- .

-

1

10/61/

I,

17
]

oLd -

IN THE UNITED STATES PATENT AND TRADEMARK

‘OFFICE
REQUEST FOR FILING

(RULE 53(b)(1))

For Design or Utility Applications

Rule 53(b)(1) PATENT APPLICATION.

X
O

Continuation)
) application under 37 CFR 1.53(b)(1)

Divisional

application under 37 CFR 1.53(b)(1)
of pending prior application of

r
2 Mo

£)

e

o B

o
R Hoven sy

e om
W

Title:

Iﬁventor(s):
Parent Appin. No.:

Parent Filed:
This Appln. Filed:

Sir:
1.
X
P
z
1A.
(1)
(2)
2. O

25

Farber et al.

09 | 283,160

Series Code © | Serial No. ¢

April 1, 1999

November 15, 2001

Identifiying Data in a Data Processing System

Hon. Commissioner of Patents
: Washington, DC 20231

To effect the above-requested filing today:

Abstract
Specification and claims (94 pages) (must be attached)

Drawings (must be attached if originally filed): 31 sheet(s)/set: [1 set informal;
X A4

Always X one box, only:
X Copy of Signed declaration or oath as originally filed in prior application attached

[0 NO declaration or fee is enclosed; therefore, this is a filing under Rule 53(f).

Group Art Unit: 2771

(DO NOT US

I

n’n

77
i

. PTO

&

I

m jc973 us
ik
15/01

FOR CIPs)

.Examiner: Jean HOMERE
Atty. Dkt. P 283002 | TN-Cont-2
New M# | Client Ref
Date: November 15, 2001
252465)

(Parent Matter No.

Attached is a copy (which must be filed) of the prior application, including:

Formal of size

D 11n

This application is hereby filed by less than all of the inventors named in the prior application. Petition is
hereby made requesting deletion as inventor(s) of the following who is/are not inventor(s) of the
invention being claimed in this application (DELETE THE FOLLOWING INVENTOR(S)):

N w=

© 08N

THE INVENTOR(S) FOR THIS NEW APPLICATION IS(ARE):

Now=

\

30238680_1.D0OC

e

David A. FARBER

Ronald D. LACHMAN

0o AN

The entire disclosure of the prior application is considered as being part of the disclosure of the accompanying
application and is hereby incorporated therein by reference thereto.

PAT.108 10/01

GOOG-1018-Page 1 of 143

‘ Page 2 of 4

4, O Priority is claimed under 35 U.S.C. 119/3€5 based on filing in . of
' : (country)
Application No. Filing Date Application No. Filing Date
(1) (2)
(3) (4)
(5) ' (6)
a. [: (No.) Certified copy/copies attached.
b.[[] Certified copy/copies previously filed on in
U.S. Application No. / , filed on .
series code 1+ serial no.
c. [Certified copy/copies filed during International stage of PCT/ /
4. (a)[J Domestic priority is claimed from / , filed
. PCT/
()] Benefitis claimed of Provisional Application No. 60/ , filed
5. X Prior application is assigned to _ Kinetech, Inc. and Digital Island, Inc. respectively

by assignment recorded _April 1,1995/ October 5, 2000 Reel 9873/11273 Frame _0463/0164.

(Date)
6. [Attached is the following number of Assignments (including original and all later successive ones by
different assignors): 2 and respective new Cover Sheets. (Do NOT file old cover sheets.)

(Assignments in parent must be refiled with new Cover Sheets in this continuing application if you
want it/them recorded against the continuing application.)

Please return the recorded Assignment to the undersigned.
7. X The power of attorney in the prior application is to Dale S. Lazar, Req, No, 28.872

(Name and Reg. No.)
whose current address is as in item 8 below.

a. Recognize as associate attorney Brian Siritzky, Reg. No. 37,497

(Name, Reg. No. and Address)

Address all future communications to Intellectual Property Group
of Pillsbury Winthrop LLP, 1600 Tysons Boulevard, MclLean, VA 22102

9. Amend the specification by inserting before the first line the sentence:--This is a
X continuation [] division of Application No. 09/283,160, filed April 1, 1999
series code 1 serial no.

which is a continuation of 08/960,079, filed October 24, 1997, now abandoned, whichis .-
a continuation of 08/425,160, filed April 11, 1995, now abandoned.

9. (a) [J Amend the specification by inserting before the first line: --This application claims the benefit of
Provisional Application No. 60/ , filed -
10. Small Entity Status is Not claimed [is claimed (pre-filing confirmation required)

' (No.) Small Entity Statement(s) (not essential since 9/8/00) were/are:
T filed in above prior application
[attached.

1. Petition to extend the life of the above prior application to at least the date hereof
(onebox) [T]is being concurrently filed in that prior application (Use Form PAT-111).
(mustbe} [] was previously filed in that prior application (Check length of prior extension).
(Xd) X is not necessary for copendency (Double check before X'ing this box).

30238680_1.00C - PAT-1n8 10/01

GOOG-1018-Page 2 of 143

Page 30of 4

12. I INFORMATION DISCLOSURE STATEMENT: Attached is Form PTO-1449 listing all of the documents

cited by Applicant and the PTO in the parent application(s) relied upon under 35 USC 120 and
referenced in item 9 above. Per Rule 98(d) copies of those documents are not required now. Please

consider those documents and advise that they have been considered in this new application as by
returning a copy of the enclosed Form PTO-1448 with the Examiner's initials in the left column per

} MPEP 609. .
13. [[] Attached is a Rule 103(a) Petition to Suspend Action.

[XI PRELIMINARY AMENDMENT to be entered before fee calculation: (Do not make amendments here
except for correction of improper multiple dependencies or cancellation of whole claims or multiple
dependencies for purpose of reducing the filing fee per MPEP §§ 506 and 607; do not cancel all claims).

14.

Please cancel claims 1-45 and 50-53.

FILING FEE
THE FOLLOWING FILING FEE IS BASED ON
->->->.>CLAIMS AS FILED AND CHANGED BY PRELIMINARY AMENDMENT IN ITEM 14<-<-<-<-

NOTE: If box 1A2 is X'd, do not pay fees,
but leave lines 15-22 and 27-32 blank.

ETN

5 PTO: PLEASE NOTE CLAIM CANCELLATIONS IF BOX 14 ABOVE IS X'D.
& Large/Small Fe
= f Entity C de
i‘_—ﬂw. Basic FilingFee Design Application | $330/$165 106/26
fil16. BasicFilingFee ‘Utility Application | $740/$370 +740 101/201
&)l 17. Total Effective Claims 4 minus20=_} 0 x $18/$9 +0 1037203
= | 18. Independent Claims 3 minus 3 = 0 x $84/9$42 +0 102/202
“== 19. If any proper multiple dependent claim (ignore improper) is present, $280/$140 +0 104/204
= 20. Subtotal = | $740
21. If “petition” box 13 above is X'd, add petitonfee. $130 +0 122
21A. If box 6 above is X'd, add Assignment recording fee $ 40 +80 581
I

22. TOTAL FILING FEE ATTACHED = || $820 |

(carry forward to Iltem 31)

23. [J ATTACHED:

24, X Preliminary Amendment attached (to be entered after assigning Applin. No.)

25. [C] See NONPUBLICATION REQUEST under Rule 213(a) attached (Pat-258)

PAT-108 10/01

30238680_1.DOC
GOOG-1018-Page 3 of 143

. . Page 4 of 4

26.) ADDITIONAL FEE CALCULATION FOR . .
- ' PRELIMINARY AMENDMENT
)) PER BOXES 24/25

Claims Highest
) remaining number
after previously Present Additi nal
amendment paid for Extra Fee
Large/Small Entity File Code
27. Total Effective Claims *16 minus ** 20 = 0 X $18/%9 = $0 (103/203)
28. Independent Claims _*14 minus *** 3 = 11 x $84/$42 = + 924 (102/202)
29. If amendment enters proper multiple dependent claim(s) into this application for the
first time, add (perapplication) $280/$140 + 0 (104/204)
30. ADDITIONALFEE $ O
31. plus FEE from item 22 on page 3 + 820
i; 32. TOTAL FEE ATTACHED $ 1744
E 33. *If the entry in this space is less than a entry in the next space, the “Present Extra” result is *0”
-.: 1 34. “f the “Highest number previously paid for” (see item 17 above) is less than 20, write “20" in this space

I the “Highest number previously paid for” (see item 18 above) is less than 3, write “3" in this space

w
4

Our Deposit Account No. 03-3975
Our Order No. 007018 | 0283002
C# | M#

A

CHARGE STATEMENT: Upon the filing of a Declaration pursuant to Rule 60(b) or 60(d), the Commissioner is hereby
Z= authorized to charge any fee specifically authorized hereafter, or any missing or insufficient fee(s) filed, or asserted to
%= pe filed, or which should have been filed herewith or concerning any paper filed hereafter, and which may be required
under Rules 16-18 (missing or_insufficient fee only) now or hereafter relative to this application and the resuilting
Official document under Rule 20, or credit any overpayment, to our Account/Order Nos. shown above for which

purpose a duplicate copy of this sheet is attached.
This CHARGE STATEMENT does not authorize charge of the issue fee until/unless an issue fee transmittal

form is filed.

Pillsbury Winthrop LLP

Intellectual Property Group
1600 Tysons Boulevard By Atty: Briadp Siritzky Reg. No. 37497
McLean, VA 22102 > _
Tel: (703) 905-2000 sig: \ JK\A(’\ Fax: (703)905-2500
Tel: (703) 905-2185
BS/BS
Atty./Sec.

NOTE No. 1: File this Request in duplicate with 2 postcard receipts (PAT-103) & attachments
NOTE No. 2: Is extension in parent necessary for copendency? DOUBLE CHECK Item 11 above.

If yes, printout Pat-111 and head it in parent.

PAT-108 10/01

GOOG-1018-Page 4 of 143

30238680_1.D0C

APPLICATION UNDER UNITED STATES PATENT LAWS

Atty. Dkt. No. _PW 283002

(M#)

Invention:

David A. FARBER

Inventor (s):
Ronald D. LACHMAN

I
!

iy 1y |

(]
i

?,, ﬁ:i.\ if"u a’f.. \\{"f:.. ﬁi
,)

v

T

T

30238890_1.D0C

O ooodd X O 0O

[

SPECIFICATION

IDENTIFYING DATA IN A DATA PROCESSING SYSTEM

Pillsbury Winthrop LLP
Intellectual Property Group
1600 Tysons Boulevard
McLean, VA 22102

Attorneys
Telephone: (703) 905-2000

This is a:

Provisional Application
Regular Utility Application
Continuing Application

X The contents of the parent are incorporated
by reference

PCT National Phase Application
Design Application

Reissue Application

Plant Application

Substitute Specification
Sub. Spec Filed

in App. No. /

Marked up Specification re
Sub. Spec. filed

“In App. No /

PAT-100 8/00

GOOG-1018-Page 5 of 143

GOOG-101 8-Page 6 of 143

00l

HOSS3IO0¥d ¥0SS300Ud d0SS300ud

<0l ¢0}) ¢0l)
901

. 30IA3Q e 321A3Q
Y0SS300¥d ¥OSS30Ud| | Lo e J9VHOLS
201 201 C yor C vor_ D
(D) 'OI4

N2

v g
._d

L P s e

19 141"
avs 851

1213

11 : 30IA3d
149 oL JOVHO0LS

: Z5)

| 1S
ans o€}

asit

(@014

. 1y
v 9z

w4l 801
ozl

dv
(44

AYONIN

20} © ¥0ss300¥d

Lo o e e e e A e e e e e e et ———— e m———— = ——

MR b e . N RN

GOOG-1018-Page 7 of 143

IN3WO3S | INIWO3S| |LN3WO3S
2zl 4} 47}
34 - =R E e E
0zL 0zl 0zl ,-
A¥0193¥10 .o A¥OLOZNIA A¥0103¥Ia
198 8k} 8hb
NOIOZY| |NOIo3Y e NOIO3Y| |NOI93Y
—r— u¥ L Liy
W3LSAS ¢ 9old
opp| 3

AR s e e S T W W

GOOG-1018-Pagé 8 of 143

Ey i Y

g
J

@

&

T R

k!

-

T

FIG.3

138+

Region ID

Pathname

True

Name

Type

File

ID

Time

of last access

Time

'ofAlast modification

Safe

flag

Lock

fiag

Size

owner

FIG. 4

140

True Name

File ID

Compressed File ID

Source IDs

Dependent processors

Use

count

Time of last access

Expiration

Grooming delete count

142

Region ID

Region file system‘

Region pathname

Reg

ion status

Mirror processor(s)

Mirror duplication count

Pol

icy

FIG. 5

GOOG-1018-Page 9 of 143

99SUadT]

aweN onay

o]e]

sweN anag,

A1jus 3o adX3

Axjus jo ajep

8vl

sweN onig,

aweuyjed

duejsaumy,,

dI xossaoo0ad

9dAjg,

co«umua@o

SWeN TeuTbTao

ol

UOT3eD0T 90INnos

A3TTTqRITRAR 90IN0S

S3UYbTI 8danos

adA3 9dxnos

ar aoanos

14%

Ty e — r
R e e

R

69l

8914

L9l

9914

GOOG-1018-Page 10 of 143

b B O

ey

LIS

R i A

FIG. 10(a)

COMPUTE MD FUNCTION ON
DATA ITEM

S214

APPEND LENGTH MODULO 32 OF
DATA ITEM

e e mEm Em . —, e -——-—-———-m. .-
Lo T P N I U i U I e s e Rt

GOOG-1018-Page 11 of 143

A e R

iH

1

ST

{

-y

S216

DATA ITEM
SIMPLE?

-YES.

O_l FIG. 10(b)

S220

PARTITION DATA ITEM INTO
SEGMENTS

S§222

ASSIMILATE EACH SEGMENT
(COMPUTING ITS TRUE NAME)

NAME OF SIMPLE
DATA ITEM S094

-------------- CREATE INDIRECT BLOCK OF
SEGMENT TRUE NAMES

COMPUTE TRUE !

S226

ASSIMILATE INDIRECT BLOCK
(COMPUTING ITS TRUE NAME)

$228
REPLACE FINAL 32 BITS OF TRUE
NAME WITH LENGHT MOD 32 OF DATA
ITEM

GOOG-1018-Page '12 of 143

+ #

al 3714 3¥01S

ai 3714 313713a

6€Cs
w 8€¢S %
o

SQT314 ¥IHLO0 13S .
a1 3714 3HOLS
20l 3114 IAVH } OL INNOD 3SN 13S »
ANLN3 S304 SIA— | AYLINT M3N 31V3y¥0 .
| 9ezs
LAN1SIOTY
. 3714 3NYL NI LSIX3
S3A INYN INYL S300a ON
JNYN 3NYL
aNIwy313a 11914
082S

+

R LA = e T e e A

GOOG-1018-Page 13 of 143

TR ETTT " R B G L

S238"
FILE

FIG.I2

YES

LOCKED?

NO

<

—»| DEPENDENCY

S240
UPDATE

LIST

I

\ 4
S244

COMPRESS
(IF DESIRED)

I

5246

" MIRROR
(IF DESIRED)

S242

SEND MESSAGE TO
CACHE SERVER TO
UPDATE CACHE

GOOG-1018-Page 14 of 143

e et oo B B B L0

[

y
-

T

ey

T

}

S250
SEARCH FOR
THE
PATHNAME

FIG.13

LDE INCLUDES

JRUE NAME?

NOT FOIUIND >

FAIL

NO

S258

§—| ASSIMILATE

FILEID

LDE IDENTIFIES
DIRECTORY?

S256
< FREEZE
DIRECTORY
\ 4

GOOG-1018-Page 15 of 143

e Ey

TS TET"

S260

‘CONFIRM THAT
TRUE NAME
EXISTS LOCALLY

v

§262
SEARCH FOR
PATHNAME IN

LDE TABLE

S264

CONFIRM THAT
DIRECTORY -
EXISTS

S266

NAMED FILE
EXISTS?

YES

FIG.14

S268
3| DELETE

TRUE FILE

S270
CREATE
ENTRY IN LDE
& UPDATE

GOOG-1018-Page 16 of 143

<

gl'9l4

(@ayIsaa
p|)3
_ aNUL A4R43A
4l ¢8¢s
OLNI G3NY¥NL3Y
3714 INYL ¥WILINI
912S
A
TIvd
ISNOJSTY
JAILISOd %
ASNOdSIY
404 LYM
8 2OVSSIW
414 aNas
v17S aSNOJSaY
INILYOIN
240SS300Y
V NOLLY2011 SI
S3A A

»

= R 2 2 e T L N

2714 ANId
08¢s

A

GOOG-1018-Page 17 of 143

INNOW
1S3N03Yy

8¢S

ON

(0)91914

V3

ISNOdSTY
ansod
SLIVM
N3O _
88¢S 1NQ3IwiL
4 H0.
] 3sNods3y
sisvoavous | 3ALLyoaN
N3O
082S

S3A

a3.1o03713
SY0SS300¥d

W S S

ANY
§8¢S

(shyossaooud
S10313s
IN3No
¥82S

qA

S T T

GOOG-1018-Page ‘i8 of 143

1S17 01 aav anv

3LV NOLLVAIdXE g >|A ONIHSIENd)|

ANINY3130
PL62S

. ws_m._.w>

siadxnANos
0062S

JNVN INYL
d04 Sd132¥NOS OL
aI NOILYDOT 3UN0S
aav 2 INVvN INdL
d04d ¥4l dN 001
806¢S

¢NOILVYNILS3a
NO¥d S¥34410 AWVN
dN¥1 40 308NOS

H0SS300ud
30UNOS NO
3714 INYUL IAYISTY
Ol 3OVSS3IN AN3S

9162S

Ql ¥OSSIOONd
JHOLS

06¢S

1

U e e e N 1

(9)91'914

GOOG-1018-Page 19 of 143

-

¢alanid
Q3sSRAdN0D

96¢S

SSUJN0D3a

862S STA

¢AYLNT SIHL
d0o4 a1 3114

L

¢INVYN
dMULYOH ¥4L NI

AR R R B e R W W R

(D)1 914

GOOG-1018-Page 20 of 143

(9)L1914

(s)30unos
Wou4d 3714
INYL 32TV

90€s

A

J40

| SaI3d%unos

L0313s
y0€S

GOOG-1018-Page 21 of 143

_Sal I04N0S_y
34O ON

A

a1 Rols
00€s

¥3asn
AdLLON
¢0€S

1

R R R e I e .

3714 310NN
31vo01

80€S

L

aNoa

(0)81 914

——

aNO0a

1

w301 374
dNYL INVIN

¢Ces

I1d HOLVHOS
P M3N 3LYIHD

0cesS

»

¢34 INYL
dod ai 3d

T T R

| 3ud3anyl | »
313734 o)

81€s

L

S3A

¢3d
JNUL ONLLSIX3
S3141LN3AI 307

¢34
dNyl 40 AdOD 38
JTNOHS HOLVYD

01€S |

GOOG-1018-Page 22 of 143

AdLN3
ddl JAONW3Y
® 41 34 3AVS

8ees

A

R EL

INNOD
3SN ININFAO3A
‘3718VYLIATNI
al 3114 IyoLs ‘4
M3N OL 3114 AdOD
0ces

R R R

weegy

&

ey e

o

N

i
4

P W = e A

(9)81914

GOOG-1018-Page 23 of 143

3114
Q3LVTINISSYNN | A¥OLO3MIa

—

Wallviva
M3N 3LV

LEES
A

/

AYOLIOMIA N3AI

aNY 3714

<
JLVIINISSY dl wwwmﬁ
9€es

(0)61°914

MR = e N W N R A

3LvNIquo8ans
HOV3 ¥04d

\

A

JHL NI AYO0LO3YIa

J

Y007 373344
INIWIHONI

CEES

I

GOOG-1018-Page 24 of 143

(9)6l 914
NOILYWYO4NI
aayisaa | ﬁﬁmﬁmz
TvNowaay [« OL AM1N3 aav
ayoo3y
gees
0ves

]

N R b e e B I B -t

it

I

M301
3723384 JHL
IN3INIHO3a

yvEeS

W31l Viva M3IN
JHL ALVIINISSY

¢hES

~

Qmoh.owm_o N3AID
JHL NI A¥OLo3Ia
anNv 374
dLlvNIqyogans
HOV3 ¥O4d

T

GOOG-1018-Page 25 of 143

JNVN 3NYL
OL HLVd INIT
¢SES
JNVNHLYd
TIN4 3LY3HD
0S€S
a, Y
AYIN3
AYOL103¥Ia 4——S3NINT_| AHOLOMIQ
avay JYOW HOV3 Y404
8ves o £5eS
V2013114
3NYL AINVIN
oveS

R E By

-

gy waem v

T TR R W

3
#

|

a

SARYLINT
JUON ON

02914

GOOG-1018-Page 26 of 143

TOESTTE" BB G

|

5354

WAIT FOR
FREEZE LOCK
TO TURN OFF
5356
FIND TFR Fl G‘ 2'
ENTRY

5358
DECREMENT
REFERENCE

COUNT
REFERENCE COUNT IS YES DESSS-?-E
ZERO & NO DEPENDENT » TRUE FILE
SYSTEMS IN TFR?
NO
\ 4
S364
REMOVE FILE ID .
< AND COMPRESSED
‘ FILE ID

GOOG-1018-Page 27 of 143

L By i

-

.‘ !E:’“: &

fon

TOSTTT" §

4

S365

GET
OPERATION

S366

CREATE OR
MODIEY?

