N .

IN THE ﬁNiTED STATES PATENT AND TRAéMARK OFFICE
REQUEST FOR FILING
(RULE 53(b)(1))

Page 1 of 4

For Design_or Utility Applications
Rule 53(b)(1) PATENT APPLICATION:
O Continuation)
)} application under 37 CFR 1.53(b)(1)

X Divisional) e =
Group Art Unit: 2776 L =
of pending prior application of o)
Examiner: Homere, J.
Inventor(s): FARBER et al.
Parent Appin. No.: 08 | 960,079 Atty. Dkt. PM 252465 *
Series Code | 1 Serial No. New M# [Client Ref
Parent Filed: October 24, 1997 (Our Deposit Account No. 03-3975
This Case Filed: April |, 1999 (Our Order No. 7018/252465
Title: IDENTIFYING DATA IN A DATA PROCESSING SYSTEM C# | New M#
Date: April 1, 1999
Asst. Commissioner of Patents
Washington, DC 20231 (Parent Matter No. 243063)
Sir:
To effect the above-requested filing today:
1. Attached is a copy (which must be filed) of this application, including:
X Abstract
X Specification and claims (94 pages) (must be attached)
[XI Drawings (must be attached if originally filed): 24 sheef(s)/set: [X] 1 set informal;
(] Formal of size A4 O

1A, Always X one box, only:
(1) X Signed declaration or oath as originally filed in prior application aftached
(2) [NO declaration or fee is enclosed; therefore, this is a filing under Rule 53(f).

2. O This application is hereby filed by less than all of the inventors named in the prior application. Petition is
~ hereby made requesting deletion as inventor(s) of the following who is/are not inventor(s) of the
invention being claimed in this application:

O~ Oy W
2o AN

3. The entire disclosure of the prior application is considered as being part of the disclosure of the accompanyxng
application and is hereby incorporated therein by reference thereto.

PAT-108 12/98

GOOG-1016-Page 1 of 126

.
et

Page 2 of 4

4, [0 Priority is claimed under 35 U.S.C. 119/365 based on filing in of
(country)
Application No Filing Date Application No. Filing Date
(1 4)
@) 5
(3 (6)
a. [(No.) Certified copy/copies attached.
b.[[] Certified copy/copies previously filed on in
U.S. Application No. / , filed on
series code ¢ 1+ serial no.
c.[] Certified copy/copies filed during International stage of PCT/ /
4. (a)[] Domestic priority is claimed from PCT/ / , filed
(b)[] Benefitis claimed of Provisional Application No. 60/ , filed .
5. X Prior application is assigned to kiNETech, Inc.
by assignment recorded June 23, 1995 Reel 7593 Frame 0036.
(Date)
6. X Attached is the following number of Assignments (including original and all later successive ones by
different assignors): 1 and respective new Cover Sheets. (Do NOT file old cover sheets.}

(Assignments in parent must be refiled with new Cover Sheets in this continuing application if you
want it’/them recorded against the-continuing application.)

Please return the recorded Assignment to the undersi

7. X The power of attorney in the prior application is to Dale S. Lazar, Req. No 28,872

(Name and Reg. No.)
whose current address is as in item 8 below.

a.[X] Recognize as associate attorney Brian Siritzky, Reg. No. 37,497

(Name, Reg. No. and Address)

8. Address all future communications to Intellectual Property Group
of Pillsbury Madison & Sutro LLP, Ninth Floor, East Tower 1100 New York Avenue, N.W.,,
Washington, D.C. 20005-3918

9. Amend the specification by inserting before the first line the sentence:--This is a
[continuation [division of Application No. 08/960,079, filed Qctober 24, 1997

series code 1 serial no.
which is a continuation of 08/425,160, filed April 11, 1995, now abandoned. -

9. (a) [J Amend the specification by inserting before the first line: --This application claims the benefit of
Provisional Application No. 60/ , filed -

10. X It has been recently determined that this new continuing application is entitled to small entity status.
Hence:
(No.) Verified Statement(s) establishing “small entity” status under Rules 9 & 27 were/are:
TX filed in above prior application (and hence applicable hereto)
X attached.

11. Petition to extend the life of the above prior application {o at least the date hereof
(onebox) [is being concurrently filed in that prior application (Use Form PAT-111).

(mustbe) [] was previously filed in that prior application (Check length of prior extension).
(Xd) X is not necessary for copendency (Double check before X'ing this box).

PAT-108 12/98

GOOG-1016-Page 2 of 126

Page 3 of 4

INFORMATION DISCLOSURE STATEMENT: Attached is Form PTO-1449 listing all of the documents
cited by Applicant and the PTO in the parent application(s) relied upon under 35 USC 120 and

referenced in item 9 above. Per Rule 98(d) copies of those documents are not required now. Please
consider those documents and advise that they have been considered in this new application as by
returning a copy of the enclosed Form PTO-1449 with the Examiner's initials in the left column per

2. X

MPEP 609. .
13, O
14, X

Attached is a Rule 103(a) Petition to Suspend Action.

PRELIMINARY AMENDMENT to be entered before fee calculation: (Do not make amendments here

except for correction of improper multiple dependencies or cancellation of whole claims or multiple
dependencies for purpose of reducing the filing fee per MPEP §§ 506 and 607; do not cancel all claims).

Please cancel claims 1-45 and 50-53 without prejudice. The remaining claims correspond to non-elected
Groups Il & IV from the Examiner's Restriction Requirement of June 4, 1996.

NOTE: If box 1A2 is X'd, do not pay fees,

FILING FEE
THE FOLLOWING FILING FEE IS BASED ON
->->->->CL AIMS AS FILED AND CHANGED BY

but leave lines 15-22 and 27-32 blank.

LIMINARY AMENDMENT IN ITEM 1

4<-<o<asn

Large/Small Fee
Entity l l Code

15.BasicFilingFee........... Design Application | $310/$155 106/26

16. BasicFilingFee......................... Not Design Application | $760/$380 +380 101/201

17. Total Effective Claims 5 minus 20=] 0 x $18/$9 +0 103/203

18. Independent Claims 3 minus 3 = 0 x $78/$39 +0 102/202

19. If any proper multiple dependent claim (ignore improper) is present, $260/$130 +0 104/204

20. Subtotal = | $380

21. If “petition” box 13 above is X'd, add petitionfee. $130 +0 122

21A. If box 6 above is X'd, add Assignment recordingfee $ 40 +40 581

| |
22. TOTAL FILING FEE ATTACHED = | $420 l

23. [ATTACHED:

(carry forward to item 31)

24. [Preliminary Amendment attached (to be entered after assigning Applin. No.)

25. (] The following PRELIMINARY AMENDMENT is to be entered after assigning Applin. No.:

GOOG-1016-Page 3 of 126

PAT-108 12/98

Page 4 of 4

26. ADDITIONAL FEE CALCULATION FOR
PRELIMINARY AMENDMENT
PER BOXES 24/25

Claims Highest
remaining number
after previously Present Additional
amendment paid for Extra Fee
Large/Small Entity File Code
27. Total Effective Claims * minus ** 20 = 0 x $18/%9 = $0 (103/203)
28. Independent Claims * minus ** 3 = 0 x $78/$39 = + 0 (1021202)
29. If amendment enters proper multiple dependent claim(s) into this application for the
first time, add (per application) $260/$130 + 0 (104/204)
30. ADDITIONALFEE $ 0
31. plus FEE from item 22 on page 3 + 420
32. TOTAL FEE ATTACHED $ 420
33. *If the entry in this space is less than the entry in the next space, the “Present Extra” result is 0"

34. “If the “Highest number previously paid for” (see item 17 above) is less than 20, write “20" in this space
35. If the “Highest number previously paid for” (see item 18 above) is less than 3, write “3” in this space

CHARGE STATEMENT: Upon the filing of a Declaration pursuant to Rule 60(b) or 60(d), the Commissioner is hereby
authorized to charge any fee specifically authorized hereafter, or any missing or insufficient fee(s) filed, or asserted to be
filed, or which should have been filed herewith or concerning any paper filed hereafter, and which may be required under
Rules 16-18 (missing or insufficient fee only) now or hereafter relative to this application and the resulting Official
document under Rule 20, or credit any overpayment, to our Account/Order Nos. shown in the heading hereof for which
purpose a duplicate copy of this sheet is attached.

This CHARGE STATEMENT does not authorize charge of the issue fee until/unless an issue fee transmittal form
is filed.

Pillsbury Madison & Sutr l(/P
Intellectual Property G 5
1100 New York Avenue, NW. By Atty: Dale S. ;zé’m /) Reg. No. 28872
Ninth Floor, East Tower
Washington, D.C. 20005-3918 Sig: M /W M Fax: (202) 822-0944
Tel: (202) 861-3000 v o 4 [Tel (202) 861-3527
DSL/BS:kim !
Atty./Sec.

NOTE No. 1: File this Request in duplicate with 2 postcard receipts (PAT-103) & attachments
NOTE No. 2: Is extension in parent necessary for copendency? DOUBLE CHECK Item 11 ve.

PAT-108 12/98

GOOG-1016-Page 4 of 126

4

APPLICATION UNDER UNITED STATES PATENT LANS

Invention: David A. Farber and Ronald D. Lachman

Inventor(s): IDENTIFYING DATA IN A DATA PROCESSING SYSTEM

cushman Darby & Cushman, L.L.P.

1100 New York Avenue, N.W.

Ninth Floor, East Tower

Washington, D.C. 20005-3918
Attorneys

Telephone: (202) 861-3000

This is a:

[] Provisional Application

[X] Regular Utility Application

{ 1 Continuing Application

[] PCT National Phase Application
[] Design Application

[] Reissue Application

[] Plant Application

SPECIFICATION

CDC-100 3/95

GOOG-1016-Page 5 of 126

7018/213987

N %W“ A

BACKGROUND OF THE INVENTION

1. Field of the invention
This invention relates to data processing
5 systems and, more particularly, to data processing

systems wherein data items are identified by
substantially unique identifiers which depend on all of
the data in the data items and only on the data in the

data items.

10 2. Background of the Invention

Data processing (DP) systems, computers,
networks of computers, or the like, typically offer users
and programs various ways to identify the data in the
systems. .

15 Users typically identify data in the data
‘ processing system by giving the data some form of name.
For example, a typical operating system (0S) on a
computer provides a file system in which data items are
named by alphanumeric identifiers. Programs typically
20 identify data in the data processing system using a
location or address. For example, a program may identify

a record in a file or database by using a record number
which serves to locate that record.
In all but the most primitive operating

.25 systems, users and programs are able to create and use
collections of named data items, these collections
themselves being namgd by identifiers. These named
collections can then, themselves, be made part of other
named collections. For example, an OS may provide

30 mechanisms to group files (data items) into directories
(collections). These directories can then, themselves be
made part of other directories. A data item may thus be
identified relative to these nested directories using a

GOOG-1016-Page 6 of 126

10

15

20

25

30

35

sequence of names, Or a so-called pathname, which defines
a path through the directories to a particular data item
(file or directory) .

As another example, a database management
system may group data records‘(data items) into tables
and then group these tables into database files
(collections) . The complete address of any data record
can then be specified using the database file name, the
table name, and the record number of that data record.

Other examples of identifying data items
include: identifying files in a network file system,
identifying objects in an object-oriented database,
identifying images in an image database, and identifying
articles in a text database.

In general, the terms "“data" and ndata item" as
used herein refer to sequences of pits. Thus a data item
may be the contents of a file, a portion of a file, a
page in memory, an object in an object—oriented program,
a digital message, a digital scanned image, a part of a
video or audio signal, or any other entity which can be
represented by a sequence of pits. The term "data“
processing" herein refers to the processing of data
items, and is sometimes dependent on the type of data
item being processéd. For example, a data processor for
a digital image may differ from a data processor for an
audio signal.

iIn all of the prior data processing systems the
names or identifiers provided to jdentify data items (the
data items being files, directories, records in the
database, objects in object-oriented programming,
locations in memory or on a physical device, or the like)-
are always defined relative to a specific context. For
instance, the file identified by a particular file name
can only be determined when the directory containing the
file (the context) is known. The file identified by a
pathname can be determined only when the file system
(context) is known. similarly, the addresses in a

GOOG-1016-Page 7 of 126

10

15

20

25

30

35

process address space, the keys in a database table, Or
domain names on a global computer nétwork such as the
Internet are meaningful only because they are specified
relative to a context.

In prior art systems for identifying data items
there is no direct relationship between the data names
and the data item. The same data name in two different
contexts may refer to different data items, and two v
different data names in the same context may refer to the
same data item.

In addition, because there is no correlation
petween a data name and the data it refers to, there is
no a priori way to confirm that a given data item is in
fact the one named by a data name. For instance, in a DP
system, if one processor requests . that another processor
deliver a data item with a given data name, the
requesting processor cannot, in general, verify that the
data delivered is the correct data (given only the name) .
Therefore it may require further processing, typically on
the part of the requestor, to verify that the data item
it has obtained is, in fact, the item it regquested.

A common operation in a DP system is adding a
new data item to the system. When a new data item is
added to the system, a name can be assigned to it only by
updating the context in which names are defined. Thus
such systems require a centralized mechanism for the
management of names. Such a mechanism is required even
in a multi-processing system when data items are created
and identified atrseparate processors in distinct
locations, and in which there is no other need for
communication when data items are added.

In many data processing systems or
environhents, data items are transferred between
different locations in the system. These locations may
be processors in the data processing system, storage
devices, memory, or the like.‘ For example, one processor

may obtain a data item from another processor or from an

w

WNQ;M\

GOOG-1016-Page 8 of 126

i0

15

20

25

30

35

external storage'device, such as a floppy disk, and may
incorporate that data item into its system (using the
name provided with that data item). ‘

However, when a processor (or some location)
obtains a data item from another jocation in the DP
system, it is possible that this obtained data item is
already present in the system (either at the location of
the processor Or at some other location accessible by the
processor) and therefore a duplicate of the data item is
created. This situation is common in a network data
processing environment where proprietary software
products are installed from floppy disks onto several
processors sharing a common file server. In these
systens, it is often the case that the same product will
pe installed on several systems, SO that several copies
of each file will reside on the common file server.

In some data processing systems in which
several processors are connected in a network, one system
is designated as a cache server to maintain master copies
of data items, and other systems are designated as cache
clients to copy local copies of the master data items
into a local cache on an as-needed basis. Before using a
cached item, a cache client must either reload the cached
item, be informed of changes to the cached item, or
confirm that the master item corresponding to the cached
item has not changed. 1In other words, a cache client
must synchronize its data items with those on the cache
server. This synchronization may'involve reloading data
items onto the cache clienﬁ. The need to keep the cache
synchronized or reload it adds significant overhead to
existing caching mechagnisms.

In view of the above and other problems with
prior art systems, it is therefore desirable to have a
mechanism which allows each processor in a multiprocessor
system to determine a common and substantially unigque
jdentifier for a data item, using only the data in the

data item and not relying on any sort of context.

GOOG-1016-Page 9 of 126

1t is further desirable to have a mechanism for
reducing multiple copies of data items in a data
processing system and to have a mechanism which enables
the identification of identical data items so as to

5 reduce multiple copies. It is further desirable to
determine whether two instances of a data item are in
fact the same data itém, and to perform various other
systems’ functions and applications on data items without
relying on any context information or properties of the

10 data item. ‘

It is also desirable to provide such a
mechanism in such a way as to make it transparent to
users of the data processing system, and it is desirable
that a single mechanism pe used to address each of the

15 problems described above.

SUMMARY OF THE INVENTION

This invention provides, in a data processing

system, a method and apparatus for identifying a data

item in the system, where the identity of the data item

20 depends on all of the data in the data item and only on
the data in the data item. Thus the identity of a data
item is independent of its name, origin, location,
address, or other information not derivable directly from
the data, and depends only on the data itself.

25 This invention further provides an apparatus
and a method for determining whether a particular data
item is present in the system or at a location in the
system, by examining only the data jdentities of a
plurality of data items.]

30 Using the method or apparatus of the present
invention, the efficiency and integrity of a data
processing system can be improved. The present inﬁention
improves the design and operation of a data storage
system, file system, relational database, object-oriented

35 database, or the like that stores a plurality of data
items, by making possible or improving the design and

GOOG-1016-Page 10 of 126

operation of at least some or all of the following
features:
the system stores at most one copy of any data
item at a given location, even when multiple data names
5 in the system refer to the saﬁe contents;

, the system avoids copying data from source to
destination locations when the destination locations
already have the data;

the system provides transparent access to any
10 data item by reference only to its identity and
independent of its present location, whether it be local,
remote, or offline;
the system caches data items from a server, so
. that only the most recently accessed data items need be
15 retained;
when the system is being used to cache data
items, problems of maintaining cache consistency are
avoided; .
the system maintains a desired level of
20 redundancy of data items in a network of servers, to
protect against failure by ensuring that multiple copies
of the data items are present at different locations in
the system;
the system autoﬁatically archives data items as
25 they are created or modified;

the system provides the size, age, and location
of groups of data items in order to decide whether they
can be safely removed from a local file system;
the system can efficiently record and preserve
30 any collection 6f data items;
the system_can efficiently make a copy of any
collection of data items, to support a version control
mechanism for §roups of the data items;
} the system can publish data items, allowing
35 other, possibly anonymous, systems in a network to gain
access to the data items and to rely on the availability
of the data items;

GOOG-1016-Page 11 of 126

the system can maintain a local inventory of
all the data items located on a given removable medium,
such as a diskette or CD-ROM, the inventory is
independent of other properties of the data items such as

5 their name, location, and date of creation;

the system allows closely related sets of data
items, such as matching or corresponding directories on
disconnected computers, to be periodically resynchronized
with one another;

10 the system can verify that data retrieved from
another location is the desired or requested data, using
only the data identifier used to retrieve the data;

the system can prove possession of specific
data items by content without disclosing the content of

15 the data items, for purposes of later legal verification
and to provide anonymity;

the system tracks possession of specific data
items according to content by owner, independent of the
name, date, or other properties of the data item, and

20 tracks the uses of specific data items and files by
content for accounting purposes. '

Other objects, features, and characteristics of
the present invention as well as the methods of operation
and functions of the related elements of structure, and

25 the combination of parts and economies of manufacture,

will become more apparent upon consideration of the
following description and the appended claims with
reference to .the accompanying drawings, all of which form
a part of this specification. '

30 BRIEF DESCRIPTION OF THE DRAWINGS
:IK£;> GURE 1 depicts a typical data processing
system in which a preferred embodiment of the present
invention operytes; ‘
FIGURE 2 depicts a hierarchy of data items
35 stored at any location in such a data processing system;

GOOG-1016-Page 12 of 126

FIGURES 3-9 depict data structures used to
implement an embodiment of the present invention; and

FIGURES 10(a)-28 are flow charts depicting
operation of various aspects of the present invention.

