
1 VMWARE, INC. 1014

RELIABLE

COMPUTER

SYSTEMS

DESIGN AND EVALUATION

SECOND EDITION

DANIEL P. SIEWIOREK

ROBERT s. SWARZ

DIGITAL PRESS

1 VMWARE, INC. 1014

2

Copyright 1992 by Digitai Equipment Corporation.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without prior written permission of the publisher.

Printed in the United States of America.
9 B 7 6 5 4 3 2 ‘1

Order number EY—HBBDE-DP

The Publisher offers discounts on bulk orders of this book. For information, please write:
Special Sales Department
Digital Press
One Burlington Woods Drive
Buriington, MA 01003

Design: Outside Designs
?roduction: Technical Texts

Composition: DEKR Corporation
Printer: Arcatai'Halliday

Trademark products mentioned in this book are listed on'page 890.I

Views expressed in this book are those of the authors, not of the publisher. Digital Equipment Corporation is
not responsible for any errors that may appear in this book.

Library of Congress Cataloging-En-Publication Data

Siewiorek, Daniel P.

‘ Reliable computer systems : design and evaluation 1 Daniel P.
Siewiorek, Robert S. Swarz. —- 2nd ed.

l3 p. cm.

, Rev. ed. of: The theory and practice of reiiable system design.

Bedford, MA : Digital Press, c1982.
. Includes bibliographical references and index.

9' 'ISBN 1-5553-1175-0

g 1. Electronic digital computers—Reliability. 2. Fault-toierant
a computing. I. Swarz, Robert 5. II. Siewiorek, Danie} P. Theory

.and practice of reiiabie system design. JII. Title.
’ QA76.5.55377 1992

3* 004-dc20 92-10671
CIP

CREDITS

E Figure 1—3: Eugene Foley, "The Effects of Microelectronics Revolution on Systems and Board Test,” Computers,
Vol. 12, No. 10 (October 1979). Copyright © 1979 JEEE. Reprinted by permission.

; Figure 1—6: S. Russell Craig, ”Incoming Inspection and Test Programs,” Electronics Test (October1980), Re-
3 printed by permission.

‘ Credits are continued on p. 885, which is considered a continuation of the copyright page.

3

To Karon and Lonnie

A Special Remembrance:

During the deveiopment of this book, a friend, colleague, and fault-toierant pioneer

passed away. Dr. Wing N. Toy documented his 37 years of experience in designing

severai generations of fault—tolerant computers for the Bell System electronic switching 3‘:
systems described in Chapter 8. We dedicate this book to Dr. Toy in the confidence l?
that his writings will continue to influence designs produeed by those who learn from

these pages. ii

4

CONTENTS

Preface xv

I THE THEORY OF RELIABLE SYSTEM DESIGN 1

I FUNDAMENTAL CONCEPTS 3

Physical Levels in a Digital System 5

Temporal Stages of a Digital System 6

Cost of a Digital System 18

Summary 21
References 21

2 FAULTS AND THEIR MANIFESTATIONS 22

System Errors 24‘
Fault Manifestations 31

Fault Distributions 49

Distribution Models for Permanent Faults: The MIL-HDBK-217 Model 57

Distribution Models for intermittent and Transient Faults 65
Software Fault Modeis 73

Summary 76
References 76

Problems 77

3 RELIABILITY TECHNIQUES 79

Steven A. Elkind and Daniel P. Siewiorek

System—Failure Response Stages 80
Hardware Fault-Avoidance Techniques 84

Hardware Fault-Detection Techniques 96

Hardware Masking Redundancy Techniques 138

Hardware Dynamic Redundancy Techniques 169

Software Reliability Techniques 201

,. Summary 219
t; References 219
I” Problems 221

4 MAINTAINABILITY AND TESTING TECHNIQUES 228

Specification-Based Diagnosis 229

Symptom-Based Diagnosis 260
vii

5

 397W1$¥W€memfiwy‘aymrmmmx—uma—._.

CONTENTS

Summary 268
References 268
Problems 269

'5 EVALUATION CRITERIA 271

Stephen McConneI‘and Daniel P. Siewiorek

Introduction 271

Survey of Evaluation Criteria: Hardware 272

Survey of Evaluation Criteria: Software 279

Reliability Modeling Techniques; Combinatorial Models 235
Examples of Combinatorial Modeling 294

Reliability and-Availability Modeling Techniques: Markov Models 305

Examples of Markov Modeling 334 ‘
Availability Modeling Techniques 342

Software Assistance for Modeling Techniques 349
Applications of Modeling Techniques to Systems Designs 356
Summary 391 7 '
References 391

Problems 392

6 FINANCIAL CONSIDERATIONS 402

Fundamental Concepts 402

Cost‘Models 408

Summary 419
References 41 9

Problems 420

II THE PRACTICE OF RELIABLE SYSTEM DESIGN 423

Fundamental Concepts 402-

GeneraI-Purpose Computing 424

High-Availability Systems .424

Long-Life Systems 425
Critical Computations 425

7 GENERAL-9URPOSE COMPUTING 427

Introduction 427

Generic Computer 427
DEC .430

IBM 431,

The DEC CaSE: RAMP in the VAX Family 433
Daniel P. Siewiorek

6

CONTENTS ix

The VAX Architecture 433

First-Generation VAX Implementations 439

Second-Generation VAX Implementations 455
References 484

The lBM Case Part I; Reliability, Availability, and Serviceability in {BM 303x
and {BM 3090 ProcesSOr Complexes 485

Daniel P. Siewiorek

Technology 485'
Manufacturing 486

Overview of the 3090 Processor Complex 493
References 507

The IBM Case Part ll: Recovery Through Programming: MVS

Recovery Management 508
CT. Connolly

Introduction 508

RAS Objectives 509

Overview of Recovery Management 509

MVS/XA Hardware Error Recovery 511

MVS/XA Serviceability Facilities 520

Availability 522

Summary 523

Bibliography 523
Reference 523

8 HIGH-AVAILABILITY SYSTEMS 524

Introduction 524

AT&T Switching Systems 524

Tandem Computers, Inc. 528
Stratus Computers, Inc. 531
References 533

The AT&T Case Part 1: Fault—Tolerant Design of AT&T Telephone

Switching System Processors 533
W.N. Toy

Introduction 533

Allocation and Causes of System Downtime 534

Duplex Architecture 535

Fault Simulation Techniques 538
First-Generation ESS Protessors 540

Second-GenerationProcessors 544
Third-Generation 38200 Processor 551

Summary 572
References 573

7

x CONTENTS

The AT&T Case Part ii: Large-Scale Real-Time Program Retrofit Methodology in
AT&T SESS® Switch 574

LC. Toy ‘

BESS Switch Architecture Overview 574

Software Replacement 576

S um mary 585
Refe rerices 586

The Tandem Case: Fault Tolerance in Tandem Computer Systems 586
Joe! Bartlett, Wendy Bartlett, Richard Carr, Dave Garcia, Jim Gray, Robert Horst,
Robert Jardine, Doug Jewett, Dan Lenoski, and Dix McGuire

Hardware 588

Processdr Module Implementation Details 597

i Integrity 52 613
3= Maintenance Facilities and Practices 622

Software 625

Operations 647
Summary and Conclusions 647
References 648

The Stratus Case: The Stratus Architecture 648
ii ‘ Steven Webber

\

i Stratus Solutions to Downtime 650

J issues of Fault Tolerance 652 .
J ' System Architecture Overview 653

Recovery Scenarios 664 '
Architecture Tradeoffs 665

Stratus Software 666

3 Service Strategies 669

i! Summary 670l

9 LONG-LIFE SYSTEMS 671

3 Introduction 67’]

i Generic Spacecraft 67‘]
I Deep~$pace Planetary Probes 676

y _ Other Noteworthy Spacecraft Designs 679
ii References 679

The Galileo Case: Galileo Orbiter Fault Protection System 6791 Robert W. Kocsis

The Galileo Spacecraft 680

Attitude and Articulation Control Subsystem 680
Command and Data Subsystem 683
AACS/CDS Interactions 667

Sequences and Fault Protection 688

8

.4.swag-mrwnafdmswerwwwrim-fie

CONTENTS xi

Fault-Protection Design Problems and Their Resoiution 689

Summary 690
References 690

10 CRITICAL COMPUTATIONS 691

Introduction 691

C.vmp 691
SIFT 693

The C.vmp Case: A Voted Multiprocessor 694
Daniel P. Siewiorek, Vittal Kini, Henry Mashburn, Stephen McConnel, and Michael Tsao

System Architecture 694

Issues of Processor Synchronization 699
Performance Measurements 702

Operational Experiences 707
References 709

The SIFT Case: Design and Analysis of a Fault-Tolerant Computer for
Aircraft Control 710

John H. Wensley, Leslie Lamport, Jack Goldberg, Milton W. Green, Karl N. Levitt,
P.M. Melliar-Smith, Robert E. Shostak, and Charles B. Weinstock

Motivation and Background 710

SIFT Concept of Fault Tolerance 711
The SIFT Hardware 719

The Software System 723
The Proof of Correctness 728

Summary 733

Appendix: Sample Special Specification 733
References 735

III A DESIGN METHODOLOGY AND EXAMPLE OF DEPENDABLE SYSTEM

DESIGN 737

11 A DESIGN METHODOLOGY 739

Daniel P. Siewiorek and David Johnson

Introduction 739

A Design Methodology for Dependable System Design 739

The VAXft 310 Case: A Fault-Tolerant System by Digital Equipment Corporation 745
William Bruckert and Thomas Bissett

Defining Design Goals and Requirements for the VAXft 310 746
VAXft 310 Overview 747

Details of VAXft 310 Operation 756

Summary 766

9

xii CONTENTS

APPENDIXES 769

APPENDIX A 771

Error-Correcting Codes for Semiconductor Memory Applications:
A State—of—the-Art Review 771

CL. Chen and M.Y. Hsiao

Introduction 771

Binary Linear Block Codes 773

SEC-DEC Codes 775 ‘
SEC-DED-SBD Codes 778
SBC-DBD Codes 779

DEC-TED Codes 781

Extended Error Correction 784
Conclusions 786

References 786

APPENDIX B 787

Arithmetic Error Codes: Cost and Effectiveness Studies for Application in Digital
System Design 787

Algirdas Avizienis
\

l l Methodology of Code Evaluation 787
Fault Effects in Binary Arithmetic Processors 790

l Low-Cost Radix-2 Arithmetic Codes 794
Multiple Arithmetic Error Codes 799

ii References 802

APPENDIX C 803

Design for Testabiiity—A Survey 803
is Thomas W. Williams and Kenneth P. Parker

introduction 803

Design for Testability 807

Ad-Hoc Design for Testability 808

Structured Design for Testability 813
Self~Testing and Built-In Tests 821
Conclusion 828

References 829

APPENDIX D 83‘]

‘ Summary of MiL-HDBK—277E Reliability Model 831

Failure Rate Model and Factors 831

3i.‘ Reference 833

10

CONTENTS ' xiii

APPENDIX E 835

Algebraic Solutions to Markov Models 835
Jeffrey P. Hansen

Solution of MTTF Models 837

CompEete Solution for Three- and Four-State Modeis 838

Solutions to Commonly Encountered Markov Models 839
References 839

GLOSSARY 841

REFERENCES 845

CREDITS 885

TRADEMARKS 890

INDEX 891

-.._x.y,z,_gn,.5
menu.55

H,

10

11

INTRODUCTION

AT&T

SWITCHING.
SYSTEMS

524

HIGH-AVAILABILITY

SYSTEMS

Dynamic redundancy is the basic approach used in high-availability systems. These
systems are typically composed of multiple processors with extensive error—detection
mechanisms. When an error is detefited, the computation is resumed on another

processor. The evolution of high-availability systems is traced th rough the family history
'of three commercial vendors: AT&T, Tandem, and Stratus.

AT&T pioneered fault-tolerant computing in the telephone switching application
The two AT&T case studies given in this chapter trace the variations of duplication and

matching devised for the switching systems to detect failures and to automatically

resume computations. The primary form of detectionIs hardware lock——step duplication
and comparison that requires about 2.5 times the hardware cost of a nonredundant
system. Thousands of switching systems have been installed and they are currently
commerciallyavailable in the form of the 3320 processor Table 8—1 summarizes the
evolution of the AT&T switching systems it includes system characteristics such as the

number of telephone lines accommodated as well as the processor model used to

control the switching gear.

Telephone switching systems utilize natural redundancy in the network and its
operation to meet an aggressive availability goal of 2 hours downtime in 40 years (3
minutes per year}. Telephone users will redial if they get a wrong number or are
disconnected. However, thereIs a user aggravation level that must be avoided. users
will redial as long as errors do not happen too frequently. User aggravation thresholds
are different for failure to establish a call (moderately high) and disconnection of an
established call (very low}. Thus, a telephone switching system follows a staged failure

recovery process, as shown in Table 8—2.

Figure 8—1 illustrates that the telephone switching application requires quite a
different organization than that of a generai-purpose computer. in particular, a sub-
stantial portion of the telephone switching system complexity is in the peripheral
hardware. As depicted in Figure 8—1, the telephone switching system is composed of
four major components: the transmission interface, the network, signal processors,
and the central controller. Telephone lines carrying analog, signals attach to the voice

band interface frame (VlF), which samples and digitally encodes the analog signals.
The output is pulse code modulated (PCM). The echo suppressor terminal (EST) re-
moves echos that may have been introduced on long distance trunk lines. The PCM

11

12

TABLE 8—1

Summary of
installed AT&T

telephone
switching systems

TABLE 8—2

Levels of recovery

in a telephone
switching system

6. HIGH-AVAILABILITY SYSTEMS 525

W

Number Year Number

System of Lines Introduced Installed Processor Comments

1 E55 5,000—65,000 1965 1,000 No. 1 First processor with
separate control and
data memories

2 E55 1000710000 1969 ' 500 No. 2

1A ESS 100,000 1976 2,000 No. 1A Four to eight times
faster than No. 1

213 E85 LOGO—20,000 1975 >500 N0. 3A Combined control and
data store; -
microcoded; emulates
No. 2

3 E35 SUD—5,000 1976 >500 No. 3A

5 E55 ' 1,000a85,000 1982 >1 ,000 No. BB Multipurpose processor

1 Initialize specific transient memory. Temporary storage affected; no
calls lost

2 Reconfigure peripheral hardware. Initialize Lose calls being established; calls
all transient memory. in progress not lost

3 Verify memory operationr establisha Lose calls being established; calls
workable processor configuration, verify in progress not affected I
program, configure peripheral hardware,
initialize all transient memory. I

4 Establish a workable processor Ail calls lost

configuration, configure peripheral ’
hardware, initialize all memory.

signals are multiplexed onto a time-slotted digital bus. The digital bus enters a time-

space—time network. The time slot interchange (TSI}'switches PCM signals to different
time slots on the bus. The output of the TSI goes to the time multiplexed switch (TMS),

which switches the PCM signals in a particular time slot from any bus to any other

bus. The output of the TMS returns to the TS], where the PCM signals may be

interchanged to another time slot‘. Signals intended for analog lines are converted
from PCM to analog signals in the VIF. A network clock coordinates the timing for all
of the switching functions. ‘ l

The signal processors provide scanning and signal distribution functions, thus

relieving the central processor of these activities. The common channel interface

signaling (CCIS) provides an independent data link: between telephone switching sys-
tems. The CCIS terminal is used to send supervisory switching information for the

12

13

526

FIGURE 8—1

Diagram of a typi-
cal telephone

switching system

ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Service circuits PCM PCM PCM

Wire facilities

 Analog carrier Time
multiplexed

Echo
suppressor
terminal!

Time slot
interchange

1'5]
switch
TMS

EST

Digital carrier
' , . Digroup ‘terminal

DT

Analog PU bus
mrrler ' Datasignaling signaling and

I control

Signal Signal l/ 0processor processor
1, 2

. . ‘ Bus interface PU busPeripheral unit (PU) bus pugg

Data links ' Common Master Program store (PS) buschannel control '
intemf-fice console IMCC Central atcontrol

Call store (C5) bus

signaling

CC
Auxiliary unit (AU))bus

AU' File
units store

various trunk lines coming into the office. The entire peripheral hardware is interfaced

to the central control (CC) over AC—coupled buses. A telephone switching processor

is composed oi the central control, which manipulates data associated with call pro-
cessing, administrative tasks, and recovery; program store; call store for storing tran-

sient information related to the processing of telephone calls; fiie store disk system
used to store backup program copies; auxiliary units magnetic tapes storage containing

basic restart programs and new software releases; input/output (l/O) interfaces to

terminal devices; .and master control console used as the control and display console

for the system. In general, a telephone switching processor could be used to control

more than one type of telephone switching system.
The history of AT&T processors is summarized in Table 8—3 Even though all the

processors-are based upon full duplication, it is interesting to observe the evolution
from the tightly lock--stepped matching of everymachine cycle'In the early processors
to a higher dependence on self-checking and matching oniy on writes to memory.

Furthermore, as the processors evolved from. dedicated, real-time controllers to mul-

13

14

B. HIGH-AVAILABILITY SYSTEMS 527

TABLE 8—3 Summary of AT&T Telephone Switching Processors

Processont

Year Complexity Unit,of
Introduced (Gates) Switching Matching Other Error Detection/Correction .

No. 1, 1965 12,000 PS, CS, CC, Six internal nodes, 24 Hamming code on P5; parity on C5; I
buses bits per node; one automatic retry on C5, PS; watch-

node matched each dog timer; sanity program to de- ,

machine cycle; node termine if reorganization led to a
seiected to be matched valid configuration

dependent on instruc-
tion being executed

No. 2, 1969 5,000 Entire Single match point on Diagnostic programs; parity on PS;
computer call store input detection of multiword accesses

7 in CS; watch—dog timer

No. 1A, 1976 50,000 PS, CS, CC, 16 internal nodes, 24 bits Two-parity bits on PS; roving spares
buses per node; two nodes (i.e., contents of PS not com-

matched each machine pletely duplicated, can be loaded

cycle from disk upon error detection);
two-parity bits on C5; roving

spares sufficient for complete du- ,.
plication of transient data; proces- :
sor configuration circuit to search i '
automatically for a yaiid configura— If
tion 5

No. 3A, 1975 16,500 Entire None On-iine processor writes into both
computer ‘ stores; m-of-Zm code on micro— '1'

store plus parity; self-checking l
decoders; two—parity bits on regis- '

ters; duplication of ALU; watch-

dog timer; maintenance channel
for observability and controllabil—

ity of the other processor; 25% of
logic devoted to self—checking
logic and 14% to maintenance
access

3BZOD, 1981 75,000 Entire None On-line processor write into both
computer stores; byte parity on data paths;

parity checking where Parity pre-
served, duplication otherwise;
modified Hamming code on main

memory; maintenance channel for
observability and controllability of
the other processor; 30% of con-

trol logic devoted to self-check—

ing; error—correction codes on
disks; software audits, sanity

timer, integrity monitor

14

15

528

TANDEM

COMPUTERS,
INC.

N. THE PRACTICE OF RELIABLE SYSTEM DESIGN

tiple-purpose processors, the operating system and software not only became more

sophisticated but also became a dominant portion of the system design and mainte-
nance effort.

The part I of the AT&T case study in this chapter, by Wing Toy, sketches the

evolution of the telephone switching system processors and focuses on the latest
member of the family, the 33201). Part II of the case study, by Liane C. Toy, outlines

the procedure used in the BESS for updating hardware and/or software without incur—

ring any downtime.

Over a decade after the first AT&T computer-controlled switching system was installed,

Tandem designed a high-availability system targeted for the on-line transaction pro-

cessing (OLTP) market. Replication of processors, memories, and disks was used not

only to tolerate failures, but also to provide modular expansion of computing re-

sources. Tandem was concerned about the propagation of errors, and thus developed

a loosely coupled multiple computer architecture. While one computer acts as primary,
the backup computer is active only to receive periodic checkpoint information. Hence,

1.3 physical computers are required to behave as one logical fault-tolerant computer.

Disks, of course, have to be fully replicated to‘provide a complete backup copy of the

database. This approach places a heavy burden‘upon the system and user software
developers to guarantee correct operation no matter when or where a failure occurs.

in particular, the primary memory state of a computation may not be available due to

the failure of the processors. Some feel, however, that the multiple computer structure

is superior to a lock-step duplication approach in tolerating design errors.

The architecture discussed in the Tandem case study, by Bartlett, Bartlett, Garcia,

Gray, Horst, Jardine, Jewett, Lenoski, and McGuire, is the first commercially available,

modularly expandable system designed specifically for high availability. Design objec-

tives for the system include the following:

- ”Nonstop" operation wherein failures are detected, components are reconfigured

out of service, and repaired components are configured back into the system

without stopping the other system components

. Fail-fast logic whereby no single hardware failure can compromise the data integ-
rity of the system

- Modular system expansion through adding more processing power, memory, and

peripherals without impacting applications software

As in the AT&T switching systems, the Tandem architecture is designed to take advan-

tage of the OLTP application to simplify error detection and recovery. The Tandem

architecture is composed of up to 16 computers interconnected by two message—

oriented Dynabuses. The hardware and software modules are designed to be fast-fail;
that is, to rapidly detect errors and subsequent terminate processing. Software modules

employ consistency checks and defensive programming techniques. Techniques em-

ployed in hardware modules include the following: '

15

16

8. HIGH—AVAILABILITY SYSTEMS 529

Checksums on Dynabus messages

Parity on data paths

Errdr-correcting code memory

Watch-dog timers ‘

All l/O device controllers are dual ported for access by an alternate path in case of

processor or l/O failure. The software builds a process-oriented system with all come

munications handled as messages on this hardware structure. This abstraction allows

the blurring of the physical boundaries between processors and peripherals. Any [/0

device or resource in the system can be accessed by a process, regardless of where

the resource and process reside.

Retry is extensively used to access an l/O device. Initially, hardware/firmware

retries the access assuming a temporary fault. Next, software retries, followed by

alternative path retry and finally alternative device retry.

A network systems management program provides a set of operators that helps

reduce the number of administrative errors typically encountered in complex systems.

The Tandem Maintenance and Diagnostic System analyzes event logs to successfully

call out failed field-replaceable units 90 percent of the time. Networking software exists

that allows interconnection of up to 255 geographically dispersed Tandem systems.
Tandem applications include order entry, hospital records, bank transactions, and

library transactions.

Data integrity is maintained through the mechanisms of U0 ”process pairs”; one

l/O process is designated as primary and the other is designated as backup. All file

modification messages are delivered to the primary i/O process. The primary sends a

message with checkpoint information to the backup so that it can take over if the

primary’s processor or access path to the IIO device fails. Files can also be duplicated

on physically distinct devices controlled by an IIO process pair on physically distinct

processors. All file modification messages are delivered to both l/O processes. Thus,

in the event of physicaE failure or isolation of the primary, the backup file is up-to—date
and available. '-

User applications can also utilize the process-pair mechanism. As an example of

how process pairs work, consider the nonstop application, program A, shown in Figure

3—2. Program A starts a backup process, A1, in another processor. There are also

duplicate file images, one designated primary and the other backup. Program A peri-

odically (at user—specified points) sends checkpoint information to A1. A1 is the same

program as A, but knows that it is a backup program. A1 reads checkpoint messages

to update its data area, file status, and program counter.

The checkpoint information is inserted in the corresponding memory locations of

the backup process, as opposed to the more usual approach of updating a disk file.

This approach permits the backup process to take over immediately in the event of

failure without having to perform the usual recovery journaling and disk accesses

before processing resumes.

Program A1 loads and executes if the system reports that A’s processor is down

(error messages sent from A’s operating system image or A’s processor fails to respond

16

17

 530

FIGURE 8—2

Shadow processor
in Tandem

ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

BackupBackup exists?

exists? Checkpoint
0 Data
0 File status

to a periodic ”l’m alive” message). All file activity by A is performed on both the
primary and backup file copies. When A’t starts to execute from the last checkpoints,
it may attempt to repeat U0 operations successfully completed by A. The system file
handler will recognize this and send A1 a successfully Completed l/O message.

Program A periodically asks the operating system if a backup process exists. Since one
no longer does, it can request the creation and‘initialization of a copy of both the

process and file structure.

A major issue in the design of loosely c0upled duplicated systems is how both

copies can be kept identical in the face of errors. As an example of how consistency
is maintained, consider the interaction of an l/O processor pair as depicted in Table

84. Initially, all sequence numbers (SeqNo) are set to zero. The requester sends a

request to the server. If the sequence number is less than the server’s local copy, a
failure has occurred and the status of the completed operation is returned. Note that

the requested operation is done only once. Next, the operation is performed and a

checkpoint of the request is sent to the server backup. The disk is written, the sequence
number incremented to one, and the results checkpointed to the server backup, which

also increments its sequence number. The results are returned from the server to the

requester. Finally the results are checkpointed to the requester backup, which also
increments its sequence number.

Now consider failures. If either backup fails, the operation completes successfully.

If the requester fails after the request has been made, the server will complete the

operation but be unable to return the result. When the requester backup becomes
active, it will repeat the request. Since its sequence number is zero, the server test at

step 2 will return the result without performing the operation again. Finally, if the
server fails, the server backup either does nothing or completes the operation using

checkpointed information. When the requester resends the request, the new server
(that is, the old server backup) either performs the operation or returns the saved

results. More information on the operating system and the programming of nonstop

applications can be found in Bartlett [1978].

17

18

TABLE 8—4

Sample process-
pair transactions

STRATUS

COMPUTERS, I
INC.

8. HIGH-AVAILABILITY SYSTEMS 531

Requester Requester Backup Server Server Backup
Step SeqNo = 0 SeqNo : 0 SeqNo : D SeqNo : 0“mm—

1 Issue ‘

request
to write

record W—h—
2 if SeqNo <

MySeqNo, then
return saved status

3 Otherwise, read disk,

perform operation, —>— Saves request
_ checkpoint request

4 Write to disk

SeqNo = 1 —--—- Saves result

checkpoint result SeqNo = 1
5 <—-————. Return results

6 Checkpoint ——a-5eqNo = 1 '
results

Source: Bartlett, 1981; © 1981 ACM.

Whereas the Tandem architecture was based upon minicomputer technology, Stratus

entered the OLTP market five years after Tandem by harneSsing microprocessors. By
1980, the performance of microprocessor chips was beginning to rival that of minicom-

puters, Because of the smaller form factor of microprocessor chips, it was possible to

place two microprocessors on a single board and to compare their output pins on

every clock cycle. Thus, the Stratus system appears to users as a conventional system

that does not require special software for error detection and recovery. The case study
by Steven Webber describes the Stratus approach in detail.

The design goal for Stratus systems is continuous processing, which is defined as

uninterrupted operation without loss of data, performance degradation, or special

programming. The Stratus self-checking, duplicate-and-match architecture is shown in

Figure 8—3. A module (or computer) is composed of replicated power and backplane

buses (StrataBus) into which a variety of boards can be inserted. Boards are logically
divided into halves that drive outputs to and receive inputs from both buses. The bus
drivers/receivers are duplicated and controlled independently. The logical halves are

driven in lockrstep by the same clock. A comparitor is used to detect any disagreements

between the two halves of the board. Multiple failures that affect the two independent

halves of a board could cause the module to hang as it alternated between buses

seeking a fault-free path. Up to 32 modules can be interconnected into a system via a

message-passing Stratus intermodule bus (SIB). Access to the SIB is by dual 14 mega-

byte-per-second links. Systems, in return, are tied together by an X25 packet-switched
network.

18

19

532 ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

FIGURE 8—3 Power 0 Bus A Bus B Power 1
The Stratus pair- ' Processor
and-spare architec—
ture '

Now consider how the system in Figure 8—3 tolerates faiiure. The two processor

boards (each containing a pair of microprocessors), each self-checking modules, are

used in a pair-and-spare configuration. Each board operates independently. Each half
of each board (for example, side A) received inputs from a different bus {for example,
bus A) and drives a different bus (for example, bus A). Each bus is the wired-OR of

one-half of each board (for example, bus A is the wired-OR of all A board halves). The
boards constantly compare their two halves, and upon disagreement, the board re—
moves itself from service, a maintenance interrupt is generated, and a red light is

illuminated. The spare pair on the other processor board continues processing and is
now the sole driver of both buses. The operating system executes a diagnostic on the

failed 'board to determine whether the error was caused by a transient or permanent

fault. In the case of a transient, the board is returned to service. Permanent faults are

reported by phone to the Stratus Customer Assistance Center (CAC). The CAC recon-
firms the problem, selects a replacement board of the same revision, prints installation
instructions, and ships the board by overnight courier. The first time the user realizes
there is a problem is when the board is delivered. The user removes the old board
and inserts the‘new board without disrupting the system {that is, makes a "hot” swap).

The new board interrupts the system, and the processor that has been running brings

the replacement into full synchronization, at which point the full configuration is
available again. Detection and recovery are transparent to the application software.

The detection and recovery procedures for other system components are similar,

although the'fuli implementation of pair-and—spare is restricted to oniy the processor
and memory. The disk controllers contain dupliCate read/write circuitry. Communica-

19

20

 REFERENCES

INTRODUCTION

8. HiCH~AVAILABILl1Y SYSTEMS 533

tions controllers are also self-Checking. In" addition the memory controllers monitor
the bus for parity errors. The controElers‘ can declare a bus broken and instruct all

boards to stop using that bus. Other boards monitor the bus for data directed to them.
If the board detects an inconsistency but the memory controllers have not declared

the bus broken, the board assumes that its bus receivers have failed and declares itself
failed.

The Stratus hardware approach is attractive in that it does not require on—line

recovery from faults. The spare component continues processing until its fault coun-

terpart can be replaced. No data errors are injeCted into the system; hence, no software
recovery mechanisms are required for the pair-and—spare components. Complexities
caused by checkpointing/restart programming and other software fault-tolerant con-
siderations are eliminated. In addition to ease in programming, the Stratus approach

to maintenance reduces the yearly service cost to 6 percent of life-cycle cost, as

compared to an industrial average of 9 percent.

Bartlett, 1978, 1981.

TH E AT&T CASE

Part 1: Fault—Tolerant Design of AT&T Telephone Switching System
Processors

W.N. TOY

Except for computer systems used in space-borne vehicles and U5. defense instaliations, no

other application has a higher availability requirement than a stored--programcontrolied (SPC)
telecommhnications switching system. SPC systems have been designed to be out of service no
more than a few minutes per year. Furthermore, design objectives permit no more than 0.01

percent of the telephone calls to be processed incorrectly [Downing Nowak, and Tuomenoksa,
1964]. For example, when a fault occurs in a system, few calls in progress may be handled
incorrectly during the recovery process

At the core of every system is a single high-speed central processor [Harr, Taylor, and Ulrich,
1969,- Browne et al., 1969, Staehler, 19771 To establish an ultrareliable switching environment,

redundancy of system components, including duplication of the processor itself, is the approach
taken to compensate for potential machine faults. Without this redundancy, a single component
failure in the processor might cause a complete failure of the entire system. With duplication, a
standby processor takes over control and provides continuous telephone service.

When the system fails, the fault must be quickly detected and isolated. Meanwhile, a rapid
recovery of the call processing functions (by the redundant component(s) and/or processor) is
necessary to maintain the system’s high availability. Next, the fault must be diagnosed arid the
defective unit repaired or replaced. The failure rate and repair time must be such that the

probability is very small for a failure to occur in the duplicate unit before the first unit is repaired.

20

21

534

ALLOCATION AND
CAUSES OF
SYSTEM

DOWNTIME

FIGURE 8—4

System outage al—
location

II. THE PRACTICE OF RELIABLE SYSTEM DESIGN

The outage of a telephone (switching) office can be caused by facilities other than the processor.
While a hardware fault in one of the peripheral units generally results in only a partial loss of
service, it is possible for a fault in this area to bring the entire system down. By design, the
processor has been allocated two-thirds of the system downtime. The other one-third is allocated
to the remaining equipment in the system.

Field experience indicates that system outages due to the processor may be assigned to one
of four categories, as shown in Figure 8—4 [Staehler and Watters, 1976]. The percentages in this
figure represent the fraction of total downtime attributable to each cause. The four categoriesare as follows.

- Hardware Reliability: Before the accumulation of large amounts of field data, total system
downtime was usually assigned to hardware. We now know that the situation is more complex.
Processor hardware actually amounts for only 20 percent of the downtime. With growing use of
stored program control, it has become increasingiy important to make such systems more reliable.
Redundancy is designed into all subsystems so that the system can go down only when a hardware

failure occurs simultaneously in a unit and its duplicate. However, the data' now show that good
diagnostic and trouble location programs are also very critical parts of the total system reliability
performance.

- Software Deficiencies: Software deficiencies include all software errors that cause memory
rnutiiation and program loops that can only be cleared by major reinitialization. Software faults

are the result of improper translation or implementation of the original algorithm. In some cases,

the original algorithm may have been incorrectly specified. Program changes and feature additions .
are continuously incorporated into working offices. Software accounts for 15 percent of thedowntime.

- Recovery Deficiencies: Recovery is the system's most complex and difficult function. De-

ficiencies may include the shortcomings of either hardware or software design to detect faults
when they occur. When the faults go undetected. the system remains extensively impaired until
the trouble is recognized. A recovery problem can also occur if the system is unable to properly
isolate a faulty subsystem and configure a working system around it.

The many possible system states that may arise under trouble conditions make recovery a
complicated process. Besides those problems already mentioned, unforeseen difficulties may be

Software
deficiencies

15% Recovery
deficiencies

35%

Hardware
reliability

20%

Procedural
errors
39%

21

22

DUPLEX
ARCHITECTURE

8. HIGH-AVAILABILITY SYSTEMS 535

encountered in the field and lead to inadequate recovery. Because of the large number of variables

involved and because the recovery function is so strongly related to all other components of
maintenance, recovery deficiencies account for 35 percent of the downtime.

- Procedural Errors: Human error on the part of maintenance personnel or office adminis-

trators can also cause the system to go down. For example, someone in maintenance may
mistakenly pull a circuit pack from the on—line processor while repairing a defective standby
processor. Inadequate and incorrect documentation (for example, user’s manuals} may also be
classified as human error. Obviously, the number of manual operations must be reduced if

procedural errors are to be minimized. Procedural errors account for 30 percent of the downtime.

The shortcomings and deficiencies of current systems are being continuaily corrected to
improve system reliability.

When a fault occurs in a nonredundant single processor, the system will remain down until the

processor is repaired. In order to meet reliability requirements, redundancy is included in the
system design, and continuous, correct operation is maintained by duplicating all functional units
within the processor. if one of the units fails, the duplicated unit is switched in, maintaining

continuous operation. Meanwhile, the defective unit is repaired. Should a fauit occur in the

duplicated unit during the repair interval, the system will, of course, go down. If the repair
interval is relatively short, the probability of simultaneous faults ocmrring in two identical units

is quite small. This technique of redundancy has been used throughout each AT&T switching
system.

The first-generation electronic switching system (ESS) processor structure consists of two
store communities: program store and call store. The program store is a read-only memory,

containing the call processing, maintenance, and administration programs; it also contains long«
term translation and system parameters. The call store contains the transient data related to

telephone calls in progress. The memory is electrically alterable to allow its data to be changed
frequently. in one particular arrangement, shown in Figure B—5b, the complete processor is treated
as a single functional block and is duplicated. This type of single-unit duplex system has two

possible configurations: Either processor 0 or processor 1 can be assigned as the on-line working
system, while the other unit serves as a standby backup. The mean time to failure (MTTF), a
measure of reliability, is given by the following expression [Smith, 1972]:

2*-
p.MTTF = ~—

2A2

where u = repair rate (reciprocal of the repair time)
it = failure rate

The failure rate (it) of one unit is the sum of the failure rates of all components within the

unit. For medium and small ESS processors, Figure 8—5a shows a system structure containing
several functional units that are treated as a single entity, with it still sufficiently small to meet

the reliability requirement. The single-unit duplex configuration has the advantage of being Very
simple in terms of the number of switching blocks in the system. This configuration simplifies

not only the recovery program but also the hardware interconnection by eliminating the additional
access required to make each duplicated block capabie of switching independently into the on-
Iine system configuration.

In the large 1E5 switching system, which contains many components, the M'iTF becomes

22

23

536

FIGURE 8—5

Single-unit duplex
configuration

ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Peripheral units

Processor 0 Processor 1 _J--—w —————— L--——_———

a. Processor structure

:— Processor0/1

| (working system) ‘IL

b. Two possible configurations

“"1
I

Processor

1
Processor

0

1too low to meet the reliability requirement. In order to increase the MTTF, either the number of
components (failure rate) or the repair time must be reduced. Alternatively, the single-unit duplex
configuration can be partitioned into a multi«unit duplex configuration, as shown in Figure Set).
In this arrangement, each subunit contains a small number of components and can be switched
into a working system. The system will fail only if a fault occurs in the redundant subunit while
the original is being repaired. Since each subunit contains fewer components, the probability of
two simultaneous faults occurring in a duplicated pair of subunits is reduced. The MTTF of the

multi-unit duplex configuration can be computed by considering the conditional probability of
the failure of a duplicate subunit during the repair time of the original subunit.

An example of a multi~unit duplex configuration is shown in Figure 8—6. A working system

is configured with a fault—free CCx-CSX~CSBx-PSx—PSBx-PUBx arrangement, where x is either
subunit 0 or Subunit 1. This arrangement means there are 26, or 64, possibie combinations of

system configurations. The MTI'F is given by the following expression:

_ r_e
MTrF 2x2 (1)

and

‘l
= __.___.ss.—_.__.W——. 2

(Rec/ME + (Ros/M2 + mesa/M2 + ops/M2 + (APSE/A)? + (math? ()
r

The factor r is at a maximum when the failure rate (N) for each subunit is the same. In this case,

hcc = lcs = Rosa I M's = M53 = Mus = M (3)

23

24

FIGURE 8—6

Multi‘unit duplex

configuration

8. HlGH-AVAILABILITY SYSTEMS 537

or

A

A]. = E (4)

where s = number of subunits in Eq. (2) 7,
5 : 6
r = 5

At best, the M'lTF is improved by a factor corresponding to the number of partitioned

subunits. This improvement is not fully realized, since equipment must be added to provide
additional access and to select subunits. Partitioning the subsystem into subunits, as shown in

Figure 8—6, results in subunits of different sizes. Again, the failure rate for each individual subunit
will not be the same; hence, the r—factor will be smaller than 6. Because of the relatively large

number of components used in implementing the 1ESS switch processor, the system is arranged
in the multi-unit duplex configuration in order to meet the reliability requirement.

Reliability calculation is a process of predicting, from available failure rate data, the achiev-

able reliability of a system and the probability of meeting the reliability objectives for telephone
switching applications. These calculations are most useful and beneficial during the early stages
of design in order to assess various types of redundancy and to determine the system’s organi-

Peripheral units

Periphera! unitsbus0

Programstorebus0 Callstorebus0

a. Processor structure b. 64 possible configurations

24

25

538

FAULT

SIMULATION

TECHNlQUES

ll. THE PRACT|C£ OF RELIABLE SYSTEM DESIGN

zation. in the small and medium switches, the calculations support the use of single-unit duplex
structures. For large systems, it is necessary to partition the system into a multi-unit duplex
configuration.

One of the more difficult tasks of maintenance design is fault diagnosis. The maintenance design’s
effectiveness in diagnostic resolution can be determined by simulation of the system’s behavior
in the presence of a specific fault. By means of simulation, design deficiencies can be identified

and corrected prior to any system’s deployment in the field. it is necessary to evaluate the
system’s ability to detect faults, to recover automatically back into a working system, and to
provide diagnostics information when the fault is within a few replaceable circuit packs. Fault
simulation, therefore, is an important aspect of maintenance design.

There are essentially two techniques used for simulating faults of digital systems: physical
simulation and digital simulation. Physical simulation is a process of inserting faults into a physical

working model. This method produces more realistic behavior under fault conditions than digital
simulation does. A wider class of faults can be applied to the system, such as a blown fuse or

shorted backplane interconnection. However, fault simuiation cannot begin until the design has
been completed and the equipment is fully Operational. Also, it is not possibie to insert faults
that are internal to an integrated circuit. .

Digital fault simulation is a means of predicting the behavior under failure of a processor
modeied in a computer program. The computer used to execute the program (the host) is
generally different from the processor that is being simulated (the object). Digital fault simulation

gives a high degree of automation and excellent access to interior points of logic to monitor the
signal flow. It allows diagnostic test development and evaluation to pr0ceed well in advance of

unit fabrication. The cost of computer simulation can be quite high for a large, complex system“.
The physical fault simuiation method was first employed to generate diagnostic data for the

Morris Electronic Switching System [Tsiang and Ulrich, 1962]. Over 50,000 known faults were

purposely introduced into the central control to be diagnosed by its diagnostic program. Test
results associated with each fault were recorded. They were then sorted and printed in dictionary
format to formulate a trouble-locating manual. Under trouble conditions, by consulting the
manuai, it was possible to determine a set of several suspected circuit packs that might contain

the defective component. Use of the dictionary technique at the Morris system kept the average
repair time low and made maintenance much easier.

The experience gained in the physical fault simulation was applied and extended in the 1ESS
switch development Downing, Nowak, and Tuomenoksa, 1964]. Each plug-in circuit pack was

replaced by a fault simulator that introduced every possible type of single fault on the replaced
package one at a time and then recorded the system reaction on magnetic tape. This procedure
was followed for all circuit packs in the system. In addition to diagnostic data for dictionaries,
additional data were collected to determine the adequacy of hardware and software in fault

detection and system recovery. Deficiencies were corrected to improve the overall maintenance
of the system. '

A digitai logic simulator, called LAMP [Chang, Smith, and Walford, 1974], was developed for
the 1A system, and it played an important role in the hardware and diagnostics development of

the 1A Processor.'l_AMP is capable of simulating a subsystem with as many as 65,000 logic gates.
All classical faults for standard logic gates are simulatable with logic nodes stuck—at-U or stuck-at-

1. Before physical units are avaiiable, digital simulators can be yery effective in verifying the
design, evaluating diagnostic access, and developing tests. Physical fault simulation has been
demonstrated in the System ‘1 processor to give a very realistic behavior under fault conditions.

The integration of both techniques was employed in the development of the 1A precessor to

25

26

FIGURE 8—7

Complementary
fault simulation

system

B. HIGH-AVAILABILITY SYSTEMS 539

take advantage of bothprocesses. The use of complementary simulation allows faults to be
simulated physically (in the system laboratory) and logically (on a computer). Most of the defi-
ciencies of one simulation process are compensated for by the other. The complementary method
provides both a convenient method for validating the results and more extensive fault simulation
data than is possible if either process is used individually. Figure 8—7 shows the complementary
process of fault simulation used in the 1A Processor development [Bowman et al.r 1977; Goetz,
1974]. Maximum diagnostic performance was achieved from an integrated use of both simulation
methods.

