
GOOG-1005-Page 1 of 116

i 1. v 1 7;‘.
wonun IN'1"ELLECl'UAL_ PROPERTY ORGANIZATION ~'.*i~".iJ<5lntemational Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 = (11) International Publication Number: W0 9652685

G061? 17/30’ 1 (43) International Publication Date: 17 October 1996 (l7.l0.96)

(21) International Application Number: AU, AZ, BB, BG, BR, BY,
EE, ES, Fl, GB, GE, HU, IS,

(22) International Filing Date: 9 April 1996 (09.04.96) . LS. LT. LU, LV, MD,
Z, PL, PT. RO, RU, SD.

SE, SG, SI. SK, TJ, TM, TR, TI‘. UA, UG, UZ, VN. ARIPO
(30) Priority Data: patent (KE, LS, MW, SD. UG), Eurasian patent (AM,

08/425,160 11 April 1995 (1104.95) US RU, I, TM), European patent (AT,
BE, CH, DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC,

OAPI patent (BF, BJ, CF, CG, CI, CM. GA,
(71) Applicant: KlNE'l'ECH, INC. [US/US]; 3140 Whisperwoods GN. ML, MR, NE, SN, TD, TG).

Court, Northbrook, IL 60062 (US).

(72) Inventors: FARBER, David, A.; 202E North Carollo Road,
Ojal, CA 93023 (US). LACI-IMAN, Ronald, D.', 3140 With international search report.
Whisperwoods Court, Northbrook, IL 60062 (US). With amended claims.

(74) Agents: LAZAR, Dale, S. et al.', Cushman Darby & Cushman
L.L.P., 1100 New York Avenue, N.W., Washington, DC
20005 (US).

(54) Title: IDENTIFYING DATA IN A DATA PROCESSING SYSTEM

(57) Abstract

In a data processing system (100), a mechanism identifies
data items by substantially unique identifiers (138, 140, 142,
144, 146, 148, 150) which depend on all of the data in the
data items and only on the data in the data items. Existence
means determine whether a particular data item is present in
the system, by examining the identifiers of the plurality of data
items.

GOOG-1005-Page 1 of 116

GOOG-1005-Page 2 of 116

applications under the PCT.

AM
AT
AU
BB
BE

‘£§3P3'£?=E‘§89§9'£8Q9E§ES%

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Armmia
Auau-in
Auatnlia
Barbados

Belgium
Burkina Faao
Bulgaria
Benin
Brazil
Belarus
Canada
Central African Republic
C0030
Switzerland
Cdte d‘lvoiI'e
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia
533-111
FinlandFruloe
Gabon

Democratic People's Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein
Sn’ Lanka
Liberia
Lithuania
Luxembourg
Latvia
Monaco

Republic of Moldova
Mniagaacar
Mali
Mongolia
Mauritania

MW
MX
NE
NL
NO
NZ
PI.
PI‘
RO
RU
SD
SE
SG
SI
SK
SN
SZ
‘I'D
TG
T1
11‘
UA
UG
US
UZ
VN

Malawi
Mexico

Niger
Netherlands
Norway
New Zealand
Poland
Portugal
Romania
Russian Fedemion
Sudan
Sweden
Singapore
Slovenia
Slovakia
Senegal
Swaziland
Chad
T080
Tajilriatan
Trinidad and Tobago
Ukraine
Uganda
United Sale: of America
Uflaekiaun
Viet Nam

GOOG-1005-Page 2 of 116

GOOG-1005-Page 3 of 116

WO 96/32685 PCT/US96/04733

IDEHIIEXIEQ_DAIA_IH_A_DAIA_EEQ§E§§IE§_§1§IEH

BAQK§BQHED_QE_IHE_IHXEHIIQN

1. Linmmm

This invention relates to data processing

systems and, more particularly, to data processing

systems wherein data items are identified by

substantially unique identifiers which depend on all of

the data in the data items and only on the data in the

data items.

2. Background of the Invention

Data processing (DP) systems, computers,

networks of computers, or the like, typically offer users

and programs various ways to identify the data in the

systems.

Users typically identify data in the data

processing system by giving the data some form of name.

For example, a typical operating system (os) on a

computer provides a file system in which data items are

named by alphanumeric identifiers. Programs typically

identify data in the data processing system using a

location or address. For example, a program may identify

a record in a file or database by using a record number

which serves to locate that record.

In all but the most primitive operating

systems, users and programs are able to create and use

collections of named data items, these collections

themselves being named by identifiers. These named

collections can then, themselves, be made part of other

named collections. For example, an OS may provide

mechanisms to group files (data items) into directories

(collections). These directories can then, themselves be

made part of other directories. A data item may thus be

identified relative to these nested directories using a

GOOG-1005-Page 3 of 116

GOOG-1005-Page 4 of 116

W0 96/232685 PCT/US96l04733

sequence of names, or a so-called pathname, which defines

a path through the directories to a particular data item

(file or directory).

As another example, a database management

system may group data records (data items) into tables

and then group these tables into database files

(collections). The complete address of any data record

can then be specified using the database file name, the

table name, and the record number of that data record.

other examples of identifying data items

include: identifying files in a network file system,

identifying objects in an object-oriented database,

identifying images in an image database, and identifying

articles in a text database.

In general, the terms "data" and "data item" as

used herein refer to sequences of bits. Thus a data item

may be the contents of a file, a portion of a file, a

page in memory, an object in an object-oriented program,

a digital message, a digital scanned image, a part of a

video or audio signal, or any other entity which can be

represented by a sequence of bits. The term "data

processing" herein refers to the processing of data

items, and is sometimes dependent on the type of data

item being processed. For example, a data processor for

a digital image may differ from a data processor for an

audio signal.

In all of the prior data processing systems the

names or identifiers provided to identify data items (the

data items being files, directories, records in the

database, objects in object-oriented programming,

locations in memory or on a physical device, or the like)

are always defined relative to a specific context. For

instance, the file identified by a particular file name

can only be determined when the directory containing the

file (the context) is known. The file identified by a

pathname can be determined only when the file system

(context) is known. Similarly, the addresses in a

GOOG-1005-Page 4 of 116

GOOG-1005-Page 5 of 116

WO 96132685 PC'l‘lUS96/04733

process address space, the keys in a database table, or

domain names on a global computer network such as the

Internet are meaningful only because they are specified
relative to a context.

In prior art systems for identifying data items

there is no direct relationship between the data names

and the data item. The same data name in two different

contexts may refer to different data items, and two

different data names in the same context may refer to the
same data item.

In addition, because there is no correlation

between a data name and the data it refers to, there is

no a priori way to confirm that a given data item is in

fact the one named by a data name. For instance, in a DP

system, if one processor requests that another processor

deliver a data item with a given data name, the‘

requesting processor cannot, in general, verify that the

data delivered is the correct data (given only the name).

Therefore it may require further processing, typically on
the part of the requestor, to verify that the data item

it has obtained is, in fact, the item it requested.

A common operation in a DP system is adding a
new data item to the system. when a new data item is

added to the system, a name can be assigned to it only by
updating the context in which names are defined. Thus

such systems require a centralized mechanism for the

management of names. Such a mechanism is required even

in a multi-processing system when data items are created

and identified at separate processors in distinct

locations, and in which there is no other need for
communication when data items are added.

In many data processing systems or

environments, data items are transferred between

different locations in the system. These locations may

be processors in the data processing system, storage

devices, memory, or the like. For example, one processor

may obtain a data item from another processor or from an

GOOG-1005-Page 5 of 116

GOOG-1005-Page 6 of 116

wo 96/32685 PCI‘/US96/04733

external storage device, such as a floppy disk, and may

incorporate that data item into its system (using the

name provided with that data item). _

However, when a processor (or some location)

obtains a data item from another location in the DP

system, it is possible that this obtained data item is

already present in the system (either at the location of

the processor or at some other location accessible by the

processor) and therefore a duplicate of the data item is

created. This situation is common in a network data

processing environment where proprietary software

products are installed from floppy disks onto several

processors sharing a common file server. In these

systems, it is often the case that the same product will

be installed on several systems, so that several copies

of each file will reside on the common file server.

In some data processing systems in which

several processors are connected in a network, one system

is designated as a cache server to maintain master copies

of data items, and other systems are designated as cache

clients to copy local copies of the master data items

into a local cache on an as-needed basis. Before using a

cached item, a cache client must either reload the cached

item, be informed of changes to the cached item, or

confirm that the master item corresponding to the cached

item has not changed. In other words, a cache client

must synchronize its data items with those on the cache

server. This synchronization may involve reloading data

items onto the cache client. .The need to keep the cache

synchronized or reload it adds significant overhead to

existing caching mechanisms.

In view of the above and other problems with

prior art systems, it is therefore desirable to have a

mechanism which allows each processor in a multiprocessor

system to determine a common and substantially unique

identifier for a data item, using only the data in the

data item and not relying on any sort of context.

GOOG-1005-Page 6 of 116

GOOG-1005-Page 7 of 116

wo 96/32685 PCI‘/US96/04733

It is further desirable to have a mechanism for

reducing multiple copies of data items in a data

processing system and to have a mechanism which enables

the identification of identical data items so as to

reduce multiple copies. It is further desirable to

determine whether two instances of a data item are in

fact the same data item, and to perform various other

systems’ functions and applications on data items without

relying on any context information or properties of the
data item.

It is also desirable to provide such a

mechanism in such a way as to make it transparent to

users of the data processing system, and it is desirable

that a single mechanism be used to address each of the

problems described above.

§HMX_QE_IHE_lEEEHIlQ!

This invention provides, in a data processing

system, a method and apparatus for identifying a data

item in the system, where the identity of the data item

depends on all of the data in the data item and only on

the data in the data item. Thus the identity of a data

item is independent of its name, origin, location,

address, or other information not derivable directly from

the data, and depends only on the data itself.

This invention further provides an apparatus

and a method for determining whether a particular data

item is present in the system or at a location in the

system, by examining only the data identities of a

plurality of data items.

Using the method or apparatus of the present

invention, the efficiency and integrity of a data

processing system can be improved. The present invention

improves the design and operation of a data storage

system, file system, relational database, object-oriented

database, or the like that stores a plurality of data

items, by making possible or improving the design and

GOOG-1005-Page 7 of 116

GOOG-1005-Page 8 of 116

wo 96132685 PCT/U596/04733

operation of at least some or all of the following

features:

the system stores at most one copy of any data

item at a given location, even when multiple data names

in the system refer to the same contents;

the system avoids copying data from source to

destination locations when the destination locations

already have the data;

the system provides transparent access to any

data item by reference only to its identity and

independent of its present location, whether it be local,

remote, or offline;

the system caches data items from a server, so

that only the most recently accessed data items need be

retained;

when the system is being used to cache data

items, problems of maintaining cache consistency are

avoided;

the system maintains a desired level of

redundancy of data items in a network of servers, to

protect against failure by ensuring that multiple copies

of the data items are present at different locations in

the system;

the system automatically archives data items as

they are created or modified;

the system provides the size, age, and location

of groups of data items in order to decide whether they

can be safely removed from a local file system;

the system can efficiently record and preserve

any collection of data items;

the system can efficiently make a copy of any

collection of data items, to support a version control

mechanism for groups of the data items;

the system can publish data items, allowing

other, possibly anonymous, systems in a network to gain

access to the data items and to rely on the availability

of the data items;

GOOG-1005-Page 8 of 116

GOOG-1005-Page 9 of 116

WO 96/32685 PCTIUS96l04733

the system can maintain a local inventory of

all the data items located on a given removable medium,

such as a diskette or CD-ROM, the inventory is

independent of other properties of the data items such as

their name, location, and date of creation;

the system allows closely related sets of data

items, such as matching or corresponding directories on

disconnected computers, to be periodically resynchronized

with one another;

the system can verify that data retrieved from

another location is the desired or requested data, using

only the data identifier used to retrieve the data;

the system can prove possession of specific

data items by content without disclosing the content of

the data items, for purposes of later legal verification

and to provide anonymity;

the system tracks possession of specific data

items according to content by owner, independent of the

name, date, or other properties of the data item, and

tracks the uses of specific data items and files by

content for accounting purposes.

other objects, features, and characteristics of

the present invention as well as the methods of operation

and functions of the related elements of structure, and

the combination of parts and economies of manufacture,

will become more apparent upon consideration of the

following description and the appended claims with

reference to the accompanying drawings, all of which form

a part of this specification.

C ON W

FIGURE 1 depicts a typical data processing

system in which a preferred embodiment of the present

invention operates;

FIGURE 2 depicts a hierarchy of data items

stored at any location in such a data processing system;

GOOG-1005-Page 9 of 116

GOOG-1005-Page 10 of 116

wo 96/32685 PCT/US96/04733

FIGURES 3-9 depict data structures used to

implement an embodiment of the present invention; and

FIGURES 10(a)-28 are flow charts depicting

operation of various aspects_of the present invention.

DEIAILED_DE5QBI2IIQE_QE_IHE_£BE§EHIL1_EBEEEBBED
EKEM2LAEX_EMEQDIMEHI§

An embodiment of the present invention is now

described with reference to a typical data processing

system 100, which, with reference to FIGURE 1, includes

one or more processors (or computers) 102 and various

storage devices 104 connected in some way, for example by
a bus 106.

Each processor 102 includes a CPU 108, a memory

110 and one or more local storage devices 112. The CPU

108, memory 110, and local storage device 112 may be

internally connected, for example by a bus 114. Each

processor 102 may also include other devices (not shown),

such as a keyboard, a display, a printer, and the like.

In a data processing system 100, wherein more

than one processor 102 is used, that is, in a

multiprocessor system, the processors may be in one of

various relationships. For example, two processors 102

may be in a client/server, client/client, or a

server/server relationship. These inter-processor

relationships may be dynamic, changing depending on

particular situations and functions. Thus, a particular

processor 102 may change its relationship to other

processors as needed, essentially setting up a peer-to-

peer relationship with other processors. In a peer-to-

peer relationship, sometimes a particular processor 102

acts as a client processor, whereas at other times the

same processor acts as a server processor. In other

words, there is no hierarchy imposed on or required of

processors 102.

In a multiprocessor system, the processors 102

may be homogeneous or heterogeneous. Further, in a

8

GOOG-‘I005-Page 10 of 116

GOOG-1005-Page 11 of 116

wo 96/32685 PCI‘/US96/04733

multiprocessor data processing system 100, some or all of

the processors 102 may be disconnected from the network

of processors for periods of time. Such disconnection

may be part of the normal operation of the system 100 or

it may be because a particular processor 102 is in need

of repair.

Within a data processing system 100, the data

may be organized to form a hierarchy of data storage

elements, wherein lower level data storage elements are

combined to form higher level elements. This hierarchy

can consist of, for example, processors, file systems,

regions, directories, data files, segments, and the like.

For example, with reference to FIGURE 2, the data items

on a particular processor 102 may be organized or

structured as a file system 116 which comprises regions

117, each of which comprises directories 118, each of

which can contain other directories 118 or files 120.

Each file 120 being made up of one or more data segments
122.

In a typical data processing system, some or

all of these elements can be named by users given certain

implementation specific naming conventions, the name (or

pathname) of an element being relative to a context. In

the context of a data processing system 100, a pathname

is fully specified by a processor name, a filesystem

name, a sequence of zero or more directory names

identifying nested directories, and a final file name.

(Usually the lowest level elements, in this case segments

122, cannot be named by users.)

In other words, a file system 116 is a

collection of directories 118. A directory 118 is a

collection of named files 120 -- both data files 120 and

other directory files 118. A file 120 is a named data

item which is either a data file (which may be simple or

compound) or a directory file 118. A simple.file 120

consists of a single data segment 122. A compound file

120 consists of a sequence of data segments 122. A data

GOOG-‘I005-Page 11 of 116

GOOG-1005-Page 12 of 116

W0 96,32,535 PCT/US96/04733

segment 122 is a fixed sequence of bytes. An important

property of any data segment is its size, the number of

bytes in the sequence.

A single processor 102 may access one or more

file systems 116, and a single storage device 104 may

contain one or more file systems 116, or portions of a

file system 116. For instance, a file system 116 may

span several storage devices 104.

In order to implement controls in a file

system, file system 116 may be divided into distinct

regions, where each region is a unit of management and

control. A region consists of a given directory 118 and

is identified by the pathname (user defined) of the

directory.

In the following, the term "location", with

respect to a data processing system 100, refers to any of

a particular processor 102 in the system, a memory of a

particular processor, a storage device, a removable

storage medium (such as a floppy disk or compact disk),

or any other physical location in the system. The term

"local" with respect to a particular processor 102 refers

to the memory and storage devices of that particular

processor.

In the following, the terms "True Name", "data

identity" and "data identifier" refer to the

substantially unique data identifier for a particular

data item. The term "True File" refers to the actual

file, segment, or data item identified by a True Name.

A file system for a data processing system 100

is now described which is intended to work with an

existing operating system by augmenting some of the

operating system's file management system codes. The

embodiment provided relies on the standard file

management primitives for actually storing to and

retrieving data items from disk, but uses the mechanisms

of the present invention to reference and access those

data items.