5 DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED
:> EXEMPLARY EMBODIMENTS

n embodiment of the present invention is now
described with reference to a typical data processing

system 100, wRich, with reference to FIGURE 1, includes
10 one or more processors (or computers) 102 and various
storage devices 304 connected in some way, for example by
a bus 106.
Each processor 102 includes a CPU 108, a memory
110 and one or more local storage devices 112. The CPU
15 108, memory 110, and local storage device 112 may be
internally connected, for example by a bus 114. Each
processor 102 may also include other devices (not shown),
such as a keyboard, a display, a printer, and the like.
In a data processing 5ystem 100, wherein more
20 than one processor 102 is used, that is, in a
multiprocessor system, the processors may be in one of
various relationships. For example, two processors 102
may be in a client/server, client/client, or a

sexver/server relationship. These inter-processor

25 relationships may be dynamic, changing depending on
particular situations and functions. Thus, a particular
processor 102 may change its relationship to other
processors as needed, essentially setting up a peer-to-
peer relationship with other processors. In a peer-to- -

30 peer relationship, sometimes a particular processor 102
acts as a.client processor, whereas at other times the
same processor acts as a server processor. In other
words, there is no hierarchy imposed on or required of
processors 102.

35 ' In a multiprocessor system, the processors 102
may be homogeneous or heterogeneous. Further, in a

8

C{s

GOOG-1016-Page 13 of 126

multiprocessor data processing system 100, some or all of
the processors 102 may be disconnected from the network
of processors for periocds of time. Such disconnection
ma§ be part of the normal operation of the system 100 or

5 it may be because a particular processor 102 is in need
of repair.

Within a data processing system 100, the data
may be orgénized to form a hierarchy of data storage
elem;nts, wherein lower level data storage elements are

10 combined to form higher level elements. This hierarchy
can.consist of, for exampie, processors, file systems,
regions, directories, data files, segments, and the like.
For example, with reference to FIGURE 2, the data items
on a particular processor 102 may be 6rganized or

15 structured as a file system 116 which comprises regions
117, each of which comprises directories 118, each of
which can contain other directories 118 or files 120.
Each file 120 being made up of one or more data segments
122.

20 In a typical data processing system, some or
all of these elements can be named by users given certain
implementation specific naming conventions, the name (or
pathname) of an element being relative to a context. 1In
the context of a data processing system 100, a pathname

25 is fully specified by a processor name, a filesystenm

name, a sequence of zero or more. directory names
identifying nested directories, and a final file name.
(Usually the. lowest level elements, in this case segments
122, cannot be named by users.)

30 In other words, a file system 116 is a
collection of directeries 118. A directory 118 is a
collection of named files 120 -- both data files 120 and
other directory files 118. A file 120 is a named data
item which is either a data file (which may be simple or

35 compound) or a directory file 118. A simple file 120
consists of a single data segment 122. A compound file
120 consists of a sequence of data segments 122. A data

>

GOOG-1016-Page 14 of 126

segment 122 is a fixed sequence of bytes. An important
property of any data segment is its size, the number of
bytes in the sequence.))
A single processor 102 may access one or more
5 file systems 116, and a single storage device 104 may
contain one or more file systems 116, or portions of a
file system 116. For instance, a file system 116 may
span several storage devices 104.
In order to implement controls in a file
10 system, file system 116 may be divided into distinct
regions, where each~regidh is a unit of management and
control. A region consists of a given directory 118 and
is identified by the pathname (user defined) of the
directory. i}
15 In the following, the term "location', with
respect to a data processing system 100, refers to any of
a particular processor 102 in the system, a memory of a
particular processor, a storage device, a removable
storage medium (such as a floppy disk or compact disk),
20 or any other physical location in the system. The term
"local" with respect to a particular processor 102 refers
to the memory and storage devices of that particular
processor. ’
In the foilowing, the terms "True Name", "data
25 identity" and "data identifier" refer to the

substantially unique data identifier for a particular
data item. The term "True File" refers to the actual
file, segment, or data item identified by a True Name.
A file system for a data processing system 100
30 is now described which is intended to work with an
existing operating system by augmenting some of the
operating system’s file management system codes. The
embodiment provided relies on the standard file
management primitives for actually storing to and
. 35 retrieving data items from disk, but uses the mechanisms
of .the present invention to reference and access those
data items. »

10

GOOG-1016-Page 15 of 126

The processes and mechanisms (services)
provided in this embodiment are grouped into the
following categories: primitive mechanisms, operating
system mechanisms, remote mechanisms, background

5 mechanisms, and extended mechanisms.

Primitive mechanisms provide fundamental

capabilities used to support other mechanisms. The

following primitive mechanisms are described:

1. Calculate True Name;
10 2. Assimilate Data Item;
3. New True File;
4. Get True Name from Path;

5. Link path to True Name;

6. Realize True File from Location;
15 7. Locate Remote File;

8. Make True File Local;

9. Create Scratch File;

10. Freeze Directory; '

11. Expand Frozen Directory;
26 12. Delete True File;

13. Process Audit File Entry;

14. Begin Grooming;

15. Select For Removal; and

16. End Grooming.

25 Operating system mechanisms provide typical

i familiar file system mechanisms, while maintaining the
data structures required to offer the mechanisms of the
present invention. Operating system mechanisms are
designed to augment exiéting operating systems, and in

30 this way to make the present invention compatible with, .
and generally transparent to, existing applications. The
following operéting system mechanisms are described:

1. Open File;

2. Close File;
35 3. Read File;
4, Write File;
5. Delete File or Directory;

11

-

NS

GOOG-1016-Page 16 of 126

6. Copy File or Directory;

7. Move File or Directory;
8. Get Filelstatus; and
9. Get Files in Directory.
5 Remote mechanisms are used by the operating

system in responding to requests from other processors.
These mechanisms enable the capabilities of the present
invention in a peer-to-peer network mode of operation.
The following remote mechanisms are described:

10 1. Locate True File;
2. Reserve True File;
3. Request True File;

4. Retire True File;
5. cancel Reservation;
15 6. Acquire True File;
7. Lock Cache;
8. Update Cache; and
9. Check Expiration Date.
Background mechanisms are intended to run
20 occasionally and at a low priority. These provide
automated management_capabilities with respect to the
present invention. The following background mechanisms
are described:
1. Mirror True File;

25 2. Groom Region;
3. check for Expired Links; and
4. Verify Region; and
5. Groom Source List.

Extended mechanisms run within application
30 programs over the operating system. These mechanisms
provide solutions to.specific problems and applications.;
The following extended mechanisms are described:

1. Inventory Existing Directory;
2. Inventory Removable, Read-only Files;
35 3. Synchronize directories;

4. Publish Region;
5. Retire Directory;

12

GOOG-1016-Page 17 of 126

6. Realize Directory at location;
7. vVerify True File;

8. Track for accounting purposes; and
9. Track for licensing purposes.
5 The file system herein described maintains

sufficient information to provide a variety of mechanisms
not ordinarily offered by an operating system, some of
which are listed and described here. Various processing
performed by this embodiment of the present invention

10 will now be described in greater detail.

In some embodiments, some files 120 in a data
processing system 100 do not have True Names because they
have been recently received or created or modified, and
thus their True Names have not yet been computed. A file

15 that does not yet have a True Name is called a scratch
file. The process‘of assigning a True Name to a file is
referred to as assimilation, and is described later.

Note that a scratch file may have a user provided name.
: Some of the processing'performed by the present

20 invention can take place in a background mode or on a
delayed or as-needed basis. This background processing
is used to determine information that is not immediately
required by the system or which may never be required.

As an example, in some cases a scratch file is‘being

25 changed at a rate greater than the rate at which it is
useful to determine its True Name. In these cases,
determining the True Name of the file can be postponed or
performed in the background.

Data_ Structures -

30 The following daté structures, stored in memory
110 of one of more processors 102 are used to implement
the mechanisms described herein. The data structures can
be local to each processor 102 of the system 100, or they
can reside on only some of the processors 102.

GOOG-1016-Page 18 of 126

The data structures described are assumed to
reside on individual peer processors 102 in the data
processing system 100. However, they can also be shared
by placing them on a remote, shared file server (for'

5 instance, in a local area network of machines). 1In order
to accommodate sharing data structures, it is necessary
that the processors accessing the shared database use the
appropriate locking techniques to ensure that changes to
the shared database do not interfere with one another but

10 are appropriately serialized. These locking techniques
are well understood by oféinarily skilled programmers of
distributed applications.

It is sometimes desirable to allow some regions
to be local to a particular processor'loz and other

15 regions to be shared among processors 102. (Recall that
a region is a unit of file system management and control
consisting of a given directory identified by the
pathname of the directory.) ' In the case of local and
shared regions, there would be both local and shared

20 versions of each data structure. Simple changes to the

processes described below must be made to ensure that
appropriate data structures are selected for a given
operation. o

The local directory extensions (LDE) table 124

25 is a data structure which provides information about
files 120 and directories 118 in the data processing
system 100. The local directory extensions table 124 is
indexed by a pathname or contextual name (that is, a user
provided name) of a file and inéludes the True Name for

30 most files. The information in local directory extension
table 124 is in addifion to that provided by the native
file system of the operating system.

The True File registry (TFR) 126 is a data
store for listing actual data items which have True

35 Names, both files 120 and segments 122. When such data
items occur in the True File registry 126 they are kncwn
as True Files. True Files are identified in True File

14

&\f~\

GOOG-1016-Page 19 of 126

registry 126 by their True Names or identities. The
table True File registry 126 also stores location,
dependency, and migration information about True Files.

The region table (RT) 128 defines areas in the

5 network storage which are to be managed separately.

Region table 128 defines the rules for access to and
migration of files 120 among various regions with the
local file system 116 and remote peer file systems.

The source table (ST) 130 is a list of the

10 sources of True Files other than the current True File
registry 126. The source table 130 includes removable
volumes and remote processors.

The audit file (AF) 132 is a list of records
indicating changes to be made in local or remote files,

15 these changes to be processed in background.

The accounting log (AL) 134 is a log of file
transactions used to create accounting information in a
manner which preserves the identity of files being
tracked independent of their name or location.

20 The license table (LT) 136 is a table
identifying files, which may only be used by licensed
users, in a manner independent of their name or location,
and the users licensed to use them.

Detailed Descriptions of the Data Structures

25 The following table summarizes the fields of an
local directory extensions table entry, as illustrated by
_record 138 in FIGURE 3.

Field Description

Region ID identifies the region in which this file is
: contairfed.

Pathname the user‘provided name or. contextual name

of the file or directory, relative to the
region in which it occurs.

True Name the computed True Name or identity of the
file or directory. This True Name is not
always up to date, and it is set to a
special value when a file is modified and
is later recomputed in the background.

15

L

GOOG-1016-Page 20 of 126

5
10
15
~ 20
AV
. \
. {”\\
AN
{ \

Field Description

Type indicates whether the file is a data file
or a directory.

Scratch the physical location of the file in the

File ID file system, when no True Name has been
calculated for the file. As noted above,
such a file is called a scratch file.

Time of the last access time to this file. 1If this

last file is a directory, this is the last

access access time to any file in the directory.

Time of the time of last change of this file. If

last modi- | this file. is- a directory, this is the last

fication modification time of any file in the
directory.

Safe flag indicates that this file (and, if this file

: is a directory, all of its subordinate
files) have been backed up on some other
system, and it is therefore safe to remove
them.]

Lock flag indicates whether a file is locked, that
is, it is being modified by the local pro-
cessor or a remote processor. Only one
processor may modify a file at a time,

Size the full size of this directory (including
all subordinate files), if all files in it
were fully expanded and duplicated. For a
file that is not a directory this is the
size of the actual True File.

owner the identity of the user who owns this
file, for accounting and license tracking
purposes. -

Each record of the True File registry 126 has

the fields shown in the True File registry record 140 in

FIGURE 4.

The True File registry 126 consists of the

database described in the table -below as well as the
actual True Files idgntified by the True File IDs below.

B

FPield

Description

True Name

computed True Name or identity of
the file.]

16

GOOG-1016-Page 21 of 126

Field Description
Compressed compressed version of the True File
File ID may be stored instead of, or in
addition to, an uncompressed
version. This field provides the
identity of the actual
representation of the compressed
version of the file.
Grooming tentative count of how many
delete count references have been selected for
deletion during a grooming
operation.
5 Time of last most receht date and time the
access content of this file was accessed.
Expiration date and time after which this file
: may be deleted by this server.
Dependent processor IDs of other processors
processors which contain references to this
True File.
10 Source IDs source ID(s) of zero or more
sources from which this file or
data item may be retrieved.
True File ID identity or disk location of the
actual physical representation of
the file or file segment. It is’
sufficient to use a filename in the
registration directory of the
underlying operating system. The
True File ID is absent if the
actual file is not currently
present at the current location.
Use count number of other records on this
processor which identify this True
File.
A region table 128, specified by a directory
pathname, records storage policies which allow files in
15 the file system to be stored, accessed and migrated in
different ways. Storage policies are programmed in a
configurable way using a set of rules described below.
Each region table record 142 of region table
128 includes the fields described in the following table
20 (with reference to FIGURE 5):

17

GOOG-1016-Page 22 of 126

Field Description

Region ID internally used. identifier for this
region. ,

. Region file system file system on the local processor of
) which this region is a part.

/” o Region pathname a pathname relative to the region file

\ system which defines the location of

’ this region. The region consists of
all files and directories subordinate

to this pathname, except those in a

region subordinate to this region.

5 Mirror processor(s) zero or more identifiers of processors
which are to keep mirror or archival
copies of all files in the current
region. Multiple mirror processors
can be defined to form a mirror group.

Mirror duplication number of copies of each file in this

count region that should be retained in a
mirror group.

Region status specifies whether this region is local
to a single processor 102, shared by
several processors 102 (if, for
instance, it resides on a shared file
server), or managed by a remote
processor.

Policy the migration policy to apply to this
region. A single region might
participate in several policies. The
policies are as follows (parameters in
brackets are specified as part of the
policy): ‘

region is a cached version from
[processor ID];
region is a member of a mirror set
defined by [processor ID].
region is to be archived on
[processor ID].’
region is to be backed up locally,
by placing new copies in [region
ID]. :
region is read only and may not be
changed.
region is published and expires on
[date].
Files in this region should be
compressed.

10 A source table 130 identifies a source location

for True Files.

The source table 130 is also used to

18

GOOG-1016-Page 23 of 126

10

15

"20

identify client processors making reservations on the

current processor. Each source record 144 of the source
table 130 includes the fields summarized in the following

table, with reference to FIGURE 6:

Field Description
source ID internal identifier used to identify a
particular source.
source type of source. location:
type Removable Storage Volume
Local Regiow
Cache Server
Mirror Group Server
Cooperative Server
Publishing Server
Client
source includes information about the rights
rights of this processor, such as whether it
can ask the local processor to store
data items for it.
source measurement of the bandwidth, cost,
availabil~- | and reliability of the connection to
ity this source of True Files. The avail-
ability is used to select from among
several possible sources.
source information on how the local processor
location is to access the source. This may be,
for example, the name of a removable
storage volume, or the processor ID
and region path of a region on a
remote processor.

The audit file 132 is a table of events ordered

by timestamp, each record 146 in audit file 132 including

the fields summarized in the following table (with

_ reference to FIGURE 7):

Field

Description

original Name | path of the file in gquestion.

Operation whether the file was created, read,
written, copied or deleted.
Type specifies whether the source is a file

or a directory.

19

GOOG-1016-Page 24 of 126

Field Description

Processor ID | ID of the remote processor generating
this event (if not local).

Timestamp time and date file was closed (required
only for accessed/modified files).

Pathname ‘Name of the file (required only for
rename) .

True Name computed True Name of the file. This is

used by remote systems to mirror changes
to the directory and is filled in during
background processing.

-

5 Each record 148 of the accounting log 134
records an event which may later be used to provide
information for billing mechanisms. Each accounting log
entry record 148 includes at least the information
summarized in the following table, with reference to

FIGURE 8:

Field Description

date of date and time of this log entry.

entry

tYpe of Entry types include create file,

entry delete file, and transmit file.

True Name True Name of data item in question.

owner identity of the user responsible for
this action.

Each record 150 of the license table 136
records a relationship between a licensable data item and
20 the user licensed to have access to it. Each license
table record 150 includes the information summarized in
the following table,”with reference to FIGURE 9:

Field Description

True Name True Name of a data item subject to
: license validation.

Sy
-

GOOG-1016-Page 25 of 126

10

15

20

25

30

Field Description

licensee identity of a user authorized to have

access to this object.

Various other data structures are employed on
some or all of the processors 102 in the data processing
system 100. Each processor 102 has a global freeze lock
(GFL) 152 (FIGURE 1), which is used to prevent
synchronization errors when a directory is frozen or
copied. Any processor 102 may include a special archive
directéry (SAD) 154 into which directories may be copied
for the purposes of archival. Any processor 102 may
include a special media directory (SMD) 156, into which
the directories of removable volumes are stored to form a
media inventory. Each processor has a grooming lock 158,
which is set during a grooming operation. During this
period the grooming delete count of True File registry
entries 140 is active, and no True Files should be
deleted until grooming is complete. While grooming is in
effect, grooming information includes a table of
pathnames selected for deletion, and keeps track of the
amount of space that would be freed if all of the files
were deleted.

Primitive Mechanisms

The first of the mechanisms provided by the
present invention, primitive mechanisms, are now
described. The mechanisms described here depend on
underlying data management mechanisms to create, copy,
read, and delete data items in the True File registry
126, as identified by a True File ID. This support may
be provided by an underlying operating sYstem or disk
storage manager.

The following primitive mechanisms are

described:
1. Calculate True Name;
2. Assimilate Data Item;
21
e !
;Kyﬁu

GOOG-1016-Page 26 of 126

3. New True File;

4. Get True Name from Path;

5. Link Path to True Name;

6. Realize True File from Location;
5 - 7. Locate Remote File;

8. Make True File Local;

9. Create Scratch File;

10. Freeze Directory;

11. Expand Frozen Directory;
10 12. Delete True File;

13. Process Audit File Entry;

14. Begin Grooming;

15. Select For Removal; and

16. End Grooming.

15 1. Calculate True Name
A True Name is computed ﬁsing a function, MD,
which reduces a data block B of érbitrary length to a
relatively small, fixed size identifier, the True Name of
the data block, such that the True Name of the data block
20 is virtually guaranteed to represent the data block B and
only data block B.
The function MD must have the following
properties:
1. The domain of the function MD is the set
25 of all data items. The range of the
function MD is the‘set of True Names.

2. The function MD must take a data item of
arbitrary length and reduce it to an
integer value in the range 0 to N-1, where

30 N is fhe cardinality of the set of True '
Names. That is, for an arbitrary length
data block B, 0 < MD(B) < N.

3. The results of MD(B) must be evenly and

randomly distributed over the range of N,
35 . in such a way that éimple or regular

22

GOOG-1016-Page 27 of 126

10

15

20

25

30

35

changes to B are virtually guaranteed to
produce a different value of MD(B).

