
GOOG-1001-Page 1 of 61

US007802310B2

(12) United States Patent (10) Patent No.: US 7,802,310 B2
Farber et al. (45) Date of Patent: *Sep. 21, 2010

(54) CONTROLLINGACCESS TO DATA INA DATA (52) U.S.Cl. 726/28;711/163

PROCESSING SYSTEM (58) Field of Classification Search 726/28,

(75) Inventors: David A. Farber, Ojai, CA (US);
Ronald D. Lachman, Northbrook, IL
(US)

(73) Assignees: Kinetech, Inc., Studio City, CA (US);
Level 3 Communications, LLC,
Broomfield, CO (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 79 days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 11/980,687

(22) Filed: Oct. 31, 2007

(65) Prior Publication Data

US 2008/0066191 A1 Mar. 13, 2008

Related U.S. Application Data

(60) Continuation of application No. 11/724,232, filed on
Mar. 15, 2007, which is a continuation of application
No. 11/017,650, filed on Dec. 22, 2004, which is a
continuation of application No. 09/987,723, filed on
Nov. 15, 2001, now Pat. No. 6,928,442, which is a
continuation of application No. 09/283,160, filed on
Apr. 1, 1999, now Pat. No. 6,415,280, which is a divi-
sion of application No. 08/960,079, filed on Oct. 24,
1997, now Pat. No. 5,978,791, which is a continuation
of application No. 08/425,160, filed on Apr. 11, 1995,
now abandoned, application No. 11/980,687, which is
a continuation of application No. 10/742,972, filed on
Dec. 23, 2003, which is a division of application No.
09/987,723, filed on Nov. 15, 2001, now Pat. No.
6,928,442, which is a continuation of application No.
09/283,160, filed onApr. 1, 1999, now Pat. No. 6,415,
280, which is a division ofapplication No. 08/960,079,
filed on Oct. 24, 1997, now Pat. No. 5,978,791, which
is a continuation of application No. 08/425,160, filed
on Apr. 11, 1995, now abandoned.

(*) Notice:

(51) Int. Cl.
H04L 29/06 (2006.01)
G06F 21/00 (2006.01)

726/27, 29; 713/181
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

3,668,647 A 6/1972 Evangelisti et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP 0 268 069 A2 5/1988

(Continued)

OTHER PUBLICATIONS

Cheriton, David R. and Mann, Timothy P., “Decentralizing a global
naming service for improved performance and fault tolerance”, ACM
Transactions on Computer Systems, vol. 7, No. 2, May 1989, pp.
147-183.

(Continued)

Primary Examiner—Gilberto Barron, Jr.
Assistant Examiner—Samson B Lemma

(74) Attorney, Agent, orFirm—Davidson Berquist Jackson &
Gowdey, LLP; Brian Siritzky

(57) ABSTRACT

Access to and delivery of lice11sed co11te11t is controlled using
content names that were determined based on the content. A

name for a data item is obtained, the name having been
determined based at least in part on the data which comprise
the contents of the data item. Access to the data item is

authorized based at least in part on the name. Once autho-
rized, access may be granted from more than one computer.
The name may have been determined using a hash or message
digest function such as MD4, MD5 or SHA. The data item
may comprise a file, a portion of a file, a page in memory, a
digital message, a digital image, a video signal or an audio
signal.

87 Claims, 31 Drawing Sheets

PROCESSOR

PROCESSOR

PROCESSOR

102 102

PROCESSOR

106

102

PROCESSOR

GOOG-1001-Page 1 of 61

GOOG-1001-Page 2 of 61

US 7,802,310 B2
Page2

U.S. PATENT DOCUMENTS 5,394,555 A 2/1995 Hunter et al.
5,403,639 A 4/1995 Belsan etal.

3,835,260 A 9/1974 Prescheretal. 5,404,508 A 4/1995 Koriradetal,
4,096,568 A 6/1978 Bennett etal. 5,438,508 A 8/1995 Wyrnan
4,215,402 A 7/1980 Mitchell etal. 5,442,343 A 8/1995 Cato e1a1,
4,221,003 A 9/1980 Chang etal, 5,448,668 A * 9/1995 Perelson etal. 714/21
4,290,105 A 9/1981 Cichellietal. 5,448,718 A 9/1995 cohrietai,
4,376,299 A 3/1983 Rivest 5,452,447 A 9/1995 Nelson etal.
4,405,829 A 9/1983 Rivestetal. 5,454,000 A * 9/1995 Dorfman 714/54
4,412,285 A 10/1983 Neches Gt 31~ 5,454,039 A 9/1995 Coppersmith et al.
4,414,624 A 11/1983 Summer, Jr. et :11. 5,459,850 A 10/1995 Burnett
4,441,155 A 4/1984 Fletcher et al. 5,465,365 A 11/1995 Winterbottom
4,464,713 A 8/1984 Benhase etal. 5,457,471 A 11/1995 Bader
4,490,782 A 12/1984 Dixon etal. 5,475,825 A 12/1995 Fischer
4,558,413 A 12/1985 Schmidtetal. 5,479,654 A * 12/1995 Squibb 707/695
4,571,700 A 2/1986 Emry,Jr.etal. 5,491,817 A 2/1996 Gopaletal.
4,577,293 A 3/1986 Maticketal. 5,499,294 A 3/1995 Friedman
4,642,793 A 2/1987 Meaden 5,504,879 A 4/1996 Eisenberg etal.
4,658,093 A 4/1987 Hellman 5,530,757 A 6/1996 Krawczyk 713/188
4,675,810 A 6/1987 Gruneretal. 5,537,585 A 7/1996 Blickenstaffetal. 707/205
4,691,299 A 9/1987 Rivestetal. 5,542,087 A 7/1996 Neimatetal.
4,725,945 A 2/1988 Kronstadtetal. 5,553,143 A 9/1996 Rossetal,
4,773,039 A 9/1988 Zamora 5,568,181 A 10/1996 Greenwoodetal.
4,821,184 A 4/1989 Clancyetal. 5,581,515 A 12/1995 stern
4,887,235 A 12/1989 Hollowayet al. 5,581,758 A 12/1995 Burnett
4,888,681 A 12/1989 Barnes 9131 5,581,764 A 12/1996 Fitzgeraldetal.
4,914,586 A 4/1990 Swinehartetal. 5,583,995 A 12/1995 Gardriereiai,
4,922,414 A 5/1990 Hollowayet al. 5,588,147 A 12/1996 Neerrian etal,
4,922,417 A 5/1990 Churmetal. 5,500,834 A 2/1997 Howard
4,949,302 A 8/1990 Arnoldet al. 5,504,803 A 2/1997 Aziz
4,972,367 A 11/1990 Burke 5,604,892 A 2/1997 Nuttalletal.
5,007,658 A 4/1991 Bendert etal. 5,630,067 A 5/1997 Kindelletal.
5,014,192 A 5/1991 Mansfieldetal. 5,632,031 A 5/1997 Velissaropoulosetal.
5,025,421 A 6/1991 Cho 5,638,443 A 6/1997 Stefiketal.
5,047,918 A 9/1991 Schwartz etal. 5,640,564 A 6/1997 Hamilton etal.
5,050,074 A 9/1991 Marca 5,649,196 A 7/1997 Woodhilletal.
5,050,212 A 9/1991 Dyson 5,677,952 A 10/1997 B1ak1ey,IIIeta1.
5,057,837 A 10/1991 Colwelletal. 5,678,038 A 10/1997 Dockteretal.
5,077,658 A 12/1991 Bendert 5,678,046 A 10/1997 Cahilletal.
5,084,815 A 1/1992 Mazzario 5,694,472 A * 12/1997 Johnson etal. 713/189
5,117,351 A 5/1992 Miller 5,694,596 A 12/1997 Campbell
5,129,081 A 7/1992 Kobayashietal 5,701,316 A 12/1997 Alfernessetal.
5,129,082 A 7/1992 Tirfing etal, 5,710,922 A 1/1998 Alley etal.
5,144,667 A 9/1992 Pogue, Jr. et al. 5,724,425 A 3/1998 Chang et a1,
5,163,147 A * 11/1992 Orita 707/9 5,724,552 A 3/1998 Taoda
5,179,680 A 1/1993 Colwelletal. 5,742,807 A * 4/1998 Masinter 707/1
5,182,799 A 1/1993 Tamuraet a1. 5,745,879 A 4/1998 wyrriari
5,199,073 A 3/1993 Scott 5,757,913 A 5/1998 Bellare etal.
5,202,982 A * 4/1993 Gramlich etal. 1/1 5,757,915 A 5/1998 AucSmi111e1a1,
5,204,897 A 4/1993 Wyman 5,781,629 A 7/1998 Haberetal.
5,204,958 A 4/1993 Cheng etal, 5,802,291 A 9/1998 Balicketal.
5,204,966 A 4/1993 Wittenberg etal. 5,809,494 A 9/1998 Nguyen
5,208,858 A 5/1993 Vollert etal. 5,826,049 A 10/1998 Ogata etal.
5,247,620 A 9/1993 Fukuzawaet 211. 5,835,087 A 11/1998 Herz etai,
5,260,999 A 11/1993 Wyman 5,864,683 A 1/1999 Bocbclt ct al.
5,276,869 A 1/1994 Forrestetal. 5,907,519 A 5/1999 Davis
5,276,901 A 1/1994 Howell et al. 5,907,704 A 5/1999 Gudmundson etal.
5,287,499 A 2/1994 Nemes 5,940,504 A 8/1999 Griswold
5,287,514 A 2/1994 Gram 5,978,791 A 11/1999 Farberetal.
5,297,279 A 3/1994 Bannon etal. 5,991,414 A 11/1999 Garayet a1,
5,301,286 A 4/1994 Rajani 6,006,018 A 12/1999 Burnett etal.
5,301,316 A 4/1994 Hamilton etal. 6,134,603 A 10/2000 Jones et al.
5,317,693 A 5/1994 Cuenodetal. 5,135,545 A 10/2000 Kahri etai,
5,341,477 A 8/1994 Pitkin etal. 6,415,280 B1 7/2002 Farberetal.
5,343,527 A 8/1994 Moore 6,732,180 B1 5/2004 Hale etal.
5,347,653 A 9/1994 Flynn etal, 6,816,872 131* 11/2004 Squibb 1/1
5,351,302 A 9/1994 Leighton etal, 6,928,442 B2 8/2005 Farberetal.
5,357,440 A 10/1994 Talbott etal. 2002/0052884 A1 5/2002 Farberetal.
5,357,623 A 10/1994 Megory-Cohen 2002/0082999 A1 6/2002 Lee etal.
5,359,523 A 10/1994 Talbott etal. 2003/0078888 A1 4/2003 Lee etal.
5,361,356 A 11/1994 Clark etal. 2003/0078889 A1 4/2003 Lee etal.
5,371,897 A 12/1994 Brown etal. 2003/0095660 A1 5/2003 Lee etal.
5,384,565 A 1/1995 Cannon 2004/0139097 A1 7/2004 Farberetal.

GOOG-1001-Page 2 of 61

GOOG-1001-Page 3 of 61

US 7,802,310 B2
Page 3

2005/0010792 A1*
2005/0114296 A1
2007/0185848 A1
2008/0065635 A1
2008/0066191 A1
2008/0071855 A1
2008/0082551 A1

1/2005 Carpentier et al. 713/193
5/2005 Farber et al.
8/2007 Farber et al.
3/2008 Farber et al.
3/2008 Farber et al.
3/2008 Farber et al.
4/2008 Farber et al.

FOREIGN PATENT DOCUMENTS

EP 0315425 5/1989
EP 0 558 945 A2 9/1993
EP 0 566 967 A2 10/1993
EP 0592045 4/1994
EP 0631 226 A1 12/1994
EP 0 654 920 A2 5/1995
EP 0 658 022 A2 6/1995
GB 2294132 A 4/1996
JP 59058564 4/1984
JP 63-106048 5/1988
JP 63-273961 11/1988
JP 2-127755 5/1990
JP 05162529 6/1993
JP 06187384 A2 7/1994
JP 06348558 A 12/1994
W0 W0 92/20021 11/1992
W0 W0 94/06087 3/1994
W0 W0 94/20913 9/1994
W0 W0 95/01599 1/1995
W0 W0 97/43717 11/1997

OTHER PUBLICATIONS

Request for Reexamination of U.S. Patent No. 6,928,442: Reexam
U.S. Appl. No. 90/010,260, filed on Aug. 29, 2008.
Advances in Cryptology-AUSCRYPT ’92—Workshop on the
Theory and Application of Cryptographic Techniques Gold Coast,
Queensland, Australia Dec. 13-16, 1992 Proceedings.
Advances in Cryptology-EUROCRYPT ’93, Workshop on the
Theory and Application of Cryptographic Techniques Lofthus, Nor-
way, May 23-27, 1993 Proceedings.
Affidavit of Timothy P. Walker in Support of CWIS’ 0pening Mark-
man Brief Construing the Terms at Issue in U.S. Patent No.
6,415,280, dated Jul. 25, 2003, from Civil Action No. 02-11430
RWZ.

Akamai and MIT’s Memorandum in Support of Their Claim Con-
struction of USPAT 5,978,791, dated Aug. 31, 2001, from Civil
Action No. 00-cv-11851RWZ.

Akarnai’s Answer, Affirmative Defenses and Counterclaims to
Amended Complaint, filed Dec. 6, 2002, in Civil Action No. 02-CV-
1 1430RWZ.

Akarnai’s Brief on Claim Construction, dated Aug. 8, 2003, from
Civil Action No. 02-11430 RWZ.

Albert Langer (cmf851@anu.oz.au), http://groups.google.com/
groups?selm:1991Aug7.225159.786%40newshost.anu. edu.au
&oe:UTF-8&output:gplain, Aug. 7, 1991.
Alexander Dupuy (dupuy@smarts.com), “MD5 and LIFNs (was:
Misc Comments)”, www.acl.lanl.gov/URI/archive/uri-94q2.mes-
sages/0081.htrnl, Apr. 17, 1994.
Alexander Dupuy (dupuy@smarts.com), “RE: MD5 and LIFNs
(was: Misc Comments)”, www.acl.lanl.gov/URI/archive/uri-94q2.
messages/0113.html, Apr. 26, 1994.
Answer of Defendant RIAA to First Amended Complaint and Coun-
terclaim, dated Feb. 8, 2005, from Civil Action No. CV04-7456 JFW
(CTx).
Berners-Lee, T. et al., “Hypertext Transfer Protocol—HTTP/1.0,”
May 1996, pp. 1-54.
Berners-Lee, T. et al., “Uniform Resource Locators (URL),”pp. 1-25,
Dec. 1994.

Berners-Lee, T., “Universal Resource Identifiers in WWW,” Jun.
1994, pp. 1-25.
Bert dem Boer, et al., Collisions for the compression function of
MD.sub.5 pp. 292-304, 1994.

Birgit Pfitzman, Sorting Out Signature Schemes, Nov. 1993, 1.sup.st
Conf. Computer & Comm. Security ’93, p. 74-85.
Birgit Pfitzmann, Sorting Out Signature Schemes, Nov. 1993, 1st
Conf. Computer & Comm. Security ’93 pp. 74-85.
Bowman, C. Mic, et al., “Harvest: A Scalable, Customizable Discov-
ery and Access System,” Aug. 4, 1994, pp. 1-27.
Bowman, C. Mic, et al., “Harvest: A Scalable, Customizable Discov-
ery and Access System,” Mar. 12, 1995, pp. 1-29.
Brisco, T., “DNS Support for Load Balancing,” Apr. 1995, pp. 1-7.
Browne, Shirley et al., “Location-Independent Naming for Virtual
Distributed Software Repositories,” 1995, 7 pages.
Browne, Shirley et al., “Location-Independent Naming for Virtual
Distributed Software Repositories,” 1995, printed from http:/www.
netlib.org/utk/papers/lifn/main.html on Mar. 22, 2006, 18 pages.
Carter, J . Lawrence, et al. “Universal Classes of Hash Functions.”
Journal ofComputer and System Sciences, vol. 18, No. 2, Apr. 1979,
pp. 143-154.
Chris Charnes and Josef Pieprzky, Linear Nonequivalence versus
Nonlinearity, Pieprzky, pp. 156-164, 1993.
Civil Minutes General dated Jan. 25, 2005, from Civil Action No. CV
04-7456-JFW (CTx).
Clifford Lynch (Calur@uccmvsa.bitnet). “ietf url/uri overview draft
paper (long)”, www.acl.lanl.gov/URI/archive/uri-93q1.messages/
0015.html, Mar. 25, 1993.
Complaint for Patent Infringement, Permanent Injunction, and Dam-
ages, dated Sep. 8, 2004, from Civil Action No. CV 04-7456 JFW
(AJWx).
Cormen, Thomas H., et al. Introduction to Algorithms, The MIT
Press, Cambridge, Massachusetts, 1994, pp. 219-243, 991-993.
CWIS’ 0pening Markman Brief Construing the Terms at Issue in
U.S. Patent No. 6,415,280, dated Jul. 25, 2003, from Civil Action No.
02-11430 RWZ.

CWIS’ Reply Markman Brief Construing the Terms at Issue in U.S.
Patent No. 6,415,280, dated Aug. 15, 2003, from Civil Action No.
02-11430 RWZ.

Danzig, P.B., et al., ““Distributed Indexing: A Scalable Mechanism
For Distributed Information Retrieval,”” Proceedings of the 14th
Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pp. 220-229, Oct. 13-16,
1991.

Davis, James R., “A Server for a Distributed Digital Technical Report
Library,” Jan. 15, 1994, pp. 1-8.
Declaration ofRobert B.K. Dewar in Support ofCWIS’ Construction
of the Terms at Issue in U.S. Patent No. 6,415,280, dated Jul. 25,
2003, from Civil Action No. 02-cv-11430RWZ.
Deering, Stephen, et al. “Multicast Routing in Datagram
Internetworks and Extended LANs.” ACM Transactions on Com-

puter Systems, vol. 8, No. 2, May 1990, pp. 85-110.
Defendant Digital Island’s 0pening Brief on Claim Construction
Issues dated Aug. 17, 2001, from Civil Action No. 00-cv-11851-
RWZ.

Defendant Lime Wire, LLC’s Answer, Affirmative Defenses and
Counterclaims dated Nov. 15, 2007, from Civil Action No. 07-06161
VBF (PLAx).
Dcfcndant Mcdia Scntry, Inc.’s Rcply Memorandum of Points and
Authorities in Further Support of Its Motion to Dismiss, dated Nov.
15, 2004, from Civil Action No. CV04-7456 JFW (CTx).
Defendant MediaSentry Inc.’s Notice of Motion and Motion to Dis-
miss First Amended Complaint; Memorandum of Points and
Authorities in Support Thereof, dated Dec. 13, 2004, from Civil
Action No. CV04-7456 JFW.

Defendant MediaSentry, Inc.’s Answer to Plaintiffs’ First Amended
Complaint and Counterclaims, dated Feb. 8, 2005, from Civil Action
No. CV04-7456 JFW (CTx).
Defendant RIAA’s Notice of Motion and Motion to Dismiss First

Amended Complaint; Memorandum of Points and Authorities in
Support Thereof, dated Dec. 13, 2004, from Civil Action No. CV04-
7456 JFW (CTx).
Defendants Loudeye Corp.’s and 0verpeer, Inc.’s Answer to Plain-
tiffs’ First Amended Complaint and Counterclaim, dated Feb. 8,
2005, from Civil Action No. 04-7456 JFW (AJWx).
Defendants’ Preliminary Invalidity Contentions dated Dec. 14,2006,
from Civil Action No. CV 06-5086 SJO (Ex).

GOOG-1001-Page 3 of 61

GOOG-1001-Page 4 of 61

US 7,802,310 B2
Page 4

Devine, Robert. “Design and Implementation ofDDH: A Distributed
Dynamic Hashing Algorithm.” In Proc. of 4th International Confer-
ence on Foundations of Data Organizations and Algorithms, 1993,
pp. 101-114.
European Search Report issued Dec. 23, 2004 in correpsonding
European Application No. 96910762.2-2201.
Expert Report of Professor Ellis Horowitz, dated Mar. 6, 2006, from
Civil Action No. 04-7456 JFW (CTx).
Expert Report of the Honorable Gerald J . Mossinghoff, dated Mar.
13, 2006, from Civil Action No. 04-7456 JFW (CTx).
Faltstrom, P. et al., “How to Interact with a Whois++ Mesh,” Feb.
1996, pp. 1-9.
Feeley, Michael, et al. “Implementing Global Memory Management
in aWorkstation Cluster.” In Proc. of the 15th ACM Symp. on Oper-
ating Systems Principles, 1995, pp. 201-212.
Fielding, R. et al., “Hypertext Transfer Protocol—HTTP/1.1,” Jan.
1997, pp. 1-163.
Fielding, R. et al., “Hypertext Transfer Protocol—HTTP/1.1,” Jun.
1999, pp. 1-157.
First Amended Complaint for Patent Infringement, Permanent
Injunction and Damages, dated Nov. 24, 2004, from Civil Action No.
CV 04-7456 JFW (CTx).
Floyd, Sally, et al. “A reliable Multicast Framework for Light-Weight
Sessions and Application Level Framing.” In Proceeding of ACM
SIGCOMM ’95, pp. 342-356.
Fredman, Michael, et al. “Storing a Sparse Table with 0(1) Worst
Case Access Time.” Journal of the Association for Computing
Machinery, vol. 31, No. 3, Jul. 1984, pp. 538-544.
G. L. Friedman, Digital Camera With Apparatus for Authentication
of Images Produced From an Image File, NASA Case No. NPO-
19108-1-CU, U.S. Appl. No. 08/159,980, Nov. 24, 1993.
Grigni, Michelangelo, et al. “Tight Bounds on Minimum Broadcasts
Networks.” SIAM Journal of Discrete Mathematics, vol. 4, No. 2,
May 1991, pp. 207-222.
Gwertzman, James, et al. “The Case for Geographical Push-Cach-
ing.” Technical Report HU TR 34-94 (excerpt), Harvard University,
DAS, Cambridge, MA 02138, 1994, 2 pgs.
H. Goodman, Ada, Obj ect-Oriented Techniques, and Concurrency in
Teaching Data Structures and File Management Report Documenta-
tion p. Ad-A275 385-94-04277.
H. Goodman, Feb. 9, 1994 Ada, Object-Oriented Techniques, and
Concurrency in Teaching Data Sructures and File Management
Report Documentation P. AD-A275 385-94-04277.
Hauzeur, B. M., “A Model for Naming, Addressing, and Routing,”
ACM Trans. Inf. Syst. 4, Oct. 4, 1986), 293-311.
International Search Report dated Jun. 24, 1996 in corresponding
international application PCT/US1996/004733.
K. Sollins and L. Masinter, “Functional Requirements for Uniform
Resource Names”, www.w3.org/Addressing/rfc1737.txt, Dec. 1994,
pp. 1-7.
Khare, R. and Lawrence, S.. “Upgrading to TLS Within HTTP/1.1,”
May 2000, pp. 1-12.
Khoshafian, S. N. et al. 1986. Object identity. In Conf. Proc. On
Object-Oriented Programming Systems, Languages and Applica-
tions (Portland, Oregon, United States, Sep. 29-Oct. 2, 1986). N.
Meyrowitz, Ed. OOPLSA ’86. ACM Press, NewYork, NY, 406-416.
Kim et al., “Experiences with Tripwire: Using Integrity Checkers for
Intrusion Detection”, COAST Labs. Dept. of Computer Sciences
Purdue University, Feb. 22, 1995, pp. 1-12.
Kim et al., “The Design and Implementation of Tripwire: A file
System Integrity Checker”, COAST Labs. Dept. of Computer Sci-
ences Purdue University, Feb. 23, 1995, pp. 1-18.
Kim et al., “The Design and Implementation of Tripwire: A file
System Integrity Checker”, COAST Labs. Dept. of Computer Sci-
ences Purdue University, Nov. 19, 1993, pp. 1-21.
Kim, Gene H., and Spafford, Eugene H., “Writing, Supporting, and
Evaluating Tripwire: A Publicly Available Security Tool.” COAST
Labs. Dept. of Computer Sciences Purdue University, Mar. 12, 1994,
pp. 1-23.
Knuth, Donald E., “The Art of Computer Programming,” 1973, vol.
3, Ch. 6.4, pp. 506-549.

Lantz, K. A., et al., “Towards a universal directory service.” In Proc.
4th Annual ACM Symp. on Principles of Distributed Computing
(Minaki, Ontario, Canada). PODC ’85. ACM Press, NewYork, NY,
250-260.