Physical Common - Digital

 Fault

selection

Physical
fault

simulator

Fault

descriptions

F...
' -..__'

/’ N C. .
’ Manufacture \ "curt
\\ I , description

 Test

generation

Simulator

compiler

LAMP
fault

1A processor simulator

Circuit
under test

, Compare and merge
Design

feedback I -

Diagnostic :
summary 1

26

27

540

FIRST-

GENERATION ESS
PROCESSORS

I]. THE PRACTICE OF RELlABLE SYSTEM DESlGN

The world’s first stored-program—controlled switching system provided Commercial telephone
service at Morris, lllinois, in 1959 for about a year on a field-trial basis [Keisten Ketchledge, and
Lovell, 1960]. The system demonstrated the use of stored program control and the basic main-
tenance philosophy of providing continuous and reliable telephone service. The trial established
valuable guides for designing a successor, the 1ESS switch.

JESS Switch Processor (No. 1 Processor)

The 1ESS switching system was designed to serve large metropolitan telephone offices, ranging
from several thousand to 65,000 lines [Keister, Ketchledg‘e, and Vaughan 1964]. As'In most large
switching systems, the procesmr represents only a small percentage of the total system cest.
Therefore, performance and reliability were of primary importance in the design of the No.1
processor; cost was secondary. In order to meet the reliability standards established by electro-
mechanical systems, all units essential to proper operation of the office are duplicated (see Figure
'.8v6) The multi-unit duplex Configuration Was necessary to increase the MTTF of the processor
because of the large number of components in each of the functional blocks

Even with duplication, troubles must be found and corrected quickly to minimize exposure
to system failure due to multiple troubles All units are monitored continually so that troubles'In
the standby units are found just as quickly as thoseIn the on--iine units. Monitoring is accom—
plished by running the on—_line and standby units in synchronous and match mode of operation
[Downing Nowak, and Tuomenoksa, 1964]. Synchronization requires that clock timing signals be
in close tolerance so that every Operation in both halvesIs performedIn step, and key outputs
are compared for error detection. The synchronization of duplicated units is accomplished by
having the on-line osciilator output drive both clock circuits. There are two match circuits in each
Central control (CC). Each matcher compares 24 bits within one machine cycle of 5.5 micro-
seconds. Figure 8—3 shows that each matcher has access to six sets of internal nodes (24 bits per
node). In the routine match mode, the points matchedIn each cycle are dependent upon the
instruction that is being executed. The selected match points are those most pertinent to the
data processing steps that occur during a given machine cycle. The two matchers in each CC
compare the same sets of selected test points. if a mismatch occurs, an interrupt is generated,
causing the fault-recognition program to run. The basic function of this program is to determine
which half of the system is faulty. The su5pected unit is removed from service, and the appropriate
diagnostic program is run to pinpoint the defective circuit pack. The capability of each CC to
compare a number of internal nodes provides a highly effective meansrof detecting hardwareerrors.

‘ The No. 1 Processor was designed during the discrete component era (early 19605), using
individual components to implement logic gates [Cagle et al., 1964}. The CC contains approxi-
inately 12,000 logic gates. Although this number appears smali when compared to large-s—cale
integration (LSl) technology, the No.1 Prooessorwas a physically large machine for its time. The

match circuits capable of comparing internal nodes are the primary tools incorporated into the
CC for diagnosing as well as detecting troubies. Specified information can be sampled by the
matchers and retained in the match registers for examination. This mode of operation obtains
critical data dLiring the execution of diagnostic programs.

The early program store used permanent magnet twister (PMT) modules as basic storage
elements [Ault et al.,1964]. PMTs are a form of ROM in which system failures cannot alter the
information content. Experience gained from the Morris field test system, which used the less
reliable flying spot store, indicated that Hamming correction code was highly effective in providing
continuous operation. At the time of development, it was felt that EMT modules might not be,

27

28

a. HIGH-AVAILABILITY SYSTEMS 541

FIGURE 3—3 _ ' ' _+ To
No. 1 Processor’s ‘ other

CC match access _Cirher "— CC
f t' Inputs
unc Ions ,

register

Data buffer
register

|
I
I
|
I
|
l

i To interruptI source
I
I
|
I
|
I
|I

Masked

Program add.
register

I‘“ Points matched
Buffer 0rd. routinely

' Word reg.

I: v:

C :1:

Index adder.
order reg.

Unmasked

Sequencer
state FFS
Decoder
functions To interruptsource

Testconnector

i reliable enough. Consequently, the program store W'ord included additional check bits for single-
bit error correction (Hamming codg). In addition, an overall parity check bit that covers both the
data and their addresses is included in the word. The word size consists of 37 bits of information

and seven check bits. When an error is corrected during normal operation, it is logged in an
error counter. Also, detection of a single error in the address or a double error in the word will

cause an automatic retry.
The caii store is the temporary read and write memory for storing transient data associated

with call processing. Ferrite sheet memory modules are the basic storage elements used in
implementing the call store in the 1ESS switch [Genké, Harding, and Staehler, 1964]. The call
store used in most No. 1 offices is smaller than the program store. (At the time of design, the

cost per bit of call store was considerably higher than that of program store.) Also, ferrite sheet

28

29

542
ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

memory modules were considered to be very reliable devices. Consequently, single-bit error
detection rather than Hamming correction code was provided in the call store.

There are two parity check bits: one over both the address and the data, and the other We,
the address only. Again, as in the program store, automatic retry is performed whenever an errOr
is detected, and the event is logged in an error counter for diagnostic use.

Troubles are normally detected by fault-detection circuits, and error-free system operatiOn
is recovered by fault recognition programs [Downing Nowak, and Tucimenoksa, 1964]__ This

arranged in a maze. Only one correct path through the maze exists. If the processor passes
through successfully, the timer will be reset, and recovery is succéssful. lf recovery is unsuc.
cessful, the tir'ner will time out again, and the rearrangement of subsystems will be tried one at
a time (for example, combination of CC, program store, and program store bus systems). For
each selected combination, the special sanity program is started and the sanity timer is activated.
This procedure is repeated until a working configuration is found. The sanity program and sanity
timer determine if the on—line CC is functioning properly. The active CC includes the programstore and the program store bus.

2ESS Switch Processor (No. 2 Processor)

The No. 2 Processor was developed during the mid-19605 [Spencer and Vigilante, 1969]. The 2ESS
switch was designed for medium-sized offices ranging from 1,000 to 10,000 lines. The processor’s
design was derived from experience with the common stored program of a privatebranch
exchange (PBX), the No. 101 {Seley and Vigilante, 1964]. Since the capacity requirement of the
ZESS switch was to be less than that of the 1ESS switch, cost became one of the more important
design considerations. (Reliability is equally important in all systems.) The 2ESS switch contains
much less hardware than the 1ESS switch. Understandably, its component failure rate is also
substantially lower. its CC contains approximately 5000 gates (discrete components). To reduce
cost and increase reliability, resistor-transistor logic (RTL) gates were chosen for the ZESS proces-
sor, since resistors are less expensive and more reliable than diodes [the No. 1 Processor used
diode-transistor logic (DTLJJ. ‘

Because the No. 2 Processor’s CC, program store, and call store are smaller, they are grouped
together as a single switchable block in the single-unit duplex configuration Shown in Figure
8—5. Calcuiations indicate that its MTI‘F is approximately the same as the No. 1 multi-unit duplex
structure, with each of the functional blocks and associated store buses grouped together as a
switchable block. The use of only two subsystem configurations considerably reduces the amount
of hardware needed to provide gating paths and control for each functional unit. Moreover, the
recovery program is simplified, and the reliability of the system is improved.

29 i
l

lI

30

8. HIGH-AVAILABILITY SYSTEMS 543

FIGURE 8—9

No. 2 Processor’s

CC match access {- —————————————————— —-.

Error signals
0 Halt off-line

CC L
0 Run detection

programs in
on-llne CC

Maintenance center

processed data returning to the call store. The call store input is the central point by which data
eventually funnel through to the call store. By matching the call store inputs, an effective check
of the system equipment is provided. Compared to the more complex matching of the No. 1
Processor, error detection in the No. 2 Processor may not be as instantaneous, since only one

crucial node in the processor is matched. Certain faults in the No. 2 Processor wiil go undetected

until the errors propagate into the call store. This interval is probably no more than tens or
hundreds of microseconds. During such a short intervai, the fault would affect only a single cail.

The No. 2 Processor matcher is not used as a diagnostic tool as is the matcher in the No. 1

Processor. Therefore, additional detection hardware is designed into the No. 2 Processor to heip

diagnose as well as detect faults. When a mismatch occurs, the detection program is run in the
on«|ine CC to determine if it contains the fault. This is clone while the standby processor is

disabled. If a solid fault in the on-line processor is detected by the mismatch detection program,

the control is automatically passed to the standby processor, causing it to become the on-Eine

processor. The faulty processor is disabled and diagnostic tests are called in to pinpoint the
defective circuit pack.

The program store also uses PMT modules as basic storage elements, with a word size of 22
bits, haif the width of the No. 1 Processor’s word size. Experience gained in the design and

operation of the No. 101 PBX showed that PMT stores are very reliable. The additional protection

provided in the No. 1 Processor against memory faults by error correction was not considered to
be as important in the No. 2 Processor. Thus, the need to keep the cost down led to the choice
of error detection only, instead of the more sophisticated Hamming correction code.

\ Error detection Works as follows: One of the 22 bits in a word is allocated as a parity check
bit. The program store contains both program and translation data. Additional protection is

provided by using odd parity for program words and even parity for translation data. This parity
scheme detects the possibility of accessing the translation data area of memory as instruction

words. For example, a software error may cause the program to branch into the data section of
the memory and execute the data words as instruction words. The parity check would detect this
problem immediately. The program store includes checking circuits to detect multiple-word

30

31

a 544

SECOND-

GENERATION
PROCESSORS

“. THE PRACTICE OF RELIABLE SYSTEM DESIGN

access. Under program control, the sense amplifier threshold voltage can be varied in two discrete
amounts from its nominal value to obtain a measure of the operating margin. The use of parity
check was the proper choice for the No. 2 Processor in view of the high reliability of these

memory devices.
The No. 2 Processor call store uses the same ferrite sheet memory modules as the No. 1

Processor. However, the No. 2 Processor’s data word is 16 bits wide instead of 24. Fault detection

depends heavily upon the matching of the cali store inputs when the duplex processors run in
the synchronous mode. Within the call store circuit, the access circuitry is checked to see that
access currents flow in the right direction at the correct time and that only two access switches

are selected' in any store operation, ensuring that only one word is accessed in the memory
operation. Similarly, threshold voitages of the sense amplifiers may be varied under program
control to evaluate the operating margins of the store. No parity check bit is provided in the call
store.

Each processor contains a program timer that is designed to back up other detection meth-
ods. Normally, the on—line processor clears the timer in both processors at prescribed intervals

if the basic call processing program cycles correctly. If, however, a hardware or software trouble
condition exists (for example, a program may go astray or a longer program loop may prevent

the timer from being cleared), the timer will time out and automatically produce a switch. The
new on-line processor is automatically forced to run an initialization restart program that attempts

to establish a working system. System recovery is simplified by using two possibie system con~

tigurations rather than the multi-unit duplex system.

The advent of silicon integrated circuits ([Cs) in the mid-19605 provided the technological climate
for dramatic miniaturization, improved performance, and cost-reduced hardware. The term 1A

technology refers to the standard set of IC devices, apparatus, and design tools that were used
to design the No. 1A Processor and the No. 3A Processor iBecker et al., 1977]. The choice of

technoiogy and the scale of integration level were dictated by the technological advances made
between 1968 and 1970. Smail-scale integration (SSI), made possible by bipolar technology, was

capable of high yield production. Because of the processor cycle time, high-speed logic gates
with propagation delays from 5—10 nanoseconds were designed and developed concurrent with
the No. 1A Processor.

No. 1A Processor

The No. 1A Processor, successor to the No. 1 Processor, was designed primarily for the control

of large iocai and toll switches with high processing capabilities (the 1A E55 and 4ESS switches,
respectively) [Budlong et al., 1977]. An important objective in developing the 1A ESS switch was

to maintain commonality with the “£58 switch. High capacity was achieved by implementing the
new 1A integrated technology and a newly designed system structure. These changes made
possible an instruction execution rate that is four to eight times faster than the No. 1 Processor.
Compatibility with the 1ESS system also allows the No. ‘IA Processor to be retrofitted into an in-

service 1ESS, replacing the No. 1 Processor when additional capacity is needed. The first 1A

Processor was put into service in January, 1976, as control for a 4ESS toll switch in Chicago. Less
than one year later, the first 1A ESS system was put into commercial operation. By 1988, about
2000 systems were in service. ‘

The No. 1A Processor architecture is similar to its predecessor in that all of its subsystems
have redundant units and are connected to the basic CC via redundant bus systems [Bowman

et al., 1977]. One of the No. 1A Processor’s major architectural differences is its program store

31

32

FIGURE 8—1 0
No. 1.4 Processor

configuration

8. HIGH—AVAILABILITY SYSTEMS 545

[Auit et al., 1977]. It has a writable RAM instead of PMT ROM. By combining disk memory and

RAM, the system has the same amount of memory as a system with PMT, but at a lower cost.

Backup copy of program and translation data is kept on disk. Other programs (e.g., diagnostics)
are brought to RAM as needed; the same RAM spare is shared among different programs. More
important is the system’s ability to change the content of the store quickly and automatically.
This ability considerably simplifies the administration and updating of program and translation
information in working offices.

The additional disk (file store) subsystem adds flexibility to the No. 1A Processor [Ault et al.,
1977], but it also increases the complexity of system recovery. Figure 8—10 shows the multi—unit

duplex No. ‘lA Processor. This configuration is similar to the No. 1 Processor arrangement (see
Figure 8—6) with a duplicated file store included. The file store communicates with the program
store or call store via the CC and the auxiliary unit bus. This communication allows direct memory

aceess between the file store and the program store or the call store. The disk file and the auxiliary
unit bus are grouped together as a switchable entity. ‘

Error detection is achieved by the duplicated and matched synchronous mode of operation,
as in the No. 1 Processor. Both CCs Operate in step and perform identical operations. The

Peripheral units

 Callstorebus0 Auxiliaryunitbus0 ll-llPeripheralbus0Programstorebus0

AUBO PUBG PUB‘I AUB‘I

I

PSBG ‘ P531

32

33

546

FIGURE B-—1 1

No. 1A Processor’s

program store
structure ‘-

ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

matching is done more extensively in the 1A to obtain as complete a check as possible. There
are two match circuits in each processor. Each matcher has the ability to compare 24 internal bits
to 24 bits in its mate once every machine cycle. (A machine cycle is 700 nanoseconds.) Any one
of 16 different 24—bit internal nodes can be selected for comparison. The choice is determined
by the type of instruction that is being executed. Rather than compare the same nodes in both
CCs, the on-line and the standby CCs are arranged to match different sets of data. Four distinct
internal groups are matched in the same machine cycle to ensure the correct execution of any
instruction.

The No. 1A Processor design is an improvement of the No. 1 Processor design. The No. 1A
Processor incorporates much more checking hardware throughout various functional units, in
addition to matching hardware. Checking hardware speeds up fault detection and also aids the
fault recovery process by providing indications that help isolate the faulty unit. The matching is
used in various modes for maintenance purposes. This capability provides powerful diagnostic
tools in isoiating faults. ,

The program store and call store use the same hardware technology as in the No. 1 Processor.
The CC contains approximately 50,000 logic gates. While the initial design of the stores called for
core memories, they have been replaced with semiconductor dynamic MOS memories. The word
size is 26 bits {24 data bits and 2 parity check bits). In the No. 1 Processor, the program store and
the call store are fully duplicated. Because of their size, duplication requires a considerable
amount of hardware, resuiting in higher cost and increased component failures. To reduce the
amount of hardware in the No. 1A Processor’s store community, the memory is partitioned into
biocks of 64K words, as shown in Figure 8—11. Two additional store blocks are provided as roving

spares. if one of the program stores fails, a roving program store spare is substituted, and a copy
of the program in the file store is transferred to the program store replacement. This type of
redundancy has been made possibie by the ability to regenerate data stored in a failing unit.
Since a program store can be reloaded from the file store in less than a second, a roving spare
redundancy plan is sufficient to meet the reliability requirement. As a result, Hamming correction
code was not adopted in the No. ‘lA program store. However, it is essential that an error be
detected quickly. Two parity check bits are generated over a partially overlapped, interleaved set
of data bits and address. This overlapping is arranged to cope with particular memory circuit
failures that may affect more than one bit of a word.

The 1A cali stores contain both translation data backed up on the file stores and call-related
transient data that are difficult to regenerate. The roving spare concept is expanded for the call
stores to inciude sufficient spares to provide fuil duplication of transient data. If a fault occurs in
a store that contains translation data, one of the duplicated stores containing transient call data

is preempted and loaded with the necessary translation data from the duplicate in the file store.
A parity check is done in the same manner as in the program store, using two check bits.

PSUD Program store bus 0

Program 64K 64K 64K 64K 64K
stores words words words words words ‘

rsm

Active program stores Standby program stores
maximum of 20 2 roving spares

33

34

8. HiGH-AVAILABILITY SYSTEMS 547

The combination of writable program store and file store provides a very effective and
flexible system architecture for administrating and implementing a wide variety of features that
are difficult to obtain in the tESS system. However, this architecture also complicates the process
of fault recognition and recovery. Reconfiguration into aworking system under trouble conditions

is an extensive task, depending on the severity of the fault. (For example, it is possible for the
processor to lose its sanity or ability to make proper decisions.) An autonomous hardware

processor configuration (PC) circuit is provided in each CC to assist in assembling a working
system. The PC circuit consists of various timers that ensure that the operational, fault recovery,

and configuration programs are successfully executed. if these programs are not executed, the
PC circuit controls the CC-to-program memory configuration, reloading program memory from
file store when required, and isolating various subsystems from the CC until a working system is
obtained.

No. 3A Processor

The No. 3A Processor was designed to control the small BESS switch [irland and Stagg, 1974],
which can handle from 500 to 5,000 lines. One of the major concerns in the designof this ESS

was the cost of its processor. The low cost and high speed of integrated logic circuitry made it

possible to design a cost-effective processor that performed better than its discrete component
predecessor, the No. 2 Processor. The No. 3A project was started in early 1971. The first system
cut into commercial service in late 1975.

Because the number of components in the No. 3A ProceSsor is considerably fewer than in

the No. 1A Processor, all subsystems are fully duplicated, including the main store. The CC, the
store bus, and the store are treated as a single switchable entity, rather than individual switchable

units as in the No. 1A Processor. The system structure is similar to the ZESS switch. Experience
gained in the design and operation of the No. 2 provided valuable input for the No. 3 Processor
design.

The 3A design makes one major departure from previous processor designs: it operates in
the nonmatched mode of duplex operation. The primary purpose of matching is to detect errors.
A mismatch, however, does not indicate where (in which one of the processors) the fault has
occurred. A diagnostic fault-location program must be run to iocalize the trouble so that the

defective unit can be taken off line. For this reason, the No. 3A Processor was designed to be
self-checking, with detection circuitry incorporated as an integral part of the processor. Faults
occurring during normal operation are discovered quickly by detecting hardware. Detection
circuitry eliminates the need to run the standby system in the synchronous and match mode of
operation or the need to run the fault recognition program to identify the defective unit when a
mismatch occurs. ,

The synchronous and match mode arrangement of the No. 1 Processor and the No. 2

Processor provides exceiient detection and coverage of faults. However, there are many instances

(for example, periodic diagnostics, administration changes, recent change updates, and so on)
when the system is not run in the normai match mode. Consequently, during these periods, the
system is vulnerable to faults that may go undetected. The rapid advances in integrated circuit

technology make possible the implementation of self-checking circuits in a cost-effective manner.
Self-checking circuits eliminate the need for the synchronous and match mode of operation.

Another new feature in switching system processor design is the application of the micro-
program technique in the No. 3A [Storey, 1976}. This technique provides a regular procedure of
implementing the control logic. Standard error detection is made part of the hardware to achieve
a high degree of checkability. Sequential logic, which is difficuit to check, is easiiy implemented

34

35

' '. 548 ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

as a sequence of microprogram steps. Microprogramming offers many attractive features: it is

simple, flexible, easy to maintain, and easy to expand.
The No. 3A Processor paralleled the design of the No. 1A Processor in its use of an electricaiiy

alterabie (writable) memory. However, great strides in semiconductor memory technology after

the No. 1A became operational permitted the use of semiconductor memory, rather than the
core memory, in the 3A.

The 3A’s call store and program store are consolidated into a single storesystem. This
consolidation reduces cost by eliminating buses, drivers, registers, and controls. A single store

system no longer allows concurrent access of call store and program store. However, this dis-

advantage is more than compensated for by the much faster semiconductor memory. Its access
time is 1 microsecond (the earlier PMT stores had an access time of 6 microseconds).

Normal operation requires the on-line processor to run and process calis while the standby
processor is in the halt state, with its memory updated for each write Operation. For the read

operation, only the on-line memory is read, except when a parity error occurs during a memory
read. A parity error results in a microprogram interrupt, which reads the word from the standby
store in an attempt to bypass the errOr.

As discussed previously, the No. 2 Procesmr (first generation) is used in the 2ESS switch for

medium-sized offices. It covers approximately 4,000 to 12,000 lines with a call handling capability
ot19,000 busy~hour calls. (The number of calls is related to the calling rate of lines during the

busy hour.) The microprogram technique used in the No. 3A Processor design allows the No. 2

Processor’s instruction set to be emulated. This emulation enables programs written in the No.
2 assembly language to be directly portable to the No. 3A Processor. The ability to preserve the

call processing programs permits the ZESS system to be updated with the No. 3A Processor
without having to undergo a complete new program development. ‘

The combination of the No. 3A Processor and the peripheral equipment of the 2ESS system
is designated as the EB ESS switch. it is capable of hahdling 38,000 busy-hour calls, tWice the
capability of the 2ESS switch [Ma'ndigo, 1976], and can be expanded to cover about 20,000 lines.
Furthermore, when an existing ZESS system in the field exceeds its real-time capacity, the No. 2

Processor can be taken out and replaced with the No. 3A Processor. The retrofit operation has

been carried out successfully in working offices without disturbing telephone service.
Self-checking hardware has been integrated into the design to detect faults during normal

system operation. This simplified fault recognition technique is required to identify a subsystem
unit when it becomes detective. Reconfiguration into a working system is immediate, without
extensive diagnostic programs to determine which subsystem unit contains the fauit. The problem

of synchronization, in a much shorter machine cycle (150 nanoseconds), is eliminated by not
having to run both processors in step. The No. 3A Processor uses low-cost le to realize its highly
reliable and flexible design. "

General Systems Description. The general system block diagram of the No‘. 3A Processor is shOWn

in Figure 8—12. The CC, the main store, and the cartridge tape unit are duplicated for reliability.
These units are grouped as a single switchable entity rather than individual switchable units. The
quantity of equipment within the switchable block is small enough to meet the reliability require-

ments; therefore, the expense and complexity of providing communication paths and control for
switchable units within the system are avoided. Each functional unit was designed to be as
autonomous as possible, with a minimum number of output signal leads. Such autonomy provides

the flexibility necessary to expand the system and make changes easily. ‘
As shown in Figure 8—12, the standard program store and call store are combined as a single

storage unit to reduce cost. Although the processors are not run in the synchronous and match

35

36

FIGURE 3—1 2
No. 3A Processor

organization

8. HIGH-AVAILABILITY SYSTEMS 549

Peripheralunits

System
control

and status ‘

Cartridge Central Central Cartridge
tape control controls, tap-eunit unit

I Processor 1Processor 0 l

mode of operation, both stores (on-line and standby) are kept up to date by having the on-line
processor write into both stores simultaneously when call store data are written or changed“
Because of the volatile nature of a writable memory, low—cost bulk storage backup (cartridge tape)

is required to reioad the program and translation data when the data are lost due to a store

failure. The pump-up mechanism, or store loader, uses the microprograrn control in conjunction
with an [/0 serial channel to transfer data between the cartridge tape unit and the main store.

Other deferrable, infrequentiy used programs (that is, diagnostics or growth programs) are stored
on tape and paged in as needed.

The system control and status panel, a nonduplicated block, provides a common point for
the display of overall system status and alarms. Included in this unit is the emergency action

circuitry that aiEows the maintenance personnel to initialize the system or force and lock the
system into a fixed configuration. Communication with the processor takes place via the 110
serial channel. I

General Processor Description. Figure 8713 shows a detailed block diagram of the CC. It is organized
to process input data and handle cail processing functions efficiently. The processor’s design is

based on the register type of architecture. Fast-access storage in the form of flip-flop registers
provides short-term storage for information that is being used in current data processing opera-
tions. Sixteen general—purpose registers are provided as integral parts of the structure.

36

37

‘50

General registers '— — W fiMiirrc-IpttgrE-Ecnrtrol— mmmmmm IIO channels Ml

II. THE PRACTICE OF RELIABLE SYSTEM DESIGN

' 0

5 I

Microprogram Gating .
‘ bus _ 19

See

T
. I

T
T
s
|

|
|
I
I
I
I

|
|

|
T

T
T
T
T
T

__ T

0 1
Error ”0 R10 ;

interface . 1

R11 19 T To

_ __ | peripheral
|

Main T Data- |
store T manipulation T U0

T logic | channel I
T T bus I
I I I

. T T .T
T T I I

—i T , .
T I o TT T

‘F I Ch 19 I
Interrupt T T , 19 TE |

I Data- T— __________4

: manipulaIiOn | ' T To
1 we ; mm a...

vianual input I | ‘ processor
' T

'1 CratHo-machine interface I .’ Data manipulation J Maintelalcichalnii __]

FIGURE 8—13 No. 3A Processor’s central control

Microprogram control is the heart of the No. 3A Processor. It provides nearly all of the
complex control and sequencing operations required for implementing the instruction set. Other

complicated sequencing functions are also stored in the microprogram memory; for example,
the bootstrap operation of reloading the program from the backup tape unit, the initializing

sequence to restart the system under trouble conditions, the interrupt priority control and saving
of essential registers, the emergency action timer and processor switching operation, and the

craft-to-machine functions. The regular structure of the microprogram memoryrmakes error
detection easier. The microprogram method of implementation also offers flexibility in changing
control functions.

The data manipulation instructions are designed specifically for implementing the call pro-
cessing programs. These instructions are concerned with logical and bit manipulation rather than
with arithmetical operations. However, a binary ADD is included in the instruction repertoire for

adding two binary numbers and for indexing. This instruction allows other arithmetical operations

37

38

THIRD- .

GENERATlON

3B20D PROCESSOR

8. HlGH-AVAILABlLlTY SYSTEMS 551

to be implemented conveniently by the software combinations of addition and logical operations,
or by a microprogram sequence if higher speed is essential. The data manipulation logic contains
rotation, Boolean function of two variables, first zero detection, and fast binary ADD.

The remaining function blocks in Figure 8—13 deai with external interfaces. The 20 main IIO
channels, each with 20 subchannels, allow the processor to control and access up to 400 peripheral

units by means of 21-bit (16 data, 2 parity, and 3 start code bits) serial 6.67-MHZ messages. The

system is expandable in modules of one main channel (20 subchannels). The NO structure allows
up to 20 subchannels (one from each main channel) to be active simultaneously. In addition, the
craft-to-machine interface, with displays and manual inputs, is integrated into the processor. This

interface contains many of the manual functions that will assist in hardware and software debug-
ging. The control logic associated with this part of the processor is incorporated as part of the
microprogram'control. Lastly, the maintenance channel enables the online processor to control

and diagnose the standby processor. The use of a serial channel reduces the number of leads
interconnecting the two processors and causes them to be loosely coupied. This loose coupling
faciiitates the split mode or stand-alone configuration for factory test or system test.

Hardware Implementation. Maintenance has been made an integral part of the 3A CC design. it

uses the standard 1A E55 iogic family with its associated packaging technology [Becker Et al-r

1977}. Up to 52 silicon integrated circuit chips (SECS), each containing from 4 to 10 logic gates,
can be packed on a 3.25” X 4.00" 1A ceramic substrate. The substrate is mounted on a 3.67” x 7"
circuit board with an 82-pin connector for backplane interconnections. in" the 3A CC, the 53 1A

logic circuit packs average about 44 SICs, resulting in an average of 308 gates per circuit pack, or
a total of 16,482 gates. Figure 3-14 shows a detailed functional diagram of the 3A CC and the
percentage of logic gates used in each function unit.

Another insight into how the gates are used in the 3A is shown in Figure 845. The figure
shows the relationship between working gates, maintenance access gates, and self-checking logic.

The working gates are the portion that contributes to the data processing functions, while the
maintenance access gates provide the necessary access to make the CC ‘maintainable (that is,
maintenance channel and control panel). The self-checking gates are required to implement the

parity bits, the check circuits, and the duplicate circuits that make the CC self-checking. As
indicated, about 30 percent of the logic is used for checking. The design covers a high degree of
component failures. It is estimated that about 90—95 percent of the faults would be detected by
hardware error detection iogic. Certain portions of the checkers, timers, and interrupt logic are

not checked. These circuits are periodically exercised under program control to ensure that they
are fault-free.

The 3320D Processor is the first designed for a broad range of AT&T applications. [ts deveiopment

is a natural outgrowth of the continuing need for high availability, real-time control of electronic
switching systems for the telecommunications industry. The 3BZOD architecture takes advantage
of the increased efficiency and storage capabilities of the latest integrated-circuit technology to

significantly reduce its maintenance and software development costs.
Figure 846 shows the trend of processors for AT&T switching systems for the past three

decades. The first—generation processors, the No. ‘l and the No. 2, were designed specifically for

controlling Earge (several thousand to 65,000 lines} and medium (1110040300 lines) telephone
offices. The predominant cost of these systems, as in most early systems, was the cost of the
hardware. The advent of silicon integrated circuits in the mid~19605 was the technological advance

needed for dramatic performance improvements and cost reductions in hardware. Integrated
circuits led to the development of the second generation of processors (the No. 1A and the No.

38

39

552

FIGURE 8—14
No. 31—1 Processor’s

CC gate count

FIGURE 8—15

Logic gates in No.
3/4 Processor’s CC

(total gates =
76,482)

II. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Console
Panel

Functional execution

Self-checking
25.63%

Console
panel

functions

6.0%

Data bus/

Special
registers

16.4%

Main store

bus and seq
8.4%

54.29%

Maintenance
access
14.47%

Total gates = 16,482

_V§
Micro store

control 11.0%

DML 0 7.5%

DML 1 7.5%

Data parity
and check 55%

Error reg. 14%

Clock
and

timing logic

5%

Decoder and
clock timing

39

check

Maintenance
channel
acc855 5.2%

Instruction
decoders 7.0%

General
registe rs

1 0.6%

1/0 [/0
CH No.1 CH No. l]

8.0%

\

To
other
CC

40

FIGURE 8-—1 6

Processor trends

for AT&T switching
systems

8. HIGH-AVA] LABILITY SYSTEMS 553

First .

generation Dedlcated 1965

Large switches Medium switches

Second Multiple 1976
generation application

Large SWitChES Small and medium
switches

Third General

generation purpose 1931

No. 5 E55 switch TSPS NCP Others
(1982} (1981) (1981)

3A). These processors, unlike the first-generation machines, were designed for multiple appli—
cations; the third-generation machines have even greater capabilities.

The 3320B Processor, the first member of the third generation, is a general-purpose system.
its versatile processing base fulfills the varied needs of telecommunications systems. Several
thousand 3BZOD sites are currently providing real—time data base processing for enhanced 800
service, network control point systems, high-capacity processors for the traffic service position

system, the central processor in the administration module for the SESS systems, and support
processors for the 1A E85 and 4ESS systems.

Overview of 33201) Processor Architecture

The successful deployment and field operation of many electronic switching systems and pro-
cessors (notably the No. 3A) have contributed to the design of the 3320B. Previous systems have

demonstrated the simplicity and robustness of duplex configurations in meeting stringent reli-
ability requirements [Toy, 1978; Storey, 1976]. Hence, a duplex configuration forms the basic
structure for both the hardware and software architecture for the 3820B. The 3320B processor
also has a concurrent, self-checking design [Toy and Gailaher, 1983]. Extensive checking hardware

40

41

554

FIGURE 8—4 7

33200 Processor

general block dia~
gram

ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

is an integral part of the processor. Faults that occur during normal operation are quickly discov-
ered by detection hardware. Self-checking eliminates the need for fault—recognition programs to
identify the defective unit when a mismatch occurs; therefore, the standby processor is not
required to run synchronously. System maintenance is simplified because reconfiguration into a
working system is immediate. Another advantage of the self-checking design is that it permits
more straightforward expansion from simplex to duplex or to multiple processor arrangements.

As opposed to the hardware-dominated c05ts of the first- and second—generation processors,
the costs of'the 3B2OD, as is typical of current systems, are dominated by software design,
updating, and maintenance expenditures. To reduce these costs as much as possible, the 3B20D

supports a high-level language, a customized operating system, and software test facilities. By
combining the software and hardware development efforts, an integrated and cost-effective
system has evolved.’

Figure 8—17 shows the general block diagram of the 3820B Procrassor. The CC, the memory,
and the 1/0 disk system are duplicated and grouped as a switchable entity, although each CC
may access each disk system. The quantity of equipment within the switchable block is small

enough to meet stringent reliability requirements, thus avoiding the need for complex recovery
programs. Each CC has direct access to both disk systems; however, this capability mainly provides
a vaiid data source for memory reloading under trouble conditions. The processors are not run
in the synchronous and match mode of operations as is done in early systems. However, both
stores (on-line and standby) are kept current by memory update hardware that acts concurrently

Central control \

Data
Memor , .

Memory updatey manipu'ltatlon £3 Euni
Microprogram MTC

control CH Duplex dual
serial bus
selector

 Maintenance

channel

Microprogram MTC
control CH

Data

manipulationunit .0.

41

42

S. HlGH-AVAILABELITY SYSTEMS 555

with instruction execution. When memory data is written by the CC, the on-line memory update
circuit writes into both memories simultaneously. Under trouble conditions, the memory of the

'standby processor contains up-to-date information; complete transfer of memory from one
processor to another is not necessary.

The direct memory access (DMA) circuits interface directly with the memory update circuit
to have access to both memories. A DMA write also updates the standby memory. Communication
between the DMA and the peripheral devices is accomplished by using a high-speed dual serial

channel. The duplex dual serial bus selector allows both of the processors to access a single iiO
device. For maintenance purposes, the dupiex 3BZOD CCs are interconnected by the maintenance

channel. This high-speed serial path provides diagnostic access at the microcode level. It transmits
streams of micrOinstructions from the onéllne processor to exercise the standby processor. Other
microinstructions from an external unit help diagnose problems.

The 33200 Processor

The 3820]) Processor performs all the functions normally associated with a CPU and other

functions, including duplex operation, efficient emulation of other machines, and communication
with a flexible and intelligent periphery [Rolund, Beckett, and Harms, 1983]. The microprograms

in the processor minimize the amount of hardware decoding and simplify the control structure.
There is substantial flexibility in the choice of instruction formats that may be interpreted.

The CPUVis a 32-bit machine with a 24-bit address scheme. Most of the data paths in the CC
are 32 bits wide and have an additional 4 parity check bits. The CC architecture is based on

registers; multiple buses allow concurrent data transfers. Separate IIO and store buses allow
concurrent memory access and IIO operations. A block diagram of the central control is shown

in Figure 848. These functions and subsystems control the CC and all interactions with it.

The microprogram control subsystem provides nearly all the complex control and sequencing
operations required for implementing the instruction set. The microcode supports up to three
different emulations in addition to its native instruction set. Other complicated sequencing
functions are stored in the microinstruction store, or microstore. The microcontrol unit sequences

the microstore and interprets each of its words to generate the control signais specified by the
microinstruction. Execution time depends on the complexity of the microinstruction. Each mi-
croinstruction is allocated execution times of 150, 200, 250, and 300 nanoseconds. The wide 64-

bit word allows a sufficient number of independent fields within the microinstruction to perform

a number of simultaneous operations. Some frequentiy used instructions are implemented with

a single microinstruction.

The data manipulation unit (DMU) contains the rotate mask unit (RMU) and the arithmetic
logic unit (ALU), as shown in Figure 8—19. These units perform the arithmetic and logic operations
of the system. The RMU rotates or shifts any number of bits from positions 0 through 31 through
a two-stage, barrel—shift network. In addition, the RMU performs AND or OR operations on bits,
nibbles, bytes, half words, full words, and miscellaneous predefined patterns. The RMU outputs

go directly into the ALU. The ability of the RMU to manipulate and process any bit fields within
a word greatly enhances the power of the microcode.

The other component of the DMU is the ALU, which is implemented using AMD Company’s
2901 ALU slices. The 290.15 are bipolar 4-bit ALUs (see Figure 8—20) [AMD, 1979]. Eight 2901 chips

provide two key elements: the 2-port, iii-word RAM and the high-speed ALU. Data in any of the
16 words addressed by the 4—bit A-address input can be used as an operand to the ALU. Similarly,

data in any of the 16 words defined by the 4-bit B-address input can be simultaneously read and
used as a second operand to the ALU. Because the internal 16-word RAM is dedicated as general

42

43

556 ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

FIGURE 3—18
33200 Processor’s

central control

Utility processor

UC-1—-

MASU Mainstore

47

 Bldlrectionai gatingbus(BOB)
3,_ —l W

-Toothercentralcontrol Microstoreaddressbus(MSA) f")('73‘

SAT

control
 Microprogram

csu IMicrostoredatabus(MSD) Maintenancebus(MTC)
SAC
SDC

 Destinationbus(DST)
I

ZM

Store interface

‘ control

in W m0

Storebus
DMAC DSCHOo:

a .9
a U, . - E

a a 3 ’ %9 O .—

g u I 8 _ DSCH 8.

ACHl

MLTS: Microlevel test set SAT: Store address'translator
MCH: Maintenance channel UC: Utility circuit

MIS: Microinstruction store MASU: Main store update
MC: Mi‘crocontrol unit" , CSU: Cache store unit

DMU: Data manipulation unit DMAC: Direct memory access controiler
SREG: Special registers DSCH: Dual serial channel
'SAC: Store address controller ACHI: Application chan‘nel interface
SDC: Store data controller ‘

43

fi_.

44

FIGURE 8—1 9
33200 Processor’s

data manipulation
unit

8. HIGH-AVAILABILITY SYSTEMS 557

 Bypass Eogic

Arithmetic
logic unit

”Al-U

Parity.
generator

U)

I3 {I}
E 3

8 sas .

oi

D DMUI .

- Arithmetic I Mask I
logic unit unit, (Al-U)

Bypass logic

registers, the result can be directed to the RAM word specified by the [3-address thus optimizing

the performance speed of the arithmetic and logicai operations involving general registers and -
the output of the RMU. i '

The logic blocks of Figure 6—19 depict the self-checking capability of the RMU and ALU. The
first-stage‘byte rotate unit of the RMU is checked for byte parity, which it preserves;' the mask
unit, including the second--stage bit rotate, is checked by duplication. The ALU is also checked

by duplication The datais taken from one ALU, and parity is generated from the other. The data
from one ALUis also matched with that from the duplicate. The underlying seif-checking strategy,
illustrated here and used throughout the CPU, is to use parity checking where parityis preserved
and duplication of logic Where parity is not preserved .

The special registers (SREG) associated with the operation of the CC are external to the
DMU, unlike the 16 general registers inside the DMU that are avaiiable to the programmer. Most

of the special registers are not‘explicitly specified by the 382013 instruction set. They are char-
acterized by their special dedicated functions and receive their inputs from sources other than

44

45

558

FIGURE 8—20

AMD’S 2901 inter-
nal architecture

ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

A ADR B ADR

SOLII‘CE

DEC
_ ALU

function

DEC
Data out

“-
2901 Control fields

the internal data bus. They control and direct the operation of the processor. Some of the special
registersare (1) error register, (2) program status word, (3) hardware status register, (4) system

status register, (5) interrupt register, and (6) timers. in addition to these registers, a 32-word RAM

that is available only at the microcode levei is providedwithin the SREG block. It is used for
scratch-pad space, and it is preassigned registers, such as those that support memory manage-
ment, to facilitate and enhance the power of microprograrn sequences.

The store interface circuit controls the transfer of data and instructions from system memory
to theICC. Two controls, the store address control and the store data control, handle memory

addressing, update the program counter, and fetch instructions. Associated with the SAC are the
program address, the store address register, and the store control register. Associated with the
store data control are the store data register, the store instruction register, and the instruction
buffer. These circuits ensure a continuous 'flow of instructions to the microcontrol unit}

Memory mapping is required in the implementation of a virtual address multiprogramming

system. The store address translation (SAT) facility is the mechanism that provides memory
mapping between a program-specific virtual address and its corresponding physical address.

45

46

8. HlCH-AVAlLABlLlTY SYSTEMS 559

Address translation hardware is included in the SAT by the address translation buffer to facilitate

memory management [Hetherington and Kusulas, 1983].
The cache store unit is an optional circuit that improves overall system performance by

reducing the effective memory access time. The cache is a four-way, set~associated memory
containing SK bytes. ‘

The main store update unit provides a multiport interface to the memories as both DMA
and CC circuit attempt to use the memory. The update circuit arbitrates asynchronous requests
from the on—line CC and the on-line DMA. The cross-coupling between the memory update units

permits the on-line CPU to access either memory, or both memories, for concurrent write
operations. ,\

The main store uses dynamic memory devices and high-speed, TIL-compatible, gate-array
integrated circuits. It consists of a single circuit board main store controller and up to 16 mega-
bytes may be equipped within the central control frame. Throughout the central control, byte

parity is maintained over each byte of the data word. By adding four error-correction code bits
in a modified form of Hamming code (in addition to the byte parity bits), the main store performs

Single-bit error correction and double—bit error detection.
Input/output interfacing is done in several ways in the CC. The communication path between

the CC and the [/0 channels is through the central control input/output (CCIO) bus, which is a

local, high-speed, direct-coupled, paraliel bus.“ Direct memory access between the main store
and peripheral units is provided by a direct memory access controller (DMAC) that communicates
with intelligent peripheral units via dual serial channels (DSCHs). l/O channels, including user-

Specific interfaces, can be connected directly to the CC by means of the C00 bus. Two standard
interfaces-are the DSCH, a high-speed, multiport serial interface, and the application channel
interface (ACHI). The ACHI is a high-throughput, parallel bus, peripheral communication path.

The maintenance channel circuit provides diagnostic access to the CC at the microinstruction

level. it also controls basic fault recovery and system sanity functions in the off-line processor.