4. It must be computationally difficult to
find a different value B’ such that
MD(B)=MD(B’) .

5. The function MD(B) must be efficiently

computed.

A family of functions with the above properties
are the so-called message digest functions, which are
used in digital security systems as techniques for
authentification of data. These functions (or
algorithms) include MD4, MD5, and SHA.

In the presently preferred embodiments, either
MD5 or SHA is employed as the basis for the computation
of True Names. Whichever of these two message digest
functions is employed, that same function must be
employed on a system-wide basis.

It is impossible to define a function having a
unique output for each possible input when the number of
elements in the range of the function is smaller than the
number of elements in its domain. However, a crucial
observation is that the actual data items that will be
encountered in the operation of any system embodying this
invention form a very sparse subset of all the possible
inputs.

"A colliding set of data items is defined as a
set wherein, for one or more pairs x and y in the set,
MD(x) = MD(y). Since a function conforming to the
requirements for MD must evenly and randomly distribute
its outputs, it is possible, by making the range of the
function large enough, to make the probability
arbitrarily small that actual inputs encountered in the
operation of an embodiment of this invention will form a
colliding set.

To roughly quantify the probability of a
collision, assume that there are no more than 2°° storage
devices in the world, and that each storage device has an

23

- ad

GOOG-1016-Page 28 of 126

average of at most 2% different data items. Then there
are at most 2°° data items in the world. If the outputs
of MD range between 0 and 2”5, it can be demonstrated
that the probability of a collision is approximately 1 in

5 2%®. Details on the derivation of these probability
values are found, for example, in P. Flajolet and A.M.
Odlyzko, "Random Mapping Statistics," Lecture Notes in
Computer Science 434: Advances in Cryptology ~- Eurocrypt
89 Proceedings, Springer-Verlag, pp. 329-354.

10 Note that for some less preferred embodiments
of the present invention;?lower probabilities of
uniqgueness may be acceptable, depending on the types of
applications and mechanisms used. In some embodiments it
may also be useful to have more than one level of True

15 Names, with some of the True Names having different
degrees of uniqueness. If such a scheme is implemented,
it is necessary to ensure that less unique True Names are
not propagated in the system.

While the invention is described herein using

20 only the True Name of a data item as the identifier for
the data item, other preferred embodiments use tagged,
typed, categorized or classified data items and use a
combination of both the True Name and the tag, type,
category or class of the data item as an identifier.

25 Examples of such categorizations are files, directories,

and segments; executable files and data files, and the
like. Examples of classes are classes of objects in an
object-oriented system.i In such a system, a lower degree
of True Name uniqueness is acceptable over the entire
30 universe of data items, as long as sufficient uniqueness.
is provided per category of data items. This is because
the tags provide an additional level of uniqueness.
A mechanism for calculating a True Name given a
data item is now described, with reference to FIGURES
35 10(a) and 10(b).
A simple data item is a data item whose size is
less than a particular given size (which must be defined

24

GOOG-1016-Page 29 of 126

10

15

20

25

30

35

in each particular implementation of the invention). To
determine the True Name of a simple data item, with
reference to FIGURE 10(a), first compute the MD function
(described above) on the given simple data item (Step
S212). Then append to the resulting 128 bits, the byte
length modulo 32 of the data item (Step S214). The
resulting 160-bit value is the True Name of the simple
data item.

A compound data item is one whose size is
greater than the particular given size of a simple data
item. To determine the True Name of an arbitrary (simple
or compound) data item, with reference to FIGURE 10(b),
first determine if the data item is a simple or a
compound data item (Step S216). If the data item is a
simple data item, then compute its True Name in step 5218
(using steps S212 and S214 described above), otherwise
partition the data item into segments (Step S220) and
assimilate each segment (Step S222) (the primitive
mechanism, Assimilate a Data Item, is described below),
computing the True Name of the segment. Then create an
indirect block consisting of the computed segment True
Names (Step S224). An indirect block is a data item
which consists of the sequence of True Names of the
segments. Then, in step S226, assimilate the indirect
block and compute its True Name. Finally, replace the
final thirty-two (32) bits of the resulting True Name
(that is, the length of the indirect block) by the length
modulo 32 of the compound data item (Step S228). The
result is the True Name of the compound data item.

Note that the compound data item may be so
large that the indirect block of segment True Names is
itself a compound data item. In this case the mechanism
is invoked recursively until only simple data items are
being processed.

Both the use of segments and the attachment of
a length to the True Name are not sfrictly required in a
system using the present invention, but are currently

25

RS
N
-

€

GOOG-1016-Page 30 of 126

10

15

20

25

30

considered desirable features in the preferred

embodiment.

2. Assimilate Data Ttem

A mechanism for assimilating a data item
(scratch file or segment) into a file system, given the
scratch file ID of the data item, is now described with
reference to FIGURE 11. The purpose of this mechanism is
to add a given data item to the True File registry 126.
If the data item already exists in the True File registry
126, this will be discovered and used during this
process, and the duplicate will be eliminated.

Théreby_the system stores at most one copy of
any data item or file by content, even whén multiple
names refer to the same content.

First, determine the True Name of the data item
correspeonding to the given scratch File ID using the
Calculate True Name primitive mechanism (Step S$230).
Next, look for an entry for the True Name in the True
File registry 126 (Step S232) and determine whether a
True Name entry, record 140, exists in the True File
registry 126. If the entry record includes a
corresponding True File ID or compressed File ID (Step
S237), delete the file with the scratch File ID (Step
$238). Otherwise store the given True File ID in the
entry record (step S239).

If it is determined (in step S232) that no True
Name entry exists in the True File registry 126, then, in
Step S236, create a new entry in the True File registry
126 for this True Name. Set the True Name of the entry ..
to the calculated True Name, set the use count for the ‘
new entry to oﬁe, store the given True File ID in the
entry and set the other fields of the entry as
appropriate.

26

P
S

GOOG-1016-Page 31 of 126

10

15

20

25

30

35

Because this procedure may take some time to
compute, it is intended to run in background after a file
has ceased to change. In the meantime, the file is

considered an unassimilated scratch file.

3. New True File

The New True File process is invoked when
processing the audit file 132, some time after a True
File has been assimilated (using the Assimilate Data Item
primitive mechanism). Given a local directory extensions
table entry record 138 in the local directory extensions
table 124, the New True File process can provide the
following steps (with reference to FIGURE 12), depending
on how the local processor is configured:

First, in step S238, examine the local
directory extensions table entry record 138 to determine
whether the file is locked by a cache server. If the
file is locked, then add the ID of the cache server to
the dependent processor list of the True File registry
table 126, and then send a message to the cache server to
update the cache of the current processor using fhe
Update Cache remote mechanism (Step 242).

If desired, compress the True File (Step S246),
and, if desired, mirror the True File using the Mirror
True File background mechanism»(step 5248).

4. Get True Name from Path

The True Name of a file can be used to identify
a file by contents, to confirm that a file matches its
original contents, or to compare two files. The)
mechanism to get a True Name given the pathname of a file
is now described with reference toc FIGURE 13.

First, search the local directory extensions
table 124 for the entry record 138 with the given
pathname (Step S250). If the pathname is not found, this
process fails and no True Name corresponding to the given
pathname exists. Next, determine whether the local

27

G

GOOG-1016-Page 32 of 126

10

15

20

25

30

35

directory extensions table entry record 138 includes a
True Name (Step S252), and if so, the mechanism’s task is
complete. Otherwise, determine whether the local
directory extensions table entry record 138 identifies a
directory (Step S254), and if so, freeze the directory
(Step S256) (the primitive mechanism Freeze Directory is
described below).

Otherwise, in step 8258, assimilate the file
(using the Assimilate Data Item primitive mechanism)
defined by the File ID field to generate its True Name
and store its True Name iﬁ the local directory extensions
entry record. Then return the True Name identified by
the local directory extensions table 124.

5. Link Path to True Name
The mechanism to link a path to a True Name

provides a way of creating a new directory entry record
identifying an existing, assimilated file. This basic
process may be used to copy, move, and rename files
without a need to copy their contents. The mechanism to
link a path to a True Name is now described with
reference to FIGURE 14.

First, if desired, confirm that the True Name
exists locally by searching for it in the True Name
registry or local directory extensions table 135 (Step
S260). Most uses of this mechanism will require this
form of validation. Nexﬁ, search for the path in the
local directory extensions table 135 (Step S262).
Confirm that the directory containing the file named in
the path already exists (Step S264). If the named file
itself exists, deleté the File using the Delete True File
operating system mechanism (see below) (Step S268).

Then, create an entry record in the local
directory extensions with the specified path (Step S270)
and update the entry record and other data structures as
follows: £ill in the True Name field of the entry with
the specified True Name; increment the use count for the

28

'S
Nod
D

J

GOOG-1016-Page 33 of 126

True File registry entry record 140 of the corresponding:
True Name; note whether the entry is a directory by
reading the True File to see if it contains a tag (magic
number) indicating that it represents a frozen directory
5 (see also the description of the Freeze Directory
primitive mechanism regarding the tag); and compute and
set the other fields of the local directory extensions
appropriately. For instance, search the region table 128
to identify the region of the path, and set the time of

10 last access and time of last modification to the current
time. :
6. Realize True File from Location

This mechanism is used to try to make a local
copy of a True File,‘given its True Name and the name of
15 a source location (processor or media) that may contain
the True File. This mechanism is now described with
reference to FIGURE 15.
First, in step 8272; determine whether the
location specified is a processor. If it is determined
20 that the location specified is a processor, then send a
Request True File message (using the Request True File
remote mechanism) to the remote processor and wait for a
response (Step S274). If a negative response is received
or no response is received after a timeout period, this

25 mechanism fails. If a positive response is received,
enter the True File returned in the True File registry
126 (Step S276). (If the file received was compressed,
enter the True File ID in the compressed File ID field.)
If, on the other hand, it is determined in step
30 8272 that the locatian specified is not a processor, ‘
' then, if necessary, request the user or operator to mount
the indicated volume (Step S278). Then (Step S280) find
the indicated file on the given volume and assimilate the
file using the Assimilate Data Item primitive mechanism.
35 If the volume does not contain a True File registry 12s,
search the media inventory to find the path of the file

29

AN
&

GOOG-1016-Page 34 of 126

10

15

20

25

30

35

on the volume. If no such file can be found, this
mechanism fails. '

At this point, whether or not the location is
determined (in step S$272) to be a processor,'if desired,
verify the True File (in step S282).

7. Locate Remote File

%>

file or data\item from a remote source of True Files,

his mechanism allows a processor to locate a

when a specifi¢ source is unknown or unavailable., A

client processon system méy ask one of several or many
sources whether i\ can supply a data object with a given
True Name. The ste to perform this mechanism are as
to FIGURE 16).

The client processor 102 uses the source table

follows (with referen

145 to select one or more source processors (Step S284).
If no source processor can be found, the mechanism fails.
Next, the client processor 102 broadcasts to the selected
sources a request to locate the file with the given True
Name using the Locate True File remote mechanism (Step
5286) . The request to locate may be augmented by asking
to propagate this request to distant servers. The client
processor then waits for one or more servers to respond
positively (Step S288). After all servers respond
negatively, or after a timeout period with no positive -
response, the mechanism repeats selection (Step S284) to
attempt to identify alternative sources. If any selected
source processor responds, its processor ID is the result
of this mechanism. Store the processor ID in the source
field of the True File registry entry record 140 of the
given True Name (Step S290).

If the source location of the True Name is a
different processor or medium than the destination (Step
S290a), perform the following steps:

. (i) Look up the True File registry entry
record 140 for the corresponding True Name, and add the

30

GOOG-1016-Page 35 of 126

10

15

20

25

30

35

source location ID to the list of sources for the True
Name (Step S290b); and , .

(ii) If the source is a publishing systen,
determine the expiration date on the publishing system
for the True Name and add that to the list of sources.
If the source is not a publishing system, send a message
to reserve the True File on the source processor (Step
$290c) .

Source selection in step S284 may be based on
optimizations involving general availability of the
source, access time, bandwidth, and transmission cost,
and ignoring previously selected processors which did not

respond in step S288.

8. Make True File Iocal

o3>

known and a

is mechanism is used when a True Name is

ocally accessible copy of the corresponding
file or data Nem is required.‘ Thig mechanism makes it
possible to actbially read the data in a True File. The
mechanism takes a\True Name and returns when there is a
local, accessible py of the True File in the True File
registry 126. This kechanism is described here with
reference to the flow ‘thart of FIGURE 17. v

First, look in the True File registry 126 for a
True File entry record 140 for the corresponding True
Name (Step S292). If no such entry is found this
mechanism fails. If there is already a True File ID for
the entry (Step S294), this mechanism’s task is complete.
If there is a compressed file ID for the entry (Step
S8296), decompress the file corresponding to.the file ID
(Step S298) and storeg the decompressed file ID in the
entry (Step S300). This mechanism is then complete.

If there is no True File ID for the entry (Step
5294) and there is no compressed file ID for the entry
(Step 5296), then continue searching for the requested
file. At this time it may be necessary to notify the
user that the system is searching for the requested file.

31

GOOG-1016-Page 36 of 126

10

15

20

25

30

35

If there are one or more source IDs, then
select an order in which to attempt to realize the source
ID (Step S304). The ordef may be based on optimizations
involving general availability of the source, access
time, bandwidth, and transmission cost. For each source
in the order chosen, realize the True File from the
source location (using the Realize True File from
Location primitive mechanism), until the True File is
realized (Step S306). If it is realized, continue with
step S294. If no known source can realize the True File,
use the Locate Remote File primitive mechanism to attempt
to find the True .File (Step S308). If this succeeds,
realize the True File from the identified source location

and continue with step S296.

9. Create Scratch File
D scratch copy of a file is required when a

file is beiny created or is about to be modified. The
scratch copy i% stored in the file system of the
underlying operating system. The scratch copy is
eventually assimilated when the audit file record entry
146 is processed by the Process Audit File Entry
primitive mechanism. his Create Scratch File mechanisnm
requires a local directory extensions table entry record
138. When it succeeds, t local directory extensions
table entry record 138 contains the scratch file ID of a
scratch file that is not contiined in the True File
registry 126 and that may be mogified. This mechanism is
now described with reference to GURE 18.

First determine whether the scratch file should
be a copy of the existing True File (Step S$310). If so,'
continue with step S312. Otherwise, determine whether
the local directory extensions table entry record 138
identifies an existing True File (Step S316), and if so;,
delete the True File using the Delete True File primitive
mechanism (Step $318). Then create a new, empty scratch
file and store its scratch file ID in the local directory

32

v
3
S

R

GOOG-1016-Page 37 of 126

extensions table entry record 138 (Step S320). This
mechanism is then complete.

If the local directory extensions table entry
record 138 identifies a scratch file ID (Step S312), then

5 the entry already has a scratch file, so this mechanism
succeeds.

If the local directory extensions table entry
record 138 identifies a True File (S316), and there is no
True File ID for the True File (S312), then make the True

10 ‘ File local using the Make True File Local primitive
mechanism (Step S$322). If there is still no True File
ID, this mechanism fails.
There is now a local True File for this file.
If the use count in the corresponding True File registry
15 entry record 140 is one (Step S326), save the True File
ID in the scratch file ID of the local directory
extensions table entry record 138, and remove the True
File registry entry record 140 (Step S328). (This step
makes the True File into a scratch filé.) This
20 mechanism’s task is complete.

Otherwise, if the use count in the
corresponding True File registry entry record 140 is not
one (in step S$326), copy the file with the given True
File ID to a new scratch file, using the Read File 0S

25 mechanism and store its file ID in the local directory

extensions table entry record 138 (Step $330), and reduce
the use count for the True File by one. If there is
insufficient space to make a copy, this mechanism fails.

10. Freeze Directory
30 C\>“>

is mechamism freezes a directory in order to

calculate its\ True Name. Since the True Name of a
directory is a “function of the files within the
directory, they st not change during the computation of
the True Name of the directory. This mechanism requires
35 the pathname of a dikectory to freeze. This mechanism is

described with referenke to FIGURE 19.

33

(33

GOOG-1016-Page 38 of 126

10

15

20

25

30

In step S332, add one to the global freeze
lock. Then search the local directory extensions table
124 to find each subordinate data file and directory of
the given directory, and freeze each subordinate
directory found using the Freeze Directory primitive
mechanism (Step S334). Assimilate each unassimilated
data file in the directory using the Assimilate Data Item
primitive mechanism (Step S336). Then create a data item
which begins with a tag or marker (a "magic number")
being a unique data item indicating that this data item
is a frozen directory (Step §337). Then list the file
name and True Name for each file in the current directory
(Step S338). Record any additional information required,
such as the type, time of last access ‘and modification,
and size (Step S340). Next, in step S342, using the
Assimilate Data Item primitive mechanism, assimilate the
data item created in step S338. The resulting True Nanme
is the True Name of the frozen directory. Finally,
subtract one from the global freeze lock (Step S344).

‘11. Expand Frozen Directory

This mechanism expands a frozen directory in a
given location. It requires a given pathname into which
to expand the directory, and the True Name of the
directory and is described with reference to FIGURE 20.

First, in step S346, make the True File with
the given True Name local using the Make True File Local
primitive mechanism. Then read each directory entry in
the local file created in step S346 (Step S348). For
each such directory entry, do the following:

' Create a full pathname using the given pathname
and the file name of the entry (Step S350); and

link the created path to the True Name (Step
$352) using the Link Path to True Name primitive

mechanism.

34

GOOG-1016-Page 39 of 126

10

15

20

25

30

35

12. Delete True File

This mechanism deletes a reference to a True
Name. The underlying True File is not removed from the
True File registry 126 unless there are no additional
references to the file. With reference to FIGURE 21,
this mechanism is performed as follows:

If the global freeze lock is on, wait until the.
global freeze lock is turned off (Step S354). This
prevents deleting a True File while a directory which
might refer to it is being frozen. Next, find the True
File registry entry record 140 given the True Name (Step
S356). If the reference count field of the True File
registry 126 is greater than zero, subtract one from the
reference count field (Step S358). If it is determined
(in step S360) that the reference count field of the True
File registry entry record 140 is zero, and if there are
no dependent systems listed in the True File registry
entry record 140, then perform the fcllowinq steps:

(i) If the True File is a simple data item,
then delete the True File, otherwise,

(1i) (the True File is a compound data item)
for each True Name in the data item, recursively delete
the True File corresponding to the True Name (Step S362).

’ (iii) Remove the file indicated by the True
File ID and compressed file ID from the True File
registry 126, and remove the True File registry entry
record 140 (Step S364).

