RELIABLE
COMPUTER
SYSTEMS

DESIGN AND EVALUATION

SECOND EDITION

DANIEL P. SIEWIOREK
ROBERT S. SWARZ

DIGITAL PRESS

1 VMWARE, INC. 1014

Copyright © 1992 by Digital Equipment Corporation.

All rights reserved. No part of this publication may be reproguced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without priar written permission of the publisher.

Printed in the United States of America.
987654321

Order number EY-HB80E-DP

The Publisher offers discounts on bulk orders of this book. For information, please write:

Special Sales Department
Digital Press

One Burlington Woods Drive
Burlington, MA 01003

Design: Qutside Designs
Production: Technical Texts
Composition: DEKR Corporation
Printer: Arcata/Halliday

Trademark products mentioned in this book are listed on'page 890,

Views expressed in this book are those of the authors, not of the publisher. Digital Equipment Corporation is
not respansible for any errors that may appear in this book.

Library of Congress Cataloging-in-Publication Data

Siewiorek, Daniel P.
Reliable computer systems : design and evaluation / Daniel P.
Siewiorek, Robert S. Swarz, — 2nd ed.
p. cm.

Rev. ed. of: The theory and practice of reliable system design.
Bedford, MA : Digital Press, c1982.

Includes bibliographical references and index.

TSBN 1-55558-075-0

T. Electronic digital computers—Reliability. 2. Fault-toierant
computing. |. Swarz, Robert S. II. Siewiorek, Danie! P. Theory

-and practice of refiable system design. I, Title.

QA76.5.5537 1992

004-cdc20 92-10671
CIP

CREDITS

Figure 1-3: Eugene Foley, “The Effects of Microelectronics Revolution on Systems and Board Test,” Computers,
Vol. 12, No. 10 (October 1979). Copyright @ 1979 1EEF. Reprinted by permission.

Figure 1-6: 5. Russell Craig, “Incoming Inspection and Test Programs,” Electronics Test {October 1980}, Re-
i printed by permission.

Credits are continued on p. 885, which is considered a continuation of the copyright page.

g

To Karon and Lonnie

A Special Remembrance:

During the development of this book, a friend, colleague, and fault-tolerant pioneer
passed away. Dr, Wing N. Toy documented his 37 years of experience in designing
several generations of fault-tolerant computers for the Bell System electronic switching 1
systems described in Chapter 8. We dedicate this book to Dr. Toy in the confidence ;
that his writings will continue to influence designs produced by those who learn from :
these pages,

CONTENTS

Preface xv

[THE THEORY OF RELIABLE SYSTEM DESIGN 1

I FUNDAMENTAL CONCEPTS 3

Physical Levels in a Digitaf System 5
Temporal Stages of a Digital System 6
Cost of a Digital System 18

Summary 21

References 21

2 FAULTS AND THEIR MANIFESTATIONS 22

System Errors 24

Fault Manifestations 31

Fault Distributions 4%

Distribution Models for Permanent Faults: The MIL-HDBK-217 Model 57
Distribution Models for Intermittent and Transient Faults 65

Software Fault Models 73

Summary 76

References 76

Problems 77

3 RELIABHITY TECHNIQUES 79

Steven A. Elkind and Daniel P. Siewiorek
System-Failure Response Stages 80 '
Hardware Fault-Avoidance Techniques 84
Hardware Fault-Detection Techniques 96
Hardware Masking Redundancy Technigques 138
Hardware Dynamic Redundancy Techniques 169
Software Reliability Techniques 201
Summary 219
References 219
Problems 221

4 MAINTAINABILITY AND TESTING TECHNIQUES 228

Specification-Based Diagnosis 229
Symptom-Based Diagnosis 260

vii

viii

CONTENTS

Summary 268
References 268
Problems 269

‘5 EVALUATION CRITERIA 271

Stephen McConnel and Daniel P. Siewiorek

Introduction 271

Survey of Evaluation Criteria: Hardware 272

Survey of Evaluation Criteria: Software 279

Reliability Modeling Techniques: Combinatorial Models 285
Examples of Combinatorial Modeling 294

Reliability and-Availability Modeling Techniques: Markov Models 305
Examples of Markov Modeling 334 ‘

Avaitability Modeling Techniques 342

Software Assistance for Modeling Techniques 349
Applications of Modeling Techniques to Systems Designs 356
Summary 391

References 391

Problems 392

6 FINANCIAL CONSIDERATIONS 402

Fundamental Concepts 402
Cost Models 408
Summary 419

References 419

Problems 420

Il THE PRACTICE OF RELIABLE SYSTEM DESIGN 423

Fundamental Concepts 402
General-Purpose Computing 424
High-Availability Systems 424
Long-Life Systems - 425

Critical Computations 425

7 GENERAL-PURPOSE COMPUTING 427

Introduction 427
Generic Computer 427
DEC 430

IBM 431

The DEC Case: RAMP in the VAX Family 433
Daniel P. Siewiorek

CONTENTS ix

The VAX Architecture 433

First-Generation VAX Implementations 439
Second-Generation VAX Implementations 455
References 484

The IBM Case Part |: Refiability, Availability, and Serviceability in IBM 308X
and [BM 3090 Processor Complexes 485
Daniel P. Siewiorek
Technology 485
Manufacturing 486
Overview of the 3090 Processor Complex 493
References 507

The IBM Case Part 11: Recovery Through Programming: MVS
Recovery Management 508
C.T. Connolly
Introduction 508
RAS Objectives 309
Overview of Recovery Management 509
MVS/XA Hardware Error Recovery 511
MVS/XA Serviceability Facilities 520
Availability 522
Summary 523
Bibliography 523
Reference 523

8 HIGH-AVAILABILITY SYSTEMS 524

Introduction 524

AT&T Switching Systems 524
Tandem Computers; Inc. 528
Stratus Computers, Inc. 531
References 533

The AT&T Case Part I: Fault-Tolerant Design of AT&T Telephone
Switching System Processors 533
W.N. Toy
Introduction 533
Allocation and Causes of System Downtime 534
Duplex Architecture 535
Fault Simulation Techniques 538
First-Generation ESS Processors 540
Second-Generation Processors 544
Third-Generation 3B200 Processor 551
Summary 572
References 573

X CONTENTS

The AT&T Case Part I1: Large-Scale Real-Time Program Retrofit Methodology in
AT&T 5E55® Switch 574
L.C. Toy :
5ESS Switch Architecture Overview 574
Software Replacement 576
Summary 585
References 586

The Tandem Case: Fault Tolerance in Tandem Computer Systems 586
Joel Bartlett, Wendy Bartlett, Richard Carr, Dave Garcia, Jim Gray, Rohert Horst,
Robert Jardine, Doug Jewett, Dan Lenoski, and Dix McGuire

Hardware 588

| Processor Module Implemientation Details 597

i Integrity 52 618

5 Maintenance Facilities and Practices 622

Software 625

Operations 647

Summary and Conclusions 647

References 648

The Stratus Case: The Stratus Architecture 648
Steven Webber

' Stratus Solutions to Downtime 650
Issues of Fault Tolerance 652

* System Architecture Overview 653
Recovery Scenarios 664 '

i Architecture Tradeoffs 665

Stratus Software 666

Service Strategies 669

Summary 670

! 9 LONG-LIFE SYSTEMS 671

Introduction 671

Generic Spacecraft 671

Deep-Space Planetary Probes 676

Other Noteworthy Spacecraft Designs 679
References 679

The Galileo Case: Galifeo Orbiter Fault Protection System 679
i Robert W. Kocsis

The Gafileo Spacecraft 680

Attitude and Articulation Control Subsystem 680

Command and Data Subsystem 683

AACS/CDS Interactions 687

Sequences and Fault Protection 688

CONTENTS Xi

Fault-Protection Design Problems and Their Resolution 689
Summary 690
References 690

10 CRITICAL COMPUTATIONS 691

Introduction 691
C.vmp 691
SIFT 693
The C.vmp Case: A Voted Muftiprocessor 694
Daniel P. Siewiorek, Vittal Kini, Henry Mashburn, Stephen McConnel, and Michael Tsao
System Architecture 694
Issues of Processor Synchronization 699
Performance Measurements 702
Operational Experiences 707
References 709

The SIFT Case: Design and Analysis of a fault-Tolerant Computer for
Aircraft Control 710
John H. Wensley, Leslie Lamport, Jack Goldberg, Milton W. Green, Karl N, Levitt,
P.M. Melliar-Smith, Robert E. Shostak, and Charles B. Weinstock
Motivation and Background 710
SIFT Concept of Fault Tolerance 711
The SIFT Hardware 719
The Software System 723
The Proof of Correctness 728
Summary 733
Appendix: Sample Special Specification 733
References 735

1l A DESIGN METHODOLOGY AND EXAMPLE OF DEPENDABLE SYSTEM
DESIGN 737

11 A DESIGN METHODOLOGY 739
Daniel P, Siewiorek and David Johnson
introduction 739
A Design Methodology for Dependable System Design 739
The VAXft 310 Case: A Fault-Toferant System by Digital Equipment Corporation 745
William Bruckert and Thomas Bissett
Defining Design Goals and Requirements for the VAXft 310 746
VAXft 310 Overview 747
Details of VAXft 310 Operation 756
Summary 766

xii CONTENTS

APPENDIXES 769

APPENDIX A 771

; Error-Correcting Codes for Semiconductor Memory Applications:
A State-of-the-Art Review 771
C.L. Chen and M.Y. Hsiao
‘ Introduction 771
| Binary Linear Block Codes 773
SEC-DEC Codes 775 ‘
i SEC-DED-SBD Codes 778
‘ SBC-DBD Codes 779
DEC-TED Codes 781
Extended Error Correction 784
Conclusions 786
References 786

i‘ APPENDIX B 787

‘ Arithmetic Error Codes: Cost and Effectiveness Studies for Application in Digital
System Design 787 '
Algirdas Avizienis

1

Methodology of Code Evaluation 787

Fault Effects in Binary Arithmetic Processors 790
Low-Cost Radix-2 Arithmetic Codes 794
Multiple Arithmetic Error Codes 799

‘ References 802

APPENDIX C 803

Design for Testability—A Survey 803
Thomas W. Williams and Kenneth P. Parker

Introduction 803

ik Design for Testability 807

i Ad-Hoc Design for Testahility 808

Structured Design for Testability 813

Self-Testing and Built-In Tests 821

Conclusion 828

References 829

APPENDIX D 831
i Summary of MIL-HDBK-217E Reliability Model 831

s Failure Rate Mode! and Factors 831
I Reference 833

CONTENTS

APPENDIX E 835

Algebraic Solutions to Markov Models 835
Jeffrey P. Hansen

Solution of MTTF Models 837

Complete Solution for Three- and Four-State Models 838

Solutions to Commonly Encountered Markov Models
References 839

GLOSSARY 841
REFERENCES 845
CREDITS 885
TRADEMARKS 890

INDEX 891

839

xiii

10

INTRODUCTION

AT&T
SWITCHING
SYSTEMS

524

HIGH-AVAILABILITY
SYSTEMS

Dynamic redundancy is the basic approach used in high-availability systems, These
systems are typically composed of multiple processors with extensive error-detection
mechanisms. When an error is detected, the computation is resumed on another
processor. The evolution of high-availability systems is traced through the family history
of three commercial vendors: AT&T, Tandem, and Stratus.

AT&T pioneered fault-tolerant computing in the telephone switching application.
The two AT&T case studies given in this chapter trace the variations of duplication and
matching devised for the switching systems'to detect failures and to automatjcally
resume computations. The primary form of detection is hardware lock-step duplication
and comparison that requires about 2.5 times the hardware cost of a nonredundant
system. Thousands of switching systems have been installed and they are currently
commercially available in the form of the 3B20 processor. Table 81 summarizes the
evolution of the AT&T switching systems. 1t includes system characteristics such as the
number of telephone lines accommodated as well as the processor model used to
control the switching gear.

Telephone swntchmg systems utilize natural redundancy in the network and its
operation to meet an aggressive availability goal of 2 hours downtime in 40 years (3
minutes per year). Telephone users will redial if they get a wrong number or are
disconnected. However, there is a user aggravation level that must be avoided: users
will redial as long as errors do not happen too frequently. User aggravation thresholds
are different for failure to establish a call (moderately high) and disconnection of an
established call (very low). Thus, a telephone switching system follows a staged failure
recovery process, as shown in Table 8-2.

Figure 8-1 illustrates that the telephone switching application requires quite a
different organization than that of a general-purpose computer. In particutar, a sub-
stantial portion of the telephone switching system complexity is in the peripheral
hardware. As depicted in Figure 81, the telephone switching system is composed of
four major components: the transmission interface, the network, signal processors,
and the central controller. Telephone lines carrying analog signals attach to the voice
band interface frame (VIF}, which samples and digitally encbdés the analog signals,
The output is pulse code modulated (PEM}. The echo suppressor terminal (EST) re-
moves echos that may have been introduced on long distance trunk lines. The PCM

11

TABLE 81
Summary of
installed AT&T
telephone
switching systems

TABLE 8-2

Levels of recovery
in a tefephone
switching system

8. HIGH-AVAILABILITY SYSTEMS 525
Number Year Number _
Systern of Lines introduced Installed Processor Comments
TESS 5,000-65,000 1965 1,000 No. 1 First processor with

separate control and
. data memories
1,000-10,000 1969 500

2 ESS No. 2
1A ESS 100,000 1976 2,000 No. 1A Four to eight times
faster than No. 1
2B ESS 1,000-20,000 1975 >500 No. 3A Combined control and
data store;
microcoded; emulates
No. 2
3 ESS 500-5,000 1976 >500 No. 3A
5 ESS - 1,000-85,000 1982 =>1,000 No. 3B Muitipurpose processor
Phase Recovery Action Eifect
1 Initialize speciﬁc transient memaory. Temporary storage affected; no
calls lost
2 Reconfigure peripheral hardware. Initialize Lose calls being established; calls
all transient memory. in progress not lost
3 Verify memory operation, establish-a Lose calls being established; calls

workable processor configuration, verify
program, configure peripheral hardware,
initialize all transient memory. '

4 Establish a workable processor
configuration, configure peripheral
hardware, initialize alf memory.

in progress not affected

Aldl calls lost

signals are multiplexed onto a time-slotted digital bus. The digital bus enters a time-
space-time network. The time slot interchange (TSI} switches PCM signals to different
time slots on the bus. The output of the TSI goes to the time multiplexed switch (TMS),
which switches the PCM signals in a particular time slot from any bus to any other
bus. The output of the TMS returns to the TSI, where the PCM signals may be
interchanged to another time slot. Signals intended for analog lines are converted
from PCM to analog signals in the VIF. A network clock coordinates the timing for all
of the switching functions. |

The signal processors provide scanning and signal distribution functions, thus
relieving the central processor of these activities. The common channel interface
signaling (CCIS) provides an mdependent data Ilnk between telephone switching sys-
tems. The CCIS terminal is used to send supervisory switching information for the

12

526

FIGURE 8-1
Diagram of a typi-
cal tefephone
switching system

I. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Service circuits PCM PCM PCM
Voice l
. e band
Wire facilities . interface ' —
frame
Analog carrier VI 5
‘ " Ech) ime
sup[:fre‘s)sor Time slot multiplexed
terminal interchange switch
. i ST TS TMS
Digital carrier .
T Digroup
terminal - —_— -
DT
r PU bus
A"“‘PS | PU bus
carrier ‘ Data
signaling signaling and Tirmin
‘ control R
l i [
Signal Signal Clock Iv0
processor processor
1 2
Bus interface EY bus

Peripheral unit (PU) bus PUSE
- Common Master
channe| control '

I Program store (PS5} bus
interoffice consale 1

Fgmaig e =5 @

Data links
—

control
cC
-
Auxiliary unit {(AU) bus ¥ 1
1 l Call store (CS) bus
AU File -
units store

various trunk lines coming into the office. The entire peripheral hardware is interfaced
to the central control (CC) over AC-coupled buses. A telephone switching processor
is composed of the central control, which manipulates data associated with call pro-
cessing, administrative tasks, and recovery; program store; call store for storing tran-
sient information related to the processing of telephone calls; file store disk system
used to store backup program copies; auxiliary units magnetic tapes storage containing
basic restart programs and new software releases; input/output (YO) interfaces to
terminal devices;.and master control console used as the control and display console
for the system. In general, a telephone switching processor could be used to control
more than one type of telephone switching system.

The history of AT&T processors is summarized in Table 8-3. Fven though all the
processors-are based upon‘full duplication, it is interesting to observe the evolution
from the tightly lock-stepped matching of every machine cycle in the early processors
to a higher dependence on self-checking and matching only on writes to memory.
Furthermore, as the processors evolved from dedicated, real-time controllers to mul-

13

8. HIGH-AVAILABILITY SYSTEMS

527

TABLE 8-3 Summary of AT&T Telephone Switching Processors

Matching

Other Error Detection/Correction

Processor/

Year Complexity Unit_of
Introduced {Gates) Switching
No. 1, 1965 12,000 ps, Cs, CC,

buses
No. 2, 1968 5,000 Entire
computer
No. 1A, 1976 50,000 ps, CS, CC,
buses
No. 3A, 1975 16,500 Entire
computer
3B20D, 1581 75,000 Entire
computer

Six internal nodes, 24
bits per node; one
node matched each
machine cycle; node
selected to be matched
dependent on instruc-
tion being executed

Single match point on
call store input

16 internal nodes, 24 bits 7

per node; two nodes
matched each machine

cycle

None

None

Hamming code on PS; parity on C5;
automatic retry on CS, PS; watch-
dog timer; sanity program to de-
termine if reorganization led to a
valid configuration

Diagnostic progi’ams; parity on PS;
detection of multiword accesses
in CS; watch-dog timer

Two-parity bits on PS; roving spares
(i.e., contents of PS not com-
pletely duplicated, can be loaded
from disk upon error detection);
two-parity bits on C5; roving
spares sufficient for complete du-
plication of transient data; proces-
sor configuration circuit to search
automatically for a valid configura-
tion

On-fine processor writes into both
stores; m-of-2m code on micro-
store plus parity; self-checking
decoders; two-parity bits on regis-
ters; duplication of ALU; watch-
dog timer; maintenance channel
for abservability and controtlabil-
ity of the other processor; 25% of
fogic devoted to self-checking
logic and 14% to maintenance
access

On-line processor write into both
stores; byte parity on cata paths;
parity checking where parity pre-
served, duplication otherwise;
modified Hamming code on main
memoty; maintenance channel for
observability and controllability of
the other processor; 30% of con-
trol logic devoted to self-check-
ing; error-correction codes on
disks; software audits, sanity
timer, integrity monitor

14

528

TANDEM

COMPUTERS,

INC.

1. THE PRACTICE OF RELIABLE SYSTEM DESIGN

tiple-purpose processors, the operating system and software not only became more
sophisticated but also became a dominant portion of the system design and mainte-
nance effort.

The part | of the AT&T case study in this chapter, by Wing Toy, sketches the
evolution of the telephone switching system processors and focuses on the latest
member of the family, the 3B20D. Part Il of the case study, by Liane C. Toy, outlines
the procedure used in the 5ESS for updating hardware and/or software without incur-
ring any downtime.

Over a decade after the first AT&T computer-controlled switching system was installed,
Tandem designed a high-availability system targeted for the on-line transaction pro-
cessing {OLTP) market. Replication of processors, memories, and disks was used not
only to tolerate failures, but also to provide modular expansion of computing re-
sources. Tandem was concerned about the propagation of errors, and thus developed
a loosely coupled multiple computer architecture. While one computer acts as primary,
the backup computer is active only to receive periodic checkpoint information. Hence,
1.3 physical computers are required to behave as one logical fault-tolerant computer.
Disks, of course, have to be fully replicated to provide a complete backup copy of the
database. This approach places a heavy burden upon the system and user software
developers 1o guarantee correct operation no matter when or where a failure occurs,
In particular, the primary memory state of a computation may not be available due to
the failure of the processors. Some feel, however, that the multiple computer structure
is superior to a lock-step duplication approach in tolerating design errors.

The architecture discussed in the Tandem case study, by Bartlett, Bartlett, Garcia,
Gray, Horst, Jardine, Jewett, Lenoski, and McGuire, is the first commercially available,
modularly expandable system designed specifically for high availability. Design objec-
tives for the system include the following:

* “Nonstop” operation wherein failures are detected, components are reconfigured
out of service, and repaired components are configured back into the system
without stopping the other system components

+ Fail-fast logic whereby no single hardware failure can compromise the data integ-
rity of the system

» Modular system expansion through adding more processing power, memory, and
peripherals without impacting applications software

As in the AT&T switching systems, the Tandem architecture is designed to take advan-
tage of the OLTP application to simplify error detection and recovery. The Tandem
architecture is composed of up to 16 computers interconnected by two message-
oriented Dyhabuses. The hardware and software modules are designed to be fast-fail;
that is, to rapidly detect errors and subsequent terminate processing. Software modules
employ consistency checks and defensive programming techniques. Techmques em-
ployed in hardware modules include the following:

15

8. HIGH-AVAILABILITY SYSTEMS 529

Checksums on Dynabus messages
Parity on data paths
Error-correcting code memory
Watch-dog timers

All 1/O device controllers are dual ported for access by an alternate path in case of
processor or /O failure. The software builds a process-orientted system with all com-
munications handled as messages on this hardware structure. This abstraction allows
the blurring of the physical boundaries between processors and peripherals. Any /O
device or resource in the system can be accessed by a process, regardless of where
the resource and process reside. :

Retry is extensively used to access an /O device. Initially, hardware/firmware
retries the access assuming a temporary fault. Next, software retries, followed by
alternative path retry and finally alternative device retry.

A network systems management program provides a set of operators that helps
reduce the number of administrative errors typically encountered in complex systems,
The Tandem Maintenance and Diagnostic System analyzes event logs to successfully
call out failed field-replaceable units 90 percent of the time. Networking software exists
that allows interconnection of up to 255 geographically dispersed Tandem systems.
Tandem applications include order entry, hospital records, bank transactions, and
library transactions.

Data integrity is maintained through the mechanisms of /O “process pairs”; one
I/Q process is designated as primary and the other is designated as backup. All file
modification messages are delivered to the primary /O process. The primary sends a
message with checkpoint information to the backup so that it can take over if the
primary’s processor or access path to the IO device fails, Files can also be duplicated
on physically distinct devices controlled by an I/O process pair on physically distinct
processors. All file modification messages are delivered to both /O processes. Thus,
in the event of physical failure or isolation of the primary, the backup file is up-to-date
and available. -

User applications can also utilize the process-pair mechanism. As an example of
how process pairs work, consider the nonstop application, program A, shown in Figure
8-2. Program A starts a backup process, Al, in another processor. There are also
duplicate file images, one designated primary and the other backup. Program A peri-
odically (at user-specified points) sends checkpoint information to Al. Al is the same
program as A, but knows that it is a backup program. Al reads checkpoint messages
to update its data area, file status, and program counter.