Leach, P J ., et al.. The file system of an integrated local network. In
Proc. 1985 ACM 13th Annual Conf. on Comp. Sci. CSC ’85. ACM
Press, NY, NY, 309-324.
Leach, P.J., et al., “UIDs as Internal Names in a Distributed File
System,” In Proc. 1st ACM SIGACT-SIGOPS Symp. on Principles of
Distributed Computing (Ottawa, Canada, Aug. 18-20, 1982). PODC
’82. ACM Press, NewYork, NY, 34-41.
Ma, C. 1992. On building very large naming systems. In Proc. 5th
Workshop on ACM SIGOPS European Workshop: Models and Para-
digms For Distributed Systems Structuring (France, Sep. 21-23,
1992). EW 5. ACM Press, New York, NY, 1-5.
Memorandum of Points and Authorities in Support ofLoudeye’s and
Overpeer’s Motion to Dismiss the First Amended Complaint for
Failure to State a Claim or, In the Alternative, for a More Definitive
Statement, dated Dec. 13, 2004, from Civil Action No. CV-04-7456
JFW (AJWX).
Ming-Ling Lo et al., On Optimal Processor Allocation to Support
Pipelined Hash Joins, ACM SIGMOD, pp. 69-78, May 1993.
Moats, R., “URN Syntax,” May 1997, pp. 1-8.
Murlidhar Koushik, Dynamic Hashing With Distributed Overflow
Space: A File Organization With Good Insertion Performance, 1993,
Info. Sys.. vol. 18. No. 5. pp. 299-317.
Myers, J. and Rose, M., “The Content-MD5 Header Field,” Oct.
1995, pp. 1-4.
Naor, Moni, et al. “The Load, Capacity and Availability of Quorum
Systems.” In Proceedings of the 35th IEEE Symposium on Founda-
tions of Computer Science, Nov. 1994, pp. 214-225.
Nisan, Noam. “Psuedorandom Generators for Space-Bounded Com-
putation.” In Proceedings of the Twenty-Second Annual ACM Syrn-
posium on Theory of Computing, May 1990, pp. 204-212.
Office Action in corresponding Japanese Application No. 53l,073/
1996 mailed on Apr. 25, 2006.
Office Communication in corresponding European Application No.
96910762.2-1225 dated Jan. 17, 2007.
Order Re Claim Construction dated Nov. 8, 2001, from Civil Action
No. 00-11851-RWZ.

Palmer, Mark, et al. “Fido: A Cache that Learns to Fetch.” In Pro-
ceedings of the 17th International Conference on Very Large Data
Bases, Sep. 1991, pp. 255-264.
Patent Abstracts of Japan, “Device for Generating Database and
Method for the Same,” Application No. 03 -080504, Sun Microsyst.
Inc., published Jun. 1993, 38 pages.
Patent Abstracts ofJapan, “Electronic Mail Multiplexing System and
Communication Control Method in The System.” Jun. 30, 1993, JP
051625293.

Patent Abstracts of Japan, “Method for Registering and Retrieving
Data Base,” Application No. 03-187303, Nippon Telegr. & Teleph.
Corp., published Feb. 1993, 11 pages.
Peleg, David, et al. “The Availability of Quorum Systems.” Informa-
tion and Computation 123, 1995, 210-223.
Peter Deutsch (peterd@bunyip.com), “Re: MD5 and LiFNs (was:
Misc Comments)”, www.acl.lanl.gov/URI/archive/uri-94q2.mes-
sages/0106.htrnl, Apr. 26, 1994.
Peterson, L. L. 1988. A yellow-pages service for a local-area net-
work. In Proc. ACM Workshop on Frontiers in Computer Commu-
nications Technology (Vermont, 1987). J. J. Garcia-Luna-Aceves,
Ed. SIGCOMM ’87. ACM Press, New York, NY, 235-242.
Plaintiffs’ Memorandum of Points and Authorities in Opposition to
Loudeye Defendants’ Motion to Dismiss, dated Nov. 8, 2004, from
Civil Action No. CV-04-7456 JFW (AJWX).
Plaintiffs’ Opposition to Media Sentry’s Motion to Dismiss; Memo-
randum of Points and Authorities in Support Thereof, dated Nov. 8,
2004, from Civil Action No. CV 04-7456 JFW (CTx).
Plaintiff’ s Opposition to Recording Industry Association of Ameri-
ca’s Motion to Dismiss; Memorandum of Points and Authorities in
Support Thereof, dated Nov. 8, 2004, from Civil Action No. CV-04-
7456 JFW (CTx).

GOOG-1001-Page 4 of 61

GOOG-1001-Page 5 of 61

US 7,802,310 B2
Page 5

Plaintiff’ s Reply to Defendant Loudeye Corp.’s and Overpeer, Inc.’s
Counterclaims, dated Mar. 3, 2005, from Civil Action No. CV
04-7456 JFW (CTx).
Plaintiff’ s Reply to Defendant MediaSentry’s Counterclaims, dated
Mar. 3, 2005, from Civil Action No. CV 04-7456 JFW (CTx).
Plaintiff’ s Reply to Defendant RIAA’s Counterclaims, dated Mar. 3,
2005, from Civil Action No. 04-7456 JFW (CTx).
Proceedings ofthe 1993 ACM SIGMOD International Conference on
Management of Data, vol. 22, Issue 2, Jun. 1993.
Rabin. Michael. “Efficient Dispersal of Information for Security,
Load Balancing, and Fault Tolerance.” Journal of the ACM, vol. 36,
No. 2, Apr. 1989, pp. 335-348.
Ravi, R., “Rapid Rumor Ramification: Approximating the Minimum
Broadcast Time.” In Proc. of the 35th IEEE Syrnp. on Foundation of
Computer Science, Nov. 1994, pp. 202-213.
Ravindran, K. and Ramakrishnan, K. K. 1991. A naming system for
feature-based service specification in distributed operating systems.
SIGSMALL/PC Notes 17, 3-4 (Sep. 1991), 12-21.
Reed Wade (wade@cs.utk.edu), “re: Dienst and BFD/LIFN docu-
ment,” Aug. 8, 1994, printed from http://www.webhistory.org/www.
lists/www-talk1994q3/0416.html on Mar. 22, 2006, (7 pages).
Rivest, R., “The MD5 Message-Digest Algorithm,” Apr. 1992, pp.
1-19 and errata sheet (1 page).
Rose, M., “The Content-MD5 Header Field,” Nov. 1993, pp. 1-3.
Ross, K., “Hash-Routing for Collections of Shared Web Caches,”
IEEE Network Magazine, pp. 37-44, Nov.-Dec. 1997.
Sakti Prarnanik et al., Multi-Directory Hasing, 1993, Info. Sys., vol.
18, No. 1, pp. 63-74.
Schmidt, Jeanette, et al. “Chernoff-Hoeffding Bounds for Applica-
tions with Limited Independence.” In Proceedings of the 4th ACS-
SIAM Symposium on Discrete Algorithms, 1993, pp. 331-340.
Schneier, Bruce, “One-Way Hash Functions, Using Crypographic
Algorithms for Hashing,” 1991, printed from http://202.179135.4/
data/DDJ/articles/1991/9109/91909g/9109g.htrn on Mar. 22, 2006.
Schwartz, M., et al. 1987. Aname service for evolving heterogeneous
systems. In Proc. 11th ACM Symp. on OS Principles (Texas, Nov.
8-11, 1987). SOSP ’87. ACM Press, NY, NY 52-62.
Search Report dated Jun. 24, 1996.
Shaheen-Gouda, A. And Loucks, L. 1992. Name borders. In Proc. 5th
Workshop on ACM SIGOPS European Workshop: Models and Para-
digms For Distributed Systems Structuring (Mont Saint-Michel,
France, Sep. 21-23, 1992). EW 5. ACM Press, NY, NY, 1-6.
Sun Micro systems, Inc ., “NFS: Network File System Protocol Speci-
fication,” Mar. 1989, pp. 1-25.
Tarjan, Robert Endre, et al. “Storing a Sparse Table.” Communica-
tions ofthe ACM, vol. 22, No. 11, Nov. 1979, pp. 606-611.
Terry, D. B. 1984. An analysis ofnaming conventions for distributed
computer systems. In Proc. ACM SIGCOMM Syrnp. on Communi-
cations Architectures and Protocols: Tutorials & Symp. SIGCOMM
’84. ACM Press, NY, NY, 218-224.
Thomas A. Berson, Differential Cryptanalysis Mod 2.sup.32 with
Applications to MD5, pp. 69-81, 1992.
Vij ay Kumar, A Concurrency Control Mechanism Based on Extend-
ible Hashing for Main Memory Database Systems, ACM, vol. 3,
1989, pp. 109-113.
Vij ay Kumar, A concurrency Control Mechanism based on Extend-
ible Hashing for Main Memory Database Systems, pp. 109-113,
ACM, vol. 3, 1989.
Vincenzetti, David and Cotrrozzi, Massimo, “Anti Tampering Pro-
gram,” Proceedings of the Fourth {USENIX} Security Symposium,
Santa Clara, CA, 1993, 11 pages.
Vincenzetti, David and Cotrrozzi, Massimo, “Anti Tampering Pro-
gram,” Proceedings of the Fourth {USENIX} Security Symposium,
Santa Clara, CA, undated, printed from http://wwwja.net/CERI/
Vincenzetti_and_Cotrozzi/ATP_Anti_Tamp on Mar. 22, 2006, 8
pages.

Vitter, Jeffrey Scott, et al. “Optimal Prefetching via Data Compres-
sion.” In Proceedings of 32nd IEEE Symposium on Foundations of
Computer Science, Nov. 1991, pp. 121-130.
W3C:ID, HTTP: A protocol for networked information, “Basic
HTTP as defined in 1992”, www.w3.org/Protocols/HTTP2.htrnl,
1992.

Wegman, Mark, et al. “New Hash Functions and Their Use in Authen-
tication and Set Equality.” Journal ofComputer and System Sciences
vol. 22, Jun. 1981, pp. 265-279.
William Perrizo, et al., Distributed Join Processing Performance
Evaluation, 1994. Twenty-Seventh Hawaii International Conference
on System Sciences, vol. II, pp. 236-244.
Witold Litwin et al., LH.sup.—Linear Hashing for Distributed Files,
HP Labs Tech. Report No. HPL-93-21, Jun. 1993, pp. 1-22.
Witold Litwin et al., Linear Hashing for Distributed Files, ACM
SIGMOD, May 1993, pp. 327-336.
Witold Litwin, et al., LH—Linear Hashing for Distributed Files, HP
Labs Tech. Report No. HPL-93-21 Jun. 1993, pp. 1-22.
Yao, Andrew Chi-Chih. “Should Tables be Sorted?” Journal of the
Association for Computing Machinery, vol. 28, No. 3, Jul. 1981, pp.
615 -628.

Yuliang Zheng et al., Haval—A One-Way Hashing Algorithm with
Variable Length of Output (Extended Abstract), pp. 83-105.
Yuliang Zheng, et al., Haval—A One-Way Hashing Algorithm with
Variable Length of Output (Extended Abstract), pp. 83-105,
Advances in Cryptology, AUSCRIPT ’92, 1992.
Zhiyu Tian, et al., A New Hashing Function: Statistical Behaviour
and Algorithm, pp. 3-13, SIGIR Forum, 1993.
Zhiyu Tian, et al., A New Hashing Function: Statistical Behaviour
and Algorithm, pp. 3-13, SIGIR Forum, Spring 1993.
[Proposed] Order Regarding Construction of Terms, filed Mar. 29,
2007 in C.D. Cal. case No. CV 06-5086 SJO (Ex) [9 pgs.].
Analysis of Plaintiffs’ Claim Chart for the ’280 Patent As Against
Defendant Media Sentry, Inc. 11 pages.
Analysis of Plaintiffs’ Claim Chart for the ’791 Patent As Against
Defendant Media Sentry, Inc. (11916.001.0150.a) pp. 1-48.
Analysis of Plaintiffs’ Claim Chart for the ’791 Patent As Against
Defendant Overpeer pp. 1-40.
Barbara, D., et al., “Exploiting symmetries for low-cost comparison
of file copies”, 8th Int’l Conf. on Distributed Computing Systems,
Jun. 1988, pp. 471-479, San Jose, CA.
Campbell, M., “The Design of Text Signatures for Text Retrieval
Systems,” Tech. Report, Sep. 5, 1994, Deakin University, School of
Computing & Math., Geelong, Australia.
Chang, W. W. et al., “A signature access method for the Starburst
database system,” in Proc. 15th Int’l Conf. on Very Large Data Bases
(Amsterdam, The Netherlands), pp. 145-153.
Changes to Mar. 23, 2007 Deposition ofRobert B. K. Dewar, in C.D
Cal. case No. CV 06-5086 SJO (Ex) [3 pgs + cover letter.].
Communication from EPO in European Application No. 96 910
762.2-1225 dated May 8, 2009 [4 pgs.].
Communication pursuant to Article 96(2) EPC from EPO (Examina-
tion Report), Jan. 17, 2007, in Application No. EP 96 910 762.2- 1225
[1 pg. with 5 pg. annex].
Complaint for Patent Infringement, Permanent Injunction and Dam-
ages, Aug. 8, 2006, in C.D. Cal. case No. CV 06-5086 SJO (Ex) [11
pgs].
Complaint for Patent Infringement, Permanent Injunction and Dam-
ages, filed Sep. 21, 2007 in C.D. Cal. Case No. Cv 07-06161 VBF
(PLAx) [10 pgs.].
Declaration ofCharles S. Baker in Support ofDefendant Lime Wire’ s
Motion to Stay Pending Reexamination of Patent and Request for
Extension of Deadlines, Aug. 29, 2008, in C.D. Cal. Case No. CV
07-06161VBF (PLAx) [2 pgs.].
Defendant Lime Wire, LLC’s First Amended Answer, Affirmative
Defenses and Counterclaims, Oct. 2, 2008, C.D. Cal. case No.
07-06161VBF (PLAx) [13 pgs.].
Defendant Lime Wire, LLC’s Second AmendedAnswer, Affirmative
Defenses and Counterclaims, Oct. 27, 2008, From C.D. Cal. case No.
07-06161VBF (PLAx) [13 pgs.].
Defendant Michael Weiss’s Answer to Plaintiff’ s Complaint for
Patent Infringement, Permanent Injunction and Damages; Demand
for Jury Trial, Sep. 15, 2006, case No. CV 06-5086 SJO (Ex) [10
pgs].
Defendant Recording Industry Association of America’s Amended
Notice of Motion and Motion for Partial Summary Judgment on
Plaintiffs’ Claims for Patent Infringement and Inducing Patent
Infringement, Memorandum of Points and Authorities, May 22,
2006, redacted, original confidential, filed under seal, in C.D. Cal.
case No. CV 04-7456 JFW (CTx) [19 pgs].

GOOG-1001-Page 5 of 61

GOOG-1001-Page 6 of 61

US 7,802,310 B2
Page 6

Defendant Recording Industry Association of America’s and
Mediasentry, Inc.’s Notice of Motion and Motion for Partial Sum-
mary Judgment Based on Implied License or, In the Alternative,
Based on Patent Misuse and Unclean Hands, May 22, 2006,
Redacted, in C.D. Cal. case No. CV 04-7456 JFW (CTx) [21 pgs.].
Defendant Recording Industry Association of America’s and
Mediasentry, Inc’s Notice of Motion and Motion for Partial Sum-
mary Judgment Based on Implied License or, In the Alternative,
Based on Patent Misuse and Unclean Hands, May 8, 2006, in C.D.
Cal. case No. CV 04-7456 JFW (CTx) [20 pgs.].
Defendant StreamCast Networks Inc.’s Answer to Plaintiff’ s Com-

plaint for Patent Infringement, Permanent Injunction and Damages;
Demand for Jury Trial, Sep. 5, 2006, C.D. Cal. case No. CV 06-5086
SJO (Ex) [10 pgs.].
Defendants’ Amended Preliminary Claim Constructions [Patent
Rule 4-2], filed Feb. 7, 2007 in C.D. Cal. case No. CV 06-5086 SJO
(Ex) [10 pgs.].
Defendant’s Second Amended Preliminary Claim Constructions
[Patent Rule 4-2], filed Feb. 9, 2007 in C.D. Cal. case No. CV
06-5086 SJO (Ex) [10 pgs.].
Dewar, Rebuttal Expert Report of Robert B.K. Dewar, in C.D. Cal.
case No. CV 04-7456 JFW (CTx), Apr. 10, 2006 [87 pgs].
Faloutsos, C. “Access methods for text,” ACM Comput. Surv. 17, 1
(Mar. 1985), 49-74.
Faloutsos, C. et al., “Description and performance analysis of signa-
ture file methods for office filing,” ACM Trans. Inf. Syst. 5, 3 (Jul.
1987), 237-257.
Faloutsos, C. et al., “Signature files: an access method for documents
and its analytical performance evaluation,” ACM Trans. Inf. Syst. 2,
4 (Oct. 1984), 267-288.
Federal Inforn1ation Processing Standards (FIPS) Publication 180-1;
Secure Hash Standard, Apr. 17, 1995 [17 pgs.].
Feigenbaum, J . et al., “Cryptographic protection of databases and
software,” in Distributed Computing and Cryptography: Proc.
DIMACS Workshop, Apr. 1991, pp. 161-172, American Mathemati-
cal Society, Boston, Mass.
First Amended Answer of Defendant Mediasentry to Second
Amended Complaint and Counterclaim, Apr. 24, 2006, in C.D. Cal.
case No. CV 04-7456 JFW (CTx) [29 pgs.].
First Amended Answer of Defendant RIAA to Second Amended

Complaint and Counterclaim, Apr. 24, 2006, in C.D. Cal. Case No.
CV 04-7456 JFW (CTx) [27 pgs.].
First Amended Complaint for Patent Infringement, Permanent
Injunction and Damages, filed Sep. 8, 2008 in C.D. Cal. Case No. CV
07-06161 VBF (PLAx) [10 pgs.].
Harrison, M. C., “Implementation of the substring test by hashing,”
Commun. ACM 14, 12 (Dec. 1971), 777-779.
IEEE, The Authoritative Dictionary of IEEE Standards Terms, 7th
ed., Copyright 2000,pp. 107, 176, 209, 240, 241,432, 468, 505, 506,
682, 1016, 1113, 1266, and 1267.
Ishikawa, Y., et al., “Evaluation of signature files as set access facili-
ties in OODBs,” In Proc. of the 1993 ACM SIGMOD Inter. Conf. on
Management of Data (Washington, D.C., U.S., May 1993). P. Bune-
man & S. Jajodia, Eds. SIGMOD ’93. ACM, NY, NY, 247-256.
Joint Claim Construction and Prehearing Statement, N. D. Cal. Rule
4-3, Feb. 12, 2007, in C.D. Cal. case No. CV 06-5086 SJO (Ex) [20
pgs].
Karp, R. M. and Rabin, M. 0., “Efficient randomized pattern-match-
ing algorithms,” IBM J. Res. Dev. 31, 2 (Mar. 1987), 249-260.
List of Asserted Claims and Infringement Chart for Each Asserted
Claim, Jul. 28, 2008, in C.D. Cal. Case No. CV 07-06161 VBF
(PLAx) [31 pgs.].
McGregor D. R. And Mariani, J . A. “Fingerprinting—A technique
for file identification andmaintenance,” Software: Practice and Expe-
rience, vol. 12, No. 12, Dec. 1982, pp. 1165-1166.
Notice ofInterested Parties, filed Sep. 21, 2007 in C.D. Cal. Case No.
CV 07-06161 VBF (PLAx) [2 pgs.].
Notice of Motion and Motion of Defendant Lime Wire to Stay Liti-
gation Pending Reexamination of Patent and Request for Extension
of Deadlines, Sep. 22, 2008, C.D. Cal. Case No. CV 07-06161VBF
(PLAx) [11 pgs.].
Notice ofRelated Cases, filed Sep. 21, 2007 in C.D. Cal. Case No. CV
07-06161VBF (PLAx) [2 pgs.].

Office Action from PTO in U.S. Appl. No. 11/980,679, May 6, 2009.
Panagopoulos, G., et al., “Bit-sliced signature files for very large text
databases on a parallel machine architecture,” In Proc. ofthe 4th Inter.
Conf. on Extending Database Technology (EDBT), Cambridge,
U.K., Mar. 1994, pp. 379-392 (Proc. LNCS 779 Springer 1994, ISBN
3-540-57818-8) [14 pgs.].
Patent Abstract, “ Management System for Plural Versions,” Pub. No.
63273961 A, published Nov. 11, 1988, NEC Corp.
Patent Abstracts of Japan, “Data Processor,” Appin. No. 05135620,
filed Jun. 7, 1993, Toshiba Corp.
Plaintiff Kinetech, Inc.’s Responses to Defendant Mediasentry’s
First set of Interrogatories, May 1, 2006, in C.D. Cal. Case No. CV
04-7456 JFW (CTx) [14 pgs.].
Plaintiff-Counterclaim Defendant Altnet, Inc.’s Supplemental
Responses to Defendant-Counterclaim PlaintiffOverpeer Inc . ’ s First
Set of Interrogatories, Mar. 8, 2006, redacted, in C.D. Cal. case No.
CV 04-7456 JFW (CTx) [24 pgs.].
Plaintiff-Counterclaim Defendant Brilliant Digital Entertainment,
Inc.’s Supplemental Responses to Defendant-Counterclaim Plaintiff
Overpeer Inc. ’ s First Set ofInterrogatories, Mar. 8, 2006, redacted, in
C.D. Cal. case No. CV 04-7456 JFW (CTx) [24 pgs.].
Plaintiff-Counterclaim Defendant Kinetech, Inc.’s Supplemental
Responses to Defendant-Counterclaim PlaintiffOverpeer Inc . ’ s First
Set of Interrogatories Mar. 8, 2006, redacted, in C.D. Cal. case No.
CV 04-7456 JFW (CTx) [24 pgs.].
Plaintiffs Altnet, Inc., Brilliant Digital, Inc , and Kinetech, Inc.’s
Responses to Defendant Recording Industry Association of Ameri-
ca’s First Set of Requests for Admissions, Jan. 6, 2006, in C.D. Cal.
case No. CV 04-7456 JFW (CTx) [26 pgs.].
Plaintiffs’ Claim Construction Opening Briefand Exhibits A-D, F, G;
May 7,2007, in C.D. Cal. case No. CV 06-5086 SJO (Ex) [112 pgs.].
Plaintiffs’ Preliminary Claim Constructions and Extrinsic Evidence,
Feb. 6, 2006, in case CV 06-5086 SJO (Ex) [20 pgs.].
Plaintiff’ s Reply to Defendant Mediasentry’s Counterclaims in its
Answer to the Second Amended Complaint, May 1, 2006, in C.D.
Cal. Case No. CV 04-7456 JFW(CTx)[11pgs.].
Plaintiff’ s Reply to Defendant RIAA’s Counterclaims in its Answer
to the Second Amended Complaint, May 1, 2006, in C.D. Cal. case
No. CV 04-7456 JFW (CTx) [11 pgs.].
Plaintiffs’ Reply to Defendants’ Claim Construction Brief, filed Apr.
23, 2007 in C.D Cal. case No. CV 06-5086 ODW (Ex) [15 pgs.].
Reply to Examination Report, Jul. 19, 2007, in Application No. EP 96
910 762.2-1225 [7 pgs.].
Response to Non-Final Office Action filed May 19, 2009 in U.S.
Appl. No. 11/017,650 [19 pgs.].
Rivest, R., RFC 1320, “The MD4 Message-Digest Algorithm,” Apr.
1992.

Sacks-Davis, R., et al., “Multikey access methods based on superim-
posed coding techniques,” ACM Trans. Database Syst. 12, 4 (Nov.
1987), 655-696.
Siegel, A., et al., “Deceit: a Flexible Distributed File System,” Proc.
Workshop on the Management of Replicated Data, Houston, TX, pp.
15-17, Nov. 8-9, 1990.
Siegel, A., et al., “Deceit: a Flexible Distributed File System,” Tech-
nical Rcport, TR89-1042, Cornell University, Nov. 1989.
Stipulation and Proposed order to (1) Amend the Complaint, (2)
Amend pretrial Schedule, and (3) Withdraw Motion to Stay, filed Sep.
8, 2008 in C.D. Cal. Case No. CV 07-06161VBF (PLAx) [6 pgs.].
Streamcast Networks Inc.’s Supplemental Responses to Certain of
Plaintiffs’ First SetofInterrogatories, Apr. 16, 2007, in C.D. Cal. case
No. CV 06-5086 SJO (Ex) [61 pgs.].
StreamCast’s Brief Re Claim Construction, Apr. 12, 2007, in C.D.
Cal, case No. CV 06-5086 SJO (Ex) [11pgs.].
Transcript ofDeposition ofDavid Farber, Feb. 16, 2006, in C.D. Cal.
case No. CV 04-7456 JFW (CTx) [94 pgs.].
Transcript of Deposition of Robert B. K. Dewar, Mar. 23, 2007, in
C.D. Cal. case No. CV 06-5086 SJO (Ex) [61 pgs.].
Transcript ofDeposition ofRonald Lachman, Feb 1, 2006, C.D. Cal.
case No. CV 04-7456 JFW (CTx) [96 pgs.].
USPTO, Final Office Action mailed Aug. 18, 2009 in U.S. Appl. No.
1 1/0 1 7,650.
USPTO, Final Office Action mailed Sep. 30, 2009 in U.S. Appl. No.
1 1/724,232.

