
Page 1 of 27
GOOG-1003

United States Patent [191
Woodhill et al.

U8005649196A

[11] Patent Number: 5,649,196

[45] Date of Patent: Jul. 15, 1997

[54] SYSTEM AND METHOD FOR DISTRIBUTED
STORAGE MANAGEMENT ON
NETWORKED COMPUTER SYSTEMS

USING BINARY OBJECT mENTfl'IERS

["15] Inventors: James R. Woodhfll. Houston; Louis R.
Woodhill, Richmond; William Russell
More, .111; Jay Harris Berlin, both of
Houston, all of Tax.

[73} Assignec; Legem Corporafim, Pittsburgh, Pa.

[211 App]. No: 555,376

[22] Filed: Nov. 9, 1995

Related US. Application Data

[63] Continuation of Set: No. 85,596, Jul. 1. 1993, abandoned.

[51] Int. CL" ... G861? 11100

[52] vs. C]. 3951620;3951610; 3951618;
395120003; 3951489; 395149104; 395113561;
395118317; 395118204; 3951180; 3641DIG. 1:

3641285; 36412851; 36412344

[58] Field of Search 3951610, 618.
3951620. 200.03, 489, 49004, 185.01, 183.17,

182.04, 180; 3641'DIG. 1

[56] References Cited

U.S. PATENT DOCUMENTS

4,616,315 1011986 Logsdonetal.
711992 Chefi’elzetal. 3951575

5,133,065
5,202,982 411993 Gramlich etal. 3951600
5,235,601 811993 Stallmo et a1. 3711401
5,239,633I 811993 Davis et a1. 3951425
5,239,659 811993 Rudeseal at 91. 3951800
5,274,802 1211993 Alline 3951600
5,273,sss 111994 Ng etal.
5,295,253 311994 Iewettetal.
5,367,698 1111994 Webberetal.

.. 3711104
3951575
3951800

OTHER PUBLICKI‘IONS

The 8th International Conference on Distributed Computing
Systems, 13 Jun. 1988. San Jose. California pp. 471—479
(Relevant to claim No. I. 2, 5, 8, 9, 18, 19) Daniel Barbara
et a1. 'Exploiu‘ng symmetries for low—cost comparison of
file copies’ seep. 4'1 1, right coL,line 29—p. 472. left coL, line
10 (Relevant to claim No. 3, 4, 6, 10—14. 20.
Computer Technology Review. vol. 12, No. 10, Aug. 1992.
Los Angeles US pp. 55-60 Daniel Masters 'Distributed
Network Processing Speeds Up Network Backup' see p. 60,
left. col., line 18-line 31 (Relevant claim No. 10).

Primn' Examiner—Paul V. Kult‘k
Assistant Exaninermlean R. Holncre

Attorney; Agent, or Firm—Kirkpatrick & lockhart LLP

[5'1] ABSTRACT

The present invention is directed to a system and method for
the distributed management of the storage space and data on
a networked computer system wherein the networked com-
puter system includes at least two storage devices for storing
data files comprised of one or more binary objects. The
distributed storage management system includes a device for
selectively copying the binary objects sun-ed on one of the
storage devices to another of the storage devices and another
device for calculating a wn-ent value for a binary object
identifier for selected binary objects stored on the storage
devices wherein the calculation of the binary object identi-
fier is based upon the actual data contents of the associated
binary object. The distributed storage management system
further includes a device for storing the current value of the

binary object identifier as a previous value of the binary
object identifier, another device for comparing the current
value of the binary object identifier associated with a par-
ticular binary object to one or more previous values of the
binary object identifier aswciated with that particular binary
object and a device for commanding the device for selec»
tively copying binary objects in response to the device for
comparing.

18 Claims, 14 Drawing Sheets

tea

on? 59455» i
m —.' so =

..-

we! Lym'a I
II- 1

'1th I

GOOG-1003

Page 1 of 27

Page 2 of 27
GOOG-1003

US. Patent Jul. 15, 1997 Sheet 1 of 14 5,649,196

1 8

User User . 18

ork Station Work Stanon
17

17

16 16

Local Local

NetWOI‘ Netw01'

17

1 7 /

Local / 15 Local
Compute \ 15 Compute

20
20

19 Wide 14

Am

Network

1 9

13

Remote 12

Backup
Fileserver
FIG. 1

w
Page 2 of 27

Page 3 of 27
GOOG-1003

US. Patent Jul. 15, 1997 Sheet 2 of 14 5,649,196

32

Compressed Storage Files 3 0

' kFree DIS Space 28

.12 Local Computer Data Flles 26

Backup Queue Database 25

File Database
24

Distributed Storage

Management Program 22

Operating System Files

FIG. 2

GOOG-1003

Page 3 of 27

Page 4 of 27
GOOG-1003

US. Patent Jul. 15, 1991r Sheet 3 of 14 5,649,196

2;

36

666 66

Idem.‘ 40

Record 41

34 43

46

B k 48
44 up 60

161321686 62
42 64

66

67

Object
166m. 66

Record 62

68 64

\ 66
66

74 70
BM '22

Identifier

FIG. 3

GOOG-1003

Page 4 of 27

Page 5 of 27
GOOG-1003

US. Patent Jul. 15, 1997 Sheet 4 of 14 5,649,196

' 76

78

80

File Name

Backup 82

Queue File Status

Record 84

75 File Size

86

Last Modified Date/Time

88

2.6. Last Acess Date/Time

90

92

FIG. 4

GOOG-1003

Page 5 of 27

Page 6 of 27
GOOG-1003

US. Patent Jul. 15, 1997 Sheet 5 of 14 5,649,196

' 1 08

B25155; 100 .
Queue Asmgn

Database User-
Defined

1 0 2 Pricri

ex

File Y
Found

Backup

Queue

RerdBackup” File“ Update . Delete
Queue Recor Status = Delete Backup

Found Queue
Queue Record

N 120 I
. Create 122

END F116 File _ —126
Identificatton

l 19/ Record

Locate
128 File 133

Identification
Record Create

Binary Object
Identification

Records

Identify
130 Binary

Objects for
Backu o

. Separate Segment Data 140

Fill; Into Stream Into
132 ate Multiple To St 116

Streams t 36 Binary Objects ep

GOOG-1 003

Page 6 of 27

Page 7 of 27
GOOG-1003

US. Patent Jul. 15, 1997 Sheet 6 of 14 5,649,196

Compile list
Of Binaly
Objects To

Be Backed Up

Delete Binary
Object Frorn

Local

Storage

Transmit ‘
Storage File Sufficien

To Remote Sstorage
Backup pac

 Locate Highest 300 Priority Binary

Object

For Backup

304

 Send Message
To Resource

Allocation
Routme

FIG. 5C

308

Send List 01" Wait For

Binary Message From

Objects Resource
For Backu - Allocation

 Routine

W
Page 7 of 27

Page 8 of 27
GOOG-1003

US. Patent Jul.15,1997 Sheet 7 of 14 5,649,196

Send Message

To Resource

Allocation Routine

Wait For Compress

Message From Backup!

Restore Routine

Send Message

To Resource

Allocation Routine

Allocated

Storage
Filled

Request Allocation

Of Compressed

Storage File

FIG. SD

320

Send Message Wait For Allocate
To Resource

Allocation

Routine

Allocation Compressed

Request Storage File
FIG. 5B

GOOG-1003

Page 8 of 27

Page 9 of 27
GOOG-1003

US. Patent Jul. 15, 1997r Sheet 3 of 14 5,649,196

 Wait For

Message Fro

Prioritization

350

Mess-

age From

Compression
Routine

Mess-

age From
Local Storage

Routine

Mess-

age From Back-
u . Restore

outin

Mess-

Y age From Y
CompressEOn

Routin
Save Storage ‘ dd Compres-

Y sion Routine
Space. To Space

Information . . _ . -

 Mark

Compression

Routine As

Available

344 352
3 54

N Compression
Routmes

Waitin _

358

336
Send Message

To

Compression
Routine

CompreSsion
Routine
' vailabl

362

Send Message

To Delete

Lower Priority

Trasmit Mess- Storage Files

age To Backup!

Send Message
To Delete

Restore

Routine
Storage Files

After Transfer

W
Page 9 of 27

Page 10 of 27
GOOG-1003

US. Patent Jul. 15, 1997 Sheet 9 of 14 5,649,196

Identity Whether

Binal')’ Object Is

Segment Of
Database File

Calculate

Contents

Identifiers

 Calcualte

Contents

Identifiers

Contents

Identifiers

Equal

GOOG-1003

Page 10 of 27

Page 11 of 27
GOOG-1003

US. Patent Jul. 15, 1997r Sheet 10 of 14 5,649,196

Create Work

Area On
420

Remote File
Server

 Locate Most

Recent Complete

Copy Of 1

Binary Object

422

424 430

Create

Bitmap

Locate Most
Recent

@ Granularized

Copy Of

Binary Object

426

Granular-

ized Copy
Foun .