The checkpoint information is inserted in the corresponding memory locations of
the backup process, as opposed to the more usual approach of updating a disk file.
This approach permits the backup process to take over immediately in the event of
failure without having to perform the usual recovery journaling and disk accesses
before processing resumes.

Program A1 loads and executes if the system reports that A’s processor is down
(error messages sent from A’s operating system image or A’s processar fails to respond

16

530

FIGURE 8-2
Shadow processor
in Tandem

1. THE PRACTICE OF RELIABLE SYSTEM DESICGN

A Al
Backup Backup
exists? ' \ Checkpaint exists?
& Data
1/0

o File status 170
s PC

0s oS
(Flo)

7

I'm alive

to a periodic “I'm alive” message). All file activity by A is performed on both the
primary and backup file copies. When AT starts to execute from the last checkpoints,
it may attempt to repeat l/O operations successfully completed by A. The system file
handler will recognize this and send A1 a successfully completed /O message.
Program A periodically asks the operating system if a backup process exists. Since one
no longer does, it can request the creation and initialization of a copy of both the
process and file structure.

A major issue in the design of loosely coupled duplicated systems is how both
copies can be kept identical in the face of errors. As an example of how consistency
is maintained, consider the interaction of an /O processor pair as depicted in Table
8-4. Initially, all sequence numbers (SeqNo} are set to zero. The requester sends a
request to the server. If the sequence number is less than the server’s local copy, a
failure has occurred and the status of the completed operation is returned. Note that
the requested operation is done only once, Next, the operation is performed and a
checkpoint of the request is sent to the server backup. The disk is written, the sequence
number incremented to one, and the results checkpointed to the server backup, which
also increments its sequence number. The results are returned from the server to the
requestor. Finally the results are checkpointed to the requester backup, which also
increments its sequence number.

Now consider failures. If either backup fails, the operation completes successfully.
If the requester fails after the request has been made, the server will complete the
operation but be unable to return the result. When the requester backup becomes
active, it will repeat the request. Since its sequence number is zero, the server test at
step 2 will return the result without performing the operation again. Finally, if the
server fails, the server backup either does nothing or completes the operation using
checkpointed information. When the requester resends the request, the new server
(that is, the old server backup) either performs the operation or returns the saved
results. More information on the operating system and the programming of nonstop
applications can be found in Bartlett [1978].

17

TABLE 8-4
Sample process-
pair transactions

STRATUS

INC.

COMPUTERS,

8. HIGH-AVAILABILITY SYSTEMS 531

Requester Requester Backup Server Server Backup
Step SegqhNo =0 SeqNo = 0 SeqNo = 0 SegNo = §
1 Issue ‘
request
to write
record . -
2 If SegNo <

MySegNo, then
return saved status
3 Otherwise, read disk,
perform operation, — Saves request
checkpoint request

4 Write to disk
SeqNo = 1 —————— Saves result
checkpoint result SeqNo = 1
5 = — Return results
6 Checkpoint ———SeqNo =1 ’
results

Source: Bartlett, 1981; © 1981 ACM.

Whereas the Tandem architecture was based upon minicomputer technology, Stratus
entered the OLTP market five years after Tandem by harnessing microprocessors. By
1980, the performance of microprocessor chips was beginning to rival that of minicom-
puters. Because of the smaller form factor of microprocessor chips, it was possible to
place two microprocessors on a single board and to compare their output pins an
every clock cycle. Thus, the Stratus system appears to users as a conventional system
that does not require special software for error detection and recovery. The case study
by Steven Webber describes the Stratus approach in detail.

The design goal for Stratus systems is continuous processing, which is defined as
uninterrupted operation without loss of data, performance degradation, or special
programming. The Stratus self-checking, duplicate-and-match architecture is shown in
Figure 8-3. A module (or computer) is composed of replicated power and backplane
buses (StrataBus) into which a variety of boards can be inserted. Boards are logically
divided into halves that drive outputs to and receive inputs from both buses. The bus
drivers/receivers are duplicated and controlled independently. The logical halves are
driven in lock:-step by the same clock. A comparitor is used to detect any disagreements
between the two halves of the board. Multiple failures that affect the two independent
halves of a board could cause the module to hang as it alternated between buses
seeking a fault-free path. Up to 32 modules can be interconnected into a system via a
message-passing Stratus intermodule bus (SIB). Access to the SiB is by dual 14 mega-
byte-per-second links. Systems, in return, are tied together by an X.25 packet-switched
network. '

18

532

FIGURE 8-3

The Stratus pair-
and-spare architec-
ture '

Il. THE PRACTICE OF RELIABLE 5YSTEM DESIGN

Power 0 Bus A Bus B Power 1
Processor ' Processor
B half : b B half
" A half 4 A half
. e
—— Memory Memory —
—
L
— Disk Disk &
‘ s
[
#— Communications Communications ——$
_—
*—
— Link Link —e
—%

Now consider how the system in Figure 8-3 tolerates failure. The two processor
boards (each containing a pair of microprocessors), each self-checking modules, are
used in a pair-and-spare configuration. Each board operates independently. Each half
of each board (for example, side A) received inputs from a different bus {for example,
bus A) and drives a different bus (for example, bus A). Each bus is the wired-OR of
orie-half of each board (for example, bus A is the wired-OR of all A board halves). The
boards constantly compare their two halves, and upon disagreement, the board re-
moves itself from service, a maintenance interrupt is generated, and a red light is
illuminated. The spare pair on the other processor board continues processing and is
now the sale driver of both buses. The operating system executes a diagnostic on the
failed board to determine whether the error was caused by a transient or permanent
fault. In the case of a transient, the board is returned to service. Permanent faults are
reported by phone to the Stratus Customer Assistance Center (CAC). The CAC recon-
firms the problem, selects a replacement board of the same revision, prints installation
instructions, and ships the board by overnight courier. The first time the user realizes
there is a problem is when the board is delivered. The user removes the old board
and inserts the new board without disrupting the system {that is, makes a “hot” swap).
The new board interrupts the system, and the processor that has been running brings
the replacement into full synchronization, at which point the full configuration is
available again. Detection and recovery are transparent to the application software.

The detection and recovery procedures for other system components are similar,
although the full implementation of pair-and-spare is restricted to only the processor
and memory. The disk controllers contain duplicate read/write circuitry. Communica-

19

REFERENCES

INTRODUCTION

8. HIGH-AVAILABILITY SYSTEMS 533

tions controllers are also self-checking. 1A addition, the memory controllers monitor
the bus for parity errors. The controflers can declare a bus broken and instruct all
boards to stop using that bus. Other boards monitor the bus for data directed to them.
If the board detects an inconsistency but the memory controllers have not declared
the bus broken, the board assumes that its bus receivers have failed and declares itself
failed.

The Stratus hardware approach is attractive in that it does not require on-line
recovery from faults. The spare component continues processing until its fault coun-
terpart can be replaced. No data errors are injected into the system; hence, no software
recovery mechanisms are required for the pair-and-spare components. Complexities
caused by checkpointing/restart programming and other software fault-tolerant con-
siderations are eliminated. In addition to ease in programming, the Stratus approach
to maintenance reduces the yearly service cost to 6 percent of life-cycle cost, as
compared to an industrial average of 9 percent.

Bartlett, 1978, 1981.

THE AT&T CASE

Part I: Fault-Tolerant Design of AT&T Telephone Switching System
Processors

W.N, TOY

Except for computer systems used in space-borne vehicles and U.S, defense instaltations, no
other apphcatlon has a higher availability requirement than a stored-program-controlied (SPC)
telecommunications switching system. SPC systams have been designed to be out of service no
more than a few minutes per year. Furthermore, de5|gn objectives permit no more than 0.01
percent of the telephone calls to be processed incorrectly [Downing, Nowak, and Tuomenoksa,
1964]. For example, when a fault occurs in a system, few calls in progress may be handled
incorrectly during the recovery process.

At the core of every system is a single high-speed central processor [Harr, Taylor, and Ulrich,
1969; Browne et al., 1969; Staehler, 19771, To establish an ultrareliable switching énvironment,
redundancy of system components, including duplication of the processor itself, is the approath
taken to compensate for potential machine faults. Without this redundancy, a single component
failure in the processor might cause a complete failure of the entire system. With duplication, a
standby processor takes over control and provides continuous telephone service.

When the system fails, the fault must be quickly detected and isolated. Meanwhile, a rapid
recovery of the call processing functions (by the redundant component(s) and/or processor) is
necessary to maintain the system’s high availability. Next, the fault must be diagnosed and the
defective unit repaired or replaced. The failure rate and repair time must be such that the
probability is very small for a failure to occur in the duplicate unit before the first unit is repaired.

20

534

ALLOCATION AND
CAUSES OF
SYSTEM
DOWNTIME

FIGURE 8—4
System outage al-
location

M. THE PRACTICE OF RELIABLE SYSTEM DESIGN

The outage of a telephone (switching) office can be caused by facilities other than the processor.
While a hardware fault in one of the peripheral units generally results in only a partial loss of
service, it is possible for a fault in this area to bring the entire system down, By design, the
processor has been allocated two-thirds of the system downtime. The other one-third is allocated
to the remaining equipment in the system.

Field experience indicates that system outages due to the processor may be assigned to one
of four categories, as shown in Figure 8-4 [Staehler and Watters, 1976]. The percentages in this
figure represent the fraction of total downtime attributable to each cause. The four categories
are as follows.

* Hardware Reliability: Before the accumulation of large amounts of field data, total system
downtime was usually assigned to hardware. We now know that the situation is more complex.
Processor hardware actually accounts for only 20 percent of the downtime. With growing use of
stored program control, it has become increasingly important to make such systems more reliable.
Redundancy is designed into all subsystems so that the system can go down only when a hardware
failure occurs simultaneously in a unit and its duplicate. However, the data now show that good
diagnostic and trouble location programs are also very critical parts of the total systern reliability
performance.

* Software Deficiencies: Software deficiencies include all software errors that cause memory
mutilation and program loops that can only be cleared by major reinitialization. Software faults
are the result of improper translation or implementation of the original algorithm. In some cases,
the original algorithm may have been incorrectly s;'aec\ified. Program changes and feature additions .
are continuously incorporated into working offices. Software accounts for 15 percent of the
downtime.

* Recovery Deficiencies: Recovery is the system’s most complex and difficult function. De-
ficiencies may include the shortcomings of either hardware or software design to detect faults
when they occur. When the faults go undetected, the system remains extensively impaired until
the trouble is recognized. A recovery problem can also occur if the system is unable to properly
isolate a faulty subsystem and configure a working system around it.

The many possible system states that may arise under trouble conditions make recovery a
complicated process. Besides those problems already mentioned, unforeseen difficulties may be

Software
deficiencies
15%

Recovery
deficiencies
35%

Hardware
reliability
20%

Procedural
errors
30%

21

DUPLEX
ARCHITECTURE

8. HIGH-AVAILABILITY SYSTEMS 535

encountered in the field and lead to inadequate recovery. Because of the large number of variables
involved and because the recovery function is so strongly related to all other componenis of
maintenance, recovety deficiencies account for 35 percent of the downtime.

« Procedural Frrors: Human error on the part of maintenance personnel or office adminis-
trators can also cause the system to go down. For example, someone in maintenance may
mistakenly pull a circuit pack from the on-line processor while repairing a defective standby
processar. Inadequate and incorrect documentation (for example, user's manuals} may also be
classified as human error. Obviously, the number of manual operations must be reduced if
procedural errors are to be minimized. Procedural errors account for 30 percent of the downtime.

The shortcomings and deficiencies of current systems are being continually corrected to
improve system reliability.

When a fault occurs in a nonredundant single processor, the system will remain down until the
processor is repaired. In order to meet reliability requirements, redundancy is included in the
system design, and continuous, correct operation is maintained by duplicating all functional units
within the processor. if one of the units fails, the duplicated unit is switched in, maintaining
continuous operation. Meanwhile, the defective unit is repaired. Should a fault occur in the
duplicated unit during the repair interval, the system will, of course, go down. If the repair
interval is relatively short, the probability of simultaneous faults occurring in two identical units
is quite small, This technique of redundancy has been used throughout each AT&T switching
system.

The firsl-generation electronic switching system (ESS) processor structure consists of two
store communities: program store and call store. The program store is a read-only memory,
containing the call processing, maintenance, and administration programs; it also contains long-
ferm translation and system parameters. The call store contains the transient data related to
telephone calls in progress. The memory is efectrically alterable to allow its data to be changed
frequently. In one particular arrangement, shown in Figure 8-5b, the complete processor is treated
as a singfe functional block and is duplicated. This type of single-unit duplex system has two
possible configurations: Either processor 0 or processor 1 can be assigned as the on-line working
system, while the other unit serves as a standhy backup. The mean time to failure (MTTF), a
measure of reliability, is given by the following expression [Smith, 1972]:

-

n
MTTF = =
207
where 1 = repair rate (reciprocal of the repair time)
A = failure rate

The failure rate (\} of one unit is the sum of the failure rates of afl componenis within the
unit. For medium and smalf ESS processors, Figure 8-5a shows a system structure containing
several functional units that are treated as a single entity, with A still sufficiently small to meet
the reliability requirement. The single-unit duplex configuration has the advantage of being very
simple in terms of the number of switching blocks in the system. This configuration simplifies
not anly the recovery program but also the hardware interconnection by eliminating the additional
access required to make each duplicated block capable of switching independently into the on-
line system configuration.

In the large 1ES switching system, which contains many components, the MTTF becomes

22

5336

FIGURE 8-5
Single-unit duplex
configuration

1l. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Peripheral units

e ————ss T Y

_ H

| | i
I PS cC|e : s CC PS I
| |] |
i i]

| cs i S |
| _pocesor0 1 pocesort |

a. Processor structure

.

Processor 1 Pro;;::sor 1 Processor
0] . 1
working s
L{orking syster) §

b. Two possible configurations

too low to meet the reliability requirement. In order to increase the MTTF, either the number of
components (failure rate) or the repair time must be reduced. Alternatively, the single-unit duplex
configuration can be partitioned into a multi-unit duplex configuration, as shown in Figure 8-6.
In this arrangement, each subunit contains a small number of components and can be switched
into a working system. The system will fail only if a fault occurs in the redundant subunit while
the original is being repaired. Since each subunit contains fewer components, the probability of
two simultaneous faults accurring in a duplicated pair of subunits is reduced. The MTTF of the
multi-unit duplex configuration can be computed by considering the conditional probability of
the failure of a duplicate subunit during the repair time of the original subunit.

An example of a multi-unit duplex configuration is shown in Figure 8-6. A working system
is configured with a fault-free CCx-CSx-CSBx-PSx-PSBx-PUBX arrangement, where x is either
subunit 0 or subunit 1. This arrangement means there are 2 or 64, possible combinations of
system configurations. The MTTF is given by the following expression:

— e
MTTF =03 Q)]

and

. 1
= e\ + (e + (eseN)? + (psh)? + (hess/M® + (hpus/h)

(2

r

The factor r is at a maximum when the failure rate (A for each subunit is the same. In this case,

Acc = hcs = Acss = Aps = Apsg = ApuB = i 3

23

FIGURE 8-6
Multi-unit dupfex
configuration

8, HIGH-AVAILABILITY SYSTEMS 537

or

A=

[

()

where s = number of subunits in Eq. (2) v
5=6
r=3s

At best, the MTTF is improved by a factor corresponding to the number of partitioned
subunits. This improvement is not fully realized, since equipment must be added to provide
additional access and to select subunits. Partitioning the subsystem into subunits, as shown in
Figure 8-6, results in subunits of different sizes. Again, the failure rate for each individual subunit
will not be the same; hence, the r-factor will be smaller than 6. Because of the relatively large
number of components used in implementing the 1ESS switch processor, the system is arranged
in the multi-unit duplex configuration in order to meet the reliability requirement.

Reliability calculation is a process of predicting, from available failure rate date, the achiev-
able refiability of a system and the probability of meeting the reliability objectives for telephone
switching applications. These calculations are most useful and beneficial during the early stages
of design in order to assess various types of redundancy and to determine the system’s organi-

Peripheral units l
‘|psBo csBo CSB1 PSB1 l_l_ {‘—_l
-
T w e o= | —
E 3l + CCO e + 1puso| 1PUB1 lpups
[=A " - < 1 g/11
o té Y 7 -
&3 I_l r__._‘
o= s r--1
PUBG ¢ » CC1 |e _| PUB1 ccol | CC cCl
‘ L 0/1 1

je—t| C50 |femaidl C50

Program store hus 0
Call store bus 0
r—=" I
I]

le—sl CS1 |4—D C5B0

Fe |
> PSO fe . b i PS
0 pso | R PSi
L1
T oce V
I psg ,
* PS1 PSBO| m_]j PSB1

a. Processor structure b, 64 possible configurations

24

538

FAULY
SIMULATION
TECHNIQUES

I[. THE PRACTICE OF RELIABLE SYSTEM DESIGN

zation. In the small and medium switches, the calculations support the use of single-unit duplex
structures. For large systems, it is necessary to partition the system into a multi-unit duplex
configuration.

One of the more difficult tasks of maintenance design is fault diagnosis. The maintenance design’s
effectiveness in diagnostic resolution can be determined by simulation of the system’s behavior
in the presence of a specific fault. By means of simulation, design deficiencies can be identified
and corrected prior to any system’s deployment in the field. It is necessary to evaluate the
system’s ability to detect faults, to recover automatically back into a working system, and to
provide diagnostics information when the fault is within a few replaceable circuit packs. Fault
simulation, therefore, is an important aspect of maintenance design.

There are essentially two techniques used for simulating faults of digital systems: physical
simulation and digital simulation. Physical simulation is a process of inserting faults into a physical
working model. This method produces more realistic behavior under fault conditions than digital
simulation does. A wider class of faults can be applied to the system, such as a blown fuse or
shorted backplane interconnection, However, fault simulation cannot begin until the design has
been completed and the equipment is fully operational. Also, it is not possible to insert faults
that are internal to an integrated circuit. ‘

Digital fault simulation s a means of predicting the behavior under failure of a processor
modeled in a computer program. The computer used to execute the program (the host) is
generally different from the processor that is being simulated (the object). Digital fauft simulation
gives a high degree of automation and excellent access to interior points of logic to monitor the
signal flow. It allows diagnostic test development and evaluation to proceed well in advance of
unit fabrication. The cost of computer simulation can be quite high for a large, complex systerm:

The physical fault simulation method was first employed to generate diagnostic data for the
Morris Electronic Switching System [Tsiang and Ulrich, 1962]. Over 50,000 known faults were
purposely introduced into the central control to be diagnosed by its diagnostic program. Test
results associated with each fault were recarded. They were then sorted and printed in dictionary
format to formulate a trouble-locating manual. Under trouble conditions, by consulting the
manual, it was possible to determine a set of several suspected circuit packs that might contain
the defective component. Use of the dictionary technique at the Morris system kept the average
repair time low and made maintenance much easier.

The experience gained in the physical fault simulation was applied and extended in the 1ESS
switch development [Downing, Nowak, and Tuomenoksa, 1964]. Each plug-in circuit pack was
replaced by a fault simulator that introduced every possible type of single fault on the replaced
package one at a time and then recorded the system reaction on magnetic tape. This procedure
was fallowed for all circuit packs in the system. In addition to diagnostic data for dictionaries,
additional data were collected to determine the adequacy of hardware and software in fault
detection and system recovery. Deficiencies were corrected to improve the overall maintenance
of the system. '

A digital logic simulator, called LAMP [Chang, Smith, and Walford, 1974], was developed for
the 1A system, and it played an important role in the hardware and diagnostics development of
the 1A Processor. LAMP is capable of simulating a subsystem with as many as 65,000 logic gates.
All classical faults for standard logic gates are simulatable with logic nodes stuck-at-0 or stuck-at-
1. Before physical units are available, digital simulators can be very effective in verifying the
design, evaluating diagnostic access, and developing tests. Physical fault simulation has been
demonstrated in the System 1 processor to give a very realistic behavior under fault conditions.
The integration of both techniques was employed in the development of the TA processor to

25

8, HIGH-AVAILABILITY SYSTEMS 539

take advantage of both processes. The use of complementary simulation allows faults to be
simulated physically (in the system laboratory) and logically (on a computer). Most of the defi-
ciencies of one simulation process are compensated for by the other. The complementary method
provides both a convenient method for validating the results and more extensive fault simulation
data than is possible if either process is used individually. Figure 8-7 shows the complementary
process of fault simulation used in the 1A Processor development [Bowman et al., 1977; Goetz,
1974]. Maximum diagnostic performance was achieved from an integrated use of both simulation
methods.

FIGURE 8—7 Physical Common : Digita!
Complementary
fault simulation

Fault
selection

1
|
I
|
i
I
|
1 o
| N h
. I /
Physical |
fault ‘| Fault
|
|
|
i
|
|
|
]

system

simulator

‘ descriptions

Circuit ‘
description \

:

| .

i

|

|

% Test

] generation
| .
|

|

I

i

1

|

’/ - "'-.\\
{ Manufacture

g
\"T-———"

h

Diagnostic

summary

. Simulator
Compiler ! source I compiler
| program !
b v H - I[X
Circuit : ! LAMP
under test |l L fault
1A processor : I simulator
1 I
| |
{ |
Test |] " Test
results — Compare and_ merge E results
I o
| Design |
Il feedback II
!i Diagnostic 5
I I

26

540

FIRST-
GENERATION ESS
PROCESSORS

I1. THE PRACTICE OF RELIABLE S$YSTEM DESIGN

The world’s first stored-program—controlled switching system provided commercial telephone
service at Morris, lllinois, in 1959 for about a year on a field-trial basis [Keister, Ketchledge, and
Lovell, 1960]. The system demonstrated the use of stored program control and the basic main-
tenance philosophy of providing continuous and relisble telephone service. The trial established
valuable guides for designing a successor, the 1ESS switch.

TESS Switch Processor {(No, 7 Processor)

The TESS switching system was designed to serve Iarge metropolitan telephone offices, ranging
from several thousand to 65,000 lines [Keister, Ketchledge and Vaughan, 1964]. As in most large
switching systems, the processor represents only a small percentage of the total system cost.
Therefore, performance and reliability were of primary importance in the design of the No. t
processor; cost was secondary. In arder to meet the reliability standards established by electro-
mechanical systems, all units essential to propér operation of the office are duplicated (see Figure
8-6). The multi-unit duplex configuration was necessary to increase the MTTF of the processor
because of the large number of components in each of the functional blocks.