GOOG-1001-Page 6 of 61

GOOG-1001-Page 7 of 61

US 7,802,310 B2
Page 7

USPTO, Non-Final Office action mailed Jun. 18, 2009 in U.S. Appl.
No. 90/010,260.
Fowler, et al. “A User-Level Replicated File System,” AT&T Bell
Laboratories Technical Memorandum 0112670-930414-05, Apr.
1993, and USENIX 1993 Summer Conference Proceedings, Cincin-
nati, OH, Jun. 1993.
Greene, D., et al., “Multi-Index Hashing for Information Retrieval”,
Nov. 20-22, 1994, Proceedings, 35th Annual Syn1p on Foundations of
Computer Science, IEEE, pp. 722-731.
Hirano, et al, “Extendible hashing for concurrent insertions and
retrievals,” in Proc 4th Euromicro Workshop on Parallel and Distrib-
uted Processing, 1996 (PDP ’96), Jan. 24, 1996 to Jan. 26, 1996, pp.
235-242, Braga , Portugal.
Preneel et al., “The Cryptographic Hash Function RIPEMD-160”,
appeared in CryptoBytes RSA Laboratories, vol. 3, No. 2, pp. 9-14,
Fall, 1997 (also Bosselaers et al., “The RIPEMD-160 Cryptographic
Hash Function”, Jan. 1997, Dr. Dobb’s Journal, pp. 24-28).
Prusker et al., “The Siphon: Managing Distant Replicated Reposito-
ries” Nov. 8-9, 1990, Proc. Management of Replicated Data IEEE.
Replyto Examination Report, Munich, Nov. 18, 2009, in Application
No. EP 96 910 762.2 [19 pgs.].
Rich, K. et al, “Hobgoblin: A File and Directory Auditor”, Sep.
30-Oct. 3, 1991, LisaV., San Diego, CA.
L .S. Reexam U.S. Appl. No. 90/010,260—Apr. 8, 2010 PTO Notice
f Intent to Issue Ex Parte Reexamination Certificate.O

LSPTO Final Office Action in U.S. Appl. No. 10/742,972, Dec. 22,
2009.

LSPTO, Advisory Action, Mar. 23, 2010, in U.S. Appl. No.
11/980,679.
LSPTO, Final Office Action in U.S. Reexam U.S. Appl. No.
90/010,260, Jan. 29, 2010.

SPTO, Final Office Action mailed Jan. 12, 2010 in U.S. Appl. No.
1/980,679.

WIPO, International Preliminary Examination Report (IPER), Jul.
1997, PCT/US96/04733 [5 pgs.].
L SPTO, Non-Final Office Action in U.S. Appl. No. 11/980,677, Jtm.
4, 2010.
L SPTO, Non-Final Office Action mailed Jul. 2, 2010 in U.S. Appl.
No. 11/980,688.
LSPTO, U.S. Reexam Control No. 90/010,260, Notice of Intent to
Issue Ex Parte Reexamination Certificate, Apr. 8, 2010.
WIPO, International Preliminary Examination Report (IPER), Jul.
1997, PCT/US96/04733 [5 pgs.].
Karp, R. M. and Rabin, M. O., “Efficient randomized pattern-match-
ing algorithms,” IBM J. Res. Dev. 31, 2 (Mar. 1987), 249-260.
List of Asserted Claims and Infringement Chart for Each Asserted
Claim, Jul. 28, 2008, in C.D. Cal. Case No. CV 07-06161 VBF
(PLAx) [31 pgs.].
McGregor D. R. and Mariani, J. A. “Fingerprinting—A technique for
file identification and maintenance,” Software: Practice and Experi-
ence, vol. 12, No. 12, Dec. 1982, pp. 1165-1166.
Notice ofInterested Parties, filed Sep. 21, 2007 in C.D. Cal. Case No.
CV 07-06161 VBF (PLAx) [2 pgs.].
Notice of Motion and Motion of Defendant Lime Wire to Stay Liti-
gation Pcnding Rccxamination of Patent and Request for Extension
of Deadlines, Sep. 22, 2008, C.D. Cal. Case No. CV 07-06161VBF
(PLAx) [11 pgs.].
Notice ofRelated Cases, filed Sep. 21, 2007 in C.D. Cal. Case No. CV
07-06161VBF (PLAx) [2 pgs.].
Panagopoulos, G., et al., “Bit-sliced signature files for very large text
databases on a parallel machine architecture,” In Proc. ofthe 4th Inter.
Conf. on Extending Database Technology (EDBT), Cambridge,
U.K., Mar. 1994, pp. 379-392 (Proc. LNCS 779 Springer 1994, ISBN
3-540-57818-8) [14 pgs.].
PatentAbstract, “Management System for Plural Versions,” Pub. No.
63273961 A, published Nov. 11, 1988, NEC Corp.
Patent Abstracts of Japan, “Data Processor,” Appln. No. 05135620,
filed Jun. 7, 1993, Toshiba Corp.
Plaintiff Kinetech, Inc.’s Responses to Defendant Mediasentry’s
First set of Interrogatories, May 1, 2006, in C.D. Cal. Case No. CV
04-7456 JFW (CTx) [14 pgs.].

~<~

Plaintiff-Counterclaim Defendant Altnet, Inc.’s Supplemental
Responses to Defendant-Counterclaim PlaintiffOverpeer Inc . ’ s First
Set of Interrogatories, Mar. 8, 2006, redacted, in C.D. Cal. case No.
CV 04-7456 JFW(CTx) [24 pgs.].
Plaintiff-Counterclaim Defendant Brilliant Digital Entertainment,
Inc.’s Supplemental Responses to Defendant-Counterclaim Plaintiff
Overpeer Inc. ’ s First Set ofInterrogatories, Mar. 8, 2006, redacted, in
C.D. Cal. case No. CV 04-7456 JFW (CTx) [24 pgs.].
Plaintiff-Counterclaim Defendant Kinetech, Inc.’s Supplemental
Responses to Defendant-Counterclaim PlaintiffOverpeer Inc . ’ s First
Set of Interrogatories Mar. 8, 2006, redacted, in C.D. Cal. case No.
CV 04-7456 JFW (CTx) [24 pgs.].
Plaintiffs Altnet, Inc., Brilliant Digital, Inc., and Kinetech, Inc.’s
Responses to Defendant Recording Industry Association of Ameri-
ca’s First Set of Requests for Admissions, Jan. 6, 2006, in C.D. Cal.
case No. CV 04-7456 JFW (CTx) [26 pgs.].
Plaintiffs’ Claim Construction Opening Briefand Exhibits A-D, F, G;
May 7, 2007, in C.D. Cal. case No. CV 06-5086 SJO (Ex) [112 pgs.].
Plaintiffs’ Preliminary Claim Constructions and Extrinsic Evidence,
Feb. 6, 2006, in case CV 06-5086 SJO (Ex) [20 pgs.].
Plaintiffs Reply to Defendant Mediasentry’s Counterclaims in its
Answer to the Second Amended Complaint, May 1, 2006, in C.D.
Cal. Case No. CV 04-7456 JFW(CTx)[11pgs.].
Plaintiffs Reply to Defendant RIAA’s Counterclaims in itsAnswer to
the Second Amended Complaint, May 1, 2006, in C.D. Cal. case No.
CV 04-7456 JFW(CTx)[11pgs.].
Plaintiffs’ Reply to Defendants’ Claim Construction Brief, filed Apr.
23, 2007 in C.D. Cal. case No. CV 06-5086 ODW (Ex) [15 pgs.].
Reply to Examination Report, Jul. 19, 2007, in Application No. EP 96
910 762.2-1225 [7 pgs.].
Response to Non-Final Office Action filed May 19, 2009 in U.S.
Appl. No. 11/017,650 [19 pgs.].
Rivest, R., RFC 1320, “The MD4 Message-Digest Algorithm,” the
Internet Engineering Task Force (IETF), Apr. 1992.
Sacks-Davis, R., et al., “Multikey access methods based on superim-
posed coding techniques,” ACM Trans. Database Syst. 12, 4 (Nov.
1987), 655-696.
Siegel, A., et al., “Deceit: a Flexible Distributed File System,” Proc.
Workshop on the Management of Replicated Data, Houston, TX, pp.
15-17, Nov. 8-9, 1990.
Siegel, A., et al., “Deceit: a Flexible Distributed File System,” Tech-
nical Report, TR89-1042, Cornell University, Nov. 1989.
Stipulation and Proposed order to (1) Amend the Complaint, (2)
Amend pretrial Schedule, and (3) Withdraw Motion to Stay, filed Sep.
8, 2008 in C.D. Cal. Case No. CV 07-06161 VBF(PLAx) [6 pgs.].
Streamcast Networks Inc.’s Supplemental Responses to Certain of
Plaintiffs’ First SetofInterrogatories, Apr. 16, 2007, in C.D. Cal. case
No. CV 06-5086 SJO (Ex) [61 pgs.].
StreamCast’s Brief Re Claim Construction, Apr. 12, 2007, in C.D.
Cal. case No. CV 06-5086 SJO (Ex) [11 pgs.].
Transcript ofDeposition ofDavid Farber, Feb. 16, 2006, in C.D. Cal.
case No. CV 04-7456 JFW (CTx) [94 pgs.].
Transcript of Deposition of Robert B. K. Dewar, Mar. 23, 2007, in
C.D. Cal. case No. CV 06-5086 SJO (Ex) [61pgs.].
Transcript ofDeposition ofRonald Lachman, Feb. 1, 2006, C.D. Cal.
case No. CV 04-7456 JFW (CTx) [96 pgs.].
USPTO, Non-Final Office Action mailed May 6, 2009 in U.S. Appl.
No. 11/980,679.
USPTO, Non-Final Office action mailed Jun. 15, 2009 in U.S. Appl.
No. 11/980,687.
USPTO, Non-Final Office action mailed Jun. 18, 2009 in Reexam
No. 90/010,260.
Cheriton, David R. and Mar1n, Timothy P., “Decentralizing a global
naming service for improved performance and fault tolerance”, ACM
Transactions on Computer Systems, vol. 7, No. 2, May 1989, pp.
147-183.

Request for Reexamination of U.S. Patent No. 6,928,442: Reexam
Control No. 90/010,260, filed on Aug. 29, 2008.

* cited by examiner

GOOG-1001-Page 7 of 61

GOOG-1001-Page 8 of 61

U.S. Patent Sep. 21, 2010 Sheet 1 of 31 US 7,802,310 B2

mommmoommNo.

me,

mommmoomaNo.

mommmuomm«oran:.o_..”_

mowmmoommNov

magmamw<moww

mommmoommNov

.mo_>momo<mopw

GOOG-1001-Page 8 of 61

GOOG-1001-Page 9 of 61

U.S. Patent Sep. 21, 2010 Sheet 2 of 31 US 7,802,310 B2

moswnmo<mo.5mommmoom;

GOOG-1001-Page 9 of 61

GOOG-1001-Page 10 of 61

U.S. Patent Sep. 21, 2010 Sheet 3 of 31 Us 7,802,310 B2

pzmzomw
«aw

MAE
ofi

>mo.5mma
a:

....hzmsamm._.zms_omm~N_.«Neourone....>mo»omm_o>mo.Smm_om:2;

GOOG-1001-Page 10 of 61

GOOG-1001-Page 11 of 61

U.S. Patent Sep. 21, 2010 Sheet 4 of 31 US 7,802,310 B2

Time of last access

Time of last modification

Con-ressed File ID

Source IDS

De-endent -rocessors

Time of last access

Groomin- delete count

[42

Re-ion file s stem

Re-ion status

Mirror -rocessor s

FIG. 5

GOOG-1001-Page 11 of 61

GOOG-1001-Page 12 of 61

U.S. Patent Sep. 21, 2010 Sheet 5 of 31 Us 7,802,310 B2

om.

 E
mi

w¢_

noaunooamuunou

u.«.n.mnu.n.mu>.umoudou

0...uooudou

¢E

 0.o_.._ma:Nammo:

GOOG-1001-Page 12 of 61

GOOG-1001-Page 13 of 61

U.S. Patent Sep. 21, 2010 Sheet 6 of 31 Us 7,802,310 B2

FIG. I0(a)

SIMPL
DATA ITEM

3214

APPEND LENGTH MODULO 32 OF

DATA ITEM

GOOG-1001-Page13 of 61

GOOG-1001-Page 14 of 61

U.S. Patent Sep. 21, 2010 Sheet 7 of 31 Us 7,802,310 B2

 S216

DATA ITEM

SIMPLE?

FIG. |0(b)
YES

8220

PARTITION DATA ITEM INTO

SEGMENTS

S222

ASSIMILATE EACH SEGMENT

(COMPUTING ITS TRUE NAME)

5 COMPUTE mus :
; NAME OF SIMPLE :I
: DATA ITEM 1 3224

CRETE INDIRECT BLOCK OF

SEGMENT TRUE NAMES

S226

ASSIMILATE INDIRECT BLOCK

(COMPUTING ITS TRUE NAME)

S228

REPLACE FINAL 32 BITS OF TRUE

NAME WITH LENGHT MOD 32 OF DATA
ITEM

GOOG-1001-Page 14 of 61

GOOG-1001-Page 15 of 61

U.S. Patent Sep. 21, 2010 Sheet 8 of 31 Us 7,802,310 B2

n:m.__u_mmopmmmmw~.n=m.=u_m><:>E.zwmwoa

mm»

D.m.="_mhfimnmmmw

~.>Ew_emmm.="_max...2.Samms_<zmam»«mooms_<2m:E.mzimmfioSum

mod:51.5mm,.Qm.__"_mmokm«rO._._.z=oomm:..mm.>m.Emamzmbqmmo..Sum

__.o_n_

GOOG-1001-Page 15 of 61

GOOG-1001-Page 16 of 61

U.S. Patent Sep. 21, 2010 Sheet 9 of 31 Us 7,802,310 B2

FIG. I2

 5240

UPDATE

DEPENDENCY

LIST

S238

FILE

LOCKED?

S242

j SEND MESSAGE TO

CACHE SERVER T0

UPDATE CACHE

 S244

COMPRESS

(n= DESIRED)

 S246

MlRROR

(IF DESIRED)

GOOG-1001-Page 16 of 61

GOOG-1001-Page 17 of 61

U.S. Patent Sep. 21, 2010 Sheet 10 of 31 Us 7,802,310 B2

FIG. I3

S250

SEARCH FOR _ _ _ A ,
THE FAIL

PATHNAME

LDE INCLUDES

TRUE NAME?

S258

ASSIMILATE

FILE ID

LDE IDENTIFIES

DIRECTORY?

YS

S256

FREEE

DIRECTORY

GOOG-1001-Page 17 of 61

GOOG-1001-Page 18 of 61

U.S. Patent Sep. 21, 2010 Sheet 11 of 31 US 7,802,310 B2

S260

CONFIRM THAT

TRUE NAME

EXISTS LOCALLY

FIG. I4

S262

SEARCH FOR

PATHNAME IN

LDE TABLE

S264

CONFIRM THAT

DIRECTORY

EXISTS

S266

NAMED FILE

EXISTS?

S258

D ELETE

TRUE FILE

S270

CREATE

ENTRY IN LDE

& UPDATE

GOOG-1001-Page 18 of 61

GOOG-1001-Page 19 of 61

U.S. Patent Sep. 21, 2010 Sheet 12 of 31 US 7,802,310 B2

9.9“.

Emmamohem.__n_m:¢._.>..=mw>Sum

mu...0P2.omzmammm.__"_mam»mmhzmBum

m.=..._D27.Smw

mmzonammm>Emo._
mmzomwmm

 mo”.._._<>>._.zDO_2dmo<mmms_._.wmDGmm
"E.ozmw

mmzommmmwfiw

m>F<wmz

Eum

«mommmoom<ZO_._.<00..9mm;oz

GOOG-1001-Page 19 of 61

GOOG-1001-Page 20 of 61

.l.|..+.Iil-mmzommmmmanon

US 7,802,310 B2

.5NEE.
MO

mmzomumm2.m<oa<ommms:.QM2
.:,_m_._oSum

A39.9“.
 0

Sheet 13 of 31

mm»

owc.om._mmmommmoomm>z<mama

Sep. 21, 2010

.mEommmoom._9.om._mw.:,_m_._oEma

U.S. Patent

GOOG-1001-Page 20 of 61

GOOG-1001-Page 21 of 61

U.S. Patent Sep. 21, 2010 Sheet 14 of 31 US 7,802,310 B2

5...O...on?az<W53zockmaxmmz_sEm.EaEfiw

 >»~.s_m..m>moz_:m_._mEmm>uA-w.momaomooaumms_<zmam»mo".memouse»orn:zo:.<oo._momaom09..wm=2<2MDMFmo...mm...m:xoo._mommw

,..zo:.<z:.mmo20¢...mmuuaams_<zmay:".0momnom

mowmmoommmomaom20m.__"_mam...m>mmwwm0....mo<mmms_ozmmoammQmommmoommmmopwBum

IlI|l||I'

35..2“.
GOOG-1001-Page 21 of 61

GOOG-1001-Page 22 of 61

U.S. Patent Sep. 21, 2010 Sheet 15 of 31 Us 7,802,310 B2

S.m.=u_ommwummsoo8%

mmmmmsoumn8%mm>
O2

~.>m._.Zm2:.mo“.D.MAE

 mm»
mm»

._.ms_<zm=E.man.atz_>E.zmm.__"_m:.

.=<n_

oz

A35.2“.

GOOG-1001-Page 22 of 61

GOOG-1001-Page 23 of 61

mm»

US 7,802,310 B2

SK..0_u_

EmumaomEOE".m._EmumsmN_._<mm88

Sheet 16 of 31

mo.momaow»om._mwcomm

Q

E
a
o
co

M202OZ

Sep. 21, 2010

Q.mmopw88

U.S. Patent

 m.__”_m:.oEmmm._.<u0...Saw

GOOG-1001-Page 23 of 61

GOOG-1001-Page 24 of 61

U.S. Patent Sep. 21, 2010 Sheet 17 of 31 Us 7,802,310 B2

._<oo._me".mD¢._.mzsz«N8~.m._:ma...mo".9m.__".

S:mamwm.r_._mo

...w.__u_mam»u_O.>n_oOmmn._:o=m=o..<mo
m.=n_:o._.$_omzmzm._.<m¢ooumw~.mJ_..._man.ozfiwsfimm_n__»zmn_mag

GOOG-1001-Page 24 of 61

GOOG-1001-Page 25 of 61

US 7,802,310 B2

>Ezwmuz.m>os_mmwo_m.__u_m><m83

Sheet 18 of 31

mm»

U.S. Patent Sep. 21, 2010

S.n#2300mm:

pznoomm:Emzmmomo.m._m<._.m32.Qm.__"_mmokw.m.EzmzO._.w..=u_Ice88

3.9.9“.
GOOG-1001-Page 25 of 61

GOOG-1001-Page 26 of 61

2B0m

mam:<53Mzmzm._.<mmuUBmwm>mo5mm_ozm>_wMm.Eat.z.»mo5mm_nW...amE§=2_mm<z:>mM.%n._mm,_m.m_nz<m.__u_wm:<.___2_wm<38mckzamomaw88:o<mmo".

Ma

:39.0_.._

X004mummmm.»zms_mmuz_mmmm

U.S. Patent

GOOG-1001-Page 26 of 61

GOOG-1001-Page 27 of 61

U.S. Patent Sep. 21, 2010 Sheet 20 of 31 Us 7,802,310 B2

KOO...mummmumi...hzmsmmomo38

A39.9...

5_m._._<._.<G252m5.mb...=s__mm<«Em

 >mo»omm_ozmao
Zo_._.<sEomz_mm»2.>xo.5mmE

Emt4%m_n~._%_mn__nn__<<50am:az<m.__u_omoommopEwzm8<m:.<z_nmom:w8%:9mmo".

Saw

GOOG-1001-Page 27 of 61

GOOG-1001-Page 28 of 61

U.S. Patent Sep. 21, 2010 Sheet 21 of 31 US 7,802,310 B2

m_2<zmax...0...:._.<._22:Sam

m2<z:._.<n_..—.._Du_mhfimoommm

>mo.8mm_o9mm38

ox

>EzmEo.5mm_a:o<mmo...B8.28..m._Emam;mx<_2w

 mm_.E.zmMMOE02

ON.
or.

GOOG-1001-Page 28 of 61

GOOG-1001-Page 29 of 61

U.S. Patent Sep. 21, 2010 Sheet 22 of 31 US 7,802,310 B2

 S354

WAIT FOR

FREEZE LOCK

TO TURN OFF

S356

FIND TFR

ENTRY

FlG.2|

S358

DECREMENT

REFERENCE

COUNT

REFERENCE COUNT IS

ZERO 8: NO DEPENDENT

SYSTEMS IN TFR?

S364

REMOVE FILE ID

AND COMPRESSED

FILE ID

GOOG-1001-Page 29 of 61

GOOG-1001-Page 30 of 61

U.S. Patent Sep. 21, 2010 Sheet 23 of 31 Us 7,802,310 B2

S365

GET

OPERATION

FIG. 22

S366

CREATE OR

MODIFY?

S368

ASSIMILATE

COPY OR DELHE

COMPOUND?

S370

RECORD TRUE

NAME IN AUDIT

FILE

 MODIFY USE

COUNT OF EACH

COMPONENT

S379

FOR EACH PARENT

DIRECTORY OR FILE,

UPDATE USE COUNT,

LAST ACCESS AND

MODIFY TIMES

GOOG-1001-Page 30 of 61

GOOG-1001-Page 31 of 61

U.S. Patent Sep. 21, 2010 Sheet 24 of 31 US 7,802,310 B2

FIG. 23

S386

SET GROOM

COUNTS

GOOG-1001-Page 31 of 61

GOOG-1001-Page 32 of 61

U.S. Patent Sep. 21, 2010

S390

FIND TFR

RECORD

S392

INCREMENT

GROOMING

DELETE COUNT

S394

ADJUST FILE

SIZES

Sheet 25 of 31 US 7,802,310 B2

FIG. 24

GOOG-1001-Page 32 of 61

GOOG-1001-Page 33 of 61

U.S. Patent Sep. 21, 2010 Sheet 26 of 31 Us 7,802,310 B2

FIG. 25

GOOG-1001-Page 33 of 61

GOOG-1001-Page 34 of 61

U.S. Patent Sep. 21, 2010 Sheet 27 of 31 Us 7,802,310 B2

om...»:o..<mom35

Emm.o_..._

zmmo.:m_:om..Nwtm

>mo.5mm_.>4zo.o<mm

~.>._._<uOJmfiam.ms».
zmmo.:m_:om..35

 Embsmmoozfimwovw

GOOG-1001-Page 34 of 61

GOOG-1001-Page 35 of 61

2B0

M.MSENor.00O:7,N47.:o._.<momWzmafim
E5ME...50¢".m.=..._:o...<mumQm.Ezmafimm._.<mmoazo_w¢m>8%

1 4<oo4mx<2>mO03Sew_._u.Emom.mm:.<mmoBEmmémm25
a

mzmtaam.
>._m._m.Es_ooazmm

025
10

2--|!
12

m33.09s.32H:zoo;
Sm:o<om._E

U.S. Patent

GOOG-1001-Page 35 of 61

GOOG-1001-Page 36 of 61

U.S. Patent Sep. 21, 2010 Sheet 29 of 31 Us 7,802,310 B2

EKNor.

zozmdn:9:omn

ms_<zmDE5om".m.=u_mam»>ufizma_

CEo...omm_o.5zo-o<mmZ_monmxoogm._EnOnmoummm30.m.=...mo".mnmoumxEpzm._.mdma:mz=zmm._moNuvm

GOOG-1001-Page 36 of 61

GOOG-1001-Page 37 of 61

U.S. Patent Sep. 21, 2010 Sheet 30 of 31 Us 7,802,310 B2

BEN.oE

mzo>mpznoomm:MODDMMSum

m_..=.....:n=<O...>M_._.2mao<33

SEmzmpmE._moSvw

mzom.P2200mm:m.m.__"_mam...

m._Emo>n_OUzobqmomm._.m._maRx...