. 438
Reconstltuted

Binary

Object

GOOG-1003

Page 11 of 27

Page 12 of 27
GOOG-1003

US. Patent Jul. 15, 1997 Sheet 11 of 14 5,649,196

Obtain

Identity

Of File

Compile List Of

Binary Objects In

Previous Version

OfFile

443

Calculate

Contents

Identifiers

Transmit

Update

Request

Reconstitute ‘ FIG 51
Binary

Object

54 56

 ‘ 50 452

Transmit

Compare Granules
contents Identifiers To Local

Identifiers Match Computer

W
Page 12 of 27

Page 13 of 27
GOOG-1003

U.S. Patent Jul. 15, 1997 Sheet 12 of 14 5,649,196

500
502

Initiate Restore

OfRandomly

Selected

Binaxy Object

Calculate O4

Binaty Object

Identifier

510

506

Generate

Obj ect Identifiers Audit Failure

Log FIG. 5J
508

Successful

Audit
Restore

W
Page 13 of 27

Page 14 of 27
GOOG-1003

US. Patent Jul. 15, 1997 Sheet 13 of 14

 600

Obtain

Last Access

Date

Restore File 602

Database if

Necessary

 o4 ' FIG. 5K

Read File

Identification

Record

Put

Disk Drive

Online

Locate Most

Recent Backup

Instance Record

Initiate Restoratiou

0fFile; Set

Migration Status

To "Normal"

 "Migrated"

5,649,196

GOOG-1003

Page 14 of 27

Page 15 of 27
GOOG-1003

US. Patent Jul. 15, 1997 Sheet 14 of 14 5,649,196

Locate Each

File

Identification

Record

 Create

Retention

Working

List

710

Additional

Backup Instance
Records

Locate Most

Recent Backup
Instance

Record

Mark Retention

Working List

Entries As

Used

Insert

Date Matches
Unused Date

Ranges

GOOG-1003

Page 15 of 27

Page 16 of 27
GOOG-1003

5,649,196

1
SYSTEM AND METHOD FOR DISTRIBUTED

STORAGE MANAGEMENT 0N
NETWORKED COMPUTER SYSTEMS

USING BINARY OBJECT IIJEN‘I‘IFIERS

This application is a continuation application Ser. No.
081085596 filed on Jul. 1, 1993, now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention is directed generally to a system
and method for distributed storage management on a net«
worked computer system and, more specifically, to a system
and method for distributed storage management on a net—
worked computer system including a remote backup file
server and one or more local area networks in communica-

tion with the remote baclmp file server.
2. Description of the Background of the Invention

Backup copies of information stored on a computer
system must be made so that if a failure occurs which causes
the original copies of the data to be lost, the lost data can be
recova'ed as it existed at the time when the last backup copy
was made. Bachlp/restore systems have a long history on all
types of computer systems from mainframes to
minicomputers, local area network file servers and desktopworkstations.

Historically. backup systems have operated by making
copies of a computer system’s files on a special backup
inputtoutput device such as a magnetic tape drive, floppy
diskette drive, or optical disk drive. Most systems allow full
backup, partial backup (e.g., specified drives, directories, or
files), or incremental backups based on files changed after a
certain date or time. Copies of files made during a backup
procedure are stored on these special backup devices and are
then later retrieved during a restore operation either under
file names derived from the original file, from the datet’time
of the backup operation or from a serially-incremented
number. The backup procedure is typically accomplished on
an individual ccmputen’file server basis. rather than through
a single coordinated approach encompassing multiple sys-
tems. That is. the computer resources of two computers at
most (the one processing the files to be backed up and the
one with the backup device attached) are employed to effect
the backup process, regardless of the actual number of
computers networked together.

Today, the absolute numbers of computers networked
together by organizations are increasing rapidly as is the
number of different types of computers and operating sys~
tems in use. At the same time. the numbm' of storage devices
and the capacities incorporated into each of these units is
growing even more rapidly. In this environment, the backuptI
restore approaches which have been traditionally used have
become less reliable, more expensive, and more consump-
tive of human time and attention.

Thus, the need exists for a system designed to overcome
the limitations of the existing baclmplrestore systems that
have the following characteristics: (1) is capable of operat-
ing on a networked computer system incorporating various
types of computers and operating systems; (2) is capable of
accommodating a large array of large capacity storage
devices; (3) is reliable; (4) is mpable of operating with a
minimum amount of human intervention; and (5) is rela-
tively inexpensive.

SUMMARY OF THE INVENTION

The present invention is directed to a system for the
distributed management of the storage space and data on a

5

10

15

25

35

45

55

2

neuvorked computer system wherein the networked com-
puter system includes at least uvo storage devices for storing
data files comprised of one or more binary objects. The
distributed storage management system includes means for
selectively copying the binary objects stored on one of the
storage devices to another of the storage devices and means
for calculating a current value for a binary object identifier
for selected binary objects stored on the storage devices
wherein the calculation of the binary object identifier is
based upon the actual data contents of the associated binary
object. The distributed storage management system further
includes means for storing the current value of the binary
object identifier as a previous value of the binary object
identifier. means for comparing the current value of the
binary object identifier associated with a particular binary
object to one or more previous values of the binary object
identifier associated with that particular binary object and
means for commanding the means for selectively copying
binary objects in response to the means for comparing.

The present invention is further directed to a method for

the management of the storage space and data on a computer
system wherein the computer system includes at least two
storage area for storing data files comprised of one or more
binary objects. The storage space management method
includes the following steps: (1) selectively copying the
binary objects stored in one of the storage areas to another
of the storage areas; (2) calculating a current value for a
binary object identifier for selected binary objects stored in
the storage areas wherein the calculation of the binary object
identifier is based upon the actual data contents of the
associated binary object: (3) storing the current value of the
binary object identifier as a previous value of the binary
object identifier; (4) comparing the current value of the
binary object identifier associated with a particular binary
object to one or more previous values of the binary object
identifier associated with that particular binary object; and
(5) controlling the step for selectively copying binary
objects in response to the step for comparing.

The system and method, of the present invention for the
management of the storage space on a computer system
provide a backupirestore system that is capable of operating
on a networked computer system incorporating various
types of computers and operating systems, is capable of
accommodating a large array of large capacity storage
devices, is reliable, is capable of operating with a minimum
amount of human intervention and is relatively inexpensive.
These and other advantages and benefits of the present
invention will become apparent from the description of a
preferred embodiment hereinbelow.

BRIEF DESCRIPTION OF THE DRAWINGS

For the present invention to be clearly understood and
readily practiced, a preferred embodiment will now be
described, by way of example only, with reference to the
accompanying figures wherein:

FIG. 1 illustrates a simplified representation of a net-
worked computer systemic which the system and method of
the present invention may be employed;

FIG. 2 illustrates the manner in which the Distributed

Sta-age Manager program of the present invention allocates
the storage space on each of the strange devices illustrated
in FIG. 1;

FIG. 3 illustrates the File Database utilized by the Dis~
tributed Storage Manager program of the present invention;

FIG. 4 illustrates the Backup Queue Database utilized by
the Distributed Storage Manager program of the present
invention: and

GOOG-1003

Page 16 of 27

Page 17 of 27
GOOG-1003

5,649,196

3

FIGS. 5a~5l illusu'ate flow charts explaining the operation
of the Disn't'buted Storage Manager program of the present
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

FIG. 1 illustrates a simplified representation of a typical
networked computer system 10 in which the system and
method of the present invention for distributed storage
management on networked computer systems may be
employed. A remote backup file server 12 is in
communication, via data path 13, with a wide area network
14. The wide area network 14 is, in turn, in communication

with a pltnallty of local area networks 16 via data paths 15.
Those of ordinary skill in the art will recognize that any
number ofwide area networks 14 may be in communication
with remote backup file server 12 and that any number of
local area networks 16 (from 1 to more than 100) may be in
communication with each wide area network 14. Those of

ordinary skill in the art will also recognize that the means for
communication between remote backup file server 12, wide
area network 14 and local area networks 16 over data paths
13 and 15 is well known.

Each local area network 16 includes multiple user work-
stations 18 and local computers 20 each in communication
with their respective local area netWork 16 via data paths 1'7.
Again, those of ordinary skill in the art will recognize that
the means for communication between user workstations 18,
local computers 20 and local area networks 16 via data paths
17 is well known. The storage space on each disk drive 19
on each local computer 20 in the networked computer
system 10 is allocated as follows and as is showu in FIG. 2:
(1) operating system files 22; (2) a Distributed Storage
Manager program 24 which embodies the system and
method of the present invention (the operation of which is
described in detail hereinbelow); (3) a File Database 25 (the
structure of which is described in detail hereinbelow}; (4) a
Backup Queue Database 26 (the structure of which is
described in detail hereinbelow); (5) local computer data
files 28; (6) free disk space 30 and (7) compressed storage
files 32 (created by the Distributed Storage Manager pro-
gram 24 of the present invention as is explained more fully
hereinbelow).

The Distributed Storage Manager program 24 of the
present invention builds and maintains the File Database 25
on one of the disk drives 19 on each local computer 20 in the
networked computer system 10 according to the structure
illustrated in FIG. 3. The File Database 25 stores information

relating to each file that has been backed up by the Distrib-
uted Storage Manager program 24 since the initialization of
that program on each local computer 20. The File Database
25 is comprised of three levels of records organized accord
ing to a predefined hierarchy. The top level record, File
Identification Record 34, includes identification information
for each file that has been backed up by Distributed Storage
Manager program 24. File Identification Record 34 contains
the following elements: (1) Record Type 36 (identifies the
file as either a directory file or a regular file); (2) File
Location 33 (name of the directory in which the file resides);
(3) File Name 40 (name of the file); (4) Migration Status 41
(explained more fully hereinbelow); and (5) Management
Class 43 (explained more fully hereinbelow).

For each File Identification Record 34 in File Database

25, one or more Backup Instance Records 42 are created that
contain information about the file (identified by File Iden-
tification Record 34) at the time that the file is backed up.

10

1.5

20

3D

35

45

50

55

65

4

Each time that a file is backed up. 3. Backup Instance Record
42 is created for that file. Each Backup Instance Record 42
consists of the following elements: (1) Link to File Identi-
fication Record 44; (2) Backup Cycle Identifier 46 (identifies
the particular backup cycle during which the Backup
Instance Record 42 is created); (3) File Size 48; (4) Last
Modified Datet'I'ime 50; (5) Last Access DatefI‘ime 52; (6)
File Attributes 54 (e.g., read-only, system, hidden); (7)
Delete Date 56 (date on which the file was deleted); and (8)
Insert Date 57 (date on which the Backup Instance Record
42 was created).

Associated with each Backup Instance Record 42 is one
or more Binary Object Identification Records 58. The Dis-
n-ibnted Storage Manager program 24 views a file as a
collection of data streams. A data stream is defined as a

distinct collection of data within the file that may be changed
independently from other distinct collections of data within
the file. For example. a file may contain its normal data and
may also contain extended attribute data. A user may change
the extended attribute data without modifying any of the
normal data or vice versa. The Distributed Storage Manager
program 24 further divides each data stream into one or
more binary objects. If the size of the data stream is equal
to or less than a previously defined convenient maximum
binary object size (currently one (1) megabyte), then a single
binary object represents the data stream. If the data stream
is larger than the maximum binary object size, then the
Distributed Storage Manager program 24 divides the data
stream into multiple binary objects, all but the last of which
are equal in size to the maximum binary object size. A
Binary Object Identification Record 58 is created for each
binary object that comprises the file which was backed up
during the backup cycle identified by the Backup Cycle
Identifier 46 of a particular Backup Instance Record 42.
Each Binary Object Identification Record 58 includes the
following components: (1) Link to Backup Instance Record
60; (2) Binary Object Stream'l'ype 62 (e.g., data, extended
attributes, security); (3) Binary Object Size 64; (4) Binary
Object CRCfl2 66 (explained more fully hereinhelow); (5)
Binary Object [RC 68 (explained more fully hereinbelow);
(6) Binary Object Hash 70 (explained more fully
hereinbelow); and (7) Binary Object Ofi’set 72 (explained
more fully hereinbelow). The Binary Object Size 64, Binary
Object CRC32 66, Binary Object LRC 68 and Binary Object
Hash 70 comprise the Binary Object Identifier 74 which is
a unique identifier for each binary object to be backed up and
is discussed in more detail below.

The Distributed Storage Manager program 24 also builds
and maintains the Backup Queue Database 26 on one of the
disk drives 19 on each local computer 20 in the networked
computer system 10 according to the structure illustrated in
FIG. 4. Each entry (Backup Queue Record 75) in the Backup
Queue Database 26 is comprised of the following compo—
nents: (1) Record Type 76 (identifies the file as either a
directory file or a regular file); (2) File Location 78 (name of
the directory in which the file resides); (3) File Name 80
(name of the file): (4) File Status 82 (“new". “modifi ” or
“deleted”); (5) File Size 84; (6} Last Modified Datefl'ime 86;
(7) Last Access DatelTime 88; (3) File Attributes 90 (e.g.,
read—only. system, hidden); and (9) File Priority 92
(explained more fully hereinbelow).

The operation of the Distributed Storage Manager pro~
grain 24 may be illustrated by way of the flow charts
depicted in FIGS. 5a through St. For explanation purposes,
the Distributed Storage Manager program 24 is divided into
several distinct functions which will he discussed in turn.

Those of ordinary skill in the art will recognize, however.

GOOG-1003

Page 17 of 27

Page 18 of 27
GOOG-1003

5 ,649, 196
5

that each of the distinct functions operates in cooperation
with the otherfunctions to form a unitary computer program.
Those of ordinary skill in the art will also recognize that the
following discussion illustrates the operation of the Distrib-
uted Storage Manager program 24 on a single local com—
puter 20, although it should be understood that the Distrib-
uted Storage Manager program 24 operates in the same
fashion on each local computer 20 on the networked com-
puter system 10. The Distributed Storage Manager program
24 can either be executed on user demand or can be set to
execute periodically on a user-defined schedule.

1. Identification of Binary Objeds to be Backed Up
In the flow chart of FIG. 5a, execution of the Distributed

Storage Manager program 24 begins at step 100 where the
Backup Queue Database 26 is built by creating a Backup
Queue Record 75 for each File Identification Record 34

found in File Database 25. In this way, a list of files that were
backed up dining the previous backup cycle is established so
that it can be determined which files need to be backed up
during the current backup cycle. To create each Backup
Queue Record 75, the Backup Instance Record 42 repre-
senting the most recent backup of the file represented by
each File Identification Record 34 is located. This determi-

nation is made by examining the Backup Cycle Identifier46
in each Backup Instance Record 42. The Backup Cycle
Identifier 46 may represent either a date (monthldayfyear) or
numerical value assigned to a particular backup cycle. The
Backup Queue Record 75 is comprised of certain of the data
fields of both the File Identification Record 34 and the

Backup Instance Record 42. Dming the process of creating
each Backup Queue Record 75, the File Status field 82is set
to “ ELEI‘ED“. However, if the Delete Date field 56 of the
most recent Backup Instance Record 42 associated with the

File Identification Record 34 currently being processed is
non-mo, indicating that the file has beenpreviously deleted,
then no Backup Queue Record 75 is created for that File
Identification Record 34. If the backup that is currently
being processed for the local computer 20 is not a full
backup (i.e., all files on all disk drives 19 on the local
computer 20), then the Distributed Storage Manager pro-_
gram 24 will only create Backup Queue Records 75 for those
files that match the backup specifications. For example, if
only those files that have a file extension of “.EXE" are to
be backed up. then only File Identification Records 34 that
correspond to “.EXE” files will be processed

Program control then continues with step 102 where the
Distributed Storage Manager program 24 of the present
invention scans all disk drives 19 on the local computer 20
that are to be backed up. This operation consists of scanning
the directory hierarchy on each disk drive 19 on the local
computer 20 and returning to the Distributed Storage Man-
ager program 24 certain file block information for each of
the directory files and regular files that are stored on the disk
drives 19 to be backed up. A typical computer operating
system maintains a file block for each file stored on the
system which includes information such as file location, file
type. user—assigned file name, file size, creation date and
time, modify date and time, access date and time and file
attributes. This operation may be controlled by some param-
eters that indicate which drives, directories and files are to
be backed up during a backup operation. However, the
default operation is to back up all files on all disk drives 19
on the local computer 20. Program control then continues
with step 103 where the Distributed Storage Manager pro-
gram 24 determines whether the file block infonnation for
an additional file has been located on the disk drives 19. If

an additional file has been located, program control confine

10

15

35

as

50

55

55

6

ues with step 104. If an additional file has not been located.
program control continues with step 116.

In step 104, the Distributed Storage Manager program 24
determines whether a Backup Queue Record 75 exists for
the located file by comparing the file’s file block information
to the information stored in Backup Queue Database 26. If
such a Backup Queue Record ‘75 does not exist (i.e., this is
the first time this file will be backed up), program control
continues with step 106 where a Backup Queue Record '75
for the file is created using the information contained within
the file’s file block. The File Status field 82 for the newly
created Backup Queue Record 75 is setto “NEW”. Program
control then continues with step 108 where a user-defined
priority is assigned to the file and stored in the File Priority
field 92 of the Backup Queue Record ‘75. This user-defined
priority may be assigned to the file by methods that are
well-known to those of ordinary skill in the art. The use of
the File Priority field 92 by the Disn-ibuted Storage Manager
program 24 is discussed in more detail hereinbelow. Pro-

gram control is then returned to step 102.
If the Distributed Storage Manager program 24

determines, in step 104, that a Backup Queue Round 75
exists in the Backup Queue Database 26 for the located file,
program control continues with step 110 where it is deter~
mined whether any change has been made to the file. This
determination is made by comparing the information in the
file’s file block with the information stored in the file‘s

Baclnrp Queue Record '75. If any of the values have changed.
program control continues with step 112 where File Status
field 82 is set to ‘MODIFIED” and the fields in the Backup
Queue Record 75 are updated firms the file’s file block

information. Program control then continues with step 108
where a user-defined priority is assigned to the file and
stored in File Priority field 92; program control is then
returned to step 102. Ifthe determination is made in step 110
that no change has been made to the file, then, in step 114,
the Backup Queue Record 75 is deleted from the Backup
Queue Database 26 since the file does not need to be backed

up. Following step 114, program control is refined to step102.

If the Distributed Storage Manager program 24
determines, in step 103, that an additional file has not been

located, program control continues with step 116. In step
116, the Distributed Storage Managerprogram 24reads each
Backup Queue Record 75 in Backup Queue Database 26,
one at a time. The Backup Queue Records 75 in Backup
Queue Database 26 represent all of the files that must be
backed up by the Distributed Storage Manager program 24
during the present backup cycle. Program control continues
with step 117 where the Distributed Storage Manager pro-
gram 24 determines whether a next Backup Queue Record
75 has been located in Backup Queue Database 26. Ifa next
Backup Queue Record 75 has been located, program control
continues with step 118; otherwise, program control contin-
ues with step 119, where the routine illustrated by the flow
chart of FIG. 5a is terminated In step 118, the Distributed
Storage Manager program 24 determines whether the File
Status field 82 in the Backup Queue Record 75 currently
being prooessed is set to ‘DELEI'ED". If the File Status
field 82 is set to ‘ EIEI‘ED“, program control continues
with step 120 where the Delete Date field 56 in the most
recent Baclnrp Instance Record 42 associated with the file

identified by the Backup Queue Record 15 ctn'rently being
processed is setto the cm'rent date. Alist of all Binary Object
Identification Records 58 associated with the Backup
Instance Record 42 for the file identified by the Backup
Queue Record 75 currently being processed is placed in a

W
Page 18 of 27

Page 19 of 27
GOOG-1003

5,649,196

7

delete queue (not shown) that will be used by Distributed
Storage Manager program 24 to delete all Binary Object
Identification Records 58 for binary objects that have been
deleted fi'om the disk drives 19 of local computer 20.
Program control then continues with step 122 where the
Backup Queue Record 75 unrently being processed is
deleted from the Backup Queue Database 26. Program
control is then returned to step 116.

If the Distributed Storage Manager program 24
determines. in step 118. that the File Status field 82 of the
Backup Queue Record 75 currently being processed is not
set to “DELETED”, program control continues with step
124 where the Distributed Storage Manager program 24
determines whether the File Status field 82 of the Baclmp
Queue Record '75 currently being processed is set to
‘NEW". If the File Status field 82 is set to ‘NEW", program
control continues with step 126 where a File Identification
Record 34 is created in File Database 25 using the infor-
mation stored in the Backup Queue Record 75 currently
being processed. Program control then continues with step
130. If the Distributed Storage Manager program 24
determines, in step 124, that the File Status field 82 of the
Backup Queue Record 75 currently being processed is not
set to “NEW” (i.e., the file has been modified since the last

backup cycle), program control continues with step 128
where the File Identification Record 34 associated with the

file identified by the Backup Queue Record 75 currently
being processed is located in the File Database 25. Program
control then continues with step 130. In step 130, the
Distributed Storage Manager program 24 creates a new
Backup Instance Record 42 in the File Database 25 for the
file identified by the Backup Queue Record 75 currently
being processed. The Backup Instance Record 42 is created
using information stored in the associated File Identification
Record 34 and the Backup Queue Record 75 currently being
processed. The Backup Cycle Identifier 46 is set to indicate
that the file is to be backed up during the current backup
cycle. The Delete Date field 56 is initialized to “zero". The
Insert Date field 57 is set to the current date.