13. Process Audit File Entry

This mechanism performs tasks which are
required to maintain_,information in the local diréctory
extensions table 124 and True File registry 126, but
which can be delayed while the processor is busy doing
more time-critical tasks. Entries 142 in the audit file
132 should be processed at a background priority as long
as there are entries to be processed. With reference to

35

N

GOOG-1016-Page 40 of 126

10

15

20

25

30

35

FIGURE 22, the steps for processing an entry are as
follows:

Determine the operation in the entry 142
currently being processed (Step S365). If the operation
indicates that a file was created or written (Step S366),
then assimilate the file using the Assimilate Data Item
primitive mechanism (Step S368), use the New True File
primitive mechanism to do additional desired processing
(such as cache update, compression, and mirroring) (Step
S369), and record the newly computed True Name for the
file in the audit file record entry (Step S370).

Otherwise, if the entry being processed
indicates that a compound,daﬁa item or directory was
éopied (or deleted) (Step S376), then for each component
True Name in the compound data item or directory, add (or
subtract) one to the use count of the True File registry
entry record 140 corresponding to the component True Name
(Step S378).)

In all cases, for each parent directory of the
given file, update the size, time of last access, and
time of last modification, according to the operation in
the audit record (Step S§379).

Note that the audit record is not removed after
processing, but is retained for some reasonable period so
that it may be used by the Synchronize Directory extended
mechanism to allow a disconnected remote processor to
update its representation of the local systen.

14, Begin Grooming

This mechanism makes it possible ‘to select a
set of files for remgval and determine the overall amount
of space to be recovered. With reference to FIGURE 23,
first verify that the global grooming lock is currently
unlocked (Step S382). Then set the global grooming lock,
set the total amount of space freed during grooming to
zero and empty the list of files selected for deletion

GOOG-1016-Page 41 of 126

10

15

20

25

30

{(Step S384). For each True File in the True File
registry 126, set the delete count to zero (Step S386).

15. Select For Removal

This grooming mechanism tentatively selects a
pathname to allow its corresponding True File to be
removed. With reference to FIGURE 24, first find the
local directory extensions table entry record 138
corresponding to the given pathname (Step S388). Then
find the True File registry entry record 140
corresponding to the True File name in the local
directory extensions table entry record 138 (Step S390).
Add one to the grooming delete count in the True File
registry entry record 140 and add the pathname to a list
of files selected for deletion (Step $392). If the
grooming delete count of the True File registry entry
record 140 is egqual to the use count of the True File
registry entry record 140, and if the there are no
entries in the dependency list of the True File registry
entry record 140, then add the size of the file indicated
by the True File ID and or compressed file ID to the
total amount of space freed during grooming (étep S3%4) .

16. End Greooming

This grooming mechanism ends the grooming phase
and removes all files selected for removal. With
reference to FIGURE 25, for each file in the list of
files selected for deletion, delete the file (Step S396)
and then unlock the global grooming lock (Step S398).

Operating System Mechanisms

The next of the mechanisms provided by the
present invention, operating system mechanisms, are now
described.

The following operating system mechanisms are
described:

1. Open File;

37

GOOG-1016-Page 42 of 126

10

15

20

25

30

35

2. Close File;

3. Read File;

4, Write File;

5. Delete File or Directory;
6. Copy File or Directory;
7. Move File or Directory;
8. Get File Status; and

9. Get Files in Directory.

1. Open File
ﬂ>?>> mechanism to open a file is described with

reference to, FIGURE 26. This mechanism is given as input
a pathname ang the type of access required for the file
(for example, ad, write, read/write, create, etc.) and
produces either e File ID of the file to be opened or
an indication that\no file should be opened. The local
direétory extensionsg\ table redord 138 and region table
record 142 associated With the opened file are associated
with the open file for ter use in other processing
functions which refer to the file, such as read, write,
and close. .
First, determine whether or not the named file
exists locally by examining the local directory
extensions table 124 to determine whether there is an
entry corresponding to the given pathname (Step S400).
If it is determined that the file name does not exist
locally, then, using the access type, determine whether
or not the file is being created by this opening process
(Step S402). If the file is not being created, prohibit
the open (Step S404). If the file is being created,
create a zero-lengthvscratch file using an entry in local
directory extensions table 124 and produce the scratch
file ID of this scratch file as the result (Step S406).
If, on the other hand, it is determined in step
S400 that the file name does exist locally, then
determine the region in which the file is located by

searching the region table 128 to find the record 142

38

GOOG-1016-Page 43 of 126

10

15

20

25

30

35

with the longest region path which is a prefix of the
file pathname (Step S5408). This record identifies the
region of the specified file.

Next, determine using the access type, whether
the file is being opened for writing or whether it is
being opened only for reading (Step S410). If the file
is being opened for reading only, then, if the file is a
scratch file (Step S419), return the scratch File ID of
the file (Step 8424). Otherwise get the True Name from
the local directory extensions table 124 and make a local
version of the True File associated with the True Name
using the Make True File Local primitive mechanism, and
then return the True File ID associated with the True
Name (Step S420). '

If the file is not being opened for reading
only (Step S410), then, if it is determined by inspecting
the region table entry record 142 that the file is in a
read-only directory (Step S416), then prohibit the
opening (Step S422).

If it is determined by inspecting the region

‘table 128 that the file is in a cached region (Step

S423), then send a Lock Cache message to the
corresponding cache server, and wait for a return message
(Step S418). 1If the return message says the file is
already locked, prohibit the opening.

If the access type indicates that the file
being modified is being rewritten completely (Step S419),
so that the original data will not be required, then
Delete the File using the Delete File OS mechanism (Step
S421) and perform step S406. Otherwise, make a scratch]
copy of the file (Step S417) and produce the scratch file
ID of the scratch file as the result (Step S424).

2. Close File ,
This mechanism takes as input the local

directory extensions table entry record 138 of an open
file and the data maintained for the open file. To close

39

GOOG-1016-Page 44 of 126

10

15

20

25

30

35

a file, add an entry to the audit file indicating the
time and operaticn (create, read or write). The audit
file processing (using the Process Audit File Entry
primitive mechanism) will take care of assimilating the
file and thereby updating the other records.

3. Read File

To read a file, a program must provide the
offset and length of the data to be read, and the
location of a buffer into which to copy the data read.

The file to be read from is identified by an
open file descriptor which includes a File ID as computed
by the Open File operating system mechanism defined
above. The File ID may identify either a scratch file or
a True File (or True File segment). If the File ID
identifies a True File, it may be either a simple or a

compound True File. Reading a file is accomplished by

the following steps: :]

In the case where the File ID identifies a
scratch file or a simple True File, use the read
capabilities of the underlying operating system.

In the case where the File ID identifies a
compound file, break the read operation into one or more
read operations on component segments as follows:

a, Identify the segment(s) to be read by
dividing the specified file offset and length each by the
fixed size of a segment (a system dependent parameter),
tc determine the segment number and number of segments
that must be read. '

B. For each segment number computed above, do
the following: -
i. Read the compound True File index

block to determine the True Name of the segment to be
read.

ii. Use the Realize True File from
Location primitive mechanism to make the True File

40

-
o ’*ne..;,,,\

GOOG-1016-Page 45 of 126

10

15

20

25

30

segment available locally. (If that mechanism fails, the
Read File mechanism fails).

iii. Determine the File ID of the True
File specified by the True Name corresponding to this
segment.

iv. Use the Read File mechanism
(recursively) to read from this segment into the
corresponding location in the specified buffer.

4. Write File

File writing uses the file ID and data
management capabilities of the underlying operating
system. File access (Make File Local described above)

can be deferred until the first read or write.

5. Delete File or Directory
:}% e process of deleting a file, for a given
pathname, is\described here with reference to FIGURE 27.

First, determine the local directory extensions
table entry record 138 and region table entry record 142
for the file (Step S422). If the file has no local
directory extensions table entry record 138 or is locked
or is in a read-only region, prohibit the deletion.

Identify the corresponding True File given the
True Name of the file being deleted using the True File
registry 126 (Step S424). 1If the file has no True Nanme,
(Step S426) then delete the scratch copy of the file
based on its scratch file ID in the local directory
extensions table 124 (Step S427), and continue with step
s428. - .

If the file has a True Name and the True File’s
use count is ohe (Step S429), then delete the True File
(Step S430), and continue with step S428.

If the file has a True Name and the True File’s
use count is greater than one, reduce its use count by
one (Step S431). Then proceed with step 5428.

41

Lo s
, ;_71 A

GOOG-1016-Page 46 of 126

In Step S428, delete the local directory
extensions table entry record, and add an entry to the
audit file 132 indicating the time and the operation
performed (delete). '

5 6. Copy File or Directory
A mechanism is provided to copy a file or
directory given a source and destination processor and
pathname. The Copy File mechanism does not actually copy
the data in the file, only the True Name of the file.

10 This mechanism is performéd as follows:

(A) Given the source path, get the True Name
from the path. If this step fails, the mechanism fails.

(B) Given the True Name and the destination
path, link the destination path to the True Name.

15 (C) If the source and destination processors
have different True File registries, find (or, if
necessary, create) an entry for the True Name in the True
File registry table 126 of the destination processor.
Enter into the source ID field of this new entry the

20 source processor identity.

(D) Add an entry to the audit file 132
indicating the time and operation performed (copy).

This mechanism addresses capability of the
system to avoid copying data from a source location to a

25 destination location when the destination already has the
data. In addition, because of the ability to freeze a
directory, this mechanism also addresses capability of
the system immediately to make a copy of any collection
of files, thereby to support an efficient version control

30 mechanisms for groups of files.
7. Move File or Directory

A mechanism is described which moves (or
renames) a file from a source path to a destination path.
The move operation, like the copy operation, requires no
35 actual transfer of data, and is performed as follows:

42

GOOG-1016-Page 47 of 126

(a) Copy the file from the source path to the
destination path.

(B) If the source péth is different from the
destination path, delete the source path.

5 8. Get File Status
This mechanism takes a file pathname and

provides information about the pathname. First the local
directory extensions table entry record 138 corresponding
to the pathnamé given is found. If no such entry exists,

10 then this mechanism fails; otherwise, gather information
about the file and its corresponding True File from the
local directory extensions table 124. The information
can include any information shown in the data structures,
including the size, type, owner, True Name} sources, time

15 of last access, time of last modification, state (local
or not, assimilated or not, compressed or not), use
count, expiration date, and reservations.

9. Get Files in Directory

This mechanism enumerates the files in a
20 directory. It is used (implicitly) whenever it is
necessary to determine whether a file exists (is present)
in a directory. For instance, it is implicitly used in
the Open File, Delete File, Copy File or Directory, and

Move File operating system mechanisms, because the files
25 operated on are referred to by pathnames containing
directory names. The mechanism works as follows:

The local directory extensions table 124 is
searched for an entry 138 with the given directory
pathname. If no such entry is found, or if the entry

30 found is not a directory, then this mechanism fails.

If there is a corresponding True File field in
the local directory extensions table record, then it is
assumed. that the True File represents a frozen directory.
The Expand Frozen Directory primitive mechanism is used

43

T
Nl
T

GOOG-1016-Page 48 of 126

10

15

20

25

30

to expand the existing True File into directory entries
in the local directory extensions table.

Finally, the local directory extensions table
124 is again searched, this time to find each directory
subordinate to the given directory. The names found are
provided as the result.

Remote Mechanisms
The remote mechanisms provided by the present

invention are now describéd. Recall that remote
mechanisms are used by the operating system in responding
to requests from other processors. These mechanisms
enable the capabilities of the present invention in a
peer-to-peer network mode of operation.

In a presently preferred embodiment, processors
communicate with each other using a remote procedure call
(RPC) style interface, running over one of any number of
communication protocols such as IPX/SPX or TCP/IP. Each
peer processor which provides access to its True File

‘registry 126 or file regions, or which depends on another

peer processor, provides a number of mechanisms which can
be used by its peers. '

The following remote mechanisms are described:

1. Locate True File;

2. Reserve True File;

3. Request True File;

4. Retire True File;

5. Cancel Reservation;

6. Acquire True File;

7. Lock Cache;

8. Update Cache; and

9. Check Expiration Date.

1. Locate True File
This mechanism allows a remote processor to
determine whether the local processor contains a copy of

44

GOOG-1016-Page 49 of 126

10

i5

20

25

30

35

a specific True File. The mechanism begins with a True
Name and a flag indicating whether to forward requests

for this file to other servers. This mechanism is now

described with reference to FIGURE 28. ’

First determine if the True File is available
locally or if there is some indication of where the True
File is located (for example, in the Source IDs field).
Look up the reguested True Name in the True File registry
126 (Step S432).

If a True File registry entry record 140 is not
found for this True Name {Step S434), and the flag
indicates that the request is not to be forwarded (Step
S436), respond negatively (Step S438). That is, respond
to the effect that the True File is not available.

One the other hand, if a True File registry
entry record 140 is not found (Step S434), and the flag
indicates that the request for this True File is to be
forwarded (Step S436), then forward a request for this
True File to some other processors in the system (Step
S442). If the source table for the current processor
identifies one or more publishing servers which should
have a copy of this True File, then forward the request
to each of those publishing servers (Stepvsé36).

If a True File registry entry record 140 is
found for the required True File (Step S434), and if the
entry includes a True File ID or Compressed File ID (Step
8440), respond positively (Step S444). If the entry
includes a True File ID then this provides the identity
or disk location of the actual physical representation of
the file or file segment required. If the entry include
a Compressed File ID, then a compressed version of the ‘
True File may be stored instead of, or in addition to, an
uncompressed version. This field provides the identity
of the actual representation of the compressed version of
the file. :

If the True File registry entry record 140 is
found (Stép S434) but does not include a True File ID

45

-~

GOOG-1016-Page 50 of 126

(the File ID is absent if the actual file is not
currently present at the current location) (Step S440),
and if the True File registry entry record 140 includes
oneé or more source processors, and if the request can be
5 forwarded, then forward the request for this True File to

one or more of the source processors (Step S444).

2. Reserve True File

This mechanism allows a remote procéssor to
indicate that it depends on the local processor for

10 access to a specific True File. It takes a True Name as
input. This mechanism is described here.

(A) Find the True File registry entry record
140 associated with the given True File. If no entry
exists, reply negatively.)

15 (B) If the True Filé registry entry record 140
does not include a True File ID or compressed File ip,
and if the True File registry entry, record 140 includes
no source IDs for removable storage volumes, then this
processor does not have access to a copy of the given

20 file. Reply negatively.

(C) Add the ID of the sending proceésor to the
list of dependent processors for the True File registry
entry record 140. Reply positively, with an indication
of whether the reserved True File is on line or off line.

25 3. s u ile
This mechanism allows a remote processor to
request a copy of a True File from the local processor.
It requires a True Name and responds positively by
sending a True File back to the requesting processor.
30 The mechanism bperates as follows:
(&) Find the True File registry entry record
140 associated with the given True Name. If there is no
such True File registry entry record 140, reply
negatively.

46

GOOG-1016-Page 51 of 126

(B) Make the True File local using the Make
True File Local primitive mechanism. If this mechanism
fails, the Request True File pechénism alsoc fails.

(C) Send the local True File in either it is

5 uncompressed or compressed form to the requesting remote

processor. NKNote that if the True File is'a compound
file, the components are not sent.

(D) If the remote file is listed in the
dependent process list of the True File registry entry

10 record 140, remove it.
4. ‘ Retire True File

This mechanism allows a remote processor to
indicate that it no- longer plans to maintain a copy of a
given True File. An alternate source of the True File
15 can be specified, if, for instance, the True File is
being moved from one server to another. It begins with a
True Name, a requesting processor ID, and an optional
alternate source. This mechanism operates as follows:
(A) Find a True Name entry in the True File
20 registry 126. If there is no entry for this True Name,
this mechanism‘’s task is compiete.
(B) Find the requesting processor on the
source list and, if it is there, remove it.
{(C) If an alternate source is provided, add it
25 to the source list for the True File registry entry
record 140. ,
(D) If the source list of the True File
registry entry record 140 has no items in it, use the

Locate Remote File primitive mechanism to search for

30 another copy of the file. If it fails, raise a serious
error. N
P
5. fe] ese io

This mechanism allows a remote processor to
indicate that it no longer requires access to a True File
35 stored on the local processor. It begins with a True

47

S
‘{/“j‘}

GOOG-1016-Page 52 of 126

10

15

20

25

30

35

Name and a requesting processor ID and proceeds as
follows:

(A) Find the True Name entry in the True File
registry 126. If there is no entry for this True Name,
this mechanism’s task is complete.

(B) Remove the identity of the requesting
processor from the list of dependent processors, if it
appears. }
(C) 1If the list of dependent processors
becomes zero and the use count is also zero, delete the
True File.

6. Acquire True File
This mechanism allows a remote processor to

insist that a local processor make a copy of a specified
True File. It is used, for example, when a cache client
wants to write through a new version of a file. The
Acgquire True File mechanism begins with a data item and
an optional True Name for the data.item and proceeds as
follows:

(A) Confirm that the requesting processor has
the right to require the local processor to acquire data
items. If not, send a negative reply.

(B) Make a local copy of the data item
transmitted by the remote processor.

(C) Assimilate the data item into the True
File registry of the local processor.

(D) If a True Name was provided with the file,

-the True Name calculation can be avoided, or the

mechanism can verify that the file received matches the
True Name sent.

_ (E} Add an entry in the dependent processor
list of the true file registry record indicating that the
requesting processor depends on this copy of the given
True File.

(F) Send a positive reply.

GOOG-1016-Page 53 of 126

10

15

20

25

30

7. Lock Cache
This mechanism allows a remote cache client to

lock a local file so that local users or other cache
clients cannot change it while the remote processor is
using it. The mechanism begins with a pathname and
proceeds as follows:

(A) Find the local directory extensions table
entry record 138 of the specified pathname. If no such
entry exists, reply negatively.

(B) If an local directory extensions table
entry record 138 exists and is already locked, reply
negatively that the filgfis already locked.

(C) 1If an local directory extensions table
entry record 138 exists and is not locked, lock the
entry. Reply positively.

8. Update Cache
' This mechanism allows a remote cache client to

unlock a local file and update it with new contents. It
begins with a pathname and a True Name. The file
corresponding to the True Namé must be accessible from
the remote processor. This mechanism operates as
follows: '

Find the local directory extensions table entry
record 138 corresponding to the given pathname. Reply
negatively if no such entry exists or if the entry is not
locked.

Link the given pathname to the given True Name
using the Link Path to True Name primitive mechanism.

Unlock the local directory extensions table
entry record 138 and return positively.

+ .
9. ation t
Return current or new expiration date and
possible alternative source to caller.

49

GOOG-1016-Page 54 of 126

10

15

20

25

30

35

Background Processes and Mechanisms

The background processes and mechanisms
provided by the present invention are now described.
Recall that background mechanisms are intended to run
occasionally and at a low priority to provide automated
management capabilities with respect to the present

invention.
The following background mechanisms are

described:
1. Mirror True File;
2. Groom Region;
Check fog Expifed Links;
Verify Region; and
5. Grocem Source List.
1. Mirror True File

This mechanism is used to ensure that files are
available in alternate locations in‘mirror groups or
archived on archival servers. The mechanism depends on
application-specific migration/archival criteria (size,
time since last access, number of copies required, number
of existing alternative sources) which determine under
what conditions a file should be moved. The Mirror True
File mechanism operates as follows, using the True File
specified, perform the following steps:

(A) Count the number of available locations of
the True File by inspecting the source list of the True
File registry entry record 140 for the True File. This
step determines how many copies of the True File are
available in the system.

(B) If tge True File meets the specified
migration criteria, select a mirror group server to which
a copy of the file should be sent. Use the Acquire True
File remote mechanism to copy the True File to the
selected mirror group server. Add the identity of the
selected system to the source list for the True File.

50

GOOG-1016-Page 55 of 126

10

15

20

25

30

35

2. Groom Region

This mechanism is used to automatically free up
space in a processor by deleting data items that may be
available elsewhere. The mechanism depends on
application-specific grooming criteria (for instance, a
file may be removed if there is an alternate online
source for it, it has not been accessed in a given number
of days, and it is larger than a given size). This
mechanism operates as follows:

Repeat the following steps (i) to (iii) with
more aggressive grooming criteria until sufficient space
is freed or until all grooming criteria have been
exercised. Use grooming information to determine how
much space has been freed. Recall that, while grooming
is in effect, grooming informatidn includes a table of
pathnames selected for deletion, and keeps track of the
amount of space that would be freed if all of the files
were deleted.

(i) Begin Grooming (using the primitive
mechanism) .

(ii) For each pathname in the specified region,
for the True File corresponding to the pathname, if the
True File is present, has at least one alternative
source, and meets application specific grooming criteria
for the region, select the file for removal (using the
primitive mechanism).

(iii) End Grooming (using the primitive
mechanism) .

If the region is used as a cache, no other
processors are dependent on True Files to which it
refers, and all such»True Files are mirrored eléewhere."
In this case, True Files can be removed with impunity.
For a cache region, the grooming criteria would
ordinarily eliminate the least recently accessed True
Files first. This is best done by sorting the True Files
in the region by the most recent access time before
pgrforming step (ii) above. The application specific

51

Y

(A

GOOG-1016-Page 56 of 126

10

15

20

25

30

criteria would thus be to select for removal every True
File encountered (beginning with the least recently used)
until the required amount of free space is reached.

3. Check for Expired Links

This mechanism is used to determine whether
dependencies on published files should be refreshed. The
following steps describe the operation of this mechanism:

For each pathname in the specified region, for
each True File corresponding to the pathname, perform the
following step:

If the True Fiie registry entry record 140
corresponding to the True File contains at least one
source which is a publishing server, and if the
expiration date on the dependency is past or close, then
perform the following steps:))

(A) Determine whether the True File registry
entry record contains other sources which have not
expired.

(B) Check the True Name expiration of the
server. If the expiration date has been extended, or an
alternate source is suggested, add the source to the True
File registry entry record 140. »

(C}) If no acceptable alternate source was
found in steps (A) or (B) above, make a local copy of the
True File.

(D) Remove the expired source.

4. Verifyv Redgion

This mechanism can be used to ensure that the
data items in the True File registry 126 have not been
damaged accidentally or maliciously. The operation of -
this mechanism is é;scribed by the following steps:

(A) Search the local directory extensions
table 124 for each pathname in the specified region and
then perform the following steps:

52

GOOG-1016-Page 57 of 126

10

15

20

25

30

35

(i) Get the True File name corresponding
to the pathname;

(ii). If the True File registry entry 140
for the True File does not have a True File ID or
compressed file ID, ignore it.

(iii) Use the Verify True File mechanism
(see extended mechanisms below) to confirm that the True

File specified is correct.

5. Groom Source List

The source li§§¢in a True File entry should be
groomed sometimes to erisure there are not too many mirror
or archive copies. When a file is deleted or when a
region definition or its mirror criteria are changed, it
may be necessary to inspect the affected True Files to
determine whether there are too many mirror copies. This
can be done with the following steps:

For each affected True File,

(A) Search the local directory extensions
table to find each region that refers to the True File.

(B) Create a set of 'required sources®,
initially empty.

(C) For each region found,

(a) determine the mirroring criteria for
that region,

(b) determine which sources for the True
File satisfy the mirroring criteria, and

(c} add these sources to the set of
required sources.

(D} For each source in the True File registry
entry, if the source_identifies a remote processor (as
opposed to removable media), and if the source is not a
publisher, and if the source is not in the set of
required sources, then eliminate the source, and use the
Cancel Reservation remote mechanism to eliminate the
given processor from the list of dependent processors

53

GOOG-1016-Page 58 of 126

-y

10

15

20

25

30

recorded at the remote processor identified by the

source.

Extended Mechanisms

The extended mechanisms provided by the present
invention are now described. Recall that extended
mechanisms run within application programs over the
operating system to provide solutions to specific

problems and applications.
The following extended mechanisms are

described: -
1. Inventory Existing Directory;
2. Inventory Removable, Read-only Files;
3. Synchronize Directories;
4. Publish Region;
5. Retire Directory;
6. Realize Directory at Location;
7. Verify True File;
8. Track for Accounting Purposes; and
9. Track for Licensing Purposes.
1. Inventory Existing Directory

This mechanism determines the True Names of
files in an existing on-line directory in the underlying
operating system. One purpose of this mechanism is to
install True Name mechanisms in an existing file system.

An effect of such an installation is to
eliminate immediately all duplicate files from the file
system being traversed. If several file systems are
inventoried in a single True File registry, duplicates
across the volumes are alsoc eliminated. .

(A) Travygrse the underlying file system in the
operating system. For each file encountered, excluding
directories, perform the following:

(i) Assimilate the file encountered
(using the Assimilate File primitive mechanism). This

54

GOOG-1016-Page 59 of 126

10

15

20

25

30

35

process computes its True Name and moves its data into
the True File registry 126.

(ii) Create a pathname consisting of the
path to the volume directory and the relative path of the
file on the media. Link this path to the computed True
Name using the Link Path to True Name primitive

mechanism.

2. Inventory Removable ead-onl iles

A system with access to removable, read-only
media volumes (such as WgRM disks and CD-ROMs) can create
a usable inventory of the files on these disks without
having to make online copies. These objects can then be
used for archival purposes, directory overlays, or other
needs. An operator must request that an inventory be
created for such a volume. ' ‘

This mechanism allows for maintaining
inventories of the contents of files and data items on
removable media, such as diskettesﬁand CD-ROMs, indepen-
dent of other properties of the files such as name,
location, and date of creation.

The mechanism creates an online inventory of
the files on one or more removable volumes, such as a
floppy disk or CD-ROM, when the data on the volume is
represented as a directory. The inventory service uses a
True Name to identify each file, providing a way to
locate the data independent of its name, date of
creation, or location.

The inventory can be used for archival of data
(making it possible to avoid archiving data when that
data is already on a_separate volume), for grooming)
(making it poséible‘po delete infrequently accessed files
if they can be retrieved from removable volumes), for
version control (making it possible to generate a new
version of a CD-ROM without having to copy the old
version), and for other purposes.

55

GOOG-1016-Page 60 of 126

The inventory is made by creating a volume
directory in the media inventory in which each file named
identifies the data item on the volume being inventoried.
Data items are not copied from the removable volume

5 during the inventory process.

An operator must request that an inventory be
created for a specific volume. Once created, the volume
directory can be frozen or copied like any other
directory. Data items from either the physical volume or

10 the volume directory can be accessed using the Open File
operating system mechani§ﬁ which will cause them to be
read from the physical volume using the Realize True File
from Location primitive mechanisn.

To create an inventory the following steps are

15 taken:

(A) A volume directory in the media inventory
is created to correspond to the volume being inventoried.
Its contextual name identifies the specific volume.

(B) A source table entry 144 for the volume is

20 created in the source table 130. This entry 144
identifies the physical source volume and the volﬁme
directory created in step (A).

(C) The filesystem on the volume is traversed.
For each file encountered, excluding directories, the

25 following steps are taken:)

(i) The True Name of the file is

computed. An entry is created in the True Name registry
124, including the True Name of the file using the
primitive mechanism. The source field of the True Name
30 reéistry entry 140 identifies the source table entry 144.
(ii) A pathname is created consisting of»i
the path to the volyme directory and the relative path of
the file on the media. This path is linked to the
computed True Name using Link Path to True Name primitive
35 mechanism. '
, (D) After all files have been inventoried, the
volume directory is frozen. The volume directory. serves

56

U
—)

GOOG-1016-Page 61 of 126

as a table of contents for the volume. It can be copied

using the Copy File or Directory primitive mechanism to

create an "overlay" directory which can then be modified,

making it possible to edit a virtual copy cf a read-only
5 medium.

3. Synchronize Directories
Given two versions of a directory derived from

the same starting point, this mechanism creates a new,
synchronized version which includes the changes from
10 each. Where a file is changed in both versions, this
mechanism provides a usé; exit for handling the
discrepancy. By using True Names, comparisons are
instantaneous, and no copies of files are necessary.
This mechanism lets a local processor
15 synchronize a directory to account for changes made at a
remote processor. Its purpose is to bring a local copy
of a directory up to date after a period of no
communication between the local and remote processor.
Such a period might occur if the local processor were a
20 mébile processor detached from its server, or if two
distant processors were run independently and updated
nightly.
An advantage of the described synchronization
process is that it does not depend on synchronizing the
25 clocks of the local and remote processors. However, it

does require that the local processor track its position
in the remote processor’s audit file.
This mechanism does not resclve changes made
simultaneously to the same file at several sites. If
30 that occurs, an external resolution mechanism such as,
for example, operator intervention, is required.
The mecha;ism takes as input a start time, a
local directory pathname, a remote processor name, and a
remote directory pathname name, and it operates by the
35 following steps:

57

c¢

GOOG-1016-Page 62 of 126

10

15

20

25

30

35

(A) Request a copy ©of the audit file 132 from
the remote processor using the Request True File remote
mechanism,

(B) For each entry 146 in the audit file 132
after the start time, if the entry indicates a change to
a file in the remote directory, perform the following
steps:

(1) Compute the pathname of the
corresponding file in the local directory. Determine the
True Name of the corresponding file.

(ii) If the True Name of the local file is
the same as the old True Name in the audit file, or if
there is no local file and the audit entry indicates a
new file is being created, link the new True Name in the
audit file to the local pathname usiné the Link Path to
True Name primitive mechanism.

(iii) Otherwise, note that there is a
problem with the synchronization by sending a message to
the operator or to a problem resolution progran,
indicating the local pathname, remote pathname, remote
processor, and time of change.

(C) After synchronization is complete, record
the time of the final change. This time is to be used as
the new start time the next time this directory is
synchronized with the same remote processor.

4. Publish Region

The publish region mechanism allows a processor
to offer the files in a region to any client processors
for a limited period of time.

The purposg of the service is to eliminate any
need for client processors to make reservations with thé
publishing processor. This in turn makes it possible for
the publishing processor to service a much larger number
of clients.

When a region is published, an expiration date
is defined for all files in the region, and is propagated

58

Lﬁi
o)

GOOG-1016-Page 63 of 126

15

20

25

30

35

into the publishing system’s True File registry entry
record 140 for each file.

When a remote file is copied, for instance
using the Copy File operating system mechanism, the
expiration date is copied into the source field of the
client’s True File registry entry record 140. When the
source is a publishing system, no dependency need be
created.

The client processor must occasionally and in
background, check for expired links, to make sure it
still has access to these¢ files. This is described in the
background mechanism Check for Expired Links.

5. Retire Director
This mechanism makes it possible to eliminate

safely the True Files in a directory, or at least
dependencies on them, after ensuring that any client
processors depending on those files remove their
dependencies. The files in the directory are not
actually deleted by this process. The directory can be
deleted with the Delete File operating system mechanism.

The mechanism takes the pathname of a given
directory, and optionally, the identification of a
preferred alternate source processor for clients to use.
The mechanism performs the following steps:

(A) Traverse the directory. For each file in
the directory, perform the following steps:

(i) Get the True Name of the file from
its path and find the True File registry entry 140
associated with the True Name. .
(ii) Determine an alternate source for the

True File. If the gource IDs field of the TFR entry
includes the preferred alternate source, that is the
alternate source. If it does not, but includes some
other source, that is the alternate source. If it
contains no alternate sources, there is no alternate
source. .

59

o

&~

GOOG-1016-Page 64 of 126

(iii) For each dependent processor in
the True File registry entry 140, ask that processor to
retire the True File, specifying an alternate source if
one was determined, using the remote mechanism.

5 6. Realize Directory at Location

This mechanism allows the user or operating
system to force copies of files from some source location
to the True File registry 126 at a given location. The
purpose of the mechanism is to ensure that files are

10 accessible in the event the source location becomes
inaccessible. This can happen for instance if the source
or given location are on mobile computers, or are on
removable media, or if the network connection to the
source is expected to become unavailable, or if the

15 source is being retired. ' '

This mechanism is provided in the following
steps for each file in the given directory, with the
exception of subdirectories: .

. (A) Get the local directory extensions table

20 entry record 138 given the pathname of the file. Get the
True Name of the local directory extensions table entry
record 138. This service assimilates the file if it has
not already been assimilated.

(B) Realize the corresponding True File at the

25 given location. This service causes it to be copied to

the given location from a remote system or removable
media.

7. Verify True File
This mechapism is used to verify that the data
30 item in a True File registry 126 is indeed the correct
data item given its True Name. Its purpose is to guard
against device errors, malicious changes, or other

problems.
] If an error is found, the system has the
35 ability to "heal" itself by finding another source for
60

o
neC—

GOOG-1016-Page 65 of 126

the True File with the given name. It may also be
desirable to verify that the error has not propagated to
other systems, and to log the problem or indicate it to
the computer operator. These details are not described
5 here.
To verify a data item that is not in a True
File registry 126, use the Calculate True Name primitive
mechanism described above.
The basic mechanism begins with a True Name,
10 and operates in the following steps:
(a) Find the True File registry entry record
140 corresponding to the given True Name.
(B) If there is a True File ID for the True
File registry entry record 140 then use it. Otherwise,
15 indicate that no file exists to verify.
(C) Calculate the True Name of the data item
given the file ID of the data item. ’
(D) Confirm that the calculated True Name is
equal to the given True Nane.
20 (E) If the True Names are not equal, there is
an error in the True File registry 126. Remove the True
File ID from the True File registry entry record.l4o and
place it somewhere else. Indicate that the True File
registry entry record 140 contained an error.

25 8. Track for Accounting Purposes

This mechanism provides a way to know reliably

which files have been stored on a system or transmitted
from one system to another. The mechanism can be used as
a basis for a value-based accounting system in which

30 charges are based on_the identity of the data stored or
transmitted, rathe;‘than simply on the number of bits. '

This mechanism allows the system to track

possession of specific data items according to content by
owner, independent of the name, date, or other properties

35 of - the data item, and tracks the uses of specific data
items and files by content for accounting purposes. True

61

:Qwi,
[N,
¥,

\

{‘\

GOOG-1016-Page 66 of 126

10

15

20

25

30

35

names make it possible to identify each file briefly yet
uniquely for this purpose.

k Tracking the identities of files requires
maintaining an accounting log 134 and processing it for
accounting or billing pﬁrposes. The mechanism operates
in the following steps:

(A) Note every time a file is created or
deleted, for instance by monitoring audit entries in the
Process Audit File Entry primitive mechanism. When such
an event is encountered, create an entry 148 in the
accounting log 134 that shows the responsible party and
the identity of the file created or deleted.

(B) Every time a file is transmitted, for
instance when a file is copied with a Request True File
remote mechanism or an Acquire True File remote
mechanism, create an entry in the accounting log 134 that
shows the responsible party, the identity of the file,
and the source and destination processors.

(C) Occasionally run an,éccounting program to
process the accounting log 134, distributing the events
to the account records of each responsible party. The
account records can eventually be summarized for billing
purposes.

9. Track for Licensing Purposes

This mechanism ensures that licensed files are
not used by unauthorized parties. The True Name provides
a safe way to identify licensed material. This service
allows proof of possession of specific files according to
their contents without disclosing their contents.

Enforcing yse of valid licenses can be active
(for example, by refusing to provide access to a file .
without authorization) or passive (for example, by
creating a report of users who do not have proper
authorization).

) One possible way to perform license validation
is to perform occasional audits of employee systems. The

62

GOOG-1016-Page 67 of 126

10

15

20

25

30

35

service described herein relies on True Names to support
such an audit, as in the following steps:

(A) For each licensed prcduct, record in the
license table 136 the True Name of key files in the
product (that is, files which are required in order to
use the product, and which do not occur in other
products) Typically, for a software product, this would
include the main executable image and perhaps other major
files such as clip-art, scripts, or online help. Also
record the identity of each system which is authorized to
have a copy of the file. ~

(B) Occasionally, compare the contents of each
user processor against the license table 136. For each
True Name in the license table do the following:

(i) Unless the user pfocessor is
authorized to have a copy of the file, confirm that the
user processor does not have a copy of the file using the
Locate True File mechanism.

(ii) If the user processor is found to
have a file that it is not authorized to have, record the
user processor and True Name in a license violation
table.

The System in Operation

Given the mechanisms described above, the
operation of a typical DP system employing these
mechanisms is now described in order to demonstrate how
the present invention meets its requirements and
capabilities.

In operatign, data items (for example, files,r'
database records, messages, data segmehts, data blocks, ‘
directories, instances of object classes, and the like)
in a DP system employing the present invention are
identified by substantially unique identifiers (True
Names), the identifiers depending on all of the data in
tbe data items and only on the data in the data items.

63

-

GOOG-1016-Page 68 of 126

10

15

20

25

30

35

The primitive mechanisms Calculate True Name and
Assimilate Data Item support this property. For any
given data item, using the Calculate True Name primitive
mechanism, a substantially unigque identifier or True Name
for that data item can be determined.

Further, in operation of a DP system
incorporating the present invention, multiple copies of
data items are avoided (unless they are required for some
reason such as backups or mirror copies in a fault-
tolerant system). Multiple copies of data items are
avoided even when multiplé names refer to the same data
item. The primitive mechanisms Assimilate Data Items and
New True File support this property. Using the-
Assimilate Data Item primitive mechanism, if a data item
already exists in the system, as indicated by an entry in
the True File registry 126, this existence will be
discovered by this mechanism, and the duplicate data item
(the new data item) will be eliminated (or not added).
Thus, for example, if a data file is being copied onto a
system from a floppy disk, if, based on the True Name of
the data file, it is determined that the data file
already exists in the system (by the same or some other
name), then the duplicate copy will not be installed. If
the data item was being installed on the system by some
name other than its current name, then, using the Link
Path to True Name primitive mechanism, the other (or new)
name can be linked to the already existing data item.

