o
L

CKET
M

A R

Exhibit 1010

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

A Survey of Cooperative Caching

Mohammad Salimullah Raunak

December 15, 1999

Abstract

The last decade has seen a super-exponential growth of the World Wide Web. The
demand of bandwidth has been consistently increasing faster than the resource. Re-
searchers have looked for alternative solutions to improve response time and reduce
bandwidth consumption in the Internet. Caching has been well accepted as a viable
method for ease the ever growing bandwidth need and also to improve the speed of in-
formation delivery. However, single point caching has limitation regarding scalability.
Cooperative caching, where cache servers support each other in serving requests for
cached objects, has emerged as an approach to overcome the limitation. This survey
looks at different studies done on cooperative caching. The studies have been grouped
together according to their approaches to achieve cooperation. Cooperative caching
architectures can be divided into two major categories, hierarchical and distributive.
Both approaches have their advantages and disadvantages. There is also a third cate-
gory of cooperative caching where cache servers are clustered together to use multicast
for communication. This report also provides descriptions of all the known cache to
cache communication protocols. Most of the work regarding cooperative caching in-
volves designing the architecture and communication protocols. More work is needed to
find out the effectiveness of cooperative caching for bandwidth intensive applications.
Also, maintaining consistency in cooperative environment is an important research area
that needs more attention.

1 Introduction

Due to its continuous exponential growth, the World Wide Web is increasingly experiencing
several problems, such as “hot spots”, increased network bandwidth usage, and excessive
document retrieval latency known as the World Wide Wait problem. The popular solution
to these problems is to use a caching proxy [8, 1, 4, 6]. Over the last few years, caching
has become very popular and it is well accepted as the method to ameliorate the situation
caused by the mentioned problems.

A lot of research has been done based on using a proxy cache to save bandwidth and
reduce latency and congestion in the Internet. However, as researchers have found out there
are certain limitations in using a single proxy [6, 14|. The single proxy can be a bottleneck.
It is also difficult to scale with a single cache server architecture. As the client population

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

Web server Web server

I
\
[N JAEN / !
\ \ . AN . |
! \ . N |
. . K
v L R |
v v AN !
\ A / ~ Proxy
Proxy S Lo
(e BN ) )
N // -
< / N
FTN
7

\
. ,

" cooperation ',

[N N ¥

VAN ‘
FEREE
clients
clients

clients

Figure 1: A general caching architecture

increases, it produces a lot of load on the proxy servers which eventually degrades the ser-
vice quality and thus reduces the effectiveness of caching. Moreover, a caching proxy is a
potential single point of failure. These ideas propelled the design of cooperative caching. In
a cooperative environment, a number of cache servers work together to serve a set of clients.
This helps to cache more objects collectively without overloading a single proxy. The ar-
chitecture also builds a better system in terms of fault tolerance as the proxies can share
the burden when a particular proxy is down or unavailable. A general cooperative caching
structure is illustrated in figure 1.

Caching systems are generally evaluated according to three metrics: speed, scalability,
and reliability. There are variety of design techniques which many commercial and academic
systems use to improve performance in these respects. Among them are: caching architec-
ture (hierarchical, distributive etc.), cache-to-cache communication, prefetching, consistency
methods, optimized disk I/O and dedicated microkernel operating system. This survey is
going to focus on the first two.

There are basically two types of cooperative architectures that have been studied by the
researchers - Hierarchical and Distributive. With hierarchical caching, caches are placed
at multiple levels of the network. With distributed caching, caches are only placed at the
bottom levels of the network and there are no intermediate caches [20]. There are also some
hybrid architectures that goes in between.

The rest of the report is organized as follows. Section 2 provides a brief background
about caching and cooperative caching. Section 3 looks at the effectiveness of cooperative
caching in file servers. Section 4 describes the major hierarchical caching architectures. Sec-
tion 5 groups the cooperative caching techniques that are based on clusters and multicast
communication. Section 6 describes distributed caching architectures. Section 7 deals with

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

different cache to cache communication protocols and section 8 provides some comparative
analysis between hierarchical and distributed caching. Section 9 concludes the survey.

2 Background

One of the earliest efforts to support caching in a wide-area network environment was the
Domain Naming System [16]. While not a general file or object cache, the DNS supports
caching of name lookup results from server to server and also from client to server using
timeouts for cache consistency.