$2<zmam»oz3:m..=..._mm»

GOOG-1001-Page 37 of 61

GOOG-1001-Page 38 of 61

U.S. Patent Sep. 21, 2010 Sheet 31 of 31 Us 7,802,310 B2

mmzomwmmm>_._.<omzmmvm

mmzoammmm>Emo..

~.n=m._EommmmmezoomoD.m.__"_mmn:._uz8%

Bmnammom<2Eo"_«Ea

...n_mDm_<>>mO..._mm0...pmmscmm

ms_<zmam.».5xoo._«mew

mm.o_.._

GOOG-1001-Page 38 of 61

GOOG-1001-Page 39 of 61

US 7,802,310 B2

1
CONTROLLING ACCESS TO DATA IN A DATA

PROCESSING SYSTEM

RELATED APPLICATIONS

This application is a continuation of an claims priority to
pending U.S. patent application Ser. No. 11/724,232, which is
a continuation of application Ser. No. 11/017,650, filed Dec.
22, 2004, which is a continuation ofpending application Ser.
No. 10/742,972, filed Dec. 23, 2003, which is a continuation
of Ser. No. 09/987,723, filed Nov. 15, 2001, patented as U.S.
Pat. No. 6,928,442; which is a which is a continuation of
application Ser. No. 09/283,160, filedApr. 1, 1999, now U.S.
Pat. No. 6,415,280, which is a division ofapplication Ser. No.
08/960,079, filed Oct. 24, 1997, now U.S. Pat. No. 5,978,791,
which is a continuation of Ser. No. 08/425,160, filed Apr. 11,
1995, now abandoned, the contents of which each of these

applications are hereby incorporated herein by reference.
This application is a continuation of and claims priority to
application Ser. No. 11/017,650, filed Dec. 22, 2004, which is
a continuation of application Ser. No. 09/987,723, filed Nov.
15, 2001, now U.S. Pat. No. 6,928,442, which is a continua-
tion of application Ser. No. 09/283,160, filed Apr. 1, 1999,
now U.S. Pat. No. 6,415,280, which is a division of applica-
tion Ser. No. 08/960,079, filed Oct. 24, 1997, now U.S. Pat.
No. 5,978,791, which is a continuation of Ser. No. 08/425,
160, filed Apr. 11, 1995, now abandoned, the contents of
which each of these applications are hereby incorporated
herein by reference. This is also a continuation of and claims
priority to application Ser. No. 10/742,972, filed Dec. 23,
2003, which is a division of application Ser. No. 09/987,723,
filed Nov. 15, 2001, now U.S. Pat. No. 6,928,442, which is a
continuation of application Ser. No. 09/283,160, filed Apr. 1,
1999, now U.S. Pat. No. 6,415,280, which is a division of
application Ser. No. 08/960,079, filed Oct. 24, 1997, now
U.S. Pat. No. 5,978,791, which is a continuation of Ser. No.
08/425,160, filedApr. 11, 1995, now abandoned, the contents
of which each of these applications are hereby incorporated
herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to data processing systems and, more
particularly, to data processing systems wherein data items
are identified by substantially unique identifiers which
depend on all ofthe data in the data items and only on the data
in the data items.

2. Background of the Invention
Data processing (DP) systems, computers, networks of

computers, or the like, typically offer users and programs
various ways to identify the data in the systems.

Users typically identify data in the data processing system
by giving the data some form ofname. For example, a typical
operating system (OS) on a computer provides a file system in
which data items are named by alphanumeric identifiers. Pro-
grams typically identify data in the data processing system
using a location or address. For example, a program may
identify a record in a file or database by using a record number
which serves to locate that record.

In all but the most primitive operating systems, users and
programs are able to create and use collections ofnamed data
items, these collections themselves being named by identifi-
ers. These named collections can then, themselves, be made
part of other named collections. For example, an OS may
provide mechanisms to group files (data items) into directo-
ries (collections). These directories can then, themselves be

10

20

30

35

40

50

60

2

made part of other directories. A data item may thus be
identified relative to these nested directories using a sequence
of names, or a so-called pathname, which defines a path
through the directories to a particular data item (file or direc-
tory).

As another example, a database management system may
group data records (data items) into tables and then group
these tables into database files (collections). The complete
address of any data record can then be specified using the
database file name, the table name, and the record number of
that data record.

Other examples of identifying data items include: identi-
fying files in a network file system, identifying objects in an
object-oriented database, identifying images in an image
database, and identifying articles in a text database.

In general, the terms “data” and “data item” as used herein
refer to sequences of bits. Thus a data item may be the con-
tents of a file, a portion of a file, a page in memory, an object
in an object-oriented program, a digital message, a digital
scanned image, a part of a video or audio signal, or any other
entity which can be represented by a sequence of bits. The
term “data processing” herein refers to the processing of data
items, and is sometimes dependent on the type of data item
being processed. For example, a data processor for a digital
image may differ from a data processor for an audio signal.

In all of the prior data processing systems the names or
identifiers provided to identify data items (the data items
being files, directories, records in the database, objects in
object-oriented programming, locations in memory or on a
physical device, or the like) are always defined relative to a
specific context. For instance, the file identified by a particu-
lar file name can only be determined when the directory
containing the file (the context) is known. The file identified
by a pathnarne can be determined only when the file system
(context) is known. Similarly, the addresses in a process
address space, the keys in a database table, or domain names
on a global computer network such as the Internet are mean-
ingful only because they are specified relative to a context.

In prior art systems for identifying data items there is no
direct relationship between the data names and the data item.
The same data name in two different contexts may refer to
different data items, and two different data names in the same

context may refer to the same data item.
In addition, because there is no correlation between a data

name and the data it refers to, there is no a priori way to
confirm that a given data item is in fact the one named by a
data name. For instance, in a DP system, if one processor
requests that another processor deliver a data item with a
given data name, the requesting processor carmot, in general,
verify that the data delivered is the correct data (given only the
name). Therefore it may require further processing, typically
on the part of the requester, to verify that the data item it has
obtained is, in fact, the item it requested.

A common operation in a DP system is adding a new data
item to the system. When a new data item is added to the
system, a name can be assigned to it only by updating the
context in which names are defined. Thus such systems
require a centralized mechanism for the management of
names. Such a mechanism is required even in a multi-pro-
cessing system when data items are created and identified at
separate processors in distinct locations, and in which there is
no other need for communication when data items are added.

In many data processing systems or environments, data
items are transferred between different locations in the sys-
tem. These locations may be processors in the data processing
system, storage devices, memory, or the like. For example,
one processor may obtain a data item from another processor

GOOG-1001-Page 39 of 61

GOOG-1001-Page 40 of 61

US 7,802,310 B2

3

or from an external storage device, such as a floppy disk, and
may incorporate that data item into its system (using the name
provided with that data item).

However, when a processor (or some location) obtains a
data item from another location in the DP system, it is pos-
sible that this obtained data item is already present in the
system (either at the location ofthe processor or at some other
location accessible by the processor) and therefore a dupli-
cate of the data item is created. This situation is common in a

network data processing environment where proprietary soft-
ware products are installed from floppy disks onto several
processors sharing a common file server. In these systems, it
is often the case that the same product will be installed on
several systems, so that several copies of each file will reside
on the common file server.

In some data processing systems in which several proces-
sors are connected in a network, one system is designated as
a cache server to maintain master copies of data items, and
other systems are designated as cache clients to copy local
copies of the master data items into a local cache on an
as-needed basis. Before using a cached item, a cache client
must either reload the cached item, be informed ofchanges to
the cached item, or confirm that the master item correspond-
ing to the cached item has not changed. In other words, a
cache client must synchronize its data items with those on the
cache server. This synchronization may involve reloading
data items onto the cache client. The need to keep the cache
synchronized or reload it adds significant overhead to existing
caching mechanisms.

In view of the above and other problems with prior art
systems, it is therefore desirable to have a mechanism which
allows each processor in a multiprocessor system to deter-
mine a common and substantially unique identifier for a data
item, using only the data in the data item and not relying on
any sort of context.

It is further desirable to have a mechanism for reducing
multiple copies of data items in a data processing system and
to have a mechanism which enables the identification ofiden-

tical data items so as to reduce multiple copies. It is further
desirable to determine whether two instances of a data item

are in fact the same data item, and to perform various other
systems’ functions and applications on data items without
relying on any context information or properties of the data
item.

It is also desirable to provide such a mechanism in such a
way as to make it transparent to users of the data processing
system, and it is desirable that a single mechanism be used to
address each of the problems described above.

SUMMARY OF THE INVENTION

This invention provides, in a data processing system, a
method and apparatus for identifying a data item in the sys-
tem, where the identity of the data item depends on all of the
data in the data item and only on the data in the data item. Thus
the identity of a data item is independent of its name, origin,
location, address, or other information not derivable directly
from the data, and depends only on the data itself.

This invention further provides an apparatus and a method
for determining whether a particular data item is present in the
system or at a location in the system, by examining only the
data identities of a plurality of data items.

Using the method or apparatus ofthe present invention, the
efficiency and integrity of a data processing system can be
improved. The present invention improves the design and
operation of a data storage system, file system, relational
database, object-oriented database, or the like that stores a

20

30

40

50

4

plurality of data items, by making possible or improving the
design and operation of at least some or all of the following
features:

the system stores at most one copy of any data item at a
given location, even when multiple data names in the system
refer to the same contents;

the system avoids copying data from source to destination
locations when the destination locations already have the
data;

the system provides transparent access to any data item by
reference only to its identity and independent of its present
location, whether it be local, remote, or ofiline;

the system caches data items from a server, so that only the
most recently accessed data items need be retained;

when the system is being used to cache data items, prob-
lems of maintaining cache consistency are avoided;

the system maintains a desired level ofredundancy of data
items in a network of servers, to protect against failure by
ensuring that multiple copies of the data items are present at
different locations in the system;

the system automatically archives data items as they are
created or modified;

the system provides the size, age, and location ofgroups of
data items in order to decide whether they can be safely
removed from a local file system;

the system can efiiciently record and preserve any collec-
tion of data items;

the system can efficiently make a copy of any collection of
data items, to support a version control mechanism for groups
of the data items;

the system can publish data items, allowing other, possibly
anonymous, systems in a network to gain access to the data
items and to rely on the availability of the data items;

the system can maintain a local inventory of all the data
items located on a given removable medium, such as a dis-
kette or CD-ROM, the inventory is independent of other
properties of the data items such as their name, location, and
date of creation;

the system allows closely related sets of data items, such as
matching or corresponding directories on disconnected com-
puters, to be periodically resynchro11ized with one another;

the system can verify that data retrieved from another loca-
tion is the desired or requested data, using only the data
identifier used to retrieve the data;

the system can prove possession of specific data items by
content without disclosing the content of the data items, for
purposes of later legal verification and to provide anonymity;

the system tracks possession of specific data items accord-
ing to content by owner, independent of the name, date, or
other properties of the data item, and tracks the uses of spe-
cific data items and files by content for accounting purposes.

Other objects, features, and characteristics of the present
invention as well as the methods ofoperation and functions of
the related elements ofstructure, and the combination ofparts
and economies of manufacture, will become more apparent
upon consideration of the following description and the
appended claims with reference to the accompanying draw-
ings, all of which form a part of this specification.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1(a) and 1(b) depict a typical data processing system
in which a preferred embodiment of the present invention
operates;

FIG. 2 depicts a hierarchy of data items stored at any
location in such a data processing system;

GOOG-1001-Page 40 of 61

GOOG-1001-Page 41 of 61

US 7,802,310 B2

5

FIGS. 3-9 depict data structures used to implement an
embodiment of the present invention; and

FIGS. 10(a)-28 are flow charts depicting operation ofvari-
ous aspects of the present invention.

DETAILED DESCRIPTION OF THE PRESENTLY
PREFERRED EXEMPLARY EMBODIMENTS

An embodiment of the present invention is now described
with reference to a typical data processing system 100, which,
with reference to FIGS. 1(a) and 1(b), includes one or more
processors (or computers) 102 and various storage devices
104 connected in some way, for example by a bus 106.

Each processor 102 includes a CPU 108, a memory 110
and one or more local storage devices 112. The CPU 108,
memory 110, and local storage device 112 may be internally
connected, for example by a bus 1 14. Each processor 1 02 may
also include other devices (not shown), such as a keyboard, a
display, a printer, and the like.

In a data processing system 100, wherein more than one
processor 102 is used, that is, in a multiprocessor system, the
processors may be in one of various relationships. For
example, two processors 102 may be in a client/server, client/
client, or a server/server relationship. These inter-processor
relationships may be dynamic, changing depending on par-
ticular situations and functions. Thus, a particular processor
102 may change its relationship to other processors as
needed, essentially setting up a peer-to-peer relationship with
other processors. In a peer-to-peer relationship, sometimes a
particular processor 102 acts as a client processor, whereas at
other times the same processor acts as a server processor. In
other words, there is no hierarchy imposed on or required of
processors 102.

In a multiprocessor system, the processors 102 may be
homogeneous or heterogeneous. Further, in a multiprocessor
data processing system 100, some or all ofthe processors 102
may be disconnected from the network of processors for
periods oftime. Such disconnection may be part ofthe normal
operation of the system 100 or it may be because a particular
processor 102 is in need of repair.

Within a data processing system 100, the data may be
organized to form a hierarchy of data storage elements,
wherein lower level data storage elements are combined to
form higher level elements. This hierarchy can consist of, for
example, processors, file systems, regions, directories, data
files, segments, and the like. For example, with reference to
FIG. 2, the data items on a particular processor 102 may be
organized or structured as a file system 116 which comprises
regions 117, each ofwhich comprises directories 118, each of
which can contain other directories 118 or files 120. Each file

120 being made up of one or more data segments 122.
In a typical data processing system, some or all of these

elements can be named by users given certain implementation
specific naming conventions, the name (or pathname) of an
element being relative to a context. In the context of a data
processing system 100, a pathname is fully specified by a
processor name, a filesystem name, a sequence of zero or
more directory names identifying nested directories, and a
final file name. (Usually the lowest level elements, in this case
segments 122, carmot be named by users.)

In other words, a file system 116 is a collection of directo-
ries 118. A directory 118 is a collection ofnamed files 120—
both data files 120 and other directory files 118. A file 120 is
a named data item which is either a data file (which may be
simple or compound) or a directory file 118. A simple file 120
consists of a single data segment 122. A compound file 120
consists of a sequence of data segments 122. A data segment

20

30

40

50

60

6

122 is a fixed sequence ofbytes.An important property ofany
data segment is its size, the number of bytes in the sequence.

A single processor 102 may access one or more file systems
116, and a single storage device 104 may contain one or more
file systems 116, orportions ofa file system 116. For instance,
a file system 116 may span several storage devices 104.

In order to implement controls in a file system, file system
116 may be divided into distinct regions, where each region is
a unit ofmanagement and control. A region consists ofa given
directory 118 and is identified by the pathname (user defined)
of the directory.

In the following, the term “location”, with respect to a data
processing system 100, refers to any of a particular processor
102 in the system, a memory of a particular processor, a
storage device, a removable storage medium (such as a floppy
disk or compact disk), or any other physical location in the
system. The term “local” with respect to a particular proces-
sor 102 refers to the memory and storage devices of that
particular processor.

In the following, the terms “True Name”, “data identity”
and “data identifier” refer to the substantially unique data
identifier for a particular data item. The term “True File”
refers to the actual file, segment, or data item identified by a
True Name.

A file system for a data processing system 100 is now
described which is intended to work with an existing operat-
ing system by augmenting some ofthe operating system’ s file
management system codes. The embodiment provided relies
on the standard file management primitives for actually stor-
ing to and retrieving data items from disk, but uses the mecha-
nisms of the present invention to reference and access those
data items.

The processes and mechanisms (services) provided in this
embodiment are grouped into the following categories: primi-
tive mechanisms, operating system mechanisms, remote
mechanisms, background mechanisms, and extended mecha-
nisms.

Primitive mechanisms provide fundamental capabilities
used to support other mechanisms. The following primitive
mechanisms are described:

1. Calculate True Name;
.Assimilate Data Item;
. New True File;
. Get True Name from Path;
. Link path to True Name;
. Realize True File from Location;
. Locate Remote File;
. Make True File Local;
. Create Scratch File;

10. Freeze Directory;
1 1. Expand Frozen Directory;
12. Delete True File;
13. Process Audit File Entry;
14. Begin Grooming;
15. Select For Removal; and
16. End Grooming.
Operating system mechanisms provide typical familiar file

system mechanisms, while maintaining the data structures
required to offer the mechanisms of the, present invention.
Operating system mechanisms are designed to augment exist-
ing operating systems, and in this way to make the present
invention compatible with, and generally transparent to,
existing applications. The following operating system
mechanisms are described:

1. Open File;
2. Close File;
3. Read File;

\O0O\]O‘\UI-l>U3l\.)

GOOG-1001-Page 41 of 61

GOOG-1001-Page 42 of 61

US 7,802,310 B2

7

4. Write File;

5. Delete File or Directory;
6. Copy File or Directory;
7. Move File or Directory;
8. Get File Status; and

9. Get Files in Directory.
Remote mechanisms are used by the operating system in

responding to requests from other processors. These mecha-
nisms enable the capabilities of the present invention in a
peer-to-peer network mode of operation. The following
remote mechanisms are described:

1. Locate True File;
2. Reserve True File;

3. Request True File;
4. Retire True File;
5. Cancel Reservation;

6. Acquire True File;
7. Lock Cache;

8. Update Cache; and
9. Check Expiration Date.
Background mechanisms are intended to run occasionally

and at a low priority. These provide automated management
capabilities with respect to the present invention. The follow-
ing background mechanisms are described:

1. Mirror True File;

2. Groom Region;
3. Check for Expired Links; and
4. Verify Region; and
5. Groom Source List.

Extended mechanisms run within application programs
over the operating system. These mechanisms provide solu-
tions to specific problems and applications. The following
extended mechamsms are described:

1. Inventory Existing Directory;
2. Inventory Removable, Read-only Files;
3. Synchronize directories;
4. Publish Region;
5. Retire Directory;
6. Realize Directory at location;
7. Verify True File;
8. Track for accounting purposes; and

9. Track for licensing purposes.
The file system herein described maintains sufiicient infor-

mation to provide a variety of mechanisms not ordinarily
offered by an operating system, some of which are listed and
described here. Various processing performed by this
embodiment ofthe present invention will now be described in
greater detail.

In some embodiments, some files 120 in a data processing
system 100 do not have True Names because they have been
recently received or created or modified, and thus their True
Names have not yet been computed. A file that does not yet
have a True Name is called a scratch file. The process of
assigning a True Name to a file is referred to as assimilation,
and is described later. Note that a scratch file may have a user
provided name.

Some ofthe processing performed by the present invention
can take place in a background mode or on a delayed or
as-needed basis. This background processing is used to deter-
mine information that is not immediately required by the
system or which may never be required. As an example, in
some cases a scratch file is being changed at a rate greater than
the rate at which it is useful to determine its True Name. In

these cases, determining the True Name of the file can be
postponed or performed in the background.

20

30

40

50

55

60

65

8
Data Structures

The following data structures, stored in memory 110 ofone
of more processors 102 are used to implement the mecha-
nisms described herein. The data structures can be local to

each processor 102 of the system 100, or they can reside on
only some of the processors 102.

The data structures described are assumed to reside on

individual peer processors 102 in the data processing system
100. However, they can also be shared by placing them on a
remote, shared file server (for instance, in a local area network
of machines). In order to accommodate sharing data struc-
tures, it is necessary that the processors accessing the shared
database use the appropriate locking techniques to ensure that
changes to the shared database do not interfere with one
another but are appropriately serialized. These locking tech-
niques are well understood by ordinarily skilled programmers
of distributed applications.

It is sometimes desirable to allow some regions to be local
to a particular processor 102 and other regions to be shared
among processors 102. (Recall that a region is a unit of file
system management and control consisting of a given direc-
tory identified by the pathname ofthe directory.) In the case of
local and shared regions, there would be both local and shared
versions of each data structure. Simple changes to the pro-
cesses described below must be made to ensure that appro-
priate data structures are selected for a given operation.

The local directory extensions (LDE) table 124 is a data
structure which provides information about files 120 and
directories 118 iii the data processing system 100. The local
directory extensions table 124 is indexed by a pathname or
contextual name (that is, a user provided name) of a file and
includes the True Name for most files. The information in

local directory extension table 124 is in addition to that pro-
vided by the native file system of the operating system.

The True File registry (TFR) 126 is a data store for listing
actual data items which have True Names, both files 120 and
segments 122. When such data items occur in the True File
registry 126 they are known as True Files. True Files are
identified in True File registry 126 by their True Names or
identities. The table True File registry 126 also stores loca-
tion, dependency, and migration information about True
Files.

The region table (RT) 128 defines areas in the network
storage which are to be managed separately. Region table 128
defines the rules for access to and migration of files 120
among various regions with the local file system 116 and
remote peer file systems.

The source table (ST) 130 is a list of the sources of True
Files other than the current True File registry 126. The source
table 130 includes rcmovablc volumes and remote proccs-sors.

The audit file (AF) 132 is a list of records indicating
changes to be made in local or remote files, these changes to
be processed in background.

The accounting log (AL) 134 is a log of file transactions
used to create accounting information in a manner which
preserves the identity of files being tracked independent of
their name or location.

The license table (LT) 136 is a table identifying files, which
may only be used by licensed users, in a manner independent
of their name or location, and the users licensed to use them.

Detailed Descriptions of the Data Structures

The following table summarizes the fields ofan local direc-
tory extensions table entry, as illustrated by record 138 in
FIG. 3.

GOOG-1001-Page 42 of 61

GOOG-1001-Page 43 of 61

US 7,802,310 B2

Field Description

Region ID identifies the region in which this file is contained.
Pathname 1e user provided name or contextual name ofthe file

or directory, relative to the region in which itoccurs.

True Name tie computed True Name or identity of the file or
irectory. This True Name is not always up to date,

and it is set to a special value when a file is
modified and is later recomputed in the background.

Type indicates whether the file is a data file or a
irectory.

Scratch File 1e physical location of the file in the file system,
ID when no True Name has been calculated for the file.

As noted above, such a file is called a scratch file.
Time of last 1e last access time to this file. Ifthis file is a
access irectory, this is the last access time to any file

in the directory.
Time of last 1e time of last change ofthis file. Ifthis file
modification is a directory, this is the last modification time

of any file in the directory.
Safe flag indicates that this file (and, if this file is a

irectory, all of its subordinate files) have been
backed up on some other system, and it is therefore
safe to remove them.

Lock flag indicates whether a file is locked, that is, it is
being modified by the local processor or a remote
processor. Only one processor may modify a file at
a time.

Size the full size of this directory (including all
subordinate files), if all files in it were fully
expanded and duplicated. For a file that is not a
directory this is the size ofthe actual True File.

Owner the identity of the user who owns this file, for
accounting and license tracking purposes.

Each record of the True File registry 126 has the fields
shown in the True File registry record 140 in FIG. 4. The True
File registry 126 consists of the database described in the
table below as well as the actual True Files identified by the
True File IDs below.

Field Description

True Name computed True Name or identity of the file.
Compressed compressed version of the True File may be stored
File ID instead of, or in addition to, an uncompressed

version. This field provides the identity of the
actual representation of the compressed version
of the file.

Grooming tentative count of how many references have been
delete count selected for deletion during a grooming operation.
Time of last most recent date and time the content of this file
access was accessed.
Expiration date and time after which this file may be deleted

by this server.
Dependent processor IDs of other processors which contain
processors references to this True File.
Source IDs source ID(s) of zero or more sources from which

this file or data item may be retrieved.
True File ID identity or disk location of the actual physical

representation of the file or file segment. It
is sufficient to use a filename in the registration
directory of the underlying operating system. The
True File ID is absent ifthe actual file is not
currently present at the current location.

Use count number of other records on this processor which
identify this True File.

A region table 128, specified by a directory pathname,
records storage policies which allow files in the file system to
be stored, accessed and migrated in different ways. Storage
policies are programmed in a configurable way using a set of
rules described below.

20

30

35

40

60

65

10

Each region table record 142 of region table 128 includes
the fields described in the following table (with reference to
FIG. 5):

Field Description

Region ID internally used identifier for this region.
Region file file system on the local processor of which this
system region is a part.
Region a pathname relative to the region file system
pathname which defines the location of this region. The

region consists of all files and directories
subordinate to this pathname, except those in a
region subordinate to this region.

Mirror zero or more identifiers of processors which are
processor(s) o keep mirror or archival copies of all files in

ie current region. Multiple mirror processors
can be defined to form a mirror group.

Mirror number of copies of each file in this region
duplication iat should be retained in a mirror group.
count

Region specifies whether this region is local to a
status single processor 102, shared by several processors

02 (if, for instance, it resides on a shared file
server), or managed by a remote processor.