GOOG-‘I005-Page 12 of 116

GOOG-1005-Page 13 of 116

WO 96/32685 PCT/US96/04733

The processes and mechanisms (services)

provided in this embodiment are grouped into the

following categories: primitive mechanisms, operating

system mechanisms, remote mechanisms, background

mechanisms, and extended mechanisms.

Primitive mechanisms provide fundamental

capabilities used to support other mechanisms. The

following primitive mechanisms are described:

1. Calculate True Name;

Assimilate Data Item;

New True File;

Get True Name from Path;

Link path to True Name;

Realize True File from Docation;
Locate Remote File;

Make True File Local;

Create scratch File;

Freeze Directory;

Expand Frozen Directory;

12. Delete True File;

13. Process Audit File Entry;

14. Begin Grooming;

15. Select For Removal; and

16. End Grooming.

operating system mechanisms provide typical

familiar file system mechanisms, while maintaining the
data structures required to offer the mechanisms of the

present invention. operating system mechanisms are

designed to augment existing operating systems, and in

this way to make the present invention compatible with,
and generally transparent to, existing applications. The

following operating system mechanisms are described:

Open File;

Close File;

Read File;

write File;

Delete File or Directory;

11

GOOG-‘I005-Page 13 of 116

GOOG-1005-Page 14 of 116

WO 96132685 PC!‘/US96/04733

6. Copy File or Directory;

7. Move File or Directory;

8. Get File status; and

9. Get Files in Directory.

Remote mechanisms are used by the operating

system in responding to requests from other processors.

These mechanisms enable the capabilities of the present

invention in a peer-to-peer network mode of operation.

The following remote mechanisms are described:

1. Locate True File;

2. Reserve True File;

3. Request True File;

4. Retire True File;

5. Cancel Reservation;

6. Acquire True File;

7. Lock Cache;

8. Update Cache; and

9. Check Expiration Date.

Background mechanisms are intended to run

occasionally and at a low priority. These provide

automated management capabilities with respect to the

present invention. The following background mechanisms

are described:

1. Mirror True File;

2. Groom Region;

3. Check for Expired Links; and

4. Verify Region; and

5. Groom Source List.

Extended mechanisms run within application

programs over the operating system. These mechanisms

provide solutions to specific problems and applications.

The following extended mechanisms are described:

1. Inventory Existing Directory;

2. Inventory Removable, Read-only Files;

3. Synchronize directories;

4. Publish Region;

5. Retire Directory;

12

GOOG-1005-Page 14 of 116

GOOG-1005-Page 15 of 116

WO 96/32685 PCI‘/US96/04733

6. Realize Directory at location;

7. Verify True File;

8. Track for accounting purposes;

9. Track for licensing purposes.

The file system herein described maintains

sufficient information to provide a variety of mechanisms

not ordinarily offered by an operating system, some of

which are listed and described here. Various processing
performed by this embodiment of the present invention

will now be described in greater detail.

In some embodiments, some files 120 in a data

processing system 100 do not have True Names because they
have been recently received or created or modified, and

thus their True Names have not yet been computed. A file

that does not yet have a True Name is called a scratch

file. The process of assigning a True Name to a file is

referred to as assimilation, and is described later.

Note that a scratch file may have a user provided name.

Some of the processing performed by the present

invention can take place in a background mode or on a

delayed or as-needed basis. This background processing

is used to determine information that is not immediately
required by the system or which may never be required.

As an example, in some cases a scratch file is being
changed at a rate greater than the rate at which it is

useful to determine its True Name. In these cases,

determining the True Name of the file can be postponed or
performed in the background.

D§£§_§§IEE£2£§§

The following data structures, stored in memory

110 of one of more processors 102 are used to implement

the mechanisms described herein. The data structures can

be local to each processor 102 of the system 100, or they
can reside on only some of the processors 102.

GOOG-1005-Page 15 of 116

GOOG-1005-Page 16 of 116

wo 96l32685 PCT/US96l04733

The data structures described are assumed to

reside on individual peer processors 102 in the data

processing system 100. However, they can also be shared

by placing them on a remote, shared file server (for

instance, in a local area network of machines). In order

to accommodate sharing data structures, it is necessary

that the processors accessing the shared database use the

appropriate locking techniques to ensure that changes to

the shared database do not interfere with one another but

are appropriately serialized. These locking techniques

are well understood by ordinarily skilled programmers of

distributed applications.

It is sometimes desirable to allow some regions

to be local to a particular processor 102 and other

regions to be shared among processors 102. (Recall that

a region is a unit of file system management and control

consisting of a given directory identified by the

pathname of the directory.) In the case of local and

shared regions, there would be both local and shared

versions of each data structure. Simple changes to the

processes described below must be made to ensure that

appropriate data structures are selected for a given

operation.

The local directory extensions (LDE) table 124

is a data structure which provides information about

files 120 and directories 118 in the data processing

system 100. The local directory extensions table 124 is

indexed by a pathname or contextual name (that is, a user

provided name) of a file and includes the True Name for

most files. The information in local directory extension

table 124 is in addition to that provided by the native

file system of the operating system.

The True File registry (TFR) 126 is a data

store for listing actual data items which have True

Names, both files 120 and segments 122. When such data

items occur in the True File registry 126 they are known

as True Files. True Files are identified in True File

GOOG-1005-Page 16 of 116

GOOG-1005-Page 17 of 116

WO 96/32685 PCT/US96l04733

registry 126 by their True Names or identities. The

table True File registry 126 also stores location,

dependency, and migration information about True Files.

The region table (RT) 128 defines areas in the

network storage which are to be managed separately.

Region table 128 defines the rules for access to and

migration of files 120 among various regions with the

local file system 116 and remote peer file systems.

The source table (ST) 130 is a list of the

sources of True Files other than the current True File

registry 126. The source table 130 includes removable

volumes and remote processors.

The audit file (AP) 132 is a list of records

indicating changes to be made in local or remote files,
these changes to be processed in background.

The accounting log (AL) 134 is a log of file

transactions used to create accounting information in a

manner which preserves the identity of files being
tracked independent of their name or location.

The license table (LT) 136 is a table

identifying files, which may only be used by licensed

users, in a manner independent of their name or location,
and the users licensed to use them.

t ' e Des ' tio s t t St uctu es

The following table summarizes the fields of an

local directory extensions table entry, as illustrated by
record 138 in FIGURE 3.

Jnesenuon

Region ID identifies the region in which this file is
' contained.

Pathname the user provided name or contextual name
of the file or directory, relative to the
re ion in which it occurs.

True Name the computed True Name or identity of the
file or directory. This True Name is not
always up to date, and it is set to a
special value when a file is modified and
is later recom-uted in the back-round.

GOOG-1005-Page 17 of 116

GOOG-1005-Page 18 of 116

WO 96/32685
PCTIUS96I04733

i

Type indicates whether the file is a data file
or a directo .

Scratch

File ID

Time of
last
access

Time of
last modi-
fication

Safe flag

Lock flag .

Each record of the True File registry 126 has

the physical location of the file in the
file system, when no True Name has been
calculated for the file. As noted above,
such a file is called a scratch file.

the last access time to this file. If this

file is»a directory, this is the last
access time to an file in the director .

the time of last change of this file. If

this file is a directory, this is the last
modification time of any file in the
director .

indicates that this file (and, if this file

is a directory, all of its subordinate
files) have been backed up on some other
system, and it is therefore safe to remove
them.

whether a file is locked, that

being modified by the local pro-
a remote processor. only one

modif a file at a time.

indicates

is, it is
cessor or
-rocessor

the full size of this directory (including
all subordinate files), if all files in it
were fully expanded and duplicated. For a

file that is not a directory this is the
size of the actual True File.

the identity of the user who owns this

file, for accounting and license tracking
-ur-oses.

the fields shown in the True File registry record 140 in

FIGURE 4. The True File registry 126 consists of the

database described in the table below as well as the

actual True Files identified by the True File IDs below.

T

True Name computed True Name or identity of
the file.

GOOG-1005-Page 18 of 116

GOOG-1005-Page 19 of 116

W0 96/32685 PCT/US96/04733

J
Compressed compressed version of the True File

File ID may be stored instead of, or in
addition to, an uncompressed
version. This field provides the
identity of the actual

representation of the compressed
version of the file.

Grooming tentative count of how many
delete count references have been selected for

deletion during a grooming
o-eration.

Time of last most recent date and time the
access content of this file was accessed.

Expiration date and time after which this file
1 ma be deleted b this server.

Dependent processor IDs of other processors
processors which contain references to this

True File.

source ID(s) of zero or more
sources from which this file or
data item ma be retrieved.

True File ID identity or disk location of the
actual physical representation of
the file or file segment. It is
sufficient to use a filename in the

registration directory of the
underlying operating system. The
True File ID is absent if the

actual file is not currently
-resent at the current location.

Use count number of other records on this

processor which identify this True
File.

A region table 128, specified by a directory

pathname, records storage policies which allow files in

the file system to be stored, accessed and migrated in

different ways. Storage policies are programmed in a

configurable way using a set of rules described below.

Each region table record 142 of region table

128 includes the fields described in the following table

(with reference to FIGURE 5):

GOOG-1005-Page 19 of 116

GOOG-1005-Page 20 of 116

W0 96l32685 PCTfl]S96l04733

Descri tion

Region ID internally used identifier for this
re-ion.

Region file system file system on the local processor of
which this re-ion is a cart.

Region pathname a pathname relative to the region file
system which defines the location of
this region. The region consists of
all files and directories subordinate

to this pathname, except those in a
ion subordinate to this re ion.

Mirror processor(s) zero or more identifiers of processors
. which are to keep mirror or archival

copies of all files in the current

region. Multiple mirror processors
can be defined to form a mirror -rou-.

Mirror duplication number of copies of each file in this
count region that should be retained in a

mirror

Region status specifies whether this region is local
to a single processor 102, shared by

several processors 102 (if, for
instance, it resides on a shared file

server), or managed by a remote
-rocessor.

Policy the migration policy to apply to this
region. A single region might
participate in several policies. The
policies are as follows (parameters in
brackets are specified as part of the
policy):

region is a cached version from
[processor ID];

region is a member of a mirror set
defined by [processor ID].

region is to be archived on
[processor ID].

region is to be backed up locally,
by placing new copies in [region
ID]. ‘
region is read only and may not be
changed.

region is published and expires on
[date].
Files in this region should be
com ressed.

A source table 130 identifies a source location

for True Files. The source table 130 is also used to

18

GOOG-‘I005-Page 20 of 116

GOOG-1005-Page 21 of 116

wo 96/32685 PCT’US9"°“733

identify client processors making reservations on the

current processor. Each source record 144 of the source

table 130 includes the fields summarized in the following
table, with reference to FIGURE 6:

i
source ID internal identifier used to.identify a

-articular source.

source type of source location:

type Removable Storage Volume
Local Region
Cache Server

Mirror Group Server
Cooperative Server

Publishing Server
Client

includes information about the rights
of this processor, such as whether it
can ask the local processor to store
data items for it.

source measurement of the bandwidth, cost,
availabil- and reliability of the connection to
ity this source of True Files. The avail-

ability is used to select from among
several -ossible sources.

source information on how the local processor
location is to access the source. This may be,

for example, the name of a removable
storage volume, or the processor ID
and region path of a region on a
remote -rocessor.

The audit file 132 is a table of events ordered

by timestamp, each record 146 in audit file 132 including
the fields summarized in the following table (with
reference to FIGURE 7):

mm
Ori-inal Name -ath of the file in -uestion.

operation whether the file was created, read,
written co-ied or deleted.

Type specifies whether the source is a file
or a director .

GOOG-1005-Page 21 of 116

GOOG-1005-Page 22 of 116

wo 96132685 PC!‘/US96I04733

3
Processor ID ID of the remote processor generating

this event if not local .

Timestamp time and date file was closed (required
onl for accessed modified files .

Pathname Name of the file (required only for
rename .

computed True Name of the file. This is
used by remote systems to mirror changes
to the directory and is filled in during
back round -rocess1n-

Each record 148 of the accounting log 134

records an event which may later be used to provide

information for billing mechanisms. Each accounting log

entry record 148 includes at least the information

summarized in the following table, with reference to

FIGURE 8:

i

date and time of this log entry.ent

type of Entry types include create file, -
entr delete file and transmit file.

True Name of data item in uestion.

 identity of the user responsible forthis action.

Each record 150 of the license table 136

records a relationship between a licensable data item and

the user licensed to have access to it. Each license

table record 150 includes the information summarized in

the following table, with reference to FIGURE 9:

J
True Name True Name of a data item subject to

license validation.

GOOG-‘I005-Page 22 of 116

GOOG-1005-Page 23 of 116

WO 96132685 PCT/US96/04733

i
licensee identity of a user authorized to have

access to this ob ect.

Various other data structures are employed on

some or all of the processors 102 in the data processing

system 100. Each processor 102 has a global freeze lock

(GFL) 152 (FIGURE 1), which is used to prevent

synchronization errors when a directory is frozen or

copied. Any processor 102 may include a special archive

directory (SAD) 154 into which directories may be copied

for the purposes of archival. Any processor 102 may

include a special media directory (SMD) 156, into which

the directories of removable volumes are stored to form a

media inventory. Each processor has a grooming lock 158,

which is set during a grooming operation. During this

period the grooming delete count of True File registry
entries 140 is active, and no True Files should be

deleted until grooming is complete. While grooming is in

effect, grooming information includes a table of

pathnames selected for deletion, and keeps track of the

amount of space that would be freed if all of the files
were deleted.

c n'sms

The first of the mechanisms provided by the

present invention, primitive mechanisms, are now

described. The mechanisms described here depend on

underlying data management mechanisms to create, copy,

read, and delete data items in the True File registry

126, as identified by a True File ID. This support may

be provided by an underlying operating system or disk

storage manager.

The following primitive mechanisms are

described:

1. Calculate True Name;

2. Assimilate Data Item;

21

GOOG-‘I005-Page 23 of 116

GOOG-1005-Page 24 of 116

WO 96132685 PCT/U596/04733

New True File;

Get True Name from Path;

Link Path to True Name;

Realize True File from Location;

Locate Remote File;

Make True File Local;

Create Scratch File;

Freeze Directory;

Expand Frozen Directory;

Delete True File;

Process Audit File Entry;

Begin Grooming;

Select For Removal; and

End Grooming.

1- QlQn

A True Name is computed using a function, MD,

which reduces a data block 3 of arbitrary length to a

relatively small, fixed size identifier, the True Name of

the data block, such that the True Name of the data block

is virtually guaranteed to represent the data block B and

only data block 3.

The function MD must have the following

properties:

1. The domain of the function MD is the set

of all data items. The range of the

function MD is the set of True Names.

The function Hm must take a data item of

arbitrary length and reduce it to an

integer value in the range 0 to N-1, where

N is the cardinality of the set of True

Names. That is, for an arbitrary length

data block B, 0 5 MD(B) < N.

The results of MD(B) must be evenly and

randomly distributed over the range of N,

in such a way that simple or regular

GOOG-‘I005-Page 24 of 116

GOOG-1005-Page 25 of 116

WO 96/32685

10

PCT/US96l04733

changes to B are virtually guaranteed to

produce a different value of MD(B).

It must be computationally difficult to

find a different value B’ such that

g m>(3)-nous’).

5. The function MD(B) must be efficiently

computed.

A family of functions with the above properties

are the so-called message digest functions, which are

used in digital security systems as techniques for

authentification of data. These functions (or

algorithms) include MD4, MD5, and SHA.

In the presently preferred embodiments, either

MD5 or SHA is employed as the basis for the computation

of True Names. Whichever of these two message digest
functions is employed, that same function must be

employed on a system-wide basis.

It is impossible to define a function having a

unique output for each possible input when the number of

elements in the range of the function is smaller than the

number of elements in its domain. However, a crucial

observation is that the actual data items that will be

encountered in the operation of any system embodying this

invention form a very sparse subset of all the possible
inputs.

A colliding set of data items is defined as a

set wherein, for one or more pairs x and y in the set,
MD(x) = MD(y) .

requirements for MD must evenly and randomly distribute

Since a function conforming to the

its outputs, it is possible, by making the range of the

function large enough, to make the probability

arbitrarily small that actual inputs encountered in the

operation of an embodiment of this invention will form a

colliding set.

To roughly quantify the probability of a

collision, assume that there are no more than 2” storage
devices in the world, and that each storage device has an

23

GOOG-‘I005-Page 25 of 116

GOOG-1005-Page 26 of 116

wo 96132685 PCT/US96/04733

average of at most 2” different data items. Then there

are at most 2” data items in the world. If the outputs

of MD range between 0 and 2”‘, it can be demonstrated

that the probability of a collision is approximately 1 in

2”. Details on the derivation of these probability

values are found, for example, in P. Flajolet and A.M.

Odlyzko, "Random Mapping Statistics," Lecture Notes in

Computer Science 434: Advances in Cryptology -- Eurocrypt

'89 Proceedings, Springer-Verlag, pp. 329-354.