YES

FIG. 22

5368

Pl ASSIMILATE

S369.-

NEW TRUE
FILE

l

S370
RECORD TRUE
NAME IN AUDIT

FILE]

COPY OR DELETE YES.
COMPOUND?
S378
NO MODIFY USE
COUNT OF EACH
COMPONENT
<
A 4

S§379

FOR EACH PARENT
DIRECTORY ORFILE,
UPDATE USE COUNT,

LAST ACCESS AND

MODIFY TIMES

I

GOOG-1018-Page 28 of 143

1
i

Lol R B By

|

TOST T g

FIG. 23

v

S382
VERIFY
GROOMING
LOCK OFF

S384
SET
GROOMING

LOCK

S386

SET GROOM
COUNTS

GOOG-1018-Page 29 of 143

LB Ty

U
e

TOETT T

S388

FIND LDE
RECORD

§390

FIND TFR
RECORD

h 4

S392

INCREMENT
GROOMING
DELETE COUNT

S394

ADJUST FILE
SIZES

FIG. 24

GOOG-1018-F’age 30 of 143

o B

ol

AL

P g
3 [

.

RN

5y

L
L.

FIG. 25

S396
. DELETE
FILE

S398
UNLOCK
GROOMING

LOCK

GOOG-1018-Page 31 of 143

dad
HOLVYOS N3do
6L¥S 118IHOYd
[444]
+I|mm>

1IgIHOYd AI.Q

2031Va0
ONI38

(AU

ON
NOIO3Y N3dO
ANIANRAL3A
80vS y0¥S
;
S3A sispE 3
(0)92 9l 00rs

K,

) wi' e e . S Y e
R L B B

ON

GOOG-1018-Page 32 of 143

(@)92°914 !

GOOG-1018-Page 33 of 143 4

al
> p| TTI4 HOLVYOS |
: NYNL3Y
bZvs
Y41 Wou4 3714 HOLVYHOS
al 374 NYNL3Y | 31VIHD
8 NOISHN3A 90tS
AVO0T IMYN AdOD % ;
0eyS | Howwuos |
% 31VaND Jn4asvea| "
LLYS \ZS
NILLIMI mﬁ
0 AT3131dIW09D
ONIZg
aayoo
1ON 4131901
8IS
S3A

@@Qﬁ%%%@E%%%ﬁSE

(0)22 Ol | awwn

3NYL NOXL 34
ANUL AJILN3AI

yevS
A

ON

NOLL313d
119IHO¥d

¢AYOLOFNIA
ATNO-Qv3y
NI Y0 daxd01 3714
4O QY003 3a1 Op¥

o 3Td
- 404 SQYOO3Y
AYLIN3T 1
? 307 3aNINY313Qa
ceys

1

zﬂﬁéﬁﬁﬁﬁa%%ﬁﬁzﬁ

GOOG-1018-Page 34 of 143

374 Lanv , aNO AS LNNOD
OL A¥IN3 agv| €1« 3asn Ionaay
8ers LEVS
A A

3714 3Nyl
a1313a
0E¥S ON
3714 40
AdOD HOLVHOS S3A SIINNOD 3SN
3131730 S,:311d 3Nyl
LT¥S

¢IWVN INYL
ON SVH 3714

ON ~S3A

LR e b S W I Rt)

GOOG-1018-Page 35 of 143

ISNOdS3Y
JAILVOIN

8evS

9

o)

¢Q3QAVMUOL
389 01 1S3n03y

S3A >

1s3noy
QvMYO4d

[A445)

ON

(WL e iy

¢aNNO4

VEVS

aASNOdS3Y
IANILISOd -

444

*

S3A

L EYE
a3SSTUANOD HO
a1 3114 $3an1oN

JNVN INAL
" dNYo0o1

(A%

.;,Ju Wy -
wall 1l

o vt Hi,

i

R R

el

S3A

GOOG-1018-Page 36 of 143

. \\
> :
B =5
@7
e\ BACKGROUND OF THE INVENTION

1. Field of the invention

This invention relates to data processing
systems and, more particularly, to data processing.
systems wherein data items are identified by
substantially unique identifiers which depend on all of
the data in the data items and only on the data in the

70187213987

data items.

10 2. Background of the Invention

Data processing (DP) systems,
typically offer users

computers,

networks of computers, or the like,
and programs various ways to identify the data in the

systems. ,
Users typically identify data in the data
processing .system by giving the data some form of name.
For example, a typical operating system (OS) on a

computer provides a file system in which data items are
Programs typically

15

named by alphanumeric identifiers.

identify data in the data processing system using a

20
For example, a program may identify

location or address.
a record in a file or database by using a record number

THOSETTT " ERLEREERD

which serves to locate that record.

In all but the most primitive operating
systems, users and programs are able to create and use
these collections
These named

25
collections of named data items,

themselves being named by identifiers.
collections can then, themselves, be made part of other
named collections. For example, an OS may provide
mechanisms to group files (data items) into directories
(collections). These directories can then, themselves be
A data item may thus be

30

made part of other directories.
identified relative to these nested directories using a

GOOG-1018-Page 37 of 143

g 03

o B

oy

LN

g |

= s

TRSTTE" B

10

15

20

25

30

35

sequence of names, or a so-called pathname, which défine§
a path through the directories to a particular data item
(file or directory).

As another example, a database management
system may group data records (data items) into tables
and then group these tables into database files
(collections). The complete address of any data record
can then be specified using the database file name, the
table hame, and the record number of that data record.

Other examples of identifying data items
include: identifying files in a network file systen,
identifying objects in an object-oriented database,
identifying images in an image database, and identifying
articles in a text database.

In general, the terms "data" and "data item" as
used herein refer to sequences of bits. Thus a data item
may be the contents of a file, a portion of a file, a
page in memory, an object in an object-oriented progranm,
a digital message, a digital scanned image, a part of a
video or audio signal; or any other entity which can be
represented by a sequence of bits. The term "data
processing"” herein refers to the processing of data
items, and is sometimes dependent on the type of data
item being processed. For example, a data processor for
a digital image may differ from a data processor for an

audio signal.
In all of the prior data processing systems the

names or identifiers provided to identify data items (the
data items being files, directories, records in the
database, objects in object-oriented programming,
locations in memory gr on a physical device, or the likef
are always defined relative to a speéific context. For
instance, the file identified by a particular file name
can only be determined when the directory containing the
file (the context) is known. The file identified by a
pathname can be determined only when the file system
(context) is known. Similarly, the addresses in a

GOOG-1018-Page 38 of 143

-
\

10

15

20

25

30

35

process address space, the keys in a database table, or
domain names on a global computer network such as the
Internet are meaningful only because they are specified
relative to a context.

In prior art systems for identifying data items
there is no direct relationship between the data names
and the data item. The same data name in two different
contexts may refer to different data items, and two |
different data names in the same context may refer to the
same data item. ' '

In addition, because there is no correlation
between a data name and the data it refers to, there is
no a priori way to confirm that a given data item is in
fact the one named by a data name.. For instahce, in a DP
system, if one processor requests that another processor
deliver a data item with a given data name, the
requesting processor cannot, in general, verify that the
data delivered is the correct data (given only the name).
Therefore it may require further processing, typically on
the part of the requestor, to verify that the data item
it has obtained is, in fact, the item it requested.

A common operation in a DP system is adding a
new data item to the system. When a new data item is
added to the system, a name can be assigned”to it only by
updating the context in which names are defined. Thus
such systems require a centralized mechanism for the
management of names. Such a mechanism is required even
in a multi-processing system when data items are created
and identified at separate processors in distihct
locations, and in which there is no other need for
communication when dgta items are added.

In many data processing systems or
environﬁents, data items are transferred between
different locations in the system. These locations may
be processors in the data processing systenm, storage
devices, memory, or the like. For example, one processor
may obtain a data item from another processor or from an

GOOG-1018-Page 39 of 143

TOETTT " BBl BaGn

10

15

20

25

30

35

external storage device, such as a floppy disk, and‘may
incorporate that data item into its system (using the
name provided with that data item). A

However, when a processor (or some location)
obtains a data item from another location in the DP
system, it is possible that this obtained data item is
already present in the system (either at the location of
the processor or at some other location accessible by the
processor) and therefore a duplicate of the data item is
created. This situation is common in a network data
processing environment where proprietary software
products are installed from floppy disks onto several
processors sharing a common file server. In these
systems, it is often the case that the same product will
be installed on several systems, so that several copies
of each file will reside on the common file server.

In some data processing systems in which
several processors are connected inAa network, one system
is designated as a cache server to maintain master copies
of data items, and other systems are designated as cache
clients to copy local copies of the master data items
into a local cache on an as-needed basis. Before using a
cached item, a cache client must either reload the cached
item, be informed of changes to the cached item, or
confirm that the master item corresponding to the cached
item has not changed. In other words, a cache client
must synchronize its data items with those on the cache
server. This synchronization may involve reloading data
items onto the cache client. The need to keep the cache
synchronized or reload it adds significant overhead to

existing caching mechanisms. ’
In view of the above and other problems with

prior art systems, it is therefore desirable to have a
mechanism which allows each processor in a multiprocessor
system to determine a common and substantially unique
identifier for a data item, using only the data in the
data item and not relying on any sort of context.

4

GOOG-1018-Page 40 of 143

=3 s

Y
s S

T

e h.“ﬂ o

B . Vo

e

SR

10

15

20

25

30

35

It is further desirable to have a mechanism for
reducing multiple copies of data items in a data
processing system and to have a mechanism which enables
the identification of identical data items so as to
reduce multiple copies. It is further desirable to
determine whether two instances of a data item are in
fact the same data itém, and to perform various other
systems’ functions and applications on data items without
relying on any context information or properties of the
data item.

It is also desirable to provide such a
mechanism in such a way as to make it transparent to
users of the data processing system, and it is desirable
that a single mechanism be used to address each of the

problems described above.

SUMMARY Of THE INVENTION

This invention provides, in a data processing
system, a method and apparatus for identifying a data
item in the system, where the identity of the data iteﬁ
depends on all of the data in the data item and only on
the data in the data item. Thus the identity of a data
item is independent of its name,'origin, location,
address, or other information not derivable directly from
the data, and depends only on the data itself.

This invention further provides an apparatus
and a method for determining whether a particular data
item is present in the system or at a location in the
system, by examining only the data identities of a
plurality of data items.

Using the method or apparatus of the present
invention, the efficiency and integrity of a data
processing system can be improved. The present invention
improves the design and operation of a data storage
system, file system, relational database, object-oriented
da;abase, or the like that stores a plurality of data
items, by making possible or improving the design and

GOOG-1018-Page 41 of 143

3

i, 1
.

b 1y |

A

e
S

o

wy
s B

Houwe Hoerss

g

T N

10

15

20

25

30

35

operation of at least some or all of the following

features:
the system stores at most one copy of any data

item at a given location, even when multiple data names
in the system refer to the same contents;

the system avoids copying data from source to
destination locations when the destination locations

already have the data;
the system provides transparent access to any

data item by reference only to its identity and
independent of its present location, whether it be local,
remote, or offline;

the system caches data items from a server, SO
that only the most recently accessed data items need be
retained;

when the system is being used to cache data
items, problems of maintaining cache consistency are
avoided;

the system maintains a desired level of
redundancy of data items in a network of servers,>to
protect against failure by ensuring that multiple copies
of the data items are present at different locations in
the system;

the system automatically archives data items as
they are created or modified;

the system provides the size, age, and location
of groups of data items in order to decide whether they
can be safely removed from a local file system;

the system can efficiently record and preserve
any collection of data items;

the system.can efficiently make a copy of any
collection of data items, to support a version control
mechanism for Qroups of the data items; '

' the system can publish data items, allowing

other, possibly anonymous, systems in a network to gain
access to the data items and to rely on the availability

of the data items;

GOOG-1018-Page 42 of 143

s 0

i

L
dha ot

of
w

m :lmn
ey Hovues

gy

I

T

o
wll

L0y

10

15

20

25

30

35

the system can maintain a local inventory of
all th data items located on a given removable medium,
such as a diskette or CD-ROM, the inventory is
independent of other properties of the data items such as
their name, location, and date of creation;

the system allows closely related sets of data
items, such as matching or corresponding directories on
disconnected computers, to be periodically resynchronized

with one another; v
the system can verify that data retrieved from

another location is the desired or requested data, using
only the data identifier used to retrieve the data;

the system can prove possession of specific
data items by content without disclosing the content of
the data items, for purposes of later legal verification
and to provide anonymity;

the system tracks possession of specific data
items according to content by owner, independent of the
name, date, or other properties of the data item, and
tracks the uses of specific data items and files by

content for accounting purposes.

Other objects, features, and characteristics of
the present invention as well as the methods of operation
and functions of the related elements of structure, and
the combination of parts and economies of manufacture,
will become more appa;ent upon consideration of the
following description and the appended claims with
reference to the accompanying drawings, all of which form

a part of this specification.

BRIEF DESCRIPTION OF THE DRAWINGS

/]

FIGURE 1 depicts a typical data processing
system in which a preferred embodiment of the present

invention operates;
FIGURE 2 depicts a hierarchy of data items

stored at any location in such a data processing system;

GOOG-1018-Page 43 of 143

£ B D

W
LU

mogr ey
- w8 o
.

-
!

e
5

0T

10

15

20

25

30

35

FIGURES 3-9 depict data structures used t6
implement an embodiment of the present invention; and

FIGURES 10(a)-28 are flow charts depicting
operation of various aspects of the present invention.

DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED
EXEMPLARY EMBODIMENTS

An embodiment of the present invention is now
described with reference to a typical data processing
system 100, which, with reference to FIGURE 1, includes
one or more processors (or computers) 102 and various
storage devices 104 connected in some way, for example by
a bus 106.

Each processor 102 includes a CPU 108, a memory
110 and one or more local storage devices 112. The CPU
108, memory 110, and local storage device 112 may be
internally connected, for example by a bus 114. Each
processor 102 may also include other devices (not shown),
such as a keyboard, a display, a printer, and the like.

In a data processing system 100, wherein more
than one processor 102 is used, that is, in a
multiprocessor system, the processors may be in one of
various relationships. For example, two processors 102
may be in a client/server, client/client, or a
server/server relationship. These inter-processor
relationships may be dynamic, changing depending on
particular situations and functions. Thus, a particular
processor 102 may change its relationship to other
processors as needed, essentially setting up a peer-to-
peer relationship with other processors. In a peer-to- -
peer relationship, soOmetimes a particular processor 102
acts as a client processor, whereas at other times the
same processor acts as a server processor. In other
words, there is no hierarchy imposed on or required of
processors 102.

In a multiprocessor system, the processors 102

may be homogeneous or heterogeneous. Further, in a

8

GOOG-1018-Page 44 of 143

&

T+

&

W

o Mo thoen e

T E

r
b

-

{\

RN

J§
t

*

10

15

20

25

30

35

multiprocessor data processing system 100, some. or all of
the processors 102 may be disconnected from the network
of processors for periods of time. Such disconnection
may be part of the normal operation of the system 100 or
it may be because a particular processor 102 is in need
of repair. '

within a data processing system 100, the data
may be organized to form a hierarchy of data storage
elements, wherein lower level data storage elements are
combined to form higher level elements. This hierarchy
can consist of, for exampie, processors, file systems,
regions, directories, data files, segments, and the like.
For example, with reference to FIGURE 2, the data items
on a particular processor 102 may be organized or
structured as a file system 116 which comprises regions
117, each of which comprises directories 118, each of
which can contain other directories 118 or files 120.
Each file 120 being made up of one or more data segments
122. ‘

In a typical data processing system, some or
all of these elements can be named by users given'certain
implementation specific naming conventions, the name (or
pathname) of an element being relative to a context. In

"%he context of a data processing system 100, a pathname

is fully specified by a processor name, a filesystenm
name, a sequence of zero or more. directory names
identifying nested directories, and a final file name.
(Usually the lowest level elements, in this case segments
122, cannot be named by users.)

In other words, a file system 116 is a
collection of directories 118. A directory 118 is a
collection of named files 120 -— both data files 120 and
other directory files 118. A file 120 is a named data
item which is either a data file (which may be simple or
compound) or a directory file 118. A simple. file 120
consists of a single data segment 122. A compound file
120 consists of a sequence of data segments 122. A data

GOOG-1018-Page 45 of 143

t

segment 122 is a fixed sequence of bytes. An important
property of any data segment is its size, the number of
bytes in the sequence.
A single processor 102 may access one or mor
5 file systems 116, and a single storage device 104 may
contain one or more file systems 116, or portions of a
file system 116. For instande, a file system 116 may
span several sﬁorage devices 104.
In ordéf to implement controls in a file
10 system, file system 116 may be divided into distinct
regions, where each region is a unit of management and
control. A region consists of a given directory 118 and
is identified by the pathname (user defined) of the

directory.
~ 15 In the following, the term "location", with
si7 respect to a data processing system 100, refers to any of
g% a particular processor 102 in the system, a memory of a

3r

¥
s

particular processor, a storage device, a removable
storage medium (such as a floppy disk or compact disk),

20 or any other physical location in the system. 'The term
"local" with respect to a particular processor 102 refers
to the memory and storage devices of that particular

ox

"..
i
e Lt

[
a" vy’

m

3,
m

)

Eoa

processor.
In the following, the terms "True Name", "data

25 identity"” and "data identifier" refer to the
substantially unique data identifier for a particular
data item. The term "True File" refers to the actual
file, segment, or data item identified by a True Name.

A file system for a data processing system 100

30 is now described which is intended to work with an
existing operating system by augmenting some of the
operating system’s file management system codes. The
embodiment provided relies on the standard file
management primitives for actually storing to and

35 retrieving data items from disk, but uses the mechanisms
of the present invention to reference and access those

Bt

data itens.

10

GOOG-1018-Page 46 of 143

{Fy Ea kX

il
i

Wy
&

e TP " g

10

15

20

25

30

35

e

The processes and mechanisms (services)
provided in this embodiment are grouped into the
following categories: primitive méchanisms, operating
system mechanisms, remote mechanisms, background
mechanisms, and extended mechanisms.

Primitive mechanisms provide fundamental

capabilities used to suppoft other mechanisms. The

following primitive mechanisms are described:

1. Calculate True Name;

2. Assimilate Data Itenm;

3. New True File;

4. Get True Name from Path;

5. Link path to True Name;

6. Realize True File from Location;
7. Locate Remote File;

8. Make True File Local;

9. Create Scratch File;

10. Freeze Directory;

11. Expand Frozen Directory;

12. Delete True File;

13. Process Audit File Entry;

14. Begin Grooming;

15. Select For~Rémova1; and

16. End Grooming.

Operating system mechanisms provide typical
familiar file system mechanisms, while maintaining the
data structures required to offer the mechanisms of the
present invention. Operating system mechanisms are
designed to augment exiéting operating systems, and in
this way to make the present invention compatible with,
and generally transpgrent to, existing applications. The
follo&ing operating system mechanisms are described:

1. open File;

2. Close File;

3. Read File;

4. Write File;

5. Delete File or Directory;

11

GOOG-1018-Page 47 of 143

LS

T
et th

.m.»,
s{""'

=
wa

-y
it

Tt

4

STTT" E

10

15

20

25

30

35

6.
7.
8.
9.

Copy File or Directory;
Move File or Directory;
Get File Status; and

Get Files in Directory.

Remote mechanisms are used by the operating

system in responding to requests from other processors.
These mechanisms enable the capabilities of the present

invention in a peer-to-peer network mode of operation.

The following remote mechanisms are described:

1.
2.
3.
4.
5.
6.
7.
8.
9.

Locate True File;
Reserve True File;
Request True File;
Retire True File;
Cancel Reservation;
Acquire True File;
Lock Cache;

Update Cache; and
Check Expiration Date.

Background mechanisms are intended to run
occasionally and at a low priority. These provide
automated management capabilities with respect to the
present invention. The folléwing background mechanisms

are described:
1.
2.
3.
4.
S.

Mirror True File;

Groom Region;

Check for Expired Links; and
Verify Region; and

Groom Source List.

Extended mechanisms run within application
programs over the operating system. These mechanisms
provide solutions to.specific problems and applications.‘
The following extended mechanisms are described:

1.
2.
3.
4.
5.

Inventory Existing Directory; A
Inventory Removable, Read-only Files;
Synchronize directories;

Publish Region;

Retir Dir ctory;

12

GOOG-1018-Page 48 of 143

6. Realize Directory at location;
7. Verify True File;

8. Track for accounting purposes; and
9. Track for licensing purposes.
5 The file system herein described maintains

sufficient information to provide a variety of mechanisms
not ordinarily offered by an operating system, some of
which are listed and described here. Various processing
performed by this embodiment of the present invention

10 will now be described in greater detail.

In some embodiments, some files 120 in a data
processing system 100 do not have True Names because they
have been recently received or created or modified, and
thus their True Names have not yet been computed. A file

15 that does not yet have a True Name is called a scratch
file. The process of assigning a True Name to a file is

1 0

1
1
B

referred to as assimilation, and is described later.
Note that a scratch file may have a user provided name.
Some of the processing'performed by the present
20 invention can take place in a background mode or on a
delayed or as—-needed basis. This background processing
is used to determine information that is not immediately
i required by the system or which may never be regquired.
%f As an example, in some cases a scratch file is being
o 25 changed at a rate greater than the rate at which it is
useful to determine its True Name. In these cases,
determining the True Name of the file can be postponed or
performed in the background. '

o
e i

e e

wm T‘m ups

e
\J

1

y
i

Data Structures -

30 The following daté structures, stored in memory
110 of one of more processors 102 are used to implement
the mechanisms described herein. The data structures can
be local to each processor 102 of the system 100, or they
can reside on only some of the processors 102.

