‘ old

True Name in the audit file, or if there is no local file and the audit entry indicates

a new file is being created, link the new True Name in the audit file to the local

pathname hsing the Link Path to Trué Name primitive niechaniém; '

- [00295] (iii) Othefwiée, note that there is a prdblem with the
synchroniiation by sending a message to the operator or to a problem resolution
program, indicating the local pathname, remote pathname, remote processor, and
time of change. » .

[00296] (C) After synchronization is complete, record the time of thé final
change. This time is to be used as the new start time the next time this directory is

~ synchronized with the same remote processor.

4. Publish Region

[00297] The publish region mechanism allows a processor to offer the files in

a region to any client processors for a limited period of time. .

[00298] The purpose-of the service is to eliminate any need for client .

. processors to make reservatibns with the publishing processor. This in turn makes
it possible for the publishing processor to service a much larger number of clients.
[00299] = When a region is published, an expiration'date is definéd for all files
in the region, and is propagated into the publishing system's True File registry
entry récord 140 for each file. - | A

- [00300] - When a remote file is copied, for instance using the Copy File L

‘operating system mechanism, the expiration date is copied into the source field of

. - 54—
2618-0011
GOOG-1020-Page 59 of 114

the client's True File registry entry record 140. When the source is a publishing .
system, no dependency need be created.

[00301] . The client processor must occasionally and in background, check for
- expired links, to make sure it still has access to these files. This is described in the

background mechanism Check for Expired Links.

5. Retire Directory

- [00302] - This mechanism rnakes it possible to eliminate safely the True Files
. in a directory, or at least dependencies on them, after ensuring that any client
processors.depending on those files remove their dependencvies. The files in the
directory are not actually deleted by this process. The directory can be deleted
with the Delete File operating system mechanism. |

[00303] The mechanism takes the pathname of a giVen directory, and
optionally, the identification of a preferred alternate source processor for clients to
use. The mechanism performs the following steps:

[00304] (A) Traverse the directory. For each file in the directory, perform

the following steps:
100305] . (i) Get the True Name of the file from its path and find

the True File registry entry 140 associated with the True Name.

[00306] (i) Determine an alternate source for the True File. If the
source IDs field of the TFR entry includes the preferred alternate source, that is
the alternate source. If it does not, but includes some other source, that is the

alternate source. If it contains no alternate sources, there is no alternate source.

- [00307] - (iii) For each dependent processor in the True File registry

entry 140, ask that processor to retire the True File, specifying an alternate source

if one was determined, using the remote mechanism.

-55—
2618-0011

GOOG-1020-Page 60 of 114

6. Realize Directory at Location

'[00308] This mechanism allows the user or operating system to force copies
" of files from some source location to the True File registry 126 at a given location.
The purpose of the mechanism is to ensure that files are accessible in the event the
source. location becomes inaccessible. This can happen for instance if the source or
. _given location are on mobile computers, or are on removable media, or if the
network connection to the source is expected to become unavailable, or if the
source is being retired. | " ‘

[00309] - This mechanism is provided in the following steps for each file in
the given directory, with the exception of subdirectories: o

[00310] (A) Getthe local directory e>.(ten5i0ns table entry record 138
given the pathname of the file. Get the True Name of the local directory
extensions table entry record 138. This service assimilates the file if it has not
already been assimilated.

[00311] (B) Realize the corresponding True File af the given location.
This service causes it to be copied to the given location from a remofe system or

removable media.

7. - Verify True File

[00312] This mechanism is used to verify that the data item in a True File
registry 126 is indeed the correct data item given its True Name. Its purpose is to
guard against device errors, malicious changes, or other problems. ’
-[00313] If an error is found, the system has the ability to "heal" itself by
:ﬁnding another source for the True File with the given name. It may also be.
desirable to verify that the error has not propagated to other systems, and to log the
problem or indicate it to the computer operator. These details are not described
here. '
. [00314) To verify a data item that is not in a True File registry 126, use the
Calculate True Name primitive mechanism described above.

o 56—
2618-0011

GOOG-1020-Page 61 of 114

[00315] - The basic mechanism begins with a True Name, and operates in the
following steps: |

[00316] . - (A) Find the True File registry entry record 140 corresponding to
. the given True Name. ‘ o ‘

[00317) . (B) Ifthere is a True File ID for the True File registry entry

record 140 then use it. Otherwise, indicate that no file exists to verify..

[00318] .. (C) Calculate the True Name of the data item given the file ID of
the data item. |

[00319] = (D) Confirm that the calculated True Name is equal to the given
True Name. A

[00320] (E) If the True Names are not equal, there is an error in the True

File registry 126. Remove the True File ID from the True File registry entry record
140 and place it somewhere else. Indicate that the True File registry entry record

140 contained an error.

8. Track for Accounting Purposes

[00321] This mechanism provides a way to know reliably which files have
been stored on a system or transmitted from one system to another. The
mechanism can be used as a basis for a value-based accounting system in which
“charges are based on the identity of the data stored or transmitted, rather than
simply on the number of bits. , _

[00322] This mechanism allows the system to track possession of specific
data items according to content by owner, independent of the name, date, or other
- properties of the data item, and tracks the uses of specific data items and files by
“content for accounting purposes. True names make it possible to identify each file
briefly yet uniquely for this purpose.

.[00323] .-~ Tracking the identities of files requires maintaining an accounting

~ log 134 and processing it for accounting or billing purposes. The mechanism
operates in the following steps:

. -57-
2618-0011

GOOG-1020-Page 62 of 114

[00324] (A) Note every time a file is created or deleted, for instance by .
monitoring audit entries in the Process Audit File Entry primitive mechanism.
Whensuch an event is encountered, create an entry 148 in the accounting log 134
that Shows the responsible party and the identity of the file created or deleted.
[00325] = (B) Every time a file is transmitted, for instance when a file is
"copied with a Request True File remote mechanism. or an Acquire True File

- remote mechanism, create an entry in the accounting log 134 that shows the
responsible party, the identity of the file, and the source and destination -
Processors.