Note that for some less preferred embodiments

of the present invention, lower probabilities of

uniqueness may be acceptable, depending on the types of

applications and mechanisms used. In some embodiments it

may also be useful to have more than one level of True

Names, with some of the True Names having different

degrees of uniqueness. If such a scheme is implemented,

it is necessary to ensure that less unique True Names are

not propagated in the system.

While the invention is described herein using

only the True Name of a data item as the identifier for

the data item, other preferred embodiments use tagged,

typed, categorized or classified data items and use a

combination of both the True Name and the tag, type,

category or class of the data item as an identifier.

Examples of such categorizations are files, directories,

and segments; executable files and data files, and the

like. Examples of classes are classes of objects in an

object-oriented system. In such a system, a lower degree

of True Name uniqueness is acceptable over the entire

universe of data items, as long as sufficient uniqueness

is provided per category of data items. This is because

the tags provide an additional level of uniqueness.

A mechanism for calculating a True Name given a

data item is now described, with reference to FIGURES

10(a) and 10(b).

A simple data item is a data item whose size is

less than a particular given size (which must be defined

24

GOOG-‘I005-Page 26 of 116

GOOG-1005-Page 27 of 116

WO 96132685 PCT/US96/04733

in each particular implementation of the invention). To

determine the True Name of a simple data item, with

reference to FIGURE 1o(a), first compute the MD function.

(described above) on the given simple data item_(Step

S212). Then append to the resulting 128 hits, the byte
length modulo 32 of the data item (step S214). The

resulting 160-bit value is the True Name of the simple
data item.

A compound data item is one whose size is

greater than the particular given size of a simple data

item. To determine the True Name of an arbitrary (simple
or compound) data item, with reference to FIGURE 10(b),

first determine if the data item is a simple or a

compound data item (Step S216). If the data item is a

simple data item, then compute its True Name in step S218
(using steps S212 and 8214 described above), otherwise

partition the data item into segments (Step S220) and

assimilate each segment (Step $222) (the primitive

mechanism, Assimilate a Data Item, is described below),
computing the True Name of the segment. Then create an

indirect block consisting of the computed segment True
Names (step 5224). An indirect block is a data item

which consists of the sequence of True Names of the

segments. Then, in step S226, assimilate the indirect

block and compute its True Name. Finally, replace the

final thirty-two (32) bits of the resulting True Name

(that is, the length of the indirect block) by the length
modulo 32 of the compound data item (Step $228). The

result is the True Name of the compound data item.

Note that the compound data item may be so

large that the indirect block of segment True Names is

itself a compound data item. In this case the mechanism

is invoked recursively until only simple data items are
being processed.

Both the use of segments and the attachment of

a length to the True Name are not strictly required in a

system using the present invention, but are currently

25

GOOG-1005-Page 27 of 116

GOOG-1005-Page 28 of 116

W0 96/32685 PCT/U596/04733

considered desirable features in the preferred

embodiment.

2. A

A mechanism for assimilating a data item

(scratch file or segment) into a file system, given the

scratch file In of the data item, is now described with

reference to FIGURE 11. The purpose of this mechanism is

to add a given data item to the True File registry 126.

If the data item already exists in the True File registry

126, this will be discovered and used during this

process, and the duplicate will be eliminated.

Thereby the system stores at most one copy of

any data item or file by content, even when multiple

names refer to the same content.

First, determine the True Name of the data item

corresponding to the given scratch File ID using the

Calculate True Name primitive mechanism (Step S230).

Next, look for an entry for the True Name in the True

File registry 126 (Step S232) and determine whether a

True Name entry, record 140, exists in the True File

registry 126. If the entry record includes a

corresponding True File ID or compressed File ID (Step

S237), delete the file with the scratch File ID (Step

S238). otherwise store the given True File ID in the

entry record (step $239).

If it is determined (in step S232) that no True

Name entry exists in the True File registry 126, then, in

Step S236, create a new entry in the True File registry

126 for this True Name. Set the True Name of the entry

to the calculated True Name, set the use count for the

new entry to one, store the given True File ID in the

entry and set the other fields of the entry as

appropriate.

GOOG-‘I005-Page 28 of 116

GOOG-1005-Page 29 of 116

WO 96/32635 PCT/U596/04733

Because this procedure may take some time to

compute, it is intended to run in background after a file

has ceased to change. In the meantime, the file is

considered an unassimilated scratch file.

3- N_e.u_'£:.'J.19_.£iJ..e

The New True File process is invoked when

processing the audit file 132, some time after a True

File has been assimilated (using the Assimilate Data Item

primitive mechanism). Given a local directory extensions

table entry record 138 in the local directory extensions

table 124, the New True File process can provide the

following steps (with reference to FIGURE 12), depending

on how the local processor is configured:

First, in step S238, examine the local

directory extensions table entry record 138 to determine

whether the file is locked by a cache server. If the

file is locked, then add the ID of the cache server to

the dependent processor list of the True File registry
table 126, and then send a message to the cache server to

update the cache of the current processor using the

Update Cache remote mechanism (Step 242).

If desired, compress the True File (Step S246),

and, if desired, mirror the True File using the Mirror

True File background mechanism (step S248).

4- §et_Izue_Hsms_f:2m_£a;h

The True Name of a file can be used to identify

a file by contents, to confirm that a file matches its

original contents, or to compare two files. The

mechanism to get a True Name given the pathname of a file

is now described with reference to FIGURE 13.

First, search the local directory extensions

table 124 for the entry record 138 with the given

pathname (step 3250). If the pathname is not found, this

process fails and no True Name corresponding to the given

pathname exists. Next, determine whether the local

27

GOOG-‘I005-Page 29 of 116

GOOG-1005-Page 30 of 116

W0 “D2685 PC!‘/US96/04733

directory extensions table entry record 138 includes a

True Name (step S252), and if so, the mechanism's task is

complete. otherwise, determine whether the local

directory extensions table entry record 138 identifies a

directory (Step S254), and if so, freeze the directory

(Step 5256) (the primitive mechanism Freeze Directory is

described below).

Otherwise, in step S258, assimilate the file

(using the Assimilate Data Item primitive mechanism)

defined by the File ID field to generate its True Name

and store its True Name in the local directory extensions

entry record. Then return the True Name identified by

the local directory extensions table 124.

5. Link Path to True Name

The mechanism to link a path to a True Name

provides a way of creating a new directory entry record

identifying an existing, assimilated file. This basic

process may be used to copy, move, and rename files

without a need to copy their contents. The mechanism to

link a path to a True Name is now described with

reference to FIGURE 14.

First, if desired, confirm that the True Name

exists locally by searching for it in the True Name

registry or local directory extensions table 135 (Step

S260). Most uses of this mechanism will require this

form of validation. Next, search for the path in the

local directory extensions table 135 (step S262).

Confirm that the directory containing the file named in

the path already exists (Step S264). If the named file

itself exists, delete the File using the Delete True File

operating system mechanism (see below) (Step 8268).

Then, create an entry record in the local

directory extensions with the specified path (Step S270)

and update the entry record and other data structures as

follows: fill in the True Name field of the entry with

the specified True Name; increment the use count for the

28

GOOG-‘I005-Page 30 of 116

GOOG-1005-Page 31 of 116

W0 96,326” PCT/US96/04733

True File registry entry record 140 of the corresponding

True Name; note whether the entry is a directory by

reading the True File to see if it contains a tag (magic
number) indicating that it represents a frozen directory

(see also the description of the Freeze Directory

primitive mechanism regarding the tag); and compute and

set the other fields of the local directory extensions

appropriately. For instance, search the region table 128

to identify the region of the path, and set the time of

last access and time of last modification to the current

time.

6. Realize True £11; from Lgcatiog

This mechanism is used to try to make a local

copy of a True File, given its True Name and the name of

a source location (processor or media) that may contain

the True File. This mechanism is now described with

reference to FIGURE 15.

First, in step S272, determine whether the

location specified is a processor. If it is determined

that the location specified is a processor, then send a

Request True File message (using the Request True File

remote mechanism) to the remote processor and wait for a

response (Step S274). If a negative response is received

or no response is received after a timeout period, this

mechanism fails. If a positive response is received,

enter the True File returned in the True File registry

126 (Step S276). (If the file received was compressed,

enter the True File ID in the compressed File ID field.)

If, on the other hand, it is determined in step

$272 that the location specified is not a processor,

then, if necessary, request the user or operator to mount

the indicated volume (step 8278). Then (Step 5280) find

the indicated file on the given volume and assimilate the

file using the Assimilate Data Item primitive mechanism.

If the volume does not contain a True File registry 126,

search the media inventory to find the path of the file

29

GOOG-1005-Page 31 of 116

GOOG-1005-Page 32 of 116

WO 96132685 PCT/US96/04733

on the volume. If no such file can be found, this

mechanism fails.

At this point, whether or not the location is

determined (in step 5272) to be a processor, if desired,

verify the True File (in step S282).

7- Ls2s_a3;e_Bs.m9£s_.Eils

This mechanism allows a processor to locate a

file or data item from a remote source of True Files,

when a specific source is unknown or unavailable. A

client processor system may ask one of several or many

sources whether it can supply a data object with a given

True Name. The steps to perform this mechanism are as

follows (with reference to FIGURE 16).

The client processor 102 uses the source table

145 to select one or more source processors (Step $284).

If no source processor can be found, the mechanism fails.

Next, the client processor 102 broadcasts to the selected

sources a request to locate the file with the given True

Name using the Locate True File remote mechanism (Step

$286). The request to locate may be augmented by asking

to propagate this request to distant servers. The client

processor then waits for one or more servers to respond

positively (Step S288). After all servers respond

negatively, or after a timeout period with no positive

response, the mechanism repeats selection (Step 5284) to

attempt to identify alternative sources. If any selected

source processor responds, its processor ID is the result

of this mechanism. Store the processor ID in the source

field of the True File registry entry record 140 of the

given True Name (Step $290).

If the source location of the True Name is a

different processor or medium than the destination (Step

S290a), perform the following steps:

(i) Look up the True File registry entry

record 140 for the corresponding True Name, and add the

GOOG-‘I005-Page 32 of 116

GOOG-1005-Page 33 of 116

WO 96/32685 PCT/US96/04733

source location In to the list of sources for the True

Name (Step S290b); and

(ii) If the source is a publishing system,

determine the expiration date on the publishing system

for the True Name and add that to the list of sources.

If the source is not a publishing system, send a message

to reserve the True File on the source processor (step
5290c).

source selection in step S284 may be based on

optimizations involving general availability of the

source, access time, bandwidth, and transmission cost,

and ignoring previously selected processors which did not

respond in step S288.

8- kJmfl

This mechanism is.used when a True Name is

known and a locally accessible copy of the corresponding
file or data item is required. This mechanism makes it

possible to actually read the data in a True File. The

mechanism takes a True Name and returns when there is a

local, accessible copy of the True File in the True File

registry 126. This mechanism is described here with

reference to the flow chart of FIGURE 17.

First, look in the True File registry 126 for a

True File entry record 140 for the corresponding True

Name (Step $292). If no such entry is found this

mechanism fails. If there is already a True File ID for

the entry (Step S294), this mechanism's task is complete.

If there is a compressed file ID for the entry (Step

S296), decompress the file corresponding to the file ID

(step S298) and store the decompressed file ID in the

entry (Step S300). This mechanism is then complete.

If there is no True File ID for the entry (step

S294) and there is no compressed file ID for the entry

(Step S296), then continue searching for the requested

file. At this time it may be necessary to notify the

user that the system is searching for the requested file.

31

GOOG-‘I005-Page 33 of 116

GOOG-1005-Page 34 of 116

PCTIUS96/04733

If there are one or more source IDs, then

select an order in which to attempt to realize the source

ID (step S304). The order may be based on optimizations

involving general availability of the source, access

time, bandwidth, and transmission cost. For each source

in the order chosen, realize the True File from the

source location (using the Realize True File from

Location primitive mechanism), until the True File is

realized (Step S306). If it is realized, continue with

step $294. If no known source can realize the True File,

use the Locate Remote File primitive mechanism to attempt

to find the True.Fi1e (Step S308). If this succeeds,

realize the True File from the identified source location

and continue with step $296.

9. greats gcrgtgh File

A scratch copy of a file is required when a

file is being created or is about to be modified. The

scratch copy is stored in the file system of the

underlying operating system. The scratch copy is

eventually assimilated when the audit file record entry

146 is processed by the Process Audit File Entry

primitive mechanism. This Create Scratch File mechanism

requires a local directory extensions table entry record

138. when it succeeds, the local directory extensions

table entry record 138 contains the scratch file ID of a

scratch file that is not contained in the True File

registry 126 and that may be modified. This mechanism is

now described with reference to FIGURE 18.

First determine whether the scratch file should

be a copy of the existing True File (Step S310). If so,

continue with step 5312. otherwise, determine whether

the local directory extensions table entry record 138

identifies an existing True File (Step S316), and if so,

delete the True File using the Delete True File primitive

mechanism (Step S318). Then create a new, empty scratch

file and store its scratch file ID in the local directory

32

GOOG-‘I005-Page 34 of 116

GOOG-1005-Page 35 of 116

wo 96/32685 PCT/US96/04733

extensions table entry record 138 (step 5320). This

mechanism is then complete.

If the local directory extensions table entry

record 138 identifies a scratch file ID (Step S312), then

the entry already has a scratch file, so this mechanism

succeeds.

If the local directory extensions table entry

record 138 identifies a True File (8316), and there is no

True File ID for the True File (S312), then make the True

File local using the Make True File Local primitive

mechanism (step S322). If there is still no True File

ID, this mechanism fails.

There is now a local True File for this file.

If the use count in the corresponding True File registry

entry record 140 is one (Step S326), save the True File

ID in the scratch file ID of the local directory

extensions table entry record 138, and remove the True

File registry entry record 140 (step $328). (This step

makes the True File into a scratch file.) This

mechanism’s task is complete.

otherwise, if the use count in the

corresponding True File registry entry record 140 is not

one (in step S326), copy the file with the given True

File ID to a new scratch file, using the Read File 05

mechanism and store its file ID in the local directory

extensions table entry record 138 (Step S330), and reduce

the use count for the True File by one. If there is

insufficient space to make a copy, this mechanism fails.

10- i£Qfl

This mechanism freezes a directory in order to

calculate its True Name. Since the True Name of a

directory is a function of the files within the

directory, they must not change during the computation of

the True Name of the directory. This mechanism requires

the pathname of a directory to freeze. This mechanism is

described with reference to FIGURE 19.

GOOG-‘I005-Page 35 of 116

GOOG-1005-Page 36 of 116

W0 96,32,585 PC!‘/US96/04733

In step 5332, add one to the global freeze

lock. Then search the local directory extensions table

124 to find each subordinate data file and directory of

the given directory, and freeze each subordinate

directory found using the Freeze Directory primitive

mechanism (Step S334). Assimilate each unassimilated

data file in the directory using the Assimilate Data Item

primitive mechanism (Step S336). Then create a data item

which begins with a tag or marker (a "magic number")

being a unique data item indicating that this data item

is a frozen directory (Step 5337). Then list the file

name and True Name for each file in the current directory

(Step 8338). Record any additional information required,

such as the type, time of last access and modification,

and size (Step S340). Next, in step 5342, using the

Assimilate Data Item primitive mechanism, assimilate the

data item created in step $338. The resulting True Name

is the True Name of the frozen directory. Finally,

subtract one from the global freeze lock (step 5344).

11. oze ' o

This mechanism expands a frozen directory in a

given location. It requires a given pathname into which

to expand the directory, and the True Name of the

directory and is described with reference to FIGURE 20.

First, in step S346, make the True File with

the given True Name local using the Make True File Local

primitive mechanism. Then read each directory entry in

the local file created in step S346 (Step S348); For

each such directory entry, do the following:

Create a full pathname using the given pathname

and the file name of the entry (Step S350); and

link the created path to the True Name (Step

5352) using the Link Path to True Name primitive

mechanism.

GOOG-‘I005-Page 36 of 116

GOOG-1005-Page 37 of 116

W0 9632685 PCT/US96/04733

12- Dslete_I:ue_£ils

This mechanism deletes a reference to a True

Name. The underlying True File is not removed from the

True File registry 126 unless there are no additional

references to the file. with reference to FIGURE 21,

this mechanism is performed as follows:

If the global freeze lock is on, wait until the

global freeze lock is turned off (step $354). This

prevents deleting a True File while a directory which

might refer to it is being frozen. Next, find the True

File registry entry record 140 given the True Name (Step
$356). If the reference count field of the True File

registry 126 is greater than zero, subtract one from the

reference count field (Step S358). If it is determined

(in step 5360) that the reference count field of the True

File registry entry record 140 is zero, and if there are

no dependent systems listed in the True File registry

entry record 140, then perform the following steps:

(i) If the True File is a simple data item,

then delete the True File, otherwise,

(ii) (the True File is a compound data item)

for each True Name in the data item, recursively delete

the True File corresponding to the True Name (Step S362).