13

GOOG-1018-Page 49 of 143

il

-
i,

LR B

v e,

By
=
4

10

15

20

25

30

35

+

The data structures described are assumed to
reside on individual peer processors 102 in the data
processing system 100. However, they can also be shared
by placing them on a remote, shared file server (for
instance, in a local area network of machines). In order
to accommodate sharing data structures, it is necessary
that the processors accessing the shared database use the
appropriate locking techniques to ensure that changes to
the shared database do not interfere with one another but
are appropriately serialized. These locking techniques
are well understood by ordinarily skilled programmers of
distributed applications.

Itvis sometimes desirable to allow some regions
to be local to a particular processor 102 and other
regions to be shared among processors 102. (Recall that
a region is a unit of file system management and control
consisting of a given directory identified by the
pathname of the directory.) 1In the case of local and
shared regions, there would be both‘local and shared
versions of each data structure. Simple changes to the
processes described below must be made to ensure that
appropriate data structures are selected for a given
operation.

The local directory extensions (LDE) table 124
is a data structure which provides information about
files 120 and directories 118 in the data processing
system 100. The local directory extensions table 124 is
indexed by a pathname or contextual name (that is, a user
provided name) of a file and includes the True Name for
most files. The information in local directory extension
table 124 is in addition to that provided by the native
file system of the operating system.

. The True File registry (TFR) 126 is a data
store for listing actual data items which have True
Names, both files 120 and segments 122. LWhen such data
items occur in the True File registry 126 they are known
as True Files. True Files are identified in True File

14

GOOG-1018-Page 50 of 143

5

E

43T

A i

i+
-

|
W e

E
[k

s
e
Wi

{
il

TSETTE

10

15

20

25

30

registry 126 by their True Names or identities. The
table True File registry 126 also stores location,
dependency, and migration information about True Files.

The region table (RT) 128 defines areas in the
network storage which are to be managed separately.
Region table 128 defines the rules for access to and
migration of files 120 among various regions with the
local file system 116 and reméte-peer file systems.

The source table (ST) 130 is a list of the
sources of True Files other than the current True File
registry 126. The source table 130 includes removable
volumes and remote processors.

The audit file (AF) 132 is a list of records
indicating changes to be made in local or remote files,
these changes to be processed in background.

The accounting log (AL) 134 is a log of file
transactions used to create accounting information in a
manner which preserves the identity of files being
tracked independent of théir name or location.

‘ The license table (LT) 136 is a table
identifying files, which may only be used by licensed
users, in a manner independent of their name or location,

and the users licensed to use them.

etaij scriptions o Data Structures

The following table summarizes the fields of an
local directory extensions table entry, as illustrated by
record 138 in FIGURE 3.

Field Description

Region ID identifies the region in which this file is
’ contairfed.

Pathname the user provided name or. contextual name

of the file or directory, relative to the
region in which it occurs.

True Name the computed True Name or identity of the
file or directory. This True Name is not
always up to date, and it is set to a

special value when a file is modified and

is later recomputed in the background.

15

GOOG-1018-Page 51 of 143

}
ot

G 3

i
I\

b |

- e

o
o et

TSTTE" &

10

15

20

Descfiption

Fi 14

Type indicates whether the file is a data file
or a directory.

Scratch the physical location of the file in the

File ID file system, when no True Name has been
calculated for the file. As noted above,
such a file is called a scratch file.

Time of the last access time to this file. If this

last file is -a directory, this is the last

access access time to any file in the directory.

Time of the time of last change of this file. If

last modi- | this file is a directory, this is the last

fication modification time of any file in the
directory.

Safe flag indicates that this file (and, if this file
is a directory, all of its subordinate
files) have been backed up on some other
system, and it is therefore safe to remove
them.

Lock flag indicates whether a file is locked, that
is, it is being modified by the local pro-
cessor or a remote processor. Only one
processor may modify a file at a time.

Size the full size of this directory (including
all subordinate files), if all files in it
were fully expanded and dupllcated. For a
file that is not a directory this 1s the
size of the actual True File.

owner the identity of the user who owns this

file, for accounting and license tracking
purposes. :

' Each record of the True File rggistry 126 has
the fields shown in the True File registry record 140 in

FIGURE 4.

The True File registry 126 consists of the

database described in the table below as well as the
actual True Files identified by the True File IDs below.'

Field

Description

True 'Name

computed True Name or identity of
"the file.

16

GOOG-1018-Page 52 of 143

Fié
=F
-

+ i
1

‘u O

i
W’

oy

operation.

5 Time of last most recent date and time the
access content of this file was accessed.
Expiration date and time after which this file

: may be deleted by this server.
Dependent processor IDs of other processors
processors which contain references to this
True File.
10 Source IDs source ID(s) of zero or more

. .
PO LY

Pield

ﬁeécript{on

Compressed
File ID

compressed version of the True File
may be stored instead of, or in
addition to, an uncompressed
version. This field provides the
identity of the actual
representation of the compressed
version of the file.

Grooming
delete count

tentative count of how many
references have been selected for
deletion during a grooming

sources from which this file or
data item may be retrieved.

True File ID

identity or disk location of the
actual physical representation of
the file or file segment. It is
sufficient to use a filename in the
registration directory of the
underlying operating system. The
True File ID is absent if the
actual file is not currently
present at the current location.

Use cdunt

number of other records on this
processor which identify this True
File.

A region table 128, specified by a directory
pathname, records storage policies which allow files in
15 the file system to be stored, accessed and migrated in
different ways. Sto;age policies are programmed in a
configurable way using a set of rules described below.
Each region table record 142 of region table
128 includes the fields described in the following table
20 (with reference to FIGURE 5):

17

GOOG-1018-Page 53 of 143

3 i)

;i

bl

r
5
w e

"y

1
&l

e
1

TOSTTT.

2 s i
;

Pield

Description

Region

ID

internally used identifier for this
region.

Region

file system

file system on the local processor of
which this region is a part.

Region

pathname

a pathname relative to the region file
system which defines the location of
this region. The region consists of
all files and directories subordinate
to this pathname, except those in a
region subordinate to this region.

5 Mirror

processor (s)

| zero or more identifiers of processors

which are to keep mirror or archival
copies of all files in the current
region. ~Multiple mirror processors
can be defined to form a mirror group.

Mirror
count

duplication

number of copies of each file in this
region that should be retained in a

mirror group.

Region

status

specifies whether this region is local
to a single processor 102, shared by
several processors 102 (if, for
instance, it resides on a shared file
server), or managed by a remote
processor.

Policy

the migration policy to apply to this
region. A single region might
participate in several policies. The
policies are as follows (parameters in
brackets are spec1f1ed as part of the
pollcy)

region is a cached version from

[processor ID];

region is a member of a mirror set

defined by [processor ID].

region is to be archived on

[processor 1D].

region is to be backed up locally,

by placing new copies in [reglon

iD).

region is read only and may not be

changed.

region is published and expires on

[date].

Files in this region should be

compressed.

10

for True Files.

A source table 130 identifies a source location

The source table 130 is also used to

18

GOOG-1018-Page 54 of 143

‘ '

identify client processors making reservations on the
current processor. Each source record 144 of the source
table 130 includes the fields summarized in the following

table, with reference to FIGURE 6:

5 Pield Description
source ID internal identifier used to identify a
particular source.
source type of source location:
type Removable Storage Volume

Local Regiom

Cache Server

Mirror Group Server
Cooperative Server
Publishing Server

Client
. source includes information about the rights
%i 10 rights of this processor, such as whether it
%% can ask the local processor to store
o data items for it.
:2 source measurement of the bandwidth, cost,
= availabil- | and reliability of the connection to
il ity this source of True Files. The avail-
:7f ability is used to select from among
:’ several possible sources.
?ﬁ source information on how the local processor

15 location is to access the source. This may be,
for example, the name of a removable
storage volume, or the processor ID
and region path of a region on a
remote processor.

The audit file 132 is a table of events ordered
by timestamp, each record 146 in audit file 132 including
the fields summarized in the following table (with
reference to FIGURE 7): '

20 rield Description

original Name | path of the file in question.

Operation whether the file was created, read,
written, copied or deleted.

Type specifies whether the source is a file
or a directory.

. 19

GOOG-1018-Page 55 of 143

5
et
£
Ay 10
FE
5t
i
o 4
o
P
ELS
B -
bk
Loty
: 15
!
R
3
=
Bt
20

Pi 14

D scriptiocn

Processor 1ID

ID of the remote processor generating
this event (if not local).

Timestamp

time and date file was closed (required
only for accessed/modified files).

Pathname

Name of the file (required only for

rename) .

True Name

computed True Name of the file. This is
used by remote systems to mirror changes
to the directory and is filled in during
background processing.

Each record 148 of the accounting log 134

information for billing mechanisms.
entry record 148 includes at least the information
summarized in the following table, with reference to

records an event which may later be used to provide

Each accounting log

FIGURE 8:

Field Description

date of date and time of this log entry.
entry

type of Entry types include create file,
entry delete file, and transmit file.

True Name

True Name of data item in question.

owner

identity of the user responsible for
this action.

Each record 150 of the license table 136
records a relationship between a licensable data item and

the user licensed to have access to it.

Each iicense

table record 150 includes the information summarized in
the following table,~with reference to FIGURE 9:

Field

Description

True Name

True Name of a data item subject to
license validation.

20

GOOG-1018-Page 56 of 143

LB B D

ol

.f;:\:!! .

TOSTEE" E

o e
.

10

15

20

25

30

Field Descripti n

identity of a user authorized to have

licensee
access to this object.

Various other data structures are employed on
some or all of the processors 102 in the data processing
system 100. Each processor 102 has a global freeze lock
(GFL) 152 (FIGURE 1), which is used to prevent
synchronization errors when a directory is frozen or
copied. Any processor 102 may include a special archive
directory (SAD) 154 into which directories may be copied
for the purposes of archival. Any processor 102 may
include a special media directory (SMD) 156, into which
the directories of removable volumes are stored to form a
media inventory. Each processor has a grooming lock 158,
which is set during a grooming operation. During this
period the grooming delete count of True File registry
entries 140 is active, and no True Files should be

-deleted until grooming is complete. While grooming is in

effect, grooming information includes a table of
pathnames selected for deletion, and keeps track of the
amount of space that would be freed if all of the files

were deleted.

imitive Mechanisms

The first of the mechanisms provided by the
present invention, primitive mechanisms, are now
described. The mechanisms described here depend on
underlying data management mechanisms to create, copy,
read, and delete data items in the True File registry
126, as identified by a True File ID. This support may-;
be provided by an underlying operating sYstem or disk

storage manager.
The following primitive mechanisms are

described:
1. Calculate True Name;

2. Assimilate Data Item;

21

GOOG-1018-Page 57 of 143

D

[t I
e . e

m..‘,,,
-
/

]
¢

T

e
I

‘10

15

20

25

30

35

3. New True File;

4. Get True Name from Path;

5. Link Path to Tru Nanme;

6. Realize True File from Location;
7. Locate Remote File;

8. Make True File Local;

9. Create Scratch File;

10. Freeze Directory;

11. Expand Frozen Directory;
12. Delete True File;

13. Process Awdit File Entry;
14. Begin Grooming;

15. Select For Removal; and
16. End Grooming.

1. ca ate a

A True Name is computed ﬁsing a function, MD,

which reduces a data block B of érbitrary length to a
relatively small, fixed size identifier, the True Name of
the data block, such that the True Name of the data block
is virtually gquaranteed to represent the data block B and
only data block B.

The function MD must have the following

properties:

1. The domain of the function MD is the set
of all data items. The range of the

. function MD is the set of True Names.

2. The function MD must take a data item of
arbitrary length and reduce it to an
integer value in the range 0 to N-1, where
N is the cardinality of the set of True N
Names. That is, for an arbitrary length
data block B, 0 < MD(B) < N.

3. The results of MD(B) must be evenly and
randomly distributed over the range of N,
in such a way that éimple or regular

22

GOOG-1018-Page 58 of 143

4 B 1

m\..v..-
{Aoon | S
Wae oy “"ﬂ“l i

il

1]
i

)
) 1

10

15

20

25

30

35

[}

changes to B are virtually guaranteed to
produce a different value of MD(B).

4. It must be computationally difficult to
find a different value B’ such that
MD(B)=MD(B’) .

5. - The function MD(B) must be efficiently

computed.

A family of functions with the above properties
are the so-called message digest functions, which are
used in digital security systems as techniques for
authentification of data.- These functions (or
algorithms) include MD4, MDS, and SHA.

In the presently preferred embodlments, either
MD5 or SHA is employed as the basis for the computation
of True Names. Whichever of these two message digest
functions is employed, that same function must be
employed on a system-wide basis.

It is impossible to define a function having a
unique output for each possible inbut when the number of
elements in the range of the function is smaller than the
number of elements in its domain. However, a crucial
observation is that the actual data items that will be
encountered in the operation of any system embodying this
invention form a very sparse subset of all the possible
inputs.

A colliding set of data items is defined as a
set wherein, for one or more pairs x and y in the set,
MD(x) = MD(y). Since a function conforming to the
requirements for MD must evenly and randomly distribute
its outputs, it is possible, by making the range of the

- function large enougE, to make the probability

arbitrarily small that actual inputs encountered in the
operation of an embodiment of this invention will form a

colliding set.
To roughly quantify the probability of a

collision, assume that there are no more than 2% storage
devices in the world, and that each storage device has an

23

GOOG-1018-Page 59 of 143

10

15

20

25

30

35

average of at mosé 2% dqifferent data items. Then there °
are at most 2°° data items in the world. If the outputs -
of MD range bétween 0 and 2”8, it can be demonstrated
that the probability of a collision is approximately 1 in
2?®. Details on the derivation of these probability
values are found, for example, in P. Flajolet and A.M.
Oodlyzko, "Random Mapping Statistics," Lecture Notes in
Computer Science 434: Advances in Cryptology -- Eurocrypt
'89 Proceedings, Springer-Verlag, pp. 329-354.

Note that for some less preferred embodiments
of the present invention, lower probabilities of
uniqueness may be acceptable, depending on the types of
applications and mechanisms used. - In some embodiments it
may also be useful to have more than one level of True
Names, with some of the True Names having different
degrees of uniqueness. If such a scheme is implemented,
it is necessary to ensure that less unique True Names are
not propagated in the systeﬁ.

While the invention is described herein using
only the True Name of a data item as the identifier for
the data item, other preferred'embodiments use taéged,
typed, categorized or classified data items and use a
combination of both the True Name and the tag, type,
catégory or class of the data item as an identifier.
Examples of such categorizations are files, directories,
and segments; executable files and data files, and the
like. Examples of classes are classes of objects in an
object-oriented system.- In such a system, a lower degree
of True Name uniqueness is acceptable over the entire
universe of data items, as long as sufficient uniqueness
is provided per category of data items. This is because
the tags provide an additional level of uniqueness.

A mechanism for calculating a True Name given a
data item is now described, with reference to FIGURES
10(a) and 10(b).

A simple data item is a data item whose size is
less than a particular given size (which must be defined

24

GOOG-1018-Page 60 of 143

10

15

20

25

30

35

in each particular implementation of the invention). To

determine the True Name of a simple data item, with
reference to FIGURE 10(a), first compute the MD function
(described above) on the given simple data item (Step
S212). Then append to the resulting 128 bits, the byte
length modulo 32 of the data item (Step S214). The
resulting 160-bit value is the True Name of the simple
data item.

A compound data item is one whose size is
greater than the particular given size of a simple data
item. To determine the True Name of an arbitrary (simple
or compound) data item, with reference to FIGURE 10(b),
first determine if the data item is a simple or a
compound data item (Step S216). If the data item is a
simple data item, then compute its True Name in step S218
(using steps S212 and S214 described above), otherwise
partition the data item into segments (Step S220) and
assimilate each segment (Step S222) (the primitive
mechanism, Assimilate a Data Item, is described below),
computing the True Name of the segment. Then create an
indirect block consisting of the combuted segment True
Names (Step S224). An indirect block is a data item
which consists of the sequence of True Names of the
segments. Then, in step S226, assimilate the indirect
block and compute its True Name. Finally, replace the
final thirty-two (32) bits of the resulting True Name
(that is, the length of the indirect block) by the length
modulo 32 of the compound data item (Step S228). The
result is the True Name of the compound data item.

Note that the compound data item may be so
large that the indirgect block of segment True Names is
itself a compound data item. 1In this case the mechanism
is invoked recursively until only simple data items: are
being processed. ' '

Both the use of segmentsAand the attachment of
a length to the True Name are not strictly required in a
system using the present invention, but are currently

25

GOOG-1018-Page 61 of 143

a3

{]
H

T

a
!

i
L

NN

- |

st o -~
Pt
e R e iz, o

i}
e

10

15

20

25

30

considered d sirable features in the preferred
embodiment.

2. Assimilate t

A mechanism for assimilating a data item
(scratch file or segment) into a file system, given the
scratch file ID of the data item, is now described with
reference to FIGURE 11. The purpose of this mechanism is
to add a given data item to the True File registry 126.
If the data item already exists in the True File registry
126, this will be discove¥ed and used during this
process, and the duplicate will be eliminated.

Thereby_the system stores at most one copy of
any data item or file by content, even when multiple
names refer to the same content.

First, determine the True Name of the data item
corresponding to the given scratch File ID using the
Calculate True Name primitive mechanism (Step S5230).
Next, look for an entry for the Trué Name in the True
File registry 126 (Step S232) and determine whether a
True Name entry, record 140, exists in the True File
registry 126. If the entry record includes a
corresponding True File ID or compressed File ID (Step
S§237), delete the file with the scratch File ID (Step
S238) . Otherwise store the given True File ID in the
entry record (step S239).

If it is determined (in step S232) that no True
Name entry exists in the True File registry 126, then, in
Step S236, create a new entry in the True File registry
126 for this True Name. Set the True Name of the entry
to the calculated True Name, set the use count for the
new entry to one, store the given True File ID in the
entry and set the other fields of the entry as
appropriate.

26

GOOG-1018-Page 62 of 143

i ..%; g

(]

T

T B L L BGGD

w1

10

15

20

25

30

35

"

-

Because this procedure may take some time to
compute, it is intended to run in background after a file
has ceased to change. In the meantime, the file is

considered an unassimilated scratch file.

3. New True File

The New True File process is invoked when
processing‘the audit file 132, some time after a True
File has been assimilated (using the Assimilate Data Item
primitive mechanism). Given a local directory extensions
table entry record 138 in the local directory extensions
table 124, the New True File process can provide the
following steps (with reference to. FIGURE 12), depending
on how the local processor is configufed:

First, in step S238, examine the local
directory extensions table entry record 138 to determine
whether the file is locked by a cache server. If the
file is locked, then add the ID of the cache server to
the dependent processor list of the True File registry
table 126, and then send a message to the cache server to
update the cache of the current processor using the
Update Cache remote mechanism (Step 242).

' If desired, compress the True File (Step 5246),
and, if desired, mirror the True File using the Mirror
True File background mechanism (Step S248).

4. Get True Name from Path

The True Name of a file can be used to identify
a file by contents, to confirm that a file matches its.
original contents, or to compare two files.. The
mechanism to get a Tpue Name given the pathname of a flle
is now described with reference to FIGURE 13.

First, search the local directory extensions
table 124 for the entry record 138 with the given
pathname (Step S250). If the pathname is not found, this
process fails and no True Name corresponding to the given
pathname exists. Next, determine whether the local

27

GOOG-1018-Page 63 of 143

10

15

20

25

30

35

directory extensfons table entry record 138 includes'a
True Name (Step S252), and if so, the mechanism’s task is
complete. Otherwise, determine whether the local
directory extensions table entry record 138 identifies a
directory (Step S254), and if so, freeze the directory
(Step S256) (the primitive mechanism Freeze Directory is

a
-

described below).

Otherwise, in step S258, assimilate the file
(using the Assimilate Data Item primitive mechanism)
defined by the File ID field to generate its True Name
and store its True Name in the local directory extensions
entry record. Then return the True Name identified by
the local directory extensions table 124.

5. Link Path to True_Name

The mechanism to link a path to a True Name
provides a way of creating a new directory entry record
identifying an existing, assimilated file. This basic
process may be used to copy, move, and rename files
without a need to copy their contents. The mechanism to
link a path to a True Name is now described with
reference fo FIGURE 14.

First, if desired, confirm that the True Name
exists locally by searching for it in the True Name
registry or local directory extensions table 135 (Step
S260). Most uses of this mechanism will require this
form of validation. Next, search for the path in the
local directory extensions table 135 (Step S262).
Confirm that the directory containing the file named in
the path already exists (Step S264). If the named file .
itself exists, delete the File using the Delete True File
operating system mechanism (see below) (Step S268).