In general, the mechanisms of the present
invention operate in such a way as to avoid recreating an
actual data item at a location when a copy of that data
item is already presént at that location. In the case qf
a copy from a floppy disk, the data item (file) may have
to be copied (into a scratch file) before it can be
determined that it is a duplicate. This is because only
one processor is involved. On the other hand, in a
multiprocessor environment or DP system, each processor
has a record of the True Names of the data items on that

64

<~
VT

GOOG-1016-Page 69 of 126

10

15

20

25

30

35

processor. When a data item is to be copied to another
location (another processor) in the DP system, all that
is necessary is to examine the True Name of the data item
prior to the copying. If a data item with the same True
Name already exists at the destination location
(processor), then there is no need to copy the data item.
Note that if a data item which already exists locally at
a destination location is still copied to the destination
location (for example, because the remote system did not
have a True Name for the data item or because it arrives
as a stream of un-named data), the Assimilate Data Item
primitive mechanism-will prevent multiple copies of the
data item from being created.

Since the True Name of a large data item (a
compound data item) is derived from and based on the True
Names of components of the data iteﬁ, copying of an
entire data item can be avoided. Since some (or all) of
the components of a large data item may already be
present at a destination location, .only those components
which are not present there need be copied. This
property derives from the manner in which True Names are
determined.

when a file is co§ied by the Copy File or
Directory operating system mechanism, only the True Name
of the file is actually replicated.

When a file is opened (using the Open File
operating system mechanism), it uses the Make True File
Local primitive mechanism (either directly or indirectly
through the Create Scratch File primitive mechanism) to
create a local copy of the file. The Open File operating
system mechanism uses the Make True File Local primitivg'
mechanism, which uses the Realize True File from Locatioﬁ
primitive mechanism, which, in turn uses the Request True
File remote mechanism.

The Request True File remote mechanism copies
only a single data item from one processor to another.

If the data item is a compound file, its component

65

WM
-
=

-

GOOG-1016-Page 70 of 126

10

15

20

25

30

35

segments are not copied, only the indirect block is
copied. The segments are copied only when they are read
(or otherwise needed).

The Read File operating system mechanism
actually reads data. The Read File mechanism is aware of
compound files and indirect blocks, and it uses the
Realize True File from Location primitive mechanism to
make sure that component segments are locally available,
and then uses the operating system file mechanisms to
read data from the local file. B

Thus, when a compound file is copied from a
remote system, only its'True Name is copied. When it is
opened only its indirect block is copied. - When the
corresponding file is read, the required component ‘
segments are realized and therefore copied.

In operation data items can be accessed by
reference to their identities (True Names) independent of
their present location. The actual data item or True
File corresponding to a given data identifier or True
Name may reside anywhere in the system (that is, locally,
remotely, offline, etc). If a required True File is
present locally, then the data in the file can be
accessed. If the data item is not present locally, there
are a number of ways in which it can be obtained from
wherever it is present. Using the source IDs field of
the True File registry table, the location(s) of copies
of the True File correspondinq to a given True Name can
be determined. The Realize True File from Location
primitive mechanism tries to make a local copy of a True
File, given its True Name and the name of a source
location (processor or media) that may contain the True
File. If, on the other hand, for some reason it is not ’
known where there is a copy of the True File, or if the
processors identified in the source IDs field do not
respond with the required True File, the processor
requiring the data item can make a general request for
the data item using the Request True File remote

66

;]
N

GOOG-1016-Page 71 of 126

mechanism from all processors in the system that it can
contact.

As a result, the system provides transparent
access to any data item by reference to its data

5 identity, and independent of its present location.

In operation, data items in the system can be
verified and have their integrity checked. This is from
the manner in which True Names are determined. This can
be used for security purposes, for instance, to check for

10 viruses and to verify that data retrieved from another
location is the desired and requested data. For example,
the system might store the True Names of all executable
applications on the system and then periodically
redetermine the True Names of each of these applications

15 to ensure that they match the stored True Names. Any
change in a True Name potentially signals corruption in
the system and can be further investigated. The Verify
Region background mechanism and the Verify True File
extended mechanisms provide direct.support for this mode

20 of operation. The Verify Region mechanism is used to
ensure that the data items in the True File registry have

not been damaged accidentally or maliciously. The Verify
True File mechanism verifies that a data item in a True
File registry is indeed the correct data item given its
25 True Name.
Once a processor has determined where (that is,

= at which other processor or location) a copy of a data
item is in the DP system, that processor might need that
other processor or location to keep a copy of that data

30 item. For example, a processor might want to delete
local copies of data,items to make space available
locally while knowipg that it can rely on retrieving the
data from somewhere else when needed. To this end the
system allows a processor to Reserve (and cancel the

35 reservation of) True Files at remote locations (using the

remote mechanism). In this way the remote locations are

67

GOOG-1016-Page 72 of 126

10

15

20

25

30

35

put on notice that another location is relying on the
presence of the True File at their location.

A DP system employing the present invention can
be made into a fault-tolerant system by providing a
certain amount of redundancy of data items at multiple
locations in the system. Using the Acquire True File and
Reserve True File remote mechanisms, a particular
processor can implement its own form of fault-tolerance
by copying data items to other processors and then
reserving them there. However, the system also provides
the Mirror True File background mechanism to mirror (make
copies) of the True File available elsewhere in the
system. Any degree of redundancy (limited by the number
of processors or locations in the system) can be
implemented. As a result, this invention maintains a
desired degree or level of redundancy in a network of
processors, to protect against failure of any particular
processor by ensuring that multiple copies of data items
exist at different locations. .

The data structures used to implement various
features and mechanisms of this invention store a variety
of useful information which can be used, in conjunction
with the various mechanisms, to implement storage schemes
and policies in a DP system employing the invention. For
example, the size, age and location of a data item (or of
groups of data items) is provided. This information can
be used to decide how the data items should be treated.
For example, a processor may impiement a policy of
deleting local copies of all data items over a certain
age if other copies of those data items are present
elsewhere in the system. The age (or variations on the
age) can be determined using the time of last access cr"
modification in the local directory extensions table, and
the presence of other copies of the data item can be
determined either from the Safe Flag or the source IDs,
or by checking which other processors in the system have

68

o

.

GOOG-1016-Page 73 of 126

10

15

20

25

30

35

copies of the data item and then reserving at least one
of those copies.

In operation, the system can keep track of data
items regardless of how those items are named by users
(or regardless of whether the data items even have
names). The system can also track data items that have
different names (in different or the same location) as
well as different data items that have the same name.
Since a data item is identified by the data in the item,
without regard for the context of the data, the problems
of inconsistent naming in a DP system are overcome.

. In operation, the system can publish data
items, allowing other, possibly anonymous, systems in a
network to gain access to the data items and to rely on
the availability of these data items. True Names are
globally unique identifiers which can be published simply
by copying them. For example, a user might create a
textual representation of a file on system A with True
Name N (for instance as a hexadecimal string), and post
it on a computer bulletin board. Another user on system
B could create a directory entry F for this True Name N
by using the Link Path to True Name primitive mechanism.
(Alternatively, an application could be developed which
hides the True Name from the users, but provides the same
public transfer service.)

When a program on system B attempts to open
pathname F linked to True Name N, the Locate Remote File
primitive mechanism would be used, and would use the
Locate True File remote mechanism to search for True Name
N on one or more remote processors, such as system A. If
system B has access to system A, it would be able to '
realize the True File (using the Realize True File from 4
Location primitive mechanism) and use it locally.
Alternatively, system B could find True Name N by
accessing any publicly available True Name server, if the
server could eventually forward the request to system A.

69

GOOG-1016-Page 74 of 126

10

15

20

25

30

35

Clients of a local server can indicate that
they depend on a given True File (using the Reserve True
File remote mechanism) so that the True File is not
deleted from the server registry as long as some client
reguires access to it. (The Retire True File remote
mechanism is used to indicate that a client no longer
needs a given True File.) k

A publishing server, on the other hand, may
want to provide access to many clients, and possibly
anonymous ones, without incurring the overhead of
tracking dependencies for each client. Therefore, a
public server can p;ovide'expiration dates for True Files
in its registry. This allows client systems to safely
maintain references to a True File on the public server.
The Check For Expired Links background mechanism allows
the client of a publishing server to occasionally confirm
that its dependencies on the publishing server are safe.

In a variation of this aspect of the invention,
a processor that is newly connected (or reconnected after
some absence) to the system can obtain a current version
of all (or of needed) data in the system by requesting it
from a server processor. Any such processor can send a
request to update or resynchronize all of its directories
(starting at a root directory), simply by using the
Synchronize Directories extended mechanism on the needed
directories.

Using the accounting log or some other user
provided mechanism, a user can prove the existence of
certain data items at certain times. By publishing (in a
public place) a list of all True Names in the system on a
given day (or at some given time), a user can later refer
back to that list to show that a particular data item was
present in theé system at the time that list was
published. Such a mechanism is useful in tracking, for
example, laboratory notebooks or the like to prove dates
ofvcohception of inventions. Such a mechanism also

70

GOOG-1016-Page 75 of 126

10

15

20

25

30

35

permits proof of possession of a data item at a
particular date and time.

The accounting log file can also track the use
of specific data items and files by content for
accounting purposes. For instance, an information
utility company can determine the data identities of data
items that are stored and transmitted through its
computer systems, and use these identities to provide
bills to its customers based on the identities of the
data items being transmitted (as defined by the
substantially unique identifier). The assignment of
prices for storing and ﬁfansmitting specific True Files
would be -made by the information utility and/or its data
suppliers; this information would be joined periodically
with the information in the accounting log file to
produce customer statements.

Backing up data items in a DP system employing
the present invention can be done based on the True Names
of the data items. By tracking backups using True Names,
duplication in the backups is prevented. 1In operation,
the system maintains a backup record of data identifiers
of data items already backed up, and invokes the>Copy
File or Directory operating system mechanism to copy only
those data items whose data identifiers are not recorded
in the backup record. Once a data item has been backed
up, it can be restored by retrieving it from its backup
location, based on the identifier of the data item.

Using the backup record pfoduced by the backup to
identify the data item, the data item can be obtained
using, for example, the Make True File Local primitive
mechanism. .
In operatipn, the system can be used to cache
data items from a server, so that only the most recently
accessed data items need be retained. To operate in this
way, a cache client is configured to have a local
registry (its cache) with a remote Local Directory
Extensions table (from the cache server). Whenever a

71

)
o2
\

GOOG-1016-Page 76 of 126

file is opened (or read), the Local Directory Extensions
table is used to identify the True Name, and the Make
True File Local primitive mechanism inspects the local
registry. When the local registry already has a copy,

5 the file is already cached. Otherwise, the Locate True
File remote mechanism is used to get a copy of the file.
This mechanism consults the cache server and uses the
Request True File remote mechanism to make a local copy,
effectively loading the cache.

10 The Groom Cache background mechanism flushes
the cache, removing the }éast—recently-used files from
the cache client’s True‘File registry. While a file is
being modified on a cache client, the Lock Cache and
Update Cache remote mechanisms prevent other clients from

15 trying to modify the same file.

In operation, when the system is being used to
cache data items, the problems of maintaining cache
consistency are avoided.

To access a cache and to £fill it from its

20 server, a key is required to identify the data item
désired. Ordinarily, the key is a name or address (in
this case, it would be the pathname of a file). If the
data associated with such a key is changed, the client’s
cache becomes inconsistent; when the cache client refers

25 to that name, it will retrieve the wrong data. In order
to maintain cache consistency it is necessary to notify
every client immediately whenever a change occurs on the

server.
By using an embodiment of the present

30 invention, the cache key uniquely identifies the data it
represents. When the data associated with a name ’
changes, the key i;ielf changes. Thus, when a cache
client wishes to access the modified data associated with
a given file name, it will use a new key (the True Name

35 of the new file) rather than the key to the old file
contents in its cache. The client will always request
the correct data, and the old data in its cache will be

72

GOOG-1016-Page 77 of 126

10

15

20

25

30

35

eventually aged and flushed by the Groom Cache background
mechanism.

Because it is not necessary to immediately
notify clients when changes on the cache server occur,
the present invention makes it possible for a single
server to support a much larger number of clients than is
otherwise possible.

In operation, the system automatically archives
data items as they are created or modified. After a file
is created or modified, the Close File operating system
mechanism creates an audit file record, which is
eventually processed by the Process Audit File Entry
primitive mechanism. This mechanism uses the New True
File primitive mechanism for any file which is newly
created, which in turn uses the Mirrof True File
background mechanism if the True File is in a mirrored or
archived region. This mechanism causes one or more
copies of the new file to be made on remote processors.

In operation, the system. can efficiently record
and preserve any collection of data items. The Freeze
Directory primitive mechanism creates a True File which
identifies all of the files in the directory and its
subordinates. Because this True File includes the True
Names of its constituents, it represents the exact
contents of the directory tree at the time it was frozen.
The frozen directory can be copied with its components
preserved.

' The Acquire True File remote mechanism (used in
mirroring and archiving) preserves the directory tree
structure by ensuring that all of the component seéments
and True Files in a gompound data item are actually
copied to a remote gystem. Of course, no transfer is
necessary for data items already in the registry of the
remote system.

In operation, the system can efficiently make a
copy of any collection of data items, to support a
vgrsion control mechanism for groups of the data items.

73

GOOG-1016-Page 78 of 126

The Freeze Directory primitive mechanism is
used to create a collection of data items. The
constituent files and segments referred to by the frozen
directory are maintained in the registry, without any

5 need to make copies of the constituents each time the
directory is frozen.)
. Whenever a pathname is traversed, the Get Files
in Directory operating system mechanism is used, and when °’
it encounters a frozen directory, it uses the Expand

10 Frozen Directory primitive mechanism.

A frozen directdory can be copied from one
pathname to another efficiently, merely by copying its
True Name. The Cbpy File operating system mechanism is
used to copy a frozen directory.

15 Thus it is possible to efficiently create
copies of different versions of a directory, thereby
creating a record of its history (hence a version control '
system).

In operation, the system, can maintain a local

20 invéntory of all the data items located on a given
removable medium, such as a diskette or CD-ROM. The
inventory is independent of other properties of the data
items such as their name, location, and date of creation.

The Inventory Existing Directory extended

25 mechanism provides a way to create True File Registry
entries for all of the files in a directory. One use of
this inventory is as a way to pre-load a True File

registry with backup record information. Those files in
the registry (such as previously installed software)

30 which are on the volumes inventoried need not be backed
up onto other volumeg. .

The Inventory Removable, Read-only Files
extended mechanism not only determines the True Names for
the files on the medium, but also records directory

35 entries for each file in a frozen directory structure.
By copying and modifying this directory, it is possible
tp create an on line patch, or small modification of an

74

&
2

AN

GOOG-1016-Page 79 of 126

10

15

20

25

30

existing read-only file. For example, it is possible to
create an online representation of a modified CD-ROM,
such that the unmodified files are actually on the
CD-ROM, and only the modified files are online.

In operation, the system tracks possession of
specific data items according to content by owner,
independent of the name, date, or other properties of the
data item, and tracks the uses of specific data items and
files by content for accounting purposes. Using the
Track for Accounting Purposes extended mechanism provides
a way to know reliably which files have been stored on a
system or transmitted from one system to another.

True Names in Relational and Object-Oriented Databases
Although the preferred embodiment of this

invention has been presented in the context of a file
system, the invention of True Names would be equally
valuable in a relational or object-oriented database. A
relational or object-oriented database system using True
Names would have similar benefits to those of the file
system employing the invention. For instance, such a
database would permit efficient elimination of duplicate
records, support a cache for records, simplify the
process of maintaining cache consistency, provide
locatiqn-independent access to records, maintain archives
and histories of records, and synchronize with distant or
disconnected systems or databases.

The mechanisms described above can be easily
modified to serve in such a database environment. The
True Name registry wguld be used as a repository of
database records. ill references to records would be vié
the True Name of the record. (The Local Directory
Extensions table is an example of a primary index that
uses the True Name as the unique identifier of the
desired records.)

75

-6

GOOG-1016-Page 80 of 126

In such a database, the operations of
inserting, updating, and deleting records would be
implgmented by first assimilating records into the

» registry, and then updating a primary key index to map
5 the key of the record to its contents by using the True
Name as a pointer to the contents.

The mechanisms described in the preferred
embodiment, or similar mechanisms, would be employed in
such a system. These mechanisms could include, for

10 example, the mechanisms for calculating true names,
assimilating, locating, géalizing, deleting, copying, and
moving True Files, for ﬁirroring True Files, for
maintaining a cache of True Files, for grooming True
Files, and other mechanisms based on the use of

15 substantially unique identifiers.

wWhile the invention has been described in

connection with what is presently considered to be the
most practical and preferred embodiments, it is to be
understood that the invention is not to be limited to the

20 disclosed embodiment, but on the contrary, is intended to
cover various modifications and equivalent arrangements
included within the spirit and scope of the appended
claims.

76

GOOG-1016-Page 81 of 126

10

15

20

25

30

WHAT IS CLAIMED IS:

1. In a data processing system, an apparatus
comprising:

‘identity means for determining, for any of a
phurality of data items in the system, a substantially
unigue identifier, said identifier depending on all of
the data in the data item and only on the data in the
data item; and

existence means for determining whether a
particular data item is present in the system, by
examining the identifiers of the plurality of data items.

2. An apparatus as in claim 1, further
comprising:

local ‘existence means for determining whether
an instance of a Rarticular data item is present at a
particular locatiom\ in the system, based on the

nt at a particular location
in the system by examining the identifiers of the
plurality of data items at said particular location in
the system.

4. An apparatus as in claim 2, further
comprising:

data assocjating means for meking and
maintaining, for a data item in the syskem, an
association between the data item and the\ identifier of
the data item; and

access means for accessing a particular data
item using the identifier of the data item.

77

B
N

GOOG-1016-Page 82 of 126

10

15

20

25

30

" data item, said duplication means

5. An apparatus as in claim 2, further
gmprising:
duplication means for copying a data item from
a source to a destination in the data processing system,

invoking said data associating means to
data item with its identifier. .

7. An appRaratus as in claim 4, further

duplication means for duplicating a data item
from a source location t§ a destination location in the
data processing system, based on the identifier of the
invoking said local
existence means to determine\wlegther an instance of the
data item is present at the dgstination location, and
invoking said access means
with the data item only if,
determines that no instance of th

at the destination.

"‘5\ ovide said destination
aidl\local existence means
data item is present

8. An apparatus as in claim 7, further
comprising:

backup means for making copies
Ed

of data items in
the system, said backup means maintaining a backup record
of identifiers of data items backed up, akd invoking
duplication means to copy only those data items whose

data identifiers are not recorded in the bagkup record.

78

GOOG-1016-Page 83 of 126

10

15

20

25

30

9. An apparatus as in claim 8, further

comprising:
recovery means for retrieving a data item
previocusly backed up by said backup means, based on the
identif{er of the data item, said recovery means using
the back record to identify the data item, and invoking
access meapns to retrieve the data item.