Craft Interface

The maintenance interface is commonly referred to as the craft interface [Barton and Schmitt,
1983] in the telecommunications industry. The craft interface of the 3BZDD is markedly different

from previous systems developed at Bell Laboratories because it relies aimost exclusively on video
displays and keyboard controls. The earlier systems have key-lamp panels and teletypewriters in
their master control centers.

The craft interface includes hardware, firmware, and software that enable maintenance

personnel to obtain the status of, and exert control over, the system. Status information is

presented visually as graphical displays and text messages on various terminais and printers;
audible alarm circuits can also be connected to the 3320i). System control is exerted primarily

through a keyboard attached to the video display terminal. System control is also possible from
remote locations, called switching control centers. The data links to the remote sites use the

international standard message protocol (X25) because of its low vulnerability to noise and other
data communication failures. The adoption of the X25 message protocol standardizes remote

access to the 33200 processor for packet switching networks.

Figure 8—21 is a functional block diagram of the craft interface. Each of the duplex processors
is connected to both input/output processors (lOPs), which, as mentioned previously, support

up to ‘16 peripheral controllers. The IOP software driver contains handlers that deal with the
specialized functions of the peripheral controilers. Maintenance personnel use the read-only

46

47

560

FIGURE 8—21

Craft interface

hardware overview

ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

3320]) 3320B
Processor Maintenance Channel processOr

Port switch

printer (ROP) and the maintenance CRT (MCRT). The ROP logs all important status messages.
The MCRT is a keyboard display terminal. The system contains only one ROP and one MCRT
because the port switch keeps the ROP and the MCRT connected to the active on-line processor.

All capabilities of the craft interface are accessible from a remote switching control center
by means of a dedicated data link. The data link is duplicated; it includes a primary link and a
backup link. Both links use the CClTl' X.25 communication protocol. The MCRT, ROP, and X25
links are attached to a peripheral controller known as the maintenance teletype controller
(MTTYC). The craft interface handler controls the transfer of' data to and from the peripheral
devices associated with the MTTYC. The MTWC is connected directly to the emergency action
interface {EAI} in the central processor. The EAl menu on the MCRT gives basic status information
and manual control lot the processor regardless of DMERT (operating system, see the following
section) software sanity; this access is controlled totally by the firmware in the MTI'YC. This
reliable, high-capacity data link for remote maintenance makes the 3320B well suited for unat-
tended operation.

DMERT: The UNIX RTR Operating System

The operating system used in the 3820B is the duplex multi-environrnent real-time (DMERT)
operating system, which is now called the UNIX RTR operating system [Kane, Anderson, and
McCabe, 1983; Grzelakowski, Campbell, and Dubman, 1983]. It has a process-oriented structure
that emphasizes high data availability. It is designed for both real-time and time-shared operations.
The basic architecture of the DMERT operating system is based on an earlier system named MERT
[Lycklama and Bayer, 1978] and the UNIX operating system {Ritchie and Thompson, 1978]. Both
the UNIX and the MERT operating systems were developed to execute on commercial equipment.
Currently, the UNIX operating system is widely used, and the MERT operating system has been
replaced by its duplex successor, the DMERT operating system. Experience gained from the
operating system of the earlier No. 3A Processor, a real-time monitor known as the extended
operating system (EOS) [Elmendorf, 1980], also benefited the designers of the DMERT system.

47

48

FIGURE 8—22

Bases of DMERT
architecture

8. HIGH-AVAILABILITY SYSTEMS ‘ 561

The DMERT operating system has a sophisticated architecture that draws on the proven design
concepts of the E05, MERT, and UNIX operating systems (see Figure 8—22).

Application programmers may add code at the kernel process, supervisor process, and user

levels. The multilevel structure makes the DMERT operating system flexible and efficient in its
use of real time. The structure of the virtual machines permits the management of both real-time
applications and time-shared background tasks. For example, Figure 8—23 shows how telephone

switching software is allocated to the different levefs. The operating system maintains a process
hierarchy based on 16 execution levels. Time-critical, functions such as the [/0 drivers, fault

recovery, and call processing are implemented at the kernel process level. A kernel process may

belong to levels 3 through 15 (levels 0 through 2 are reserved for the time-sharing environment).
By means of this hierarchical execution-level structure, applications are able to customize their
control and distribution of real time.

The portion of real time that is not used by the kernel or kernel processes is time shared

among supervisor and user processes. Deferrabie jobs such as traffic reports, recent changes,
and diagnostics are implemented at the highest user level. Processes supporting the time—sharing
environment are run at execution level 2. These processes are run just beneath the real-time

hierarchy; they gain control of the processor only after all the real-time work is completed. By

supporting both real-time and time-sharing environments, the DMERT operating system makes
efficient use of its physical resources.

Fault Recovery

When any of the unique fault detection circuits detects an error condition, an error interrupt (or
error report in the case of certain peripherals) is registered in the processor. The most severe
error interrupts result in automatic hardware sequences that switch the processing activity be-

tween the processors (hard switch). Less severe errors result in micro-interrupts that activate the
microcode and software to recover the system. This layered approach that constitutes the recovery

3A Commercial
processor computers

Time-sharing

High-availability Real-time

Real-time

High-availability

Time-sharing

48‘

49

562

FIGURE 8—23

Example of DMERT
mum-environment
structure

ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Non-time critical process

Hardware

Fault recove‘l

Time critical processes

architecture is depicted in Figure 8—24 [Hansem Peterson, and Whittington, 1983]. Microcode
provides low-level access to the hardware, and the recovery software provides the high-level
control mechanisms and decision making.

Figure 8—25 illustrates the principal architecture and features of the recovery software. The

bootstrap and initialization routines contain a fundamental set of microcode and software algo-
rithms that control initializations and recoveries. These actions are stimulated by a maintenance

restart function (MRF), which represents the highest-priority microinterrupt in the system. An
MRF sequence may be stimulated from eitherhardware or software recovery sources.

The fault recovery and system integrity packages control fault detection and recovery for
hardware and software, respectively. The error interrupt handler is the principal hardware fault
recovery controller. it receives all hardware interrupts and controls the recovery sequences that
follow. The configuration management program (CONFIG) determines whether an error is ex—

ceeding the predetermined frequenO/ thresholds. if a threshold is exceeded, CONFlC] requests
a change in the configuration of the processor to a healthy state. Thus, CONFIG serves as an
error-rate analysis package for both hardware and software errors.

Hardware Fault Recovery. The 33200 Processor has built in self--checking circuitry that detects
hardware faults as soon as they occur. This circuitry simplifies recovery, since early detection
limits the damage done by the fault. Faults in this category indicate that the processor is no

longer capable of proper operation and result in an immediate termination of the currently
running processorand a switch to the standby processor. Since the standby processor does not

49

1
l
l

lll

50

8. HIGH-AVAILABILITY SYSTEMS

FIGURE 8—24

Recovery software Fault recovery

structure ' High-levelcontrol

. . . . Configuration Fault
Initializatlon control detection

___________________________ ___§o_ftware
Microcode

. Micro

Microhoot MEELEEEESS sequencercontrol Low-level
hardware

acne-55 '

FIGURE 3—25 309§5tfae
Fault recovery and Initialization
architecture

Microboot
Little boot

PINET‘

Big boot

System

Fault recovery integrity monitor

Audits

Sanity timers
Overloads

Error

interrupt handler

Configuration

control Configuration
Soft switch management

Restore/remove

50

563

51

564 II. THE PRACTICE OF RELIABLE SYSTEM DESIGN

match the active processor instruction by instruction, an initialization sequence is required to
start execution properly. I

Some types of faults and errors are not severe enough to justify an immediate termination
and switch of the processors. Examples of errors of this kind are hardware faults detected in the

standby processor memory and software errors such as write-protection violations. Other errors
in this category are the hardware faults that are handled by the self-correcting circuitry. Although
most units have self-checking circuits, some units (such as main memories) have fault rates that

justify the addition of seif-correcting capabilities. Disks also are self-correcting through the use
of cyclic redundancy codes. Ali errors in this class are reported to the recovery system as error
interrupts.

Ali error interrupts are reported to CONFIG. Errors are logged against the failing unit, and
error rates are compared to allowed error thresholds. If the affected threshold is exceeded,

further action is required based on several factors, including the importance of the faulty unit

and whether a mate exists for it. if the faulty unit is” essential to the system and a mate unit is
avaiiabie, the faulty unit is removed from service and scheduled for diagnostic testing. if there
is no available mate unit, the faulty unit isinitialized and returned to service until the mate is
restored. When the mate is restored, it is switched on line and the faulty unit is scheduled for
diagnostic testing. in the case of essential units, it is better to have a faulty unit than no unit.

Unessential units are removed from service and scheduied for diagnostic testing whenever their
error thresholds are exceeded. ' -

Each processor has 'a sanity timer that causes an initialization if it expires The active processor
maintains both its own timer and the timer of the standby unit. if the active processor cannot

recover from a fault, the sanity timer triggersthe initialization of the standby processor.

Special Microcode for Recovery A large fraction of the microcodeIn the central controi handles
system recoveries. Most of this recovery microcode is in ROM because most of the recovery
functions are required regardless of the past history of the CC or its boot devices. Functions

that are required even if the CCIs not ready to execute its instruction set include microinterrupt
processing, maintenance channel assists, and microcode to initialize hardware systems.

Microinterrupt processing handles errors in the address translation buffer to micro--instruc-

tion store sequence. Maintenance channel assists allow one processor to access the other pro-
cessor. Microcode initializes the hardware systems; additional recovery microcode that resides
in writable microstore (WMS) extends the processors instruction set to provide convenient
diagnostic and recovery software access instructions When diagnostic performance requirements
do not justify a special instruction, a microstore scratch area is made available. Arbitrary micro-
sequences loaded into the scratch area are then executed as special tests or functions. Before
the software can run however, the WMS must be loaded from disk. The WMSIs ioaded as part
of the processing of the MRF microinterrupt

Software Fault Recovery. Software fault recovery is architecturally'similar to hardware fault recov-

ery, Each major unit of software has associated with it error detection mechanisms (defensive
checks and audits), error thresholds, and error recovery mechanisms {failure returns, audits, and
data correction and initialization techniques). Both the system integrity monitor (SIM) and the

error interrupt handler (EIH) oversee the proper execution of the process. An error threshold in
SIM ensures that a p'rocess' does not put itself into an infinite execution loop or excessively
consume a system resource (for exampie, message buffers). The ElH, through the use of hardware

and microcode detectors, ensures that processes do not try to access memory outside defined
limits or execute restricted instructions. Each process has initialization and recovery controls

l

52

 FIGURE 8—26
Software fault re-

covery architecture

8. HIGH—AVAILABILITY SYSTEMS 565

(analogous to hardware) to effect recoveries. Figure 8—26 illustrates this software recovery archi-
tecture.

lf recovery actions result in the removaiiof hardware units, diagnostics are dispatched

automatically to analyze the specific problem. Audits are the software counterparts for hardware
diagnostics; the magor differenceIs that routine audits run more frequently than diagnostics, and
they correct certain errors. ‘

Software Audits. The DMERT audit package Verifies the validity of critical data structures. Most

audits exist throughout the system WIthin the processes that control the data to be audited]
some cases, severai audits are invoked consecutively to. form a sequenced mode audit. Most

requests for running audits come from an audit control structure, the audit manager.
AuditsIn the DMERT operating system verify data not functions. The basic types of auditable

data are system resources and stable data. Though most of the auditable dataIn the operating
system reside in the kernel, additional data resideIn critECal processes such as the file manager
and device drIvers. Smaller amounts of auditable data resideIn supervisor processes, such as the

UNIX operating system and the process manager.

Some audits, scheduled on a regular basis, are known as routine audits; others, scheduled
on request, are known as demand audits. Audits within the DMERT operating system include the
following:

- The message buffers audit finds and frees test message buffers; that is, messages that have
been on the queue of a process for extended periods of time.

EIH

Hardware monitors

Audits
Detection]
correction

System integritymonitor

(basic sanity)

Initialization
and

. recovery

Defensive P

checks rocess NEntry

Exit

52

\‘Jflk

53

566

ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

The scheduler audit checks for linkage errors in the ready and not-ready iists of the scheduler.
- The memory manager audit recovers lost swap space and corrects any overlap of svvap space.

The file manager audit checks all internal file manager structures, including task blocks,
buffers, and the mount table. It corrects the information and can back out aborted tasks to

free their resources. _
The file system audit is demanded by the tile manager whenever a file system is mounted
in the read/write mode. it checks and corrects the file system‘s super block, free list and its
free—block bit map: The audit verifies the integrity of the mounted file systems concurrentwith their use.

SYstem Initialization. When a maintenance restart interrupt occurs, a long sequence of microsteps
begins to establish system sanity. Both processors may be in their maintenance restart function
(MRF) sequence at the same time, and each may try to become the active processor. The MRF
code decides which processor should become active and whether to do an off-line initialization
or an on-line initialization. If a procesSor determines that it has just po'Wered up, it clears main
store and does an off-line initialization unless it is forced on line by an operator command.

A number of tests are made on data in the operating status register to select one of four
possible actions: (1) processor initialization, (2) stop and switch, (3) microboot, or (4) tapeboot.
The simplest actions are initializing a processor and stopping and switching to the other processor.
Switching to another processor‘is accomplished by sending a switch command over the mainte— I
nance channel to the other processor. If an initialization does not recover the system to an
operational state, anbther and more severe initialization is triggered automatically. The initiali-
zation interval determines whether escalating is necessary: Any initiaiization that occurs within
the initialization interval (that is, within a specified time interval after an initialization) escalates
to the next higher level. The length of the initialization interval is a system generation parameter
that is established by the application.

The microboot program uses information on the DMERT disk to initialize the writable mi-
crostore and read in the first software boot program, called ”little boot.” To do this, it must first
select the disk drive to use as the boot device. If the craft interface has forced either the primary
or the secondary boot device active, it uses that device. Otherwise, the microboot program
selects a disk drive based on the state of the in'itiaiization status control bits in the system status
register. Alternate boots use alternate devices. Microcode is read from the disk and then copied
to the writable microsto‘re. Finally, the little boot program is read from the boot partition and
given control.

The tapeboot program is a complex sequence of microcode that is ‘used only when requested
manually from the craft interface. its function is to create a new system disk from tape. Tapeboot
initializes the tape device and disk drive selected by the craft interface and initializes the writable
micrOstore from tape. The load disk tape program is read from tape into main store; memory
management tables are created to allow it to run the hardware complex without the operating
system present. The load disk tape program then reads the tape to make a DMERT disk image.

Emergency Mode. The emergency mode on the 3320b refers to the facilities and procedures that
preventthe system from experiencing a total outage. For example, emergency facilities are applied
when the system is unabie to recover automatically. The most frequent emergencies encountered
inciude duplex failures of the controiunit, duplex failures of the system disks, duplex failures of
the essential l/O devices, and failures of fault recovery to find a working configuration of the
hardware. Other problems that require the emergency mode include software faults that do not
allow the system to operate properiy, errors that destroy the integrity of the disks, and software
ovenvrites that introduce catastrophic errors into the software.

53

54

8. HIGH-AVAILABILITY SYSTEMS 567

Emergency mode capabilities are built into the system to address problems that may cause
the failure of the 332GB as a system. The emergency action interface (EAI) on the 3BZOD provides
manual initialization capabilities that can recover the system from several of the conditions

mentioned above. The EAE allows the maintenance personnel to demand a specific processor and
disk configuration if a certain configuration is causing problems. The EA! also allows the craft to

reconfigure the system to handle maintenance hardware failures. For example, the craft may
inhibit error sources and sanity timers through EAI commands, thus allowing recovery from
certain maintenance failures even though both processors are affected. The EAI also provides .
capabilities for craft initializations. to deal with the loss of subsystem capabilities.

The 3BZDD provides other emergency mode capabilities through the port switch select, the
disk power inverter select, and the unit power switches. These devices are used by maintenance

personnel to reconfigure the system manually to handle certain problems. Under unstable boot- l
strap conditions, the 3BZOD outputs diagnostics information called processor recovery messages.
These messages provide a general set of diagnostics in the event of a complete system outage.

The final backup repair procedure consists of the dead start diagnostics. Primarily used as
installation tools, the dead start diagnostics allow a nonworking processor to be repaired from a
remote host processor.

Fault Diagnostic:

As with earlier processor designs, 38200 processor diagnostics detect faults efficiently and effec-
tively, provide consistent test results, protect the contents of memory, do not interfere with

normal system Operation, allow automatic trouble location, and are easy to maintain and update.
To meet these design objectives, the diagnostic control structure is an integral part of the DMERT
operating system and supports the evolutionary stages of development [Quinn and Goetz, 1983].

Diagnostic Environments. As shown in Figure 3—27, the 3320B Processor may be diagnosed from

several execution environments. Du ring the early phase of its development, a local host computer
was used to support hardware, software, and diagnostic design. This arrangement continues to
be used in factory testing. Later in the development phase, more efficient use was made of the

host computer by providing access to a remote 33200 Processor over a dial-up telephone line.
In the final development stage {the standard duplex system configuration), the active control unit
was capable of diagnosing its own peripheral controllers and the standby control unit. Each of
these access arrangements is discussed below.

Figure 8~27a shows three local host access arrangements. In the first arrangement, diagnostic
programs executing in a host computer send test inputs and receive test results through a standard
communication port to a microlevel test set (MLTS). The MLTS connects directly to the 3BZDD

control unit backplane and provides complete access to and control of the processor’s micropro-
gram control circuitry. The second access arrangement uses a circuit designed to simulate the .

central control input/output (CCIO) internal bus. The CCIO bus simulator (BS) is accessible using l
a standard communication input port. A dual serial channel (DSCH) connected to the CClO/BS

can then communicate directly with a maintenance channel (MCH), the circuit designed for
control unit access. Like the MLTS, the MCH can access the central control at a low level. Only
the MCH, however, is used in the duplex configuration; it communicates with either another

MCH or a DSCH. As shown, the CClO/BS-DSCH access path is also used to diagnose the IOP
and the disk file controller (DFC). The third access arrangement is used when the local host is a

3BZOD processor. The path in this case is from the DSCH of the host processor to the MCH, lOP,
or DFC of the'target machine. . i

The DSCH communicates over distances of approximately/100 feet. Remote host (Figure so]1“.
54

55

568

FIGURE 8~27

33200 Processor’s

diagnostic environ,
ments

I]. THE PRACTICE OF RELIABLE SYSTEM DESIGN

MLTS

Dual

Host C310] 1:“5 serial 3BZUD
computer 5 u a or channel processor

DSCH

 DFC

a. Local host

Host 3320B

computer 7 processor
Dial—up

connection

b. Remote host

3820B
processor

33260
processor Remote

maintenance
console

 Switching
/ control

center

[/0
devices devices

c. Duplex mode

55

56

 FIGURE 8-28

Diagnostic control
structure

8. HIGHnAVAlLABiLITY SYSTEMS 569

8—27b) access arrangements are used for diagnosing over longer distances. Using data sets and a
telephone line, tests stored and executed on a remote computer are applied through the MLTS
to the control unit. Periphera! contmllers (IOP and DFC) may also be diagnosed by downloading
tests into the control unit and executing them. Although remote host diagnostics are useful when

a locai host is unavailable, execution performance is limited by the transmission facilities used.

The primary diagnostic execution environment is the duplex mode of the 38200 (Figure
8—27c). The active (on-line) processor acts as a local host for diagnosing the standby (off-line}

processor. A link between maintenance channels provides the access path for testing the control
unit. In the duplex mode, the DFC and IOPC are diagnosed from the on-line control unit using

the operational interface path, which is a DSCH attached to the direct memory access controller.
'Tests of the links from the off«line processor to the peripherals may also be run under the control

of the active processor. As shown in Figure 8w27c,‘ the duplex system configuration also supports
remote monitoring and control of diagnostics over a dedicated link to a switching controi center.

Diagnostic Control Structure. The diagnostic control structure is depicted in Figure 8—28. The

modules that provide access to the equipment configuration data base (ECD) are at the kernel

Kernel process _

UNIX user

___ Data
table

Auto request

(software)

i"?— TLDB

Manuai request

(MTCE terminal)

Spooler - To maintenance
DCB: Diagnostic control block termina!

DIAGC: Diagnostic control process
DIAMON: Diagnostic monitor
ECDMAN: Equipment configuration data manager

MIRA: Maintenance input request administrator
TLP: Trouble iocation process

TLDB: Trouble iocation database

Data table: Diagnostic data table files

56-

57

570 II. THE PRACTICE OF RELIABLE SYSTEM DESIGN

process level. All the information relevant to the diagnostic tests that should be applied to each
hardware unit is contained in the ECD. This information includes the name of each hardware

Unit; its subsystem, subunits, and their logical interconnections; equipage options; and auxiliary

information such as channel address and baud rate. Whenever a circuit design is originated or
updated, diagnostic tests are designed and appropriate ECD changes are made.

The UNIX operating system supervisor resides at the supervisor level and provides a pro-
tected environment and operating system service for the higher-levei processes. The modules

operating under the UNIX operating system that pertain exclusively to diagnostics are the main-
tenance input request administrator (MIRA), the diagnostic monitor (DIAMON), the diagnostic

control process (DIAGC), and the trouble-locating process (TLP). Output messages from the
diagnostic structure are sent to the system spooler for printing.

The MIRA schedules and dispatches all the maintenance requests. MIRA has two queues, a
waiting queue and an active queue, to administer maintenance requests. Requests are serviced

according to their priorities and the availabiiity of resources. Manual requests have higher prior-
ities than requests initiated automatically. For each service request, MIRA creates a DIAMON

process and sends it a message. When the request is completed, DIAMON sends a message back
to MIRA. Interfaces are provided in MIRA to administer routine exercise requests and inputs from

'- the error interrupt handler (EIH). Execution of each diagnostic is directed from start to finish by
DIAMON.

DIAGC is a generic name that refers to a class of diagnostic control processes. The DEAGC
is a unit or application-dependent module that controls the execution of tests. DIAGC contains

all the application-dependent task routines, translates the interpretive diagnostics, and provides

the interface with DIAMON. A unit’s diagnostic phase table (DPT) contains the name of a particular
DIAGC process to be used in the diagnosis. DIAMON imposes no limit on the number of
processes that may interface with it.

‘ If the diagnostic request specifies the TLP option, the troubie—locating process is invoked
after the diagnostic testing is completed. The TLP compares characteristics of the failures found

by the diagnostics with a resident data base of fault signatures. In each data table, the tests are

partitioned into groups. A test failure in a group sets a flag bit, called a key, which is permanently

assigned to the group. The TLP searches the results of the diagnostics and, based on the phase
and key information, creates an ordered list of the closest signatures and, ultimately, of the
suspected faulty equipment. This approach makes the data base and sorting processes less
sensitive than earlier methods of testing changes to circuits and marginal failures. During the
development of the 38200, the troubie-locating data base (TLDB) was generated by physically

inserting faults into units in a test laboratory. The TLDB of operational systems can be modified
directly by inserting information into the test data table.

Diagnostic Features. The combination of hardware access circuits and modular control programs
just discussed provides the 3BZOD Processor with considerable maintenance flexibility. Tests are
selected according to the type of circuit under diagnosis. Requests may diagnose an entire unit,
a particular subunit, or all the subunits in a specified community. individual test phases or ranges

of phases may be executed and the results printed with optional amounts of detail. Some

diagnostic test phases, because of their long execution time requirements or their dependence
on the availability of other system hardware resources, are restricted to manual initializations.

interactive features, such as steppinghpausing, and looping, facilitate difficult repairs. Units are
restored to service automatically if they pass all tests. Several host computer versions of the

software are supported, along with applicationwdependent interfaces.

Diagnostics are initiated manually or automatically. Manual requests may be entered from a

57

58

FIGURE 6—29

Observed availabil-

ity and number in
service of 38200
Processors

8. HIGH-AVAILABILITY SYSTEMS 571

local maintenance terminal or through a work station at a switching control center that is con-

nected to the processor with a synchronous data link. Automatic requests originate from other '
software modules, including the error interrupt handier, the routine exercise scheduler, and the
application software modules. '

Evaluation. The stringent availability requirements of AT&T applications using the 3BZOD Processors
have a significant effect on all the aspects of the system design. The diagnostic and maintenance

designers‘were actively involved in meeting these requirements from the initial architectural
planning and requirements generation. Many hardvvare features monitor system integrity, detect
errors, reconfigure the system, and facilitate repairs. Although some of the features isolate faults
during pack repairs, most are used at the system level to effect repairs through circuit pack
replacement. Diagnostics, the primary repair capability for the system, makes extensive use of
these hardware features for control and observation of the circuitry.

During the development of the processor, diagnostic tests were generated manually and
with the aid of hardware logic simulators. To ensure that thediagnostics met the objective of

detecting 90 percent of the simulated faults, an extensive evaluation process was carried out.
Thousands of faults were inserted at the dual—in-line (DlP) package terminals (pins). These faults

provided timely and effective feedback on the design of the diagnostic tests and the development
of the trouble-locating data base. I

Operational Results of 33200 Processor

The BBZGD Processors have been in commercial operation since September, 1981. The perfor-
mance of the 3BZDD improved tremendously during the first two years of operation. Figure 8—29
shows the results of field data accumulated over many machine operating hours during early

‘lDO ———~——~—‘———“_—i 250

99.99 '- Availability —| 200

99.98 P“ — 150

Averageavailability(Va)
99.97l— I

Numberofsystemsinservice
Number of systems

99.96

99.95

oct811an82 Apr Jul Oct JanB'q' Apr Jul Oct Jan84

58

59

572

SUMMARY

HGUREB—Se
‘ Downtime versus
time since intro-

duction for three

high-availability
processors

II. THE PRACTICE OF RELIABLE SYSTEM DESIGN

years of operations [Wailace and Barnes,- 1983}. When the first system began commercial service,
Outages occurred because of software and hardware faults that could only be corrected with field

experience. The availability factor, improved as the processor design matured and the operating
personnel gained experience. ' _

Figure 8—30 shows downtime data for three AT&T processors, including the 38200. The
experience gained in the design and field operation of earlier electronic switching systems
(notably the No. 1A and the No. 3A Processors) has contributed to the design of the 3BZOD. The

reliability (downtime) curves show that each processor approached its downtime objective more
quickly than its predecessor [Wallace and Barnes,'1983]. The data has been smoothed and fit to
an exponential decay function for the comparison.

In order to achieve the reiiability requirements, all AT&T switch subsystem units are duplicated.
When .a hardware failure occurs in any of the subunits, the processor is reconfigured into a

working system around the defective unit. The partitioning of subsystem units into switching
blocks varies with the size of the processor. For the medium- or small—sized processors, such as

the No. 2 or the N0. 3, the central control, the main memory, the bulk memory, and the store
bus are grouped as a single switchable entity. A failure in one of the subunits is considered a
failure in the switchable block. Since the number of components within a switchable block is

sufficiently small, this type of single»unit duplex configuration meets the reliability requirement.

For larger processors, such as the‘No. 1 or the No. 1A, the central control, the program store,
the call store, the store buses, and the bulk fiie store are treated individually as switchable blocks.\

100

 ‘4U1

3A,1977

U" GAveragedowntimeinminutes/year/system
N 01

33,1931

 | _|_

Years since introduction

59

60

REFERENCES

8. HICHrAVAlLABILtTY SYSTEMS 573

This’ multi-unit duplex configuration allows a considerable number of combinations in which a
working system can be'assembled. The system is down only when two simultaneous failures
occur, one in the subunit and the other in the duplicate subUnit. A greater fault tolerance is
possible with thisconfiguration. This type of configuration is necessary for the large processor
bécat‘ise each subunit contains a larger number of components.

. The first generation of processors, which includes the No. 1 and the No. 2', have provided
commercialservice since .1965 and 1969, respectively. The No. 1 Processor serves iarge telephone
offices (metropolitan); the No. 2 Processor is used in medium-sized offices (suburban). Their
reliability requirements are the same. Both processors depend on integrated maintenance soft-
Ware, with hardware that must (1) quickly detect a system failure condition, (2) isolate and
configure a working system around the faulty subunit, (3) diagnose the faulty unit, and (4) assist
the maintenance personnel in repairing the unit. The primary detection technique is the syn-
chronous and match mode of operation of both central controls. Matching is done more exten-

siveEy in the No. 1 than in the No. 2, since cost is one of major considerations in the design of
the No. 2 Processor. In addition to matching, coding techniques, diagnostic access, and other

check logic have been incorporated into the basic design of these processors to realize the
reliability objectives.

The widespread acceptance of the 1ESS and 2ESS switching systems has treated the need
for a second generation of processors: the No. 1A and the No. 3A. They offer greater capabiiity
and are aiso more cost effective. Both processors use the same integrated circuit technology. The
1A Processor extends its performance range by a factor of 4 to 6 times over the No. 1 Processor
by using faster logic and faster memory. The 1A design takies advantage of the experience gained
in the design and operation of the No. 1 Processor. The No. 1A Processor provides considerably
more hardware for error detection and more extensive matching of a large number of internal

nodes within the central control. The design of the No. 3A Processor has benefited by the
experience gained from the No. 2 Processor. A major departure in the design of the 3A Processor
from the design of earlier processors is the nonsththnops and the nonmatch mode of opera-
tion. The No. 3A Processor uses self—checking as the primary means of error detection. Another

departure is in the design 'of the N0. 3A Processor’s‘ ,contrdl section: it is microprogrammed. The
No. 3A Processdr’s flexibility permits emulation pf the No. 2 Processor quite easily.

The third-generation systems are dominated by software design, updating, and maintenance
expenditures. The 3320B Processor is a general-purpose, high~availability machine that supports
many types of applications, A comprehensive set of software tools and facilities improves pro-
gramming productivity and reduces the cost of software development and maintenance. The
hardware architecture efficientiy supports high-level languages, particularly the C language. The
UNIX RTR operating system was designed concurrently with the hardware to meet the needs of
switching and telecommunication systems. Its architecture permits time-critical, real-time code
to coexist virith time-shared background tasks. An important provision in the 38200 ProceSsor is '
a complete set of maintenance facilities, from error detection through fault recovery and diag—
nostics. Approximately 30 percent of the internal control logic is devoted to self-checking. Seif—
checking allows concurrent error detection and immediate recovery. In March, 1988, over 1000
SESS systems and more than 20 million telephone lines were in commercial use, sewing the
smallest remote switching module of hundreds of lines to the largest office of 85,000 lines with

high-quality services.

AMD, 1979; Ault et a|.,1964,1977; Barton and Schmitt, 1983; Becker et al., 1977; Beuscher et ai.,
1969; Bowman et al., 1977; Browne et al., 1969;\Bud|0ng etal.,1977; Cagle et al.,1964; Chang,
Smith, and Walford, 1974.

60'

‘\,4.»-

61

574

5555 SWITCH
ARCHITECTURE
OVERVIEW

ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Downing, NoWak and Tuomenoksa, 1964; Elmendorf, 1980; Genke, Harding, and Staehler, 1964;
Goetz, 1974; Grzelakowski, Campbell, and Dubman, 1983; Hansen, Peterson, and Whittington,
1983; Harr, Taylor, and Ulrich, 1969; Hetherington and Kusulas, 1983.

Irland and Stagg, 1974; Kane, Anderson, and McCabe, 1983; Keister, Ketchledge, and Lovell,
1960; Keister, Ketchledge, and Vaughan, 1964; Lycklama and Bayer, 1978; Mandigo, 1976; Quinn
and Goetz, 1983; Ritchie and Thompson, 1978; Rolund, Beckett, and Harms, 1983.

Seley and Vigilante, 1964; Smith, 1972; Spencer and Vigilante, 1969; Staehler, 1977; Staehler and
Walters, 1976; Storey, 1976; Toy, 1978; Toy and Galiaher, 1983; Tsiang and Ulrich, 1962; Wallaceand Barnes, 1983.

THE AT&T CASE

Part ii: Large-Scale Real-Time Program Retrofit Methodology in AT&T
5ESS® Switch

L.C. TOY*

,Modern telephone systems are continuously undergoing changes to take advantage of rapid
advances in hardware technology. in addition, new features arercontinuously being developed
and incorporated as integral parts of the system. The additions and changes must be implemented
in realtime without disrupting the customer’s telephone service. The procedures and method-
ology utilize the distributed and redundant architecture oi the 5ESS Switching System to update
and/or grow the system, while at the same time providing'continuous service. ‘

in this case study, the architecture of the SESS electronic, switching system is described
briefly, and then considerations for replacement of the resident'software in the SESS system and
how the process is implemented are discussed. The focus is on major software replacement.

The SESS switch is a fully digital switching system with a distributed processing and switching
architeCture [SESS, 1986; Si'nith and Andrews, 1981; Davis et ai., 1981]. it is comprised of an
administrative module, a communications module, and one or more switching modules and/or
remote switching modules (Figure 8—31); These three basic elements can be configured to cover
the complete range of applications, from remote sWitching modules to large-capacity telephone
exchanges [Byrne and O’Reilly, 1985]. The system is highly reliable: Because of the fault-tolerant
architecture, the administrative moduie and switching modules experience only a few minutes
of downtime per year [Allers et al., 1983].

- Switching Module (SM): Over 95 percent of call processing is handled by the switching
module, which is the basic growth unit of the system. in addition to providing circuit and packet
switching functions, the switching module connects all external lines, trunks, and special services
circuits. Remote switching modules can be located at a considerable distance from the main body
of the switch and can be used singly or grouped in clusters to serve. groups of up to 10,000
subscribers. Time-division switching is performed in the time slot interchange unit, While most
of the call processing is done in the switching module processor unit. Each switching module

* The author acknowledges MA. Gauldin and EB. Strebendt, for their assistanceland encouragement, and E.E.
Haselrick and MG. D’Souza, for providing reference materials. Development of the retrofit capability resulted
from the contributions of many people within AT&T Bell Laboratories and AT&T Technoiogies.

61 i

' |l

62

8. HlGH-AVAILABILIW SYSTEMS 575

FIGURE 8—31

5555 remote 5555 Administrative
switching module switch module

 capabilities

Remote

switching _

module Fiber Switch'. . . Communication "'3
— Swrtching ' module modulemodule

PCM

Switching
module

 Other

exchange

Remote

integrated
services
line unit

Remote

integrated
services
line unit

has a time slot interchange unit and a switching module processor unit but may differ from other

switching modules in the types and quantities of peripheral equipment (line unit, trunk unit,
digital carrier line unit, and digital line trunk unit). All common equipment in the switching
module is duplicated for reliability purposes. Optical fiber network, control, and timing links
connect the switching modules to the communications module.

- Communications Module (CM): The control-message communication facilities between the

switching modules and the administrative module and between any two switching modules are
provided by the communication module. The communications module contains a time-multi-
plexed switch and a message switch. Digital paths for switched connections between the switching
modules are provided by the time-multiplexed switch. The message switch passes control mes-
sages between any twO switching modules and between the switching modules and the admin-

istrative module. For reliability, both the time-multiplexed switch and the message switch are
duplicated. The initial design of the communications module supported one switching module.

A new communications module that supported 30 switching modules was then followed by a
communications module with the capacity of 48 switching modules [Anderson et al.r 1987]. A

large communications module that supports 192 switching modules is now available. Call routing
functions now exist in the communications module.

- Administrative Module (AM): The administrative module collects traffic and billing data.

Many functions not related to call processing, such as fault detection, diagnostiCs, and fault
recovery, are performed by the administrative module, which uses a 3BZOD computer [Toy and

' Gallaher, 1983]. The administrative module consists of a duplicated administrative processor, ani

62

63

576

SOFTWARE
REPLACEMENT

II. THE PRACTICE OF RELIABLE SYSTEM DESIGN

input/output processor to interface with terminals, printers, data links and tape units, and a
duplicated disk file controller to which the disks are connected. Disk interfaces are SCSI (small
computer system interface) standard.The duplicated administrative processors in the administra-
tive module work in activefstandby configuration so that if a fault occurs in the active unit, the
standby unit can be switched into service. The disk memory provides mass storage for programs
and data [Haglund and Peterson, 1983}. The input/output processor allows technicians to interface
with the system via video display units and a master control center.

With the SESS switch, replacement of the resident software and/or hardware is done in real time

to minimize the impact on customer service and call processing. A conversion process occurs
when one generation of the switch’s features is upgraded to accept new hardware or'software.
The generation change marks a change in the generic. The conversion process is referred to as

a generic retrofit [Bauer, Croxali, and Davis, 1935]. The generic retrofit capability in the BESS
switch provides the method and support software for replacing the resident software, the asso-
ciated databases, and the read-only memory firmware for the switching modules, while maintain-
ing adequate service and reliability.

Several factors must be taken into consideration before a 5ESS switch is retrofitted. First, to
minimize impact on customers, retrofitting of software and mOst hardware occurs at separate
times in the SE55 switch. Consequently, either the old hardware must be compatibie with the
new software or the new hardware must be compatible with the old software.

Second, due to the distributed proceSsor architecture of the SESS system, there are periods
of time when the software release in the administrative module is different from that in one or

more switching modules. The messages that pass between processors fall into three categories:
(1) messages that must pass through regardless of software reiease, (2) messages that involve the
switching module read-only memory software, and (3) all other messages. Messages in the first
category establish the links between the administrative module and switching modules and are
needed so that other messages can be exchanged. The second category consists of those messages
related to initializing the switching modules with data. '

A third consideration is evolution of the two databases that exist in the BESS switch. The

Office Dependent Data contains such information as routing information and subscriber infor—
mation. The Equipment Configuration Data contains information about the 38200 hardware and

peripheral equipment, such as the video display units and disk drives. Each exchange customizes
these two databases to fit the particular configuration. Due to structural changes that are needed
to support new features, the databases must be evolved from a format compatible with the old
software release to one compatible with the new software release. The 5ESS system’s generic
retrofit capability supports the evolution of these customized databases.

Software Replacement Processes

The 3B20D/UNIX* RTR system provides system update facilities to support the introduction of
new versions of UNIX RTR and appiication software [Wallace and Barnes, 1984]. The system
update software provides a flexible mechanism that can be used by a variety of applications,
including the SESS switch and allows the inclusion of application-dependent processing. The
system update software places all new generic data into the system and makes final preparations
prior to initializing the system from the new generic. After initialization, complete propagation
of the new generic into the system oceurs. '

During each step of the update process, the system update software provides an opportunity

* UNIX is a registered trademark of UNIX System Laboratories, Inc.

63

64

Old

generic

8. HIGH-AVAILABiLiTY SYSTEMS 577

for appiication-dependent processing by transferring control to an application process. To regain

control, the system update process monitors the application-dependent process. Each time the
application-dependent process is invoked, the system update process waits a Specified time for

its completion. The application process sends an acknowiedgment message to the system update
process that indicates the amount of time it requires for processing. It the application~dependent
process does not finish within the allocated time, the system update process sends a software

termination signal to the application process, informs the office technicians of any error, and
stops the stage.

A separate process exists for each step of the update procedure. Communication between
the system update processes is accomplished through use of a binary log file. The first entry in
the log file specifies the number of entries in the file. Each system update process will write

beginning, ending, and application—dependent entries in the log file. Information contained in
the beginning and ending entries for each process includes the date and time of the entry, the

process identification, and the type of update process that is making the entry. In addition, the

ending entry contains the completion code of the stage, which indicates success or failure, and

error codes that provide more specific information about what errors occurred.
The application-dependent process maintains an ASCII log file. An entry for each stage of

the retrofit exists in the application—dependent process’s log file. Each entry specifies the stage
of the retrofit, the starting and ending times of the stage, and the completion code that indicates

the type of error, if any, that occurred. The log fiie also contains information about processing
specific to each stage.

Stages in SEES Switch Software Replacement

Replacement of software in the BESS switch consists of four major stages: advance preparation,

preparation, initialization, and evaluation (Figure 8«-32). The advance preparation stage occurs

Weeks The day of retrofit
—>i

Simplex

Advance Duplex New .

preparation: 4‘ Preparation: Initialization: M Evaluation: Duplexgenerlc

I Grow equip- I Verify and I Simplex AM I Evaluate
ment needed check office I Switch over I Switch to

for new equipment to new full duplex
generic I Simplex generic operation

I Prepare new system I Active with
ODD (except AM) new generic

I Prepare new I Active with text, ODD
ECD old ODD and ECD

and ECD
I [nstail new

generic text,
ODD and ECD

FIGURE 8e32 SESS switch retrofit stages

64

65

578 ll. THE PRACTICE OF RELIABLE SYSTEM DESSGN

weeks prior to the actual clay of retrofit and consists of growing in equipment needed for the

new generic and preparing the new databases. The system remains in duplex operation during
this time. The preparation, initialization, and evaluation stages occur on the day of retrofit. The
system is simplexed during the preparation stage and is duplexed after evaluation of the new

generic. After verifying and checking the office equipment for reliability, the new generic text
and databases are installed. The system is then initialized and evaluated. During these stages of
software replacement, the exchange is able to back out any changes made and revert to the old

software if the need should arise. The UNIX RTR system update and SESS switch application»
dependent software are utilized during the preparation, initialization, and evaluation stages.

Advance Preparation Stage. During the advance preparation stage, the exchange is evaluated to
verify that it is properly equipped to perform a retrofit. At this time, any hardware that is required
for the new generic to be operational is grown into the system. Additional memory for the
administrative module and switching modules is also grown if needed. Also during this stage, a
series of tests designed to diagnose and verify the operation of devices and equipment used to
read in and store the new generic, equipment units essential to the retrofit, and hardware and

software units needed to recover the system’ from an outage are executed. This testing ensures
that there is a low probability of trouble attributable to existing system faults in subsequent stagesof the retrofit.

Evoiution of the office-dependent data (ODD) [Barclay, Dossey, and Nolan, 1986] and Equip-
ment Configuration Data (ECD) databases takes place during this time interval. Database evolution

is the process of converting a database used by one generic to a format required by a different
generic. The ODD stores most of the SESS sWitch office data and contains information on

subscriber lines, trunks, routing, and features. Infdrmation about the 3320B hardware and SESS

switch terminal configurations is stored in the ECD. While the ECD resides strictly in the admin-
istrative module, the ODD is distributed among the administrative module and switching mod-
ules. Evoiution is required when structural changes occur in the databases {for example, when
relations or attributes are added in the new database). Both the ODD and ECD databases are
evolved off site.

Two dumps, the preliminary and final, are taken of the ODD and ECD. The preliminary
dump is used to identify maior inconsistencies in the databases. Fixes from the preliminary dump
are then applied to the databases, and a final clump is taken and used to create the new generic’sdatabases.