Program control then continues with step 132 where the
Distributed Storage Manager program 24 separates the file
identified by the Backup Queue Record 75 currently being
processed into its component data streams. Each data stream
is then processed individually. Those of ordinary skill in the
art will recognize that these data streams may represent
regular data, extended attribute data, access control list data,
etc. Program control continues with step 134 where the
Distributed Storage Manager program 24 determines
whether each of the data streams currently being processed
is larger than the maximumbinary object sire (currently one
(1) megabyte). If the data stream is larger than one (1)
megabyte, program control continues with step 136 where
the data stream currently being processed is segmented into
multiple binary objects smaller in size than one (1) mega-
byte. Either following step 136 or, if the detennination is
made in step 134 that the data stream crnrently being
processed is not larger than one (1) megabyte (and. thus, the
data stream is represented by a single binary object), pro-
gram control continues with step 138.

In step 138. a Binary Object Identification Record 58 is
treated in File Database 25 for each of the binary objects
currently being processed. Each of these Binary Object
Identification Records 58 are associated with the Baclntp
Instance Record 42 created in step 130. The Binary Object
Identifier 74 portion of each Binary Object Identification
Record 58 is comprised of the Binary Object Size field 64,
the Binary Object CRC32 field 66, the Binary Object LRC

10

15

2D

30

35

45

50

55

65

8

field 68 and the Binary Object Hash field '70. Each of the
fields of the Binary Object Identifier 74 may be four (4)
bytes in length and is calculated from the contents of each
binary object. The Binary Object Size field 64 may be set
equal to the byte—size ofthe binary object. The Binary Object
CRC32 field 66 may be set equal to the standard 32-bit
Cyclical Redundancy Check number calculated against the
mutants of the binary object taken one (1) byte (8 bits) at a
time. Those of ordinary skill in the art will readily recognize
the manner in which the Cyclical Redundancy Check num-
ber is calculated. The Binary Object LRC field 68 may be set
equal to the standard Longitudinal Redundancy Check num»
ber calculated against the contents of the binary object taken
four (4) bytes (32 hits) at a time using the following
algorithm:

BINARY OBJECT LRC = (hfifialized value)
for each double word (32 hits) of the binary object data:

LRC = LRC (XOR) double word of binary object data
end loop

The Binary Object Hash field 70 is calculated against the
contents of the binary object taken one (1) word (16 hits) at
a time using the following algorithm:

HASH = (initialised value)
for each word (16 bits) of the binary object:

rotate current: HASH value by 5 bits
HASH = HASH + 1
HASH = HASH + (current word (16 bits) of binary object)

end loop

Since the Binary Object Identifier 74 is used to uniquely
identify a particular binary object, it is important that the
possibility of two dilferent binary objects being assigned the
same Binary Object Identifier 74 be very small. This is the
reason for implementing the Binary Object Identifier 74
using 128 bits and four separate calculations. Although a
Binary Object Identifier 74 may be calculated in various
ways, the key notion is that the Binary Object Identifier is
calculated from the contents of the data instead of from an

external and arbitrary sorn‘ce. By incorporating the Binary
Object Size field 64 within the Binary Object Identifier 74.
only binary objects that are exactly the same size can
generate duplicate Binary Object Identifiers 74. Further, the
calculations used to determine the Binary Object CRC32
field 66, the Binary Object LRC field 68 and the Binary
Object Hash field 70 are relatively independent of each
other. Using the calculations set forth above, the probability
that the Distributed Storage Manager program 24 will gen-
erate the same Binary Object Identifier 74 for two different
binary objects is extremely low. Those of ordinary skill in
the art will recognize that there exist many difierent ways of
establishing the Binary Object Identifier 74 (eg, establish-
ing a Binary Object Identifier '74 of a diiferent length or
utilizing diiferent calculations) and that the procedure set
forth above is only one way of establishing the Binary
Object Identifier 74. The critical feature to be recognized in
creating a Binary Object Identifier 74 is that the identifier
should be based on the contents of the binary object so that
the Binary Object Identifier 74 changes when the contents of
the binary object changes. In this way, duplicate binary
objects, even if resident on different types of computers in
a heterogeneous network, can be recognized from their
identical Binary Object Identifiers 74.

Program control then continues with step 140 where the
Distributed Storage Manager program 24 identifies which

GOOG-1003

Page 19 of 27

Page 20 of 27
GOOG-1003

5,649,196
9

binary objects must be backed up during the current backup
cycle. If the File Stains field 82 of the Backup Queue Record
75 currently being prooessed is set to “NEW“, then all

binary objects associated with the file identified by the
Backup Queue Record 75 currently being processed must be
backed up during the current backup cycle. If the File Status
field 82 is set to "MODIFIED", then only those binary
objects associated with the file that have changed must be
bacloed up. Those binary objects that have changed are
identified by comparing the Binary Object Identifiers 74
calculated in step 138 with the corresponding Binary Object
Identifiers 74 associated with the next most recent Backup
Instance Record 42 for the file identified by the Backup
Queue Record 75 currently being processed. The Binary
Object Identifiers 74 calculated in step 138 are compared
against their counterparts in the File Database 25 (e.g.. the
Binary Object Identifier 74 (as calculated in step 138) that
identifies fire first binary object in the file (as determined by
the Binary Object Stream Type field 62 and the Binary
Object Offset field 72) is compared to the Binary Object
Identifier 74 (associated with the next most recent Backup
Instance Record 42) for the first binary object in the file).
This procedure allows the Distributed Storage Manager
prom-am 24 to determine which parts of a file have changed
and only back up the changed data instead of backing up all
of the data associated with a file when only a small portion
of the file has been modified Program control is then
returned to step 116.
2. Concurrent OnsltdOfi’site Backup

The Distributed Storage Manager program 24 performs
two concurrent baclurp operations. In most cases. the Dis-
tributed Storage Manager program 24 stores a compressed
copy of every binary object it would need to restore every
disk drive 19 on every local computer 20 somewhere on the
local area network 16 other than on the local computer 20 on
which it normally resides. At the same time. the Distributed

Storage Manager program 24 transmits every new or
changed binary object to the remote backup file server 12.
Binary objects that are available in compressed form on the
local area netw0rk 16 can be restored very quickly while the
much greater storage capacity on the remote backup file
server 12 ensures that at least one copy of every binary
object is stored and that a disaster that destroys an entire site
would not destroy all copies of that site's data.

The Concurrent OnsiteiOffsite Backup routine begins at
step 200 of the flow chart illustrated in FIG. 5b where the
Distributed Storage Manager program 24 compiles a list of
those binary objects that are to be backed up timing the
current backup cycle. Those binary objects which must be
backed up during the meat backup cycle are identified in
step 140 of the fiow chart of FIG. 5a. Those of ordinary skill
in the art will recognize, however, that the Concurrent
OnsltdOfisite Backup routine may be perftnmed indepen-
dently of the routine illustrated in FIG. 5a. Program control
then continues with step 202 where the Distributed Storage
Manager program 24 identifies whether there are any addi-
tional binary objects to be processed. Ifno additional binary
objects are to be processed. program control is transferred to
step 204 where the ConcIn-rent OnsiteIOflsite Backup rou-
tine is terminated. Otherwise. prograrn control continues
with step 206 where the binary object cln'rently being
processed is compressed and stored in a compressed storage
file 32 (FIG. 2) on one of the disk drives 19 on a local
computer 20 on the local area network 16 other than the

local computer 20 on which the binary object is cunently
stta'ed. The compressed storage file 32 is used to allow the
Distributed Storage Manager program 24 to pack several

10

15

35

50

55

65

10

smaller compressed binary objects into a larger unit for
storage. This is required to reduce the number of files that

the Distributed Storage Manager program 24 must manage
and to ensure that the Distributed Storage Manager program
24 does not create many "small" files since most file systems
allocate some minimum amount of space to store a file even
if the actual file contains less data than the allocated space.
The plu'pose behind storing the backup copy of a binary
object on a disk drive 19 on a difierent local computer 20 is
to ensure that if the first disk drive 19 or local computer 20
fails, the backup copies of the binary objects are not lost
along with the original cepies of the binary objects.