(iii) Remove the file indicated by the True

File ID and compressed file ID from the True File

registry 126, and remove the True File registry entry
record 140 (Step S364).

13. s 't ' e

This mechanism performs tasks which are

required to maintain information in the local directory

extensions table 124 and True File registry 126, but

which can be delayed while the processor is busy doing
more time-critical tasks. Entries 142 in the audit file

132 should be processed at a background priority as long

as there are entries to be processed. with reference to

GOOG-‘I005-Page 37 of 116

GOOG-1005-Page 38 of 116

wo 96I32685 PCT/US96/04733

FIGURE 22, the steps for processing an entry are as

follows:

Determine the operation in the entry 142

currently being processed (Step S365). If the operation

indicates that a file was created or written (Step S366),

then assimilate the file using the Assimilate Data Item

primitive mechanism (step S368), use the New True File

primitive mechanism to do additional desired processing

(such as cache update, compression, and mirroring) (Step

S369), and record the newly computed True Name for the

file in the audit file record entry (Step S370).

Otherwise, if the entry being processed

indicates that a compound data item or directory was

copied (or deleted) (Step 5376), then for each component

True Name in the compound data item or directory, add (or

subtract) one to the use count of the True File registry

entry record 140 corresponding to the component True Name

(Step S378).

In all cases, for each parent directory of the

given file, update the size, time of last access, and

time of last modification, according to the operation in

the audit record (Step 5379).

Note that the audit record is not removed after

processing, but is retained for some reasonable period so

that it may be used by the Synchronize Directory extended

mechanism to allow a disconnected remote processor to

update its representation of the local system.

14. B_e_<3.in_Qr_o_Qming

This mechanism makes it possible to select a

set of files for removal and determine the overall amount

of space to be recovered. With reference to FIGURE 23,

first verify that the global grooming lock is currently

unlocked (Step 8382). Then set the global grooming lock,

set the total amount of space freed during grooming to

zero and empty the list of files selected for deletion

GOOG-‘I005-Page 38 of 116

GOOG-1005-Page 39 of 116

wo 96/32685 PCT/US96/04733

(Step $384). For each True File in the True File

registry 126, set the delete count to zero (Step S386).

15. §_e.l3_c_1:_£‘.9:__Bs.m9xa1

, This grooming mechanism tentatively selects a

pathname to allow its corresponding True File to be

removed. with reference to FIGURE 24, first find the

local directory extensions table entry record 138

corresponding to the given pathname (Step S388). Then

find the True File registry entry record 140

corresponding to the True File name in the local

directory extensions table entry record 138 (Step S390).

Add one to the grooming delete count in the True File

registry entry record 140 and add the pathname to a list

of files selected for deletion (Step 8392). If the

grooming delete count of the True File registry entry

record 140 is equal to the use count of the True File

registry entry record 140, and if the there are no

entries in the dependency list of the True File registry

entry record 140, then add the size of the file indicated

by the True File ID and or compressed file ID to the

total amount of space freed during grooming (Step S394).

16- Em!__G_m9ming

This grooming mechanism ends the grooming phase

and removes all files selected for removal. with

reference to FIGURE 25, for each file in the list of

files selected for deletion, delete the file (Step S396)

and then unlock the global grooming lock (Step S398).

 §

The next of the mechanisms provided by the

present invention, operating system mechanisms, are now
described.

The following operating system mechanisms are

described:

1. Open File;

GOOG-‘I005-Page 39 of 116

GOOG-1005-Page 40 of 116

W0 96I32685 PCI‘/US96/04733

Close File;

Read File;

Write File;

Delete File or Directory;

Copy File or Directory;

Move File or Directory;

Get File Status; and

Get Files in Directory.

1- 9.D_en_E1le

A mechanism to open a file is described with

reference to FIGURE 26. This mechanism is given as input

a pathname and the type of access required for the file

(for example, read, write, read/write, create, etc.) and

produces either the File ID of the file to be opened or

an indication that no file should be opened. The local

directory extensions table record 138 and region table

record 142 associated with the opened file are associated

with the open file for later use in other processing

functions which refer to the file, such as read, write,

and close.

First, determine whether or not the named file

exists locally by examining the local directory

extensions table 124 to determine whether there is an

entry corresponding to the given pathname (Step S400).

If it is determined that the file name does not exist

locally, then, using the access type, determine whether

or not the file is being created by this opening process

(Step $402). If the file is not being created, prohibit

the open (Step S404). If the file is being created,

create a zero-length scratch file using an entry in local

directory extensions table 124 and produce the scratch

file ID of this scratch file as the result (Step $406).

If, on the other hand, it is determined in step

$400 that the file name does exist locally, then

determine the region in which the file is located by

searching the region table 128 to find the record 142

38

GOOG-‘I005-Page 40 of 116

GOOG-1005-Page 41 of 116

W0 96l32685 PCT/US96/04733

with the longest region path which is a prefix of the

file pathname (Step 8408). This record identifies the

region of the specified file.

Next, determine using the access type, whether

the file is being opened for writing or whether it is

being opened only for reading (Step 5410). If the file

is being opened for reading only, then, if the file is a

scratch file (Step S419), return the scratch File ID of

the file (Step S424). otherwise get the True Name from

the local directory extensions table 124 and make a local

version of the True File associated with the True Name

using the Make True File Local primitive mechanism, and

then return the True File ID associated with the True

Name (Step $420).

If the file is not being opened for reading

only (Step S410), then, if it is determined by inspecting

the region table entry record 142 that the file is in a

read-only directory (Step S416), then prohibit the

opening (step S422).

If it is determined by inspecting the region

table 128 that the file is in a cached region (Step

S423), then send a Lock Cache message to the

corresponding cache server, and wait for a return message

(Step S418). If the return message says the file is

already locked, prohibit the opening.

If the access type indicates that the file

being modified is being rewritten completely (Step $419),

so that the original data will not be required, then

Delete the File using the Delete File OS mechanism (Step

S421) and perform step S406. Otherwise, make a scratch

copy of the file (Step S417) and produce the scratch file

ID of the scratch file as the result (Step S424).

2. ose

This mechanism takes as input the local

directory extensions table entry record 138 of an open

file and the data maintained for the open file. To close

39

GOOG-‘I005-Page 41 of 116

GOOG-1005-Page 42 of 116

WO 96/32685 PCTlUS96l04733

a file, add an entry to the audit file indicating the

time and operation (create, read or write). The audit

file processing (using the Process Audit File Entry

primitive mechanism) will take care of assimilating the

file and thereby updating the other records.

3. R_e_asLF_.'Ll.e

To read a file, a program must provide the

offset and length of the data to be read, and the

location of a buffer into which to copy the data read.

The file to be read from is identified by an

open file descriptor which includes a File ID as computed

by the Open File operating system mechanism defined

above. The File ID may identify either a scratch file or

a True File (or True File segment). If the File ID

identifies a True File, it may be either a simple or a

compound True File. Reading a file is accomplished by

the following steps:

In the case where the File ID identifies a

scratch file or a simple True File, use the read

capabilities of the underlying operating system.

In the case where the File ID identifies a

compound file, break the read operation into one or more

read operations on component segments as follows:

A. Identify the segment(s) to be read by

dividing the specified file offset and length each by the

fixed size of a segment (a system dependent parameter),

to determine the segment number and number of segments

that must be read.

B. For each segment number computed above, do

the following:

i. Read the compound True File index

block to determine the True Name of the segment to be

read.

ii. Use the Realize True File from

Location primitive mechanism to make the True File

GOOG-‘I005-Page 42 of 116

GOOG-1005-Page 43 of 116

W0 gmms PCT/US96/04733

segment available locally. (If that mechanism fails, the

Read File mechanism fails).

iii. Determine the File ID of the True

File specified by the True Name corresponding to this
segment.

iv. Use the Read File mechanism

(recursively) to read from this segment into the

corresponding location in the specified buffer.

4- Htitelile

File writing uses the file ID and data

management capabilities of the underlying operating

system. File access (Make File Local described above)
can be deferred until the first read or write.

5-

The process of deleting a file, for a given

pathname, is described here with reference to FIGURE 27.

First, determine the local directory extensions

table entry record 138 and region table entry record 142

for the file (Step $422). If the file has no local

directory extensions table entry record 138 or is locked

or is in a read-only region, prohibit the deletion.

Identify the corresponding True File given the

True Name of the file being deleted using the True File

registry 126 (Step 8424). If the file has no True Name,

(Step 8426) then delete the scratch copy of the file
based on its scratch file ID in the local directory

extensions table 124 (Step S427), and continue with step
$428.

If the file has a True Name and the True Fi1e's

use count is one (Step S429), then delete the True File

(step S430), and continue with step S428.

If the file has a True Name and the True Fi1e's

use count is greater than one, reduce its use count by

one (Step S431). Then proceed with step S428.

GOOG-‘I005-Page 43 of 116

GOOG-1005-Page 44 of 116

wo 96/32685 PCl‘IUS96I04733

In step S428, delete the local directory

extensions table entry record, and add an entry to the

audit file 132 indicating the time and the operation

performed (delete).

6. Sm-LF_tl:_Q:_D.ir.e.c_:9r1

A mechanism is provided to copy a file or

directory given a source and destination processor and

pathname. The Copy File mechanism does not actually copy

the data in the file, only the True Name of the file.

This mechanism is performed as follows:

(A) Given the source path, get the True Name

from the path. If this step fails, the mechanism fails.

(B) Given the True Name and the destination

path, link the destination path to the True Name.

(C) If the source and destination processors

have different True File registries, find (or, if

necessary, create) an entry for the True Name in the True

File registry table 126 of the destination processor.

Enter into the source ID field of this new entry the

source processor identity.

(D) Add an entry to the audit file 132

indicating the time and operation performed (copy).

This mechanism addresses capability of the

system to avoid copying data from a source location to a

destination location when the destination already has the

data. In addition, because of the ability to freeze a

directory, this mechanism also addresses capability of

the system immediately to make a copy of any collection

of files, thereby to support an efficient version control

mechanisms for groups of files.

7. $$m

A mechanism is described which moves (or

renames) a file from a source path to a destination path.

The move operation, like the copy operation, requires no

actual transfer of data, and is performed as follows:

42

GOOG-‘I005-Page 44 of 116

GOOG-1005-Page 45 of 116

WO 96132685 PCT/US96/04733

(A) Copy the file from the source path to the

destination path.

(B) If the source path is different from the-

destination path, delete the source path.

8- §£&_Eil§_§£§§§E

This mechanism takes a file pathname and

provides information about the pathname. First the local

directory extensions table entry record 138 corresponding

to the pathname given is found. If no such entry exists,

then this mechanism fails, otherwise, gather information

about the file and its corresponding True File from the

local directory extensions table 124. The information

can include any information shown in the data structures,

including the size, type, owner, True Name, sources, time

of last access, time of last modification, state (local

or not, assimilated or not, compressed or not), use

count, expiration date, and reservations.

9-

This mechanism enumerates the files in a

directory. It is used (implicitly) whenever it is

necessary to determine whether a file exists (is present)

in a directory. For instance, it is implicitly used in

the Open File, Delete File, Copy File or Directory, and

Hove File operating system mechanisms, because the files

operated on are referred to by pathnames containing

directory names. The mechanism works as follows:

The local directory extensions table 124 is

searched for an entry 138 with the given directory

pathname. If no such entry is found, or if the entry
found is not a directory, then this mechanism fails.

If there is a corresponding True File field in

the local directory extensions table record, then it is

assumed that the True File represents a frozen directory.

The Expand Frozen Directory primitive mechanism is used

GOOG-‘I005-Page 45 of 116

GOOG-1005-Page 46 of 116

WO 96132685 PCT/US96I04733

to expand the existing True File into directory entries

in the local directory extensions table.

Finally, the local directory extensions table

124 is again searched, this time to find each directory

subordinate to the given directory. The names found are

provided as the result.

Bem9_ts_n§_qhani§_m.§

The remote mechanisms provided by the present

invention are now described. Recall that remote

mechanisms are used by the operating system in responding

to requests from other processors. These mechanisms

enable the capabilities of the present invention in a

peer-to-peer network mode of operation.

In a presently preferred embodiment, processors

communicate with each other using a remote procedure call

(RPC) style interface, running over one of any number of

communication protocols such as IPX/SPX or TCP/IP. Each

peer processor which provides access to its True File

registry 126 or file regions, or which depends on another

peer processor, provides a number of mechanisms which can

be used by its peers.

The following remote mechanisms are described:

1. Locate True File;

2. Reserve True File;

3. Request True File;

4. Retire True File;

S. cancel Reservation;

6. Acquire True File;

7. Lock Cache;

8. Update Cache; and

9. Check Expiration Date.

1. o e" ue

This mechanism allows a remote processor to

determine whether the local processor contains a copy of

44

GOOG-‘I005-Page 46 of 116

GOOG-1005-Page 47 of 116

W0 9632685 PCT/US96/04733

a specific True File. The mechanism begins with a True

Name and a flag indicating whether to forward requests

for this file to other servers. This mechanism is now

described with reference to FIGURE 28.

First determine if the True File is available

locally or if there is some indication of where the True

File is located (for example, in the source IDs field).

Look up the requested True Name in the True File registry
126 (Step S432).

If a True File registry entry record 140 is not

found for this True Name (Step S434), and the flag

indicates that the request is not to be forwarded (Step

S436), respond negatively (Step S438). That is, respond
to the effect that the True File is not available.

one the other hand, if a True File registry

entry record 140 is not found (Step S434), and the flag
indicates that the request for this True File is to be

forwarded (Step S436), then forward a request for this

True File to some other processors in the system (step

S442). If the source table for the current processor

identifies one or more publishing servers which should

have a copy of this True File, then forward the request

to each of those publishing servers (Step S436).

If a True File registry entry record 140 is

found for the required True File (Step S434), and if the

entry includes a True File ID or Compressed File ID (Step

S440), respond positively (Step 5444). If the entry

includes a True File ID then this provides the identity
or disk location of the actual physical representation of

the file or file segment required. If the entry include

a Compressed File ID, then a compressed version of the

True File may be stored instead of, or in addition to, an

uncompressed version. This field provides the identity

of the actual representation of the compressed version of
the file.

If the True File registry entry record 140 is

found (Step S434) but does not include a True File ID

45

GOOG-‘I005-Page 47 of 116

GOOG-1005-Page 48 of 116

WO 96132685 PCT/US96l04733

(the File ID is absent if the actual file is not

currently present at the current location) (Step S440),

and if the True File registry entry record 140 includes

one or more source processors, and if the request can be

forwarded, then forward the request for this True File to

one or more of the source processors (Step S444).

2- R9.s_er.1e_'J:ri19_.F.il.e

This mechanism allows a remote processor to

indicate that it depends on the local processor for

access to a specific True File. It takes a True Name as

input. This mechanism is described here.

(A) Find the True File registry entry record

140 associated with the given True File. If no entry

exists, reply negatively.

(B) If the True File registry entry record 140

does not include a True File ID or compressed File ID,

and if the True File registry entry record 140 includes

no source IDs for removable storage volumes, then this

processor does not have access to a copy of the given

file. Reply negatively.

(C) Add the ID of the sending processor to the

list of dependent processors for the True File registry

entry record 140. Reply positively, with an indication

of whether the reserved True File is on line or off line.

3. Bequest Izug Eilg

This mechanism allows a remote processor to

request a copy of a True File from the local processor.

It requires a True Name and responds positively by

sending a True File back to the requesting processor.

The mechanism operates as follows:

(A) Find the True File registry entry record

140 associated with the given True Name. If there is no

such True File registry entry record 140, reply

negatively.

GOOG-‘I005-Page 48 of 116

GOOG-1005-Page 49 of 116

W0 96,326” PCT/US96/04733

(B) Make the True File local using the Make

True File Local primitive mechanism. If this mechanism

fails, the Request True File mechanism also fails.
(C) Send the local True File in either it is

uncompressed or compressed form to the requesting remote

processor. Note that if the True Filo is‘a compound

file, the components are not sent.

(D) If the remote file is listed in the

dependent process list of the True File registry entry
record 140, remove it.

4- fln

This mechanism allows a remote processor to

indicate that it no longer plans to maintain a copy of a
given True File. An alternate source of the True File

can be specified, if, for instance, the True File is

being moved from one server to another. It begins with a

True Name, a requesting processor ID, and an optional

alternate source. This mechanism operates as follows:

(A) Find a True Name entry in the True File

registry 126. If there is no entry for this True Name,
this mechanism's task is complete.

(E) Find the requesting processor on the

source list and, if it is there, remove it.

(C) If an alternate source is provided, add it

to the source list for the True File registry entry
record 140.

(D) If the source list of the True File

registry entry record 140 has no items in it, use the
Locate Remote File primitive mechanism to search for

another copy of the file. If it fails, raise a serious
error.

5- m

This mechanism allows a remote processor to

indicate that it no longer requires access to a True File

stored on the local processor. It begins with a True

GOOG-‘I005-Page 49 of 116

GOOG-1005-Page 50 of 116

W0 96/232685 PCTfUS96/04733

Name and a requesting processor ID and proceeds as

follows:

(A) Find the True Name entry in the True File

registry 126. If there is no entry for this True Name,

this mechanism's task is complete.