Cooperative caching first came under consideration in the context of distributed file
systems and database systems [13]. The early such studies found cooperative caching on
distributed file systems somewhat ineffective [17]. With trace driven simulation, Muntz and
Honeyman [17] concluded that the sharing amongst the clients of the file system is quite low
(less than 10%) for caching-only intermediate servers to be effective. They also found disap-
pointingly low cache hit rates (less than 20%) even with infinite cache at the intermediary
Servers.

These results led researchers to think for a little while that cooperative caching is probably
not going to be effective for Internet environment either. However, these experiments were
done in a small LAN environment tracing the workstations’ file system traffic. This scenario
is completely different than Internet object sharing. While workstation file systems share a
large relatively static collection of files, such as gcc, the Internet exhibits a high degree of
read-only sharing among a rapidly evolving set of popular objects. This was pointed out by
the Harvest study [6] - one of the pioneering works on hierarchical caching. Researchers, in
the mean time, had established the usefulness of caching in the Internet [8]. Cooperative
caching also received attention soon [8, 7, 14|. Along with the idea of cooperative cache, came
the issues of cache to cache communication and other protocol issues. With the explosion of
the World Wide Web, large scalable cache architecture became a focus of attention both in
the academia and in the industry.

3 Cooperative Caching in File Systems

3.1 Caching in Distributed Environment

As mentioned in section 2, cooperative caching was first studied under the distributed file
system environment. Muntz and Honeyman [17] and Blaze and Alonso [2] simulated multi-
level caching architectures on distributed file systems in the LAN environment. They used
traces taken from over a hundred workstations running the Andrew File System at DEC’s
System Research Center. While Muntz and Honeyman found “disappointingly low” hit
rates, Blaze and Alonso reported that caching could reduce file server traffic by a factor of
two or more, and thought that a hierarchical set of caches could reduce load by an order of

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

magnitude. Although these two studies employed similar file workloads, Blaze and Alonso
cached only read-mostly files while Muntz and Honeyman cached writes as well. Blaze and
Alonso cached reads both to reduce server workload and for improved consistency. This is
probably one of the reasons why the two studies found somewhat different results. The file
type studied by Blaze and Alonso are similar to today’s Internet environment.

3.2 Improving File System Performance

Dahlin et al. performed a study on file system to see the improvement in file system perfor-
mance through the use of cooperative caching [7]. In this study, they tried to coordinate the
file caches of many machines distributed on a LAN to form a more effective overall file cache.
With trace driven simulation, the authors studied four cooperative caching algorithms. They
found that cooperative caching in file systems can reduce the disk access by half. They also
found an improvement of 73% in file system read response time. This study concluded coop-
erative caching is effective to improve file system read response time. The paper also tried to
establish that relatively simple cooperative caching algorithms are sufficient to realize most
of the potential performance gain.

The algorithms discussed in this paper were Direct Client Cooperation, Greedy Forward-
ing, Centrally Coordinated Caching and N-chance Forwarding.

e The idea in direct client cooperation is to allow an active client to use an idle client’s
memory as backing store. The active client forwards cache entries that overflow its
local cache directly to an idle machine. The active client can then access this private
remote cache to satisfy its read requests until the remote machine becomes active and
evicts the cooperative cache.

e In greedy forwarding, the cache memories of all clients in the system are considered as a
global resource that may be accessed to satisfy any client’s request, but the algorithm
does not attempt to coordinate the contents of these caches. Each client manages its
local cache greedily, without regard to the contents of the other caches in the system
or the potential needs of other clients. If a client does not find a block in its local
cache, it asks the server for the data. If the server has the required data in its memory
cache, it supplies the data. Otherwise, the server consults a data structure listing the
contents of the client caches. If any client is caching the required data, the server
forwards the request to that client. The client receiving the forwarded request sends
the data directly to the client that made request.

e (Centrally coordinated caching adds coordination to the Greedy Forwarding algorithm
by statically partitioning each client’s cache into a locally managed section, managed
greedily by that client, and a globally managed section, coordinated by the server as
an extension of its central cache. If a client does not find a block in its locally managed
cache, it sends the request to the server. If the server has the desired data in memory,
it supplies the data. Otherwise the server checks to see if it has stored the block in
centrally coordinated client memory. If it locates the data in client memory, it forwards
the request to the client storing the data. If all fails the server supplies the data from
disk.

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE




