
GOOG-1018-Page 1 of 143

:51:= I—-

e: i :EK; a flat-4
‘hsfi‘ “’ IN THE UNITED STATES PATENT AND TRADEMARK 9‘... r:

4' ‘\"~E 7: ' OFFICE .. 2.35:"
. SE‘ 5” REQUEST FOR FILING vino_ fig

:3 (RULE 53(b)(1)) sci-E:
‘- 3 «‘5:I 89%

I For Desi n or Utilit A Iications 2%
' (DO NOT USE FOR ClPs)Rule 53(b)(1) PATENT APPLICATION:

[Z Continuation)
) application under 37 CFR 1.53(b)(1)

El Divisional)
Group Art Unit: 2771application under 37 CFR 1.53(b)(1)

of pending prior application of

‘ Examiner: Jean HOMERE
inventor(s): Farber et al.

Parent'AppIn. No.: 09 283,160 Atty. Dkt. P 283002 TN-Cont—2
Series Code 0 Serial No. 1.? MW! Client Ref

Parent Filed: April 1, 1999

This Appln. Filed: November 15, 2001

Title: ldentifiying Data in a Data Processing System

= Hon. Commissioner of Patents Date: November 15, 2001
.= Washington. DC 20231 (Parent Matter No. 252465)

' Sir:

1;: To effect the above-requested filing today:
;, = ‘ :

:5; 1. Attached is a copy (which must be filed) of the prior application, including:

%A '
:24,- IZ Abstract
;._.2 E Specification and claims (9_4 pages) (must be attached)
3.»; :fl Drawings (must be attached if originally filed): fl sheet(s)/set: E] 1 set informal;
2; ' Formal of size IZ A4 El 11"
f: 1A. A_|v__vays X one box, only:
t“ (1) IX] Copy of Signed declaration or oath as originally filed in prior application attached

(2) [3 fl declaration or fee is enclosed; therefore, this is a filing under Rule 53(f).

2. E] This application is hereby filed by less than all of the inventors named in the prior application. Petition is
hereby made requesting deletion as inventor(s) of the following who is/are n_c>t inventor(s) of the
invention being claimed in this application (DELETE THE FOLLOWING |NVENTOR(S)):

1 2.

3 4.

5 6.

7 8.

2-5 THE INVENTOR(S) FOR THIS NEW APPLICATION IS(ARE):

1. David A. FARBER 2. Ronald D. LACHMAN
3. 4.

5. 6.

7. 8.

3. The entire disclosure of the prior application is considered as being part of the disclosure of the accompanying
application and is hereby incorporated therein by reference thereto.

‘l
\

PAT-1 na 10/01
30238680_1.DOC ‘

" _ GOOG-1018-Page 1 of 143

GOOG-1018-Page 2 of 143

. Page 2 of 4

4. El Priority is claimed under 35 U.S.C. 119/365 based on filing in of ,
' ' (country)

Application No. Filing Date Application No. Filing Date
(1) <2)
(3) _______ _____ (4)
(5) ________ ____'_ (6)

a. [:1 _____4_ (No.) Certified copy/copies attached.
b. E] Certified copy/copies previously filed on in

US. Application No. / , filed on .
series code 1} 1} serial no.

c. |:l Certified copy/copies filed during International stage of PCT/ /

4. (a) |___] Domestic priority is claimed from / , filed
PCT/

(b) {:1 Benefit is claimed of Provisional Application No. 60/ , filed

5. IX Prior application is assigned to Kinetech, Inc. and Digital Island, Inc. respectively

by assignment recorded April 1,1995/ October 5, 2000 Reel 9873/11273 Frame 0463/0164.
(Date)

6. IX Attached is the following number of Assignments (including original and all later successive ones by

different assignors): 2 and respective new Cover Sheets. (Do NOT file old cover sheets.)

(Assignments in parent must be refiled with new Cover Sheets in this continuing application if you
want it/them recorded against the continuing application.)

Please return the recorded Assignment to the undersigned.

7. >14 The power of attorney in the prior application is to Dale §, Lazar, Beg, N9, g§,§12

(Name and Reg. No.)
whose current address is as in item 8 below.

a. Recognize as associate attorney Brian Siritzky, Reg. No. 37,497

(Name, Reg. No. and Address)

Address all future communications to Intellectual Property Group

of Pillsbury Winthrop LLP, 1600 Tysons Boulevard, McLean, VA 22102

9. Amend the specification by inserting before the first line the sentence:--This is a

[XI continuation El division of Application No. 09/283,160, filed April 1, 1999
series code 1} 1} serial no.

which is a continuation of 08/960,079, filed October 24, 1997, now abandoned, which is .--

a continuation of 08/425,160, filed April 11, 1995, now abandoned.

9. (a) E] Amend the specification by inserting before the first line: --This application claims the benefit of
Provisional Application No. 60/ , filed .—-

10. Small Entity Status is N_ot claimed E] is claimed (pre—filing confirmation reguired)

(No.) Small Entity Statement(s) (n_ot essential since 9/8/00) were/are:

U filed in above prior application
El attached.

11. Petition to extend the life of the above prior application flieisuh—egatehiegf

(m DOX) CI is being concurrently filed in that prior application (Use Form PAT-111).
(mu_st be) C] was previously filed in that prior application (Check length of prior extension).
(X'd) (XI is not necessary for copendency (Double check before X'ing this box).

30238680_1.DOC - DAT-1 “8 10/01

GOOG-1018-Page 2 of 143

GOOG-1018-Page 3 of 143

Page 3 of 4

INFORMATION DISCLOSURE STATEMENT: Attached is Form PTO-1449 listing all of the documents12. [XI
- cited by Applicant and the PTO in the parent application(s) relied upon under 35 USC 120 and
' referenced in item 9 above. Per Rule 98(d) copies of those documents are not reguired now. Please

consider those documents and advise that they have been considered in this new application as by

returning a copy of the enclosed Form PTO-1449 with the Examiner's initials in the left column per
‘ MPEP 609. .

13. |:I Attached is a Rule 103(a) Petition to Suspend Action.

14. E PRELIMINARY AMENDMENT to be entered before fee calculation: (Do n_ot make amendments here
except for correction of improper multiple dependencies or cancellation of whole claims or multiple
dependencies for purpose of reducing the filing fee per MPEP §§ 506 and 607; do n_o_t cancel all claims).

Please cancel claims_1-45 and 50-53.

FILING FEE

THE FOLLOWING FILING FEE IS BASED ON

->—>->->CLAIMS AS FILED AND CHANGED BY PRELIMINARY AMENDMENT IN ITEM 14<-<-<-<-

NOTE: If box 1A2 is X’d, do not pay fees,
but leave lines 15-22 and 27-32 blank.

"Ilifttill.i n
m: PLEASE NOTE CLAIM CANCELLATIONS IF BOX 14 ABOVE IS X’D.

“I.

Large/Small
Entiif;{til

15. Basic Filing FeeDesign Application
16. Basic Filin- Fee'Utilit A olication

(carry forward to Item 31)

23. El ATTACHED:

24. IZI Preliminary Amendment attached (to be entered after assigning Appln. No.)

25. I: See NONPUBLICATION REQUEST under Rule 213(a) attached (Pat-258)

PAT-1 08 10/0130238680_1 .DOC

GOOG-1018—Page 3 of 143

GOOG-1018-Page 4 of 143

I , Page 4 of 4
26. , ADDITIONAL FEE CALCULATION FOR . r

- ' PRELIMINARY AMENDMENT

" _ PER BOXES 24I25,

Claims Highest

‘ remaining number
after previously Present Additi nal
amendment paid for Extra Fee

Large/Small Entig File Code

27. Total Effective Claims *16 minus ** 20 = 0 x $18l$9 = $ 0 (103/203)

28. Independent Claims *14 minus *** 3 = 11 x $84l$42 = + 924 (102/202)

29. if amendment enters proper multiple dependent claim(s) into this application for the
first time, add (per application)$280/$140 + 0 (104/204)

ADDITIONAL FEE $ 030.

31. pig FEE from item 22 on page 3 + 820

E; 32. TOTAL FEE ATTACHED $ 1744

E 33. 'If the entry in this space is less than a entry in the next space, the “Present Extra" result is ‘0'

:: 34_ “It the “Highest number previously paid for” (see item 17 above) is less than 20, write “20' in this space

:5: 35_ If the ”Highest number previously paid for“ (see item 18 above) is less than 3, write “3' in this spacei 1

Our Deposit Account No. 03-3975
Our Order No. 007018 0283002

C# M#

 CHARGE STATEMENT: Upon the filing of a Declaration pursuant to Rule 60(b) or 60(d), the Commissioner is hereby

7‘ authorized to charge any fee specifically authorized hereafter, or any missing or insufficient fee(s) filed. or asserted to
%—= be filed. or which should have been filed herewith or concerning any paper filed hereafter, and which may be required

under Rules 16—18 (missing or insufficient fee only) now or hereafter relative to this application and the resulting
Official document under Rule 20, or credit any overpayment, to our Account/Order Nos. shown above for which

purpose a duplicate copy of this sheet is attached.
This CHARGE STATEMENT does fl! authorize charge of the issue fit? until/unless an issue fee transmittal
form is filed.

Pillsbury Winthrop LLP
Intellectual Prope ‘ Group

1600 Tysons Boulevard Reg. No. 37497
McLean, VA 22102 Tel: (703) 905-2000 Fax: (703) 905-2500

Tel: (703) 905-2135
BS/BS

Atty/Sec.
NOTE No. 1: File this Request in duplicate with 2 postcard receipts (PAT-103) & attachments

NOTE No. 2: Is extension in parent necessary for copendency? DOUBLE CHECK Item 11 above.

If yes, printout Pat-111 and head it in parent.

PAT-1 08 10/01

GOOG-1018-Page 4 of 143

30238680_1.DOC

GOOG-1018-Page 5 of 143

APPLICATION UNDER UNITED STATES PATENT LAWS

Atty. Dkt. No.

I“I

iiiIIEEIIII I

Invention:

Inventor (s):

III:III;iii"?III:«III:$7 ,,
I:

..I?"I
IIl

"u:I113;{lift

30238890_1 .DOC

PW 283002

(M#)

IDENTIFYING DATA IN A DATA PROCESSING SYSTEM

David A. FARBER

Ronald D. LACHMAN

DEIDEIDIEDD
El

SPECIFICATION

Pillsbury Winthrop LLP

Intellectual Property Group

1600 Tysons Boulevard
McLean, VA 22102

Attorneys

Telephone: (703) 905-2000

This is a:

Provisional Application

Regular Utility Application

Continuing Application
IZI The contents of the parent are incorporated

by reference

PCT National Phase Application

Design Application

Reissue Application

Plant Application

Substitute Specification

Sub. Spec Filed

in App. No. /

Marked up Specification re

Sub. Spec. filed

. In App. No /

PAT~100 a/oo

GOOG-1018-Page 5 of 143

GOOG-1018-Page 6 of 143

momwmoommNow

mow

mowwmoomm«or

Sfiéfi

mOwwmoomm

mommmoommNov
woSmDvm0<m0hmwea

3:a:
53'2.:w.L

....

L‘

E§s#%%§§%

mowwmoommNev..353$555

GOOG-10'18-Page 6 of 143

GOOG-1018-Page 7 of 143

m<«2,

>mOs_ms_

g.Qmm“m"my.HawLu.a:a:mm,3Za.
 .memmmoomn.

a....0:
GOOG-1018—Pagé 7 of 143

GOOG-1018-Page 8 of 143

thEOmw.
NNF

m.=u_
cwr

>m,o._.omm_o.
m_._.

FZMEOmmhszOmw«NF.«Ne...m.=n_me".ourcari...5.28%5.98% .. .”Fr“Fr55%‘N07.
a:we".3.QE"mHmy,Nu.m,”ana,a:“a,mmZa.

GOOG-1018—Pagé 8 of 143

GOOG-1018-Page 9 of 143

1F“£13135H!l I

.as:I"

"E?"ii?"'3i:Eiii!412;
n.

“337flE331"ii.

' Size

FIG 3 ' .38.
—'

_

_

FIG. 4 '

_

‘ . I42 ,

FIG. 5

GOOG-1018—Page 9 of 143

GOOG-1018-Page 10 of 143

I3:,Om..

 mamzmane

!
Hugomomumv

mi

mamamane

 l5
co«uaum.o

‘mawzHmcw.auo

o¢_

nodumooamousom

...mafia-flu—Oogom

VS,

figflfififififla%fi%fifig

”.9...Na:m.0:

GOOG-1018—Page 10 of 143

GOOG-1018-Page 11 of 143

‘{sail4:2:153:H2311{Eu[15
""IN{11;:L

will?it]!ifiii"i137‘IET"i137”’'

FIG. now)

simple
DA TA ITEM

’p

COMPUTE MD FUNCTION ON

DATA ITEM

8214

APPEND LENGTH'MODULO 32 OF

DATA ITEM

-——_-—-—_-—_-__--..-_-__—-~ ~-........-——--————_._.---—._—'
TRUE NAME

1

GOOG-1018—Page 11 of 143

GOOG-1018-Page 12 of 143

EMEEMMMM
I.I

13[CH{EMIIT‘IIT“IE?
I

."l

$216

DATA ITEM

SIMPLE?

FIG. IOI'b)‘YES

 $220

PARTITION DATA ITEM INTO
SEGMENTS

$222

 ASSIMILATE EACH SEGMENT

 (COMPUTING ITS TRUE NAME)

' ' ' ' 's'21’8"""

COMPUTE TRUE :

; NAME OF SIMPLE :
' I

| DATA ITEM . 3224————————————— I

CREATE INDIRECT BLOCK OF

SEGMENT TRUE NAMES

8226

ASSIMILATE INDIRECT BLOCK

(COMPUTING ITS‘TRUE NAME)

8228

REPLACE FINAL 32 BITS OF TRUE

NAME WITH LENGHT MOD 32 OF DATA

ITEM

GOOG-1018—Page '12 of 143

GOOG-1018-Page 13 of 143

n:m..=n_map—b33.

n:MAEmhmfiowmwm

mangmmzko._.mw..n:mau—mmOHw..—.O...#2300mm:hmw.>m._.zm>>mzm._.<mmo.

no.we“.w><I>m._.zwwmoomm>

mmuw

«him—0mmw.=n_may:2—hum—xmms_<zmam...wmoo mE<zmay:mz__2mm._.moommm

__.9“.

Q.5flufifiufiwwaa:aa:Einmm:

GOOG-1018—Page 13 of 143

GOOG-1018-Page 14 of 143

"113'{[1133131113”ii?313'iii:III}!III:A:Eli3&1£3{E}

FIG. I2

8238 ' 3240
UPDATEFILE

DEPENDENCY

LOCKED? UST

$242

SEND MESSAGE TO

CACHE SERVER TO
UPDATE CACHE

8244

COMPRESS

(IF DESIRED)

 $246

" MIRROR

(IF DESIRED)

GOOG-1018—Page 14 of 143

GOOG-1018-Page 15 of 143

Iii:E21!It:tut”;fl(Ein-lExiL'li!
J37“1i?"’I
II]
"i“5

$131.

"I?11:11

8250

SEARCH FOR

THE

PATHNAME

FOUND

LDE INCLUDES

TRUE NAME?

$258

ASSIMILATE

FILE ID

FAIL

LDE IDENTIFIES

DIRECTORY?

YS

$256

FREEZE

DIRECTORY

GOOG-1018—Page 15 of 143

GOOG-1018-Page 16 of 143

:531E}.xii;«a:33’[IE{finIII}!
"III?HE!Ex"It?If:'15

$260

CONFIRM THAT

TRUE NAME

EXISTS LOCALLY

3262

SEARCH FOR

PATHNAME IN

LDE TABLE

$264

CONFIRM THAT

DIRECTORY '

EXISTS

 $266

NAMED FILE

EXISTS?

$270

CREATE

ENTRY IN LDE

& UPDATE

FIG.I4

 8268 '
DELETE

TRUE FILE

GOOG-1018—Page 16 of 143

GOOG-1018-Page 17 of 143

mmZOnwmm

2.10:

69.5%."awe".may...tam;~me

mnz.o._.z_amzmzhmmMAEmam...awhzmonmw

w.=u_oz."—ommm

m>Ewom

mmZOmmmm

mo...—.:<>>PZDOEam0<mwm2hmmzcmm

FE02mm

 mmzommmmEm
m>_._.<wmz

:Nw

«mammmoom.<22.200.—9.aSQ.me“mm2,,“mymmL.hma;g.Erma.
wm>

GOOG-1018—Page 17 of 143

GOOG-1018-Page 18 of 143

.....HJWJ.TII-mmzommumms.Rom

mhzéshzmfiowwwm

ks”M§=hmmzomwmmwhm<on<0mmm>tzwm2
 .hzmfio35.0....§

mm>

QMHOMJM
£<umemwmoomm

 >z<mmwm

anwmmooE953$hzmfiovaw

Sgflfifififiwgfi%%fifig

to.

GOOG-1018—Page is of 143

GOOG-1018-Page 19 of 143

 .5...ch22oz<mowmmoomm .E\/Ew>m

momaowzo
mfifluflwfififi«91Awfiflwflm3:may:m>mmmmm-2.$5meozmw

Sam08%
0Sum

w_2<zmam...«anwemoxzowO,._.n:zo_._.<oo._MOM—Domoo<ams_<zmam...mo".mm...n5x00.—momwm

m20F<szmo20m".mmmuu—EmE<zmax..."—0mom—30m

a.«8809:.E05omwm

QQ:23“a3mm:m“wig:a,Ewan”:.

36..o:

GOOG-1018—Page 19 of 143

GOOG-1018-Page 20 of 143

no.m.=n_ommmmmmioo

mmmmmsoomo

mamamm>mamaoz

95%254mo”.9we".
mm>

$522mam...mo“.mu...2.>mhzmm.=u_m:.«mum

.__<.._

,oz

3a“Q“flux”Himmmwaa:gr.$me3Q,
E:.9“.

GOOG-1018—Page 20 of 143

GOOG-1018-Page 21 of 143

BE.9“.

comm o_mmOkw

O

 Emomaow20Em.__u_ms”:mugfimcomm

mammkosmmwh<004womw

mo_mom30m‘.howdmmvomm

mum:>EhozNomw33§§%%%§5%%%§§%

GOOG-1018—Page 21 of 143

GOOG-1018-Page 22 of 143

mm:

.260...m..."—mDE.$.32mmmm

wan.mam...mam-En3mm

3...".max...mo".0.m.=u_

$47.was.no>moomm
3a.QwmyEE.wa...hm,hm“.M“:Za;

 w.=n_:o._.<momEmzmhfimooumw«mg—n.mam...ozFflxmmmr—Fzmo.mo.—

GOOG-1018—Page 22 of 143

GOOG-1018-Page 23 of 143

 b.2300
 >mhzmmmnhzwfimmomoMmhm>02mm.m4m<hmogz_an:m.=n_m><wa.MAEmmOhm£4."—mmmw>>m2o._.MAE>moo

88

BE.0:

mm;0QQE””.3"my.my.mm.mmaup.9..g:E5up.

GOOG-1018—Page 23 of 143

GOOG-1018-Page 24 of 143

Emt<._.<ogmzwhfimoNmmw>mo._.omm_ozw>_0

we".a:2_5.98%8535522:fiwwflfi.oz<5.".‘E5552memwizamomsm835%mo".32a:

x00...MNmmmn—hszmmoE«mmw

ESQfinafifiuflaaawfmwfig:..l5:::-

GOOG-1018—Page 24 of 143

GOOG-1018-Page 25 of 143

2:2.9“.

zo_._.<_2mou_z_

ovmm

3“”QQ”m..__J.3.5...._....:5:
2m:

omEmmo.<._.<o262._<zoE8<2EtaRE
28%..

wmmw

....fl...a:m......
53wx...”r:

xoOA.mmmEmEhzmfimmowovvmm smE<5652m5E5552Nvmw5.55.0mezw>_0ME.2.>mo._.om~=onz<m.=u_m._.<z_omom:w:o<mmo".

GOOG-1018—Page 25 of 143

GOOG-1018-Page 26 of 143

ms_<zmay;0...I._.<n_v.2...Nmmm

ms_<z:._.<n_4.5".m._.<mmoommw

>m._.zm>mo._.omm_n:05mo".38

>m0hom~=o9mm38

mm_m._.zmmac—zOz

4<ooJm43mamhmx<z9.8

cm.oE

”Q5m“.fl:"EMmm...“aEw“3..g.hm:5E“s,

GOOG-1018—Page 26 of 143

GOOG-1018-Page 27 of 143

If:3:8Eiii"i13"1131E"133}:RE?£1?«£1EB{£3334ffiiuI’ll

 S354

WAIT FOR

FREEZE LOCK

TO TURN OFF

S356

FIND TFR

ENTRY

$358
DECREMENT

REFERENCE

COUNT

REFERENCE COUNT IS

ZERO & NO DEPENDENT

SYSTEMS IN TFR?

FIG.2|

 v 8362

DELETE

TRUE FILE

S364

REMOVE FILE ID .

AND COMPRESSED

FILE ID

GOOG-1018—Page 27 of 143

-‘..____...____._____—_.—-——«--

GOOG-1018-Page 28 of 143

“fiflflmfl
IF'

IE“:4‘“
,m

gEME
"1123'“If
[in

WW

S365

GET :

OPERATION

FIG. 22

S366

CREATEOR

mommn

YES

 COPY OR DELETE YES

COMPOUND?

S378

MODIFY USE "

COUNT OF EACH

COMPONENT

8379

FOR EACH PARENT

DIRECTORY OR FILE,

UPDATE USE COUNT,
LAST ACCESS AND

MODIFY TIMES

$368

ASSIMILATE

S369 --

NENTRUE
FmE

S370

RECORD TRUE

NAME IN AUDIT

FILE ' I

GOOG-1018—Page 28 of 143

GOOG-1018-Page 29 of 143

is
r‘‘
l

eel:5:255333!IE1!Iw
:21gr"

{m
m“

5133'8:31155"Ill?“HI”???"51335.1;

$382

VERIFY

S384

SET

LOCK

8386

COUNTS

GROOMING

LOCK OFF

GROOMING

SET GROOM

GOOG-1018—Page 29 of 143

GOOG-1018-Page 30 of 143

13%a:£3;1133511333111351:{EH
1.it“E

wwfifirwm

S388

FIND LDE

RECORD

 S390

FIND TFR

RECORD

 S392

INCREMENT

GROOMING

DELETE COUNT

$394

ADJUST FILE

SIZES

FIG. 24

GOOG-1018—Page 30 of 143

GOOG-1018-Page 31 of 143

FIG. 25

afiwwmm
“I".