Policy 1e migration policy to apply to this region. A
single region might participate in several
3olicies. The policies are as follows (parameters
in brackets are specified as part of the policy):
region is a cached version from [processor ID];
region is a member of a mirror set defined by
processor ID].

region is to be archived on [processor ID].
region is to be backed up locally, by placing
new copies in [region ID].
region is read only and may not be changed.
region is published and expires on [date].
Files in this region should be compressed.

A source table 130 identifies a source location for True

Files. The source table 130 is also used to identify client
processors making reservations on the current processor.
Each source record 144 of the source table 130 includes the

fields summarized in the following table, with reference to
FIG. 6:

Field

source ID

source type

source

rights

source

availability

source
location

Description

internal identifier used to identify a
particular source.
type ofsource location:
Removable Storage Volume
Local Region
Cache Server
Mirror Group Server
Cooperative Server
Publishing Server
Client
includes information about the rights of this
processor, such as whether it can ask the local
processor to store data items for it.
measurement of the bandwidth, cost, and
reliability of the connection to this source
of True Files. The availability is used to
select from among several possible sources.
information on how the local processor is to
access the source. This may be, for example,
the name of a removable storage volume, or
the processor ID and region path ofa region
on a remote processor.

The audit file 132 is a table ofevents ordered by timestamp,
each record 146 in audit file 132 including the fields summa-
rized in the following table (with reference to FIG. 7):

GOOG-1001-Page 43 of 61

GOOG-1001-Page 44 of 61

US 7,802,310 B2

1 1

Field Description

Original path of the file in question.
Name
Operation whether the file was created, read, written,

copied or deleted.
Type specifies whether the source is a file or a

directory.
Processor ID of the remote processor generating this
ID event (if not local).
Timestamp time and date file was closed (required only

for accessed/modified files).
Pathname Name of the file (required only for rename).
True Na.me computed True Name of the file. This is used

by remote systems to mirror changes to the
directory and is filled in during background
processing.

Each record 148 ofthe accounting log 134 records an event
which may later be used to provide information for billing
mechanisms. Each accounting log entry record 148 includes
at least the information summarized in the following table,
with reference to FIG. 8:

Field Description

date of entry
type of entry
True Name
OWHCI

date and time ofthis log entry.
Entry types include create file, delete file, and transmit file.
True Name of data item in question.
identity of the user responsible for this action.

Each record 150 of the license table 136 records a relation-

ship between a licensable data item and the user licensed to
have access to it. Each license table record 150 includes the

information summarized in the following table, with refer-
ence to FIG. 9:

Field Description
True Name
licensee

True Name of a data item subject to license validation.
identity of a user authorized to have access to this object.

Various other data structures are employed on some or all
ofthe processors 102 in the data processing system 100. Each
processor 102 has a global freeze lock (GFL) 152 (FIG. 1),
which is used to prevent synchronization errors when a direc-
tory is frozen or copied. Any processor 102 may include a
special archive directory (SAD) 154 i11to which directories
may be copied for the purposes of archival. Any processor
102 may include a special media directory (SMD) 156, into
which the directories ofremovable volumes are stored to form

a media inventory. Each processor has a grooming lock 158,
which is set during a grooming operation. During this period
the grooming delete count of True File registry entries 140 is
active, and no True Files should be deleted until grooming is
complete. While grooming is in effect, grooming information
includes a table ofpathnames selected for deletion, and keeps
track of the amount of space that would be freed if all of the
files were deleted.

Primitive Mechanisms

The first of the mechanisms provided by the present inven-
tion, primitive mechanisms, are now described. The mecha-
nisms described here depend on underlying data management
mechanisms to create, copy, read, and delete data items in the

20

30

50

60

12

True File registry 126, as identified by a True File ID. This
support may be provided by an underlying operating system
or disk storage manager.

The following primitive mechanisms are described:
1. Calculate True Name;
.Assimilate Data Item;
. New True File;
. Get True Name from Path;
. Link Path to True Name;
. Realize True File from Location;
. Locate Remote File;
. Make True File Local;
. Create Scratch File;

10. Freeze Directory;
ll. Expand Frozen Directory;
12. Delete True File;
13. Process Audit File Entry;
14. Begin Grooming;
15. Select For Removal; and
16. End Grooming.

\O0O\]O‘\UI-l>U3l\.)

1. Calculate True Name

A True Name is computed using a function, MD, which
reduces a data block B ofarbitrary length to a relatively small,
fixed size identifier, the True Name ofthe data block, such that
the True Name of the data block is virtually guaranteed to
represent the data block B and only data block B.

The function MD must have the following properties:
1. The domain of the function MD is the set of all data

items. The range of the function MD is the set of True
Names.

2. The function MD must take a data item of arbitrary
length and reduce it to an integer value in the range 0 to
N—l , where N is the cardinality ofthe set ofTrue Names.
That is, for an arbitrary length data block B, 0§MD(B)
<N.

3. The results of MD(B) must be evenly and randomly
distributed over the range ofN, in such a way that simple
or regular changes to B are virtually guaranteed to pro-
duce a different value of MD(B).

4. It must be computationally difficult to find a different
value B‘ such that MD(B):MD(B').

5. The function MD(B) must be efiiciently computed.
A family of functions with the above properties are the

so-called message digest functions, which are used in digital
security systems as techniques for authentification of data.
These functions (or algorithms) include MD4, MD5, and
SHA.

In the presently preferred embodiments, either MD5 or
SHA is employed as the basis for the computation of True
Names. Whichever of these two message digest functions is
employed, that same function must be employed on a system-
wide basis.

It is impossible to define a function having a unique output
for each possible input when the number of elements in the
range of the function is smaller than the number of elements
in its domain. However, a crucial observation is that the actual
data items that will be encountered in the operation of any
system embodying this invention form a very sparse subset of
all the possible inputs.

A colliding set of data items is defined as a set wherein, for
one or more pairs x and y in the set, MD(x):MD(y). Since a
function conforming to the requirements for MD must evenly
and randomly distribute its outputs, it is possible, by making
the range of the function large enough, to make the probabil-
ity arbitrarily small that actual inputs encountered in the
operation of an embodiment of this invention will form a
colliding set.

To roughly quantify the probability of a collision, assume
that there are no more than 230 storage devices in the world,

GOOG-1001-Page 44 of 61

GOOG-1001-Page 45 of 61

US 7,802,310 B2

13

and that each storage device has an average of at most 220
different data items. Then there are at most 250 data items in

the world. If the outputs of MD range between 0 and 2128, it
can be demonstrated that the probability of a collision is
approximately 1 in 229. Details on the derivation of these
probability values are found, for example, in P. Flajolet andA.
M. Odlyzko, “Random Mapping Statistics,” Lecture Notes in
Computer Science 434: Advances in Cryptology—Eurocrypt
'89 Proceedings, Springer-Verlag, pp. 329-354.

Note that for some less preferred embodiments of the
present invention, lower probabilities of uniqueness may be
acceptable, depending on the types of applications and
mechanisms used. In some embodiments it may also be useful
to have more than one level of True Names, with some of the
True Names having different degrees ofuniqueness. If such a
scheme is implemented, it is necessary to ensure that less
unique True. Names are not propagated in the system.

While the invention is described herein using only the True
Name of a data item as the identifier for the data item, other
preferred embodiments use tagged, typed, categorized or
classified data items and use a combination of both the True

Name and the tag, type, category or class of the data item as
an identifier. Examples of such categorizations are files,
directories, and segments; executable files and data files, and
the like. Examples of classes are classes of objects in an
object-oriented system. In such a system, a lower degree of
True Name uniqueness is acceptable over the entire universe
ofdata items, as long as sufiicient uniqueness. is provided per
category of data items. This is because the tags provide an
additional level of uniqueness.

A mechanism for calculating a True Name given a data
item is now described, with reference to FIGS. 10(a) and
10(b).

A simple data item is a data item whose size is less than a
particular given size (which must be defined in eachparticular
implementation of the invention). To determine the True
Name ofa simple data item, with reference to FIG. 10(a), first
compute the MD function (described above) on the given
simple data item (Step S212). Then append to the resulting
128 bits, the byte length modulo 32 of the data item (Step
S214). The resulting 160-bit value is the True Name of the
simple data item.

A compound data item is one whose size is greater than the
particular given size of a simple data item. To determine the
True Name of an arbitrary (simple or compound) data item,
with reference to FIG. 10(b), first determine ifthe data item is
a simple or a compound data item (Step S216). Ifthe data item
is a simple data item, then compute its True Name in step
S218 (using steps S212 a11d S214 described above), otherwise
partition the data item into segments (Step S220) and assimi-
late each segment (Step S222) (the primitive mechanism,
Assin1ilate a Data Item, is described below), computing the
True Name of the segment. Then create an indirect block
consisting ofthe computed segment True Names (Step S224).
An indirect block is a data item which consists of the

sequence ofTrue Names of the segments. Then, in step S226,
assimilate the indirect block and compute its True Name.
Finally, replace the final thirty-two (32) bits of the resulting
True Name (that is, the length of the indirect block) by the
length modulo 32 of the compound data item (Step S228).
The result is the True Name of the compound data item.

Note that the compound data item may be so large that the
indirect block of segment True Names is itself a compound
data item. In this case the mechanism is invoked recursively
until only simple data items are being processed.

Both the use of segments and the attachment of a length to
the True Name are not strictly required in a system using the
present invention, but are currently considered desirable fea-
tures in the preferred embodiment.

20

25

30

40

50

60

14
2. Assimilate Data Item

A mechanism for assimilating a data item (scratch file or
segment) into a file system, given the scratch file ID of the
data item, is now described with reference to FIG. 11. The
purpose of this mechanism is to add a given data item to the
True File registry 126. If the data item already exists in the
True File registry 126, this will be discovered and used during
this process, and the duplicate will be eliminated.

Thereby the system stores at most one copy of any data
item or file by content, even when multiple names refer to the
same content.

First, determine the True Name of the data item corre-
sponding to the given scratch File ID using the Calculate True
Name primitive mechanism (Step S230). Next, look for an
entry for the True Name in the True File registry 126 (Step
S232) and determine whether a True Name entry, record 140,
exists in the True File registry 126. Ifthe entry record includes
a corresponding True File ID or compressed File ID (Step
S237), delete the file with the scratch File ID (Step S238).
Otherwise store the given True File ID in the entry record
(step S239).

If it is determined (in step S232) that no True Name entry
exists in the True File registry 126, then, in Step S236, create
a new entry in the True File registry 126 for this True Name.
Set the True Name of the entry to the calculated True Name,
set the use count for the new entry to one, store the given True
File ID in the entry and set the other fields of the entry as
appropriate.

Because this procedure may take some time to compute, it
is intended to run in background after a file has ceased to
change. In the meantime, the file is considered an unassimi-
lated scratch file.

3. New True File

The New True File process is invoked when processing the
audit file 132, some time after a True File l1as been assimilated
(using the Assimilate Data Item primitive mechanism). Given
a local directory extensions table entry record 138 in the local
directory extensions table 124, the New True File process can
provide the following steps (with reference to FIG. 12),
depending on how the local processor is configured:

First, in step S238, examine the local directory extensions
table entry record 138 to determine whether the file is locked
by a cache server. If the file is locked, then add the ID of the
cache server to the dependent processor list of the True File
registry table 126, and then send a message to the cache server
to update the cache of the current processor using the Update
Cache remote mechanism (Step 242).

If desired, compress the True File (Step S246), and, if
desired, mirror the True File using the Mirror True File back-
ground mechanism (Step S248).

4. Get True Name from Path

The True Name of a filc can bc used to idcntify a filc by
contents, to confirm that a file matches its original contents, or
to compare two files. The mechanism to get a True Name
given the pathname of a file is now described with reference
to FIG. 13.

First, search the local directory extensions table 124 for the
entry record 138 with the given pathname (Step S250). If the
pathname is not found, this process fails and no True Name
corresponding to the given pathname exists. Next, detennine
whether the local directory extensions table entry record 138
includes aTrue Name (Step S252), and if so, the mechanism’s
task is complete. Otherwise, determine whether the local
directory extensions table entry record 138 identifies a direc-
tory (Step S254), and if so, freeze the directory (Step S256)
(the primitive mechanism Freeze Directory is described
below).

Otherwise, in step S258, assimilate the file (using the
Assimilate Data Item primitive mechanism) defined by the

GOOG-1001-Page 45 of 61

GOOG-1001-Page 46 of 61

US 7,802,310 B2

15

File ID field to generate its True Name and store its True
Name in the local directory extensions entry record. Then
return the True Name identified by the local directory exten-
sions table 124.

5. Link Path to True Name

The mechanism to link a path to a True Name provides a
way of creating a new directory entry record identifying an
existing, assimilated file. This basic process may be used to
copy, move, and rename files without a need to copy their
contents. The mechanism to link a path to a True Name is now
described with reference to FIG. 14.

First, if desired, confirm that the True Na1ne exists locally
by searching for it in the True Name registry or local directory
extensions table 135 (Step S260). Most uses of this mecha-
nism will require this form ofvalidation. Next, search for the
path in the local directory extensions table 135 (Step S262).
Confirm that the directory containing the file named in the
path already exists (Step S264). Ifthe named file itself exists,
delete the File using the Delete True File operating system
mechanism (see below) (Step S268).

Then, create an entry record in the local directory exten-
sions with the specified path (Step S270) and update the entry
record and other data structures as follows: fill in the True

Name field of the entry with the specified True Name; incre-
ment the use count for the True File registry entry record 140
of the corresponding True Name; note whether the entry is a
directory by reading the True File to see if it contains a tag
(magic number) indicating that it represents a frozen direc-
tory (see also the description of the Freeze Directory primi-
tive mechanism regarding the tag); and compute and set the
other fields of the local directory extensions appropriately.
For instance, search the region table 128 to identify the region
of the path, and set the time of last access and time of last
modification to the current time.

6. Realize True File from Location

This mechanism is used to try to make a local copy of a
True File, given its True Name and the name of a source
location (processor or media) that may contain the True File.
This mechanism is now described with reference to FIG. 15.

First, in step S272, determine whether the location speci-
fied is a processor. If it is determined that the location speci-
fied is a processor, then send a Request True File message
(using the Request True File remote mechanism) to the
remote processor and wait for a response (Step S274). If a
negative response is received or no response is received after
a timeout period, this mechanism fails. If a positive response
is received, enter the True File returned in the True File
registry 126 (Step S276). (Ifthe file received was compressed,
enter the True File ID in the compressed File ID field.)

If, on the other hand, it is determined in step S272 that the
location specified is not a processor, then, if necessary,
request the user or operator to mount the indicated volume
(Step S278). Then (Step S280) find the indicated file on the
given volume and assimilate the file using the Assimilate Data
Item primitive mechanism. If the volume does not contain a
True File registry 126, search the media inventory to find the
path ofthe file on the volume. Ifno such file can be found, this
mechanism fails.

At this point, whether or not the location is determined (in
step S272) to be a processor, ifdesired, verify the True File (in
step S282).
7. Locate Remote File

This mechanism allows a processor to locate a file or data
item from a remote source of True Files, when a specific
source is unknown or unavailable. A client processor system
may ask one of several or many sources whether it can supply
a data object with a given True Name. The steps to perform
this mechanism are as follows (with reference to FIGS. 16(a)
and 16(b)).

20

30

40

50

60

16

The client processor 102 uses the source table 145 to select
one or more source processors (Step S284). If no source
processor can be found, the mechanism fails. Next, the client
processor 102 broadcasts to the selected sources a request to
locate the file with the given True Name using the Locate True
File remote mechanism (Step S286). The request to locate
may be augmented by asking to propagate this request to
distant servers. The client processor then waits for one or
more servers to respond positively (Step S288). After all
servers respond negatively, or after a timeout period with no
positive response, the mechanism repeats selection (Step
S284) to attempt to identify alternative sources. If any
selected source processor responds, its processor ID is the
result ofthis mechanism. Store the processor ID in the source
field of the True File registry entry record 140 of the given
True Name (Step S290).

If the source location of the True Name is a different

processor or medium than the destination (Step S290a), per-
form the following steps:

(i) Look up the True File registry entry record 140 for the
corresponding True Name, and add the source location
ID to the list of sources for the True Name (Step S290b);
and

(ii) If the source is a publishing system, determine the
expiration date on the publishing system for the True
Name and add that to the list of sources. If the source is

not a publishing system, send a message to reserve the
True File on the source processor (Step S290c).

Source selection in step S284 may be based on optimiza-
tions involving general availability ofthe source, access time,
bandwidth, and transmission cost, and ignoring previously
selected processors which did not respond in step S288.

8. Make True File Local
This mechanism is used when a True Name is known and a

locally accessible copy of the corresponding file or data item
is required. This mechanism makes it possible to actually read
the data in a True File. The mechanism takes a True Name and

returns when there is a local, accessible copy of the True File
in the True File registry 126. This mechanism is described
here with reference to the flow chart ofFIGS. 17(a) and 17(b).

First, look in the True File registry 126 for a True File entry
record 140 for the corresponding True Name (Step S292). If
no such entry is found this mechanism fails. Ifthere is already
a True File ID for the entry (Step S294), this mechanism’s
task is complete. If there is a compressed file ID for the entry
(Step S296), decompress the file corresponding to the file ID
(Step S298) and store the decompressed file ID in the entry
(Step S300). This mechanism is then complete.

If there is no True File ID for the entry (Step S294) and
there is no compressed file ID for the entry (Step S296), then
continue searchi11g for the requested file. At this time it may
be necessary to notify the user that the system is searching for
the requested file.

If there are one or more source IDs, then select an order in
which to attempt to realize the source ID (Step S304). The
order may be based on optimizations involving general avail-
ability of the source, access time, bandwidth, and transmis-
sion cost. For each source in the order chosen, realize the True
File from the source location (using the Realize True File
from Location primitive mechanism), until the True File is
realized (Step S306). If it is realized, continue with step S294.
If no known source can realize the True File, use the Locate
Remote File primitive mechanism to attempt to find the True
File (Step S308). If this succeeds, realize the True File from
the identified source location and continue with step S296.
9. Create Scratch File

A scratch copy of a file is required when a file is being
created or is about to be modified. The scratch copy is stored
in the file system of the underlying operating system. The

GOOG-1001-Page 46 of 61

GOOG-1001-Page 47 of 61

US 7,802,310 B2

17

scratch copy is eventually assimilated when the audit file
record entry 146 is processed by the Process Audit File Entry
primitive mechanism. This Create Scratch File mechanism
requires a local directory extensions table entry record 138.
When it succeeds, the local directory extensions table entry
record 138 contains the scratch file ID of a scratch file that is

not contained in the True File registry 126 and that may be
modified. This mechanism is now described with reference to

FIGS. 18(a) and 18(b).
First determine whether the scratch file should be a copy of

the existing True File (Step S310). If so, continue with step
S312. Otherwise, determine whether the local directory
extensions table entry record 138 identifies an existing True
File (Step S316), and if so, delete the True File using the
Delete True File primitive mechanism (Step S318). Then
create a new, empty scratch file and store its scratch file ID in
the local directory extensions table entry record 138 (step
S320). This mechanism is then complete.

If the local directory extensions table entry record 138
identifies a scratch file ID (Step S312), then the entry already
has a scratch file, so this mechanism succeeds.

If the local directory extensions table entry record 138
identifies a True File (S316), and there is no True File ID for
the True File (S312), then make the True File local using the
Make True File Local primitive mechanism (Step S322). If
there is still no True File ID, this mechanism fails.

There is now a local True File for this file. If the use count

in the corresponding True File registry entry record 140 is one
(Step S326), save the True File ID in the scratch file ID ofthe
local directory extensions table entry record 138, and remove
the True File registry entry record 140 (Step S328). (This step
makes the True File into a scratch file.) This mechanism’ s task
is complete.

Otherwise, if the use count in the corresponding True File
registry entry record 140 is not one (in step S326), copy the
file with the given True File ID to a new scratch file, using the
Read File OS mechanism and store its file ID in the local

directory extensions table entry record 138 (Step S330), and
reduce the use count for the True File by one. If there is
insufficient space to make a copy, this mechanism fails.

10. Freeze Directory
This mechanism freezes a directory in order to calculate its

True Name. Since the True Name of a directory is a function
of the files within the directory, they must not change during
the computation of the True Name of the directory. This
mechanism requires the pathname of a directory to freeze.
This mechanism is described with reference to FIGS. 19(a)
and 19(b).

In step S332, add one to the global freeze lock. Then search
the local directory extensions table 124 to find each subordi-
nate data file and directory of the given directory, and freeze
each subordinate directory found using the Freeze Directory
primitive mechanism (Step S334). Assimilate each unassimi-
lated data file in the directory using the Assimilate Data Item
primitive mechanism (Step S336). Then create a data item
which begins with a tag or marker (a “magic number”) being
a unique data item indicating that this data item is a frozen
directory (Step S337). Then list the file name and True Name
for each file in the current directory (Step S338). Record any
additional information required, such as the type, time of last
access and modification, and size (Step S340). Next, in step
S342, using the Assimilate Data Item primitive mechanism,
assimilate the data item created in step S338. The resulting
True Name is the True Name of the frozen directory. Finally,
subtract one from the global freeze lock (Step S344).

11. Expand Frozen Directory
This mechanism expands a frozen directory in a given

location. It requires a given pathname into which to expand

20

30

40

50

60

18

the directory, and the True Name of the directory and is
described with reference to FIG. 20.

First, in step S346, make the True File with the given True
Name local using the Make True File Local primitive mecha-
nism. Then read each directory entry in the local file created
in step S346 (Step S348). For each such directory entry, do the
following:

Create a full pathname using the given pathname and the
file name of the entry (Step S350); and

link the created path to the True Name (Step S352) using
the Link Path to True Name primitive mechanism.
12. Delete True File

This mechanism deletes a reference to a True Name. The

underlying True File is not removed from the True File reg-
istry 126 unless there are no additional references to the file.
With reference to FIG. 21, this mechanism is performed as
follows:

If the global freeze lock is on, wait until the global freeze
lock is turned off (Step S354). This prevents deleting a True
File while a directory which might refer to it is being frozen.
Next, find the True File registry entry record 140 given the
True Name (Step S356). If the reference count field of the
True File registry 126 is greater than zero, subtract one from
the reference count field (Step S358). If it is determined (in
step S360) that the reference count field of the True File
registry entry record 140 is zero, and ifthere are no dependent
systems listed in the True File registry entry record 140, then
perform the following steps:

(i) Ifthe True File is a simple data item, then delete the True
File, otherwise,

(ii) (the True File is a compound data item) for each True
Name in the data item, recursively delete the True File corre-
sponding to the True Name (Step S362).

(iii) Remove the file indicated by the True File ID and
compressed file ID from the True File registry 126, and
remove the True File registry entry record 140 (Step S364).

13. Process Audit File Entry
This mechanism performs tasks which are required to

maintain information in the local directory extensions table
124 and True File registry 126, but which can be delayed
while the processor is busy doing 1nore time-critical tasks.
Entries 142 in the audit file 132 should be processed at a
background priority as long as there are entries to be pro-
cessed. With reference to FIG. 22, the steps for processing an
entry are as follows:

Determine the operation in the entry 142 currently being
processed (Step S365). If the operation indicates that a file
was created or written (Step S366), then assimilate the file
using the Assimilate Data Item primitive mechanism (Step
S368), use the New True File primitive mechanism to do
additional desired processing (such as cache update, com-
pression, and mirroring) (Step S369), and record the newly
computed True Name for the file in the audit file record entry
(Step S370).

Otherwise, if the entry being processed indicates that a
compound data item or directory was copied (or deleted)
(Step S376), then for each component True Name in the
compound data item or directory, add (or subtract) one to the
use count of the True File registry entry record 140 corre-
sponding to the component True Name (Step S378).

In all cases, for each parent directory of the given file,
update the size, time of last access, and time of last modifi-
cation, according to the operation in the audit record (Step
S379).

Note that the audit record is not removed after processing,
but is retained for some reasonable period so that it may be
used by the Synchronize Directory extended mechanism to
allow a disconnected remote processor to update its represen-
tation of the local system.

GOOG-1001-Page 47 of 61

GOOG-1001-Page 48 of 61

US 7,802,310 B2

19

14. Begin Grooming
This mechanism makes it possible to select a set of files for

removal and determine the overall amount of space to be
recovered. With reference to FIG. 23, first verify that the
global grooming lock is currently unlocked (Step S382).
Then set the global grooming lock, set the total amount of
space freed during grooming to zero and empty the list of files
selected for deletion (Step S384). For each True File in the
True File registry 126, set the delete count to zero (Step
S386).