- [00326] (C) Occasionally run an accounting program to process the
accounting log 134, distributing the events to the account records of each

responsible party. The account records can eventually be summarized for billing

purposes.
9. Track for Licensing Purposes
[00327] This mechanism ensures that licensed files are not used by -

.unauthorized parties. The True Name provides a safe way to identify licensed
material. This service allows proof of possession of specific files according to
their contents without disclosing their contents.

[00328] Enforcing use of valid licenses can be active (for example, by
refusing to provide access to a file without authorization) or passive (for example,
by creating a report of users who do not have proper authorization).

- [00329] One possible way to perform license validation is to perform
occasional audits of employee systems. The service described herein relies on -
True Names to support such an audit, as in the following steps:

.[00330] . . (A) For each licensed product, record in the license table 136 the - -

. -True Name of key files in the product (that is, files which are required in order to

_use the product, and which do not occur in other products) Typically, fora.
‘software product, this would include the main executable image and perhaps other

: -58-
2618-0011

GOOG-1020-Page 63 of 114

. major files such as clip-art, scripts, or online help. Also record the.identity of each
system which is authorized to have a copy of the file.

. [00331] . (B) occasionally, compare the contents of each user.processor
against the license table 136. For each True Name in the license table do the
following:

- [00332] (1) Unless the user processor is authorized to have a copy
of the file, confirm that the user processor does not have a copy of the file using
the Locate True File mechanism.

[00333] (i) If the user processor is found to have a file that it is not
authorized to have, record the user processor and True Name in.a license violation

table.

THE SYSTEM IN OPERATION

[00334] . Given the mechanisms described above, the operation of a typical
DP system employing these mechanisms is now described in order to demonstrate
how the present invention meets its requirements and capabilities.

[00335] In operation, data items (for example, files, database records,
messages, data segments, data blocks, directories, instances of object classes, and
the like) in'a DP system employing the present invention ‘are identified by
substantially unique identifiers (True Names), the identifiers depending on all of
the data in the data items and only on the data in the data items. The primitive
mechanisms Calculate True Name and Assimilate Data Item support this property.
For any given data item, using the Calculate True Name primitive mechanism, a
substantially unique identifier or True Name for that data item can be determined. -
[00336] Further, in operation of a DP system incorporating the present

~ invention; multiple copies of data items are avoided (unless they are required for
-~ 'some reason such as backups or mirror copies in a fault-tolerant system). Multiple

- copies of data items are avoided even when multiple names refer, to the same data

~ item. The primitive mechanisms Assimilate Data Items and ‘True File support this

: -59 -
2618-0011

GOOG-1020-Page 64 of 114

- property. Using the Assimilate Data Item primitive mechanism, if a data‘item
already exists in the system, as indicated by an entry in the True File registry 126,
this existence will be discovered by this mechanism, and the duplicate data item
(the new data item) will be eliminated (or not added). Thus, for example, if a data
file is being copied onto a system from a floppy disk, if, based on the True Name

. of the data file, it is determined that the data file already exists in the system (by
the'same or some other name), then the duplicate copy will not be installed. If the
data item was being installed on the system by some name other than its current
name, then, using the Link Path to True Name primitive mechanism, the other (or
new) name can be linked to the already existing data item.

[00337] - In general, the mechanisms of the present invention operate in such a
way as to avoid recreating an actual data item at a location when a copy of that
data item is already present at that location. In the case of a copy from a floppy
disk, the data item (file) may have to be copied (into a scratch file) before it can be
determined that it is a duplicate. This is because only one processor is involved.

- On the other hand, in a multiprocessor environment or DP system, each processor

has a record of the True Names of the data items on that processor. When a data

item is to be copied to another location (another processor) in the DP system, all

~ that is necessary is to examine the True Name of the data item prior to the
copying. If a data item with the same True Name already exists at the destination
location (processor), then there is no need té copy the data item: Note that ifa data
item which already exists locally at a destination location is still copied to the
destination location (for example, because the remote system did not have a True

Name for the data item or because it arrives as a Strear.n.of‘l'ml-nar'ned' data), the |
‘Assimilate Data Item primitive mechanism will prevent mulﬁplé copies of the data
item from being created. | | |

. [00338]‘ " Since the True Name of a large data item (a conipouhd déta item) is

derived from and based on the True Names of components of the dafa itefn, |
‘copying of an entire data item can be avoided. Since some'(dr all) of the

o -60—
2618-0011

GOOG-1020-Page 65 of 114

- components of a large data item may already be present at a destination location,
‘'only those components which are not present there need be copied. This property
derives from the manner in which True Names are determined. . ..

[00339] When a file is copied by the Copy File or Directory operating system
mechanism, only the True Name of the file is actually. replicated.) '

. [00340] When a file is opened (using the open File operating system
mechanism), it uses the Make True File Local primitive mechanism (either.
directly or indirectly through the Create Scratch File primitive mechanism) to
create a local copy of the file. The Open File operating system mechanism uses the

. Make True File Local primitive mechanism, which uses the Realize True File

.from Location primitive mechanism, which, in turn uses the Request True File
remote mechanism.

[00341] The Request True File remote mechanism copies only a single data

.item from one processor to another. If the data item is a compound file, its

' component segments are not copied, only the indirect block is copied. The

~ segments are copied only when they are read (or otherwise needed). -

[00342] ~ The Read File operating system mechanism actually reads data. The

- Read File mechanism is aware of compound files and indirect blocks, and it uses

“the Realize True File from Location primitive mechanism to make sure that’

.component segments are locally available, and then uses the operating system file

- mechanisms to read data from the local file. - -
'[00343] =" - -Thus, when a compound file is copied from a remote'syst.em, only its

- True Name is copied. When it is opened, only its indirect block is copied. When

- the corresponding file is read, the required component segments are realized and -
therefore copied. |

"100344] In operation data items can be accessed by reference to their

"identities (True Names) independent of their present location. The dctual data item

. ... or True File corresponding to a given data identifier of True Name may.reside
- - -anywhere. in the system (that is, locally, remotely, offline, etc). If a requiréd True