Program control then continues with step 208 where each
compressed storage file 32, when it reaches a maximum
manageable size (e.g., two (2) megabytes), is u'ansmitted to
the remote backup file server 12 (FIG. 1) over wide area
network 14 for long-term storage and retrieval. Upon arrival
of the compressed storage file 32 at the remote backup file
server 12, software resident on the remote backup file server
12 routes the compressed storage file 32 for ultimate storage
to magnetic tape or other low cost storage media. The
backup copy of a binary object which is maintained in the
compressed storage file 32 on one of the disk drives 19 on
one of the local computers 20 is only the most recent version
of each binary object that is backed up while the backup
copy of the binary object stored on the remote backup file
server 12 is kept until it is no longer needed. Since most
restores of files on a local area network 16 consist of

requests to restore the most recent backup version of a file,
the local copies of binary objects serve to handle very fast
restores for mostrestore requests that occur on the local area
network 16. Ifthe local backup copy of a file does not exist
or a prior version of a file is required, it must be restored
from the remote backup file server 12. Program control then
continues with step 210 where the Distributed Storage
Manager program 24 determines whether sufficient space is
available in the space allocated for compressed storage files
32 on the disk drives 19 on local computers 20 for storage
of the binary object currently being processed. If sufficient
space is available, program control is returned to step 200.
Otherwise. the binary object currently being processed is
deleted from the disk drive 19 on which it was stored after

transmission to the remote backup file server 12 has been
completed Program control is then returned to step 230.
3. File Prioritization

The file prioritization process performed by the Distrib—
uted Manager Storage program 24 is handled by four
interrelated routines of that program: (I) Bachtpa’Restore
Routine; (2) Compression Routine; (3) Local Storage Rou-
tine; and (4) Resource Allocation Routine. Each routine will

be described in mm. In the following discussion, when one
of the four routines is discussed, it should be understood that

it is the Distributed Storage Manager program 24 that is
executing the functions of that routine. The Backup-Restore
Routine, the Local Storage Routine and the Compression
Routine may be executed on each of the local computers 20
on the networked computer system 10 while the Resource
Allocation Routine is executed on only one of the local
computers 20 on the networked computer system 10. This
execution scheme permits the rescinces of any available
local computer 20 on any of the local area networks 16 to be
utilized according to its availability. Furthermore, more than
one local computer 20 may be utilized to complete any
high-priority tasks required to be completed within a speci-
fied time frame. An advantage of the process ofprioritization
of files is that it allows the Distributed Storage Manager-
program 24 to effectively deal with a situation where local

W
Page 20 of 27

Page 21 of 27
GOOG-1003

5,649,196

11

storage and wide area network transmission resources are
limited. The Distributed Storage Manager program 24 is also
able to keep track of data which is not stored locally or
transmitted to the remote backup file server 12 in any given
backup cycle and then attempt to resume these processes
during the next backup cycle.

The Backupr'Restore Routine is illustrated in the flow
chart shown in FIG. So. In step 300. the Distributed Storage
Manager program 24 initiates the Backuplkestore Routine
by locating the highest priority binary object scheduled fra-
backup on the local computer 20 on which the Backup!
Restore Routine is executing. The identities of the binary
objects to be backed up and their respective priorities were
determined by the Distributed Storage Manager program 24
in the flow chart of FIG. 5a. Those of ordinary skill in the
art will recognize. however. that the file prioritization rou-
tines of the Distributed Storage Managerprogram 24 may be
utilized independently of the process illustrated in the flow
chart of FIG. 5a. Program control then continues with step
302 where the Bacloipt’Restore Routine of the Distributed
Storage Manager program 24 determines whether a binary
object to be backed up has been located. If not, program
control continues with step 304 where the Backuprestore
Routine is terminated. Otherwise, program control continues
with step 306 where the Backuprestore Routine of the
Distributed Storage Manager program 24 sends a message to
the Resource Allocation Routine indicating the priority of
the highest priority binary object that the Backuleestore
Routine has located. Program control then continues with
step 308 whae the Backupfllestore Routine waits for a
message from the Resource Allocation Routine indicating
which Compression Routine is available to compress and
store the highest priority binary object located by the
Backnpi'Restore Routine. In this way, the Distributed Stor-
age Manager program 24 is able to perform not only local
computer 20 based file prioritization but also networked
computer system 10 based file prioritization. This is accom-
plishedby having the Resource Allocation Routine examine
the priority of the highest priority binary object located by
each Backupresttn‘e Routine and then allocating compres-
sion resotuces to the Backuprestore Routine which has the
highest primity binary object to compress.

Program control continues with step 310 where the
Backuprestore Routine receives a message from the
Resource Allocation Routine indicating that a Compression
Routine is available for binary object compression. The
Backup-Restore Routine then sends a list of up to forty (40)
binary objects or up to one (1) megabyte of uncompressed
binary objeras to the Compression Routine starting with the.
highest priority binary object that the BackupiRestore rou-
tine has identified forbackup. The reason to limit the number
or size of binary objects that are sent to a Compression
Routine is to allow the Compression Routine to work for a
limited amount of time on the binary objects for one
BachipJRestore Routine before becoming available to work
on another Backuleestore Routine’s binary objects.

The Compression Routine performed by the Distributed
Storage Manager program 24 is illustrated in the flow chart
depicted in FIG. 50'. Program control begins at step 312
where the Compression Routine of the Distributed Storage
Manager program 24 sends a message to the Resource
Allocation routine indicating that the Compression Routine
is available to compress binary objects. Program control
then continues with step 314 where the Compression Rou-
tine waits for a compress message from a Backuprestore
Routine indicating which binary objects are to be com-
pressed. The compress message includes the File Name 40

10

15

‘25

35

50

SS

65

12

from Identification Record 34. the Binary Object Stream
Type field 62 from the Binary Object Identification Record
58 and the Binary Object Offset field 72 from the Binary
Object Identification Record 58 for each binary object to be
compressed. The binary objects are placed in a compression
queue (not shown) for processing by the Compression
Routine. Program control then continues with step 316
where the Compression Routine sends a message to the
Resource Allocation Routine to determine which Local

Storage Routine has space available for storage of com-
pressed binary objects. Program control then continues with
step 318 where the Compression Routine requests allocation
of a compressed storage file 32 from the Local Storage
Routine that has indicated availability of storage space.
Program control continues with step 320 where the binary
object is compressed and stored in the allocated compressed
storage file 32. Program control then continues with step 322
where the Compression Routine determines whether there
are more binary objects in the compress queue. If there are
no more binary objects present in the compress queue.
program control returns to step 312. If more binary objects
are present, program control continues with step 324 where
the Compression Routine determines whether the allocated
compressed storage file 32 is fulL If not, program control is
returned to step 320. Otherwise, program control is returned
to step 316 where the Compression Routine sends a message
to the Resource Allocation Routine to determine which

Local Storage Routine has space available for storage of
compressed binary objects.

The Local Storage Routine executed by the Distributed
Storage Manager program 24 is illustrated in the flow chart
depicted in FIG. Se. The Local Storage Routine is respon-
sible for managing storage file space on a particular local
computer 20. Program control beings at step 326 where the
Local Storage Routine of Distributed Storage Manager
program 24 sends a message to the Resource Allocation
Routine indicating the amount of storage space it has
available for allomtion of compressed storage files 32. The
Local Storage Routine determines the amount of space it has
available for allocation of compressed storage files 32 by
determining the total amount of free space on its disk drives
19 and then determining how must space must be left as
“free space". The amount of required “free space“ is user-
specified. Program control continues with step 328 where
the Local Sttn'age Routine waits for a request from a
Compreseion Routine for allocation of a compressed storage
file 32. Upon receipt of such a request, program control
continues with step 330 where the requested compressed
storage file 32 (cg, two (2) megabytes in size} is allocated.
The Local Storage Routine then returns a message to the
requesting Compression Routine indicating the name and
location of the compressed storage file 32 that has been
allocated. Program control is then returned to step 326.

The Resource Allocation Routine performed by the Dis-
tributed Storage Manager program 24 of the mesent inven-
tion is depicted in the flow chart of FIG. 5f. The Resource
Allocation Routine is a process that responds to messages
from other routines of the Distributed Storage Manager
program 24 and allocates resources between resource
requesters and resource providers. Program control begins
with step 332 where the Resource Allocation Routine
executed by the Distributed Storage Manager program 24
waits for a message from a Distributed Storage Manager
program 24 routine. When a message is received. program
control continues with step 334 where the Resource Allo—
cation Routine determines whether the message is from a
Baclmprestore Routine transmitting information relating to

GOOG-1003

Page 21 of 27

Page 22 of 27
GOOG-1003

5,649,196
13

its highest priority binary object for compression. If such a
message is received, program control continues with step
336 where the Resource Allocation Routine stores this

information in an internal table containing Backuleestore
Routine status information. The Resotnce Allocation Rou-
tine then scans this status information table to ascertain

which BachtpiRestore Routine has the highest priority
binary object for storage. Program control then continues
with step 338 where the Resource Allocation Routine deter-
mines whether any Compression Routine is available to
process the highest priority binary object. If no Compression
Routine is available for processing, program control is
returned to step 332. If an available Compression Routine is
looated, program control continues with step 340 where the
Resource Allocation Routine transmits a message to the
requesting BackupvRestore Routine indicating which Com-
pression Routine is available to compress the binary object
In addition, the Resource Allocation Routine marks the

Compression Routine as “working” in an internal table
containing Compression Routine information. Program con-
ml is then returned to step 332.

If the Resource Allocation Routine determines, in step
334, that the received message is not from a BackupiRestore
Routine, program control continues with step 342 where the
Resource Allocation Routine determines whether the

received message is from a Compression Routine indicating
that the transmitting Compression Routine is available for
processing. If the received message is from a Compression
Routine. program control continues with step 344 where the
Resource Allocation Routine marks the transmitting Com-
pression Routine as "available“ in its internal table contain—

ing Compression Routine information. Program control then
continues with step 336.

If the Resource Allocation Routine determines. in step
342, that the received message has not been transmitted from
a Compression Routine indicating its availability for
processing, program control continues with step 346 where
the Resource Allocation Routine determines whether the

received message is from a Local Storage Routine indicating
the amount of storage space that the Local Storage Routine
has available. If the received message is from a Local
Storage Routine. Program control continues with step M8
where the Resom’ce Allocation Routine locates the nuns-

mitting Local Storage Routine in an internal table containing
Local Storage Routine information and saves the storage
space infornmtion tt'ansmitred by the Local Storage Routine
Program control then continues with step 354. If the
Resource Allocation Routine determines, in step 346, that
the received message is not from a Local Storage Routine,
program control continues with step 350 where the Resource
Allocation Routine determines whether the received mes-

sage is from a Compression Routine requesting a com-
;a'essed storage file 32. If the Resource Allocation Routine
determines that such a message was received, program
control continues with step 352 where the identity of the
requesting Compression Routine is added to a “Space
request list”. Program control then continues with step 354.
If the Resource Allocation Routine determines, in step 350,
that the received message is not from a Compression Rou-
tine requesting a compressed storage file 32, program con—
trol is returned to step 332.