Then, create an entry record in the local
directory extensions with the specified path (Step S270)
and update the entry record and other data structures as
follows: fill in the True Name field of the entry with
the specified True Name; increment the use count for the

28

- GOOG-1018-Page 64 of 143

EETW

L
e fob &

L
A

o
-

TS T B

+

10

15

20

25

30

35

True File registr§ entry record 140 of the corresponding ¥
True Name; note whether the entry is a directory by
reading the True File to see if it contains a tag (magic
number) indicating that it represents a frozen directory
(see also the description of the Freeze Directory
primitive mechanism regarding the tag); and compute and
set the other fields of the local directory extensions
appropriately. For instance, search the region table 128
to identify the region of the path, and set the time of
last access and time of last modification to the current

-

time.

6. Realize True File from Location

This mechanism is used to try to make a local
copy of a True File, given its True Name and the name of
a'sourcé location (processor or media) that may contain
the True File. This mechanism is now described with
reference to FIGURE 15.

First, in step 5272; determine whether the
location specified is a processor. If it is determined
that the location specified is a processor, then send a
Request True File message (using the Request True File
remote mechanism) to the remote processor and wait for a
response (Step S274). If a negative response is received
or no response is received after a timeout period, this
mechanism fails. If a positive response is received,
enter the True File returned in the True File registry
126 (Step S276). (If the file received was compressed,
enter the True File ID in the compressed File ID field.)

If, on the other hand, it is determined in step
S272 that the locatign specified is not a proceésot, '
then, if necessary, request the user or operator to mount
the indicated volume (Step S278). Then (Step S280) find
the indicated file on the given volume and assimilate the
file using the Assimilate Data Item primitive mechanism.
If the volume does not contain a True File registry 126,
search the media inventory to find the path of the file

29

GOOG-1018-Page 65 of 143

10

15

20

25

30

35

.,:
on the volume. If no such file can be found, this
mechanism fails.
At this point, wh ther or not the location is
det rmined (in step S272) to be a processor, if desired,
verify the True File (in step S282).

7. Locate Remote File

This mechanism allows a processor to locate a
file or data item from a remote source of True Files,
when a specific source is unknown or unavailable. A
client processor system mdy ask one of several or many
sources whether it can supply a data object with a given
True Name. The steps to perform this mechanism are as
follows (with reference to FIGURE 16) .

The client processor 102 uses the source table
145 to select one or more source processors (Step S284).
If no source processor can be found, the mechanism fails.
Next, the client processor 102 broadcasts to the selected
sources a request to locate the filé with the given True
Name using the Locate True File remote mechanism (Step
szés). The request to locate may be augmented by asking
to propagate this reduest to distant servers. The client
processor then waits for one or more servers to respond
positively (Step S288). After all servers respond
negatively, or after a timeout period with no positive
response, the mechanism repeats selection (Step S284) to
attempt to identify alternative sources. If any selected
source processor responds, its processor ID is the result
of this mechanism. Store the processor ID in the source
field of the True File registry entry record 140 of the
given True Name (Step S290).

If the source location of the True Name is a
different processor or medium than the destination (Step
S290a), perform the following steps:

(i) Look up the True File registry entry
record 140 for the corresponding True Name, and add the

.30

GOOG-1018-Page 66 of 143

SRRIVEE

1
i

r

o
o

o n g g ey
S T e

k!

&

e

T

20
i e

7

10

15

20

25

30

35

‘

source location Iﬁ to the list of sources for the True
Name (Step S290b); and ,)

(ii) If the source is a publishing systen,
determine the expiration dat on the publishing syst m
for the True Name and add that to the list of sources.
If the source is not a publishing system, send a message
to reserve the True File on the source processor (Step
S290c) .

Source selection in step S284 may be based on
optimizations involving general availability of the
source, access time, bandwidth, and transmission cost,
and ignoring previously selected processors which did not

respond in step S288.

8. a rue File Loca

This mechanism is. used when a True Name is
known and a locally accessible copy of the corresponding
file or data item is required. This mechanism makes it
possible to actually read the data in a True File. The
mechanism takes a True Name and returns wheh there is a
local, accessible copy of the True File in the True File
registry 126. This mechanism is described here with
reference to the flow chart of FIGURE 17. .

'First, look in the True File registry 126 for a
True File entry record 140 for the corresponding True
Name (Step S292). If no such entry is found this
mechanism fails. If there is already a True File ID for
the entry (Step S294), this mechanism’s task is complete.
If theré is a compressed file ID for the entry (Step
S296), decompress the file corresponding to the file ID
(Step S298) and store the decompressed file ID in the -
entry (Step S300). This mechanism is then complete.

If there is no True File ID for the entry (Step
S294) and there is no compressed file ID for the entry
(Step S296), then continue searching for the requested
file. At this time it may be necessary to notify the
usef.that the system is searching for the requested file.

31

GOOG-1018-Page 67 of 143

10

15

20

25

30

35

If ther are on or more source IDs, then
select an order in which to attempt to r alize the sourc
ID (Step S304). The order may be based on optimizations
involving general availability of the source, access
time, bandwidth, and transmission cost. For each source
in the order chosen, realize the True File from the
source location (using the Realize True File from
Location primitive mechanism), until the True File is
realized (Step S306). If it is realized, continue with
step S294. If no known source can realize the True File,
use the Locate Remote File pfimitive mechanism to attempt
to find the True File (Step S308). If this succeeds,
realize the True File from the ideﬁtified source location

and continue with step S296.

9. Create Scratch File

A scratch copy of a file is required when a
file is being created or is about to be modified. The
scratch copy is stored in the file éystem of the
underlying operating system. The scratch copy is
eventually assimilated when the audit file record entry
146 is processed by the Process Audit File Entry
primitive mechanism. This Create Scratch File mechanism
requires a local directory extensions table entry record
138. When it succeeds, the local directory extensions
table entry record 138 contains the scratch file ID of a
scratch file that is not contained in the True File
registry 126 and that may be modified. This mechanism is
now described with reference to FIGURE 18.

First determine whether the scratch file should
be a copy of the existing True File (Step S310). 1If so,
continue with step S312. Otherwise, determine whether
the local directory extensions table entry record 138
identifies an existing True File (Step S316), and if so,
delete the True File using the Delete True File primitive
mechanism (Step S318). Then create a new, empty scratch
file and store its scratch file ID in the local directory

32

GOOG-1018-Page 68 of 143

10

15

20

25

30

35

’ '

extensions table éntry r cord 138 (Step S320). This
mechanism is then complete.

If the local directory extensions tabl entry
record 138 identifi s a scratch file ID (Step S312), then
the entry already has a scratch file, so this mechanism
succeeds.

If the local directory extensions table entry
record 138 identifies a True File (S316), and there is no
True File ID for the True File (S312), then make the True
File local using the Make True File Local primitive
mechanism (Step S322). If there is still no True File
ID, this mechanism fails.

There is now a local True File for this file.
If the use count in the corresponding True File registry
entry record 140 is one (Step S326), save the True File
ID in the scratch file ID of the local directory
extensions table entry record 138, and remove the True
File registry entry record 140 (Step S328). (This step
makes the True File into a scratch file.) This
mechanism’s task is complete.

Otherwise, if the use count in the
corresponding True File registry entry record 140 is not
one (in step S326), copy the file with the given True
File ID to a new scratch file, using the Read File Os
mechanism and store its file ID in the local directory
extensidns table entry record 138 (Step S330), and reduce
the use count for the True File by one. If there is
insufficient space to make a copy, this mechanism fails.

10. Freeze Directory
This mechanism freezes a directory in order to’

calculate its True Name. Since the True Name of a
directory is a function of the files within the
directory, they must not chanée during the computation of
the True Name of the directory. This mechanism requires
the pathname of a directory to freeze. This mechanism is
described with reference to FIGURE 189.

33

GOOG-1018-Page 69 of 143

i
i

{10

g

h
]

O
ﬂ'

i
ey i

i

e

TR

1

R

{1

[
H

T

10

15

20

25

30

In step S332, add one to the global freeze
lock. Then search the local directory extensions table
124 to find each subordinate data file and directory of
the given directory, and freeze each subordinate
directory found using the Freeze Directory primitive
mechanism (Step S334). Assimilate each unassimilated
data file in the directory using the Assimilate Data Item
primitive mechanism (Step S336). Then create a data item
which begins with a tag or marker (a "magic number")
being a unigue data item indicating that this data item
is a frozen directory (Step S337). Then list the file
name and True Name for each file in the current directory
(Step S338). Record any additional information required,
such as the type, time of last access and modification,
and size (Step S340). Next, in step S342, using the
Assimilate Data Item primitive mechanism, assimilate the
data item created in step S338. The resulting True Name
is the True Name of the frozen directory. Finally,
subtract one from the global freeze lock (Step S344).

11. Expand Frozen Directory

This mechanism expands a frozen directory in a
given location. It requires a given pathname into which
to expand the directory, and the True Name of the
directory and is described with reference to FIGURE 20.

First, in step S346, make the True File with
the given True Name local using the Make True File Local
primitive mechanism. Then read each directory entry in
the local file created in step S346 (Step S348). For
each such directory entry, do the following: \

' Create a fyll pathname using the given pathnamé
and the file name of the entry (Step S350); and

link the created path to the True Name (Step
S352) using the Link Path to True Name primitive

mechanism.

34

GOOG-1018-Page 70 of 143

3t e (3

i
1!

e i
e

s I
SR e

TTES E

by

£y

T

10

15

- 20

25

30

35

12. Relete True File

This mechanism deletes a reference to a True
Name. The underlying True File is not removed from the
True File registry 126 unless there are no additional
references to the file. With reference to FIGURE 21,
this mechanism is performed as follows: '

If the global freeze lock is on, wait until the
global freeze lock is turned off (Step S354). This

prevents deleting a True File while a directory which

might refer to it is being frozen. Next, find the True

File registry entry record 140 given the True Name (Step
S356). I1f the reference count field of the True File
registry 126 is greater than zero, subtract one from the
reference count field (Step S358). If it is determined
(in step S360) that the reference count field of the True
File registry entry record 140 is zero, and if there are
no dependent systems listed in the True File registry
entry record 140, then perform the following steps:

(i) If the True File is a simple data item,
then delete the True File, otherwise,

' (ii) (the True File is a compound data item)
for each True Name in the data item, recursively delete
the True File corresponding to the True Name (Step S362).

(iii) Remove the file indicated by the True
File ID and compressed file Ib from the True File

registry 126, and remove the True File registry entry

record 140 (Step S364).

13. Process Audit File Entry

This mechanism performs tasks which are
required to maintain_information in the local diréctory
extensions table 124 and True File registry 126, but
which can be delayed while the processor is busy doing
more time-critical tasks. Entries 142 in the audit file
132 should be processed at a background priority as long

as there are entries to be processed. With reference to

35

GOOG-1018-Page 71 of 143

sy
!.-.‘l!

l

4

Ey i

" |)‘ ‘ru[
W ™
o Whao Wl

ol gt
o e

m,
[

e

*ﬂ w :[

‘wn
-

T

10

15

20

25

30

35

FIGURE 22, the steps for processing an entry are as
follows:

Determine the operation in the entry 142
currently being processed (Step S365). If the operation
indicates that a file was created or written (Step S366),
then assimilate the file using the Assimilate Data Item
primitive mechanism (Step S368), use the New True File
primitive mechanism to do additional desired processing
(éuch as cache update, compression, and mirroring) (Step
S369), and record the newly computed True Name for the
file in the audit file record entry (Step S370).

Otherwise, if the entry being processed
indicates that a compound data item or directory was
copied (or deleted) (Step S376), then for each component
True Name in the compound data item or directory, add (or
subtract) one to the use count of the True File registry
entry record 140 corresponding to the component True Name
(Step S378).

In all cases, for each parent directory of the
given file, update the size, time of last access, and
time of last modification, according to the operation in
the audit record (Step S379).

Note that the audit record is not removed after
proce551ng, but is retalned for some reasonable period so
that it may be used by ‘the Synchronize Directory extended
mechanism to allow a disconnected remote processor to

update its representation of the local system.

14. Begin Grooming

This mechanism makes it possible to select a
set of files for remgval and determine the overall amount
of spéce to be recovered. With referencé to'FiGURE 23,
first verify that the global grooming lock is currently-
unlocked (Step S382). Then set the global grooming lock,
set the total amount of space freed during grooming to
zero and empty the list of files selected for deletion

36

GOOG-1018-Page 72 of 143

i
ol

| L L i L L
W B By

i

i K

TOSTTE

10

15

20

25

30

(Step S384). For each True File in the True File
r gistry 126, set the delete count to zero (Step S$386).

15. Select For Removal

~ This grooming mechanism tentatively selects a
pathname to allow its corresponding True File to be
removed. With reference to FIGURE 24, first find the
local directory extensions table entry record 138
corresponding to the given pathname (Step S388). Then
find the True File registry entry record 140
corresponding to the True File name in the local
directory extensions table entry record 138 (Step S390).
Add one to the grooming delete count in the True File
registry entry record 140 and add the pathname to a list
of files selected for deletion (Step S392). If the
grooming delete count of the True File registry entry
record 140 is equal to the use count of the True File
registry entry record 140, and if the there are no
entries in the dependency list of the True File registry
entry record 140, then add the size of the file indicated
by the True File ID and or compressed file ID to the
total amount of space freed during grooming (Step S$394).

16. - End Grooming

This grooming mechanism ends the grooming phase
and removes all files selected for removal. With
reference to FIGURE 25, for each file in the list of
files selected for deletion, delete the file (Step S396)
and then unlock the global grooming lock (Step S$398).

Operating System Mechanisms
The next of the mechanisﬁs provided by the
present invention, operating system mechanisms, are now

described.
The following operating system mechanisms are

described:
1. Open File;

37

GOOG-1018-Page 73 of 143

R B

il i)
o
o e

a b R

[l

R

o

T

10

15

20

25

30

35

2. Close File;
3. Read File;
4. Write File;

5. Delete File or Directory;

6. Copy File or Directory; '

7. Move File or Directory;

8. Get File Status; and

9. Get Files in Directory.
1. Open File

A mechanism to open a file is described with
reference to FIGURE 26. This mechanism is given as input
a pathname and the type of access required for the file
(for example, read, write, read/write, create, etc.) and
produces either the File ID of the file to be opened or
an indication that no file should bé opened. The local
directory extensions table record 138 and region table
record 142 associated with the opened file are associated
with the open file for later use in other processing
functions which refer to the file, such as read, write,
and close.)

First, determine whether or not the named file
exists locally by examining'the local directory
extensions table 124 to determine whether there is an
entry corresponding to the given pathname (Step 5400).
If it is determined that the file name does not exist
locally, then, using the access type, determine whether
or not the file is being created by this opening process
(Step S402). If the file is not being created, prohibit
the open (Step S404). If the file is being. created,

create a zero-length_scratch file using an entry in local

directory extensions table 124 and produce the scratch
file ID of this scratch file as the result (Step S406).
'If; on the other hand, it is determined in step
S400 that the file name does exist locally, then
determine the :egion in which the file is located by
searching the region table 128 to find the record 142

38

GOOG-1018-Page 74 of 143

ey N

t
ot

m

£

How o o

el WP
e d

FTT T E

o

| o ©

wdl

I

sy
i3

10

15

20

25

30

35

l .s‘

with th 1longest region path which is a prefix of th
fil pathname (Step S408). This record identifies the
region of the specified file.

Next, determine using the access type, whether
the file is being opened for writing or whether it is
being opened only for reading (Step $410). If the file
is being opened for reading only, then, if the file is a
scratch file (Step S419), return the scratch File ID of
the file (Step S424). Otherwise get the True Name from
the local directory extensions table 124 and make a local
version of the True File associated with the True Name
using the Make True File Local primitive mechanism, and
then return the True File ID associated with the True
Name (Step S420).

If the file is not being opened for reading
only (Step S410), then, if it is determined by inspecting
the region table entry record 142 that the file is in a
read-only directory (Step S416), then prohibit the
opening (Step S422).

If it is determined by inspecting the region
table 128 that the file is in a cached region (Step
S423), then send a Lock Cache message to the
corresponding cache server, and wait for a return message
(Step S418). If the return message says the file is
already locked, prohibit the opening.

If the access type indicates that the file
being modified is being rewritten completely (Step S419),
so that the original data will not be required, then
Delete the File using the Delete File OS mechanism (Step
S421) and perform step S406. Otherwise, make a scratch
copy of the file (Step S417) and produce the scratch filé
ID of the scratch file as the result (Step S424).

2. Close File

This mechanism takes as input the local
directory extensions table entry record 138 of an open
file and the data maintained for the open file. To close

39

GOOG-1018-Page 75 of 143

]
i)

F tf 1

g

"
SN

ol

T TTT" e

10

15

20

25

30

35

a file, add an entry to the audit file indicating the
time and operation (create, read or write). The audit
file processing (using the Process Audit File Entry
primitive mechanism) will take care of assimilating the

file and thereby updating the other records.

3. Read File

To read a file, a program must provide the
offset and length of the data to be read, and the
location of a buffer into which to copy the data read.

The file to be read from is identified by an
open file descriptor which includes a File ID as computed
by the Open File operating system mechanism defined
above. The File ID may identify either a scratch file or
a True File (or True File segment). If the File ID
identifies a True File, it may be either a simple or a
compound True File. Reading a file is accomplished by
the following steps: v

In the case where the File ID identifies a
scratch file or a simple True File, use the read

capabilities of the underlying operating system.

In the case where the File ID identifies a
compound file, break the read operation into one or more
read operations on component segments as follows:

A. Identify the segment(s) to be read by
dividing the specified file offset and length each by the
fixed size of a éegment (a system dependent parameter),
to determine the segment number and number of segments
that must be read.

B. For each segment number computed above, do
the following: -
i. Read the compound True File index

block to determine the True Name of the segment to be

read.
ii. Use the Realize True File from

Location primitive mechanism to make the True File

40

GOOG-1018-Page 76 of 143

segment available locally. (If that mechanism fails, the
Read File mechanism fails).

iii. Determine the File ID of the True
File specified by the True Name corresponding to this

S segment.

iv. Use the Read File mechanism
(recursiQely) to read from this segment into the
corresponding location in the specified buffer.

4. Write File

10 File writing uses the file ID and data
management capabilities of the underlying operating
system. File access (Make File Local described above)
can be deferred until tbe first read or write.'

5. Delete File or Directory

15 The process of deleting a file, for a given
pathname, is described here with reference to FIGURE 27.
First, determine the local directory extensions
table entry record 138 and region table entry record 142
for the file (Step S422). If the file has no local
20 directory extensions table entry record 138 or- is locked
or is in a read-only region, prohibit the deletion.
Identify the corresponding True File given the
True Name of the file being deleted using the True File
registry 126 (Step S424). If the file has no True Name,
25 (Step S426) then delete the scratch copy of the file
based on its scratch file ID in the local directory
extensions table 124 (Step S427), and continue with step

- S5428.

=
o

o o
e

o s
[

R M o

If the file has a True Name and the True File'’s
30 use count is one (Step S429), then delete the True File
(Step S430), and continue with step S428.
If the file has a True Name and the True File’s
use count is greater than one, reduce its use count by
one (Step S431). Then proceed with step S$428.

41

GOOG-1018-Page 77 of 143

i

i
o

R
A b e

ol

“
w1

i

TEE" E

o
S5 1 .

w“
()

10

15

20

25

30

35

In Step S428, del te the local directory
ext nsions table entry record, and add an entry to the
audit file 132 indicating the time and the operation

performed (delete).

6. Copy File or Directory

A mechanism is provided to copy a file or
directory given a source and destination processor and
pathname. The Copy File mechanism does not actually copy
the data in the file, only the True Name of the file.

This mechanism is performed as follows:

(A) Given the source path, get the True Name
from the path. If this step fails, the mechanism fails.

(B) Given the True Name and the destination
path, link the destination path to the True Name.

(C) If the source and destination processors
have different True File registries, find (or, if |
necessary, create) an entry for the True Name in the True
File registry table 126 of the destination processor.
Enter into the source ID field of this new entry the
source processor identity.

_ (D) Add an entry to the audit file 132
indicating the time and opefation'performed (copy) .

This mechanism addresses capability of the
system to avoid copying data from a source location to a
destination location when the destination already has the
data. In addition, because of the ability to freeze a
directory, this mechanism also addresses capability of
the system immediately to make a copy of any collection
of files, thereby to support an efficient version control

mechanisms for groups of files.

7. Move File or Directory

A mechanism is described which moves (or
renames) a file from a source path to a destination path.
The move operation, like the copy operation, requires no
actual transfer of data, and is performed as follows:

42

GOOG-1018-Page 78 of 143

Jage

LU U | 1
e hen ot 1

&

ey .
sl .
St

i

W

-
I

T T

10

15

20

25

30

destination path.
(B) If the source path is different from the

(A) Copy the file from the source path to the

destination path, delete the source path.

8. " cet File Status

This mechanism takes a file pathname and
provides information about the pathname. First the local
directory extensions table entry record 138 corresponding
to the pathname given is found. If no such entry exists,
then this mechanism fails, otherwise, gather information
about the file and its corresponding True File from the
local directory extensions table 124. The information
can include any information shown in the data structures,
including the size, type, owner, True Name, sources, time
of last access, time of last modificatioh, state (local
or not, assimilated or not, compressed or not), use

count, expiration date, and reservations.

9. Get Files in Directory

This mechanism enumerates the files in a
directory. It is used (implicitly) whenever it is
necessary to determine whether a file exists (is present)
in a directory. For instance, it is implicitly used in
the Open File, Delete File, Copy File or Directory, and
Move File operating system mechanisms, because the files
operated on are referred to by pathnames containing
directory names. The mechanism works as follows:

The local directory extensions table 124 is
searched for an entry 138 with the given directory
pathname. If no such entry is found, or if the entry
found is not a'directory, then this mechanism fails.