10\ An apparatus as in claim 2, wherein a
location is a
apparatus further comprising:

remote\existence means for determining whether

omputer among a network of computers, the

a data item is present at a remote location in the system
from a current location in the system, based on the

identifier of the da
local existence means
whether the data item i
and providing the curren
the presence of the data item at the remote location.

item, said remote location using
t the remote location to determine
present at the remote location,
location with an indication of

11. An apparatus a n claim 4, wherein a

location is a computer among etwork of computers, the
apparatus further comprisin
requesting means for reguesting a data item at
a current location in the system om a remote location
in the system, based on the identifier of the data item,
said remote location using access means at the remote
location to obtain the data item and send it to the
current location if it is present.
12. An apparatus as in claim 1) further
comprising: -
context means for making and maintaining a
context association between at least one cont xtual name
of a data item in the system and the identifieX of the

data item; and

79

GOOG-1016-Page 84 of 126

10

15

20

25

30

referencing means for obtaining the identifier
a data item in the system given a contextual name for

the data item, using said context association.

13. An apparatus as in claim 12, further
comprising:

assignment means for assigning a data item to a
contextual name, invoking said identity means to
determine the identifier of the data item, and invoking
said contex¥ means to make or modify the context
association between the cbntektual name of the data item
and the identifier of the data item.

14.
comprising:
data assocjating means for making and

An\ apparatus as in claim 12, further

maintaining, for a data item in the system, an
association between th& data item and the identifier of
the data item; '
access means fo cessing a particular data
item using the identifier he particular data item;
and
contextual name actess means for accessing a
data item in the system for a given context name. of the
data item, determining the data \dentifier associated
with the given context name, and invoking said access
means to access the data item using\ the data identifier.
15. An apparatus as in cla 11, further
comprising:
transparent access means for agcessing a data,j
item from one of seyeral locations, using \the identifier
of the data item, said transparent access means invoking
said local existence means to determine if the particular
data item is present at the current location, nd, in the

case when the particular data item is not presehkt at the

80

GOOG-1016-Page 85 of 126

10

15

20

25

30

current location, invoking said requesting means to
obtain the data item from a remote location.

16. An apparatus as in claim 15, further
comprising:

identifier copy means for copying an identifier
of a dahka item from a source location to a destination

location.

1Y

comprising:

. An apparatus as in claim 15, further

contaxt means for making and maintaining a
context associatjon between a contextual name of a data
item in the systel and the identifier of the data item;
context cpopy means for copying a data item from
a source location to\a destination location, given the
contextual name of thé data item, by copying only the
context association between the contextual identifier and
the data identifier from\the gource location to the
destination location; and
transparent referéncling means for obtaiﬁing a
data item from one of sever; Locations the system given
a contextual name for the i
referencing means invoking| said gontext association to
determine the data identifier of & data item given a
contextual name, and invbking said transparent access
means to access the data item from ohke of several
locations given the identifier of the\data item.
18. An apparatus as in claim , wherein at
least some of said dgta items are compound data items,
each compound data item including at least ‘some componenﬁ
data items in a fixed sequence, and wherein the identity
means determines the identifier of a compound \data item
based on each component.data item of the compouR

item.

81

GOOG-1016-Page 86 of 126

10

15

20

25

30

19. An apparatus as in claim 18, wherein said
compound data items are fileé and said component data
items are segments, and wherein the identity means
determines the identifier of a file based on the
ideRtifier of each data segment of the file.

20. An apparatus as in claim 18, wherein said
compound data items are directories and said component

ns are files or subordinate directories, and
wherein the identity means determines the identifier of a
given directory based on &ach file and subordinate

directory within the given directory.

21.
comprising:
means far advertising a data item from a

apparatus as in claim 11, further

location in the system to at least one other location in
s for advertising providing each of
location with the data identifier

the system, said mea
said at least one othe
of the data item, and pyoviding the data item to only
tﬁose locations of said locations that request said

data- item in response to sdid providing.

22. An apparatus as in claim 18, further
comprising: ‘ ‘
local existence means \for determining whether a
particular data item is present at a particular location
in the system, based on the identifier of the data item;
and :
compound copy means for copying a data item
from a source to a dgstination in the

system, said compound copy means invoking said local

data processing

existence means to determine whether the \data item is
present at the destination, and to determine, when the
data item is a compound data item, whether the component
ent at the
rnth the data

data items of the compound data item are pre
destination, and providing said destination w

82

GOOG-1016-Page 87 of 126

10

15

20

25

30

item only if said local existence means determines that
the data item is not present at the destination, and
prokiding said destination with each component data item
only\if said local existence means determines that the
component data item is not present at the destination.

23. An apparatus as in claim 11, further
comprising:

means for verifying the integrity a data item
obtained from said requesting means in response to
providing said requesting'with a particular data
identifier, to\confirm that the data item obtained from
the requesting means is the same data item as the data
item requested, s3aid verifying means invoking said
identity means to determine the data identifier of the
obtained data item, ‘and comparing said determined data
identifier with said Rarticular data identifier to verify
said obtained data item.

24. An apparatys as in claim 2, wherein a
location is at least one of storage location and a

based on the ident{;ier of each componeRt data item of
the compound data iten.

26. An apparatus as in claim 3,\further

comprising:

83

GOOG-1016-Page 88 of 126

10

15

20

25

30

context associating means for making and
intaining a context association, for any data item in
system, between the identifier of the data item and
at least one contextual name of the data item at a

particular location in the system;

means for obtaining the identifier of a data
item in the system given a contextual name for the data
item at a\particular location in the system; and

gical copy means for associating the data
identifier cyrresponding to a contextual name at a source
location with\a contextq§1 name at a destination location

in the data processing system.

27. An \apparatus as in claim 25, wherein said
compound data items\are files and said component data
items are segments, d wherein the identity means
determines the identifier of a file based on the
identifier of each data ‘segment of the file.
28. An apparatu s in claim 25, further
comprising:

compound copy méan or copying a data item
from a source location to estination location in the
data processing system, said comppund copy means invoking
said local existence means to detexmine whether the data
item is present at the destination, \and to determine,
when the data item is a compound data\ item, whether the
component data items of the compound data item are
present at the destination, and providi

destination with the data item only if sa\{d local

said

existence means deteymines that the data ikem is not
present at the.dest;pation, and providing said
destination with each component data item only if said
local existence means determines that the compgnent data

item is not present at the destination.

84

GOOG-1016-Page 89 of 126

29. An apparatus as in any of claims 1-28,
erein a data item is at least one of a file, a database
resord, a message, a data segment, a data block, a

directory, and an instance an object class.

5 30. A method of identifying a data item in a
data procégsing system for subsequent access to the data
item, the msthod comprising the steps of:

determining a substantially unique identifier
for the data item, said identifier depending on all of
10 the data in the data item and on the data in the data
item; and
accessing\a data item in the system using the
identifier of the datay item.

31. A method as in claimABO, further
15 comprising the step of:
making and maintaining, for a plurality of data
items in the system, an assoc -tionvbetween each of the
data items and the identifier of each of the data itenms,
wherein said accessing step accesges a data item via the
20 association.

32. A method as in claim 3%, further
comprising the step of:

25 associating the new data item with its iden

data processing system, the method comprising the steps !
of: ’

30 determining a substantially unique identifier
for the given data item, said identifier depending &n all
of the data in the data item and only on the data in\the
data item;

85

GOOG-1016-Page 90 of 126

10

15

20

25

30

determining, using said data identifier,
ether said data item is present at said destination
location; and
based on said determining, providing said
destination location with said data item only if said

data item is not present at said destination.

4. A method as in claim 33, wherein said
given data item is a compound data item having a
plurality of cQmponent data items, the method further
comprising the steps of:

for each data item of said component data
items, i

oktaining the component data
identifier of\ the data item by determining a
substantially ique identifier for the data
item, said identifier depending on all of the
data in the data item and only on the data in
the data item;

determining) ing said obtained
component data identifj whether said data
item is present at saj stination; and

based on safid determining, providing
ta item only if

said destination wit
said data item is not present\at said
destination.

35. A method for determining whether a
particular data item is present in a data prg{cessing
system, the method comprising the steps of:.

(A) for egch data item of a plurality of data
items in the systemg ‘ -

(i) determining a substantially unique
identifier for the data item, said identifier
depending on all of the‘data in the data item
and only on the data in the data item; and

86

GOOG-1016-Page 91 of 126

(ii) makinérand maintaining a set of
identifiers of said plurality of data items;
and
(B) for the particular data item,

(i) determining a particular
substantially unique identifier for the data
item, said identifier depending on all of the
data in the data item and only on the data in
the data item; and
10 (ii) determining whether said particular
identifier is in said set of data items.

36. A\ method of backing up, of a plurality of
data items, data items modified since a previous backup
time in a data processing system, the method comprising

15 the steps of: '

(&) maintalning a backup record of identifiers

of data items\ backed up at the previous backup

time; and

(B) for each o plurality of data items,

20 (i) determi a substantially unique

he data item, said
identifier depepding on all of the data in
the data itém a only on the data in the
data item;

25 (ii) dete
plurality of data items whose identifiers

mining tkose data items of the
are not in the backup, record; and
(iii) based on said determining, copying
only those data items ose data)
30 idengities are not recorded in the backup

record.
37. A method as in claim 36, fuxther

comprising the step of:

87

GOOG-1016-Page 92 of 126

recording in the backup record the identifiers
&f those data items copied in said step of copying.

38. A method of locating a particular data
. item\at a location in a data processing system, the

5 method\ comprising the steps of:

(&) determining a substantially unique

identifier for the data item, said identifier

depending on all of the data in the data item

and only on the data in the data item;

10 \ requesting the particular data item by

stem; and
15 (C) on ak least some of said provider
locations,
()
data items

each data item of a plurality of
at said provider locations,
ing a substantially unique

20 identifier fyr the data item, said

' iing on all of the data in
the data item aXd only on the data in the

data item} and

25 identifiers of data\items, _
(b) determining, based on said set of
he data item
corresponding to the req
identifier is present at \said provider
30 locatjon; and

provider location determines\that the
at the
provider location, notifying said
35 - requestor that the provider has 3
the given data item. '

particular data item is prese

copy of

88

GOOG-1016-Page 93 of 126

39. The method of claim 38, further comprising

(a) for each data item of a plurality of data
items at said provider locations,

5 \ making and maintaining an association
between the data item and the identifier
of the data item,

(b) in response to said notifying, said client
location copying said data item from one of

10 sald responding remote locations, using said
association to access the data item given the

data \ldentifier.

40. A nethod of locating a particular data
item among a pluraljty of locations, each of said
15 locations having a plurality of data items, the method
comprising the steps of:
determining, ¥or the particular data item and
for each data item of theé plurality of data items, a
substantially unique identifier for the data item, said

20 identifier depending on all\of the data in the data item
and only on the data in the datd|item; and
determining the pres¥g of the particular data
item in each of said plurality «i ocations by
determining whether the identifid¥yr of the particular data
25 item is present at each of s#id logations.

41. The method of claim 30, wherein said step
of accessing further comprises the steps of, for a given
data identifier and for a given current\location and a '
remote location in the system:

30 determining whether the data item corresponding
- to the given data identifier is present at the current
location, and

based on said determining, if said data item is
not present at ﬁhe current location, fetching e data

89

GOOG-1016-Page 94 of 126

10

15

20

25

30

tem from a remote location in the system to the current.

lxycation.

42. The method of claim 41, further comprising
the steps of:

for each contextual name at a location,

making and maintaining a context

associati petween the context name of a data item and
the identifier of said data item, and when some context
association anges at said current location, and
notifying.said remote location of a

modification to\the context association.

43. The\method of claim 42, further comprising
the step of:
at said remote location, updating the
contextual identifier of the data

f the data item.

association between th
item and the identifier
44. The method laim 43, further comprising
the step of:
from said remote tion, notifying all other
locations that said data item Ras been modified, by
providing the contextual identifier and data identifier

of said data item to said other lacations.

45. The method of claim 4
the step of, at each location notified that the data item
has been modified:

modifying an association betwe!
identifier of the daja item and the data identifier of
the data item, to rscord that the data item\ has been
modified. '

, further comprising

n. the contextual

46. A ne of eliminating a data item at a

given location in a daPs_processing system when said data

90.

GOOG-1016-Page 95 of 126

10

15

20

25

30

35

ikem can be obtained from another location in the system,
the\ method comprising the steps of:

determining a substantially unique identifier
for the data, said identifier depending on all of the
data in\the data item and only on the data in the data

on said source association, if said data
item is present 4t said other location, removing the data

item from the giv location.

47. A method of deleting a data item from a
location in a data progessing system, the method
comprising the steps of}

for each of a plurality of data items in the
system:

determining a subs tially unique identifier
for the data, said identifier pending on all of the
data in the data item and only the data in the data
item; and

making and maintaining,\an association between
each of the data items and the unigue identifier of the
data items; and

for a.given data item:

determining a substantially \unigque identifier
for the data, said identifier depending\on all of the
data in the data item and only on the data in the data
item; and ‘

determining whether a contextuall\identifier or:
a compound data item or a remote processor the systen
refers to the unique identifier of the data item, and

compound data item or remote processor refers to ‘said:
data itenm.

91

GOOG-1016-Page 96 of 126

10

15

20

25

30

48. The method of claim 47, wherein said
determining is based on a use count for the data item,
and Wherein said data item is deleted only if said use
count \indicates that no other contextual identifier or
data item or remote processor in the system

the data item.

compoungy
refers to

maintaining a list of changes to the

~ context association Between each context name of a data

item and the identifiex-4f said data item, in the given
context and during the beyiod of independent change;’
P ist of changes from the other

updating the cqntext identifier

associations at the client whenever it is determined that
the context association of the given context name changed
either only at the client or only\at the other location
during the period if independent changes; and

performing a conflict-resolution task such
as notifyipg an operator of the client location, whenever
it is detérnined that the context association changed at

both the client and the other location.

A method as in claim 49, wherein said

lists are maintained.as queues based on a temporal order,
and wherein, at id client location, said replacing is
based on said tempoxal der.
51. A meth

predetermined number

maintaining at least a
ies of a given data item in a
data processing system, at different locations in the

92

GOOG-1016-Page 97 of 126

data processing system, said data processing system being
one wherein data is identified by a substantially unique

steps of:

sending, from a first location in the
em, the data identifier of the given data
10 item\to other locations in the system; and

corresponddug to the data identifier is present
15) at the other\location, and based on said
determining, and
(B) informing 3aid first location whether said
data item is presknt at the other location; and
(iii) in response tp said informing from said
20 other locations, at gaid first location,
(A) determining whetber said data item is
present in at least the\prg
other locations, and bas
'(B) when less than the edetermined number of
25 other locations have aJcopy\of the data item,
-requesting some locatipns that do not have a

make a qopy of the data

determined number of

on said determining,

copy of the data item
item.

52. A method as in claim 51, whekein said step

] 30 (iii) further comprises the step of: ‘

- . (C) whensmore than the predetermin
other locations have a copy of the data item,

some locations that do have a copy of the data item

delete the copy of the data item.

93

GOOG-1016-Page 98 of 126

3. A method as in any of claims 30-52,
data items are at least one of a file, a
a message, a data segment, a data block,

wherein sai
database reco

a directory, n instance of an object class.

94

GOOG-1016-Page 99 of 126

j /\[5, C4> ABSTRACT OF THE DISCLOSURE

IDENTIFYING DATA IN A DATA PROCESSING SYSTEM

ta processing system, a mechanism
y substantially unique identifiers
e data in the data items and

In a
identifies data items

5 which depend on all of
only on the data in the data items. Existence means

determine whether a particular data item is present in
the system, by examining the \ldentifiers of the plurality

of data items.

95

GOOG-1016-Page 100 of 126

FOR UTILITY/DESIGN RULE 63 (37 C.F.R. 1.63) CUSHMAN

CIP/PCT NATIONAL/PLANT DECLARATION AND POWER OF ATTORNEY FORM
ORIGINAL/SUBSTITUTE/SUPPLEMENTAL FOR PATENT APPLICATION
DECLARATIONS IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

As a below named inventor, I hereby declare that my residence, post office address and citizenship are as stated below next to my name, and 1 believe I am
the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject
matter which is claimed and for which a patent is sought on the INVENTION ENTITLED
IDENTIFYING DATA IN A DATA PROCESSING SYSTEM
the specification of which (CHECK applicable BOX(ES))

-> [1is attached hereto. :

-> [x]was filed on _April 11, 1995 as U.S. Application No. 0.8 / 425,160
BOX(ES)-> _[] was filed as PCT International Application No. PCT/. / on

-> -> and (if applicable to U.S. or PCT application) was amended on

1 hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment
referred to above. I acknowledge the duty to disclose all information known to me to be material to patentability as defined in 37 CF.R. 1.56. I hereby
claim foreign priority benefits under 35 U.S.C. 119/365 of any foreign application(s) for patent or inventor's certificate listed below and have also identified
below any foreign application for patent or inventor's certificate filed by me or my assignee disclosing the subject matter claimed in this application and having
a filing date (1) before that of the application on which priority is claimed, or (2) if no pﬁi_ority claimed, before the filing date of this application: B

PRIOR FOREIGN APPLICATION(S) Date first Laid- Date Patented Priority Claimed
Number Country Day/MONTH/Year Filed open or Published or Granted i Yes " No

I hereby claim the benefit under-35 U.S.C. 120/365 of all United States applications listed below and PCT international applications listed above or below
and, if this is a continuation-in-part {CIP) application, insofar as the subject matter disclosed and claimed in this application is in addition to that disclosed
imsuch prior applications, I acknowledge the duty to disclose all information known to me to be material to patentability as defined in 37 C.F.R. 1.56 which
‘BEcame available between the filing date of each such prior application and the national or PCT international filing date of this application:

RIOR U.S. OR PCT APPLICATION(S) Status
sArpplication No. (series code/serial no.) Day/MONTH/Year Filed pending, abandoned. patented

hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be
¢; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or
TMprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the
application or any patent issued thereon.

And | hereby appoint Cushman Darby & Cushman,L.L.P. 1100 New York Avenue, N.W., Ninth Floor, East Tower Washington, D.C. 20005-3918, telephone
ber 861-3000 (to whom all communications are to be directed), and the below-named persons (of the same address) individually and collectively my
atiorneys to prosecute this application'and to transact all business in the Patent and Trademark Office connected therewith and with the resulting patent,
gaad I'hereby authorize them to act and rely on instructions from and communicate directly with the person/assignee/attorney/firm/ organization who/which
fizst sends/sent this case to them and by whom/which I hereby declare that I have consented after full disclosure to be represented unless/until 1 instruct
‘Chshman, Darby & Cushman in writing to the contrary.