: -61 -
2618-0011

GOOG-1020-Page 66 of 114

File is present locally, then the data in the file can be accessed. If the data item is
not present locally, there are a number of ways in which it can be obtained from
wherever it is present. Using the source IDs field of the True File registry table,
" the location(s) of copies of the True File corresponding to a given True Name can
be determined. The Realize True File from Location primitive mechanism tries to
make a local copy of a True File, given its True Name and the name of a source
location (processor or media) that may contain the True File. If, on the other hand,
for some reason it is not known where there is a copy of the True File, or if the
processors identified in the source IDs field do not respond with the required True
File, the processor requiring the data item can make a general request for the data
item using the Request True File remote mechanism from all processors in the
system that it can contact.
[00345] As a result, the system provides transparent access to any data item
by reference to its data identity, and independent of its present location.
[00346] In operation, data items in the system can be verified and have their
integrity checked. This is from the manner in which True Names are determined.
This can be used for security purposes, for instance, to check for viruses and to
verify that data retrieved from another location is the desired ,and requested data.
For example, the system might store the True Names of all executable applications
on the system and then periodically redetermine the True Names of each of these.
applications to ensure that they match the stored True Names. Any change in a
True Name potentially signals corruption in the system and can be further
investigated. The Verify Region background mechanism and the Verify. True File
- extended mechanisms provide direct support for this mode of operation: The .
‘Verify Region mechanism is used to ensure that the data items in the True File .
-~ registry have not been damaged accidentally or maliciously. The Verify True File
mechanism verifies that a data item in a True File registry is indeed the correct

data item given.its True Name.

S -62 —
2618-0011

GOOG-1020-Page 67 of 114

100347} - Once a processor has determined where (that is, at which other
processor or location) a copy of a data item is in the DP system, that processor
-might need that other processor or location to keep a copy of that data item. For
example, a processor might want to delete local copies of data items to make space
available locally while knowing that it can rely on retrieving the data from
somewhere else when needed. To this end the system allows a processor to
Reserve (and cancel the reservation of) True Files at remote locations (using the
remote mechanism). In this way the remote locations are put on notice that another
location is relying on the presence of the True File at their location.
- [00348] A DP system employing the present invention can be made into a
fault-tolerant system by providing a certain amount of redundancy of data items at
multiple locations in the system. Using the Acquire True File and Reserve True
File remote mechanisms, a particular processor can implement its own form of
fault-tolerance by copying data items to other processors and then reserving them
there. However, the system also provides the Mirror True File background
mechanism to mirror (make copies) of the True File available elsewhere in the
system. Any degree of redundancy (limited by the number of processors or
locations in the system) can be implemented. As a result,' this invention maintains
~ adesired degree or level of redundancy in a network of processors, to protect
against failure of any particular processor by ensuring that multiple copies of data
items exist at different locations.
[00349] . The data structures used to implement various features and .
- mechanisms of this invention store a variety of useful information which can be
used, in conjunction with the various mechanisms, to implement storage schemes.
_and policies in a DP system employing the invention. For example, the size, age
‘and location of a data item (or of groups of data items) is provided. This
information can be used to decide how the data items should be treated. For
" example, a processor may implement a policy of deleting local copies of all data
items over a certain age if other copies of those data items are present elsewhere in

-63 —-
2618-0011

GOOG-1020-Page 68 of 114

the system. The age (or variations on the age) can be determined using the time of
last access or modification in the local directory. extensions table, and the presence
.of other copies of the data item can be determined either from the Safe Flag or the
source IDs, or by checking which other processors in the system have copies of
the data item and then reserving at least one of those copies.

[00350] In operation, the system can keep track of data items regardless of
how those items are named by users (or regardless of whether the data items even
have names). The system can also track data items that have different names (in
different or the same location) as well as different data items that have the same
name. Since a data item is identified by the data in the item, without regard for the
context of the data, the problems of inconsistent naming in a DP system are
overcome.

[00351] In operation, the system can publish data items, allowing other,
possibly anonymous, systems in a network to gain access to the data items and to
rely on the availability of these data items. True Names are globally unique
identifiers which can be published simply by copying them. For example, a user
might create a textual representation of a file on system A with Trué Name N (for
instance as a hexadecimal string), and post it on a computer -bulletin i)oard.
~ Another user on system B could create a directory entry F for this True Name N
by using the Link Path to True Name primitive mechanism. (Alternatively, an_
application could be developed which hides the True Name from the users, but
provides the same public transfer service.)

[00352] . -When a program on system B attempts to open pathname F linked to
True Name N, the Locate Remote File primitive mechanism would be used, and .
would use the Locate True File remote mechanism to search for True Name N on
one or more remote processors, such as system A. If system B has: access to
system A, it would be able to realize the True File (using the Realize True File

- from Location primitive mechanism) and use it locally. Alternatively, system B

: -64—
26180011

GOOG-1020-Page 69 of 114

could find True Name N by accessing any publicly available True Name server, if
the server could eventually forward the request to system A.

[00353] . Clients of a local server can indicate that they depend on a given
True File (using the Reserve True File remote mechanism) so that the True File is
- not deleted from the server registry as long as some client requires access to it.
(The Retire True File remote mechanism is used to indicate that a client no longer
needs a given True File.)

[00354] - . A publishing server, on the other hand, may want to provide access

* _to many clients, and possibly anonymous ones, without incurring the overhead of

tracking dependencies for each client. Therefore, a public server can provide
expiration dates for True Files in its registry. This allows client systems to safely
-maintain references to a True File on the public server. The Check For Expired
Links background mechanism allows the client of a publishing server to
. occasionally confirm that its dependencies on the publishing server are safe.
[00355] In a variation of this aspect of the invention, a processor that is
newly connected (or reconnected after some absence) to the system can obtain a
current version of all (or of needed) data in the system by requesting it from a
server processor. Any such processor can send a request to update or
_resynchronize all of its directories (starting at a root directory), simply by using
the Synchronize Directories extended mechanism on the needed directories.
[00356] = Using the accounting log or some other user provided mechanism, a
' user can prove the existence of certain data items at certain times. By publishing
(in a public place) a list of all True Names in the system on a given day (or at
some given time), a user can later refer back to that list to show that a particular
data item was present in the system at the time that list was published. Such a
-~ mechanism is useful in tracking, for example, laboratory notebooks or the like to
- prove.dates of conception of inventions. Such a mechanism also permits proof.of

possession of a data item at a particular date and time.