If there is a corresponding True File field in
the local directory extensions table record, then it is
assumed. that the True File represents a frozen directory.
The Expand Frozen Directory primitive mechanism is used

43

GOOG-1018-Page 79 of 143

B o

,.
L «Eﬂ“

"

iy
b

i e
L

.
o Baswn

) "'H:' "

i3

1!‘:"‘
~

I

T

10

15

20

25

30

S
.y

to expand the existing True File into directory entries

in the local directory extensions table.

Finally, the local directory extensions table
124 is again searched, this time to find each directory
subordinate to the given directory. The names found are

provided as the result.

Remote Mechanisms

The remote mechanisms provided by the present
invention are now described. Recall that remote
mechanisms are used by the operating system in responding
to requests from other processérs.' These mechanisms
enable the capabilitiés of the present invention in a
peer-to-peer network mode of operation.

~ In a presently preferred embodiment, processors
communicate with each other using a remote procedure call
(RPC) style interface, running over one of any number of
communication protocols such as IPX/SPX or TCP/IP. Each
peer processor which provides access to its True File
registry 126 or file regions, or which depends on another
peer processor, provides a number of mechanisms which can
be used by its peers. ‘

The following femoté mechanisms are described:

1. Locate True File;

2. Reserve True File;

3. Request True File;

4. Retire True File;

5. Cancel Reservation;

6. Acquire True File;

7. Lock Gache;

8. Update Cache; and

9. Check'Expiration Date.

1. Locate True File
This mechanism allows a remote processor to
determine whether the local processor contains a copy of

44

GOOG-1018-Page 80 of 143

Pl

CERE

kionl P
el

¢

i
IR

il

T

10

15

20

25

30

35

a specific True File. The mechanism begins Qith a True
Name and a flag indicating whether to forward requests
for this file to other servers. This mechanism is now
described with reference to FIGURE 28.

First determine if the True File is available
locally or if there is some indication of where the True
File is located (for example, in the Source IDs field).
Look up the requested True Name in the True File registry
126 (Step S432).

If a True File registry entry record 140 is not
found for this True Name (Step S434), and the flag
indicates that the request is not to be forwarded (Step
S436), respond negatively (Step S438). That is, respond
to the effect that the True File is not available.

One the other hand, if a True File registry
entry record 140 is not found (Step S434), and the flag
indicates that the request for this True File is to be
forwarded (Step S436), then forward a request for this
True File to some other pfocessors in the system (Step
S442). If the source table for the current processor
identifies one or more publishing servers which should
have a copy of this True File, then forward the-request
to each of those publishing servers (Step S436).

If a True File registry entry record 140 is
found for the required True File (Step S434), and if the
entry includes a True File ID or Compressed File ID (Step
S440), respond positively (Step S444). If the entry
includes a True File ID then this provides the identity
or disk location of the actual physical representation of
the file or file segment required. If the entry include
a Compressed File ID, then a compressed version of the ‘
True File may be stored instead of, or in addition to, an
uncompressed version. This field provides the identity
of the actual representation of the compressed version of
the file.

, If the True File registry entry record 140 is
found (Step S434) but does not include a True File ID

45

GOOG-1018-Page 81 of 143

s

gt i
@t

e S

T

..,
i

.

L

10

15

20

25 .

30

(the File ID is absent if the actual file is not
currently present at the current location) (Step S440),
and if the True File registry entry record 140 includes
one or more source processors, and if the request can be
forwarded, then forward the request for this True File to

one or more of the source processors (Step S444).

2. Reserve True File

This mechanism allows a remote procéssor to
indicate that it depends on the local processor for
access to a specific True File. It takes a True Name as
input. This mechanism is described here.

(A) Find the True File registry entry record
140 associated with the given True File. If no entry
exists, reply negatively.

(B) If the True File registry entry record 140
does not include a True File ID or compressed File 1D,
and if the True File registry entry record 140 includes
no source IDs for removable storage volumes, then this
processor does not have access to a copy of the given
file. Reply negatively.

(C) Add the ID of the sending proceésor to the
list of dependent processors for the True File registry
entry record 140. Reply positively, with an indication
of whether the reserved True File is on line or off line.

3. Request True File

This mechanism allows a remote processor to
request a copy of a True File from the local processor.
It requires a True Name and responds positively by
sending a True File back to the requesting processor.
The mechanism operates as follows:

(A) Find the True File registry entry record
140 associated with the given True Name. If there is no
such True File registry entry record 140, reply
negatively.

46

GOOG-1018-Page 82 of 143

E &

i
.

4
Rrer

i
o

.

L

Moy

TRHSTTT

10

15

20

25

30

35

(B) HMake éhe True File local using the Make
True File Local primitive mechanism. If this mechanism

-fails, the Request True File mechanism also fails.

(C) Send the local True File in either it is
uncompressed or compressed form to the requesting remote
processor. Note that if the True File is'a compound
file, the components are not sent.

(D) If the remote file is listed in the
dependent process list of the True File registry entry

record 140, remove it.

4. ' Retire True File

This mechanism allows a remote processor to
indicate that it no longer plans to maintain a copy of a
given True File. An alternate source of the True File
can be specified, if, for ihstance, the True File is
being moved from one server to another. It begins with a
True Name, a requesting processor ID, and an optional
alternate source. This mechanism operates as follows:

(A) Find a True Name enﬁry in the True File
registry 126. If there is no entry for this True Name,
this mechanism’s task is complete. '

(B) Find the requesting processor on the
source list and, if it is there, remove it.

(C) If an alternate source is provided, add it
to the source list for the True File registry entry

record 140. ' _
(D) If the source list of the True File

registry entry record 140 has no items in it, use the
Locate Remote File primitive mechanism to search for
another copy of the file. 1If it fails, raise a serious

error.

-~

5. cancel Reservation

This mechanism allows a remote processor to
indicate that it no longer requires access to a True File
stored on the local processor. It begins with a True

47

GOOG-1018-Page 83 of 143

e

p
i

1

oy
. doe

o

o
i
th

T

TS

10

15

20

25

30

35

Nam and a requesting processor ID and proceeds as

follows:
(A) Find the True Name entry in the True File

registry 126. If there is no entry for this True Name,
this mechanism’s task is complete. ‘

(B) Remove the identity of the requesting
processor from the list of dependent processors, if it

appears.
(C) If the list of dependent processors

pecomes zero and the use count is also zero, delete the

True File.

6. Acquire True File

This mechanism allows a remote processor to
insist that a local processor make a copy of a specified
True File. It is used, for exémple, when a cache client
wants to write through a new version of a file. The
Acquire True File mechanism begins with a data item and
an optional True Name for the data item and proceeds as
follows:

, (A) Confirm that the requesting processor has
the right to require the local processor to acquire data
items. If not, send a negative reply.

(B) Make a local copy of the data item

transmitted by the remote processor. .
(C) Assimilate the data item into the True

File registry of the local processor.
(D) If a True Name was provided with the file,

the True Name calculation can be avoided, or the
mechanism can verify that the file received matches the

True Name sent. C .
(E) Add an entry in the dependent processor

list of the true file registry record indicating that the
requesting processor depends on this copy of the given

True File.
(F) Send a positive reply.

48

GOOG-1018-Page 84 of 143

7. Locx'Caché
This mechanism allows a remote cache client to
lock a local file so that local users or other cache
clients cannot change it while the remote processor is
5 using it. The mechanism begins with a pathname and

proceeds as follows:
(A) Find the local directory extensions table

entry record 138 of the specified pathname. If no such
entry exists, reply negatively.
10 (B) If an local directory extensions table

entry record 138 exists and is already locked, reply
negatively that the filé_is already locked.

(C) If an local directory extensions table
entry record 138 exists and is not locked, lock the

15 entry. Reply positively.
8. Update Cache

This mechanism allows a remote cache client to
unlock a local file and update it with new contents. It
begins with a pathname and a True Name. The file

20 corresponding to the True Name must be accessible from
the remote processor. This mechanism operates as

" B
| CLaN
o s W 1

e 1

follows:
Find the local directory extensions table entry

record 138 corresponding to the given pathname. Reply
25 negatively if no such entry exists or if the entry is not
locked.

Fe

Link the given pathname to the given True Name
using the Link Path to True Name primitive mechanism.
Unlock the local directory extensions table
30 entry record 138 and_return positively.

9. check Expiration Date

Return current or new expiration date and
possible alternative source to caller.

49

GOOG-1018-Page 85 of 143

L

JTTT" By LB hD

Fi
i

T

10

15

20

25

30

35

cesses and Mechanisms

The background processes and mechanisms
provided by'the present invention are now described.
Recall that background mechanisms are intended to run
occasionally and at a low priority to provide automated

management capabilities with respect to the present

invention.

The following background mechanisms are
described:

1. Mirror True File;

2. Groom Req}on;

3. Check for Expired Links;

4. Verify Region; and

S. Groom Source List.
1. Mirro ue Fjle

This mechanism is used to ensure that files are
available in alternate locations in mirror groups or
archived on archival servers. The mechanism depends on
application-specific migration/archival criteria (size,
time since last access, number of copies required, number
of existing alternative sources) which determine under
what conditions a file should be moved. The Mirror True
File mechanism operates as follows, using the True File
specified, perform the following steps:

(A) Count the number of available locations of
the True File by inspecting the source list of the True
File reglistry entry record 140 for the True File. This
step determines how many copies of the True File are
available in the system. A

(B) If the True File meets the specified
migration criteria,’select a mirror group server to which
a copy of the file should be sent. Use the Acquire True
File remote mechanism to copy the True File to the
selected mirror group server. Add the identity of the
selected system to the source list for the True File.

50

GOOG-1018-Page 86 of 143

]
el

A"
fres;

Ly i

o
"
i

I U
- \Q':‘- ‘.‘i\\\ g

rm
T

il
i

"E-- " !rm
[,

-
1

=

mu
il

g

T

10

15

20

25

30

35

2. om_Region

This mechanism is used to automatically free up
space in a processor by deleting data items that may be
available elsewhere. The mechanism depends on
application-specific grooming criteria (for instance, a
file may be removed if there is an alternate online
source for it, it has not been accessed in a given number
of days, and it is larger than a given size). This
mechanism operates as follows:

Repeat the following steps (i) to (iii) with
more aggressive grooming criteria until sufficient space
is freed or until all grdoming criteria have been
exercised. Use grooming information to determine how
much space has been freed. Recall that, while grooming
is in effect, grooming informatidn includes a table of
pathnames selected for deletion, and keeps track of the
amount of space that would be freed if all of the files
were deleted. '

(i) Begin Grooming (using the primitive
mechanism).

(ii) For each pathname in the specified region,
for the True File corresponding to the pathname, if the
True File is present, has at least one alternative
source, and meets application specific grooming criteria
for the region, select the file for removal (using the
primitive mechanism).

(1ii) End Grooming (using the primitive
mechanisnm).

If the region is used as a cache, no other
processors are dependent on True Files to which it
refers, and all such'True Files are mirrored elsewhere.
In this case, True Files can be removed with impunity.
For a cache region,‘ihe grooming-criteria would
ordinarily eliminate the least recently accessed True
Files first. This is best done by sorting the True Files
in_the region by the most recent access time before
performing step (ii) above. The application specific

51

GOOG-1018-Page 87 of 143

-
I

i ﬁ, u:“{‘ fEli

by, Sheeee Gems

pum
o K

Tk

N

Ryt
z

T

10

15

20

25

30

criteria would thus be to select for removal every True
File encountered (beginning with the least recently used)
until the required amount of free space is reached.

3. ec or Expired Links
This mechanism is used to determine whether

dependencies on published files should be refreshed. The

following steps describe the operation of this mechanism:
‘ For each pathname in the specified region, for

each True File corresponding to the pathname, perform the
following step: _

If the True File registry entry record 140
corresponding to the True File contains at least one
source which is a publishing server, and if the
expiration date on the dependency is past or close, then

perform the following steps:
(A) Determine whether the True File registry

entry record contains other sources which have not
expired. .
(B) Check the True Name expiration of the

server. If the expiration date has been extended, or an.
alternate source is suggested, add the source to the True

File registry entry record 140.
(C) If no acceptable alternate source was

found in steps (A) or (B) above, make a local copy of the

True File.
(D) Remove the expired source.

4. Verify Region

This mechanism can be used to ensure that the
data items in the True File registry 126 have not been
damaged accidentally or maliciously. The operation of
this mechanism is described by the following steps:

(A) Search the local directory extensions
table 124 for each pathname in the specified region and
then perform the following steps:

52

GOOG-1018-Page 88 of 143

»

k

§

)
W

e 1
o | I ‘t"
ey ‘.u“\\ \‘sv,\\ !‘“-:

€

m rEm.
e
T

agpes
Y

¢

T

N

L,
8

"y
{

B L

10

15

20

25

30

35

‘ .
' « ‘

(i) Get the True File name corresponding

to the pathname; .
(ii) If the True File registry entry 140

for the True File does not have a True File ID or
compressed file ID, ignore it.

(iii) Use the Verify True File mechanism
(see extended mechanisms below) to confirm that the True

File specified is correct.

5. Groom Source List

The source list in a True File entry should be

groomed sometimes to ensure there are not too many mirror

or archive copies. When a file is deleted or when a

region definition or its mirror criteria are changed, it

may be necessary to inspect the affected True Files to

determine whether there are too many mirror copies. This
can be done with the following steps:

For each affected True Filé,

(A) Search the local directory extensions
table to find each region that refers to the True File.
. (B) Create a set of "required sources",
initially empty.

(C) For each region found,

(a) determine the mirroring criteria for

that region,
(b) determine which sources for the True

File satisfy the mirroring criteria, and
(c) add these sources to the set of

required sources.

(D) For each source in the True File registry
entry, if the source_identifies a remote processor (as '
opposed to removablg media), and if the source is not a
publisher, and if the source is not in the set of
required sources, then eliminate the source, and use the
Cancel Reservation remote mechanism to eliminate the
given processor from the list of dependent processors

53

GOOG-1018-Page 89 of 143

P

i
a

i
g

ol

i

BT M M

T

10

15

20

25

30

recorded at the remote processor identified by the

source.

xte Mechanisms
The extended mechanisms provided by the present

invention are now described. Recall that extended

mechanisms run within application programs over the

operating system to provide solutions to specific

problems and applications.:
The following extended mechanisms are

described:
1. Inventory Existing Directory;
2. Inventory Removab;é, Read-only Files;
3. Synchronize Directories;
4. Publish Region; '
5. Retire Directory;
6. Realize Directory at Location;
7. Verify True File;
8. Track for Accounting Purposes; and
9. Track for Licensing Purposes.

1. Inventory Existing Directory
This mechanism determines the True Names of
files in an existing on-line directory in the underlying
operating system. One purpose of this mechanism is to
insféll True Name mechanisms in an existing file system.
An effect of such an installation is to
eliminate immediately all duplicate files from the file
. system being traversed. If several file systems are
inventoried in a single True File registry, duplicates
across the volumes are also eliminated. .
’ (A) Traverse the underlying file system in the
operating system. For each file encountered, excluding
directories, perform the following:
(1) Aésimiléte the file encountered

(using the Assimilate File primitive mechanism). This

54

GOOG-1018-Page 90 of 143

K

£

i

i

teol

hE

10

15

20

25

30

35

process computeé its True Name and moves its data into
the True File registry 126.

(ii) cCreate a pathname consisting of the
path to the volume directory and the relative path of the
file on the media. Link this path to the computed True
Name using the Link Path to True Name primitive

mechanism.

2. Inventory Removable, Read-only Files

A system with access to removable, read-only
media volumes (such as WORM disks and CD-ROMs) can create
a usable inventory of the files on these disks without
having to make online copies. These objects can then be
used for archival purposes, directory overlays, or other
needs. An operator must request that an inventory be
created for such a volume. '

This mechanism allows for maintaining
inventories of the contents of files and data items on
removable media, such as diskettes and CD-ROMs, indepen-
dent of other properties of the files such as name,
location, and date of creation.

The mechanism creates an online inventory of
the files on one or more removable volumes, such as a
floppy disk or CD-ROM, when the data on the volume is
represented as a directory. The inventory service uses a
True Name to identify each file, providing a way to
locate the data independent of its name, date of

creation, or location.
The inventory can be used for archival of data

(making it possible to avoid archiving data when that
data is already on a_separate volume), for grooming
(making it possible_to delete infrequently accessed files
if they can be retrieved from removable volumes), for
version control (making it possible to generate a new
version of a CD-ROM without having to copy the old
version), and for other purposes.

55

GOOG-1018-Page 91 of 143

W

e g
et e O

=

“H‘“ i

T

u

[

&=

10

15

20

25

30

35

The inventéry is made by creating a volume
directory in the media inventory in which each file named
identifies the data item on the volume being inventoried.
Data items are not copied from the removable volume
during the inventory process.

An operator must request that an inventory be
created for a specific volume. Once created, the volume
directory can be frozen or copied like any other
directory. Data items from either the physical volume or
the volume directory can be accessed using the Open File
operating system mechani§ﬁ which will cause them to be
read from the physical leume using the Realize True File
from Location primitive mechanism.. A

To create an inventory the following steps are
taken:

(A) A volume directory in the media inventory
is created to correspond to thé volume being inventoried.
Its contextual name identifies the specific volume.

(B) A source table entry 144 for the volume is
created in the source table 130. This entry 144
identifies the physical source volume and the volume

directory created in step (A).
(C) The filesystem on the volume is traversed.

For each file encountered, excluding directories, the
following steps are taken: '

(i) The True Name of the file is
computed. An entry is created in the True Name registry
124, including the True Name of the file using the
prinitive mechanism. The source field of the True Name
registry entry 140 identifies the source table entry 144.

(ii) 3 pathname is created consisting of '
the path to the volgme directory and the relative path'df
the file on the media. This path is linked to the
computed True Name using Link Path to True Name primitive
mechanism. ' ' ,

_ (D) After all files have been inventoried, the
volume directory is frozen. The volume directory serves

56

GOOG-1018-Page 92 of 143

Vo T B)

ey
g e
v T

TOETTT" E

10

15

20

25

30

35

as a table of contents for the volume. It can be copied

using the Copy File or Directory primitive mechanism to
create an "overlay" directory which can then be modified,
making it possible to edit a virtual copy of a read-only

medium.

3. synchronize Directories

Given two versions of a directory derived from
the same starting point, this mechanism creates a new,
synchronized version which includes the changes from
Where a file is changed in both versions, this

each.
mechanism provides a user exit for handling the

discrepancy. By using True Names, comparisons are
instantaneous, and no copies of files are necessary.

This mechanism lets a local processor
synchronize a directory to account for changes made at a
remote processor. Its purpose is to bring a local copy
of a directory up to date after a period of no
communication between the local and remote processor.
Such a period might occur if the local processor were a
mobile processor detached from its server, or if two
distant processors were run independently and updated
nightly. ,
An advantage of the described synchronization
process is that it does not depend on synchronizing the
clocks of the local and remote processors. However, it
does require that the local processor track its position
in the remote processor’s audit file.

This mechanism does not resolve changes made
simultaneously to the same file at several sites. If
that occurs, an external resolution mechanism such as,
for example, operatgr intervention, ié required.

The mechanism takes as input a start time, a
local directory pathname, a remote processor name, and a
remote directory pathname name, and it operates by the

following steps:

57

GOOG-1018-Page 93 of 143

A B

"
e
v

Ol A N

I

T

10

15

20

25

30

35

(A) Request a copy of the audit file 132 from

the remote processor using the Request True File remote

mechanism.
(B) For each entry 146 in the audit file 132

after the start time, if the entry indicates a change to

a file in the remote directory, perform the following
steps:

(i) Compute the pathname of the
corresponding file in the local directory. Determine the

True Name of thé corresponding file.
(ii) If the True Name of the local file is

the same as the old True Name in the audit file, or if
there is no local file and the audit entry ‘indicates a
new file is being created, link the new True Name in the
audit file to the local pathname using the Link Path to

True Name primitive mechanism.
(iii) otherwise, note that there is a

problem with the synchronization by sending a message to
the operator or to a problem resolution program,
indicating the local pathname, remote pathname, remote

processor, and time of change.
(C) After synchronization is complete, record

the time of the final change. This time is to be used as
the new start time the next time this directory is
synchronized with the same remote processor.

4. Publish Region

The publish region mechanism allows a processor
to offer the files in a region to any client processors

for a limited period of time.
The purposg of the service is to eliminate any:

need for client progessors to make reservations with the
publishing processor. This in turn makes it possible for
the publishing processor to service a much larger number

of clients.
When a region is published, an expiration date

is defined for all files in the region, and is propagated

58

GOOG-1018-Page 94 of 143

10

15

20

25

30

35

into the publishing system’s True File registry entry
record 140 for each file.

When a remote file is copied, for instance
using the Copy File operating system mechanism, the
expiration date is copied into the source field of the
client’s True File registry entry record 140. When the
source is a publishing system, no dependency need be

created.
The client processor must occasionally and in

background, check for expired links, to make sure it
still has access to thesg‘files. This is described in the

background mechanism Check for Expired Links.