(B) Remove the identity of the requesting

processor from the list of dependent processors, if it

appears.

(C) If the list of dependent processors

becomes zero and the use count is also zero, delete the

True File.

6- flu

This mechanism allows a remote processor to

insist that a local processor make a copy of a specified

True File. It is used, for example, when a cache client

wants to write through a new version of a file. The

Acquire True File mechanism begins with a data item and

an optional True Name for the data item and proceeds as

follows:

(A) Confirm that the requesting processor has

the right to require the local processor to acquire data

items. If not, send a negative reply.

(B) Make a local copy of the data item

transmitted by the remote processor.

(C) Assimilate the data item into the True

File registry of the local processor.

(D) If a True Name was provided with the file,

the True Name calculation can be avoided, or the

mechanism can verify that the file received matches the

True Name sent.

(E) Add an entry in the dependent processor

list of the true file registry record indicating that the

requesting processor depends on this copy of the given

True File.

(F) Send a positive reply.

GOOG-‘I005-Page 50 of 116

GOOG-1005-Page 51 of 116

WO 96132685 PCT/US96/04733

7~ L9£K_£§£h£

This mechanism allows a remote cache client to

lock a local file so that local users or other cache

clients cannot change it while the remote processor is

using it. The mechanism begins with a pathname and
proceeds as follows:

(A) Find the local directory extensions table

entry record 138 of the specified pathname. If no such

entry exists, reply negatively.

(B) If an local directory extensions table

entry record 138 exists and is already locked, reply
negatively that the file is already locked.

(C) If an local directory extensions table

entry record 138 exists and is not locked, lock the

entry. Reply positively.

8. gpdgtg Qaggg

This mechanism allows a remote cache client to

the remote processor. This mechanism operates as
follows:

Find the local directory extensions table entry

record 138 corresponding to the given pathname. Reply

negatively if no such entry exists or if the entry is not
locked.

Link the given pathname to the given True Name

using the Link Path to True Name primitive mechanism.

Unlock the local directory extensions table

entry record 138 and return positively.

9- g

Return current or new expiration date and.

possible alternative source to caller.

GOOG-1005-Page 51 of 116

GOOG-1005-Page 52 of 116

W0 96/32685 PCT/US96/04733

The background processes and mechanisms

provided by the present invention are now described.

Recall that background mechanisms are intended to run

occasionally and at a low priority to provide automated

management capabilities with respect to the present

invention.

The following background mechanisms are

described:

Mirror True File;

Groom Region;

Check for Expired Links;

Verify Region; and

Groom Source List.

1. ' o ue

This mechanism is used to ensure that files are

available in alternate locations in mirror groups or

archived on archival servers. The mechanism depends on

application-specific migration/archival criteria (size,

time since last access, number of copies required, number

of existing alternative sources) which determine under

what conditions a file should be moved. The Mirror True

File mechanism operates as follows, using the True File

specified, perform the following steps:

(A) Count the number of available locations of

the True File by inspecting the source list of the True

File registry entry record 140 for the True File. This

step determines how many copies of the True File are

available in the system.

(B) If the True File meets the specified

migration criteria, select a mirror group server to which

a copy of the file should be sent. Use the Acquire True

File remote mechanism to copy the True File to the

selected mirror group server. Add the identity of the

selected system to the source list for the True File.

50

GOOG-‘I005-Page 52 of 116

GOOG-1005-Page 53 of 116

W0 9632685 PCT/US96/04733

2. sir.92m_Ba<1i2n

This mechanism is used to automatically free up

space in a processor by deleting data items that may be

available elsewhere. The mechanism depends on

application-specific grooming criteria (for instance, a

file may be removed if there is an alternate online

source for it, it has not been accessed in a given number

of days, and it is larger than a given size). This

mechanism operates as follows:

Repeat the following steps (i) to (iii) with

more aggressive grooming criteria until sufficient space

is freed or until all grooming criteria have been

exercised. Use grooming information to determine how

much space has been freed. Recall that, while grooming
is in effect, grooming information includes a table of

pathnames selected for deletion, and keeps track of the

amount of space that would be freed if all of the files
were deleted.

(i) Begin Grooming (using the primitive

mechanism).

(ii) For each pathname in the specified region,

for the True File corresponding to the pathname, if the

True File is present, has at least one alternative

source, and meets application specific grooming criteria

for the region, select the file for removal (using the
primitive mechanism).

(iii) End Grooming (using the primitive
mechanism).

If the region is used as a cache, no other

processors are dependent on True Files to which it

refers, and all such True Files are mirrored elsewhere.

In this case, True Files can be removed with impunity.

For a cache region, the grooming criteria would

ordinarily eliminate the least recently accessed True

Files first. This is best done by sorting the True Files

in the region by the most recent access time before

performing step (ii) above. The application specific

51

GOOG-‘I005-Page 53 of 116

GOOG-1005-Page 54 of 116

wo 96/32685 PCTIUS96/04733

criteria would thus be to select for removal every True

File encountered (beginning with the least recently used)

until the required amount of free space is reached.

3.

This mechanism is used to determine whether

dependencies on published files should be refreshed. The

following steps describe the operation of this mechanism:

For each pathname in the specified region, for

each True File corresponding to the pathname, perform the

following step:

If the True File registry entry record 140

corresponding to the True File contains at least one

source which is a publishing server, and if the

expiration date on the dependency is past or close, then

perform the following steps:

(A) Determine whether the True File registry

entry record contains other sources which have not

expired.

(B) Check the True Name expiration of the

server. If the expiration date has been extended, or an

alternate source is suggested, add the source to the True

File registry entry record 140.

(C) If no acceptable alternate source was

found in steps (A) or (8) above, make a local copy of the

True File.

(D) Remove the expired source.

4.

This mechanism can be used to ensure that the

data items in the True File registry 126 have not been

damaged accidentally or maliciously. The operation of

this mechanism is described by the following steps:

(A) Search the local directory extensions

table 124 for each pathname in the specified region and

then perform the following steps:

GOOG-‘I005-Page 54 of 116

GOOG-1005-Page 55 of 116

WO 96132685 PCTIUS96I04733

(i) Get the True File name corresponding

to the pathname;

(ii) If the True File registry entry 140-

for the True File does not have a True File ID or

compressed file ID, ignore it.

(iii) Use the Verify True File mechanism

(see extended mechanisms below) to confirm that the True

File specified is correct.

5- §.r.9_qm_$_o.ur9_e_Li.et

The source list in a True File entry should be

groomed sometimes to ensure there are not too many mirror

or archive copies. when a file is deleted or when a

region definition or its mirror criteria are changed, it

may be necessary to inspect the affected True Files to

determine whether there are too many mirror copies. This

can be done with the following steps:

For each affected True File,

(A) Search the local directory extensions

table to find each region that refers to the True File.

(8) Create a set of "required sources",

initially empty.

(C) For each region found,

(a) determine the mirroring criteria for

that region,

(b) determine which sources for the True

File satisfy the mirroring criteria, and

(c) add these sources to the set of

required sources.

(D) For each source in the True File registry

entry, if the source identifies a remote processor (as

opposed to removable media), and if the source is not a

publisher, and if the source is not in the set of

required sources, then eliminate the source, and use the

Cancel Reservation remote mechanism to eliminate the

given processor from the list of dependent processors

GOOG-‘I005-Page 55 of 116

GOOG-1005-Page 56 of 116

W0 9632635 PCT/U595/04733

recorded at the remote processor identified by the

source.

Ex1:nd9.d_u9.:nanisms

The extended mechanisms provided by the present

invention are now described. Recall that extended

mechanisms run within application programs over the

operating system to provide solutions to specific

problems and applications.

The following extended mechanisms are

described:

1. Inventory Existing Directory;

2. Inventory Removable, Read—only Files;

3. synchronize Directories;

Publish Region;

Retire Directory;

Realize Directory at Location;

Verify True File;

Track for Accounting Purposes; and

Track for Licensing Purposes.

1. v o ' ‘n

This mechanism determines the True Names of

files in an existing on-line directory in the underlying

operating system. one purpose of this mechanism is to

install True Name mechanisms in an existing file system.

An effect of such an installation is to

eliminate immediately all duplicate files from the file

system being traversed. If several file systems are

inventoried in a single True File registry, duplicates

across the volumes are also eliminated.

(A) Traverse the underlying file system in the

operating system. For each file encountered, excluding

directories, perform the following:

(i) Assimilate the file encountered

(using the Assimilate File primitive mechanism). This

GOOG-‘I005-Page 56 of 116

GOOG-1005-Page 57 of 116

WO 96132685 PCT/US96/04733

process computes its True Name and moves its data into

the True File registry 126.

(ii) Create a pathname consisting of the

path to the volume directory and the relative path of the

file on the media. Link this path to the computed True

Name using the Link Path to True Name primitive
mechanism.

2. ks

A system with access to removable, read-only

media volumes (such as WORM disks and CD-ROMS) can create

a usable inventory of the files on these disks without

having to make online copies. These objects can then be

used for archival purposes, directory overlays, or other

needs. An operator must request that an inventory be
created for such a volume.

This mechanism allows for maintaining
inventories of the contents of files and data items on

removable media, such as diskettes and CD-RoMs, indepen-

dent of other properties of the files such as name,
location, and date of creation.

The mechanism creates an online inventory of

the files on one or more removable volumes, such as a

floppy disk or CD-ROM, when the data on the volume is

represented as a directory. The inventory service uses a

True Name to identify each file, providing a way to

locate the data independent of its name, date of

creation, or location.

The inventory can be used for archival of data

(making it possible to avoid archiving data when that

data is already on a separate volume), for grooming

(making it possible to delete infrequently accessed files

if they can be retrieved from removable volumes), for

version control (making it possible to generate a new

version of a CD-ROM without having to copy the old

version), and for other purposes.

GOOG-‘I005-Page 57 of 116

GOOG-1005-Page 58 of 116

wo 96132685 PCI‘/US96l04733

The inventory is made by creating a volume

directory in the media inventory in which each file named

identifies the data item on the volume being inventoried.

Data items are not copied from the removable volume

during the inventory process.

An operator must request that an inventory be

created for a specific volume. once created, the volume

directory can be frozen or copied like any other

directory. Data items from either the physical volume or

the volume directory can be accessed using the open File

operating system mechanism which will cause them to be

read from the physical volume using the Realize True File

from Location primitive mechanism.

To create an inventory the following steps are

taken:

(A) A volume directory in the media inventory

is created to correspond_to the volume being inventoried.

Its contextual name identifies the specific volume.

(8) A source table entry 144 for the volume is

created in the source table 130. This entry 144

identifies the physical source volume and the volume

directory created in step (A).

(C) The filesystem on the volume is traversed.

For each file encountered, excluding directories, the

following steps are taken:

(i) The True Name of the file is

computed. An entry is created in the True Name registry

124, including the True Name of the file using the

primitive mechanism. The source field of the True Name

registry entry 140 identifies the source table entry 144.

(ii) A pathname is created consisting of

the path to the volume directory and the relative path of

the file on the media. This path is linked to the

computed True Name using Link Path to True Name primitive

mechanism.

(D) After all files have been inventoried, the

volume directory is frozen. The volume directory serves

56

GOOG-‘I005-Page 58 of 116

GOOG-1005-Page 59 of 116

wo 96/32685 PCI‘/US96/04733

as a table of contents for the volume. It can be copied

using the Copy File or Directory primitive mechanism to

create an "overlay" directory which can then be modified,

making it possible to edit a virtual copy of a read-only
medium.

3. S n ' e ' ec es

Given two versions of a directory derived from

the same starting point, this mechanism creates a new,

synchronized version which includes the changes from

each. Where a file is changed in both versions, this

mechanism provides a user exit for handling the

discrepancy. By using True Names, comparisons are

instantaneous, and no copies of files are necessary.

This mechanism lets a local processor

synchronize a directory to account for changes made at a

remote processor. Its purpose is to bring a local copy

of a directory up to date after a period of no

communication between the local and remote processor.

Such a period might occur if the local processor were a

mobile processor detached from its server, or if two

distant processors were run independently and updated

nightly.

An advantage of the described synchronization

process is that it does not depend on synchronizing the

clocks of the local and remote processors. However, it

does require that the local processor track its position

in the remote processor's audit file.

This mechanism does not resolve changes made

simultaneously to the same file at several sites. If

that occurs, an external resolution mechanism such as,

for example, operator intervention, is required.

The mechanism takes as input a start time, a

local directory pathname, a remote processor name, and a

remote directory pathname name, and it operates by the

following steps:

GOOG-‘I005-Page 59 of 116

GOOG-1005-Page 60 of 116

wo M32635 PCT/US96/04733

(A) Request a copy of the audit file 132 from

the remote processor using the Request True File remote

mechanism.

(3) For each entry 146 in the audit file 132

after the start time, if the entry indicates a change to

a file in the remote directory, perform the following

steps:

(i) Compute the pathname of the

corresponding file in the local directory. Determine the

True Name of the corresponding file.

(ii) If the True Name of the local file is

the same as the old True Name in the audit file, or if

there is no local file and the audit entry indicates a’

new file is being created, link the new True Name in the

audit file to the local pathname using the Link Path to

True Name primitive mechanism.

(iii) Otherwise, note that there is a

problem with the synchronization by sending a message to

the operator or to a problem resolution program,

indicating the local pathname, remote pathname, remote

processor, and time of change.

(C) After synchronization is complete, record

the time of the final change. This time is to be used as

the new start time the next time this directory is

synchronized with the same remote processor.

4. Bublish Regigg

The publish region mechanism allows a processor

to offer the files in a region to any client processors

for a limited period of time.

The purpose of the service is to eliminate any

need for client processors to make reservations with the

publishing processor. This in turn makes it possible for

the publishing processor to service a much larger number

of clients.

when a region is published, an expiration date

is defined for all files in the region, and is propagated

58

GOOG-‘I005-Page 60 of 116

GOOG-1005-Page 61 of 116

WO 96132685 PCTlUS96l04733

into the publishing system's True File registry entry
record 140 for each file.

when a remote file is copied, for instance

using the Copy File operating system mechanism, the

expiration date is copied into the source field of the

client's True File registry entry record 140. When the

source is a publishing system, no dependency need be
created.

The client processor must occasionally and in

background, check for expired links, to make sure it

still has access to these files. This is described in the

background mechanism Check for Expired Links.

5. ggtire Qirectgzy

This mechanism makes it possible to eliminate

safely the True Files in a directory, or at least

dependencies on them, after ensuring that any client

processors depending on those files remove their

dependencies. The files in the directory are not

actually deleted by this process. The directory can be

deleted with the Delete File operating system mechanism.

The mechanism takes the pathname of a given

directory, and optionally, the identification of a

preferred alternate source processor for clients to use.

The mechanism performs the following steps:

(A) Traverse the directory. For each file in

the directory, perform the following steps:

(i) Get the True Name of the file from

its path and find the True File registry entry 140
associated with the True Name.

(ii) Determine an alternate source for the

True File. If the source IDs field of the TFR entry

includes the preferred alternate source, that is the

alternate source. If it does not, but includes some

other source, that is the alternate source. If it

contains no alternate sources, there is no alternate
SOUICE .

GOOG-1005-Page 61 of 116

GOOG-1005-Page 62 of 116

wo 96/32685 PCTfUS96I04733

(iii) For each dependent processor in

the True File registry entry 140, ask that processor to

retire the True File, specifying an alternate source if

one was determined, using the remote mechanism.

6. m

This mechanism allows the user or operating

system to force copies of files from some source location

to the True File registry 126 at a given location. The

purpose of the mechanism is to ensure that files are

accessible in the event the source location becomes

inaccessible. This can happen for instance if the source

or given location are on mobile computers, or are on

removable media, or if the network connection to the

source is expected to become unavailable, or if the

source is being retired.

This mechanism is provided in the following

steps for each file in the given directory, with the

exception of subdirectories:

(A) Get the local directory extensions table

entry record 138 given the pathname of the file. Get the

True Name of the local directory extensions table entry

record 138. This service assimilates the file if it has

not already been assimilated.

(B) Realize the corresponding True File at the

given location. This service causes it to be copied to

the given location from a remote system or removable

media.

7. Verify Irug Eilg

This mechanism is used to verify that the data

item in a True File registry 126 is indeed the correct

data item given its True Name. Its purpose is to guard

against device errors, malicious changes, or other

problems.

If an error is found, the system has the

ability to "heal" itself by finding another source for

60

GOOG-‘I005-Page 62 of 116

GOOG-1005-Page 63 of 116

WO 96132685 PCT/US96/04733

the True File with the given name. It may also be

desirable to verify that the error has not propagated to
other systems, and to log the problem or indicate it to

the computer operator. These details are not described
here.

To verify a data item that is not in a True

File registry 126, use the Calculate True Name primitive
mechanism described above.

The basic mechanism begins with a True Name,
and operates in the following steps:

(A) Find the True File registry entry record

140 corresponding to the given True Name.

