
GOOG-1016-Page 1 of 126

IN THE FJNITED STATES PATENT AND TRAEMARK OFFICE
REQUEST FOR FILING _y g

(RULE 53(b)(1)) ~ '

Page 1 of4

 For Design or Utility Applications
Rule 53(b)i1) PATENT APPLICATION:
D Continuation)

) application under 37 CFR 1.53(b)(1)
E Divisional)

I-‘OR CIPs)

Group Art Unit: 2776 “V
of pending prior application of ‘ ’

Examiner: Homere, J.
Inventor(s): FARBER et al.
Parent Appln. No.: 08 960,079 Atty. Dkt. PM 252465 I

Series Code 1) 13 Serial No. flflmg I cum; Ref
Parent Filed: October 24, 1997 (Our Deposit Account No. 03-3975
This Case Filed: April , 1999 (Our Order No. 7018/252465
Title: IDENTIFYING DATA IN A DATA PROCESSING SYSTEM C# I @ M#

Date: ' April 1, 1999
Asst. Commissioner of Patents

Washington, DC 20231 (Parent Matter No. 243063)

Sir:

To effect the above-requested filing today:

1. Attached is a copy (which must be filed) of this application, including:

>14 Abstract
Q Specification and claims (% pages) (must be attached)
>14 Drawings (_rr_m_st be attached if originally filed): 2_4 sheet(s)/set: XI 1 set informal;

E] Formal of size D A4 I: 11"
1A. Always X one box, only:

(1) X} Signed. declaration or oath as originally filed in prior application attached
(2) @ declaration or fee is enclosed; therefore, this is a filing under Rule 53(f).

2. I: This application is hereby filed by e§§ than a I of the inyentors named in the prior application. Petition is
V hereby made requesting deletion as inventor(s) of the following who is/are n_ot inventor(s) of the

invention being claimed in this application:

S9.“!’~"€v°.-" —-I-03O1J>|\)
3. The entire disclosure of the prior application is considered as being part of the disclosure of the accompanying

application and is hereby incorporated therein» by reference thereto. '

PAT<1 08 1 2198

GOOG-1016-Page 1 of 126

GOOG-1016-Page 2 of 126

Page 2 of4

4. El Priority is claimed under 35 U.S.C. 119/365 based on filing in of
(country)

Applieetien No. Filing Date Aooiicatbm; Filing Date
(1) (4)
(2) (5)
(3) (5)

a. E (No.) Certified copy/copies attached.
b. E) Certified copy/copies previously filed on in

U.S. Application No. I , filed on
series code 0 1} serial no.

c. E Certified copy/copies filed during international stage of PCTI /
4. (a) (:1 Domestic priority is claimed from PCTI / _ filed

(b) [:1 Benefit is claimed of Provisional Application No. 60/ , filed

5. E Prior application is assigned to kiNETech inc.

by assignment recorded June 23, 1995 Reel 7593 Frame 0036.
(Date)

6. E Attached is the following number of Assignments (including original and all later successive ones by
different assignors): 1 and respective new Cover Sheets. (Do NOT file old cover sheets.)

(Assignments in parent mget be refiled with new Cover Sheets in this continuing application if you
want it/them recorded against thecontinuing application.)

Pleaser turn th re ordedA i nmentt th n r i

7. E The power of attorney in the prior application is to Dale S. Lazar, Reg. No. 28 872

(Name and Reg. No.)
whose current address is as in item 8 below.

a. E Recognize as associate attorney Brian Siritzky, Reg. No. 37,497

(Name, Reg. No. and Address)

8. Address all future communications to intellectual Property Group
of Pillsbury Madison & Sutro LLP, Ninth Floor, East Tower 1100 New York Avenue, N.W.,
Washington, D.C. 20005-3918

9. Amend the specification by inserting before the first line the sentence:--This is a
El continuation E division of Application No. 08/960,079, filed October 24 1997

series eode it it serial no.

which is a continuation of 08/425,160, filed April 11, 1995, now abandoned. .--

9. (a) l: Amend the specification by inserting before the first line: --This application claims the benefit of
Provisional Application No. 60/ , filed .--

10. E It has been recently determined that this new continuing application is entitled to small entity status.
Hence:

(No.) Verified Statement(s) establishing “small entity" status under Rules 9 & 27 were/are:
E filed in above prior application (and hence applicable hereto)
E attached.

11. Petition to extend the life of the above prior application to at Ieeet the dete hereof
(E box) [I is being concurrently filed in that prior application (Use Form PAT-111).
mst be) [3 was previously filed in that prior application (Check length of prior extension).
(X’d) E is not necessary fer_cetEg_degg;v (Double check before X’ing this box).

PAT-108 12/E8

GOOG-1016-Page 2 of 126

GOOG-1016-Page 3 of 126

O Page 3 of 4

12. E INFORMATION DISCLOSURE STATEMENT: Attached is Form PTO-1449 listing all of the documents
cited by Applicant and the PTO in the parent app|ication(s) relied upon under 35 USC 120 and
referenced in item 9 above. Per Rule 98(d) copies of those documents are not required now. Please
consider those documents and admse that they have been considered in this new application as by
returning a copy of the enclosed Form PTO-1449 with the Examiner's initials in the left column per
MPEP 609. .

13. [I Attached is a Rule 103(a) Petition to Suspend Action.

14. K4 PRELIMINARY AMENDMENT to be entered before fee galculaflgng (Do n_o’t make amendments here
except for correction of improper multiple dependencies or cancellation of whole claims or multiple
dependencies for purpose of reducing the filing fee per MPEP §§ 506 and 607; do no_t cancel all claims).

Please cancel claims 1-45 and 50-53 without prejudice. The remaining claims correspond to non-elected
Groups Ill & IV from the Examiner's Restriction Requirement of June 4, 1996.

FILING FEE
THE FOLLOWING FILING FEE IS BASED ON

->->->—>CLAIM A FILED AND CHANGED BY IMINARY AMENDMENT IN ITEM 14<-<-<-<-

NOTE: If box 1A2 is X'd, do not pay fees,
but leave lines 15-22 and 27-32 blank.

Largelsmall Fee
Entity Code

15. Basic Filing Fee .Design Application $310/$155 106/26
16. Basic Filing Fee . Not Design Application $760/$380 +380 101/201

_
_-
m

21. lf“petition" box 13 above is X’d, add petition fee$13O_122
21A. If box 6 above is X’d, add Assignment recording fee

22. TOTAL FILING FEE ATTACHED = $420

(carry forvvar to Item 31)

23. [I ATTACHED:

24. El Preliminary Amendment attached (to be entered after assigning Appln. No.)

25. I___| The following PRELIMINARY AMENDMENT is to be entered after assigning Appln. No.:

FAT-I D8 1 2198

GOOG-1016-Page 3 of 126

GOOG-1016-Page 4 of 126

Page 4 of4

26. ADDITIONAL FEE CALCULATION FOR
PRELIMINARY AMENDMENT

PER BOXES 24/25

Claims Highest
remaining number
after previously Present Additional
amendment paid for Extra Fee

L r / ' File Code

27. Total Effective Claims * minus ** 20 = 0 x $18/$9 = $ 0 (103/203)

28. independent Claims * minus *** 3 = 0 X $78/$39 = + 0 (102/202)

29. if amendment enters proper multiple dependent claim(s) into this application for the
first time, add (per application) .$260/$130 + 0 004/204)

30. ADDITIONAL FEE $ 0

31. % FEE from item 22 on page 3 + 420

32. TOTAL FEE ATTACHED $ 420

33_ *If the entry in this space is less than the entry in the next space, the “Present Extra" result is “O”

34_ "if the “Highest number previously paid for’ (see item 17 above) is less than 20, write “Z0” in this space

35, if the “Highest number previously paid tor‘ (see item 18 above) is less than 3, write "3" in this space

CHARGE STATEMENT: Upon the tiling of a Declaration pursuant to Rule 60(b) or 60(d), the Commissioner is hereby
authorized to charge any fee specifically authorized hereafter, or any missing or insufficient fee(s) filed, or asserted to be
filed, or which should have been filed herewith or concerning any paper filed hereafter, and which may be required under
Rules 16-18 (miseing er insufficient fee gnly) now or hereafter relative to this application and the resulting Official
document under Rule 20, or credit any overpayment, to our Accountlorder Nos. shown in the heading hereof for which
purpose a duplicate copy of this sheet is attached.
This CHARGE STATEMENT flee n_cit authorize charge of the issue Leg untillunless an issue fee transmittal form
is filed.

//
Pillsbury Madison & Sutr LLP
intellectual Property G 15

1100 New York Avenue, N.W. By Atty: ale S. /’
Ninth Floor, East Tower — ’"Washington, D.C. 20005-3918 Sig: /' .
Tel: (202) 861-3000 ‘ ' ‘
DSL/Bszkim

Atty./Sec.
NOTE No. 1: File this Request in duplicate with 2 postcard receipts (PAT—103) & attachments
NOTE No. 2: Is extension in parent necessary for copendency? DOUBLE CHECK item 11 ebeve.

Reg. No. 28872

/ Fax: (202) 822-0944
Tel: (202) 861-3527

PAT-108 1 2/33

GOOG-1016-Page 4 of 126

GOOG-1016-Page 5 of 126

R2“ '=,
1

APPLICATION um-:R UNITED STATES PATENT LAWS

Invention: David A. Farber and Ronald D. Lachman

Inventor(s): IDENTIFYING DATA IN A DATA PQOCESSING SYSTEM

Cushman Darby & Cushman, L¢.m
1100 New York Avenue, N.W.
Ninth Floor, East Tower
Washington, D.C. 20005-3918

Attorneys

Telephone: (202) 861-3000

This is a:

[] Provisional Application

[X] Regular Utility Application

[] Continuing Application

[] PCT National Phase Application

[] Design Application

[] Reissue Application

f 1 Plant Application

SPECIFICATION
CDC—I00 3/95

GOOG-1016-Page 5 of 126

GOOG-1016-Page 6 of 126

:3 :iv" 7018/213987

CENE, ;%42?E2EEEEEEEEE:EflEé:EE:fl:£fi$§:EEQ§§§§ifi§:§§§£§§—-
";% BACKGROUND OF THE INVENTION

1. Field of the invention

This invention relates to data processing

5 systems and, more particularly, to data processing

systems wherein data items are identified by

substantially unique identifiers which depend on all of

the data in the data items and only on the data in the

data items.

10 2. Background of the Invention

Data processing (DP) systems, computers,

networks of computers, or the like, typically offer users

and programs various ways to identify the data in the

systems. N

15 Users typically identify data in the data

7 processing system by giving the data some form of name.
For example, a typical operating system (OS) on a

computer provides a file system in which data items are

named by alphanumeric identifiers. Programs typically

20 identify data in the data processing system using a

location or address. For example, a program may identify
a record in a file or database by using a record number
which serves to locate that record.

In all but the most primitive operating

.25 systems, users and programs are able to create and use

collections of named data items, these collections

themselves being named by identifiers. These named

collections can then, themselves, be made part of other

named collections. For example, an 08 may provide

30 mechanisms to group files (data items) into directories

(collections). These directories can then, themselves be

made part of other directories. A data item may thus be

identified relative to these nested directories using a

GOOG-1016-Page 6 of 126

GOOG-1016-Page 7 of 126

sequence of names, or a so—called pathname, which defines
a path through the directories to a particular data item
(file or directory).

As another example, a database management

5 system may group data records (data items) into tables
and then group these tables into database files
(collections). The complete address of any data record
can then be specified using the database file name, the
table name, and the record number of that data record.

10 other examples of identifying data items
include: identifying files in a network file system,
identifying objects in an object—oriented database,
identifying images in an image database, and identifying
articles in a text database.

15 In general, the terms "data" and “data item" as
used herein refer to sequences of bits. Thus a data item
may be the contents of a file, a portion of a file, a
page in memory, an object in an object—oriented program,
a digital message, a digital scanned image, a part of a

20 video or audio signal, or any other entity which can be
represented by a sequence of bits. The term "data'
processing" herein refers to the processing of data
items, and is sometimes dependent on the type of data
item being processed. For example, a data processor for

25 a digital image may differ from a data processor for an
audio signal.

In all of the prior data processing systems the
names or identifiers provided to identify data items (the
data items being files, directories, records in the

30 database, objects in object-oriented programming,
locations in memory or on a physical device, or the like)-
are always defined relative to a specific context. For
instance, the file identified by a particular file name
can only be determined when the directory containing the

35 file (the context) is known. The file identified by a
pathname can be determined only when the file system
(context) is known. Similarly, the addresses in a

GOOG-1016-Page 7 of 126

GOOG-1016-Page 8 of 126

process address space, the keys in a database table, or
domain names on a global computer network such as the
Internet are meaningful only because they are specified
relative to a context.

5 In prior art systems for identifying data items
there is no direct relationship between the data names
and the data item. The same data name in two different
contexts may refer to different data items, and two i
different data names in the same context may refer to the

10 same data item.

In addition, because there is no correlation

between a data name and the data it refers to, there is
no a priori way to confirm that a given data item is in
fact the one named by a data name. For instance, in a DP

15 system, if one processor requests that another processor
deliver a data item with a given data name, the’
requesting processor cannot, in general, verify that the
data delivered is the correct data (given only the name).
Therefore it may require further processing, typically on

20 the.part of the requester, to verify that the data item

it has obtained is, in fact, the item it requested.
A common operation in a DP system is adding a

new data item to the system. When a new data item is
added to the system, a name can be assigned to it only by 25 updating the context in which names are defined. Thus
such systems require a centralized mechanism for the
management of names. such a mechanism is required even
in a multi—processing system when data items are created
and identified at separate processors in distinct

30 locations, and in which there is no other need for
communication when data items are added.

In many data processing systems or

environments, data items are transferred between

different locations in the system. These locations may

35 be processors in the data processing system, storage
devices, memory, or the like. For example, one processor
may obtain a data item from another processor or from an

.%M;;M\

GOOG-1016-Page 8 of 126

GOOG-1016-Page 9 of 126

vdevice, such as a floppy disk, and mayexternal storage
tem (using the

incorporate that data item into its sys
ovided with that data item).

when a processor (0

ins a data item from another location in the DP
it is possible that this obtained data item is

(either at the location of
r location accessible by the

name pr
r some location)However,

5 obta

system,

already present in the system

processor) and therefore a
This situation is commo

t where proprietary software

floppy disks onto several
In these

product will

10 created. n in a network data
processing environmen

products are installed from
processors sharing a common file server.

it is often the case that the samesystems,
so that several copies

15 be installed on several systems,
h file will reside on the common file server.

In some data processing systems in which

eral processors are connected in a network, one system
to maintain master copies

designated as cache

of eac

 sev

is designated as a cache server
and other systems are

clients to copy local copies of the master data items
into a local cache on an as-needed basis. Before using a

a cache client must either reload the cached
ormed of changes to the cached item,

0 the cached

20 of data items,

cached item,

item, be inf

t the master item corresponding t

a item has not changed. In other words, a cache client
nchronize its data items with those on the cache

lve reloading data

or

25 confirm the

must sy
server.

items onto the cache client.

synchronized or reload it add

This synchronization may invo
The need to keep the cache

s significant overhead to30

— existing caching mechanisms.
In View of the above and other problems with

prior art systems, it is therefore desirable to have a
mechanism which allows each processor in a multiprocessor

35 system to determine a common and substantially unique
using only the data in the

identifier for a data item, ntext.
data item and not relying on any sort of co

GOOG-1016-Page 9 of 125

GOOG-1016-Page 10 of 126

It is further desirable to have a mechanism for

reducing multiple copies of data items in a data

processing system and to have a mechanism which enables
the identification of identical data items so as to

5 reduce multiple copies. It is further desirable to
determine whether two instances of a data item are in
fact the same data item, and to perform various other
systems’ functions and applications on data items without

~relying on any context information or properties of the
10 data item. ‘

It is also desirable to provide such a

mechanism in such a way as to make it transparent to
users of the data processing system, and it is desirable
that a single mechanism be used to address each of the

.s 15 problems described above.

SUMARY OF THE INVENTLON

This invention provides, in a data processing

system, a method and apparatus for identifying a data
item in the system, where the identity of the data item

20 depends on all of the data in the data item and only on
the data in the data item. Thus the identity of a data
item is independent of its name, origin, location,
address, or other information not derivable directly from
the data, and depends only on the data itself.

25 This invention further provides an apparatus
and a method for determining whether a particular data
item is present in the system or at a location in the
system, by examining only the data identities of a
plurality of data items. _

30 Using the method or apparatus of the present
invention, the efficiency and integrity of-a data
processing system can be improved. The present invention
improves the design and operation of a data storage
system, file system, relational database, object-oriented

35 database, or the like that stores a plurality of data
items, by making possible or improving the design and

§§“

GOOG-1016-Page 10 of 126

GOOG-1016-Page 11 of 126

operation of at least some or all of the following
features:

the system stores at most one copy of any data

item at a given location, even when multiple data names

5 in the system refer to the same contents;

the system avoids copying data from source to

destination locations when the destination locations

already have the data;

the system provides transparent access to any

10 data item by reference only to its identity and

independent of its present location, whether it be local,

remote, or offline;

the system caches data items from a server, so

,that only the most recently accessed data items need be

15 retained; 7

when the system is being used to cache data

items, problems of maintaining cache consistency are

avoided; w

the system maintains a desired level of

20 redundancy of data items in a network of servers, to
protect against failure by ensuring that multiple copies

of the data items are present at different locations in

the system;

the system automatically archives data items as 25 they are created or modified;

ii the system provides the size, age, and location

of groups of data items in order to decide whether they

can be safely removed from a local file system;

the system can efficiently record and preserve

30 any collection of data items;

the systemycan efficiently make a copy of any

collection of data items, to support a version control

mechanism for groups of the data items; K

_ the system can publish data items, allowing

35 other, possibly anonymous, systems in a network to gain

access to the data items and to rely on the availability

of the data items;

«M?

GOOG-1016-Page 11 of 126

GOOG-1016-Page 12 of 126

the system can maintain a local inventory of

all the data items located on a given removable medium,

such as a diskette or CD-ROM, the inventory is

independent of other properties of the data items such as

5 their name, location, and date of creation;

the system allows closely related sets of data
items, such as matching or corresponding directories on

disconnected computers, to be periodically resynchronized

with one another;

10 the system can verify that data retrieved from

another location is the desired or requested data, using

only the data identifier used to retrieve the data;

the system can prove possession of specific

data items by content without disclosing the content of

15 the data items, for purposes of later legal verification

and to provide anonymity;

the system tracks possession of specific data

items according to content by owner, independent of the

name, date, or other properties of the data item, and

20 tracks the uses of specific data items and files by
content for accounting purposes. I

other objects, features, and characteristics of

the present invention as well as the methods of operation

and functions of the related elements of structure, and

25 the combination of parts and economies of manufacture,

'* will become more apparent upon consideration of the

following description and the appended claims with

reference to the accompanying drawings, all of which form

a part of this specification.

30 BRIEF D ‘CR PTION OF THE DRAWINGS
ZIXg:> GURE 1 depicts a typical data processing

system in wh h a preferred embodiment of the present

invention oper tes;

FIGURE 2 depicts a hierarchy of data items

35 stored at any location in such a data processing system;

GOOG-1016-Page 12 of 126

GOOG-1016-Page 13 of 126

FIGURES 3-9 depict data structures used to

implement an embodiment of the present invention; and

FIGURES 10(a)-28 are flow charts depicting

operation of various aspects of the present invention.