5. Retire Directory

This mechanism makes it possible to eliminate
safely the True Files in a directory, or at least
dependencies on them, after ensuring that any client
processors depending on those files remove their
dependencies. The files in the directory are not
actually deleted by this process. The directory can be
deleted with the Delete File operating system mechanism.

The mechanism takes the pathname of a given
directory, and optionally, the identification of a
preferred alternate source processor for clients to use.
The mechanism performs the following steps:

(A) Traverse the directory. For each file in
the directory, perform the following steps:

(i) Get the True Name of the file from
its path and find the True File registry entry 140

associated with the True Name.
(ii) Determine an alternate source for thé

True File. If the source IDs field of the TFR entry
includes the preferred alternate source, that is the
alternate source. If it does not, but includes some
other source, that is the alternate source. If it

contains no alternate sources, there is no alternate

source.

59

') GOOG-1018-Page 95 of 143

10

15

20

25

30

35

(iii) For each dependent processor in
the True File registry entry 140, ask that processor to

retire the True File, specifying an alternate source if

one was determined, using the remote mechanism.

6. Realize Directory at Location

This mechanism allows the user or operating
system to force copies of files from some source location
to the True File registry 126 at a given location. The
purpose of the mechanism is to ensure that files are
accessible in the event the source location becomes
inaccessible. This can happen for instance if the source

or given location are on mobile computers, or are on
removable media, or if the network connection to the
source is expected to become unavailable, or if the
source is being retired.

This mechanism is provided in the following
steps for each file in the given directory, with the
exception of subdirectories: |

(A) Get the local directory extensions table
entry record 138 given the pathname of the file. Get the
True Name of the local directory extensions table entry
record 138. This service assimilates the file if it has
not already been assimilated.

(B) Realize the corresponding True File at the
given location. This service causes it to be copied to
the given location from a remote system or removable
media.

7. Yerify True File :
This mechapism is used to verify that the data

item in a True File registry 126 is indeed the correct
data item given its True Name. Its purpose is to guard
against device errors, malicious changes, or other

problems.
If an error is found, the system has the

ability to "heal" itself by finding another source for

60

GOOG-1018-Page 96 of 143

1 [

o

I

,..
3

i

It

1
) i

ey

TEE"E

gw
§ T

- o
e

10

15

20

25

30

35

the True File with the given name. It may also be
desirable to verify that the error has not propagated to

other systems, and to log the problem or indicate it to

the computer operator. These details are not described

here.
To verify a data item that is not in a True

File registry 126, use the Calculate True Name primitive
mechanism described above.

The basic mechanism begins with a True Name,
and operates in the following steps:

(A) Find the True File registry entry record
140 corresponding to the given True Name.

(B) If there is a True File ID for the True
File registry entry record 140 then use it. Otherwise,
indicate that no file exists to verify.

(C) Calculate the True Name of the data item
given the file ID of the data item.

(D) Confirm that the calculated True Name is
equal to the given True Name.

(E) If the True Names are not equal, there is
an error in the True File registry 126. Remove the True
File ID from the True File registry entry record 140 and
place it somewhere else. Indicate that the True File
registry entry record 140 contained an error.

8. Irack for Accounting Purposes

This mechanism provides a way to know reliably
which files have been stored on a system or transmitted
from one system to another. The mechanism can be used as
a basis for a value-based accounting system in which
charges are based on_the identity of the data stored orAA
transmitted, rather_ than simply on the number of bits.

This mechanism allows the system to track
possession of specific data items according to content by
owner, independent of the name, date, or other properties
of - the data item, and tracks the uses of specific data
items and files by content for.accounting purposes. True

61

GOOG-1018-Page 97 of 143

FOSTEE " E2L8BaR0

10

15

20

25

30

35

names make it po%sible to identify each file briefly yet
uniquely for this purpose.

Tracking the identities of files requires
maintaining an accounting log 134 and processing it for
accounting or billing purposes. The mechanism operates
in the following steps:

(A) Note every time a file is created or
deleted, for instance by monitoring audit entries in the
Process Audit File Entry primitive mechanism. When such
an event is encountered, create an entry 148 in the
accounting log 134 that shows the responsible party and
the identity of the file created or deleted.

(B) Every'time a file is transmitted, for
instance when a file is copied with a Request True File
remote mechanism or an Acquire True File remote
mechanism, create an entry in the accounting log 134 that
shows the responsible party, the identity of the file,
and the source and destination processors.

(C) Occasionally run an.accounting program to
process the accounting log 134, distributing the events
to the account records of each responsible party. The
account records can eventually be summarized for billing

purposes.

9. fo icensi urposes

This mechanism ensures that licensed files are
not used by unauthorized parties. The True Name provides
a safe way to identify licensed material. This service
allows proof of possession of specific files according to
thelr contents without disclosing their contents.

Enforcing use of valid licenses can be active
(for example, by refusing to provide access to a file
without authorization) or passive (for example, by
creating a report of users who do not have proper

authorization).
One possible way to perform license validatlon

is to perform occasional audits of employee systems. The

62

GOOG-1018-Page 98 of 143

e ¢

s rvice described herein relies on True Names to support
such an audit, as in the following steps:
(A) For each licensed product, record in the

license table 136 the True Name of key files in the

-5 product (that is, files which are required in order to
use the product, and which do not occur in other
products) Typically, for a software product, this would
include the main executable image and perhaps other major
files such as clip-art, scripts, or online help. Also

10 record the identity of each system which is authorized to

have a copy of the file.
(B) Occasionally, compare the contents of each

‘user processor against the license table 136. For each
True Name in the license table do 'the following:

. 15 (i) Unless the user processor is
authorized to have a copy of the file, confirm that the
user processor does not have a copy of the file using the

Locate True File mechanism.
(ii) If the user processor is found to

:? 20 have a file that it is not authorized to have, record the
;; user processor and True Name in a license violation
table.

T e
o G

Lo g'_" 1

i

The System in Operation
Given the mechanisms described above, the
25 operation of a typical DP system employing these
mechanisms is now described in order to demonstrate how

the present invention meets its requirements and

TR

capabilities.
‘ In operatign, data items (for example, files, '
30 database records, messages, data segments, data blocks,

directories, instances of object classes, and the like)
in a DP system employing the present invention are
identified by substantially unique identifiers (True
Names), the identifiers depending on all of the data in
35 the data items and only on the data in the data items.

‘63

GOOG-1018-Page 99 of 143

i

i
ey

e o R

o
.

TUSTTE " §

10

15

20

25

30

35

.
‘ /

The primitive meéhanisms Calculate True Name and
Assimilat Data Item support this property. For any
given data item, using the Calculate True Name primitive
mechanism, a substantially unique identifier or True Name
for that data item can be determined.

Further, in operation of a DP system
incorporating the present invention, multiple copies of
data items are avoided (unless they are required for some
reason such as backups or mirror copies in a fault-
tolerant system). Multiple copies of data items are
avoided even when multiple names refer to the same data
item. The primitive mechanisms Assimilate Data Items and
New True File support this property. Using the:
Assimilate Data Item primitive meéhani;m, if a data item
already exists in the system, as indicated by an entry in
the True File registry 126, this existence will be
discovered by this mechanism, and the duplicate data item
(the new data item) will be eliminated (or not added).
Thus, for example, if a data file is being copied onto a
system from a floppy disk, if, based on the True Name of
the data file, it is determined that the data file

" already exists in the system (by the same or some other

name), then the duplicate copy will not be installed. If
the data item was being installed on the system by some
name other than its current name, then, using the Link
Path to True Name primitive mechanism, the other (or new)
name can be linked to the already existing data iten.

In general, the mechanisms of the present
invention operate in such a way as to avoid recreating an
actual data item at a location when a copy of that data
item is already presgnt at that location. In the case qf
a copy from a floppy disk, the data item (file) may have
to be copied (into a scratch file) before it can be
determined that it is a duplicate. This is because only
one processor is involved. On the other hand, in a
multiprocessor environment or DP system, each processor
has a record of the True Names of the data items on that

64

GOOG-1018-Page 100 of 143

10

15

20

25

30

35

processor. When a data item is to be copied to another
location (another processor) in the DP system, all that
is necessary is to examine the True Name of the data item
prior to the copying. If a data item with the same True
Name already exists at the destination location
(processor), then there is no need to copy the data item.
Note that if a data item which already exists locally at
a destination location is still copied to the destination
location (for example, because the remote system did not
have a True Name for the data item or because it arrives
as a stream of un-named data), the Assimilate Data Item
primitive mechanism-will prevent multiple copies of the
data item from being created.

Since the True Name of a large data item (a
compound data item) is derived from and based on the True
Names of components of the data iteh, copying of an
entire data item can be avoided. Since some (or all) of
the components of a large data item may already be
present at a destination location,hbnly those components
which are not present there need be copied. This
property derives from the manner in which True Names are
determined.

when a file is cobied by the Copy File or
Directory operating system mechanism, only the True Name
of the file is actually replicated.

when a file is opened (using the Open File
operating system mechanism), it uses the Make True File
Local primitive mechanism (either directly or indirectly
through the Create Scratch File primitive mechanism) to
create a local copy of the file. The Open File operating
system mechanism uses the Make True File Local primitive
mechanism, which uses the Realize True File from Locatidﬁ
primitive mechanism, which, in turn uses the Request True
File remote mechanism.

- The Request True File remote mechanism copies
only a single data item from one processor to another.
If the data item is a compound file, its component

65

GOOG-1018-Page 101 of 143

5 En

',.
s
oo

noar
et W

R

W e

FRETTT

10

15

20

25

30

35

’,

segments are nothopied, only the indirect block is

copied. The segments are copied only when they are read

(or otherwise needed).
The Read File operating system mechanism

actually reads data. The Read File mechanism is aware of

compound files and indirect blocks, and it uses the
Realize True File from Location primitive mechanism to
make sure that component segments are locally available,
and then uses the operating system file mechanisms to
read data from the local file.

Thus, when a compound file is copied from a
remote system, only its True Name is copied. When it is
opened, only its indirect block is copied. . When the
corresponding file is read, the réquired component
segments are realized and therefore copied.

In operation data items can be accessed by
reference to their identitiesl(True Names) independent of

their present location. The actual data item or True

File corresponding to a given data identifier or True
Name may reside anywhere in the system (that is, locally,
remotely, offline, etc). If a required True File is
present locally, then the data in the file can be
accessed. If the data item is not present locally, there
are a number of ways in which it can be obtained from
wherever it is present. Using the source IDs field of
the True File registry table, the location(s) of copies
of the True File corresponding to a given True Name can
be determined. The Realize True File from Location
primitive mechanism tries to make a local copy of a True
File, given its True Name and the name of a source
location (processor gr media) that may contain the True
File. If, on the ogher hand, for some reason it is notrj
known where there is a copy of the True File, or if the
processors identified in the source IDs field do not
respond with the required Ttue File, the processor
requiring the data item can make a general request for
the data item using the Request True File remote

66

GOOG-1018-Page 102 of 143

o R

{
L

mooges
e
L

T

T E 5T

10

15

20

25

30

35

mechanism from all processors in the system that it can
contact. .

AS a result, the system provides transparent
access to any data item by reference to its data
identity, and independent of its present location.

In operation, data items in the system can be
verified and have their integrity checked. This is from
the manner in which True Names are determined. This can
be used for security purposes, for instance, to check for
viruses and to verify that data retrieved from another
location is the desired and requested data. For example,
the system might store the True Names of all executable
applications on the system and then periodically
redetermine the True Names of each of these applications
to ensure that they match the stored True Names. Any
change in a True Name potentially signals corruption in
the system and can be further investigated. The Verify
Region background mechanism and the Verify True File
extended mechanisms provide direct support for this mode
of operation. The Verify Region mechanism is used to
ensure that the data items in the True File registry have
not been damaged accidentally or maliciously. The Verify
True File mechanism verifies that a data item in a True
File registry is indeed the correct data item given its
True Name.

Oonce a processor has determined where (that is,
at which other processor or location) a copy of a data
item is in the DP system, that processor might need that
other processor or location to keep a copy of that data
item. For example, a processor might want to delete
local copies of data_items to make space available
locally while knowipg that it can rely on retrieving the
data from somewhere else when needed. To this end the
system allows a processor to Reserve (and cancel the
reservation of) True Files at remote locations (using the
remote mechanism). In this way the remote locations are

67

GOOG-1018-Page 103 of 143

ki

JEEETN

el
8

i

,mm
b

yess
|
w

(N

“m
1y

s,

T

.10

15

20

25

30

35

. |
o

put on notice that another location is relying on the
presence of the True File at their location.

A DP system employing the present invention can
be made into a fault-tolerant system by providing a
certain amount of redundancy of data items at multiple
locations in the system. Using the Acquire True File and
Reserve True File remote mechanisms, a particular
processor can implement its own form of fault-tolerance

by copying data items to other processors and then
reserving them there. However, the system also provides
the Mirror True File background mechanism to mirror (make
copies) of the True File available elsewhere in the
system. Any degree of redundancy.(limited by the number
of processors or locations in the system) can be
implemented. As a result, this invention maintains a
desired degree or level of redundancy in a network of
processors} to protect against failure of any particular
processor by ensuring that multiple copies of data items
exist at different locations.

The data structures used to implement various
features and mechanisms of this invention store a variety
of useful information which can be used, in conjunction
with the various mechanisms, to implement storage schemes
and policies in a DP system employing the invention. For
example, the size, age and location of a data item (or of
groups of data items) is provided. This information can
be used to decide how the data items should be treated.
For example, a processor may implement a policy of
deleting local copies of all data items over a certain
age if other copies of those data items are present
elsevhere in the system. The age (or variations on the
age) can be determiped using the time of last access or
modification in the local directory extensions table, and
the presence of other copies of the data item can be
determined either from the Safe Flag or the source IDs,
or by checking which other processors in the system have

68

GOOG-1018-Page 104 of 143

ey F

i1

M
il
« e

]

R

TS

10

15

20

25

30

35

copies of the data item and then reserving at least one
of those copies.

In operation, the system can keep track of data
items regardless of how those items are named by users
(or regardless of whether the data items even have
names). The system can also track data items that have
different names (in different or the same location) as
well as different data items that have the same name.
Since a data item is identified by the data in the item,
without regard for the context of the data, the problems
of inconsistent'naming in a DP system are overcome.

In operation, the system can publish data
items, allowing other, possibly anonymous, systems in a
network to gain access to the data items and to rely on
the availability of these data items. 'True Names are
globally unique identifiers which can be published simply
by copying them. For example, a user might create a
textual representation of a file on system A with True
Name N (for instance as a hexadecimal string), and post
it on a computer bulletin board. Another user on systen
B could create a directory entry F for this True Name N

" by using the Link Path to True Name primitive mechanism.

(Alternatively, an application could be developed which
hides the True Name from the users, but provides the same
public transfer service.)

When a program on system B attempts to open
pathname F linked to True Name N, the Locate Remote File
primitive mechanism would be used, and would use the
Locate True File remote mechanism to search for True Name
N on one or more remote processors, such as system A. If
system B has access to system A, it would be able to '
realize the True File (using the Realize True File from
Location primitive mechanism) and use it locally.
Alternatively, system B could find True Name N by
accessing any publicly available True Name server, if the
server could eventually forward the request to system A.

69

GOOG-1018-Page 105 of 143

t
g

&8 1

"

i

ol gt
I A

o 1

m g
R

1T

i

1

T

10

15

20

25

30 .

35

‘~.

Clients of a local server can indicate that

they depend on a given True File (using the Reserve True
File remote mechanism) so that the True File is not
deleted from the server registry as long as some client
requires access to it. (The Retire True File remote
mechanism is used to indicate that a client no longer
needs a given True File.)

A publishing server, on the other hand, may
want to provide access to many clients, and possibly
anonymous ones, without incurring the overhead of
tracking dependencies for each client. Therefore,
public server can provide expiration dates for True Files
in its registry. This allows client systems to safely
maintain references to a True File on the public server.
The Check For Expired Links background mechanism allows
the client of a publishing server to occasionally confirm
that its dependencies on the publishing server are safe.

In a variation of this aspect of the invention,

a

a processor that is newly connected (or reconnected after
some absence) to the systeﬁ.can obtain a current version
of all (or of needed) data in the system by requesting it
from a server processor. Any such processor can send a
request to update or resynchronize all of its directories
(starting at a root directory), simply by using the
synchronize Directories extended mechanism on the needed
directories.

Using the accounting log or some other user
provided mechanism, a user can prove the existence of
certain data items at certain times. By publishing (in a
public place) a list of all True Names in the system on a
given day (or at some given time), a user can later refer
back to that list to show that a particular data item was
present in the system at the time that list was V
published. Such a mechanism is useful in tracking, for
example, laboratory notebooks of the like to prove dates
of'cohception of inventions. Such a mechanism also

70

GOOG-1018-Page 106 of 143

o 103

o T

,.. ,.
i
.

Ly

.

i

G

1

o

T

. \
@ @
permits proof of possession of a data item at a
particular date and time.

The accounting log file can also track the use
of specific data items and files by content for
accounting purposes. For instance, an information
utility company can determine the data identities of data
items that are stored and transmitted through its
computer systems, and use these identities to provide
bills to its customers based on the identities of the
data items being transmitted (as defined by the
substantially unique identifier). The assignment of
prices. for storing and transmitting specific True Files
would be .made by the information utility and/or its data
suppliers; this information would‘be joined periodically
with the information in the accounting log file to
produce customer statements.

Backing up data items in a DP system employing
the present invention can be done based on the True Names
of the data items. By tracking backups using True Names,
duplication in the backups is prevented. In operation,
the system maintains a backup record of data identifiers
of data items already backed up, and invokes the Copy
File or Directory operating system mechanism to copy only
those data items whose data identifiers are not recorded
in the backup record. Once a data item has been backed
up, it can be restored by retrieving it from its backup
.location, based on the identifier of the data item.

Using the backup record produced by the backup to
identify the data item, the data item can be obtained
using, for example, the Make True File Local primitive
mechanism. - .

In operation, the system can be used to cache ‘
data items from a server, so that only the most recently
accessed data items need be retained. To operate in this
way, a cache client is configured to have a local
registry (its cache) with a remote Local Directory
Extensidns table (from the cache server). Whenever a

71

GOOG-1018-Page 107 of 143

Pl B

!

T

|y 4

!
.

T

10

15

20

25

30

35

file is opened (or read), the Local Directory Extensions
table is used to identify the True Name, and the Make
True File Local primitive mechanism inspects the local
registry. When the local registry already has a copy,
the file is already cached. Otherwise, the Locate True
File remote mechanism is used to get a copy of the file.
This mechanism consults the cache server and uses the
Request True File remote mechanism to make a local copy.,

effectively loading the cache.
The Groom Cache background mechanism flushes

the cache, removing the(}east-recently-used files from
the cache client’s True-File registry. Wwhile a file is
being modified on a cache client, the Lock Cache and
Update Cache remote mechanisms prévent other clients from
trying to modify the same file. '

In operation, when the system is being used to
cache data items, the problems of maintaining cache
consistency are avoided.

To access a cache and to fill it from its
server, a key is required to identify the data item
desired. Ordinarily, the key is a name or address (in
this case, it would be the pathname of a file). If the
data associated with such a key is changed, the client’s
cache becomes inconsistent; when the cache client refers
to that name, it will retrieve the wrong data. In order
to maintain cache consistency it is necessary to notify
every client immediately whenever a change occurs on the
server.

By using an embodiment of the present
invention, the cache key uniquely identifies the data it
represents. When the data associated with.a name '
changes, the key it§elf changes. Thus, when a cache
client wishes to access the modified data associated with
a given file name, it will use a new key (the True Name
of the new file) rather than the key to the old file
contents in its cache. The client will always request
the correct data, and the old data in its cache will be

72

GOOG-1018-Page 108 of 143

3 .
eventually aged and flushed by the Groom Cache background
mechanism.

Because it is not necessary to immediately
notify clients when changes on the cache server occur,
5 the present invention makes it possible for a single

server to support a much larger number of clients than is

otherwise possible.
In operation, the system automatically archives
data items as they are created or modified. After a file
10 is created or modified, the Close File operating system
mechanism creates an audit file record, which is
eventually processed by the Process Audit File: Entry
primitive mechanism. This mechanism uses the New True
File primitive mechanism for any file which is newly
15 created, which in turn uses the Mirror True File
background mechanism if the True File is in a mirrored or
archived region. This mechanism causes one or more
copies of the new file to be made on remote processors.
In operation, the system-can efficiently record

i

o

20 and preserve any collection of data items. The Freeze
Directory primitive mechanism creates a True File which
identifies all of the files in the directory and its
subordinates. Because this True File includes the True
Names of its constituents, it represents the exact

25 contents of the directory tree at the time it was frozen.
The frozen directory can be copied with its components

w
N

R A

uz
§

preserved.
The Acquire True File remote mechanism (used in

mirroring and archiving) preserves the directory tree

30 structure by ensuring that all of the component seéments
and True Files in a gompound data item are -actually '
copied to a remote system. Of course, no transfer is
necessary for data items already in the registry of the

remote system.
35 In operation, the system can efficiently make a

copy of any collection of data items, to support a
version control mechanism for groups of the data items.

73

GOOG-1018-Page 109 of ‘i43

10

15

20

25

30

35

()
'

The Freeze Directory primitive mechanism is
used to create a collection of data items. The
constituent files and segments referred to by the frozen
directory are maintained in the registry, without any
need to make copies of the constituents each time the
directory is frozen.