' -65 -
2618-0011

GOOG-1020-Page 70 of 114

[00357] The accounting log file can also track the use of specific data items

and files by content for accounting purposes. For instance, an information utility

~_company can determine the data identities of data items that are stored and

© transmitted through its computer systems, and use these identities to provide bills’

to its customers based on the identities of the data items being transmitted (as

defined by the substantially unique identifier). The assignment of prices for storing

and transmitting specific True Files would be made by the information utility

and/or its data suppliers; this information would be joined periodically with the

- information in the accounting log file to produce customer statements.

[00358] Backing up data items in a DP system employing the present .

“invention can be done based on the True Names of the data items. By tracking
backups using True Names, duplication in the backups is prevented. In operation,

. the system maintains a backup record of data identifiers of data items already

- backed up, and invokes the Copy File or Directory operating system mechanism to

copy only those data items whose data identifiers are not recorded in the backup

- record. Once a data item has been backed up, it can be restored by retrieving it

~ from its backup location, based on the identifier of the data item. Using the backup
record produced by the backup to identify the data item, the data item can be -

_obtained using, for example, the Make True File Local primitive mechanism.
[00359] In operation, the system can be used to cache data items from a
server, $o that only the most recently accessed data items need be retained. To

- operate in this way, a cache client is configured to have a local registry (its cache)

with a remote Local Directory Extensions table (from the cache server). Whenever

- a file is opened (or read), the Local Directory Extensions table.is used to identify

_ - the True Name, and the Make True File Local primitive mechanism inspects the
- local registry. When the local registry already has a copy, the file is already

- cached. Otherwise, the Locate True File remote mechanism is used to get a copy
of the file. This mechanism consults.the cache server.and uses the Request True
- File remote mechanism to make a local copy, effectively loading the cache.

- 66 —
2618-0011

GOOG-1020-Page 71 of 114

[00360] The Groom Cache.background mechanism flushes the cache,.
‘removing the least-recently-used files from the cache client's True File registry.
‘While a file is being modified on a cache client, the Lock Cache and Update
‘Cache remote mechanisms prevent other clients from trying to modify the same
file.

.[00361] . - In operation, when the system is being used to cache data items, the

*. problems of maintaining cache consistency are avoided.

[00362] To access a cache and to fill it from its server, a key: is.required to
identify the data item desired. Ordinarily, the key is a name or address (in this
case, it would be the pathname of a file). If the data associated with such a key is
changed, the client's cache becomes inconsistent; when the cache client refers to
that name, it will retrieve the wrong data. In order to maintain cache consistency it
is necessary to notify every client immediately whenever a change occurs on the
server.

[00363] ‘By using an embodiment of the present invention, the cache key
uniquely identifies the data it represents. When the data associated with a name
changes, the key itself changes. Thus, when a cache client wishes to-access the
modified data associated with a given file name, it will use a new key (the True
Name of the new file) rather than the key to the old file contents in its cache. The
- client will always request the correct data, and the old data in its cache will be.

- eventually aged and flushed by the Groom Cache background mechanism.
[00364], Because it is not necessary to immediately notify clients when
changes on the cache server occur, the present invention makes it possible for-a
single server to support a much larger number of clients than is otherwise possible. .. -
[00365] - In operation, the system automatically archives data items as they -
~are created or modified. After a file is created or modified, the Close File - -

- operating system mechanism creates an audit file record, which is eventually-

. processed by the Process Audit File Entry primitive mechanism. This mechanism -

.. uses the ‘True File primitive mechanism for any file which is newly created, which . -

_ 67—
2618-0011

GOOG-1020-Page 72 of 114

-in turn uses the Mirror True File background mechanism if the True File is in a
miirrored or archived region. This mechanism causes one or more copies of the
new file to be made on remote processors.
[00366] = In operation, the system can efficiently record and preserve any
collection of data items. The Freeze Directory primitive mechanism creates a True
File which identifies all of the files in the directory and its subordinates. Because -
this True File includes the True Names of its constituents, it represents the exact
contents of the directory tree at the time it was frozen. The frozen directory can be
copied with its components preserved.
[00367] The Acquire True File remote mechanism (used in mirroring and
archiving) preserves the directory tree structure by ensuring that all of the
component segments and True Files in a compound data item are actually copied
to a remote system. Of course, no transfer is necessary for data items already in
the registry of the remote system.
[00368] In operation, the system can efficiently make a copy of any
collection of data items, to support a version control mechanism for groups of the
data items.
[00369] The Freeze Directory primitive mechanism is used to create a
“collection of data items. The constituent files and segments referred to by the
. frozen directory are maintained in the registry, without any need to make copies of
the constituents each time the directory is frozen.
[00370] . Whenever a pathname is traversed, the Get Files in Directory
operating system mechanism is used, and when it encounters a frozen directory, it
uses the Expand Frozen Directory primitive. mechanism.
[00371] A frozen directory can be copied from one pathname to another
efficiently, merely by copying its True Name. The Copy File operating system

mechanism is used to copy a frozen directory.

-68 —
2618-0011

GOOG-1020-Page 73 of 114

[00372] . - Thus it is possible to efficiently create copies of different versions of
a directory, thereby creating a record of its history (hence a version control
system).
[00373] - In operation, the system can maintain a local inventory of all the data
.items located on a given removable medium, such as a diskette or CD-ROM. The
. inventory is independent of other properties of the data items such as their name,
location, and date of creation.. .
.. [00374] . The Inventory Existing Directory extended mechanism provides a
way to create True File Registry entries for all of the files in a directory. One use
of this inventory is as a way to pre-load a True File registry with backup record
- information. Those files in the registry (such as previously installed software)
which are on the volumes inventoried need not be backed up onto other volumes.
[00375] @ The Inventory Removable, Read-only Files extended mechanism not
only determines the True Names for the files on the medium, but also records
directory entries for each file in a frozen directory structure. By copying and
modifying this directory, it is possible to create an on line patch, or small
modification of an existing read-only file. For example, it is possible to create an
. online representation of a modified CD-ROM, such that the unmodified files are
actually on the CD-ROM, and only the modified files are online.‘