Office Dependent Data Evolution. The 1first step in ODD evolution is to back up the database to
ensure that the disk copy is identical to the copy in main memory. Backups of the ODD for
evolution cause changes made to the database to be logged so that they can be later evolved
and applied to the new ODD. The ODD for the administrative module and aii switching modules
are copied to tape and shipped to a center responsible for evolving the databases. At the center,

the ODD is decompiled from binary form to the original ASCII input. The ASCII input is then
evolved to the new generic format and compiled into binary. The evolved ODD is then shipped
back to the exchange. ‘

The new generic database is created from a snapshot of the ODD. While the old generic
database is being evolved to the new generic format, changes are continuously being made to
the database in the exchange. Changes to the ODD are made by the exchange (recent changes,
RC5) [Fuhren Sheri, and Yates, 1986] or originated by the customer (customer originated recent
changes, CORCs). An exampie of a CORC is when someone forwards his or her incoming cailsto a different number.

At the same time that an RC or CORC is being applied to the database, it is doubly logged

65

66

 FIGURE 8—33

Customer-origi-
nated recent

changes and re-
cent changes reap-

piications

B. HIGH-AVAILABILITY SYSTEMS 579

for recovery reasons [Lochen Pfau, and Tietz, 19861 and for retrofit purposes. The retrofit log file
is in binary format and contains the database relation name and the updated tuple data. Each
time the ODD is backed up on disk, the CORCs are automaticaliy flushed from the administrative

module and switching modules and are appended to the retrofit tog files. Each time a relation
gets inserted, updated, or deleted, the relation is logged in the switching module’s memory
buffers. The CORCs are sorted by timestamp; only the most recent transaction of a particular

CORC is retained. The buffers are then shipped to the administrative module and will be written
to disk the next time a database backup occurs. At the time of retrofit, these logged changes are
evolved to a format compatible with the structure of the new generic’s database. These evolved

changes are then applied to the new database once the system is initialized on the new generic.
Both the old and new generic databases are synchronized (Figure 8—33).

Equipment Configuration Data Evolution. A copy of the exchange’s ECD is made to tape and is

sent to an off-site processing center for evolution {Figure 8m34). Off-line tools are provided to
extract certain exchange options from the ECD automatically. These options are applied to a base
ECD that contains data items common to all SESS systems with the same generic to obtain a

customized database. A process in the administrative module dumps the ECD, converts it to
ASCII format, and loads it onto tape. A process on an off-site processor extracts the options from

the tape and applies them to new base ECD via customization scripts. Since some options may
not be customized in the new database, an audit report is sent, along with the new database, to

the exchange. The audit report tells which fields have not been customized and allows the
technicians to customize the fields after initialization on the new generic.

u —

52255 switch II
Applied

APPIiEd .‘ fi-I
New Old
DB DB

log Evolved 103

New Old
ODD ODD

66

67

580

FIGURE 3—34

Equipment config—
uration data evolu-
tion

II. THE PRACTICE OF RELIABLE SYSTEM DESIGN

IIit

Old Old

exchange exchange
ECD New ECD

customized

ECD

Old
customized

ECD

Preparation. This stage prepares the exchange for the actual retrofit and begins during the morning
of the planned cutdver to the new generic. The exchange verifies that it has installed the latest

software and hardware updates and that all temporary overwrites to main memory are installed
permanently or removed. The system is then backed up and it is verified that the exchange is
running in duplex configuration (Figure 8—35). Diagnostics on equipment that is critical for retrofit
are exchted during this stage. At this time, billing data are collected and transmitted to a central
location over a data link or are dumped to tape.

After the technician enters the command to start the retrofit, the application process sets
the generic retrofit indicator on the maintenance control center and creates its log file. During
this stage, the new generic and associated databases are read in from tape onto the secondary
set of disks (Figure 8—36). The system update process determines the disks for which a set of

tapes is targeted. It then removes the disks from service and marks the system off linein the
ECD. This prevents restoral of the disks and will protect the new generic data from being
overwritten. The remaining active disks continue to serve the live office; changes made to the
active disks are not made to the off—line disks. The disks will remain simplex until the system is
committed to the new generic.

A special device file provides mapping and aitows the system update process to access the
off-line disks. Each sequence of. tapes contains a volume table of contents that defines which

partitions the remaining data belong in. The offset of the data within the disk partition is deter—
mined from the physical disk address contained in the tape header and the starting address of
the partition obtained from the volume table of contents.

During this stage, the system update process writes several types of log file entries. The
beginning entry also includes the path name of the input device, the path name of the destination

67

68

8. HIGH-AVAILABILITY SYSTEMS 531

Tape‘ CM

Disk 0
active

'Act‘ St db
““9 a" y Disk 1

active

5M1

|:] Old generic
7

”A New generic:
FW Office has old generic; All prerequisite

_ _ . ' . growth completed; Office passes
Active Standby Active Standby Active Standby baseline tests '

FIGURE 8—35 Generic retrofit: Starting point

New generic:
All equipment duplex except for disks

_ . _ (evolved database required on major
Active standby Active Standby Active Standby generic transitions)

FIGURE 8—36 Generic retrofit: Step 1, Load new generic from tape to off-line disk

volume table of contents, and information that will be used to access the new generic’s ECU and
the oid and new generic’s system update log fiies. Log file entries are also made that indicate the

disks that are being updated, the partitions on disk that are being updated, and information
related to the tapes that are being read. Before the ending entry for this stage is written, an
application-dependent process entry with the process identification number is written.

Files used by the old ‘generic and needed by the new generic are copied from the active

disk to the off-line disk by the application process. The destination off-line partition is mounted, /
and then the files are c0pied over. The application process writes an entry in its log file specifying

68

69

532 II. THE PRACTICE OF RELIABLE SYSTEM DESIGN

the names of the files it tried to copy and whether it was successful in doing so. Once the new

generic text and database tapes have been read, the duplicated module processors in each
switching module are simplexed so that the generic dependent firmware may be replaced (Figure
8e37). One side of the switching module is forced active and continues processing calls. The

other side of the switching module is unavailable and is pumped with the new generic, which is
stored on the off-line disks (Figure 8—38).

Tape

Disk 0
active

Disk 1
off line

‘ [:l Old generic

% New generic:
Replace firmware in EMS

Active 005 Active 005 Active 008

FIGURE 8—37 Generic retrofit: Step 2, Simplex switching modules

Tape

Disk 0
active

Disk 1
off line

‘3 Old generic

V

A , /‘New generic:II-Ifllav
FW l- null/A SMs remain IT! service on old generic; AM

Forced Forced , Forced Forced Forced Forced running duplex on old generic; No impact on
active unavail active unavail active unavail call processing; Evolve RC5 and CORCs to

new formats,- Copy files to new generic

FIGURE 8-38 Generic retrofit: Step 3, Pump off-line switching modules

69

70

8. HIGH-AVAILABILITY SYSTEMS 583

A process in the administrative module coordinates all requests to perform switching module
pumps. lt queues and prioritizes pump requests and invokes a special process to mount the off—
line partitions to make the new generic software accessible for pumping. This special process
uses the mknod and mount system calls to create special device files and mount point directories

on the active disks. The partitions on the off-line disk are then mounted on the mount point
directories. After the off«line partitions have been mounted, a third process in the administrative
module controls the transfer of the data from disk to the switching moduies via the 38 memory.

A process in each switching module sets up and releases the data path for pumping. The process
then performs hashsum checks of the memory on the unavailable side. Throughout this stage,
the active processor of each switching module is still in service on the old generic, the admin-

istrative module is running duplex on the old generic, and there has been no impact on call
processing.

At this point in time, the new generic’s ODD is out of date with the ODD for the old generic.
Changes that have been made to the ODD by the technician or the customer are logged and are
evolved to a format compatible with the new generic database. The evolved RC5 and CORCs are

then copied by the application process from the active disk to the off-line disk.

Initialization Stage. During this stage, the switching modules are switched over from the old
generic side to the new generic side and are initialized. The application process is responsible
for changing the switching modules from the old generic side to the new one. The application
log file entry for this stage contains information about whether the switch was successful for each

switching module.
Messages other than ones used to establish the iinks between the administrative module

and the switching modules are throttled in the communication module. The administrative mod-
ule is the last processor to be initialized, since it needs to retain control over switching the
switching modules to the new generic and to monitor their progress. Limited verification of the
new ODD is done prior to initializing the switching modules on the new generic.

To protect the disks containing the old generic, the system update process accesses the new
ECD on the off-line disks and marks the active disks off line. After the system is initialized, the
disks containing the new generic will be active and the disks containing the old generic will be

off line (Figure 8—39). The application and system update processes copy over their log files at
this time. The system update process then requests the technician to initialize the system using

the new generic disks. At any point in the retrofit, the exchange personnel can decide to return
to the old generic and databases. The old software is available until the last stage in retrofit; thus,
it is a very short process to abort the retrofit.

Evaluation Stage. Operation on the new generic is verified during this stage. Prior to duplexing
the disks and switching modules, the technicians want to ensure that the new system is opera-

tional. The administrative module is restored to duplex operation. The new ODD is brought up
to date with the old database by applying the evolved changes. The length of this stage, during
which call processing is unaffected, is determined by local practice (Figure 8—40).

When the technicians are satisfied with the stability of the new system, the exchange is
committed to full duplex operation. The new firmware is loaded in the side of the switching

modules containing the old firmware, and both the switching modules and disks are restored to
duplex operation (Figure 8—41). The system update process marks the off-line disks out of service
in the ECD so that UNIX RTR facilities can be used to restore the disks.

The application process is responsible for checking that the switching modules are duplexed
and for clearing the generic retrofit indicator on the maintenance control center. it prints out
and then destroys its log file. At the completion of this stage, the system update process removes

71

584 Ii. THE PRACTICE OF RELIABLE SYSTEM DESIGN

CM AM m

Disk {1
off line

005
Disk 1
active

% New generic:

YForced Forced Forced Forced Forced Forced Cop CORCs, RC, and billing to new disk;
unavail active unavail active unavaii active SMs initialized on new generic; AM

initialized on new generic; Disk 0 forced
off-line with old generic

FIGURE 8—39 Generic retrofit: Step 4, Initialization

5M1

% , .
FW ' j I I 7 .‘I' ‘ r ‘r w New generic:

Forced Forced Forced Forced Forced Forced SMS and disks simplex; AM restored to duple:
’unavail active unavail active unavail active Automatic reapplication of RC5 and’ CORCs;

Duration—as required by local practice

FIGURE 8—40 Generic retrofit: Step 5, Verify operation on new generic

71

72

CM

Active Stand

SUMMARY

almmajmlrla ”All!

by

8. HIGH—AVAILABILITY SYSTEMS 585

m

Old generic

% New generic:
Adm? Standby Active 5131‘de Load new firmware in side 0 and diagnose;

Return system to full duplex operation

FIGURE 8—41 Generic retrofit: Step 6, Commit and go full duplex

its log file, since the update is finished and the system update processes no longer need to
communicate.

In rare instances, the exchange personnel will decide to return to the old generic. This is

simple to do prior to duplexing the disks, and a backout procedure is provided if necessary. The
retrofit process is reversed and the disks that contain the old generic are re—initialized. The disks
that contain the new generic are marked inaccessible and are then overwritten with the old
generic.

A much less desirable alternative to the generic retrofit process is to bring the system to a stop,

load in new tapes, and then undergo a full initialization of the system. Long system downtimes
wouid result from using this method, and there would be no mechanism for evolving the
databases or recent changes. In addition, system integrity would not be guaranteed.

Generic retrofit takes advantage of the duplicated nature of the SESS switch in order to

minimize impact on call processing and system reliability. it provides a way to read in the new
software and databases while the switch is still running on the old generic. Call processing is

uninterrupted during most of the initialization of the switching modules with the new generic.
All hardware growth and software changes occur at separate times Hardware that is essential

for the new generic to be operational is grown prior to retrofit and must be compatible with the
new generic.

Because structural changes may occur in the databases, they are evolved from their old

generic format to one that is compatible with the new generic. Changes made to the ODD are
logged and automatically applied to the new generic database. The retrofit process provides

databases compatible with the new generic that contain basically the same information as the-
old.

The architecture of the 5ESS system enables a smooth transition to a new generic that
contains new features and hardware without a‘noticeable service interruption to subscribers. The

process has been well tested and has been very successful. As of August, 1987, there were 137

72

73

i 586

REFERENCES

ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

exchanges retrofitted from the 5E1 to the 5E2(1) generic, 215 exchanges retrofitted from the 5152(1)
to the 5E2(2) generic, and 70 exchanges retrofitted from the 5E2{2} to the 5E3(1) generic.

Allers et al., 1983; Anderson et al., 1987; Barclay, Dossey, and Nolan, 1986; Bauer, Croxall, and

Davis, 1985; Byrne and O’Reilly, 1985; Davis et al., 1981,- SESS","1986; Fuhrer, Shen, and Yates,

1986; Haglund and Peterson, 1983; Locher, Pfau, and Tietz, 1986; Smith and Andrews, 1981; Toy
and Galiaher, 1983; Wallace and Barnes, 1984.

THE TANDEM CASE

Fault Tolerance in Tandem Computer Systems

JOEL BARTLETT, WENDY BARTLETT, RICHARD CARR, DAVE GARCIA, JIM GRAY, ROBERT
HORST, ROBERT JARDINE, DOUG JEWETT, DAN LENOSKI, AND DIX MCGUIRE

The increasing trend for businesses to go on line stimulated a need for cost-effective computer

systems with continuous availability [Katzmam 1977]. The strongest demand for general-purpose,
fault-tolerant computing was in on‘line database transaction and terminal—oriented applications.

in the early 19705, vendors and customers demanding continuous availability configured multi-
processor systems as hot standbys (see Figure 8—42). This configuration preserved previous
development effort and compatibility by introducing devices, such as llO channel switches and
interprocessor communications adapters, to retrofit existing hardware. These architectures, how—
ever, still contained many single points of failure. For example, a power supply failure in the {/0
bus switch, or an integrated circuit failure in any ilO controller on the HO bus switch channel,
would cause the entire system to fail. Other architectures used a common memory for interpro»
cessor communications, creating another single point of failure. Typically, these architectures did

not even approach the problems of on-iine maintenance, redundant cooling, or a power distri-
bution system that tolerates brownout conditions. Furthermore, these systems lacked thorough

data integrity features, leading to problems in fault containment and possible database corruption.
As late as 1985, conventional, welE-managed, transaction-processing systems failed about

once every two weeks for about an hour [Mourad and Andrews, 1985; Burman, 1985]. This failure
rate translates to 99.6 percent availability, a level that reflects a considerable effort over many

years to improve system availabiiity. When the sources of fauits were examined in detail, a
surprising picture emerged: Faults come from hardware, software, operationshmaintenance, and
the environment in about equal measure. Hardware could operate for two months without

generating problems; software was equally reliable. The result was a one-month mean time
between failures (MTBF). But if operator errors, errors during maintenance, and power failures
were inctuded, the MTBF fell below two weeks.

In contrast, the goal of Tandem is to build systems with a MTBF measured in years*——more
than two orders of magnitude better than conventional designs. The key design principles of the

system were, and still are, the following:

- Modularity: Both hardware and. software are based on modules of fine granularity that are
units of service, failure, diagnosis, repair, and growth.

* The originat goal was to buiid a system with ‘tOU-year MTBF.

73

74

FIGURE 8—42

An example of-

early fault—toierant
architectures

8. HIGH-AVAILABILITY SYSTEMS 587

' CPU I CPU
|
| .

Inter-processor Interprocessor
link link

| .

lnterprocesser lnterp‘rocessor
link link

\ .

Noncritica]
controller

Noncritical
controller

B u s
switch

Terminal

controller

“ +"I
D' k

.5 t.controller

° Fail-Fast Operation: Each module is self~checking; when it detects a fault, the module stops.
- Single Fault Tolerance: When a hardware or software module fails, another module imme-

diately takes over the failed module’s function, giving a mean time to repair measured in
milliseconds. For processors or processes, this takeover means that a second processor or
process must exist. For storage modules, it means that the modules and the paths to them
are duplexed. ' I 7 ‘

- Orr-line Maintenance: Hardware and software can be diagnosed and repaired while the rest
of the system continues to deliver service. When the hardware, programs or date are
repaired, they are reintegrated without interrupting service. I

- Simplified User interfaces: Complex programming and operations interfaces can be a major
source of system failures. Every attempt has been made to simplify or automate interfaces
to the system.

This case study presents Tandem NonStop and integrity systems, viewed from the perspective
of these key design features. '

74'

\t_/«.\

75

588

HARDWARE

1!. THE PRACTICE OF RELlABlE SYSTEM DESIGN

Multiple hardware modules and multiple interconnections among those modules provide a basis
for fault-tolerant operation. Two modules of a certain type are generally sufficient for hardware
fault tolerance because the probability of a second independent faililre during the repair intervai
of the first is extremely levy, For instance, if a processor has an MTBF of 10,000 hours {about a
year) and a repair time of 4 hours, the MTB=F of a dualupath system increases to about 10 million
hours (about 1000 years). If more than two processors were added, the further gains in reliability
would be obscured by system failures related to software or system operations. '

- Modularity: Modularity is important to fault-tolerant systems because individual modules
must be replaceable on line. Keeping modules independent also makes it less likely that a failure
of one module will affect the operation of another module. increasing performance by adding
modules allows customers to expand the capacity of critical systems without requiring major
outages to upgrade equipment. 7

~ Fail-Fast Logic: Fail-fast logic is defined as logic that either works properly or steps. Fail~
fast logic is required to prevent corruption of data in the event of a failure. Hardware checks
(including parity, coding, and self—checking), as well as firmware and software consistency checks,
provide fail-fast operation.

- Serviceabilfty: As mentioned before, maintenance is a source of outages. ideally, the
hardware should have no maintenance. When maintenance is required, it should require no
special skills or tools. ' '

- Price and Price/Performance: Commercial pressures do not permit customers to pay a high
premium for fault tolerance; if necessary, they will use ad-hoc methods for coping with unreliable,
but cost-effective, computers. Vendors of fault-tolerant systems have no special exemption from
the requirement to use state-of-the-art components and architectures, frequently compounding
the complexity already required by fault tolerance.

Hardware Architecture

The Tandem NonStop computer system was introduced in 1976 as the first commercial fault-
tolerant computer system. its basic architecture is shown in Figure 843. The system includes
from 2 to 16 processors, connected by dual buses collectively known as the Dynabus interpro-
cessor bus. Each processor has its own memory, containing its own copy of the operating system.
The processors communicate with one another through messages passed through the Dynabus
mechanism. The system can continue operation despite the loss of any single component. Each
processor has its own inputioutput bus. Dual-ported Controllers connect to NO buses from two
different processors. An ownership bit in each controller selects which of its ports is currently
the primary path. When a processor or NO bus failure occurs, all controllers that are designated
as primary on that NO bus switch to their backup paths. The controller configuration can' be
arranged so that in a multiprocessor system, the failure of a processor causes that processor’s
l/O workload to be-sp'read out over the remaining processors. All subsequent systems have been
upward-compatible with this basic design. ‘

Processor Modules

The primary components of a system are its processor modules, each of which includes an
instruction processing unit (lPU), memory, lr'O channel, and Dynabus interpr0cessor bus inter—
face. The design of the system’s processor module is not much different from that of any
traditional processor, with the addition of extensive error checking to provide fail-fast operation.

75

76

FIGURE 8—43

‘ Original Tandem
system architec-
ture, 1976

8. HIGH-AVAILABILITY SYSTEMS 539

 Dynabus interface

 Disk
controller

 Disk
controller

Each processor operates independently and asynchronously from the rest of the processOrs.
Another novel engineering requirement is that the Dynabus interfaces must prevent a single-
processor failure from disabling both buses. This requirement focuses on the proper selection
of a single component type: the buffer that drives the bus. This buffer must be well behaved
when power is removed from the processor module to prevent errors from being induced on
both buses. " ' " I

The povver, packaging, and cabling must also be carefully considered. Parts of the system
are redundantly powered through diode ORing of two different power supplies. In this way, I/O
controllers and Dynabus controllers tolerate a power supply failure. To ailow on-Iine maintenance
and modular growth, all boards are designed for hot insertion; that is, they can be inserted while
the slot is powered, Battery backup power is standard in all systems. It preserves the system state
for several hours in case of power failure. -

The evolution of these processors is summariied in Tabie #5. Features common to all

processors are described in the following sections. More details about the individual processors
appear later in this case. Each processor provides a basic set of instructions that includes oper-
ations on bits, integers, decimal-numbers, floating»point numbers, and character strings; pro~
ce'dure calls and exits; l/O operations; and interprocessor SENDS to streamline the performance
of the message-based operating system. All instructions are ‘16 bits long. The Tandem NonStop l
was designed as a stack-oriented,_16~bit processor with virtual memory. This instruction set
has evolved to an upward—compatible, 32-bit addressing machine. Program binaries from the

76‘

77

II. THE PRACTICE OF RELIABLE SYSTEM DESIGN
590

.EE.25:BEan3553h,

umflmE3wumm52ONxNm903:ivo
29:53hommmuoa:8m2Nm52.Nmm0ra_\INv.5

amEUSE£2marnewxvs;m:S
mOEU3‘E0530

comN.N

9mm:0%Eu

.93memxN0%E5.0NXNmm:03:mmvN
923m2).NmMUNmUNcFINv—mum

92:52%‘5.3xm2382xVaisn52.XvmmatmV
>98EmuJUm

comOH;

8mevac—EU

uvmfifiv+me82ONXNm@0mekm.»H.E).m6.503hommmuoi:392mm2.%m0wwINv:.w

QME69%.3.margemxv.3m:S
mOEUiméEofizu

momm...

8mm5canv30

”.8memuwm\E2onxNmEumm:mmmr34w288353803:892v92Nmm0wx5
QmE69%3E3mmxv.3mmmm_.mOSO1NEcumzu

womDH

Ea:25xi

“.3mem.ummE3oNxNm$.53:c2»N
m5wwm3.or

m5mm3.omNm0“.oTNva
QMEHyattfiv—weEstdogxv.328

>2325J8
mwNa.m

X._>

umflmfim93.55E.xNmwbmmcwowv
m2amiNm22.m0raPINv2mm

%E58%.3.33%xV;59“xv5£920—DEC.m:mmin.a:52
mmO.“

335EC.

3955m0%\MEMrxNmmemcas?Nm2wm5Nmv.Nrmm25‘wowcFINvEm
nNmXMmm:ourdurm.92

mmNwd

Ea:__aoflmcoz

ummEE.wUQmBEMrxNmmemcDomN
my«manm33$2.Nmv_Nrm9_.INVSNm:on;SEm?No

3%:_QEmcoZ

22563EmmmuoilowmzozEmbcmhB5mefinmmlw5m<h
meamIEccmzumeam55538992533:0:55«E3296mEmon232EwenEm,5.3%:E313foEuEESQ:\EommmuoimEmoQ5380:.32:38

$ng
3:022,me

U53vaocumuEogmobmfi9::£26Ixmouocfifl.225:me3;:mm_.2Eamon...”—

233m6389;

.. t ,7_

77

78

B. HIGH-AVAILABILITY SYSTEMS 591

NonStop I will run on a Cyclone. The processor implementations have been fairly conventional,

using a mix of special-purpose hardware for basic arithmetic and 1/0 operations, along with
microcode to implement higher-level functions. Two novel features are the special hardware and
microinstructions to accelerate the sending and receipt of messages on the Dynabus. The per-
formance of these instructions has been a key component of the success of the message-based

operating system.

Memory, as originally implemented, was designed to support a 16-bit minicomputer. In 1981 ,

designers added a 32-bit addressing scheme to provide access to 4-MB code space (for users),
multiple 127.5-MB data spaces (for users), 4-MB code space (for the operating system), and 1—63

(2 GB for Cyclone) of virtual data space (for the operating system). The code and data spaces in
both the user and the system areas are logically separate from one another.

in order to make processors fail-fast, extensive error checking is incorporated in the design.
Error detection in data paths typically is done by parity checking and parity prediction, while

checking of control paths is done with parity, iilegal state detection, and self-checking. Loosely
coupiing the processors relaxes the constraints on the error-detection latency. A processor is
required to stop itself only in time to aVOid sending incorrect data over the U0 bus or Dynabus.
In some cases, to avoid lengthening the processor cycle time, error detection is pipelined and
does not stop the processor until several clocks after the error occurs. Several clocks of error-
detection latency are permitted in the architecture, but cannot be tolerated in systems in which

several processors share a common memory. In addition, the true fail~fast character of ail pro-
cessors eliminates the need for instruction retry in the event of errors.

Dynabus Interprocessor Bus

The Dynabus interprocessor bus is a set of two independent interprocessor buses. Ail components
that attach to either of the buses are kept physically distinct so that no single component failure
can contaminate both buses simultaneousfy. Bus access is determined by two independent

interprocessor bus controllers. Each of these controllers is dual-powered in the same manner as
an l/O controller. The Dynabus controllers are not associated with, nor physically part of, any

processor. Each bus has a two-byte data path and severai control lines associated with it. No
failed processor can independently dominate bus utilization upon failure because, to electrically
transmit onto the bus, the bus controller must agree that a given processor has the right to
transmit.

The originai Dynabus, connecting from 2 to 16 processors, was designed with excess capacity
to allow for future improvements in processor performance without redesign of the bus. The

. same bus is used on the NonStop I], introduced in 1980, and the NonStop TXP, introduced in

1983. The NonStop ll and NonStop TXP processors can even plug into the same backplane to

operate in a single system with mixed processors. A full 16-processor TXP system does not drive
the bus near saturation. A new Dynabus was introduced with the VLX system. it provides peak

throughput of 40 megabytes per second, relaxes the length constraints of the bus, and has a
reduced manufacturing cost due to improvements in its clock distribution. it was, again, overde-

signed to accommodate the higher processing rates predicted for future processors. The CLX
and Cyclone systems also use this bus.

For any given interprocessor ”data transfer, one processor is the sender and the other is the
receiver. To transfer data over the Dynabus interprocessor bus, the sending processor executes
a send instruction. This instruction specifies the bus to be used, the intended receiver, and the

number of bytes to be sent. Up to 64 kilobytes can be sent in a single send instruction. The

 78

79

592
ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

sending processor continues to execute the send instruction until the data transfer is completed,
during which time the Dynabus interface control logic in the receiving processor is storing the
data in memory. In the receiving procesasor, this activity occurs concurrently with program ex-
ecution. Error recovery action is taken in case the transfer is not completed within a specified
timeout interval. In the Dynabus design, the more esoteric decisions are left to the software (for
example, alternate path routing and error recovery procedures): Hardware, then, implements
fault detection and reporting [Bartlett, 1978].

Fiber-Optic Extension links

In 1983, a fiber-optic bus extension (FOX) was introduced to link systems together in a high-
speed local network. FOX allows up to 14 systems of up to 16 processors each to be linked in a
ring structure, for a total of 224 processors. The maximum distance between adjacent nodes is 1
kilometer on the original FOX and 4 kilometers with FOX ll, which was introduced on the VLX
processor. A single FOX ring can mix NonStop ll, TXP, VLX, and Cchone processors. The inter-
connection of systems by FOX links is illustrated in Figure 8—44. Each node in the group can
accept or send data at rates of up to 4 MB/sec.

The FOX connection is based on a store-and-forward ring structure. Fourfibers are connected
between a system and each of its two neighbors. Each interprocessor bus is extended by a pair
of fibers, allowing messages to be sent in either direction around the ring. The four paths provided
between any pair of systems ensure that communication is not lost if a system is disabled (perhaps
because of a power failure) or if an entire four-fiber bundie is severed. K

The ring topology also has advantages over a star configuration because a ring has no central
switch that could constitute a single point of failure and because cable routing is easier with a
ring than with a star. In a ring structure, bandwidth increases as additional nodes are added. The
total bandwidth available in a FOX network depends on the amount of pass-through traffic. In a
14-node FOX ring, if each node sends to other nodes with equal probability, the network has a
usable bandwidth of 10 MB/sec. When there is no pass-through traffic, the bandwidth increases
to 24 MB/sec. Theoretically, an application generating 3 kB of traffic per transaction, at 1000
transactions per second, would require a FOX ring bandtvidth of only 3 MBlsec. [n this situation,
the FOX network woutd use less than 30 percent of the total available bandwidth. Transaction
processing benchmarks have shown that the bandwidth of FOX is sufficient to allow linear

performance growth in large multinode systems [Horst and Chou, 1935; Englert, 1989].
Fiber-optic links were chosen to solve both technical and practical problems in configuring

large clusters. Fiber optics are not susceptible to electromagnetic interference, so they provide
a reliable connection even in noisy environments. They also provide high-bandwidth communi-
cation over fairly large distances (4 km/hop). This capability lessens the congestion in the computer
room and allows many computers in the same or nearby buildings to be linked. FOX links allow

computer sites to physically isolate nodes by housing them in different buildings, thereby pro—
viding a degree of fault isolation and protection against disaster. For example, a fire in the
computer room in one building would not affect nodes in other buildings.

Dynabus+ Fiber-Optic Dynabus Extension

With the introduction of the Cyclone system in 1989, Tandem made two additional uses of fiber-
optic links. Their use between peripheral controllers and 1/0 devices is described later in this
case. Their use as an interprocessor link within a system (as compared with FOX, which is an
intersystem link) is described here.

i
l

79

80

8. HIGH-AVAILABILITY SYSTEMS 593

FIGURE BH44
Dynabus

Tandem system ar— FOX l l Hchitecture, 7990 _.l

'H
Up to 16 processor modules

 I/O channel l l

Disk
controller

6100 communications subsystem
r********‘1 , Remote host

Channel
interface

Line
interface

V80diskarray

Line
interface '

controller

Dynabus

Up to T6 processor modules

V36 disk array

FOX

Remote host

Communications
controller

Tape
controller ‘ v1“.

8.0-

81

594 li. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Cyclone processors are grouped into sections, each containing up to four processor mod-
ules. The sections may be geographically distributed up to 50 meters. Within a section, the normal

(backplane) Dynabus interface is used. Sections within a system are connected in a ring arrange-
ment, similar to the FOX arrangement. .

individual Dynabus+ fiber-optic links are capable of 12.5—MB/5ec bandwidth, a good match

for the 20~MBlsec bandwidth of the Dynabus. While increasing performance was not the major
design goal of Dynabus+, the design has resulted in additional aggregate interprocessor bus
bandwidth, up to 160 MBlsec in a system. Each section contains its own Dynabus controllers, so
message traffic local to the section can proceed concurrently with local traffic in other sections.
in addition, intersection traffic can proceed concurrently on the multiple fiber-optic links.

The Dynabus+ system is transparent to all levels of software except the maintenance sub-
system (described later in this case). The system is self-configuring when power is first applied:

Maintenance processors within each cabinet determine the configuration and routing rules. In

the event of a failure of any of the fiber-optic links or interface logic boards, the system recon-
figures itself, establishes new routing paths, and notifies the maintenance subsystem. in addition,
a VLX interface to Dynabus+ allows intermixing VLX and Cyclone processor modules within a

system. This feature allows an existing VLX customer to add Cyclone processors to a system,
providing a smooth upgrade path.

Evolutionary Changes

Processor architecture has evolved to keep pace with technology. These improvements include

(1) expansion of virtual memory to 1 GB (NonStop II system) and to 2 GB (Cyclone system), (2)
incorporation of cache memory (TXP system), (3) expansion of physical memory addressability to
256 MB (VLX system) and to 2 GB (Cyclone system), (4) incorporation of separate instruction and

data caches (Cyclone system), (5) incorporation of superscalar architecture (Cyclone system)
[Horst, Harris, and Jardine, 1990], and (6) incorporation of an independent instruction fetch unit
with dynamic branch prediction (Cyclone system).

Technological improvements include evolution from core memory to 1-Mb dynamic RAM

and evolution from Schottky TTL (NonStop l and Il systems) to programmable array logic (TXP
system) [Horst and Metz, 1984] to bipolar gate arrays (VLX and Cyclone system) to silicon-compiled
custom CMOS (CLX system) [Lenoskh 1988}.

The Tandem multiprocessor architecture allows a single processor design to cover a wide
range of processing power. Having processors of varying power adds another dimension to this

flexibility. For instance, for approximately the same processing power, a customer can choose a
two—processor VLX system, a three-processor TXP system, or a four-processor CEX-7UU system.
Having a range of processors extends the range of applications from those sensitive to low~entry

price to those with extremely high-volume processing needs. in a different performance range,
the customer may choose a four-processor Cyclone system or a 16-processor VLX system.

Peripherals

in building a fault-tolerant system, the entire system, not just the processor, must have the basic

fault-tolerant properties of dual paths, modularity, and fail-fast design, as weii as good price!
performance. Many improvements in all of these areas have been made in peripherals and in the

maintenance subsystem. The basic architecture provides the ability to configure the [/0 system
to allow multiple paths to each, l/O device. With dual-ported controllers and dual-ported periph-

erals, there are actually four paths to each device. When disks are mirrored, there are eight paths
that can be used to read or write data.

81

82

B. HlGH-AVAILABILETY SYSTEMS . 595

In the configurations illustrated in Figure 8—4-4, there are many paths to any given disk.

Typically, two controllers access each disk, and each controller is attached to two processor
channels. Software is used to mirror disks; that is, data is stored on two disks so that if one fails,
the data is still available on the other disk. Consequently, the data can be retrieved regardless of
any single failure of a disk drive, disk controller, power supply, processor, or l/O channel.

The original architecture did not provide as rich an interconnection scheme for communi-
cations and terminals. The first asynchronous terminal controller was dual-ported and connected
to 32 terminals. The terminals themselves were not dual-ported, so it was not possible to configure

the system so that it would withstand a terminal controller failure without losing a large number
of terminals. The solution for critical applications Was to have two terminals nearby that were
connected to different terminal controllers.

The 6100 Communications Subsystem. The 6100 communications subsystem, introduced in 1983‘,

helped reduce the impact of a failure in the communications system. The 6100 consists of two

dual-ported communications interface units (ClUs) that communicate with l/O buses from two
different processors (see Figure 8—44). Individual iine interface units (LIUsJ connect to both ClUs
and to the communications line or terminal line. With this arrangement, CIU failures are com-

pletely transparent, and LIU failures result in the loss of only the attached line or lines. An added
advantage is that each LlU can be downloaded with a different protocol in order to support
different communications environments and to offload protocol interpretation from the main
processors.

The 6100 communications subsystem is configured to have up to 45 LlUs. Each LIU can

support up to 19.2 Kb/sec of asynchronous communication or 64 Kb/sec of synchronous com-

munication. Redundant power supplies and cooling fans provide an extra margin of fault tolerance
and permit on-Iine replacement of components.

Disk Subsystem. Modularity is standard in peripherals. It is common to mix different types of

peripherals to match the intended application. in on~line transaction processing (OLTP), it is
desirable to select increments ofdisk capacity and of disk performance independently. OLTP

applications often require more disk arms per megabyte than are provided by traditional large

(14") disks. This requirement may result in customers’ buying more megabytes of disk than they
need in order to avoid queuing at the disk arm.

In 1984, Tandem departed from traditional disk architecture by introducing the V8 disk drive.
The V8 was a single cabinet that contained up to eight 168—MB, 8" Winchester disk drives in six
square feet of floor space. Using multipie 8” drives instead of a singie 14” drive provided more
access paths and less wasted capacity. The modular design was more serviceable because indi-

vidual drives could be removed and replaced on line. In a mirrored configuration, system software
automatically brought the replaced disk up to date while new transactions were undenvay.

Once a system can tolerate single faults, the second-order effects begin to become important
in system failure rates. One category of compound faults is the combination of a hardware failure
and a human error during the subsequent human activity of diagnosis and repair. The V8 reduced

the likelihood of such compound hardware-human failures by simplifying servicing and elimi-

nating preventative maintenance. I
In fault-tolerant systems design, keeping down the price of peripherals is even more impor-

tant than in traditional systems. Some parts of the peripheral subsystem must be duplicated, yet
they provide little or no added performance. For disk mirroring, two disk arms give better read

performance than two single disks because the seeks are shorter and because the read work is
spread evenly over the two servers [Bitton and Gray, 1988; Bitten, 1989]. Write operations, on
the other hand, do demand twice as much channel and controller time. Also, mirroring does

82

83

596 II. THE PRACTICE OF RELIABLE SYSTEM DESIGN

double the cost per megabyte stored. To reduce the price per megabyte of storage, the XLB disk
drive was introduced in 1986. The XLB had eight 9” Winchester disks in a single cabinet and had
a total capacity of 4.2 GB. As in the VS drive, disks within the same cabinet could be mirrored,
saving the costs of added cabinetry and floor space. Also, like the V8, the reliable sealed media
and modular replacement kept maintenance costs low.

The V80 disk storage facility replaced the V8 in 1988. Each of the V80’s eight 8” disk drives

has a formatted capacity of 265 MB. Thus, each cabinet can hold 2.7 GB of unformatted storage,
or 2.1 GB 01‘ formatted storage. Externally, the V80 resembles the V8, housed in a single cabinet
that occupies six square feet of floor space. The internal design of the V80, however, extends the

capacity and reliability of the V8 with a fully checked interface to the drives. Furthermore,
the design reduces by a factor of five the number of external cables and connectors between the
storage facility and the control unit.

The disk drive interface is based on the emerging industrywstandard IPI-2 interface design,
which has parity checking on data and addressing to ensure the integrity of data and commands.
(The previous SMD—based design provided only data parity.) lPi's parallel and batched data and
command interface between the disks and their controller allow higher data transfer rates (2.4
MB/sec) and reduced interrupts. A radial connection between the controller and the drives
eliminates possible drive interaction that could occur with conventional bus structures. The

fivefold reduction in the number of external cables and connections is achieved by placing the
control logic in the disk cabinet. Within the cabinet, a new interconnect design has reduced by
a factor of five the number of internal cables and connections. .

In 1959, the XLSO replaced the XLB in similar fashion, doubling the storage capacity per drive
and also moving to an lPI—2 storage. interface. In addition, the XL80 cabinet contains sensors for

inlet air temperature, power supply and board voltages, and fan operation; this information is

polled periodically by the cabinet’s maintenance subsystem and reported to the peripheral con-

troller when an exception condition exists. A fully configured XL80 disk subsystem, including
storage modules, power supplies, and cooling fans, appears in Figure 8—45.

Peripheral Controllers. Peripheral controllers have fail-fast requirements similar to processors.

They must not corrupt data on either of their l/O buses when they fail. If possible, they must
return error information to the processor when they fail. In terms of peripheral fail-fast design,
the Tandem contribution has been to put added emphasis on error detection within the peripheral
controllers. An example is a VLSl tape controller that uses duai, lock—stepped Motorola 68000
processors with compare circuits to detect errors. It also contains totally self-checked logic and

self-checking checkers to detect errors in the ad-hoc logic portion “of the controller. Beyond this
contribution, the system software uses end—to-end checksums generated by the high-level soft-
ware. These checksums are stored with the data and are recomputed and rechecked when the
data is reread.

The single-board controller supporting the V80 and theVXLBD disks uses CMQS VLSl tech-

nology. The controller is managed by dual, lockstepped Motorola 68010 microprocessors that
provide sophisticated error-reporting and fault-isolation tools. The controller is contained on a
single board. Thus, it requires only half the IIO slots of previous controllers.

Other efforts to reduce peripheral prices include the use of VLSI gate arrays in controllers

to reduce part counts and improve reliability and the use of VLSI to integrate the stand-alone
6100 communications subsystems into a series of single-board controilers. The Tandem evolution
of fault tolerance in peripherals is summarized in Table 8MB.

83

84

FIGURE 8—45

X1180 disk SUbSYS"
tern (front View)

PROCESSOR
MODULE

IMPLEMENTATION
DETAILS

3. HIGH-AVAILABILITY SYSTEMS . 597

The following sections outline the implementation details of each of the Tandem processors
summarized in Table 8—5. '

NonStop I

The NonStop I processor module, introduced in 1976, included a 16-bit lPU, main memory,
Dynabus interface, and an 110 channel. Physically, the [PU, l/O channel, and Dynabus control
consisted of two PC boards that measured 16" X ‘18”, each containing approximately 300 integrated

circuit packages. These boards employed Schottky TFL circuitry. The processor module was

84

85

598

TABLE 8—6

Tandem evolution

of peripheral fault
tolerance

I]. THE PRACTICE OF RELIABLE SYSTEM DESIGN

W
Year Product Contribution

1976 NonStop ! system Dual-ported controllers, single-fault tolerant IIO
system '

1977 NonStop | system Mirrored and dual-ported disks
1982 lNFOSAT . Fault-tolerant satellite communications

1983 6100 communications ' Fault-tolerant communications subsystem
subsystem

1983 FOX Fault-tolerant, high-speed, fiber~optic LAN
1984 V8 disk drive Eight-drive, fault-tolerant disk array
1985 3207 tape controller Totally self~checked VLSI tape controller
1985 XLB disk drive Eight-drive, high-capacity/low-cost, fault-tolerant disk

array

1986 TMDS Fault-tolerant maintenance system
1987 CLX Fault-tolerant system that is 98 percent user-

, serviceable

1988 V80 storage facility Reduced disk cabling and fully-checked disk
interfaces

1988 3120 disk controller Totally self-checked VLSl disk controller

1989 XL80 storage facility Reduced disk cabling, fully-checked disl< interfaces,
environmental monitoring within disk cabinet

1989 Fiber—optic Reduced cabling to a minimum, reduced transmission
' interconnect for errors x

V80 and XLBD
m

viewed by the user as a stack-oriented, 16-bit processor, with a demand paging, virtual memory
system capable of supporting multiprogramming.

The [PU was a microprogramrned processor consisting of (1} an execution unit with ALU,
Shifter, register stack, and program counter, (2) a microprogram sequencer with 1024 32—bit words
stored in ROM, (3) address translation maps supporting system code and data, and current user
code and data segments, (4) main memory of up to 512 KB, (5) 96 KB memory boards with single—

’ error correction and double-error detection, and (6) battery backup for short-term main memory
ride-through of power outages of up to 4 hours.

The heart of the HO system is the HO channel. In the NonStop l, all [/0 was done on a
direct memory access basis. The channel was a microprogrammed, block-multiplexed channel;
individual controllers determine the block size. The channel did not execute channel programs,
as on many systems, but did transfer data in parallel with program execution. The memory system
priority alv‘vays permitted llO accesses to be handled before IPU or Dynabus accesses. The
maximum I/O transfer was 4 KB.

Dual-Port Controllers. The dual-ported llO device controllers provided the interface between the
NonStop 1 HO channel and a variety of peripheral devices using distinct interfaces. While these
[/0 controllers were vastly different, depending on the devices to which they interfaced, there
was a commonality among them that fitted them into the NonStop 1 architecture. Each controller
contained two independent l/O channel ports implemented by [C packages that were physically '
separate from each other so that no interface chip could simultaneously cause failure of both

85

86

8. HIGH-AVAILABILITY SYSTEMS 599

ports. Logically, oniy one of the two ports was active. The other port was utiiized only in the
event of a path failure to the primary port. An ownership bit, as illustrated in Figure 8—46, indicated
to each port if it was the primary port or the alternate.

Ownership changed only when the operating system issued aTake—Ownership l/O command.

Executing this Special command caused the HO controller to swap its primary and alternate port
designation and to do a controller reset. Any attempt to use a‘ controller that was not owned by
a given processor resulted in an ownership violation. If a processor determined that a given
controller was malfunctioning on its IJO channel, it could issue a Disable-Port command that
logically disconnected the port from that i/O controller. This disconnection did not affect the

ownership status. Thus, if the problem was within the port, the alternate path could be used,
but if the problem was in the common portion of the controller, ownership was not forced on
the other processor.

Fault-Tolerant IIO Considerations. The l/O channel interface consisted of a 2-byte data bus and
control signals. All data transferred over the bus was parity checked in both directions, and errors

were reported through the interrupt system. A watch-dog timer in the liO channel detected if a

nonexistent l/O controller was addressed or if a controlier stopped responding during an i/O
sequence. The data transfer byte count word in the channel command entry contained four status

bits, including 3 protect bit. When this bit was set on, oniy output transfers were permitted to
this device.

Because [/0 controllers were connected between two independent l/O channels, it was very
important that Word count, buffer address, and direction of transfer be controlled by the pro-

cessor instead of within the controiler. If that information were kept in the controller, a single
failure could fail both processors attached to it. Consider what would happen if a byte count
register were located in the controller and the count did not decrement on an input transfer. It

FIGURE 8—46

Ownership circui- Processor 1 Processor 2
try and logic

Processor 1 has

ownership of the
controller and its
devices.

Dual—ported
controller A controller command

by processor 2 is
rejected.

Ownership Ownership

If necessary, processor 2
can take ownership
from processor 1 by issuing
a Take-Ownership command.

Typically, ownership
changes only when processor1 fails.

Devices

86

87

600
H. THE PRACTICE OF RELIABLE SYSTEM DESIGN

pages used for l/O buffering), uncorrectable memory errors, and map parity errors.

instructions became a standard part of the instruction set. The instruction sets were implemented
on microcode in a high-speed control store, which had BK 32-bit words of loadable storage and
1K words of read-only storage. The loadable part of the control store was initialized when the
Operating system was loaded. Before loading the control store, the system performed a set of
diagnostic routines to verify that the proceSSor was operating correctly. The processor’s internai
data paths and registers were parity-checked to ensure data integrity. The [PU featured a two
stage pipeline that allowed it to fetch the next instructionwhile executing the current instruction.

Memory boards for the NonStop ll system contained 512 KB, 2 MB, or 4 MB of storage. Up
to four of these boards, in any combination, coufd reside in one processor for a maximum of 16
MB. A fully configured 16-processor system allowed up to 64 boards with a total of 256 MB of

error and detect any double—bit error. The error—correction code also checked the address sent
from the lPU to ensure that the memory access was valid.

[/0 Channel. Each processor module contained a separate processor dedicated to I/O operations.
Because the l/O processor operated independently from the IPU, IJO transfers were extremely
efficient and required only a minimum of [PU intervention. The channel was a burst multiplexer.
Every i/O device controller was buffered, allowing data transfers between main memory and the
controller buffer to occur at full memory Speed. l/O transfers had a maximum length of 64 KB.
The high-speed i/O channels used burst-multiplexed direct memory access to provide transfer
rates of up to 5 Mstec. Thus, the aggregate burst l/O rate of a fully configured 16-processorsystem was 80 MB/sec.

device, so each processor could support very large terminal configurations. i/O device controllers
Were intelligent devices. This intelligence allowed them to relieve the central processing unit of
many routine functions such as polling synchronous terminals, checking for data transmissionerrors, and so forth.

Diagnostic Data Transceiver. The diagnostic data transceiver (DDT) was a separate microprocessor
included as part of each processor moduie. The DDT provided two distinct functions:

87 li

i

88

8. HlGH-AVAILABlLlTY SYSTEMS 601

1. The DDT allowed communication between a processor module and the operations and
service processor (OSP), which supports both operational and maintenance functions, such
as running diagnostics. (More about the OSP appears in the section on maintenance facilities
and practices later in this case.)

2. The DDT monitored the status of the central processing unit, Dynabus interface, memory,
and the HO processor, and reported any errors to the OSP.

Virtual Memory. The virtual memory addressing scheme, introduced by the NonStop ll processor,
is used by ail subsequent processors. It converted the system from 16—bit addressing to 32-bit
addressing. This addressing is supported by the instruction set and is based on segments that
contain from 1 to 64 pages each. A page contains 2048 bytes. Each processor can address up to
8192 segments, providing a billion bytes (1 GB) of virtual memory address space (Eater extended
to 2 GB on the Cycione processor, introduced in 1989).

The instruction set supports standard and extended addressing modes. The standard 16—bit
addressing mode provides high-speed access within the environment of an executing program.
The extended 32-bit addressing mode allows access to the entire virtual memory space by privi-
leged processes. Programs written in Pascal, C, COBOLBS, and the Transaction Application
Language {TAU can use extended addressing for access to large data structures.

The instruction set supports two types of extended addressing: absolute and relocatable.

Absolute extended addressing is available only to privileged users such as the operating system
itself. Absolute addresses can address any byte within the virtual memory. Relocatable extended
addresses are available to all users. This form of addressing can reference any byte of the current
process’s data space, as well as one or more private relocatable extended data segments. Each
extended data segment can contain up to 127.5 MB.

To provide efficient virtual—to—physical address translations, each NonStop ll processor in-
cluded “1024 high-speed map registers. The memory maps contained absent, dirty, and referenced
bits to help the software manage virtuai memory.

Maintenance. A major feature of the NonStop ll system was the OSP located in a console supplied
with the system. in addition to serving as an operations interface for communication with the

system, the OSP was a powerfui diagnostic and maintenance tool. The OSP is described later inthis section.

NonStop TXP Processor

While the NonStop II system extended the instruction set of the NonStop l system to handle 32-
bit addressing, it did not efficiently support that addressing mode. The existingS Mst 1/0 channel
and 26 MBr's Dynabus interprocessor bus offered more than enough bandwidth to handle a
processor with two to three times the performance. The existing packaging had an extra processor
card slot for future enhancements, and the existing powar supplies could be reconfigured to
handle a higher powered processor. The NonStop TXP processor module, introduced in 1983,
was designed in this environment.

The main problems concerned designing a new micro-architecture that would efficiently
support the 32-bit instructions at much higher speeds, with only 33 percent more printed circuit
board area and the existing backplane. This design involved eliminating some features that were

not critical to performance and finding creative ways to save area on the PC board, inciuding
strategic uses of programmable array iogic and an unusuai multilevel control-store scheme.

The performance improvements in the NonStop TXP system were attained through a com-
bination of advances in architecture and technology. The Nontjtop TXP architecture used dual

88

89

602

FIGURE 8—47

Parallel data paths
of the TXP proces-
sor [Horst and

Metz; © 1984 by
McGraw—Hill]

ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

16-bit data paths, three levels of macro-instruction pipelining, 64-bit parallel access from memory,

and a large cache (64 KBlprocessor). Additional performance gains were obtained by increasing
the hardware support for 32-bit memory addreSSing. The machine‘s technology includes 25-nsec

programmable array logic, 45—nsec 16K static RAM chips, and Fairchiid Advanced Schottky Tech-
nology (FAST) logic. With these high-speed components and a reduction in the number of logic
levels in each path, a 12-MH2 (83.3 nsec per microinstruction) clock rate could be used.

The TXP'S dual data-path arrangement increased performance through added parallelism, as
Shown in Figure 8—47. A main ALU operation could be performed in parallel with another

operation done by one of several special modules. Among these modules were a second ALU to

perform both multiplications and divisions, a barrel shifter, an array of 4096 scratch-pad registers,
an interval timer, and an interrupt controller. Other modules provided interfaces among the lPU
and the interprocessor bus system, llO channel, main memory, and a diagnostic processor.

The selection of operands for the main ALU and the special modules was done in two stages.
in the first stage, data was accessed from the dual-ported register file or external registers and
placed into two of the six registers. During the same cycle, the other four pipeline registers were
loaded with cache data, a literal constant, the result of the previous ALU operation, and the result

of the previous special-module operation. in the second stage, one of the six pipeline registers
was selected for each of the main ALU inputs, and another one of these registers was selected

for each special-module operand. Executing the register selection in two stages, so that the
register file could be two-ported rather than four-ported, greatly reduced the cost of multiplexers
and control storage; the flexibility in choosing the required operands was unimpeded.

The dual 16—bit data paths tended to require fewer! cycles than a single 32-bit path when

manipulating byte and 16-bit quantities. However, the paths did require slightly more cycles when
manipulating 32—bit quantities. A 32-bit acid took two cycles rather than one, but the other data

Address ' .

generator Specual AtU

lie-Word Scratch-padregister
file registers

Me mory
interface

Dynabus
interface To/from memory

Channel
interface Ten/from Dynabus

To/from l/O channel

89

90

B. HICH~AVAILABILITY SYSTEMS 603

path was free to use the two cycles to perform either another 32—bit operation or two 16-bit
operations. Measurements of transaction—processing applications showed that the frequencies of
32—bit arithmetic were inSignificant relative to data-movement and byte-manipulation instructions,
which were handled more efficientiy by the dual data paths than by a single 32-bit data path.

Most instructions include enough parallelism to let the microcode make effective use of both
data paths.

To control the large amount of parallelism in the NonStop TXP processor, a wide controi—
store Word was required. The effective width of the control store was over 100 bits. To reduce
the number of RAMs required, the control store was divided betvveen a vertical control store of
8K 40-bit words and a horizontal control store of 4K 84-bit words. The vertical control store

controlled the first stage of the microinstruction pipeline and included a field that addressed the
horizontai control store, whose fields controlled the pipeline' 5 second stage Lines of microcode

that required the same or similar horizontal controls could share horizontal control-store entries.
Unlike microprocessor- based systems that have microcode fixed in readonly memory, the

NonStop TXP system microcode was implemented in RAM so that it could be changed along with
normal software updates and so that new performance-enhancing instructions could be added.
Because instructions were pipelined, the TXP processor could execute its fastest instructions in
just two clock cycles (167 nsec). The processor could also exchte frequently used ioad and
branch instructions in oniy three clock cycles (250 nsec).

Each NonStop TXP processor had a 64—KB cache holding both data and code. A 16—processor
NonStop TXP system had a full megabyte of caChe memory. To determine the organization of the
cache, a number of measurements were performed on a NonStop II system using a specially

designed hardware monitor The measurements showed that higher cache hit ratios resulted with
a large, simple cache (directly mapped) than with a smaller, more complex cache (organized as
two-way or four—-way associative). Typical hit ratios for transaction processing on the NonStop
TXP system fell in the range of 96 percent to 99 percent. Cache misses were handled in a firmware
subroutine, rather than by the usual method of adding a speciai state machine anddedicated

data paths for handling a miss. Because of the large savings in the cache hardware, the cache
could reside on the same board as the primary data paths. Keeping these functions proximal

reduced wiring delays, contributing to the fast 83.3-nsec cycie time.

The cache was addressed by the 32-bit virtual address rather than by the physical address,
thus eliminating the extra virtual-to-physicai translation step that would otherwise be required
for every memory reference. The virtual-to-physical translation, needed to refil! the cache on

misses and to store through to memory, was bandied by a separate page table cache that held
mapping information for as many as 2048 pages of 2 KB each (see Figure 8—48).

Manufacturing and Testing. The NonStop TXP processor was implemented on four large PC boards

using high-speed FAST logic, PALS, and high-speed static RAMs. Each processor module had from
one to four memory boards. Each memory board contained up to 8 MB of error-correcting

memory. A 16—processor NonStop TXP system could therefore contain up to 256 MB of physical
memory. '

The Nonstop TXP system was designed to be easy to manufacture and efficient to test. Data

and controi registers were implemented with shift registers configured into several serial-scan

strings. The scan strings were vaiuable in isolating faiiures in field-replaceable units. This serial
access to registers also made board testing much faster and more efficient because the tester

could directly observe and control many control points. A single custom tester was designed for
all four IPU boards and for the memory—array board.

90

91

604

FIGURE 8—48

TXP memory ac-
ce55

ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

From data paths

If yes,
cache hit

 Address register

Data and instructions
64 KB

instruction registers

If yes, page table
cache hit32-bitvirtualaddress

2K physicaladdreSS entries

24-bit

physicaladdress

1 6—bit buses to and from data paths

4-to-1

multiplexer
VLX Processor Module

The VLX processor module combines advanced VLSI technology with the fault-tolerant features
of its predecessors. This processor module uses emitter»coupled logic (ECL) gate array technology
to implement its duai path structure and other extensions to the TXP system. These features
include dual interleaved control store; 83.3-nsec cycle time; 64-KB direct-mapped, store-through

cache with lei-byte block size; hardware cache fill; 256-MB physical memory addressing; up to
96 MB of physical memory with 48-MB memory boards; on-line power and temperature moni-

toring; four-stage instruction pipeiine, supporting single clock instruction execution; and dual
20-MB/sec Dynabus interprocessor bus.

One of the VLX protessor-module's printed circuit boards appears in Figure 8—49. The VLX

iPU uses 32-bit native addressing and 64-bit main memory transfers to improve upon the trans-

action throughput of its predecessors, move large amounts of data, and. lower the cost per
transaction. Failed component sparing in cache memory allows a single malfunctioning compo-
nent to be replaced by means of a logical switch to a spare; thus, a single point of failure does
not require a service catl. _

Chips in the VLX processors containrup to 20,000 circuits, producing modules with over
three times the density of the TXP processor. This increased density adds functions that enhance

error checking and fault correction, as well as performance. By making it possible to reduce the
number of components and interconnections, the increased density improves both performance

and reliability. VLX processor gate arrays use ECL for enhanced internal performance and TFL for

91

92

8. HIGH-AVAILABILITY SYSTEMS 605

FIGURE 8—49 Printed circuit board from VLX processor module

input/output functions. Each VLX processor includes 31 ECL/TTL gate arrays spread over only two
modules.

Maintenance. A major goal of the VLX processor was to reduce the cost of servicing the system.
This goal was accomplished in several ways.

Traditional mainframe computers have error—detection hardware as well as hardware that
allows instructions to be retried after a failure. This hardware is used both to improve availability
and to reddce service costs. The Tandem architecture does not require instruction retry for

availability; processors can be fail-fast. The VLX processor is the first Tandem processor to

incorporate a kind of retry hardware, primarily to reduce service costs.
In the VLX processor, most of the data-path and control circuitry is in high—density gate

arrays, which are extremely reliable. This design leaves the high-speed static RAMs in the cache
and the control store as the major contributors to processor unreliability. Both the cache and the

control store are designed to retry intermittent errors, and both have spare RAMs that can be
switched in to continue operating deSpite a hard RAM failure [Horst, 1989].

92

\f5\—

93

606

ll. THE PRACTICE OF RELIABLE SYSTEM DESlGN

The cache provides store-through operation, so there is always a valid copy of cache data in
main memory. A cache parity error just forces a cache miss, and the correct data is refetched

from memory. The microcode keeps track of the parity error rate,- when this rate exceeds a
threshold, the microcode switches in the spare RAM. The VLX control store has two identical

copies to allow a two-cycle access of each control store starting on alternate cycles. The second
copy of control store is also used to retry an access in case of an intermittent failure in the first
copy. Again, the microcode switches a spare RAM on line once the error threshold is reached

Traditional instruction retry was not included due to its high cost and complexity relative to the
small improvement in system MTBF it would yieid.

There is aEso parity checking on all data paths, single-bit error correction and double-bit
error detection on data in memory, as well as single-b—it error detection on addresses. Bus control

lines are checked for line errors, and hardware consistency checks are used throughout the
system.

Each processor contains a microprocessor-based diagnostic interface, which ensures that
the processor is functioning properly before the operating system receives control. Pseudo-
random scan diagnosis'Is conducted to provide a high level of coverage and a short execution
time. Correct operation of the processor is verified before processing begins.

The VLX system cabinet, shown'In Figure 8—50, is divided into four sections: the upper card
cage, the lower card cage, the cooling section, and the power supply section. The upper card
cage contains up to four processors, each with its own 1/0 channel and private memory. The
lower card cage contains up to 24 l/O controller printed circuit (PC) cards, where each controller

consists of one to three PC cards. The cooling section consists of four fans and a plenum chamber

I

l

4 processors supplyllL

llII
0 one o

4 power
supplies

Power Power
supply

PJ‘OCESSOI' PI‘OCESSOF

 I Processor
Dual-ported I
controller

L—

 Dual-ported
controller

Dual- orted
controller

 I-U

_l

FIGURE 8—50 NonStop VLX system cabinet (left) and power distribution (right)

93 l
ll

94

8. HIGH~AVA|LABILITY SYSTEMS 607

that forces laminar airflow through the card cages. The power suppiy section contains up to four
power supply modules. Multiple cabinets can be bolted together.

For the VLX system, the Tandem Maintenance and Diagnostic System (TMDS) replaced the
operations and service processor used on the NonStop I! and TXP processors. Information about
TMDS appears later in this case, in the section on maintenance facilities and practices.

CLX Processor Module

The CLX system was designed to fill the need for a low-cost distributed system. The design goal
was to provide user serviceability, modular design, and fault tolerance with lower service and

maintenance costs. The CLX is based on a custom CMOS chip set developed using silicon
compilation techniques [Lenoski, 1988]. The original CLX—600 processor was introduced in 1987 '

and is based on 2.0-p. CMOS. The silicon compiler allowed the processor chip to be retargeted
into 1.5-p. CMOS for the CLX-7OO and into 1.0-p. CMOS for the CLX-SOO. The CLX-700, introduced

less than 18 months after the 600, raised performance by 50 percent, and the CLX-BOO raised
performance again by nearEy 50 percent. The description in this section is based on the latest
CLX-BOO.

All CLX processors have a similar micro-architecture that integrates the features of both

traditional board-level minicomputers and high—performance VLSi microprocessors. This hybrid
design incorporates several novel structures, including a single static RAM array that serves three
functions: writable control store, data cache, and page table cache. The processor also features
intensive fault checking to promote data integrity and fault—tolerant operation.

A fully-equipped, single»cabinet CLX system contains two processor boards with optionai
expansion memory, six l/O controllers, five 145-MB to 1-68 disk drives, and one cartridge tape

drive. Dual power suppiies and cooling fans are also included in the cabinet. The entire system
operates within the power, noise, and size requirements of a typical otfice environment. To
expand the system, the customer simply adds more l/O or processor cabinets to the basic
configuration. The CLX system architecture appears in Figure 8—51. A view of the actuai cabinet
appears in Figure 8—52.

As with the other Tandem processors, each CLX processor communicates with other pro-
cessors over. two interprocessor buses {lPBs). Each bus operates synchronously on 16-bit wide

data, and each provides a peak bandwidth of 20 MB/sec. The two buses transfer data indepen-

dently of one another, providing a total bandwidth of 40 MB/sec for a maximum of eight proces-
sors. Processors communicate with U0 devices either through a local liO bus or through the
interprocessor bus (IPB) to another processor and its 1.10 bus. Each processor contains a single
asynchronous, burst-multipiexed U0 bus that transfers data at a maximum rate of 4.4 MB/sec to

a maximum of 16 controllers. As with the other processors, these controllers are dual-ported and
can be driven by either of the processors to which they are attached.

The CLX uses a multifunction controller (MFC) based on a Motorola 68010 microprocessor
to control dual smali computer system interfaces (SCSI) that support up to five disk drives and
one tape drive. The MFC runs its own real-time operating system kernel that coordinates inde-

pendent disk control, tape control, synchronous and asynchronous communication, and remote

maintenance tasks. The CLX processor module’s printed circuit board appears in Figure 8—53.

Through the maintenance buses, maintenance and diagnostic information can flow among the
system control panel, processors, multifunction controllers, and environmental monitors. En—

hanced diagnostic software and careful design of all replaceable units allows customers to service
98 percent of all component failures.

94

95

608

FIGURE 8~51

CLX system
architecture

ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

lnterprocessor bus—4:3]:

Processor Processor

and private and private
memory memory

 Multifunction controller
manages dual SCSI buses
connecting disk, tape,
and communication lines.

[/0bus

Asynchronous or
synchronous
communications
lines

Communications
controller

4 optional communications
controllers or LAN controllers
in base cabinet

The prOcessor logic resides within six custom CMOS chips, allowing the processor and main

memory to be implemented in a single board. A block diagram of the processor appears in Figure
8—54. The chip set was designed using a silicon compiler supplied by Silicon Compiler Systems
Corporation. The two JPU chips are identical, running in lock-step to form a fully self-checking
module. These chips provide the complete lPU function. They work together with a single bank
of static RAM that serves as the microcode control store, page table cache, and data/instruction
cache. The RAM provides for 14K X 7B of microcode and scratch pad memory, 4K entries of page
table cache, and 192 KB of instructionidata cache.

The MC chip includes the control and ECG logic (SEC/BED) to interface with the up to 32 MB
of on-board dynamic memory. This chip contains FIFO buffers to hold data in transit to and from
the main-memory dynamic RAMs, using nibble mode access. The chip also features a wraparound
mode to support high—speed memory-to-memory block transfers.

Each processor has one IPB chip per interprocessor bus. Each chip contains a 16-word in-
queue and a 16—word out-queue. These queues work with on-chip state machines for sending
and receiving interprocessor message packets asynchronous to processor execution.

The IOC chip contains the data latches and logic to control a burst—multiplexed, asynchron—
ous l/O bus. The [/0 bus is primarily controlled by the lPU, but it can also handle DMA transfer
polling and selection without microcode intervention. The bus also includes priority-encoding
logic to support the fair servicing of [/0 interrupts.

95

96

FIGURE 8m52

CLX system cabi-
net (front view

showing from top
to bottom: car-

tridge tape drive
and SCSI disk

drives, two proces-
sor modules with

memory and 1/0
boards, dual fans,

power supplies,
and batteries for

memory power)

8. HIGH—AVAILABILITY SYSTEMS ' 609

The final component of the processor is a Motorola 6803—based maintenance and diagnostic

processor. This processor furnishes overall control of the main processor, as well as a diagnostic
and error-reporting path for the main processor through the maintenance buses.

The IPU architecture for the CLX, as mentioned earlier, is a blend of features found in both

minicomputer and microcomputer architectures. The IPU chip’s externai interface is similar to
that of a VLSI microprocessor. For example, the interface features one address bus, one data bus,

and one status bus, along with miscellaneous signals, such as an interrupt request, memory wait

96

Vx

97

610

ll. THE PRACTICE OF RELIABLE SYSTEM DESEGN

FIGURE 8—53 Printed circuit board for CLX-600 processor module, showing dual, lock-stepped
lPU chips (bottom center)

controls, and three—state bus controEs. Minicomputer features, however, appear in the size of the
address bus, which is 18 bits wide, and the data bus, which is 60 bits wide.

The [PU chip interface merges many buses that would normally be separate in a minicom—

puter architecture. In particular, a bus cycle on the CLX can execute any of the following functions:
microcode control store access, instruction or data cache access, page table cache access, main
memory access, microcode scratchpad memory access, and special module ([PB, IOC, MDP)

access. Merging these buses reduced the cost of the processor by decreasing the number of
static RAM parts and their associated support Eogic and by reducing the number of pins needed
on the IPU chips. if this merging were not implemented carefully, however, performance would
have degraded significantly. To reduce the bandwidth required on the buses and to minimize the

impact on performance, the designers employed a variety of techniques, including the use of a

small on-chip microcode ROM, a virtually-addressed. cache, nibble—mode DRAM with block op-
erations to the main memory controller, and high-level control operations for special modules.

The on-chip micro-ROM is most important in reducing the impact from the merged bus
structure. The micr0;ROM contains 160 words of microcode, with an identical format to the off~

chip microcode. This ROM is addressed either by the microcode PC or through an explicit index

97 I

l|

98

FIGURE 8—54

CLX processor

block diagram

8. HIGH-AVAILABILITY SYSTEMS 611

Address bus
IPU

PMaster

Main

(DRAM)

 uRAM
(SRAM)

Physical
address bus

m Expan sion
Physical memorylPB (J 4— IPB g -. data bus busbus

' - IOC ”I? .
lPBt = lPBt - C “”9

MDP Dual maintenance
'(6803 +) buses

specified in the previous line of microcode. The microcode PC addressing is used to implement
the inner loops of IPB and IOC transfers, cache filling routines, and block memory moves. The

explicit index is used for short sequences of common microcode. These lines overiay otherwise
sequential lines of external microcode. Use of these ROM lines does not conflict with other
micro-operations.

The virtually-addressed cache reduces the number of page-table accesses; thus, it decreases
the required bandwidth to the shared micro-RAM. Likewise, the use of block-mode commands

to the memory controller reduces the number of memory commands needed during cache filling
and block moves. Finally, the use of higher-level commands to the [PB and lOC reduces the

control transfers needed to receive and transmit data to these devices. The on-chip micro-ROM,
together with these other features, reduces the penalty of using a single bus approach from over
50 percent to less than 12 percent.

The main alternative to the micro-ROM used on the CLX would be an emulation scheme in

which a subset of instructions is implemented entirely by internal ROM, and the remaining
instructions are emulated by a sequence of the simpler instructions. The micro~ROM scheme has

two chief benefits when compared with emulation techniques. First, it provides much higher

performance when the amount of ROM space is limited relative to the number of instructions
that must be implemented. Second, the dispatch of each instruction is'to external writable control
store, enabling any ROM microcode errors to be corrected externally (although with some
performance penalty).

98

99

612

ll. THE PRACTlCE OF RELIABLE SYSTEM DESEGN

Data integrity Through Fail-Fast Operation. In a NonStop system, fail -fa5t hardware operation is

essential to providing fault toierance at the system level. Faii-fast operation requires that faults
do not escape detection and that the processor is halted before a fault is propagated. The CLX’s
processor module uses a variety of erroruchecking strategies to provide extensive fault coverage

The IPU chip itself is covered by a duplicate-and-compare scheme This scheme minimizes
the amount of internal logic required for a high degree of coverage, and it maximizes the
utilization of existing library elements in the silicon compiler CAD system. The implementation
of the lPU’s duplicate-and~compare logic appears in Figure 8—55. The CLX’s scheme improves the
fault coverage of other duplicate-and-compare schemes by providing for a cross-coupling of data
and parity outputs. One chip, designated the data master, drives all data outputs, white the other
chip, designated the parity master, drives all parity outputs. This action ensures that both chips’
outputs and checking logic are active and that latent errors in the checking logic cannot iead to
an undetected double failure. The parity outputs of the [PU also cover the address and data lines

connecting the IPU to other parts of the processor and the micro—RAM.
Within the memory system, ECC with encoded address parity provides checking of all

memory system data paths. in addition, redundant state machines are contained in the MC chip

Data in Parity on data in

Paritymaster

Error
G) Equality checker

Parity checker

Parity generator

V Enabled tri—state driver

V Disabled tri-state driver

lchip'lpl Non—checked internal
logic of chip

l ci:I__re_1

Data out Parity on data out

FIGURE 8—55 CLX processor’s cross-coupled checking

99

100

8. HlGH-AVAlLABlLlTY SYSTEMS 613

and in the external RAS/CAS generation logic. The state transitions of these machines are encoded

into CRC registers whose outputs are compared. The resulting structure produces a high fault
coverage for both the data and control sections of main memory.

The [OC and IPB provide for parity protection of the data and control lines to which they
are interfaced. In addition, they are protected by end-to—end checksums supported in software;

these checksums guarantee the integrity of their respective buses.

Cyclone Processor Module

The design goals of the Cyclone system were to significantly increase performance, while provid-

ing improvements in serviceability, manufacturability, installability, and overall cost of ownership.
The Cyclone processor, introduced in 1989 [Horst, Harris, and Jardine, 1990], provides more than
three times the performance of the VLX, yet it retains fut! object-code compatibility. About half

of the performance improvement is due to higher clock rates, and the other half is due to the
new micro-architecture. Much of the architectural improvement is due to the ability to execute

up to two instructions per clock cycle, a technique that has been called superscalar [Jouppi and
Wall, 1989]. Other improvements are due to paraliei data paths and new designs for the caches

and main memory. ‘

Cyclone Technology. The technology for Cyclone is a combination of ECL for speed, CMOS' for
high density, and TTL for standard interfaces and buses. The ECL gate arrays, jointly developed
by Tandem and Advanced Micro Devices, contain approximately 5000 gate equivalents. These

gate arrays are implemented in 155-pin, grid-array packages. The pins can be individually pro-
grammed for TTL or ECL interfaces.

The processor is implemented on three 18” X 18" circuit boards, with a fourth board holding
either 32 MB or 64 MB of main memory. A second, optional, memory board allows expansion up

to a total of 128 MB of main memory per processor (with ‘1 Mb DRAMS). The circuit boards have

eight signal layers, four of which have controlled impedance for routing ECL signals.
Like the VLX, Cyclone uses an interleaved control store, allowing two clock cycles for access.

The control store is implemented in 16K X 4 CM05 SRAMs, surface-mounted on a doubEe-sided
ceramic substrate, which is then vertically mounted on the main boards.

Cyclone Processor Architecture. The superscalar design of the Cyclone processor was necessitated

by the fact that the VLX processor executes many frequent instructions in a single clock cycle,

and the goal of three times VLX performance could not realistically be achieved based on cycle
time only. Such a fast cycle time would involve higher risk, lower reliability, and higher product

cost. Thus, Cyclone needed to break the one-cycle-per-instruction barrier. At peak rates, the

Cyclone processor executes two instructions per clock cycle. To do this, it incorporates an
independent, asynchronous instruction fetch unit (IFU), separate large caches for instructions
and data, a deep pipeline, and a dynamic branch prediction mechanism. A block diagram of the
Cyclone processor is shown in Figure 8m56.

The IFU operates independently of the rest of the processor. it fetches up to two instructions

per clock cycle from the instruction cache, decodes the instructions to determine whether they
are candidates. for paired execution, and presents a microCode entry address for either a single

instruction or a pair at instructions to the control unit and data unit for execution. it also assists
in the execution of branching instructions and of exception handling. Up to 16 different instruc-

tions can be in some stage of execution at any point in time. The lFU is shown in more detail in

Figure 3—57. '
The Cyclone processor uses a dynamic branch prediction mechanism for conditionai

100

101

I 1. 614 II. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Data unit

Address Address

generator . generator ”‘0
register - channel : busesfile

_ Processorlnstructlon

cache-(64 KB)

Dual 6-stage-II
instruction

pipeline

Instruction

pairing
lo '

Serial diagnostic bus
lnterprocessor
buses

4—port
memory
control

32 MB or 64 MB

ECC memory

Fast page mode64—bit access

l-ump Ho-rizontal
CS ' CS

15K X 43 15K X112
Control unit

FIGURE 8—56 Cyclone processor biock diagram [Chan and Horst, 1989; reprinted by permission
from CMP Publications]

branches. This mechanism relies on the premise that when a particular branch instruction is
repeatedly encountered, it will tend to be taken (condition met) or not taken (condition not met)
the same direction each time. An extra bit for each instruction is included in the instruction

cache. This bit records the branch direction actually taken by the last execution of each branch
instruction in the cache. When a branch is fetched from the instruction cache, the EFU predicts

that the branch will choose the same path as the previous time, so it continues prefetching along

the predicted path. When the branch instruction later enters the execution pipeline, the micro»

code determines whether the prediction was correct. If so, it does nothing. ’If not, the microcode
directs the lFU to back up and resume instruction fetching along the other path. Modeling has

101

fl...

102

FIGURE 8—57

Cyclone instruc-
tion fetch unit

8. HIGH-AVAILABILITY SYSTEMS 615

Fetch instructions Instruction
and predict address
branches. registers

Instruction
cache

#7# S : second
_l F : first

mmcufifijfififififi 1

Decode instructions Instruction

and determine queue IQ2 IQ1 lQD Rank 0
pairing.

Fetch first microcode line. R1 i_S R1|__F Rank 1

Finish fetching first microcode line I k 2
and generate data cache addresses. Rzlfis ‘ R2 “F Ran

Fetch operands from data cache - R3IMS '13le Rank 3
and registers.

v

Perform arithmetic, logicai, or R4L_S R4lii‘ Rank 4
shift operation.

7

Store resuit to cache or register; k
abort on exception or branch mispredict. [{5le R5l__F Ran 5

shown that this mechanism would be correct between 85 percent and 95 percent of the time.

The result is an average cost of 1.3 to 1.9 cycles per branch instruction. In addition, because the
branch prediction occurs early in the prefetch queue, branches may be executed in a pair with

the previous instruction, the sequentially following instruction, or the target instruction.
The Cyclone data path uses two 16—bit ALUs, similar to the TX? and VLX, but with two major

differences. First, the two ALUs are connected with the register tile in a very general way. This
interconnection is necessary for the execution of many of the instruction pairs, but it is also quite
useful in improving the performance of many complex, multicycie instructions as well. In addition,

the two ALUs can be linked together so that 32-bit arithmetic can be'accomplished in a single
clock cycle.

Both the instruction cache and the data cache are capable of fetching two adjacent 16-bit
words in a single cycle, regardless of alignment. This feature, along with the instruction pairing,
the nine-port register file, the 32-bit ALU capabiiity, and the deep pipeline, aliows the execution

of a double (32-bit) load instruction and a 32-bit arithmetic instruction, as a pair, in a single clock
cycle.

The Cycione sequencer is similar to the VLX sequencer in that two copies of the control

102

103

616 ll. THE PRACTICE OF RELIABLE SYSTEM DESlGN

store are used to allow two—cycle access time. In addition to allowing the use of slower, denser

CMOS RAM parts, the two copies provide backup for each other. in the event of an error in
fetching a word from control store, the alternate bank is automatically accessed. if the error is a
soft error, one of the banks can be refreshed from the other bank. In the event of a hard failure,

a spare RAM can be switched in. Part of the control store is duplicated yet again (four total
copies). This duplication allows both potential paths of a microcode branch to be fetched simul-
taneously, thus minimizing the penalty for microcode choices.

in the Cyclone processor, virtual addresses are sent directly to the main memory. A four—
entry, contentmaddressable memory (CAM) compares each access to the row address that previw
ously addressed a bank of DRAM. When the addresses match, the DRAM column address is
generated by a few bits from the CAM plus the address offset. Translation from virtual to physical
address is performed only on a CAM miss. Since the translation is performed infrequently, it was

possible to implement the page table cache (translation look«aside buffer) in relatively slow, but
dense, CMOS static RAMS.

For both increased bandwidth and increased connectivity, Cyclone allows the connection of

up to four [/0 channels per processor, whereas previous Tandem processors allowed only one
channel. Two channels are supplied on the instruction unit board, while an additional two
channels are available on an optional board. The maximum Cyclone processor thus contains six

boards (three processor, two memory, one optional l/O).

Cyclone Fault Tolerance, Data Integrity, and Reliability Features. Parity checking is used extensively
to detect single-bit errors. Parity is propagated through devices that do not alter data, such as
memories, control signals, buses, and registers. Parity prediction is used on devices that alter
data, such as arithmetic units and counters. Predicted parity is based strictly on a device’s data

and parity inputs; it does not rely on the device’s outputs, which may be faulty. Thus, an adder

might generate an erroneous sum, but the parity that accompanies the sum will correspond to
the correct result. Parity checkers downstream will then detect the error. invalid-state checking

or cluplication-and-comparison are used in sequential state machines.
The hardware multiplier is protected by a novel technique similar to recomputation with

shifted operands (RESO) i50hi, Franklin, and Saluja, 1989]. After each multiplication, a second
multiplication is initiated with the operands exchanged and one Operand shifted..Microcode
compares the two results whenever the multiplier is needed again or before any data leaves the
processor. Unlike other implementations of RESO, these checking cycles incur almost no perfor-
mance penalty because they occur concurrently with unrelated execution steps.

If the processor hardware detects a fault from which it cannot recover, it shuts itself down
within two clock cycles, before it can transmit any corrupt data along the interprocessor bus or
“0 channel. The error is flagged in one or more of the approximately 300 error-identification

registers, allowing quick fault isolation to any of the 500 hardware error detectors in each
processor. Like the VLX, Cyclone processors include spare RAM devices in all of the large RAM

arrays, such as caches and control stores. These devices are automatically switched in to replace
hard-failed RAMS.

Cyclone systems make extensive use of fiber-optic interconnections, which, among other
advantages, increase reliability. The Dynabus+ fiber links between sections were described earlier
in this case. In addition, Cyclone systems use fiber optic links between the disk controllers and
the disk units themselves and between the communications controllers and outboard commu—
nications concentrators. "

The Cyclone approach to diagnostics is similar to the approach taken on VLX, but it goes
beyond in many respects. Test coverage of microprogrammed diagnostic routines has been

103

104

FiGURE 8—58

Cyclone printed
circuit board show—

ing impingement
cooling

8. HIGH-AVAILABlLlTY SYSTEMS ' 617

dramaticaliy increased, and more support has been added for pseudo-random scan test. Together,

these changes improve the ability to automatically diagnose faults on line and quickly pinpoint
the field—replaceable unit responsible for the fault. In addition, a guided-probe facility, which
leads factory personnel through the diagnostic process, enhances the product’s manufacturabiiity.

Like the VLX processor, the Cyclone processor is implemented primarily in ECL gate arrays,

although Cyclone’s arrays are considerably more dense. Because of this added density and the
increased clock speed, Cyclone’s gate arrays dissipate up to 11 watts. In order to cool these

devices without resorting to liquid cooling, Cyclone uses an impingement air-cooiing technique.
Instead of blowing chilled air across the circuit board, Cyclone’s boards include an orifice piate,
which serves to focus the incoming air onto the hottest components. This design is shown in

Figure 8—58. The result is that Cyclone’s devices, in spite of dissipating much more power, operate
at a junction temperature 10°C cooler than those in the VLX, significantly increasing reliability.

104

105

618

INTEGRITY 52

ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

While Tandem’s traditional NonStop architecture provides efficient fault tolerance through its

fail-fast hardware and proprietary Guardian operating system, some computing environments

require an open standards-based operating system and fault tolerance based strictly in hardware
(e.g., the telecom industry). Tandem’s integrity S2 was designed to meet the needs of these
markets.

The primary design objective for Integrity 82 was to provide a fault-tolerant on-line user-
serviceable UNIX-based system Hewett, 1991]. Application portability at the source level was a

requirement as well as support for an industry standard peripheral bus. Furthermore, no single
hardware failure should corrupt the data stored or manipulated by the system. Last, but certainly

not least, among the major design objectives was the recognition that the operating system would

represent a single point of failure.

System Architecture

A depiction of the machine architecture is provided in Figure 8—59. The system is divided into a
number of customer-replaceable units (CRUs). Every CRU in the system is designed to be hot-

pluggabie. This permits on-line removal of fault CRUs and on~line insertion of replacement CRUs.
The system consists of a triplicated processor-local memory system contained on three

central processor CRUs (CPCs). Duplexed triple modular redundant controllers (TMRCs) provide
a large secondary main memory (global memory) and serve as the nexus for the [10 operations
of the machine. The CPCs connect to the TMRCs over the reliable system bus (RSB). Duplexed

input/output packetizers (IOPs) provide the interface for a superset of an industry standard IIO
bus (VME) on one side and an interface to the TMRC‘on the other. The interconnection between
the lOPs and the TMRCs is called the reliable l/O bus (RIOB). The lOPs are the conduit through

which all I/O in the machine flows; Each lOP produces a bus that is called the NonStop-V+,
which is a high data integrity variant of the popular VME bus. Ordinary VME controllers are

connected to the system via a bus interface module (31M). The BlM provides a dual~ported7path
from a peripheral controller to each TOP.

Each CPC consists of a 33.33-MHZ oscillator driving an R2000 processor, R2010 floating point

coprocessor, 128 KB of spiit instruction and data caches, local memory and RSB interface. in
addition, the CPC contains a DMA machine used to transfer blocks of data between local memory

and the secondary memory store, a minimum of 8 MB of on-board DRAM, augmented with
hardware write-protection logic and an RSB interface. The DMA engine transfers packets of

memory between local and global memory and accumulates a checksum of the data during the
transfer. Upper layers of the system software use this checksum to provide end-to-end checking
for disk transfers.

The clocks of the three processing modules have no fixed-phase relationship that is main-

tained by the System. The processors operate independently, but are kept in logicai phase via
proprietary synchronization logic. Two different time domains are relevant to synchronization:
virtual and physical. Virtual time is measured by the passage of instructions on a given CPC. The

independent processing modules are designed to execute the same instruction stream in virtual
time. These instruction streams proceed until such time as the processing complex needs to
access a resource beyond the CPC boundary. All such non-CPC resource requests generate RSB
transactions that are voted at the TMRC. Voted read operations inherently bring the processors

into closer alignment in physical time because there is a single logical copy of the data.

Since the machine can operate within the bounds of the cache andalocal memory subsystem
for long periods of time, another synchronization mechanism is required. The progress of the

processors is monitored on each CFC by a set of counters which are incremented as the machine

105

106

8. HIGH—AVAILABILITY SYSTEMS 619

FIGURE 3—59 Synchronization control
Integrity 52 archi-
tecture

Nonstop V +
bus 0

N St V

Mirrored disks b::1 0P +
‘

ASYNC
controller

Terminals Printers

SYNC
controller

SNA X25

LAN
controller

Ethernet LAN

.

. lB |,"O controllers maximum

pipeline advances. Periodically (every 2047 instructions), each of the processors is stalled until all
of the processors arrive at the synchronization point or a timeout expires. In addition, the arbiter
for the local bus on the CPC ensures that all machines execute reads and writes in the same

temporal order.

_-r~—\

106

107

620 II. THE PRACTICE OF RELIABLE SYSTEM DESIGN

The technique'devised to provide precise presentation of exceptions to each of the proces-
sors involves instruction counting. As the pipeline of the processor advances, a number of
counters are incremented. in the current system, interrupts can be presented every 64 instruc-

tions. The process of collecting, distributing, voting and presenting exceptions on specific mod-
ulos of an instruction counter guarantees that all processors will field the exception at the same
virtual time.

The TMRC contains up to 128 MB of global memory and interfaces to the CPC via the R88
and to the lOPs via the RlOB. The TMRC also contains the cause, mask, and clear registers for

the interrupt mechanism. Having the TMRC serve as the repository for causes of exceptions
presents a uniform view of interrupts to the processors.

A central role that the TMRC has in system operations is voting the R53 transactions. All

processor transactions that are external to the CPC are voted on a bit-by-bit basis and the vertical
OR of these results implicate the errant CPU module. The voting circuit is duplicated and
compared and any self-check error halts the board. During system operation one of the TMRCs
is designated as primary and the other as backup. The primary TMRC provides the data in the
case of a read operation and both TMRCS perform all write operations. All TMRC registers and
static RAMs are protected by even byte parity. The memory is word organized, and the even
parity of the word address of the datum is bashed into every byte of data parity in order to detect
addressing failures in the memory controller.