Paul N. Kokulis 16773 Edward M. Prince 22429 Dale S. Lazar 28872 Michelle N. Lester 32331
Raymond F. Lippitt 17519 Donald B. Deaver 23048 Glenn J. Perry 28458 Jeffrey A. Simenauer 31933
G. Lloyd Knight 17698 David W. Brinkman 20817 Kendrew H. Colton 30368 Robert A. Molan 29834
Carl G. Love 18781 George M. Sirilla 18221 Chris Comuntzis 31097 G. Paul Edgell 24238
Edgar H. Martin 20534 Donald J. Bird 25323 Wallace G. Walter 27843 Lynn E. Eccleston 35861
William K. West, Jr. 22057 W. Warren Taltavull 25647 Lawrence Harbin 27644 Frederick S. Frei 27105
Kevin E. Joyce 20508 Reter W, Gowd 25872 Paul E. White, Jr. 32031 d ki
1. INVENTOR'S SIGNATURE: v (_/,. b Q‘j—u-v‘-’(/\ Date__b /[g are & Pt ¥
Inventor's Name (typed), David FARBER USA.
First ded.\c Initial,ec - Family Name Country of Citizenship
Residence (City), Ojai (State/Foreign Country) CA
Post Office Address (Include Zip Code) SaeM-Cartito-Rdr Ojai CA 93023 Ja
ZLZ& [P n’\\ﬁ’lé () oF G713 /
2. INVENTOR'S SIGNATURE: 7 / Date C 3/9 At
" Inventor's Name (typed)_Ronald / : LACHMAN USA.
First Mlddle Initial Family Name Country of Citizenship
Residence (City)__Northbrook (State /Foreign Country) iR

Post Office Address (Include Zip Code)_3140 Whisperwoods Court. Northbrook. II. 60062

3. INVENTOR'S SIGNATURE: Date
Inventor's Name (typed) :
First Middle Initial Family Name Country of Citizenship
Residence (City) (State /Foreien Country)

Past Office Address (Include Zip Code)

JR ADDITIONAL INVENTORS, check box [| and attach sheet (CDC-116.2) for same information for each re signature, name, date, citizenship,
residence and address.)

XC-116 1/95

GOOG-1016-Page 101 of 126

Inventor(s): David A. Farber and Ronald D. Lachman (Atty. Dkt.

Appin. No.: 0_8 /425160 or Patent No.: (213987 /

Filed:_April 11, 1985 or Issued: M# / Client Ref.
Title: IDENTIFYING DATA IN A DATA PROCESSING SYSTEM -

VERIFIED STATEMENT (DECLARATION) CLAIMING SMALL ENTITY
STATUS (37 CFR 1.9(d) and 1.27(c)) - SMALL BUSINESS CONCERN
| hereby declare that | am

f¥] the owner of the small business concern identified below:
1] an official of the small business concern empowered to act on behalf of the concern identified below:

NAME OF CONCERN _KINETECH INC.

ADDRESS OF CONCERN_282N-Garillo-Rd—Oiai-Califorma—e3023 oc 6[2las @
VU0 whisperweeds Ct. . Woridhbvocic Tlinols LOB 62 B /
G/t

I hereby declare that the above identified small business concern qualifies as a small business concern as defined in 13 CFR
121.12, and reproduced in 37 CFR 1.9(d), for purposes of paying reduced fees under Section 41 (a) and (b) of Title 35, United
States Code, in that the number of employees of the concern, Including those of its affiliates, does not exceed 500 persons.
For purposes of this statement, (1) the number of emplovees of the business concern is the average over the previous fiscal year
-of the concern of the persons employed on a full-time, part-time or temporary basis during each of the pay periods of the fiscal
year, and (2) concerns are affiliates of each other when either, directly or indirectly, one concern controls or has the power to
éntrol the other, or a third party or parties controls or has the power to control both.

Ih 3 eby declare that rights under contract or law have been conveyed to and remain with the small business concern identified
abgdve with regard to the invention entitled:_IDENTIFYING DATA IN A DATA PROCESSING SYSTEM

fnventors(s)David A_ FARBER and Ronald D. LACHMAN
ribed in '

->[] the Specification filed herewith,
ne ->[X] Application No.08 /425160 , filed_April 11, 1995
bc;'i;g: ->[1 Patent No. issued

If the rights held by the above identified small business concern are not exclusive, each small entity individual, concern or
organization having rights to the invention is listed in (A) and (B) below and no rights to the invention are held by any person,
other than the inventor, who could not qualify under 37 CFR 1.9(c) as an independent inventor if that person had made the
tion, or by any concern which would not qualify as a small business concern under 37 CFR 1 .9(d) or a nonprofit
Janization under 37 CFR 1.9(e).

(A) FULL NAME of assignee/licensee/grantee/conveyee*

ADDRESS
X proper box: [] INDIVIDUAL [1 SMALL BUSINESS CONCERN [] NONPROFIT ORGANIZATION

(B) FULL NAME of assignee/licensee/grantee/conveyee*

ADDRESS
X proper box: []INDIVIDUAL [] SMALL BUSINESS CONCERN [1 NONPROFIT ORGANIZATION

*NOTE: Separate verified statement is required from each person, concern or organization named in (A) and (B) above having rights to the invention, averring
to his/her/its status as a small entity. (37 CFR 1.27)

I acknowledge the duty to file, in this case, notification of any change in status resulting in loss of entitlement to small entity status prior to paying, or at the time
of paying, the earliest of the issue fee or any maintenance fee due after the date on which status as a small entity is no longer appropriate. (37 CFR 1.28(b))

| hereby declare that all statements made harein of my own knowledge are true and that alt statements made on information and belief are believed to be true;
and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment,
or both, under section 1001 of Title 18 of the United States Code, and that such wiliful false statements may jeopardize the validity of the appiication, any patent
issuing thereon, or any patent to which this verified statement is directed.

NAME OF PERSON SIGNING _? ,EOM/d Lechoman

T OF PERSON OTHER THAN OWNER ! _
A. 2SS OF PERSON SIGNING . 3/dd _1IH 152672 tocens G 7
. NeATHBeoc T (006

SIGNATURE WL patE, b /¥-4¢

c-140 /94

GOOG-1016-Page 102 of 126

PRINT OF DRAWINGS

AS ORIGINA : - -
S ORIGINALLY FIL¥
w104 102- | 102
STORAGE STORAGE
DEVICE .u s DEVICE PROCESSOR| « « = |PROCESSOR
.—/ .
106
102 102 102
PROCESSOR PROCESSOR PROCESSOR
100 -

___________________________________ S
1 102 X
5 PROCESSOR '
: 110 :
(‘MEMORY »
FIG. 1 : 53 MEMOR ‘.
LDE ’:
: 132 1
: 126 AF '
f 108 TFR ;
i 134 ‘
[U ,
| cp 128 AL :
: RT !
156 :
. " 130 SMD 1
' ST '
: 152 {
' ol 136 i
' | STORAGE » GFL :

\ LT ' ! ¥
: 154 :
. { 114 GL : :
. : . :

__

GOOG-1016-Page 103 of 126

PRINT OF DRAWLN’GS,
AS ORIGINALLY FILE

FIG. 2 s
FILE |118
SYSTEM
117 17 117 117
o e]
118 118 118
DIRECTORY t:mecmRYW LR " DIRECTORY

0

0

12 12 S : 120
. FILE l FILE - ‘ ' FILE }

' 122 122 ' 122

SEGMENT SEGMENT' I lSEGMENTl

GOOG-1016-Page 104 of 126

PRINT OF DRAWINGS

138

Region ID

Pathname

True Name

e

File ID .

Time of last access

Time of last modification

Safe flag -

Lock flag

Size

Owner

FIG. 3

140

True Name

File 1D

Compressed File ID

Source IDs

Dependent processors

Use count

Time of last access

Expiration

Grooming delete count

FIG. 4

142

Region ID

Region file system

Region pathname

Region status

Mirror processor(s)

Mirror duplication count

Policy

FIG. 5

GOOG-1016-Page 105 of 126

PRINT OF DRAWINGS
AS ORIGINALLY FIL;

144

——
Source ID

Source type
Source rights

Source availability

Source location
FIG. 6

146
Original Name 7
Operation :
Type

Processor Ip

Timestamp

Pathname

i

True N. ame
FIG. 7

148

date of entry

type of entry

LZrue Name
FIG. 8

150

True Name »
licensee - |

FIG. 9

GOOG-1016-Page 106 of 126

PRINT OF DRAWINGS i
ASORIGINALLY FILE: N

FIG. 10(a)

SﬂWPJE
DATA ITEM

S212

COMPUTE MD FUNCTION ON
DATA ITEM

S214
APPEND LENGTH MODULO 32 OF
DATA ITEM

!

GOOG-1016-Page 107 of 126

PRINT QF DRAWINGS
AS ORIGIALLY FIL,

e gy

FIG. 10(b)

’

'
'
1
[
1
'
i
1

YES.

COMPUTE TRUE |
NAME OF SIMPLE !
DATAITEM |

S216

DATA ITEM
SIMPLE?

NO.

A
§220
PARTITION DATA ITEM INTO

SEGMENTS

4
§222
ASSIMILATE EACH SEGMENT
(COMPUTING ITS TRUE NAME)

§224

CREATE INDIRECT BLOCK OF
SEGMENT TRUE NAMES

A
$226
ASSIMILATE INDIRECT BLOCK
(COMPUTING ITS TRUE NAME)

A

S228
REPLACE FINAL 32 BITS OF TRUE
NAME WITH LENGHT MOD 32 OF DATA
ITEM

GOOG-1016-Page 108 of 126

PRINT OF DRAWINGS
ASORIGINALLY FILL 7

E

v

S230
FIG. 11

DETERMINE
TRUE NAME

DOES TRUE NAME
EXIST IN TRUE FILE
REGISTRY?

YES.

y

§236
* CREATE NEW ENTRY : YES. DOES ENTRY
* SET USE COUNT TO 1 HAVE FILE ID?
* STORE FILE ID
* SET OTHER FIELDS

¢ 5238

DELETE FILE ID

$239
STORE FILE ID

GOOG-1016-Page 109 of 126

PRINT OF DRAWINGS
AS ORIGINALLY FILL

S240
YES | uppaTe
Fie. 12 DEPENDENCY
" LIST
y
S242
SEND MESSAGE TO
CACHE SERVER TO
$244 UPDATE CACHE
COMPRESS
(IF DESIRED)
S246
MIRROR
(IF DESIRED)

GOOG-1016-Page 110 of 126

PRINT OF DRAWINGS
AS.ORIGINALLY FILi

[

§250
FIG. 13 SEARCH FOR

THE > FAIL

PATHNAME

LDE INCLUDES
JRUE NAME?

NO

YES
S258
€—| ASSIMILATE LDE IDENTIFIES
FILE ID DIRECTORY?
5256
«— FREEZE
DIRECTORY

GOOG-1016-Page 111 of 126

¢ . % PRINT OF DRAWINGS
== ASORIGINALLY FIL} |

FIG. 14

5260
CONFIRM THAT
TRUE NAME
EXISTS LOCALLY

y
S262
SEARCH FOR
PATHNAME IN
LDE TABLE

y
5264

CONFIRM THAT
DIRECTORY
EXISTS

5266

NAMED FILE
EXISTS?

5268
DELETE
TRUE FILE

S270
CREATE”
ENTRY IN LDE
& UPDATE

GOOG-1016-Page 112 of 126

© 1 PRINT OF DRAWINGS
' AS ORIGINALLY FIL,

FIG. 15

)

S272
NO . YES
ISLOCATION A

A

S278

REQUEST
MOUNT

4
§280
FIND FILE

ROCESSOR?,

NEGATIVE

RESPONSE |

FAIL

$282
» | VERIFY TRUE

A
S274
SEND RTF
MESSAGE &
WAIT FOR
RESPONSE

POSITIVE
RESPONSE

A
$276
ENTER TRUE FILE
RETURNED INTO
TFR

FLE(IF [
DESIRED)

GOOG-1016-Page 113 of 126

-} PRINT OF DRAWINGS
~ ASORIGINALLY FILi ‘

o e

3

CLIENT
SELECTS
FIG. 18 PROCESSOR(S)

8285
ANY
PROCESSORS
ELECTED

° b FAIL

8286

J CLIENT
NEGATIVE | BROADCASTS
RESPONSE

OR v 7
TIMEOUT

5288

l CLIENT

WAITS

PoOSITIiVE
RESPONSE

A 4
$290

STORE
PROCESSOR ID

SOURCE OF TRUE
NAME DIFFERS FROM
DESTINATION?

S

A 4
52908 .
LOOK UP TFR FOR
TRUE NAME & ADD
SOURCE LOCATION ID
TO SOURCE IDS FOR

TRUE NAME
S291¢c - *
2574
$2900
SEND MESSAGE To .
, SOURCE Is DETERMINE
RESS:VSEOLRR%EEF ILE l¢-NO PUBLISHING _>~Y553 expie amioN paTE
PROCES oo SYSTEM? - AND ADD TO LisT
\/

GOOG-1016-Page 114 of 126

. PRINT OF DRAWINGS,

IN TFR FOR TRUE
NAME?

FILEID FOR
JHIS ENTRY?

S§296

COMPRESSED
FILE ID?

YES 5298

DECOMPRESS

S302
NOTIFY
USER 5355

#\L STORE ID
S§308

NO MORE S304
LOCATE %

« SELECT
REMOTEFILE| ~ SOURCEIDS™ o oot s X

MORE
¢ DONE

8306

REALIZE TRUE
FILE FROM
SOURCE(S)

GOOG-1016-Page 115 of 126

PRINT OF DRAWINGS
AS ORIGINALLY FIL.

i

FIG. 18

BE COPY OF TRUE
FILE?

LDE IDENTIFIES

EXISTING TRUE YES, - FILEIDFOR YESpl none
TRUE FILE?
FILE?
S318
A DELETE
' TRUE FILE ‘
S320 P7)
CREATENEW lg— | MAKE TRUE
SCRATCH FILE FILE LOCAL
DONE o YES___
$330 v
COPYFILETONEW | S328
FILE, STORE FILE ID SAVE FILE ID &
_ INLDE TABLE, REMOVE TFR
DECREMENT USE ENTRY
COUNT

4

GOOG-1016-Page 116 of 126

st L

PRINT OF DRAWINGS
AS ORIGINALLY FIL,

FIG. 19 ’ l

8332

INCREMENT
FREEZE LOCK

]
FOR EACH $334 ~ S336
SUBORDINATE FRe I ASSIMILATE
FILE AND DREORY UNASSIMILATED
DIRECTORY IN THE FILE
GIVEN DIRECTORY
y
§337
CREATE NEW
DATA ITEM
v
—
FOR EACH 5338 RESCSggD
SUBORDINATE ADD ENTRY TO | AmeeorRD
FILE AND NEW DATA poions
DIRECTORY IN THE ITEM INFOSON
GIVEN DIRECTORY

y
S342
ASSIMILATE THE
NEW DATA ITEM

S344
DECREMENT
. THE FREEZE
LOCK

-

GOOG-1016-Page 117 of 126

PRINT OF DRAWINGS

ASORIGINALLY FILA

S346

MAKE TRUE
| FILE LOCAL

FIG. 20

S353 8348
S354 NO MORE FOR EACH READ
ENTRIES DIRECTORY DIRECTORY
ENTRY

S350

CREATE FuLL
PATHNAME

8352

TRUE NAME

GOOG-1016-Page 118 of 126

. % PRINT OF DRAWINGS
' ASORIGINALLY FIL,

5354
WAIT FOR
FREEZE LOCK
TO TURN OFF

FIG. 21

$5356

FIND TFR
ENTRY

v
5358
DECREMENT
REFERENCE
COUNT

REFERENCE COUNT IS YES Dgféig
ZERO & NO DEPENDENT TRUE FILE
SYSTEMS IN TFR?
NO
4
S364
REMOVE FILE ID
— AND COMPRESSED
- FILEID

GOOG-1016-Page 119 of 126

. .~ PRINT OF DRAWINGS
B A.S_QLU_C_;QV_' LI Y Fm

FIG. 22

5365

GET
OPERATION

8366

S368
C;%AJ;;%R YES ‘ASSIMILATE
S369
NEW TRUE
COPY OR DELETE YES____ FILE
COMPOUND?
A 4 A 4
S378. S370
NO MODIFY USE RECORD TRUE
COUNT OF EACH NAME IN AUDIT
COMPONENT FILE
< l
v
S379
FOR EACH PARENT
DIRECTORY OR FILE, _
~ UPDATE USE COUNT,
LAST ACCESS AND
MODIFY TIMES

'

GOOG-1016-Page 120 of 126

PRINT OF DRAWINGS B
AS ORIGINALLY FIL,

.w

g

v

§382
VERIFY
GROOMING
LOCK OFF

FIG. 23

y
S384
SET

GROOMING

LOCK

5386

SET GROOM
COUNTS

GOOG-1016-Page 121 of 126

i

PRINT OF DRAWINGS

AS ORIGINALLY FIL.

FIG. 24

l

S388

FIND LDE
RECORD

$390

- FIND TFR
RECORD

S§392

INCREMENT
GROOMING
DELETE COUNT

5394

ADJUST FILE
SIZES

GOOG-1016-Page 122 of 126

PRINT OF DRAWINGS

AS ORIGINALLY FIL.

FIG. 25

S396
DELETE
FILE

y

8398
UNLOCK
GROOMING
LOCK

i

GOOG-1016-Page 123 of 126

PRINT OF DRAWINGS
AS ORIGINALLY FILi

NO,

FIG. 26

5402

BEING
CREATED?

S421
ERASE FILE

g

A 4
S406

CREATE
SCRATCH FILE

FILE EXISTS
LOCALLY?

S404

O—p| PROHIBIT

OPEN

S419
BEING
COMPLETELY

READ-ONLY

A 4

B

8424
RETURN
SCRATCH FILE
iD

S408
DETERMINE
REGION
5410
0 READ YES.
ONLY?
YESW
S422
PROHIBIT 5419
OPEN SCRATCH
- FILE?
YESj
3418
LOCK IF NOT
LOCKED
O
v
8417
CREATE v
SCRATCH S35

copy MAKE LOCAL

VERSION &
RETURN FILE ID

FROM TFR

'

l

GOOG-1016-Page 124 of 126

PRINT OF DRAWINGS
AS ORIGINALLY FIL:

|

S422
DETERMINE LDE &
RT ENTRY
- FiG.27 RECORDS FOR

FILE

S§423
<O LDE RECORD OR
FILE LOCKED OR IN
READ-ONLY

YES._3| PROHIBIT

DELETION
DIRECTORY?
NO
A 4
S424
IDENTIFY TRUE
FILE FROM TRUE
NAME
YES FILE HAS NO NO
TRUE NAME?
A 4
. S427
TRUE FILE'S YES DELETE
USE COUNTIS 7 SCRATCH copPY
ONE OF FILE
v
. S430
DELETE
TRUE FILE
S431 8426
REDUCE USE » ADD ENTRY TO
COUNT BY ONE AUDIT FILE

v

GOOG-1016-Page 125 of 126

. 1 PRINT OF DRAWLNG§
S esoil f waqu FILL

FiG. 28

§432
Lookup
| TRUE NAME

$442
FORWARD
REQUEST

REQUEST TO BE
FORWARDED?

S443
POSITIVE
RESPONSE

$438

NEGATIVE
RESPONSE

GOOG-1016-Page 126 of 126
— |