In step 354, the Resource Allocation Routine determines

whether any Compression Routines are waiting for alloca-
tion of a compressed storage file 32 by examining the “space
request list”. If no such Compression Routines are in the
“space request list”. program control is returned to step 332.
Ifthe identity of such a Compression Routine is found in the

10

15

20

35

45

50

55

65

14

“space request list“. program control continues with step
356 where the Resource Allocation Routine determines

whether any of the Local Storage Processors has any avail-
able space by examining the information in its internal table
containing Local Storage Routine information. When a

Compression Routine requests a compressed storage file 32,
the Compression Routine identifies the name of the local
computer 20 on which the Backuleestore Routine is
executing and on whose behalf it is compressing binary
objects. This allows the Compression Routine to request a
compressed storage file 32 on a local computer 20 other than
the local computer 20 on which the binary object to be stored
resides. Otherwise, the backup copy of the binary object
may be stored on the same local computer 20 as the original
binary object whereby a disk drive failure would result in
losing both the onig'mal and backup cepies. The Resource
Allocation Routine uses the information supplied by the
Compression Routine to ensure that the requested com—
pressed storage file 32 is allocated on a local computer 20
other than the local computer 20 from which the binary
object originated If available storage space is located,
program control continues with step 358 where the Resource
Allocation Routine transmits a message to the next Com-
pression Routine in the “space request list” indicating which
Local Storage Routine has allocated an available com—
pressed storage file 32. Program control is then returned to
step 354.

If the Resotuce Allocation Routine determines, in step
356, that no storage space is available, program control
continues with step 360 where the Resource Allocation
Routine determines whether there are any compressed stor-
age files 32 that are maintained by any of the Local Storage
Routines which have a lower priority that the binary object
currently being processed. If so, program conu'ol continues
with step 362 where a message is transmitted to the Local
Storage Routines instructing the Local Storage Routines to
delete some of the low-priority compressed storage files 32
to make room for higher priority binary objects. After these
lower-priority compressed storage files 32 are deleted by the
Looal Storage Routines, the Local Storage Routines will
transmit new stauts messages to the Resorn-ce Allocation
Routine. Program control is then returned to step 332. If no
lower—priority compressed storage files 32 are located in step
360, program control continues with step 364 where the
Resource Allocation Routine transmits a message to the
Local Storage Routines with instructions that from that time
forward. any allocated compressed storage files 32 are to be
deleted after the contents of the compressed storage files 32
have been successfully transmitted to the remote backup file
server 12 for long-term storage. Program control is then
returned to step 332.
4. Granularization of Files

The most important class of “large” files on computer
systems such as networked computer system 10 is databases.
Typically, on a given day, only a small percentage of the data
in a large database is changed by the users of that database
However, it is likely that some data will be changed in each
one of the (1) megabyte binary object segments that are
meatedin step 136 of the flow chart depicted in FIG. 5a. As
a result. in most cases. the entire “large“ database file would
have to be backed up to the remote baship file server 12
However, the Distributed Storage Manager program 24 of
the present invention utilizes a technique of subdividing
large database files into “granules” and then tracks changes
from the previous backup copy at the “granule“ level. The
“granule” size utilized by the Distributed Storage Manager
program 24 may be one (1) kilobyte although those of

W
Page 22 of 27

Page 23 of 27
GOOG-1003

5,649,196

15

ordinary skill in the art \villrecognize that any “granule" size
that produces the most eficient results (in terms of process—
ing time and amount of data that must be backed up) may be
utilized. This technique of subdividing files into “granules"
is only used to reduce the amount of data that must be
transmitted to the remote backup file server 12 and is not
utilized in making backup copies of binary objects for
storage on local computers 20.

The operation of the Distributed Storage Manager pro-
gram 24 in subdividing files into “granules” is illustrated in
the flow chart depicted in FIG. 53. This “granularization”
procedure is performed for “large” files following step 136
of the flow chart of FIG. 5c, Program control begins at step
400 where the Distributed Storage Manager program 24
identifies whether the binary object currently being pro-
cessed is a segment of a “large“ database—like file. Program
control then continues wilh step 402 where the Distributed
Storage Manager program 24 determines whether this is the
first time that the binary object currently being processed is
being backed up using the “granular-Ration” technique. If so,
program control continues with step 404 where the Distrib-
uted Storage Manager program 24 creates a “shadow file”
which contains a “contents identifier“ for each “granule” in
the binary object currently being processed Each “contents
identifier” is composed of a standard 32-bit Cyclical Redun-
dancy Check number which is calculated against the con-
tents of the “granule" and a 32-bit hash number which is
calculated against the contents of the “granule” in the same
manner described in relation to step 138 of the flow chart
depicted in FIG. 5a. Those of ordinary skill in the art will
readily recognize the manner in which the Cyclical Redun-
dancy Check umber is calculated Each time that the binary
object is to be backed up, the Distributed Storage Manager
program 24 can calculate the “contents identifier” for each
“granule” in the binary object and then compare it to the
“contents identifier” of the “granule” the last time the binary
object was backed up and determine if the “granule" has
changed. This allows the Distributed Storage Manager pro-
gram 24 to determine what data within a binary object has
changed and only back up the changed data instead of the
entire binary object. Program control then continues with
step 406 where the Distributed Storage Manager program 24
calculates a “change identifier” for each “granule” of the
binary object and stores it in the "shadow file” for that binary
object. Program control then continues with step 408 where
the binary object is compressed into a compressed stcrage
file 32 which becomes the most recent complete copy of the
binary object for later reconstitution of the binary object as
is discussed more fully hereinbelow. The contents of the
compressed storage file 32 is then transmitted to the remote
backup file server 12 for long-berm storage and retrieval.
Program control is then returned. to step 400.

If the Distributed Storage Manager program 24
determines, in step 402, that this is not the first time that the
binary object ctnrently being processed is being backed up
using the “granularization” technique, program control con-
tinues with step 410 where the Distributed Storage Manager
program 24 calculates the “contents identifier” for each
“granule”. Program control continues with step 412 where
each newly-calculated “contents identifier” is compared to
the corresponding “contents identifier” for the “granule” in
the “shadow file“. If the twa values are equal. program
control continues with step 414 where the Distributed Stor-
age Manager program 24 determines whether the last “gran-
ule” of the binary object has been processed. If so, program
control is returned to step 400; otherwise, program control
continues at step 410. If the “contents identifiers” are not

10

15

20

30

45

50

55

55

16

found to be equal in step 412, the “granule" has changed and
program control continues with step 416 where the "shadow
file” is updated with the newly-calculated “contents identi—
fier" for the “granule”. Program control then continues with
step 418 where the changed “granule” is compressed into a
compressed storage file 32 using a special format that
identifies the “gran ". All changed “granules” for the “data
stream” currently being processed are packed together in the
same compressed storage file 32. The contents of the com-
pressed storage fiie 32 is then transmitted to the remote
backup file server 12 for long-term storage and retrieval If
the Distributed Storage Managerprogram 24 determines that
a large percentage of the “granules" in the binary object have
changed (e.g.. 80%). then the entire binary object is backed
up to the remote backup file server 12

The operation of the Distributed Storage Manager pro-
gram 24 in reconstituting, on a local computer 20, a binary
object that has been transmitted to the remote backup file
server 12 using the “granularization” technique illustrated in
FIG. 53 is illustrated in the flow chart depicted in FIG. 5b.
Program control begins at step 420 where the Dish-flamed
Storage Manager program 24 creates a work area on the
remote backup file server 12 that is equal in size to the total
uncompressed size of the binary object that is to be recon-
stiuited. Program control continues with step 422 where the
most recent complete copy of the binary object to be
reconstituted is located on the remote backup file server 12
and is decompressed into the work area. Program control
then continues with step 424 where the Distributed Storage
Manager program 24 creates a bitmap with one bit repre-
senting each granule of the binary object to be reconstituted
Initially, all bits in this bitmap are set to zero (0). Each bit
in the bitmap is used to indicate whether the granule
associated with that bit has been restored to the most recent

complete copy of the binary object. Program control then
continues with step 426 where the Distributed Storage
Manager program 24 locates the most recent “granularized”
copy of the binary object that was stored on the remote
backup file server 12. Each time that step 426 is executed,
the next most recent “granulanized” copy of the binary
object is located This process continues until all bits in the
bitmap are set to one (1) or until there are no more
“granularized” copies of the binary object that are newer
than the most recent complete copy of the binary objecL At
that point. the binary object will have been reconstituted and
will be ready to be restored to the local computer 20.
Following step 426, program control continues with step
428 where the Distributed Storage Manager program 24
determines whether another “granularized” copy of the
binary object has been located. If so, program control
continues with step 430 where the Distributed Storage
Manager program 24 obtains the list of “granules” in the
“granularized” copy of the binary object just located If
another “granularized” copy of the binary object is not
located in step 428, program control continues with step 438
where the reconstituted binary object is restored to the local
computer 20. Following step 430. program control continues
with step 432 where, starting with the first “granule“ in the
“granularizcd” copy of the binary object, the Distributed
Storage Manager program 24 determines whether the bit for
this “granule“ in the bit map is set to zero (0). If the bit is
set to one (1), a more recent copy of the “granule” has
already been decompressed and copied into the Work area.
If the bit is set to zero (0), program control continues with
step 434 where the “granule” is decompressed and copied
into the work area at the correct looation for that "granule”.
After copying the “granule” to the work area, the Distributed

GOOG-1003

Page 23 of 27

Page 24 of 27
GOOG-1003

5,649,196

17

Storage Manager program 24 sets the bit within the bitmap
for the “granule" to one (1). If the Distributed Storage
Manager program 24 determines, in step 432, that the bit is
not set to zero (0). program control continues with step 440
where the Distributed Storage Manager program 24 deter-
mines whether there are any more “granules" to be pro-
cessed in the current set 0 “granules“. If so, program control
is returned to step 432: otherwise. program control is trans-
ferred to step 426. Following step 434. program control
continues with step 436 where the Distributed Storage
Manager program 24 determines whether all bits in the
bitmap are now set to one (1). If so, program control
continues with step 438 where the reconstituted binary
object is restored to the local computer 20. If the Distributed
Storage Manager program 24 determines, in step 436, that
all bits in the bitmap are not set to one (1), program control
continues with step 440.