(8) If there is a True File ID for the True

File registry entry record 140 then use it. Otherwise,
indicate that no file exists to verify.

(C) Calculate the True Name of the data item

given the file ID of the data item.

(D) Confirm that the calculated True Name is

equal to the given True Name.

(E) If the True Names are not equal, there is

an error in the True File registry 126. Remove the True

File ID from the True File registry entry record 140 and

place it somewhere else. Indicate that the True File

registry entry record 140 contained an error.

8. o c u ' oses

This mechanism provides a way to know reliably
which files have been stored on a system or transmitted

from one system to another. The mechanism can be used as

a basis for a value-based accounting system in which

charges are based on the identity of the data stored or

transmitted, rather than simply on the number of hits.

This mechanism allows the system to track

possession of specific data items according to content by
owner, independent of the name, date, or other properties

of the data item, and tracks the uses of specific data

items and files by content for accounting purposes. True

61

GOOG-1005-Page 63 of 116

GOOG-1005-Page 64 of 116

wo 96/32685 PCT/US96/04733

names make it possible to identify each file briefly yet

uniquely for this purpose.

Tracking the identities of files requires

maintaining an accounting log 134 and processing it for

accounting or billing purposes. The mechanism operates

in the following steps:

(A) Note every time a file is created or

deleted, for instance by monitoring audit entries in the

Process Audit File Entry primitive mechanism. when such

an event is encountered, create an entry 148 in the

accounting log 134 that shows the responsible party and

the identity of the file created or deleted.

(8) Every time a file is transmitted, for

instance when a file is copied with a Request True File

remote mechanism or an Acquire True File remote

mechanism, create an entry in the accounting log 134 that

shows the responsible party, the identity of the file,

and the source and destination processors.

(C) Occasionally run an accounting program to

process the accounting log 134, distributing the events

to the account records of each responsible party. The

account records can eventually be summarized for billing

purposes.

9. Irgck for Licensing Purposes

This mechanism ensures that licensed files are

not used by unauthorized parties. The True Name provides

a safe way to identify licensed material. This service

allows proof of possession of specific files according to

their contents without disclosing their contents.

Enforcing use of valid licenses can be active

(for example, by refusing to provide access to a file

without authorization) or passive (for example, by

creating a report of users who do not have proper

authorization).

one possible way to perform license validation

is to perform occasional audits of employee systems. The

62

GOOG-‘I005-Page 64 of 116

GOOG-1005-Page 65 of 116

WO 96/32685 PCT/US96/04733

service described herein relies on True Names to support

such an audit, as in the following steps:

(A) For each licensed product, record in the

license table 136 the True Name of key files in the

product (that is, files which are required in order to

use the product, and which do not occur in other

products) Typically, for a software product, this would

include the main executable image and perhaps other major

files such as clip-art, scripts, or online help. Also

record the identity of each system which is authorized to

have a copy of the file.

(B) occasionally, compare the contents of each

user processor against the license table 136. For each'

True Name in the license table do the following:

(i) Unless the user processor is

authorized to have a copy of the file, confirm that the

user processor does not have a copy of the file using the
Locate True File mechanism.

(ii) If the user processor is found to

have a file that it is not authorized to have, record the

user processor and True Name in a license violation

table.

em ' 0 e a ‘o

Given the mechanisms described above, the

operation of a typical DP system employing these

mechanisms is now described in order to demonstrate how

the present invention meets its requirements and‘

capabilities.

In operation, data items (for example, files,

database records, messages, data segments, data blocks,

directories, instances of object classes, and the like)

in a DP system employing the present invention are

identified by substantially unique identifiers (True

Names), the identifiers depending on all of the data in

the data items and only on the data in the data items.

63

GOOG-‘I005-Page 65 of 116

GOOG-1005-Page 66 of 116

WO 96132685 PCT/US96/04733

The primitive mechanisms Calculate True Name and

Assimilate Data Item support this property. For any

given data item, using the calculate True Name primitive

mechanism, a substantially unique identifier or True Name

for that data item can be determined.

Further, in operation of a DP system

incorporating the present invention, multiple copies of

data items are avoided (unless they are required for some

reason such as backups or mirror copies in a fault-

tolerant system). Multiple copies of data items are

avoided even when multiple names refer to the same data

item. The primitive mechanisms Assimilate Data Items and

New True File support this property. Using the‘

Assimilate Data Item primitive mechanism, if a data item

already exists in the system, as indicated by an entry in

the True File registry 126, this existence will be

discovered by this mechanism, and the duplicate data item

(the new data item) will be eliminated (or not added).

Thus, for example, if a data file is being copied onto a

system from a floppy disk, if, based on the True Name of

the data file, it is determined that the data file

already exists in the system (by the same or some other

name), then the duplicate copy will not be installed. If

the data item was being installed on the system by some

name other than its current name, then, using the Link

Path to True Name primitive mechanism, the other (or new)

name can be linked to the already existing data item.

In general, the mechanisms of the present

invention operate in such a way as to avoid recreating an

actual data item at a location when a copy of that data

item is already present at that location. In the case of

a copy from a floppy disk, the data item (file) may have

to be copied (into a scratch file) before it can be

determined that it is a duplicate. This is because only

one processor is involved. On the other hand, in a

multiprocessor environment or DP system, each processor

has a record of the True Names of the data items on that

64

GOOG-‘I005-Page 66 of 116

GOOG-1005-Page 67 of 116

WO 96/32685 PCT/US96/04733

processor. When a data item is to be copied to another

location (another processor) in the DP system, all that

is necessary is to examine the True Name of the data item

prior to the copying. It a data item with the same True

Name already exists at the destination location

(processor), then there is no need to copy the data item.

Note that if a data item which already exists locally at
a destination location is still copied to the destination

location (for example, because the remote system did not

have a True Name for the data item or because it arrives

as a stream of un-named data), the Assimilate Data Item

primitive mechanism-will prevent multiple copies of the

data item from being created.

Since the True Name of a large data item (a

compound data item) is derived from and based on the True

Names of components of the data item, copying of an

entire data item can be avoided. Since some (or all) of

the components of a large data item may already be

present at a destination location, only those components

which are not present there need be copied. This

property derives from the manner in which True Names are

determined.

when a file is copied by the Copy File or

Directory operating system mechanism, only the True Name

of the file is actually replicated.

when a file is opened (using the Open File

operating system mechanism), it uses the Make True File

Local primitive mechanism (either directly or indirectly
through the Create Scratch File primitive mechanism) to

create a local copy of the file. The Open File operating

system mechanism uses the Make True File Local primitive

mechanism, which uses the Realize True File from Location

primitive mechanism, which, in turn uses the Request True
File remote mechanism.

The Request True File remote mechanism copies

only a single data item from one processor to another.

If the data item is a compound file, its component

65

GOOG-‘I005-Page 67 of 116

GOOG-1005-Page 68 of 116

WO 96/32685 PCT/US96l04733

segments are not copied, only the indirect block is

copied. The segments are copied only when they are read

(or otherwise needed).

The Read File operating system mechanism

actually reads data. The Read File mechanism is aware of

compound files and indirect blocks, and it uses the

Realize True File from Location primitive mechanism to

make sure that component segments are locally available,

and then uses the operating system file mechanisms to

read data from the local file.

Thus, when a compound file is copied from a

remote system, only its True Name is copied. when it is

opened, only its indirect block is copied. .When the

corresponding file is read, the required component

segments are realized and therefore copied.

In operation data items can be accessed by

reference to their identities (True Names) independent of

their present location. The actual data item or True

File corresponding to a given data identifier or True

Name may reside anywhere in the system (that is, locally,

remotely, offline, etc). If a required True File is

present locally, then the data in the file can be

accessed. If the data item is not present locally, there

are a number of ways in which it can be obtained from

wherever it is present. Using the source IDs field of

the True File registry table, the location(s) of copies

of the True File corresponding to a given True Name can

be determined. The Realize True File from Location

primitive mechanism tries to make a local copy of a True

File, given its True Name and the name of a source

location (processor or media) that may contain the True

File. If, on the other hand, for some reason it is not

known where there is a copy of the True File, or if the

processors identified in the source IDs field do not

respond with the required True File, the processor

requiring the data item can make a general request for

the data item using the Request True File remote

66

GOOG-‘I005-Page 68 of 116

GOOG-1005-Page 69 of 116

wo 96/32685 PCTIUS96/04733

mechanism from all processors in the system that it can
contact.

As a result, the system provides transparent

access to any data item by reference to its data

identity, and independent of its present location.

In operation, data items in the system can be

verified and have their integrity checked. This is from

the manner in which True Names are determined. This can

be used for security purposes, for instance, to check for

viruses and to verify that data retrieved from another

location is the desired and requested data. For example,
the system might store the True Names of all executable

applications on the system and then periodically

redetermine the True Names of each of these applications

to ensure that they match the stored True Names. Any

change in a True Name potentially signals corruption in

the system and can be further investigated. The Verify

Region background mechanism and the Verify True File

extended mechanisms provide direct support for this mode

of operation. The Verify Region mechanism is used to

ensure that the data items in the True File registry have

not been damaged accidentally or maliciously. The Verify
True File mechanism verifies that a data item in a True

File registry is indeed the correct data item given its
True Name.

Once a processor has determined where (that is,

at which other processor or location) a copy of a data

item is in the DP system, that processor might need that

other processor or location to keep a copy of that data

item. For example, a processor might want to delete

local copies of data items to make space available

locally while knowing that it can rely on retrieving the

data from somewhere else when needed. To this end the

system allows a processor to Reserve (and cancel the

reservation of) True Files at remote locations (using the

remote mechanism). In this way the remote locations are

GOOG-‘I005-Page 69 of 116

GOOG-1005-Page 70 of 116

we 96,326“ PCTIUS96/04733

put on notice that another location is relying on the

presence of the True File at their location.

A DP system employing the present invention can

be made into a fault-tolerant system by providing a

certain amount of redundancy of data items at multiple

locations in the system. Using the Acquire True File and

Reserve True File remote mechanisms, a particular

processor can implement its own form of fault-tolerance

by copying data items to other processors and then

reserving them there. However, the system also provides

the Mirror True File background mechanism to mirror (make

copies) of the True File available elsewhere in the

system. Any degree of redundancy (limited by the number

of processors or locations in the system) can be

implemented. As a result, this invention maintains a

desired degree or level of redundancy in a network of

processors, to protect against failure of any particular

processor by ensuring that multiple copies of data items

exist at different locations.

The data structures used to implement various

features and mechanisms of this invention store a variety

of useful information which can be used, in conjunction

with the various mechanisms, to implement storage schemes

and policies in a DP system employing the invention. For

example, the size, age and location of a data item (or of

groups of data items) is provided. This information can

be used to decide how the data items should be treated.

For example, a processor may implement a policy of

deleting local copies of all data items over a certain

age if other copies of those data items are present

elsewhere in the system. The age (or variations on the

age) can be determined using the time of last access or

modification in the local directory extensions table, and

the presence of other copies of the data item can be

determined either from the Safe Flag or the source IDs,

or by checking which other processors in the system have

GOOG-‘I005-Page 70 of 116

GOOG-1005-Page 71 of 116

W0 96132685 PCTIUS96l04733

copies of the data item and then reserving at least one

of those copies.

In operation, the system can keep track of data

items regardless of how those items are named by users

(or regardless of whether the data items even have

names). The system can also track data items that have

different names (in different or the same location) as

well as different data items that have the same name.

Since a data item is identified by the data in the item,

without regard for the context of the data, the problems

of inconsistent naming in a DP system are overcome.

In operation,.the system can publish data

items, allowing other, possibly anonymous, systems in a

network to gain access to the data items and to rely on
the availability of these data items. True Names are

globally unique identifiers which can be published simply

by copying them. For example, a user might create a

textual representation of a file on system A with True

Name N (for instance as a hexadecimal string), and post

it on a computer bulletin board. Another user on system

8 could create a directory entry F for this True Name N

by using the Link Path to True Name primitive mechanism.

(Alternatively, an application could be developed which

hides the True Name from the users, but provides the same

public transfer service.)

when a program on system B attempts to open

pathname F linked to True Name N, the Locate Remote File

primitive mechanism would be used, and would use the

Locate True File remote mechanism to search for True Name

N on one or more remote processors, such as system A. If

system B has access to system A, it would be able to

realize the True File (using the Realize True File from

Location primitive mechanism) and use it locally.

Alternatively, system B could find True Name N by

accessing any publicly available True Name server, if the

server could eventually forward the request to system A.

GOOG-1005-Page 71 of 116

GOOG-1005-Page 72 of 116

W0 96,3265 PCT/US96/04733

Clients of a local server can indicate that

they depend on a given True File (using the Reserve True

File remote mechanism) so that the True File is not

deleted from the server registry as long as some client

requires access to it. (The Retire True File remote

mechanism is used to indicate that a client no longer

needs a given True File.)

A publishing server, on the other hand, may

want to provide access to many clients, and possibly

anonymous ones, without incurring the overhead of

tracking dependencies for each client. Therefore, a

public server can provide expiration dates for True Files

in its registry. This allows client systems to safely

maintain references to a True File on the public server.

The Check For Expired Links background mechanism allows

the client of a publishing server to occasionally confirm

that its dependencies on the publishing server are safe.

In a variation of this aspect of the invention,

a processor that is newly connected (or reconnected after

some absence) to the system can obtain a current version

of all (or of needed) data in the system by requesting it

from a server processor. Any such processor can send a

request to update or resynchronize all of its directories

(starting at a root directory), simply by using the

Synchronize Directories extended mechanism on the needed

directories.

Using the accounting log or some other user

provided mechanism, a user can prove the existence of

certain data items at certain times. By publishing (in a

public place) a list of all True Names in the system on a

given day (or at some given time), a user can later refer

back to that list to show that a particular data item was

present in the system at the time that list was

published. such a mechanism is useful in tracking, for

example, laboratory notebooks or the like to prove dates

of conception of inventions. Such a mechanism also

GOOG-‘I005-Page 72 of 116

GOOG-1005-Page 73 of 116

wo 96/32685 PCT/US96/04733

permits proof of possession of a data item at a

particular date and time.

The accounting log file can also track the use

of specific data items and files by content for

accounting purposes. For instance, an information

utility company can determine the data identities of data

items that are stored and transmitted through its

computer systems, and use these identities to provide

bills to its customers based on the identities of the

data items being transmitted (as defined by the

substantially unique identifier). The assignment of

prices for storing and transmitting specific True Files

would be made by the information utility and/or its data

suppliers; this information would be joined periodically
with the information in the accounting log file to
produce customer statements.

Backing up data items in a DP system employing
the present invention can be done based on the True Names

of the data items. By tracking backups using True Names,

duplication in the backups is prevented. In operation,
the system maintains a backup record of data identifiers

of data items already backed up, and invokes the Copy

File or Directory operating system mechanism to copy only
those data items whose data identifiers are not recorded

in the backup record. Once a data item has been backed

up, it can be restored by retrieving it from its backup
location, based on the identifier of the data item.

Using the backup record produced by the backup to

identify the data item, the data item can be obtained

using, for example, the Make True File Local primitive
mechanism.

In operation, the system can be used to cache

data items from a server, so that only the most recently
accessed data items need be retained. To operate in this

way, a cache client is configured to have a local

registry (its cache) with a remote Local Directory

Extensions table (from the cache server). Whenever a

71

GOOG-‘I005-Page 73 of 116

GOOG-1005-Page 74 of 116

W0 95,32,585 PCT/US96l04733

file is opened (or read), the Local Directory Extensions

table is used to identify the True Name, and the Make

True Pile Local primitive mechanism inspects the local

registry. When the local registry already has a copy,

the file is already cached. Otherwise, the Locate True

File remote mechanism is used to get a copy of the file.

This mechanism consults the cache server and uses the

Request True File remote mechanism to make a local copy,

effectively loading the cache.

The Groom Cache background mechanism flushes

the cache, removing the least-recently-used files from

the cache client's True File registry. While a file is

being modified on a cache client, the Lock Cache and

Update Cache remote mechanisms prevent other clients from

trying to modify the same file.

In operation, when the system is being used to

cache data items, the problems of maintaining cache

consistency are avoided.

To access a cache and to fill it from its

server, a key is required to identify the data item

desired. Ordinarily, the key is a name or address (in

this case, it would be the pathname of a file). If the

data associated with such a key is changed, the client's

cache becomes inconsistent; when the cache client refers

to that name, it will retrieve the wrong data. In order

to maintain cache consistency it is necessary to notify

every client immediately whenever a change occurs on the
server.

By using an embodiment of the present

invention, the cache key uniquely identifies the data it

represents. When the data associated with a name

changes, the key itself changes. Thus, when a cache

client wishes to access the modified data associated with

a given file name, it will use a new key (the True Name

of the new file) rather than the key to the old file

contents in its cache. The client will always request

the correct data, and the old data in its cache will be

72

GOOG-‘I005-Page 74 of 116

GOOG-1005-Page 75 of 116

wo 96/32685 1>c'r/usss/04733

eventually aged and flushed by the Groom cache background

mechanism.