The nonvolatile memory (EPROM) on the TMRC is not parity protected, but is checksummed
by the software. All of the data paths on each TMRC are protected by even parity hashed among
the four data bytes. State machines are protected using either parity or dupiication. Scrubbers,
implemented in the operating system, are used to detect, and correct if possible, latent errors in
both local and global memory. _

Like the TMRC, the iOP is designed to be a self-checking fail-fast CRU. The system has two

[OPs, each of which can support the full complement of peripheral controilers. if an IOP fails,
software arranges for the peripheral controliers to become bound to the other IOP and system
operation continues. The data path on the lOP is checked using techniques analogous to those
described for the TMRC.

All peripheral controller-initiated bus transactions resuit in NonStop—V-i— transactions that
are translated into RlOB bus transactions by the IOP. In order to prevent errant peripheral
controllers from writing or reading inappropriate global memory cells, the lOP contains an access
and validation RAM (AVRAM). This AVRAM is a direct-mapped cache that translates virtual VME

addresses into physical RIOB addresses. During the translation process, the IOP checks the
permission bits in the AVRAM entry to see if the specific peripheral controller is permitted to
read or write the appropriate physicai RIOB address.

The power subsystem was also designed to be fault-tolerant. Batteries are provided to
support continued system operation during power failures. Redundant bulk supplies drive in-
dependent 36 VDc rails to protect against bulk failures. Redundant batteries drive dual 24 Voc

- rails to protect against battery failures. The DC-DC converters Lise these four independent DC
rails to produce the requisite DC voltage required by a specific CRU.

Software Architecture

Since one of the basic design goals of the system was to use an existing UNIX kernel as the basis

for the operating system, the system software architecture was based on an industry standard
implementation of UNIX. A major addition that was made in the kernel was a two—tiered memory
management system to support the local/global bifurcation of the main memory system. This

107

108

8. HIGH—AVAILABILITY SYSTEMS 621

virtual memory system treats local memory as the main memory pool with global memory serving
as a backing paging pool. Finally, pages in global will be swapped to disk if global memory is in
short supply. The text most of the dataand per process stacks for the kernel reside in local
memory. User processes text, data and stacks may also reside in local memory.

l/O operations are launched on behalf of user processes by the operating system. The

operating system arranges for the data to be moved to the appropriate destination for the user
process. If the source of the.data for a write operation is in local memory then a buffer is allocated
in global memory and the data is moved from local to global by the special purpose DMA hardware
implemented on the CPC and TMRC. Similarly, if the destination of a read operation is in local
memory, the data transfer performed by the operating. system uses this DMA engine after the
data is placed in global memory by the peripheral controller. The collection of services that aSsist
in providing the illusion of fault-free operation to the system is called subscription based
services. An entity in the operating system that required notification of an event calls a function

to subscribe to the occurrence of that event. If the event occurs, a function specified by the
caller is invoked with parameters that depend on the particular event type.

I‘ Faults that occur within the processor memory complex (CPC and TMRC) are known as core

faults. The hardware guarantees that the operating system can continue to execute instructions
to effect repair of the system, but the operating system must identify the faulting component and
take the appropriate recovery action. '

' A core fault is indicated to the processors via a high priority interrupt. The processors then

use the private--write mechanism to distribute a global view of the faulting condition. The private-
write mechanism allows the processors to store private possibly asymmetric non——voted dataIn
the global memory without causing the voting mechanism to register a fault

Once a common view of the cause is obtained by each of the three processors, low-level

exception processing code follows a deterministic parsing mechanism of the hardware status.
This parse results in an implication of the offending CRU, which precipitates an action based on
the type and severity of fault and the current configuration graph of the system. Typical actions

are, in order of likelihood, incrementing a threshold counter, logging an event to the event
reporting mechanism or finally removing a CPC or TMRC.

Faults beyond the core, namelyIn the 10? or peripheral controllers, are handled by the HO
fault handling layer. lOF failures are typically recoverable. At any given moment a collection of
controllers is bound to either IOP via the 31M, and the system can still access the controller via
the alternate path.

A key to high availability in replicated systems is the ability to repair the system on-line. The
operating system support for such repair activity is called reintegration. Consider CFC integration.

A newly inserted CPC runs a power-on self-test (POST) from its local EPROM to verity the health

of the board. The remaining processors agree to reintegrate and copy a small amount of local
state to global memory. The processors then issue a soft reset (an operation supported by the
R58 and TMRC, and hence voted) that results in all three CPCs entering reset. The CPCs notice
that this is a soft reset operation and, after initializing some local state, find the communication

block deposited by the operating system in global memory and load the program counter and
stack pointer. The operating system now has control again and it proceeds to move a copy routine
into each processor's local-memory. Then, the processors use the local-global DMA engine to
move pages from local to global and back, using the voting mechanism to bring the contents of

all three local memory arrays into agreement. After this copying process is completed, normal

execution resumes. Note that processing is suspended during the copy period of CPC reintegra-
tion. This is slightly more than one second on an 8-MB local memory system

Unlike the processor, TMRC reintegration takes place during normal machine operation and

108

._...__._..__..:ckjfik;.4

109

622

MAINTENANCE

FACILITIES AND
PRACTICES

ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

only borrows cycles from the machine in small chunks that are controlled by the system admin-
istrator. The first phase of TMRC reintegration just copies global memory to a global memory
buffer and back to global memory using the local~global DMA engine. During this phase, the
lOPs believe that the replacement TMRC is off-line. The replacement TMRC returns ”good” status
for all RSB TMRC reads and writes.

in the second phase, the replacement TMRC remains a write-only memory. The processors

lock the RIOB, copy a packet from global to iocal and back to global using the DMA engine The
RIOB is unlocked and the process is repeated until the entire memory array has been restored.

During the entire IOP revive process, both TMRCS accept writes from the CPCs and lOPs. This
guarantees that the memories are consistent after the copying process is complete

The standard UNIX operating system assumes perfect hardware and software. A failure in
either the hardware or the kernel will resuit in an unconditional loss of at! services (a ”panic”).

Given this collection of self»imposed constraints, a fault recovery model based on forward re“

covery was adopted. The kernel uses consistency checks as a fault-detection mechanism through
approximately 1000 ASSERTs. An ASSERT is simply a macro that ensures that an expression is true.
In the standard UNIX kernel, the failure of an ASSERT results in a system panic. Recovery from

an assertion failure is provided using an assertion-specific forward recovery routine. These re-

covery routines are guided by data structure audit routines. Data structure audit routines deter—
mine the validity and consistency of various data structures.

A provably correct implementation of any version of UNIX has yet to be produced. A reliable
"panic” mechanism was implemented to greatly increase the probability that various disk resident
data structures are consistent upon reboot from an unrecoverable operating system fault. To

accomplish this, the hardware write~protection feature is used to lock a number of critical kernel
data structures during the panic procedure. Then, a number of kernel data structure consistency

checks are performed and only those data structures that pass the various validity checks are

subsequently utilized. The dirty blocks in the buffer pool are written to disk using a poiled version
of the disk driver. This ensures that a minimal amount of the system structure is used to accom—

plish the write operation. Finally, an image of the kernel is written to the disk using the PROMs.
Experience shows that this procedure greatly increases the probability of the file systems being
in a consistent state upon reboot.

In sum, the Integrity 52 incorporates numerous hardware and software techniques appro-

priate to a commercial, standards—dominated marketplace which demands fault tolerance. Fault
tolerance has been accomplished without compromising the programmatic interface, operating
system or system performance.

Tandem’s tools, facilities, and practices for hardware maintenance have evolved considerably in

the last ten years. Over time, the trend has been increasingly to share maintenance responsibility
with its customers, making it easier for customers to resolve hardware problems quickly on their
own. '

Early Methods

Early maintenance systems were based mainly on the use of on-line diagnostic tests to isolate the
causes of readiiy apparent failures. Subsequent systems, however, moved toward the ability to
detect failures automatically, analyze them, report upon them, and track their repair.

The first diagnostic and maintenance tools were very primitive. For example, to support the
NonStop 1 systems, only a set of lights and switches was available on each processor for com-

109 i

110

8. HIGH-AVAILABILITY SYSTEMS ’ 623

municating error information and for resetting and loading the processor. in 1979, the Diaglink
diagnostic interface was introduced to permit access to the system from remote maintenance
sites. Diaglink featured an asynchronous modem. With Diaglink, custo‘mer engineers could
remotely examine customers’ systems, obtain system status by running operating system utilities,

and execute diagnostics with customer assistance for remote, low—level debugging.

Operations and Service Processor (OSP)

The NonStop II system replaced Diaglink with an operations and service processor (OSP). The
OSP was a microcomputer system that communicated with all processors and a maintenance
console. The OSP offered all of the capabilities of Diagfink, as well as additional features to

diagnose failures and to operate a system remotely. The OSP enabled operations and support
personnel to obtain an internal view of the status of each processor.

The OSP communicates with the diagnostic data transceiver (DDT) included as a part of each
processor module in the system. This communication allows the operator to diagnose software
and hardware problems through the operator’s console. The DDT monitors the status of the

Dynabus interface, l/O channel processor, memory, and IPU, including the internal data paths.
For example, the DDT enables the operator to put the processor in single-step mode and monitor
the contents of its registers before and after execution of a specific instruction.

The OSP includes a built-in modem that can connect it to a remote terminal or to another

OSP. This connection allows an operator or customer engineer to diagnose and possibly even
correct problems from the remote site. A remote customer engineer can, for example, run
microdiagnostics residing on a local OSP. Alternatively, the customer engineer can download
diagnostics from the remote OSP to the local OSP, remotely reset and load processors, and
display error information. For the TXP system, the OSP was enhanced to include an asynchronous
modem, improved microdiagnostics, more remote operations capability, and additional remote
support capabilities.

Tandem Maintenance and Diagnostic System. For the VLX system, the Tandem Maintenance and
DiagnOstic System (TMDS) repiaced the OSP. TMDS provides a framework for problem detection

with the VLX system, which was intended to reduce the cost of ownership in various ways [\Nhite,
1987]. A major aspect of this attack on costs was improved diagnostic and maintenance facilities.

TMDS permitted the elimination of front panel lights and switches from the system design,
dramatically streamlining maintenance activities. Unlike its predecessors, TMDS operated on line

without requiring significant system resources. It provided a uniform interface to many diagnostic
subsystems [Troisi, 1985].

By the time of the VLX system, the maintenance strategy had evolved beyond real-time
monitoring of system components to include automatic on—line fault analysis and automatic dial-

out for on—line support by remote service centers [Eddy, 1987]. TMDS was based on that strategy.
Today, although it is known primarily for its use on the VLX, CLX, and Cyclone systems, TMDS

is compatible with all NonStop systems. It runs under the Guardian operating system and is
distributed automatically to all customers.

Through pervasive instrumentation, an internal fault-tolerant maintenance and diagnostic
subsystem continuously monitors the system’s processors, power supplies, and cabinet environ-

ments-When the Guardian operating system or an l/O process detects a change of state or an
irregular event, it writes an event signature to an event log on disk. Then, TMDS examines each
event signature. It further study seems advisable, TMDS starts a module known as an automatic

fault analyzer. Thus, TMDS supports both active testing of components and symptom-based fault
analysis.

110

\e—4/”_“__

111

624
ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

TMDS fault analyzers relieve the customer of the need for an intimate knowledge of hard-
ware, status codes, or specific error values. TMDS uses if-then-ruleubased algorithms to evaluate
events against a knowledge base, automating many of the detection, interpretation, and reporting
tasks previously required of a console operator. The knowledge base contains a range of accept
able component states and environmental factors. If the fault analyzer finds that an event falls
within the acceptable range, TMDS saves the fault analysis in a local log (a catalog of system
events and patterns that can aid future troubleshooting}.

However, if a fault analyzer detects an event that suggests an active or potentiai problem,
TMDS transmits a signal to a fault-tolerant service processor called the remote maintenance
interface (RMI). The RMI consists of dual Motorola 68000wbased processors that communicate
with each other and with other subsystems over dual bit—serial maintenance buses. The proces-
sors, FOX controllers, and power supply monitors all connect to the maintenance buses. The
RMI supports all the functions of the old OSP, but does so as a much more compact unit—two
circuit boards residing in one of the cabinets (VLX and Cyclone) or a part of the MFC (CLX).
Through a synchronous protocol, a special communication process, and a password requirement,
the RMI also greatly reduces the risk of unauthorized users gaining access to the system through
the diagnostic facility.

When it receives a problem signal, the RM] alerts the on—site operator and, on the CLX, VLX,
or Cyclone system, optionally dials out to a Tandem National Support Center (TNSC). Tandem
staffs two such centers: one to service sites in North America and one for sites in Europe. Other
TNSCs are planned as business needs for them develop.

Through the RMI, either the on-site operator or the remote analysts and engineers at the
TNSC can review the event log, run diagnostics, test components, and isolate and diagnose the
problem. On newer equipment, these actions include detecting out-of—spec intake and exhaust
cabinet temperatures, malfunctioning disks or tape controllers, and faulty fans. TMDS also uses
processor diagnostics to test power supplies, clocks, and batteries. If necessary, the TNSC can
dispatch a field service engineer for on-site troubleshooting or part replacement. The TNSC staff
has identified and diagnosed the problem, so the service engineer is very likely to arrive with
the correct replacement part in hand.

TMDS also allows analysts and engineers to run on-line diagnostics to identify problems that
fault analyzers don't cover. In fact, many diagnostics can be run while the device that is being
studied is on line. In the worst cases, only the problem device needs to be shut down; under
previous diagnostic systems, both the device and its controlling processor needed to be shut
down. In any case, testing with TMDS only minimally affects the system’s performance. Processing
continues unhindered by the diagnostic tests, unless a processor itself is being evaluated.

The following steps illustrate how TMDS operates if a tape I/O process detects an error event
involving a tape unit:

1. The tape I/O process immediately creates an error event and sends it to the TMDS event
log.

2. TMDS signals the fault analyzer.

. The fault analyzer localizes the error to a particular controller board.
4. The fault analyzer writes additional error information to the event log, specifying the prob-

able FRU, the controller address, and the terminal error code. All of these actions take placewithin seconds.

5. After completing the analysis, TMDS dials out to the TNSC.

6. The TNSC diais back in to verify the analysis.

U)

111

112

 SOFTWARE

8. HIGH-AVAILABILITY SYSTEMS 625

7. The TNSC dispatches a customer engineer to replace the controller board.
8. TMDS records the replacement in the event log.

TMDS event logs and the reports generated by the remote intervention are archived in a
- centralized support database. This database contains a history of service requests, diagnoses, and
support actions for hardware and software. Experts periodically scrutinize the database, seeking
out diagnostic patterns and irregularities that they can use to improve system maintenance.

TMDS continues to evolve, incorporating many new features. One of these features is a

built-in self-test {BlST} method that uses pseudo-random testvectors and scan-path design [Garcia,
1988]. On the CLX, the pseudo~random test covers several custom iCs, commercial MSI logic, a
static RAM array, and their interconnects. The BlST also does a functional test of the dynamic
RAM main memory and its control logic. The test is controlled by maintenance processor software,
simplifying the processor board hardware dedicated to the BIST. With the BlST, hardware prob-
lems on the CLX processor can be detected and reported to TMDS without requiring downloaded,
handwritten diagnOstics.

In the Cyclone system, the power and environmental monitoring facilities have been signif-
icantly enhanced. In addition to sensing more components (voltages both on the circuit boards
and at the power supply outputs, intake and outlet air temperatures, battery condition, and fan
rotation), sensors are polled much more frequently, and most sensors are replicated to allow
differentiation between a failing component and a failing sensor. in addition, Cyclone’s mainte-
nance subsystem can detect the physical presence or absence of many components, such as
cables, power supplies, fans, and bus terminators. Both the logical address and physical location
(which cabinet and which slot within the cabinet) are automatically available to the maintenance
subsystem so that failed components can be easily identified and reliably replaced.

Overview

In the preceding discussion of the evolution of the Tandem system, the careful reader will find
no mention of fault-tolerant hardware modules. In fact, one of the primary design criteria for
Tandem hardware is to make it fault intolerant. Any incorrectly functioning hardware module
should detect the problem and, as quickly as possible, shut itself down. There are a few exceptions
to this rule, such as error-correcting main memory, but the fundamental design of the Tandem
system is to connect fail-fast hardware with fault-tolerant software.

Fault tolerance normally implies hardware redundancy. While this is true for a Tandem system,
the net additional cost to the customer has been kept surprisingly low due to the many innovative
features of the Tandem system. in most cases, the redundant modules each perform useful work
inAtheir owrr right and, except when they have failed, contribute to the capacity of the system.
Failing modules can be replaced while the system is running. The net effect of a hardware failure
is, at worst, a short period of slightly degraded performance. A system with a normal amount of
excess capacity will survive a failure without any noticeable effect.

The key to fault tolerance without wasted redundancy is the Guardian operating system. The
following sections describe the many components of Guardian, from the kernel (process and
memory management and message system) to the transaction manager, networking support, and
NonStop Structured Query Language (SQL). Each makes an important contribution, not only to
the functionality of the Tandem system, but also to the support of fault tolerance.

Fault tolerance would be of little value without data integrity; business demands accurate
record keeping, and an inconsistent database is often worse than no database at all. Furthermore,

112

113

626 ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

a business that depends on its computer system must be able to grow that system at least as fast
as the business. The following sections also describe how the system has been engineered to
prevent data corruption and to provide expandability.

Guardian: An Integrated OLTP Operating System

A basic difference between Guardian and other systems is the very high level of software inte-

gration. Although there is the usual layering of software function, these layers are relatively
closely tied together and interdependent. This approach has its costs, but the resulting efficiency,
coupled with a high level of functionality, is unique in the computer industry. .There are many
software components that contribute to the fault tolerance, data integrity, expandability, and
basic functionality of the Tandem system. In this section, we will give a general overview of the
Guardian elements that differentiate Tandem from other systems.

- The kernel includes the usual support for the management of processes, memory, inter-
process communication, names, time, peripheral l/O,,process synchronization, and debugging.
In addition, the kernel detects failures of any processor, interprocessor bus, or I/O channel and

performs recovery. Several innovative techniques are used to synchronize the independent pro-
cessors and to provide a consistent view of time and system state, despite failures and commu-
nication delays. Finally, the kernel supports the management of process pairs, which are the
keystone of both hardware and software fault tolerance.

- The file system hides the distributed nature of the system from application processes and
presents a conventional view of peripheral l/O devices. Communication with IIO devices and

other processes is accomplished without regard to the location of the resource, be it in the same

processor, another processor in the same system, or a processor in a remote system. The file
system also provides checkpoint and retry mechanisms for hiding the effects of hardware and
software failures from the application process.

- l/O processes manage peripheral devices and react to component failures by routing access
over Working paths and devices and then notifying operators and customer engineers about the
need to repair or replace the failing component. IIO processes receive messages from application
processes (via the file system) and perform the requested operations on physical devices. in the
view of the application programmer, the l/O process and the device it manages are indistinguish-
able. There are dozens of different liO processes, each designed to manage a particular class ofdevice.

- The disk process is probably the single most important component of the system. lt
provides data integrity and reliable access to data despite processor, channel, controller, or media
failure. It supports mirrored disks efficiently, making good use of the dual access paths to data.
It supports four types of file structures, as well as SQL tables,- it supports file partitioning, alternate
indices, data security, and main memory cacheing for both reading and writing of data. It supports
full transaction management, including two-phase locking and two-phase commit protocols. Last,
but far from least, it can execute those parts of SQL queries that require data local to one disk,
greatly reducing message traffic for many applications.

- The transaction management facility (TMF) coordinates the processing of disk accesses and
updates, ensuring the requirements for atomicity, consistency, isolation, and durability. An ap-
plication can, in a very simple manner, request multiple database updates in many physical
locations, possibly thousands of miles apart, and be assured that either all or none of them will

be performed; during the transaction,.other applications will always have a consistent view of

113

114

8. HIGH-AVAILABILITY SYSTEMS 627

the database, never being able to see only some of the updates and not others. TMF protects

the database from total media failure (including the ioss of a mirrored disk pair) through the
technique of on-line dumping and roll—forward of the transaction log. TMF also supports the
remote duplicate database facility, which can quickly recover from the loss of an entire computing
facility.

- The transaction processing monitor (Pathway) provides a flexible method for managing
customer applications in a distributed system. Pathway automatically distributes application pro
cesses (called servers) to the available processors and, in the event of a processor failure,

redistributes the applications to the remaining processors. Any work that was lost or compromised
by the failure is automatically restarted after being rolled back to its initial state. Customer

programming is straightforward and is not required to perform any special operations to achieve
full fault tolerance.

- The network control process and line handler processes (Expand) manage communications
between a system and a network of other Tandem systems. To a user on one node of a network,

the rest of the network appears as a seamless extension of the local system. The requirement for
local autonomy may impose access barriers, and communication delays may impose performance
penalties; otherwise, it is as easy to manage distributed applications and databases as it is to
manage iocallones.

Fundamental System Structure

A Tandem system is composed of from 2 to 16 independent processors connected by a dual,

high-speed interprocessor bus (lPB). Guardian, Tandem’s proprietary operating system, has two
primary responsibilities: (1) to maintain a consistent .view of the system while allowing each
processor to exercise independent autonomy, and (2} to provide general services for its clients
and the processes and particularly to provide an efficient and reliable means of communication
between them.

The first responsibility of the operating system requires that each processor establish and
maintain communication with the other processors of the system. Continuous availability of the
lPB is a fundamental assumption, since the processors must coordinate many operations and
notify each other of changes in system state. if any two processors are not able to communicate

with each other for any period, it is likely that they will have inconsistent views of the system
state,- one or the other must be restarted. Thus, a dual (fault-tolerant) lPB is an important
requirement.

Except for the lowest-level functions of process dispatching, message transmission, and
interrupt processing, all work in the system is managed by one or more processes. System
processes manage process creation and termination, virtual memory, security, performance mea-

surement, event management, diagnostics, and debugging. [IO processes manage access to

peripheral devices and are responsible for dealing with failing components. Appiication and utility
processes direct the operation of the system towards some useful purpose.

Messages are the primary method for process~to~process interaction, eliminating the need
for applications to deal with the multiple-computer organization of the system. To applications,
the system has the appearance of a conventional uniprocessor programmed in conventional

programming languages such as COBOLBS, Pascal, C, and FORTRAN. Processes interact with one

another using a client-server protocol typical of the remote procedure call protocols that are

common in workstation-server LANS today. This client—server design is well accepted today, but
fifteen years ago it was considered novel.

114

------—.——.—.——_---v~- -.--- v- -—»- >77 ---: i-7---_~-4.—_-———-—_—————-—_—————_.-—_

115

628

ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Fault tolerance is provided by duplication of components in both the hardware and the
software. Access to l/O devices is provided by process pairs consisting of a primary process and
a backup process. The primary process must checkpoint state information to the backup process
so that the backup can take over if a failure Occurs. Requests to these devices are routed using
the logical process name so that the request is always routed to the current primary process. The
result is a set of primitives and protocols that allow recovery and continued processing in spite
of bus, processor, l/O controller, or l/O device failures. Furthermore, these primitives provide
access to alt system resources from every process in the system.

initialization and Processor Loading. System initialization starts with one processor being cold
loaded from 3 disk attached to that processor; any processor can be used for this operation, as
long as it is connected to a disk with a copy of the operating system image file. The image file
contains the code of the kernel and the system processes that are automatically started when
each processor is loaded; Once any processor is loaded, it is then used to load the other
processors via the lPB. All processors other than the first can be loaded in parallel. Should a
processor fail or be removed for maintenance, it can be reloaded by any other processor. There
is no essential difference between an initial load of a processor and a later reload of a processor
after it has been repaired. A processor reload operation does not interfere with the operation of
application processes. -

Each processor receives an identical copy of the kernel and other system—level software, but
a different processor configuration, depending upon the peripheral devices attached to the
processorfEach processor will start the appropriate l/O processes to manage the attached devices:
Once a processor’s software and configuration is toaded, it passes through a phase in which it is
synchronized with the other processors. Basically, this synchronization involves transmitting a
consistent copy of the system state to the processor. Once this is accomplished, the processor
becomes a fully independent entity. There is no master processor.

Processor Synchronization. Although Tandem computer systems are designed to tolerate any single
fault, either hardware or software, multiple failures do sometimes occur, either‘through multiple
hardware errors (unlikely), software errors (likely), operation errors (more likely), or during
maintenance periods. Even when multiple faults oceur, only a portion of the system (some disk
volumes and/or processors) becomes unusable until it can be repaired and reintegrated into the
system. .

Two different mechanisms are provided for dealing with multiple faults: processor synchro-
nization and transactions. The following sections describe the issues of processor synchroniza-
tion. In addition to a simple algorithm to detect processor failure, Guardian also has three more
complex algorithms to ensure that all processors of a system have closely agreeing views of
processor configuration, replicated data, and time. Each of these algorithms requires a minimum
of communication and is sufficiently robust without resorting to the cost and complexity of
solving the Byzantine Generals problem. '

i’m~Aiive Protocol. Once two or more precessors are loaded, they must continually check on each
other’s health. Because the processors are designed to be fail-fast, they respond to any internal
error by shutting down completely and refusing to communicate 'with the outside world until
receiving an explicit signal that they are ready to be reloaded. Thus, it is up to the remaining
processors to detect a failure through the absence of any response from the failed processor.

Using the i’m-Aiive protocol, each processor transmits a short message to each processor,
including'itself, at least once every second, over each of the two [PBS (the message to itself
verifies that the sending and receiving bus circuitry is functioning). Every two seconds, each

115

116

8. HlGH-AVAILABlLlTY SYSTEMS 629

processor checks to see that it has received at ieast one message from each processor in the
interval. Any missing meSsages imply that a processor is not healthy and has probably failed.
Normally, any processor would immediately declare such a processor down and proceed to
cancel all outstandingcommunication with that processor.

Regroup Protocol. Experience showed, however, that thei'e are rare instances in which one pro-
cessor might merely be a little late in sending out its I’m-Alive meSSages. This situation usually
'occurs when recovery from power failure or other high-priority error recovery momentarily
usurped a processor: Because the i’m-Alive intervals are not synchronized between proeessors,
a late l’m-Alive might result in a proceSsor’s being declared dowri by some processors and not
by others. Such a case, termed a split—brain situation, could lead to a lack of database integrity.
Thusra Regroup algorithm was implemented to handle these cases with as little disruption as
possible. in essence, the slow processor is given a second chance. Whenever any processor
detects a missing l’m-alive message, all processors (including the SUSpect processor, if able)
exchange messages to decide which processors are healthy. After two broadcast rounds, the
decision is made and all processors act on it.

Global Update Protocol. Certain information, notably the destination control table (described
later), is replicated. in each processor and must be identical in each processor. Updates to
replicated information, however, originate in multiple processes and multiple processors. Con-
sistency of an update depends 'upon atomicity [Gray, 1979], which demands that (1) any update
is completed within a maximum time, {2) either all replicated copies are updated ‘or no copy is
updated, and (3) all updates occur serially. .

in Tandem systems, atomic update is guaranteed by the Global Update protocol {Carr, 1985].
All such updates are performed by the Guardian kernel So that high-priority processes cannot
delay the completion of an update within a maximum time. All updates must first be sent to a
locker processor, which ensures that updates occur serially and also ensures that an update is
propagated to all processors even if the originating processor fails, including simultaneous failure
of the updating and locker processors. '

Time Synchronization. An OLTP system is designed to record and control real-world events at the
time they actually occur. An important part of the information processed is the current time.
Furthermore, it is important that the sequence in which events occur can be reconstructed from
timestamps associated with each event. _

Although it is clearly difficult to have coordinated clocks in a widely distributed system,
initial attemptsto synchronize time on a local Tandem system‘showed that this is not a simple
problem either. Although it is no great problem to keep clocks within seconds of each other,
synchronization of a multiprocessor system requires that no message that can be sent from
processor A, with A’s clock time T, should arrive at processor B before B's clock time has reached
T. Otherwise, time would appear to move backwards. _.

A novel algorithm iNelleh, 1935, 1986] passes time-adjustment packets from processor to
processor; each processor not only adjusts its own clock to the ayerage time of all processors,
but it also calculates its clock error relative to the averageand makes adjustments on a centinual
basiszhis algorithm ensures that the average time does not fluctuate wildly when a processor
fails and is replaced by a processor with a different speed clock. '

The provision for an externa! clock can extend the local synchronization algorithm to geo-
graphically distributed Tandem systems. Electronic clocks that monitor a broadcast time standard
can keep Tandem systems synchronized to less than the time it takes them to communicate witheach other.

116

1;_,—1..\

117

636
II. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Guardian Kernel Services

Now that the basic problem‘of maintaining consistency between the distributed processors has
been addressed, we can turn to the performance of useful work. As in all modern systems,
Guardian supports the concurrent execution of multiple independent processes. What distin-
guishes Guardian is its heavy dependence on messages to coordinate the operations of processes.
Messages are essential for the operation of both system-level software and customer applications.

The design of the system was strongly influenced by Dijkstra’s ”THE” system [Dijkstra, 1968]
and Brinch Hansen’s implementation of a message—based operating system nucleus [Brinch Han-
sen, 1970]. Both hardware and software have been optimized to facilitate the sending of messages
between processors and between processes. The heavy dependence upon messages, in prefer-
ence to other communication and synchronization mechanisms, has been very important in the
design of a system that is both distributed and smoothly expandable. Customer applications can
be easily grown by simply adding more processors, disks, and other'peripherals, without changing
software or even reloading the system.

Because of the message-based structure, the applications are unaware of the physical con—
figuration of the system. An application accesses a directly connected peripheral and a remotely
connected peripheral in exactly the same way: Messages are exchanged with the peripheral’s
manager (an liO process),- the [/0 process is also unaware if the requestor is in the same or a
different processor. ,

Efficient messages have also been a key element in implementing fault tolerance. System-
Ievel software uses messages to checkpoint information critical to data integrity and continued
operation in the event of a failure. Applications are generally unaware that a failure has occurred
because messages can be automatically rerouted from a failing component to a functioning one.

Processes

A process is an independently executable entity that consists primarily of shareable program
code, private memory, and the process state Vector. The process state vector includes the program
counter, registers, privileges, priority, and a microsecond timer that is incremented only when
the process is executing. '

Once a process begins execution in some processor, it remains in that proce550r until it is
terminated. Each process in the system has a unique identifier or name by which other processes
may communicate with it on a network—wide basis. Messages to a process are addressed to its
identifier, and so the identifier provides a network—wide and fault-tolerant method for process
addressing.

Guardian maintains a destination control table that is identical in all processors of a system.
This table relates the name of a process with its location (that is, its processor and process
number) so that messages to a process can be routed in an efficient manner.

Processes scheduling uses a pure priority mechanism with preemption. Scheduling is round
robin within a priority class. Considerable care is taken to avoid the priority inversion problem
in which a low-priority client makes a request of a high—priority server, thereby promoting its
work to high priority. This problem is unique to meSsage-based systems and must be solved in
order to provide a global priority scheduling mechanism. '

Memory Management

Each process has a virtual address space containing its program and a process data-stack. A
program consists of user code and an optional user library. The user library is an object code file

117

118

8. HIGH-AVAILABILITY SYSTEMS 631

that can be shared by processes that execute different user code program files. All processes
within a processor executing the same program share memory for object code. The process data
stack is private to the process and cannot be shared.

Processes may allocate additional extended memory segments, which have a maximum size

of 127.5 MB each. A process may access its data stack and one extended segment concurrently.
if multiple extended segments are allocated, the process must explicitly request that a particuiar
segment be placed in use when it is required.

Data in extended segments may be shared with other processes in two different ways:

‘i. A read-oniy segment is a method of accessing the contents of a file as if it were main

memory, using virtual memory to load the information on demand. Such segments can be
shared among all processes in all processors, although multiple copies of the data may exist
in different processors.

2. A read-write segment can be shared only by processes in a single processor, since it would
be impractical to update multiple copies in different processors.

The sharing of read-write data among customer application processes is discouraged so that fault
containment is maintained and so that the system load can be distributed by the placing processes
in idle processors. Guardian does not provide interprocess concurrency control (other than via
messages) necessary for coordination of updates to shared memory.

The Guardian memory manager supports virtual memory using demand paging and a clock
replacement strategy [Carr, 1982]. It intentionally does not support load (thrashing) control, as

the performance requirements of on-line transaction processing do not permit the paging or
swapping of processes commonly found in interactive time-sharing systems.

lnterprocess Messages

The basic message system protocol follows the requestor-server model. One process sends a

message with a request to another process and waits for a response. The second process services
the request and replies with a result as depicted in Figure 8—60. This is considered to be a single
message and can also be viewed as a remote procedure call. Naturally, this basic mechanism also

suffices for simple datagrams or for transferring bulk data (up to' 60 KB per message) in either
direction.

Multi-threaded requester processes may have many messages outstanding to coliections of

server processes. Multl-threaded server processes may accept multiple requests and reply to each
in any desired order. Any process may operate concurrently both as a client and as a server. For
application processes, access to the message system is through the file system, which provides

some protection from abuse of privileged mechanisms and simplifies the interface for sending
messages. System processes, on the other hand, generally use the message-system primitives
directly, as these provide better performance.

The simplest use of messages is for application processes to access peripheral devices; the

programmer is generally unaware that messages are involved, as the program makes a simple
read or write of data on a file. if, for example, the file is a disk fiie, then the readlwrite request
will send a message to the manager of the disk, known as the disk process.

it is simple for a process to masquerade as a device manager. An example of this is the
printing spooler process: Applications send print output messages to a spooler (which pretends
to be a physicaf printer process) and stores them for printing later; the spooler then sends the
output, again via messages, to a true physical printer process. The application programmer need

not be concerned with whether the message system routes the messages to the spooler process

118

UK

119

632

FIGURE 3—60

Process concepts
in the Guardian

operating system

c-\

II. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Request Each process has a program
and private storage; they
communicate via messages.i

Request A process pair is one logical
process; the backup process is
idle until the primary fails.

Request

A server class is a group of
processes spread over many
processors for load balancing.J4

or directly to an l/O process controlling a physical printer; only the process name must be
changed to choose the destination process. A more interesting use of messages is in the struc-
turing of applications as a network of communicating processes, which is described in the section
on Pathway.

in the Tandem system, messages are a fundamental mechanism for providing fault tolerance:

- The communication protocol for the interprocessor buses tolerates any single bus error

during the execution of any message-system primitive. A communication failure will \occur only
it the sender or receiver processes or either of their processors fails. Any bus errors that occur
during a message-system operation are automatically corrected without involving the communi-
cating processes. '

- The process-pair mechanism, as described in the next section, provides fault-tolerant access

to peripheral devices despite processor, channel, or even most software failures. A request

message that is being processed by the failing component is automatically resent to the backup
component; the application is not even aware that this has happened and need not make any
provision for it.

Memory moves rather than the interprocessor buses are used for communication between

processes in the same processor, but there is no apparent difference to the communicating
processes. In addition to messages between processes, Guardian alSo implements simpler control

messages, which are for communication between processor kernels. Control messages are used

119

120

8. HIGH—AVAILABILITY SYSTEMS 633

as a basis of the full message-system protocol, as well as an inexpensive mechanism to maintain

synchronization between processors.
Guardian and the lPB are highly optimized for the processing of interprocess messages,

especially for short messages of 2 KB or less. A message between processes in different processors

is only marginally more expensive than an intraprocessor message. in fact, an interprocessor
message usually has a shorter elapsed time than an intraprocessor message, since both sender
and receiver processes can execute in parallel.

A final advantage of the message system is its transparent support of both short- and long-
haul networks. Except for the inevitable communication delays, the client and server can detect

no apparent difference between accessing a local disk file (or process or printer) and a remote
one [Uren, 1986]. The message-system and file-system protocols are precisely the same in both
the local and remote cases.

Tolerating Software Faults

Systems whose fault tolerance is based soieiy on hardware mechanisms can be designed to
provide high reliability and to continue to function in the presence of hardware component
failures. Unfortunately, a high percentage of computer system failures are due to software.

Unlike the situation with hardware components, it is possible to develop perfect, defect-

free, failure-proof software. It is only a matter of cost to the manufacturer and inconvenience to
the customer, who must wait much longer for some needed software to be delivered. In the
commercial world, customers demand a continuous flow of new software and improvements to

oid software. They demand that this be done quickly (more quickly than the competition) and at

a reasonable price. New software systems are inevitably more functional and more complex than
the systems they replace. .

The use of structured programming and higher-level languages has not eliminated software
errors because they have enabled the building of larger and more complicated programs. Methods

to improve software quality, such as code inspections and structured testing techniques, are

effective, but they only reduce the number of errors; they do not eliminate them. Therefore, in

practice, even with significant care taken in software development processes, software faults are
inevitable. In fact, as previously stated, software failures are typically more common than hardware
failures.

Software fault tolerance leads, indirectly, to better software quality and data integrity. At

Tandem, system programmers are encouraged to make numerous consistency checks and, if a

problem is detected, to halt the processor. (Tandem's system software probably has one of the
highest densities of processor-halt instructions in the industry.) The system programmer knows
that, for almost all consistency problems, the backup processes (described in the next section)

will continue to provide service to the customer. This consistency checking has two direct effects:

1. When contamination of system data structures is detected, the processor is immediately
shut down, reducing the chance that the database can become contaminated.

2. All significant errors in system software become very visible, and since the entire processor
state is frozen and dumped when an error is detected, it is easier to uncover the cause of
the error. Thus, errors that affect system stability and data integrity are found and corroded

in a very timely manner. The result is higher-quality software and fewer failures that need
to be toierated.

Process pairs provide fault-tolerant execution of programs. They tolerate any single hardware ‘
fault and most transient software faults. (Transient software faults are those caused by some

120

121

634

FIGURE 3—61

Diagram of system
structure

II. THE PRACTICE OF RELIABLE SYSTEM DESIGN

untimely combination of events, such as a resource shortage that occurs at the same time that
an U0 error must be handled.) Most faults in production software are transient [Gray, 1985],

since the simpler programming errors are weeded out during testing. Process pairs allow fail-fast
programs to continue execution in the backup process when the software bug is transient.

Process Pairs

The key to both hardware and software fault tolerance is the process pair [Bartlett 1981]. A
process pair consists of a primary process, which does all the work, and a backup process, which

is passive but is prepared to take over when the primary process fails. (See Figure 8—61.) This

arrangement is analogous to having a standby processor or computer system, except that, if
properly arranged, the cost of the backup process is far less than the cost of the primary process.

Generally, the memory requirements and processor time consumption is a small fraction (usually
about 10 percent) of the primary process.

A typical process pair is started in the same way as an ordinary process: as a single process
executing in a single processor. The process then notifies the operating system that it would like
to create a clone of itself, using the same program file, in another processor. The second process
is also started in a very ordinary fashion, but with two small differences:

1. The second process receives an initial message that informs it that it is a backup process;
the process then goes into a passive mode, accepting messages oniy from the primary or

from Guardian (to notify the backup that either the primary process or its processor has

failed). |
2. Both the primary and backup process Share a sitngie name, and for each name, the destination

control table registers both the primarysand backup processes; all communication to the
process pair is routed to the primary process.

While the primary process executes, the backup is largely passive. At critical points, the primary

process sends checkpoint messages to the backup. '
Checkpoint messages have two different forms; a process pair will normally use either one

or the other, but not both. For application software, a simple form of checkpointing is provided.
Checkpoints copy the selected process state, at carefully chosen takeover points, from the pri-

TESS—l These processes representw-—-— application programs that are
communicating with one
another and with device servers

Process These two processes are. a pair
— controlling a mirrored disk.

.

Checkpomts
Disk controller

I=l
Disk controller

121

122

8. HIGH-AVAILABILITY SYSTEMS 635

mary to the backup. Updating the process state of the backup is performed solely by the sys-
tem software at the command of the primary process,- the backup process is completely passive.

At a checkpoint, usually immediately before or after some important [/0 operation, the

primary and backup are functionaliy identical. If the primary faiEs, the backup begins executing
at the point at which the last checkpoint occurred. For most system software, such as l/O

processes, checkpoint messages contain functional updates to the process state. The backup
processor must interpret these messages and apply appropriate updates to its own local data

structures; this is sometimes referred to as an active backup. Although the program code is
identical, the contents of memory can be entirely different. A typical checkpoint would indicate

that a file has been opened or closed, but, in the case of the disk process, most updates to
important files also will involve a checkpoint.

The active backup approach is more complicated, but it has several advantages. Less data is

transmitted on each checkpoint, and information that the backup can obtain from other sources
(such as a disk file) need not be checkpointed. For software fault tolerance, the active backup is
better because the backup must manage its own state, and errors in the primary proceSS are less
likely to contaminate the backup [Borr, 1984].

Since the proceSs pair shares a single name, it appears to all other processes as a Isingle
process. When a message is sent to it, the message system automatically consults the destination

control table to determine which process is primary and routes the message to that location.
When the primary process fails for some reason, the backup becomes the primary, the destination

control table is changed, and all messages are directed to the new primary process. The new
primary has already received checkpoints that describe the current openers of the process, so
those openers need do nothing to re—establish communication.

There are potential race conditions in which a server process pair has performed some

request and has not replied to the client when a failure occurs. When the outstanding request is
resent to the new primary process, it might perform the same operation a second time, possibly
causing an inconsistency. This problem is eliminated by associating sequence numbers with each

request and having the new primary simply make duplicate responses to already—processed
requests. .

Similar problems could occur if a client process pair performs a checkpoint and then makes

requests to a server. If a failure occurs, the backup client takes over and makes duplicate requests

to the server. These requests are handied using the same sequence numbering scheme. During
normal operation, the sequence numbers are used for duplicate elimination and detection of lost
messages in case of transmission error Bartlett, 1978].

NO Processes

Most processes can execute on any processor. The exceptions are l/O processes because they
manage devices, and each device is connected to two processors via dual-ported device con-

trollers. When a device is configured, an l/O process pair is automatically defined for the device;
one member of the pair resides in each processor connected to the device. The configuration
parameters may state which processor is the normal primary access path to the device, but this

choice can be altered by the operator for testing and performance tuning. In the case of a
processor, channel, or controller port failure, the process that still has access to the device will

take over control, and all application requests will be routed to it.

When a request for an operation such as a file open or close occurs, the primary process

sendsthis information to the backup process through the message system. These checkpoints

122

123

636 ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

‘ensure that the backup process has all information needed to take over control of the device.