The technique of “granulariaing” “large” files also
becomes useful when a current version of a file (comprised
of current versions of binary objects) must be restored to a
previous version of that file (comprised of previous versions
of binary objects). Each binary object comprising the current
version of the file can be restored to the binary object
comprising the previous version of the file by restoring and
updating only those “granules” of the crn'rent version of the
binary objects that are different between the unseat and
previous versions of the binary objects. This technique is
illustrated in the flow chart depicted in FIG. 5i. Program
control begins at step 442 where the Distributed Storage
Manager program 24 obtains from the user the identities of
the current and previous vrn-sious of the file (comprised of
binary objects) which needs to be restored. Program control
continues with step 443 where the Distributed Storage
Manager program 24 compiles a list of all binary objects
comprising the current version of the user-specified file. This
information is obtained from File Database 25. Program
control then continues with step 444 where the Distributed
Storage Manager program 24 calculates “contents identifi-
ers” for each “granule” within the current version of each
binary object as it exists on the 10ml computer 2|]. Program
control then continues with step 446 where the Distributed
Storage Managerprogram4'48 transmits an “update request"
to the remote backup file server 12 which includes the
Binary Object Identification Record 58 for the previous
version of each binary object as wall as the list of “contents
identifiers” calculated in step 444. Program control contin~
ties with step 448 where the Distributed Storage Manager
program 24 reconstitutes each previous version of the binary
objects according to the technique illustrated in the flow
chart depicted in FIG. 5h. Program control then continues
wim step 450 where the Distributed Storage Manager pro-
gram 24, for each binary object. compares the “contents
identifier" of the next “granule” in the work area of remote
backup file server 12 against the corresPonding “contents
identifier" calculated in step 444. Program control continues
with step 452 where the Distributed Storage Manager pro-
gram 24 determines whether the “contents identifiers”
match. If so. program control is menace! to step 450 since
this “granule” is the same on the local computer 20 and on
the remote backup file server 12. If the Distributed Storage
Manager program 24 determines. in step 452, that the
“contents identifiers" do not match, program control con-
tinues with step 454 where the Distributed Storage Manager
program 24 transmits the “granule” to the local eonmuter 20.
Program control then continues with step 456 where the
“granule" received by the local computer 20 is written
directly to the current version of the binary object at the

10

15

2t)

30

50

55

18

appropriate location. Program control then continues with
step 458 where the Distributed Storage Manager program 24
determines whether there are any more “granules“ to be
examined for the binary object currently being processed. If
so, program control is returned to step 450; otherwise the file
restore routine is terminated at step 460. After all “granules”
are received from the remote backup file server 12. the
binary object has been restored to the state of the previous
version.

5. Auditing and Reporting
The Distributed Storage Manager program 24 is able to

perform self-audits on a periodic basis to ensure that the
binary objects that have been backed up can be restored. To
perform an audit. the Distributed Storage Manager program
24 executes the steps illustrated in the flow chart of FIG. Sj.
Program control begins at step 500 where the Distributed
Storage Manager program 24 initiates a restore of a ran-
domly seleded binary object identified by a Binary Object
Identification Record 58 stored in File Database 25. Program
control continues with step 502 where the selected binary
object is restored from either a compressed storage file 32
residing on one of the dial-r drives 19 of one of the local
computers 20 or from the remote backup file server 12.
Program control then continues with step 504 where, as the
binary object is being restored, a Binary Object Identifier 74
is calculated from the binary object instead of writing the
binary object to one of the disk drives 19 of one of the local
computers 20. Program control then continues with step 506
where the Distributed Storage Manager program 24 com
pares the Binary Object Identifier 74 calculated in step 5.4
to the original Binary Object Identifier 74 stored as part of
the randomly selected Binary Object Identification Record
58. If the values are equal, program control continues with
step 508 where the Distributed Storage Manager program24
logs a successful audit restore. If the values are not equal,
program control continues with step 510 where the Distrib-
uted Storage Manager program 24 generates an event indi-
cating an audit failure.
6. Virtual Restore

The disk drives 19 associated with local computers 20
may have a very large storage capacity and may require a
significant amount of time to be restored, especially if most
or all of the data must be transmitted from the remote backup
file server 12. To reduce the amount of time that a local

computer 20 is “offline" during a full disk drive 19 restore,
the Distributed Storage Manager program 24 employs a
technique which allows a disk drive 19 associated with a
local computer 20 to be only partially restored before being
put back “online” for access by local computer 20. 'I‘he user
specifies to the Distributed Storage Manager program 24
that only those files that have been accessed in the last <n>
days. or; weeks or «en:- months should be restored to the
disk drive 19 before the disk drive 19 is returned to the

“online” state. Alternately, the user may specify that only
files that are stored “locally” in compressed storage files 32
should be restored and that no files stored on the remote

baclnrp file server 12 should be restored before the disk drive
19 is returned to the “online” state. The overall result is a
minimization of restore time in the event of disk drive 19

failure. This “virtual restore” technique generally works
quite well since users who will begin accessing data on a
particular disk drive 19 after it is put back “online” will most
likely only be accessing data that had been “recently”
accessed before failure of the disk drive 19.

The “virtual restore" process is illustrated in the flow
chart depicted in FIG. 5k. Program control begins at step 600
where the Distributed Storage Manager program 24 obtains,

GOOG-1003

Page 24 of 27

Page 25 of 27
GOOG-1003

5,649,196

19
from the user. the last: access date that defines which files
must be restored before the disk drive 19 can be returned to

the “online” condition. Any files that were last accessed on
or after this date will be restored before the disk drive 19 is

placed “online”. The specification of this date may be
accomplished in any of the following ways: (1) actual date;
(2) “within the last <n> days”; (3) “within the last <n>
weeks”: or (4) ‘fivithin the last <n> months". Alternately, the
user may specify that only files that are currently backed up
in compressed storage files 32 are to be restored as opposed
to files stored on remote backup file server 12. Program
control continues with step 602 where the Distributed Stor-
age Manager Program 24 locates the most recent version of
the File Database 25 for the disk drive 19 to be restored if

the File Database 25 does not already exist on the disk drive
19. Program control then continues with step 604 where the
next File Identification Record 34 in File Database 25 is

read. Program control continues with step 606 where the
Distributed Storage Manager program 24 determines
whether an additional File Identification Record 34 to be

processed has been located in File Database 25. If not,
program control continues with step 608 whae the Disnib—
uted Storage Manager program 24 notifies the local com-
puter 20 that the restored disk drive 19 may be placed
“online” and terminates the virtual restore process. If
another File Identification Record 34 has been located for

processing. program control continues with step 610 where
the Distributed Storage Manager program 24 locates the
most recent Backup Instance Record 42 associated with the
File Identification Record 34 currently being processed. In
step 612, the Disu‘ibuted Storage Manager program 24
determines whether the Last Access Datei'fime field 52 in

the Backup Instance Record 52 indicates that the file has

been accessed since the user-specified last access date (step
600). If the file has been accessed on or since the user-

specified last access date, program control continues with
step 614 where the Distributed Storage Managerprogram 24
initiates the restoration of this file and sets the Migration
Status field 41 in the File Identification Record 34 currently
being processed to “NORMAL“. Program control is then
returned to step 604. If the Distributed Storage Manager
program 24 determines, in step 612, that the file has not been
accessed on or since the user-specified last access date,
program control continues with step 616 where the Distrib-
uted Storage Manager program 24 sets the Migration Status
field 41 in the File Identification Record 34 cuneutly being
processed to "MIGRATEW. In this case, the file does not

need to be restored. Program control is then returned to step604.

Another feature of the virtual restore process is the ability
to utilize the Migration Status field 41 in File Identification
Record 34 for the performance of space management. If a
particular file has not been accessed on or since a user-
specified last access date, the file can be backed up to the
remote backup file server 12 and then deleted from the disk
drives 19 associated with local computers 20. The Migration
Status field 41 is then set to ‘MGRATEW. If emigrated file
is later needed by a user, the file can be restored from the
remote backup file server 12.
7. Backup File Retention

The Distributed Storage Manager program 24 implements
abaekup file retention scheme wherein a retention pattern is
maintained for each individual file that indicates which

backup versions of a file are to be saved. Aretention pattern
for a file is defined as:

keep the last “d” daily backup copies of the file AND
keep the last “w” weekly backup copies of the file AND

10

15

25

30

35

45

50

55

65

20

keep the last “to" monthly backup copies of the file AND
keep the last “q” quarterly backup cepies of the file AND
keep the last “y” yearly backup copies of the file.

By specifying the retention pattern in this way, all backup
copies of a file that are needed to represent the backup of the
file as it existed at the time it was backed up for the last “d"
days, the last “w” weeks, the last “111” months, the last “q"
quarters and the last “y“ years are saved. However, by way
of example, this may mean that only one backup copy of the
file is saved to represent all “d” days (in the case where the
file has not changed in the last “d” days), or this may mean
that the last “d” daily backup copies of the file must be saved
to represent the file as it existed for the last “(1” daily backup
cycles. The same principle is utilized for weekly, monthly,
quarterly and yearly copies.

The backup file retention scheme utilized by the Distrib—
uted Storage Manager program 24 provides several unique
benefits. First, this technique prevents undetected virus or
application program damage to a file from destroying all
good backup copies of a file. If a file is damaged and this
condition is not noticed for several days, then a scheme
which only maintains the last “11” versions of a file may
result in the situation where an “undamaged” backup copy
of the file is not available. The backup file retention scheme
of the present invention allows backup copies of files to be
kept that represent the file as it existed at various times
during the past several days, weeks. months or even years.
Second, the file retention scheme utilized by the Distributed
Storage Manager program 24 eliminates the need for most
archives. Most archives are designed to take a snapshot of a
group of files as of a certain date, such as at the end of each
month. The Distributed Storage Manager program’s use of
retention patter-us eliminates the need for users to take
periodic snapshots of their data using a special archive, since
the Distributed Storage Manager program 24 handles this
automatically.