Lven with duplication, troubles must be found and corrected quickly to minimize exposure
to system faflure due to multiple troubles. All units are monitored continually so that troubles in
the standby units are found just as quickly as these in the on-line units. Monitoring is accom-
plished by rurining the on-line and standby units in synchronous and match mode of operdtion
(Downing, Nowak, and Tuomenoksa, 1964]. Synchronization requires that clock timing signals be
in close tolerance so that every operation in both halves is performed in step, and key outputs
are compared for error detection. The synchronization of duplicated units is accomplished by
having the on-ling oscillator output drive both clock circuits. There are two match circuits in each
central control (CC). Each matcher compares 24 hits within one machine cycle of 5.5 micro-
seconds. Figure 8-8 shows that each matcher has access to six sets of internal nodes (24 bits per
node). In the routine match mode, the points matched i in each cycle are dependent upon the
instruction that is being executed. The selected match peints are those most pertinent to the
data processmg steps that occur during a given machine cycle. The two matchers in each CC
compare the same sets of selected test points. If a mismatch occurs, an interrupt is gerierated,
causing the fault-recognition program to run. The basic funciion of this program is to determine
which half of the system is faulty. The suspected unit is removed from service, and the appropriate
diagnostic program is run 1o pinpoint the defective circuit pack. The capability of each CC to
compare a number of internal nodes provides a highly effective means of detecting hardware
errors.

The No. 1 Processor was designed during the discrete component era (zarly 1960s), using
individual components to implement logic gates [Cagle et al., 1964} The CC contains approxi-
mately 12,000 logic gates. Although this number appears small when compared to large-scale
integration {L5I) technology, the No. 1 Processor was a physically large machine for its time. The
match circuits capable of comparing internal nodes are the primary tools incorporated into the
CC for diagnosing as well as detecting troubles. Specified informatioh can be sampled by the
matchers and retained in the match registers for examination. This mode of operation obtains
critical data during the execution of diagnostic programs,

The early program store used permanent magnet twister (PMT) modules as basic storage
elements [Ault et al., 1964]. PMTs are a form of ROM in which system failures cannot alter the
information content. Experience gained from the Morris field test system, which used the less
reliable flying spot store, indicated that Hamming correction code wis highly effective in providing
continuous operation. At the time of development, it was felt that PMT modules might not be

-

27

FIGURE 8—8
No. 1 Processor’s
CC match access

8. HIGH-AVAILABILITY SYSTEMS 541

— To
] other
; ' cC
N Decoder -Othir -
functions |npﬁu *
e 4 34
Aux. storage DRO ARD
- register)
L i :
" : Data buffer
: register Match
! _ '
il Masked || To interrupt
} hus source
I
1
1 [Program add.
|l register
| ' P :
I [+ Poinks matched
* Buffer ord. routinely
. word reg, .
| Ta
‘ other
A Index adder. | . [—) ¢
order reg. : Other
| - inputs
|
! l A
—L Unmasked |
bus ! AR
|]
. |
Sequencer i
|
state FFS I Match
S ! z
— Drecoder To interrupt
functions solurce
Test
connector)

reliable enough. Consequently, the program store word included additional check bits for single-
bit error correction (Hamming codg). In addition, an overall parity check bt that covers both the
data and their addresses is included in the word. The word size consists of 37 bits of information
and seven check bits. When an error is corrected during normal operation, it is fogged in an
error counter. Also, detection of a single error in the dddress or a double error in the word will
cause an automatic retry.

The call store is the temporary read and write memory for storing transient data associated
with call processing. Ferrite sheet memory modules are the basic storage elements used in
implementing the call store in the 1ESS switch [Genke, Harding, and Staehler, 1964]. The call
store used in most No. 1 offices is smaller than the program store. (At the time of design, the
cost per bit of call store was considerably higher than that of program store.) Also, ferrite sheet

28

542

. THE PRACTICE OF RELIABLE $YSTEM DESIGN

memory modules were considered to be very reliable devices, Consequently, single-bjt error
detection rather than Hamming correction code was provided in the call store,

There are two parity check bits: one over both the address and the data; and the other Over
the address only. Again, as in the program store, automatic retry is performed whenever an errg,
is detected, and the event js logged in an efror counter for diagnostic use.

Troubles are normally detected by fault-detection circuits, and error-free system Operation
is recovered by fault recognition programs {Downing, Nowak, and Tuomenoksa, 1964]. This
requires the on-line processar to be capable of making a proper decision. I this is Not possible,
an emergency action timer will time out and activate special circuits to establish varioyus combj-

arranged in a maze. Only one correct path through the maze exists. If the Processor passes
through successfully, the timer will be reset, and recovery is succassful, If recovery is unsuc.
cessful, the tirmer will time out again, and the rearrangement of subsystems will be tried one at
a time (for example, combination of CC, program store, and program store bus systems), For
each selected combination, the special sanity program is started and the sanity timer is activateg,

store and the program store bys,

2ESS Switch Processor (No. 2 Processor)

switch was designed for medium-sized offices ranging from 1,000 to 10,000 lines. The processor’s
design was derived from experience with- the common stored program of a private branch
exchange (PBX}, the No. 101 {Seley and Vigilante, 1964]. Since the capacity requirement of the
2ESS switch was to be less than that of the 1ESS switch, cost became one of the more important
design considerations. (Refiability is equally important in all systems.) The 2ESS switch contains
much less hardware than the 1ESS switch. Understandably, its component failure rate is also
substantially lower. Its CC contains approximately 5000 gates (discrete components). To reduce
cost and increase reliability, resistor-transistor logic (RTL} gates were chosen for the 2ESS proces-
sor, since resistors are less expensive and more reliable than dicdes [the No. 1 Processor used
diode-transistor logic (DTL)]. ‘

Because the No. 2 Processor's CC, program store, and call store are smaller, they are grouped
together as a single switchable block in the single-unit duplex configuration shown in Figure
8-5. Calculations indicate that its MTTF is approximately the same as the No. 1 multi-unit duplex
structure, with each of the functional blocks and associated store buses grouped together as a
switchable block. The use of only two subsystem configurations considerabfy reduces the amount
of hardware needed 1o provide gating paths and control for each functional unit. Moreover, the
recovery program is simplified, and the reliability of the system is improved.

The No. 2 Processor runs in the synchronous and match mode of operation [Beuscher et
al., 1969]. The on-line oscillator output drives both clock circuits in order to keep the timing
synchronized. The match Operation is not as extensive as it is in the No. 1 Processor. For simplicity,
there is only one matcher in the No. 2 Processor; it is located in the nonduplicated maintenance
center {see Figure 8-9). The matcher always compares the call store input register in the two CCs

29

8. HIGH-AVAILABILITY SYSTEMS 543

FIGURE 8-9 . .
, Peripheral units
No. 2 Processar’s
€C match access %... ————————— I —-———-[-———~1- ———————— -
1
* > I
1 1
I CS e CC -~ CC fpsr CS l
I | |
| | 1
| | |
I ! I
: Processor P i Ps Processor I
| 0 i 1 1
| S et a1 N DU [_t
Error signals
@ Halt off-line
CcC ~
— 1 ® Run detection
& Maich | programs in
L— on-line CC
Maintenance center

processed data returning to the call store. The call store input is the central point by which data
eventually funnel through to the call store, By matching the call store inputs, an effective check
of the system equipment is provided, Compared to the more complex matching of the No. 1
Processor, error detection in the No. 2 Processor may not be as instantaneous, since only one
crucial node in the processor is matched. Certain faults in the No. 2 Processor will go undetected
until the errors propagate into the call store. This interval is probably no more than tens or
hundreds of microseconds. During such a short interval, the fault would affect only a single cafl.

The No. 2 Processor matcher is not used as a diagnostic tool as is the matcher in the No. 1
Processor. Therefore, additional detection hardware is designed into the No. 2 Processor to help
diagnose as well as detect faults. When a mismatch occurs, the detection program is run in the
on-line CC to determine if it contains the fault. This is done while the standby processor is
disabled. If a solid fault in the on-line processor is detected by the mismatch detection program,
the control is automatically passed to the standby processor, causing it to become the on-line
processor. The faulty processor is disabled and diagnostic tests are called in to pinpoint the
defective circuit pack.

The program store also uses PMT modules as basic storage elements, with a word size of 22
bits, half the width of the No. 1 Processor’s word size. Experience gained in the design and
operation of the No. 101 PEX showed that PMT stores are very reliable. The additional protection
provided in the No. 1 Processor against memory faulis by error correction was not considered to
be as important in the No. 2 Processor. Thus, the need to keep the cost down led to the choice

of error detection only, instead of the more sophisticated Hamming correction code.
\ Error detection works as follows: One of the 22 bits in a word is allocated as a parity check
bit. The program store contains both program and translation data. Additional protection is
provided by using odd parity for program words and even parity for translation data. This parity
scheme detects the possibility of accessing the translation data area of memary as instruction
words. For example, a software error may cause the program to branch into the data section of
the memory and execute the data words as instruction words. The parity check would detect this
problem immediately. The program store includes checking circuits to detect multiple-word

30

544

SECOND-
GENERATION
PROCESSORS

1. THE PRACTICE OF RELIABLE SYSTEM DESIGN

access. Under program control, the sense amplifier threshold voltage can be varied in two discrete
amaunts from its nominal value to obtain a measure of the operating margin. The use of parity
check was the proper choice for the No. 2 Processor in view of the high reliability of these
memory devices.

The No. 2 Processor call store uses the same ferrite sheet memory modules as the No. 1
Processor. However, the No. 2 Processor’s data word is 16 bits wide instead of 24, Fault detection
depends heavily upon the matching of the call store inputs when the duplex processors run in
the synchronous mode. Within the call store circuit, the access circuitry is checked to see that
access currents flow in the right direction at the correct time and that only two access switches
are selected in any store operation, ensuring that only one word is accessed in the memory
operation. Similarly, threshold voltages of the sense amplifiers may be varied under program
control to evaluate the operating margins of the store. No parity check bit is provided in the call
store.

Fach processor contains a program timer that is designed to back up other detection meth-

ods. Normally, the on-line processor clears the timer in both processors at prescribed intervals
if the basic call processing program cycles correctly. If, however, a hardware or software trouble
condition exists (for example, a program may go astray ot a longer program loop may prevent
the timer from being cleared), the timer will time out and automatically produce a switch. The
new on-line processor is automatically forced to run an initialization restart program that attempts
to establish a working system. System recovery is simplified by using two possible system con-
figurations rather than the multi-unit duplex system. :
The advent of silicon integrated circuits (ICs) in the mid-1960s provided the technological climate
for dramatic miniaturization, improved performance, and cost-reduced hardware. The term 74
technology refers to the standard set of 1C devices, apparatus, and design tools that were used
to design the No. 1A Processor and the No. 3A Processor [Becker et al., 1977]. The choice of
technology and the scale of integration level were dictated by the technelogical advances made
between 1968 and 1970. Smail-scale integration (551), made possible by bipolar technology, was
capable of high vield production. Because of the processor cycle time, high-speed logic gates
with propagation delays from 5-10 nanoseconds were designed and developed concurrent with
the No. 1A Processor.

No. TA Processor

The No. 1A Processor, successor to the No. 1 Processor, was designed primarily for the control
of large local and toll switches with high processing capabilities (the TA ES5 and 4ESS switches,
respectively) [Budlong et al., 1977]. An important objective in developing the 1A ESS switch was
to maintain commonality with the 1ESS switch. High capacity was achieved by implementing the
new TA integrated technology and a newly designed system structure. These changes made
possible an instruction execution rate that is four to eight times faster than the No. 1 Processor.
Compatibility with the 1£SS system also allows the No. 1A Processor to be retrofitted into an in-
service 1ESS, replacing the No. 1 Processor when additional capacity is needed. The first 1A
Processor was put into service in January, 1976, as control for a 4ESS toll switch in Chicago. Less
than one vear later, the first 1A ESS system was put into commercial operation. By 1988, about
2000 systems were in service. ’

The No. 1A Processor architecture is similar to its predecessor in that all of its subsystems
have redundant units and are connected to the basic CC via redundant bus systems [Bowman
et al., 1977]. One of the No. TA Processor’s major architectural differences is its program store

31

FEGURE §-10
No. TA Processor
configuration

8. HIGH-AVAILABILITY SYSTEMS 545

[Auilt et al., 1977). It has a writable RAM instead of PMT ROM. By combining disk memory and
RAM, the system has the same amount of memory as a system with PMT, but at a lower cost.
Backup copy of program and translation data is kept on disk. Other programs (e.g., diagnostics)
are brought to RAM as needed; the same RAM spare is shared among different programs. More
important is the system’s ability to change the content of the store quickly and automatically.
This ability considerably simplifies the administration and updating of program and translation
information in working offices.

The additional disk (file store) subsystem adds flexibility to the No. 1A Processor [Ault et al,,
19771, but it also increases the complexity of system recovery. Figure 8-10 shows the multi-unit
duplex No. 1A Processor. This configuration is similar to the No. 1 Processor arrangement (see
Figure 8-6) with a duplicated file store included. The file store communicates with the program
stare or call store via the CC and the auxiliary unit bus. This communication allows direct memory
access between the file store and the program store or the call store. The disk file and the auxiliary
unit bus are grouped together as a switchahle entity. ‘

Error detection is achieved by the duplicated and matched synchronous mode of operation,
as in the No. 1 Processor. Both CCs operate in step and perform identical operations. The

Peripheral units J

@ o le »| Disk
gl o| gf = file 0
= W = g
EEE
) ¢l 3| ¢ Disk
el 2| Z| 2 file 1} e
8 = =] .&
b ®| E| T
B - Pl . s R
—f oo T,
4—>] <
< - = CC1 e - .
AUBO PUBO PUB1T AUB1
< p» CS0 |e g
< » (51 [+ g
CSBO CSB1
< » PSO |e >
< » P51 | +

PSBG - PSB1

32

546

FIGURE 8-11

No. 1A Processor’s
program store
sfructure i

11. THE PRACTICE OF RELIABLE SYSTEM DESIGN

matching is done more extensively in the 1A to obtain as complete a check as possible. There
are two match circuits in each processor. Each matcher has the ability to compare 24 internal bits
to 24 bits in its mate once every machine cycle. (A machine cycle is 700 nanoseconds.} Any one
of 16 different 24-bit internal nodes can be selected for comparison. The choice is determined
by the type of instruction that is being executed. Rather than compare the same nodes in both
CCs, the on-line and the standby CCs are arranged to match different sets of data. Four distinct
internal groups are matched in the same machine cycle to ensure the correct execution of any
instruction.

The No. 1A Processor design is an improvement of the No. 1 Processor design. The No. 1A
Processar incorporates much more checking hardware throughout various functional units, in
addition to matching hardware. Checking hardware speeds up fault detection and also aids the
fault recovery process by providing indications that help isolate the faulty unit. The matching is
used in various modes for maintenance purposes. This capability provides powerful diagnostic
tools in isofating faults. .

The program store and call store use the same hardware technology as in the No. 1 Processor.
The CC contains approximately 50,000 logic gates. While the initial design of the stores called for
core memories, they have been replaced with semiconductor dynamic MOS memories. The word
size is 26 bits {24 data bits and 2 parity check bits). In the No. 1 Processor, the program store and
the call store are fully duplicated. Because of their size, duplication requires a considerable
amount of hardware, resulting in higher cost and increased component failures. To reduce the
amount of hardware in the No. 1A Processor’s store communily, the memory is partitioned into
biocks of 64K words, as shown in Figure 8-11. Two additional store blocks are provided as roving
spares. If one of the program stores fails, a roving program store spare is substituted, and a copy
of the program in the file store is transferred to the program store replacement. This type of
redundancy has been made possibie by the ability to regenerate data stored in a failing unit.
Since a program store can be reloaded from the file store in less than a second, a roving spare
redundancy plan is sufficient to meet the reliability requirement. As a result, Hamming correction
code was not adopted in the No. 1A program store. However, it is essential that an error be
detected quickly. Two parity check bits are geﬁerated over a partially overlapped, interleaved set
of data bits and address. This overlapping is arranged to cope with particular memory circuit
failures that may affect more than one bit of a word.

The 1A call stores contain bath transiation data backed up on the file stores and call-related
sransient data that are difficult to regenerate. The roving spare concept is expanded for the call
stores to inciude sufficient spares to provide full duplication of transient data. If a fault occurs in
a store that contains transiation data, one of the duplicated stores containing transient call data
is preempted and loaded with the necessary translation data from the duplicate in the file store.
A parity check is done in the same manner as in the program store, using two check bits.

PSUO Program store bus 0
Program{ 64K 64K |]| 64K 64K 64K
stores |words| fwords words| |words| [waords ’
PSUT
Ao - A
Active program stores Standby program stores
maximum of 20 2 roving spares

33

8. HIGH-AVAILABILITY SYSTEMS 547

The combination of writable program store and file store provides a very effective and
flexible systern architecture for administrating and implementing a wide variety of features that
are difficult to obtain in the 1E55 system. However, this architecture also complicates the process
of fault recognition and recovery. Reconfiguration into a working system under trouble conditions
is an extensive task, depending on the severity of the fault. {For example, it is possible for the
processor to lose its sanity or zbility to make proper decisions.} An autonomous hardware
processor configuration (PC) circuil is provided in each CC to assist in assembling a working
system, The PC circuit consists of various titners that ensure that the operational, fault recovery,
and configuration programs are successfully executed. if these programs are not executed, the
PC circuit controls the CC-to-program memory configuration, reloading program memory from
file store when required, and isolating varicus subsystems from the CC until a working system is
obtained.

No. 3A Processor

The No. 3A Processor was designed to control the small 3ESS switch [irland and Stagg, 1974],
which can handle from 500 to 5,000 lines. One of the major concerns in the design of this FSS
was the cost of its processor. The low cost and high speed of integrated logic circuitry made it
possible to design a cost-effective processor that performed better than its discrete component
predecessor, the No. 2 Processor. The No. 3A project was started in eatly 1971. The first system
cut into commercial service in late 1975.

Because the number of components in the No. 3A Processor is considerably fewer than in
the No. TA Processor, all subsystems are fully duplicated, including the main store. The CC, the
store bus; and the store are treated as a single switchable entity, rather than individual switchable
units as in the No. 1A Processor. The system structure is similar to the 2ESS switch. Experience
gained in the design and operation of the No. 2 provided valuable input for the No. 3 Processor
design.

The 3A design makes one major departure from previous processor designs: It operates in
the nonmatched mode of duplex operation. The primary purpose of matching is to detect errors.
A mismatch, however, does not indicate where (in which one of the processors) the fault has
occurred. A diagnostic fault-location program must be run to iocalize the trouble so that the
defective unit can be taken off line. For this reason, the No. 3A Processor was designed to be
self-checking, with detection circuitry incorporated as an integral part of the processor. Faults
occurring during normal operation are discovered quickly by detecting hardware. Detection
circuitry efiminates the need to run the standby system in the syichronous and match mode of
operation or the need to run the fault recognition program to identify the defective unit when a
mismatch occurs.)

The synchronous and match mode arrangement of the No. 1 Processor and the No. 2
Processor provides excellent detection and coverage of faults. However, there are many instances
tfor example, periodic diagnostics, administration changes, recent change updates, and so on)
when the system is not run in the normal match mode. Consequently, during these periods, the
system is vulnerable to faults that may go undetected. The rapid advances in integrated circuit
technology make possible the implementation of self-checking circuits in a cost-effective manner.
Self-checking circuits eliminate the need for the synchronous and match mode of operation.

Another new feature in switching system processor design is the application of the micro-
program technique in the No. 3A [Storey, 1976). This technique provides a regular procedure of
implementing the control logic. Standard error detection is made part of the hardware to achieve
a high degree of checkability. Sequential logic, which is difficult to check, is easily implemented

34

" 548

Hl. THE PRACTICE OF RELIABLE SYSTEM DESIGN

as a sequence of microprogram steps. Microprogramming ofiers many attractive features: it is
simple, flexible, easy to maintain, and easy to expand.

The No. 3A Processor paralleled the design of the No. 1A Processor in its use of an electrically
alterable (writable) memory. However, great strides in semiconductor memory technology after
the No. 1A became operational permitted the use of semiconductor memory, rather than the
core memaory, in the 3A.

The 3A’s call store and program store are consolidated into a single store system. This
consolidation reduces cost by eliminating buses, drivers, registers, and controls. A single store
system no longer dllows concurrent access of calf store and program store. However, this dis-
advantage is more than compensated for by the much faster semiconductor memory. Its access
time is 1 microsecond (the earlier PMT stores had an access time of 6 microseconds),

Normal operation requires the on-line processor to run and process calls while the standby
processor is in the halt state, with its memory updated for each write operation. For the read
opetation, only the on-line memory is read, except when a parity error occurs during a memory
read. A parity error results in a microprogram interrupt, which reads the word from the standby
store in an attempt to bypass the error.

As discussed previously, the No. 2 Processor (first generation) is used in the 2ESS switch for
medium-sized offices. it covers approximately 4,000 to 12,000 lines with a call handling capability
of 19,000 busy-hour cabls. (The number of calls is related to the calling rate of lines during the
busy hour.} The microprogram technique used in the No. 3A Processor design aliows the No. 2
Processor's instruction set to be emulated. This emulation enables programs written in the Na.
2 assembly language to be directly portable to the No. 3A Processor. The ability to preserve the
call processing programs permits the 2ESS system to be updated with the No. 3A Processor
without having to undergo a complete new program development.

The combinaticn of the No. 3A Processor and the peripheral equipment of the 2ES5 system
is designated as the 2B £S5 switch. 1t is capable of hand!mg 38,000 busy-hour calls, twice the
capability of the 2E55 switch [Mandigo, 1976], and can be expanded to cover about 20,000 lines.
Furthermare, when an existing 2ESS system in the field exceeds its real-time capacity, the No. 2
Processor can be taken out and replaced with the No. 3A Processor. The retrofit operation has
been carried out successtully in working offices without disturbing telephone service.

Seli-checking hardware has been integrated inta the design to detect faults during normal
systemn operation. This simplified fault recognition technique is required to identify a subsystem
unit when it becomes defective. Reconfiguration into a working system is immediate, without
extensive diagnostic programs to determine which subsystem unit contains the fauit. The problem
of synchronization, in a much shorter machine cycle (150 nanoseconds), is eliminated by not
having to run both processors in step. The No. 3A Processor uses low-cost ICs to rea]lze its highly
reliable and flexible design.

General Systems Description. The general system block diagran of the No. 3A Processor is shown
in Figure 8-12. The CC, the main store, and the cartridge tape unit are duplicated for reliability.
These units are grouped as a single switchable entity rather than individual switchable units. The
quantity of equipment within the switchable block is small enough to meet the reliability require-
ments; therefore, the expense and complexity of providing communication paths and contro] for
switchable units within the system are avoided. Each functional unit was designed to be as
autonomous as possible, with a minimum number of output signal leads. Such autonomy provides
the flexibility necessary to expand the system and make changes easily. ‘

As shown in Figure 8-12, the standard program store and call store are combined as a single
storage unit to reduce cost. Although the processors are not run in the synchronous and match

35

8. HIGH-AVAILABILITY SYSTEMS 549]

FIGURE 8-12 "
Peripheral
No. 3A Processor) units [
organization
System
= control jem
and status
T T ——— T 7T 7T 1 1
| ‘ ; v ¢ ! r . I
| . .
| Cartridge Central l Central Cartridge |
' tape control | control, fape |
| unit | unit {
|
| Bus 0 Bus 1 |I Bus 0| Bus 1 E
I - L f f !
i
| T ;
} Main [Main ;
1 store | ~* store i
| | 256K | 236K ;
i words | words]
I | ;
I 256K ! Lo 256K |
| words i words] :
! |]l
| v] - f
! Processor 0] Processor 1 1
| ! |
P O P _
mode of operation, both stores (on-line and standby) are kept up to date by having the on-line
processor write into both stores simultaneously when call store data are written or changed.
Because of the volatile nature of a writable memory, low-cost bulk storage backup (cartridge tape)
is required to reload the program and translation dala when the data are lost due to a store
failure. The pump-up mechanism, or store loader, uses the microprogram control in conjunction
with an VO serial channel to transfer data between the cartridge tape unit and the main store.
Other deferrable, infrequently used programs (that is, diagnostics or growth programs) are stored
on tape and paged in as needed.