[00376] In operation, the system tracks possession of specific data items
- according to content by owner, independent of the name, date, or other properties
of the data item, and tracks the uses of specific data items and files by content for
accounting purposes. Using the Track for Accounting Purposes extended -
‘mechanism provides a way to know reliably which files have been stored on a

- system or transmitted from one system to another.
: TliUE NAMES IN RELATIONAL AND OBJECT-ORIE&iED'DATABASEs_ |
- [00377]. Although the preferred embodiment of this invention has been
. presented in the context of a file system, the invention of True Names would be

) - 69—
2618-0011

GOOG-1020-Page 74 of 114

equally valuable in a relational or object-oriented database. A relational or object-
. oriented database system using True Names would have similar benefits to those
. of the file system employing the invention. For instance, such a database would
permit efficient elimination of duplicate records, support a cache for records,
simplify the process of maintaining cache consistency, provide location-
independent access to records, maintain archives and histories of records, and
synchronize with distant or disconnected systems or databases.

[00378] . The mechanisms described above can be easily modified to serve in
- such a database environment. The True Name registry would be used as a
repository of database records. All references to records would be via the True
Name of the record. (The Local Directory Extensions table is an example of a
_primary index that uses the True Name as the unique identifier of the desired
records.)

[00379] In such a database, the operations of inserting, updating, and deleting
records would be implemented by first assimilating records into the registry, and
‘then updating a primary key index to map the key of the record to its contents by
using the True Name as a pointer to the contents.

[00380] ° ©= The mechanisms described in the preferred embodiment, or similar
mechanisms, would be employed in such a system. These mechanisms could
include, for example, the mechanisms for calculating true names, assimilating,
locating, realizing, deleting, copying, and moving True Files, for mirroring True
Files, for maintaining a cache of True Files, for grooming True Files, and other
mechanisms based on the use of substantially unique identifiers.

[00381]. - While the invention has been described in connection with what is
presently considered to be the most practical and preferred embodiments, it is to
. be. understood that the invention is not to be limited to the disclosed embodiment,
but on the contrary, is intended to cover various modlﬁcations and equlvalent

arrangements included within the spmt and scope of the appended clalms a

-70 -
2618-0011

GOOG-1020-Page 75 of 114

WHAT IS CLAIMED:

1. A content delivery method comprising;:
. . causing a plurality of files to be distributed across a plurality of computers;

responsive to a réquest, the request including at least a name for a file, the
name having been determined, at least in part, uéing a giveh function of the data
that comprises the contents of the file, causing a copy of the file to be provided
from a given one of the plurality of computers, wherein the request for the file is
resolved based, at least in part, on a measure of availability of at least one of the

computers.

2. A method, in a system in which a plurality of files are distributed

across a plurality of computers, the method comprising;:

obtaining a name for a file, the name having been determined at least in part
as a given function of the data that comprises the contents of the file, wherein the
_ contents of the particular file may represent a digital message, a digital image, a

video signal or an audio signal; and

responsive to a request, the request including at least the name, providing a
~ copy of the file from a given one of the computers, wherein the request for the file
is resolved based, at least in part, on a measure of availability of at least one

computer having a copy of the requested file.

3. A method comprising:

distributing a set of files from a first computer across a network of

computers distinct from the first computer;

-71-—
2618-0011

GOOG-1020-Page 76 of 114

. for at least one file in the set of files, applying an MD5 function to the

contents of a file to obtain a True Name for the file;

in response to a request, the request including at least the True Name of the
. particular file, causing a copy of the particular file to be provided from a given one
" of the computers, wherein the request for the particular file is resolved based,'at

_ least in part, on a measure of availability of at least one of the computers. -

4, A content delivery method comp:fising.:
distributing a plurality of files across a network of _computcrs;,

for a particular file, determining a True Name using at least a given
function of the data, wherein the data used by the function to determine the name

comprises the contents of the particular file;

obtaining a request, the request including at least the True Name of the

particular file; and

responsive to the request, causing the particular file to be provided from

one of the servers of the network of computers,

- wherein the request for the file is resolved based, at least in part, on a

- measure of availability of at least one of the computers having a copy of the file.

5. A content delivery method, comprising:
distributing a set of files across a network of SErvers; .

for a particular file representing a digital image, the file havinga contextual
name specifying at least one location in the network at which the file may be

located; determining another name for the particular file, the other name including

... a True Name.for the file which was determined using a message digest function of

-72 -
2618-0011

GOOG-1020-Page 77 of 114

the data, where the data used by the given function comprises the contents of the -

particular file;

. obtaining a request for the particular file, the request including at least the

True Name of the particular file; and

responsive to the request, providing the particular file-from one of the
servers of the network of servers, said providing being based at least in"part on the
True Name of the particular file, wherein the request for the file is resolved based,
at least in part, on a measure of availability of at least one of the 'se_rver_s having a

copy of the requested file.

6. A method comprising:

applying an MDS5 function to the contents of an image file containing data

representing a digital image to obtain a True Name for the file;

distributing copies of the image file from a first server across a network of

~servers distinct from the first server;

obtaining a request for the image file, the request including at least the True

Name of the file; and

responsive to the request, causing a copy of the image file to be provided
from one of the servers of the network of servers, wherein the request for the file
. is resolved based, at least in part, on a measure of availability of at least one of the

servers having a copy of the file.

7. A method as in ahy one of claims 1, 2, 3, 4, 5, _and 6 wheyrein the
measure of availability for a computer is based on at least one of the |

measurements selected from:

(a) ameasurement of bandwidth to the computer;

: -73 -
2618-0011

GOOG-1020-Page 78 of 114

(b) ameasurement of a cost of a connection to the computer, and

(c) ameasurement of reliability of a connection to the computer.

-8 A method as in claim 1 wherein at least some of the plurality of

computers form a peer-to-peer network.

9. A method comprising:

distributing a set of files from a first computer across a network of

computers;

in response to a request for a file, causing the file to be provided from a
given one of the computers in the network, wherein the request for the file is
resolved based, at least in part, on a measure of availability of at least one of the
computers in the network, and wherein the measure of availability for a computer

- is based, at least in part, on at least one of the measurements selected from:
(a) a measurement of bandwidth to the computer;
(b) a measurement of a cost of a connection to the corhputer, and

(c) a measurement of reliability of a connection to the computer.