'32“''31
«4

iinu 1"Wu“
$1

$398

UNLOCK

GROOMING

*= LOCK

1K”U
E

“‘1«a:|w
GOOG-1018—Page 31 of 143

GOOG-1018-Page 32 of 143

«MAE.Io._.<mow2:5

zmmotmfommmwvw

mm>

20—03.szEmEomovm

mum.Q5W".mmmMmH4WW5Bum

 >._zo.o<mm

zmmo._._m_:ommvovw

«>420o...9553m..."—

%%%fi§%

 «omhkmmo”oz—mmNova

GOOG-1018—Page 32 of 143

GOOG-1018-Page 33 of 143

. a":so”:9m4:zmamma206mm;._<oo.._mv._<_2owvm.

2:0de

n:m.=n_:o._.<m0wzmahmmvmvw

m.=u_:o._.<momm._.<mm085.

>mooIoonmm._.<mmoN2%

w..=n_mmém

zm._.._._m>>m.>._m._.m._n=zoo02mmmwwm

05.00..—.Fozn:v.00.—mwvw

«Our—9‘0w..=..._

23§§%%E¥E%%%fi§%5...,1:-_

GOOG-1018—Page 33 of 143 ,

GOOG-1018-Page 34 of 143

ER.0:

zoFmfio._._m=._omm
3figQ"mm

it“.5.2.".aid:

wa%%%§§%
_~...ra.a.mu...

mE<zmam...20m”.m..."—mnE.>n=hzm2vmvw

«55.5%.;—Ezoéfim2.mo$550...w..."—

.m.=m_mou—mom—00mm>m._.zmkmama...wEEmWfiovaw .Oomoommmo.—0..

GOOG-1018—Page 34 of 143

GOOG-1018-Page 35 of 143

ES35:8mm:museumrmvw

w.=u_:92O._.>m._.zmno<wmvm

 MAEmam...mhwjmoomvw

m..=u_mo>moo10.530”ukwgmonwvm

 m.#2300mm:w.m..__n_may:

mm;

$522may:02oz91..m3."—
.m;

E=meQME“”Nu.Hmm”m“wa.Erma“mu.,9:

GOOG-1018—Page 35 of 143

GOOG-1018-Page 36 of 143

|\

waOmmmmm>_._.<0mzmmvw

mmZOmwmmHEP—won..vvvw

«a.m..."—

~bmnx<>>m0uhwmsamm,
mewMMms—OoMO

mmo._.hwm30mm0535.0".a.MAEmun—3.52vaw«0230....vmvwozwm>msizmat_".36335

mm.9“.

1:::JJ,_..::..¢..E;.5,.nz=asE.....~....;”:swig......a»J5.1w:5::L“.mu.i.5.=5.:2.E,

GOOG-1018—Page 36 of 143

GOOG-1018-Page 37 of 143

"332‘13:313333."Hi7"33:"33'“‘3333333'31'3133:Eli33in£13.51:ij
10

15

20

25

30

7018/213987

\

BACKGROUND OF THE INVENTION

535-“
1. Field of the invention

This invention relates to data processing

systems and, more particularly, to data processing.

systems wherein data items are identified by

substantially unique identifiers which depend on all of

the data in the data items and only on the data in the

data items.

2. Background of the Invention

Data processing (DP) systems, computers,

networks of computers, or the like, typically offer users

and programs various ways to identify the data in the

systems. ‘

Users typically identify data in the data

processing.system by giving the data some form of name.

For example, a typical operating system (OS) on a

computer provides a file system in which data items are

named by alphanumeric identifiers. Programs typically

identify data in the data processing system using a

location or address. For example, a program may identify

a record in a file or database by using a record number

which serves to locate that record.

In all but the most primitive operating

systems, users and programs are able to create and use

collections of named data items, these collections

themselves being named by identifiers.

be made part of other

These named

collections can then, themselves,

named collections. For example, an_OS may provide

mechanisms to group files (data items) into directories

(collections). These directories can then, themselves be

made part of other directories. A data item may thus be

identified relative to these nested directories using a

GOOG-1018—Page 37 of 143

GOOG-1018-Page 38 of 143

ufimflw ‘

'fiflfiim*r.
:5.

as;

wwmwrwwafi

10

15

20

25

30

35

sequence of names, or a so-called pathname, which defines

a path through the directories to a particular data item

(file or directory).

As another example, a database management

system may group data records (data items) into tables

and then group these tables into database files

(collections). The complete address of any data record

can then be specified using the database file name, the

table name, and the record number of that data record.

other examples of identifying data items

include: identifying files in a network file system,

identifying objects in an object-oriented database,

identifying images in an image database, and identifying

articles in a text database.

In general, the terms "data" and "data item" as

used herein refer to sequences of bits. Thus a data item

may be the contents of a file, a portion of a file, a

page in memory, an object in an object-oriented program,

a digital message, a digital scanned image, a part of a

video or audio signal, or any other entity which can be

represented by a sequence of bits. The term "data

processing" herein refers to the processing of data

items, and is sometimes dependent on the type of data

item being processed. For example, a data processor for

a digital image may differ from a data processor for an

audio signal.

In all of the prior data processing systems the

names or identifiers provided to identify data items (the

data items being files, directories, records in the

database, objects in object-oriented programming,

locations in memory or on a physical device, or the like)

are always defined relative to a specific context. For

instance, the file identified by a particular file name

can only be determined when the directory containing the

file (the context) is known. The file identified by a

pathname can be determined only when the file system

(context) is known. Similarly, the addresses in a

GOOG-1018—Page 38 of 143

GOOG-1018-Page 39 of 143

r‘\

10

15

20‘

25

30

35

process address space, the keys in a database table, or

domain names on a global computer network such as the

Internet are meaningful only because they are specified

relative to a context.

In prior art systems for identifying data items

there is no direct relationship between the data names

and the data item. The same data name in two different

contexts may refer to different data items, and two I

different data names in the same context may refer to the
same data item.

In addition, because there is no correlation

between a data name and the data it refers to, there is

no a priori way to confirm that a given data item is in

fact the one named by a data name.. For instance, in a DP

system, if one processor requests that another processor

deliver a data item with a given data name, the}

requesting processor cannot, in general, verify that the

data delivered is the correct data (given only the name).

Therefore it may require further processing, typically on

the part of the requestor, to verify that the data item

it has obtained is, in fact, the item it requested.

A common operation in a DP system is adding a

new data item to the system. When a new data item is

added to the system, a name can be assigned to it only by
updating the context in which names are defined. Thus

such systems require a centralized mechanism for the

management of names. Such a mechanism is required even

in a multi-processing system when data items are created

and identified at separate processors in distinct
locations, and in which there is no other need for

communication when data items are added.

In many data processing systems or

environments, data items are transferred between

different locations in the system. These locations may

be processors in the data processing system, storage

devices, memory, or the like. For example, one processor

may obtain a data item from another processor or from an

GOOG-1018—Page 39 of 143

GOOG-1018-Page 40 of 143

amw
u
ii

...
a:u

,rII1"dim.d!“
m.,3! w.

ll...“k.II“n.

nau-m
‘u

“2‘...n

WMHW.

10

15

20

25

30

35

external storage device, such as a floppy disk, and may

incorporate that data item into its system (using the

name provided with that data item).

However, when a processor (or some location)

obtains a data item from another location in the DP

system, it is possible that this obtained data item is

already present in the system (either at the location of

the processor or at some other location accessible by the

processor) and therefore a duplicate of the data item is
created. This situation is common in a network data

processing environment where proprietary software

products are installed from floppy disks onto several

processors sharing a common file server. In these

systems, it is often the case that the same product will

be installed on several systems, so that several copies

of each file will reside on the common file server.

In some data processing systems in which

several processors are connected in‘a network, one system
is designated as a cache server to maintain master copies

of data items, and other systems are designated as cache

clients to copy local copies of the master data items

into a local cache on an as-needed basis. Before using a

cached item, a cache client must either reload the cached

item, be informed of changes to the cached item, or

confirm that the master item corresponding to the cached

item has not changed. In other words, a cache client

must synchronize its data items with those on the_cache

server. This synchronization may involve reloading data

items onto the cache client. The need to keep the cache

synchronized or reload it adds significant overhead to

existing caching mechanisms. ’

In view of the above and other problems with

prior art systems, it is therefore desirable to have a

mechanism which allows each processor in a multiprocessor

system to determine a cemmon and substantially unique

identifier for a data item, using only the data in the

data item and not_relying on any sort of context.

4

GOOG-1018—Page 40 of 143

GOOG-1018-Page 41 of 143

kaEMfl
A"‘
1",?

m":31\1m.

Wflflwwwmt
\“u«am y

10

15

20

25

30

35

It is further desirable to have a mechanism for

reducing multiple copies of data items in a data

processing system and to have a mechanism which enables

the identification of identical data items so as to

reduce multiple copies. It is further desirable to

determine whether two instances of a data item are in

fact the same data item, and to perform various other

systems’ functions and applications on data items without

relying on any context information‘or properties of the

data item.

It is also desirable to provide such a

mechanism in such a way as to make it transparent to

users of the data processing system, and it is desirable

that a single mechanism be used to address each of the

problems described above.

SUMMAR! Of IEE INVENEION
This invention provides, in a data processing

system, a method and apparatus for identifying a data

item in the system, where the identity of the data item
depends on all of the data in the data item and only on

the data in the data item. Thus the identity of a data

item is independent of its name, origin, location,
address, or other information not derivable directly from

the data, and depends only on the data itself.

This invention further provides an apparatus

and a method for determining whether a particular data

item is present in the system or at a location in the

system, by examining only the data identities of a

plurality of data items.

Using the method or apparatus of_the present

invention, the efficiency and integrity of a data

processing system can be improved. The present invention

improves the design and operation of a data storage

system, file system, relational database, object-oriented

database, or the like that stores a plurality of data

items, by making possible or improving the design and

GOOG-1018—Page 41 of 143

GOOG-1018-Page 42 of 143

H(x
KI1

3I(

HEM
'H’51

mUna“4%

“mmnmm..m“.wa,“I“Hm“

WMHEW

10

15

20

25

30

35

operation of at least some or all of the following

features:

the system stores at most one copy of any data

item at a given location, even when multiple data names

in the system refer to the same contents;

the system avoids copying data from source to

destination locations when the destination locations

already have the data;

the system provides transparent access to any

data item by reference only to its identity and

independent of its present location, whether it be local,

remote, or offline;

the system caches data items from a server, so

that only the most recently accessed data items need be

retained;

when the system is being used to cache data

items, problems of maintaining cache consistency are

avoided;

the system maintains a desired level of

redundancy of data items in a network of servers, to

protect against failure by ensuring that multiple copies

of the data items are present at different locations in

the system;

the system automatically archives data items as

they are created or modified;

the system provides the size, age, and location

of groups of data items in order to decide whether they

can be safely removed from a local file system;

the system can efficiently record and preserve

any collection of data items;
the system,can efficiently make a copy of any

collection of data items, to support a version control

mechanism for groups of the data items;

the system can publish data items, allowing

other, possibly anonymous, systems in a network to gain

access to the data items and to rely on the availability

of the data items;

GOOG-1018—Page 42 of 143

GOOG-1018-Page 43 of 143

:Ifiiuiii:i113!
“L3333!
v"1"a!“«Li

IllHum- “mm“.amp

n i

"EL""11?.”"If
g““31"

"iii?M‘5‘

10

15

20

25

3O

35

the system can maintain a local inventory of

all th data items located on a given removable medium,

such as a diskette or CD—ROM, the inventory is

independent of other properties of the data items such as

their name, location, and date of creation;

the system allows closely related sets of data

items, such as matching or corresponding directories on

disconnected computers, to be periodically resynchronized

with one another; V

the system can verify that data retrieved from

another location is the desired or requested data, using

only the data identifier used to retrieve the data;

the system can prove poSsession of specific

data items by content without disclosing the content of

the data items, for purposes of later legal verification

and to provide anonymity;

the system tracks possession of specific data

items according to content by owner, independent of the

name, date, or other properties of the data item, and

tracks the uses of specific data items and files by

content for accounting purposes.

other objects, features, and characteristics of

the present invention as well as the methods of operation

and functions of the related elements of structure, and

the combination of parts and economies of manufacture,

will become more apparent upon consideration of the

following description and the appended claims with

reference to the accompanying drawings, all of which form

a part of this specification.

E C ON 0 THE DRAWINGS;

FIGURE 1 depicts a typical data processing

system in which a preferred embodiment of the present

invention operates;

FIGURE 2 depicts a hierarchy of data items

stored at any location in such a data processing system;

GOOG-1018—Page 43 of 143

GOOG-1018-Page 44 of 143

:12}:Isis53in“1
y‘" n“‘

AEW¢
.

"1;“-m i”

fiflflfifi

10

15

20

25

30

35

FIGURES 3-9 depict data structures used to
implement an embodiment of the present invention; and

FIGURES 10(a)—28 are flow charts depicting

operation of various aspects of the present invention.

DETAILED DESCRIPELON 9E EEE PRESENTLY PREFEBBED
EXEMPLAR! EMBODIMENTS

An embodiment of the present invention is now

described with reference to a typical data processing

system 100, which, with reference to FIGURE 1, includes

one or more processors (or computers) 102 and various

storage devices 104 connected in some way, for example by

a bus 106.

Each processor 102 includes a CPU 108, a memory

110 and one or more local storage devices 112. The CPU

108, memory 110, and local storage device 112 may be

internally connected, for example by a bus 114. Each

processor 102 may also include other devices (not shown),

such as a keyboard, a display, a printer, and the like.

In a data processing system 100, wherein more

than one processor 102 is used, that is, in a

multiprocessor system, the processors may be in one of

various relationships. For example, two processors 102

may be in.a client/server, client/client, or a

server/server relationship. These inter—processor

relationships may be dynamic, changing depending on

particular situations and functions. Thus, a particular

processor 102 may change its relationship to other

processors as needed, essentially setting up a peer-to-

peer relationship with other processors. In a peer-to-"

peer relationship, sometimes a particular processor 102

acts as a client processor, whereas at other times the

same processor acts as a server processor. In other

words, there is no hierarchy imposed on or required of

processors 102.

' In a multiprocessor system, the processors 102

may be homogeneous or heterogeneous. Further, in a

8

GOOG-1018—Page 44 of 143

GOOG-1018-Page 45 of 143

fiflfififla
I

m,w m“ma\‘m‘s\L-n
"u:“’£

l

I"{u

3:.“‘1
\

“fifi?
Lu
1x

'E

10

15

20

25

30

35

multiprocessor data processing system 100, some or all of

the processors 102 may be disconnected from the network

of processors for periods of time. Such disconnection

may be part of the normal operation of the system 100 or

it may be because a particular processor 102 is in need

of repair. '

Within a data processing system 100, the data

may be organized to form a hierarchy of data storage

elements, wherein lower level data storage elements are

combined to form higher level elements. This hierarchy

can consist of, for example, processors, file systems,

regions, directories, data files, segments, and the like.

For example, with reference to FIGURE 2, the data items

on a particular processor 102 may be organized or

structured as a file system 116 which comprises regions

117, each of which comprises directories 118, each of

which can contain other directories 118 or files 120.

Each file 120 being made up of one or more data segments

122. ‘

In a typical data processing system, some or

all of these elements can be named by users given certain

implementation specific naming conventions, the name (or

pathname) of an element being relative to a context. In

"the context of a data processing system 100, a pathname

is fully specified by a processor name, a filesystem

name, a sequence of zero or more directory names

identifying nested directories, and a final file name.

(Usually the lowest level elements, in this case segments

122, cannot be named by users.)

In other words, a file system 116 is a

collection of directories 118. A directory 118 is a

collection of named files 120 —— both data files 120 and

other directory files_118. A file 120 is a named data

item which is either a data file (whiCh may be simple or

compound) or a directory file 118. A simple file 120

consists of a single data-segment 122. A compound file

120 consists of a sequence of data segments 122. A data

GOOG-1018—Page 45 of 143

GOOG-1018-Page 46 of 143

fifiwflIf.

,.d
1

"rI?“ -l

n‘

my""I,U»...

a..."fill?"
“I

“F...

,W

'K

nu.“
«'1(Inm

"'11!wr-
“flu.

u“

10

15

20

25

30

35

r

segment 122 is a fixed sequence of bytes. An important

property of any data segment is its size, the number of

bytes in the sequence.

A single processor 102 may access one or mor

file systems 116, and a single storage device 104 may

contain one or more file systems 116, or portions of a

file system 116. For instance, a file system 116 may

span several storage devices 104.

In order to implement controls in a file

system, file system 116 may be divided into distinct

regions, where each region is a unit of management and

control. A region consists of a given directory 118 and

is identified by the pathname (user defined) of the

directory.

In the following, the term "location", with

respect to a data processing system 100, refers to any of

a particular processor 102 in the system, a memory of a

particular processor, a storage device, a removable

storage medium (such as a floppy disk or compact disk),

or any other physical location in the system. .The term

”local" with respect_to a particular processor 102 refers

to the memory and storage devices of that particular

processor.

In the following, the terms "True Name", "data

identity" and I'data identifier" refer to the

substantially unique data identifier for a particular

data item. The term "True File" refers to the actual

file, segment, or data item identified by a True Name.

A file system for a data processing system 100

is now described which is intended to work with an

existing operating system by augmenting some of the

operating system’s file management system codes. The

embodiment provided relies on the standard file

management primitives for actually storing to and

retrieving data items from disk, but uses the mechanisms

of.the present invention to reference and access those

data items.

10

GOOG-1018—Page 46 of 143

GOOG-1018-Page 47 of 143

flixifiiniifil 1

:W

mgww wW‘xuuduw.
w

*1

T"E"¢"K‘”$§.

10

15

20

25

30

35

".5

The processes and mechanisms (services)

provided in this embodiment are grouped into the

following categories: primitive mechanisms, operating

system mechanisms, remote mechanisms, background

mechanisms, and extended mechanisms.

Primitive mechanisms provide fundamental

capabilities used to support other mechanisms. The

following primitive mechanisms are described:

1. Calculate True Name;

2. Assimilate Data Item;

3. New True File;

4. Get True Name from Path;

5. Link path to True Name;

6. Realize True File from LOCation;

7. Locate Remote File;

8. Make True File Local;

9. Create Scratch File;

10. Freeze Directory;

11. Expand Frozen Directory;

12. Delete True File;

13. Process Audit File Entry;

14. Begin Grooming;

15. Select For Removal; and

16. End Grooming.

Operating system mechanisms provide typical

familiar file system mechanisms, while maintaining the

data structures required to offer the mechanisms of the

present invention. Operating system mechanisms are

designed to augment existing operating systems, and in

this way to make the present invention compatible with, _

and generally transparent to, existing applications. The

following operating system mechanisms are described:

1. Open File;

2. Close File;

3. Read File;

4. Write File;

5. Delete File or Directory;

11

GOOG-1018—Page 47 of 143

GOOG-1018-Page 48 of 143

{flflflfll «c1

“1w,\(
n|{{n:

fifimwmflflV
my
id

WK

10

15

20

25

3O

35

6. Copy File or Directory;

7. Move File or Directory;

8. Get File Status; and

9. Get Files in Directory.

Remote mechanisms are used by the operating

system in responding to requests from other processors.

These mechanisms enable the capabilities of the present

invention in a peer-to—peer network mode of operation.

The following remote mechanisms are described:

1. Locate True File;

2. Reserve True File;

3. Request True File;

4. Retire True File;

5. Cancel Reservation;

6. Acquire True File;

7. Lock Cache;

8. Update Cache; and

9. Check Expiration Date.

Background mechanisms are intended to run

occasionally and at‘a low priority. These provide

automated management capabilities with respect to the

present invention. The following background mechanisms
are described:

1. Mirror True File;

2. Groom Region;

3. Check for Expired Links; and

4. Verify Region; and

5. Groom Source List.

Extended mechanisms run within application-

programs over the operating system. These mechanisms

provide solutions to.specific problems and applications.‘

The following extended mechanisms are described:

1. Inventory Existing Directory; A

2. Inventory Removable, Read-only Files;

‘3. Synchronize directories;

4. Publish Region;

5. Retir Dir ctory;

12

GOOG-1018—Page 48 of 143

GOOG-1018-Page 49 of 143

‘23.?{FitslliiinUIII“
:4"

‘1‘...

12"3‘?“1’" .M“«l...
‘"$1..In I

|

"I?"1.1
lI

10

15

20

25

3O

6. Realize Directory at location;

7. Verify True File;

8. Track for accounting purposes; and

9. Track for licensing purposes.

The file system herein described maintains

sufficient information to provide a variety of mechanisms

not ordinarily offered by an operating system, some of

which are listed and described here. Various processing

performed by this embodiment of the present invention

will now be described in greater detail.

In some embodiments, some files 120 in a data

processing system 100 do not have True Names because they

have been recently received or created or modified, and

thus their True Names have not yet been computed. A file

that does not yet have a True Name is called a scratch

file. The process of assigning a True Name to a file is

referred to as assimilation, and is described later.

Note that a scratch file may have a user provided name.

Some of the processing performed by the present

invention can take place in a background mode or on a

delayed or as-needed basis. This background processing

is used to determine information that is not immediately

required by the system or which may never be required.

As an example, in some cases a scratch file is being

changed at a rate greater than the rate at which it is

useful to determine its True Name. In these cases,

determining the True Name of the file can'be postponed or

performed in the background. '

Wm -

The following data structures, stored in memory

110 of one of more processors 102 are used to implement

the mechanisms described herein. The data structures can

be local to each processor 102 of the system 100, or they

can reside on only some of the processors 102.