The system control and status panel, a nonduplicated block, provides a common point for "
the display of overall system status and alarms. Included in this unit is the emergency action '
circuitry that alflows the maintenance personnel to initialize the system or force and lock the
system into a fixed configuration. Communication with the processor takes place via the /O
serial channel. ‘

General Processor Description. Figure 8-13 shows a detailed block diagram of the CC. Itis organized
to process input data and handle call processing functions efficiently. The processor’s design is
based on the register type of architecture. Fast-access storage in the form of flip-flop registers
provides short-term storage for information that is being used in current data processing opera-
tions. Sixteen general-purpose registers are provided as integral parts of the structure.

36

30 It. THE PRACTICE OF RELIABLE SYSTEM DESIGN

}_ B E;;ﬁeg{sw—rs— _!_ T ﬁml;)ﬁ?ogr;n_cagol_ T wl!mwg Mﬁlroﬂgi:;n?eg_mm “i
i
—
|- | | mdl
\ | | |
| e ®1] | I CHO I
i f Microprogram |
| ‘m MAR store | |
Parity || i 1 i {
check ‘T | | |
! 0—.; _R_Q- ! | L MIR I !
1 it See [: |
Ercor | et R10 1 170 |] 1
| CIZL | interface | : 1
| s R11 Jl/ | Check Decoder l
I 0 I + vd o ¥ i .
| [1}
Error | | peripheral
— i peEvip]
== T T === |
Main | | AR — : | Data- | |
store | ! | manipulation (e | 1/0 :
f | logic I channel |
| 1 | | bus |
: SDR | | - | [
| P [|
' \ | |
i_ SIR L | |
I S R, 3 i
i ——E Ertor d-| Match} | !
| v 4 1 |
| » Match E i |
4-" AK Il !
I Inte!rupt L | :
| Iy E ‘ |
| Lg Data-
DK e
{ - s Match : man‘ipu_lalir)n koo To
X ogic
j z’m | other
vanual inpul’l | processor
. L
I Craft-to-machine interface | Data manipulation
| Lraptormachine interiace L. atamanipulation

EIGURE 8-13 No. 3A Processor’s central control

Micropragram control is the heart of the No. 3A Processor. It provides nearly all of the
camplex control and sequencing operations required for implementing the instruction set. Other
complicated sequencing functions are also stored in the microprogram memory; for example,
the bootstrap operation of reloading the program from the backup tape unit, the initializing
sequence to restart the system under trouble conditions, the interrupt priority control and saving
of essential registers, the emergency action timer and processor switching operation, and the
craft-to-machine functions. The regular structure of the microprogram memory'makes errot
detection easter. The microprogram method of implementation alse offers flexibility in changing
control functions.

The data manipulation instructions are designed specifically for implementing the call pro-
cessing programs. These instructions are concerned with logical and bit manipulation rather than
with arithmetical operations. However, a binary ADD is included in the instruction repertoire for
adding two binary numbers and for indexing. This instruction allows other arithmetical operations

37

THIRD-
GENERATION
3B20D PROCESSOR

8. HIGH-AVAILABILITY SYSTEMS 551

to be implemented conveniently by the software combinations of addition and logical operations,
or by a microprogram sequence if higher speed is essential. The data manipulation logic contains
rotation, Boolean function of two variables, first zero detection, and fast binary ADD.

The remaining function blocks in Figure 813 deal with external interfaces. The 20 main /O
channels, each with 20 subchannels, allow the processor to control and access up to 400 peripheral
units by means of 21-bit (16 data, 2 parity, and 3 start code bits) serial 6.67-MHz messages. The
system is expandable in modules of one main channel (20 subchannels). The 1O structure allows
up to 20 subchannels (one fram each main channel) to be active simultaneously. in addition, the
craft-to-machine interface, with displays and manual inputs, is integrated into the processor. This
interface contains many of the manual functions that will assist in hardware and software debug-
ging. The control logic associated with this part of the processor is incorporated as part of the
microprogram control. Lastly, the maintenance channet enables the online processor to control
and diagnose the standby processor. The use of a serial channel reduces the number of leads
interconnecting the two processors and causes them to be loosely coupled. This loose coupling
facilitates the split mode or stand-alone configuration for factory test or system test.

Hardware Implementation. Maintenance has been made an integral part of the 3A CC design. it
uses the standard 1A ESS logic family with its associated packaging technology [Becker et al.,
19775, Up to 52 silicon integrated circuit chips (5ICs), each containing from 4 to 10 logic gates,
can be packed on a 3.25" X 4.00" 1A ceramic substrate. The substrate is mounted on a 3.67" X 7"
circuit board with an 82-pin connector for backplane interconnections. [n' the 3A CC, the 53 1A
logic circuit packs average about 44 SICs, resulting in an average of 308 gates per circuit pack, or
a total of 16,482 gates. Figure 8-14 shows a detailed functional diagram of the 3A CC and the
percentage of logic gates used in each function unit.

Another insight into how the gates are used in the 3A is shown in Figure 8-15. The figure
shows the relationship between working gates, maintenance access gates, and self-checking logic.
The working gates are the portion that contributes to the data processing functions, while the
maintenance access gates provide the necessary access to make the CC maintainable (that is,
maintenance channel and control panel}. The self-checking gates are required to implement the
parity bits, the check circuits, and the duplicate circuits that make the CC self-checking. As
indicated, about 30 percent of the logic is used for checking. The design covers a high degree of
component failures. It is estimated that about 90-95 percent of the faults would be detected by
hardware error detection logic. Certain portions oi the checkers, timers, and interrupt logic are
not checked. These circuits are periodically exercised under program control to ensure that they
are fault-free.

The 3B20D Processor is the first designed for a broad range of AT&T applications. [ts devefopment
is a natural outgrowth of the continuing need for high availability, real-time control of electronic
switching systems for the telecommunications industry. The 3B20D architecture takes advantage
of the increased efficiency and storage capabilities of the latest integrated-circuit technology to
significantly reduce its maintenance and software development costs.

Figure 8-16 shows the trend of processors for AT&T switching systems for the past three
decades. The first-generation processors, the No. 1 and the No. 2, were designed specifically for
controlling large (several thousand to 65,000 lines} and medium (1,000-10,000 lines) telephone
offices. The predominant cost of these systems, as in most early systems, was the cost of the
hardware. The advent of silicon integrated circuits in the mid-1960s was the technological advance
needed for dramatic performance improvements and cost reductions in hardware. Integrated
circuits led to the development of the second generation of processors (the No. 1A and the No.

38

552

FIGURE 8-14
No. 3A Processor’s
CC gate count

FIGURE 815
Logic gates in No.
3A Processor’s CC
(total gates =
16,482)

. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Total gates = 16,482

Micro store
d
Console f Maintenance To
Console panel Micro store channel
Panel *® functions [® control 11.0% > access SN o(t:}-(n:er
6.0% : : 5.2%
Data bus/ _Instruction
decoders 7.0%
4 r
4
Special DML O ¥.5% N General
registers . > registers
16.4% 10.6%
7 3
r v
Main store 110 (Ve
bus and seq CH No. 1/CH No. 0
8.4% Data parity 8.0%
4 and check 55y,
3
3 ¥ &
Main store frrorveg. 449 .
i ‘ ‘
Clock E
and Periphery
timing logic
‘0

Functional execution

Salf-checking
25.63%

54.29%

Maintenance
ACCESS

14.47%

Decoder and

clock timing

check

39

8. HIGH-AVAILABILITY SYSTEMS 553

FIGURE 8--16

Processor trends First
for AT&T switching ~ §eneration
systems

Dedicated 1965

Large switches Medium switches

Second Multiple 1976
generation application
Large switches Small and medium
switches
Third General
generation purpose 1981
No. 5 ESS switch TSPS NCP Others

(1982) {1981) (1981)

3A). These processors, unlike the first-generation machines, were designed for multiple appli-
cations; the third-generation machines have even greater capabilities.

The 3B20D Processor, the first member of the third generation, is a general-purpose system.
Its versatlle processing base fulfills the varied needs of telecommunications systems. Several
thousand 3B200 sites are currently providing real-time data base processing for enhanced 800
service, network control point systems, high-capacity processors for the traffic service position
system, the central processor in the administration module for the 5ESS systems, and support
processors for the 1A ESS and 4ESS systems.

Overview of 3B20D Processor Architecture

The successful deployment and field operation of many electronic switching systems and pro-
cessors (notably the No. 3A) have contributed to the design of the 3B20D. Previous systems have
demonstrated the simplicity and robustness of duplex configurations in meeting stringent reli-
ability requirements [Toy, 1978, Storey, 1976]. Hence, a duplex configuration forms the basic
structure for both the hardware and software architecture for the 3B20D. The 3B20D processor
also has a concurrent, self-checking design [Toy and Gallaher, 1983]. Extensive checking hardware

40

554

FIGURE 8§~17
3820D Processor
general block dia-
gram

I[. THE PRACTICE OF RELIABLE SYSTEM DESIGN

is an integral part of the processor. Faults that occur during normal operation are quickly discov-
ered by detection hardware. Self-checking eliminates the need for fault-recognition programs to
identify the defective unit when a mismatch occurs; therefore, the standby processor is not
required to run synchronously. System maintenance is simplified because reconfiguration into a
working system is immediate. Another advantage of the self-checking design is that it permits
more straightforward expansion from simplex to duplex or to multiple processor arrangements,

As opposed to the hardware~-dominated costs of the first- and second-generation processors,
the costs of the 3B20D, as is typical of current systems, are dominated by software design,
updating, and maintenance expenditures. To reduce these costs as much as possible, the 3B20D
supports a high-level language, a customized operating system, and software test facilities. By
combining the software and hardware development efforts, an integrated and cost-effective
system has evolved.”

Figure 8-17 shows the general block diagram of the 3B20D Processor. The CC, the memory,
and the /O disk system are duplicated and grouped as a switchable entity, although each CC
may access each disk system. The quantity of equipment within the switchable block is small
enough to meet stringent refiability requirements, thus avoiding the need for complex recovery
programs. Each CC has direct access to both disk systems; however, this capability mainly provides
a valid data source for memory reloading under trouble conditions. The processors are not run
in the synchronous and match mode of operations as is done in early systems. However, both
stores (on-line and standby) are kept current by memory update hardware that acts concurrently

Central control v

* .t TI
DMA [DMA
Cache
Data »
Memor . . /O IO
Memory -updatey manipulation CH . | DDsBs (Disk
unit . - IoP)
Microprogram | MTC o
control CH Dup!ex dual
I T y r'y y serial bus
Maintenance selector
channel
£ 1 r r
Microprogram | MTC >
control CH -
Data b
Memory . . Vo ® o
Memory update manipulation cHl|®: DDSBS (Disk
unit . 10P)
Cache —
DMA| DMA |
L] -

41 |
‘ |
|

8. HIGH-AVAILABILITY SYSTEMS 555

with instruction execution. When memory data is written by the CC, the on-line memory update
circuit writes into both memories simultaneously. Under trouble conditions, the memory of the
‘standby processor contains up-to-date information; complete transfer of memory from one
processor 1o another is not necessary.

The direct memory access (DMA) circuits interface directly with the memory update circuit
1o have access to both memories. A DMA write also updates the standby memory. Communication
_between the DMA and the peripheral devices is accomplished by using a high-speed dual serial
channel. The duplex dual serial bus selector allows both of the processors to access a single /0
device. For maintenance purposes, the duplex 3B20D CCs are interconnected by the maintenance
channel. This high-speed serial path provides diagnostic access at the microcode level. It transmits
streams of microinstructions from the on-line processor to exercise the standby processor, Other
microinstructions from an external unit help diagnose problems.

The 3B20D Processor

The 3B20D Processor performs all the functions normally associated with a CPU and other
functions, including duplex operation, efficient emulation of other machines, and communication
with a flexible and intelligent periphery [Rolund, Beckett, and Harms, 1983]. The microprograms
in the processor minimize the amount of hardware decoding and simplify the control structure.
There is substantial flexibility in the choice of instruction formats that may be interpreted.

The CPU is a 32-bit machine with a 24-bit address scheme. Mast of the data paths in the CC
are 32 bits wide and have an additional 4 parity check bits. The CC architecture is based on
registers; multiple buses allow concurrent data transfers. Separate /O and store buses allow
concurrent memory access and 1/0O operations. A biock diagram of the central control is shown
in Figure 8-18. These functions and subsystems control the CC and all interactions with it.

The microprogram control subsystem provides nearly all the complex control and sequencing
operations required for implementing the instruction set. The microcode supports up to three
different emulations in addition to Hs native instruction set. Other complicated sequencing
functions are stored in the microinstruction store, or microstore. The microcontrel unit sequences
the microstore and interprets each of its words to generate the control signals specified by the
microinstruction. Execution time depends on the complexity of the microinstruction. Each mi-
croinstruction is allocated execution times of 150, 200, 250, and 300 nanoseconds. The wide 64-
hit word allows a sufficient number of independent fields within the micreinstruction to perform
a number of simultaneous operations. Some frequently used instructions are implemented with
a single microinstruction.

The data manipulation unit {DMU) contains the rotate mask unit {RMU) and the arithmetic
logic unit (ALU), as shown in Figure 8-19. These units perform the arithmetic and logic operations
of the system. The RMUJ rotates or shifts any number of bits from positions 0 through 31 through
a two-stage, barrel-shift network. In addition, the RMU performs AND or OR operations on bits,
nibbles, bytes, half words, full words, and miscellaneous predefined patterns. The RMU outputs
go directly into the ALU. The ability of the RMU to manipulate and process any bit fields within
a word greatly enhances the power of the microcode.

The other component of the DMU is the ALU, which is implemented using AMD Company's
2901 ALU slices. The 29015 are bipolar 4-bit ALUs (see Figure 8-20) [AMD, 1979]. Eight 2901 chips
provide two key elements: the 2-port, 16-word RAM and the high-speed ALU. Data in any of the
16 words addressed by the 4-hit A-address input can be used as an operand to the ALU. Similarly,
data in any of the 16 words defined by the 4-bit B-address input can be simultaneously read and
used as a second operand to the ALU. Because the internal 16-word RAM is dedicated as general

42

\L_/—\\

556 1. THE PRACTICE OF RELIABLE SYSTEM DESIGN

FHGURE 8-18 &= Utility processor
. U
3B20D Processor's £ T T
central control gz } ¢
.2
= on
= >
- 2E UC fa—
)
P [=1s]
murs [0 MASU Main
hamg e N I store
z e | A
- % no| M
S| = Z |5
g 35 > s |51 E >
€| 2 MiS e E | 5 | 5o «— SAT -
= o P =< | gL “ =
P> -5
£ 2 % < |g (58 Q
Ak A g
- =EN Y > -
£ g MC 3 | E csu | £
=] = 518 < 2
@ = > =1
2| ¢ v 7 £
‘S— ot 4 » SAC rl— g
MCH ‘] SDC |4
/ Store interface
] : control —
(. - / g
. =]
g
b
Sl e < > e)
= SREG DMAC DSCH —»
& 1 a— : - — "
3 2 E
] 2 2
¥ B S [=5
5 pMU | o DSCH 5
g » 8 L ————— | =
” Q
—p I R -
ACHI
-
MLTS: Microlevel test set SAT: Store address translator
MCH: Maintenance channel UC: Utility circuit
MiS: Microinstruction store MASU: Main store update
MC: Microcontro! unit’ : CSU: Cache store unit
DMU: Data manipulation unit DMAC: Direct memory access controller
SREG: Special regisiprs DSCH: Dual serial channel
'SAC: Storé address controller ACHE: Application channel interface

SDC: Store data co‘n&rol[er

43

FIGURE 8-19
3B20D Processor’s
data manipulation
uhit

8. HIGH-AVAILABILITY SYSTEMS 557

= DMUD ™9
| Bypass logic l“
: RMU
7 . ™
Arithmetic Mask Ratate
logic unit [4— unit % upit
ALU (MU) (RU)
Parity . Parity | |
generator |’ check
X —
@ Matcher H
=
B2 Iy @
= Error B2
g
3 g
£ z
] 2
kA a
a oMUt
Arithmetic ;
logic unit — h:zistk i
(ALU)
Find
low
zero
. »
4 Bypass logic 14
S O

registers, the result can be directed to the RAM word specified by the B-address, thus optimizing
the performance speed of the arithmetic and Iognca! opera’uons involving general registers and -
the output of the RML). v

The logic blacks of Figure 8-19 depict the self-checking capability of the RMU and ALU. The
first-stage byte rotate upit of the RMU is checked for byte parity, which it preserves;' the mask
unit, including the second-stage bit rotate, is checked by duplication. The ALU is also checked
by duplication. The data is taken from one ALU, and parity is generated from the other. The data
from one ALU is also matched with that from the duplicate. The undeilying self- -checking strategy,
illustrated here and used throughout the CPU, is to use parity checking where parlty is preserved
and duplication of Ioglc where parity is not preserved.

The special registers (SREG) associated with the operation of the CC are external to the
DMU, unlike the 16 general registers inside the DMU that are avaitable to the programmer. Most
of the special registers are not explicitly specified by the 3B20D instruction set. They are char-
acterized by their special dedicated functions and receive their inputs from sources other than

44

558

FIGURE 8-20
AMD’s 2907 inter-
nal architecture

1. THE PRACTICE OF RELIABLE SYSTEM DESIGN

A ADR B ADR
4 4
Shift

Dual port
RAM

] o A
<

Q Reg

ALU

s ‘
source 47L Igly I

DEC

| AU |
Flags <w7[é-—~ ALU function 3 bl

DEC
| _ F4
RAM A out v 4’ ‘
MUX / T Dest. |
canfrol [4——Ig 17 I
4 decode
Y
Data out

la|17|:6 15|1‘,||3 lg‘lg{!g
Dest. Function Source

2901 Control fields

the internal data bus. They control and direct the operation of the processor, Some of the special
registers are (1) error register, (2) program status word, (3) hardware status register, (4) system
status register, (5) interrupt register, and (6} timers. In addition to these registers, a 32-word RAM
that is available only at the microcode levef is provided. within the SREG block. 1t is used for
scratch-pad space, and it is preassigned registers, such as those that support memory manage-
ment, to facilitate and enhance the power of microprogram sequences.

The store interface circuit controls the transfer of data and instructions from system memory
to the CC. Two controls, the store address control and the store data control, handle memory
addressing, update the program counter, and fetch instructions. Associated with the SAC are the
program address, the store address register, and the store control register. Associated with the
store data control are the store data register, the store instruction register, and the instruction
buffer. These circuits ensure a continuous flow of instructions to the microcontrol unit.

Memory mapping is required in the implementation of a virtual address multiprogramming
system. The store address translation (SAT) facility is the mechanism that provides memory
mapping betweéen a program-specific virtual address and its corresponding physical address.

45

8. HIGH-AVAHLABILITY SYSTEMS 559

Addreass translation hardware is included in the SAT by the address translation buffer to facilitate
memory management [Hetherington and Kusulas, 1983].

The cache store unit is an optional circuit that improves overall system performance by
reducing the effective memory access time. The cache is a four-way, set-associated memory
containing 8K bytes.)

The main store update unit provides a multiport interface to the memories as both DMA
and CC circuit attempt to use the memory. The update circuit arbitrates asynchronous requests
from the on-line CC and the on-line DMA. The cross-coupling between the memory update units
permits the on-line CPU to access either memory, or both memories, for concurrent write
operations. -

The main store uses dynamic meméry devices and high-speed, TTL-compatible, gate-array
integrated circuits. It consists of a single circuit board main store controller and up to 16 mega-
bytes may be equipped within the central control frame. Throughout the central control, byte
parity is maintained over each byte of the data word. By adding four etror-correction codé bits
in a modified form of Hamming code (in addition to the byte parity bits), the main store performs
single-bit error correction and double-bit error detection.

Input/output interfacing is done in several ways in the CC. The communication path between
the CC and the /O channels is through the central control input/output (CCIO) bus, which is a
local, high-speed, direct-coupled, pareliel bus.’ Direct memary access between the main store
and peripheral units is provided by a direct memory access controller (DMAC) that communicates
with intelligent peripheral units via dual serial channels (DSCHs). VO channels, including user-
specific interfaces, can be connected directly to the CC by means of the CCIO bus. Two standard
interfaces are the ?SCH, a high-speed, multiport serial interface, and the application channel
interface (ACHI1). The ACHI is a high-throughput, parallel bus, peripheral communication path.

The maintenance channel circuit provides diagnostic access to the CC at the microinstruction
level. It also controls basic fault recovery and system sanity functions in the off-line processor.

Craft Interface

The maintenance interface is commonly referred to as the craft interface [Barton and Schmitt,
1983] in the telecommunications industry. The craft interface of the 38200 is markedly different
from previous systems developed at Bell Laboratories because it relies almost exclusively on video
displays and keyboard controis. The earlier systems have key-lamp panels and teletypewriters in
their master control centers.

The craft interface includes hardware, firmware, and software that enable maintenance
personnel to obfain the status of, and exert control over, the system. Status information is
presented visually as graphical displays and text messages on various terminals and printers;
audible alarm circuits can also be connected to the 3B20D. System control is exerted primarily
through a keyboard attached to the video display terminal. System control is also possible from
remote locations, called switching control centers. The data links to the remote sites use the
international standard message protocol (X.25) because of its low vulnerability to noise and other
data communication failures. The adoption of the X.25 message protocol standardizes remote
access to the 3B20D processor for packet switching networks.

Figure 8-21 is a functional block diagram of the craft interface. Fach of the duplex processors
is cornected to both input/output processors (I0Ps), which, as mentioned previously, support
up to 16 peripheral controliers. The 0P software driver contains handlers that deal with the
specialized functions of the peripheral controllers. Maintenance personnel use the read-only

46

560

FIGURE 8-21
Craft interface
hardware overview

H. THE PRACTICE OF RELIABLE SYSTEM DESIGN

3B20D 3B20D
processor Maintenance channel processor

EAl | EAI

-

Lslc(:J | M]j_ _5 Lscc
SN s

Port switch r
[ocit o —{wor]

printer (ROP) and the maintenance CRT (MCRT}. The ROP logs all important status messages.
The MCRT is a keyboard display terminal. The sys‘tem contains only one ROP and one MCRT
because the port switch keeps the ROP and the MCRT connected to the active on-line processor,

All capabilitics of the craft interface are accessible from a remote swiiching control center
by means of a dedicated data link. The data link is duplicated; it includes a primary link and a
backup link. Both links use the CCITT X.25 communication protocol, The MCRT, ROP, and X.25
links are attached to a peripheral controller known as the maintenance teletype controfler
(MTTYC). The craft interface handler controls the transfer of data to and from the peripheral
devices associated with the MTTYC. The MTTYC is connected directly to the emergency action
interface (EAl} in the central processor. The EAl menu on the MCRT gives basic status information
and manual control of the processor regardless of DMERT (operating system, see the following
section) software sanity; this access is controlled totally by the firmware in the MTTYC. This
reliable, high-capacity data link for remote maintenance makes the 3B20D well suited for unat-
tended operation.