Because it is not necessary to immediately

notify clients when changes on the cache server occur,.

the present invention makes it possible for a single

server to support a much larger number of clients than is

otherwise possible.

In operation, the system automatically archives

data items as they are created or modified. After a file

is created or modified, the Close File operating system

mechanism creates an audit file record, which is

eventually processed by the Process Audit File Entry

primitive mechanism. This mechanism uses the New True

File primitive mechanism for any file which is newly

created, which in turn uses the Mirror True File

background mechanism if the True File is in a mirrored or

archived region. This mechanism causes one or more

copies of the new file to be made on remote processors.

In operation, the system can efficiently record

and preserve any collection of data items. The Freeze

Directory primitive mechanism creates a True File which

identifies all of the files in the directory and its

subordinates. Because this True File includes the True

Names of its constituents, it represents the exact

contents of the directory tree at the time it was frozen.

The frozen directory can be copied with its components

preserved.

The Acquire True File remote mechanism (used in

mirroring and archiving) preserves the directory tree

structure by ensuring that all of the component segments

and True Files in a compound data item are actually

copied to a remote system. of course, no transfer is

necessary for data items already in the registry of the

remote system.

In operation, the system can efficiently make a

copy of any collection of data items, to support a

version control mechanism for groups of the data items.

73

GOOG-‘I005-Page 75 of 116

GOOG-1005-Page 76 of 116

W0 96/32535 PCT/US96/04733

The Freeze Directory primitive mechanism is

used to create a collection of data items. The

constituent files and segments referred to by the frozen

directory are maintained in the registry, without any

need to make copies of the constituents each time the

directory is frozen.

Whenever a pathname is traversed, the Get Files

in Directory operating system mechanism is used, and when

it encounters a frozen directory, it uses the Expand

Frozen Directory primitive mechanism.

A frozen directory can be copied from one

pathname to another efficiently, merely by copying its

True Name. The Copy File operating system mechanism is

used to copy a frozen directory.

Thus it is possible to efficiently create

copies of different versions of a directory, thereby

creating a record of its history (hence a version control

system).

In operation, the system can maintain a local

inventory of all the data items located on a given

removable medium, such as a diskette or CD-ROM. The

inventory is independent of other properties of the data

items such as their name, location, and date of creation.

The Inventory Existing Directory extended

mechanism provides a way to create True File Registry

entries for all of the files in a directory. one use of

this inventory is as a way to pre-load a True File

registry with backup record information. Those files in

the registry (such as previously installed software)

which are on the volumes inventoried need not be backed

up onto other volumes.

The Inventory Removable, Read-only Files

extended mechanism not only determines the True Names for

the files on the medium, but also records directory

entries for each file in a frozen directory structure.

By copying and modifying this directory, it is possible

to create an on line patch, or small modification of an

74

GOOG-‘I005-Page 76 of 116

GOOG-1005-Page 77 of 116

W0 96,32,585 PC'I‘lUS96l04733

existing read-only file. For example, it is possible to

create an online representation of a modified CD-ROM,

such that the unmodified files are actually on the

CD-ROM, and only the modified files are online.

In operation, the system tracks possession of

specific data items according to content by owner,

independent of the name, date, or other properties of the

data item, and tracks the uses of specific data items and

files_by content for accounting purposes. Using the

Track for Accounting Purposes extended mechanism provides

a way to know reliably which files have been stored on a

system or transmitted from one system to another.

Although the preferred embodiment of this

invention has been presented in the context of a file

system, the invention of True Names would be equally

valuable in a relational or object—oriented database. A

relational or object-oriented database system using True

Names would have similar benefits to those of the file

system employing the invention. For instance, such a

database would permit efficient elimination of duplicate

records, support a cache for records, simplify the

process of maintaining cache consistency, provide

location—independent access to records, maintain archives

and histories of records, and synchronize with distant or

disconnected systems or databases.

The mechanisms described above can be easily

modified to serve in such a database environment. The

True Name registry would be used as a repository of

database records. All references to records would be via

the True Name of the record. (The Local Directory

Extensions table is an example of a primary index that

uses the True Name as the unique identifier of the

desired records.)

GOOG-‘I005-Page 77 of 116

GOOG-1005-Page 78 of 116

wo 96/32685 PCTIUS96/04733

In such a database, the operations of

inserting, updating, and deleting records would be

implemented by first assimilating records into the

registry, and then updating a primary key index to map

the key of the record to its contents by using the True

Name as a pointer to the contents.

The mechanisms described in the preferred

embodiment, or similar mechanisms, would be employed in

such a system. These mechanisms could include, for

example, the mechanisms for calculating true names,

assimilating, locating, realizing, deleting, copying, and

moving True Files, for mirroring True Files, for

maintaining a cache of True Files, for grooming True

Files, and other mechanisms based on the use of

substantially unique identifiers.

While the invention has been described in

connection with what is presently considered to be the

most practical and preferred embodiments, it is to be

understood that the invention is not to be limited to the

disclosed embodiment, but on the contrary, is intended to

cover various modifications and equivalent arrangements

included within the spirit and scope of the appended

claims.

GOOG-‘I005-Page 78 of 116

GOOG-1005-Page 79 of 116

wo 96/32685 PCT/US96I04733

WHAT IS CLAIMED IS:

1. In a data processing system, an apparatus

comprising:

identity means for determining, for any of a

plurality of data items in the system, a substantially

unique identifier, said identifier depending on all of

the data in the data item and only on the data in the

data item; and

existence means for determining whether a

particular data item is present in the system, by

examining the identifiers of the plurality of data items.

2. An apparatus as in claim 1, further

comprising:

local existence means for determining whether

an instance of a particular data item is present at a

particular location in the system, based on the

identifier of the data item.

3. An apparatus as in claim 2, wherein each

location contains a distinct plurality of data items, and

wherein said local existence means determines whether a

particular data item is present at a particular location

in the system by examining the identifiers of the

plurality of data items at said particular location in

the system.

4. An apparatus as in claim 2, further

comprising:

data associating means for making and

maintaining, for a data item in the system, an

association between the data item and the identifier of

the data item; and

access means for accessing a particular data

item using the identifier of the data item.

GOOG-‘I005-Page 79 of 116

GOOG-1005-Page 80 of 116

wo 96/32685 PCT/US96/04733

5. An apparatus as in claim 2, further

comprising:

duplication means for copying a data item from

a source to a destination in the data processing system,

by providing said destination with the data item only if

it is determined using the data identifier that the data

item is not present at the destination.

6. An apparatus as in claim 4, further

comprising:

assimilation means for assimilating a new data

item into the system, said assimilation means invoking

said identity means to determine the identifier of the

new data item and invoking said data associating means to

associate the new data item with its identifier.

7. An apparatus as in claim 4, further

comprising:

duplication means for duplicating a data item

from a source location to a destination location in the

data processing system, based on the identifier of the

data item, said duplication means invoking said local

existence means to determine whether an instance of the

data item is present at the destination location, and

invoking said access means to provide said destination

with the data item only if said local existence means

determines that no instance of the data item is present

at the destination.

8. An apparatus as in claim 7, further

comprising: _

backup means for making copies of data items in

the system, said backup means maintaining a backup record

of identifiers of data items backed up, and invoking

duplication means to copy only those data items whose

data identifiers are not recorded in the backup record.

GOOG-‘I005-Page 80 of 116

GOOG-1005-Page 81 of 116

wo 96/32685 PCT/US96/04733

9. An apparatus as in claim 8, further

comprising:

recovery means for retrieving a data item

previously backed up by said backup means, based on the

identifier of the data item, said recovery means using

the backup record to identify the data item, and invoking

access means to retrieve the data item.

10. An apparatus as in claim 2, wherein a

location is a computer among a network of computers, the

apparatus further comprising:

remote existence means for determining whether

a data item is present at a remote location in the system

from a current location in the system, based on the

identifier of the data item, said remote location using

local existence means at the remote location to determine

whether the data item is present at the remote location,

and providing the current location with an indication of

the presence of the data item at the remote location.

11. An apparatus as in claim 4, wherein a

location is a computer among a network of computers, the

apparatus further comprising:

requesting means for requesting a data item at

a current location in the system from a remote location

in the system, based on the identifier of the data item,

said remote location using access means at the remote

location to obtain the data item and to send it to the

current location if it is present.

12. An apparatus as in claim 1, further

comprising:

context means for making and maintaining a

context association between at least one contextual name

of a data item in the system and the identifier of the

data item; and

GOOG-1005-Page 81 of 116

GOOG-1005-Page 82 of 116

wo 96/32685 PCT/US96I04733

referencing means for obtaining the identifier

of a data item in the system given a contextual name for

the data item, using said context association.

13. An apparatus as in claim 12, further

comprising:

assignment means for assigning a data item to a

contextual name, invoking said identity means to

determine the identifier of the data item, and invoking

said context means to make or modify the context

association between the contextual name of the data item

and the identifier of the data item.

14. An apparatus as in claim 12, further

comprising:

data associating means for making and

maintaining, for a data item in the system, an

association between the data item and the identifier of

the data item;

access means for accessing a particular data

item using the identifier of the particular data item;

and

contextual name access means for accessing a

data item in the system for a given context name of the

data item, determining the data identifier associated

with the given context name, and invoking said access

means to access the data item using the data identifier.

15. An apparatus as in claim 11, further

comprising:

transparent access means for accessing a data

item from one of several locations, using the identifier

of the data item, said transparent access means invoking

said local existence means to determine if the particular

data item is present at the current location, and, in the

case when the particular data item is not present at the

GOOG-‘I005-Page 82 of 116

GOOG-1005-Page 83 of 116

WO 96132685 PCT/US96I04733

current location, invoking said requesting means to

obtain the data item from a remote location.

16. An apparatus as in claim 15, further

comprising:

identifier copy means for copying an identifier

of a data item from a source location to a destination
location.

17. An apparatus as in claim 15, further

comprising:

context means for making and maintaining a

context association between a contextual name of a data

item in the system and the identifier of the data item;
context copy means for copying a data item from

a source location to a destination location, given the

contextual name of the data item, by copying only the

context association between the contextual identifier and

the data identifier from the source location to the

destination location; and

transparent referencing means for obtaining a

data item from one of several locations the system given

a contextual name for the data item, said transparent

referencing means invoking said context association to

determine the data identifier of a data item given a

contextual name, and invoking said transparent access

means to access the data item from one of several

locations given the identifier of the data item.

18. An apparatus as in claim 1, wherein at

least some of said data items are compound data items,

each compound data item including at least some component

data items in a fixed sequence, and wherein the identity
means determines the identifier of a compound data item

based on each component data item of the compound data
item.

GOOG-‘I005-Page 83 of 116

GOOG-1005-Page 84 of 116

wo 9631535 PCT/US96/04733

19. An apparatus as in claim 18, wherein said

compound data items are files and said component data
items are segments, and wherein the identity means

determines the identifier of a file based on the

identifier of each data segment of the file.

20. An apparatus as in claim 18, wherein said

compound data items are directories and said component

data items are files or subordinate directories, and

wherein the identity means determines the identifier of a

given directory based on each file and subordinate

directory within the given directory.

21. An apparatus as in claim 11, further

comprising:

means for advertising a data item from a

location in the system to at least one other location in

the system, said means for advertising providing each of

said at least one other location with the data identifier

of the data item, and providing the data item to only

those locations of said other locations that request said

data item in response to said providing.

22. An apparatus as in claim 18, further

comprising:

local existence means for determining whether a

particular data item is present at a particular location

in the system, based on the identifier of the data item;
and

compound copy means for copying a data item

from a source to a destination in the data processing

system, said compound copy means invoking said local

existence means to determine whether the data item is

present at the destination, and to determine, when the

data item is a compound data item, whether the component

data items of the compound data item are present at the

destination, and providing said destination with the data

82

GOOG-‘I005-Page 84 of 116

GOOG-1005-Page 85 of 116

wo 96132685 , PCT/US96l04733

item only if said local existence means determines that

the data item is not present at the destination, and

providing said destination with each component data item

only if said local existence means determines that the

component data item is not present at the destination.

23. An apparatus as in claim 11, further

comprising:

means for verifying the integrity a data item

obtained from said requesting means in response to

providing said requesting with a particular data

identifier, to confirm that the data item obtained from

the requesting means is the same data item as the data

item requested, said verifying means invoking said

identity means to determine the data identifier of the

obtained data item, and comparing said determined data

identifier with said particular data identifier to verify
said obtained data item.

24. An apparatus as in claim 2, wherein a

location is at least one of a storage location and a

processing location, and wherein a storage location is at

least one of a data storage device and a data storage

volume, and wherein a processing location is at least one

of a data processor and a computer.

25. An apparatus as in claim 3, wherein at

least some of said data items are compound data items,

each compound data item including at least some component

data items in a fixed sequence, and wherein the identity

means determines the identifier of a compound data item

based on the identifier of each component data item of

the compound data item.

26. An apparatus as in claim 3, further

comprising:

GOOG-‘I005-Page 85 of 116

GOOG-1005-Page 86 of 116

wo 96132685 PCT/US96/04733

context associating means for making and

maintaining a context association, for any data item in

the system, between the identifier of the data item and

at least one contextual name of the data item at a

particular location in the system;

means for obtaining the identifier of a data

item in the system given a contextual name for the data

item at a particular location in the system; and

logical copy means for associating the data

identifier corresponding to a contextual name at a source

location with a contextual name at a destination location

in the data processing system.

27. An apparatus as in claim 25, wherein said

compound data items are files and said component data

items are segments, and wherein the identity means

determines the identifier of a file based on the

identifier of each data segment of the file.

28. An apparatus as in claim 25, further

comprising:

compound copy means for copying a data item

from a source location to a destination location in the

data processing system, said compound copy means invoking

said local existence means to determine whether the data

item is present at the destination, and to determine,

when the data item is a compound data item, whether the

component data items of the compound data item are

present at the destination, and providing said

destination with the data item only if said local

existence means determines that the data item is not

present at the destination, and providing said

destination with each component data item only if said

local existence means determines that the component data

item is not present at the destination.

GOOG-‘I005-Page 86 of 116

GOOG-1005-Page 87 of 116

wo 96/32685 PCT/US96/04733

29. An apparatus as in any of claims 1-28,

wherein a data item is at least one of a file, a database

record, a message, a data segment, a data block, a

directory, and an instance an object class.

30. A method of identifying a data item in a

data processing system for subsequent access to the data

item, the method comprising the steps of:

determining a substantially unique identifier

for the data item, said identifier depending on all of

the data in the data item and on the data in the data

item; and

accessing a data item in the system using the
identifier of the data item.

31. A method as in claim 30, further

comprising the step of:

making and maintaining, for a plurality of data

items in the system, an association between each of the

data items and the identifier of each of the data items,

wherein said accessing step accesses a data item via the

association.

32. A method as in claim 31, further

comprising the step of:

assimilating a new data item into the system,

by determining the identifier of the new data item and

associating the new data item with its identifier.

33. A method for duplicating a given data item

from a source location to a destination location in a

data processing system, the method comprising the steps
of:

determining a substantially unique identifier

for the given data item, said identifier depending on all

of the data in the data item and only on the data in the

data item;

GOOG-‘I005-Page 87 of 116

GOOG-1005-Page 88 of 116

WO 96/32685 PCTIUS96/04733

determining, using said data identifier,

whether said data item is present at said destination

location; and

based on said determining, providing said

destination location with said data item only if said

data item is not present at said destination.

34. A method as in claim 33, wherein said

given data item is a compound data item having a

plurality of component data items, the method further

comprising the steps of:

for each data item of said component data

items,

obtaining the component data

identifier of the data item by determining a

substantially unique identifier for the data

item, said identifier depending on all of the

data in the data item and only on the data in

the data item;

determining, using said obtained

component data identifier, whether said data

item is present at said destination; and

based on said determining, providing

said destination with said data item only if
said data item is not present at said

destination.

35. A method for determining whether a

particular data item is present in a data processing

system, the method comprising the steps of:

(A) for each data item of a plurality of data

items in the system,

(i) determining a substantially unique

identifier for the data item, said identifier

depending on all of the data in the data item

and only on the data in the data item; and

GOOG-‘I005-Page 88 of 116

GOOG-1005-Page 89 of 116

wo 96/32685 PCT/US96I04733

(ii) making and maintaining a set of

identifiers of said plurality of data items;

and

(B) for the particular data item,

(1) determining a particular

substantially unique identifier for the data

item, said identifier depending on all of the

data in the data item and only on the data in

the data item; and

(ii) determining whether said particular

identifier is in said set of data items.

36. A method of backing up, of a plurality of

data items, data items modified since a previous backup

time in a data processing system, the method comprising

the steps of:

(A) maintaining a backup record of identifiers

of data items backed up at the previous backup

time; and

(B) for each of said plurality of data items,

(i) determining a substantially unique

identifier for the data item, said

identifier depending on all of the data in

the data item and only on the data in the

data item;

(ii) determining those data items of the

plurality of data items whose identifiers

are not in the backup record; and

(iii) based on said determining, copying

only those data items whose data

identities are not recorded in the backup
record.