5 DETAIL D DESCRIPTION OF THE PRESENTL PREFERRED

>> EXEMPLARY EMBODIMENTSn embodiment of the present invention is now

described w th reference to a typical data processing

system 100, w ich, with reference to FIGURE 1, includes

10 one or more pr essors (or computers) 102 and various

storage devices 04 connected in some way, for example by
a bus 106.

Each processor 102 includes a CPU 108, a memory

110 and one or more local storage devices 112. The CPU

15 108, memory 110, and local storage device 112 may be

internally connected, for example by a bus 114. Each

processor 102 may also include other devices (not shown),

such as a keyboard, a display, a printer, and the like.

In a data processing system 100, wherein more

20 than one processor 102 is used, that is, in a

multiprocessor system, the processors may be in one of

various relationships. For example, two processors 102

may be in a client/server, client/client, or a

server/server relationship. These inter-processor

25 relationships may be dynamic, changing depending on

particular situations and functions. Thus, a particular

processor 102 may change its relationship to other

processors as needed, essentially setting up a peer-to-

peer relationship with other processors. In a peer-to—"

30 peer relationship, sometimes a particular processor 102

acts as a client processor, whereas at other times the

same processor acts as a server processor. In other

words, there is no hierarchy imposed on or required of

processors 102.

35 i In a multiprocessor system, the processors 102

may be homogeneous or heterogeneous. Further, in a

8

{%

GOOG-1O16-Page 13 of 126

GOOG-1016-Page 14 of 126

multiprocessor data processing system 100, some or all of

the processors 102 may be disconnected from the network

of processors for periods of time. Such disconnection

may be part of the normal operation of the system 100 or

5 it may be because a particular processor 102 is in need

of repair.

Within a data processing system 100, the data

may be organized to form a hierarchy of data storage
elements, wherein lower level data storage elements are

10 combined to form higher level elements. This hierarchy

can consist of, for example, processors, file systems,

regions, directories, data files, segments, and the like.

For example, with reference to FIGURE 2, the data items

on a particular processor 102 may be organized or

15 structured as a file system 116 which comprises regions

117, each of which comprises directories 118, each of

which can contain other directories 118 or files 120.

Each file 120 being made up of one or more data segments
122.

20 In a typical data processing system, some or

all of these elements can be named by users given certain

implementation specific naming conventions, the name (or

pathname) of an element being relative to a context. In

the context of a data processing system 100, a pathname

25 is fully specified by a processor name, a filesystem

name, a sequence of zero or more.directory names

identifying nested directories, and a final file name.

(Usually the lowest level elements, in this case segments

122, cannot be named by users.)

30 In other words, a file system 116 is a

collection of directories 118. A directory 118 is a
collection of named files 120 -- both data files 120 and

other directory files 118. A file 120 is a named data

item which is either a data file (which may be simple or

35 compound) or a directory file 118. A simple file 120

consists of a single data segment 122. A compound file

120 consists ofia sequence of data segments 122. A data

GOOG-1016-Page 14 of 126

GOOG-1016-Page 15 of 126

segment 122 is a fixed sequence of bytes. An important

property of any data segment is its size, the number of

bytes in the sequence. _ g

A single processor 102 may access one or more

5 file systems 116, and a single storage device 104 may

contain one or more file systems 116, or portions of a

file system 116. For instance, a file system 116 may

span several storage devices 104.

In order to implement controls in a file

10 system, file system 116 may be divided into distinct

regions, where each region is a unit of management and

control. A region consists of a given directory 118 and

is identified by the pathname (user defined) of the

directory. H

15 In the following, the term "location", with

respect to a data processing system 100, refers to any of

a particular processor 102 in the system, a memory of a

particular processor, a storage device, a removable

storage medium (such as a floppy disk or compact disk),

20 or any other physical location in the system. The term

"local" with respect to a particular processor 102 refers

to the memory and storage devices of that particular

processor. ‘

In the following, the terms "True Name", "data
25 identity" and "data identifier" refer to the

‘* substantially unique data identifier for a particular

data item. The term "True File" refers to the actual

file, segment, or data item identified by a True Name.

A file system for a data processing system 100
30 is now described which is intended to work with an

existing operating system by augmenting some of the

operating system's file management system codes. The
embodiment provided relies on the standard file

management primitives for actually storing to and

, 35 retrieving data items from disk, but uses the mechanisms

of the present invention to reference and access these

data items. 6

10

GOOG-1016-Page 15 of 126

GOOG-1016-Page 16 of 126

The processes and mechanisms (services)

provided in this embodiment are grouped into the

following categories: primitive mechanisms, operating

system mechanisms, remote mechanisms, background

5 mechanisms, and extended mechanisms.

Primitive mechanisms provide fundamental

capabilities used to support other mechanisms. The

following primitive mechanisms are described:
1. Calculate True Name;

10 2. Assimilate Data Item;

3. New True File;

4. Get True Name from Path;

5. Link path to True Name;

6. Realize True File from Location;

15 7. Locate Remote File;

8. Make True File Local;

9. Create Scratch File;

10. Freeze Directory; '

11. Expand Frozen Directory;

25 12. Delete True File;

13. Process Audit File Entry;

14. Begin Grooming;

15. Select For Removal; and

16. End Grooming.

25 Operating system mechanisms provide typical

*£ familiar file system mechanisms, while maintaining the

data structures required to offer the mechanisms of the,

present invention. Operating system mechanisms are

designed to augment existing operating systems, and in

30 this way to make the present invention compatible with,_

and generally transparent to, existing applications. The

following operating system mechanisms are described:

1. Open File;

2. Close File;

35 3. Read File;

4. Write File;

5. Delete File or Directory;

11

GOOG-1016-Page 16 of 126

GOOG-1016-Page 17 of 126

6. Copy File or Directory;
7. Move File or Directory;

8. Get File Status; and

9. Get Files in Directory.

5 Remote mechanisms are used by the operating
system in responding to requests from other processors.
These mechanisms enable the capabilities of the present
invention in a peer—to-peer network mode of operation.
The following remote mechanisms are described:

10 1. Locate True File;
2. Reserve True File;

3. Request True File;

4. Retire True File;

5. Cancel Reservation;

15 6. Acquire True File;
7. Lock Cache;'

8. Update Cache; and

9. Check Expiration Date.

Background mechanisms are intended to run

20 occasionally and at‘a low priority. These provide
automated management capabilities with respect to the

present invention. The following background mechanisms
are described:

1. Mirror True File;

25 2. Groom Region;

*5 3. Check for Expired Links; and

4. ~Verify Region; and

S. Groom Source List.

Extended mechanisms run within application

30 programs over the operating system. These mechanisms
provide solutions to.specific problems and applications.;
The following extended mechanisms are described:

1. Inventory Existing Directory;

2. Inventory Removable, Read-only Files;

35 3. Synchronize directories;
4. Publish Region;

5. Retire Directory;

12

.,.»‘:}‘

/.,

GOOG-1016-Page 17 of 126

GOOG-1016-Page 18 of 126

6. Realize Directory at location;

7. Verify True File;

8. Track for accounting purposes; and

9. Track for licensing purposes.

5 The file system herein described maintains

sufficient information to provide a variety of mechanisms

not ordinarily offered by an operating system, some of

which are listed and described here. Various processing

performed by this embodiment of the present invention

10 will now be described in greater detail.

In some embodiments, some files 120 in a data

processing system 100 do not have True Names because they

have been recently received or created or modified, and

thus their True Names have not yet been computed. A file

15 that does not yet have a True Name is called a scratch

file. The process of assigning a True Name to a file is

referred to as assimilation, and is described later.

Note that a scratch file may have a user provided name.

. Some of the processing performed by the present
20 invention can take place in a background mode or on a

delayed or as-needed basis. This background processing

is used to determine information that is not immediately

required by the system or which may never be required.

As an example, in some cases a scratch file is being

25 changed at a rate greater than the rate at which it is

useful to determine its True Name. In these cases,

determining the True Name of the file can be postponed or

performed in the background.

Data structures ,

30 The following data structures, stored in memory

110 of one of more processors 102 are used to implement

the mechanisms described herein. The data structures can

be local to each processor 102 of the system 100, or they

can reside on only some of the processors 102.

13

GOOG-1016-Page 18 of 126

GOOG-1016-Page 19 of 126

The data structures described are assumed to

reside on individual peer processors 102 in the data

processing system 100. However, they can also be shared

by placing them on a remote, shared file server (ford
5 instance, in a local area network of machines). In order

to accommodate sharing data structures, it is necessary

that the processors accessing the shared database use the

appropriate locking techniques to ensure that changes to

the shared database do not interfere with one another but

10 are appropriately serialized. These locking techniques

are well understood by ordinarily skilled programmers of
distributed applications.

It is sometimes desirable to allow some regions

to be local to a particular processor 102 and other

15 regions to be shared among processors 102. (Recall that

a region is a unit of file system management and control

consisting of a given directory identified by the

pathname of the directory.) In the case of local and

shared regions, there would be both local and shared

20 versions of each data structure. Simple changes to the
processes described below must be made to ensure that

appropriate data structures are selected for a given

operation. 1

The local directory extensions (LDE) table 124 25 is a data structure which provides information about

files 120 and directories 118 in the data processing

system 100. The local directory extensions table 124 is

indexed by a pathname or contextual name (that is, a user

provided name) of a file and includes the True Name for

30 most files. The information in local directory extension

table 124 is in addition to that provided by the native

file system of the operating system.

The True File registry (TFR) 126 is a data

store for listing actual data items which have True

35 Names, both files 120 and segments 122. When such data

items occur in the True File registry 126 they are known

as True Files. True Files are identified in True File

14

.M.,.,_,4

(~..«

GOOG-1016-Page 19 of126

GOOG-1016-Page 20 of 126

registry 126 by their True Names or identities. The
table True File registry 126 also stores location,

dependency, and migration information about True Files.

The region table (RT) 128 defines areas in the

5 network storage which are to be managed separately.

Region table 128 defines the rules for access to and

migration of files 120 among various regions with the

local file system 116 and remote peer file systems.

The source table (ST) 130 is a list of the
10 sources of True Files other than the current True File

registry 126. The sourcewtable 130 includes removable
volumes and remote processors.

The audit file (AF) 132 is a list of records

indicating changes to be made in local or remote files,

15 these changes to be processed in background.

The accounting log (AL) 134 is a log of file

transactions used to create accounting information in a

manner which preserves the identity of files being

tracked independent of their name or location.

20 The license table (LT) 136 is a table

identifying files, which may only be used by licensed

users, in a manner independent of their name or location,
and the users licensed to use them.

Detailed Descriptions of the Data Structures

25 The following table summarizes the fields of an

local directory extensions table entry, as illustrated by

record 138 in FIGURE 3.

mm
Region ID

lfifiiiiiiiilll
True Name

 identifies the region in which this file iscontained.

 the user provided name or contextual name
of the file or directory, relative to the
re-ion in which it occurs.

the computed True Name or identity of the
file or directory. This True Name is not
always up to date, and it is set to a
special value when a file is modified and
is later recom-uted in the back-round.

15

GOOG-1016-Page 20 of126

GOOG-1016-Page 21 of 126

and
Type indicates whether the file is a data file

or a director .

Scratch the physical location of the file in the
File ID file system, when no True Name has been

calculated for the file. As noted above,
such a file is called a scratch file.

the last access time to this file. If this

Time of

5 last file is»a directory, this is the last
access access time to an file in the director .

Time of the time of last change of this file. If
last modi- this file is-a directory, this is the last
fication modification time of any file in the

director .

10 Safe flag indicates that this file (and, if this file
- is a directory, all of its subordinate

files) have been backed up on some other
system, and it is therefore safe to remove
them. ’

Lock flag _ indicates whether a file is locked, that
is, it is being modified by the local pro-
cessor or a remote processor. only one

‘ -rocessor ma modif a file at a time.

Size the full size of this directory (including
all subordinate files), if all files in it
were fully expanded and duplicated. For a
file that is not a directory this is the
size of the actual True File.

Owner the identity of the user who owns this
file, for accounting and license tracking

_ - -ur-oses. ' —

T Each record of the True File registry 126 has

15 the fields shown in the True File registry record 140 in

FIGURE 4. The True File registry 126 consists of the

database described in the table below as well as the _

actual True Files identified by the True File IDs below.’

Field Descri-tion ’

X 20 True Name computed True Name or identity of
‘r’ 7 the file. ‘\ x

I Q
. xx‘

16

.//3

GOOG-1016-Page 21 of126

GOOG-1016-Page 22 of 126

new
Compressed compressed version of the True File
File ID may be stored instead of, or in

addition to, an uncompressed
version. This field provides the
identity of the actual
representation of the compressed
version of the file.

tentative count of how many
references have been selected for

deletion during a grooming
o-eration.

Grooming
delete count

5 Time of last most recent date and time the
access content of this file was accessed.

Expiration date and time after which this file
- ma be deleted b ‘this server.

Dependent processor IDs of other processors
processors which contain references to this

True File.

10 Source IDs source ID(s) of zero or more
sources from which this file or
data item ma be retrieved.

True File ID identity or disk location of the
actual physical representation of
the file or file segment. It is‘
sufficient to use a filename in the

registration directory of the
underlying operating system. The
True File ID is absent if the

actual file is not currently
-resent at the current location.

Use count number of other records on this

processor which identify this True
File.

‘q‘ A region table 128, specified by a directory

pathname, records storage policies which allow files in’

15 the file system to be stored, accessed and migrated in
different ways. Storage policies are programmed in a

configurable way using a set of rules described below.

Each region table record 142 of region table

128 includes the fields described in the following table

20 (with reference to FIGURE 5):

17

GOOG-1016-Page 22 of 126

GOOG-1016-Page 23 of 126

16

Region ID internally used identifier for this ’

re-ion. .

file system on the local processor of
which this re-ion is a .art.

 Region file system

 a pathname relative to the region file

system which defines the location of
this region. The region consists of
all files and directories subordinate

to this pathname, except those in a
ion subordinate to this re-ion.

 Region pathname

 ‘zero or more identifiers of processors
which are to keep mirror or archival
copies of all files in the current
region. Multiple mirror processors
can be defined to form a mirror

Mirror processor(s)

 number of copies of each file in this

region that should be retained in amirror -rou-.

Mirror duplication
count

 specifies whether this region is local
to a single processor 102, shared by
several processors 102 (if, for
instance, it resides on a shared file
server),.or managed by a remote-rocessor.

Region status

the migration policy to apply to this
region. A single region might
participate in several policies. The
policies are as follows (parameters in
brackets are specified as part of the
policy): ‘

region is a cached version from
[processor ID];
region is a member of a mirror set
defined by [processor ID].
region is to be archived on
[processor ID].‘
region is to be backed up locally,
by placing new copies in [region
ID] . ‘
region is read only and may not be
changed.
region is published and expires on
[date].
Files in this region should be
com-ressed.

A source table 130 identifies a source location

for True Files. The source table 130 is also used to

18

GOOG-1016-Page 23 of 126

GOOG-1016-Page 24 of 126

identify client processors making reservations on the

current processor. Each source record 144 of the source

table 130 includes the fields summarized in the following

table, with reference to FIGURE 6:

source ID internal identifier used to identify a
-articular source.

source

ltype

 type of source location:
Removable Storage Volume

.Local Regiofi
Cache Server

Mirror Group Server
Cooperative Server
Publishing Server
Client

includes information about the rights
of this processor, such as whether it
can ask the local processor to store
data items for it.

10

measurement of the bandwidth, cost,
‘and reliability of the connection to
this source of True Files. The avail-
ability is used to select from among
several -ossible sources.

source

availabil—

ity

 information on how the local processor

‘is to access the source. This may be,
for example, the name of a removable
storage volume, or the processor ID
and region path of a region on a
remote orocessor.

source

location
15

The audit file 132 is a table of events ordered

by timestamp, each record 146 in audit file 132 including

the fields summarized in the following table (with

7_reference to FIGURE 7):

men:
ath of the file in uestion. ‘

whether the file was created, read, ’written co-ied or deleted.

 '20

 ispecifies whether the source is a file
or a director_

19

s>;{_, ’

GOOG-1016-Page 24 of 126

GOOG-1016-Page 25 of 126

Field Descri-tion

Processor ID ID of the remote processor generating
this event if not local .

Timestamp time and date file was closed (required
onl for accessed modified files .

Pathname Name of the file (required only for
' rename .

True Name computed True Name of the file. This is
used by remote systems to mirror changes
to the directory and is filled in during
back-round orocessinoJ

5 Each record 148 of the accounting log 134

records an event which may later be used to provide

information for billing mechanisms. Each accounting log

entry record 148 includes at least the information

summarized in the following table, with reference to
FIGURE 8:

date of date and time of this log entry.
entr

type of Entry types include create file,
entr delete file and transmit file.

True Name of data item in uestion.
owner identity of the user responsible for

this action.

Each record 150 of the license table 136

records a relationship between a licensable data item and

20 the user licensed to have access to it. Each license

table record 150 includes the information summarized in

the following table,‘with reference to FIGURE 9:

True Name True Name of a data item subject to
' license validation.

20

GOOG-1016-Page 25 of 126

GOOG-1016-Page 26 of 126

10

15

20

25

30

 mm

licensee identity of a user authorized to haveaccess to this ob ect.

Various other data structures are employed on

some or all of the processors 102 in the data processing

system 100. Each processor 102 has a global freeze lock

(GFL) 152 (FIGURE 1), which is used to prevent

synchronization errors when a directory is frozen or

copied. Any processor 102 may include a special archive

directory (SAD) 154 into which directories may be copied

for the purposes of archival. Any processor 102 may

include a special media directory (SMD) 156, into which

the directories of removable volumes are stored to form a

media inventory. Each processor has a grooming lock 158,

which is set during a grooming operation. During this

period the grooming delete count of True File registry

entries 140 is active, and no True Files should be

deleted until grooming is complete. While grooming is in

effect, grooming information includes a table of

pathnames selected for deletion, and keeps track of the

amount of space that would be freed if all of the files
were deleted.

Primitive Mec an'sms

The first of the mechanisms provided by the

present invention, primitive mechanisms, are now
described.

underlying data management mechanisms to create, copy,

The mechanisms described here depend on

read, and delete data items in the True File registry
126, as identified by a True File ID.

be provided by an underlying operating system or disk

This support may

storage manager.

The following primitive mechanisms are
described:

1. Calculate True Name;

2. Assimilate Data Item;

21

“:0
Qéfr

GOOG-1016-Page 26 of 126

GOOG-1016-Page 27 of 126

10

15

20

25

30

35

3. New True File;

4. Get True Name from Path;

5. Link Path to True Name;

6. Realize True File from Location;

7. Locate Remote File;

8. Make True File Local;

9. Create Scratch File;

10. Freeze Directory;

11. Expand Frozen Directory;

12. Delete True File;

13. Process Audit File Entry;

14. Begin Grooming;

15. Select For Removal; and

16. End Grooming.

1. Calculate True Name

A True Name is computed using a function, MD,

which reduces a data block B of arbitrary length to a

relatively small, fixed size identifier, the True Name of

the data block, such that the True Name of the data block
is virtually guaranteed to represent the data block B and

only data block B.

The function MD must have the following

properties:

1. The domain of the function MD is the set

of all data items. The range of the

function MD is the set of True Names.

2. The function MD must take a data item of

arbitrary length and reduce it to an

integer value in the range Gvto N-1, where

N is the cardinality of the set of True I

Names. That is, for an arbitrary length

data block B, o s MD(B) < N.

3. The results of MD(B) must be evenly and

randomly distributed over the range of N,

in such a way that simple or regular

22

GOOG-1016-Page 27 of 126

GOOG-1016-Page 28 of 126

changes to B are virtually guaranteed to

produce a different value of MD(B).