Whenever a pathname is traversed, the Get Files
in Directory operating system mechanism is used, and when
it encounters a frozen directory, it uses the Expand
Frozen Directory primitive mechanism.

A frozen directdry can be copied from one
pathname to another efficiently, merely by copying its
True Name. The Copy File operating system mechanism is
used to copy a frozen directory. '

Thus it is possible to efficiently create
copies of different versions of a directory, thereby
creating a record of its history (hence a version control
system) .

In operation, the system.can maintain a local
inventory of all the data items located on a given
removable medium, such as a diskette or CD-ROM. The
inventory is independent of other properties of the data
items such as their name, location, and date of creation.

The Inventory Existing Directory extended
mechanism provides a way to create True File Registry
entries for all of the files in a directory. One use of
this inventory is as a way to pre-lcad a True File
registry with backup record information. Those files in
the registry (such as previously installed software)
which are on the volumes inventoried need not be backed
up onto other volumeg.

A The Invenjory Removable, Read-only Files
extended mechanism not only determines the True Names for
the files on the medium, but also records directory
entries for each file in a frozen directory structure.

By copying and modifying this directory, it is possible
to create an on line patch, or small modification of an

74

GOOG-1018-Page 110 of 143

)

A R

.....
o A

iy

T E

T

T

10

15

20

25

30

existing read-only file. For example, it is possible to
create an online representation of a modified CD-ROM,
such that the unmodified files are actually on the
CD-ROM, and only the modified files are online.

In operation, the system tracks possession of
specific data items according to content by owner,
independent of the name, date, or other properties of the
data item, and tracks the uses of specific data items and
files by content for accounting purposes. Using the
Track for Accounting Purposes extended mechanism provides
a way to know reliably which files have been stored on a

system or transmitted from one system to another.

ation j -Qrj e atabas

Although the preferred embodiment of this
invention has been presented in the context of a file
system, the invention of True Names would be equally
valuable in a relational or object—briented database. A
relational or object-oriented database system using True
Names would have similar benefits to those of the file
system employing the invention. For instance, such a
database would permit efficient elimination of duplicate
records, support a cache for records, simplify the
process of maintaining cache consistency, provide
location-independent access to records, maintain archives
and histories of records, and synchronize with distant or
disconnected systems or databases.

The mechanisms described above can be easily
modified to serve in such a database environment. The
True Name registry would be used as a repository of
database records. 3All references to records would be via
the True Name of the record. (The Local Directory
Extensions table is an example of a primary index that
uses the True Name as the unique identifier of the

desired records.)

75

GOOG-1018-Page 111 of 143

YT

&

Fra Y

Sl
vt
L

T E

T

LR S

™
X

T

10

15

20

In such a database, the operations of
inserting, updating, and deleting records would be
implgmented by first assimilating records into the
registry, and then updating a primary key index to map
the key f the record to its contents by using the True
Name as a pointer to the contents. '

The mechanisms described in the preferred
embodiment, or similar mechanisms, would be employed in
such a systenmn. These mechanisms could include, for
example, the mechanisms for calculating true names,
assimilating, locating, reéalizing, deleting, copying, and
moving True Files, for mirroring True Files, for
maintaining a cache of True Files, for grooming True
Files, and other mechanisms based on the use of

substantially unique identifiers.

While the invention has been described in
connection with what is presently considered to be the
most practical and preferred embodiments, it is to be
understood that the invention is not to be limited to the
disclosed embodiment, but on the contrary, is intended to
cover various modifications and equivalent arrangements
included within the spirit and scope of the appended

claims.

76

GOOG-1018-Page 112 of 143

1 o 1

"o
i

ot { I
el

.l:" LH
it

=

S

n
i

T

10

15

20

25

30

WHAT IS CLAIMED IS:

1. In a data processing system, an apparatus

compkising:

identity means for determining, for any of a
pluralj\ty of data items in the system, a substantially
unique Ydentifier, said identifier depending on all of
the data\ in the data item and only on the data in the
and

existence means for determining whether a

particular \data item is present in the system, by
examining the identifiers of the plurality of data items.

data itenm

2. An apparatus as in claim 1, further

comprising:
local\ existence means for determining whether

an instance of a particular data item is present at a
particular location in the system, based on the
identifier of the\data itenm. :

3. An

present at a particular location
ing the identifiers of the

particular data item ig
in the system by exami

the system.

4. An apparatug§ as in claim 2, further

comprising:
data assocjating m

maintaining, for a data item \in the system, an

association between the data item and the identifier of

ans for making and

the data item; and
access means for accessing a particular data

item using the identifier of the {data item.

77

GOOG-1018-Page 113 of 143

y iFu I

4

0

i

T

i

k-

1
E

e

il T

i
e

T

10

15

20

25

30

_invoking said access means

S. An apparatus as in claim 2, further
compkising:

duplication means for copying a data item from
a sourde to a destination in the data processing system,
by providing said destination with the data item only if
it is determined using the data identifier that the data
item is n present at the destination.

6. An apparatus as in claim 4, further

comprising:
ass\milation means for assimilating a new data

item into the jystem, said assimilation means invoking

said identity mgans to determine the identifier of the
invoking said data associating means to

data item with its identifier.

new data item an

associate the ne

7. An apparatus as in claim 4, further
comprising:

duplicati means for duplicating a data item
o a destination location in the

based on the identifier of the

from a source locati
data processing systemn,
data item, said duplication means invoking said local
existence means to determine whether an instance of the
data item is present at th& destination location, and
o provide said destination
with the data item only if said local existence means
determines that no instance of the data item is present
at the destination..
8. An apparatus as iR claim 7, further
comprising: . - , -
backup means for making topies of data items in

the system, said backup means maintiaining a backup record
of identifiers of data items backed \up, and invoking
duplication means to copy only those\data items whose

data identifiers are not recorded in the backup record.

78

GOOG-1018-Page 114 of 143

A

¥

.
k

(M

“f

g

N

f

T

10

15

20

25

30

9. An apparatus as in claim 8, further

compXising: ‘
recovery means for retrieving a data item
previcusly backed up by said backup means, based on the

identif\ier of the data item, said recovery means using

the bacRup record to identify the data item, and invoking

access m&ans to retrieve the data item.

0. An apparatus as in claim 2, wherein a

location is\ a computer among a network of computers, the

apparatus further comprising:
refote existence means for determining whether

a data item i§ present at a remote location in the systenm

from a current\ location in the system, based on the
identifier of the data item, said remote location using

local existence \means at the remote location to determine

whether the dat

and providing t current location with an indication of

data item at the remote location.

Q:‘em is present at the remote location,

the presence of thg

paratus as in claim 4, wherein a
r among a network of computers, the

11. An ag

in the system, based on\the identifier of the data item,
g access means at the remote
ita item and to send it to the

said remote location usi
location to obtain the d

current location if it is\present.

12. An apparatus\as in claim 1, further
comprising: - :

context means for making and maintaining a
least one contextual name
the identifier of the

context association between a
of a data item in the system a
data item; and

79

GOOG-1018-Page 115 of 143

& 0 B 1y

N

ll
e B !

CTT " E

T T

10

15

20

25

30

referencing means for obtaining the identifier

of a\ data item in the system given a contextual name for

the ta item, using said context association.

_ 13. An apparatus as in claim 12, further
comprising:
ssignment means for assigning a data item to a
contextual f1ame, invoking said identity means to
determine the identifier of the data item, and invoking
said context Wweans to make or modify the context
association between the contextual name of the data item

and the identifyer of the data item.

14. An\apparatus as in claim 12, further

comprising:
data assogiating means for making and
maintaining, for a d item in the system, an

association between e data item and the identifier of

the data item;
access means for accessing a particular data

item using the identifiek of the particular data item;

and
contextual name jccess means for accessing a

data item in the system for\a given context name of the
data item, determining the d ta identifier associated
with the given context name, d invoking said access
means to access the data itenm ing the data identifier.

15. An apparatus as in claim 11, further

comprising: . _

transparent access means \for accessing a data"
item from one of seyeral locations, \using the identifier;
of the data item, said transparent adcess means invoking
said local existence means to determine if the particular
data item is present at the current locdation, and, in the
case when the particular data item is ndt present at the

80

GOOG-1018-Page 116 of 143

11

B 5 E 1

o
sooei? of
g L

SETET "

1t
i

..,,,..‘,..
i,

10

15

20

25

30

identifier copy means for copying an identifier

of a dat} item from a source location to a destination

location.

7. An apparatus as in claim 15, further

comprising:
cohtext means for making and maintaining a

context association between a con;extuai name of a data

tem and the identifier of the data item;

item in the s
conf t copy means for copying a data item from
a source locatidn to a destination location, given the
contextual name %f the data item, by copying only the
context associatibn between the contextual identifier and
the data identifi rom the source location to the
destination locat

transpa

and

referencing means for obtaihinq a
several locations the system given
the data item, said transparent

data item from one o
a contextual name fo
referencing means invdking said context association to
determine the data idenhtifier of a data item given a

contextual name, and invoking said transparent access
means to access the dath item from one of several

locations given the identifier of the data item.

18. An apparatus as in claim 1, wherein at
least some of said dgta itlems are compound data items,
each compound data jtem inqluding at least some component
data items in a fixed sequehce, and wherein the identity
means determines the identiffier of a compound data item
based on each component'data tem of the compound data

item.

81

GOOG-1018-Page 117 of 143

G T

.,.
i(ﬁ ral

I
.

1

T

T

i}

T

10

15

20

25

30

19. An apparatus as in claim 18, wherein said
comé und data items are fileé and said component data
items\ are segments, and wherein the identity means

ines the identifier of a file based on the
identif\ier of each data segment of the file.’

20. An apparatus as in claim 18, wherein said
ta items are directories and said component
data items \are files or subordinate directories, and
wherein the \identity means determines the identifier of a
given directqry based on;éach file and subordinate

compound

directory witRhin the given directory.-
21. apparatus as in.claim 11, further
comprising:
means for advertising a data item from a
location in the system to at least one other location in
the system, said mdans for advertising providing each of
location with the data identifier
providing the data item to only
other locations that request said

said at least one o
of the data item, a
those locations of s
data item in response to said providing.

22. An apparakfus as in claim 18, further
comprising:

local existence
particular data item is pregent at a particular location
in the system, based on the identifier of the data item;

eans for determining whether a

and
or copying a data item

the data processing
nvoking said local

compound copy means
from a source to a dgstination 1
system, said compound copy means
existence means to determine whether the data item is
present at the destination, and to etermine, when the

data item is a compound data item, whether the component
e present at the

data items of the compound data item
qestination, and providing said destination with the data

82

GOOG-1018-Page 118 of 143

i

R B

&

il

o

TOSTET " &

10

15

20

25

30

itelh only if said local existence means determines that
the {ata item is not present at the destination, and
providing said destination with each component data item
only if said local existence means determines that the
component data item is not present at the destination.

23. An apparatus as in claim 11,.further
comprising

means for verifying the integrity a data item
obtained froh said requesting means in response to
providing sai requesting with a particular data
identifier, to\ confirm that the data item obtained from
the requesting \means is the same data item as the data
item requested, \said verifying means invoking said
identity means td determine the data identifier of the
obtained data ite and comparing said determined data
jdentifier with sfaid particular data identifier to verify

said obtained dat

24. An apparatus as in claim 2, wherein a
location is at least e of a storage location and a
processing location, and wherein a storage location is at
least one of a data stolage device and a data storage
volume, and wherein a pr{cessing location is at least one

of a data processor and a\computer.

25. An apparatus\as in claim 3, wherein at
least some of said data items are compound data items,
each compound data item including at least some component
data items in a fixed sequenc and wherein the identity
means determines the_identifier\ of a compound data item
based on the identifier of each \component data item of '

the compound data item.
26. An apparatus as in &laim 3, further

comprising:

83

GOOG-1018-Page 119 of 143

i
]

b 5 0

£

i

e

1 0y

A
i

TE"E

o 1K

A

TR

win e

10

15

20

25

30

comprising:

context associating means for making and
maintlRining a context association, for any data item in
th system, between the identifier of the data item and
one contextual name of the data item at a

location in the system;
wmeans for obtaining the identifier of a data

at least

particulad

item in the\ system given a contextual name for the data

item at a payticular location in the system; and

pparatus as in claim 25, wherein said
compound data items files and said component data
items are segments, d wherein the identity means
determines the identifier of a file based on the
identifier of each datja segment of the file.

28. An apparjtus as in claim 25, further

ans for copying a data item
from a source location to destination location in the
data processing system, said compound copy means invoking
said local existence means o determine whether the data
item is present at the destination, and to determine,
when the data item is a compoynd data item, whether the
component data items of the compound data item are
present at the destination, and\providing said
destination with the data item only if said local
existence means determines that the data item is not
present at the'destination, and prqviding said
destination with each component data item only if said
local existence means determines that the'¢omponent data
item is not present at the destinatio

compound copy m

84

GOOG-1018-Page 120 of 143

[

I

L E B

TR

T

-

B

Jd

b

g
&,

10

15

20

25

30

'3 ¢

29. An apparatus as in any of claims 1-28,
a database

where\in a data item is at least one of a file,
a message, a data segment, a data block, a

directdyy, and an instance an object class.

30. A method of identifying a data item in a
data procejsing system for subsequent access to the data
1tem, the mdthod comprising the steps of:

determining a substantially unique identifier
for the data Atem, said identifier depending on all of
the data in théd data item and on the data in the data

item; and . .
accessijig a data item in the system using the

identifier of the

31. A method as in claim 30, further

comprising the step

making and{njaintaining, for a plurality of data

ah association between each of the

items in the system,
data items and the identifier of each of the data items,
wherein said accessing sStep accesses a data item via the

association.

32. A method as\ in claim 31, further
comprising the step of:
assimilating a ne

by determining the identifie
associating the new data item\with its identifier.

data item into the system,
of the new data item and

~ 33. A method for duplicating a given data item

from a source locatign to a desfiination location in a '
data processing system, the methdd comprising the steps

of:
determining a substantially unique identifier

for the given data item, said identifier depending on all

of the data in the data item and only on the data in the

data item;

85

GOOG-1018-Page 121 of 143

BEGO

&
!

13
o] i
LV

e

Ll

T

TT"E:

10

15

20

25

30

determining, using said data identifier,
whether said data item is present at said destination
locatipn; and

based on said determining, providing said
destinatlon location with said data item only if said
data item \is not present at said destination.

3. A method as in claim 33, wherein said
given data itlem is a compound data item having a
plurality of Qgmponent data items, the method further

comprising the \steps of:_
for each data item of said component data
items,
obtaining the component data
identifidr of the data item by determining a
substantidlly unique jidentifier for the data
item, said/\ldentifier depending on all of the

data in t a item and only on the data in

detérmining, using said obtained
component data\identifier, whether said data
item is present\at said destination; and

based n said determining, providing
said destination With said data item only if
said data item is \not present at said
destination. '

35. A method for determining whether a
particular data item is present \in a data processing
system, the method comprising the, steps of:

(A) for egch data item \of a plurality of datai
items in the system, '

" (i). determining a sibstantially unique
identifier for the data item, said identifier
depending on all of the data in the data item
and\only on the data in the §ata item; and

86

GOOG-1018-Page 122 of 143

BEGED

e

&

Eo
i

s

e iiii:ﬁ

R Hooe

FOESTTT

it

1

10

15

20

25

30

data items, data
time in a data pro&essing system, the method comprising

the steps of:

comprising the step of:

(ii) making and maintaining a set of
identifiers of said plurality of data items;
and
(B) for the particular data item,

(i) determining a particular
substantially unique identifier for the data
item, said identifier depending on all of the
data in the data item and only on the data in

the data item; and
(ii) determining whether said particular

identifier is in said set of data items.

ethod of backing up, of a plurality of
tems modified since a previous backup

36. A

(A) mainthiping a backup record of identifiers

(B) for each, of said plurality of data. items,
ining a substantially unique
for the data item, said
identifier\depending on all of the data in
the data itém and only on the data in the
data item;
(ii) determining those data items of the
‘pPlurality of ta items whose identifiers
are not in the \backup record; and

(iii) based on 3aid determining, copying
only those data items whose data .
idensities are nof recorded in the backup

record.

37. A method as in claim\36, further

87

GOOG-1018-Page 123 of 143

ey

Iy

1t
4

A

1

LT E

T

“wy
{

recording in the backup record the identifiers
of thoge data items copied in said step of copying.

38. A method of locating a particular data
item at a\ location in a data processing system, the
method comprising the steps of:

) determining a substantially unique
identifier for the data item, said identifier
depending on all of the data in the data item
and -hly on the data in the data item;

(B) equesting the particular data item by

sending the data identifier of the data item

from t requestor location to at least one
location, of a plurality of provider locations

in the system; and
(C) least some of said provider

ining a substantially unique
dAr for the data item, said

data item; and

(ii) making \and maintaining a set of
identifiers qf data items, .

(b) determining, based on said set of
identifiers, whether the data item
corresponding tH the requested data
identifier is present at said provider
locatjon; and _
(c) .based on said determining, when said
provider location determines that the
particular data itej is present at the
provider location, ng{tifying said
requestor that the prpvider has a copy of
the given data item.

88

GOOG-1018-Page 124 of 143

b I

st
e et

‘.

1t
ol g

[e

i

e

T

o

T

10

15

20

25

30

39. The method of claim 38, further comprising

th steps of:

(a) for each data item of a plurality of data
items at said provider locations,

making and maintaining an association
between the data item and the identifier

of the data item,
in response to said notifying, said client

data identifier.

comprising the steps
determining
plurality of data items, a

substantially unique idektifier for the data item, said
1 of the data in the data item

item is present at each of sald locations.
41. The method of claim 30, wherein said step
of accessing further comprises the steps of, for a given
data identifier and for a given rrent location and a
remote location in #he system:

determining whether the data item corresponding

to the given data identifier is present at the current

location, and
based.on said determining,
not present at the current location, f&tching the data

b\ f said data item is

89

GOOG-1018-Page 125 of 143

T

&

B
LUY s Tacee S

ane v

TOSTET" E

10

15

20

25

30

" modified.

item\from a remote location in the system to the current

locat\ion.

42. The method of claim 41, further comprising

8 of:
for each contextual name at a location,

making and maintaining a context
petween the context name of a data item and
\er of said data item, and when some context

the ste

associatio

the identif

association ghanges at said current location, and
notifying.said remote location of a

modification tb the context association.

43. fhe method of claim 42, further comprising

the step of:
at said\remote location, updating the

association betw
item and the iad ier of the data'item.

44.

the step of:
ote location, notifying all other

item has been modified, by

f claim 44, further comprising
n notified that the data item

45. The method
the step of, at each locatig

has been modified:
modifying an associlhtion between the contextual

identifier of the data item angd the data identifier of
the data item, to record that the data item has been

ting a data item at a
system when said data

46. A method of elimin
given location in a data processing

90

GOOG-1018-Page 126 of 143

S ERE E

g

T

A
i
&

T

T

10

15

20

25

30

35

(‘ V

jtem can be obtained from another location in the system,
the method comprising the steps of:

determining a substantially unique identifier
for the data, said identifier depending on all of the
data in the data item and.only on the data in the data
item;

making and maintaining a source association
between the data identifier and at least one location at

which said data item is known to be present; and
based on said source association, if said data
item is present at said other location, removing the data

item from the given location. =

47. A method of deleting a data item from a
location in a data processing system, the method
comprising the steps of: ‘

for each of a plurality of data items in the
system:

determining a substantially unique identifier
for the data, said identifier depending on all of the
data in the data item and only on the data in the data
item; and

making and maintaining, an association between
each of the data items and the unique identifier of the
data items; and ‘

for a given data item:

determining a substantially unique identifier
for the data, said identifier depending on all of the
data in the data item and only on the data in the data

item; and
determining whether a contextual identifier or.

a compound da;a item or a remote processor in the system
refers to the unique identifier of the data item, and

based on said determining,_delg§é£g=§aid data item and
its association if no other contextual identifier or
compound data item or remote processor refers to said

data item.

91

GOOG-1018-Page 127 of 143

s Y

- 2
1 = .i"
e

TOSTET" E

10

15

20

25

30

N
! .

48. The method of claim 47, wherein said
determining is based on a use count for the data item,
and wherein said data item is deleted only if said use
count indicates that no other contextual identifier or
compound data item or remote processor in the system
refers to the data item.

49. A method of substantially synchronizing
data items at a client location in a data processing
system after a period of independent changes on the
client and another location in the system, given a
context, the method comprising the steps of:

making and maintaining a list of changes to the
context association between each context name of a data
item and the identifier of said data item, in the given
context and during the period of independent change;

obtaining the list of changes from the other
location for the given context; and,

for each context name in the list of changes

. updating the context identifier
associations at the client whenever it is determined that
the context association of the given context name changed
either only at the client or only at the other location
during the period if independent changes; and

pgrforming a conflict-resolution task such
as notifying an operator of the client location, whenever
it is determined that the context association changed at
both the client and the other location.

A method as in claim 49, wherein said
lists are maiRtained_as queues based on a temporal order}
and wherein, at said client location, said replacing is
based on said t oral order.