37. A method as in claim 36, further

comprising the step of:

GOOG-‘I005-Page 89 of 116

GOOG-1005-Page 90 of 116

WO 96132685 PCT/US95/04733

recording in the backup record the identifiers

of those data items copied in said step of copying.

38. A method of locating a particular data

item at a location in a data processing system, the

method comprising the steps of:

(A) determining a substantially unique

identifier for the data item, said identifier

depending on all of the data in the data item

and only on the data in the data item;

(B) requesting the particular data item by

sending the data identifier of the data item

from the requestor location to at least one

location of a plurality of provider locations

in the system; and

(C) on at least some of said provider

locations,

(a) for each data item of a plurality of

data items at said provider locations,

(i) determining a substantially unique

identifier for the data item, said

identifier depending on all of the data in

the data item and only on the data in the

data item; and

(ii) making and maintaining a set of

identifiers of data items,

(b) determining, based on said set of

identifiers, whether the data item

corresponding to the requested data

identifier is present at said provider

location; and

(c) based on said determining, when said

provider location determines that the

particular data item is present at the

provider location, notifying said

requestor that the provider has a copy of

the given data item.

88

GOOG-‘I005-Page 90 of 116

GOOG-1005-Page 91 of 116

W0 9632635 PCT/US96/04733

39. The method of claim 38, further comprising

the steps of:

(a) for each data item of a plurality of data

items at said provider locations,

making and maintaining an association

between the data item and the identifier

of the data item,

(b) in response to said notifying, said client

location copying said data item from one of

said responding remote locations, using said

association to access the data item given the
data identifier.

40. A method of locating a particular data

item among a plurality of locations, each of said

locations having a plurality of data items, the method

comprising the steps of:

determining, for the particular data item and

for each data item of the plurality of data items, a

substantially unique identifier for the data item, said

identifier depending on all of the data in the data item

and only on the data in the data item; and

determining the presence of the particular data

item in each of said plurality of locations by

determining whether the identifier of the particular data

item is present at each of said locations;

41. The method of claim 30, wherein said step

of accessing further comprises the steps of, for a given

data identifier and for a given current location and a

remote location in the system:

determining whether the data item corresponding

to the given data identifier is present at the current

location, and

based on said determining, if said data item is

not present at the current location, fetching the data

89

GOOG-1005-Page 91 of 116

GOOG-1005-Page 92 of 116

wo 96/32685 PCT/US96/04733

item from a remote location in the system to the current

location.

42. The method of claim 41, further comprising

the steps of:

for each contextual name at a location,

making and maintaining a context

association between the context name of a data item and

the identifier of said data item, and when some context

association changes at said current location, and

notifying said remote location of a

modification to the context association.

43. The method of claim 42, further comprising

the step of:

at said remote location, updating the

association between the contextual identifier of the data

item and the identifier of the data item.

44. The method of claim 43, further comprising

the step of:

from said remote location, notifying all other

locations that said data item has been modified, by

providing the contextual identifier and data identifier

of said data item to said other locations.

45. The method of claim 44, further comprising

the step of, at each location notified that the data item

has been modified:

modifying an association between the contextual

identifier of the data item and the data identifier of

the data item, to record that the data item has been

modified.

46. A method of eliminating a data item at a

given location in a data processing system when said data

GOOG-‘I005-Page 92 of 116

GOOG-1005-Page 93 of 116

WO 96132685 PCTIUS9610-1733

item can be obtained from another location in the system,

the method comprising the steps of:

determining a substantially unique identifier

for the data, said identifier depending on all of the

data in the data item and only on the data in the data

item;

making and maintaining a source association

between the data identifier and at least one location at

which said data item is known to be present; and

based on said source association, if said data

item is present at said other location, removing the data
item from the given location.

47. A method of deleting a data item from a

location in a data processing system, the method

comprising the steps of:

for each of a plurality of data items in the

system:

determining a substantially unique identifier

for the data, said identifier depending on all of the

data in the data item and only on the data in the data

item; and

making and maintaining, an association between

each of the data items and the unique identifier of the

data items; and

for a given data item:

determining a substantially unique identifier

for the data, said identifier depending on all of the

data in the data item and only on the data in the data

item; and

determining whether a contextual identifier or

a compound data item or a remote processor in the system

refers to the unique identifier of the data item, and

based on said determining, deleting said data item and

its association if no other contextual identifier or

compound data item or remote processor refers to said

data item.

GOOG-‘I005-Page 93 of 116

GOOG-1005-Page 94 of 116

wo 96/32685 PCT/US96I04733

48. The method of claim 47, wherein said

determining is based on a use count for the data item,

and wherein said data item is deleted only if said use

count indicates that no other contextual identifier or

compound data item or remote processor in the system

refers to the data item.

49. A method of substantially synchronizing

data items at a client location in a data processing

system after a period of independent changes on the

client and another location in the system, given a

context, the method comprising the steps of:

making and maintaining a list of changes to the

context association between each context name of a data

item and the identifier of said data item, in the given

context and during the period of independent change;'

obtaining the list of changes from the other

location for the given context; and,

for each context name in the list of changes

updating the context identifier

associations at the client whenever it is determined that

the context association of the given context name changed

either only at the client or only at the other location

during the period if independent changes; and

performing a conflict-resolution task such

as notifying an operator of the client location, whenever

it is determined that the context association changed at

both the client and the other location.

50. A method as in claim 49, wherein said

lists are maintained as queues based on a temporal order,

and wherein, at said client location, said replacing is

based on said temporal order.

51. A method of maintaining at least a

predetermined number of copies of a given data item in a

data processing system, at different locations in the

92

GOOG-‘I005-Page 94 of 116

GOOG-1005-Page 95 of 116

W0 96I32685 PC!‘/US96/04733

data processing system, said data processing system being

one wherein data is identified byia substantially unique

identifier, said identifier depending on all of the data

in the data item and only on the data in the data item,

and wherein any data item in the system may be accessed

using only the identifier of the data item, the method

comprising the steps of:

(i) sending, from a first location in the

system, the data identifier of the given data

item to other locations in the system; and

(ii) in response to said sending, at each of

said other locations,

(A) determining whether the data item

corresponding to the data identifier is present

at the other location, and based on said

determining, and

(B) informing said first location whether said

data item is present at the other location; and

(iii) in response to said informing from said

other locations, at said first location,

(A) determining whether said data item is

present in at least the predetermined number of

other locations, and based on said determining,

.(B) when less than the predetermined number of

other locations have a copy of the data item,

requesting some locations that do not have a

copy of the data item make a copy of the data
item.

52. A method as in claim 51, wherein said step

(iii) further comprises the step of:

(C) when more than the predetermined number of

other locations have a copy of the data item, requesting

some locations that do have a copy of the data item

delete the copy of the data item.

GOOG-‘I005-Page 95 of 116

GOOG-1005-Page 96 of 116

wo 9531635 PCT/US96l04‘733

53. A method as in any of claims 30-52,

wherein said data items are at least one of a file, a

database record, a message, a data segment, a data block,

a directory, and an instance of an object class.

GOOG-‘I005-Page 96 of 116

GOOG-1005-Page 97 of 116

vvogaaums PcTnm9aomna

AMENDED CLAIMS

[received by the International Bureau on 26 August 1996 (26.08.96);
original claim 30 amended; remaining

claims unchanged (1 page)]

29. An apparatus as in any of claims 1-28, wherein

a data item is at least one of a file, a database record,

a message, a data segment, a data block, a directory, and

an instance an object class.

30. A method of identifying a data item in a data

processing system for subsequent access to the data item,

the method comprising the steps of:

determining a substantially unique identifier for

the data item, said identifier depending on all of the

data in the data item and only on the data in the data

item; and

accessing a data item in the system using the
identifier of the data item.

31. A method as in claim 30, further comprising the

step of:

making and maintaining, for a plurality of data

items in the system, an association between each of the

data items and the identifier of each of the data items,

wherein said accessing step accesses a data item via the

association.

32. A method as in claim 31, further comprising the

step of:

assimilating a new data item into the system, by

determining the identifier of the new data item and

associating the new data item with its identifier.

33. A method for duplicating a given data item from

a source location to a destination location in a data

processing system, the method comprising the steps of:

determining a substantially unique identifier for

the given data item, said identifier depending on all of

the data in the data item and only on the data in the

data item;

AMENDED SHEET (ARTICLE 19)

95

GOOG-‘I005-Page 97 of 116

GOOG-1005-Page 98 of 116

wo 95/31535 PCT/US96/04733

102- 102
STORAGE

DEVICE PROCESSOR PROCESSOR

102 102 102

PROCESSOR PROCESSOR PROCESSOR

PROCESSOR

MEMORY

CRT
STORAGE

DEVICE

GOOG-‘I005-Page 98 of 116

GOOG-1005-Page 99 of 116

WO 96/32685 PCT/US96/04733

118 118 113

DIRECTORY DIRECTORY D|REc1'oRy

120 120

FILE FILE

122 122

SEGMENT SEGMENT

L

GOOG-‘I005-Page 99 of 116

GOOG-1005-Page 100 of 116

W0 96/32685 PCT/US96/04733

138

‘I

Time of last access

Time of last modification

Safe fla-

FIG. 3

140

Com-ressed File ID

Time of last access

Groomin- delete count
FIG. 4

142

Re-ion ID

Re-ion file s stem

Re-ion -athname

Mirror du-lication count

FIG. 5

3/24

GOOG-‘I 005-Page 100 of 116

GOOG-1005-Page 101 of 116

WO 96/32685 PC!‘/US96/04733

144

source t;-e

source ri-hts

source availabilit

FIG. 6

146

fl

True Name
FIG. 7

148

True Name
FIG. 8

150

NIINNIHInNNlUUUIIINNNInlNlIUNHIIIHIlINHNIIN|‘uIuIINn|NlNiiuiuuuuIu|icensee .‘
FIG. 9

GOOG-1005-Page 101 of 116

GOOG-1005-Page 102 of 116

PCT/US96/04733WO 96/32685

COMPUTE MD FUNCTION ON
DATA ITEM

S214

APPEND LENGTH MODULO 32 OF
DATA ITEM

TRUE NAME

1

GOOG-1005-Page 102 of 116

GOOG-1005-Page 103 of 116

PCT/US96/04733WO 96/32685

S220

PARTITION DATA I'I'EM INTO
SEGMENTS

S222

ASSIMILATE EACH SEGMENT

(COMPUTING I'I'S TRUE NAME)'"" "s'21'8'""‘\

5 compare mu: 5
; NAME or SIMPLE :
‘ I
\ _ . . _ . _ _ _ . _ __’

S224

CREATE INDIRECT BLOCK OF
SEGMENT TRUE NAMES

S226

ASSIMILATE INDIRECT BLOCK

(COMPUTING ITS TRUE NAME)

S228

REPLACE FINAL 32 BITS OF TRUE
NAME WITH LENGHT MOD 32 OF DATA

ITEM

GOOG-1005-Page 103 of 116

GOOG-1005-Page 104 of 116

WO 96/32685

S236

’ CREATE NEW ENTRY
“ SET USE COUNT TO 1
' STORE FILE ID

' SET OTHER FIELDS

S230

DETERMINE

TRUE NAME

DOES TRUE NAME

EXIST IN TRUE FILE
REGISTRY?

S238

DELETE FILE ID

PCT/US96/04733

DOES ENTRY

HAVE FILE ID?

s239

smnnmm

GOOG-1005-Page 104 of 116

GOOG-1005-Page 105 of 116

WO 96132685

S244

COMPRESS

(IF DESIRED)

S246

MIRROR

(IF DESIRED)

PCT/US96/04733

S240

UPDATE

DEPENDENCY
LIST

S242

SEND MESSAGE TO

CACHE SERVER TO
UPDATE CACHE

GOOG-1005-Page 105 of 116

GOOG-1005-Page 106 of 116

WO 96132685 PCTIUS96/04733

S250

SEARCH FOR

THE

PATHNAME

LDE INCLUDES

TRUE NAME?

S258

ASSIMILATE LDE IDENTIFIES
FILE ID DIRECTORY?

S256

FREEZE

DIRECTORY

GOOG-1005-Page 106 of 116

GOOG-1005-Page 107 of 116

WO 96/32685

S260

CONFIRM THAT

TRUE NAME

EXISTS LOCALLY

S262

SEARCH FOR

PATHNAME IN

LDE TABLE

S264

CONFIRM THAT

DIRECTORY

EXISTS

S266

NAMED FILE
EXISTS?

S270

CREATE

ENTRY IN LDE
& UPDATE

PCT/US96/04733

GOOG-1005-Page 107 of 116

GOOG-1005-Page 108 of 116

PCT/US96/04733WO 96/32685

S274S278

SEND RTF
REQUEST MESSAGE &MOUNT

WAIT FOR

RESPONSE

POSITIVE

RESPONSE

S276S280

ENTER TRUE FILE
FIND FILE RETURNED INTO

TFR

GOOG-1005-Page 108 of 116

GOOG-1005-Page 109 of 116

WO 96132685

S284

CLIENT

SELECTS

PROCESSOR(S)

S285
ANY

PROCESSORS
ELECTED

S286

CLIENT

NEG 1 TIVE BROADCASTS
RESPONSE
OR

TIME UT

POSI IVE

RESPONSE

S290

STORE

PROCESSOR ID

S2916

SEND MESSAGE TO

RESERVE TRUE FILE
ON SOURCE
PROCESSOR

SOURCE OF TRUE

NAME DIFFERS FROM
DESTINATION?

S2903

LOOK UP TFR FOR
TRUE NAME 8: ADD

SOURCE LOCATION ID

TO SOURCE IDS FOR
TRUE NAME

S29OC

PCT/US96l04733

S291d

DETERMINE

EXPIRATION DATE

AND ADD TO LIST

GOOG-1005-Page 109 of 116

GOOG-1005-Page 110 of 116

WO 96/32685

Fig. 17

S308

LOCATE

REMOTE FILE

NO MORE

SOURCE ID

IN TFR FOR TRUE
NAME?

S296

COMPRESSED
FILE ID?

S304

SELECT

SOURCE IDS

S306

REALIZE TRUE
FILE FROM

SOURCE(S)

PCT/US96/04733

S298

DECOMPRESS

GOOG-1005-Page 110 of 116

GOOG-1005-Page 111 of 116

WO 96/32685

S316

LDE IDENTIFIES

EXISTING TRUE
FILE?

S320

CREATE NEW

SCRATCH FILE

BE COPY OF TRUE
FILE?

S330

COPY FILE TO NEW
FILE. STORE FILE ID

IN LDE TABLE,
DECREMENT USE

COUNT

PCT/US96/04733

S322

MAKE TRUE

FILE LOCAL

S328

SAVE FILE ID 8;

REMOVE TFR
ENTRY

GOOG-1005-Page 111 of 116

GOOG-1005-Page 112 of 116

WO 96/32685

FOR EACH

SUBORDINATE
FILE AND

DIRECTORY IN THE

GIVEN DIRECTORY

FOR EACH

SUBORDINATE
FILE AND

DIRECTORY IN THE

GIVEN DIRECTORY

S342

ASSIMILATE THE

NEW DATA ITEM

S344

DECREMENT

THE FREEZE
LOCK

S334

FREEZE IF

DIRECTORY

S338

ADD ENTRY TO
NEW DATA

ITEM

PCT/US96/04733

S336

ASSIMILATE

UNASSIMILATED
FILE

S340

RECORD

ADDITIONAL
DESIRED

INFORMATION

GOOG-1005-Page 112 of 116

GOOG-1005-Page 113 of 116

WO 96/32685

S346

MAKE TRUE

FILE LOCAL

S353

FOR EACH

DIRECTORY

ENTRY

PCT/US96/04733

S348

READ

DIRECTORY

S350

CREATE FULL
PATHNAME

S352

LINK PATH T0
TRUE NAME

GOOG-1005-Page 113 of 116

GOOG-1005-Page 114 of 116

WO 96132685

5354

WAIT FOR

FREEZE LOCK
TO TURN OFF

S358

DECREMENT

REFERENCE

COUNT

REFERENCE COUNT IS

ZERO & NO DEPENDENT
SYSTEMS IN TFR?

PCT/US96/04733

S364

REMOVE FILE ID

AND COMPRESSED
FILE ID

GOOG-1005-Page 114 of 116

GOOG-1005-Page 115 of 116

PCTlUS96l04733W0 96132685

S368

ASSIMILATE

COPY OR DELETE

COMPOUND?

S378 S370
MQDIFY USE RECORD TRUE

COUNT 0;: EACH NAME IN AUDIT
COMPONENT F"-E

S379

FOR EACH PARENT

DIRECTORY OR FILE.

UPDATE USE COUNT,
LAST ACCESS AND

MODIFY TIMES

GOOG-1005-Page 115 of 116

GOOG-1005-Page 116 of 116

W0 96/32685

S384
SET

GROOMING
LOCK

S386

SET GROOM
COUNTS

PCT/US96/04733

GOOG-1005-Page 116 of 116