13

GOOG-1018—Page 49 of 143

GOOG-1018-Page 50 of 143

EwEL

Lxflfifififl
v.6“wfigr

WWWMH
3a

5:.

10

15

20

25

3O

35

v

The data structures described are assumed to

reside on individual peer processors 102 in the data

processing system 100. However, they can also be Shared

by placing them on a remote, shared file server (for.

instance, in a local area network of machines). In order

to accommodate sharing data structures, it is necessary

that the processors accessing the shared database use the

appropriate locking techniques to ensure that changes to

the shared database do not interfere with one another but

are appropriately serialized. These locking techniques

are well understood by ordinarily skilled programmers of

distributed applications.

It is sometimes desirable to allow some regions

to be local to a particular processor 102 and other

regions to be shared among processors 102. (Recall that

a region is a unit of file system management and control

consisting of a given directory identified by the

pathname of the directory.) In the case of local and

shared regions, there would be both local and shared

versions of each data structure. Simple changes to the

processes described below must be made to ensure that

appropriate data structures are selected for a given

operation.

The local directory extensions (LDE) table 124

is a data structure which provides information about

files 120 and directories 118 in the data processing
system 100. The local directory extensions table 124 is

indexed by a pathname or contextual name (that is, a user

provided name) of a file and includes the True Name for

most files. The information in local directory extension

table 124 is in addition to that provided by the native '

file system of the operating system.

The True File registry (TFR) 126 is a data

store for listing actual data items which have True

Names, both files 120 and segments 122. :When such data

items occur in the True File registry 126 they are known

as True Files. True Files are identified in True File

14

GOOG-1018—Page 50 of 143

GOOG-1018-Page 51 of 143

10

15

20

25

30

registry 126 by-their True Names or identities. The

table True File registry 126 also stores location,

dependency, and migration information about True Files.

The region table (RT) 128 defines areas in the

network storage which are to be managed separately.

Region table 128 defines the_rules for access to and

migration of files 120 among various regions with the

local file system 116 and remote peer file systems.

The source table (ST) 130 is a list of the

sources of True Files other than the current True File

registry 126. The source table 130 includes removable

volumes and remote processors.

The audit file (AF) 132 is a list of records

indicating changes to be made in local or remote files,

these changes to be processed in background.

The accounting log (AL) 134 is a log of file

transactions used to create accounting information in a

manner which preserves the identity of files being

tracked independent of their name or location.

‘ The license table (LT) 136 is a table

identifying files, which may only be used by licensed

users, in a manner independent of their name or location,

and the users licensed to use them.

et ' sc ‘ t'ons 0 Data Structures

The following table summarizes the fields of an

local directory extensions table entry, as illustrated by

record 138 in FIGURE 3.

identifies the region in which this file is
contaiflbd.

the user provided name or.contextual name
of the file or directory, relative to the
re ion in which it occurs.

Field

Region ID

 Pathname

 the computed True Name or identity of the
file or directory. This True Name is not
always up to date, and it is set to a

special value when a file is modified and
is later recom-uted in the back round.

 True Name

15

GOOG-1018—Page 51 of 143

GOOG-1018-Page 52 of 143

I
m!

'fibfi‘il

fl?
I

-‘m

3‘,F “at“1k

WflflWW$mflfla

10

15

20

Type indicates whether the file is a data file

or a director .

the physical location of the file in the
file system, when no True Name-has been
calculated for the file. As noted above,

such a file is called a scratch file.

the last access time to this file. If this

file is-a directory, this is the last
access time to an file in the director

last
access

the time of last change of this file. If
this file is,a directory, this is the last
modification time of any file in the
director

indicates that this file (and, if this file

is a directory, all of its subordinate
files) have been backed up on some other

system, and it is therefore safe to remove
them.

Time of
last modi-

fication

Safe flag

Lock flag a

size

VEach record of the True File registry 126 has

the fields shown in the True File registry record 140 in

FIGURE 4. The True File registry 126 consists of the

database described in the table below as well as the

actual True Files identified by the True File IDs below.’

Field Descri-tion '

True Name computed True Name or identity of
‘the file.

 indicates whether a file is locked, that

is, it is being modified by the local pro—
cessor or a remote processor. Only one
orocessor modif a file at a time.

 the full size of this directory (including

all subordinate files), if all files in it
were fully expanded and duplicated. For a
file that is not a directory this is the
size of the actual True File.

 the identity of the user who owns this
file, for accounting and license tracking
“1' noses .

16

GOOG-1018—Page 52 of 143

GOOG-1018-Page 53 of 143

mm

compressed version of the True File

may be stored instead of, or in
addition to, an uncompressed
version. This field provides the

identity of the actual
representation of the compressed
version of the file.

 Compressed
File ID

tentative count of how many
references have been selected for

deletion during a grooming
o-eration. . 9

Grooming
delete count

5 Time of last most recent date and time the

access content of this file was accessed.

Expiration date and time after which this file
- ma be deleted b 'this server. -

Dependent processor IDs of other processors
processors which contain references to this

True File.

10 source ID(s) of zero or more

 sources from which this file or

data item ma be retrieved.

:’

True File ID

aha;

ii.-(

identity or disk location of the
actual physical representation of
the file or file segment. It is
sufficient to use a filename in the

registration directory of the

underlying operating system. The
True File ID is absent if the

actual file is not currently
~resent at the current location.

“m«(mu

“12B

‘11:“u:“am

33'“m
xu"
I

n
gin..9..m.....

1ll

111%3335i‘

‘f'a..,.g.
number of other records on this

processor which identify this True
File.

A region table 128, specified by a directory

pathname, records storage policies which allow files in

15 the file system to be stored, accessed and migrated in

different ways. Storage policies are programmed in a

configurable way using a set of rules described below.

Each region table reCord 142 of region table

128 includes the fields described in the following table

20 (with reference to FIGURE 5):

17

GOOG-1018—Page 53 of 143

GOOG-1018-Page 54 of 143

'3‘“331'“1:1!U!
huhI.1‘

4;...

ill'1‘"
...... an?“11“...a“...

.

WHfiWWW”

10

 mm

Region ID ' ~ internally used identifier for this
- re-ion.

Region file system file system on the local processor of
which this re-ion is a cart.

a pathname relative to the region file
system which defines the location of
this region. The region consists of
all files and directories subordinate

to this pathname, except those in a
re ion subordinate to this re-ion.

Region pathname

 zero or more identifiers of processors

which are to keep mirror or archival

copies of all files in the current
region. .Multiple mirror processors
can be defined to form a mirror

Mirror processor(s)

 number of copies of each file in this

region that should be retained in a
mirror

Mirror duplication
count

 specifies whether this region is local
to a single processor 102, shared by

several processors 102 (if, for
instance, it resides on a shared file

server), or managed by a remote
OrOCBSSOI' -

Region'status

 the migration policy to apply to this
region. A single region might
participate in several policies. The
policies are as follows (parameters in

brackets are specified as part of the
policy):

region is a cached version from

[processor ID];
region is a member of a mirror set
defined by [processor ID].

region is to be archived on
[processor ID].

region is to be backed up locally,

by placing new copies in [region
1m.

region is read only and may not be

changed.
region is published and expires on
[date].

Files in this region should be
ressed.

A source table 130 identifies a source location

for True Files. The source table 130 is also used to

18

GOOG-1018—Page 54 of 143

GOOG-1018-Page 55 of 143

flu“it,..
fig“

w‘
l I

fidfi

fiWWWmETW
v1

Wfi

m&

10

15

20

‘ .

identify client processors making reservations on the

current processor. Each source record 144 of the source

table 130 includes the fields summarized in the following

table, with reference to FIGURE 6:

oescnuon

source ID internal identifier used to identify a
uarticular source.

source type of source location:

type Removable Storage Volume
Local Region
Cache Server

Mirror Group Server

Cooperative Server
Publishing Server
Client

source includes information about the rights

rights of this processor, such as whether it
can ask the local processor to store
data items for it.

source measurement of the bandwidth, cost,

availabil- and reliability of the connection to

ity this source of True Files. The avail-
ability is used to select from among.
several oossible sources.

source information on how the local processor
location is to access the source. This may be,

for example, the name of a removable
storage volume, or the processor ID
and region path of a region on a
remote orocessor.

The audit file 132 is a table of events ordered

by timestamp, each record 146 in audit file 132 including

the fields summarized in the following table (with

reference to FIGURE 7): - H

m.oescauon
Ori-inal Name oath of the file in cuestion.

Operation whether the file was created, read,
written co-ied or deleted.

specifies whether the source is a file
- or a director .

. 19

GOOG-1018—Page 55 of 143

GOOG-1018-Page 56 of 143

Tm

iliiixIE“:
fl

“mu"mmmTy,”L'k-xgmmfletwahx
lL

W

'Eilfli

1

10

15

20

ti ld D scri-tion

Processor ID ID of the remote processor generating
this event if not local .

Timestamp time and date file was closed (required
onl for accessed modified files .

Pathname Name of the file (required only for
rename .

True Name .computed True Name of the file. This is
‘ = used by remote systems to mirror changes

to the directory and is filled in during
back-round crocessino.

_ Each record 148 of the accounting log 134

records an event which may later be used to provide

information for billing mechanisms. Each accounting log

entry record 148 includes at least the information

summarized in the following table, with reference to

FIGURE 8:

date of date and time of this log entry.
entr

type of Entry types include create file,
entr delete file and transmit file.

True Name of data item in ~uestion.

identity of the user respon51b1e for
this action.

Each record 150 of the license table 136

records a relationship between a licensable data item and

the user licensed to have access to it. Each license

table record 150 includes the information summarized in'.

the following table,'with reference to FIGURE 9:

Field Descri-tion

True Name True Name of'a data item subject to
-' license validation.

20

GOOG-1018—Page 56 of 143

GOOG-1018-Page 57 of 143

dflflflfl
Ii“- .mn\
T121!Il4

Emflmwwwmfi

10

15

20

25

3O

 licensee identity of a user authorized to have
access to this ob'ect. ‘

Various other data structures are employed on

some or all of the processors 102 in the data processing

system 100. Each processor 102 has a global freeze lock

(GFL) 152 (FIGURE 1), which is used to prevent

synchronization errors when a directory is frozen or

copied. Any processor 102 may include a special archive

directory (SAD) 154 into which directories may be copied

for the purposes of archival. Any processor 102 may

include a special media directory (SMD) 156, into which

the directories of removable volumes are stored to form a

media inventory. Each processor has a grooming lock 158,

which is set during a grooming operation. During this

period the grooming delete count of True File registry

entries 140 is active, and no True Files should be

'deleted until grooming is complete. While grooming is in

effect, grooming information includes a table of

pathnames selected for deletion, and keeps track of the

amount of space that would be freed if all of the files
were deleted.

imi 've Mechanisms

The first of the mechanisms provided by the

present invention, primitive mechanisms, are now

described. The mechanisms described here depend on

underlying data management mechanisms to create, copy,

read, and delete data items in the True File registry

126, as identified by a True File ID. This support may-7
be provided by an underlying operating system or disk

storage manager.

The following primitive-mechanisms are

described:

1. Calculate True Name;

2. Assimilate Data Item;

21

GOOG-1018—Page 57 of 143

GOOG-1018-Page 58 of 143

“«'1:H33]:En[R
II...mm.P‘hm‘téiim«i.

m......1,,L11.
.

‘lL

llfififif
u“...

{in

'10

15

20

‘25

3O

35

3. Nev True File;

4.- Get True Name from Path;

5. Link Path to Tru Name;

6. Realize True File from Location;

7. Locate Remote File;

8. Make True File Local;

9. Create Scratch File;

10. Freeze Directory;

11. Expand Frozen Directory;

12. Delete True File;

13. Process Audit File Entry;

14. Begin Grooming;

15. Select For Removal; and

16. End Grooming.

1. Ca a e a

A True Name is computed using a function, MD,

which reduces a data block B of arbitrary length to a

relatively small, fixed size identifier, the True Name of

the data block, such that the True Name of the data block

is virtually guaranteed to represent the data block B and
only data block 8.

The function MD must have the following

properties:

1. The domain of the function MD is the set

of all data items. The range of the

. function MD is the set of True Names.
2. The function MD must take a data item of

arbitrary length and reduce it to an

integer value in the range 0.to N-l, where

N is the cardinality of the set_of True "
Names. That is, for an arbitrary length

data block B, 0 s MD(B) < N.

3. The results of MD(B) must be evenly and

randomly distributed over the range of N,

in such a way that simple or regular

22

GOOG-1018—Page 58 of 143

GOOG-1018-Page 59 of 143

.1535313:€13

mm..'.wivyym“a“v.“14:“I):I
{111.

I k

1‘“m

L5.W.’ '

a!
< I

10

15

20‘

25

30

35

5

changes to B are virtually guaranteed to

produce a different value of MD(B).

4. It must be computationally difficult to

find a different value 3' such that

MD(B)=MD(B').

.5. - The function MD(B) must be efficiently

computed.

A family of functions with the above properties

are the so-called message digest functions, which are

used in digital security systems as techniques for

authentification of data.‘ These functions (or

algorithms) include MD4, MDS, and SHA.

In the presently preferred embodiments, either

MDS or SHA is employed as the basis for the computation

of True Names. Whichever of these two message digest

functions is employed, that same function must be

employed on a system-wide basis.

It is impossible to define a function having a

unique output for each possible input when the number of

elements in the range of the function is smaller than the

number of elements in its domain. However, a crucial

observation is that the actual data items that will be

encountered in the operation of any system embodying this

invention form a very sparse subset of all the possible

inputs.

yA colliding set of data items is defined as a

set wherein, for one or more pairs x and y in the set,

MD(x) = MD(y). Since a function conforming to the

requirements for MD must evenly and randomly distribute

its outputs, it is possible, by making the range of the

‘function large enough, to make the probability
arbitrarily small that actual inputs encountered in the

operation of an embodiment of this invention will form a

colliding set. ' ‘

To roughly quantify the probability of a

collision, assume that there are no more than 2m storage
devices in the world, and that each storage device has an

23

GOOG-1018—Page 59 of 143

GOOG-1018-Page 60 of 143

10

15

20

25

30

35

N
‘

average of at most 220 different data items. Then there
are at most 250 data items in the world. If the outputs'

of MD range between 0 and zna' it can be demonstrated

that the probability of a collision is approximately 1 in

2”. Details on the derivation of these probability

values are found, for example, in P. Flajolet and A.M.

Odlyzko, "Random Mapping Statistics," Lecture Notes in

Computer Science 434: Advances in Cryptology -— Eurocrypt

'89 Proceedings, Springer-Verlag, pp. 329-354.

Note that for some less preferred embodiments

of the present invention, lower probabilities of

uniqueness may be acceptable, depending on the types of

applications and mechanisms used. -In some embodiments it

may also be useful to have more than one level of True

Names, with some of the True Names having different

degrees of uniqueness. If such a scheme is implemented,

it is necessary to ensure that less unique True Names are

not propagated in the system.
While the invention is described herein using

only the True Name of a data item as the identifier for

the data item, other preferred embodiments use tagged,

typed, categorized or classified data items and use a

combination of both the True Name and the tag, type,

category or class of the data item as an identifier.

Examples of such categorizations are files, directories,

and segments; executable files and data files, and the

like. Examples of classes are classes of objects in an

object-oriented system.- In such a system, a lower degree
of True Name uniqueness is acceptable over the entire

universe of data items, as long as sufficient uniqueness

is provided per category of data items. This is because.

the tags provide an additional level of uniqueness.

A mechanism for calculating a True Name given a

data item is now described, with reference to FIGURES

10(a) and 10(b).

A simple data item is a data item whose size is

less than a particular given size (which must be defined

24

GOOG-1018—Page 60 of 143

GOOG-1018-Page 61 of 143

10

15

20

25

30

35

in each particular implementation of the invention).’ To

determine the True Name of a simple data item, with

reference to FIGURE 10(a), first compute the MD function

(described above) on the given simple data item (Step

8212). Then append to the resulting 128 bits, the byte

length modulo 32 of the data item (Step 5214). The

resulting 160—bit value is the True Name of the simple

'\
q

data item.

A compound data item is one whose size is

greater than the particular given size of a simple data

item. To determine the True Name of an arbitrary (simple

or compound) data item, with reference to FIGURE 10(b),

first determine if the data item is a simple or a

compound data item (Step $216). If the data item is a

simple data item, then compute its True Name in step 5218

(using steps $212 and 3214 described above), otherwise

partition the data item into segments (Step 8220) and

assimilate each segment (Step $222) (the primitive

mechanism, Assimilate a Data Item, is described below),

computing the True Name of the segment. Then create an

indirect block consisting of the computed segment True

Names (Step 5224). An indirect block is a data item
which consists of the sequence of True Names of the

segments. Then, in step 8226, assimilate the indirect

block and compute its True Name. Finally, replace the

final thirty-two (32) bits of the resulting True Name

(that is, the length of the indirect block) by the length

modulo 32 of the compound data item (step'szza). The

result is the True Name of the compound data item.

Note that the compound data item may.be so

large that the indirect block of segment True Names is

itself a compound data item. In this case the mechanism

is invoked recursively until only simple data items are

being processed.

Both the use of segments and the attachment of

a length to the True Name are not strictly required in a

system using the present invention, but are currently

25

GOOG-1018—Page 61 of 143

GOOG-1018-Page 62 of 143

flflflflkI i

Tqu"aI

) kYflflw
if

ummu....ming,fiwumu“‘lvd‘dam..u.I!
:{m

10

15

20

25

30

considered d sirable features in the preferred

embodiment.

2. Assimilate Qgtg Item

A mechanism for assimilating a data item

(scratch file or segment) into a file system, given the

scratch file ID of the data item, is now described with

reference to FIGURE 11. The purpose of this mechanism is

to add a given data item to the True File registry 126.

If the data item already exists in the True File registry

126, this will be discovered and used during this

process, and the duplicate will be eliminated.

Thereby the system stores at most one copy of

any data item or file by content, even when multiple

names refer to the same content.

First, determine the True Name of the data item

corresponding to the given scratch File ID using the

Calculate True Name primitive mechanism (Step 5230).

Next, look for an entry for the True Name in the True

File registry 126 (Step 3232) and determine whether a

True Name entry, record 140, ekists in the True File

registry 126. If the entry record includes a

corresponding True File ID or compressed File ID (Step

5237), delete the file with the scratch File ID (Step

5238). Otherwise store the given True File ID in the

entry record (step $239).

If it is determined (in step 5232) that no True

Name entry exists in the True File registry 126, then, in

Step 8236, create a new entry in the True File registry

126 for this True Name. Set the True Name of the entry

to the calculated True Name, set the use count for the
new entry to one, store the given True File ID in the

entry and set the other fields of the entry as

appropriate.‘

26

GOOG-1018—Page 62 of 143

GOOG-1018-Page 63 of 143

x13'"ii?'15“'32?:.35319211:i211:{£31}1151.:F33fl
'3-imm; mII:

‘?

‘E

10

15

20

25

3O

35

u
‘

Because this procedure may take some time to

compute, it is intended to run in background after a file

has ceased to change. In the meantime, the file is

considered an unassimilated scratch file.

3- W

The New True File process is invoked when

processing the audit file 132, some time after a True
File has been assimilated (using the Assimilate Data Item

primitive mechanism). Given a local directory extensions

table entry record 138 in the local directory extensions

table 124, the New True File process can provide the

following steps (with reference to FIGURE 12), depending

on how the local processor is configured:

First, in step 8238, examine the local

directory extensions table entry record 138 to determine

whether the file is locked by a cache server. If the

file is locked, then add the ID of the cache server to

the dependent processor list of the True File registry

table 126, and then send a message to the cache server to

update the cache of the current processor using the

Update Cache remote mechanism (Step 242).

If desired, compress the True File (Step 8246),

and, if desired, mirror the True File using the Mirror

True File background mechanism (Step $248).

4. W

The True Name of a file can be used to identify

a file by contents, to confirm that a file matches its.

original contents, or to compare two files.. The

mechanism to get a True Name given the pathname of a file
is now described with reference to FIGURE 13.

First, search the local directory extensions

table 124 for the entry record 138 with the given

pathname (Step 8250). If the pathname is not found, this

process fails and no True Name corresponding to the given
pathname exists. Next, determine whether the local

27

GOOG-1018—Page 63 of 143

GOOG-1018-Page 64 of 143

10

15

20

25

30

35

directory extensions table entry record 138 includes“a

True Name (Step 5252), and if so, the mechanism's task is

complete. otherwise, determine whether the local

1
‘

directory extensions table entry record 138 identifies a

directory (Step $254), and if so, freeze the directory

(Step $256) (the primitive mechanism Freeze Directory is

described below).

Otherwise, in step 5258, assimilate the file

(using the Assimilate Data Item primitive mechanism)

defined by the File ID field to generate its True Name

and store its True Name in the local directory extensions

entry record. Then return the True Name identified by

the local directory extensions table 124.

5. Link Path to True Name ,

The mechanism to link a path to a True Name

provides a way of creating a new directory entry record

identifying an existing, assimilated file. This basic

process may be used to copy, move, and rename files

without a need to copy their contents. The mechanism to

link a path to a True Name is now described with

reference to FIGURE 14.

First, if desired, confirm that the True Name

exists locally by searching for it in the True Name

registry_or local directory extensions table 135 (Step

8260). Most uses of this mechanism will require this

form of validation. Next, search for the path in the

local directory extensions table 135 (Step $262).

Confirm that the directory containing the file named in

the path already exists (step 8264). If the named file ‘

itself exists, delete the File using the Delete True File

operating system mechanism (see below) (Step 3268).

Then, create an entry record in the local

directory extensions with the specified path (Step $270)

and update the entry record and other data structures as

follows: fill in the True Name field of the entry with

the specified True Name; increment the use count for the

28

' GOOG-1018—Page 64 of 143

GOOG-1018-Page 65 of 143

Him:11}:

‘{P4.4!a.$31,,.
Axum

P'«-,I‘l’ J\h—m.

"ii?E113!{Eii"ii?"if'33?‘"EH???
0

10

15

20

25

30

35

True File registry entry record 140 of the corresponding '
True Name; note whether the entry is a directory by

reading the True File to see if it contains a tag (magic

number) indicating that it represents a frozen directory

(see also the description of the Freeze Directory

primitive mechanism regarding the tag); and compute and

set the other fields of the local directory extensions

appropriately. For instance, search the region table 128

to identify the region of the path, and set the time of

last access and time of last modification to the current
.,I

time.