4. It must be computationally difficult to

find a different value B’ such that

5 MD(B)=MD(B’) .

'5. The function MD(B) must be efficiently
computed.

A family of functions with the above properties

are the so—called message digest functions, which are

10 used in digital security systems as techniques for

authentification of data.’ These functions (or

algorithms) include MD4, MD5, and SHA.

In the presently preferred embodiments, either

MD5 or SHA is employed as the basis for the computation

15 of True Names. Whichever of these two message digest

functions is employed, that same function must be
employed on a system-wide basis.

It is impossible to define a function having a

unique output for each possible input when the number of

20 elements in the range of the function is smaller than the

number of elements in its domain. However, a crucial

observation is that the actual data items that will be

encountered in the operation of any system embodying this

invention form a very sparse subset of all the possible
25 inputs.

A colliding set of data items is defined as a

set wherein, for one or more pairs x and y in the set,

MD(x) = MD(y). Since a function conforming to the

requirements for MD must evenly and randomly distribute

30 its outputs, it is possible, by making the range of the

function large enough, to make the probability

arbitrarily small that actual inputs encountered in the

operation of an embodiment of this invention will form a

colliding set.

35 To roughly quantify the probability of a

collision, assume that there are no more than 2” storage

devices in the world, and that each storage device has an

23

GOOG-1016-Page 28 of 126

GOOG-1016-Page 29 of 126

average of at most 2” different data items. Then there

are at most 2” data items in the world. If the outputs

of MD range between 0 and 2E8, it can be demonstrated

that the probability of a collision is approximately 1 in

5 2”. Details on the derivation of these probability

values are found, for example, in P. Flajolet and A.M.

Odlyzko, "Random Mapping Statistics," Lecture Notes in

Computer Science 434: Advances in Cryptology -— Eurocrypt

'89 Proceedings, Springer-Verlag, pp. 329-354.

10 Note that for some less preferred embodiments

of the present invention,¥lower probabilities of

uniqueness may be acceptable, depending on the types of

applications and mechanisms used. In some embodiments it

may also be useful to have more than one level of True

15 Names, with some of the True Names having different

degrees of uniqueness. If such a scheme is implemented,

it is necessary to ensure that less unique True Names are
not propagated in the system.

While the invention is described herein using

20 only the True Name of a data item as the identifier for

the data item, other preferred embodiments use tagged,

typed, categorized or classified data items and use a

combination of both the True Name and the tag, type,

category or class of the data item as an identifier.

25 Examples of such categorizations are files, directories,

and segments; executable files and data files, and the

like. Examples of classes are classes of objects in an

object-oriented system.’ In such a system, a lower degree
of True Name uniqueness is acceptable over the entire

30 universe of data items, as long as sufficient uniqueness,
is provided per category of data items. This is because

the tags provide an additional level of uniqueness.

A mechanism for calculating a True Name given a

data item is now described, with reference to FIGURES

35 10(a) and 10(b).

A simple data item is a data item whose size is

less than a particular given size (which must be defined

24

X)? 4):/'\l,‘{

GOOG-1016-Page 29 of 126

GOOG-1016-Page 30 of 126

in each particular implementation of the invention). To

determine the True Name of a simple data item, with

reference to FIGURE 10(a), first compute the MD function

(described above) on the given simple data item (Step

5 S212). Then append to the resulting 128 bits, the byte

length modulo 32 of the data item (Step 8214). The

resulting 160-bit value is the True Name of the simple
data item.

A compound data item is one whose size is

10 greater than the particular given size of a simple data

item. To determine the True Name of an arbitrary (simple

or compound) data item, with reference to FIGURE 10(b),

first determine if the data item is a simple or a

compound data item (Step S216). If the data item is a

15 simple data item, then compute its True Name in step S218

(using steps S212 and S214 described above), otherwise

partition the data item into segments (Step S220) and

assimilate each segment (step S222) (the primitive

mechanism, Assimilate a Data Item, is described below),

20 computing the True Name of the segment. Then create an

indirect block consisting of the computed segment True

Names (Step S224). An indirect block is a data item

which consists of the sequence of True Names of the
segments. Then, in step S226, assimilate the indirect

25 block and compute its True Name. Finally, replace the

final thirty-two (32) bits of the resulting True Name

(that is, the length of the indirect block) by the length

module 32 of the compound data item (Step 8228). The

result is the True Name of the compound data item.

30 Note that the compound data item may be so

large that the indirect block of segment True Names is

itself a compound data item. In this case the mechanism

is invoked recursively until only simple data items are

being processed.

35 Both the use of segments and the attachment of

a length to the True Name are not strictly required in a

system using the present invention, but are currently

25

GOOG-1016-Page 30 of 126

GOOG-1016-Page 31 of 126

considered desirable features in the preferred

embodiment.

2. Assimilate Data Item

A mechanism for assimilating a data item

5 (scratch file or segment) into a file system, given the

scratch file ID of the data item, is now described with

reference to FIGURE 11. The purpose of this mechanism is

to add a given data item to the True File registry 126.

If the data item already exists in the True File registry

10 126, this will be discovered and used during this

process, and the duplicate will be eliminated.

Thereby the system stores at most one copy of
any data item or file by content, even when multiple
names refer to the same content.

15 First, determine the True Name of the data item

corresponding to the given scratch File ID using the

Calculate True Name primitive mechanism (Step S230).

Next, look for an entry for the True Name in the True

File registry 126 (Step S232) and determine whether a

20 True Name entry, record 140, exists in the True File

registry 126. If the entry record includes a

corresponding True File ID or compressed File ID (Step

S237), delete the file with the scratch File ID (Step

S238). Otherwise store the given True File ID in the

‘A 25 entry record (step S239).

If it is determined (in step S232) that no True

Name entry exists in the True File registry 126, then, in

Step S236, create a new entry in the True File registry

126 for this True Name. Set the True Name of the entry

30 to the calculated True Name, set the use count for the

new entry to one, store the given True File ID in the

entry and set the other fields of the entry as

appropriate.

26

GOOG-1016-Page 31 of 126

GOOG-1016-Page 32 of 126

Because this procedure may take some time to

compute, it is intended to run in background after a file

has ceased to change. In the meantime, the file is

considered an unassimilated scratch file.

5 3. New True File

The New True File process is invoked when

processing the audit file 132, some time after a True

File has been assimilated (using the Assimilate Data Item

primitive mechanism). Given a local directory extensions

10 table entry record 138 in the local directory extensions

table 124, the New True File process can provide the

following steps (with reference to FIGURE 12), depending

on how the local processor is configured:

First, in step S238, examine the local

15 directory extensions table entry record 138 to determine

whether the file is locked by a cache server. If the

file is locked, then add the ID of the cache server to

the dependent processor list of the True File registry

table 126, and then send a message to the cache server to

20 update the cache of the current processor using the

Update Cache remote mechanism (step 242).

If desired, compress the True File (Step S246),

and, if desired, mirror the True File using the Mirror

True File background mechanism_(Step S248).

25 4. Ge True Name ro

The True Name of a file can be used to identify

a file by contents, to confirm'that a file matches its

original contents, or to compare two files. The

mechanism to get a True Name given the pathname of a file
30 is now described with reference to FIGURE 13.

First, search the local directory extensions

table 124 for the entry record 138 with the given

pathname (Step S250). If the pathname is not found, this

process fails and no True Name corresponding to the given

35 pathname exists. Next, determine whether the local

27

GOOG-1016-Page 32 of 126

GOOG-1016-Page 33 of 126

directory extensions table entry record 138 includes a

True Name (Step S252), and if so, the mechanism's task is

complete. Otherwise, determine whether the local

directory extensions table entry record 138 identifies a

5 directory (Step S254), and if so, freeze the directory

(Step S256) (the primitive mechanism Freeze Directory is

described below).

Otherwise, in step S258, assimilate the file

(using the Assimilate Data Item primitive mechanism)

10 defined by the File ID field to generate its True Name

and store its True Name in the local directory extensions

entry record. Then return the True Name identified by

the local directory extensions table 124.

5. Link Path to True Name

15 The mechanism to link a path to a True Name

provides a way of creating a new directory entry record

identifying an existing, assimilated file. This basic

process may be used to copy, move, and rename files

without a need to copy their contents. The mechanism to

20 link a path to a True Name is now described with
reference to FIGURE 14.

First, if desired, confirm that the True Name

exists locally by searching for it in the True Name

registry or local directory extensions table 135 (Step

25 S260). Most uses of this mechanism will require this

form of validation. Next, search for the path in the

local directory extensions table 135 (Step S262).

Confirm that the directory containing the file named in

the path already exists (Step 5264). If the named file

30 itself exists, delete the File using the Delete True File

operating system mechanism (see below) (Step S268).

Then, create an entry record in the local

directory extensions with the specified path (Step S270)
and update the entry record and other data structures as

35 follows: fill in the True Name field of the entry with

the specified True Name; increment the use count for the

28

GOOG-1016-Page 33 of 126

GOOG-1016-Page 34 of 126

True File registry entry record 140 of the corresponding—

True Name; note whether the entry is a directory by

reading the True File to see if it contains a tag (magic

number) indicating that it represents a frozen directory

5 (see also the description of the Freeze Directory

primitive mechanism regarding the tag); and compute and

set the other fields of the local directory extensions

appropriately. For instance, search the region table 128

to identify the region of the path, and set the time of

10 last access and time of last modification to the current

time. 3

6. Realize True File from Location

This mechanism is used to try to make a local

copy of a True File, given its True Name and the name of

15 a source location (processor or media) that may contain

the True File. This mechanism is now described with

reference to FIGURE 15. ‘

First, in step S272, determine whether the

location specified is a processor. If it is determined

20 that the location specified is a processor, then send a

Request True File message (using the Request True File

remote mechanism) to the remote processor and wait for a

response (Step S274). If a negative response is received

or no response is received after a timeout period, this

25 mechanism fails. If a positive response is received,

enter the True File returned in the True File registry

126 (Step S276). (If the file received was compressed,

enter the True File ID in the compressed File ID field.)

If, on the other hand, it is determined in step

30 $272 that the location specified is not a processor, I

V then, if necessary, request the user or operator to mount
the indicated volume (step S278). Then (Step S280) find

the indicated file on the given volume and assimilate the

file using the Assimilate Data Item primitive mechanism.

35 If the volume does not contain a True File registry 126,

search the media inventory to find the path of the file

29

GOOG-1016-Page 34 of126

GOOG-1016-Page 35 of 126

on the volume. If no such file can be found, this
mechanism fails. I

At this point, whether or not the location is

determined (in step S272) to be a processor, if desired,

5 verify the True File (in step S282).

7. Eocate Remote File

®3>
file or data item from a remote source of True Files,

his mechanism allows a processor to locate a

when a specifi source is unknown or unavailable. A

10 client processo system may ask one of several or many

sources whether i can supply a data object with a given

True Name. The ste to perform this mechanism are as

to FIGURE 16).

The client processor 102 uses the source table

follows (with referen

15 145 to select one or more source processors (Step S284).

If no source processor can be found, the mechanism fails.

Next, the client processor 102 broadcasts to the selected

sources a request to locate the file with the given True

Name using the Locate True File remote mechanism (Step

20 S286). The request to locate may be augmented by asking

to propagate this request to distant servers. The client

processor then waits for one or more servers to respond

positively (Step S288). After all servers respond

negatively, or after a timeout period with no positive-

25 I response, the mechanism repeats selection (Step S284) to

attempt to identify alternative sources. If any selected

source processor responds, its processor ID is the result

of this mechanism. Store the processor ID in the source

field of the True File registry entry record 140 of the

30 given True Name (Step.S290).

If the source location of the True Name is a

different processor or medium than the destination (Step

S290a), perform the following steps:

I (i) Look up the True File registry entry
35 record 140 for the corresponding True Name, and add the

30

GOOG-1016-Page 35 of 126

GOOG-1016-Page 36 of 126

source location ID to the list of sources for the True

Name (Step S290b); and .

(ii) If the source is a publishing system,

determine the expiration date on the publishing system
5 for the True Name and add that to the list of sources.

If the source is not a publishing system, send a message

to reserve the True File on the source processor (Step

S290c).

Source selection in step S284 may be based on

10 optimizations involving general availability of the

source, access time, bandwidth, and transmission cost,

and ignoring previously selected processors which did not

respond in step S288.

8. Make True File Local

15 9%
known and a ocally accessible copy of the corresponding

is mechanism is.used when a True Name is

file or data 1 em is required. This mechanism makes it
possible to act ally read the data in a True File. The

mechanism takes a True Name and returns when there is a

20, local, accessible py of the True File in the True File

registry 126. This echanism is described here with

reference to the flow hart of FIGURE 17.

First, look in the True File registry 126 for a

True File entry record 140 for the corresponding True

25 Name (Step S292). If no such entry is found this

mechanism fails. If there is already a True File ID for

the entry (Step S294), this mechanism’s task is complete.

If there is a compressed file ID for the entry (step

S296), decompress the file corresponding to the file ID

30 (Step S298) and storg_the decompressed file ID in the

entry (Step S360). This mechanism is then complete.

If there is no True File ID for the entry (Step

S294) and there is no compressed file ID for the entry

(Step S296), then continue searching for the requested

35 file. At this time it may be necessary to notify the

user that the system is searching for the requested file.

31

GOOG-1016-Page 36 of 126

GOOG-1016-Page 37 of 126

If there_are one or more source IDs, then

select an order in which to attempt to realize the source

ID (Step 8304). The order may be based on optimizations

involving general availability of the source, access

5 time, bandwidth, and transmission cost. For each source

in the order chosen, realize the True File from the

source location (using the Realize True File from

Location primitive mechanism), until the True File is

realized (Step S306). If it is realized, continue with

10 step S294. If no known source_can realize the True File,

use the Locate Remote File primitive mechanism to attempt

to find the True.File (Step S308). If this succeeds,

realize the True File from the identified source location

and continue with step $296.

9. ?Dé§>
file is bein

15 Create Scratch File

scratch copy of a file is required when a

created or is about to be modified. The

scratch copy i stored in the file system of the

underlying opera ing system. The scratch copy is

20 eventually assimil ted when the audit file record entry

146 is processed by he Process Audit File Entry

primitive mechanism. his Create Scratch File mechanism

requires a local direct y extensions table entry record

138. When it succeeds, t local directory extensions

25 table entry record 138 cont ins the scratch file ID of a

scratch file that is not cont ined in the True File

registry 126 and that may be mo ified. This mechanism is
GURE 18.

First determine whether the scratch file should

now described with reference to

30 be a copy of the existing True File (Step S310). If so,

continue with step S312. Otherwise, determine whether

the local directory extensions table entry record 138

identifies an existing True File (Step S316), and if so,

delete the True File using the Delete True File primitive

35 mechanism (Step S318). Then create a new, empty scratch

file and store its scratch file ID in the local directory

32

GOOG-1016-Page 37 of 126

GOOG-1016-Page 38 of 126

extensions table entry record 138 (Step S320). This

mechanism is then complete.

If the local directory extensions table entry

record 138 identifies a scratch file ID (Step S312), then

5 the entry already has a scratch file, so this mechanism
succeeds.

If the local directory extensions table entry

record 138 identifies a True File (S316), and there is no

True File ID for the True File (S312), then make the True

10 File local using the Make True File Local primitive

mechanism (Step S322). If there is still no True File

ID, this mechanism fails.

There is now a local True File for this file.

If the use count in the corresponding True File registry

15 entry record 140 is one (Step S326), save the True File

ID in the scratch file ID of the local directory

extensions table entry record 138, and remove the True

File registry entry record 140 (Step S328). (This step

makes the True File into a scratch file.) This

20 mechanism's task is complete.

Otherwise, if the use count in the

corresponding True File registry entry record 140 is not

one (in step S326), copy the file with the given True

File ID to a new scratch file, using the Read File OS

25 mechanism and store its file ID in the local directory

extensions table entry record 138 (Step S330), and reduce

the use count for the True File by one. If there is

insufficient space to make a copy, this mechanism fails.

10. Freeze Directory
30 CD“> is mechanism freezes a directory in order to

calculate it True Name. Since the True Name of a

directory is a unction of the files within the

directory, they st not change during the computation of
directory. This mechanism requires

35 the pathname of a di ectory to freeze. This mechanism is

described with referen e to FIGURE 19.

33

GOOG-1016-Page 38 of 126

GOOG-1016-Page 39 of 126

In step S332, add one to the global freeze

lock. Then search the local directory extensions table

124 to find each subordinate data file and directory of

the given directory, and freeze each subordinate

5 directory found using the Freeze Directory primitive

mechanism (Step S334). Assimilate each unassimilated

data file in the directory using the Assimilate Data Item

primitive mechanism (Step S336). Then create a data item

which begins with a tag or marker (a “magic number")

10 being a unique data item indicating that this data item

is a frozen directory (Step S337). Then list the file

name and True Name for each file in the current directory

(Step 5338). Record any additional information required,

such as the type, time of last access and modification,

15 and size (Step S340). Next, in step S342, using the

Assimilate Data Item primitive mechanism, assimilate the

data item created in step S338. The resulting True Name

is the True Name of the frozen directory. Finally,

subtract one from the global freeze lock (Step S344).

20 ‘11. Expand Frozen Diregtory

This mechanism expands a frozen directory in a

given location. It requires a given pathname into which

to expand the directory, and the True Name of the

directory and is described with reference to FIGURE 20.

25 First, in step S346, make the True File with

the given True Name local using the Make True File Local

primitive mechanism. Then read each directory entry in

the local file created in step S346 (Step S348). For

each such directory entry, do the following:

30 V Create a full pathname using the given pathname

and the file name of the entry (Step S350); and

link the created path to the True Name (Step

S352) using the Link Path to True Name primitive
mechanism.

34

GOOG-1016-Page 39 of 126

GOOG-1016-Page 40 of 126

12. Delete True File

This mechanism deletes a reference to a True

Name. The underlying True File is not removed from the

True File registry 126 unless there are no additional
5 references to the file. With reference to FIGURE 21,

this mechanism is performed as follows:

If the global freeze lock is on, wait until the.

global freeze look is turned off (Step S354). This

prevents deleting a True File while a directory which

10 might refer to it is being frozen. Next, find the True

File registry entry record 140 given the True Name (Step

S356). If the reference count field of the True File

registry 126 is greater than zero, subtract one from the

reference count field (Step S358). If it is determined

15 (in step 8360) that the reference count field of the True

File registry entry record 140 is zero, and if there are

no dependent systems listed in the True File registry

entry record 140, then perform the following steps:

(i) If the True File is a simple data item,

20 then delete the True File, otherwise,

(ii) (the True File is a compound data item)

for each True Name in the data item, recursively delete

the True File corresponding to the True Name (Step S362}.

T (iii) Remove the file indicated by the True

25 File ID and compressed file ID from the True File

registry 126, and remove the True File registry entry

record 140 (Step S364}.