10 A method as in claim 9 wherein the request for the file is reslolved
based, at least in part, on a measure of availability of at least one of the computers

in the network that is supposed to have a copy of the file.

‘11. A method as in claim 9 wherein the request for the particular file

_includes at least a name determined as a function of the contents of the file.

-74 —
2618-0011

GOOG-1020-Page 79 of 114

1200 A method as in claim 9 wherein at least some of the plurality

of computers form a peer-to-peer network.

13. - - A method as in claim 9 wherein the network of computers are

distinct from the first computer.

14. A method as in any one of claims 1 to 6, further comprising:
maintaining accounting information relating to data files in the system; and

using the accounting information as a basis for a system in which charges

are based on an identity of the data files.

15. A method as in claim 9, further comprising:
maintaining accounting information relating to data files in the system; and

using the accounting information as a basis for a system in which charges

are based on an identity of the data files.

16. A method as in claim 15 , wherein the maintaining of accounting

information includes at least some of activities selected from:
(a) tracking which files have been stored on a computer; and

(b) tracking which files have been transmitted from a computer.

17. A method comprising:

e causing a set of files to be distributed from a first 'cor"np'ute'r_ across a -

network of computers distinct from the first computer;

‘maintaining accounting information relating to data files in the system; and

-75—
2618-0011

GOOG-1020-Page 80 of 114

in response to a request for a file, causing the file to be provided from a-
~given one of the computers, wherein the request for the file.is resolved based, at
least in part, on a measure of availability of at least one of the computers that is
supposed to have a copy of the file, and wherein the measure of availability for a
computer is based, at least in part, on at least one of the measurements selected

from:
(a) a measurement of bandwidth to the computer;
(b) a measurement of a cost of a connection to the computer, and

(c) a measurement of reliability of a connection to the computer.

18. A method as in claim 17, further comprising:

using the accounting information as a basis for a system in which charges

~ are based on an identity of the data files.

19. A method as in claim 18, wherein the maintaining of accounting

information includes at least some of activities selected from:
(a) tracking which files have been stored on a computer; and =~ =~ .

(b) tracking which files have been transmitted from a cdmpﬁter.

20. A method comprising:

(A) distributing a set of files from a first compilter across a network of

computers distinct from the first computer;

(B) maintaining accounting information relating to files in the 's’ysiem, o
* . wherein the maintaining of accounting information includes at least some of
activities selected from:
i -76 —
2618-0011

GOOG-1020-Page 81 of 114

(bl) tracking which files have been stored on a computer; and

~_(b2) tracking which files have been transmitted from a computer;

and

(C) inresponse to a request for a file, causing th'e file to be provided

- from a given one of the computers in the network, wherein the request for the file
. is resolved based, at least in part, on a measure of availability of at least one of the
computers in the network tﬁat is supposed to have a copy of the file, and wherein
the measure of availability for a computer is based, at least in part, on at least one

of the measurements selected from:
(c1) a measurement of bandwidth to the computer;
(c2) a measurement of a cost of a connection to the computer, and

(c3) a measurement of reliébility of a connection to the computer.

21. A method as in claim 20, wherein some of the computers

communicate with each other using a TCP/IP communication protocol.

22. A method as in any one of claimé 1-6 or claim 9 or claim 17 or claim
20, wherein a copy of the requested file is not provided to unlicensed parties or to

unauthorized parties.

. 23. A method as in any one of claims 1 to 6 or 9, further comprising:

. ‘not allowing an unauthorized or unlicensed copy of a file to be provided

from one of the computers.

-77 -
2618-0011

GOOG-1020-Page 82 of 114

ABSTRACT OF THE DISCLOSURE" .

A plurality of files are distributed across a plurality of computers, some of which
may form a peer-to-peer network. In response to a request for a file, the file is
caused to be provided from a given one of the computers, wherein the request for
the file is resolved based, at least in part, on a measure of availability of at least
one of thé¢ computers that is supposed to have a copy of the ﬁle. and :threin the
‘measure of availability for a computer is based, at least in part on at least one of
.the measurements selected from: (a) a measurement of bandwrdth to the computer
(b) a measurement of a cost of a connection to the computer, and (c) a
measurement of reliability of a connection to the computer. A copy of the
- requested file may not be provided to unlicensed parties or to unauthorized parties.

An unauthorized or unlicensed copy of a file may not be allowed to be provided.

-78 —
2618-0011

GOOG-1020-Page 83 of 114

—

H0OSS3IO0Ud

[41]

d40SS300¥d

c0}

¥0SSIO0Nd

A1)

<~

901

N

¥0SS300Ud "

201

H40SS300¥d

c0}

(0)1 91

30IA3a
JOVHO0ILS

GOOG-1020-Page 84 of 114

SN

'l.ll..l.-lllllll,Il'llllllll".'l|.lllnl"llll"ll'llllllll'lll"'

X 19 viL
." avs 861
" pSl
. 1 32IA3Q
! 3OVHOLS
" l—n&w @”F . a
" z51 <l >
." 1s
! aws 0}
" 951
“_ _ 1y
! v 8z1
! velL ndo
_“ ¥4l 80}
" dv ozl
! Zel _
' aal
: Adowaw vel
0Ll
201 Y0SSID0YY
T e MOSS3o0ud -
_ c— 7

3_: Old

GOOG-1020-Page 85 of 114

IN3IWo3s e : szs_me LIN3Wo3s
zzl | 2zL

2zl
ELL e T4 314

0z1 | i) 4}
\. A¥0193¥Iq \ . A¥0193¥1q A¥O193xIq

8L . jm: | 8Ll
NoIo3y| E : “e NOI9IY E
L LLL , 2L

W3lsas | RIE|
E—

i

L1

i

q\V)

9L

GOOG-1020-Page 86 of 114

FIG. 3

138+

Region ID

Pathname

True Name

Type

File ID

Time of last access

Time of last modification

Safe flag

Lock flag

Size

owner

FIG. 4

140

True Name

File "'Il_)

Compressed File ID

Source IDs

Deﬁendent processors

Use count

Time of last access

Expiration

Grooming delete count

142 .