Process pairs provide a uniform way to access l/O devices and all other system-wide resources.
This access is independent of the functions performed within the processes, their locations, or

their implementations. Within the process pair, the message system is used to checkpoint state

changes so that the backup process can take over in the event of a faiiure. A process pair for a
mirrored disk volume appears in Figure 8—61.

Disk Process

Although the overall design of an OLTP application may be very complex, it is essentially com-

posed of many simple servers that require a minor amount of computation and perform a large
number of database accesses and updates. To achieve high performance in this environment
requires a great deal of sophistication in the design of the database management software. In
this section, we are able to give only a broad outline of the myriad responsibilities and functions
of the disk process, but it clearly has the most demanding task of any component of the system.

Each disk process pair must manage a pair of mirrored disks, each connected to two con-
trollers, which are in turn connected to two processor channels. Thus, there are eight possible

paths to the data, any component of which may fail; even in the rare case of a multiple failure,
the disk process must attempt to use all available resources to provide continuous access to the
data.

Mirrored Disks. Mirrored disks are, as the name implies, identical images of one another. It would
appear that this is a situation in which fault tolerance requires a redundant (and expensive)
resource that contributes nothing to system capacity. {The value of. data integrity in most cases,

hc‘iwev'er, justifies the expense of the redundant disks.) Fortunately, however, even though the
redundant disk does not contribute to storage capacity, it usually contributes significantly to

processing capacity. When data must be iead from disk, the disk process can use either of the
two disks, usually the disk that offers the shorter seek time. Multiple read requests can be

processed concurrently, and, if one disk is busy, then the other disk can be used. Because
duple‘xed disks offer shorter seeks, they support higher read rates than two ordinary disks [Bitton,

19391. ‘
Any write operation must be made to each of the mirrored disks and requires that both

disks seek to the same cylinder (thereby reducing the chance of having a short seek on the next

read). Consequently, disk writes are considerably more expensive than reads, but, when per-

formed in parallel, they are not much slower than a write to a singie disk. The proper use of disk
cache, particularly when protected by transaction management, can eliminate a large majority of
disk writes without sacrificing data integrity. . ,

Customers who consider all or part of their database to be a noncritical resource may have
unmirrored disks on a disk-by—disk basis. Modern disks are very reliable, and, even when drives

fail, it is exceedingly rare that the data are lost. Many activities, such as software development,
would not be seriousiy impacted by the rare unavailability of a disk. '

Disk Cache. Each disk process can be allotted many megabytes of main memory for disk cache.
In 1990, the upper limit was 56 MB per disk volume, but this will steadily increase, along with the

size of main memory. The disk process uses the cache to hold recently accessed disk pages and,
under normal circumstances, can satisfy most read requests without performing any physical i/O
operation. The disk process can service many requests concurrently, “so it is not unusual for it to

satisfy a half~dozen requests from cache while it is performing a single real disk l/O.
The worst case for cache management is an applicatiori that performs random accesses to a

123

124

 8. HlGH—AVAILABILITY SYSTEMS 637

very large database. The probability that it re-uses a recentiy accessed page in cache is quite low.
Experience, however, shows that the typical application usually has, at most, one such file in
addition to numerous smailer files that are also accessed in each transaction; thus, the ratio of

cache—hits to physical l/Os remains quite good. Even in the case of the large file, traversing the
Butree index structure to find a data record might normally require three physical l/Os that can

be saved by cacheing the index blocks. , ,
Although cache has an obvious benefit in reducing read IIO operations, the situation is not

so ciear with write operations. There are many situations in which disk file updates are made to
blocks that were recently updated; if only part Of a block is being updated, this clearly saves a

read to get the unchanged parts of the block. More significantly, if updated blocks could be kept
in main memory and written to disk only when convenient, many disk writes couEd be eliminated.
On a conventional system, we couldn’t do this because a processor failure would lose a large
number of disk updates and corrupt the entire database. -

In Tandem systems, we might consider checkpointing disk updates to the backup disk
process, which is much cheaper than performing an actual l/O. If a processor failed, the backup
could make sure that the updates were written to disk. This approach, however, would not be

safe enough, since it is possible for a long power faiiure, or simple bad luck, to cause a multipie
failure and £055 of an unacceptable number of database updates. Luckily, there is a solution to

this problem, but we must postpone its discussion until we have covered the basics of transac-
tions.

Partitioning. if an OLTP application has a high transaction rate and each transaction accesses a

particular file, the load on the disk process, even with perfect cacheing, may be too large to
sustain on a single processor. As with the application, it is necessary to be able to distribute the
database access load across the prOcessors easily. (In general, dynamic load redistribution has
not proved necessary, but it must be easy to redistribute in a static manner.)

The concept of file partitioning is not new, but the disk process and file system cooperate

to provide a simple and flexible solution. Any file can be simply partitioned by issuing a few
commands specifying the key ranges of each partition. To the applications, the partitioned file
appears as a single file, and the file system redirects any read or write request to the proper
partition, depending on the key of the record. if a partition becomes too full, or too busy, it can

be split by subdividing its key range and moving the appropriate records to the new partitions.

The partitions of a file can be distributed throughout a network, and, thus, a distributed
database can be created and maintained in a manner that is completely invisible to the applica—

tions, while maintaining excellent performance when accessing local data. For example, one
could easily construct a EEO-partition file, one for each of the United States, and physically locate

each partition on a separate Tandem system in each state. On each system, local state data could

' be processed very efficiently, but every application process could have access to the full database
as if it were a single file, subject only to the inevitable communication delays.

Locking and Transaction Protection. An OLTP application may have hundreds of independent
servers performing concurrent accesses to the same set of files; the disk process must support
file'and record locks, for both shared and exclusive access. Locks can be obtained through explicit

application request or through the operation of transaction management, which automatically
provides atomi'city and isolation of all database accesses in a transaction. More about transactions
appears later.

File System. The file system is a set of system routines that execute in the application process and
manage communication with l/O processes and other application processes. For access to IIO

124

125

638 II. THE PRACTICE OF RELIABLE SYSTEM DESIGN

devices, the file system hides the process—and-message structure, and the application program

appears to be issuing direct requests to a local lfO supervisor. That is, the file system provides a
procedure call interface to the remote ITO processes, masking the factthat they are remote

procedure caiis. The application is unaware of the distributed nature of the system. In order to
implement partitioned files, the file system automatically manages requests. it implements buf-
fering so that many sequentiai operations can be satisfied with one request to the [/0 process.

The file system implements the first level of system security, as it does not allow an appli~
cation to send a message to an [/0 (or appiication) process unless the application has first

identified itself with an Open message that contains an authenticated user name. if the server

process denies access to the object, the fiie system will not permit further messages (except for
Open messages) to be sent.

The file system manages timeout and retransmission of requests; it sends the message to

the backup server process if the primary fails. In addition, if the client is a process pair, the file‘
system manages checkpointing of the process state to the backup process.

NonStop SQL

The file system and the disk server cooperate to process Structured Query Language (SQL)
database operations in an integrated and efficient manner [Tandem Data Base Group, 1988]. The

file system manages the SQL processing in the client and performs all the high—level operations

such as sort, join, and aggregation. The disk proceSS understands simple constructs, such as
table, field, and expression, and wili do low-level SQL operations on the data. Thus, operations
can be performed at whatever level promotes the best efficiency. For example, the SQL statement

UPDATE ACCOUNT SET BAMNCE m BALANCE -i- :DEPOSiT-AMOUNT
WHERE ACCOUNTfiNUMBER = :ACCOUNT-ID;

can be processed with a single message to the disk process. There is no need for the appiication
to fetch the information, update it, and send it back to the disk process. in another example, the
statement

SELECT FIELDA, FIELDE FROM TABLEX WHERE FIELDA + FEELDB > FI’ELDC;

allows filtering to be performed at the disk process, minimizing the transfer of data to the
application. ‘

NonStop SQL is designed specifically to handle OLTP applications while achieving good

performance. Because it is integrated with other system software, it can be used for OLTP
applications in a geographically distributed network of systems. SQL tables can be partitioned
across systems in a network. Also, applications can run at one network node while accessing and
updating data at another node. Furthermore, the appiications themselves can be distributed.

With NonStop SQL, fault tolerance derives from the basic mechanisms of process pairs, mirrored

disk, and geographically distributed systems, along with node autonomy and transaction support.

All transactions, local and netvvork, are protected for consistency and error recovery.
From a fault-tolerance perspective there are two novel things about NonStop SQL. First is

the design goal of node autonomy. The system is designed so that if the client and server can
communicate, then the client can access the data. This simple requirement implies that all the

metadata describing the file must be replicated with the file. if the file is partitioned among many
nodes of the network, the catalog information describing the file must be replicated at all those
nodes. ' _

The second requirement is that no administrative operations on the data are allowed to take

125

126

 FIGURE 8—62

Structure of the
transaction moni-

toring facility

8. HIGH-AVAILABILITY SYSTEMS 639

the database off line. For example, taking an archive dump of the database must be done while

the data are being accessed, reorganizing the data must be done on line, and so on. Many
administrative tasks are not yet on line, but a major focus of current efforts is to make all
administrative operations completeiy on line. ‘

SQL allows data administrators to attach integrity constraints to data; these may take the
form of entity constraints that limit the values a record may have or referential integrity constraints

that constrain the relationships among records in different tables. Placing the constraints on the
data is more reliable than depending on the application program to make such checks. Updates
to the data that would vioiate these entity constraints are rejected,

Transactions

The work involved in a computation can be packaged as an atomic unit by using the transaction

monitoring facility (TMF) (Figures 8—62, 8—63). This facility allows an application to issue a Begin-
Transaction request, make numerous database accesses and updates in multiple files, on multiple
disks, and on multiple network nodes, and then issue an End-Transaction request [Born 1981].
The system guarantees that the work of the transaction will be ACID, defined as follows [Haerder
and Renter, 1983]. -

- Atomic: Either all of the database updates will be performed, or none of them wili be; for
example, if a transaction moves money from one bank account balance to another, the end

result will never be more or less money on the books.
- Consistent: Each successful transaction preserves the consistency of the database.

- isolated: Events within a transaction must be hidden from other transactions running con-
currently; otherwise, a failing transaction could not be reset to its beginning.

- Durable: Once committed, the results of the transaction must survive any failure.

Should the application or Guardian (that is, the disk process or TMF) detect a problem
that compromises the transaction, either one may issue Abort-Transaction, which will cause any

Undo-redo log ofold value and
new vaiue

of each updatedrecord

126

iii/LE

127

640

Accept

Display

I]. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Database updates are
undone and then
locks are released.

Audit trail has list

of database updates
of this transaction.

process

audit
trail
and

applyUndo

SEI‘VEI‘S

FIGURE 8—63 TMF transaction backout structure

database updates to be undone. The system can manage thousands of concurrent transactions,

keeping them all isolated from one another. The application program need not concern itself
with the locking protocol, as the required locking operations are well defined and performed
automatically.

The work of a transaction can be distributed to multiple processes. As we shall see, it is
normal to structure an application as client processes directing numerous server processes, each

designed to perform some simpie part of the transaction. Once the client has issued Begin-
Transaction, all requests to servers are marked as belonging to the transaction; all database

updates by the servers become part of the single transaction until the client issues the End-
Transaction or Abort-Transaction request.

When a client issues Begin-Transaction, the system creates a unique transaction Identifier
and uses it to tag all messages and all database requests. If a tagged message is accepted by a

server, all of its messages and database requests receive the same tag. Database locks acquired
by the client or its servers are also tagged by the transaction identifier.

During a transaction, disk processes hold the updates in their caches. If there is insufficient

cache, the diskprocess may update the database betore the transaction completes, but first it
must generate undo and redo records that aliow the transaction to be either undone in case it
aborts or redone in case it commits and a later failure occurs. When the client is‘sues End—

Transaction, each disk process with updates for the transaction must generate undo and redo

log records before it updates the disk.
The undo and redo records are written to specially designated transaction log files called

127

128

8. HlGHvAVAlLABlLlTY SYSTEMS 641

the audit trail. Normally, these files are on disks that are separate from the database, and the

undo and redo records must be written to the audit trail disk before the main database is updated.
Thus, even a total system failure will not lose transactions that are committed or allow the database

to become inconsistent. Even if a mirrored disk pair is destroyed, the database and all transactions

can be recovered from an archival copy of the disk and the transaction log. Any process partici-
pating in the transaction can unilaterally abort it. The system implements two-phase locking and
uses a nonblocking, grouped, presumed—abort, two—phase commit protocol.

it might appear that support of transactions adds considerable overhead to the basic oper-
ations of accessing and updating the database. Surprisingly, TMF improves performance, while
enhancing fault tolerance and data integrity. As described previously, updates to a database
should be written to disk immediately in order to prevent their loss in case of a failure. This
increases disk traffic and lengthens transaction reSponse time.

When database operations are protected by TMF, a description of all updates is written to
the audit trail; it becomes unnecessary for the disk process to write the updates to the database,

except when it is convenient to do so. As soon as the audit trail records are reliably stored on
disks, the appiication can be notified that the updates have been permanently recorded and will

survive any failure. Writing the updates to the audit trail is considerably more efficient than
writing the updates to the database because many updates from a singletransaction (and, in a

busy system, from multiple concurrent transactions) are blocked together and written in a single
l/O operation. Further, the audit trail is written sequentially and writing is performed with a

minimum of seeks, while database updates are random-access and imply numerous seeks. Finally,
the disk process performs less checkpointing to its backup because uncommitted updates do not
need to be protected against processor failures.

The result of these effects is that the logging and recovery of TMF is a net savings over the
less functional store-thru-disk cache. TMF converts random main memory database access to
sequential accesses, dramatically reducing the density of IIO transfers. Benchmarks have dem-

onstrated that l/O density can be reduced by a factor of two or three when TMF is used [Enright,
1985]. '

While the Tandem system provides high availability through single~fault tolerance, TMF

provides multiple-fault tolerance for the critical element of transaction processing systems: the
database. Aithough multiple faults are exceedingly rare, the consequent cost of database loss is
very high.

Before the introduction of TMF, application programmers relied on process pairs and forward

error recovery to provide fault tolerance. Whenever an error was detected, the backup process
resumed the computation from the last checkpoint. Process pairs were difficult to design and
implement and reduced the productivity of application programmers. Applications implemented
with-TMF are much simpler to program and achieve the equivalent level of fault tolerance. Because

transactions imply an automatic locking protocol, it is much easier to maintain a consistent '
database.

Process pairs are still an important concept and are used for system and 1/0 processes, as
well as for specialized utility processes such as the print spooler. They are the fundamental basis
on which TMF and other system software are built so that the customer can write fault-tolerant

applications without regard for fault tolerance.

Transaction Processing Monitor

Appiications are structured as client (requestor) and server processes. The clients are responsible
for presentation services and for managing the user interface. Such user interfaces range from a
forms-oriented interface to an electronic mail or home banking system, to real-time interfaces

128

129

642 II. THE PRACTICE OF RELIABLE SYSTEM DESIGN

where the user is an automated warehouse, gas pump, or telephone switch. The sewers are

programmed to perform specific functions usually a set of related database accesses and updates.
In the electronic mail example, one server looks up names while another is responsible for

routing messages to other network nodes and to gateways. In the gas pump example, one server
does user authentication while another does billing. Typically, applications are structured as

hundreds of services. Breaking an application into requestors and servers promotes software

modularity, allows on-Iine change and growth of applications, and exploits the multicomputer
architecture. With the advent of intelligent terminals (workstations, automated teller machines,

and other computers acting as clients and servers), the client is migrating to the workstation, and
the client-server architecture is becoming the standard structure for all transaction processing

applications.
The application designer specifies the programs and parameters for each ciient and server.

The servers can be programmed in any language, but the clients have traditionally been pro-

grammed in a COBOL dialect called Screen COBOL. This interpretive language automatically
manages transactions and process pairs. In case the client process fails for any reason, the backup
process takes over, reprocesses the input message if necessary, and redelivers the output mes-
sage. This gives exactly—once semantics to transaction processing. Screen COBOL relieves the
application programmer from needing to understand how to write process pairs. It is the most
common way that customers get message integrity.

The transaction processing monitor, Pathway (Figure 8—64), is responsible for managing the
application 5 requestors and servers. It creates requestors and servers at system startup, maintains
a configuration database that can be altered on line by operator commands, and load balances
the system by creating and deleting server instances as the load changes and as processors come
and go from the system.

Process Server Classes

To obtain software modularity, computations are broken into several processes. For example, a

transaction arriving from a terminal passes through a line«handler process (for instance, X25), a

protocol (for example, SNA}, a presentation services process to do screen. handling, an application
process that has the database logic, and several disk processes that manage disks, disk buffer
pools, locks, and transaction audit trails. This method breaks the application into many small
modules, which serve as units of service and of failure. If one unit fails, its computation switches

to its backup process. \
If a process performs a particular service (for exampie, acting as a name server or managing

.a particular database), then traffic against this server is likely to grow as the system grows.
Gradually, the load on such a process wiii increase until it becomes a bottleneck. Such bottlenecks
can be an impediment to linear growth in performance as processors are added. The concept of

process server class is introduced to circumvent this bottleneck problem.
A server class is a collection of processes that all perform the same function, typicaliy

spread over several processors. Such a collection can be managed by Pathway. Requests are sent to
the class rather than to individual members of the class. As the load increases, members are

added to the class. If a member fails or if one of the processors fails, the server class migrates

into the remaining processors. As the and decreases, the server class shrinks. Hence, process
server classes are a mechanism for fault toierance and for load balancing in a distributed system

[Tandem 1985}. The application designer specifies the program, parameters, minimum size,
maximum size, and distribution of the server class. Pathway reads this configuration database at

r

129

130

FIGURE 8—64

The structure of

the Pathway trans-
action precessing
monitor

8. HIGH—AVAI LABILITY SYSTEMS 643

Pathway requester and
server class manager

Server classes

 Screen COBOL requester
process pair

system startup and manages the server class, growing it as the load increases and shrinking it as
the load decreases.

Netwol’kr'ng

The process- and message-based structure of Guardian naturally generalizes to a network oper-

ating system. A proprietary network, called Expand (Tandem, 1937], enlarges the original 16-
processor design to a 4080-processor (255-node) network. Expand uses a packet—switched, hop-
by—hop routing scheme to move messages among nodes,- in essence, it connects ail of the IPBs

of remote systems. Expand is now widely used as a backbone for corporate networks or as an

intelligent network, acting as a gateway among other networks. The fault tolerance and modularity
of the architecture make it a natural choice for these applications. increasingly, the system
software supports standards such as SNA, OSI, MAP, SWIFT, TCP/IP, Named Pipes, and so forth.
These protocols run on top of the message system and appear to extend it.

130

131

644- II. THE PRACTICE OF RELIABLE SYSTEM DESSGN

The fault tolerance provided by the system extends to the network. Networking softwal
allows a session to continue even if a communication link breaks. For example, SNAX, Tandem
implementation of lBM's System Network Architecture, provides Continuous operation by tran
parently checkpointing at key points the internal information needed to sustain operation. Th
enables SNAX to maintain all active sessions in the event that a single processor or line fail
Similar provisions exist in the open system interconnection software.

Fault tolerance also underlies the distributed systems management products for global
managing NonStop systems and Expand networks. For example, with the event managemei
subsystem, 'an event recorder process executing as a NonStop process pair provides for gracefi
recovery from single-process failures. That is, if the primary event recorder process fails or
stopped, the backup process cbntinues recording in the appropriate event logs.

Disaster Protection

In conventional disaster recovery operations, when a disaster happens, people at a standby sit
retrieve the database tapes from archival storage, transfer them to the standby site, establish
compatible operating system environment, restore the data from tape to disk, switch commun.
cation lines to the backup site, and restart application programs. This is a complex, labor-intensive
and error-prone process that commonly takes from 12 to 48 hours. The issues surrounding disaste
recovery change dramatically when one moves from a traditionai batch environment to the WOl‘lt

of on-line transaction processing. OLTP customers require recovery within a matter of seconds 0
minutes with little or no lost transactions or data. Symmetric network and appiication design.
based on the remote duplicate database facility (RD‘F) software give this kind of disaster protection

Operations personnel can use RDF to get applications back on line within five minutes afte

a disaster. RDF stores the database at two systems, typically at two distinct geographic sites. Fo
each data item there is a primary copy and a backup copy of record. All updates are made to the
primary copy, and the TMF log records for the primary are sent to the site that holds the backup
copy of the record, where they are applied to the backup copy of the data. The customer car
select one of three‘options for the sending of these log records: '

. 2-Safe: No lost transactions at takeover. In thisicase, the transaction is recorded at boti
sites prior to committing the transaction to the client. it implies siightly longer response times
because of the added network delay.

- 1-Safe: The last few transactions may be lost at'takeover because they were not recordec
at the backup site. 1—safe has better response time and may be appropriate if each transaction is
of little value or is easily reconstructed at a later time‘.

a Electronic Vaulting: The log of the system is simply transmitted to a remote site and stored
there. It is not applied to the remote database until there is an actual disaster. This is similar to
the standby site scheme, but avoids the movement of data to the standby site when the disaster
happens. ' ‘

RDF makes it possible to maintain a current, on-line copy of the database at a secondary
node, as illustrated in Figure 8-435. The secondary database can be located nearby or across the
nation. The use of RDF is completely transparent to the appiication programmer. Any TMF
application can be converted to an RDF application without change. Only the database configu-
ration and operations procedures change [Lyon, 1990}.

To support its backup capabilities, RDF monitors and extracts information from TMF audit

files and sends this information over the Expand network to a corresponding RDF process on ther

131

132

B. HIGH-AVAliAfllLlTY SYSTEMS 645

 Primary

 fig

Mutual Backup: Each has Hub: One site acts as backup Vault: Log from primary
half DB and application for many others saved at backup '

FIGURE 8~65 Remote duplicate database facility

second node. This extraction usually takes place within seconds of the audit’s being created by
TMF. The RDF process on the second node receives the audit transactions and stores them in
disk buffers. Another RDF process on the second node then appEies these transactions to the
database, thus maintaining the duplicate database. The second copy of the database is usually
current within seconds of the primary database. Updating activities'on the second database can
be temporarily suspended Without compromising the integrity of the on-line backup proce55.
The audit transactions accumulate in disk buffers at the secondary site until updating is resumed.
Then all accumulated updates are automatically applied in the correct sequence.

RDF has some additional fault-tolerance.benefits. If one of the sites needs to be taken off ,
line for a software upgrade, hardware upgrade, facilities move, or just a fire drill to test the
disaster recovery facility, the load can be switched to the other node without interrupting service.

Operating System summary

The innovative aspects of the Guardian operating system do not entail new concepts; instead,
they are a synthesis and integration of preexisting ideas. 'Of particular importance are the low-
level abstractions: processes and messages. These abstractions allow all processor boundaries to
be hidden from both application programs and most system software. These initial abstractions
are the key to the system’s ability to tolerate failure. They also provide the configuration inde—
pendence that is necessary in order for system and application software to run on systems of
many sizes. Process pairs are a natural extension of the process concept to fault-tolerant execu~
tion. Transactions have been integrated with the operating system and appear as a natural part
of the execution environment. Spooling the transaction log to a remote site is the basis of the
disaster recovery facility. Extending the message-based system to a long-haul network makes it
geographically distributed.

The operating system provides the application programmer with general approaches to
process structuring, interprocess communication, and failure tolerance. Much has been docu-
mented about structuring programs by using multiple communicating processes, but few oper-
ating systems support such structures.

132

elm-\M

133

646 II. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Finally, the design goals of the system have been demonstrated in practice. Systems with
from 2 to 200 processors have been installed and are running on-line applications. Many of these
systems are members of multinode networks. They are recovering from failures and failures are
being repaired on line, with little or no impact on the system users.

Application Software

Application software provides a high—level interface for developing on-line transaction processing
applications to run on the low-level process-message-network system described in the preceding
sections. The basic principle is that the simpler the system, the less likely the user is to make
mistakes [Gray and Anderson, 1985]. For data communications, high-level interfaces are provided
to paint screens for presentation services. Furthermore, a high-level interface is provided to SNA
to simplify the applications programming task. For database management, the relational data
model is adopted, and the NonStop SQL software provides a variety of easily implemented
functions. A relational query language integrated with a report writer allows quick development
of ad hoc reports.

System programs are written in the transaction application language (TAL), which is a high-
Ievel, block-structured language similar to ALGOL or Pascal; TA]. provides access to machine
instructions where necessary. Most commerciai applications are written in COBOLBS or developed
through application generators. In addition, the system supports FORTRAN, Pascal, C, BASIC,
MUMPS, and other specialized languages. A binder allows programmers to combine modules
from different languages into a single application, and a symbolic debugger allows them to debug
in the source programming language. The goal, however, is to reduce such low-level programming
by moving to application-specific, fourth-generation languages.

A menu-oriented application generation system, Pathmaker, guides developers through the
process of developing and maintaining applications. Whenever possible, it generates the appli-
cation code for clients and servers based on the contents of an integrated system dictionary. The
application generator builds most clients from the menuvoriented interface, although the user
can tailor the client by adding COBOL statements. The template for the servers is also automat-
icaliy generated, but customers must add the semantics of the application, generally using
COBOL. Servers access the relational database either through COBOL record-at-a—time verbs or
through seboriented relational operators. Using automatically generated clients and the trans

action mechanism, customers can build fault-tolerant distributed applications with no special
programming required. Pathmaker provides maximum protection against failures through itsreliance on TMF. '

Ongoing investigations support the hypothesis that, as programmers migrate from language
to language, human error rates remain nearly constant. That is, a programmer will produce about
the same number of errors for every 1000 lines of code, regardless of the language being used.
Thus, the higher the level of language a programmer uses, the smaller the number of errors in

the object code. On this basis, Tandem urges its customers to use high-level tools like the
Pathmaker application generator and other products that incorporate fourth~generation language
concepts for OLTP program development. These tools include SQL Forms from Oracle, Appli«
cations By Forms from Ingres, and Focus from Information Builders. These toois greatly simplify
the programmer's work. '

New application software is under development that takes advantage of the growing number
of personal computers and other workstations in the business world. This influx of desktop
computers has dramatically influenced the way that business people do their computing. As these
machines become faster and provide more memory and disk storage, businesses are expected

133 i

134

OPERATIONS

SUMMARY AND

CONCLUSIONS

8. HlGH-AVAI LABlLlTY SYSTEMS 647

to want system software for them that parallels software running on mainframes and minicom-
puters. This software, in turn, will generate a growing number of applications.

As stressed earlier in this section, customers demand good price/performance from fault-

tolerant systems. Each. Cyclone processor can process about 25 standard transactions per second.

Benchmarks have demonstrated that 32 processors have 32 times the transaction throughput of
one processor; that is, throughput grows linearly with the number of processors, and the price
per transaction declines slightly [Tandem Performance Group, 1988]. Tandem believes a

50—processor Cyclone system is capable of 1000 transactions per second. The price per trans-

action for a smaii system compares favorably with other full-function systems. This price per
transaction demonstrates that single-fault tolerance need not be an expensive proposition.

Errors that originate with computer operators are a major source of faults. Operators are often

asked to make difficult decisions based on insufficient data or training. The system attempts to
minimize Operator actions and, where required, directs the operator to perform tasks and then

checks the operator’s actions for correctness {Gray, 1990]. NevertheleSs, the operator is in charge
and dictates what orders the computer must follow. This relationship poses a dilemma to the

system designer: how to limit the actions of the operator. First, all routine operations are handled

by the system. For example, the system automatically reconfigures itseh< in the case of a single
fault. The operator is left with only exceptional situations. Single-fault tolerance reduces the

urgency of dealing with failures of single components. The operator can be more leisurely in
dealing with most single failures.

Increasingly, operators are given a simple and uniform high-level model of the system’s

behavior that reflects physical realuworld entities, such as disks, tapes, lines, terminals, applica-

tions, and so on, rather than control blocks and other abstractions. The interface is organized in
terms of actions and exception reports. The operator is prompted through diagnostic steps to
localize and repair a failed component. .

Maintenance problems, discussed earlier in this chapter, are very similar to operations.
Ideally, there would be no maintenance. Single—fault tolerance allows hardware repair to be done

on a scheduled basis rather than as soon as possible, since the system continues to operate even
if a module fails. This approach reduces the co'st and stress of conventional maintenance. The

areas of single-fault—toierant operations and 5ingle-fault«tolerant maintenance are major topics of
research at Tandem.

Single—fault tolerance is a good engineering tradeoif for commercial systems {Horst and Gray,
1989]. For example, single disks are rated at an MTBF of five years. Duplexed disks, which record

data on two mirrored disks connected through dual controllers to dual processors, raise the

MTBF to 5000 years (theoretical) and 1500 years (measured). Triplexed disks would have a theo—

retical MTBF of over one million years, but because operator and software errors dominate, the
measured MTBF would probably be similar to that of dupiexed disks.

Single-fault tolerance through the use of fail-fast modules and reconfiguration must be

applied to both software and hardware. Processes and messages are the key to structuring
software into modules with good fault isolation. A side benefit of this design is that it can utilize
multiple processors and lends itself to a distributed system design. Moduiar growth of software

and hardware is a side effect of fault tolerance. if the system can tolerate repair and reintegration
of modules, then it can tolerate the addition of brand new modules. In addition, systems must
tolerate operations and environmental faults.

Fault tolerance can aiso be applied to open standard—based systems. These systems provide
the benefit of application transparent fault tolerance at the cost of additional hardware resources
and a decreased resilience to software faults.

134

135

648

REFERENCES

ll. THE PRACl'lCE OF RELIABLE SYSTEM DESIGN

Bartlett, 1978, 1981; Bitton, 1989; Bitten and Gray, 1988; Borr, 1981, 1984; Brinch Hansen, 1970;

Burman, 1985; Carr, 1981, 1985; Chan and Horst, 1989; Diikstra, 1968; Eddy, 1987,- Englert, 1989;
Enright, 1985; Garcia, 1988; Gray, 1979, 1985,1990; Gray and Anderson, 1985; Haerder and Reuter,
1983; Homan, Malizia, and Reismer, 1988; Horst, 1989; Horst and Chou, 1985; Horst and Gray,
1989; Horst, Harris, and Jardine, 1990; Horst and Metz,1984; Jewett, 1991; Jouppi and Wall, 1989.

Katzman,1977; Lenoski, 1988; Lyon, 1990; Mourad and Andrews, 1985; Nellen, 1985, 1986; Sohi,
Franklin, and Saluja, 1989; Tandem, 1985, 1987; Tandem Database Group, 1988; Tandem Perfor-
mance Group, 1988; Tom, 1988; Troisi, 1985; Uren, 1986; White, 1987.

THE STRATUS CASE

The Stratus Architecture

STEVEN WEBBER*

The fault-tolerant computer industry uses many terms that have different meanings for different

people. The following definitions are of particuiar importance in this report on Stratus architec—
ture.

- Hardware fault tolerance is the technique of applying hardware alone to effect fault—

tolerance. Commercially available hardware fault-toler'ant solutions include voting systems and
systems such as those developed by Stratus that utilize two levels of duplexing—one for checking

and one for fault—tolerance. Successful hardware fault-tolerant solutions require no effort on the
part of application programmers to effect fault~toierance.l Hardware fault-tolerant computers are
programmed as if they were simple, nonfault—tolerant computers. '

- Software fault tolerance is the technique of applying software programs to effect fault—
tolerance. These techniques typically include checkpointing information between different com-

puters within a computer network so that some other back-up computer can take over when the
primary computer fails. The majority of commercially available fault-tolerant products rely on
software fault tolerance.

- Software fault recovery, or the ability of a system to recover from software faults, refers to

the techniques brought into play when a software failu re is recognized. These techniques preserve
the integrity of the execution environment. They are independent of hardware fault tolerance,

providing an additional level of protection for a different class of failures.

- Critical on-line computing refers to systems that run a company’s most important business
operations and manage the delivery of their most important products and services to customers.

The system directly contributes to a business's profitability, revenue growth, or competitive
advantage; it is the direct interface between a business and its customers; it provides constantly

Changing data relied upon for decisions in real time by many users; it is responsible for individual
transactions of enormous financial value or business importance.

* The author acknowledges Kippi Fagerlund, who edited the draft manuscript, and also Marc Siil and Greg
Baryza, who provided some of the artwork. The evolution of Stratus products is the result of the efforts of
many people, including Bob Reid, Ken Wolff, Kurt Baty, Ron Dynneson, Joe Samson, Gardner Hendrie, Mike
Grady, Larry Johnson, Jerry Stern, Janice Lacy, Bob Freiburghouse, Richard Barnes, Paul Green, Otto Newman,
Herb Robinson, Neil Swinton, Doug Steinfelcl, Jim Murry, Jim Bush, John‘Bongiovanni, and Jim Filreis.

135

136

8. HIGH—AVAILABILITY SYSTEMS 649

- Data integrity refers to the consistency of multiple database records and files. Data integrity

is usually a concern only after a system interruption. Fault tolerance does not guarantee data
integrity. Data integrity istypically achieved through transaction protection.

- Data corruption is the contamination or alteration of data without any indication that the

data is no longer correct. The kind of fault tolerance provided by Stratus systems protects against
data corruption in neariy all cases. Most other systems, even fault-tolerant ones, provide minimal
means of protection against or detection of corrupted data, and often the data is irrevocably
corrupted before-the detection hardware can stop it.

. Transaction protection (TP) is the ability to perform a sequence of database and commu-

nications operations in an atomic way such that if any changes are made to a database or sequence
of databases, all associated changes that are part of the transaction are instituted. T? is indepen-

dent of fault tolerance. A complete TP system must include its own recovery capabilities so that
the integrity of the database after a system failure is guaranteed. Some TP systems do not provide
fault-tolerant features. When hardware failures occur, such systems go down, but when service

is restored, the database is made consistent such that each transaction prior to the failure is

applied or lost. Even hardware fault-tolerant TP systems must provide mechanisms in addition to
the normal system fault tolerance to guarantee database integrity against nonhardware-reiated
system crashes.

- On~iine transaction processing (OLTP) refers to a TP system's performing sequences of
transactions in real time as on-Iine users, machinery, or other computers wait. Typical OLTP

applications include 24-hour banking networks, airline reservation systems, manufacturing sup-
port programs, and point-of-sale terminal networks.

System downtime is typically broken up into the following categories.

- Hardware failures—failures of hardware that cause the system to stop running: As a result,

the application (solution for which the computer was purchased) is not available. Usually, hard-
ware failures lead to some degree of system degradation or failure. The degradation often

manifests itself as poorer performance (response time and/or throughput) and occasionally results

in the unavailability of selected data. The degradation may also result in the inaccessibility of
selected devices.

- Operating system software crashesifailure of the software resulting in a system crash:
After a' failure of this type, the system must somehow reinitialize all or part of itself. Often, the

failure is data-dependent and wili crash multiple systems Or continue to crash a system until some
manual corrective action is taken. In other cases, the failure is unreproducible and is brought

out only by the juxtaposition of relativeiy rare events (often related to 1/0 or communications
error situations that are difficult to test). If the faiiure is unreproducible, retrying or restarting

the system usually works, although there may be no insight as to why the system crashed.

- Operationai downtimFSYSGEN, missing or improper operator intervention: Operators

usually have high-leve! privileges (access or permission not granted to most users) and can
inadvertentiy cause considerable damage.

- Application software problems—failure of the application software leading to the inability
of the end-users to do their work: The operating system may remain operational, but the .

application must reinitialize itself or be reinitialized by explicit operator intervention. The fact
that the system remains up is of little consequence to the end-users.

- Database maintenance and backup—the maintenance and support of database systems

often results in periods of time when the database is not available for normal use: Registering

136

137

650

STRATUS
SOLUTIONS TO

DOWNTIME

II. THE PRACTICE OF RELIABLE SYSTEM DESIGN

new users, adding new structures, and backing up a database often requires that the database
be made unavailable. As with application system software problems, the availability of the system
without the database is of limited value.

- Environmental problems—problems with electrical power, air conditioning, earthquakes,
floods or other storms, smoke, contaminants, or sabotage.

- Communications failures—failure of communications lines used to interconnect systems.

- Field service—removal of parts of the system or the disabling of the entire system for such

activities as repairing failed components, running preventive maintenance, and running diagnos-
tics.

- Software installation—the unavailability of part of the system or an entire system while new
software is installed: Software installations fall into two main groups, installation of basic operating

system software (which usually requires a reboot) and installation of application software (which
rarely requires a reboot but usually requires the application to be quiesced or stopped).

- Hardware installation—the installation of new hardware to expand or upgrade a configu-
ration.

The design of a modern computer system must minimize or eliminate downtime in all of these
areas.

The statisticai breakdown of the occurrence of downtime as a result of the various factors

listed previously is different in nearly all published reports. Two trends are clearly important,
however. First, hardware (including that of noniault-tolerant systems) is becoming more reliable,

resulting in less downtime. Second, operational downtime (including operator errors and system

downtime for performing such activities as installing new‘ hardware or software and running
preventive maintenance on some component of the system) seems to be on the increase.

Another important trend is that software tends to become more stable and reliable the

longer it is in the field without significant functional improvement. Software stability is one of
the most important factors leading to software reliability. Modern software practices (structured

design techniques such as design reviews, documentation, and code; use of modern development
tools; object oriented programming; more extensive testing) have led to software products that
are initially significantly more reliable, but the highest levels of reliability of most software am“:
achieved only after fixing problems as they are encountered.

Another important issue relating to the availability of systems is environmental quality. For

example, it is becoming increasingly difficult to get high-quality, continuous electrical power.

Today's computer systems must not only be more forgiving of power fluctuations but must also
be able to survive (ride through) brief power outages.

Stratus has addressed potential downtime problem areas as follows.

- Hardware Failures: The Stratus hardware fault-tolerant architecture isoiates users from

almost all hardware failures.

- Operating System Software Crashes: System crashes are minimized (but not completely

eliminated) with the use of software fault recovery procedures.

- Operational Downtime: Operational downtime is almost completely eliminated due to the
lack of need for a SYSGEN; that is, hardware and software configuration occurs automatically.

:‘An operator needs to do iittle to run the system.

137

138

TABLE 8—7

Introduction of

major Stratus

hardware products

8. HIGHrAVAlLABlLITY SYSTEMS 651

 Year Product Significant New Features

1981 FT200 2~CPU 68000—based (2 logical CPUs/board); up to 16 MB of memory; user
and executive CPUs (not symmetric); 20-slot main chassis; powertail
recovery

1984 XA4UU 4—CPU 68010—based (4 logical CPUsr’board); symmetric multiprocessing
1984 XASUU 6—CPU EBOTO—based (6 logical CPUsB boards); symmetric

multiprocessing; 8—KB cache/CPU; floating point assist in hardware; 40-
slot main chassis

1987 XAZOOU 1- to 6-CPU 680207based (1 logical CPU/board); up to 96 MB of memory;
110-160 64-KB cache/CPU; floating point coprocessor; dynamic processor

upgrades; enhanced powerfail ride-through
1983 ' XA2000 4-CPU 68020—based (4 logical CPUs/board); generalized [/0 controller;

50—70 10-slot chassis; fault-tolerant li'O communications bus

1989 XAZGOO . Single-CPU 68030—based (1 logical CPU/board) ”midplane” eliminates

30 need for many cables and simplifies service; 6-slot chassis; integrated
. peripheral package; increased customer serviceability

1990 XA2000 1- t0 6-CPU 68030—based (1 logical CPUiboard); up to 256 MB of
210260 memory; TEES-KB intelligent cache/CPU; bus-watching for cache

consistency

- Application System Software Problems: Stratus provides highly structured, powerful inter-

faces for transaction processing and forms management. These interfaces can simplify application
development and lower the risk of the application’s introducing errors.

- Environmental Problems: Using sophisticated powerfail recovery procedures, powerfail ride-
through, and battery backup, Stratus systems avoid or minimize most power-related environ-

mental probiems. Stratus systems usually require no special air conditioning.

-'Field Service: Nearly all Stratus hardware can be replaced while the system is fully opera-

tional, minimizing the impact of field service on system availabiiity. Boards, disks, fans, power
supplies, and line adapters (interfaces to peripherals of all types) can be replaced on line while

the system is running. Most replacements can be installed by customers, although some assem-
blies require trained field service personnel. Self-diagnosing boards clearly indicate broken parts.
Specific failures are reported automatically to the Stratus Customer Assistance Center (CAC)

through the remote service network (RSN) (using autodialing modems). Field service is simple
and reliable.

- Software Installation: Installing basic operating system software (excluding device drivers)
requires a system reboot. Most other software (including most device drivers) can be installed
while the system is fully operational. To install new application software, however, it is often
necessary for the application itself to quiesce or reach a clean point.

- Hardware Installation: Table 8—7 lists the major hardware products Stratus has introduced

since 1931. Most Stratus hardware can be replaced on line white the system runs at full capacity.
Further, any configuration expansions (including adding disks, memory boards, communications
lines, and additional processors anywhere within a Stratus Computer network) can be performed
while the system is fuliy operational. The ability to dynamically expand or change the hardware

138

139

JES OF FAULT

.ERANCE

II. THE PRACTICE OF RELIABLE SYSTEM DESIGN

configuration of a system is becoming increasingly important due to the need for frequent changes
in many critical on—line systems.

A fault—tolerant system must be designed to withstand failures of ail types. This means that the
architecture and design of system software must be fault resilient and that every hardware

component of the system must be, in some way, redundant.

Software Issues

Stratus has taken several approaches to solving the problem of system software reliability. First,

from the beginning the Stratus architecture has included a mechanism that gives the system
software designers powerful analysis tools and capabilities. The Stratus system automatically
records information about every system crash and f0rwards this information or makes it ayailable
to the CAC or operations system personnel through the RSN. Stratus iearns of every customer

system crash automatically, and therefore has more knowledge of software problems than other

companies. The system continuously logs system and error activity. These logs are valuable for
analyzing many system outages. .

Second, Stratus uses software fault recovery techniques to enable the operating system to

recover from software bugs within the system. These techniques are described in detail later.

Finally, Stratus has used modern software development techniques, induding use of high-

level languages, extensive design and code reviews, testing for both quality and performance,
and significant customer involvement in new hardware and software products. The use of tools
and compilers avoids many classical errors (for example, forgetting to recompile all programs
when an include file changes or forgetting to initialize a variable).

Hardware Issues

Most fault-tolerant systems provide some method of recovery from the failure of a major hardware

component, but basic components are often overlooked. Specific critical components include
power, buses (often printed circuits), disks, printed circuit boards, and the ciock.

Table 845 describes the redundancy techniques of Stratus system components. The following

paragraphs describe how Stratus has addressed failures of these components.

Power. Power failures occur within the computer itself as well as outside of it. Uninterrupted

power sources solve only the external problem. The failure of a power supply or the cables or
buses that distribute the power to the active components will crash most systems. A complete

solution requires that power from separate sources be fed through different power suppiies to
separate logic boards over different buses. .