6. Realize True File from Location

This mechanism is used to try to make a local

copy of a True File, given its True Name and the name of

a source location (processor or media) that may contain

the True File. This mechanism is now described with

reference to FIGURE 15.

First, in step $272, determine whether the

location specified is a processor. If it is determined

that the location specified is a processor, then send a

Request True File message (using the Request True File

remote mechanism) to the remote processor and wait for a

response (Step $274). If a negative response is received

or no response is received after a timeout period, this

mechanism fails. If a positive response is received,

enter the True File returned in the True File registry

126 (Step $276). (If the file received was compressed,

enter the True File ID in the compressed File ID field.)

If, on the other hand, it is determined in step

$272 that the locatign specified is not a processor, '
then, if necessary, request the user or operator to mount

the indicated volume (step 5278). Then (Step 8280) find

the indicated file on the given volume and assimilate the

file using the Assimilate Data Item primitive mechanism.

If the volume does not contain a True File registry 126,’

search the media inventory to find the path of the file

29

GOOG-1018—Page 65 of 143

GOOG-1018-Page 66 of 143

fififl!xS. t“
'1ll

'KflfiWmefiflfiflfl

10

15

20

25

3O

35

- ‘ ‘1r

‘I‘ ./b

on the volume. If no such file can be found, this

mechanism fails.

At this point, wh ther or not the location is

det rmined (in step $272) to be a processor, if desired,

verify the True File (in step $282).

7. Locate Remote Eilg

This mechanism allows a processor to locate a

file or data item from a remote source of True Files,

when a specific source is unknown or unavailable. A

client processor system may ask one of several or many

sources whether it can supply a data object with a given

True Name. The steps to perform this mechanism are as

follows (with reference to FTGURE 16).

The client processor 102 uses the source table

145 to select one or more source processors (Step $284).

If no source processor can be found, the mechanism fails.

Next, the client processor 102 broadcasts to the selected

sources a request to locate the file with the given True

Name using the Locate True File remote mechanism (Step

$286). The request to locate_may be augmented by asking

to propagate this reguest to distant servers. The client

processor then waits for one or more servers to respond

positively (Step 5288). After all servers respond

negatively, or after a timeout period with no positive
response, the mechanism repeats selection (Step $284) to

attempt to identify alternative sources. If any selected

source processor responds, its processor ID is the result

of this mechanism. Store the processor ID in the source

field of the True File registry entry record 140 of the

given True Name (Steg_8290).

If the source location of the True Name is a

different processor or medium than the destination (Step

$290a), perform the following steps:

(i) Look up the True File registry entry

record 140 for the corresponding True Name, and add the

.30

GOOG-1018—Page 66 of 143

GOOG-1018-Page 67 of 143

Hmflfil I

s!"

m \-

‘H:"3-:-m:1;th
”Eii:&

mum

,J$51.55...4‘1...

10

15

20

25

30

35

.

source location ID to the list of sources for the True
Name (Step $290b); and _ I

(ii) If the source is a publishing system,

determine the expiration dat on the publishing syst m

for the True Name and add that to the list of sources.

If the source is not a publishing system, send a message

to reserve the True File on the source processor (Step

5290C).

Source selection in step 5284 may be based on

optimizations involving general availability of the

source, access time, bandwidth, and transmission cost,

and ignoring previously selected processors which did not

respond in step $288.

8. a rue ' e o a

This mechanism is used when a True Name is

known and a locally accessible copy of the corresponding

file or data item is required. This mechanism makes it

possible to actually read the data in a True File. The

mechanism takes a True Name and returns when there is a

local, accessible copy of the True File in the True File

registry l26. This mechanism is described here with
reference to the flow chart of-FIGURE 17. .

‘First, look in the True File registry 126 for a

True File entry record 140 for the corresponding True

Name (Step $292). If no such entry is found this

mechanism fails. If there is already a True File ID for

the entry (Step 5294), this mechanism’s task is complete.

If there is a compressed file ID for the entry (Step

$296), decompress the file corresponding to the file ID

(Step $298) and store the decompressed file ID in the M
entry (Step $300). This mechanism is then complete.

If there is no True File ID for the entry (Step

5294) and there is no compressed file ID for the entry

(Step 8296), then continue searching for the requested

file. At this time it may be necessary to notify the

user that the system is searching for the requested file.

31

lGOOG-1018—Page 67 of 143

GOOG-1018-Page 68 of 143

10

15

20

25

30

35

If ther are on or more source IDs, then

select an order in which to attempt to r alize the sourc

ID (Step $304). The order may be based on optimizations

involving general availability of the source, access

time, bandwidth, and transmission cost. For each source

in the order chosen, realize the True File from the

source location (using the Realize True File from

Location primitive mechanism), until the True File is

realized (Step $306). If it is realized, continue with

step $294. If no known source can realize the True File,

use the Locate Remote File primitive mechanism to attempt

to find the True.File (Step 8308)., If this succeeds,
realize the True File from the identified source location

and continue with step $296.

9. Create Scratch 21;;

A scratch copy of a file is required when a

file is being created or is about to be modified. The

scratch copy is stored in the file system of the

underlying operating system. The scratch copy is

eventually assimilated when the audit file record entry

146 is processed by the Process Audit File Entry

primitive mechanism.‘ This Create Scratch File mechanism

requires a local directory extensions table entry record

138. When it succeeds, the local directory extensions

table entry record 138 contains the scratch file ID of a

scratch file that is not contained in the True File

registry 126 and that may be-modified. This mechanism is

now described with reference to FIGURE 18.

First determine whether the scratch file should

be a copy of the existing True File (Step $310), If so,'

continue with step $312. Otherwise, determine whether

the local directory extensions table entry record 138

identifies an existing True File (Step S316), and if so,

delete the True File using the Delete True File primitive

mechanism (Step S318). Then create a new, empty scratch

file and store its scratch file ID in the local directory

32

GOOG-1018—Page 68 of 143

GOOG-1018-Page 69 of 143

10

15

20‘

25

30

35

K .

extensions table entry r_cord 138 (Step 5320). This

mechanism is then complete.

If the local directory extensions tabl entry

record 138 identifi s a scratch file ID (Step S312), thenv

the entry already has a scratch file, so this mechanism
succeeds.

If the local directory extensions table entry

record 138 identifies a True File (S316), and there is no

True File ID for the True File (5312), then make the True

File local using the Make True File Local primitive

mechanism (step $322). If there is still no True File

ID, this mechanism fails.
There is now a local True File for this file.

If the use count in the corresponding True File registry

entry record 140 is one (Step S326), save the True File

ID in the scratch file ID of the local directory

extensions table entry record 138, and remove the True

File registry entry record 140 (Step S328). (This step

makes the True File into a scratch file.) This

mechanism’s task is complete.

Otherwise, if the use count in the

corresponding True File registry entry record 140 is not

one (in step S326), copy the file with the given True

File ID to a new scratch file, using the Read File OS

mechanism and store its file ID in the local directory

extensions table entry record 138 (Step S330), and reduce

the use count for the True File by one. If there is

insufficient space to make a copy, this mechanism fails.

10. Freeze Directory

This mechanism freezes a directory in order to:
calculate its True Name. Since the True Name of a

directory is a function of the files within the

directory, they must not change during the computation of
the True Name of the directory. This mechanism requires

the pathname of a directory to freeze. This mechanism is
described with reference to FIGURE 19.

33

GOOG-1018—Page 69 of 143

GOOG-1018-Page 70 of 143

ll{1

K

{Eli{Eli
fl1'
|!'

EA,““.
......A1111.

[KWWM
MK5X

W

a" My“mu

10

15

20

25

30

In step S332, add one to the global freeze

lock. Then search the local directory extensions table

124 to find each subordinate data file and directory of

the given directory, and freeze each subordinate

directory found using the Freeze Directory primitive

mechanism (step S334). Assimilate each unassimilated

data file in the directory using the Assimilate Data Item

primitive mechanism (Step 5336). Then create a data item

which begins with a tag or marker (a "magic number")

being a unique data item indicating that this data item

is a frozen directory (Step S337). Then list the file

name and True Name for each file in the current directory

(Step 8338). Record any additional information required,

such as the type, time of last access and modification,

and size (Step 5340). Next, in step 8342, using the

Assimilate Data Item primitive mechanism, assimilate the

data item created in step 5338. The resulting True Name

is the True Name of the frozen directory. Finally,

subtract one from the global freeze lock (Step 5344).

1L hmmiflmgmingmxx

This mechanism expands a frozen directory in a

given location. It requires a given pathname into which

to expand the directory, and the True Name of the

directory and is described with reference to FIGURE 20.

First, in step S346, make the True File with

the given True Name local using the Make True File Local

primitive mechanism. Then read each directory entry in

the local file created in step S346 (step $348). For

each such directory entry, do the following: k

' Create a full pathname using the given pathname

and the file name of the entry (step S350); and

link the created path to the True Name (Step

8352) using the Link Path to True Name primitive

mechanism.

34

GOOG-1018—Page 70 of 143

GOOG-1018-Page 71 of 143

$113!EuH]I l

.5"{v

a

:v.“:5
f.I

“«1
'21!".

“ti.

WEETEY'fi
(s
.1if."L

KY

10

15

‘20

25

30

35

12. W

This mechanism deletes a reference to a True

Name. The underlying True File is not removed from the

True File registry 126 unless there are no additional

references to the file. with reference to FIGURE 21,

this mechanism is performed as follows:

If the global freeze lock is on, wait until the

global freeze lock is turned off (Step $354). This

prevents deleting a True File while a directory which

might refer to it is being frozen. Next, find the True

File registry entry record 140 given the True Name (step

S356). If the reference count field of the True File

registry 126 is greater than zero, subtract one from the

reference count field (Step S358). If it is determined‘

(in step $360) that the reference count field of the True

File registry entry record 140 is zero, and if there are

no dependent systems listed in the True File registry

entry record 140, then perform the following steps:

(1) If the True File is a simple data item,

then delete the True File, otherwise,

i (ii) (the True File is a compound data item)

for each True Name in the data item, recursively delete

the True File corresponding to the True Name (Step S362).

(iii) Remove the file indicated by the True

File ID and compressed file Ib from the True File

registry 126, and remove the True File registry entry

record 140 (Step S364).

13. Exogess Audit File Entry

This mechanism performs tasks which are

required to maintain,information in the local directory

extensions table 124 and True File registry 126, but

which can be delayed while the processor is busy doing

more time-critical tasks. Entries 142 in the audit file

132 should be processed at a background priority as long

as there are entries to be processed. With reference to

35

GOOG-1018—Page 71 of 143

GOOG-1018-Page 72 of 143

{Ei'’,
3

l)’‘Ill'1:“thimwYr1

.m«L.....3“3:1!
I\

n“1-:

“11:"::E'
i

WMfil

10

15

20

25

3O

35

FIGURE 22, the steps for processing an entry are as

follows:

Determine the operation in the entry 142

currently being processed (Step $365). If the operation

indicates that a file was created or written (Step 5366),

then assimilate the file using the Assimilate Data Item

primitive mechanism (step 8368), use the New True File

primitive mechanism to do additional desired processing

(such as cache update, compression, and mirroring) (Step

S369), and record the newly computed True Name for the

file in the audit file record entry (Step S370).

otherwise, if the entry being processed

indicates that a compound data item or directory was

copied (or deleted) (Step S376), then for each component

True Name in the compound data item or directory, add (or

subtract) one to the use count of the True File registry

entry record 140 corresponding to the component True Name

(Step 5378).

In all cases, for each parent directory of the

given file, update the size, time of last access, and

time of last modification, according to the operation in

the audit record (Step S379).

Note that the audit record is not removed after

processing, but is retained for some reasonable period so

that it may be used by the Synchronize Directory extended

mechanism to allow a disconnected remote processor to

update its representation of the local system.

14. W

This mechanism makes it possible to select a

set of files for remgval and determine the overall amount
of space to be recovered. With reference to'FlGURE 23,

first verify that the global grooming lock is currently-

unlocked (Step 5382). Then set the global grooming lock,

set the total amount of space freed during grooming to

zero and empty the list of files selected for deletion

36

GOOG-1018—Page 72 of 143

GOOG-1018-Page 73 of 143

l
,‘1

EB«1231«sf;'EESlit:i233:
1L

“IK

Wmfimmfi

10

15

20

25

30

(Step $384). For each True File in the True File

r gistry 126, set the delete count to zero (step $386).

15. Select For Removal

‘ This grooming mechanism tentatively selects a

pathname to allow its corresponding True File to be

removed. with reference to FIGURE 24, first find the

local directory extensions table entry record 138

corresponding to the given pathname (Step 5388). Then

find the True File registry entry record 140

corresponding to the True File name in the local

directory extensions table entry record 138 (Step $390).

Add one to the grooming delete count in the True File

registry entry record 140 and add the pathname to a list

of files selected for deletion (Step 5392). ”If the

grooming delete count of the True File registry entry

record 140 is equal to the use count of the True File

registry entry record 140, and if the there are no

entries in the dependency list of the True File registry

entry record 140, then add the size of the file indicated

by the True File ID and or compressed file ID to the

total amount of space freed during grooming (Step $394).

16. > End grooming

This grooming mechanism ends the grooming phase

and removes all files selected for removal. with

reference to FIGURE 25, for each file in the list of

files selected for deletion, delete the file (Step 8396)

and then unlock the global grooming lock (Step $398).

9nerating_§xetem_ne§heni§m§

The next of the mechanisms provided by the

present invention, operating syStem mechanisms, are now

described.

The following operating system mechanisms are

described:

1. Open File;

37

GOOG-1018—Page 73 of 143

GOOG-1018-Page 74 of 143

mflmm
I\
I!“

w‘I‘

iWEfimflflfiq
fiEmi

‘W

10

15

20

25

3O

35

2. Close File;

3. Read File;

4. Write File;

5. Delete File or Directory;

6. Copy File or Directory;'

7. Move File or Directory;

8. Get File Status; and

9. Get Files in Directory.

L manlue

A mechanism to open a file is described with

reference to FIGURE 26. This mechanism is given as input

a pathname and the type of access required for the file

(for example, read, write, read/write, create, etc.) and

produces either the File ID of the file to-be opened or

an indication that no file should be opened. The local

directory extensions table record 138 and region table

record 142 associated with the opened file are associated

with the open file for later use in other processing

functions which refer to the file, such as read, write,

and close.

First, determine whether or not the named file

exists locally by examining the loca1_directory

extensions table 124 to determine whether there is an

entry corresponding to the given pathname (Step $400).

If it is determined that the file name does not exist

locally, than, using the access type, determine whether

or not the file is being created by this opening process

(Step S402). If the file is not being created, prohibit

the open (Step S404). If the file is being created,

'create a zero-length,scratch file using an entry in local

directory extensions table 124 and produce the scratch

file ID of this scratch file as the result (Step S406).

If, on the other hand, it is determined in step

S400 that the file name does exist locally, then

determine the region in which the file is located by

searching the region table 128 to find the record 142

38

GOOG-1018—Page 74 of 143

GOOG-1018-Page 75 of 143

Him3354:€31!

t%’1"

“Rum«mmd.“umIu“H"

firmwym:
Mm"Lm
K

i

111‘“:
[in

10

15

20

25

30

35

I .B‘

with th longest region path which is a prefix of th

fil pathname (Step S408). This record identifies the

region of the specified file.

Next, determine using the access type, whether

the file is being opened for writing or whether it is

being opened only for reading (Step $410). If the file

is being opened for reading only, then, if the file is a

scratch file (Step S419), return the scratch File ID of

the file (Step S424). otherwise get the True Name from

the local directory extensions table 124 and make a local

version of the True File associated with the True Name

using the Make True File Local primitive mechanism, and

then return the True File ID associated with the True

Name (Step 5420).

If the file is not being opened for reading

only (Step 5410), then, if it is determined by inspecting

the region table entry record 142 that the file is in a

read-only directory (Step S416), then prohibit the

opening (Step $422);

If it is determined by inspecting the region

table 128 that the file is in a cached region (Step

S423), then send a Look Cache message to the

corresponding cache server, and wait for a return message

(Step $418). If the return message says the file is

already locked, prohibit the opening.

If the access type indicates that the file

being modified is being rewritten completely (step $419),

so that the original data will not be required, then

Delete the File using the Delete File OS mechanism (step

S421) and perform step S406. Otherwise, make a scratch

copy of the file (Step S417) and produce the scratch file
ID of the scratch file as the result (step $424).

2. files; Bile

This mechanism_takes as input the local

directory extensions table entry record 138 of an open

file and the data maintained for the open file. To close

39

GOOG-1018—Page 75 of 143

GOOG-1018-Page 76 of 143

I!{1

1151:{1:
fl’

aflm
J‘r

«v.film.'5}!

WMHWWWmfli

10

15

20

25

30

35

a file, add an entry to the audit file indicating the

time and operation (create, read or write). The audit

file processing (using the Process Audit File Entry

primitive mechanism) will take care of assimilating the

file and thereby updating the other records.

3- Eea_d_F_i.l_e

To read a file, a program must provide the

offset and length of the data to be read, and the

location of a buffer into which to copy the data read.

The file to be read from is identified by an

open file descriptor which includes.a File ID as computed

by the Open File operating system mechanism defined

above. The File ID may identify either a scratch file or

a True File (or True File segment). If the File ID

identifies a True File, it may be either a simple or a

compound True File. Reading a file is accomplished by

the following steps: V

In the case where the File ID identifies a

scratch file or a simple True File, use the read

capabilities of the underlying operating system.

In the case where the File ID identifies a

compound file, break the read operation into one or more

read operations on component segments as follows:

A. Identify the segment(s) to be read by

dividing the specified file offset and length each by the

fixed size of a segment (a system dependent parameter),

to determine the segment number and number of segments

that must be read.

B. For each segment number computed above, do

the following: -

1. Read the compound True File index

block to determine the True Name of the segment to be

read.

ii. Use the Realize True File from

Location primitive mechanism to make the True File

40

GOOG-1018—Page 76 of 143

GOOG-1018-Page 77 of 143

segment available locally. (If that mechanism fails, the

Read File mechanism fails).

iii. Determine the File ID of the True

File specified by the True Name corresponding to this

5 segment.

iv. Use the Read File mechanism

(recursively) to read from this segment into the

corresponding location in the specified buffer.

4- Ml:

10 File writing uses the file ID and data

management capabilities of the underlying operating

system. File access (Make File Local described above)

can be deferred until the first read or write.

5. Delete File or Qizggtgry

15 The process of deleting a file, for a given

pathname, is described here with reference to FIGURE 27.

First, determine the local directory extensions

table entry record 138 and region table entry record 142

for the file (Step $422). If the file has no local

i‘ 20 directory extensions table entry record 138 or is locked
;; or is in a read-only region, prohibit the deletion.
3? Identify the corresponding True File given the

$5 True Name of the-file being deleted using the True File
registry 126 (Step $424). If the file has no True Name,

25. (Step S426) then delete the scratch copy of the file

based on its scratch file ID in the local directory

extensions table 124 (Step S427), and continue with step
-S428.

If the file has a True Name and the True File's

30 use count is one (Step 8429), then delete the True File

(Step S430), and continue with step $428.

If the file has a True Name and the True File's

use count is greater than one, reduce its use count by

one (Step 8431). Then proceed with step $428.

41

GOOG-1018—Page 77 of 143

GOOG-1018-Page 78 of 143

il...

,.w..«tflbflfimhfi
a“.T..

mi.

3"UK”E“E
till,3"...

“H

10

15

20

25

3O

35

In Step S428, del te the local directory

ext nsions table entry record, and add an entry to the

audit file 132 indicating the time and the operation

performed (delete).

6. W

A mechanism is provided to copy a file-or

directory given a source and destination processor and

pathname. The Copy File mechanism does not actually copy

the data in the file, only the True Name of the file.

This mechanism is performed as follows:

(A) Given the source path, get the True Name

from the path. If this step fails, the mechanism fails.

(8) Given the True Name and the destination

path, link the destination path to the True Name.

(C) If the source and destination processors

have different True File registries, find (or, if

necessary, create) an entry for the True Name in the True

File registry table 126 of the destination processor.

Enter into the source ID field of this new entry the

source processor identity.

(D) Add an entry to the audit file 132

indicating the time and operation performed (copy).
This mechanism addresses capability of the

system to avoid copying data from a source location to a

destination location when the destination already has the

data. In addition, because of the ability to freeze a

directory, this mechanism also addresses capability of

the system immediately to make a copy of any collection

of files, thereby to support an efficient version control

mechanisms for groups of files.

7. Move Eile or Diregtory

A mechanism is described which moves (or

renames) a file from a source path to a destination path.

The move operation, like the copy operation, requires no

actual transfer of data, and is performed as follows:

42

GOOG-1018—Page 78 of 143

GOOG-1018-Page 79 of 143

kiiu
H“1IL111':is.
i
t":‘F(“mum“"mi;.. mu_ m.\ft.

m'
“T

KflflEW§

10

15

20

25

3O

destination path.

(8) If the source path is different from the

(A) Copy the file from the source path to the

destination path, delete the source path.

8. ' Get File Status

This mechanism takes a file pathname and

provides information about the pathname, First the local

directory extensions table entry record 138 corresponding

to the pathname given is found.' If no such entry exists,

then this mechanism fails, otherwise, gather information

about the file and its corresponding True File from the

local directory extensions table 124. The information

can include any information shown in the data structures,

including the size, type, owner, True Name, sources, time

of last access, time of last modification, state (local
or not, assimilated or not, compressed Or not), use

count, expiration date, and reservations.

9. fig; Files in Dizggtgry

This mechanism enumerates the files in a

directory. It is used (implicitly) whenever it is

necessary to determine whether a file exists (is present)

in a directory. For instance, it is implicitly used in

the Open File, Delete File, Copy File or Directory, and

Move File operating system mechanisms, because the files

operated on are referred to by pathnames containing

directory names. The mechanism works as follows:

The local directory extensions table 124 is

searched for an entry 138 with the giVen directory

pathname. If no such entry is found, or if the entry

found is not a directory, then this mechanism fails.

if there is a corresponding True File field in

the local directory extensions table record, then it is

assumed that the True File represents a frozen directory.