DMERT: The UNIX RTR Operating System

The operating system used in the 3B20D is the duplex multi-environment real-time {DMERT)
operating system, which is now called the UNIX RTR operating system {Kane, Anderson, and
McCabe, 1983; Grzelakowski, Campbell, and Dubman, 1983]. It has a process-oriented structure
that emphasizes high data availability. It is designed for both real-tirme and time-shared operations.
The basic architecture of the DMERT operating system is based on an earlier system named MERT
[Lycklama and Bayer, 1978] and the UNIX operating system [Ritchie and Thompson, 1978]. Both
the UNIX and the MERT operating systems were developed to execute on commercial equipment.
Currently, the UNIX operating system is widely used, and the MERT operating system has been
replaced by its duplex successor, the DMERT operating system. Experience gained from the
operating system of the earlier No. 3A Processor, a real-time monitor known as the extended
operating system (FOS) [Elmendorf, 1980, also benefited the designers of the DMERT system.

47

FIGURE 8-22
Bases of DMERT
architecture

8. HIGH-AVAILABILITY SYSTEMS : 561

The DMERT operating system has a sophisticated architecture that draws on the praoven design
concepts of the EGS, MERT, and UNIX operating systems (see Figure 8-22).

Application programmers may add code at the kernel process, supervisor process, and user
levels, The multilevel structure makes the DMERT operating system flexible and efficient in its
use of real time. The structure of the virtual machines permits the management of both real-time
applications and time-shared background tasks. For example, Figure 8-23 shows how telephone
switching software is allocated to the different levels. The operating system maintains a process
hierarchy based on 16 execution levels. Time-critical functions such as the /O drivers, fault
recovery, and call processing are implemented at the kernel process level. A kernel process may
belong to levels 3 through 15 (levels 0 through 2 are reserved for the time-sharing environment).
By means of this hierarchical execution-level structure, applications are able to customize their
control and distribution of real time.

The portion of real time that is not used by the kernel or kernel processes is time shared
among supervisor and user processes. Deferrable jobs such as traffic reports, recent changes,
and diagnostics are implemented at the highest user level. Processes supporting the time-sharing
environment are run at execution level 2, These processes are run just beneath the real-time
hierarchy; they gain control of the processor only after all the real-time work is completed. By
supporting both real-time and time-sharing environments, the DMERT operating system makes
efficient use of its physical resources.

Fault Recavery

When any of the unique fault detection circuits detects an error condition, an error interrupt (or
error report in the case of certain peripherals) is registered in the processor. The most severe
error interrupts result in automatic hardware sequences that switch the processing activity be-
tween the processors (hard switch), Less severe errors result in micro-interrupts that activate the
microcode and software to recover the system. This layered approach that constitutes the recovery

Commercial
computers
rYy

3A
processor

Time-sharing

High-availability Real-time

Real-time

High-availability
‘Jr 3B20D
Time-sharing

48

562

FIGURE 8-23
txample of DMERT
multi-environment
structure

II. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Non-time critical process

recent change

Hardware

Fault recovery

Time critical processes

architecture is depicted in Figure 8-24 [Hansen, Peterson, and Whittington, 1983]. Microcode
provides low-level access to the hardware, and the recovery software provides the high-level
control mechanisms and decision making.

Figure 8-25 illustrates the principal architecture and features of the recovery software. The
bootstrap and initializalion routines contain a fundamental set of microcode and software algo-
rithms that control initializations and recoveries. These actions are stimulated by a maintenance
restart function (MRF), which represents the highest-priority microinterrupt in the system. An
MRF sequence may he stimulated from either hardware or software recovery sources,

The fault recovery and system integrity packages control fault detection and recovery for
hardware and software, respectively. The error interrupt handler is the principal hardware fault
recovery controller. It receives all hardware interrupts and controls the recovery sequences that
follow. The configuration management program (CONFIG) determines whether an error is ex-
ceeding the predetermined frequency thresholds. If a threshold is exceeded, CONFIG requests
a change in the configuration of the processor to a healthy state. Thus, CONFIG serves as an
ervor-rate analysis package for both hardware and software errors.

Hardware Fault Recovery. The 3B20D Processor has built in self-checking circuitry that detects
hardware faults as soon as they occur, This circuitry simplifies recovery, since eariy detection
limits the damage done by the fault, Faults in this category indicate that the Processor is no
longer capable of proper operation and result in an immediate termination of the currently
running processor and a switch to the standby processor. Since the standby processor does not

49

]
I
|
\
|
|

8. HIGH-AVAILABILITY SYSTEMS 563

FIGURE 8-24
Recovery software Fault recovery
structure’ : High-level
control
A
A
e n Configuration Fault
Initialization contral detection
_____ e Software
Microcode
9 v v
. Micro
Microboot M;E:;t?gﬁiss sequencer v
control Low-level
hardware
access
FIGURE 8-25 Bootstrap
Fault recovery and initialization
architecture
Microboot
Little boot
PINIT
Big boot
System

Fault recovery integrity monitor

Audits
Sanity timers
Overloads

Error
interrupt handler

Configuration
control Configuration
Soft switch management
Restore/remove

R

50

564

Il. THE PRACTICE OF RELIABLE SYSTEM DESIGN

match the active processor instryction by instruction, an initialization sequence is required to
start execution properly. '

Some types of faults and errors are not severe enough to justify an immediate termination
and switch of the processors. Examples of errors of this kind are hardware faults detected in the
standby processor memory and software errors such as write-protection violations. Other errors
in this category are the hardware faults that are handled by the self-correcting circuitry. Although
most units have self-checking circuits, some units (such as main memories) have fault rates that
justify the addition of self-correcting capabilities. Disks also are self-correcting through the use
of cyclic redundancy codes. All errors in this class are reported to the recovery system as error
interrupts.

All error mterrupts are reperted to CONFIG. Errors are logged against the failing unit, and
error rates are compared to allowed error thresholds. If the affected threshold is exceeded,
further action is required based on several factors, including the importance of the fauhy unit
and whether a mate exists for it. If the faulty unit is essential to the system and a mate unit is
available, the faulty unit is removed from service and scheduled for diagnostic testing. If there
is no available mate unit, the faulty unit is initialized and returned to service until the mate is
restored. When the mate is restored, it is ‘switched on line and the faulty unit is scheduled for
diagnostic testing. In the case of essential units, it is better to have a faulty unit than no unit.
Unessential units are removed from service and scheduled for diagnostic testing whenever their
error thresholds are exceeded. -

Each processor has’a sanity timer that causes an jnitialization if it expires. The active processor
maintains both its own timer and the timer of the standby unit. If the active processor cannot
recover from a fault, the sanity timer trlggers the |n1t|a||zatlon of the standby processor.

Special Mlcrocode for Recovery. A large fraction of the microcode in the central contro! handles
system recoveries. Most of this recovery microcode is in ROM because most of the recovery
functions are required, regardless of the past history of the CC or its boot devices. Functions
that are required even if the CC is not ready to execute its instruction set include microinterrupt
processing, maintenance channel assists, and microcode to initialize hardware systems.
Migrointerrupt processing handles errors in the address translation buffer to micro-instruc-
tion store sequence. Maintenance channel assists allow one processor to access the other pro-
cessor. Microcode initializes the hardware sygtems; additional recovery microcode that resides
in writable microstore (WMS) extends the processor's instruction set to provide convenient
diagnostic and recovery software access instructions. When diagnostic performance reguirements
do not justify a special mstruct[on a mu:rostore scratch area is made available. Arhitrary micro-
sequences loaded into the’ scrafch area are then executed as special tests or functions. Before
the software can run, however, the WMS must be loaded from disk. The WMS is toaded as part

of the processmg of the MRF microinterrupt.

Software Fault Recovery. Software fault recovery is architecturally similar to hardware fault recov-
ery. Each major unit of software has associated with it error detection mechanisms (defensive
checks and audits}, error thresholds, and error recovery mechanisms failure returns, audits, and
data correction and initialization techniques), Both the system integrity monitor (SIM) and the
error interrupt handler (EIH) oversee the proper execution of the process. An error threshold in
5IM ensures that a process does not put jtself into an infinite execution loop or excessively
consume a system resource (for example, message buffers). The EIH, through the use of hardware
and niicrocode detectors, ensures that protesses do not try to access memory outside defined
limits or execute restricted instructions. Each process has initialization and recovery controls

FIGURE 826
Software fault re-
covery architecture

8. HIGH-AVAILABILITY SYSTEMS 565

tanalogous to hardware) to effect recoveries, Figure 8-26 illustrates this software recovery archi-
tecture.

If recovery actions result in the removal of hardware units, diagnostics are dispatched
automaticilly to analyze the specific problem. Audits are the software counterparts for hardware
diagnostics; the major difference is thal routine audlts run more frequently than diagnostics, and
they correct certain errotrs.

Software Audits. The DMERT audit package verifies the validity of critical data structures. Most
audits exist throughout the system within the procésses that control the data to be audited. |
some cases, several audits are invoked consecutively to form a sequenced mode audit. Most
requests for running audits come from an audit cantrol structure, the audit manager.

Audits in the DMERT operating system verify data, not functions. The basic types of auditable
data are systemn resources and stable data. Though most of the auditable data in the operating
system reside in the kernel, additional data reside in critical processes such as the file manager
and device drivers. Smaller amounits of auditable data reside in supervisor processes, such as the
UNIX operating system and thé process manager.

Some audits, scheduled on a regular basis, are known as routine audits; others, scheduled
on request, are known as demand audits. Audits within the DMERT operating system include the
following:

- The message buffers audit finds and frees lost message buffers; that is, messages that have
been on the queue of a process for extended periods of time.

EIH

Hardware monitors

Audits System integrity
Detection/ monitor
correction (basic sanity)

Defensive Initialization
Entry s Process N and
ChECks— . recovery
Special
return
codes
Exit

52

x_/“\

566

II. THE PRACTICE OF RELIABLE SYSTEM DESIGN

* The scheduler audit checks for linkage errors in the ready and not-ready lists of the scheduler.

* The memory manager audit recovers lost swap space and corrects any overlap of swap space.

* The file manager audit checks all internal file manager structures, including task blocks,
buffers, and the mount table. It corrects the information and can back out aborted tasks to
free their resources. _

* The file system audit is demanded by the file manager whenever a file system is mounted
in the readfwrite mode. It checks and corrects the file system’s super block, free list and its
free-block bit map. The audit verifies the integrity of the mounted file systems concurrent
with their use.

System Initialization. When a maintenance restart interrupt oceurs, a bong sequence of microsteps
begins to establish system sanity. Both processors may be in théir maintenance restart function
(MRF) sequence at the same time, and each may try to become the active processor. The MRE
code decides which processor should become active and whether to do an off-line initialization
or an on-line initialization. If a processor determines that it has just powered up, it clears main
store and does an off-line initialization unless it is forced on line by an operator command.

A number of tests are made on data in the operating status register to select ohe of four
possible actions: {1} processor initialization, (2) stop and switch, (3) microboot, or (4) tapeboot,
The simplest actions are initializing a processor and stopping and switching to the other processor.
Switching to another processor is accomplished by sending a switch command over the mainte-
nance channel to the other processor. If an initialization does not recover the system to an
operational state, another and more severe initialization is triggered automatically. The initiali-
zation interval determines whether escalating is necessz‘aryi Any initialization that occurs within
the initialization interval (that is, within a specified time interval after an initialization) escalates
to the nexi higher level. The length of the initialization interval is a system generation parameter
that is established by the application.

The microbaot program uses information on the DMERT disk to initialize the writable mi-
crostore and read in the first software boot program, called “little hoot.” To do this, it must first
select the disk drive to use as the boot device. If the craft interface has forced either the primary
or the secondary boot device active, it uses that device, Otherwise, the microboot program
selects a disk drive based on the state of the initialization status control bits in the system status
register. Alternate boots use alternate devices. Microcode is read from the disk and then copfed
to the writable microstore. Finally, the little boot program is read from the boot partition and
given control.

The tapeboot program is a complex sequence of microcode that is used only when requested
manually from the craft interface. Its function is to create a new system disk from tape. Tapeboot
initializes the tape device and disk drive selécted by the craft interface and initializes the writable
microstore from tape. The load disk tape program is read from tape into main store; memaory
management tables are created to allow It to run the hardware complex without the operating
system present. The load disk tape program then reads the fape to make a DMERT disk image.

Emergency Mode. The emergency mode on the 38200 refers to the facilities and procedures that
prevent the system from experiencing a total outage. For example, emergency facilities are applied
when the system is unable to recover automatically. The most frequent emergencies encountered
include duplex failures of the control unit, duplex failures of the system disks, duplex failures of
the essential 1/O devices, and failures of fauit recovery to find a working configuration of the
hardware. Other problems that require the emergency mode include software faults that do not
allow the system to operate properly, errors that destroy the integrity of the disks, and software
overwrites that introduce catastrophic erors into the software.

53

8. HIGH-AVAILABILITY SYSTEMS 567

Emergency mode capabilities are built into the system to address problems that may cause
the failure of the 3B20D as a system. The emergency action interface (EAl) on the 3B20D provides
manual initialization capabilities that can recover the system from several of the conditions
mentioned above. The EAl allows the maintenance personnel to demand a specific processor and
disk configuration if a certain configuration is causing problems. The EAl also allows the craft to
reconfigure the system to handle maintenance hardware failures. For example, the craft may
inhibit error sources and sanity timers through EAl commands, thus allowing recovery from
certain maintenance failures even though both processors are affected. The FAl also provides |
capabilities for craft initfalizations to deal with the loss of subsystem capabilities,

The 3B20D provides other emergency mode capabilities through the port switch select, the
disk power inverter select, and the unit power switches. These devices are used by maintenance
personnel to reconfigure the system manually to handle certain problems. Under unstable boot- ‘
strap conditions, the 3B20D outputs diagnostics information called processor recovery messages.
These messages provide a general set of diagnostics in the event of a complete system outage.

The final backup repair procedure consists of the dead start diagnostics, Primarily used as
instailation tools, the dead start diagnostics allow a nonworking processor to be repaired from a
remote host processor.

Fault Diagnostics

As with earlier processor designs, 3B20D processor diagnostics detect faulis efficiently and effec-
tively, provide consistent test results, protect the contents of memory, do not interfere with
normal system operation, allow automatic trouble location, and are easy to maintain and update.
To meet these design objectives, the diagnostic control structure is an integral part of the DMERT
operating system and supports the evolutionary stages of development [Quinn and Goetz, 1983].

Diagnostic Environments. As shown in Figure 8-27, the 3B20D Processor may be diagnosed from
several execution environments. During the early phase of its development, a local host computer
was used to support hardware, software; and diagnostic design. This arrangement continues to
be used in factory testing. Later in the development phase, more efficient use was made of the
host computer by providing access to a remote 320D Processor over a dial-up telephone line.
in the final development stage (the standard duplex system configuration), the active control unit
was capable of diagnosing its own peripheral controllers and the standby control unit. Fach of
these access arrangements is discussed below.

Figure 8-27a shows three local host access arrangements. In the first arrangement, diagnostic
programs executing in a host computer send test inputs and receive test results through a standard
communication port to a microlevel test set (MLTS). The MLTS connects directly to the 3B20D
control unit backplane and provides complete access to and control of the processor’s micropro-
gram control circuitry. The second access arrangement uses a circuit designed to simulate the
central control input/output (CCIO) internal bus. The CCIO bus simulator (BS) is accessible using
a standard communication input port. A dual serial channel (DSCH) connected to the CCIO/BS
can then communicate directly with a maintenance channel (MCH), the circuit designed for
control unit access. Like the MLTS, the MCH can access the central control at a low level. Only
the MCH, however, is used in the duplex configuration; it communicates with either another
MCH or a DSCH. As shown, the CCIO/BS-DSCH access path is also used to diagnose the IOP
and the disk file controller (DFC). The third access arrangement is used when the local host is a
3B20D processor. The path in this case is from the DSCH of the host processor to the MCH, 10P,
or DFC of the target machine. !

The DSCH communicates over distances of approximately 100 feet. Remote host {(Figure

.

54

568 11. THE PRACTICE OF RELIABLE SYSTEM DESIGN

FIGURE 8-27 MLTS
3820D Processor’s |
diagnostic environ-
ments Comm CCIO bus Dual M 3p20D
Host] ort simulator serfal p Clor
computer p channel H | Processor
[DSCH | >
MTCE
term DFC
a. Local host
Host Data N\ Data 3B20D
computer set set 7 MLTS processor
Dial-up
connection

A
T ! 1
MTCE MTCE L[EC‘I 10P

term term

b. Remote host

' sm200 (M M 3B20D
o &
Remote processor | H pProcessor
maintenance
console DMAC/DSCH DMAC/DSCH

Switching
+ control W [OP
center
X.25 ves
link

/o
devices

<. Duplex mode

55

FIGURE 8-28
Diagnostic control
structure

8. HIGH-AVAILABILITY SYSTEMS 569

8-27b) access arrangements are used for diagnosing over longer distances. Using data sets and a
telephone line, tests stored and executed on a remote computer are applied through the MLTS
1o the control unit. Peripheral controllers (IOP and DFC) may also be diagnosed by downloading
tests into the contro! unit and executing them. Although remote host diagnostics are useful when
a local host is unavailable, execution performance is limited by the transmission facilities used.
The primary diagnostic execution environment is the duplex mode of the 3B20D (Figure
8-27¢). The active {on-line) processor acts as 2 local host for diagnosing the standby (off-line}
processor. A link between maintenance channels provides the access path for testing the control
unit. In the duplex mode, the DFC and 10OPC are diagnosed from the on-line control unit using
the operational interface path, which is a DSCH attached to the direct memeory access coniroller.

‘Tests of the links from the off-line processor to the peripherals may also be run under the control

of the active processor. As shown in Figure 8-27¢, the duplex system configuration also supports
remote monitoring and controf of diagnostics over a dedicated link to a switching controt center.

Diagnostic Conirol Structure. The diagnostic control structure is depicted in Figure 8-28. The
modules that provide access to the equipment configuration data base (ECD) are at the kernel

ECD ——————

Kernel process

UNIX user
| Data
table
Auto request
(software)
——--- TLDB

Manual request
(MTCE terminal)

Spooler > To maintenance

DCRB: Diagnostic control block terminal

DIAGC: Diagnostic control process
DIAMON: Diagnostic monitor
ECDMAN: Equipment configuration data manager
MIRA: Maintenance input request administrator
TLP: Trouble ocation process
TLDB: Trouble Jocation database
Data table: Diagnostic data table files

56

_/___

570

1. THE PRACTICE OF RELIABLE SYSTEM DESIGN

process level. All the information relevant to the diagnostic tests that should be applied to each
hardware unit is contained in the ECD. This information includes the name of each hardware
unit; its subsystem, subunits, and their logical interconnections; equipage options; and auxiliary
information such as channel address and baud rate. Whenever a circuit design is originated or
updated, diagnostic tests are designed and appropriate ECD changes are made.

The UNIX operating system supervisor resides at the supervisor level and provides a pro-
tected environment and operating system service for the higher-level processes. The modules
operating under the UNIX operating system that pertain exclusively to diagnestics are the main-
tenance input request administrator (MIRA), the diagnostic monitor (DIAMON), the diagnostic
control process {DIAGC), and the trouble-locating process (TLP). Output messages from the
diagnostic structure are sent to the system spooler for printing.

The MIRA schedules and dispatches all the maintenance requests. MIRA has two queues, a
waiting queue and an active queue, to administer maintenance requests. Requests are serviced
according to their priorities and the availability of resources. Manual requests have higher prior-
ities than requests initiated automatically. For each service request, MIRA creates a DIAMON
process and sends it a message. When the request is completed, DIAMON sends a message back
to MIRA. Interfaces are provided in MIRA to administer routine exercise requests and inputs from

* the error interrupt handler (EIH). Execution of each diagnostic is directed from start to finish by

DIAMON.

DIAGC is a generic name that refers to a class of diagnostic control processes. The DIAGC
is a unit or application-dependent module that controls the execution of tests. DIAGC contains
all the application-dependent task routines, translates the interpretive diagnostics, and provides
the interface with DIAMON. A unit’s diagnostic phase table (DPT) contains the name of a particular
DIAGC process to be used in the diagnosis. DIAMON imposes no limit on the number of
processes that may interface with it.

If the diagnostic request specifies the TLP option, the trouble-locating process is invoked
after the diagnostic testing is completed. The TLP compares characteristics of the failures found
by the diagnostics with a resident data base of fault signatures. In each data table, the tests are
partitioned into groups. A test failure in a group sets a flag bit, called a key, which is permanently
assigned to the group. The TLP searches the results of the diagnostics and, based on the phase
and key information, creates an ordered list of the closest signatures and, ultimately, of the
suspected faulty equipment. This approach makes the data base and sorting processes less
sensitive than earlier methods of testing changes to circuits and marginal failures. During the
development of the 38200, the trouble-locating data base (TLDB) was generated by physically
inserting faults into units in a test laboratory. The TLDB of operational systems can be modified
directly by inserting information into the test data table.

Diagnostic Features. The combination of hardware access circuits and modular control programs
just discussed provides the 3B20D Processor with considerable maintenance flexibility. Tests are
selected according to the type of circuit under diagnosis. Requests may diagnose an entire unit,
a particular subunit, or all the subunits in a specified community. Individual test phases or ranges
of phases may be executed and the results printed with optional amounts of detail. Some
diagnostic test phases, because of their long execution time requirerrfents or their dependence
on the availability of other system hardware resources, are restricted to manual initializations.
Interactive features, such as stepping, pausing, and looping, facilitate difficult repairs. Units are
restored to service automatically if they pass all tests. Several host computer versions of the
software are supported, along with application-dependent interfaces.

Diagnostics are initiated manually or automatically. Manual requests may be entered from a

57

FIGURE 8-29
Observed availabil-
ity and number in
service of 3B20D
Processors

8. HIGH-AVAILABILITY SYSTEMS 571

local maintenance terminal or through a work station at a switching control center that is con-

nected to the processor with a synchronous data link. Automatic requests ariginate from other .

software modules, including the error interrupt handler, the routine exercise scheduler, and the
application software modules. ’

Evaluation. The stringent availability requiremenits of AT&T applications using the 38200 Processors
have a significant effect on all the aspects of the system design. The diagnostic and maintenance
destgners were actively involved in meeting these requirements from the initial architectural
plarining and requirements generation. Many hardware features monitor system integrity, detect
errors, reconfigure the system, and facilitate repairs. A!though some of the features isclate faults
during pack repairs, most are used at the system level to effect repairs through circuit pack
replacement. Diagnostics, the primary repair capability for the system, makes extensive use of
these hardware features for control and observation of the circuitry.