Region ID

Region file system

Region pathname

Region status

Mirror processor(s)

Mirror duplication count

Policy

FIG. 5

GOOG-1020-Page 87 of 114

99SUSOT]

smeN onxy,

oSl .

smeN onxy

Axjus Jo 2dX3

X313us jo e3ep.

8vi

SUWeN aNnxj,

sweuyjeq

duelsamyy,

dI xossadoag

9dAgL

uotjexsdp

sweN Hm:wmﬂuo

vl

UOF3eO0T 20anos

AJTITqeTTeAR @oanos

S3ybyax 9oanos

2dA3] 9oanos

gl 9o5anos

bl

6 9l

8914

L Ol

9914

GOOG-1020-Page 88 of 114

FIG. I0(a)

-~

5212

COMPUTE MD FUNCTION ON
DATA ITEM

| 5214
APPEND LENGTH MODULO 32 OF
DATA ITEM

-
S e m - amme e m e m m men -

il i P

-
-

GOOG-1020-Page 89 of 114

~ - ™

S216

DATA ITEM
SIMPLE? _

- FIG. 10(b)
s

PARTITION DATA ITEM INTO
SEGMENTS

-YES.

5222

ASSIMILATE EACH SEGMENT
(COMPUTING ITS TRUE NAME)

R
S
(o]

COMPUTE TRUE '
NAME OF SIMPLE !
DATAITEM

‘ S$224

CREATE INDIRECT BLOCK OF-
SEGMENT TRUE NAMES

5226
ASSIMILATE INDIRECT BLOCK
(COMPUTING ITS TRUE NAME)

5228
REPLACE FINAL 32 BITS OF TRUE
NAME WITH LENGHT MOD 32 OF DATA
ITEM

GOOG-1020-Page 90 of 114

4

ai 3714 3¥ous
6€¢S

+

ON

21 3714 IAVH
AYINZ s304

t

ai 3714 313734
8€¢CS

S3IA

AY1SIOaY
374 INYL NI LSIX3

S3A

JWVN 3NYL s30a

| SNVN INYL
ANINY3L13a

0€ecs

f

*

Sa13id ¥3aH1o0 138 .
al 37114 I¥ols.,.

}l OLINNOD 3SN 13S.,
~ AYLIN3 M3N 3LVIY) .

9€¢s

ON

11914

GOOG-1020-Page 91 of 114

5238 5240
FILE YES _,| upoaE g
DEPENDENCY |
LOCKED? NDENC!
NO l
5242
| SEND MESSAGE TO
L‘ —| CACHE SERVER TO
S244 | UPDATE CACHE
COMPRESS L
(IF DESIRED)
5248
" MIRROR
(IF DESIRED)

GOOG-1020-Page 92 of 114

l FIG. 13

S250
SEARCH FOR

THE —NOT FOUND —> FaL
PATHNAME

LDE INCLUDES
JRUE NAME?

NO

S .

YE
| - §258 -
— ASSIMILATE LDE IDENTIFIES
' FILEID . DIRECTORY?
S256
< : FREEZE
DIRECTORY
\ 4

GOOG-1020-Page 93 of 114

5260

CONFIRM THAT
TRUE NAME
EXISTS LOCALLY

SEARCH FOR
PATHNAME IN
LDE TABLE

" sziz - FIG.14

S264

CONFIRM THAT
DIRECTORY
EXISTS

S266

S268

YES . |

NAMED FILE »| DELETE
EXISTS? TRUE FILE

"NO

270
'CREATE
ENTRY IN LDE
& UPDATE

GOOG-1020-Page 94 of 114

o

!

it

<

gl'olg

(aayisaa
> 41 374
L INYL AJR3A
Y4l 28¢S
OLNI @aNynL3y
3714 INYL ¥ILINT
.91TS
A
. Tvd
ISNOdSIY
IAILISOd yy
ISNOdSIY
HO4 Lvm
' 3OVSSIN
414 gN3s _
$12S ISNOJS3Y
" 3AILVOIaN
240SS300Y

S3A

VY NOLLYDO1 SI

374 ANid
08¢S

%

LINNOW
1S3NO3Y .
8.¢S

GOOG-1020-Page 95 of 114

i:

i

()9l 914

TIv4

ISNOdSIY
FAIISOd.
SLIVM
IN3MO _
8928 1NQIWIL
4 ¥o
ISNOdSIY
sisvoavous | JALLYoIN
N3O :
9825

SIA
a3iroais
SHOSSID0Ud

ANV
58¢s

(s)yoss3aooud
sLo313s
IN3MD
¥82S

.*A

GOOG-1020-Page 96 of 114

™

. N
1SI7 0L daV any . eW3LSA
3LV NOILVIdX3 |- ONIHSITENd

ANINY313Q SIATN_ si3oMn0s
DL6ZS Q0623
JWVN INYL

d04 SAl 304N0S OL
di NOILVDO01 324N0S
daav 2 INVN INYL
d04 ¥4l dN MO0
806¢S

¢NOILVNILS3a
WO¥4 s¥3441a JWVN
. JMNYL 40 30¥N0S

oNP»

¥40S8S300ud

30dN0OS NO
374 INYL IANISTY
01 39VSSIN aN3s

216¢S

JYO0l1s
06¢s

al HOss300ud |

1 _

(9)91 914

GOOG-1020-Page 97 of 114

~f-

¢al 374
a3ss3UdNOD

962S

SSUJNO0D3a
_86¢S

¢AYLINT SIHL
d04 gl 374

T

23NN |
© 3NYL YO YAL NI

(0)21'914

GOOG-1020-Page 98 of 114

(4)L1914

(s)aounos
Woy4 3114
INYL IZIVIY

90€S

%mmo [

00€S

al 3yols

1

SQl 328N0S ~ . |3nd3Loway
. |_sai324n0os iy
193138 TAOW oZIv - 3LVH01
y0ES 80€S

A
¥asn
A4ILON
Z0ES

GOOG-1020-Page 99 of 114

aNog
0071314 |, T4 HOLVYOS
INYL 3NV | »| MaN aLvauo
22Es _ozgs
». 3114 3INYL T
0 313713a 0
8LES o
EYE]
23714 InyL | .
INOG |, ﬁ' ANYL ONILSIXT
$3A_ ¥04 a1 314 S3A SN 307