13. Process Audit File Entry

This mechanism performs tasks which are

30 required to maintaininformation in the local directory

extensions table 124 and True File registry 126, but

which can be delayed while the processor is busy doing
more time-critical tasks. Entries 142 in the audit file

132 should be processed at_a background priority as long

35 as there are entries to be processed. With reference to

35

GOOG-1016-Page 40 of126

GOOG-1016-Page 41 of 126

FIGURE 22, the steps for processing an entry are as
follows:

Determine the operation in the entry 142

currently being processed (Step S365). If the operation
5 indicates that a file was created or written (Step 5366),

then assimilate the file using the Assimilate Data Item

primitive mechanism (Step S368), use the New True File

primitive mechanism to do additional desired processing

(such as cache update, compression, and mirroring) (Step

10 S369), and record the newly computed True Name for the
file in the audit file record entry (Step S370).

Otherwise, if the entry being processed

indicates that a compound data item or directory was

copied (or deleted) (step S376), then for each component

15 True Name in the compound data item or directory, add (or

subtract) one to the use count of the True File registry

entry record 140 corresponding to the component True Name

(Step S378). I

_ In all cases, for each parent directory of the
20 given file, update the size, time of last access, and

time of last modification, according to the operation in

the audit record (Step S379).

Note that the audit record is not removed after

processing, but is retained for some reasonable period so

25 that it may be used by the Synchronize Directory extended

1$ mechanism to allow a disconnected remote processor to

update its representation of the local system.

14. gegin Grooming

This mechanism makes it possible to select a

30 set of files for removal and determine the overall amount

of space to be recovered. With reference to FIGURE 23,

first verify that the global grooming lock is currently

unlocked (Step S382). Then set the global grooming lock,

set the total amount of space freed during grooming to

35 zero and empty the list of files selected for deletion

36

B1

Kgb

GOOG-1016-Page 41 of 126

GOOG-1016-Page 42 of 126

(Step S384). For each True File in the True File

registry 126, set the delete count to zero (Step S386).

15. Select For Removal

‘ This grooming mechanism tentatively selects a

5 pathname to allow its corresponding True File to be

removed. with reference to FIGURE 24, first find the

local directory extensions table entry record 138

corresponding to the given pathname (Step S388). Then

find the True File registry entry record 140

10 corresponding to the True File name in the local

directory extensions table entry record 138 (Step 5390).

Add one to the grooming delete count in the True File

registry entry record 140 and add the pathname to a list

of files selected for deletion (Step S392). If the

15 grooming delete count of the True File registry entry

record 140 is equal to the use count of the True File

registry entry record 140, and if the there are no

entries in the dependency list of the True File registry

entry record 140, then add the size of the file indicated

20 by the True File ID and or compressed file ID to the

total amount of space freed during grooming (étep S394).

16. End grooming

This grooming mechanism ends the grooming phase

and removes all files selected for removal. With

25 reference to FIGURE 25, for each file in the list of

files selected for deletion, delete the file (step S396)

and then unlock the global grooming lock (Step S398).

Opgrgtigg System Mecggnisms

The next of the mechanisms provided by the

30 present invention, operating system mechanisms, are now
described.

The following operating system mechanisms are
described:

1. Open File;

37

GOOG-1016-Page 42 of 126

GOOG-1016-Page 43 of 126

2. Close File;

3. Read File;

4. Write File;

5. Delete File or Directory;

5 6. Copy File or Directory;

7. Move File or Directory;

8. Get File Status; and

9. Get Files in Directory.

1. Open File

9')10 mechanism to open a file is described with

reference t FIGURE 26. This mechanism is given as input

a pathname an the type of access required for the file

(for example, ad, write, read/write, create, etc;) and

produces either e File ID of the file to be opened or

15 an indication that no file should be opened. The local

directory extension table record 138 and region table
record 142 associated 'ith the opened file are associated
with the open file for ter use in other processing

functions which refer to he file, such as read, write,
20 and close.

First, determine whether or not the named file

exists locally by examining the local directory
extensions table 124 to determine whether there is an

entry corresponding to the given pathname (Step S400).

25 If it is determined that the file name does not exist

locally, then, using the access type, determine whether

or not the file is being_created by this opening process

(Step S402). If the file is not being created, prohibit

the open (Step 5404). If the file is being created, I

30 create a zero—length*scratch file using an entry in local

directory extensions table 124 and produce the scratch

file ID of this scratch file as the result (Step S406).

If, on the other hand, it is determined in step

S400 that the file name does exist locally, then i

35 determine the region in which the file is located by

searching the region table 128 to find the record 142

38

GOOG-1016-Page 43 of 126

GOOG-1016-Page 44 of 126

with the longest region path which is a prefix of the

file pathname (Step S408). This record identifies the

region of the specified file.

Next, determine using the access type, whether

5 the file is being opened for writing or whether it is

being opened only for reading (Step 8410). If the file

is being opened for reading only, then, if the file is a
scratch file (Step S419), return the scratch File ID of

the file (Step $424). Otherwise get the True Name from

10 the local directory extensions table 124 and make a local

version of the True File associated with the True Name

using the Make True File Local primitive mechanism, and

then return the True File ID associated with the True

Name (Step s42o). '

15 If the file is not being opened for reading

only (Step S410), then, if it is determined by inspecting

the region table entry record 142 that the file is in a

read—only directory (Step S416), then prohibit the

opening (Step S422). ‘

20 If it is determined by inspecting the region

table 128 that the file is in a cached region (Step

S423), then send a Lock Cache message to the

corresponding cache server, and wait for a return message

(Step S418). If the return message says the file is

25 already locked, prohibit the opening.

If the access type indicates that the file

being modified is being rewritten completely (Step S419),
so that the original data will not be required, then

Delete the File using the Delete File os mechanism (step

30 S421) and perform step S405. Otherwise, make a scratch 1
copy of the file (Step S417) and produce the scratch file

ID of the scratch file as the result (Step S424).

2. Close File

This mechanism takes as input the local

35 directory extensions table entry record 138 of an open

file and the data maintained for the open file. To close

39,

GOOG-1016-Page 44 of 126

GOOG-1016-Page 45 of 126

a file, add an entry to the audit file indicating the

time and operation (create, read or write). The audit

file processing (using the Process Audit File Entry

primitive mechanism) will take care of assimilating the
5 file and thereby updating the other records.

3. Read File

To read a file, a program must provide the

offset and length of the data to be read, and the

7 location of a buffer into which to copy the data read.

10 The file to be read from is identified by an

open file descriptor which includes a File ID as computed

by the Open File operating system mechanism defined

above. The File ID may identify either a scratch file or

a True File (or True File segment). If the File ID

15 identifies a True File, it may be either a simple or a

vcompound True File. Reading a file is accomplished by

the following steps: _
In the case where the File ID identifies a

scratch file or a simple True File, use the read

20 capabilities of the underlying operating system.
In the case where the File ID identifies a

compound file, break the read operation into one or more

read operations on component segments as follows:

A. Identify the segment(s) to be read by

Q5 25 dividing the specified file offset and length each by the

fixed size of a segment (a system dependent parameter),

to determine the segment number and number of segments
that must be read. ‘

B. For each segment number computed above, do

30 the following: I p

i. Read the compound True File index

block to determine the True Name of the segment to be
read.

ii. Use the Realize True File from

35 Location primitive mechanism to make the True File

40

an ...%w "‘*v-».«.~...

GOOG-1016-Page 45 of 126

GOOG-1016-Page 46 of 126

segment available locally. (If that mechanism fails, the

Read File mechanism.fails). ‘

iii. Determine the File ID of the True

File specified by the True Name corresponding to this
5 segment.

iv. Use the Read File mechanism

(recursively) to read from this segment into the

corresponding location in the specified buffer.

4. Write File

10 File writing uses the file ID and data

management capabilities of the underlying operating

system. File access (Make File Local described above)
can be deferred until the first read or write.

De e e File or D'rector _
5.

15 jfig:> e process of deleting a file, for a given
pathname, is described here with reference to FIGURE 27.

First, determine the local directory extensions

table entry record 138 and region table entry record 142

for the file (Step-S422). If the file has no local

20 directory extensions table entry record 138 or is locked

or is in a read-only region, prohibit the deletion.

Identify the corresponding True File given the

True Name of the-file being deleted using the True File

registry 126 (Step S424). If the file has no True Name,

25 (Step S426) then delete the scratch copy of the file
based on its scratch file In in the local directory

extensions table 124 (Step S427), and continue with step
S428.

If the file has a True Name and the True File’s

30 use count is one (Step 8429), then delete the True File

(Step S430), and continue with step S428.

If the file has a True Name and the True Fi1e's

use count is greater than one, reduce its use count by

one (Step S431). Then proceed with step 8428.

41

fix{3

GOOG-1016-Page 46 of 126

GOOG-1016-Page 47 of 126

In Step S428, delete the local directory

extensions table entry record, and add an entry to the

audit file 132 indicating the time and the operation

performed (delete). '

5 6. Copy File or Directory

A mechanism is provided to copy a file or

directory given a source and destination processor and

pathname. The copy File mechanism does not actually copy
the data in the file, only the True Name of the file.

10 This mechanism is performed as follows:

(A) Given the source path, get the True Name

from the path. If this step fails, the mechanism fails.

(B) Giyen the True Name and the destination

path, link the destination path to the True Name.

15 (C) If the source and destination processors

have different True File registries, find (or, if

necessary, create) an entry for the True Name in the True

File registry table 126 of the destination processor.

Enter into the source ID field of this new entry the
20 source processor identity.

(D) Add an entry to the audit file 132

indicating the time and operation performed (copy).

This mechanism addresses capability of the

system to avoid copying data from a source location to a

25 destination location when the destination already has the

data. In addition, because of the ability to freeze a

directory, this mechanism also addresses capability of

the system immediately to make a copy of any collection

of files, thereby to support an efficient version control
30 mechanisms for groups of files.

7. govg File or Directory

A mechanism is described which moves (or

renames) a file from a source path to a destination path.

The move operation, like the copy operation, requires no

35 actual transfer of data, and is performed as follows:

42

GOOG-1016-Page 47 of 126

GOOG-1016-Page 48 of 126

(A) Copy the file from the source path to the

destination path.

(8) If the source path is different from the

destination path, delete the source path.

5 8. Get File Status

This mechanism takes a file pathname and

provides information about the pathname. First the local

directory extensions table entry record 13§ corresponding

to the pathname given is found.’ If no such entry exists,

10 then this mechanism fails, otherwise, gather information

about the file and its corresponding True File from the

local directory extensions table 124. The information

can include any information shown in the data structures,

including the size, type, owner, True Name, sources, time

15 of last access, time of last modification, state (local

or not, assimilated or not, compressed or not), use

count, expiration date, and reservations.

9. Get Files in Directory

This mechanism enumerates the files in a

20 directory. It is used (implicitly) whenever it is

necessary to determine whether a file exists (is present)

in a directory. For instance, it is implicitly used in

the Open File, Delete File, Copy File or Directory, and

Move File operating system mechanisms, because the files

25 operated on are referred to by pathnames containing
directory names. The mechanism works as follows:

The local directory extensions table 124 is

searched for an entry 138 with the given directory

pathname. If no suc entry is found, or if the entry

30 found is not a directory, then this mechanism fails.

If there is-a corresponding True File field in

the local directory extensions table record, then it is

assumed.that the True File represents a frozen directory.
The Expand Frozen Directory primitive mechanism is used

43

GOOG-1016-Page 48 of 126

GOOG-1016-Page 49 of 126

to expand the existing True File into directory entries
in the local directory extensions table.

Finally, the local directory extensions table

124 is again searched, this time to find each directory

5 subordinate to the given directory. The names found are

provided as the result.

Remote Mechanisms

The remote mechanisms provided by the present

invention are now described. Recall that remote

10 mechanisms are used by the operating system in responding
to requests from other processors. These mechanisms

enable the capabilities of the present invention in a

peer—to—peer network mode of operation.

In a presently preferred embodiment, processors

15 communicate with each other using a remote procedure call

(RPC) style interface, running over one of any number of

communication protocols such as IPX/SPX or TCP/IP. Each

peer processor which provides access to its True File

‘registry 126 or file regions, or which depends on another

20 peer processor, provides a number of mechanisms which can

be used by its peers. ‘

The following remote mechanisms are described:

1. Locate True File;

2. Reserve True File;

25 3. Request True File;

4. Retire True File;

5. Cancel Reservation;

6. Acquire True File;

N 7. Lock Cache;

30 8. Update Cache; and

9. Check Expiration Date.

1 -

This mechanism allows a remote processor to

determine whether the local processor contains a copy of

44

¢ y/

5,

GOOG-1016-Page 49 of126

GOOG-1016-Page 50 of 126

a specific True File. The mechanism begins with a True

Name and a flag indicating whether to forward requests
for this file to other servers. This mechanism is now

described with reference to FIGURE 28. '

5 First determine if the True File is available,

locally or if there is some indication of where the True

File is located (for example, in the Source IDs field).

Look up the requested True Name in the True File registry

126 (Step S432) .

10 If a True File registry entry record 140 is not

found for this True Name‘7step s434), and the flag

indicates that the request is not to be forwarded (Step

S436), respond negatively (Step S438). That is, respond

to the effect that the True File is not available.

15 I one the other hand, if a True File registry

entry record 140 is not found (Step S434), and the flag

indicates that the request for this True File is to be

forwarded (Step S436), then forward a request for this

True File to some other processors in the system (Step

20 S442). If the source table for the current processor

identifies one or more publishing servers which should

have a copy of this True File, then forward the request

to each of those publishing servers (Step 8436).
If a True File registry entry record 140 is

25 found for the required True File (Step S434), and if the

‘a entry includes a True File ID or Compressed File ID (Step

S440), respond positively (Step $444). If the entry

includes a True File ID then this provides the identity

or disk location of the actual physical representation of

30 the file or file segment required. If the entry include‘

a Compressed File ID, then a compressed version of the A

True File may be stored instead of, or in addition to, an

uncompressed version. This field provides the identity

of the actual representation of the compressed version of
35 the file.

If the True File registry entry record 140 is
found (Step S434) but does not include a True File ID

45

GOOG-1016-Page 50 of 126

GOOG-1016-Page 51 of 126

(the File :9 is absent if the actual file is not

currently present at the current location) (step S440),

and if the True File registry entry record 140 includes

one or more source processors, and if the request can be

5 forwarded, then forward the request for this True File to

one or more of the source processors (Step S444).

2. Reserve True File

This mechanism allows a remote processor to

indicate that it depends on the local processor for

10 access to a specific True€File. It takes a True Name as

input. This mechanism is described here.

(A) Find the True File registry entry record

140 associated with the given True File. If no entry
exists, reply negatively. _

15 (B) If the True File registry entry record 140

does not include a True File ID or compressed File ID,

and if the True File registry entry record 140 includes
no source IDs for removable storage volumes, then this

processor does not have access to a copy of the given

20 file. Reply negatively.

(C) Add the ID of the sending processor to the

list of dependent processors for the True File registry
entry record 140. Reply positively, with an indication

of whether the reserved True File is on line or off line.

25 3. s u ' e

This mechanism allows a remote processor to

request a copy of a True File from the local processor.

It requires a True Name and responds positively by

sending a True File back to the requesting processor.

30 The mechanism operates as follows:

(A) Find the True File registry entry record

140 associated with the given True Name. If there is no
such True File registry entry record 140, reply
negatively.

GOOG-1016-Page 51 of 126

GOOG-1016-Page 52 of 126

(8) Make the True File local using the Make

True File Local primitive mechanism. If this mechanism

fails, the Request True File mechanism also fails.

(C) Send the local True File in either it is
5 uncompressed or compressed form to the requesting remote

processor. Note that if the True File is‘a compound

file, the components are not sent.

(D) If the remote file is listed in the

dependent process list of the True File registry entry

10 record 140, remove it.

4. I Reti e True File

This mechanism_allows a remote processor to

indicate that it no longer plans to maintain a copy of a

given True File. An alternate source of the True File
15 can be specified, if, for instance, the True File is

being moved from one server to another. It begins with a

True Name, a requesting processor ID, and an optional

alternate source. This mechanism operates as follows:

(A) Find a True Name entry in the True File

in registry 125. If there is no entry for this True Name,

this mechanism's task is complete.

(B) Find the requesting processor on the

source list and, if it is there, remove it.

(C) If an alternate source is provided, add it

25 to the source list for the True File registry entry

record’ 140. V

(D) If the source list of the True File

registry entry record 140 has no items in it, use the

Locate Remote File primitive mechanism to Search for

30 another copy of the file. If it fails, raise a serious ‘
error. K’”_ J‘

S. gggcgl Eeservgtigg

This mechanism allows a remote processor to

indicate that it no longer requires access to a True File

35 stored on the local processor. It begins with a True

47

GOOG-1016-Page 52 of 126

GOOG-1016-Page 53 of 126

Name and a requesting processor ID and proceeds as
follows:

(A) Find the True Name entry in the True File

registry 126. If there is no entry for this True Name,

5 this mechanism's task is complete.

K (B) Remove the identity of the requesting
processor from the list of dependent processors, if it

appears.

(C) If the list of dependent processors

10 becomes zero and the use count is also zero, delete the

True File.

6. Acquire True File

This mechanism allows a remote processor to

insist that a local processor make a copy of a specified

15 True File. It is used, for example, when a cache client

wants to write through a new version of a file. The

Acquire True File mechanism begins with a data item and

an optional True Name for the data item and proceeds as
follows:

20 (A) Confirm that the requesting processor has

the right to require the local processor to acquire data

items. If not, send a negative reply.

(8) Make a local copy of the data item

transmitted by the remote processor.

25 (C) Assimilate the data item into the True

File registry of the local processor.

(D) If a True Name was provided with the file,

»the True Name calculation can be avoided, or the

mechanism can verify that the file received matches the

30 True Name sent. '

y (E) Add an entry in the dependent processor

list of the true file registry record indicating that the

requesting processor depends on this copy of the given
True File.

35 A (F) Send a positive reply.

48

.v:.§; 7
zfl I

GOOG-1016-Page 53 of 126

GOOG-1016-Page 54 of 126

7- Lock Cache

This mechanism allows a remote cache client to

lock a local file so that local users or other cache

clients cannot change it while the remote processor is

5 using it. The mechanism begins with a pathname and
proceeds as follows:

(A) Find the local directory extensions table

entry record 138 of the specified pathname. If no such

entry exists, reply negatively.

10 (B) If an local directory extensions table

entry record 138 exists and is already locked, reply

negatively that the filegis already locked.

(C) If an local directory extensions table

entry record 138 exists and is not locked, lock the

15 entry. Reply positively.

8. Update Cache

' This mechanism allows a remote cache client to

unlock a local file and update it yith new contents. It
begins with a pathname and a True Name. The file

20 corresponding to the True Name must be accessible from

the remote processor. This mechanism operates as
follows: I

Find the local directory extensions table entry

record 138 corresponding to the given pathname. Reply

25 negatively if no such entry exists or if the entry is not
locked.

Link the given pathname to the given True Name

using the Link Path to True Name primitive mechanism.

Unlock the local directory extensions table

30 entry record 138 andtreturn positively.
13‘

9. ‘ a ‘on t

Return current or new expiration date and

possible alternative source to caller.

49

GOOG-1016-Page 54 of 126

GOOG-1016-Page 55 of 126

figckggognd Processes and Mechanisms

The background processes and mechanisms

provided by the present invention are now described.

Recall that background mechanisms are intended to run

5 occasionally and at a low priority to provide automated

management capabilities with respect to the present
invention.

The following background mechanisms are
described:

10 1. Mirror True File;

2. Groom Region;

3. Check for Expired Links;
Verify Region; and

5. Groom Source List.

15 1. Mirror True File

This mechanism is used to ensure that files are

available in alternate locations in mirror groups or
archived on archival servers. The mechanism depends on

application-specific migration/archival criteria (size,

20 time since last access, number of copies required, number
of existing alternative sources) which determine under

what conditions a file should be moved. The Mirror True

File mechanism operates as follows, using the True File

specified, perform the following steps:

25 (A) Count the number of available locations of

the True File by inspecting the source list of the True

File registry entry record 140 for the True File. This

step determines how many copies of the True File are

available in the system.