S1. A method of maintaining at least a

predetermined number\of copies of a given data item in a
data processing syste at different locations in the

92

GOOG-1018-Page 128 of 143

Cy b

el

i,

E g
L

o R
o W o

i

s &

T E

T

T

1

10

15

20

25

30

\A
Lok
’ T - .

data is identified by a substantially unique

idenhtifier, said identifier depending on all of the data
in fhe data item and only on the data in the data item,
and Yherein any data item in the system may be accessed

only the identifier of the data item, the method
ing the steps of: ‘

(i) sending, from a first location in the
system, the data identifier of the given data
item to other locations in the system; and

(ii) in responaé to said sending, at each of
aid other locations,

) determining whether the data item
responding to the data identifier is present
at \the other location, and based on said

-det ining, and

(B) informing said first location whether said
data it is present at the other location; and

(iii) response to said informing from said
other ations, at said first location,
(A) d ining whether said data item is

present in at least the predetermined number of
other locations, '‘and based on said determining,
.(B) when léss than the predetermined number of
other locatijns have a copy of the data item,
requesting sohe locations that do not have a
copy of the data item make a copy of the data

itenm.

52. A method as \in claim 51, wherein said step
(iii) further comprises the . '

(C) when-more tha
other locations have a copy off the data item, requesting
some locations that do have a dopy of the data item

delete the copy of the data ite

tep of:)
the predetermined number of

93

GOOG-1018-Page 129 of 143

i

Eal

I

EE“

H
4

o Rl

4
-

[{ i R
N T

1

- o
o

i

“..n
.
4

TRE

poo 37

)

‘-"/-
4 4

A method as in any of claims 30-52,
ata items are at least one of a file, a

wherein said
database recénd, a message, a data segment, a data block,

a directory, a an instance of an object class.

94

GOOG-1018-Page 130 of 143

0 0 03

&

walivn RS
[l

ks

w .y

o

T

"determine whether a particular data ite

é »

ABSTRACT OF THE DISCLOSURE

G DATA IN A DATA PROCESSING SYSTEM

ssing system, a mechanism

jdentifies data items by substantially unique identifiers
in the data items and '

Existence means

which depend on all of the

only on the data in the data items.
is present in

the system, by examining the identifiers oINthe plurality

of data items.

95

GOOG-1018-Page 131 of 143

RULE 63 (37 C.F.R. 1.63) ’ CUSHMAN

- FOR UTILITY/DESI p
CIP/PCT NATIONAL/PLANT DECLARATION AND POWER OF ATTORNEY FORM
ORIGINAL/SUBSTITUTEISUPPLEMENTAL FOR PATENT APPLICATION ot ’
DECLARATIONS IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

As a below named inventor, I hereby declare that my residence, post office address and citizenship are as stated below next to my name, and I believe I am
the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject
matter which is claimed and for which a patent is sought on the INVENTION ENTITLED

IDENTIFYING DATA IN A DATA PROCESSING SYSTEM

the specification of which (CHECK applicable BOX(ES))
-> []is attached hereto.

-> [x] was filed on _April 11, 1995 as U.S. Application No. 0.8 / 425,160
BOX(ES)-> [] was filed as PCT International Application No. PCT/ / on
s> -> and (if applicable to U.S. or PCT application) was amended on

|

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment
referred to above. I acknowiedge the duty to disclose all information known to me to be material to patentability as defined in 37 C.F.R. 1.56. I hereby
claim foreign priority benefits under 35 U.S.C. 119/365 of any foreign application(s) for patent or inventor's certificate listed below and have also identified

below any foreign application for patent or inventor's certificate filed by me or my assignee disclosing the subject matter claimed in this application and havmg

a filing date (1) before that of the application on which priority is claimed, or (2) if no pnonty claimed, before the filing date of this application:

PRIOR FOREIGN APPLICATION(S) Date first Laid- Date Patented Priority Claimed
Number Country Day/MONTH/Year Filed open or Published or Granted Yes No

I hereby claim the benefit under-35 U.S.C. 120/365 of all United States applications listed below and PCT international applications listed above or below

. and, if this is a continuation-in-part (CIP) application, insofar as the subject matter disclosed and claimed in this application is in addition to that disclosed
{Mjsuch prior applications, I acknowledge the duty to disclose all information known to me to be material to patentability as defined in 37 C.F.R. 1.56 which
became available between the filing date of each such prior application and the national or PCT international fi iling date of this application:

ﬁ—lhOR U.S. OR PCT APPLICATION(S) Status
HApplication No. (series code/serial no.) Day/MONTH/Year Filed pending. abandoned. patented
1:% .
=k
;

ﬁiﬁereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are belicved to be
ftrbe; and further that these statements were made with the knowledge that willful false’ statements and the like so made are punishable by fine or
Jmpnsonment or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardnze the validity of the
a,;phcanon or any patent issued therecon.

nd 1 hereby appoint Cushman Darby & Cushman,L.L.P. 1100 New York Avenue, N.W., Ninth Floor, East Tower Washington, D.C. 20005-3918, tclephone

mber 861-3000 (to whom all communications are to be directed), and the below-named persons (of the same address) individually and coliectively my
;atforneys to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith and with the resulting patent,
zrid I hereby authorize them to act and rely on instructions from and communicate directly with the person/assignee /attorney/firm/ organization who/which
#irst sends/sent this case to them and by whom/which I hereby declare that [have consented after full disclosure to be represented unless/until I instruct
{Gushman, Darby & Cushman in writing to the contrary.

Paul N. Kokulis 16773 Edward M. Prince - 22429 Dale S. Lazar 28872 Michelle N. Lester 32331
Raymond F. Lippitt 17519 Donald B. Deaver 23048 Glenn J. Perry 28458 Jeffrey A. Simenauer 31933
G. Lloyd Knight 17698 David W. Brinkman 20817 Kendrew H. Colton 30368 Robert A. Molan 29834
Carl G. Love 18781 George M. Sirilla 18221 Chris Comuntzis 31097 G. Paul Edgell 24238
Edgar H. Martin 20534 Donald J. Bird 25323 Wallace G. Waiter 27843 Lynn E. Eccleston 35861
William K. West, Jr. 22057 W. Warren Taltavull 25647 Lawrence Harbin 27644 Frederick S. Frei 27105
evin E. Joyce eter W Gowd 25872 Paul E. White, Jr.
I.KINV}.;:NT R'S SIGIV/:\'FUFjg's?§ el tha-v\-’(.a\ N . Date __9)71‘5!9‘%‘,196A PALiRRR 36733
Inventor's Name (typed) David FARBER US.A.
First Mnddle Initial o« . Family Name Country of Citizenship
Residence (City) Ojai (State /Foreign Country) CA
Post Office Address (Include Zip Codc)%ﬂvr&dr jai, CA 93023 {2
z;zr: ~. 2—»\ [€D) o GlI{Y3 / .
2. INVENTOR'S SIGNATURE: ?ﬁ A __Date__ Gl ¥
Inventor's Name (typed)_Ronald LACHMAN ‘- USA.
First Mnddle Initial Family Name Country of Citizenship
Residence (City)__Northbrook (State /Foreign Country) 1L
Post Office Address (Inctude Zip Code)_3140 Whisperwoods Court, Northbrook, 11. 60062
3. INVENTOR'S SIGNATURE: Date
‘Inventor's Name (typed) _
First Middle Initial Family Name Country of Citizenship
Residence (City) (State/Foreign Country)

Prst Office Address (Include Zip Code)

JR ADDITIONAL INVENTORS, check box [| and attach sheet (CDC-116.2) for same information for each re signature. name, date, citizenship,

residence and address.)

GOOG-1018-Page 132 of 143

DC-116 795

PATENT APPLICATION SERIAL NO.

U.S. DEPARTMENT OF COMMERCE
PATENT AND TRADEMARK OFFICE
FEE RECORD SHEET

11/19/2001 AADOFO1 00000031 09987723

01 FC:101 740.00 0P
02 FC:102 924.00 OP
PTO-1556
(5/87)

*U.S. GPO: 2000-468-987/39595

GOOG-1018-Page 133 of 143

N ”j

- FORM PTO-873 (Rev. 8/01)

“HrU.5.GPO:2001 482.124 1 59197

Patent o OO G-1018-Page 134 of 143

Application or Docket Number
PATENT APPLICATION FEE.DETERMINATION RECORD %7 9 ’
Effective October 1, 2001 ’
CLAIMS AS FILED - PART | SMALL ENTITY OTHER THAN
(Column 1) Column 2 TYPE 1 OR SMALLENTITY
TOTAL CLAIMS . \ ;6 ' RATE FEE RATE | FEE
'FOR NUMBER FILED NUMBER EXTRA . BASIC FEE] 370.00 |oR[BASIC ree} 740.00
TOTAL CHARGEABLE CLAIMS \6 minus 20= |* (9 X$ 9= or| xs18= | & ,,
- ; P—
INDEPENDENT CLAIMS minus 3 = ‘ - = o di-
: Y m \ X42= or| x84= |goy
MULTIPLE DEPENDENT CLAIM PRESENT D ., ¥
. . +140= or| +280= | (-
* If the difference in column 1 is less than zero, enter “0” in column 2 TOTAL OR TOTAL || % [u -'
CLAIMS AS AMENDED - PART I OTHER THAN
LAI .
: ADDI- ADDI-
< REMAINING NUMBER - .
E AFTER PREVIOUSLY PEER:T RATE]TIONAL RATE | TIONAL
] AMENDMENT PAID FOR - FEE FEE
§ Total . * Minus ok = X$ 9= OoR| X$18=
E IndePenéent * Minus N ‘ = X42= oR ' X84=
FIRST PRESENTATION OF MULTIPLE DEPENDENT-CLAIM | | | - ,
i +140= OR| +280=
)
TOTAL OR TOTAL
ADDIT. FEE ADDIT. FEE
Column 2) (Column 3) .
CLAIMS
@] REMAINING NUMBER PRESENT ADDI- , ADDI- J
E AFTER PREVIOUSLY EXTRA RATE [JTIONAL RATE } TIONAL ()
i | AMENDMENT PAID FOR FEE FEE | ™
= .
g Total * Mlnu§ . = X$ 9= OR X$18= : g?'
%’ Independent |+« Minus sk = 4o on X84~ >
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM g § '
+140= OR] +280= —
TOTAL OR TOTAL g
ADDIT. FEE ADDIT. FEE ~
(Column 3) m
3) REMAINING NUMBER PRESENT ADDI- ADDI- |
E _ AFTER PREVIOUSLY EXTRA RATE |TIONAL RATE] TIONAL
S AMENDMENT PAID FOR FEE Fee (U
= : -
g Total Minus o = X$ 9= or | x$18=
E Independent |« Minus ¢ deck =
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM | |
+140= OR | +280=
* Ifth entry in column 1 is less than the entry in column 2, write “0” in column 3. =0T, i .
* |f the “Highest Number Pr viously Paid For* IN THIS SPACE is less than 20, enter “20.” ADD,I.OJQE OR ADD;OFTQ'E
***If the “Highest Number Pr viously Paid For” IN THIS SPACE is less than 3, enter “3.” :
“Highest Number Previously Paid For”™ (Total or Independent) is th hughest number found in the appropriate box in column 1.
ERCE

D w

SERIAL NO. ~ - FILING DATE
CLAIMS ONLY 094317 2
APPLICANT(S)
CLAIMS
ASFILED m»::‘r'fn‘:asm 2nd A::ET::MENT * " ¥
; IND. " DEP. IND. DEP. IND. DEP. IND. DEP. IND. DEP.
1 iy 51
2 Ty 52
3 |} / | 53
o B \WA 54
5 (1 55
6 / 56
7 57
8 / 58
9 \ V 59 | j—1
10 \/1l 60 |
1 A 61 {-—
12| {1 62 | +—
13 63 1
14 64 T
15 Ji 65 | 4
16 | 66
17 |1 | 67
18 / 68
19 69
20 70
21 71
22 72
23 / 73
24 [74
25 |\t 75 .
26) 76
27 77
28 |/ 78
20 || (79
30 [\ N 80
31 \ 81
2 || | 82
33 Y 11 83
34 \ WA 84
35] 1\ 85
36 [\ 86
s &7
% | | T &
39 TV 1\ 89
40 yi 1\ 80
4 A | 91
42 7Y | 92
a 11/) 83
4 I 94
45 L~ 95
46 —] 96
47 [— 97
48 | 98
49 — 99
50 [100
TOTAL . - ~-TOTAL
- {ND. ; d
TOTAL | -. 4-' -' T‘ON‘?AL);:‘ -' " .‘
DEP. . R : DEP.
SO iE e | e s e ko N
* MAY BE USED FOR ADDITIONAL CLAIMS OR ADMENDMENTS
~~~~~ _ U.S.DEPARTMENT OF COMMERCE
‘ oM PTO-2022 (1-85) Patent and Trademark Office
e n———

“U.S. Govemment Prh;lng Office: 1998 - 433-214/70303
' GOOG-1018-Page 135 of 143
P e Ty e ;- g N [ — / J

AdOD TEVIVAY 1S3g



L = | g,
’ ’ . :~.5fi

v

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

.In re PATENT APPLICATION of

« FARBER et al. | Group Art Unit: 2177

Examiner: Homere, Jean R.
Continuation of Appln. No. 09/283,160

Filed: November 15, 2001

IDENTIFYING AND REQUESTING DATA IN NETWORK USING IDENTIFIERS

For:
WHICH ARE BASED ON CONTENTS OF DATA (AS AMENDED)

% k k ¥ *

November 15, 2001

PRELIMINARY AMENDMENT

e TR B By 13

Hon. Commissioner of Patents
and Trademarks
Washington, D.C. 20231

Sir:

Please amend this application as follows:

i:
=7
E]

g 3
=3
Fasiat
-
Foe

INTHE TITLE:

Please replace the title with the following:

--IDENTIFYING AND REQUESTING DATA IN NETWORK USING IDENTIFIERS WHICH

B

ARE BASED ON CONTENTS OF DATA—

IN THE SPECIFICATION:

At the top of the ﬁrs‘tpag/e,just under the title, insert:

This is a continuation of Application No. 09/283,160, filed April 1, 1999, which is a
Yo continuation of 08/960,079, filed October 24, 1997, now abandoned, which is a
continuation of 08/425,160,. filed April 11, 1995, now abandoned.

GOOG-1018-Page 136 of 143




« - - L \
[N :

" - Farberetal- Cog)f Application No. 09/283,160

IN THE CLAIMS:

Please add the following new claims:

54. (New) A content delivery method, in a system in which a plurality of

a6 ¢27

files are d)stributed across a network of servers, at least some of the files being cached

versions of f\les from a source server distinct from the network of servers, the content

name of the particular Yjle, causing the particular file to be provided from a given one

of the servers of the network of servers.

55. (New) A content ) livery method, in a system in which a plurality of files

are distributed across a networkiof servers, at least some of the files being cached

o R B 5 @
g

versions of files from a source setyer distinct from the servers in the network, wherein

data in a file in the system may reptesent a digital message, a digital image, a video

signal or an audio signal, the content'delivery method comprising:

determining a name for a particylar file, the name being determined using an

= MD5 function of the data, said data being the data which comprises the contents of

the particular file; and
in response to a request for the particular file, the request including at least the
name of the particular file, providing the partigular data file from a given one of the

servers of the network of servers, said providing being based on the determined name.

56. (New) A content delivery method, in a System in which a plurality of files

are distributed across a network of servers, wherein spme processors in the network

communicate with each other using a TCP/IP commurcation protocol, the content

delivery method comprising:
for a particular file, the contents of said file represdnting a digital image,
determining a name for the particular file, wherein the name\is determined using a

given function of the data which comprises the cdntents of thq particular file; and

2 GOOG-1018-Page 137 of 143



A

Farber et al-Qlt. of Application No. 09/283,160 ‘

iﬁ respoﬁse to a request for the particular file, the request including at least the
name of th¥ particular file, providing the particular file from a given one of the servers

of the netwdgk of servers.

57. (Ne\) A content delivery method comprising:

causing a\plurality of files to be distributed across a network of servers, at
least some of the fijes being cached versions of files from a source server which is
distinct from the ne 6rk of servers;
for a particulalfile, determining a name, the name being determined using a
given function of the da{a, said data used by said function being data which comprises
the contents of the partic\ar file; and ‘

in response to a req\iest for the particular file, the request including at least the
name of the particular file, cjusing the particular file to be provided from a given one

of the servers of the network of servers.

ry method, in a system in which a plurality of files
are distributed across a network of jervers, at least some of the files being cached
versions of files from a source servek which is distinct from the network of servers,
the content delivery method comprisifg:

determining a name for a particylar file, the name being determined using a
given function of the data which comprisdes the contents of the particular file; and
in response to a request for the particular file, the request including at least the
name of the particular file, providing the pagticular file from a given one of the servers
of the network of servers,

wherein the contents of the particular fjle may represent a digital message, a

digital image, a video signal or an audio signal.

59. (New) A method, in a network compriiing a plurality of processors, some
of the processors functioning as servers and some df the processors functioning as
clients, wherein some processors in the network comymunicate with each other using a
TCP/IP communication protocol, wherein a key is required to identify a file on the

network, the method comprising:

GOOG-1018-Page 138 of 143




Farber et al-Qnt. of Application No. 09/283,160

shoring some files on a first server in the network and storing copies of some

of the filed from the first server on a set of cache servers distinct from the first server;

for A particular file, determining a different cache key from an ordinarily used
(
cache key fol the file, the different cache key being determined using a message

function MD5Yof the data, wherein said data comprises the contents of the particular

file; and
responsiva to a client request for the particular file, the request including the

different cache key\for the file, causing the particular file to be provided to the client,

wherein the cpntents of the file may represent: a page in memory, a digital

’b message, a digital imajge, a video signal or an audio signal.

60. (New) A contgnt delivery method comprising:
distributing a set of{\files from a first server across a network of servers distinct

é from the first server;
' :"‘ applying an MDS5 fundtion to the contents of a particular file to obtain a True
;":; Name for the file;
r the particular file, the request including at least the

in response to a request
True Name of the particular file, §ausing the particular file to be provided from a

given one of the servers of the netWork of servers, wherein the request for the

particular file is resolved based on a\measure of availability of at least one of the

SCIvers.

3

61. (New) A method as in claim 60 wherein the measure of availability for a

server is based on at least one of:

(a) a measurement of bandwidth to the server;
(bj a measurement of a cost of a conrlgction to the server, and
(c) a measurement of reliability of a cdpnection to the server.

4
GOOG-1018-Page 139 of 143




S
»

o B B

E

T

| N N

. (New) A content delivery method comprising:

distributing a plurality of files across a network of servers, at least some of the

files being dached versions of files from a source server distinct from the servers in -

the network;

responsive to {he request, causing the particular file to be provided from one of

the servers of the netw§rk of servers.

63. (New) A content delivery method, comprising:

distributing files across\a network of servers;
for a particular file having a contextual name specifying a location in the

network at which the file may be docated, determining another name for the particular

file, the other name including a datd identifier determined using a given function of

the data, where said data used by the\given function comprises the contents of the

particular file;

obtaining a request for the particylar file, the request including the contextual

name and the other name of the particulaj file,
responsive to the request, providing the particular file from one of the servers

of the network of servers, said providing being based on the other name of the

particular item.

5
' GOOG-1018-Page 140 of 143




I
>

b i

A g

T EE

T

Farber et al!ht. of Application No. 09/283,160

64. (Nev.v) A content delivery method, comprising;:
\stributing a set of files across a network of servers;
particular file representing a digital image, the file having a contextual

for
name speciffing a location in the network at which the file may be located,
determining afother name for the particular file, the other name including a True

responsive to théyrequest, providing the particular file from one of the servers

of the network of servers,\said providing being based on the True Name of the

particular item.

65. (New) A method c§mprising:
applying an MD5 functiyn to the contents of an image file containing data

representing a digital image to olitain a True Name for the file;

distributing copies of the ifgage file from a first server across a network of

servers distinct from the first server
obtaining a request for the imjge file, the request including at least the True

Name of the file; and
responsive to the request, causing a copy of the image file to be provided from

one of the servers of the network of servers.

IN THE ABSTRACT OF THE DISCLOSURE
Please replace the Abstract of the Disclosure with the attached new Abstract of

the Disclosure.

6
GOOG-1018-Page 141 of 143




~ e

i
oo 1

FORSETET" g,

.....

Application glrber et al, No. 09/283,160

REMARKS
By this Amendment, new claims 54 to 65 have been added. In addition, a new

Abstract has been provided and the title has been replaced. No new matter has been

added by these amendments, and approval of these amendments to the specification,

title and abstract is respectfully requested.
Respectfully submitted,

o Pl

Brian Smtzk

Reg. No. 37497

Tel. No.: (703) 905-2185
Fax No.: (703) 905-2500

1600 Tysons Boulevard,
McLean, Virginia 22102
(703) 905-2000

30238692v1]
eckee Gl

e

7
GOOG-1018-Page 142 of 143




L A A W o e T By Y

¢« o

Abstract of the Disclosure

In a system in which a set of data items are distributed across a network of servers, at
least some of the data items being cached versions of data items from a source server, a content
delivery method includes determining a data identifier for a particular data item, the data
identifier being determined using a given function of the date particular data
item; and responsive to a request for the particular data item, the request including at least the
data identifier of the particular data item, providing the particular data item from a given one of
the servers of the network of servers. The request for the particular data item may be resolved
based on a measure of availability of at least one of the servers, where the measure of availability
may be a measurement of bandwidth to the server; a measurement of a cost of a connection to

the server, and/or a measurement of a reliability of a connection to the server. The function used

to determine the identifier may be a message digest function or a hash function.

30239043V1
GOOG-1018-Page 143 of 143