During the development of the processor, diagnostic tests were generated manually and
with the aid of hardware logic simulators. To ensure that the diagnostics met the objective of
detecting 9C percent of the simulated faults, an extensive evaluation process was carried out.
Thousands of faults were inserted at the dual-in-line (DIP) package terminals (pins). These faults
provided timely and effective feedback on the design of the diagnostic tests and the development
of the trouble-locating data base. '

Operational Resufts of 38200 Processor

The 3B20D Processors have been in commercial operation since September, 1981. The perfor-
mance of the 3820D improved tremendously during the first twa years of operation, Figure 8-29
shows the results of field data accumulated over many machine operating hours during early

100 | » 250
99.99 Availahility ' — 200
7]
2
2 z
£ L
w
£ 9998~ : —150 E
- . W
£ g
.a '
: :
& 5
g 9997 ~100 .
H 2
< E
Number of systems 3
99.96 — 50
99.95 V| | 1 | | ! | | | |

Oct81 Jan82 Apr Jul Oct Jan83 Apr Jul Oct Jan 84

58

R

- 572

SUMMARY

FIGURE 830
‘Downtime versus
time since intro-
duction for three
high-avaifability
Processors

II. THE PRACTICFE OF RELIABLE SYSTEM DFESIGN

vears of operations [Wailace and Barnes; 1983}, When the first system began commercial service,
autages occurred because of software and hardware faults that could only be corrected with field
experience, The avan!ab|l|ty factor, :mproved as the processor design matured and the operatirig
personnel gained expetience.

Figure 8-30 shows downtime data for three AT&T processors, including the 3B20D. The
experience gained in the design and field operation of earlier electronic swilching systems
(notably the No. 1A and the No. 3A Procissors) has contributed to the design of the 3B20D. The
reliability (downtime) curves show that each protessor approached its downtime objective more
quickly than its predecessor [Wallace and Barnes, 1983). The data has been smoothed and fit to
an exponential decay function for the comparison.

In order to achieve the reliability requirements, all AT&T switch subsystem units are duplicated.
When .a hardware failure occurs in any of the subunits, the processor is reconfigured into a
working system around the defective unit. The partitioning of subsystem units into switching
blocks varies with the size of the processor. For the medium- or small-sized processors, such as
the No. 2 or the No. 3, the central contiol, the main memory, the bulk memory, and the store
bus are grouped as a single switchable entity. A failure in one of the subunits is considered a
failure in the switchable block, Since the number of components within a switchable block is
sufficiently small, this type of single-unit duplex configuration meets the reliability requirement,
For larger processors, such as the No. 1 or the No. 1A, the central control, the program store,
the call store, the store buses, and the bulk file store are treated individually as switchable blocks.

.

100

Average downtime in minutes/year/system

Years since introduction

59

REFERENCES

8. HIGH-AVAILABILITY SYSTEMS 573

This multi-unit duplex configuration allows a considerable number of combinations in which a
working system can be assembled. The system is down only when two simultaneous failures
oceur, one in the subunit and the other in the duplicate subunit. A greater fault tolerance is
possible with this.configuration. This type of configuration is necessary for the large processor
because each subunit contains a larger number of components.

_ The first generation of processors, which includés the No. 1 and the No. 2, have provided
commetcial service since 1965 and 1969, respectively. The No. 1 Processor serves farge telephone
offices (metropolitan); the No. 2 Processor is used in medium-sized dffices {suburban}, Their
reliahility requirements are the same. Both processors depend on integrated maintenance soft-
ware, wilth hardware that must {1) quickly detect a system failure condition, (2} isolate and
configure a working system around the faulty subunit, (3} diagnose the faulty unit, and (4) assist
the maintenance personnel in repairing the unit. The primaiy detection technique is the syn-
chronous and match mode of operation of both central controls. Matching is done more exten-
sively in the No. 1 than in the No. 2, since cost is one of major considerations in the design of
the No. 2 Processor. In addition to matching, coding techniques, diagnostic dccess, and other
check logic have been incorporated into the basic design of these processors to realize the
reliability objectivés.

The widespread acceptance of the 1ESS and 2ESS switching systems has created the need
for a second generation of processors: the No. 1A and the No. 3A. They offer greater capability
and are also more cost effective. Both processors use the same integrated circuit technology. The
1A Processor extends its performénce range by a factor of 4 to 8 times over the No. T Processor
by using faster logic and faster memory. The 1A design takes advantage of the experience gained
in the design and operation of the No. 1 Processor. The No. 1A Processor provides considerably
more hardware for error detection and more extensive matchirig of a large number of internal
nodes within the central control. The design of the No. 3A Processor has benefited by the
experience gained from the No. 2 Processor. A major departure in the design of the 3A Processor
from the design of earlier processors is the non‘synEthno)us and the nonmatch mode of opera-
tion. The No. 3A Processor uses seli-checking as the primary means of error detection. Another
departure is in the design of the No. 3A Processor’s control section: It is microprogrammed. The
No. 3A Processor’s flexibility permits emulation :of the No. 2 Processor quite easily.

The third-generation systems are dominiated by software design, updating, and maintenance
expenditures. The 3B20D Processor is a gengfal-purpose, high-availability machine that supports
many types of .appl'ications, A comprehensive set of software lools and facilities improves pro-
gramming productivity and reduces the cost of software development and maintenance. The
hardwate architecture efficiently supports high-level languages, particularly the C !anguage. The
UNIX RTR opérating system was designed concurrently with the hardwdre to meet the needs of
switching and telecommunication systems. Its architecture permits time-critical, real-time code

to coexist with time-shared background tasks. An important provision in the 3B20D Processor is

a complete set of maintenance facilities, from error detection through fault recovery and diag-
nostics. Approximately 30 percent of the internal control logic is devoted to self-checking. Seif-
checking allows concurrent error detection and immediate recovery. In March, 1988, over 1000
5ESS systems and more than 20 million telephone lines were in commetcial use, serving the
smallest remote switching module of hundreds of lines to the largest office of 85,000 lines with
high-quality services.

AMD, 1979; Ault et al., 1964, 1977; Barton and Schmitt, 1983; Becker et al., 1977; Beuscher et ai.,

1969; Bowman et al., 1977; Browne et al., 1969; Budlong et al., 1977; Cagle et al., 1964; Chang,
Smith, dnd Walford, 1974.

60

T

574

5ESS SWITCH
ARCHITECTURE
OVERVIEW

. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Downing, Nowak and Tuomenoksa, 1964; Elmendori, 1980; Genke, Harding, and Staehler, 1964;
Goetz, 1974; Grzelakowski, Campbell,_ and Dubman, 1983; Hansen, Peterson, and Whittington,
1983; Harr, Taylor, and Ulrich, 1969; Hetherington and Kusulas, 1983.

Irland and Stagg, 1974; Kane, Anderson, and McCabe, 1983; Keister, Ketchledge, and Lovell,
1960; Keister, Ketchledge, and Vaughan, 1964; Lycklama and Bayer, 1978; Mandigo, 1976; Quinn
and Goetz, 1983; Ritchie and Thompson, 1978; Rolund, Beckett, and Harms, 1983,

Seley and Vigilante, 1964; Smith, 1972; Spencer ahd Vigilante, 1969; Staehler, 1977; 'Staehlekr and
Watters, 1976; Storey, 1976; Toy, 1978; Toy and Gallaher, 1983; Tsiang and Ulrich, 1962; Wallace
and Barnes, 1983.

THE AT&T CASE
Part 11: Large-Scale Real-Time PrOgram Retrofit Methodology in AT&T
5ESS5® Switch

L.C. TOY*

-Modern telephone systems are continuously undergoing chahges to take advantage of rapid

advances in hardware technology. In addition, new features are continuously beirg developed
and incorporated as intejral parts of the system. The additions and changes must be implemented
in real time without disrupting the customer's telephohe service. The procedures and method-
ology utilize the distributed and redundant architecture of the 5ESS Switching System to update
and/or grow the system, while at the same time providing continuous service. ‘

In this case study, the afchitecture of the 5ESS electronic switching system is described
briefly, and then considerations for replacement of the resident software in the 5E55 system and
how the process is implemented are discussed. The focus is on major software replacement.

The 5ESS switch is a fully digital switching system with a distributed processing and switching
architecture [5ESS, 1986; Sinith and And'rewé, 1981; Davis et al., T981]. It is comprised of &h
administrative module, 2 communications module, and one or more switching modules and/or
remote switching modules (Figure 8-31). These three basic elements can be configured to cover
the complete range of applications, from remote switching modules to large-capacity telephone
exchanges (Byrne and O'Reilly, 1985]. The system is highly reliable: Because of the fault-tolerant
architecture, the administrative module and switching modules experience only a few minutes
of downtime per year [Allers et al., 1983].

* Switching Module (SM): Over 95 percent of call processing is handled by the switching
module, which is the basic growth unit of the system. In addition to providing circuit and packet
switching functions, the switching module connects all external lines, trurks, and special services
dircuits, Remote switchiig modules can be located at a considerable distance from the main body
of the switch and can be used singly or grouped in clusters to serve. groups of up to 10,000
subscribers, Time-division switching is performed in the time siot interchange unit, while most
of the calf processing is done in the switching module processor unit. Each switching module

* The author acknowledges M.A. Gauldin and £.5. Sfrebendt, for their assistance and encouragement, and F.E.
Haselrick and M.G, D'Souza, for providing reference materials. Development of the retrofit capability resulted
from the contributions of many people within AT&T Bell Laboratories and AT&T Technologies.

61

FIGURE 8-31
5ESS remote
switching module
capabilities

8. HIGH-AVAILABILITY SYSTEMS 575

5ESS Administrative
switch module
Wiﬁ
Remote)
switching . . "
module Fiber Fiher o
i . |Communication Switching
Switching module module
module
| PCM . . .
Switching” | gy
module
Cther
exchange }: PCM
PCM
Remote o Remote
integrated integrated
services services
line unit line unit

has a time slot interchange unit and a switching module processor unit but may differ from other
switching modules in the types and quantities of peripheral equipment (line unit, trunk unit,
digital carrier line unit, and digital line trunk unit), All common equipment in the switching
module is duplicated for reliability purposes. Optical fiber network, control, and timing links
connect the switching modules to the communications module,

+ Comimunications Module (CM): The control-message communication facilities between the
switching modules and the administrative module and between any two switching modules are
provided by the communication module. The communications module contains a time-multi-
plexed switch and a message switch. Digital paths for switched connections between the switching
modules are provided by the time-multiplexed switch. The message switch passes control mes-
sages between any two switching modules and between the switching modules and the admin-
istrative module. For reliability, both the time-multiplexed switch and the message switch are
duplicated. The initial design of the communications module supported one switching module.
A new communications module that supported 30 switching modules was then followed by a
communications module with the capacity of 48 switching modules [Anderson et al., 1987]. A
large communications module that supports 192 switching modules is now available. Call routing
functions now exist in the communications module.

» Administrative Module {AM): The administrative module collects traffic and billing data.
Many functions not related to call processing, such as fault detection, diagnostics, and fault
recovery, are performed by the administrative module, which uses a 3B20D computer [Toy and

" Galtaher, 1983]. The administrative module consists of a duplicated administrative processor, an

4

62

576

SOFTWARE
REPLACEMENT

Il. THE PRACTICE OF RELIABLE SYSTEM DESIGN

input/output processor to interface with terminals, printers, data links and tape units, and a
duplicated disk file controller to which the disks are connected, Disk interfaces are SCSi (small
computer system interface) standard.The duplicated administrative processors in the administra-
tive module work in active/standby configuration so that if a fault occurs in the active unit, the
standby unit can be switched into service. The disk metnory provides mass storage for programs
and data [Haglund and Peterson, 1983]. The input/output processor allows technicians to interface
with the system via video display units and a master control center.

With the 5ESS switch, replacement of the resident software andfor hardware is done in real time
to minimize the impact on customer service and call processing. A conversion process occurs
when one generation of the switch’s features is upgraded to accept new hardware or software.
The generation change marks a change in the generic. The conversion process is referred to as
a generic retrofit [Bauer, Croxall, and Davis, 1985]. The generic retrofit capability in the 5ESS
switch provides the method and support software for replacing the resident software, the asso-
ciated databases, and the read-only memory firmware for the switching modules, while maintain-
ing adequate service and reliability.

Several factors must be taken into consideration before a 5ES8 switch is retrofitted. First, to
minimize impact on customers, retrofitting of software and most hardware occurs at separate
times in the 5ESS switch. Consequently, either the old hardware must be compatible with the
new software or the new hardware must be compatible with the old software.

Second, due to the distributed processor architecture of the 5E5 system, there are periods
of time when the software release in the administrative module is different from that in one or
more switching modules, The messages that pass between processors fall into three categories:
(1) messages that must pass through regardless of software reiease, (2) messages that involve the
switching module read-only memory software, and (3) all other messages, Messages in the first
category establish the links between the administrative module and switching modules and are
needed so that other messages can be exchanged. The second category consists of those messages
related to initializing the switching modules with data.

A third consideration is evolution of the two databases that exist in the 5ESS switch. The
Office Dependent Data contains such information as routing information and subscriber infor-
mation. The Equipment Configuration Data contains information about the 38200 hardware and
peripheral equipment, such as the video display units and disk drives. Each exchange customizes
these two databases to fit the particular configuration. Due to structural changes that are needed
to support new features, the databases must be evolved from a format compatible with the old
software release to one compatible with the new software release. The 5E55 system’s generic
retrofit capability supports the evolution of these customized databases.

Software Replacement Processes

The 3B20D/UNIX* RTR system provides system update facilities to support the introduction of
new versions of UNIX RTR and application software [Wallace and Barnes, 1984]. The system
update software provides a flexible mechanism that can be used by a variety of applications,
including the 5E5S switch and allows the inclusion of application-dependent processing. The
system update software places all new generic data into the system and makes final preparations
prior to initializing the system from the new generic. After initialization, complete propagation
of the new generic into the system occurs. .

During each step of the update process, the system update software provides an opportunity

* UNiX is a registered trademark of UNIX System Laborataries, Inc.

63

8. HIGH-AVAILABILITY SYSTEMS 577

for application-dependent processing by transferring control to an application process. To regain
control, the system update process monitors the application-dependent process. Each time the
application-dependent process is invoked, the system update process waits a specified time for
its completion. The application process sends an acknowledgment message to the system update
process that indicates the amount of time it requires for processing. If the application-dependent
process does not finish within the allocated time, the system update process sends a software
termination signal to the application process, informs the office technicians of any error, and
stops the stage. . ‘

A separate process exists for each step of the update procedure. Communication between
the system update processes is accomplished through use of a binary log file. The first entry in
the log file specifies the number of entries in the file. Each system update process will write
beginning, ending, and application-dependent entries in the log file. Information contained in
the beginning and ending entries for each process includes the date and time of the entry, the
process identification, and the type of update process that is making the entry. In addition, the
ending entry contains the completion code of the stage, which indicates success or failure, and
error codes that provide more specific information about what errors occurred.

The application-dependent process maintains an ASCIl log file. An entry for each stage of
the retrofit exists in the application-dependent process’s log file. Each entry specifies ihe stage
of the retrofit, the starting and ending times of the stage, and the completion code that indicates
the type of error, if any, that occurred. The log file also contains information about processing
specific to each stage.

Stages in 5ESS Switch Software Replacement

Replacement of software in the 5ESS switch consists of four major stages: advance preparation,
preparation, initialization, and evaluation (Figure 8-32). The advance preparation stage occurs

Weeks N The day of retrofit N
Simplex
old * i N
. Advance Duplex W
generic —¥ preparation: 4 7| Preparation: T itialization: | "] Evaluation: mxgenerlc
* Grow equip- ¢ Verify and ¢ Simplex AM ¢ Evaluate
ment needed check office * Switch over * Switch to
for new equipment to new full duplex
generic * Simplex generic operation
s Prepare new system e Active with
oDD (except AM) new generic
* Prepare new * Active with text, ODD
ECD old ODD and ECD
and ECD
* [nstafl new
generic text,
ODD and ECD
A b4

FIGURE 8-32 5ESS switch retrofit stages

64

578

1. THE PRACTICE OF RELIABLE SYSTEM DESIGN

weeks prior to the actual day of retrofit and consists of growing in equipment needed for the
new generic and preparing the new databases. The system remains in duplex operation during
this time. The preparation, initialization, and evaluation stages occur on the day of retrofit. The
system is simplexed during the preparation stage and is duplexed after evaluation of the new
generic. After verifying and checking the office equipment for reliébility, the new generic text
and databases are installed. The system is then initialized and evaluated. During these stages of
software replacement, the exchange is able to back out any changes made and revert to the old
software if the need should arise. The UNIX RTR system update and 5ESS switch application-
dependent software are utilized during the preparation, initialization, and evaluation stages.

Advance Preparation Stage. During the advance preparation stage, the exchange is evaluated to
verify that it is properly equipped to perform a retrofit. At this time, any hardware that is required
for the new generic to he operational is grown into the system, Additional memory for the
administrative module and switching modules is also grown if needed. Also during this stage, a
series of tests designed to diagnose and verify the operation of devices and equipment used to
read in and store the new generic, equipment units essential to the retrofit, and hardware and
software units needed to recover the systeni from an outage are executed. This testing ensures
that there is a low probability of trouble atiributable to existing system faults in subsequent stages
of the retrofit.

Evolution of the office-dependent data (QDD) [Barclay, Dossey, and Nolan, 19861 and Equip-
ment Configuration Data (ECD) databases takes place during this time interval. Database evelution
is the process of converting a database used by one generic to a format required by a different
generic. The ODD stores most of the 5ESS switch office data and contains information on
subscriber lines, trunks, routing, and features. Information about the 3B20D hardware and 5ESS
switch terminal configurations is stored in the ECD. While the ECD resides strictly in the admin-
istrative module, the ODD s distributed among the administrative module and switching mod-
ules. Evolution is required when structural changes occur in the databases {for example, when
relations or attributes are added in the new database). Both the ODD and ECD databases are
evolved off site.

Two dumps, the preliminary and final, are taken of the ODD and ECD. The preliminary
dump is used to identify major inconsistencies in the databases. Fixes from the preliminary dump
are then applied to the databases, and a final dump is taken and used to create the new generic’s
databases.

Office Dependent Data Evolution. The first step in ODD evolution is to back up the database to
ensure that the disk copy is identical to the copy in main memory. Backups of the ODD for
evolution cause changes made to the database to be logged so that they can be [ater evolved
and applied to the new ODD. The ODD for the administrative module and aH switching modules
are copied to tape and shipped 1o a center responsible for evolving the databases. At the center,
the ODD is decompiled from binary form to the original ASCH input. The ASCII input is then
evolved to the new generic format and compiled into binary. The evolved ODD is then shipped
back to the exchange.

The new generic database is created from a snapshot of the ODD. While the old generic
database is being evolved to the new generic format, changes are continuously being made to
the database in the exchange. Changes to the QDD are made by the exchange (recent changes,
RCs) [Fuhrer, Shen, and Yates, 1986] or originated by the customer (customer originated recent
changes, CORCs). An example of a CORC is when someone forwards his or her incoming calls
to a different number.

At the same time thal an RC or CORC is being applied to the database, it is doubly logged

65

FIGURE 8-33
Customer-origi-
nated recent
changes and re-
cent changes reap-
plications

8. HIGH-AVAILABILITY SYSTEMS 579

for recovery reasons [Locher, Pfau, and Tietz, 1986] and for retrofit purposes. The retrofit log file
is in binary format and contains the database relation name and the updated tuple data. Each
time the ODD is backed up on disk, the CORCs are automatically flushed from the administrative
module and switching modules and are appended to the retrofit log files. Each time a refation
gets inserted, vpdated, or deleted, the relation is logged in the switching module’s memory
buffers. The CORCs are sorted by timestamp; oniy the most recent transaction of a particular
CORC is retained. The buffers are then shipped to the administrative module and will be written
to disk the next time a database backup occurs. At the time of retrofit, these logged changes are
evolved to a format compatible with the structure of the new generic’s database. These evolved
changes are then applied to the new database once the system is initialized on the new generic.
Both the old and new generic databases are synchronized (Figure 8-33).

Equipment Configuration Data Evolution. A copy of the exchange’s ECD is made to tape and is
sent to an off-site processing center for evolution (Figure 8-34). Off-line tools are provided to
extract certain exchange options from the ECD automatically. These options are applied to a base
ECD that contains data items common to all 5ESS systems with the same generic to obtain a
customized database. A process in the administrative module dumps the ECI}, converts it to
ASCII format, and loads it onto tape. A process on an off-site processor extracts the options from
the tape and applies them to new base ECD via custornization seripts. Since some options may
not be customized in the new database, an audit report is sent, along with the new database, to
the exchange. The audit report tells which fields have not been customized and allows the
technicians to customize the fields after initialization on the new generic.

H (|
i
5ESS switch
|
Applied Q

New

DB

log Fvolved

66

580

FIGURE 8-34
Equipménr config-
uration data evolu-
tion

It THE PRACTICE OF RELIABLE SYSTEM DESIGN

5ESS Switch
Old Old
exchange exchange
ECD New ECD
customized
ECD Script

Ol
customized
ECD

Preparation. This stage prepares the exchange for the actual retrofit and begins during the morning
of the planned cutover to the new generic. The exchange verifies that it has installed the latest
software and hardware updates and that all temporary overwrites to main memory are installed
permanently or removed. The system is then backed up and it is verified that the exchange is
running in duplex configuration (Figure 8-35}. Diagnostics on equipmient that is critical for retrofit
are executed during this stage. At this time, billing data are collected and transmiitted to a central
location over a data link or are dumped to tape.

After the technician enters the command to start the retrofit, the application process sets
the generic retrofit indicator on the maintenance control center and creates its log file. During
this stage, the new generic and associated databases are read in from tape onto the secondary
set of disks (Figure 8-36). The system update process determines the disks for which a set of
tapes is targeted. It then removes the disks from service and marks the system off line in the
ECD. This prevents restoral of the disks and will protect the new generic data from being
overwritten. The remaining active disks continue to serve the live office; changes made to the
active disks are not made to the off-line disks. The disks will remain simplex until the system is
committed to the new generic.,

A special device file provides mapping and alfows the system update process to access the
off-line disks. Fach sequence of tapes contains a volume table of contents that defines which
partitions the remaining data belong in. The offset of the data within the disk partition is deter-
mined from the physical disk address contained in the tape header and the starting address of
the partition obtained from the volume table of contents.