30 (B) ‘If the True File meets the specified
migration criteria, select a mirror group server to which

a copy of the file should be sent. Use the Acquire True
File remote mechanism to copy the True File to the

selected mirror group server. Add the identity of the
35 selected system to the source list for the True File.

50

T”.»

H .

GOOG-1016-Page 55 of 126

GOOG-1016-Page 56 of 126

2- Qroom Region

This mechanism is used to automatically free Up

space in a processor by deleting data items that may be

available elsewhere. The mechanism depends on

5 application-specific grooming criteria (for instance, a

file may be removed if there is an alternate online

source for it, it has not been accessed in a given number

of days, and it is larger than a given size). This

mechanism operates as follows:

10 Repeat the following steps (i) to (iii) with

more aggressive groominggcriteria until sufficient space

is freed or until all grooming criteria have been

exercised. Use grooming information to determine how

much space has been freed. Recall that, while grooming

15 is in effect, grooming information includes a table of

pathnames selected for deletion, and keeps track of the

amount of space that would be freed if all of the files
were deleted.

(i) Begin Grooming (using the primitive

20 mechanism).

(ii) For each pathname in the specified region,

for the True File corresponding to the pathname, if the
True File is present, has at least one alternative

source, and meets application specific grooming criteria
25 for the region, select the file for removal (using the

primitive mechanism).

(iii) End Grooming (using the primitive

mechanism).

If the region is used as a cache, no other

30 processors are dependent on True Files to which it

refers, and all such’True Files are mirrored elsewhere.
In this case, True giles can be removed with impunity.

For a cache region, the grooming criteria would

~ ordinarily eliminate the least recently accessed True

35 Files first. This is best done by sorting the True Files

in the region by the most recent access time before

performing step (ii) above. The application specific

51

/, /EJ./'

GOOG-1016-Page 56 of 126

GOOG-1016-Page 57 of 126

criteria would thus be to Select f0r removal eVerY True

File encountered (beginning with the least recently used)

until the required amount of free space is reached.

3. Check for Ex ired inks

5 This mechanism is used to determine whether

dependencies on published files should be refreshed. The

following steps describe the operation of this mechanism:

For each pathname in the specified region, for

each True File corresponding to the pathname, perform the

10 following step:

If the True File registry entry record 140

corresponding to the True File contains at least one _
source which is a publishing server, and if the

expiration date on the dependency is past or close, then

15 perform the following steps: I ’

(A) Determine whether the True File registry

entry record contains other sources which have not

expired. y

g (B) Check the True Name expiration of the

20 server. If the expiration date has been extended, or an

alternate source is suggested, add the source to the True

File registry entry record 140. i

(C) If no acceptable alternate source was

found in steps (A) or (B) above, make a local copy of the
25 True File.

(D) Remove the expired source.

4. Verify Eggiog

This mechanism can be used to ensure that the

data items in the True File registry 126 have not been '

30 damaged accidentally or maliciously. The operation of M
this mechanism is described by the following steps:

(A) Search the local directory extensions

table 124 for each pathname in the specified region and

then perform the following steps:

52

!

GOOG-1016-Page 57 of 126

GOOG-1016-Page 58 of 126

(i) Get the True File name corresponding

to the pathname;

(iii If the True File registry entry 140
for the True File does not have a True File ID or

5 compressed file ID, ignore it.

(iii) Use the Verify True File mechanism

(see extended mechanisms below) to confirm that the True

File specified is correct.

5. Groom Source List

10 The source lis§'in a True File entry should be

groomed sometimes to ensure there are not too many mirror
or archive copies. when a file is deleted or when a

region definition or its mirror criteria are changed, it

may be necessary to inspect the affected True Files to

15 determine whether there are too many mirror copies. _This

can be done with the following steps:

For each affected True File,

(A) Search the local directory extensions

table to find each region that refers to the True File.

20 (5) Create a set of "required sources",
initially empty.

(C) For each region found,

(a) determine the mirroring criteria for
that region,

25 (b) determine which sources for the True

File satisfy the mirroring criteria, and

(c) add these sources to the set of

required sources.

(D) For each source in the True File registry

30 entry, if the source,identifies a remote processor (as '

opposed to removable media), and if the source is not a
publisher, and if the source is not in the set of

required sources, then eliminate the source, and use the

Cancel Reservation remote mechanism to eliminate the

35 given processor from the list of dependent processors

53

GOOG-1016-Page 58 of 126

GOOG-1016-Page 59 of 126

recorded at the remote processor identified by the
source.

Xte Mechanisms

The extended mechanisms provided by the present

5 invention are now described. Recall that extended

mechanisms run within application programs over the

operating system to provide solutions to specific

problems and applications.

The following extended mechanisms are

10 described: _l'

1. Inventory Existing Directory;

2. Inventory Removable, Read—only Files;

3. synchronize Directories;

4. Publish Region;

15 5. Retire Directory;

6. Realize Directory at Location;

7. Verify True File;

8. Track for Accounting Purposes; and

9. Track for Licensing Purposes.

20 1. Inventory Existing Directory

This mechanism determines the True Names of

files in an existing on-line directory in the underlying

operating system. one purpose of this mechanism is to

install True Name mechanisms in an existing file system.

‘S 25 An effect of such an installation is to

elininate immediately all duplicate files from the file

system being traversed. If several file systems are

inventoried in a single True File registry, duplicates

across the volumes are also eliminated. _4

30 (A) Traerse the underlying file system in the

operating system. For each file encountered, excluding

directories, perform the following:

(i) Assimilate the file encountered

(using the Assimilate File primitive mechanism). This

54

GOOG-1016-Page 59 of 126

GOOG-1016-Page 60 of 126

process computes its True Name and moves its data into

the True File registry 126.

(ii) Create a pathname consisting of the

path to the volume directory and the relative path of the

5 file on the media. Link this path to the computed True

Name using the Link Path to True Name primitive
mechanism.

2. Inventor Removable ead—onl iles

A system with access to removable, read-only

10 media volumes (such as WQRM disks and CD-ROMS) can create
a usable inventory of the files on these disks without

having to make online copies. _These objects can then be

used for archival purposes, directory overlays, or other

needs. An operator must request that an inventory be
15 created for such a volume.

This mechanism allows for maintaining

inventories of the contents of files and data items on

removable media, such as diskettesqand CD-ROMS, indepen-
dent of other properties of the files such as name,

20 location, and date of creation.

The mechanism creates an online inventory of

the files on one or more removable volumes, such as a

floppy disk or CD-ROM, when the data on the volume is

represented as a directory. The inventory service uses a

25 True Name to identify each file, providing a way to

locate the data independent of its name, date of

creation, or location.

The inventory can be used for archival of data

(making it possible to avoid archiving data when that

30 data is already on a_separate volume), for grooming

(making it possib1e‘to delete infrequently accessed files
if they can be retrieved from removable volumes), for

version control (making it possible to generate a new

version of a CD-ROM without having to copy the old

35 version), and for other purposes.

55

GOOG-1016-Page 60 of 126

GOOG-1016-Page 61 of 126

The inventory is made by creating a volume

directory in the media inventory in which each file named

identifies the data item on the volume being inventoried.

Data items are not copied from the removable volume
U1

during the inventory process.

An operator must request that an inventory be

created for a specific volume. Once created, the volume

directory can be frozen or copied like any other

directory. Data items from either the physical volume or

10 the volume directory can be accessed using the Open File

operating system mechani§fi which will cause them to be

read from the physical volume using the Realize True File

from Location primitive mechanism.

To create an inventory the following steps are
15 taken:

(A) A volume directory in the media inventory

is created to correspond to the volume being inventoried.

Its contextual name identifies the specific volume.

(8) A source table entry 144 for the volume is

20 created in the source table 130. This entry 144

identifies the physical source volume and the volume
directory created in step (A).

(C) The filesystem on the volume is traversed.

For each file encountered, excluding directories, the

25 following steps are taken: ”

(i) The True Name of the file is

computed. An entry is created in the True Name registry

124, including the True Name of the file using the

primitive mechanism. The source field of the True Name

30 registry entry 140 identifies the source table entry 144.
(ii) 5 pathname is created consisting of’:

the path to the volume directory and the relative path of

the file on the media. This path is linked to the

computed True Name using Link Path to True Name primitive
35 mechanism. ‘

(D) After all files have been inventoried, the

volume directory is frozen. The volume directory serves

56

kjkw3‘

GOOG-1016-Page 61 of 126

GOOG-1016-Page 62 of 126

as a table of contents for the volume. It can be copied

using the Copy File or Directory primitive mechanism to

create an "overlay" directory which can then be modified,

making it possible to edit a virtual copy of a read—only
5 medium.

3. Synchronize Directories

Given two versions of a directory derived from

the same starting point, this mechanism creates a new,

synchronized version which includes the changes from

10 each. Where a file is changed in both versions, this

mechanism provides a user exit for handling the

discrepancy. By using True Names, comparisons are

instantaneous, and no copies of files are necessary.

This mechanism lets a local processor

15 synchronize a directory to account for changes made at a

remote processor. Its purpose is to bring a local copy

of a directory up to date after a period of no

communication between the local and remote processor.

Such a period might occur if the local processor were a

20 mobile processor detached from its server, or if two
distant processors were run independently and updated

nightly.

An advantage of the described synchronization

process is that it does not depend on synchronizing the
25 clocks of the local and remote processors. However, it

does require that the local processor track its position

in the remote processor's audit file.

This mechanism does not resolve changes made

simultaneously to the same file at several sites. If

30 that occurs, an external resolution mechanism such as,

for example, operator intervention, is required.
The mechanism takes as input a start time, a

local directory pathname, a remote processor name, and a

remote directory pathname name, and it operates by the
35 following steps:

57

GOOG-1016-Page 62 of 126

GOOG-1016-Page 63 of 126

(A) Request a copy of the audit file 132 from

the remote processor using the Request True File remote
mechanism."

(B) For each entry 146 in the audit file 132

after the start time, if the entrY indicates a Change t0

a file in the remote directory, perform the following

U1

steps:

(i) Compute the pathname of the

corresponding-file in the local directory. Determine the

10 True Name of the corresponding file.

(ii) If the True Name of the local file is

the same as the old True Name in the audit file, or if

there is no local file and the audit entry indicates a

new file is being created, link the new True Name in the

15 audit file to the local pathname using the Link Path to
True Name primitive mechanism.

(iii) Otherwise, note that there is a

problem with the synchronization by sending a message to

the operator or to a problem resolution program,

20 indicating the local pathname, remote pathname, remote

processor, and time of change.

(C) After synchronization is complete, record

the time of the final change. This time is to be used as

the new start time the next time this directory is

25 synchronized with the same remote processor.
4. ' Re ‘on

7 The publish region mechanism allows a processor

to offer the files in a region to any client processors

for a limited period of time.

30 The purpose of the service is to eliminate any

need for client professors to make reservations with the
publishing processor. This in turn makes it possible for

the publishing processor to service a much larger number
of clients.

35 , when a region is published, an expiration date

is defined for all files in the region, and is propagated

58

GOOG-1016-Page 63 of 126

GOOG-1016-Page 64 of 126

into the publishing system's True File registry entry
record 140 for each file.

when a remote file is copied, for instance

using the Copy File operating system mechanism, the

5 expiration date is copied into the source field of the

client's True File registry entry record 140. When the

source is a publishing system, no dependency need be
created.

The client processor must occasionally and in

10 background, check for expired links, to make sure it

still has access to thesg‘files. This is described in the

background mechanism Check for Expired Links.

5. Retire Directory

This mechanism makes it possible to eliminate

15 safely the True Files in a directory, or at least

dependencies on them, after ensuring that any client

processors depending on those files remove their

dependencies. The files in the directory are not

actually deleted by this process. The directory can be

20 deleted with the Delete File operating system mechanism.

The mechanism takes the pathname of a given

directory, and optionally, the identification of a

preferred alternate source processor for clients to use.

The mechanism performs the following steps:

25 (A) Traverse the directory. For each file in

the directory, perform the following steps:

(i) Get the True Name of the file from

its path and find the True File registry entry 140
associated with the True Name.

30 (ii) getermine an alternate source for the

True File. If the gource IDs field of the TFR entry '
includes the preferred alternate source, that is the

alternate source. If it does not, but includes some

other source, that is the alternate source. If it

35 contains no alternate sources, there is no alternate

source. I

59

GOOG-1016-Page 64 of 126

GOOG-1016-Page 65 of 126

(iii) For each dependent processor in

the True File registry entry 140, ask that processor to

retire the True File, specifying an alternate source if

one was determined, using the remote mechanism.

5 6. Realize Directory at Location

This mechanism allows the user or operating

system to force copies of files from some source location
to the True File registry 126 at a given location. The

purpose of the mechanism is to ensure that files are

10 accessible in the event the source location becomes

inaccessible. This can happen for instance if the source

or given location are on mobile computers, or are on

removable media, or if the network connection to the

source is expected to become unavailable, or if the

15 source is being retired. ’

This mechanism is provided in the following

steps for each file in the given directory, with the

exception of subdirectories: ‘

p (A) Get the local directory extensions table

20 entry record 138 given the pathname of the file. Get the

True Name of the local directory extensions table entry
record 138. This service assimilates the file if it has

not already been assimilated.

(B) Realize the corresponding True File at the

25 given location. This service causes it to be copied to

the given location from a remote system or removable
media.

7. ygrify True File

This mechanism is used to verify that the data’

30 item in a True'File,registry 126 is indeed the correct

data item given its True Name. Its purpose is to guard

against device errors, malicious changes, or other
problems.

I If an error is found, the system has the

35 ability to "heal" itself by finding another source for

60

GOOG-1016-Page 65 of 126

GOOG-1016-Page 66 of 126

the True File with the given namee It may also be

desirable to verify that the error has not propagated to

other systems, and to log the problem or indicate it to

the computer operator. These details are not described
5 here.

To verify a data item that is not in a True

File registry 126, use the Calculate True Name primitive
mechanism described above.

The basic mechanism begins with a True Name,

10 and operates in the following steps:

(A) Find the True File registry entry record

140 corresponding to the given True Name.

(8) If there is a True File ID for the True

File registry entry record 140 then use it. Otherwise,

15 indicate that no file exists to verify.

(C) Calculate the True Name of the data item
given the file ID of the data item. ’

(D) Confirm that the calculated True Name is

equal to the given True Name.

20 (E) If the True Names are not equal, there is

an error in the True File registry 126. Remove the True

File ID from the True File registry entry record 140 and
place it somewhere else. Indicate that the True File

registry entry record 140 contained an error.
25 8. Trap; :9; gcgggntigg Eurposes

:5 This mechanism provides a way to know reliably

which files have been stored on a system or transmitted

from one system to another. 'The mechanism can be used as

a basis for a value—based accounting system.in which

30 charges are based on,the identity of the data stored or

transmitted, rather'than simply on the number of bits. K
This mechanism allows the system to track

possession of specific data items according to content by

owner, independent of the name, date, or other properties

35 of the data item, and tracks the uses of specific data

items and-files by content for accounting purposes. True

61

GOOG-1016-Page 66 of 126

GOOG-1016-Page 67 of 126

names make it possible to identify each file briefly yet

uniquely for this purpose.

T Tracking the identities of files requires

maintaining an accounting log 134 and processing it for

5 accounting or billing purposes. The mechanism operates
in the following steps:

(A) Note every time a file is created or

deleted, for instance by monitoring audit entries in the

Process Audit File Entry primitive mechanism. when such

10 an event is encountered, create an entry 148 in the

accounting log 134 that ghows the responsible party and

the identity of the file created or deleted.‘

(B) Every time a file is transmitted, for
instance when a file is copied with a Request True File

15 remote mechanism or an Acquire True File remote

mechanism, create an entry in the accounting log 134 that

shows the responsible party, the identity of the file,

and the source and destination processors.

(C) Occasionally run an accounting program to

20 process the accounting log 134, distributing the events

to the account records of each responsible party. The
account records can eventually be summarized for billing

purposes.

9. Ergo; for Licensing Purposes
25 This mechanism ensures that licensed files are

not used by unauthorized parties. The True Name provides

a safe way to identify licensed material. This service

allows proof of possession of specific files according to

their contents without disclosing their contents.

30 Enforcing yse of valid licenses can be active_‘

(for example, by regusing to provide access to a file ;
without authorization) or passive (for example, by

creating a report of users who do not have proper

authorization).

35 A one possible way to perform license validation

is to perform occasional audits of employee systems. The

62

GOOG-1016-Page 67 of 126

GOOG-1016-Page 68 of 126

service described herein relies on True Names to support

such an audit, as in the following steps:

(A) For each licensed product, record in the

license table 136 the True Name of key files in the

5 product (that is, files which are required in order to

use the product, and which do not occur in other

products) Typically, for a software product, this would

include the main executable image and perhaps other major

files such as clip—art, scripts, or online help. Also

10 record the identity of each system which is authorized to

have a copy of the file. ’

(B) Occasionally, compare the contents of each

user processor against the license table 136. For each

True Name in the license table do the following:

15 (i) Unless the user processor is
authorized to have a copy of the file, confirm that the

user processor does not have a copy of the file using the
Locate True File mechanism.

(ii) If the user processor is found to

20 have a file that it is not authorized to have, record the
user processor and True Name in a license violation
table.

The System in Operation

Given the mechanisms described above, the

25 operation of a typical DP system employing these

mechanisms is now described in order to demonstrate how

the present invention meets its requirements and

capabilities.

In operation, data items (for example, files,7‘

30 database records, messages, data segments, data blocks, ‘
directories, instances of object classes, and the like)

in a DP system employing the present invention are

identified by substantially unique identifiers (True
Names), the identifiers depending on all of the data in

35 the data items and only on the data in the data items.

63

GOOG-1016-Page 68 of 126

GOOG-1016-Page 69 of 126

The primitive mechanisms Calculate True Name and

Assimilate Data Item support this Property. For any

given data item, using the Calculate True Name primitive

mechanism, a substantially unique identifier or True Name

5 for that data item can be determined.

Further, in operation of a DP system

incorporating the present invention, multiple copies of

data items are avoided (unless they are required for some’

reason such as backups or mirror copies in a fault-

10 tolerant system). Multiple copies of data items are

avoided even when multiple names refer to the same data

item. The primitive mechanisms Assimilate Data Items and

New True‘File support this property. Using the

Assimilate Data Item primitive mechanism, if a data item

15 already exists in the system, as indicated by an entry in

the True File registry 126, this existence will be

discovered by this mechanism, and the duplicate data item

(the new data item) will be eliminated (or not added).

Thus, for example, if a data file is being copied onto a

20 system from a floppy disk, if, based on the True Name of

the data file, it is determined that the data file

already exists in the system (by the same or some other

name), then the duplicate copy will not be installed. If

the data item was being installed on the system by some
25 name other than its current name, then, using the Link

Path to True Name primitive mechanism, the other (or new)

name can be linked to the already existing data item.

In general, the mechanisms of the present

invention operate in such a way as to avoid recreating an

30 actual data item at a location when a copy of that data

item is already present at that location. «In the case of

a copy from a floppy disk, the data item (file) may have’

to be copied (into_a scratch file) before it can be

determined that it is a duplicate. This is because only

35 one processor is involved. on the other hand, in a

multiprocessor environment or DP system, each processor

has a record of the True Names of the data items on that

64

GOOG-1016-Page 69 of 126

GOOG-1016-Page 70 of 126

processor. When a data item is to be copied to another

location (another processor) in the DP system, all that

is necessary is to examine the True Name of the data item

prior to the copying. If a data item with the same True

5 Name already exists at the destination location

(processor), then there is no need to copy the data item.
Note that if a data item which already exists locally at

a destination location is still copied to the destination

location (for example, because the remote system did not
10 have a True Name for the data item or because it arrives

as a stream of un-named data), the Assimilate Data Item

primitive mechanism~will prevent multiple copies of the
data item from being created.