The Expand Frozen Directory primitive mechanism is used

43

GOOG-1018—Page 79 of 143

GOOG-1018-Page 80 of 143

'?M%E$fl1‘
“m(‘-

1'I
alumd

nm,

4

“A mkm“I I

'“g"m

"K
53??"«.31fl

WHK

10

15

20

25

30

I E“

to expand the existing True File into directory entries

in the local directory extensions table.

Finally, the local directory extensions table

124 is again searched, this time to find each directory

subordinate to the given directory. The names found are

provided as the result.

W

The remote mechanisms provided by the present

invention are now described. Recall that remote

mechanisms are used by the operating system in responding

to requests from other processors.‘ These mechanisms
enable the capabilities of the present invention in a

peer-to-peer network mode of operation.

_ In a presently preferred embodiment, processors

communicate with each other using a remote procedure call

(RPC) style interface, running over one of any number of

communication protocols such as IPX/SPX or TCP/IP. Each

peer processor which provides access to its True File
registry 126 or file regions, or which depends on another

peer processor, provides a number of mechanisms which can

be used by its peers.

The following remote mechanisms are described:

1. Locate True File;

2. Reserve True File;

3. Request True File;

4. Retire True File;

5. Cancel Reservation;

6. Acquire True File;

7. Lock Cache;

8. Update Cache; and

9. Check Expiration Date.

1. Locate True Eilg

This mechanism allows a remote processor to

determine whether the local processor contains a copy of

44

GOOG-1018—Page 80 of 143 ,

GOOG-1018-Page 81 of 143

fflflflfl,I

i!”-I"xiii;E3!‘45:-«:1

Try“
Till

m
!

"i“uiII

"m

10

15

20

25

30

35

a specific True File. The mechanism begins with a True

Name and a flag indicating whether to forward requests

for this file to other servers. This mechanism is now

described with reference to FIGURE 28.

First determine if the True File is available

locally or if there is some indication of where the True

File is located (for example, in the Source IDs field).

Look up the requested True Name in the True File registry

126 (Step 5432).

If a True File registry entry record 140 is not

found for this True Name (Step S434), and the flag

indicates that the request is not to be forwarded (Step

S436), respond negatively (Step S438). That is, respond

to the effect that the True File is not available.

One the other hand, if a True File registry

entry record 140 is not found (Step S434), and-the flag

indicates that the request for this True File is to be

forwarded (Step S436), then forward a request for this

True File to some other processors in the system (Step

8442). If the source table for the current processor

identifies one or more publishing servers which should

have a copy of this True File, then forward the request

to each of those publishing servers (Step S436).

If a True File registry entry record 140 is

found for the required True File (Step S434), and if the

entry includes a True File ID or Compressed File ID (Step

S440), respond positively (step $444). If the entry

includes a True File ID then this provides the identity

or disk location of the actual physical representation of

the file or file segment required. If the entry include_

a Compressed File ID, then a compressed version of the 1

True File may be stored instead of, or in addition to, an

uncompressed version. This field provides the identity

of the actual representation of the compressed version of

the file.

If the True File registry entry record 140 is

found (Step S434) but does not include a True File ID

45

GOOG-1018—Page 81 of 143

GOOG-1018-Page 82 of 143

3
w{

EYWmflfidfiflflflh
..,

2i13:...

’WH

10

15

20

3‘

30

(the File ID is absent if the actual file-is not

currently present at the current location) (Step S440),

and if the True File registry entry record 140 includes

one or more source processors, and if the request can be

forwarded, then forward the request for this True File to

one or more of the source processors (Step $444).

2. geserve True File

This mechanism allows a remote processor to

indicate that it depends on the local processor for

access to a specific True File. It takes a True Name as

input. This mechanism is described here.

(A) Find the True File registry entry record

140 associated with the given True File. If no entry

exists, reply negatively.

(B) If the True File registry entry record 140

does not include a True File ID or compressed File ID,

and if the True File registry entry record 140 includes

no source IDs for removable storage volumes, then this

processor does not have access to a copy of the given

file. Reply negatively.

(C) Add the ID of the sending proceSsor to the

list of dependent procesSors for the True File registry

entry record 140. Reply positively, with an indication

of whether the reserved True File is on line or off line.

3- mmmflgkmuug

This mechanism allows a remote processor to

request a copy of a True File from the local processor.

It requires a True Name and responds positively by

sending a True File hack to the requesting processor.

The mechanism operates as follows:

(A) Find the True File registry entry record

140 associated with the given True Name. If there is no

such True File registry entry record 140, reply

negatively.

46

GOOG-1018—Page 82 of 143

GOOG-1018-Page 83 of 143

flfiflfl
fir(

x’mwIf" mI

I.Elli;sE

In1""m!
iTE!

Wflfifi

10

15

20

25

30

35

(B) Hake the True File local using the Make

True File Local primitive mechanism. If this mechanism

>fails, the Request True File mechanism also fails.
(C) Send the local True File in either it is

uncompressed or compressed form to the requesting remote

processor. Note that if the True File is‘a compound

file, the components are not sent.

(D) If the remote file is listed in the

dependent process list of the True File registry entry

record 140, remove it.

4. I Bgtire True Eile

This mechanism.allows a remote processor to

indicate that it no-longer plans to maintain a copy of a

given True File. An alternate source of the True File

can be specified, if, for instance, the True File is

being moved from one server to another. It begins with a

True Name, a requesting processor ID, and an optional

alternate source. This mechanism operates as follows:

(A) Find a True Name entry in the True File

registry 126. If there is no entry for this True Name,

this mechanism’s task is complete. '

(E) Find the requesting processor on the

source list and, if it is there, remove it.

(C) If an alternate source is provided, add it

to the source list for the True File registry entry

record 140. . _

(D) If the source list of the True File

registry entry record 140 has no items in it, use the

Locate Remote File primitive mechanism to search for

another copy of the file. If it fails, raise a serious '
error . '

5. Qanssl_3sserxstisn

This mechanism allows a remote processor to

indicate that it no longer requires access to a True File

stored on the local processor. It begins with a True

47

GOOG-1018—Page 83 of 143

GOOG-1018-Page 84 of 143

IfifiéfififlI wl

{.11'" v“aim.

1:‘53:?:12:iii.
"”1

4

1

‘KflEEfi

10

15

20

25

30

35

Nam and a requesting processor ID and proceeds as

follows:

(A) Find the True Name entry in the True File

registry 126. If there is no entry for this True Name,

this mechanism’s task is complete.

(8) Remove the identity of the requesting

processor from the list of dependent processors, if it

appears.

(C) If the list of dependent processors

becomes zero and the use count is also zero, delete the

True File.

6. Acquire True File

This mechanism allows a remote processor to

insist that a local processor make a copy of a specified

True File. It is used, for example, when a cache client

wants to write through a new version of a file. The

Acquire True File mechanism begins with a data item and

an optional True Name for the data item and proceeds as

follows:

(A) Confirm that the requesting processor has

the right to require the local processor to acquire data

items. If not, send a negative reply.

(B) Make a local copy of the data item

transmitted by the remote processor..

(C) Assimilate the data item into the True

File registry of the local processor.

(D) If a True Name was provided with the file,

the True Name calculation can be avoided, or the

mechanism can verify that the file received matches the

True Name sent. - '

(E) Add an entry in the dependent processor

list of the true file registry record indicating that the

requesting processor depends on this copy of the given

True File.

(F) Send a positive reply.

48

GOOG-1018—Page 84 of 143

GOOG-1018-Page 85 of 143

10

15

20

25

30

7. Locx'Cache
This mechanism allows a remote cache client to

look a local file so that local users or other cache

clients cannot change it while the remote processor is

using it. The mechanism begins with a pathname and

proceeds as follows:

(A) Find the local directory extensions table

entry record 138 of the specified pathname. If no such

entry exists, reply negatively.

(B) If an local directory extensions table

entry record 138 exists and is already locked, reply

negatively that the file is already locked.

(C) If an local directory extensions table

entry record 138 exists and is not locked, lock the

entry. Reply positively.

8. d t Cache

This mechanism allows a remote cache client to

unlock a local file and update it with new contents. It

begins with a pathname and a True Name. The file

corresponding to the True Name must be accessible from

the remote processor. This mechanism Operates as

follows:

Find the local directory extensions table entry

record 138 corresponding to the given pathname. Reply

negatively if no such entry exists or if the entry is not

locked.

Link the given pathname to the given True Name

using the Link Path to True Name primitive mechanism.

Unlock the local directory extensions table

entry record 138 and'return positively.

9. W

Return current or new expiration date and

possible alternative source to caller.

49

GOOG-1018—Page 85 of 143

GOOG-1018-Page 86 of 143

{EEKREE!553;L41
f'I

«E.
“1-- .

i.

“I?!‘iiziii"Ii?"[1?"1117‘”33::E!a
l!

IE

10

15

20

25

30

35

cesses and Mecha isms

The background processes and mechanisms

provided by the present invention are now described-

Recall that background mechanisms are intended to run

occasionally and at a'low priority to provide automated

management capabilities with respect to the present

invention.

The following background mechanisms are

described:

1. Mirror True File;

2. Groom Region;
3. Check for Expired Links;

4. Verify Region; and'

5. Groom Source List..

1. H’ o ue ' e

This mechanism is used to ensure that files are

available in alternate locations in mirror groups or

archived on archival servers. The mechanism depends on

application-specific migration/archival criteria (size,

time since last access, number of copies required, number

of existing alternative sources) which determine under
what conditions a file should be moved. The Mirror True

File mechanism operates as follows, using the True File

specified, perform the following steps:

(A) Count the number of available locations of

the True File by inspecting the source list of the True

File registry entry record 140 for the True File. This

step determines how many copies of the True File are

available in the system. i

(B) "If the True File meets the specified

migration criteria,'select a mirror group server to which
a copy of the file should be sent. Use the Acquire True

File remote mechanism to copy the True File to the

selected mirror group server. Add the identity of the

selected system_to the source list for the True File.

50

GOOG-1018—Page 86 of 143

GOOG-1018-Page 87 of 143

10

15

20

25

3O

35

2. o ' e 'on

This mechanism is used to automatically free UP

Space in a processor by deleting data items that may be

available elsewhere. The mechanism depends on

application-specific grooming criteria (for instance, a

file may be removed if there is an alternate online

source for it, it has not been accessed in a given number

of days, and it is larger than a given size). This

mechanism operates as follows:

Repeat the following steps (1) to (iii) with

more aggressive grooming criteria until sufficient space
is freed or until all grooming criteria have been

exercised. Use grooming information to determine how

much space has been freed. Recall that, while grooming

is in effect, grooming information includes a table of

pathnames selected for deletion, and keeps track of the

amount of space that would be freed if all of the files

were deleted. '

(i) Begin Grooming (using the primitive

mechanism).

(ii) For each pathname in the specified region,

for the True File corresponding to the pathname, if the

True File is present, has at least one alternative

source, and meets application specific grooming criteria

for the region, select the file for removal (using the

primitive mechanism).

(iii) End Grooming (using the primitive

mechanism).

If the region is used as a cache, no other

processors are dependent on True Files to which it

refers, and all such'True Files are mirrored elsewhere.

In this case, True Files can be removed with impunity.

For a cache region,‘the grooming criteria would

ordinarily eliminate the least recently accessed True

Files first. This is best done by sorting the True Files

in the region by the most recent access time before

performing step (ii) above. The application specific

51

GOOG-1018—Page 87 of 143

GOOG-1018-Page 88 of 143

.m1L}?

3?;{En{E31{

“mu“an‘Laggg
‘-x.ua, m11...“'
fl?"‘:15

10

15

20

25

30

criteria would thus be to select for removal every True

File encountered (beginning with the least recently used)

until the required amount of free space is reached.

3. ec 0 Ex i ed inks

This mechanism is used to determine whether

dependencies on published files should be refreshed.

following steps describe the operation of this mechanism:

For each pathname in the specified region, for

each True File corresponding to the pathname, perform the

The

following step: _

If the True File registry entry record 140

corresponding to the True File contains at least one

source which is a publishing server, and if the
expiration date on the dependency is past or close, then

perform the following steps:

(A) Determine whether the True File registry

entry record contains other sources which have not

expired.

(B) Check the True Name expiration of the

server. If the expiration date has been extended, or an.

alternate source is suggested, add the source to the True
File registry entry record 140.

(C) If no acceptable alternate source was

found in steps (A) or (8) above, make a local copy of the

True File.

(D) Remove the expired source.

4. W

This mechanism can be used to ensure that the

data items in the True File registry 126 have not been

damaged accidentally or maliciously. The operation of
this mechanism is described by the following steps:

(A) Search the local directory extensions

table 124 for each pathname in the specified region and

then perform the following steps:

52

GOOG-1018—Page 88 of 143

GOOG-1018-Page 89 of 143

Hu

F“EHQ)1 x

I‘l'.I1':1‘t:“1‘Hun“\‘S‘u‘1‘\\l=I:

U![Em
.n iv.“

.1,“
Q,

alEEK?
”KbL.x
"1:
i

10

15

20

25

30

35

I _

l i .

(i) Get the True File name corresponding

to the pathname; .

(ii) If the True File registry entry 140

for the True File does not have a True File ID or

compressed file ID, ignore it.

(iii) Use the Verify True File mechanism

(see extended mechanisms below) to confirm that the True

File_specified is correct.

5- greem_§eurse_List

The source list‘in a True File entry should be

groomed sometimes to ensure there are not too many mirror
is deleted or when a

criteria are changed, it

affected True Files to

or archive copies. When a file

region definition or its mirror

may be necessary to inspect the

determine whether there are too many mirror copies. This

can be done with the following steps:

For each affected True File,

(A) Search the local directory extensions

table to find each region that refers to the True File.

. (B) Create a set of "required sources",

initially empty.

(C) For each region found,

(a) determine the mirroring criteria for

that region,

(b) determine which sources for the True

File satisfy the mirroring criteria, and

(c) add these sources to the set of

required sources.

(D) For each source in the True File registry

entry, if the source,identifies a remote processor (as

opposed to removable media), and if the source is not a

publisher, and if the source is not in the set of

required sources, then eliminate the source, and use the

Cancel Reservation remote mechanism to eliminate the

given processor from the list of dependent processors

53

GOOG-1018—Page 89 of 143

GOOG-1018-Page 90 of 143

1".-

‘

*EEWi

iflfififi”
"‘14i

‘E

E

10

15

20

25

30

recorded at the remote processor identified by the

source .

xte Mechanisms

The extended mechanisms provided by the present

invention are now described. Recall that extended

mechanisms run within application programs over the

operating system to provide solutions to specific

problems and applications.~

The following extended mechanisms are

described:

1. Inventory Existing Directory;

2. Inventory Removable, Read-only Files;

3. Synchronize Directories;

4. Publish Region; ,

5. Retire Directory;

6. Realize Directory at Location;

7. Verify True File;‘

8. Track for Accounting Purposes; and

9. Track for Licensing Purposes.

1. Inventgry Existing Directory

This mechanism determines the True Names of

files in an existing oneline directory in the underlying

operating system.v One purpose of this mechanism is to
install True Name mechanisms in an existing file system.

An effect of such an installation is to

eliminate immediately all duplicate files from the file

. system being traversed. If several file systems are

inventoried in a single True Pile registry, duplicates

across the volumes are also eliminated. .

(A) Traverse the underlying file system in the

operating system. For each file encountered, excluding

directories, perform the following:

(i) Assimilate the file encountered

(using the Assimilate File primitive mechanism). This

54

GOOG-1018—Page 90 of 143

GOOG-1018-Page 91 of 143

i) i, .
1i ,4 If

5

_ 10

15

20

2E2;

3s

a?

i; 25

30

35

process computes its True Name and moves its data into

the True File registry 126.

(ii) Create a pathname consisting of the

path to the volume directory and the relative path of the

file on the media. Link this path to the computed True

Name using the Link Path to True Name primitive

mechanism.

2. Inventory Removable, Read-only Files

A system with access to removable, read-only

media volumes (such as WQRM disks and CD-ROMs) can create

a usable inventory of the files on these disks without

having to make online copies. These objects can then be

used for archival purposes, directory overlays, or other

needs. An operator must request that an inventory be

created for such a volume.

This mechanism allows for maintaining

inventories of the contents of files and data items on

removable media, such as diskettes and CD-ROMs, indepen-

dent of other properties of the files such as name,

location, and date of creation.

The mechanism creates an online inventory of

the files on one or more removable volumes, such as a

floppy disk or CD-ROH, when the data on the volume is

represented as a directory. The inventory service uses a

True Name to identify each file, providing a way to

locate the data independent of its name, date of

creation, or location.

The inventory can be used for archival of data

(making it possible to avoid archiving data when that

data is already on aseparate volume), for grooming '

(making it possibleto delete infrequently accessed files
if they can be retrieved from removable volumes), for

version control (making it possible to generate a new

version of a CD-ROM without having to copy the old

version), and for other purposes.

55

GOOG-1018—Page 91 of 143

GOOG-1018-Page 92 of 143

In

3.”W;:'i“14:11..if.UMIE41H
&n

“n”in
MT,

\

’3:

g

10

15

30

25

3O

35

The inventory is made by creating a volume

directory in the media inventory in which each file named
identifies the data item on the volume being inventoried.

Data items are not copied from the removable volume

during the inventory process.

An operator must request that an inventory be

created for a specific volume. Once created, the volume

directory can be frozen or copied like any other

directory. Data items from either the physical volume or

the volume directory can be accessed using the Open File

operating system mechanism which will cause them to be
read from the physical volume using the Realize True File

from Location primitive mechanism. ‘

To create an inventory the following steps are

taken:

(A) A volume directory in the media inventory

is created to correspond to the volume being inventoried.

Its contextual name identifies the specific volume.

(B) A source table entry 144 for the volume is

created in the source table 130. This entry 144

identifies the physical source volume and the volume

directory created in step (A).

(C) The filesystem on the volume is traversed.

For each file encountered, excluding directories, the

following steps are taken:

(1) The True Name of the file is

computed. An entry is created in the True Name registry

124, including the True Name of the file using the

primitive mechanism. The source field of the True Name

registry entry 14o identifies the source table entry 144.

(ii) 5 pathname is created consisting of '

the path to the volume directory and the relative path of
the file on the media. This path is linked to the

computed True Name using Link Path to True Name primitive

mechanism.

(D) After all files have been inventoried, the

volume directory is frozen. The volume directory serves

56

GOOG-1018—Page 92 of 143

GOOG-1018-Page 93 of 143

Pgfiflflflfl
n.ma. 4'ummum

mmmrrrmw

10

15

20

25

30

35

as a table of cohtents for the volume. It can be copied

using the Copy File or Directory primitive mechanism to

create an "overlay" directory which can then be modified,

making it possible to edit a Virtual copy of a read-only
medium.

3. Synchronize Directories

Given two versions of a directory derived from

the same starting point, this mechanism creates a new,

synchronized version which includes the changes from

each. Where a file is changed in both versions, this

mechanism provides a user exit for handling the

discrepancy. By using True Names, comparisons are

instantaneous, and no copies of files are necessary.

This mechanism lets a local processor

synchronize a directory to account for changes made at a

remote processor. Its purpose is to bring a local copy

of a directory up to date after a period of no

communication between the local and remote processor.

Such a period might occur if the local processor were a

mobile processor detached_from its server, or if two

distant processors were run independently and updated

nightly. ,

An advantage of the described synchronization

process is that it does not depend on synchronizing the
clocks of the local and remote processors. However, it

does require that the local processor track its position

in the remote processor's audit file.

This mechanism does not resolve changes made

simultaneously to the same file at several sites. If

that occurs, an external resolution mechanism such as,

for example, operatgr intervention, is required.

The mechanism takes as input a start time, a

local directory pathname, a remote processor name, and a

remote directory pathname name, and it operates by the

following steps:

57

GOOG-1018—Page 93 of 143

GOOG-1018-Page 94 of 143

imamu n

~fi3317m'”flflfiflliaii
IL’T'
i

"fifl

10

15

20

25

30

35

(A) fiequest a copy of the audit file 132 from

the remote processor using the Request True File remote
mechanism.

(3)

after the start time,

a file in the remote directory, perform the following

For each entry 146 in the audit file 132

if the entry indicates a change to

steps:

(i) Compute the pathname of the

corresponding file in the local directory. Determine the

True Name of the corresponding file.

(ii) If the True Name of the local file is

the same as the old True Name in the audit file, or if

there is no local file and the audit entry indicates a

new file is being created, link the new True Name in the

audit file to the local pathname using the Link Eath to

True Name primitive mechanism.

(iii) Otherwise, note that there is a_

problem with the synchronization by_sending a message to

the operator or to a problem resolution program,

indicating the local pathname, remote pathname, remote

processor, and time of change.

(C) After synchronization is complete, record

the time of the final change. This time is to be used as

the new start time the next time this directory is '

synchronized with the same remote processor.

4- W

The publish region mechanism allows a processor

to offer the files in a region to any client processors

for a limited period of time.

The purpose of the service is to eliminate any:

need for client processors to make reservations with the

publishing processor. This in turn makes it possible for

the publishing processor to service a much larger number

of clients.

When a region is published, an expiration date

is defined for all files in the region, and is propagated

58

GOOG-1018—Page 94 of 143

GOOG-1018-Page 95 of 143

10

15

20

25

30

35

into the publishing system’s True File registry entry
record 140 for each file.

when a remote file is copied, for instance

using the Copy File operating system mechanism, the

expiration date is copied into the source field of the
client's True File registry entry record 140. When the

source is a publishing system, no dependency need be

created.

The client processor must occasionally and in

background, check for expired links, to make sure it

still has access to these‘files. This is described in the

background mechanism Check for Expired Links.

5- W

This mechanism makes it possible to eliminate

safely the True Files in a directory, or at least

dependencies on them, after ensuring that any client

processors depending on those files remove their

dependencies. _The files in the directory are not

actually deleted by this process. The directory can be

deleted with the Delete File operating system mechanism.

The mechanism takes the pathname of a given

directory, and optionally, the identification of a

preferred alternate source processor for clients to use.

The mechanism performs the following steps: '

(A) Traverse the directory. For each file in

the directory, perform the following steps:

(i) Get the True Name of the file from

its path and find the True File registry entry 140

associated with the True Name.

(ii) getermine an alternate source for the

True Pile. If the source 105 field of the TFR entry

includes the preferred alternate source, that is the

alternate source. If it does not, but includes some

other source, that is the alternate source. If it

contains no alternate sources, there is no alternate
source .

59

' . GOOG-1018—Page 95 of 143

GOOG-1018-Page 96 of 143

10

15

20

25

3O

35

(iii) For each dependent processor in

the True File registry entry 140, ask that processor to

retire the True File, specifying an alternate source if

one was determined, using the remote mechanism.

6. Real ze Director at Location

This mechanism allows the user or operating

system to force copies of files from some source location

to the True File registry 126 at a given location. The

purpose of the mechanism is to ensure that files are

accessible in the event the source location becomes
inaccessible. This can happen for instance if the source

or given location are on mobile computers, or are on

removable media, or if the network connection to the

source is expected to become unavailable, or if the

source is being retired.

This mechanism is provided in the following

steps for each file in the given directory, with the

exception of subdirectories:

(A) Get the local directory extensions table

entry record 138 given the pathname of the file. Get the

True Name of the local directory extensions table entry

record 138. This service assimilates the file if it has

not already been assimilated.

(B) Realize the corresponding True File at the

given location. This service causes it to be copied to

the given location from a remote system or removable

media.

7 - Wis ,

This mechanism is used to verify_that the data.

item in a True File registry 126 is indeed the correct

data item given its True Name. Its purpose is to guard

against device errors, malicious changes, or other

problems.

If an error is found, the system has the

ability to "heal" itself by finding another source for

60

GOOG-1018—Page 96 of 143

GOOG-1018-Page 97 of 143

1:211nKw I

11:;
,.

HI

n“

“a:it“11::'“I:
h,wdieIL!
i,..

10

15

2.0

25

30

35

the True File with the given name. It may also be

desirable to verify that the error has not propagated to

other systems, and to log the problem or indicate it to

the computer operator. These details are not described

here.

To verify a data item that is not in a True

File registry 126, use the Calculate True Name primitive

mechanism described above.

The basic mechanism begins with a True Name,

and operates in the following steps:

(A) Find the True File registry entry record

140 corresponding to the given True Name.

(8) If there is a True File ID for the True

File registry entry record 140 then use it. Otherwise,

indicate that no file exists to verify.

(C) Calculate the True Name of the data item

given the file ID of the data item.

(D) Confirm that the calculated True Name is

equal to the given True Name.

(E) If the True Names are not equal, there is-
an error in the True File registry 126. Remove the True

File ID from the True File registry entry record 140 and

place it somewhere else. Indicate that the True File

registry entry record 140 contained an error.

8. W

This mechanism provides a way to know reliably

which files have been stored on a system or transmitted

from one system to another. 'The mechanism can be used as

a basis for a value-based accounting system in which

charges are based on'the identity of the data stored or‘:

transmitted, rather.than simply on the number of bits.

This mechanism allows the system to track

possession of specific data items according to content by

owner, independent of the name, date, or other properties

of the data item, and tracks the uses of specific data

items and files by content for accounting purposes. True

61

GOOG-1018—Page 97 of 143

GOOG-1018-Page 98 of 143

"ii:$393151?”1i?“’313:3::E‘.’«21".£1:'5’}in:IE1!E1]!

10

15

20

25

30

35

0

names make it possible to identify each file briefly yet

uniquely for this purpose.

Tracking the identities of files requires

maintaining an accounting log 134 and processing it for

accounting or billing purposes. The mechanism operates

in the following steps:

(A) Note every time a file is created or

deleted, for instance by monitoring audit entries in the

Process Audit File Entry-primitive mechanism. When such

an event is encountered, create an entry 148 in the

accounting log 134 that shows the responsible party and

the identity of the file created or deleted.

(8) Every time a file is transmitted, for
instance when a file is copied with a Request True File

remote mechanism or an Acquire True File remote

mechanism, create an entry in the accounting log 134 that

shows the responsible party, the identity of the file,

and the source and destination processors.

(C) Occasionally run an accounting program to

process the accounting log 134, distributing the events
to the account records of each responsible party. The

account records can eventually be summarized for billing

purposes .

9. '0 ° e 5' ur oses

This mechanism ensures that licensed files are

not used by unauthorized parties. The True Name provides

a safe way to identify licensed material. This service

allows proof of possession of specific files according to

their contents without disclosing their contents.

Enforcing gse of valid licenses can be active.:

(for example, by refusing to provide access to a file

without authorization) or passive (for example, by

creating a report of users who do not have proper

authorization).

One possible way to perform license validation

is to perform occasional audits of employee systems. The

62

GOOG-1018—Page 98 of 143

GOOG-1018-Page 99 of 143

a O
s rvice described herein relies on True Names to support

such an audit, as in the following steps:

(A) For each licensed product, record in the

license table 136 the True Name of key files in the

'5 product (that is, files which are required in order to

use the product, and which do not occur in other

products) Typically, for a software product, this would

include the main executable image and perhaps other major

files such as clip-art, scripts, or online help. Also

. 10 record the identity of each system which is authorized to

have a copy of the file.‘

. (B) Occasionally, compare the contents of each

'user processor against the license table 136. For each

True Name in the license table do'the following:

,15 (i) Unless the user processor is

authorized to have a copy of the file, confirm that the

user processor does not have a copy of the file using the

Locate True File mechanism.

(ii) If the user processor is found to

:5 20 have a file that it is not authorized to have, record the
;: user processor and True Name in a license violation
5 table.

3.9:

ta
2!?

a...“«mu W

Given the mechanisms described above, the

25 operation of a typical DP system employing these

mechanisms is now described in order to demonstrate how

the present invention meets its requirements and

(luh”ann,
‘iuu‘

"iii"

capabilities.

‘ In operation, data items (for example, files, V

'30 database records, messages, data segments, data blocks,
directories, instances of object classes, and the like)

in a DP system employing the present invention are

identified by substantially unique identifiers (True

Names), the identifiers depending on all of the data in

35 the data items and only on the data in the data items.

'63

GOOG-1018—Page 99 of 143

GOOG-1018-Page 100 of 143

g

h

,1:ml
"1am".
gfififlik
u,Tm.u.

mmmww

10

15

20

25

30

35

(..

. I
The primitive mechanisms Calculate True Name and

Assimilat Data Item support this property. For any

given data item, using the Calculate True Name primitive

mechanism, a substantially unique identifier or True Name

for that data item can be determined.

Further, in operation of a DP system

incorporating the present invention, multiple copies of

data items are avoided (unless they are required for some

reason such as backups or mirror copies in a fault-

tolerant system). Multiple copies of data_items are

avoided even when multiple names refer to the same data

item. The primitive mechanisms Assimilate Data Items and

New True File support this property. Using the~

Assimilate Data Item primitive mechanism, if a data item
already exists in the system, as indicated by an entry in

the True File registry 126, this existence will be

discovered by this mechanism, and the duplicate data item

(the new data item) will be eliminated (or not added).

Thus, for example, if a data file is being copied onto a

system from a floppy disk, if, based on the True Name of

the data file, it is determined that the data file

' already exists in the system (by the same or some other

name), then the duplicate copy will not be installed. If

the data item was being installed on the'system by some

name other than its current name, then, using the Link

Path to True Name primitive mechanism, the other (or new)

name can be linked to the already existing data item.

In general, the mechanisms of the present

invention operate in such a way as to avoid recreating an

actual data item at a location when a copy of that data

item is already present at that location. .In the case of

a copy from a floppy disk, the data item (file) may have.
to be copied (into a scratch file) before it can be

determined that it is a duplicate. This is because only

one processor is involved. On the other hand, in a

multiprocessor environment or DP system, each processor

has a record of the True Names of the data items on that

64

GOOG-1018—Page 100 of 143

GOOG-1018-Page 101 of 143

E

gs
5:‘w
E:
re
25{if

"1337ICE!

10

15

20'

25

3O

35

processor. When a data item is to be copied to another

location (another processor) in the DP system, all that

is necessary is to examine the True Name of the data item

prior to the copying. It a data item with the same True

Name already exists at the destination location

(processor), then there is no need to copy the data item.

Note that if a data item which already exists locally at

a destination location is still copied to the destination

location (for example, because the remote system did not

have a True Name for the data item or because it arrives

as a stream of un-named data), the Assimilate Data Item

primitive mechanism-will prevent multiple copies of the

data item from being created.

Since the True Name of a large data item (a

compound data item) is derived from and based on the True

Names of components of the data item, copying of an

entire data item can be avoided. Since some (or all) of

the components of a large data item may already be

present at a destination location, only those components

which are not present there need be copied. This

property derives from the manner in which True Names are

determined.

When a file is copied by the Copy File or

Directory operating syStem mechanism, only the True Name

of the file is actually replicated.

When a file is opened (using the Open File

operating system mechanism), it uses the Make True File

Local primitive mechanism (either directly or indirectly

through the Create Scratch File primitive mechanism) to

create a local copy of the file. The Open File operating

system mechanism uses the Make True File Local primitive'

mechanism, which uses the Realize True File from Location
primitive mechanism, which, in turn uses the Request True

File remote mechanism.

. The Request True File remote mechanism copies

only a single data item from one processor to another.

If the data item is a compound file, its component

65

GOOG-1018—Page 101 of 143

GOOG-1018-Page 102 of 143

'flflflfl
(5" m.
d’

wi'ull.J1

411;.it:
u}in

infiwww

10

m

2.0

25

30

35

r

segments are not copied, only the indirect block is

copied. The segments are copied only when they are read

(or otherwise needed).

The Read File operating system mechanism

actually reads data. The Read File mechanism is aware of

compound files and indirect blocks, and it uses the

Realize True File from Location primitive mechanism to

make sure that component segments are locally available,

and then uses the operating system file mechanisms to

read data from the local file.

Thus, when a compound file is copied from a

remote system, only its True Name is Copied. When it is

opened, only its indirect block is copied. -When the

corresponding file is read, the required component

segments are realized and therefore copied.

In operation data items can be accessed by

reference to their identities (True Names) independent of

their present location. The actual data item or True

File corresponding to a given data identifier or True

Name may reside anywhere in the system (that is, locally,

remotely, offline, etc). If a required True File is

present locally, then the data in the file can be

accessed. If the data item is not present locally, there

are a number of ways in which it can be obtained from

wherever it is present. Using the_source IDs field of

the True File registry table, the location(s) of copies
of the True File corresponding to a given True Name can

be determined. The Realize True File from Location

primitive mechanism tries to make a local copy of a True

File, given its True Name and the name of a source

location (processor or media) that may contain the True '

File. If, on the other hand, for some reason it is notis
known where there is a copy of the True File, or if the

processors identified in the source 108 field do not

respond with the required True File, the processor'

requiring the data item can make a general request for

the data item using the Request True File remote

66

GOOG-1018—Page 102 of 143

GOOG-1018-Page 103 of 143

'1:A":H£13331Eh"I!
li2

FE

m“a...u 1,...xu

m.

"IL"11111:‘liiiii“IL""I?

10

15

20

25

3O

35

mechanism from all processors in the system that it can

contact. _

As a result, the-system provides transparent

access to any data item by reference to its data

identity, and independent of its present location.

In operation, data items in the system can be

verified and have their integrity checked. This is from

the manner in which True Names are determined. This can

be used for security purposes, for instance, to check for

viruses and to verify that data retrieved from another

location is the desired and requested data. For example,

the system might store the True Names of all executable

applications on the system and then periodically

redetermine the True Names of each of these applications

to ensure that they match the stored True Names. Any

change in a True Name potentially signals corruption in

the system and can be further investigated. The Verify

Region background mechanism and the Verify True File

extended mechanisms provide direct support for this mode

of operation. The Verify Region mechanism is used to
ensure that the data items in the True File registry have

not been damaged accidentally or maliciously. The Verify

True File mechanism verifies that a data item in a True

File registry is indeed the correct data item given its
True Name.

Once a processor has determined where (that is,

at which other processor or location) a copy of a data

item is in the DP system, that processor might need that

other processor or location to keep a copy of that data

item. For example, a processor might want to delete

local copies or data, items to make space available

locally while knowing that it can rely on retrieving the
data from somewhere else when needed. To this end the

system allows a processor to Reserve (and Cancel the

reservation of) True Files at remote locations (using the

remote mechanism). In this way the remote locations.are

67

GOOG-1018—Page 103 of 143

GOOG-1018-Page 104 of 143

J\

1133311(ElliI l

6"L533
1"i, “w\“w
322": “m«'It

.mm
i&

,uL“—

E"ETl
.mism?
am:.
'71:“a.

.10

15

20

25

30

35

. ~
I)

put on notice that another location is relying on the

presence of the True File at their location.

A DP system employing the present invention can

be made into a fault-tolerant system by providing a

certain amount of redundancy of data items at multiple

locations in the system. Using the Acquire True File and

Reserve True File remote mechanisms, a particular

processor can implement its own form of fault-tolerance

by copying data items to other processors and then

reserving them there. ‘However, the system also provides

the Mirror True File background mechanism to mirror (make

copies) of the True File available elsewhere in the

system. Any degree of redundancy (limited by the number

of processors or locations in the system) can be

implemented. As a result, this invention maintains a

desired degree or level of redundancy in a network of

processors, to protect against failure of any particular

processor by ensuring that multiple copies of data items
exist at different locations.

The data structures used to implement various

features and mechanisms of this invention store a variety

of useful information which can be used, in conjunction

with the various mechanisms, to implement storage schemes

and policies in a DP system employing the invention. For

example, the size, age and location of a data item (or of

groups of data items) is provided. This information can

be used to decide how the data items should be treated.

For example, a processor may implement a policy of

deleting local copies of all data items over a certain

age if other copies of those data items are present

elsewhere in the system. The age (or variations on they:

age) can be determined using the time of last access or

modification in the local directory extensions table, and

the presence of other copies of the data item can be

determined either from the Safe Flag or the source IDs,

or by checking which other processors in the system have

68

GOOG-1018—Page 104 of 143

GOOG-1018-Page 105 of 143

Ififlm
115;:

H

5::
“\k

‘1“...d“

WHfiWWW”K“

10

15

20

25

30

35

copies of the data item and then reserving at least one

of those copies.

In operation, the system can keep track of data

items regardless of how those items are named by users

(or regardless of whether the data items even have

names). The system can also track data items that have

different names (in different or the same location) as

well as different data items that have the same name.

Since a data item is identified by the data in the item,

without regard for the context of the data, the problems

of inconsistent naming in'a DP system are overcome.
In operation, the system can publish data

items, allowing other, possibly anonymous, systems in a

network to gain access to the data items and to rely on

the availability of these data items. .True Names are

globally unique identifiers which can be published simply

by copying them. For example, a user might create a

textual representation of a file on system A with True

Name N (for instance as a hexadecimal string), and post

it on a computer bulletin board. Another user on system

8 could create a directory entry F for this True Name N

‘by using the Link Path to True Name primitive mechanism.

(Alternatively, an application could be developed which

hides the True Name from the users, but provides the same

public transfer service.)

When a program on system 3 attempts to open

pathname F linked to True Name N, the Locate Remote File

primitive mechanism would be used, and would use the

‘Locate True File remote mechanism to search for True Name

N on one or more remote processors, such as-system A. If

system B has access to system A, it would be able to I

realize the True File (using the Realize True File from‘:
Location primitive mechanism) and use it locally.

Alternatively, system B could find True Name N by

accessing any publicly available True Name server, if the-

server could eventually forward the request to system A.

69

GOOG-1018—Page 105 of 143

GOOG-1018-Page 106 of 143

I!l:

{amid

10

15

20'

25

30.

35

..~

Clients of a local server can indicate that

they depend on a given True File (using the Reserve True

File remote mechanism) so that the True File is not

deleted from the server registry as long as some client

requires access to it. (The Retire True File remote

mechanism is used to indicate that a client no longer

needs a given True File.)

A publishing server, on the other hand, may

want to provide access to many clients, and possibly

anonymous ones, without incurring the overhead of

tracking dependencies for each client. Therefore,

public server can provide expiration dates for True Files

in its registry. This allows client systems to safely

maintain references to a True File on the public server.

The Check For Expired Links background mechanism allows

the client of a publishing server to occasionally confirm

that its dependencies on the publishing server are safe.

In a variation of this aspect of the invention,

a

a processor that is newly connected (or reconnected after
some absence) to the system can obtain a current version

of all (or of needed) data in the system by requesting it

from a server processor. Any such processor can send a

request to update or resynchronize all of its directories

(starting at a root directory), simply by using the

Synchronize Directories extended mechanism on the needed

directories.

Using the accounting log or some other user

provided mechanism, a user can prove the existence of

certain data items at certain times. By publishing (in a

public place) a list of all True Names in the system on a

given day (or at some given time), a user can later refer
back to that list t2 show that a particular data item was
present in the system at the time that list was V

published. Such a mechanism is useful in tracking, for

example, laboratory notebooks or the like to prove dates

of conception of inventions. 'Such a mechanism also

70

GOOG-1018—Page 106 of 143

GOOG-1018-Page 107 of 143

. \

O .
permits proof of possession of a data item at a

particular date and time.

The accounting log file can also track the use

of specific data items and files by content for

5 accounting purposes. For instance, an information

utility company can determine the data identities of data

items that are stored and transmitted through its >

computer systems, and use these identities to provide

bills to its customers based on the identities of the

10 data items being transmitted (as defined by the

substantially unique identifier). The assignment of

prices for storing and transmitting specific True Files

would be made by the information utility and/or its data

suppliers; this information would be joined periodically
15 with the information in the accounting log file to

i: produce customer statements.

%2 Backing up data items in a DP system employing
E: the present invention can be done based on the True Names

' of the data items. By tracking backups using True Names,a“:£1

20 duplication in the backups is prevented. In operation,

the system maintains a backup record of data identifiers

of data items already backed up, and invokes the Copy

File or Directory operating system mechanism to copy only

éé ’ those data items whose data identifiers are not recorded

i: 25 in the backup record. Once a data item has been backed
if up, it can be restored by retrieving it from its backup

-location, based on the identifier of the data item.

Using the backup record produced by the backup to

identify the data item, the data item can be obtained

30 using, for example, the Make True File Local primitive

_. mechanism. '

In operation, the system can be used to cache

data items from a server, so that only the most recently

accessed data items need be retained. To operate in this

35 way, a cache client is configured to have a local

registry (its cache) with a remote Local Directory

Extensions table (from the cache server). Whenever a

71

GOOG-1018—Page 107 of 143

GOOG-1018-Page 108 of 143

“dflflflfifl
a

'Ejfimifii
hm"
m,A

'Wfl

10

~15

20

25

3O

35

file is opened (or read), the Local Directory Extensions
table is used to identify the True Name, and the Make

True File Local primitive mechanism inspects the local

registry. When the local-registry already has a copy,

the file is already cached. Otherwise, the Locate True

File remote mechanism is used to get a copy of the file.

This mechanism consults the cache server and uses the

Request True File remote mechanism to make a local copy,

effectively loading the cache.

The Groom Cache background mechanism flushes

the cache, removing the least-recently-used files from
the cache client's True File registry. While a file is

being modified on a cache client, the Lock Cache and

Update Cache remote mechanisms prevent other clients from
trying to modify the same file. I

In operation, when the system is being used to

cache data items, the problems of maintaining cache

consistency are avoided.

To access a cache and to fill it from its

server, a key is required to identify the data item

desired. Ordinarily, the key is a name or address (in

this case, it would be the pathname of a file). If the

data associated with such a key is changed, the client’s

cache becomes inconsistent; when the cache client refers

to that name, it will retrieve the wrong data. In order

to maintain cache consistency it is necessary to notify

every client immediately whenever a change occurs on the
server.

By using an embodiment of the present

invention, the cache key uniquely identifies the data it
represents. When the data associated with a name ’

changes, the key itself changes. Thus, when a cache

client wishes to access the modified data associated with

a given.file name, it will use a new key (the True Name

of the new file) rather than the key to the old file

contents in its cache. The client will always request

the correct data, and the old data in its cache will be

72

GOOG-1018—Page 108 of 143

GOOG-1018-Page 109 of 143

‘0 I.
eventually aged and flushed by the Groom Cache background
mechanism.

Because it is not necessary to immediately

notify clients when changes on the cache server occur.

5 the present invention makes it possible for a single

server to support a much larger number of clients than is

otherwise possible.

In operation, the system automatically archives

data items as they are created or modified. After a file

10 is created or modified, the Close File operating system

mechanism creates an audit file record, which is

eventually protessed by the Process Audit File Entry

primitive mechanism. This mechanism uses the New True

File primitive mechanism for any file which is newly

15 created, which in turn uses the Mirror True File

background mechanism if the True File is in a mirrored or

archived region. This mechanism causes one or more

copies of the new file to be made on remote processors.

In operation, the system can efficiently record

flflmfi

If”

20 and preserve any collection of data items. The Freeze

Directory primitive mechanism creates a True File which

identifies all of_the files in the directory and its

subordinates. Because this True File includes the True

Names of its constituents, it represents the exact

25 contents of the directory tree at the time it was frozen.

The frozen directory can be copied with its components

m:um.

UMWWWEmk
u:

\

preserved.

The Acquire True File remote mechanism (used in

mirroring and archiving) preserves the directory tree

30 structure by ensuring that all of the component segments

and True Files in a compound data item are actually '

copied to a remote system. Of course, no transfer is

necessary for data items already in the registry of the

remote system.

35 In operation, the system can efficiently make a

copy of any collection of data items, to support a

version control mechanism for groups of the data items.

73

GOOG-1018—Page 109 of i43

GOOG-1018-Page 110 of 143

10

15

20

25

30

35

I
‘r

The Freeze Directory primitive mechanism is

used to create a collection of data items. The

constituent files and segments referred to by the frozen

directory are maintained in the registry, without any

need to make copies of the constituents each time the

directory is frozen.

Whenever a pathname is traversed, the Get Files

in Directory operating system mechanism is used, and when

it encounters a frozen directory, it uses the Expand

Frozen Directory primitive mechanism.

A frozen directory can be copied from one

pathname to another efficiently, merely by copying its

True Name. The Copy File operating system mechanism is

used to copy a frozen directory. .

. Thus it is possible to efficiently create

copies of different versions of a directory, thereby

creating a record of its history (hence a version control

system).

In operation, the system can maintain a local

inventory of all the data items located on a given

removable medium, such as a diskette or CD-ROM. The

inventory is independent of other properties of the data

items such as their name, location, and date of creation.

The Inventory Existing Directory extended

mechanism provides a way to create True File Registry

entries for all of the files in a directory. One use of

this inventory is as a way to pre-load a True File

registry with backup record information. Those files in

the registry (such as previously installed software)

which are on the volumes inventoried need not be backed

up onto other volumes.

A The Inventory Removable, Read-only Files

extended mechanism not only determines the True Names for

the files on the medium, but also records directory

entries for each file in a frozen directory structure.

By copying and modifying this directory, it is possible

to create an on line patch, or small modification of an

74

GOOG-1018—Page 110 of 143

GOOG-1018-Page 111 of 143

mflfl
MK

Mf‘
..... .u...um.

'fififimk
‘h

WM.

10

15

20

25

3O

existing read-only file. For example, it is possible to

create an online representation of a modified CD-ROM,

such that the unmodified files are actually on the

CD-ROM, and only the modified files are online.

In operation, the system tracks possession of

specific data items according to content by owner,

independent of the name, date, or other properties of the

data item, and tracks the uses of specific data items and

files by content for accounting purposes. Using the

Track for Accounting Purposes extended mechanism provides

a way to know reliably which files have been stored on a

system or transmitted from one system to another.

at' n ' - ' e ate 5

Although the preferred embodiment of this

invention has been presented in the context of a file

system, the invention of True Names would be equally

valuable in a relational or objectvoriented database. A

relational or object-oriented database system using True

Names would have similar benefits to those of the file

system employing the invention. For instance, such a

database would permit efficient elimination of duplicate

records, support a cache for records, simplify the

process of maintaining cache consistency, provide

location-independent access to records, maintain archives

and histories of records, and synchronize with distant or

disconnected systems or databases.

The mechanisms described above can be easily

modified to serve in such a database environment. The

True Name registry wguld be used as a repository of

database records. All references to records would be via

the True Name of the record. (The Local Directory

Extensions table is an example of a primary index that

uses the True Name as the unique identifier of the

desired records.)

7.5

GOOG-1018—Page 111 of 143

GOOG-1018-Page 112 of 143

‘wflfllC

‘43::«9:;1133311I
“"1

"a run

1!?‘"{ELF
my

n...a“..2131ii"
"‘5‘€

E1

10

15

20

In such a database, the operations of

inserting, updating, and deleting records would be

implemented by first assimilating records into the
registry, and then updating a primary key index to map

the key f the record to its contents by using the True

Name as a pointer to the contents.

The mechanisms described in the preferred

embodiment, or similar mechanisms, would be employed in

such a system. These mechanisms could include, for

example, the mechanisms for calculating true names,

assimilating, locating,_realizing, deleting, copying, and

moving True Files, for mirroring True Files, for

maintaining a cache of True Files, for grooming True

Files, and other mechanisms based on the use of

substantially unique identifiers.

While the invention has been described in

connection with what is presently considered to be the

most practical and preferred embodiments, it is to be
understood that the invention is not to be limited to the

disclosed embodiment, but on the contrary, is intended to

cover various modifications and equivalent arrangements

included within the spirit and scope of the appended

claims.

76

GOOG-1018—Page 112 of 143

GOOG-1018-Page 113 of 143

dflflfl
'11"

x

13.":2"'*‘ MIt}!at“l l

{hI!) ‘.“I

mfiffi
'1fl

EUR

10

15

20

25

30

WHAT IS CLAIMED IS:

1. In a data processing system, an apparatus

comp‘ising:

identity means for determining, for any of a

plural ty of data items in the system, a substantially

unique 'dentifier, said identifier depending on all of

the data in the data item and only on the data in the

data iten and

~xistence means for determining whether a

particular data item is present in the system, by

examining t e identifiers of the plurality of data items.

_2. An apparatus as in claim 1, further

comprising:

local existence means for determining whether

an instance of . particular data item is present at a

particular locat on in the system, based on the

identifier of the data item.

3. An .paratus as in claim 2, wherein each

stinct plurality of data items, and location contains

wherein said local existence means determines whether a

particular data item i- present at a particular location

in the system by exami 'ng the identifiers of the

plurality of data items at said particular location in

the system.

4. An apparatur as in claim 2, further

comprising:

data associating m ans for making and

maintaining, for a data item 'n the system, an

association between the data i~em and the identifier of

the data item; and

access means for acce »ing a particular data

item using the identifier of the -ata item.

77

GOOG-1018—Page 113 of 143

GOOG-1018-Page 114 of 143

lEMfl..

War
a“

'fl£"flIf

E
I !

"LK‘m u

EWTK
1132

«ym
$1

10

15

20

25

30

,invoking‘said access means

5. An apparatus as in claim 2, further

comp ising:

duplication means for copying a data item from

a sour e to a destination in the data processing system,

by prov ding said destination with the data item only if

it is de rmined using the data identifier that the data

item is n present at the destination.

6. An apparatus as in claim 4, further

comprising:

ass milation means for assimilating a new data

item into the ystem, said assimilation means invoking

said identity m ans to determine the identifier of the

invoking said data aSSOCiating means to

data item with its identifier..

new data item an

associate the ne

7. An a paratus as in claim 4, further

comprising:

duplicati means for duplicating a data item

0 a destination location in the

based on the identifier of the

from a source locati

data processing system,

data item, said duplicat on means invoking said local

existence means to determ me whether an instance of the

data item is present at th destination location, and

I 0 provide said destination

with the data item only if 5 id local existence means

determines that no instance 0 the data item is present

at the destination..

8. An apparatus as i claim 7, further

comprising: 2 ,

backup means for making

the system, said backup means main

of identifiers of data items backed up, and.invoking

duplication means to copy only those data items whose

he backup record.

opies of data items in

ining a backup record

data identifiers are not recorded in

78

GOOG-1018—Page 114 of 143

GOOG-1018-Page 115 of 143

mmmw
I'F m

u":3I“'v;“\‘fu‘\{
Ei
l i

EMflWWW”

10

15

20

25

'30

9. An apparatus as in claim 8, further

comp ising: .

recovery means for retrieving a data item

previo sly backed up by said backup means, based on the

identi"er of the data item, said recovery means using

the bac~up record to identify the data item, and invoking
access mrans to retrieve the data item.

0. An apparatus as in claim 2, wherein a

location i a computer among a network of computers, the

apparatus f ther comprising:
reuote existence means for determining whether

a data item 1- present at a remote location in the system

from a current location in the system, based on the

identifier of - e data item, said remote location using

local existence means at the remote location to determine

whether the dat E: em is present at the remote location,and providing t current location with an indication of

the presence of t ~ data item at the remote location.

paratus as in claim 4, wherein a

r among a network of computers, the

11. An a;

in the system, based on the identifier of the data item,

g access means at the remote

\ta item and to send it to the

said remote location usi

location to obtain the d

current location if it is oresent.

12. An apparatus as in claim 1, further

comprising: ,

context means for mzking and maintaining a

least one contextual name

the identifier of the

context association between a

of a data item in the system a

data item; and

79

GOOG-1018—Page 115 of 143

GOOG-1018-Page 116 of 143

semen
as:fly«is

.'3“

ETE"'E
ahi.

,.‘{

Wflflfi

10

15

20

25

3O

referencing means for obtaining the identifier

of a data item in the system given a contextual name for

the ta item, using said context association.

13. An apparatus as in claim 12, further

comprisi :

ssignment means for assigning a data item to a

contextual ame, inVoking said identity means to

determine th identifier of the data item, and invoking

said context eans to make or modify the context

association be ween the centextual name of the data item

and the identif'er of the data item.

14. An apparatus as in claim 12, further

comprising:

data asso iating means for making and

maintaining, for a d item in the system, an

association between e data item and the identifier of

the data item;

access means or accessing a particular data

item using the identifie of the particular data item;

and

contextual name ccess means for accessing a

data item in the system for a given context name of the

data item, determining the d ta identifier associated

with the given context name, d invoking said access

means to access the data item ing the data identifier.

15. An apparatus as i claim 11, further

comprising:.

transparent access means for accessing a data}.

item from one of seyeral locations, using the identifier;
of the data item, said transparent a ceSs means invoking

said local existence means to determi e if the particular

data item is present at the current 10 ation, and, in the

case when the particular data item is n t present at the

80

GOOG-1018—Page 116 of 143

GOOG-1018-Page 117 of 143

"1]“(1

fiflflfifi
1‘trx

\m{Ram1133
El

{3336.'11?"E:"113'3:31:
W
a

E”

10

15

20

25

3O

obt in the data item from a remote location.

16. An apparatus as in claim 15, further

compri ing:

identifier copy means for copying an identifier

of a dat item from a source location to a destination

location.

7. An apparatus as in claim 15, further

comprising:

co text means for making and maintaining a

context assoc'ation between a contextual name of a data
item in the s tem and the identifier of the data item;

cont t copy means for copying a data item from

a source locati n to a destination location, given the

contextual name f the data item, by copying only the

context associati n between the contextual identifier and

the data identifi ran the source location to the

destination locat

transpa

data item from one 0 several locations the system given

a contextual name fo the data item, said transparent

referencing means inv king said context association to

determine the data ide tifier Of a data item given a

contextual name, and i voking said transparent access

means to access the dat item from one of several

locations given the ide tifier of the data item.

and

referencing means for obtaining a

18. An apparat s as in claim 1, wherein at

least some of said data 1 ms are compound-data items,

each compound data item in luding at least some component
data items in a fixed segue ce, and wherein the identity

means determines the identif er of a compound data item

based on each component data tem of the compound data
item.

81

GOOG-1018—Page 117 of 143

GOOG-1018-Page 118 of 143

CflflfiflI I

a!"\Hmfi
E1}‘1‘
E

1

'5‘?“1l

'E
{1j

1?."11:1:

10

15

20

25

30

19. An apparatus as in claim 18, wherein said
comp und data items are files and said component data
items are segments, and wherein the identity means

dete 'nes the identifier of a file based on the

identi ‘er of each data segment of the file.’

20. An apparatus as in claim 18, wherein said

ta items are directories and said component

data items re files or subordinate directories, and

wherein the 'dentity means determines the identifier of a

given direct ry based on;éach file and subordinate

directory wit in the given directory.

compound

21. apparatus as in claim 11, further

comprising:

means

location in the s stem to at least one other location in

the system, said m ans for advertising providing each of-
location with the data identifier

providing the data item to only

other locations that request said

0 said providing.

or advertising a data item from a

said at least one o

of the data item, a

those locations of s

data item in response

22. An appara us as in claim 18, further

comprising:

local existence

particular data item is pre ent at a particular location

in the system, based on the dentifier of the data item;

eans for determining whether a

and

or copying a.data item

the‘data.processing

'nvoking said local

compound copy means

from a source to a destination 1

system, said compodpd copy means

existence means to determine wheth r the data item is

present at the destination, and to etermine, when the

data item is a compound data item, w ether the component

data items of the compound data item e present at the

destination, and providing said destina ion with the data

82'

GOOG-1018—Page 118 of 143

GOOG-1018-Page 119 of 143

E}!liEa{Ea11:11!I

,l"ldim

"1!?HEBEifii“1.5"IL""ii?'“33311733491:

10

15

20

25

30

the ata item is not present at the destination, and

said requesting means in response to

providing sai requesting with a particular data

the requesting eans is the same data item as the data

item requested, said verifying means invoking said

and comparing said determined data

particular data identifier to verify

obtained data ite

identifier with 5

said obtained dat

ratus as in claim 2, wherein a

e of a storage location and a

24. An ap

location is at least

processing location, a d wherein a storage location is at

least one of a data sto age device and a data storage

volume, and wherein a pr cessing location is at least one

of a data procesSor and a computer.

least some of said data item are compound data items,

ring at least some component

and wherein.the identity

of a compound data item':

each compound data item incl

data items in a fixed sequenc

means determines the,identifie

based on the identifier of each component data item of

the compound data item.

26. An apparatus as in laim 3, further

comprising:

83

GOOG-1018—Page 119 of 143

GOOG-1018-Page 120 of 143

l i :m4133»":34
£3

.I"I!"14L“.1

WMHWWW“K$;
mdm

10

15

20

25

3O

context associating means for making and

maint=ining a context association, for any data item in

th syrtem, between the identifier of the data item and

one contextual name of the data item at a

location in the system;

means for obtaining the identifier of a data

at leas-

particulv

item in the system given a contextual name for the data

item at a paxticular location in the system; and

pparatus as in claim 25, wherein said

files and said component data

items are segments, d wherein the identity means

determines the iden‘ i- of a file based on the

identifier of each da-a segment of the file.

28. An appar tus as in claim 25, further

comprising:

compound copy m ans for copying a data item

from a source location to destination location in the

data processing system, Sai- compound copy means invoking

said local existence means uo determine whether the data

item is present at the desti ation, and to determine,

when the data item is a compo nd data item, whether the

component data items of the con-ound data item are

present at the destination, and -roviding said

destination with the data item o ly if said local

existence means determines that t‘e data item is not

present at the destination, and pr‘viding said
destination with each component dat- item only if said

local existence means determines tha~ the component data

item is not present at the destinatio

84

GOOG-1018—Page 120 of 143

GOOG-1018-Page 121 of 143

i
i...

wfiim
u‘l

rit.

”H
inI(1'
diei

.u,flmmEmu

f“E

fifflin
.3}

£a,3..
1i

10

15

20

25

30

0+ 6
29. An apparatus as in any of claims 1-28,

a database

where n a data item is at least one of a file,

recor a message, a data segment, a data block, a

direct y, and an instance an object class.

30. A method of identifying a data item in a

data proce sing system for subsequent access to the data

item, the m thod comprising the steps of:

de ermining a substantially unique identifier

for the data tem, said identifier depending on all of

the data in th data item and on the data in the data

item; and

acceSSi g a data item in the system using the
identifier of the ata item.

31. A me od as in claim 30, further

comprising the step

making and

items in the system,

data items and the iden ifier of each of the data items,

wherein said accessing tep accesses a data item via the

ai taining, for a plurality of data

association between each of the

association.

32. A method as in claim 31, further

comprising the step of:

assimilating a ne

by determining the identifie

associating the new data item with its identifier.

data item into the system,

of the new data item and

. 33. A method for du licating a given data item

from a source location to a des ination location in a '

data processing system, the meth d comprising the steps

of:

determining a substantia 1y unique identifier

for the given data item, said ident'fier depending on all

of the data in the data item and onl on the data in the

data item;

85

GOOG-1018—Page 121 of 143

GOOG-1018-Page 122 of 143

'f'u[Er]H
EI I

nIlPi" m\inmatIL"
"(117"’{Elk
L_:1

WW"
Ei:

Kifl

10

15

20

25

30

determining, using said data identifier,

whethzr said data item is present at said destination

locati n; and
based on said determining, providing said

destinat on location with said data item only if said

data item '5 not present at said destination.

34. A method as in claim 33, wherein said

given data i-sm is a compound data item having a

plurality of oomponent data items, the method further

comprising the teps of:.

for en h data item of said component data

items,

obtaining the component data

identifi: of the data item by determining a

substanti 11y unique identifier for the data

item, sai- 3dentifier depending on all of the

data in t a item and only on the data in

det rmining, using said obtained

component data identifier, whether said data

item is present at said destination; and

based yn said determining, providing

said destination ‘ith said data item only if

said data item is at present at said

destination. V

35. A method for de-ermining whether a

particular data item is present 'n a data processing

system, the method comprising th- steps of:

(A) for each data item of a plurality of data:

items in the system,

‘(i), determining a s bstantially unique

identifier for the data it-m, said identifier

depending on all of the dat in the data item

and\only on the data in the data item; and

86

GOOG-1018—Page 122 of 143

GOOG-1018-Page 123 of 143

mnmn
w.

3‘#2!"

"Wm,Iw.m.
(haw.

m,

fiflflwmfi
\1

10

15

20

25

30

(ii) making and maintaining a set of

identifiers of said plurality of data items;

and‘

(B) for the particular data item,

(i) determining a particular

substantially unique identifier for the data

'tem, said identifier depending on all of the

d ta in the data item and only on the data in

th data item; and

(ii) determining whether said particular

ide tifier is in said set of data items.

ethod of backing up, of a plurality of

tems modified since a previous backup

36. A

data items, data

time in a data pro essing system, the method comprising

the steps of:

(A) main

of data ite s backed up at_the previous backup

i ing a backup record of identifiers

time; and

(B) for eac of said plurality of data items,

(i) det ining a substantially unique

identifie for the data item, said

identifier depending on all of the data in

the data it m and only on the data in the

data item;

(ii) determin'ng those data items of the

‘plurality of ta items whose identifiers

are not in the backup record; and

(iii) based on aid determining, copying

only those data tems whose data .

identities are no recorded in the backup

record.

37. A method as in claim 36, further

comprising the step of:

87

GOOG-1018—Page 123 of 143

GOOG-1018-Page 124 of 143

recording in the backup record the identifiers

of tho e data items copied in said step of copying.

38. A method of locating a particular data

item at a location in a data proéessing system, the

method conarising the steps of:

10

15

20

25

3O

35

-) determining a substantially unique

in ntifier for the data item, said identifier

dep nding on all of the data in the data item

and vnly on the data in the data item;

(B) equesting the particular data item by

sending the data identifier of the data item

from t requestor location to at least one

locatio of a plurality of provider locations

in the s stem; and

(C) on ai least some of said provider

locations,

'(a) far each data item of a plurality of

data 1 -us at said provider locations,

.(i) d- ining a substantially unique

identifi-r for the data item, said

identifie‘ depending on all of the data in

the data 1 em and only on the data in the

data item; 2nd

(ii) making nd maintaining a set of

identifiers -f data items, .

(b) determin ng, based on said set of

identifiers, w ether the data item

corresponding t‘ the requested data

identifier is pr-sent at said provider

location; and

(c) ,based on saim determining, when said _

provider location -etermines that the

particular data itev is present at the

provider location, n\tifying said

requestor that the pr-vider has a copy of

the given data item.

88

GOOG-1018—Page 124 of 143

GOOG-1018-Page 125 of 143

i I"71135!;[Ex{£3
,r‘1

.md,“lv

‘llkwICE?“([5I

iii"RT'33?"1133‘”“
"I137Elli!i

10

15

20

25

30

39. The method of claim 38, further comprising

th 5 eps of:

(a) for each data item of a plurality of data

items at said provider locations,

making and maintaining an association

between the data item and the identifier
of the data item,

in response to said notifying, said client

data ioentifier.

comprising the steps

determining

plurality of data items, a

substantially unique identifier for the data item, said

1 of the data in the data item

and only on the data in th

determining the

item is present at each of sa d locations;

41. The method of cl im 30, wherein said step

of accessing further comprises t e steps of, for a given

data identifier and for a given rrent location and a

remote location in the system:

determining whether the m-ta item corresponding

to the given data identifier is pre ent at the current

location, and

based on said determining,

not present at the current location, frtching the data

if said data item_is

89

GOOG-1018—Page 125 of 143

GOOG-1018-Page 126 of 143

{133$$111135
3I£2

xdrGwn9“!“
“$3an.—

THfiWWfimt

10

15

20

25

30

' modified.

locat‘on.

42. The method of claim 41, further comprising

‘8 of:

for each contextual name at a location,

making and maintaining a context

between the context name of a data item and

xer of said data item, and when some context

the ste

associatio

the identif

association -hanges at said current location, and

notifyingysaid remote location of a

modification t- the context association.

43. n e method of claim 42, further comprising

the step of:

at said remote location, updating the

.he contextual identifier of the data

ier of the data item.

association betw

item and the id

44. The m-thod of claim 43, further comprising

the step of:

from said re ote location, notifying all other

locations that said dat= item has been modified, by

providing the contextual identifier and data identifier

of said data item to sai- other locations.

f claim 44, further comprising

-n notified that the data item

45. The method

the step of, at each locati

has been modified:

modifying an associ=tion between the contextual

identifier of the data item an- the data identifier of

the data item, to record that - e data item has been

ting a data item at a

system when said data

46. A method of elimin

given location in a data processin»

9O

GOOG-1018—Page 126 of 143

GOOG-1018-Page 127 of 143

‘éiifllfixfifltfl
L;$31!£1;I l

W”‘9IK

.1:

{Fifi"113'

"11:Hi

10

15

20

25

30

35

(. V

item can be obtained from another location in the system,

the method comprising the Steps of:

determining a substantially unique identifier

for the data, said identifier depending on all of the

data in the data item and only on the data in the data

item;

making and maintaining a source association

between the data identifier and at least one location at

which said data item is known to be present; and

based on said source association, if said data

item is present at said other location, removing the data‘22:.In...

item from the given location.

47. A method of deleting a data item from a

location in a data processing system, the method

comprising the steps of:

for each of a plurality of data items in the

system:

determining a substantially unique identifier

for the data, said identifier depending on all of the

data in the data item and only on the data in the data

item; and

making and maintaining, an association between

each of the data items and the unique identifier of the

data items; and .

for a given data item:

determining a substantially unique identifier

for the data, said identifier depending on all of the

data in the data item and only on the data in the data

item; and

determining whether a contextual identifier or:

a compound data item or a remote processor in the system
refers to the unique identifier of the data item, and

based on said determining,_delgéégg=§aid data item and
its association if no other contextual identifier or

compound data item or remote processor refers to said

data item.

91

GOOG-1018—Page 127 of 143

GOOG-1018-Page 128 of 143

a:1133;:1E3;{C}!
m.- 1m.i"

“am

“E"f!‘1‘33:“II?"£13113?“2:;

10

15

20

25

3O

' \

l .

48. The method of claim 47, wherein said

determining is based on a use count for the data item,

and wherein said data item is deleted only if said use

count indicates that no other contextual identifier or

compound data item or remote processor in the system

refers to the data item.