¢ad
anyL 40 AdOD 38

(D)8I 914

GOOG-1020-Page 100 of 114

AYLN3

Y41l IAOWIY
2 QI 3714 3AVS

82€S

A

S3IA

L=
INNOD 3sn

1NNOD
2SN INIWINo3Q
‘I18YL QNI
a1 3714 3¥oLS ‘I
M3N OL 3714 AdOD
0ges

(9)81°914

GOOG-1020-Page 101 of 114

—

W3l viva
M3N 3LVIHO
LEES

a

-

ANV 3Tid

314
AYOLOIHIA
Q3LVIWISSYNN .
Cawvwwssy [© | @ oo
(D)6l 914

ALVNIQHO8NS
HOV3a Y04

\

AHOLOFUIa zm>_y
JHL NI AYOLO3Ia

J

M0071 3z33ud
ANIWIHONI

CEES

I

GOOG-1020-Page 102 of 114

M001
373344 IHL

LINIWIHO3a
vveES

W31l Viva Man
IHL ILVIINISSY
ZVES.
— _ﬂmoBmm_o zm@
zo_nw%ﬁw%m_ NI NERR JHL NI A¥OLO3NHIa
IvNollgay [€¢—— VIVAMIN g | anvad
QuO093Y Ol AM1IN3 qav JLVNIQ¥Oogns.
0beS 8EES HOV3 ¥O4

[. %

1

GOOG-1020-Page 103 of 114

JWVN INYL
Ol HLVd YNIT

SES

+

| 3WVNHLVd
N4 3LVIND

0s€esS

%

AHOLO3NIA
avay

8v€S

 ——STNNINT
JHOW

GOOG-1020-Page 104 of 114

Y

AYLIN3

A¥oL03¥Ia | - samiNa____
HOV3 Y04 JHOW ON

£GES

%

Vo034

| ozold

1

S35
WAIT FOR
FREEZE LOCK
TO TURN OFF

I3
S$356 .
FIND TFR FIG. 2]

‘ENTRY

S358
| DECREMENT
-| REFERENCE

COUNT

REFERENCE COUNT IS YES DESEgE B
- ZERO & NO DEPENDENT wmuere|
SYSTEMS IN TFR? , P
;‘
NO |
Y
S36
REMOVE FILE ID .
< AND COMPRESSED
FILE ID !
v |

GOOG-1020-Page 105 of 114

_

5365

GET
OPERATION
5366 : S368
CREATE OR YES__ : >
MODIFY? _ ASSIMILATE
S369.
NEW TRUE
COPY OR DELETE YES FILE
COMPOUND? l
S378 S370
MODIFY USE - RECORD TRUE ,’
COUNT OF EACH NAME IN AUDIT| |
f
COMPONENT FILE
. _ :

< l
—Y_

S379 1 /

FOR EACH PARENT
DIRECTORY OR FILE,
UPDATE USE COUNT,

LAST ACCESS AND

MODIFY TIMES

'

GOOG-1020-Page 106 of 114

FIG. 23

v

S382
VERIFY

. GROOMING

LOCK OFF

S384
SET
GROOMING

LOCK .

S386
SET GROOM
COUNTS

GOOG-1020-Page 107 of 114

S388

FIND LDE
RECORD

FIG. 24

5390
FIND TFR
RECORD

5392
INCREMENT

. GROOMING
DELETE COUNT

S394

ADJUST FILE
SIZES

GOOG-1020-Page 108 of 114

FIG. 25

S396
DELETE
FILE

S398
UNLOCK
GROOMING
LOCK

:

GOOG-1020-Page 109 of 114

43714
HOLWVYOS

61vS

—S3IA

N3dO
1181HOXd

ceys

~

¢ATNO
avay
0L¥S

T

S3A

NOIO3Y
IANINNY3L3A

80¥S

ON

NadoO
ligiHOYd
yovS

le—on

ZATIVOO

(0)92 914

SIA

sispa 3Tid

<¢Q31vayd
ONI38-

covs

ON

GOOG-1020-Page 110 of 114

a

¥4l Woy4
araid N¥NL3Y
2 NOISH3A
V201 ANV
0Zys

A

(9)9¢2

old

1

>

AdOD -
HOLVOS
JLVIND

LLyS

S

(o)

a3axoo1

LON dIM001

8L¥S

A

S3A

ar
3114 HOLVHOS |
NYNL13Y |
AL _
114 HOLVYOS
3LVI™O
90+S
gniasvual >

N3LLRIMIY
AT31371dWOD
ONI3g

GOOG-1020-Page 111 of 114

(0)22 9Ol

"~ NolaTaa
1191HOYd

—sax

——

JNVN
INYL NOYL 314
JNYL AdJILN3AI

14443

A
ON

¢AY0LO3YId
AINO-avaY
NI YO aaxo01 3714
4O Q¥0O3N 3a1 O

AL

.34
04 SQuO0o3Y
AYINT 1Y
2 307 aNINN313a

(4443

1

GOOG-1020-Page 112 of 114

3114 Liany |ano Ag 1Nnoo
OL A¥INS aav | asn 3onazy
- 8evs LEPS
374 3Nyl
ETEREN
0EvS ON
3114 40 aNO
AdO2 HOLVHOS SaA SIINNOD 3SN
313730 CELET
L2vS

¢IWVN 3NYL
ON SVH 3114

S3A

GOOG-1020-Page 113 of 114

ISNOdS3Y _ ‘3SNOdS3aY
JAILVO3IN 3ALLISOd
m%w yvvS

0

I ErR

¢a3Q¥YMYOL 1s3anoay .
38.011s3n03¥ _>—sax—P»| auvmuod [¢—o aaSSIUJINOD ¥O
ZvvS al 3714 S3aNT19N

¢aNNOd

CCLE
ON . ~ s3A

. IWYN 3NYL
82 9ld " dAMOOT

[A% 4]

T

GOOG-1020-Page 114 of 114