Techniques that use special chips to provide duplicate, self-checking circuitry do not satis-
factorily address the problem of power failures. Such chips use a single power source. This
solution to protect against internal chip logic errors is becoming less practical as a means for

achieving fault tolerance as computer chips become more reliable. Most failures today occur
above the chip level. Similarly, triply redundant voting systems do not solve the power problem

unless each voting circuit and logic unit derives power from a separate source.

Buses. Architectures that use a bus must have a duplicate bus to protect against failure. A bus

can fail because of a mechanical problem, such as a short in the bus interface iogic. Systems that
use some form of local area network must have duplicate media and interfacing logic. Further-

more, local area network systems must provide software to automatically manage failures in the

139

l

r

140

. TABLE 8—8

Stratus system

= components

SYSTEM

ARCHITECTURE
OVERVIEW

8. HlGH-AVAILABELITY SYSTEMS 653

_. ___ ___).W.

Component Type/Width Bandwidth/Speed Redundancy TechniqueW

Processor 68000 8 MHz Self—checking; lockstep pairs
68010 8 MHZ
68020 16 MHZ
68030 24 MHz

Memory 8 MB _— Self-checking logic for
16 MB — control; ECC for data;
32 MB —- l’ockstep pairs

StrataBus 32 bits data 64 MBlsec Duplicated; parity on groups
' ' of signals

StrataLink — 1.4/2.8 MB/sec Self—checking; duplicated

l/O controllers Communications 600 Kb/sec Self-checking; lockstep pairs

IOP 4 MBr'sec Self~checking; lockstep pairs
' or duplicated

Disk 1.2 MBr'sec Self-checking; duplicated
Tape 500 KB/sec Self-checking

Devices Disks fl ‘ " Duplicated
Terminals '—- None
Tapes — —

media. Without such software, application programmers must take on what should be a systemfunction.

Disks. All fault-tolerant computers provide some form of disk redundancy. Some systems provide
the option of mirroring entire volumes; others allow mirroring of partial volumes. Since disks

are far less volatile than main memory, many applications and users rightfully feel secure only
after their data is safely stored on one or more disks.

Boards. Failure of a single component on a computer board usualiy has one of two effects: the

entire board breaks in some way recognizable by the rest of the system, or worse yet, the error
goes unnoticed: In most systems, either situation eventually-ieads to a crash of the module

containing the board. A truly fault-tolerant computer must protect against any error of this type.J

Clocks. Although very reliable, clock circuits which generate and distribute clocking signals to
the various components of the system must be considered when designing a fault-tolerant system.

A Stratus computer system consists of up to 32 modules connected through a Stratus intermodule

bus (StrataLink). The StrataLink, a redundant, coaxial, proprietary interconnect mechanism, is
used for system eXpansion. Using StrataLink, the Stratus operating system provides a global
system view for all devices in the system. it also provides "message passing” between cooperating
processes. The StrataLink restricts modules to-a geographic proximity of a few miles, but typically
the modules are linked into a system in a single‘building or afew adjacent buildings. The StrataLink
consists of two independent coakial ”links.” Each link runs at 1 .4 megabytes‘per second, providing

an intermoduie throughput capability of 2.8 megabytes per second. The system software contin-

140

141

654

FIGURE 3—66

A typical network

ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

uously uses both links, thereby recognizing immediately if one of the links fails. If a link does
fail, the throughput drops to 1.4 megabytes per second.

A Stratus network consists of several systems connected using an X25 packet switched
network or the StrataLink hardware. Figure 8—66 illustrates. an X25 packet switched network of

four systems (4 groups of 14 modules total connected with StrataLinks).
Each module within a system is a complete computer; Figure 8—67 illustrates a typical Stratus

module. Each module is bus-oriented, containing a Stratus backplane or midplane that imple-

ments a proprietary fault-tolerant module bus called a StrataBus. A module also contains one or
more processor board pairs, one or more memory board pairs, and pairs of l/O controllers
connected to various peripheral devices, including disks, tapes, and communications interfaces.
A module contains its own redundant power supplies, battery backup subsystem, and various

card cages for 1/0 line adapters and E10 controlling logic.

The Basic Module Bus

The maior boards of a Stratus module interface with the StrataBus. The StrataBus has 32 logical
slots and is implemented in various Stratus modules with 6, 10, 20, or 40 physical slots. (The 40-
slot chassis supports logicai board stacks that contain multiple physical boards.) The StrataBus
uses an arbitration scheme that, in its simplest form, provides bus priority as a function of bus

slot number. Even-numbered slots within the bus derive power from a subsystem that is totally
independent of the power subsystem used by the odd-numbered slots of the bus. This partitioning
of slots into disjoint, isolated sets enables a module to survive the complete failure of either of
its power subsystems. ‘

The power for the boards derived from these power supplies consists of unregulated 24

Vac, Each board regulates this power to the necessary levels. By placing the power regulation
function on each board, it is possible to remove and insert boards from the StrataBus while the

Packet
switched
network

1':--l—i-7”'3"PPM

Modules 4— Systems3':—-r"th-l§-7'IH‘U’I

141

142

8. HIGH-AVAILABILITY SYSTEMS 655

FIGURE 8—67

A Stratus 40:slot
module

bus is fully powered. No components of the system need to be disabled to remove or insert a
board.

The StrataBus is a synchronous bus. The system clocking function drives all circuitry in the
system and is distributed using a single bus signal. This clock signal generates a standard bus

tick of 125 nanoseconds (8 MHZ). The bus protocol provides for extensive overiapping/pipelining,
allowing a new bus request of up to 64 bits of data on every 125-nanosecond tick. This yields a

maximum bus bandwidth of 64 megabytes per second. (The system clocking function generates
higher frequencies for boards running ‘at rates faster than 8 MHz.)

Nearly every signal on the bus is duplicated. The bus is actually viewed as two independent

buses, has A and bus B, each with its owu power, ground, data, address, and control lines. Parity
protects the lines of each bus.

Each major system board simultaneously interfaces with both buses. A board drives the same
data on both buses and reads data from both buses if they are both enabled. (The hardware

automatically instructs all boards to ignore a suspect bus.)

A power supply for each bus powers puilup resistors to effect an open collector technology.
Unless driven to a 1 state by at least one board, each bus signal represents a logical 0.

Bus Monitoring by Memory Boards. The various parity signals on the StrataBus detect bus failures

or bus—related failures of boards that interface with the bus. Controller logic performs the
detection within the memory boards. If multiple pairs of memory boards exist within a module,

all such boards monitor the bus for problems. If a memory board detects a problem on either
bus, it declares that bus broken and instructs all boards to stop using the bus (by asserting signalsi

142

fi;_./—-1_

143

656 II. THE PRACTlCE 0F RELIABLE SYSTEM DESIGN

on bus lines). This bus monitoring detects such failures as an open bus line, a shorted bus line,

or the failure of a bus driver on one of the boards plugged into the bus. Such bus driver failures
cannot be detected by the on-board checking logic, as the drivers are enabled and disabled by
the comparator logic and are thus logically beyond it (see Figure 8m69). The bus drivers are the
only logic on a major board not covered by the self-checking logic of the board.

If the memory subsystem detects a subsequent failure of the single working bus, that bus is
declared broken and the originally broken bus is declared good. The buses alternate in this

manner until system software tests the buses and places them both back in service. Alternating

between failing buses provides a simple recovery strategy for transient bus errors. It the original
failed bus has a hard failure, implying that both buses have simultaneously failed, the module is
inoperable.

Power Subsystem

Each power supply has an associated battery backup system. The battery system works in two
modes: It either powers all boards within the module, or it powers only the memory boards.

The power supplies monitor the AC power and interrupt the system when they detect a power

failure. The system software reacts to a power failure indication by saving in main memory all
information needed by boards in the system. In 90‘95 percent of all power failures, power returns

within a few seconds. If the AC power-sensing hardware detects a failure of this type, the system

simply continues with what it was doing before the power failure was first detected.
The battery systems have enough capacity to power the entire module (excluding disk and

tape drives) for up to 'six seconds during a power outage. After six seconds, if the AC power has
not returned, the system quiesces all boards and instructs the hardware to supply power only to

the memory boards. in this extended battery backup mode, the system is not operational, but
its complete state is preserved. If power is restored within an hour or two, depending on the

amount of memory that must be backed up by battery, the system software restores the system

to its state at the time of the power interruption. All IIO that did not complete is restarted.
Du ring the first few seconds of a power outage (while the system is still operating), the disks

are not powered and begin to cycle down. This typically leads to normal, recoverable disk errors

that are retried when the power is fully restored. No data can be damaged.
With the large memory sizes supported by Stratus modules, there is not enough time to

save all of memory to disk before it becomes necessary to switch to the low power usage mode,
which supports only memory. The battery system has insufficient power to support all disks in
an operational state. Additional batteries can be configured to provide recovery from arbitrarily
long power outages.

System Boards

The boards that interface to the StrataBus have several common features. First, they all operate

synchronously at a simple multiple of the common system frequency. First-generation boards run
at 8 MHZ, but newer boards operate at up to 24 MHz.

Second, all boards are self-checking and auto-isolating. The boards check themselves for
component errors on every clock tick and will not place data on the bus if a board finds itself to
be in error. This self-checking is typically performed by duplicating the logic on the board and
running both sets of logic independently but synchronously. The outputs of these independent

logic networks then run through onboard comparator circuits that enable the bus drivers. The
self-checking logic automatically causes a board to break. A failed board is said to be broken or

143

144

FIGURE 8—68

A self-checking
board

:
.9
E

A. : B, a
logic E Ioglc 2
area : area 3

i 3oE.

:j Stlffener 3:

8. HlGH-AVAILAB] LlW SYSTEMS 657

redwlighted. (When a board breaks, a red LED on the front of the board lights to identify it.) A
broken board never drives data onto the buses.

Third, each board must provide its own power regulation to convert the unregulated 24 VDC
available from the bus to usable Til levels. .

Fourth, each board is self-identifying, providing system software with coded information
describing the board's type, the revision level of the board, the revision level of the PROM

software on the board (if any), and a limited amount of board repair history. This information is

critical to the software that puts reinserted boards on line. If the boards are incompatible, the
system does not accept the new board.

Fifth, all boards that interface to the StrataBus must obey a set of common interface con—

ventions used by the Stratus maintenance and diagnostic software for testing, initializing, and
enabling boards in the system. The common interface allows the operating system software to

monitor and diagnose boards plugged into the bus through a common mapped IIO space—a
special range of virtual memory addresses—which is interpreted similarly for all boards. (Each
slot within the backplane has a set of addresses associated with it that control the board in that

slot. These addresses are referenced to enable, disable, test, remove, and restore the board.)
One Specific requirement of this selfwchecking feature is that both halves of a board must

behave totally deterministically. Any logic must progress from state to state with each clock tick

totally deterministically. In particular, don’t care states (bits that can apparently harmlessly assume

either a O or a 1) are not allowed, since they may yieid conflicting values in the comparator logicon the boards.

I Figure 8—68 depicts the genera] layout of a Stratus self-checking board. The A connector
connects to bus A, the B connector connects to bus 3, and the C connector connects to external

Mechanical

key and CA connector B connector connector

144

145

658 II. THE PRACTICE OF RELIABLE SYSTEM DESIGN

logic, such as an JIO bus, the maintenance panel (in the case of CPU boards), or'to other boards
of the same type {as is the case for memory boards).

Figure 8—69 is a block diagram of the typical checking logic for a self-checking board. The
comparator logic (represented by the question mark in Figure 8-69) enables and disables the bus

drivers. If a compare mismatch occurs, the bus drivers are immediately disabled, and no data isallowed out on the buses.

Boards within a Stratus system nearly always occur in pairs. Such boards are referred to as

partners. Major boards operate in two ways: either in synchronous lockstep with a partner board
or only logically paired with a partner board. When operating in synchronous lockstep, proprietary
Stratus hardware and software synchronize both self-checking boards of the pair; thus, both
boards (including a total of four sets of logic) do exactly the same thing on any bus cycle. This
requires that the boards behave completely deterministically with respect to any conditions that
can arise. in essence, the same requirements that apply to self-checking boards (mainly total
determinism of the logic) apply to boards in synchronous lockstep.

Two boards running in synchronous lockstep read the same values from the StrataBus

simultaneously. Output signals are logically ORed on the StrataBus. For example, two client
partner boards ask for a bus cycle {arbitration for the bus) at exactly the same time (on the same
cycle) by asserting their intention to use the bus. If the arbitration network grants the bus to the
pair of boards, they both place the address for a read orrwrite on the bus at the next clock tick.
Two ticks later, the client boards or the responding boards (usually memory controllers) place
the data on the bus. The data is taken off the bus one tick later.

Boards that interface with such devices as disks, tapes, and the StrataLink operate in a
logically paired state. Such boards are not synchronized in lockstep with their partners; rather,
they rely on operating system software for an equivalent function. (The two halves of the board
must be synchronized.) Disk mirroring with dedicated disk controllers uses this method. Software
ensures that mirrored disks contain duplicate, consistent copies of data. This software is com-

FIGURE 8—69

The logic of a self-
checking board

145

146

8. HIGH-AVAILABILITY SYSTEMS 659

pletely invisible and inaccessible to application code (and most operating system code) and
therefore need not concern application and operating system developers. The placement of
partner boards in even-odd slots of the StrataBus chassis is not required by the architecture, but
it is required to protect against powar supply failures.

Off—Board [/0 Interface Buses

The l/O controller boards usually connect to some form of HO bus. The type of bus is a function
of the type of controller. The dedicated disk controllers have several interface options such as
Stratus proprietary and SMD. The tape and StrataLink controllers each interface to a single device
and do not have an associated bus. The programmable StrataBus interface (PSI) controller has a
Stratus proprietary bus. The communications controllers interface to Stratus proprietary buses,
some of which are fault tolerant. The IJO processor (IOP) boards interface to a Stratus proprietaryfault-tolerant bus.

Any controllers that run in lockstep with a partner and interface to nonfault-tolerant buses
must have special logic to interface to the bus. This guarantees that all four sets of logic (two
sets on each board of the partnered pair) see the same data. This scheme is typically implemented
using (1) latches on the logic interfacing to the bus, (2) conservative timing assumptions so that
clocking signals from the bus lead to all four sets of logic seeing the same data, and more recently,
(3) reflexive checking logic on the controller boards. The reflexive checking logic trades special
signals between the partnered boards at each clock tick to make sure that the boards are still

automatically. This reflexive checking guards against failing devices connected to one of the
nonfault—tolerant buses. ‘ '

Line adapters, or I/O adapters (lOAs), plug into the various l/O buses and interface with
devices or communications lines. These come in many types: full modem asynchronous, null
modem asynchronous, synchronous, or high-speed synchronous. The lOAs usually contain mi—.
croprocessors and significant amounts of memory for loading protocol-specific code to drive that
particular device or communications line.

The IOP utilizes a sophisticated, self-checking, duplexed [/0 bus, called the HQ bus, to
interface to the IOAs. This is a duplicated address/data multiplexed bus. The same bus signals
are used for both address’and data, and there are two separate sets of signals. The bus is limited
to 20 feet in length and supports 4 megabytes per second transfer speeds. Both the P and the Q
buses use parity for checking. Each bus has four function code lines, again protected by parity.
The bus design is expandable to 8 megabytes per second. I

The PIQ bus protects against any single—bit asynchronous glitch and any multibit failure on
a single bus. The bus uses loop-back checking to ensure that a bus has what was placed on it,
bus-to-bus comparison {P versus Q) to see if both buses have the same data, and continual
checking for'errors by every board on the bus. Each IOA has a pair of custom gate arrays to
implement the special bus protocols and checking logic. The P/Q bus can accept white noise on
any data line and continue to run. Figure 8—70 illustrates the logical configuration of 1/0.

Major Board Types

Stratus supports three major board types: processors, memory boards, and lfO controllers. The
processor and memory boards run in lockstep. Some 110 controllers run in lockstep, and some
run logically paired.

146

147

660

FIGURE 8—70

Logical configura—

tion of HO compo-
nents

II. THE PRACI'ICE OF RELIABLE SYSTEM DESIGN

StrataLink - a 8-inch disks
(SIB) Mk a Up to 731 MB

Tape grape 4s and 50 MB
/ 9vtrack, 90 IPS

PS]

- Up to 19.2 ms
Disk -

' 10 Mb/s

TCP/IP

UCOMM 2 lines
Up to 64 Kb/S
User programmable

Memory E4 Mbiis token ring
L

i

StrataBus P/Qbus

Com'm

cru scsa SCSI interface

Processors. Stratus has several processor board products, alt based on the same principles. The

operating system software supports multiple processors executing out of a common shared
memory system (often referred to as symmetric multiprocessing). This provides significant per-

formance improvements over single-CPU configurations. For applications that require more CPUs
than the maximum supported by a single module, Stratus resorts to the same architecture other
computers use for expansion: loosely-coupled configurations iinked together over some high—

speed interconnect, using a combination of message passing and remote procedure calis.

Memories. Stratus system memory is contained on memory packages of one—, two-, or three-
board stacks. Such stacks are calfed a board since they behave as a single unit and use one logical
slot in the StrataBus chassis. A memory board contains controller logic that interfaces to the

StrataBus and drives the memory chips. Memory currently comes in 4-, 8-,16- and 32-megabyte

packages All memory is protected by single--'bit error-correcting, double-bit error-detecting (ECC)
logic.

Memory can be configured in one of two ways: simplexed or dupiexed. When configured
in a simplexed manner, the memory is not fault tolerant, although it can survive single-hit errors.

When configured in a duplexed manner, the memory is fault tolerant. The simplexed configuration
is' provided for customers who want to configure more memory at certain times while knowingly
sacrificing fault tolerance. Memory can be switched between fully dupiexed and simplexed and

back to fully duplexed again while the system operates. Figure 8—71 illustrates various configu-

147

148

8. HIGH-AVAILABILITY SYSTEMS 661

 FIGURE 8-71 48 MB
Methods of du-

plexfng and sim-

plexfng memory 40 M3

32 MB

24 MB

16 MB

8 MB

24 MB ' 32 MB 40 MB 40 MB

l l_‘# . J B-MB boards
Fully Partially Fuily - _

duplexed duplexed simplexed 16 MB boards

rations of the same set of four memory boards, two of which are 16 megabytes and two 'of which
are 8 megabytes. I ‘_ '

The ECC logic 0n the memory boards behaves differently, depending on whether or not the

memory is dup’lexed. If the memory is duplexed, a board detecting an ECC error immediately
declares itself temporarily broken, allowing the remaining partner board to continue operating.
Operating system software tests the broken board, and if the error appears to be transient, the
board is reduplexed with its partner. If the memory board is running simplexed when the ECC

error occurs, the error is corrected, and'the client board receives the correct data two cycles
later. The board is not reported as broken in this case. _ _

When a memory board islreduplexed with its partner, the additional memory controller is
placed into a listening state; it does not drive data onto the bus. This state allows a special bus
cycle to read from the good memory and immediately write back to both memory boards. A
background system process sweeps through all memory using this cycle, allowing normal oper-
ations to continue while a memory board is added to the system. More recently manufactured
memory boards can perform this update operation automatically (after diagnostic system software
instructs them to do so). -

l/O Controllers. As previously mentioned, I/O.co‘ntrolier boards operate in one of two ways.
Synchronously Iockstepped boards include the various models of communications controllers,

“ac/x

148

149

662 ii. THE PRACTICE OF RELIABLE SYSTEM DESIGN

the IOP, and the PSI. if one of the boards of such a pair fails or is removed from the system

physically, the other board continues to process what the two boards were doing in parallel.
Logically paired llO controller boards perform different physical tasks simultaneously for

peripherals such as disk and tape. The operating system software ensures that applications are
presented with a fault-tolerant base on which to work. The most interesting board type handled
in this way is the disk controller. (Stratus supports disks with the lOP, as well as with dedicated
disk controllers. The basic algorithms that follow apply to either.)

Disks. Disks are grouped into logical volumes of up to 10 pairs of disks. The disks in a logical
volume need not all be of the same type. Each disk in the logical volume is usually, but not

necessarily, duplexed or mirrored With another disk. A disk and its corresponding partner disk
are called a duplexed pair. Duplexed pairs must be of the same disk type.

Standard configurations assign the two disks of a duplexed pair to different disk controller
boards. This configuration provides two ‘compietely independent hardware paths for accessing

the two copies of data. The controlling logic, electrical power to drive the logic, bus interfaces,
and cabiing system are also duplicated. The operating system software uses several techniques
to ensure that both disks of a dupiexed pair contain exactly the same data and that if one disk
fails, its replacement is brought Lip to date automatically.

CRC Checks for Disk Blocks. Each block of data written to disk is checksummed, and the checksum
is written to the disk with the data. This allows the hardware to detect problems related to cables

and connectors and failures that were not detected by the disk hardware. The checksums are

examined by logic in the disk controller, which is itself self-checking, providing an additional
guarantee of data integrity.

Bad Block Remapping. Stratus software keeps a list of blocks that are unusable—either because
the manufacturer declared them unusable or because Stratus diagnostic software determined they

were unusable during the manufacturing process or normal operation. in either case, the oper-
ating system allocates another block on the disk from a pool (on each disk) reserved for this

purpose and uses this alternate block whenever references are made to the faiied blockrThe
software uses the alternate disk block address for all accesses to the disk. The remapping is done

whenever a read or write fails and retries are unsuccessful. The knowledge of this remapping is
isolated to limited softwarein the disk system

When a write failure 'occurs, the data is simply kept in memory and written to the newly
aliocated block. When a read fails, the data is read from the other disk and then written back to
an alternate block on the disk that had the read failure.'

SCSI disk manufacturers now build this type of facility (or a variant of it) into the drives that
Stratus purchases and incorporates into its systems.

Reads from a Duplexed Fair. The operating system can read from either of two disks containing
the same data. Depending on load, activity, and reference patterns, appropriate disk selection

algorithms can lead to an effective diSk performance improvement. One algorithm that Stratus

uses is simple: if both disks are idle (no real or queued activity to the disk), the operating system
selects the disk positioned closest to the cylinder on which the data resides. if one disk is busy,

the operating system selects the other disk. if both disks are busy, a disk is selected at random
and the operating system uses a finer-grained disk sorting algorithm.

Fast and Normal Disk Recovery. Stratus hardware and software can diagnose a particular failure
when it occurs. Two cases are significant: a controller (which can be controlling several disk
drives) fails, or a single drive fails.

149

150

8. HlGH-AVAILABILITY SYSTEMS 663

in the case of a controller failure, the system continues to operate by reading from and

writing to the disks connected to the controller partner that is interfacing with the mirrored disks.
When the failed controller is replaced (on line, while the system is fully operational), the operating
system automatically brings the disks connected to that controller in synchronization with the

disks that were in use while the controller was out of service. Stratus calls this updating operation
disk recovery. The operating system performs it automatically upon recognition of the replacement
controller in the module. Basically, disk recovery consists of copying data from the good (con-
sistent, complete) disk’to the bad (inconsistent, incomplete} disk.

Stratus provides two forms of disk recovery. The first, fast disk recovery, is used when a
controller, rather than a drive, fails. in this case, most of the data that exist on the drives connected

to that controller are valid. As soon as the controller fails, the operating system software begins
tracking all writes to the disks connected to that controller. When the controller is later replaced,

the system need only update the blocks that were modified while the controller was missing or
broken. Any data that may have been modified while the controller was broken are copied from

the good disk, thereby guaranteeing consistency of data on both disks.
The second form of disk recovery, normal disk recovery, is used when the entire disk must

be updated from its partner. Normal disk recovery is necessary, for example, if the drive itself

must be replaced. The system software copies all used blocks from the valid disk to the new disk
while the system operates. During the recovery period, the software forces writes to both disks

(while reading only from the good disk), guaranteeing that, when the recovery pass is complete,
the disks are synchronized.

Disk Writes. Most operating system developers do not worry about failure scenarios to the degree
that developers of fault-tolerant systems must. Two issues are of particular interest because they
demonstrate Stratus’s concern for guaranteeing data integrity.

The first relates to serial writes,- the second relates to verified writes. The Stratus disk software

must, as noted, manage the writing of each data block to two separate disks. Writing could be
done in parallel (overlapping the IIO), since totally separate IJO paths are available. instead, the

operating system does not usually begin the second write of the two until it knows that the first
write has completed without error. This strategy protects against an extended power failure while

a parallel write is done to both disks. Such a power failure, in rare cases, could lead to blocks
being written incorrectly as the write logic within the disk drives loses power. Incorrectly written
blocks, in turn, could lead to the destruction of both copies of a piece of data.

Writes are also verified to guarantee that the data is reliably on disk. The second check,
referred to as disk verify, is provided on most vendors’ disk hardware.

Stratus provides the option of allowing selected disks to run without verifying writes. A

. parallel write option will be available in the future.

Synchronizing Boards

When a Stratus module is initialized, all boards that are running in lockstep must be synchronized.

The concept is fairly simple: get the four sets of logic to do exactly the same thing. The actual
implementation is a bit tricky. The system starts up with all intelligence isolated to one of the

main CPUs of the system. Tie-breaking hardware effectively runs exactly one CPU at first. All
other boards initialize themselves but remain off line. The running CPU surveys the hardware in

the system, using the mapped l/O space that is part of the common interface to each board that
interfaces with the StrataBus. The CPU brings the other boards within the system on line one by
one.

Before a CPU can run, it must synchronize its two halves: All registers, caches, memory

150

151

664

RECOVERY

SCENARIOS

ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

cells, and microprocessors must be provided with the same data. The CPU initializes these items
before enabling the comparator logic that would othemrise force the board off~line as broken.

Memories must be brought on line by the initializing CPU before any [[0 (other than primitive
character lr'O to a terminal} can be accomplished.

Reflexive Checking

The term reflexive checking describes the interboard communication performed by certain pairs
of boards to guarantee they are synchronized. If the boards get out of synchronization, one of
them is forced off line automatically by the hardware so that the boards’ signals, which are ORed
on the bus, do not confuse other boards in the system. This logic typically exchanges selected
control state indicators that change frequentiy (at least every tick) during operation of the boards.

Periodic Tests

The comparator logic on self-checking boards can fail. Such a failure has two manifestations:

either a false failure can be reported, or a true failure can be missed. A false failure indication is

harmless to the system, but even so, it is immediately detected and indicated—the board goes
broken. Failure to diagnose a real problem is also harmless as long as the partner board is

working. If a single failure occurs, one of the buses is receiving the correct data from both boards.
The failing board can fail in one of two ways. First, it can place a D on the bus when it should
place a ‘l, in which case the partner board overrides it by placing the correct data on the bus

with an OR signal. Second, it can place a1 on the‘bus when it should (and its partner does) place
a 0 on the bus. In this case, the memory controllers detect the problem using the parity~checking
logic and declare that bus broken.

The board can also be broken in such a way that no data at all are being placed on the bus;
for example, the on-board power system could be broken. if this is the case, the bus monitoring
software run by the maintenance process detects the problem. The board does not appear to be
on line. Note that the state of the bus logic is such that a U is assumed if nothing is driving the
bus (as would be the case if the board had no power).

With this background, it is easy to understand how Stratus achieves its fault tolerance while
meeting so many of its corporate product goals. Once an entire system is initialized and all

duplexed components are synchronized with their partners, the following failures are insignificant
both to system availability and capacity.

- Board Failure: When a component or materials failure associated with a board occurs, the

failing board automatically drops out while its partner continues to run. The partner does not
take over, as would be the case with a backup component; instead, it continues the actions it

was performing synchronously with its partner. One board, rather than two, is ORing signals to
the bus and responding to other bus requests. The operating system software hides the unavail-
ability of the failed board for boards not running in lockstep. After the failed board takes itself
off line, the system increments a fault count associated with the board and recalculates the

board’s 'mean time between failures (MTBF) based on any earlier failures. If the MTBF is less than
an administratively set value, the board is marked for replacement, and the RSN is invoked to

report the board as a failed component. If the calculated MTBF is still greater than acceptable
parameters, the board performs a series of self-tests. If it fails these tests, the faiiure is not
transient, and the replacement process is initiated. If the board passes these seif~tests, it is either

151

152

 ARCHITECTURE

TRADEOFFS

8. HIGHAAVAILABILITY SYSTEMS 665

redupiexed with its partner board (for synchronously lockstepped boards) or logically brought
back into service (for logically paired boards).

- Power Supply Failure: if one of the two Stratus power supplies within a module fails, all of
the boards driven by that power supply drop out while their partner boards continue to run at
full capacity. If either power supply is operational, no battery backup hardware is needed.

- Operational Downtime: Operational downtime because of improper action as a result of a

hardware failure is almost unheard of. The board that failed is self-identifying, so it is unlikely
that the wrong. board will be removed 1for repair. Further, all board replacements are performed

while the system is fully operational. it typically requires no more than a few seconds to integrate
the replacement board into the module. No time is lost waiting for someone to notice that the
system has failed in some way. When a failure does occur, it results in no downtime, and
notification (including the CAC, usually responsible for initiating the correct repair action) is
automatic.

- Field Service: The classical outages due to field service (shotgunning by trying to guess

what might be wrong and restarting the system to see if the guess was correct} do not exist with
Stratus systems. The soft-diagnosing and self-identifying nature of the boards makes this approach
obsolete. No preventive maintenance is required for the central system components and therefore
no downtime results. As mentioned previously, repair of the system by replacing boards does
not affect system operation.

- Hardware Installation: Installing new hardware to expand or upgrade a module or system

does not require any downtime. In fact, when new hardware is dynamically added, the system
automatically makes such hardware available to already running applications. For example, ad—

ditional processor boards can be added to a system, and the software can immediately benefit
from the increase in processing power (due to the symmetric multiprocessing architecture of the
operating system). Similarly, memory boards and disks can be dynamically added to a live con-

figuration and are then immediately available for application use (without rebooting the system).

The entire Stratus architecture reflects tradeoffs between simplicity, ease of maintenance, lifetime

system costs, logistics concerns, and technology trends on one hand and slight increases in
product cost on the other hand. The resulting products clearly justify such tradeoffs.

First, the Stratus solution requires more hardware. Any truly fault-tolerant system requires
more hardware than a conventional system, but a Stratus system needs, in some cases, four times
the amount of hardware. However, the cost of hardware (primarily logic chips) that Stratus must

quadruplicate is low and is decreasing, becoming a less significant part of the total cost of a
computer system, particularly when measured over the lifetime of the system. The components

with the most significant hardware costs (mainly on-line memory and peripherals) need only be
duplicated (or, in the case of disks, redundant in some way), and any truly fault-tolerant computer
has these same requirements.

Second, to design circuits that use Stratus concepts, logic chips must be totally deterministic.
This has been probiematic in the past, but it is becoming less so, as chip manufacturers become

more aware of the needs of architectures built on Stratus concepts. Stratus has received com—
mitments from several chip manufacturers for the future production of chips with totally deter-
ministic behavior.

Third, since the iogic circuits depend on total synchronization, anything that detracts from
this synchronization can be a potential problem. The primary sources of difficulty in this area are

152

i
J

153

666

STRATUS
SOFTWARE

ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

new revisions of chips (new masks, usually to fix bugs). Chips that behave slightly differently
from earlier revisions are harmless to all other architectures, but to the Stratus architecture, they
can be devastating. (If the differing chips are on the same board, the board automatically diag-
noses the difference and stops itself. if the differing chips are on separate boards, the boards
cannot be synchronized or stay synchronized.) Therefore, Stratus must be sensitive to the revision
level of the chips that are placed on boards. Extensive onboard self-identification hardware allows
the operating system software to reject boards that do not meet synchronization requirements.

The Stratus approach to fault tolerance does not depend on a particular operating system,-
however, software must be capable of managing disk mirroring, redundant intermodule connec-
tions, and the diagnostics and maintenance functions necessary to test, remove, and install
replacement or expansion hardware. Further, as noted eariier, extensive work is needed to
improve the quality and fault tolerance of system software. This work includes a well—structured
development process, of course, but Stratus has been able to transcend normal quality levels
with its extensive knowledge of system failure scenarios (through the RSN) and with the use of
software fault-recovery techniques described later.

Stratus chose to develop its OWn proprietary operating system, the Virtual Operating System
(V05). When VOS was developed, no other commercially available operating system provided
the necessary features. These features include support for the following: multiple processors
running in a tightly coupled, shared main memory configuration; disk mirroring; a file system
that supports all high-level features of COBOL, as well as transaction-protected files; worldwide
networking, providing a single system view of thousands of modules; and the previously men-
tioned features needed for fault tolerance. .

Stratus has since decided to support the UNIX operating system, as well as VOS. The

following discussion refers specifically to VOS, but' all of the concepts leading to high-quality
software are also used in the Stratus UNIX offering, FTX.

Processes

V05 is a process-oriented operating system based on a procedure-call model. It differs from

other general-purpose operating systems in its support for multiple processors, emphasis on the
client/server model, ability to provide transaction-protected distributed databases, management
of fault-tolerant issues such as disk mirroring, and its relative newness.

Programs run within processes that call upon the operating system to complete tasks. A
typical call to the operating system does not switch processes (as would be the case with a

message-based operating system); rather, it verifies that the arguments to the operating system
entry are valid and optionally switches the process to a higher level of privilege. For intermodule
or intersystem calls, call arguments are placed in a message that is sent to the appropriate server
moduie. Message-passing primitives are also provided for interprocess communication, particu-
larly for applications that may grow to require muitiple modules. These message-passing primitives
are vital to the recommended method of deveIOping applications: a client/server process orga~nization.

Processes play a key role in application development but also are a means of implementing
some of the basic concepts of Stratus fauit tolerance. System processes are created, usuaily at
module initialization time, to manage the diagnostics and maintenance of the hardware. Similarly,
system processes are created to interface to the remote service network (RSN).

System processes aiso implement VOS networking. Server processes perform remote fiie

153

154

s. HIGH-AVAILABIUTY SYSTEMS 557 i

operations for the benefit of client processes. This client/server relationship is similar to the client/
server relationship recommended for applications. Any process, however, can be a client process
merely by requesting some remote operation that must be processed by a server on some other
module. The difference between VOS message passing and pure message passing in other
operating systems is that local requests do not require the client/server process switch and other
overhead. VOS becomes a message-passing (distributed) operating system only for off-module
requests. Finally, an important use of processes is to implement the distributed transaction
management required by any transaction processing system.

Access Controlr

VOS provides extensive access control facilities to protect data and access to modules and systems
in general. Access control lists, passwords, data encryption, and privilege levels protect data.

Distributed Transaction Protection

An important attribute that contributes to the success of VOS in the OLTP marketplace is its
ability to support the concept of a distributed transaction. A distributed transaction requires
interaction between client processes that typically start and commit transactions, server processes
acting on behalf of the client processes, and transaction processing (TF’) overseer processes that
manage transaction processing, including the TP log files and TP recovery after a module inter-
ruption.

The TP overseer processes on each module communicate using message passing and remote
procedure calls to effect a two—phase commit protocol. This protocol guarantees that the distrib-
uted databases involved in a transaction are kept consistent, even when some modules involved
in the transaction may be unavailable for extended periods of time.

The methods used by Stratus involve TP log files that contain afterimages of the database,
flushed to disk at commit time. These log files are applied to the real database files as time

permits. VOS also provides the ability to back up transaction-protected files during operation
and to perform database roll-forward after a system interruption.

Software Fault Recovery

Since software problems are a primary cause of unavailable applications, Stratus has devised
methods of software fault recovery that make its operating system more resilient than most other

systems. The extensive data structure locking needed to implement full support for multiple
tightly-coupled CPUs is the basis for the operating system strategy. Since every shared data
structure within the operating system must be protected from simultaneous updates by multiple
CPUs, an extensive locking protocol is necessary. If a data structure is not locked, it is in a
consistent state. If a data structure is write locked (where a distinction exists betWeen read locks

and write locks), it is potentially inconsistent. _
If a fault occurs within a process that is executing within the kernel, or if the process detects

a problem through the use of its own checking software, fault recovery procedures that check

which data structures might be inconsistent are automatically invoked. The check simply sees
which data structures are write locked by the faulting process. Each lock has an associated

procedure to cat! in case the fault recovery software detects the lock set at recovery time.
By establishing recovery procedures for each locked data structure and by defining the data

structures so that the called recovery procedures can determine how to make the data structure

154

155

 668 ll. THE PRACTICE OF RELIABLE SYSTEM DESIGN

consistent, many operating system software bugs can be rendered harmless. Many key software

packages Within the operating system have been designed to operate using this software fault
recovery strategy.

Diagnostic Software ‘ _ ' ,-

Several processes are created to'rrnanage the diagnostics, reporting, and maintenance of the
hardware. The key processes are the maintenance process and the diagnostic process. The
maintenance process determines if a significant event {such as a board failure or the removai or

insertion of a board) has occurred. When the maintenance process detects a significant event,
the diagnostic process is notified and directed to test the hardware invoived.

The maintenance process uses two distincttechniques to determine when events of interest
occur. The first technique uses a hardware interrupt signal generated by a board when it breaks.

This interrupt is referred to as a red--light interrupt. Since a board could break in such a way'that
it might not be abie to set this interrupt the maintenance process also uses another technique.
This second technique polis all boards plugged into the StrataBus to determine if any boards
have been inserted, removed, or broken. The typical polling interval is 10 seconds.

When the maihtenance process notices a change, it places a request in the diagnostic queue
serviced by the diagnostic process The queue entries typically requestthe diagnostic process to
test a piece of hardware. However, software must occasionaliy be doWnloaded into a line adapter
before it can be fully tested. The diagnostic process also performs this action. if a piece of
hardware is diagnosed as broken, the hardware .is left off line and the RSN notifies the Stratus
Customer Assistance Center (CAC). If the board error appears to be transient, it is placed back

on line and synchronized with its partner if necessary. if too many transient errors are encountered
in a specified period of time, the board is declared broken, and the software initiates the process
of calling for a replacement board.

System Log Files

One last system process that plays a role in the overall diagnostic management of a module is
the overseer process. Among other things, it maintains various log fiies that record events of
interest to system operation. The log files of primary interest are the system error log and the

hardware log. These files are written to by the system at appropriate tim'es by buffering messages
in operating system space. The overseer process then cepies the messages into actual files. The

hardware log fiie consists of hundreds of message types, all adhering to a standard, formatted
structure. Ali log messages are time stamped. Application software can be notified whenever a
message is placed in these fiies and can therefore reflect these messages to a terminal or some

other file When the RSN packages a message to send to the CAC about a failed piece of hardware,
the leg files are scanned, and ahy entries within the file related to the failed hardware are copied
into the package sent to the CAC. ,

As noted earlier, the RSN plays an important role in improving the reliability of Stratus

software by notifying the Stratus CAC whenever a system interruption occurs. This gives Stratus
engineering persbnnel extensive insights into the types of problems that occur in the field.
Whenever a module is booted, it sends a message to the CAC over the RSN indicating why the
reboot occurred. if the reboot was triggered by a software crash, the reason for the crash is

available through the remote dump analysis sofhvare available through the RSN. In general, the
reboot messages provide a complete and accurate tracking of the availability of Stratus systems.
This information is used to continuously improve upon the target of continuous availability.

155

156

SERVICE

STRATEGIES

3. HIGH-AVAILABiLiTY SYSTEMS 669

One of the important design issties for VOS and for Stratus hardware was the strategy for servicing
the computers. The following paragraphs compare the Stratus approach to the then current

approaches of other computer companies. (Since the introduction of Stratus systems, some of
the techniques described have been adopted by other companies.)

The Classical Repair Approach

A classical approach to computer repair follows a scenario such as the following:

1. Someone notices that something is wrong. Either the computer does not seem to be giving
. the right answers, or it seems to have crashed.
2. Someone, usually a vendor field engineer tries to determine what might be broken. The

problem may be hardware- or software-related.
3. If hardware is suspected, a shotgun approach is often. Used, whereby boards are replaced

singly or in groups in an effort to determine where the probie‘m lies. To aid'In determining
which boards may be problematic, diagnostic programs are often run, usuaiiy requiring a

dedicated machine.
4. An attempt is made to check whether or not the for has been effective. Often, this amounts

to little more than seeing if the system seems to work. Such a method is rarely exhaustive,
scientific, or conclusive.

5. If the problem still exists or recurs within a few days or weeks, the process loops back to
step 2 again.

The disadvantages with this scheme are obvious. The process is expensive, time-consuming,
error-prone, unconvincing, and usually makes the system unavailable for extended periods of
time.

The Stratus Service Approach

The Stratus approach contrasts with the classicai approach in many ways. Hardware errors and
software errors may be distinguished with complete confidence. If there is no red light on any
board, the problem is a software problem. If there is a red light on a board, that board is broken.

If the board failed because of a transient error, the system has already tried to reinstate it into
the system several times before giving up and leaving the red light on. (There is no need to

diagnose what is wrong with the board; it will not be repaired until it is brought back to the
Stratus manufacturing facility.)

. The RSN (Remote Service Network) plays a key roleIn Stratus maintenance. The RSN software
provides a means for computers at Stratus customer sites to inform the Stratus CAC of broken

or failing hardware automatically. it also provides a communications path for such activities as

remote maintenance by CAC personnel, exchange of files, on-lin‘e'updates, and bug fixes.
The CAC periodically uses the RSN to poll sites; to gather configuration information, error

statistics, and system release information; and to check on the consistency of software versions.

Customer sites use the RSN to ask both technical and nontechnical questions of CAC personnel.
The RSN also informs Stratus pubiicatibns personnel about problems with or suggestions for
manuals. I

Many customers are concerned about the implicit access to their fiies that the RSN might
provide to CAC personnel. Extensive protection is built into the RSN software facility, and most
customers are completely satisfied with the level of protection provided.

When a hardware error does occur, the RSN immediately informs the Stratus CAC. Appro-

156

sc_/—-_

157

_
g.
ifi

670

SUMMARY

II. THE PRACTICE OF RELIABLE SYSTEM DESIGN

priate local operations personnel can arrange for immediate notification on their terminals as
well. .

The advantages to the Stratus approach are clear. First, errors do not result in emergency
situations; the system continues to run at full capacity. Second, since the repair can usually be
made by onsite, untrained staff personnel, there is a considerable customer savings. The parts
necessary for the repair are typically sent to the site automatically from the Stratus manufacturing
facility using overnight courier. After repair, these parts undergo a complete testing cycle as
rigorous as the initial manufacturing of the parts.

The introduction of computer systems based on the Stratus architecture provides businesses of
all types with new levels of system availability and serviceability, The architecture has proven
portable to new llO systems and faster chip tech nologies. It provides a platform on which software

not cognizant of issues of fault tolerance can provide continuously available solutions. Finally, it
provides relief to the ever-increasing threats of rising service costs and quality degradation. Stratus
systems and their customers enjoy the highest satisfaction for service and quality.

157