49. A method of substantially synchronizing

data items at a client location in a data processing,

system after a period of independent changes on the

client and another location in the system, given a

context, the method comprising the steps of:

making and maintaining a list of changes to the

context association between each context name of a data'

item and the identifier of said data item, in the given

context and during the period of independent change;'

obtaining the list of changes from the other

location for the given context; and,

for each context name in the list of changes

updating the context identifier

associations at the client whenever it is determined that

the context association of the given context name changed

either only at the client or only at the other location

during the period if independent changes; and

performing a conflict-resolution task such

as notifying an operator of the client location, whenever
it is determined that the context association changed at

both the client and the other location.

A method as in claim 49, wherein said

lists are mai tained,as queues based on a temporal order,

and wherein, a said client location, said replacing is

based on said t oral order.

51. A me had of maintaining at least a

predetermined number of copies of a given data item in a

data processing syste .at different locations in the

92

GOOG-1018—Page 128 of 143

GOOG-1018-Page 129 of 143

.€13.11Em£2.“-11x;a

a,if“1,.ul"
a«L

'fl&
«“3.

TE“:&{I

I:3;?£33,111”
7

10

15

20

25

30

ide tifier, said identifier depending on all of the data

in he data item and only on the data in the data item.

and herein any data item in the system may be accessed

usin only the identifier of the data item, the method

ing the steps of:' ‘

(i) sending, from a first location in the

system, the data identifier of the given data

item to other locations in the system; and

(ii) in response to said sending, at each of

compr

aid other locations,

) determining whether-the data item

responding to the data identifier is present

at the other location, and based on said

'det ining, and

(B) 'nforming said first location whether said

data it '5 present at the other location; and

(iii) r sponse to said informing from said

other ations, at said first location,

(A) d ining whether said data item is

present i at least the predetermined number of

other loca ions, and based on said determining,

‘(B) when 1 35 than the predetermined number of

other locati ns_have a copy of the data item,

requesting so e locations that do not have a

Copy of the da a item make a copy of the data

item.

52. A method as 'n claim 51, wherein said step

(iii) further comprises the

(C) whennmore tha

other locations have a copy 0 the data item, requesting

tep of: .

the predetermined number of

93

GOOG-1018—Page 129 of 143

GOOG-1018-Page 130 of 143

H
u u

32153:151:1
.Ii'

1’"1
m

wmww:‘MIi“:«5%1:"

2??:75

wherein said

database rec

a directory,

A350 C37

)

a a items are at least one of a file. a

94

a message, a data segment, a data block,

an instance of an object class.

GOOG-1018—Page 130 of 143

GOOG-1018-Page 131 of 143

 :31}{E31Eu31:}?

m.....m,:,.._......,_umkmflflfiLi
Wflfifii

Idetermine whether a particular data ite

t 5“
ABS 0 H DISCLOSUR

DATA PROCESS G SYS

ssing system, a mechanism

the data items and

Existence means

is present in

the plurality

which depend on all of the

only on the data in the data items.

the system, by examining the identifiers o, 4

of data items.

95

GOOG-1 01 8—Page 131 of 143

GOOG-1018-Page 132 of 143

" FOR UTILITY/DESI v’ RULE 53 (37 C.F.R. 1.63) ' CUSHMAN

ClP/PCT NATIONAUPLANT‘ DECLARATION AND POWER OF ATTORNEY FORM
ORIGINAL/SUBSTITUTEISUPPLEMENTAL FOR PATENT APPLICATION ~ ' .

DECLARATIONS IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

As a below named inventor. I hereby declare that my residence. post office address and citizenship are as stated below next to my name, and I believe I am
the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject
matter which is claimed and for which a patent is sought on the INVENTION WHILE!)
@ENTIFYING DATA 1 A DATA PROCESSING SYSTEM

the specification of which (CHECK applicable BOX(§))
-> [] is attached hereto.
-> [x] was filed on April 11I 1995 as U.S. Application No. 0_8_/ 425 160

BOX(ES) -> |] was filed as PCT lntemational Application No. PCT/ Z on

f) -> and if a liable to U.S. or PCI' a Iication was amended on

I hereby state that I have reviewed and understand the contents of .the above identified specification, including the claims, as amended by any amendment
referred to above. I acknowledge the duty to disclose all information known to me to be material to patentability as defined in 37 C.F.R. 1.56. I hereby
claim foreign priority benefits under 35 U.S.C. 119/365 of any foreign application(s) for patent or inventor‘s certificate listed below and have also identified

below any foreign application for patent or inventors certificate filed by me or my assignee disclosing the subject matter claimed in this application and having

a filing date (1) before that of the application on which priority is claimed, or (2) if no pgority claimed, before the filing date of this application:

PRIOR FOREIGN APPLICATIOMS) Date first Laid- Date Patented Priorig Claimed
Number County DaylMON’I‘HZ gear Filed can or Published or Granted Yes _l_l_o_

I hereby claim the benefit under-35 U.S.C. 120/365 of all United States applications listed below and PCI‘ international applications listed above or below
. and, if this is a continuation-in-part (CIP) application, insofar as the subject matter disclosed and claimed in this application is in addition to that disclosed

msuch prior applications, I acknowledge the duty to disclose all information known to me to be material to patentability as defined in 37 C.F.R. 1.56 which
became available between the filing date of each such prior application and the national or PCI‘ international filing date of this application:3;};

flIOR U.S. OR PCT APPLICATIONS) Status
Aflgplication No. (series code(serial no.) Day[MONl'H[!ear Filed pending. abandoned. patented3:.a’m-

«t..\
fiifiereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be
St e; and further that these statements were made with the knowledge that willful false' statements and the like so made are punishable by fine or

jmprisonment, or both under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the
,applieation or any patent issued thereon.[=3

find I hereby appoint Cushman Darby & Cushman,L.L.P. 1100 New York Avenue, N.W., Ninth Floor, East Tower Washington, DC. 20005-3918, telephone

Ergmber 861 -3000 (to whom all communications are to be directed), and the below-named persons (of the same address) individually and collectively my
Qattomeys to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith and with the resulting patent
arid I hereby authorize them to act and rely on instructions from and communicate directly With the person/assignee/attorney/firm/ organization who/which
first sends/sent this case to them and by whom/which I hereby declare that I have consented after full disclosure to be represented unless/until 1 instruct
§Gaishman. Darby 8: Cushman in writing to the contrary.

Paul N. Kokulis 16773 Edward M. Prince ~ 22429 Dale S. Lazar 28872 Michelle N. Lester 32331

Raymond F. Lippitt 17519 Donald B. Deaver 23048 Glenn .1. Perry 28458 Jeffrey A. Simenauer 31933
G. Lloyd Knight 17698 David W. Brinkman 20817 Kendrew H. Colton , 30368 Robert A. Molan 2983-1
Carl G. Love 18781 George M. Sirilla 18221 Chris Comuntzis 31097 G. Paul Edgcll 24238
Edgar H. Martin 20534 Donald J. Bird 2.5323 Wallace G. Walter 27843 Lynn E. Eccleston 35861
William K West. .Ir. 22057 W, Warren Taltavull 25647 Lawrence Harbin 27644 Frederick S. Frei 27105
Kevin E. Jo ce 20508 eter W Gowd , 7.5872 Paul E. White. Jr. 320 1 ' . ' i

1. INVENT R‘S SIGNATURE: v g 2‘, M; G g: so; 3 ~ Date (a .iflli&‘figé FISHER 33333
Inventors Name (typed) David A. FARBER U.S.A.

First Middle Initial,” . Family Name Country of Citizenship
Residence (City) O‘ai State Forei COunt

Post Office Address (Include Zip Coagwoai CA 93023VWZ0:2. 2°?) 57 77932. INVENTOR'S SIGNATURE: Date Qt, ii Z t
Inventor's Name (typed) Ronald D. LACHMAN USA.

First Middle Initial Family Name Country of Citizenship
Residence (City) Northbrook State Foreiwn Count Il.

Post Office Address (Include Zip Code) 3140 Whismnvoods Coun. Northbrook. II. 60062

3. INVENTOR'S SIGNATURE: Date , __
'lnventor's Name (typed)

First Middle Initial Family Name Countrv of Citizenship
Residence (City) (Statchoreign Counlfl) __

I’f‘st Office Address (Include Zip Code)____—_______________________

e'R ADDITIONAL INVENTORS, check box I j and attach sheet (CDC-116.2) for same information for each re signature. name. date. citizenship.
residence and address.)

GOOG-1018-Page 132 of 143“-1“, INS

GOOG-1018-Page 133 of 143

PATENT APPLICATION SERIAL NO.

US. DEPARTMENT OF COMMERCE

PATENT AND TRADEMARK OFFICE

FEE RECORD SHEET

11/19/2001 00001701 00000031 09907723

01 FC:101 740.00 UP
02 FC:102 924.00 09

PTO-1556

(5/87)
'U.S. GPO: 2000468—98739595

GOOG-1018—Page 133 of 143

GOOG-1018-Page 134 of 143

\l. " “/3

Aoplication or Docket Number

PATENT APPLICATION FEExDETEFIMINATION RECORD ’ .7 9 IEffectiveOctober 1, 2001 QT ‘
CLAIMS AS FILED - PART I SMALL ENTITY ' OTHER THAN

TYPE B OR SMALL ENTITY

me E

= 370.00 OR I. SIC I-‘EE 740.00

on X$18=

O:0a
II

* If the difference in column 1 is' less than zero, enter “0" in column 2

CLAIMS AS AMENDED - PART II OTHER THAN

Column 1 . SMALL ENTITY on SMALL ENTITY
LAI HIG E T -

- ADDI- ADDI-REMAINING N MBER I ,
AFTER PREQ/lOUSLY ' TIONAL TE TIONAL

AMENDMENT PAID FOR . FEE FEE

OR X$18=--W

FIRST PRESENTATION OF MULTIPLE DEPENDENTCLAIM ‘O
I

ADDI- .

TIONAL

FEE

REMAINING , NUMBER PRESENT
AFTER PREVIOUSLY EXTRA

AMENDMENT i PAID FOR

__m_-

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM I

RATE TIONAL
FEE

RATE

OI)
+Na)or

II

I CLAIMS
1

OR X$18=

 AMENDMENTB
OI) X“73

+280:

TOT
DIT. FE

F
OI] 6 m

CLAIMS HIGHEST
REMAINING NUMBER

AFI'ER PREVIOUSLY
AMENDMENT PAID FOR

—-m

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

ADDI-

RATE TIONAL
FEE

-'0BTSWIVAy1339
TIONAL '

FEE
RATE

013

Q

OR X$18=

U
E-
2
ll]
5
O
2
llJ
E
< OR

* lfth entry in column 1 is less than the entry in column 2. write "0" in column 3.
*~ If the “Highest Number Pr viously Paid For“ IN THIS SPACE is less than 20, enter '20." -OR ADD“ FEE
*"If the 'l-lighest Number Pr viously Pald For' IN THIS SPACE is less than 3, enter "3.' ‘

Thy , “Highest Number Prevlously Paid For” (Total or Independent) Is th highest number found In the appropriate box In column 1.

X7*?

§.2

1 FORM PTO-875 (Rev. 0/01) Patent- OOG-1018—Page 134 of 143 ERCE‘fius «90:2001 402-120 I 59197

GOOG-1018-Page 135 of 143

APPUCANWS)CLAIMS ONLY

Emma.><>=g§um©©fi<
$.a:==u_======_==_==========mam mEngage=__r_E=_===_—_===n—“gunmanumnnnnmummmmmmmmmmmmmm“anmm================_====_====mmm===============_===_==_=_==--

m

767.MD”1”nummnmmnmmunmmgmmmm

mw=========================mmm========================_=_m,flflflnlllllmlllllllllIIIIIIIIIIIllllflflflfllMW!fls.-—E-a_m2."..u....‘.:.u...n..12...“;.:3:...V:flag:mfi.muwuunmnm.nuunuunmmumun.uuulmwwI-nunumuuumma.N-_gang—unmannunmnum“magnum“unuynmnngunumunnmmm
MAY BE USED FOR ADDITIONAL CLAIMS OR ADMENDMENTS

*

U.S.DEPARTMENT OF COMMERCE
Patam and Trademark Office

a...“ u“
‘ “M; "0-2022 (‘-88)

I a

c

'U.S‘ Govemmam Priming 01m: I995 < 03-21mm

GOOG-1018—Page 135 of 143

GOOG-1018-Page 136 of 143

_ .' 15%.
' ’ I~.5-01

I:

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re PATENT APPLICATION of

to FARBER et al. ‘ Group Art Unit: 2177

Examiner: Homere, Jean R.

Continuation of Appln. No. 09/283,160

Filed: November 15, 2001

For: IDENTIFYING AND REQUESTING DATA IN NETWORK USING IDENTIFIERS

WHICH ARE BASED ON CONTENTS OF DATA (AS AMENDED)

November 15, 2001

PRELIMINARY AMENDMENT

Hon. Commissioner of Patents

and Trademarks

Washington, DC. 20231

Sir:

Please amend this application as follows:

: S’23:
E
E :

Zak-

7‘",
LJ‘

j...,—~=— IN THE TITLE:

Please replace the title with the following:

«IDENTIFYING AND REQUESTING DATA IN NETWORK USING IDENTIFIERS WHICH
%.

ARE BASED ON CONTENTS OF DATA—
M.

IN THE SPECIFICATION:

At the top of the firslficzfust under the t@
This is a continuation of Application No. 09/283,160, filed April 1, 1999, which is‘a

B 9/ continuation of 08/960,079, filed October 24, 1997, now abandoned, which is a

continuation of 08/425 160 filed A ril 11 1995 now abandoned.

GOOG-1018-Page 136 of 143

GOOG-1018-Page 137 of 143

A I L .' ~ Farber et al- Cogfl Application No. 09/283,160

IN THE CLAIMS:

50(3) CZ?

Please add the following new claims:

54. (NE?) A content delivery method, in a system in which a plurality of

files are d tributed across a network of servers, at least some of the files being cached

versions of es from a source server distinct from the network of servers, the content

comprising:

for a pa 'cular file, determining a name using a given function of the data,

said data being the data which comprises the contents of the particular file; and
in response t a request for the particular file, the request including at least the

name of the particular \le, causing the particular file to be provided from a given one

of the servers of the net rk of servers.

55. (New) A content ‘

are distributed across a networ I of servers, at least some of the files being cached

livery method, in a system in which a plurality of files

versions of files from a source se er distinct from the servers in the network, wherein

data in a file in the system may rep‘ sent a digital message, a digital image, a video

signal or an audio signal, the content elivery method comprising:

determining a name for a parti llar file, the name being determined using an

MDS function of the data, said data bein the data which comprises the contents of

the particular file; and

in response to a request for the parti lar file, the request including at least the

name of the particular file, providing the part1 ular data file from a given one of the

servers ofthe network of servers, said providin being based on the determined name.

56. (New) A content delivery method, in a stem in which a plurality of files

are distributed across a network of servers, wherein ' me processors in the network

communicate with each other using a TCP/IP comm 'cation protocol, the content

delivery method comprising:

for a particular file, the contents of said file repres

determining a name for the particular file, wherein the nam is determined using a

given function of the data which comprises the contents of th particular file; and

GOOG-1018—Page 137 of 143

GOOG-1018-Page 138 of 143

Farber et al-QIt. of Application No. 09/283,160 .

in response to a request for the particular file, the request including at least the

name of th particular file, providing the particular file from a given one of the servers

of the netw k of servers.

57. (Ne) A content delivery method comprising:

causing a lurality of files to be distributed across a network of servers, at

least some of the es being cached versions of files from a source server which is

distinct from the ne ork of servers;

for a particul file, determining a name, the name being determined using a

given function of the da a, said data used by said function being data which comprises

the contents of the partic ar file; and i

in response to a req est for the particular file, the request including at least the

name of the particular file, c using the particular file to be provided from a given one

of the servers of the network servers.

58. (New) A content deli

are distributed across a network of ervers, at least some of the files being cached

ry method, in a system in which a plurality of files

versions of files from a source serve which is distinct from the network of servers,

the content delivery method comprisi g:

determining a name for a partic lar file, the name being determined using a

givenfunction of the data which compri s the contents of the particular file; and

in response to a request for the p icular file, the request including at least the

name of the particular file, providing the p icular file from a given one of the servers

of the network of servers,

wherein the contents of the particular 1e may represent a digital message, a

digital image, a video signal or an audio signal.

59. (New) A method, in a network compri 'ng a plurality of processors, some

of the processors functioning as servers and some the processors functioning as

clients, wherein some processors in the network co unicate with each other using a

TCP/IP communication protocol, wherein a key is re ired to identify a file on the

network, the method comprising:

GOOG-1018—Page 138 of 143

GOOG-1018-Page 139 of 143

‘ Farber et al-Qnt. of Application No. 09/283,160

5 ring some files on a first server in the network and storing copies of some

of the file from the first server on a set of cache servers distinct from the first server;

for particular file, determining a different cache key from an ordinarily used (

cache key fo the file, the different cache key being determined using a message

function MDS f the data, wherein said data comprises the contents of the particular

file; and

responsiv to a client request for the particular file, the request including the

different cache key or the file, causing the particular file to be provided to the client,

wherein the ntents of the file may represent: a page in memory, a digital

[b message, a digital ima e, a video signal or an audio signal.

60. (New) A cont nt delivery method comprising:

distributing a set 0 files from a first server across a network of servers distinct”33Hi333“It'll
from the first server;

applying an MDS fun tion to the contents of a particular file to obtain a True

I l

..V,.m ...‘1''1'3,"!um\lumu.
11;.in”

“\l
Name for the file;

in response to a request

True Name of the particular file, ausing the particular file to be provided from a

r the particular file, the request including at least the

given one of the servers of the net ork of servers, wherein the request for the
particular file is resolved based on a easure of availability of at least one of the

SCI'VCI'S.
L2.

61. (New) A method as in claim 0 wherein the measure of availability for a

server is based on at least one of:

(a) a measurement of bandwidth to e server;'

(b) a measurement of a cost of a co ction to the server, and

(c) a measurement of reliability of a c ection to the server.

4

GOOG-1018—Page 139 of 143

GOOG-1018-Page 140 of 143

A: .3

<53\9

all:{Ell1E3!(EuH
m1‘"

i"{L‘I'"{{2‘"ll:”'1E:2E9;

Farber et al-Qit. of Application No. 09/283,160

. (New) A content delivery method comprising:

di ibuting a plurality of files across a network of servers, at least some of the

files being ched versions of files from a source server distinct from the servers in -

the network;

icular file, determining a True Name using a given function of the

data which com rises the contents of the particular file;

obtaining request for the particular file, the request including at least the

True Name of the p icular file; and

responsive to he request, causing the particular file to be provided from one of

the servers of the/netw rk of servers.

63. (New) A content elivery method, comprising:

distributing files acros a network of servers;

for a particular file havin a contextual name specifying a location in the

network at which the file may be cated, determining another name for the particular '

file, the other name including a dat identifier determined using a given function of

the data, where said data used by the iven function comprises the contents of the

particular file;

obtaining a request for the parti lar file, the request including the contextual

name and the other name of the particul file,

responsive to the request, providin the particular file from one of the servers

of the network of servers, said providing be ng based on the other name of the

particular item.

5

' GOOG-1018-Page 140 of 143

GOOG-1018-Page 141 of 143

<33?°./

Eu"III!

.‘E33:nae“:
1'"1all“11‘" “

ill?"ll.""l3?m3333:i?)is,

Farber et algnt. of Application No. 09/283,160

64. (New) A content delivery method, comprising:

'stributing a set of files across a network of servers;

particular file representing a digital image, the file having a contextual

for

ing a location in the network at which the file may be located,name speci

other name for the particular file, the other name including a Truedetermining

Name for the fi

where said data u ed by the given function comprises the contents of the particular

which was determined using a message digest function of the data,

file;

obtaining a re uest for the particular file, the request including the contextual

name and the True N e of the particular file; and

responsive to th request, providing the particular file from one of the servers

of the network of servers, aid providing being based on the True Name of the

particular item.

65. (New) A method c mprising:

applying an MD5 functi n to the contents of an image file containing data

representing a digital image to o tain a True Name for the file;

distributing copies of the i age file from a first server across a network of

servers distinct from the first server

obtaining a request for the im ge file, the request including at least the True

Name of the file; and

responsive to the request, causin a copy of the image file to be provided from

IN THE ABSTRACT OF THE DISCLOSURE

Please replace the Abstract of the Disclosure with the attached new Abstract of

the Disclosure.

6

GOOG-1018—Page 141 of 143

GOOG-1018-Page 142 of 143

q -

ing
s:

s;_=—__.

E:

.....

Application grber et al, No. 09/283,160

REMARKS

By this Amendment, new claims 54 to 65 have been added. In addition, a new

Abstract has been provided and the title has been replaced. No new matter has been

added by these amendments, and approval of these amendments to the specification,

title and abstract is respectfully requested.

Respectfully submitted,

rian Siritzk

Reg. No. 37497

Tel. No.: (703) 905-2185

Fax No.: (703) 905-2500

1600 Tysons Boulevard,

McLean, Virginia 22102

(703) 905-2000

30238692vl

7
GOOG-1018-Page 142 of 143

GOOG-1018-Page 143 of 143

{inmmH"E»(in:52“«:31£51.t’"31:5film1hr[HI

1 __ 5

Abstract of the Disclosure

In a system in which a set of data items are distributed across a network of servers, at

least some of the data items being cached versions of data items from a source server, a content

delivery method includes determining a data identifier for a particular data item, the data

identifier being determined using a given function of the data.1e particular data
item; and responsive to a request for the particular data item, the request including at least the

data identifier of the particular data item, providing the particular data item from a given one of

the servers of the network of servers. The request for the particular data item may be resolved

based on a measure of availability of at least one of the servers, where the measure of availability

may be a measurement of bandwidth to the server; a measurement of a cost of a connection to

the server, and/or a measurement of a reliability of a connection to the server. The function used

to determine the identifier may be a message digest function or a hash fimction.

30239043V|

GOOG-1018—Page 143 of 143