During this stage, the system update process writes several types of log file entries. The
beginning entry also includes the path name of the input device, the path name of the destination

67

8. HIGH-AVAILABILITY SYSTEMS 581

=TT o=

active
Active Standby

Disk 1
active

SMil SMm2 SMn

e RinliEnE e e :]Oldgeneric
LI m New generic:

[| [i [| Oifice has old generic; All prerequisite

Fw Lo FW LI : Fw growth completed; Office passes
Active Standby Active Standby Active Standby baseline tests '

FIGURE 8-35 Generic retrofit: Starting point

Fape
™M AM g

Disk 0
active
Active Standby Disk 1
off line
SMi1 SMz2 SMn

_{___ _’_h[___ = = ’:]Oldgeneric
s 8 @ : New generic:

| | l | [| All equipment duplex except for disks

W LT Fw LT : Fw L (evolved database required on major
Active Standby Active Standby Active Standby generic transitions)

FIGURE 8-36 Generic retrofit: Step 1, Load new generic from tape to off-line disk

volume table of contents, and information that will be used to access the new generic’s ECD and
the old and new generic’s system update log files. Log file eniries are also made that indicate the
disks that are being updated, the partitions on disk that are being updated, and infermation
related to the tapes that are being read. Before the ending entry for this stage is written, an
application-dependent process entry with the process identification number is written.

Files used by the old generic and needed by the new generic are copied from the active
disk to the off-line disk by the application process. The destination off-line partition is mounted,
and then the files are copied over. The application process writes an entry in its log file specifying

————

582 1. THE PRACTICE OF RELIABLE SYSTEM DESIGN

the names of the files it tried to copy and whether it was successful in doing so. Once the new
generic text and database tapes have been read, the duplicated module processors in each
switching module are simplexed so that the generic dependent firmware may be replaced (Figure
8-37). One side of the switching module is forced active and continues processing calls. The
other side of the switching module is unavailable and is pumped with the new generic, which is
stored on the off-fine disks (Figure 8-38).

Tape

™ - AM

Disk 0
active

off line

oo

Sm1 SM2 SMn

v e e _. { . {:lold generic
W l 2 FW L Z Fw ' g % New generic:

Active QOGS Active 0OS Active 00S Replace firmware in SMs

FIGURE 8-37 Generic retrofit: Step 2, Simplex switching modules

Tape

CM AM

Sagulll!

Active Standby

Disk 0
active

B

Disk 1
off line

SM1 SM2 SMn

__‘_77 [A A DOIdgeneric
| U : ‘New generic:

FW [FW l Z FW | ‘/’E SMs remain in service on old generic; AM
Forced Forced - Forced Forced Forced Forced running duplex on old generic; No impact on
active unavail active unavail active unavail call processing; Evolve RCs and CORCs to

new formats; Copy files to new generic

FIGURE 8-38 Generic retrofit: Step 3, Pump off-line switching modules

69

8. HIGH-AVAILABILITY SYSTEMS 583

A process in the administrative module coordinates all requests to perform switching module
pumps. it queues and prioritizes pump requests and invokes a special process to mount the off-
line partitions to make the new generic software accessible for pumping. This special process
uses the mknod and mount system calls to create special device files and mount point directories
on the active disks. The partitions on the off-line disk are then mounted on the mount point
directories. After the off-line partitions have been mounted, a third process in the administrative
module controls the transfer of the data from disk to the switching modules via the 3B memory.
A process in each switching module sets up and releases the data path for pumping. The process
then performs hashsum checks of the memory on the unavailable side. Throughout this stage,
the active processor of each switching module is still in service on the old generic, the admin-
istrative module is running duplex on the old generic, and there has been no impact on call
processing.

At this point in time, the new generic’s ODD is out of date with the ODD for the old generic.
Changes that have been made to the ODD by the technician or the customer are logged and are
evolved to a format compatible with the new generic database. The evolved RCs and CORCs are
then copied by the application process from the active disk to the off-line disk.

Initialization Stage. During this stage, the switching modules are switched over from the old
genetic side to the new generic side and are initialized. The application process is responsible
for changing the switching modules from the old generic side to the new one. The application
log file entry for this stage contains information about whether the switch was successful for each
switching module.

Messages other than ones used to establish the links between the administrative module
and the switching modules are throttled in the communication module. The administrative mod-
ule is the last processor to be initialized, since it needs to retain control over switching the
switching modules to the new generic and to monitor their progress. Limited verification of the
new QDD is done prior to initializing the switching modules on the new generic.

To protect the disks containing the old generic, the system update process accesses the new
ECD on the off-line disks and marks the active disks off line. After the system is initialized, the
disks containing the new generic will be active and the disks containing the old generic will be
off line (Figure 8-39). The application and system update processes copy over their log fites at
this time. The system update process then reguests the technician to initialize the system using
the new generic disks. At any point in the retrofit, the exchange personnel can decide to return
to the old generic and databases. The old software is available until the last stage in retrofit; thus,
it is a very short process o abort the retrofit.

Evaluation Stage. Operation on the new generic is verified during this stage. Prior to duplexing
the disks and switching modules, the technicians want to ensure that the new system is opera-
tional. The administrative module is restored to duplex operation. The new ODD is brought up
to date with the old database by applying the evolved changes. The length of this stage, during
which call processing is unaffected, is determined by local practice (Figure 8-40).

When the technicians are satisfied with the stability of the new system, the exchange is
committed to full duplex operation. The new firmware is loaded in the side of the switching
modules containing the old firmware, and both the switching modules and disks are restored to
dupfex operation (Figure 8-41}. The system update process marks the off-line disks out of service
in the ECD so that UNIX RTR facilities can be used to restore the disks.

The application process is responsible for checl\cing that the switching modules are duplexed
and for clearing the generic retrofit indicator on the maintenance control center. It prints out
and then destroys its log file. At the completion of this stage, the system update process removes

584

M
217
SM1 sM2
RIRZZ
Fw L. pw L

SMi1

FW

I, THE PRACTICE OF RELIABLE SYSTEM DESIGN

Forced Forced
unavail active

17

Z

7

Forced Forced
unavail active

AM
7z
00S Active

SMn
w7 7
W I 7

Forced Forced
unavail active

FIGURE 8-3% Generic retrofit: Step 4, Initialization

M

N

AM

Nz

[

Forced Forced
“unavail active

SM2

A7

[

Fw

Forced Forced
unavail active

SMn

FW

Disk 0
off line

Tape

Disk 1
active

Cl Old generic
% New generic:

Copy CORCs, RC, and billing to new disk;
SMs initialized on new generic; AM
initialized on new generic; Disk 0 forced
off-line with old generic

. %Tape
AV AV |
—_1 f Disk 0
off line

Active Standby Disk 1
is
active

[A

I 7z

Forced Forced
unavail active

Ij Old generic
% New generic:

SMs and disks simplex; AM restored to duple:
Aufomatic reapplication of RCs and CORCs;
Duration—as required by local practice

FIGURE 8-40 CGeneric retrofit: Step 5, Verify operation on new generic

71

8. HIGH-AVAILABILITY SYSTEMS 585

Tape
M AM
Azl A
Disk 0
active
Active Standby
Disk 1
active
SMi1 Sm2 SMn
A7 A AV
e D Old generic
7] 1 9t 7
FwW - W : FW £ M New generic:
Active Standby Active Standby Active Standby Load new firmware in side 0 and diagnose;
Return system to full duplex operation
FIGURE 8—41 Generic retrofit: Step 6, Commit and go full duplex
its log file, since the update is finished and the system update processes no longer need to
communicate.

In rare instances, the exchange personnel will decide to return to the old generic. This is
simple to do prior to duplexing the disks, and a backout procedure is provided if necessary. The
retrofit process is reversed and the disks that contain the old generic are re-initialized. The disks
that contain the new generic are marked inaccessible and are then overwritten with the old
generic.

SUMMARY A much less desirable alternative to the generic retrofit procéss is to bring the system to a stop,

load in new tapes, and then undergo a full initialization of the system. Long system downtimes
wouid result from using this method, and there would be no mechanism for evolving the
datahases or recent changes. In addition, system integrity would not be guaranteed.

Generic retrofit takes advantage of the duplicated nature of the 5ESS switch in order to
minimize impact on call processing and system reliability. Lt provides a way to read in the new
software and databases while the switch is still running on the old generic. Call processing is
uninterrupted during most of the initialization of the switching modules with the new generic.

All hardware growth and software changes occur at separate times. Hardware that is essential
for the new generic to be operational is grown prior to retrofit and must be compatible with the
new generic.

Because structural changes may occur in the databases, they are evolved from their old
generic format to one that is compatible with the new generic. Changes made to the ODD are
logged and automatically applied to the new generic database. The retrofit process provides

databases compatible with the new generic that contain basically the same information as the’

old.

The architecture of the 5ESS system enables 2 smooth transition to a new generic that
contains new features and hardware without @ noticeable service interruption to subscribers. The
process has been well tested and has been very successful. As of August, 1987, there were 137

72

S

© 586

REFERENCES

1f. THE PRACTICE OF RELIABLE SYSTEM DESIGN

exchanges retrofitted from the 5ET to the 5E2(1) generic, 215 exchanges retrofitted from the SE2(1)
to the 5E2(2) generic, and 70 exchanges retrofitted from the 5E2(2} to the 5E3(1) generic.

Allers et al., 1983; Anderson et al., 1987; Barclay, Dossey, and Nolan, 1986; Bauer, Croxall, and
Davis, 1985; Byrne and O'Reilly, 1985; Davis et al., 1981; SESS, 1986; Fuhrer, Shen, and Yates,
1986; Haglund and Peterson, 1983; Locher, Pfau, and Tietz, 1986; Smith and Andrews, 1981; Toy
and Galaher, 1983; Wallace and Barnes, 1984.

THE TANDEM CASE
Fault Tolerance in Tandem Computer Systems

JOEL BARTLETT, WENDY BARTLETT, RICHARD CARR, DAVE GARCIA, JIM GRAY, ROBERT
HORST, ROBERT JARDINE, DOUG JEWETT, DAN LENOSKI, AND DIX McGUIRE

The increasing trend for businesses to go on line stimulated a need for cost-effective computer
systems with continuous availability [Katzman, 1977]. The strongest demand for general-purpose,
fault-tolerant computing was in on-line database transaction and terminal-oriented applications.
In the early 1970s, vendors and customers demanding continuous availability configured multi-
processor systems as hot standbys (see Figure 8-42). This configuration preserved previous
development effort and compatibility by introducing devices, such as 1/0 channel switches and
interprocessor communications adapters, to retrofit existing hardware. These architectures, how-
ever, still contained many single points of failure. For example, a power supply failure in the KO
bus switch, or an integrated circuit failure in any KO controller on the 1/0 bus switch channel,
would cause the entire system to fail. Other architectures used a common memory for interpro-
cessor communications, creating another single point of failure. Typically, these architectures did
not even approach the problems of on-line maintenance, redundant cooling, or a power distri-
bution system that tolerates brownout conditions. Furthermore, these systems lacked thorough
data integrity features, leading to problems in fault containment and possible database corruption.

As late as 1985, conventional, well-managed, transaction-processing systems failed about
once evary two weeks for about an hour {Mourad and Andrews, 1985; Burman, 1985]. This failure
rate translates to 99.6 percent availability, a level that reflects a considerable effort over many
years to improve system avaitabilily. When the sources of faults were examined in detail, a
surprising picture emerged: Faults come from hardware, software, operations, maintenance, and
the environment in about equal measure. Hardware could operate for two months without
generating problems; software was equally reliable. The result was a one-month mean time
hetween failures (MTBF). But if operator errors, errors during maintenance, and power failures
were included, the MTBF fell below two weeks.

In contrast, the goal of Tandem is to build systems with a MTBF mieasured in years*—more
than two orders of magnitude better than conventional designs. The key design principles of the
systemm were, and still are, the following:

» Modularity: Both hardware and software are based on moduies of fine granularity that are

units of service, failure, diagnosis, repair, and growth.

* The originat goal was to build a system with 100-year MTBF.,

73

8. HIGH-AVAILABILITY SYSTEMS 587

FIGURE B—42
An example of g g
cPU = z CPU
early fault-tolerant 2 £
architectures . ,
I |
|
! !
Interprocesser Interprocessor
link tink
T : T
|
1 |
Interprocesser Interprocessor
link link
T ¥
\ !
‘ .
Noncritical Noncritical
controller controller
Bus g
switch £
|
] . =
| | Terminal
controlier
T
I
}
H e
controller

T~

* Fail-Fast Operation: Each module is self-checking; when it detects a fault, the module stops.

* Single Fault Tolerance: When a hardware or software module fails, another module imme-
diately takes over the failed module’s function, giving a mean time to repair meastred in
milliseconds. For processors or processes, this takeover means that a second processor or
process must exist. For storage modules, it means that the modules and the paths to them
are duplexed.

* On-line Maintenance: Hardware and software can be diagnosed and repaired while the rest
of the system continues to deliver service. When the hardware, programs or data are
repaired, they are reintegrated without interrupting service,

» Simplified User Interfaces: Complex programming and operations interfaces can be a major
source of system failures. Every attempt has been made to simplify or automate intérfaces
to the system. '

This case study presents Tandem NonStop and lntegrlty systems, viewed from the perspective
of these key design features,

74

\\-/4‘-“ =

588

HARDWARE

k. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Multiple hardware modules and multiple interconnections among those modules provide a hasis
for fault-toferant operation, Two modules of a certain type are generally sufficient for hardware
fault tolerance because the probability of 2 second independent failure during the repair interval
of the first is extremely iovy;, For instance, if a processor has an MTBF of 10,000 hours {about a
vear) and a repair time of 4 hours, the MTBF of a dual-path system increases to abaut 10 million
hours (about 1000 years). If more than two processors were added, the further gains in refiability
would be obscured by system failures related to software or system operations. ’

* Modularity: Modularity is important to fault-tolerant systems because individual modules
must be replaceable on line. Keeping modules independent also makes it less likely that a failure
of one module will affect the operation of another module, Increasing performance by adding
modules allows customers to expand the capacity of critical systems without requiring major
outages 1o upgrade equipment. '

* Fail-Fast Logic: Fail-fast logic is defined as logic that either works properly or stops. Fait-
fast logic is required to prevent corruption of data in the event of a failure. Hardware checks
{including parity, coding, and self—checkin‘g), as well as firmware and software consiste'ncy checks,
provide fail-fast operation.

* Serviceability: As mentioned before, maintenance is a source of outages. ldeally, the
hardware should have no maintenance. When maintenance is required, it should require no
special skills or tools. i ’

* Price and Price/Performance: Commercial pressures do not permit customers to pay a high
premium for fault tolerance; if necessary, they will use ad-hoc methods for coping with unreliable,
but cost-efiective, computers. Vendors of fauk-tolerant systems have no special exemption from
the requirement to use state-of-the-art components and architectures, frequently compounding
the complexity already required by fault tolerance.

Hardware Architecture

The Tandem NonStop computer system was intreduced in 1976 as the first commercial fault-
tolerant computer system, lts basic architecture is shown in Figure 8-43. The system includes
from 2 to 16 processors, connected by dual buses collectively known as the Dynabus interpro-
cessor bus. Each processor has its own memary, containing its own copy of the operating system.
The processors communicate with ane another through messages passed through the Dynabus
mechanism. The system can continue operation despite the loss of any single cémponent. Each
processor has its own inputioutput bus. Dual-ported controllers connect to 1/O buses from two
different processors. An ownership bit in each controller selects which of its ports is currently
the primary path. When a processor or /O bus failure occurs, all controllers that are designated
as primary on that O bus switch to their backup paths, The controller configuration can be
arranged so that in a multiprocessor system, the failure of a processor causes that processor’'s
/0 workload to be-spread out over the remaining processors. All subsequent systems have been
upward-compatible with this basic design. ‘

Processor Modules

The primary components of a system are its processor modules, each of which includes an
instruction processing unit (IPLY), memory, 1/O channel, and Dynabus interprocessor bus inter-
face. The design of the system’s processor module is not much different from that of any
traditional processor, with the addition of extensive error checking to provide fail-fast operation.

75

FIGURE 8—43
 Originai Tandem
system architec-
ture, 1976

8. HIGH-AVAILABILITY SYSTEMS 589

Dynabus

Dynabus interface 1

IPU

Up to 16 processor modules
Memory '

/O channe!

Tape
Disk controller

Terminal
controller : controller *|

Disk
controller
Disk ‘
controller [—

Each processar operates independently and asynchronously from the rest of the processors.
Another povel engineering requirement is that the Dynabus interfaces must prevent a single-
processor failure from disabling both buses. This requirement focuses on the proper selection
of a single component type: the buffer that drives the bus. This buffer must be well behaved
when power is removed from the processor module to prevent errors from being induced on
both buses. ' : '

The power, packaging, and cabling must also be carefully considered. Parts of the system
are redundantly powered through diode ORing of two different power supplies. In this way, /O
confﬁollérs and Dynabus controllers tolerate a power supply failure. To allow on-line maintenance
and modular growth, all boards are designed for hot insértion; that is, they can be inserted while
the slot is powered. Battery backup power Is standard in all systems. It preserves the system state
for several hours in case of power fajlure. .

The evolution of these processors is summarized in Table 8-5. Features common to all
processors are described in the following sections. Mare details about the individual processors
appear later in this case. Fach processor provides a basic set of instructions that includes oper-
ations on bits, integers, decimal numbers, floating-point numbers, and character strings; pro-
cedure calls and exits; 1/0 operations; and interprocessor SENDS to streamline the performance
of the message-based aperating system. All instructions are 16 bits long. The Tandem NonStop |
was designed as a stack-oriented, 16-bit processor with virtual memory. This instruction set
has evolved to an upward-compatible, 32-hit addressing machine. Program binaries from the

e

76

II. THE PRACTICE OF RELIABLE SYSTEM DESIGN

590

“S5IW WY I 395U G2Z [RUONIPPY |

paads
J95/W Py D95/gW § X T DIS/HW F¥ 238/gW € 295/gW § 295/gW § Ja5/gW § 2B5/gW ¥ JauueyD
J3s Jas 3as LT © oas 395 295 285 poads snq
MAWO0T x T AW 0T X ¢ AW 02 X ¢ MAWO0T x T AW 0T x T /AW EL X T /AW EL X T /AW €L x 7 10ssa001dis1u]
Inding nduy
9 8P95UFLy 4 91/99SU S f /085U £09 g goasu £gp g 8/295U 91y g 8OBSU 999 g ZOBSU OOy d Z/I95U QS SWH 3PAD
1} 4 L L T ¥ 4 € SpdeOQ "Xepy
qw g aw g ‘
{pieoq (pieoq (preoq aw er awW
10ssanotd aW +9 1ossanoud Jassadold qwW 9L aw g qN T g +9¢
uo) g g W Zg uo) gw g HO) g g B qW T g TLS a1 ¥9 pieoq fo4
g Z¢ anc qw-ze aw zc gW 952 qgW 9L aw 9 g ez [edisAyg
a1 407 a0 b a0 1 a9 i 4D L a0 L 4 TLS |eniiA
’ Adowaw
- Wa)sAs
9l—¢ 91T 8- 9L 9l—¢ 91—¢ 91T 91T /8105880014
SPIeoqg
L £ L b z ¥ £ z 108530014
(xoudde)
L8 ASLT Ale b5 A98 A8 A0€ AT $91en)
(suomnsu)
dew paup dew 13anp dew woup dew dew dew pue
‘M zeL DI x T ‘DIBZL PP BN PG PP EN 19 1094Ip ‘D +9 - “ o EIep) ayden
sired qogL arg x
X N8 ‘p1s [enp ¥ 'qor
q95 X Ml qo9L x Mg q9g x Mpl 995 X MbE ‘O0ZL X NOL Mg {aAs] om) qzE % Mg — 2I0150UMW
SU L9 sU g SU LG s gglL su £g su €9 su QoL SUQOL awp apdy
SOWD Aeire SOWD SOWD Aprie
T woisny 21D “103 TigL woisny Tz wogsnyy 9180} 103 Tvd I5B4 ISW TLLS ISW ISW Adojouyoa)
90¢ 90¢ 90€ 90g 58T 74 oerd £/l suononusu|
[Ara 0oL S 0L 0g A 80 £0 Ndi/SdIw
A0SSAI04
(L66L} (6861) (6061 (£861) (9861) (£861) (1961} (9261 dnjeay
008 X102 auopAD 00£ X120 009 X1 XA dXL 1 doiguon 1 doiguoN
Tossanouy

uofnjos sossasosd dojsuon wapuey jo Arwwng g 119vL

b—r

77

8. HIGH-AVAILABILITY SYSTEMS 591

NonStop | will run on a Cyclone. The processor implementations have been fairly conventional,
using a mix of special-purpose hardware for basic arithmetic and /O operations, along with
microcode to implement higher-level functions. Two novel features are the special hardware and
microinstructions to accelerate the sending and receipt of messages on the Dynabus. The per-
formance of these instructions has been a key component of the success of the message-based
operating system.

Memory, as originally implemented, was designed to support & 16-bit minicomputer. In 1981,
designers added a 32-bit addressing scheme to provide access to 4-MB code space (for users),
multiple 127.5-M8 data spaces (for users), 4-MB code space (for the operating system), and 1-GB
(2 GB for Cyclone) of virtual data space (for the operating system}. The code and data spaces in
hoth the user and the system areas are logically separate from one another.

tn order to make processors fail-fast, extensive error checking is incorporated in the design,
Error detection in data paths typically is done by parity checking and parity prediction, while
checking of control paths is done with parity, iflegal state detection, and self-checking. Loosely
coupling the processors refaxes the constraints on the error-detection latency. A processor is
required to stop itself only in time to avoid sending incorrect data over the 1O bus or Dynabus.
In some cases, to avoid lengthening the processor cycle time, error detection is pipelined and
does not stop the processor until several clocks after the error occurs, Several clocks of error-
detection latency are permitted in the architecture, but cannot be tolerated in systems in which
several processors share a common memary. In addition, the true fail-fast character of all pro-
cessors eliminates the need for instruction retry in the event of errors,

Dynabus Interprocessor Bus

The Dynabus interprocessor bus is a set of two independent interprocessor buses. All components
that attach to either of the buses are kept physically distinct so that no single component fatlure
can contaminate both buses simultaneously, Bus access is determined by two independent
interprocessor bus controllers. Each of these controllers is dual-powered in the same manner as
an 170 controller. The Dynabus controllers are not associated with, nor physically part of, any
processor. Each bus has a two-byte data path and several control lines associated with it. No
failed processor can independently dominate bus utilization upon failure because, to electrically
transmit onto the bus, the bus controller must agree that a given processor has the right to
transmit.

The original Dynabus, connecting from 2 to 16 processors, was designed with excess capacity
to allow for future improvements in processor performance without redesign of the bus. The

. same bus is used on the NonStop 1, introduced in 1980, and the NonStop TXP, introduced in
1983. The NonStop Il and NonStop TXP processors can even plug into the same backplane to
operate in a single system with mixed processors. A full 16-processor TXP system does not drive
the bus near saturation. A new Dynabus was introduced with the VLX system. It provides peak
throughput of 40 megabytes per second, relaxes the length constraints of the bus, and has a
reduced manufacturing cost due to improvements in its clock distribution. It was, again, overde-
signed to accommodate the higher processing rates predicted for future processors. The CLX
and Cyclone systems also use this bus.