15. Select For Removal

This grooming mechanism tentatively selects a pathname
to allow its corresponding True File to be removed. With
reference to FIG. 24, first find the local directory extensions
table entry record 138 corresponding to the given pathname
(Step S388). Then find the True File registry entry record 140
corresponding to the True File name in the local directory
extensions table entry record 138 (Step S390). Add one to the
grooming delete count in the True File registry entry record
140 and add the pathname to a list of files selected for deletion
(Step S392). If the grooming delete count of the True File
registry entry record 140 is equal to the use count of the True
File registry entry record 140, and ifthe there are no entries in
the dependency list of the True File registry entry record 140,
then add the size of the file indicated by the True File ID and
or compressed file ID to the total amount of space freed
during grooming (Step S394).

16. End Grooming
This grooming mechanism ends the grooming phase and

removes all files selected for removal. With reference to FIG.

25, for each file in the list of files selected for deletion, delete
the file (Step S396) and then unlock the global grooming lock
(Step S398).

Operating System Mechanisms
The next ofthe mechanisms provided by the present inven-

tion, operating system mechanisms, are now described.
The following operating system mechanisms are

described:

1. Open File;
2. Close File;
3. Read File;
4. Write File;

5. Delete File or Directory;
6. Copy File or Directory;
7. Move File or Directory;
8. Get File Status; and

9. Get Files in Directory.

1. Open File
A mechanism to open a file is described with reference to

FIGS. 26(a) and 26(b). This mechanism is given as input a
pathname and the type of access required for the file (for
example, read, write, read/write, create, etc.) and produces
either the File ID ofthe file to be opened or an indication that
no file should be opened. The local directory extensions table
record 138 and region table record 142 associated with the
opened file are associated with the open file for later use in
other processing functions which refer to the file, such as
read, write, and close.

First, determine whether or not the named file exists locally
by examining the local directory extensions table 124 to
determine whether there is an entry corresponding to the
given pathname (Step S400). If it is determined that the file
name does not exist locally, then, using the access type, deter-
mine whether or not the file is being created by this opening
process (Step S402). If the file is not being created, prohibit
the open (Step S404). If the file is being created, create a

5

20

30

40

50

60

20

zero-length scratch file using an entry in local directory exten-
sions table 124 and produce the scratch file ID ofthis scratch
file as the result (Step S406).

If, on the other hand, it is determined in step S400 that the
file name does exist locally, then determine the region in
which the file is located by searching the region table 128 to
find the record 142 with the longest region path which is a
prefix of the file pathname (Step S408). This record identifies
the region of the specified file.

Next, determine using the access type, whether the file is
being opened for writing or whether it is being opened only
for reading (Step S410). Ifthe file is being opened for reading
only, then, if the file is a scratch file (Step S419), retum the
scratch File ID ofthe file (Step S424). Otherwise get the True
Name from the local directory extensions table 124 and make
a local version ofthe True File associated with the True Name

using the Make True File Local primitive mechanism, and
then return the True File ID associated with the True Name

(Step S420).
Ifthe file is not being opened for reading only (Step S410),

then, if it is determined by inspecting the region table entry
record 142 that the file is in a read-only directory (Step S416),
then prohibit the opening (Step S422).

If it is determined by inspecting the region table 128 that
the file is in a cached region (Step S423), then send a Lock
Cache message to the corresponding cache server, and wait
for a return message (Step S418). If the return message says
the file is already locked, prohibit the opening.

If the access type indicates that the file being modified is
being rewritten completely (Step S419), so that the original
data will not be required, then Delete the File using the Delete
File OS mechanism (Step S421) and perform step S406.
Otherwise, make a scratch copy of the file (Step S417) and
produce the scratch file ID ofthe scratch file as the result (Step
S424)

2. Close File

This mechanism takes as input the local directory exten-
sions table entry record 138 of an open file and the data
maintained for the open file. To close a file, add an entry to the
audit file indicating the time and operation (create, read or
write). The audit file processing (using the Process Audit File
Entry primitive mechanism) will take care of assimilating the
file and thereby updating the other records.

3. Read File

To read a file, a program must provide the offset and length
of the data to be read, and the location of a buffer into which
to copy the data read.

The file to be read from is identified by an open file descrip-
tor which includes a File ID as computed by the Open File
operating system mechanism defined above. The File ID may
identify either a scratch file or a True File (or True File
segment). If the File ID identifies a True File, it may be either
a simple or a compound True File. Reading a file is accom-
plished by the following steps:

In the case where the File ID identifies a scratch file or a

simple True File, use the read capabilities of the underlying
operating system.

In the case where the File ID identifies a compound file,
break the read operation into one or more read operations on
component segments as follows:

A. Identify the segment(s) to be read by dividing the speci-
fied file offset and length each by the fixed size of a segment
(a system dependent parameter), to determine the segment
number and number of segments that must be read.

B. For each segment number computed above, do the fol-
lowing:

i. Read the compound True File index block to detennine
the True Name of the segment to be read.

GOOG-1001-Page 48 of 61

GOOG-1001-Page 49 of 61

US 7,802,310 B2

21

ii. Use the Realize True File from Location primitive
mechanism to make the True File segment available
locally. (If that mechanism fails, the Read File mecha-
nism fails).

iii. Determine the File ID of the True File specified by the
True Name corresponding to this segment.

iv. Use the Read File mechanism (recursively) to read from
this segment into the corresponding location in the
specified buffer.

4. Write File

File writing uses the file ID and data management capa-
bilities ofthe underlying operating system. File access (Make
File Local described above) canbe deferred until the first read
or write.

5. Delete File or Directory
The process of deleting a file, for a given pathname, is

described here with reference to FIGS. 27(a) and 27(b).
First, determine the local directory extensions table entry

record 138 and region table entry record 142 for the file (Step
S422). If the file has no local directory extensions table entry
record 138 or is locked or is in a read-only region, prohibit the
deletion.

Identify the corresponding True File given the True Name
ofthe file being deleted using the True File registry 126 (Step
S424). If the file has no True Name, (Step S426) then delete
the scratch copy of the file based on its scratch file ID in the
local directory extensions table 124 (Step S427), and con-
tinue with step S428.

If the file has a True Name and the True File’s use count is

one (Step S429), then delete the True File (Step S430), and
continue with step S428.

If the file has a True Name and the True File’s use count is

greater than one, reduce its use count by one (Step S431).
Then proceed with step S428.

In Step S428, delete the local directory extensions table
entry record, and add an entry to the audit file 132 indicating
the time and the operation performed (delete).

6. Copy File or Directory
A mechanism is provided to copy a file or directory given

a source and destination processor and pathname. The Copy
File mechanism does not actually copy the data in the file,
only the True Name ofthe file. This mechanism is performed
as follows:

(A) Given the source path, get the True Name from the
path. If this step fails, the mechanism fails.

(B) Given the True Name and the destination path, link the
destination path to the True Name.

(C) If the source and destination processors have different
True File registries, find (or, if necessary, create) an entry for
the True Name in the True File registry table 126 of the
destination processor. Enter into the source ID field of this
new entry the source processor identity.

(D) Add an entry to the audit file 132 indicating the time
and operation performed (copy).

This mechanism addresses capability of the system to
avoid copying data from a source location to a destination
location when the destination already has the data. In addi-
tion, because of the ability to freeze a directory, this mecha-
nism also addresses capability of the system immediately to
make a copy of any collection of files, thereby to support an
efiicient version control mechanisms for groups of files.

7. Move File or Directory
A mechanism is described which moves (or renames) a file

from a source path to a destination path. The move operation,
like the copy operation, requires no actual transfer of data,
and is performed as follows:

(A) Copy the file from the source path to the destination
path.

20

30

40

50

60

22

(B) Ifthe source path is different from the destinationpath,
delete the source path.
8. Get File Status

This mechanism takes a file pathname and provides infor-
mation about the pathname. First the local directory exten-
sions table entry record 138 corresponding to the pathname
given is found. If no such entry exists, then this mechanism
fails, otherwise, gather information about the file and its
corresponding True File from the local directory extensions
table 124. The information can include any information
shown in the data structures, including the size, type, owner,
True Name, sources, time of last access, time of last modifi-
cation, state (local or not, assimilated or not, compressed or
not), use count, expiration date, and reservations.

9. Get Files in Directory
This mechanism enumerates the files in a directory. It is

used (implicitly) whenever it is necessary to detennine
whether a file exists (is present) in a directory. For instance, it
is implicitly used in the Open File, Delete File, Copy File or
Directory, and Move File operating system mechanisms,
because the files operated on are referred to by pathnames
containing directory names. The mechanism works as fol-
lows:

The local directory extensions table 124 is searched for an
entry 138 with the given directory pathname. Ifno such entry
is found, or if the entry found is not a directory, then this
mechanism fails.

If there is a corresponding True File field in the local
directory extensions table record, then it is assumed that the
True File represents a frozen directory. The Expand Frozen
Directory primitive mechanism is used to expand the existing
True File into directory entries in the local directory exten-
sions table.

Finally, the local directory extensions table 124 is again
searched, this time to find each directory subordinate to the
given directory. The names found are provided as the result.
Remote Mechanisms

The remote mechanisms provided by the present invention
are now described. Recall that remote mechanisms are used

by the operating system in responding to requests from other
processors. These mechanisms enable the capabilities of the
present invention in a peer-to-peer network mode of opera-
tion.

In a presently preferred embodiment, processors commu-
nicate with each other using a remote procedure call (RPC)
style interface, running over one of any number of commu-
nication protocols such as IPX/SPX or TCP/IP. Each peer
processor which provides access to its True File registry 126
or file regions, or which depends on another peer processor,
provides a number of mechanisms which can be used by itseers.

P The following remote mechanisms are described:
1. Locate True File;
2. Reserve True File;
3. Request True File;
4. Retire True File;
5. Cancel Reservation;
6. Acquire True File;
7. Lock Cache;
8. Update Cache; and
9. Check Expiration Date.

1. Locate True File

This mechanism allows a remote processor to detennine
whether the local processor contains a copy ofa specific True
File. The mechanism begins with a True Name and a flag
indicating whether to forward requests for this file to other
servers. This mechanism is now described with reference to
FIG. 28.

GOOG-1001-Page 49 of 61

GOOG-1001-Page 50 of 61

US 7,802,310 B2

23

First determine if the True File is available locally or if
there is some indication of where the True File is located (for
example, in the Source IDs field). Look up the requested True
Name in the True File registry 126 (Step S432).

If a True File registry entry record 140 is not found for this
True Name (Step S434), and the flag indicates that the request
is not to be forwarded (Step S436), respond negatively (Step
S438). That is, respond to the effect that the True File is not
available.

One the other hand, if a True File registry entry record 140
is not found (Step S434), and the flag indicates that the
request for this True File is to be forwarded (Step S436), then
forward a request for this True File to some other processors
in the system (Step S442). If the source table for the current
processor identifies one or more publishing servers which
should have a copy of this True File, then forward the request
to each of those publishing servers (Step S436).

If a True File registry entry record 140 is found for the
required True File (Step S434), and if the entry includes a
True File ID or Compressed File ID (Step S440), respond
positively (Step S444). If the entry includes a True File ID
then this provides the identity or disk location of the actual
physical representation of the file or file segment required. If
the entry include a Compressed File ID, then a compressed
version of the True File may be stored instead of, or in addi-
tion to, an uncompressed version. This field provides the
identity of the actual representation of the compressed ver-
sion ofthe file.

If the True File registry entry record 140 is found (Step
S434) but does not include a True File ID (the File ID is absent
ifthe actual file is not currently present at the current location)
(Step S440), and if the True File registry entry record 140
includes one or more source processors, and ifthe request can
be forwarded, then forward the request for this True File to
one or more of the source processors (Step S444).

2. Reserve True File

This mechanism allows a remote processor to indicate that
it depends on the local processor for access to a specific True
File. It takes a True Name as input. This mechanism is
described here.

(A) Find the True File registry entry record 140 associated
with the given True File. If no entry exists, reply negatively.

(B) If the True File registry entry record 140 does not
include a True File ID or compressed File ID, and if the True
File registry entry record 140 includes no source IDs for
removable storage volumes, then this processor does not have
access to a copy of the given file. Reply negatively.

(C) Add the ID of the sending processor to the list of
dependent processors for the True File registry entry record
140. Reply positively, with an indication of whether the
reserved True File is on line or off line.

3. Request True File
This mechanism allows a remote processor to request a

copy ofa True File from the local processor. It requires a True
Name and responds positively by sending a True File back to
the requesting processor. The mechanism operates as follows:

(A) Find the True File registry entry record 140 associated
with the given True Name. If there is no such True File
registry entry record 140, reply negatively.

(B) Make the True File local using the Make True File
Local primitive mechanism. If this mechanism fails, the
Request True File mechanism also fails.

(C) Send the local True File in either it is uncompressed or
compressed form to the requesting remote processor. Note
that ifthe True File is a compound file, the components are not
sent.

(D) If the remote file is listed in the dependent process list
of the True File registry entry record 140, remove it.

20

30

40

50

60

24
4. Retire True File

This mechanism allows a remote processor to indicate that
it no longer plans to maintain a copy of a given True File. An
alternate source of the True File can be specified, if, for
instance, the True File is being moved from one server to
another. It begins with a True Name, a requesting processor
ID, and an optional alternate source. This mechanism oper-
ates as follows:

(A) Find a True Name entry in the True File registry 126. If
there is no entry for this True Name, this mechanism’s task is
complete.

(B) Find the requesting processor on the source list and, if
it is there, remove it.

(C) If an alten1ate source is provided, add it to the source
list for the True File registry entry record 140.

(D) If the source list of the True File registry entry record
140 has no items in it, use the Locate Remote File primitive
mechanism to search for another copy of the file. If it fails,
raise a serious error.

5. Cancel Reservation

This mechanism allows a remote processor to indicate that
it no longer requires access to a True File stored on the local
processor. It begins with a True Name and a requesting pro-
cessor ID and proceeds as follows:

(A) Find the True Name entry in the True File registry 126.
If there is no entry for this True Name, this mechanism’ s task
is complete.

(B) Remove the identity of the requesting processor from
the list of dependent processors, if it appears.

(C) Ifthe list ofdependent processors becomes zero and the
use count is also zero, delete the True File.

6. Acquire True File
This mechanism allows a remote processor to insist that a

local processor make a copy ofa specified True File. It is used,
for example, when a cache client wants to write through a new
version of a file. The Acquire True File mechanism begins
with a data item and an optional True Name for the data item
and proceeds as follows:

(A) Confirm that the requesting processor has the right to
require the local processor to acquire data items. If not, send
a negative reply.

(B) Make a local copy of the data item transmitted by the
remote processor.

(C) Assimilate the data item into the True File registry of
the local processor.

(D) If a True Name was provided with the file, the True
Name calculation can be avoided, or the mechanism can
verify that the file received matches the True Name sent.

(E) Add an entry in the dependent processor list of the true
file registry record indicating that the requesting processor
depends on this copy of the given True File.

(F) Send a positive reply.

7. Lock Cache
This mechanism allows a remote cache client to lock a

local file so that local users or other cache clients cannot

change it while the remote processor is using it. The mecha-
nism begins with a pathnarne and proceeds as follows:

(A) Find the local directory extensions table entry record
138 of the specified pathname. If no such entry exists, reply
negatively.

(B) If an local directory extensions table entry record 138
exists and is already locked, reply negatively that the file is
already locked.

(C) If an local directory extensions table entry record 138
exists and is not locked, lock the entry. Reply positively.

8. Update Cache
This mechanism allows a remote cache client to unlock a

local file and update it with new contents. It begins with a

GOOG-1001-Page 50 of 61

GOOG-1001-Page 51 of 61

US 7,802,310 B2

25

pathr1ame and a True Name. The file corresponding to the
True Name must be accessible from the remote processor.
This mechanism operates as follows:

Find the local directory extensions table entry record 138
corresponding to the given pathname. Reply negatively if no
such entry exists or if the entry is not locked.

Link the given pathname to the given True Name using the
Link Path to True Name primitive mechanism.

Unlock the local directory extensions table entry record
138 and return positively.

9. Check Expiration Date
Return current or new expiration date and possible alter-

native source to caller.

Background Processes and Mechanisms
The background processes and mechanisms provided by

the present invention are now described. Recall that back-
ground mechanisms are intended to run occasionally and at a
low priority to provide automated management capabilities
with respect to the present invention.

The following background mechanisms are described:
1. Mirror True File;
2. Groom Region;
3. Check for Expired Links;
4. Verify Region; and
5. Groom Source List.

1. Mirror True File
This mechanism is used to ensure that files are available in

alternate locations in mirror groups or archived on archival
servers. The mechanism depends on application-specific
migration/archival criteria (size, time since last access, num-
ber ofcopies required, number ofexisting alternative sources)
which determine under what conditions a file should be

moved. The Mirror True File mechanism operates as follows,
using the True File specified, perform the following steps:

(A) Count the number of available locations of the True
File by inspecting the source list ofthe True File registry entry
record 140 for the True File. This step determines how many
copies of the True. File are available in the system.

(B) If the True File meets the specified migration criteria,
select a mirror group server to which a copy of the file should
be sent. Use the Acquire True File remote mechanism to copy
the True File to the selected mirror group server. Add the
identity of the selected system to the source list for the True
File.

2. Groom Region
This mechanism is used to automatically free up space in a

processor by deleting data items that may be available else-
where. The mechanism depends on application-specific
grooming criteria (for instance, a file may be removed if there
is an alternate online source for it, it has not been accessed in
a given number ofdays, and it is larger than a given size). This
mechanism operates as follows:

Repeat the following steps (i) to (iii) with more aggressive
grooming criteria until sufficient space is freed or until all
grooming criteria have been exercised. Use grooming infor-
mation to determine how much space has been freed. Recall
that, while grooming is in effect, grooming information
includes a table ofpathnames selected for deletion, and keeps
track of the amount of space that would be freed if all of the
files were deleted.

(i) Begin Grooming (using the primitive mechanism).
(ii) For each pathname in the specified region, for the True

File corresponding to the pathname, ifthe True File is present,
has at least one alternative source, and meets application
specific grooming criteria for the region, select the file for
removal (using the primitive mechanism).

(iii) End Grooming (using the primitive mechanism).

20

30

40

50

60

26

If the region is used as a cache, no other processors are
dependent on True Files to which it refers, and all such True
Files are mirrored elsewhere. In this case, True Files can be
removed with impunity. For a cache region, the grooming
criteria would ordinarily eliminate the least recently accessed
True Files first. This is best done by sorting the True Files in
the region by the most recent access time before performing
step (ii) above. The application specific criteria would thus be
to select for removal every True File encountered (beginning
with the least recently used) until the required amount of free
space is reached.

3. Check for Expired Links
This mechanism is used to determine whether dependen-

cies on published files should be refreshed. The following
steps describe the operation of this mechanism:

For each pathname in the specified region, for each True
File corresponding to the pathname, perform the following
step:

If the True File registry entry record 140 corresponding to
the True File contains at least one source which is a publishing
server, and if the expiration date on the dependency is past or
close, then perform the following steps:

(A) Determine whether the True File registry entry record
contains other sources which have not expired.

(B) Check the True Name expiration of the server. If the
expiration date has been extended, or an alternate source is
suggested, add the source to the True File registry entry
record 140.

(C) Ifno acceptable alternate source was found in steps (A)
or (B) above, make a local copy of the True File.

(D) Remove the expired source.

4. Verify Region
This mechanism can be used to ensure that the data items in

the True File registry 126 have not been damaged accidentally
or maliciously. The operation of this mechanism is described
by the following steps:

(A) Search the local directory extensions table 124 for each
pathname in the specified region and then perform the fol-
lowing steps:

(i) Get the True File name corresponding to the pathname;
(ii) Ifthe True File registry entry 140 for the True File does

not have a True File ID or compressed file ID, ignore it.
(iii) Usc thc Vcrify Truc Filc mcchanism (scc cxtcndcd

mechanisms below) to confirm that the True File speci-
fied is correct.

5. Groom Source List

The source list in a True File entry should be groomed
sometimes to ensure there are not too many mirror or archive
copies. When a file is deleted or when a region definition or its
mirror criteria are changed, it may be necessary to inspect the
affected True Files to determine whether there are too many
mirror copies. This can be done with the following steps:

For each affected True File,
(A) Search the local directory extensions table to find each

region that refers to the True File.
(B) Create a set of “required sources”, initially empty.
(C) For each region found,
(a) determine the mirroring criteria for that region,
(b) determine which sources for the True File satisfy the

mirroring criteria, a11d
(c) add these sources to the set of required sources.
(D) For each source in the True File registry entry, if the

source identifies a remote processor (as opposed to removable
media), and if the source is not a publisher, and if the source
is not in the set ofrequired sources, then eliminate the source,
and use the Cancel Reservation remote mechanism to elimi-

nate the given processor from the list ofdependent processors
recorded at the remote processor identified by the source.

GOOG-1001-Page 51 of 61

GOOG-1001-Page 52 of 61

US 7,802,310 B2

27
Extended Mechanisms

The extended mechanisms provided by the present inven-
tion are now described. Recall that extended mechanisms run

withi11 application programs over the operating system to
provide solutions to specific problems and applications.

The following extended mechanisms are described:
1. Inventory Existing Directory;
2. Inventory Removable, Read-only Files;
3. Synchronize Directories;
4. Publish Region;
5. Retire Directory;
6. Realize Directory at Location;
7. Verify True File;
8. "rack for Accounting Purposes; and
9. "rack for Licensing Purposes.

1. Inventory Existing Directory
This mechanism determines the True Names of files in an

existi1g on-line directory in the underlying operating system.
One ourpose of this mechanism is to install True Name
mechanisms in an existing file system.

An effect of such an installation is to eliminate immedi-

ately all duplicate files from the file system being traversed. If
several file systems are inventoried in a single True File
registry, duplicates across the volumes are also eliminated.

(A) Traverse the underlying file system in the operating
system. For each file encountered, excluding directories, per-
form the following:

(i) Assimilate the file encountered (using the Assimilate
File primitive mechanism). This process computes its
True Name and moves its data into the True File registry
126.

(ii) Create a pathname consisting of the path to the volume
directory and the relative path of the file on the media.
Link this path to the computed True Name using the Link
Path to True Name primitive mechanism.

2. Inventory Removable, Read-only Files
A system with access to removable, read-only media vol-

umes (such as WORM disks and CD-ROMs) can create a
usable inventory of the files on these disks without having to
make online copies. These objects can then be used for archi-
val purposes, directory overlays, or other needs. An operator
must request that an inventory be created for such a volume.

This mechanism allows for maintaining inventories of the
contents of files and data items on removable media, such as
diskettes and CD-ROMs, independent of other properties of
the files such as name, location, and date of creation.

The mechanism creates an online inventory of the files on
one or more removable volumes, such as a floppy disk or
CD-ROM, when the data on the volume is represented as a
directory. The inventory service uses a True Name to identify
each file, providing a way to locate the data independent of its
name, date of creation, or location.

The inventory can be used for archival of data (making it
possible to avoid archiving data when that data is already on
a separate volume), for grooming (making it possible to
delete infrequently accessed files ifthey can be retrieved from
removable volumes), for version control (making it possible
to generate a new version of a CD-ROM without having to
copy the old version), and for other purposes.

The inventory is made by creating a volume directory in the
media inventory in which each file named identifies the data
item on the volume being inventoried. Data items are not
copied from the removable volume during the inventory pro-cess.

An operator must request that an inventory be created for a
specific volume. Once created, the volume directory can be
frozen or copied like any other directory. Data items from
either the physical volume or the volume directory can be
accessed using the Open File operating system mechanism

20

30

40

50

28

which will cause them to be read from the physical volume
using the Realize True File from Location primitive mecha-
nism.

To create an inventory the following steps are taken:
(A) A volume directory in the media inventory is created to

correspond to the volume being inventoried. Its contextual
name identifies the specific volume.

(B)A source table entry 144 for the volume is created in the
source table 130. This entry 144 identifies the physical source
volume and the volume directory created in step (A).

(C) The filesystem on the volume is traversed. For each file
encountered, excluding directories, the following steps are
taken:

(i) The True Name of the file is computed. An entry is
created in the True Name registry 124, including the
True Name of the file using the primitive mechanism.
The source field of the True Name registry entry 140
identifies the source table entry 144.

(ii) A pathname is created consisting of the path to the
volume directory and the relative path of the file on the
media. This path is linked to the computed True Name
using Link Path to True Name primitive mechanism.

(D) After all files have been inventoried, the volume direc-
tory is frozen. The volume directory serves as a table of
contents for the volume. It can be copied using the Copy File
or Directory primitive mechanism to create an “overlay”
directory which can then be modified, making it possible to
edit a virtual copy of a read-only medium.