Since the True Name of a large data item (a

15 compound data item) is derived from and based on the True

Names of components of the data item, copying of an

entire data item can be avoided. Since some (or all) of

the components of a large data item may already be

present at a destination location, only those components

20’ which are not present there need be copied. This
property derives from the manner in which True Names are
determined.

when a file is copied by the Copy File or

Directory operating system mechanism, only the True Name

25 of the file is actually replicated.

When a file is opened {using the Open File

operating system mechanism), it uses the Make True File
Local primitive mechanism (either directly or indirectly

through the Create Scratch File primitive mechanism) to

30 create a local copy of the file. The Open File operating

system mechanism uses the Make True File Local primitive’

mechanism, which uses the Realize True File from Location
primitive mechanism, which, in turn uses the Request True
File remote mechanism.

35 The Request True File remote mechanism copies

only a single data item from one processor to another.

If the data item is a compound file, its component

65

WNWgm‘

\

GOOG-1016-Page 70 of 126

GOOG-1016-Page 71 of 126

segments are not copied, only the indirect block is
copied. The segments are copied only when they are read
(or otherwise needed).

The Read File operating system mechanism

5 actually reads data. The Read File mechanism is aware of
compound files and indirect blocks, and it uses the
Realize True File from Location primitive mechanism to

make sure that component segments are locally available,

and then uses the operating system file mechanisms to

10 read data from the local file.

Thus, when a compound file is copied from a
remote system, only its True Name is copied. when it is

opened, only its indirect block is copied. -When the
corresponding file is read, the required component i

15 segments are realized and therefore copied.
In operation data items can be accessed by

reference to their identities (True Names) independent of

their present location. The actual data item or True

File corresponding to a given data identifier or True

20 Name may reside anywhere in the system (that is, locally,

remotely, offline, etc). If a required True File is
present locally, then the data in the file can be
accessed. If the data item is not present locally, there

are a number of ways in which it can be obtained from

25 wherever it is present. Using the source IDs field of
the True File registry table, the location(s) of copies

 of the True File corresponding to a given True Name can

be determined. The Realize True File from Location

primitive mechanism tries to make a local copy of a True

30 File, given its True Name and the name of a source

location (processor gr media) that may contain the True '

File. If, on the ogher hand, for some reason it is not‘;
known where there is a copy of the True File, or if the

processors identified in the source IDs field do not

35 respond with the required True File, the processor

requiring the data item can make a general request for
the data item using the Request True File remote

66

ewes

GOOG-1016-Page 71 of 126

GOOG-1016-Page 72 of 126

mechanism from all processors in the system that it can
contact.

As a result, the system provides transparent

access to any data item by reference to its data

5 identity, and independent of its present location.

In operation, data items in the system can be
verified and have their integrity checked. This is from

the manner in which True Names are determined. This can

be used for security purposes, for instance, to check for

10 viruses and to verify that data retrieved from another

location is the desired_and requested data. For example,

the system might store the True Names of all executable

applications on the system and then periodically
redetermine the True Names of each of these applications

15 to ensure that they match the stored True Names. Any

change in a True Name potentially signals corruption in

the system and can be further investigated. The Verify

Region background mechanism and the Verify True File

extended mechanisms provide direct support for this mode

20 or operation. The Verify Region mechanism is used to
ensure that the data items in the True File registry have

not been damaged accidentally or maliciously. The Verify

True File mechanism verifies that a data item in a True

File registry is indeed the correct data item given its
25 True Name.

Once a processor has determined where (that is,
at which other processor or location) a copy of a data

item is in the DP system, that processor might need that

other processor or location to keep a copy of that data

30 item. For example, a processor might want to delete

local copies of data,items to make space available .

locally while knowing that it can rely on retrieving the
data from somewhere else when needed. To this end the

system allows a processor to Reserve (and cancel the

35 reservation of) True Files at remote locations (using the

remote mechanism). In this way the remote locations are

67

GOOG-1016-Page 72 of 126

GOOG-1016-Page 73 of 126

put on notice that another location is relying on the

presence of the True File at their location.

A DP system employing the present invention can

be made into a fault-tolerant system by providing a

5 certain amount of redundancy of data items at multiple

locations in the system. Using the Acquire True File and

Reserve True File remote mechanisms, a particular

processor can implement its own form of fault—tolerance

by copying data items to other processors and then

10 reserving them there. However, the system also provides

the Mirror True File bacgground mechanism to mirror (make
copies) of the True File available elsewhere in the

system. Any degree of redundancy (limited by the number

of processors or locations in the system) can be

15 implemented. As a result, this invention maintains a

desired degree or level of redundancy in a network of

processors, to protect against failure of any particular

processor by ensuring that multiple copies of data items
exist at different locations.

20 The data structures used to implement various

features and mechanisms of this invention store a variety

of useful information which can be used, in conjunction

with the various mechanisms, to implement storage schemes

and policies in a DP system employing the invention. For

25 example, the size, age and location of a data item (or of
groups of data items) is provided. This information can

be used to decide how the data items should be treated.

For example, a processor may implement a policy of

deleting local copies of all data items over a certain

30 age if other copies of those data items are present

elsewhere in the system. The age (or variations on the

age) can be determined using the time of last access or.
modification in the local directory extensions table, and

the presence of other copies of the data item can be

35 determined either from the Safe Flag or the source IDs,

or_by checking which other processors in the system have

68

GOOG-1016-Page 73 of 126

GOOG-1016-Page 74 of 126

copies of the data item and then reserving at least one

of those copies.

In operation, the system can keep track of data

items regardless of how those items are named by users

5 (or regardless of whether the data items even have

names). The system can also track data items that have

different names (in different or the same location) as

well as different data items that have the same name.

Since a data item is identified by the data in the item,

10 without regard for the context of the data, the problems

of inconsistent naming in‘a DP system are overcome.

‘ In operation, the system can publish data

items, allowing other, possibly anonymous, systems in a

network to gain access to the data items and to rely on

15 the availability of these data items. True Names are

globally unique identifiers which can be published simply

by copying them. For example, a user might create a

textual representation of a file on system A with True

Name N (for instance as a hexadecimal string), and post

20 it on a computer bulletin board. Another user on system

B could create a directory entry F for this True Name N

by using the Link Path to True Name primitive mechanism.

(Alternatively, an application could be developed which

hides the True Name from the users, but provides the same

25 public transfer service.)

when a program on system B attempts to open

*5 pathname F linked to True Name N, the Locate Remote File

primitive mechanism would be used, and would use the

Locate True File remote mechanism to search for True Name

30 N on one or more remote processors, such as system A.. If

system B has access to system A, it would be able to :
realize the True File (using the Realize True File from

Location primitive mechanism) and use it locally.

Alternatively, system B could find True Name N by

35 accessing any publicly available True Name server, if the

server could eventually forward the request to system A.

69

GOOG-1016-Page 74 of 126

GOOG-1016-Page 75 of 126

Clients of a local server can indicate that

they depend on a given True File (using the Reserve True

File remote mechanism) so that the True File is not

deleted from the server registry as long as some client

5 requires access to it. (The Retire True File remote

mechanism is used to indicate that a client no longer

needs a given True File.)

A publishing server, on the other hand, may

want to provide access to many clients, and possibly

10 anonymous ones, without incurring the overhead of

tracking dependencies for each client. Therefore, a

public server can provide expiration dates for True Files
in its registry. This allows client systems to safely
maintain references to a True File on the public server.

15 The Check For Expired Links background mechanism allows

the client of a publishing server to occasionally confirm

that its dependencies on the puhlishing server are safe.
In a variation of this aspect of the invention,

a processor that is newly connected (or reconnected after

20’ some absence) to the system can obtain a current version

of all (or of needed) data in the system by requesting it

from a server processor. Any such processor can send a

request to update or resynchronize all of its directories

(starting at a root directory), simply by using the

25 synchronize Directories extended mechanism on the needed
directories.

Using the accounting log or some other user

provided mechanism, a user can prove the existence of

certain data items at certain times. By publishing (in a

30 public place) a list of all True Names in the system on a

given day (or at some given time), a user can later refer

back to that list ts show that a particular data item was
present in the system at the time that list was

published. Such a mechanism is useful in tracking, for

35 example, laboratory notebooks or the like to prove dates

of conception of inventions. Such a mechanism also

70

GOOG-1016-Page 75 of 126

GOOG-1016-Page 76 of 126

permits proof of possession of a data item at a
particular date and time.

The accounting log file can also track the use

of specific data items and files by content for

5 accounting purposes. For instance, an information

utility company can determine the data identities of data

items that are stored and transmitted through its

computer systems, and use these identities to provide

bills to its customers based on the identities of the

10 data items being transmitted (as defined by the

substantially unique identifier). The assignment of
prices for storing and transmitting specific True Files
would be made by the information utility and/or its data

suppliers; this information would be joined periodically

15 with the information in the accounting log file to

produce customer statements.

Backing up data items in a DP system employing

the present invention can be done based on the True Names

of the data items. By tracking backups using True Names,

20 duplication in the backups is prevented. In operation,

the system maintains a backup record of data identifiers

of data items already backed up, and invokes the Copy

File or Directory operating system mechanism to copy only
those data items whose data identifiers are not recorded

25 in the backup record. Once a data item has been backed

up, it can be restored'by retrieving it from its backup

location, based on the identifier of the data item.

Using the backup record produced by the backup to
identify the data item, the data item can be obtained

30 using, for example, the Make True File Local primitive
mechanism. av

In operation, the system can be used to cache.‘
data items from a server, so that only the most recently

accessed data items need be retained. To operate in this

35 way, a cache client is configured to have a local

registry (its cache) with a remote Local Directory
Extensions table (from the cache server). Whenever a

71

GOOG-1016-Page 76 of 126

GOOG-1016-Page 77 of 126

file is opened (or read), the Local Directory Extensions
table is used to identify the True Name, and the Make

True File Local primitive mechanism inspects the local

registry. when the local registry already has a copy,

5 the file is already cached. Otherwise, the Locate True

File remote mechanism is used to get a copy of the file.

This mechanism consults the cache server and uses the

Request True File remote mechanism to make a local copy,

effectively loading the cache.

10 The Groom Cache background mechanism flushes

the cache, removing the least-recently~used files from

the cache client's True gile registry. While a file is
being modified on a cache client, the Lock Cache and

Update Cache remote mechanisms prevent other clients from

15 trying to modify the same file.

In operation, when the system is being used to

cache data items, the problems of maintaining cache

consistency are avoided.

To access a cache and topfill it from its

20 server, a key is required to identify the data item

desired. Ordinarily, the key is a name or address (in
this case, it would be the pathname of a file). If the

data associated with such a key is changed, the client's

cache becomes inconsistent; when the cache client refers

25 to that name, it will retrieve the wrong data. In order

to maintain cache consistency it is necessary to notify

every client immediately whenever a change occurs on the
server.

By using an embodiment of the present

30 invention, the cache key uniquely identifies the data it

represents. when the data associated with_a name 1

changes, the key itself changes. Thus, when a cache
client wishes to access the modified data associated with

a given file name, it will use a new key (the True Name

35 of the new file) rather than the key to the old file

contents in its cache. The client will always request

the correct data, and the old data in its cache will be

72

GOOG-1016-Page 77 of 126

GOOG-1016-Page 78 of 126

eventually aged and flushed by the Groom Cache back9r°Und
mechanism.

Because it is not necessary to immediately

notify clients when changes on the cache server occur,

5 the present invention makes it possible for a single

server to support a much larger number of clients than is

otherwise possible.

’In operation, the system automatically archives

data items as they are created or modified. After a file

10 is created or modified, the Close File operating system

mechanism creates an audit file record, which is

eventually processed by the Process Audit File Entry

primitive mechanism. This mechanism uses the New True

File primitive mechanism for any file which is newly

15 created, which in turn uses the Mirror True File

background mechanism if the True File is in a mirrored or

archived region. This mechanism causes one or more

copies of the new file to be made on remote processors.

In operation, the system can efficiently record

20 and preserve any collection of data items. The Freeze

Directory primitive mechanism creates a True File which

identifies all of the files in the directory and its

subordinates. Because this True File includes the True

Names of its constituents, it represents the exact

25 contents of the directory tree at the time it was frozen.

The frozen directory can be copied with its components

preserved.

T The Acquire True File remote mechanism (used in

mirroring and archiving) preserves the directory tree

30 structure by ensuring that all of the component segments

and True Files in a compound data item are actually '

copied to a remote system. of course, no transfer is

necessary for data items already in the registry of the
remote system.

35 In operation, the system can efficiently make a

copy of any collection of data items, to support a

version control mechanism for groups of the data items.

73

GOOG-1016-Page 78 of 126

GOOG-1016-Page 79 of 126

The Freeze Directory primitive mechanism is

used to create a collection of data items. The

constituent files and segments referred to by the frozen

directory are maintained in the registry, without any

5 need to make copies of the constituents each time the

directory is frozen.

Whenever a pathname is traversed, the Get Files

in Directory operating system mechanism is used, and when '

it encounters a frozen directory, it uses the Expand

10 Frozen Directory primitive mechanism.

A frozen directory can be copied from one

pathname to another efficiently, merely by copying its

True Name. The Copy File operating system mechanism is

used to copy a frozen directory.

15 Thus it is possible to efficiently create

copies of different versions of a directory, thereby

creating a record of its history (hence a version control’

system).

In operation, the system,can maintain a local

20 inventory of all the data items located on a given
removable medium, such as a diskette or CD-ROM. The

inventory is independent of other properties of the data

items such as their name, location, and date of creation.

The Inventory Existing Directory extended

25 mechanism provides a way to create True File Registry

entries for all of the files in a directory. one use of

 this inventory is as a way to pre-load a True File

registry with backup record information. Those files in

the registry (such as previously installed software)

30 which are on the volumes inventoried need not be backed

up onto other volumes.

The Inventory Removable, Read—only Files

extended mechanism not only determines the True Names for

the files on the medium, but also records directory

35 entries for each file in a frozen directory structure.

By_copying and modifying this directory, it is possible

to create an on line patch, or small modification of an

74

GOOG-1016-Page 79 of 126

GOOG-1016-Page 80 of 126

existing read-only file. For example, it is possible to

create an online representation Of 3 m°dified CDrR0N:

such that the unmodified files are actually on the

CD-ROM, and only the modified files are online.

5 In operation, the system tracks possession of

specific data items according to content by owner,

independent of the name, date, or other properties of the

data item, and tracks the uses of specific data items and

files_by content for accounting purposes. Using the

10 Track for Accounting Purposes extended mechanism provides

a way to know reliably which files have been stored on a

system or transmitted from one system to another.

Irue Names in gelational and Objec;—O;i§g;ed Databases

Although the preferred embodiment of this

15 invention has been presented in the context of a file

system, the invention of True Names would be equally

valuable in a relational or object:oriented database. A

relational or object-oriented database system using True
Names would have similar benefits to those of the file

20 system employing the invention. For instance, such a

database would permit efficient elimination of duplicate

records, support a cache for records, simplify the

process of maintaining cache consistency, provide

location-independent access to records, maintain archives

25 and histories of records, and synchronize with distant or

disconnected systems or databases.

The mechanisms described above can be easily
modified to serve in such a database environment. The

True Nan registry wguld be used as a repository of

30 database records. all references to records would be via
the True Name of the record. (The Local Directory

Extensions table is an example ofia primary index that
uses the True Name as the unique identifier of the

desired records.)

75

GOOG-1016-Page 80 of 126

GOOG-1016-Page 81 of 126

In such a database, the operations of

inserting, updating, and deleting records would be

implemented by first assimilating records into the

g registry, and then updating a primary key index to map
5 the key of the record to its contents by using the True

Name as a pointer to the contents.

The mechanisms described in the preferred

embodiment, or similar mechanisms, would be employed in

such a system. These mechanisms could include, for

10 example, the mechanisms for calculating true names,

assimilating, locating, realizing, deleting, copying, and

moving True Files, for mirroring True Files, for
maintaining a cache of True Files, for grooming True

Files, and other mechanisms based on the use of

15 substantially unique identifiers.

While the invention has been described in

connection with what is presently considered to be the

most practical and preferred embodiments, it is to be
understood that the invention is not to be limited to the

20 disclosed embodiment, but on the contrary, is intended to

cover various modifications and equivalent arrangements

included within the spirit and scope of the appended
claims.

76

GOOG-1016-Page 81 of 126

GOOG-1016-Page 82 of 126

WHAT IS CLAIMED IS:

1. In a data processing system, an apparatus

comprising:

‘identity means for determining, for any of a

5 p urality of data items in the system, a substantially

unique identifier, said identifier depending on all of

the .ata in the data item and only on the data in the

data 1 em; and

existence means for determining whether a

10 particul r data item is present in the system, by

examining he identifiers of the plurality of data items.

2. An apparatus as in claim 1, further

comprising:

local xistence means for determining whether

15 an instance of a warticular data item is present at a

particular locatior in the system, based on the

20 wherein said local existenxe means determines whether a

nt at a particular location
identifiers of the

plurality of data items at said particular location in

the system.

’25 4. An apparatus as in c aim 2, further

comprising:

data associating means for m king and

maintaining, for a data item in the sys em, an
association between the data item and the identifier of

30 the data item; and

access means for accessing a parti ular data

item using the identifier of the data item.

77

W;B' \‘;>'{\..

GOOG-1016-Page 82 of 126

GOOG-1016-Page 83 of 126

5. An apparatus as in claim 2, further

omprising:

duplication_means for copying a data item from

a s-.rce to a destination in the data processing system,

10 imilation means for assimilating a new data

new data item ani invoking said data associating means to

associate the new -ata item with its identifier..

15 7. An apoaratus as in claim 4, further

comprising:

20 ‘ data item, said duplicatio mea - invoking said local

existence means to determine wr= her an instance of the

data item is present at the

invoking said access means

with the data item only if; aidv ocal existence means
25 determines that~no instance of th

at the destination.

8. An apparatus as in C1 im 7, further

comprising: A _» A _

backup means for making copie- of data items in
30 the system, said backup means maintainine a backup record

of identifiers of data items backed up, aud invoking

duplication means to copy only those data tems whose

data identifiers are not recorded in the ba kup record.

78

GOOG-1016-Page 83 of 126

GOOG-1016-Page 84 of 126

10

15

20

25

30

9. An apparatus as in claim 8, further

com rising:

recovery means for retrieving a data item

previo sly backed up by said backup means, based on the

identif'er of the data item, said recovery means using

the back record to identify the data item, and invoking
access mea s to retrieve the data item.

10. An apparatus as in claim 2, wherein a

location is a omputer among a network of computers, the

apparatus furth r comprising:
remote existence means for determining whether

a data item is pr ent at a remote location in the system

from a current loca ion in the system, based on the
identifier of the da

local existence means

whether the data item i

and providing the curren

item, said remote location using
t the remote location to determine

present at the remote location,

location with an indication of

the presence of the data i em at the remote location.

11. An apparatus a n claim 4, wherein a

location is a computer among etwork of computers, the

apparatus further comprisin

requesting means or r uesting a data item at

a current location in the system om a remote location

in the system, based on the identif'er of the data item,
s at the remote

send it to the
said remote location using access me
location to obtain the data item and

current location if it is present.