In order for the Distributed Storage Manager program 24
to implement the backup file retention scheme, each file
stored on the local computers 20 must be associated with a
specific retention pattern. The Management Class field 43 in
the File Identification Record 34 of File Database 25 speci-
fies a management class for each file. In turn, each man-
agement class is associated with a specific file retention
pattern. In this way. a specific retention pattern is associated
witheacbfile.’lhoseotfordiuaryskillintheartwill
recognize that other methods of assigning a specific file
retention pattern to a file may also be utilized.

The Operation of the backup file retention scheme utilized
by the Distributed Storage Managerprograru24 is illustrated
in the flow chart of FIG. 51. Program control begins at step
700 where the Distributed Storage Manager program 24
locates each File Identification Record 34 in the File Data-

base 25. Program control continues at step 702 where the
Distributed Storage Manager program 24 determines the
required file retention pattern by examining the Management
Class field 43 in the File Identification Record 34 currently
being processed and then creates a ‘retention working list”.
The 'retention working list." is a list of entries that specify
the starting and ending dates for each backup copy that
should be retained based upon the specified retention pat—
tern. For example. if the user has specified that the last “d“
daily backup copies must be retained, then the “retention
working list" will contain “d” entries with the "start date”
equal to the “end date” for each entry and the dates for the
first entries set equal to the current dater the dates for the
second entries set equal to the previous day‘s date, etc. For

GOOG-1003

Page 25 of 27

Page 26 of 27
GOOG-1003

5,649,196

21

weekly entries, the 'retention working list” will contain
entries (one per weekly backup copy to be retained) with the
“start date” set to the date that specifies the beginning of the
prior week (based on the current date) and the “end date” set
to the date that specifies the end of the prior week (based on
the current date). If "w” weeks are to be retained then “w"
weekly “retention working list” entries will be created. At
the end of this process, the “retention working list" will
contain a list of ‘WndOWS” which indicates the date ranges
dratafilemustfallwithin inordertoberetained.

Program control continues with step 704 where the Dis-
tributed Storage Manager program 24 locates the most
recent Backup Instance Record 42 associated with the File
Identification Record 34 currently being processed Program
control continues with step 706 where the Distributed Stor-
age Manager program 24 compares the date stored in the
Insert Date field 57 of the Backup Instance Record 42
currently being processed with any “unused” date ranges set
forth in the “retention working list” (if any of the ‘retention
working list” entries have already been satisfied, they will be
marked as “used" as is discussed more fully below in
relation to step 703). If the date stored in the Insert Date field
57 does not fall within any of the "unused” “retention
working list” date ranges, then program control continues
with step 712 where the Backup Instance Record 42 is
deleted. Otherwise, program control continues with step 708
where all “retention working list” entries satisfied by the
date storedin the Insert Date Field 57 are marked as “used”

to indicate that a Backup Instance Record 42 has been used
to satisfy this entry. This ensures that an older Backup
Instance Record 42 is not used to satisfy a retention pattern
specification when a newer entry also satisfies the condition.
The Distributed Storage Manager program24 also checks to
ensure that the file associated with the Backup Instance
Record 42 has not been deleted prior to the “end date“ of the
window satisfied by the date stored in Insert Date field 57.
This condition is satisfied by ensrning that the date storedin
the Delete Date field 56 of the Backup Instance Record 42
amenity being processed is after the “end date” of the
window satisfied by the date stored in Insert Date field 57.
If the file was deleted prior to the “end date” of the window,
then the file cannot be used to satisfy the “retention working
list" entry since that file did not exist on the “end date”.
Following either step 708 or 5th 712, program control
continues with step 710 where the Distributed Storage
Manager program 24 determines whether there are any
additional Backup Instance Records 42 associated with the
File Identification Round 34 currently being processed. If
so, program control is reduced to step 104; otherwise,
program control is returned to step 700.

While the present invention has been described in con-
nection with an exernplary embodiment thereof, it will be
understood that many modifications and variations will be
readily apparent to those of ordinary skill in the art. This
disclosure and the following claims are intended to cover all
such modifications and variations.

We claim:

1. A system for distributed management of the storage
space and data on a networked computer system wherein the
networked computer system includes at least two storage
devices for storing data files, said distributed storage man-
agement system comprising:

means for selectively copying data files stored on one of
the storage devices to another of the storage devices;

means for dividing each data file into one or more binary
objects of a predetemrined size;

means for calculating a current value for a binary object
identifier for each binary object within a file, said

10

15

35

45

55

22

calculation of said binary object identifier being based
upon the actual data contents of the associated binary
object, said calculated binary object identifier being
saved as the name of the associated binary object;

means for comparing said current name of a particular
binary object to one or more previous names of said
binary object;

means for storing said current name of said binary object;and

means for controlling said means for selectively copying
binary objects in response to said means for comparing.

2. The distributed storage management system of claim 1
wherein said means for calculating said current name
includes means for calculating a crrrent name comprised of
at least two independently determined values.

3. The distributed storage management system of claim 1
wherein said means for calurlating said current name
includes means for calculating a 128-bit binary value com—
prised of four 32-bit fields.

4. The distributed storage management system of claim 3
wherein said four 32-bit fields include a binary object
identifier size field, a Cyclical Redundancy Check number
field calculated against the contents of the binary object, a
Longitudinal Redundancy Check number field calculated
against the contents of the binary object, and a binary object
hash number field calculated against the contents of the
binary object.

5. The distributed storage management system of claim 1
further including means for auditing the performance of said
distrflauted storage management system, said means for
auditing including:

second means for controlling said means for selectively
copying binary objects to recopy a previously copied
binary object;

means ftn‘ recalculating said binary object identifier for
the recopicd binary object, said recalculated binary
object identifier being saved as the name of the asso-
ciated binary object;

means for comparing said recalculated name to a previous
name of said binary object; and

means for reporting a failure if said recalculated name is
not identical to said previous name of said binary
object.

6. The distributed storage management system of claim 1
wherein said means for controlling said means for selec-
tively copying includes means for insn-ucting, in response to
said means for comparing, said means for selectively copy-
ing to copy aparticular binary object only if its current name
is not identical to a previous name for that particular binary
object.

7. The distributed storage management system of claim 1
additionally comprising means for segmenting the binary
objects into granules of data. and wherein said granules of
data are processed in the same manner as said binary objects.

8. The distributed storage management system of claim 7
further including means for reconstructing a binary object
from a most recent complete copy of the binary object, said
means for reconstructing including:

means for copying said granules copied by said means for
selectively copying granules to said most recent com-
plete ccpy of the binary object in order from most-
recently copied granule to least-recently copied gran-
ule; and

means for generating a binnsp for controlling said means
fin" copying said copied granules.

9. The distributed storage management system of claim 8
wherein said means for calculating said current name for

GOOG-1003

Page 26 of 27

Page 27 of 27
GOOG-1003

5,649,196

23

said granule includes means for calculating a. 32-bit Cyclical
Redundancy Check number calculated against the contents
of said granule and means for calculating a 32-bit binary
object hash number calculated against the contents of said
granule.

10. The distributed storage management system of claim
8 further including means for restoring a current version of
a binary object to a previous version of that binary object,
said means for restoring including:

means for calculating said name for each of said granules
in the ctn'rent version of the binary object;

means for comparing said calculated name to a previous
name for each of said granules in the current version of
the binary object; and

means. responsive to said means for comparing said
names, for replacing those granules in the current
version of the binary object for which said names are
not identical.

11. The distributed storage management system of claim
1 additionally comprising;

means for indicating which of said copied binary objects
must be copied to a particular storage device in the
event of a failure of that storage device before that
storage device is considered to be operable by the local
computer with which that storage device is in commu-
nication; and

wherein said means for controlling said means for selec-
tively copying binary objects is further responsive to
said means for indicating.

12. The distributed storage management system of claim
11 wherein said means for indicating includes means for
specifying a last access date such that only binary objects
that have been accessed by the networked computer system
on or after saidlast access date must be copied to aparticular
storage device before that storage device is considered to be
operable

13. The distributed storage management system of claim
1 additionally comprising:

means for maintaining a file retention list wherein said file
retention list includes a file retention pattern for each
binary object copied by said means for selectively
copying binary objects;

means for determining which of the binary objects copied
by said means for selectively copying binary objects
match each of said file retention patterns; and

means for deleting the binary objects from the storage
devices in response to said means for determining.

10

15

25

35

45

24

14. The distributed storage management system of claim
13 wherein said file retention pattern includes daily, weekly,
monthly, quarterly and yearly retention patterns.

15. The distributed storage management system of claim
1 wherein said networked computer system includes a
remote backup, file server, and wherein said means for
selectively copying copies the binary objects stored on one
of the storage devices to another of the storage devices or to
the remote backup file server, said distributed storage man-
agement system additionally, comprising:

means for employing user-defined priorities to determine
which binary objects are to be copied to another storage
device and to determine a queuing sequence for copy-
ing binary objects to the remote backup file server.

16. A method for management of the storage space and
data on a computer system wherein the computer system
includes at least two storage areas for storing data files. said
method comprising the steps of:

dividing each data file into one or more binary objects of
a predetermined size;

calculating a cunent value for a binary object identifier
for each binary object within a file, said calculation of
said binary object identifier being based upon the actual
data contents of the associated binary object, said
calculated binary object identifier being saved as the
name of the associated binary object;

comparing said current name of said binary object to one
or more previous names of said binary object;

storing said current name of said binary object as a
previous name of said binary objed; and

selectively copying binary objects in response to said
comparing step.

17. The method of claim 16 wherein said step of calcu-
lating said current name for said binary object includes the
step of calculating a current name for a binary object
comprised of at least two independently determined values.

18. The method of claim 16 wherein said step of calcw
lating said current name for said binary object includes the
step of calculating a current name for a binary object
utilizing a 128-bit binary value comprised of four 32-bit
fields and wherein said four 32-bit fields include a binary
object identifier size field. a Cyclical Redundancy Check
number field calculated against the contents of the Binary
object, a longitudinal Redundancy Check number field
calculated against the contents of the binary object, and a
binary object hash number field calculated against the con-
tents of the binary object.

GOOG-1003

Page 27 of 27