3. Synchronize Directories
Given two versions of a directory derived from the same

starting point, this mechanism creates a new, synchronized
version which includes the changes from each. Where a file is
changed in both versions, this mechanism provides a user exit
for handling the discrepancy. By using True Names, compari-
sons are instantaneous, and no copies of files are necessary.

This mechanism lets a local processor synchronize a direc-
tory to account for changes made at a remote processor. Its
purpose is to bring a local copy of a directory up to date after
a period of no communication between the local and remote
processor. Such a period might occur if the local processor
were a mobile processor detached from its server, or if two
distant processors were run independently and updated
nightly.

An advantage of the described synchronization process is
that it does not depend on synchronizing the clocks of the
local and remote processors. However, it does require that the
local processor track its position in the remote processor’s
audit file.

This mechanism does not resolve changes made simulta-
neously to the same file at several sites. If that occurs, an
external resolution mechanism such as, for example, operator
intervention, is required.

The mechanism takes as input a start time, a local directory
pathname, a remote processor name, and a remote directory
pathname name, and it operates by the following steps:

(A) Request a copy of the audit file 132 from the remote
processor using the Request True File remote mechanism.

(B) For each entry 146 in the audit file 132 after the start
time, if the entry indicates a change to a file in the remote
directory, perform the following steps:

(i) Compute the pathname of the corresponding file in the
local directory. Determine the True Name of the corre-
sponding file.

(ii) If the True Name of the local file is the same as the old
True Name in the audit file, or if there is no local file and
the audit entry indicates a new file is being created, link
the new True Name in the audit file to the local pathname
using the Link Path to True Name primitive mechanism.

GOOG-1001-Page 52 of 61

GOOG-1001-Page 53 of 61

US 7,802,310 B2

29

(iii) Otherwise, note that there is a problem with the syn-
chronization by sending a message to the operator or to
a problem resolution program, indicating the local path-
name, remote pathname, remote processor, and time of
change.

(C) After synchronization is complete, record the time of
the final change. This time is to be used as the new start time
the next time this directory is synchronized with the same
remote processor.

4. Publish Region

The publish region mechanism allows a processor to offer
the files in a region to any client processors for a limited
period of time.

The purpose of the service is to eliminate any need for
client processors to make reservations with the publishing
processor. This in turn makes it possible for the publishing
processor to service a much larger number of clients.

When a region is published, an expiration date is defined
for all files in the region, and is propagated into the publishing
system’s True File registry entry record 140 for each file.

When a remote file is copied, for instance using the Copy
File operating system mechanism, the expiration date is cop-
ied into the source field of the client’s True File registry entry
record 140. When the source is a publishing system, no
dependency need be created.

The client processor must occasionally and in background,
check for expired links, to make sure it still has access to these
files. This is described in the background mechanism Check
for Expired Links.

5. Retire Directory

This mechanism makes it possible to eliminate safely the
True Files in a directory, or at least dependencies on them,
after ensuring that any client processors depending on those
files remove their dependencies. The files in the directory are
not actually deleted by this process. The directory can be
deleted with the Delete File operating system mechanism.

The mechanism takes the pathname of a given directory,
and optionally, the identification of a preferred alternate
source processor for clients to use. The mechanism performs
the following steps:

(A) Traverse the directory. For each file in the directory,
perform the following steps:

(i) Get the True Name of the file from its path and find the
True File registry entry 140 associated with the True
Name.

(ii) Determine an alternate source for the True File. If the
source IDs field of the TFR entry includes the preferred
alternate source, that is the alternate source. If it does
not, but includes so1ne other source, that is the alternate
source. If it contains no alternate sources, there is no
alternate source.

(iii) For each dependent processor in the True File registry
entry 140, ask that processor to retire the True File,
specifying an alternate source if one was determined,
using the remote mechanism.

6. Realize Directory at Location
This mechanism allows the user or operating system to

force copies of files from some source location to the True
File registry 126 at a given location. The purpose of the
mechanism is to ensure that files are accessible in the event

the source location becomes inaccessible. This can happen
for instance if the source or given location are on mobile
computers, or are on removable media, or if the network
connection to the source is expected to become unavailable,
or if the source is being retired.

5

20

30

40

50

60

30

This mechanism is provided in the following steps for each
file in the given directory, with the exception of subdirecto-nes:

(A) Get the local directory extensions table entry record
138 given the pathname of the file. Get the True Name ofthe
local directory extensions table entry record 138. This service
assimilates the file if it has not already been assimilated.

(B) Realize the corresponding True File at the given loca-
tion. This service causes it to be copied to the given location
from a remote system or removable media.

7. Verify True File
This mechanism is used to verify that the data item in a True

File registry 126 is indeed the correct data item given its True
Name. Its purpose is to guard against device errors, malicious
changes, or other problems.

If an error is found, the system has the ability to “heal”
itself by finding another source for the True File with the
given name. It may also be desirable to verify that the error
has not propagated to other systems, and to log the problem or
indicate it to the computer operator. These details are not
described here.

To verify a data item that is not in a True File registry 126,
use the Calculate True Name primitive mechanism described
above.

The basic mechanism begins with a True Name, and oper-
ates in the following steps:

(A) Find the True File registry entry record 140 corre-
sponding to the given True Name.

(B) If there is a True File ID for the True File registry entry
record 140 then use it. Otherwise, indicate that no file exists to
verify.

(C) Calculate the True Name ofthe data item given the file
ID of the data item.

(D) Confirm that the calculated True Name is equal to the
given Truc Namc.

(E) If the True Names are not equal, there is an error in the
True File registry 126. Remove the True File ID from the True
File registry entry record 140 and place it somewhere else.
Indicate that the True File registry entry record 140 containedan error.

8. Track for Accounting Purposes
This mechanism provides a way to know reliably which

files have been stored on a system or transmitted from one
system to another. The mechanism can be used as a basis for
a value-based accounting system in which charges are based
on the identity of the data stored or transmitted, rather than
simply on the number of bits.

This mechanism allows the system to track possession of
specific data items according to content by owner, indepen-
dent ofthe name, date, or other properties ofthe data item, and
tracks the uses of specific data items and files by content for
accounting purposes. True names make it possible to identify
each file briefly yet uniquely for this purpose.

Tracking the identities of files requires maintaining an
accounting log 134 and processing it for accounting or billing
purposes. The mechanism operates in the following steps:

(A) Note every time a file is created or deleted, for instance
by monitoring audit entries in the Process Audit File Entry
primitive mechanism. When such an event is encountered,
create an entry 148 in the accounting log 134 that shows the
responsible party a11d the ide11tity of the file created or
deleted.

(B) Every time a file is transmitted, for instance when a file
is copied with a Request True File remote mechanism or an
Acquire True File remote mechanism, create an entry in the
accounting log 134 that shows the responsible party, the iden-
tity of the file, and the source and destination processors.

(C) Occasionally run an accounting program to process the
accounting log 134, distributing the events to the account

GOOG-1001-Page 53 of 61

GOOG-1001-Page 54 of 61

US 7,802,310 B2

31

records of each responsible party. The account records can
eventually be summarized for billing purposes.

9. Track for Licensing Purposes
This mechanism ensures that licensed files are not used by

unauthorized parties. The True Name provides a safe way to
identify licensed material. This service allows proof of pos-
session of specific files according to their contents without
disclosing their contents.

Enforcing use ofvalid licenses can be active (for example,
by refusing to provide access to a file without authorization)
or passive (for example, by creating a report of users who do
not have proper authorization).

One possible way to perform license validation is to per-
form occasional audits of employee systems. The service
described herein relies on True Names to support such an
audit, as in the following steps:

(A) For each licensed product, record in the license table
136 the True Name of key files in the product (that is, files
which are required in order to use the product, and which do
not occur in other products) Typically, for a software product,
this would include the main executable image and perhaps
other major files such as clip-art, scripts, or online help. Also
record the identity ofeach system which is authorized to have
a copy of the file.

(B) Occasionally, compare the contents of each user pro-
cessor against the license table 136. For each True Name in
the license table do the following:

(i) Unless the user processor is authorized to have a copy of
the file, confirm that the user processor does not have a
copy of the file using the Locate True File mechanism.

(ii) If the user processor is found to have a file that it is not
authorized to have, record the user processor and True
Name in a license violation table.

The System in Operation
Given the mechanisms described above, the operation of a

typical DP system employing these mechanisms is now
described in order to demonstrate how the present invention
meets its requirements and capabilities.

In operation, data items (for example, files, database
records, messages, data segments, data blocks, directories,
instances of object classes, and the like) in a DP system
employing the present invention are identified by substan-
tially uniquc idcntificrs (Truc Namcs), thc idcntificrs dcpcnd-
ing on all of the data in the data items and only on the data in
the data items. The primitive mechanisms Calculate True
Name andAssimilate Data Item support this property. For any
given data item, using the Calculate True Name primitive
mechanism, a substantially unique identifier or True Name
for that data item can be determined.

Further, in operation of a DP system incorporating the
present invention, multiple copies of data items are avoided
(unless they are required for sor11e reason such as backups or
mirror copies in a fault-tolerant system). Multiple copies of
data items are avoided even when multiple names refer to the
same data item. The primitive mechanisms Assimilate Data
Items and New True File support this property. Using the
Assin1ilate Data Item primitive mechanism, if a data item
already exists in the system, as indicated by an entry in the
True File registry 126, this existence will be discovered by
this mechanism, and the duplicate data item (the new data
item) will be eliminated (or not added). Thus, for example, if
a data file is being copied onto a system from a floppy disk, if,
based on the True Name of the data file, it is determined that
the data file already exists in the system (by the same or some
other name), then the duplicate copy will not be installed. If
the data item was being installed on the system by some name
other than its current name, then, using the Link Path to True
Name primitive mechanism, the other (or new) name can be
linked to the already existing data item.

20

30

40

50

65

32

In general, the mechanisms ofthe present invention operate
in such a way as to avoid recreating an actual data item at a
location when a copy of that data item is already present at
that location. In the case ofa copy from a floppy disk, the data
item (file) may have to be copied (into a scratch file) before it
can be determined that it is a duplicate. This is because only
one processor is involved. On the other hand, in a multipro-
cessor environment or DP system, each processor has a record
of the True Names of the data items on that processor. When
a data item is to be copied to another location (another pro-
cessor) in the DP system, all that is necessary is to examine
the True Name of the data item prior to the copying. If a data
item with the same True Name already exists at the destina-
tion location (processor), then there is no need to copy the
data item. Note that ifa data item which already exists locally
at a destination location is still copied to the destination
location (for example, because the remote system did not
have a True Name for the data item or because it arrives as a

stream ofun-named data), the Assimilate Data Item primitive
mechanism will prevent multiple copies ofthe data item from
being created.

Since the True Name ofa large data item (a compound data
item) is derived from and based on the True Names of com-
ponents ofthe data item, copying ofan entire data item can be
avoided. Since some (or all) of the components of a large data
item may already be present at a destination location, only
those components which are not present there need be copied.
This property derives from the manner in which True Names
are determined.

When a file is copied by the Copy File or Directory oper-
ating system mechanism, only the True Name of the file is
actually replicated.

When a file is opened (using the Open File operating sys-
tem mechanism), it uses the Make True File Local primitive
mechanism (either directly or indirectly through the Create
Scratch File primitive mechanism) to create a local copy of
the file. The Open File operating system mechanism uses the
Make True File Local primitive mechanism, which uses the
Realize True File from Location primitive mechanism,
which, in turn uses the Request True File remote mechanism.

The Request True File remote mechanism copies only a
single data item from one processor to another. Ifthe data item
is a compound file, its component segments are not copied,
only the indirect block is copied. The segments are copied
only when they are read (or otherwise needed).

The Read File operating system mechanism actually reads
data. The Read File mechanism is aware of compound files
and indirect blocks, and it uses the Realize True File from
Location primitive mechanism to make sure that component
segments are locally available, and then uses the operating
system file mechanisms to read data from the local file.

Thus, when a compound file is copied from a remote sys-
tcm, only its Truc Name is copicd. VVhcn it is opcncd, only its
indirect block is copied. When the corresponding file is read,
the required component segments are realized and therefore
copied.

In operation data items can be accessed by reference to
their identities (True Names) independent of their present
location. The actual data item or True File corresponding to a
given data identifier or True Name may reside anywhere in the
system (that is, locally, remotely, offline, etc). If a required
True File is present locally, then the data in the file can be
accessed. If the data item is not present locally, there are a
number ofways in which it can be obtained from wherever it
is present. Using the source IDs field of the True File registry
table, the locatio11(s) of copies of the True File corresponding
to a given True Name can be determined. The Realize True
File from Location primitive mechanism tries to make a local
copy of a True File, given its True Name and the name of a
source location (processor or media) that may contain the

GOOG-1001-Page 54 of 61

GOOG-1001-Page 55 of 61

US 7,802,310 B2

33

True File. If, on the other hand, for some reason it is not
known where there is a copy of the True File, or if the pro-
cessors identified in the source IDs field do not respond with
the required True File, the processor requiring the data item
can make a general request for the data item using the Request
True File remote mechanism from all processors in the sys-
tem that it can contact.

As a result, the system provides transparent access to any
data item by reference to its data identity, and independent of
its present location.

In operation, data items in the system can be verified and
have their integrity checked. This is from the manner in which
True Names are determined. This can be used for security
purposes, for instance, to check for viruses and to verify that
data retrieved from another location is the desired, and
requested data. For example, the system might store the True
Names of all executable applications on the system and then
periodically redetermine the True Names of each of these
applications to ensure that they match the stored True Names.
Any change in a True Name potentially signals corruption in
the system and can be further investigated. The Verify Region
background mechanism and the Verify True File extended
mechanisms provide direct support for this mode of opera-
tion. The Verify Region mechanism is used to ensure that the
data items in the True File registry have not been damaged
accidentally or maliciously. The Verify True File mechanism
verifies that a data item in a True File registry is indeed the
correct data item given its True Name.

Once a processor has determined where (that is, at which
other processor or location) a copy of a data item is in the DP
system, that processor might need that other processor or
location to keep a copy of that data item. For example, a
processor might want to delete local copies of data items to
make space available locally while knowing that it can rely on
retrieving the data from somewhere else when needed. To this
end the system allows a processor to Reserve (and cancel the
reservation of) True Files at remote locations (using the
remote mechanism). In this way the remote locations are put
on notice that another location is relying on the presence of
the True File at their location.

A DP system employing the present invention can be made
into a fault-tolerant system by providing a certain amount of
redundancy of data items at multiple locations in the system.
Using the Acquire True File and Reserve True File remote
mechanisms, a particular processor can implement its own
form of fault-tolerance by copying data items to other pro-
cessors and then reserving them there. However, the system
also provides the Mirror True File background mechanism to
mirror (make copies) of the True File available elsewhere in
the system. Any degree ofredundancy (limited by the number
ofprocessors or locations in the system) can be implemented.
As a result, this invention maintains a desired degree or level
of redundancy in a network of processors, to protect against
failure of any particular processor by ensuring that multiple
copies of data items exist at different locations.

The data structures used to implement various features and
mechanisms of this invention store a variety of useful infor-
mation which can be used, in conjunction with the various
mechanisms, to implement storage schemes and policies in a
DP system employing the invention. For example, the size,
age a11d location of a data item (or of groups of data items) is
provided. This information can be used to decide how the data
items should be treated. For example, a processor may imple-
ment a policy of deleting local copies of all data items over a
certain age if other copies of those data items are present
elsewhere in the system. The age (or variations on the age) can
be determined using the time of last access or modification in
the local directory extensions table, and the presence ofother
copies ofthe data item can be determined either from the Safe

20

30

40

50

34

Flag or the source IDs, or by checking which other processors
in the system have copies of the data item and then reserving
at least one of those copies.

In operation, the system can keep track of data items
regardless ofhow those items are named by users (or regard-
less of whether the data items even have names). The system
can also track data items that have different names (in differ-
ent or the same location) as well as different data items that
have the same name. Since a data item is identified by the data
in the item, without regard for the context of the data, the
problems of inconsistent naming in a DP system are over-come.

In operation, the system can publish data items, allowing
other, possibly anonymous, systems in a network to gain
access to the data items and to rely on the availability ofthese
data items. True Names are globally unique identifiers which
can be published simply by copying them. For example, a
user might create a textual representation of a file on system
A with True Name N (for instance as a hexadecimal string),
and post it on a computer bulletin board. Another user on
system B could create a directory entry F for this True Name
N by using the Link Path to True Name primitive mechanism.
(Alternatively, an application could be developed which hides
the True Name from the users, but provides the same public
transfer service.)

When a program on system B attempts to open pathname F
linked to True Name N, the Locate Remote File primitive
mechanism would be used, and would use the Locate True
File remote mechanism to search for True Name N on one or

more remote processors, such as system A. If system B has
access to system A, it would be able to realize the True File
(using the Realize True File from Location primitive mecha-
nism) and use it locally. Alternatively, system B could find
True Name N by accessing any publicly available True Name
server, if the server could eventually forward the request to
system A.

Clients of a local server can indicate that they depend on a
given True File (using the Reserve True File remote mecha-
nism) so that the True File is not deleted from the server
registry as long as some client requires access to it. (The
Retire True File remote mechanism is used to indicate that a

client no longer needs a given True File.)
A publishing server, on the other hand, may want to pro-

vide access to many clients, and possibly anonymous ones,
without incurring the overhead of tracking dependencies for
each client. Therefore, a public server can provide expiration
dates for True Files in its registry. This allows client systems
to safely maintain references to a True File on the public
server. The Check For Expired Links background mechanism
allows the client of a publishing server to occasionally con-
firm that its dependencies on the publishing server are safe.

In a variation of this aspect of the invention, a processor
that is newly connected (or reconnected after some absence)
to the system can obtain a current version of all (or ofneeded)
data in the system by requesting it from a server processor.
Any such processor can send a request to update or resyn-
chronize all of its directories (starting at a root directory),
simply by using the Synchronize Directories extended
mechanism on the needed directories.

Using the accounting log or some other user provided
mechanism, a user can prove the existence of certain data
items at certain times. By publishing (in a public place) a list
of all True Names in the system on a given day (or at some
given time), a user can later refer back to that list to show that
a particular data item was present in the system at the time that
list was published. Such a mechanism is useful in tracking, for
example, laboratory notebooks or the like to prove dates of
conception of inventions. Such a mechanism also permits
proofofpossession ofa data item at a particular date andtime.

GOOG-1001-Page 55 of 61

GOOG-1001-Page 56 of 61

US 7,802,310 B2

35

The accounting log file can also track the use of specific
data items and files by content for accounting purposes. For
instance, an information utility company can determine the
data identities of data items that are stored and transmitted

through its computer systems, and use these identities to
provide bills to its customers based on the identities of the
data items being transmitted (as defined by the substantially
unique identifier). The assignment of prices for storing and
transmitting specific True Files would be made by the infor-
mation utility and/or its data suppliers; this information
would be joined periodically with the information in the
accounting log file to produce customer statements.

Backing up data items in a DP system employing the
present invention can be done based on the True Names of the
data items. By tracking backups using True Names, duplica-
tion in the backups is prevented. In operation, the system
maintains a backup record of data identifiers of data items
already backed up, and invokes the Copy File or Directory
operating system mechanism to copy only those data items
whose data identifiers are not recorded in the backup record.
Once a data item has been backed up, it can be restored by
retrieving it from its backup location, based on the identifier
of the data item. Using the backup record produced by the
backup to identify the data item, the data item can be obtained
using, for example, the Make True File Local primitive
mechanism.

In operation, the system can be used to cache data items
from a server, so that only the most recently accessed data
items need be retained. To operate in this way, a cache client
is configured to have a local registry (its cache) with a remote
Local Directory Extensions table (from the cache server).
Whenever a file is opened (or read), the Local Directory
Extensions table is used to identify the True Name, and the
Make True File Local primitive mechanism inspects the local
registry. When the local registry already has a copy, the file is
already cached. Otherwise, the Locate True File remote
mechanism is used to get a copy of the file. This mechanism
consults the cache server and uses the Request True File
remote mechanism to make a local copy, effectively loading
the cache.

The Groom Cache background mechanism flushes the
cache, removing the least-recently-used files from the cache
client’s True File registry. While a file is being modified on a
cache client, the Lock Cache and Update Cache remote
mechanisms prevent other clients from tryi11g to modify the
same file.

In operation, when the system is being used to cache data
items, the problems of maintaining cache consistency are
avoided.

To access a cache and to fill it from its server, a key is
required to identify the data item desired. Ordinarily, the key
is a name or address (in this case, it would be the pathname of
a file). If the data associated with such a key is changed, the
client’s cache becomes inconsistent; when the cache client
refers to that name, it will retrieve the wrong data. In order to
maintain cache consistency it is necessary to notify every
client immediately whenever a change occurs on the server.

By using an embodiment of the present invention, the
cache key uniquely identifies the data it represents. When the
data associated with a name changes, the key itself changes.
Thus, when a cache client wishes to access the modified data
associated witl1 a given file name, it will use a new key (the
True Name of the new file) rather than the key to the old file
contents in its cache. The client will always request the cor-
rect data, and the old data in its cache will be eventually aged
and flushed by the Groom Cache background mechanism.

Because it is not necessary to immediately notify clients
when changes on the cache server occur, the present invention
makes it possible for a single server to support a much larger
number of clients than is otherwise possible.

20

30

40

50

36

In operation, the system automatically archives data items
as they are created or modified. After a file is created or
modified, the Close File operating system mechanism creates
an audit file record, which is eventually processed by the
Process Audit File Entry primitive mechanism. This mecha-
nism uses the New True File primitive mechanism for any file
which is newly created, which in turn uses the Mirror True
File background mechanism ifthe True File is in a mirrored or
archived region. This mechanism causes one or more copies
of the new file to be made on remote processors.

In operation, the system can efficiently record and preserve
any collection of data items. The Freeze Directory primitive
mechanism creates a True File which identifies all of the files

in the directory and its subordinates. Because this True File
includes the True Names of its constituents, it represents the
exact contents of the directory tree at the time it was frozen.
The frozen directory can be copied with its components pre-
served.

The Acquire True File remote mechanism (used in mirror-
ing and archiving) preserves the directory tree structure by
ensuring that all ofthe component segments and True Files in
a compound data item are actually copied to a remote system.
Of course, no transfer is necessary for data items already in
the registry of the remote system.

In operation, the system can efficiently make a copy of any
collection of data items, to support a version control mecha-
nism for groups of the data items.

The Freeze Directory primitive mechanism is used to cre-
ate a collection of data items. The constituent files and seg-
ments referred to by the frozen directory are maintained in the
registry, without any need to make copies of the constituents
each time the directory is frozen.

Whenever a pathname is traversed, the Get Files in Direc-
tory operating system mechanism is used, and when it
cncountcrs a frozcn dircctory, it uscs thc Expand Frozcn
Directory primitive mechanism.

A frozen directory can be copied from one pathname to
another efiiciently, merely by copying its True Name. The
Copy File operating system mechanism is used to copy a
frozen directory.

Thus it is possible to efficiently create copies of different
versions ofa directory, thereby creating a record of its history
(hence a version control system).

In operation, the system can maintain a local inventory of
all the data items located on a given removable medium, such
as a diskette or CD-ROM. The inventory is independent of
other properties ofthe data items such as their name, location,
and date of creation.

The Inventory Existing Directory extended mechanism
provides a way to create True File Registry entries for all of
the files in a directory. One use ofthis inventory is as a way to
pre-load a True File registry with backup record information.
Those files in the registry (such as previously installed soft-
ware) which are on the volumes inventoried need not be
backed up onto other volumes.

The Inventory Removable, Read-only Files extended
mechanism not only determines the True Names for the files
on the medium, but also records directory entries for each file
in a frozen directory structure. By copying and modifying this
directory, it is possible to create an on line patch, or small
modification of an existing read-only file. For example, it is
possible to create an online representation of a modified CD-
ROM, such that the unmodified files are actually on the CD-
ROM, and only the modified files are online.

In operation, the system tracks possession of specific data
items according to content by owner, independent of the
name, date, or other properties ofthe data item, and tracks the
uses of specific data items and files by content for accounting
purposes. Using the Track for Accounting Purposes extended

GOOG-1001-Page 56 of 61

GOOG-1001-Page 57 of 61

US 7,802,310 B2

37

mechanism provides a way to know reliably which files have
been stored on a system or transmitted from one system to
another.

True Names in Relational and Object-Oriented Databases
Although the preferred embodiment of this invention has

been presented in the context ofa file system, the invention of
True Names would be equally valuable in a relational or
object-oriented databa se. A relational or object-oriented data -
base system using True Names would have similar benefits to
those ofthe file system employing the invention. For instance,
such a database would permit efficient elimination of dupli-
cate records, support a cache for records, simplify the process
of maintaining cache consistency, provide location-indepen-
dent access to records, maintain archives and histories of
records, and synchronize with distant or disconnected sys-
tems or databases.