12. An apparatus as in claim 1 -further

comprising: ’

context means for making and main ining a

context association between at least one cont xtual name

data item; and

79

GOOG-1016-Page 84 of 126

GOOG-1016-Page 85 of 126

10

15

20

25

30

referencing means for obtaining the identifier

a data item in the system given a contextual name for

th data item, using said context association.

13. An apparatus as in claim 12, further

compri ing:

assignment means for assigning a data item to a

contextu 1 name, invoking said identity means to

determine he identifier of the data item, and invoking

said contex means to make or modify the context
association tween the contextual name of the data item

and the identi ier of the data item.

14. An apparatus as in claim 12, further

comprising:

data asso iating means for making and

maintaining, for a da a item in the system, an

association between th data item and the identifier of

the data item; K

access means fo cessing a particular data

item using the identifier he particular data item;
and

contextual nam ac ss means for accessing a

data item in the system or a 'ven context name of the

data item, determining the data ‘dentifier associated

with the given context name, and voking said access
means to access the data item usin the data identifier.

‘ 15. An apparatus as in cla 11, further

comprising:

transparent access means for a cessing a datag:

item from one of'seyeral locations, using the identifier.

of the data item, said transparent access m ans invoking

said local existence means to determine if e particular

data item is present at the current location, nd, in the

case when the particular data item is not prese t at the

80

GOOG-1016-Page 85 of 126

GOOG-1016-Page 86 of 126

urrent location, invoking said requesting means to

ain the data item from a remote location.

16. An apparatus as in claim 15, further
compr'sing:

identifier copy means for copying an identifier

of a da a item from a source location to a destination
location.

. An apparatus as in claim 15, further1

comprising:

10 cont xt means for making and maintaining a

context associat'on between a contextual name of a data

and the identifier of the data item;

py means for copying a data item from

item in the syste
 context

a source location to a destination location, given the

15 contextual name of th data item, by copying only the

context association be een the contextual identifier and
the data identifier from the ource location to the

destination location; and

transparent refer ' g means for obtaining a

20 data item from one of sever ocations the system given

a contextual name for the ata ‘ten, said transparent

referencing means invoking said ontext association to

determine the data identifier of data item given a

contextual name, and invoking said ransparent access

25 means to access the data item from o e of several

locations given the identifier of the ata item.

18. An apparatus as in claim , wherein at
least some of said data items are compoun -data items,

each compound data item including at least one component
30 data items in a fixed sequence, and wherein he identity

means determines the identifier of a compound ata item

based on each component data item of the compou d data
item.

81

GOOG-1016-Page 86 of 126

GOOG-1016-Page 87 of 126

19. An apparatus as in claim 18, wherein said

»ompound data items are files and said component data

i ems are segments, and wherein the identity means
de ermines the identifier of a file based on the

5 ide~tifier of each data segment of the file.

11

20. An apparatus as in claim 18, wherein said

compoun- data items are directories and said component

data iteus are files or subordinate directories, and

wherein t e identity means determines the identifier of a

10 given dire .ory based on;éach file and subordinate

directory wi hin the given directory.

21.

comprising:

means fcr advertising a data item from a

apparatus as in claim 11, further

15 location in the sy em to at least one other location in

the system, said means for advertising providing each of
said at least one oth:

of the data item, and p~ovi-
location yith the data identifier

’ng the data item to only

those locations of said locations that request said

20 data item in response to .7 a providing.

22. An apparat-s ’ in claim 18, further

comprising:

local existence means for determining whether a

particular data item is present a‘ a particular location

25 in the system, based on the identi ier of the data item;
and

compound copy means for coo ing a data item

from a source to a destination in the oata processing

system, said compound copy means invoki g said local
30 existence means to determine whether the pata item is

present at the destination, and to determi e, when the

data item is a compound data item, whether \he component
ent at the

destination, and providing said destination with the data

data items of the compound data item are pre

82’

GOOG-1016-Page 87 of 126

GOOG-1016-Page 88 of 126

ixem only if said local existence means determines that

th data item is not present at the destination, and

pro iding said destination with each component data item

only if said local existence means determines that the

5 compo Ant data item is not present at the destination.

23. An apparatus as in claim 11, further

comprisin-:

.eans for verifying the integrity a data item

obtained frou said requesting means in response to

10 providing sain requesting with a particular data
identifier, to .onfirm that the data item obtained from

the requesting m ans is the same data item as the data

item requested, s*id verifying means invoking said

identity means to -etermine the data identifier of the

15 obtained data item, .nd comparing said determined data

identifier with said sarticular data identifier to verify
said obtained data iteu.

24. An apparat s is in claim 2, wherein a

location is at least one on storage location and a
20

25. An apparatus as in «lain 3, wherein at

25 least some of said data items are cnmpound data items,

each compound data item including at least some component

data items in a fixed sequence, and w erein the identity

means determines the,identifier of a c§mpound data item I

based on the identifier of each compone t data item of H
30 the compound data item.

26. An apparatus as in claim 3, further
comprising:

83

GOOG-1016-Page 88 of 126

GOOG-1016-Page 89 of 126

context associating means for making and

intaining a context association, for any data item in

system, between the identifier of the data item and

at east one contextual name of the data item at a

5 parti ular location in the system;

means for obtaining the identifier of a data

item in he system given a contextual name for the data

item at a particular location in the system; and

gical copy means for associating the data

10 identifier c rresponding to a contextual name at a source

location with a contextual name at a destination location

in the data pro essing system.

27. An pparatus as in claim 25, wherein said

compound data items are files and said component data

15 items are segments, d wherein the identity means
determines the identif'er of a file based on the

identifier of each data‘ egment of the file.

28. An apparatu s in claim 25, further

comprising:

20 compound copy me n or copying a data item
from a source location to es ination location in the

data processing system, said com ound copy means invoking
said local existence means to dete ine whether the data

item is present at the destination, and to determine,

25 when the data item is a compound data item, whether the

component data items of the compound d ta item are

present at the destination, and providi said

destination with the data item only if sa‘d.loca1

existence means determines that the data i em is not

30 present at the destination, and providing s
destination with each component data item onl if said

' local existence means determines that the comp nent data

item is not present at the destination.

84

GOOG-1016-Page 89 of 126

GOOG-1016-Page 90 of 126

29. An apparatus as in any of claims 1-28,

erein a data item is at least one of a file, a database

re-ord, a message, a data segment, a data block, a

dire tory, and an instance an object class.

30. A method of identifying a data item in a

data proc; sing system for subsequent access to the data

item, the m thod comprising the steps of:

10 the data in the iata item and on the data in the data

item; and

accessing . data item in the system using the
identifier of the dat~ item.

31. A method . in claim 30, further

15 comprising the step of:

data items and the identifier o. -h of the data items,
wherein said accessing step acce a data item via the

20 association.

32. A method as in c aim 3*

comprising the step of:

25 associating the new data item with its idevtifier.

_ 33. A method for duplicating a gi n data item

from a source location to a destination location in a I

data processing system, the method comprising t-e steps’
of:

30 determining a substantially unique ident'fier

for the given data item, said identifier depending on all

of_the data in the data item and only on the data in the

data item;

85

GOOG-1016-Page 90 of 126

GOOG-1016-Page 91 of 126

determining, using said data identifier,

ether said data item is present at said destination

lo ation; and

based on said determining, providing said

5 destin tion location with said data item only if said

data it m is not present at said destination.

4. A method as in claim 33, wherein said

given data i em is a compound data item having a

plurality of mponent data items, the method further

10 comprising the eps or:
..

for eac data item of said component data
items,

0 taining the component data

identifier o the data item by determining a

15 substantially ique identifier for the data

item, said ident fie: depending on all of the

data in the data i am and only on the data in

the data item;

determining, inq said obtained

20 component data identif' whether said data
item is present at sa' stination; and

based on s id e ermining, providing

 said destination wit ta item only if

said data item is not present at said
25 destination.

35. A method for determining whe her a

particular data item is present in a data pr cessing

system, the method comprising the steps of:. g

(A) for each data item of a plurali of data‘

30 items in the system‘ ‘ v
(i) determining a substantially u ique

identifier for the data item, said ident'fier

depending on all of the data in the data tem

and only on the data in the data item; and

86

GOOG-1016-Page 91 of 126

GOOG-1016-Page 92 of 126

(ii) making and maintaining a set of

identifiers of said plurality of data items;
and

(B) for the particular data item,

5 (i) determining a particular

substantially unique identifier for the data

item, said identifier depending on all of the

data in the data item and only on the data in

the data item; and

10 (ii) determining whether said particular

36. A method of backing up, of a plurality of

data items, data 'tems modified since a previous backup

15 the steps of:

(A) maintax ing a backup record of identifiers

(B) for each o’ ' plurality of_data items,

20 (i) determi ': a substantially unique
identifier fa

identifier d
the data it-m a

1e data item, said
25

plurality of data i-ems whose identifiers
are not in the backu-

(iii) based on said d

only those data items ose data I

30 identities are not recorved in the backup
record.

record; and

termining, copying

37. A method as in claim 36, fu ther

comprising the step of:

87

GOOG-1016-Page 92 of 126

GOOG-1016-Page 93 of 126

recording in the backup record the identifiers

-f those data items copied in said step of copying.

38. A method of locating a particular data

i item at a location in a data processing system, the

5 metho. comprising the steps of:

(A) determining a substantially unique

identifier for the data item, said identifier

depending on all of the data in the data item

a d only on the data in the data item;

10 (B

sensing the data identifier of the data item

from ‘he requestor location to at least one

requesting the particular data item by

location of a plurality of provider locations

in the stem; and

15 (C) on a»

locations,

(3)

data item.

(i) determ
20 identifier f

least some of said provider

each data item of a plurality of

at said provider locations,

ing a substantially unique

«r the data item, said

» ng on all of the data in

the data item a~ only on the data in the

data item} and

25 identifiers o

corresponding to the re-

identifier is present at aid provider

30 location; and 4

(c) abased on said determin'ng, when said

provider location determines that the
at the

provider location, notifying sa'd

particular data item is prese

35 . requester that the provider has - copy of

the given data item.

88

GOOG-1016-Page 93 of 126

GOOG-1016-Page 94 of 126

39. The method of claim 38, further comprising

th- steps of:

(a) for each data item of a plurality of data

items at said provider locations,

5 * making and maintaining an association

between the data item and the identifier

of the data item,

(b) in response to said notifying, said client

lacation copying said data item from one of

10 sa'd respondingqremote locations, using said
association to access the data item given the

data 'dentifier.

40. A u thod of locating a particular data

item among a plural'ty of locations, each of said

15 locations having a p urality of data items, the method

comprising the steps - :

determining, or the particular data item and

for each data item of th plurality of data items, a

substantially unique iden 'fier for the data item, said 20 identifier depending on all of the data in the data item

and only on the data in the --t- item; and

determining the pres. of the particular data

item in each of said pluralit; ~{ ocations by
determining whether the iden -fizu of the particular data

25 item is present at each of s§id lo-ationsL

41. The method of claim 30. wherein said step

of accessing further comprises the steps of, for a given

data identifier and for a given current location and a V
remote location in the system:

30 determining whether the data it=n corresponding

to the given data identifier is present at ‘he current

location, and

based on said determining, if said oata item is

not present at the current location, fetching e data

89

GOOG-1016-Page 94 of 126

GOOG-1016-Page 95 of 126

‘tem from a remote location in the system to the current«

1 cation.

42. The method of claim 41, further comprising

the s eps of:

for each contextual name at a location,

making and maintaining a context

associati between the context name of a data item and

the identif'er of said data item, and when some context

association anges at said current location, and
10 notifyinggéaid remote location of a

modification to the context association.

43. The method of claim 42, further comprising

the step of:

at said rem te location, updating the

contextual identifier of the data

r the data item. ‘

15 association between th
item and the identifier

44. The method laim 43, further comprising

the step of:

from said remote tion, notifying all other

20 locations that said data i em 5 been modified, by

providing the contextual identif'er and data identifier

of said data item to said other 1 cations.

45. The method of claim 4

the step or, at each location notifie
25 has been modified:

modifying an association betwe n the contextual

identifier of the data item and the data dentifier of '
the data item, to record that the data ite has been

modified. ‘

, further comprising
that the data item

30 46. A me of eliminating a data item at a

given location in a d processing system when said data

90.

GOOG-1016-Page 95 of 126

GOOG-1016-Page 96 of 126

i em can be obtained from another location in the system,

th \method comprising the steps of:

determining a substantially unique identifier

for t data, said identifier depending on all of the

5 data in the data item and only on the data in the data

item;

aking and maintaining a source association

between the ata identifier and at least one location at

which said da a item is known to be present; and

10 base on said source association, if said data

item is present t said other location, removing the data

item from the giv location.

47. A met od of deleting a data item from a

location in a data pro essing system, the method

15 comprising the steps of.

for each of a p urality of data items in the

system: ‘

determining a subs tially unique identifier

for the data, said identifier pending on all of the

20 data in the data item and only the data in the data

item; and

making and maintaining, an association between

each of the data items and the uni e identifier of the

data items; and

25 for a.given data item:

determining a substantially nique identifier

for the data, said identifier dependin on all of the

data in the data item and only on the da a in the data

item; and I

30 determining whether a contextual identifier or.
a compound data item or a remote processor the system,
refers to the unique identifier of the data i em, and

“ based on said determining, deleting said data 'tem and

its association if no other contextual identifi r or

35 compound data item or remote processor refers to aid~
data item.

91

GOOG-1016-Page 96 of 126

GOOG-1016-Page 97 of 126

48. The method of claim 47, wherein Said

de -rmining is based on a use count for the data item,
and -herein said data item is deleted only if said use

‘ndicates that no other contextual identifier or

count

data item or remote processor in the system
the data item.

5 compoun»
refers t-

io client and anoth:r location in the system, given a

_ context association -r -=n each context name of a data

item and the identifie- said data item, in the given

15 context and during the ~ iod of independent change;‘

location for the given conn xt; and,

-me in the list of changes

updating the context identifier

20 associations at the client whe ver it is determined that

the context association of the -'ven context name changed

either only at the client or only at the other location

during the period if independent c anges; and

performing a conflici—resolution task such

25 as notifying an operator of the clie t location, whenever

it is determined that the context asso iation changed at

both the client and the other location. V

A method as in claim 49, wherein said

lists are main ained,as queues based on a temporal order,
30 and wherein, at id client location, said replacing is

based on said tempo al der.

maintaining at least a

predetermined number d c 'es of a given data item in a

data processing syste , at d ferent locations in the

92

GOOG-1016-Page 97 of 126

GOOG-1016-Page 98 of 126

.ata processing system, said data processing system being
on wherein data is identified by a substantially unique

ide ifier, said identifier depending on all of the data

in thr data item and only on the data in the data item,

5 and wh- ein any data item in the system may be accessed

using on‘y the identifier of the data item, the method

comprisino the steps of: t
' sending, from a first location in the

em, the data identifier of the given data

10 item to other locations in the system; and

correspond g to the data identifier is present

15 g at the other location, and based on said
determining, a d

(B) informing -.id first location whether said

data item is pres-nt at the other location; and

(iii) in response - said informing from said

20 other locations, at .aid first location,

(A) determining whet.er said data item is

present in at least the pre

other locations, and has
'(B) when less than the

25 other locations have a cop

determined number of

on said determining,

idetermined number of
,of the data item,

»requesting some locati-ns t st do not have a

wake a copy of the data

copy of the data item
item.

52. A method as in claim 51, whenein said step

y 30 (iii) further comprises the step of: :
K . (C) whenamore than the predetermin number of

other locations have a copy of the data item, questing

some locations that do have a copy of the data i em

delete the copy of the data item.

93

GOOG-1016-Page 98 of 126

GOOG-1016-Page 99 of 126

3. A method as in any of claims 30-52,

wherein sai data items are at least one Of a file: 3

database reco a message, a data segment. a data block,

a directory, n instance of an object C1555-

Amp 337

A99 C2»

94

GOOG-1016-Page 99 of 126

GOOG-1016-Page 100 of 126

 j/VS, ABSTRACT or" THE DISCLOSURE
D NTIFYIN DATA IN A DATA PROCESSING SYSTEM

In a ta processing system, a mechanism

identifies data items y substantially unique identifiers

5 which depend on all of e data in the data items and

only on the data in the d ta items. Existence means
determine whether a particu ar data item is present in

the system, by examining the 'dentifiers of the plurality
of data items.

95

GOOG-1 O1 6- Page 100 of 126

GOOG-1016-Page 101 of 126

FOR UTILITY/DESIGN FIULE 63 (37 C.F.R. 1.63) CUSHMAN
CIP/PCT NATIONAL/PLANT DECLARATION AND POWER OF ATTORNEY FORM

ORIGINAUSUBSTITUTEISUPPLEMENTAL FOR PATENT APPLICATION
DECLARATIONS IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

As a below named inventor, I hereby declare that my residence, post office address and citizenship are as stated below next to my name, and lbelieve I am
the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subjectmatter which is claimed and for which a patent is sought on the INVEN'I‘IONEN'ITILED
QJEBITIFYING DATA IN A DATA PROCESSING SYSTEM

the specification of which (CHECK applicable BOX; fin
-> [] is attached hereto.
~> [x] was filed on April 11. 1995 as U.S. Application No. 01/ 425 160

BOX(ES) -> [] was filed as PCT International Application No. PCT/ [on -> -> and if a licable to U.S. or PCT a lieation was amended on

I hereby state that I have reviewed and understand the contents ofthe above identified specification, including the claims, as amended by any amendment
referred to above. I acknowledge the duty to disclose all information known to me to be material to patentability as defined in 37 C.F.R. 1.56. I hereby
claim foreign priority benefits under 35 U,S.C. 119/365 of any foreign application(s) for patent or inventor‘s certificate listed below and have also identified
below any foreign application for patent or inventors certificate filed by me or my assignee disclosing the subject matter claimed in this application and having
a filing date (1) before that of the application on which priority is claimed, or (2) if no pgiority claimed, before the filing date of this application: . ‘--

PRIOR FOREIGN APPLICATION(S)_ Date first Laid- Date Patented Priority Claimed
Number Country Day[MONI'I—I[gear Filed gpen or Published or Granted _ E ' E

I hereby claim the bcnclit under~35 U.S.C. 120/365 of all United States applications listed below and PCT international applications listed above or below
and, if this is a continuation-in-part (CIP) application, insofar as the subject matter disclosed and claimed in this application is in addition to that disclosed

such prior applications, I acknowledge the duty to disclose all information known to me to be material to patentability as defined in 37 C.F.R. 1.56 which
Ii ame available between the filing date of each such prior application and the national or PCT international filing date /of this application:

RIOR U.S. OR PCI‘ Al’PI_lCA'l‘IO.‘\I(S) Status
= ’ lication No. series code/serial no.) Dav[MONTl-I[Year Filed El‘ldl!1°=. abandoned. patented

‘hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be
e; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or

‘rmprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the
‘application or any patent issued thereon.

and I hereby appoint Cushman Darby & Cushman,L.L.P. 1100 New York Avenue, N.W., Ninth Floor, East Tower Washington, DC. 20005-3918, telephone

ber 8613000 (to whom all communications are to be directed), and the below-named persons (of the same address) individually and collectively my
atlorneys to prosecute this application‘ and to transact all business in the Patent and Trademark Office connected therewith and with the resulting patent,

I hereby authorize them to act and rely on instructions from and communicate directly with the person/assignee/attorney/firm/ organization who/which
hf}-est sends/sent this case to them and by whom/which I hereby declare thatl have consented after full disclosure to be represented unless/until I instruct

A hman, Darby & Cushman in writing to the contrary.

Paul N. Kokulis 16773 Edward M. Prince 22429 Dale S. Iazar 28872 Michelle N. Lester 32331
Raymond F. Lippitt 17519 Donald B. Deavcr 23048 Glenn J. Perry 2.8458 Jeffrey A. Simenauer 31933
G. Lloyd Knight 17698 David W. Brinkman 20817 Kendrew H. Oolton 30368 Robert A. Molan 29834
Carl (3. Love 18781 George M. Sirilla 18221 Chris Comuntzis 3lO97 G. Paul Edgell 24238
Edgar H. Martin 20534 Donald J. Bird 25323 Wallace G. Walter 27843 Lynn E. Eccleston 35861
William K. West, Jr. 22057 W. Warren Taltavull 25647 Lawrence Harbin 27644 Frederick S. Frei 27105

' . W wd 5 ’ . ' . ' . '
1’KI5fi'l‘l'lrEEN_.II‘O.g$S SIGNATUR%(l:5(\l§ I3{e‘t(':r_N , Go E I 1872 Iaul E White, Jr Dam 1 4 A

Inventor's Name (typed) David A. FARBER USA,
First Middle Initial»: -- Family Name Country of Citizenship

Residence (City) O'ai (State/Foreign Country) CA
Post Office Address (Include Zip Code) BOOH-Ga-z-i-l-l-o-‘Rd: Ojai, CA 93023

2.;-16 p. rflic , 53?’? DF GI 7? '13 ' 1

2. INVEl\'I‘OR‘S SIGNATURE: 2 Date _)"I Inventor‘: Name (typed) Ronald D. LACHMAN L'.S.A.
First Middle Initial Family Name Country of Citizenship

Residence (City) Nortlibrook (State ’Forei<vn Country) ll.
Post Office Address (Include Zip Code) 3140 Whisperwoods Court. Northbrook. ll. 60062

3. INVEi\'TOR'S SIGNATURE.‘ Date
Inventor's Name (typed) ’

First Middle Initial Family Name Country of CIIIZCRSWP
Rcgidencc (City) (State/For-:i°'n Countgy ._..__:

Post Office Address (Include Zip Code)

JR ADDITIONAL I\'V’ENTORS, check box [) and attach sheet (CDC—l1o.2) for same information for each re SlgTI'dIU75: Tlamcv date’ Cm7’C“Ship’
residence and address.)

ax_ns 1/95

GOOG-1016-Page 101 of 126

GOOG-1016-Page 102 of 126

lnventor(s): David A. Farber and Ronald D. Lachman (Atty. Dkt.
Appln. No.: 0 8 (425350 or Patent No.: (213987 1
Filed: April 11 1995 or Issued: M# / Client Ref.
Title: IDENTIFYING DATA IN A DATA PROCESSING SYSTEM ~

VERIFIED STATEMENT (DECLARATION) CLAIMING SMALL ENTITY
STATUS (37 CFR 1.9(d) and ‘I.27(c)) -SMALL BUSINESS CONCERN

I hereby declare that I am

{as} the owner of the small business concern identified below:
i] an official of the small business concern empowered to act on behalf of the concern identified below:
NAME OF CONCERN KINETECH INC.
ADDRESS OF CONCERN '

 . ' ' ' ' 1» <i as’ @
3340 uJl~.(5 .'"\.uC‘GCQ/.\ C+. _ L}:,,.~‘k\(t‘qv?7€\«L Tllivtols V I . /' /,

I hereby declare that the above identified small business concern qualifies as a small business concern as defined in 13 CFR
121.12, and reproduced in 37 CFR ‘I.9(d), for purposes of paying reduced fees under Section 41(a) and (b) of Title 35, United
States Code, in that the number of em lo ees of the concern includin those of its affiliates does not exceed 500 ersons.

For purposes of this statement (1; the number of employees of the business concern is the average over the previous fiscal year
of the concern of the persons employed on a full-time, part-time or temporary basis during each of the pay periods of the fiscal
year, and (2) concerns are affiliates of each other when either, directly or indirectly, one concern controls or has the power to

oi the other, or a third party or parties controls or has the power to control both.

I hereby declare that rights under contract or law have been conveyed to and remain with the small business concern identified
a ove with regard to the invention entitled: IDENTIFYING DATA IN A DATA PROCESSING SYSTEM

b :i ventors(s) David A. FARBER and Ronald D. LACHMAN
d ribed in I

->[] the Specification filed herewith,

->[X } Application No. 0 8 (425180 , filed April 11, 1995 .
2 —>[1 Patent No. , issued

li,.__tt',ie rights held by the above identified small business concern are not exclusive, each small entity individual, concern or
organization having rights to the invention is listed in (A) and 18) below and no rights to the invention are held by any person,
other than the inventor, who could not qualify under 37 CFR ‘l.9(c) as an independent inventor if that person had made the
' tion, or by any concern which would not qualify as a small business concern under 37 CFR 1.9(d) or a nonprofit

nization under 37 CFR 1.9(e).

(A) FULL NAME of assignee/Iicensee/grantee/conveyee*

ADDRESS

X proper box: [} INDIVIDUAL [I SMALL BUSINESS CONCERN [} NONPROFIT ORGANlZATlON

(8) FULL NAME of assignee/Iicensee/grantee/conveyee*

ADDRESS

X proper box: l] INDIVIDUAL [3 SMALL BGSINESS CONCERN l] NONPROFIT ORGANIZATION

‘NOTE: Separate verified statement IS reguired from each person, concern or organization named in (A) and (8) above having rights to the invention, avertingto his/her/its status as a small entity. (37 CFR 1.27)

I acknowled e the dul to file, in this case notification of an chan e in status resultin in loss of entitlement to small enti status prior to paying, or at the time
of paying, the earliest of the issue fee or any maintenance fee due after the date on which status as a small entity is no longer appropriale. (37 CFR 1-2303))

I hereby declare that all statements made i‘-erein of my own knowledge are true and that all statements made on information and beliel are believed to be true;
and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment,
or both, under section 1001 of fitie 18 of the United States Code. and that such willful ialse statements may jeopardize the validity cfthe aPPl=°a"'°"‘v an)’ Patentissuing thereon, or any patent to which this verified statement is directed.

NAME OF PERSON SIGNING " l4~4»‘l/V
T or PERSON OTHER THAN OWNER ‘ __A.. 3.35 OF PERSON SIGNING - J/4.1 u,’H/é ? vzéuows 6- I

Ncvimezoe rc 7' . - c>o<;'1__

SIGNATURE DATE
coc—uu 5/94

GOOG-1 O1 6- Page 102 of 126

GOOG-1016-Page 103 of 126

PRINT OF DRAWLVGS
AS 0 -

--.:'*.I.<a_I.3_:§.-£~_x.rI1—:_

102

PROCESSOR

PROCESSOR

106

102

PROCESSOR

FIG. 1

STORAGE

GOOG-1016-Page 103 of

GOOG-1016-Page 104 of 126

PRINT OF DRAWINGS»

AS ORICHVALLY FILE. V H
FlG;‘2‘”"" ~

 DIRECTORY I DIRECTORY M,‘ ' ' _ o[REc'roRy

122

SEGMENT

SEGMENT

GOOG-1 O1 6- Page 104 of 126

GOOG-1016-Page 105 of 126

PRLV 1' or onuwmcs

A~'i.‘Z‘.“_(5.’-§._«‘i.{."..____Y

Time of last access

Time of last modification

FIG. 3

140

Com-ressed File ID '

Source IDs

Time of last access .

Groomin- delete count

FIG. 4 ' >
142

J
Re-ion file 5 stem

 1on -athname

Re-1on stat

Mirror -rocessor s

Mlrror du-lication count

FIG. 5

GOOG-1016-Page 105 of 126

GOOG-1016-Page 106 of 126

PRINT or nmwu,-G5A5 ,,
.-.<&Q L

GOOG-1 O1 6- Page 106 of 126

GOOG-1016-Page 107 of 126

{; Humor DRAWINGS ?=<’:i_
““‘*‘”*” A§.QBI_G.lj_A1—LY ‘ ~

FIG. 10(a)

SIMPJE
DA TA ITEM

COMPUTE MD FUNCTION ON
DATA ITEM

S214

APPEND LENGTH MODULO 32 OF
DATA ITEM

TRUE NAME

1

GOOG-1016-Page 107 of 126

GOOG-1016-Page 108 of 126

PRLVTOi-‘DRAWINGS
AS 0R1GE_ALLYF'II;. {

~—...__. .«~

 ..-,.,M.....,,.,,_.,.,,._A

FIG. 10(b) 5216

vss DATA ITEM - o
smme?

$220

PARTITION DATA new we
SEGMENTS

s222

ASSIMILATE EACH ssemsm
__________ _ _ (compurme rrs TRUE NAME)szae

5 COMPUTE TRUE ;
; NAME oz: SIMPLE :
; DATA ITEM i

S224

CREATE INDIRECT BLOCK OF
SEGMENT TRUE NAMES

S226

ASSIMILATE INDIRECT BLOCK
(COMPUTING ITS TRUE NAME)

$28
REPLACE FINAL 32 BITS OF TRUE

NAME WITH LENGHT M00 32 OF DATAITEM ‘

GOOG-1 O1 6- Page 108 of 126

GOOG-1016-Page 109 of 126

PRINT OF DRAWINGS

As oRrc£1__Ae.L._z_r;I.M-:1 J
-....__.. ---

FIG. 11

DOES TRUE NAME
EXIST IN TRUE FILE

REGISTRY?

YES

S236
 YES DOES ENTRY

HAVE FILE ID?

* CREATE NEW ENTRY
" SET USE COUNT TO 1
* STORE FILE ID
* SET OTHER FIELDS

S238

DELETE FILE ID
s239

STORE FILE ID

GOOG-1016-Page 109 of 126

GOOG-1016-Page 110 of 126

PRLVT or omwmcs

fi.%1_Q

 S240
UPDATE

DEPENDENCY
' LIST

FIG. 12

S242

SEND MESSAGE TO
CACHE SERVER TO

UPDATE CACHE

S244

COMPRESS

(IF DESIRED)

S246

MIRROR

(IF DESIRED)

GOOG-1016-Page11O of 126

GOOG-1016-Page 111 of 126

PRLVT OF DRAWINGS
AS ORIGINALLY FILI--~——— -'.:___"-s-5-p——._——~-.'

I
"“ ‘*~“wWev »m«‘v» —

S250

SEARCH FOR
THE

PATHNAME

FIG. 13

LDE INCLUDES
TRUE NAME?

LDE IDENTIFIES
DIRECTORY?

 S256

FREEZE

DIRECTORY

GOOG-1016-Page 111 of 126

GOOG-1016-Page 112 of 126

I "1 A§.<3.r:_I<1.2IL1.—.’~..._.__,YFm-
PRLVTOF DRAWILNGS:

FIG. 14

S260

CONFIRM THAT
TRUE NAME

EXISTS LOCALLY

S262

SEARCH FOR
PATHNAME IN

LDE TABLE

S264

CONFIRM THAT
DIRECTORY

EXISTS

S266

NAMED FILE
EXISTS?

s27o
CREATE’

ENTRY IN LDE
& UPDATE

GOOG-1016-Page 112 of 126

GOOG-1016-Page 113 of 126

: PRLVTOFDRAWLHGS
’ AS ORIGINALLY nu,--v-——-—--'

w»»,.7.e«w,5»w..,4,,,b,,g,.,,V,,7¢.,,,,¢m.,,.(,Nwvy...,

FIG. 15

 S274
SEND RTF

MESSAGE &
WAIT FOR
RESPONSE

RESPONE

POSETNE
RESPONSE

 S276

ENTER TRUE FILE
. RETURNED INTO
- TFR

GOOG-1016-Page 113 of 126

GOOG-1016-Page 114 of 126

PRINT OF DRAWINGS

CLIENT

SELECTS MHG‘ 15 FROCESSOR(S)

s2s5

ANY 0
PROCESSORS » FAIL :ELECTED

YES

S286

CLIENT

NEG TIVE BROADCASTS
RESPONSE
OR

T/ME UT

POSl~ IVE
RESPONSE

szeo

STORE
PROCESSOR ID

SOURCE OF TRUE

NAME DIFFERS FROM
DESTINATION?

52908 ~

LOOK UP TFR FOR
TRUE NAME & ADD

SOURCE LOCATION ID ‘

TO SOURCE IDS FOR
TRUE NAME

8291c é
.1 SEND MESSAGE TD

S291d

. ’ SOURCE Is ‘ DETERMINE 1RE3§:":oTURRUcEEF"-E A °—<uEusH:NE YES I EXPIRATION DATE
PROCESSOR SYSTEM? AND ADD TO LIST A

GOOG-1016-Page 114 of 126

GOOG-1016-Page 115 of 126

PRINT OF DRAWINGS

A§_c1R.IG.I3F:”-.Y'

F|g;w7w w»'~' I

 RUE FILE ENTRY
IN TFR FOR TRUE

NAME?

YES

S296

COMPRESSED
FILE ID?

YES

S300

STORE ID

S308

LOCATE
REMOTE FILE

S304

SELECT

SOURCE '0 sounce ms

' ' - S306 -

REALIZE TRUE
FILE FROM

NO MORE

YES

GOOG-1016-Page 115 of 126

GOOG-1016-Page 116 of 126

PRINT OF DRAWINGS
AS ORIGINALLY FILL.

» - ~~fi~«»r««-awn»-sg_w«»s~n9ym—

Fl?" 18 ~ CRATCH SHOULD

BE COPY OF TRUE
FILE?

LDE IDENTIFIES
EXISTING TRUE

FILE?

FILE ID FOR
TRUE FILE?

YES DONE

S318

DELETE
TRUE FILE

S320

CREATE NEW
SCRATCH FILE

S322

MAKE TRUE
FILE LOCAL

YES

S330
COPY FILE TO NEW

FILE, STORE FILE ID
. IN LDE TABLE,
DECREMENT USE

COUNT

S328

SAVE FILE ID & IREMOVE TFR
ENTRY

. GOOG-1016-Page 116 of 1?6T _r,,WW.

GOOG-1016-Page 117 of 126

PRINT OF DRAWINGS

AS ORIGINALLY FIL.’\

FIG. 19 S332
INCREMENT

FREHE LOCK

FOR EACH

SUBORDINATE
FILE AND

DIRECTORY IN THE
GNEN DIRECTORY

’ S336
ASSIMILATE

S334

FREEZE 'E UNASSIMILATED
FILE

DIRECTORY

S337
CREATE NEW

DATA ITEM

FOR EACH 334°

S338

SUBORDINATE Ann ENTRY TO Aggfrgieu
FILE AND NEW DATA DESIRED

nmecronv in me new INFORMAHONGIVEN mnecroav
S342

ASSIMILATE THE
NEW DATA ITEM

8344
DECREMENT
THE FREEZE

LOCK

GOOG-1016-Page 117 of 126

GOOG-1016-Page 118 of 126

_1 nunror nmwmcs

 AS 0WG
...___.a -t:.._...

....,,....,.«p.W5m,«mmmg , V "“““""" "M

 S346

MAKE TRUE
1 FILE LOCAL

FIG. 20

’ 8354 v NO MORE
DONE ENTRIES

GOOG'-1016-Page 118 of 126

GOOG-1016-Page 119 of 126

-..——... .-~pxmrosnaawmcs
AS ORIGINALL)’ HL

~w>—--vwwyvv-7N:1.*11fi:.v‘k'4,$'=?'!»F,;§a>«~ _ ,__‘, / V N ,_, w, ,,a— v

FIG. 21 S354

WAIT FOR
FREEZE LOCK

‘ TO TURN OFF

S36
FIND TFR

ENTRY

O sass ;

DECREMENT

I REFERENCE
couur

 REFERENCE COUNT IS

ZERO 8: NO DEPENDENT
SYSTEMS IN TFR?

S384

REMOVE FILE ID
AND COMPRESSED ’

FILE ID

GOOG-1016-Page 119 of 126

GOOG-1016-Page 120 of 126

1 PRLVT OF DRAWINGS
 ‘-":1 . 31- H

"” ‘ A5 ORXGDVAILY I‘-ILA sé . "

FIG. 22

S35
GET

OPERATION

S366

CREATE OR
MODIFY?

sass

‘ASSIMILATE

YES

8369

NEW TRUE
FILE

COPY OR DELETE '
COMPOUND?

YES

S378_ S370
Mompy USE RECORD TRUE

‘ COUNT Q3: EAc§.; NAME IN AUDIT ~ '
 COMPONENT FSLE

 $79
FOR EACH PARENT

DIRECTORY OR FILE,
UPDATE USE COUNT,

LAST ACCESS AND
MODlFY TIMES

GOOG-1 O1 6- Page 120 of 126

GOOG-1016-Page 121 of 126

_;_H; .. ,. _' ‘

pnmr or omwmcs

A5 ORIGINALLY rm
....__... at-.___ W.

-

FIG. 23

 S382

VEFUFY

GROOMWG
LOCKOFF

S384
SET

GROOMING
LOCK

8386

SET GROOM
COUNTS

GOOG-1016-Page 121 of 126

GOOG-1016-Page 122 of 126

Paper or nmwmcs

fi.QEQ.
"¥'mv¢

FIG. 24

 S388

FIND LDE
RECORD

S390

.— FIND TFR
RECORD

S392

INCREMENT
GROOMING

DELETE COUNT

S394

ADJUST FILE
SIZES

GOOG-1016-Page 122 of 126

GOOG-1016-Page 123 of 126

PRINT OF DRAWLVG5
AS ORIGINALLY 1:-[L «WA,. ...y,A

FIG. 25

‘H11..H

GOOG-1 O1 6- Page 123 of 126

GOOG-1016-Page 124 of 126

‘ Q : PRLVTOF DRAWINGS

W E A$_<25I_<3AL.1—’~,._Ymy

FILE BUSTS

FIG. 26 LOCALLY?

S402

BEING
CREATED? ’

1 S404
PROHIBIT ‘

OPEN

PROHIBIT
OPEN

LOCK IF NOT
LOCKED

S419
BEING

COMPLETELY

 21

LERASE FILE

S420
MAKE LOCAL
VERSION &

RETURN FILE ID

05
CREATE

SCRATCH FILE

 FROM TFR

S424
RETURN -

‘ SCRATCH FILE '
{D ’

GOOG-1 O1 6- Page 124 of 126

GOOG-1016-Page 125 of 126

PRINT OF DRA\¥II_NG5
AS ORIGINALLY F1122.

 S422
DETERMINE LDE &

RT ENTRY
RECORDS FOR

FILE

 . FIG. 27

 8423

O LDE RECORD 0
FILE LOCKED OR IN

READ-ONLY
DIRECTORY?

S424

I IDENTIFY TRUE
FILE FROM TRUE

NAME

FILE HAS NO
TRUE NAME?

S427

DELETE
~ SCRATCH COPY

OF FILE

 TRUE FlLE'S
USE COUNT as

one

YES

 S430

DELETE
TRUE FILE

3

 31

M REDUCE use 1
COUNT BY ONE

S428

ADD ENTRY TO.
AUDIT FILE V

GOOG-1016-Page 125 of 126

GOOG-1016-Page 126 of 126

PRINT as DRAWINGS

A§,Q;!1.Q.¥l‘__«éLe£._._,Y
* "v*~~=~~*~w~»rzes>v:»v«x~mszexa§v:1:»~w4:v:»:~w»xsgsx»¢»=»:r»

FIG. 28

REQUEST to as
FORWARDED?

W L GOOG-1016-Page 126 of 126