The mechanisms described above can be easily modified to
serve in such a database environment. The True Name regis-
try would be used as a repository of database records. All
references to records would be via the True Name of the

record. (The Local Directory Extensions table is an example
of a primary index that uses the True Name as the unique
identifier of the desired records.)

In such a database, the operations of inserting, updating,
and deleting records would be implemented by first assimi-
lating records into the registry, and then updating a primary
key index to map the key of the record to its contents by using
the True Name as a pointer to the contents.

The mechanisms described in the preferred embodiment,
or similar mechanisms, would be employed in such a system.
These mechanisms could include, for example, the mecha-
nisms for calculating true names, assimilating, locating, real-
izing, deleting, copying, and moving True Files, for mirroring
True Files, for maintaining a cache of True Files, for groom-
ing Truc Files, and othcr mcchanisms based on thc use of
substantially unique identifiers.

While the invention has been described in connection with

what is presently considered to be the most practical and
preferred embodiments, it is to be understood that the inven-
tion is not to be limited to the disclosed embodiment, but on
the contrary, is intended to cover various modifications and
equivalent arrangements included within the spirit and scope
of the appended claims.

We claim:

1. A computer-implemented method in a system which
includes a network of computers, the method implemented at
least in part by hardware comprising at least one processor,
the method comprising the steps:

(a) at a first computer, obtaining a content-based name for
a particular data item from a second computer distinct
from the first computer, the content-based name being
based at least in part on a function of at least some ofthe
data which comprise the contents of the particular data
item, wherein the function comprises a message digest
function or a hash function, and wherein two identical
data items will have the same content-based name; and

(b) by hardware in combination with software, a processor
at said first computer ascertaining whether or not the
content-based name for the particular data item corre-
sponds to an entry in a database comprising a plurality of
identifiers; and

(c) based at least in part on said ascertaining in (b), deter-
mining whether or not access to the particular data item
is authorized.

2. A method as recited in claim 1 further comprising:
(d) based at least in part on said determining in (c), causing

access to the particular data item to be denied when it is
determined that access to the particular data item is not
authorized.

5

20

30

40

50

38
3 . A method as recited in claim 1 wherein the content-based

name for the particular data item was included in a request to
access the particular data item, the request having been
received from a particular requestor, and wherein said step (c)
of determining comprises: determining whether or not the
particular requestor is authorized.

4. A method as recited in claim 3 further comprising:
if it is determined that the particular requestor is not autho-

rized, causing the particular requestor’s request to
access the particular data item to be denied.

5. A method as recited in claim 1 wherein said database

comprises a table or a list comprising said plurality of iden-
tifiers.

6. A method as recited in claim 1 wherein the plurality of
identifiers in the database are identifiers of licensed content

items, and wherein the identifier ofeach licensed content item
is based at least in part on the function of at least some ofthe
data comprising the licensed content item.

7. A method as recited in claim 1 further comprising:
(d) collecting information regarding the particular data

item.

8. A method as recited in claim 7, wherein the information
collected includes at least one of: (a) information about which
data items have been stored on a computer; (b) information
about the content of the particular data item, (c) information
about an owner of tl1e particular data item, (d) ir1forr11atior1
about a type of particular data item, (e) information about a
contextual name of the particular data item, (f) information
about whether the particular data item was copied; (g) the
content-based name of the particular data item; (h) informa-
tion about an identity of a requestor; (i) a timestamp; (j)
information about whether the particular data item was cre-
ated; and (k) information about whether the particular data
item was read.

9. A method as recited in claim 7 wherein at least some of

the information collected is maintained for accounting or
billing purposes.

10. A method as recited in claim 1 further comprising:
(d) tracking identities of data items.
11. A method as recited in claim 1 wherein the content-

based name ofthe particular data item is based, at least in part,
on a function ofall ofthe data which comprise the contents of
the particular data item.

12. A method as recited in claim 1 wherein the message
digest function or hash function is selected from the func-
tions: MD4, MD5, and SHA.

13. A method as recited in claim 1 wherein the content-

based name of the particular data item is a True Name of the
particular data item.

14. A method as recited in claim 1 wherein the particular
data item is selected from the group comprising: a file, a
portion of a file, a page in memory, a digital message, a
portion of a digital message, a digital image, a portion of a
digital image, a video signal, a portion of a video signal, an
audio signal, a portion of an audio signal, a software product,
and a portion of a software product.

15. A method as recited in claim 1 wherein at least some

computers make up part of a peer-to-peer network of com-
puters.

16. A method as recited in claim 1 further comprising:

(d) authorizing access to the particular data item when it is
not determined that the data item is unauthorized.

17. A method as recited in claim 16 wherein the authorized

access permits copying of the particular data item to or from
at least one of the computers in said network of computers.

18. A method as recited in claim 16 wherein the content-

based name of the particular data item is received at the first
computer and wherein, if it is not determined that said par-

GOOG-1001-Page 57 of 61

GOOG-1001-Page 58 of 61

US 7,802,310 B2

39 40

ticular data item is unauthorized, access to the data item is 24.A computer-implemented methodimplemented at least
permitted from at least one ofa plurality ofcomputers distinct in pait by hardware comprising one or more processors, the
from the first computer. meth0d Comprising:

(a) using a processor, receiving at a first computer from a
second computer, a request regarding a particular data
item, said request including at least a content-dependent
name for the particular data item, the content-dependent
name being based, at least in pait, on at least a function

19. A method as recited in claim 16 wherein, if it is not
determined that access to said particular data item is unau- 5
thorized, access to the data item is permitted from more than
one of a plurality of computers in the network of computers.

20~A e0mPiitei'imPiemehted methed epeiahie ih a system of the data in the particular data item, wherein the data
Whieh ihehides a Phiiaiity efeempiiteiss the methed e0mPiis' used by the function to determine the content-dependent
ing: to name comprises at least some of the contents of the

controlling distribution of content from a first computer to Paitieiiiai data items Wheieih the hmetieh that Was used
at least one other computer, in response to a request e0mPi‘isesa message digest hmetieh 0h a hash hmetieha
ehtained hy a first deviee in the system from a seeend and wherein two identical data items will have the same

content-dependent name; and
15 (b) in response to said request:

(i) causing the content-dependent name ofthe particular
data item to be compared to a plurality of values;

(ii) hardware in combination with software determining
whether or not access to the particular data item is

20 unauthorized based on whether the content-depen-
dent name ofthe particular data item corresponds to at
least one of said plurality ofvalues, and

device in the system, the first device comprising hard-
ware including at least one processor, the request includ-
ing at least a content-dependent name ofa particular data
item, the content-dependent name being based at least in
part on a function ofat least some of the data comprising
the particular data item, wherein the function comprises
a message digest function or a hash function, and
wherein two identical data items will have the same

e0hteht'dePehdeht hames (iii) based on said determining in step (ii), not allowing
based at least in pait on said content-dependent name of the particular data item to be provided to or accessed

said particular data item, the first device (A) permitting 25 by the second computer if it is determined that access
the content to be provided to or accessed by the at least t0 the particular data item is het a11th0I‘iZed.

one other computer if it is not determined that the con- 25 A methed as ieeited ih eiaim 24 ihithei eempiisihgi
tent is unauthorized or unlicensed, otherwise, (B) if it is ih iesP0hse to said iediiesti . .
determined that the eentent is unauthorized or nn1i_ (iv) allowing the particular data item to be provided to or

accessed by the second computer if it is not deter-
mined that access to the particular data item is unau-
thorized.

26. The method ofclaim 1 wherein the content-based name

of the particular data item is based on a function of only the

censed, not permitting the content to be provided to or 30
accessed by the at least one other computer.

21 . A computer-implemented method implemented at least
in pait by hardware comprising one or more processors, the

method eempitisihgi data which comprise the contents of the particular data item.
(a) obtaining a list of content-dependent names, one for 35 27. The method ofclaim 20 wherein the content-dependent

each of a plurality of data items, wherein, for each par- name of the particular data item is based on a function of only
ticular data item of the plurality of data items, the cor- the data Comprising the paitielllar data item.
respgnding contenpdependent name for that particular The method Of claim wherein, fOI' each particular
data item is based at least in pait on a function of at least data item Of the Phiiaiity Of data items: the eeiiespehdihg
some ofthe contents ofthe particular data item, wherein 4'3 eohtehtfdepehdeht name for that particular data item was
the fnnetien eemmises a message digest fnnetien or a determined as a function ofonly the contents ofthat particular
hash function, and wherein two identical data items have data item‘ . .
the same content-dependent name on the list of content- 29: The methed et etatht 24 Wheteth the data used hy the
dependent names. function to determine the content-dependent name of the

(b) receiving at a first location and from a second location petttetttttt date ttettt eetttptttses ettty the eetttettts et the pet-
d. t. t f .d fir t i t. t t d d t ticular data item.
. 15 111.“ rem Sat .5 eea ten’ .a een en ' .epen at 30. The method ofclaim 20 wherein the content-dependentidentifier corresponding to a particular data item, said
C0mem_dependem identifier being based at ieast in part name of the particular data item is based on a function of all. of the data comprising the particular data item.

iettgntit least eeme et the eeeteete et the pattteutat data 50 31. The method of claim 21 wherein, for each particular
. data item of the plurality of data items, the corresponding

(c) at said first location, by a processor, in combination. content-dependent name for that particular data item was
with software, determimng, based at least in pait on said. . . . based on a function ofall ofthe contents ofthat particular data
content-dependent identifier for said particular data item

tteht’ ahd hsthg Satd hat et eehteht'depehdeht hahtes’ 32 The method of claim 24 wherein the data used by the
Whether atedhestet may aeeess the patttethat data item; 55 function to determine the content-dependent name of the

#- uu

ahd particular data item comprises of all of the contents of the
(d) based on said determining in (c), if it is determined that partjetflar data item.

the requester may het aeeess the Paitieiiiai data items 33. The method ofclaim 1 wherein the hardware comprises
causing access to the particular data item to be denied. a processor and memory.

22. A method as recited in claim 21 wherein the list of 50 34. The method of claim 20 wherein the hardware com-

content-dependent names comprises a list of True Names of prises a processor and memory.
authorized data items and wherein the content-dependent 35, The method of claim 21 wherein the hardware com-

identifier of the particular data item is a True Name of the prises a processor and memory.
Paitieiiiai data item- 36. The method of claim 24 wherein the hardware com-

23. A method as recited in claim 21 wherein at least some 65 prises a processor and memory.
of said computers make up part of a peer-to-peer network of 37. The method ofclaim 1 wherein the hardware comprises
computers. a computer.

GOOG-1001-Page 58 of 61

GOOG-1001-Page 59 of 61

US 7,802,310 B2

41
38. The method of claim 20 wherein the hardware com-

prises a computer.
39. The method of claim 21 wherein the hardware com-

prises a computer.
40. The method of claim 24 wherein the hardware com-

prises a computer.
41. The method of claim 1 wherein said content-based

name for said particular data item was obtained as part of a
request to allow providing ofthe particular data item to one or
more computers in the network ofcomputers, and wherein the
determining in (c) whether or not access to the particular data
item is authorized comprises:

using at least the content-based name ofthe particular data
item and information in the database to determine

whether or not to allow the particular data item to be
provided to computers in the network of computers.

42. The method of claim 41 further comprising:
(d) based at least in part on said determining in (c), causing

permission to provide the particular data item to com-
puters to be denied when it is determined that access to
the particular data item is not authorized.

43. The method as in claim 1 wherein:

the function comprises a message digest function or a hash
function applied to at least some of the data in the par-
ticular data item to obtain a digital fingerprint of the
particular data item.

44. The method ofclaim 1 wherein the content-based name

for the particular data item comprises a digital fingerprint of
the particular data item, and wherein each of the plurality of
identifiers in the database comprises a digital fingerprint of
the corresponding data item.

45. The method of claim 1 wherein, when the particular
data item comprises a file or a portion of a file comprising an
audio signal, the content-based name of the particular data
item is a function of at least some of the data comprising the
audio signal.

46. The method as in claim 1 wherein, when the particular
data item comprises a file or a portion of a file comprising a
video signal, the content-based name of the particular data
item is a function of at least some of the data comprising the
video signal.

47. A method as recited in claim 1 wherein, when it is not
determined ir1 step (c) that access to said particular data item
is unauthorized, providing of the particular data item is per-
mitted to or from one or more computers iii the network of
computers.

48.A method as recited in claim 16 wherein the authorizing
access to the particular data item authorizes providing the
particular data item to or from one or more computers in the
network of computers.

49. The method of claim 21 wherein determining in (c)
whether the requestor may access the particular data item
comprises:

using at least the content-dependent identifier of the par-
ticular data item and the list ofcontent-dependent names
to determine whether or not the requestor is authorized
to allow copying of the particular data item.

50. The method ofclaim 1 wherein determining whether or
not access to the particular data item is authorized comprises
determining whether or not access to the particular data item
is not unauthorized.

51. The method ofclaim 1 wherein the content-based name

for the particular data item corresponds to an entry in the
database when the content-based name for the particular data
item matches one ofthe plurality ofidentifiers in the database.

52. The method of claim 1 wherein said database maps
each identifier of said plurality of identifiers in said database
to information relating to a corresponding data item.

5

20

30

40

50

42

53. A method as recited in claim 1 further comprising:
(d) permitting at least one copy of the particular data item

to be distributed to or from at least one computer in the
network when it is determined that the particular data
item is not unauthorized.

54. The method of claim 1 further comprising:
(d) based at least in part on said determining in (c), causing

denial ofpermission for at least one copy of the particu-
lar file to be distributed across the plurality ofcomputers
in a network when it is detem1ined that the file is not
authorized.

55. The method of claim 1 further comprising the step:
(i) by hardware in combination with software, determining

said content-based name for said particular data item.
56. The method of claim 55 further comprising:
obtaining a copy of the particular data item, and wherein

the step (i) determines the content-based name using the
copy of the particular data item.

57. The method of claim 1 further comprising:
obtaining the database.
58. The method ofclaim 1 wherein the content-based name

for said particular data item is based, at least in part, on a size
or length of the particular data item.

59. The method of claim 51 wherein the content-based

name for the particular data item corresponds to an entry in
the database when the content-based name for the particular
data item exactly matches one of the plurality of identifiers in
the database.

60. The method of claim 1 wherein the database comprises
a table or a list identifying data items which may only be used
by licensed users.

61. The method of claim 1 wherein the database comprises
a table identifying license information associated with data
items, and wherein the table is indexed at least by the identi-
fiers of data items.

62. The method of claim 1 wherein, wherein the database
comprises a table containing a plurality of records, and
wherein a record ofthe table records a relationship between a
specific data item and users licensed to have access to that
specific data item.

63. The method of claim 1, wherein the plurality of iden-
tifiers in the database are identifiers of licensed content items.

64. The method of claim 5 wherein the table or list identi-

fies conditions under which certain data items may be used.
65. A method as recited in claim 1 wherein access to said

data item comprises one or more of: (a) copying the data item
to or from at least one of a plurality of computers; (b) provid-
ing the data item to at least one ofa plurality ofcomputers; (c)
reading the data item; (d) copying the data item; (e) distrib-
uting the data item; (f) modifying the data item; (g) storing the
data item; (h) opening the data item; (i) publishing the data
item; (j) writing the data item; (k) moving the data item; and
(1) deleting the data item.

66. A system operable in a network of computers, the
system comprising hardware including at least one processor
to:

(a) obtain at a first computer, from a second computer
distinct from said first computer, a content-based name
for a particular data item, the content-based name being
based at least in part on a function of at least some ofthe
data which comprise the contents of the particular data
item, wherein the function comprises a message digest
function or a hash function, and wherein two identical
data items will have the same content-based name; and
to

(b) ascertain whether or not the content-based name for the
particular data item corresponds to an entry in a database
comprising a plurality of identifiers; and to

(c) determine, based at least in part on whether or not the
particular data item corresponds to an entry in a data-

GOOG-1001-Page 59 of 61

GOOG-1001-Page 60 of 61

US 7,802,310 B2

43

base, whether or not access to the data item is unautho-
rized at or by one or more computers distinct from the
first computer.

67. A system operable in a network of computers, the
system comprising hardware including at least one processor
to:

control distribution of content from a first computer in said
network, at a first computer, in response to a request
from a second computer distinct from the first computer,
the request including at least a content-dependent name
of a particular data item, the content-dependent name
being based at least in part on a function of at least some
of the data comprising the particular data item, wherein
the function comprises a message digest function or a
hash function, and wherein two identical data items will
have the same content-dependent name, and to

based at least in part on said content-dependent name of
said particular data item, selectively permit the content
to be provided to or from at least one other computer if
providing of the content is not determined to unautho-
rized or unlicensed.

68 . A device operable in a network ofcomputers, the device
comprising hardware including at least one processor, and
software, in combination with said hardware:

(a) to obtain a list of content-dependent names, one con-
tent-dependent name for each of a plurality of data
items, wherein, for each ofthe plurality ofdata items, the
corresponding content-dependent name for that data
item is based at least in part on a function ofat least some
of the contents of that data item, wherein the function is
a message digest function or a hash function, and
wherein two identical data items have the same content-

dependent name;
(b) to receive at a first location, from a second location

distinct from said first location, an identifier for a par-
ticular data item;

(c) to determine, based at least in part on said identifier for
said particular data item, and using said list of content-
dependent names, whether a requestor may access the
particular data item; and

(d) based at least in part on said determining, if it is deter-
mined that requestor may not access the particular data
item, to cause access to the particular data item to be
denied.

69. A system operable in a network of computers, the
system comprising hardware including at least a processor,
and software, in combination with said hardware:

(a) to receive at a first computer, from a second computer,
a request regarding a data item, said request including at
least a content-dependent name for the data item, the
content-dependent name being based at least in part on a
function of the data in the data item, wherein the data
used by the function to determine the content-dependent
name comprises at least some ofthe contents of the data
item, wherein the function that was used is a message
digest function or a hash function, and wherein two
identical data items will have the same content-depen-
dent name; and

(b) in response to said request:
(i) to cause the content-dependent name ofthe data item

to be compared to a plurality of values; and
(ii) to determine ifaccess to the data item is authorized or

unauthorized based on whether or not the content-

dependent name corresponds to at least one of said
plurality of values, and

(iii) based on whether or not it is detem1ined that access
to the data item is authorized or unauthorized, to allow
the data item to be provided to or accessed by the
second computer if it is not determined that access to
the data item is unauthorized.

5

20

I\.) u:

30

40

50

44

70. A computer-implemented method operable in a system
which includes a network of computers, the system imple-
mented at least in part by hardware including at least one
processor, the method comprising the steps of:

in response to a request at a first computer, from another
computer, said request comprising at least a content-
based identifier for a particular data item, the content-
based identifier for the particular data item being based
at least in part on a given function of at least some data
which comprise the contents of the particular data item,
wherein the given function comprises a message digest
or a hash function, and wherein two identical data items
will have the same content-based identifier:

(A) hardware in combination with software, determin-
ing whether the content-based identifier for the par-
ticular data item corresponds to an entry in a database
comprising a plurality of content-based identifiers;
and

(B) based at least in part on said determining in step (A),
selectively permitting the particular data item to be
accessed at or by one or more computers in the net-
work ofcomputers, said one or more computers being
distinct from said first computer.

71 . A computer-implemented method implemented at least
in part by hardware comprising at least one processor and
software, in combination with said hardware, the method
comprising the steps:

at a first location, by a first computer,
(A) for a particular data item, said particular data item

comprising a plurality of segments, for at least some of
said plurality of segments, obtaining a corresponding
content-dependent segment identifier from another
computer at another location, each said corresponding
content-dependent segment identifier being based, at
least in part, on a given function of at least some of the
data comprising the corresponding segment, wherein
said given function for content-dependent segment iden-
tifier of at least one of the segments comprises at least a
message digest function or hash function, and wherein
two identical segments will have the same content-de-
pendent segment identifier; and

(B) hardware in combination with software, ascertaining
whether or not at least some of said content-dependent
segment identifiers have corresponding entries in a data-
base comprising a plurality of content-dependent iden-
tifiers; and

(C) based at least in part on said ascertaining in (B), selec-
tively permitting access to the particular data item at one
or more locations distinct from the first location,

wherein, when the particular data item comprises a file or a
portion of a file comprising an audio signal, the content-
dependent segment identifier of at least one of the plu-
rality ofscgmcnts for particular data itcm is a function of
at least some ofthe data comprising the audio signal; and

wherein, when the particular data item comprises a file or a
portion of a file comprising an video signal, the content-
dependent segment identifier of at least one of the plu-
rality ofsegments for particular data item is a function of
at least some ofthe data comprising the video signal, and

wherein said selectively permitting access to said particu-
lar data item in step (C) comprises one or more of: (a)
selectively permitting copying of the data item to or
from at least one of a plurality of computers; (b) selec-
tively permitting providing of the data item to at least
one of a plurality of computers; (c) selectively permit-
ting reading of the data item; (d) selectively permitting
copying of the data item; (e) selectively permitting dis-
tribution of the data item; (f) selectively permitting
modification of the data item; (g) selectively permitting
storage ofthe data item; (h) selectively permitting open-

GOOG-1001-Page 60 of 61

GOOG-1001-Page 61 of 61

US 7,802,310 B2

45

ing ofthe data item; (i) selectively permitting publishing
of the data item; (j) selectively permitting writing the
data item; (k) selectively permitting moving the data
item; and (l) selectively permitting deleting the data
item.

72. The method of claim 1 wherein step (c) comprises:
determining whether or not access to the particular data

item is authorized at or by one or more computers dis-
tinct from the first computer.

73. The method ofclaim 20 wherein the first location is the

first computer.
74. The method of claim 20 wherein the second location is

the second computer.
75. The method of claim 21 wherein the step (c) of deter-

mining takes place at said first location.
76. The method of claim 21 wherein the first location

receives the content-dependent identifier from the requestor.
77. The system as in claim 67 wherein the at least one other

computer is distinct from the first computer.
78. The system as in claim 68 wherein the identifier is

received a the first location from the requestor.
79. The system of claim 68 wherein access to the particular

data item comprises one or more of: (a) copying the data item
to or from at least one of a plurality of computers; (b) provid-
ing the data item to at least one ofa plurality ofcomputers; (c)
reading the data item; (d) copying the data item; (e) distrib-
uting the data item; (f) modifying the data item; (g) storing the
data item; (h) opening the data item; (i) publishing the data
item; (j) writing the data item; (k) moving the data item; and
(l) deleting the data item.

80. The system of claim 69 wherein
based on whether or not it is determined that access to the

data item is authorized or unauthorized, the system
allows the data item to be provided to the second com-
puter from the first computer if it is not determined that
access to the data item is unauthorized.

81 . A device operable in a network ofcomputers, the device
comprising hardware including at least one processor and
memory, to:

(a) receive, at said device, from another device in the net-
work, a content-based identifier for a particular
sequence of bits, the content-based identifier being
based at least in part on a function of at least some ofthe
particular sequence of bits, wherein the function com-
prises a message digest function or a hash function, and

20

30

40

46

wherein two identical sequences of bits will have the
same content-based identifier; and to

(b) compare the content-based identifier of the particular
sequence of bits to a plurality of values; and to

(c) selectively allow said particular sequence of bits to be
provided to or accessed by other devices depending on
whether or not said content-dependent identifier corre-
sponds to one of the plurality of values.

82. The device ofclaim 81 wherein the particular sequence
of bits represent data selected from the group comprising: a
file, a portion of a file, a page in memory, a digital message, a
portion of a digital message, a digital image, a portion of a
digital image, a video signal, a portion of a video signal, an
audio signal, a portion of an audio signal, a software product,
and a portion of a software product.

83. The method ofclaim 1 wherein the content-based name

for the particular data item comprises a request for the par-
ticular data item.

84. The method of claim 24 wherein the request regarding
the particular data item is a request for the particular data
item.

85. The system as in claim 69 wherein the request regard-
ing the data item is a request for the data item.

86. A device operable in a network ofcomputers, the device
comprising hardware, including at least one processor and
memory, to:

(a) receive at said device, from another device in the net-
work, a digital identifier for a particular sequence ofbits,
the digital identifier being based, at least in part, on a
given function ofat least some ofthe bits in the particular
sequence ofbits, wherein the given function comprises a
message digest function or a hash function, and wherein
two identical sequences ofbits will have the same digital
identifier; and

(b) selectively allow the particular sequence of bits to be
provided to or accessed by other devices in the system,
based at least in part on whether or not the digital iden-
tifier for the particular sequence ofbits corresponds to a
value in a plurality of values, each of the plurality of
values being based, at least in part, on the given function
of at least some of the bits in a corresponding sequence
of bits.

87. A device as in claim 86 wherein the device is a com-

puter.

GOOG-1001-Page 61 of 61