For any given interprocessor data transfer, one processor is the sender and the other is the
receiver. To transfer data over the Dynabus interprocessor bus, the sending processor executes
a send instruction. This instruction specifies the bus to be used, the intended receiver, and the
number of bytes to be sent. Up to 64 kilobytes can be sent in a single send instruction. The

78

e

592

[I. THE PRACTICE OF RELIABLE SYSTEM DESIGN

sending processor continues to execute the send instruction until the data transfer is completed,
during which time the Dynabus interface contral logic in the receiving processor is storing the
data in memory. In the receiving processor, this activity occurs concurrently with program ex-
ecution. Frror recovery action is taken in case the transfer is not completed within a specified
timeout interval. In the Dynabus design, the more esoteric decisions are left to the software (for
example, alternate path routing and error recovery procedures): Hardware, then, implements
fault detection and reporting [Bartlett, 1978].

Fiber-Optic Extension Links

In 1983, a fiber-optic bus extension (FOX} was infroduced to link systems together in a high-
speed local petwork. FOX allows up to 14 systems of up 1o 16 processors each to be linked in a
ring structure, for a total of 224 processors. The maximum distance between adjacent nodes is 1
kilometer on the original FOX and 4 kilometers with FOX If, which was introduced on the VLX
processor. A single FOX ring can mix NonStop 1, TXP, VLX, and Cyclone processors. The inter-
connection of systems by FOX finks is illustrated in Figure 8-44. Fach node in the group can
accept or send data at rates of up to 4 MB/sec.

The FOX connection is based on a store-and-forward ring structure. Four fibers are connected
between a system and each of its two neighbors. Each interprocessor bus fs extended by a pair
of fibers, allowing messages to be sent in either direction around the ring. The four paths provided
between any pair of systems ensure that communication is not lost if a system is disabled {perhaps
because of a power failure) or if an entire four-fiber bundie is severed. ’

The ring topology also has advantages over a star configuration because a ring has no central
switch that could constitute a single point of failure and because cable routing is easier with a
ting than with a star. In a ring structure, bandwidth increases as additional nodes are added. The
total bandwidth available in a FOX netwark depends on the amount of pass-through traffic. In a
14-node FOX ring, if ach node sends to other nodes with equal probability, the network has a
usable bandwidth of 10 MB/sec. When there is no pass-through traific, the bandwidth increases
to 24 MB/sec. Theoretically, an application generating 3 kB of traffic per transaction, at 1000
transactions per second, would require a FOX ring bandwidth of only 3 MB/sec. In this situation,
the FOX network would use less than 30 percent of the total available bandwidth. Transaction
processing benchmarks have shown that the bandwidth of FOX is sufficient o allow linear
performance growth in large multinode systams [Horst and Chou, 1985; Englert, 1989],

Fiber-optic links were chosen to solve both technical and practical problems in configuring
large clusters. Fiber optics are not susceptible to electromagnetic interference, so they provide
a reliable connection even in noisy environments. They also provide high-bandwidth communi-
cation over fairly large distances (4 km/hop). This capability lessens the congestior in the computer
room and allows many computers in the same ar nearby buildings to be linked. FOX links allow
computer sites to physically fsolate nodes by housing them in different buildings, thereby pro-
viding a degree of fauft isolation and protection against disaster. For example, a fire in the
computer room in one building would not affect nodes in other buildings.

Dynabus+ Fiber-Optic Dynabus Extension

With the introduction of the Cyclone system in 1989, Tandem made two additional uses of fiber-
optic links. Their use between peripheral controllers and YO devices is described later in this
case. Their use as an interprocessor link within a system (as compared with FOX, which is an
intersystem link) is described here.

1
I

79

8. HIGH-AVAILABILITY SYSTEMS 593

FIGURE 8--44 Dynabus]
Tandem system ar- FOX FOX
chitecture, 1990 ’ F
Dynabus control
1P
Up to 16 processor modules
Memory P P
1/0 channel ’
Disk 6100 communications suhsystem
controller [| [—— "?j) Remote host
NN Channel |
1; YYa . | interface | Ay v i
E | |
.: I Line
] 1 interface
2 I
- ‘[Line |
— interface]
Disk L] |
controller Ll Channel |
interface |
R —— |
Dynab :
FOX ynabus FOX
Dynabus control —|
IPL
Up to 16 processor modules
+ Memory
I/O channel

Disk Disk
controller

controller

VB0 disk array

Remote host

Disk | Disk
controller controller

Communications
controller

L] Tape
controller _‘

|

80

594

1. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Cyclone processors are grouped into sections, each containing up to four processor mod-
ules. The sections may be geographically distributed up to 50 meters. Within a section, the normal
{backplane) Dynabus interface is used. Sections within a system are connected in a ring arrange-
ment, similar to the FOX arrangement.

Individual Dynabus+ fiber-optic links are capable of 12.5-MB/sec bandW|dth a good match
for the 20-MB/sec bandwidth of the Dynabus. While increasing performance was not the major
design goal of Dynabus+, the design has resulted in additional aggregate interprocessor bus
bandwidth, up to 160 MB/sec in a system. Each section conftains its own Dynabus controllers, so
message traffic local to the section can proceed concurrently with local traffic in other sections,
In addition, intersection traffic can proceed concurrently on the multiple fiber-optic links.

The Dynabus+ system is transparent to all levels of software except the maintenance sub-
system (described later in this case). The systemn is self-configuring when power is first applied:
Maintenance processors within each cabinet determine the configuration and routing rules. In
the event of a failure of any of the fiber-optic links or interface logic boards, the system recon-
figures itself, establishes new routing paths, and notifies the maintenance subsystem. In addition,
a VLX interface to Dynabus+ allows intermixing VLX and Cyclone processor modules within a
system. This feature allows an existing VLX customer to add Cycione processors to a system,
providing a smooth upgrade path.

Evolutionary Changes

Processor architecture has evolved to keep pace with technology. These improvements include
(1} expansion of virtual memory to 1 GB (NonStop Il system) and to 2 GB (Cyclone system), (2)
incorporation of cache memory (TXP system), (3) expansion of physical memory addressability to
256 MB (VLX system) and to 2 GB (Cyclone system), {4} incorporation of separate instruction and
data caches (Cyclone systemn), (5) incorporation of superscalar architecture (Cyclone system)
[Horst, Harris, and Jardine, 1990], and (6) incorporation of an independent instruction fetch unit
with dynamic branch prediction (Cyclone system). :

Technological improvements include evolution from core memory to 1-Mb dynamic RAM
and evolution from Schottky TTL (NonStop | and I sysiems) to programmable array logic (TXP
system) [Harst and Metz, 1984] to bipolar gate arrays (VLX and Cyclone system) to silicon-compiled
custom CMOS (CLX system) [Lenoski, 19881,

The Tandem multiprocessor architecture allows a single processor design to cover a wide
range of processing power. Having processors of varying power adds another dimension to this
flexibility. For instance, for approximately the same processing power, a customer can choose a
two-processor VLX system, a three-processor TXP system, or a four-processor Ci.X-700 system.
Having a range of processors extends the range of applications from those sensitive to low-entry
price to those with extremely high-volume processing needs. [n a different performance range,
the customer may choose a four-processor Cyclone system or a 16-processor V0LX system.

Peripherals

in building a fault-tolerant system, the entire system, not just the processor, must have the basic
fault-tolerant properties of dual paths, modutarity, and fail-fast design, as well as good price/
performance. Many improvements in all of these areas have been made in peripherals and in the
maintenance subsystem. The basic architecture provides the ability to configure the /O system
to allow multiple paths to each I/O device. With dual-ported controllers and dual-ported periph-
erals, there are actually four paths to each device, When disks are mirrored, there are eight paths
that can be used to read or write data.

81

8. HIGH-AVAILABILITY SYSTEMS B 595

In the configurations illustrated in Figure 8-44, there are many paths to any given disk,
Typically, two controllers access each disk, and each controller is attached to two processor
channels. Software is used to mirror disks; that is, data is stored on two disks so that if one fails,
the data is still available on the other disk. Consequently, the data can be retrieved regardiess of
any single failure of a disk drive, disk controller, power supply, processor, or 170 channel.

The original architecture did not provide as rich an interconnection scheme for communi-
cations and terminals. The first asynchronous terminal controller was dual-ported and connected
te 32 terminals. The terminals themselves were not dual-ported, so it was not possible to configure
the system so that it would withstand a terminal controller failure without losing a large number
of terminals. The solution for critical applications was to have two terminals nearby that were
connected to different terminal controllers.

The 6100 Communications Subsystem, The 6100 communications subsystem, introduced in 1983,
helped reduce the impact of a failure in the communications system. The 6100 consists of two
dual-ported communications interface units (CIUs) that communicate with /O buses from two
different processors (see Fi'gure 8—44). Individual line interface units (E1Us) connect to both ClUs
and to the communications line or terminal line. With this arrangement, ClU failures are com-
pletely transparent, and LIU failures result in the loss of only the attached line or lines. An added
advéntage is that each LIU can be downloaded with a different protocol in order 1o support
different communications environments and to offload protocol interpretation from the main
processors.

The 6100 communications subsystem is configured to have up to 45 LIUs. Each LIU can
support up to 19.2 Kbisec of asynchronous communication or 64 Kb/sec of synchronous com-
munication. Redundant power supplies and cooling fans provide an extra margin of fault tolerance
and permit on-line replacement of components.

Disk Subsystem. Modularity is standard in peripherals. It is common to mix different types of
peripherals to match the intended application. In on-line transaction processing (OLTP), it is
desirable to select increments of. disk capacity and of disk performance independently. OLTP
applications often require more disk arms per megabyte than are provided by traditional large
(14") disks. This requirement may result in customers’ buying more megabytes of disk than they
need in order to avoid queuing at the disk arm.

I 1984, Tandem departed from traditional disk architecture by introducing the V8 disk drive.
The V8 was a single cabinet that contained up to eight 168-MB, 8" Winchester disk drives in six
square feet of floor space, Using multiple 8" drives instead of a single 14" drive provided more
access paths and less wasted capacity. The modular design was more serviceable hecause indi-
vidual drives could be removed and replaced on line. In a mirrered configuration, system software
automatically brought the replaced disk up to date while new transactions were underway.

Once a system can tolerate single faults, the second-order effects begin to become important
in systern failure rates. One category of compound faults is the combination of a hardware failure
and a human error during the subsequent human activity of dlagnosis and repair. The V8 reduced
the likelihood of such compound hardware-human failures by simplifying servicing and elimi-
nating preventative maintenance. '

In fault-tolerant systems design, keeping down the price of peripherals is even more impor-
tant than in traditional systems. Some parts of the peripheral subsystem must be duplicated, yet
they provide little or no added performance. For disk mirroring, two disk arms give better read
performance than two single disks because the seeks are shorter and because the read work is
spread evenly over the two servers [Bitton and Gray, 1988; Bitton, 1989]. Write operations, on
the other hand, do demand twice as much channel and controller time. Also, mirroring does

82

5

596

IL. THE PRACTICE OF RELIABLE SYSTEM DESIGN

double the cost per megabyte stored. To reduce the price per megabyte of storage, the XI8 disk
drive was introduced in 1986. The XL8 had eight 9" Winchester disks in a single cabinet and had
a total capacity of 4.2 GB. As in the V8 drive, disks within the same cabinet could be mirrored,
saving the costs of added cabinetry and floor space. Also, like the V8, the reliable sealed media
and modular replacement kept maintenance costs low.

The V80 disk storage facility replaced the V8 in 1988. Fach of the V80's eight 8 disk drives
has a formatted capacity of 265 MB. Thus, each cabinet can hold 2.7 GB of unformatted storage,
or 2.1 GB of formatted storage. Externally, the VB0 resembles the V8, housed in a single cabinet
that occupies six square feet of floor space. The internal design of the V80, however, extends the
capacity and reliability of the V8 with a fully checked interface to the drives. Furthermare,
the design reduces by a factor of five the number of external cables and connectors between the
storage facility and the control unit.

The disk drive interface is based on the emerging industry-standard IPI-2 interface design,
which has parity checking on data and addressing to ensure the integrity of data and commands.
(The previous SMD-hased design provided only data parity.) IPI’s parallel and batched data and
commaend interface between the disks and their controller allow higher data transfer rates (2.4
MB/sec) and ;educéd interrupts. A radial connection between the controller and the drives
efiminates possible drive interaction that could occur with conventional bus structures. The
fivefold reduction in the number of external cables and connections is achieved by placing the
control logic in the disk cabinet, Within the cabinet, a new interconnect design has reduced by
a factor of five the number of internal cables and connections. .

In 1989, the X180 replaced the XL8 in similar fashion, doubling the storage capacity per drive
and also moving to an IPI-2 storage. interface. [n addition, the XL80 cabinet contains sensors for
inlet air temperature, power supply and board voltages, and fan operation; this information is
polled periodically by the cabinet’s maintenance subsystem and reported to the peripheral con-
trolter when an exception condition exists. A fully configured XL80 disk subsystem, including
storage modules, power supplies, and cooling fans, appears in Figure 5-45.

Peripheral Controllers. Peripheral controllers have fail-fast requirements similar to processors.
They must not corrupt data on either of their 10 buses when they fail. If possible, they must
return error information to the processor when they fail. In terms of peripheral fail-fast design,
the Tandem contribution has been to put added emphasis on error detection within the peripheral
controllers. An example is a VLS| tape controller that uses dual, lock-stepped Motorola 68000
processors with compare circuits to detect errors. It also contains totally self-checked logic and
self-checking checkers to detect errors in the ad-hoc logic portion of the controller. Beyond this
contribution, the system software uses end-to-end checksums generated by the high-tevel soft-
ware. These checksums are stored with the data and are recomputed and rechecked when the
data is reread.

The single-board controller supporting the V80 and the XL80 disks uses CMQS VLSI tech-
nology. The controller is managed by dual, lockstepped Motorola 68010 microprocessors that
provide sophisticated error-reporting and fault-isolation tools. The controller is contained on a
single board. Thus, it requires only half the IO slots of previous controllers.

Gther efforts fo reduce peripheral prices include the use of VLS| gate arrays in controllers
to reduce part counts and improve reliability and the use of VLSI to integrate the stand-alone
6100 communications subsystems into a series of single-board controffers. The Tandem evolution
of fault tolerance in peripherals is summarized in Table 8-6.

83

8. HIGH-AVAILABILITY SYSTEMS . 597

FIGURE 8—45
XL80 disk subsys-
tern (front view)

PROCESSCOR The following sections outline the implementation details of each of the Tandem processors
MODULE suminarized in Table 8-5. ’
IMPLEMENTATION

DETAILS NonStop 1

The NonStop | processor module, introduced in 1976, included a 16-bit 1PU, main memory,
Dynabus interface, and an 1/O channel, Physically, the [PU, VO channel, and Dynabus control
consisted of two PC boards that measured 167 X 18", each containing approximately 300 integrated
circuit packages. These boards employed Schottky TTL circuitry. The processor module was

\-l_/’—\

84

598

TABLE 8-6
Tandem evolution
of peripheral fault
tolerance

1. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Year Product Contribution

1976 NonStop I system Dual-ported controllers, single-fault tolerant 1/O
system ’

1977 NonStop | system Mirrored and dual-ported disks

1982 INFOSAT - Fault-tolerant satellite communications

1983 6100 communications Fault-tolerant communications subsystem

subsystem

1983 FOX Fault-tolerant, high-speed, fiber-optic LAN

1984 V8 disk drive Eight-drive, fault-tolerant disk array

1985 3207 tape controller Totally self-checked VLSI tape controller

1985 XL8 disk drive Eight-drive, high-capacity/low-cost, fault-tolerant disk
array

1986 TMDS Fault-tolerant maintenance system

1987 CLX Fault-tolerant system that is 98 percent user-

‘ serviceable

1988 V80 storage facility Reduced disk cabling and fufly-checked disk
interfaces

1988 3120 disk controfler Totally self-checked VLSI disk controller

1989 XL80 storage facility Reduced disk cabling, fully-checked disk interfaces,
environrmental monitoring within disk cabinet

1989 Fiber-optic Reduced cabling to a minimum, reduced transmission

' interconnect for errors

V80 and XL80

viewed by the user as a stack-oriented, 16-bit processor, with a demand paging, virtual memory
system capable of supporting multiprogramming.

The IPU was a microprogrammed processor consisting of (1) an execution unit with ALU,
shifter, register stack, and program counter, {2) a microprogram sequencer with 1024 32-hit words
stored in ROM, (3) address translation maps supporting system code and data, and current user
code and data segments, (4) mair memory of up to 512 KB, (5) 96 KB memory boards with singfe-

~ error correction and double-error detection, and (6) battery backup for short-term main memory

ride-through of power outages of up to 4 hours.

The heart of the /O system is the I/O channel. In the NonStop |, all O was done on a
direct memory access basis. The channel was a microprogrammed, block-multiplexed channel;
individual controllers determine the block size. The channel did not execute channe! programs,
as anmany systems, but did transfer data in parallel with program execution. The memory system
priority always permitted 1O accesses to be handled before IPU or Dynabus accesses. The
maximum VO transfer was 4 KB.

Dual-Port Controllers, The dual-ported /0 device controllers provided the interface between the
NonStop | /O chanrel and a variety of peripheral devices using distinct interfaces. While these
/O controllers were vastly different, depending on the devices to which they interfaced, there
was a commonality among them that fitted them into the NonStop | architecture, Fach controller
contained two independent I/O channel ports implemented by IC packages that were physically -
separate from each other so that no interface chip could simultaneously cause failure of both

85

FIGURE 8-46
Ownership circui-
try and fogic

8. HIGH-AVAILABILITY SYSTEMS 599

ports. Logically, only one of the two ports was active. The other port was utilized only in the
event of a path failure to the primary port. An ownership bit, as illustrated in Figure 846, indicated
to each port if it was the primary port or the alternate.

Ownership changed only when the operating system issued a Take-Ownership 1/Q command.
Executing this spectal command caused the I/O controller to swap its primary and alternate port
designation and to do a controller reset. Any attempt to use a controller that was not owned by
a given processor resulted in an ownership violation. If a processor determined that a given
cantrolfer was malfunctioning on its /O channel, it could issue a Disable-Port command that
logically disconnected the port from that VO controller. This disconnection did not affect the
ownership status. Thus, if the problem was within the port, the alternate path couid be used,
but if the problem was in the common portion of the controller, ownership was not forced on
the other processor.

Fault-Tolerant /O Considerations. The /0 channel interface consisted of a 2-byte data bus and
control signals. All data transferred over the bus was parity checked in both directions, and errors
were reported through the interrupt system. A watch-dog timer in the /O channel detected if a
nonexistent O controller was addressed or if a controller stopped respending during an 1O
sequence. The data transfer byte count word in the channel command entry contained four status
bits, including a protect bit. When this bit was set on, only output transfers were permitted to
this device.

Because I/O controllers were connected between two independent IO channels, it was very
important that word count, buffer address, and direction of transfer be controlled by the pro-
cessor instead of within the controller. If that information were kept in the controller, a single
failure could fail both processors attached to it. Consider what would happen if a byte count
register were located in the controller and the count did not decrement on an input transfer. It

Pracessor 1 Processor 2
Processor 1 has Dual-ported A controll d
ownership of the controller b controfier Cg"?ma-"
controller and its rzg&z&essor 15
devices. Ownership Ownership) '

Lo 1) e

o—0 -0 o

Typically, ownership If necessary, processor 2

can take ownershi
changes only when processor from rogessor 1 [IE:-’ issuin
1 fails. p Y g

a Take-Ownership command.

Devices

/1

86

600

H. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Pages used for I/O buffering), uncorrectable memory errors, and map parity errors,

NenStop 1

The NonStop Il was a compatible extension of the NonStop 1. The major changes from the
Nonstop | processor module were the introduction of a 32-bit addressing scheme and a diagnostic
data transceiver processor. The software for the NonStop 11 system was upward-compatible with
the NonStop ! system. Thus, application programs written for the NonStop | system could be run
on the NonStop 11 system,

The IPU was implemented using Schottky TTL logic using a microinstruction cycle time of

instructions became a standard part of the instruction set. The instruction sets were implemented
on microcode in a high-speed control store, which had 8K 32-bit words of loadable storage and
1K words of read-only storage. The loadable part of the control store was initialized when the
operating system was loaded. Before loading the control store, the system performed a set of
diagnostic routines to verify that the processor was operating correctly. The processor's internal
data paths and registers were parity-checked to ensure data integrity. The IPU featured a twa-
stage pipeline that allowed it to fetch the next instruction, while executing the current instruction.

Memory boards for the NonStop Il system contained 512 KB, 2 MB, or 4 MB of storage. Up
to four of these boards, in any combination, could reside in ofne processor for a maximum of 16
MB. A fully configured Té-processor system allowed up to 64 boards with a total of 256 Mg of
memory, The memory access time was 400 nsec. Each memory word was 22 bits long. Six bits of
the word provided an error-correction code that enabled the system to correct any single-hit
error and detect any double-bit error, The error-correction code also checked the address sent
from the IPU to ensure that the memory access was valid.

10 Channel. Each processor module contained a separate processor dedicated to IO operations,
Because the /O processor operated independently from the IPU, /O transfers were extremely
efficient and required only a minimum of 1PU intervention. The channel was a burst multiplexor,
Every #/O device controller was buffered, allowing data transfers between main memory and the
controller buffer to occur at full memory speed. /O transfers had a maximum length of 64 KB.
The high-speed YO channels used burst-muttiplexed direct memory access to provide transfer
rates of up to 5 MBisec, Thus, the aggregate burst /O rate of a fully configured ‘16-processor
system was 80 MB/sec.

The 1/O processor supported up to 32 device controllers, Depending on the type, device
controllers could support up to eight peripheral unjts. Therefore, as many as 256 devices could

be connected to a single processor. Multipoint communication lines were treated as a single -

device, so each processor could support very large terminal configurations. 1/Q device controlers
were intelligent devices. This intelligence allowed them to relieve the central processing unit of
many routine functions such as polting synchronous terminals, checking for data transmission
errors, and so forth.

Diagnostic Data Transceiver. The diagnostic data transceiver {DDT) was a separate microprocessor
included as part of each processor module. The DDT provided two distinct functions:

87

i
|

8. HIGH-AVAILABILITY SYSTEMS 601

1. The DDT allowed communication between a processor module and the operations and
service processor (OSP), which supports both operational and maintenance functions, such
as running diagnostics. (More about the OSP appears in the section on maintenance facilities
and practices later in this case.)

2. The DDT monitored the status of the central processing unit, Dynabus interface, memary,
and the /O processor, and reported any errors to the QSP.

Virtual Memory. The virtual memory addressing scheme, introduced by the NonStop H processor,
ts used by all subsequent processors. It converted the system from 16-bit addressing to 32-bit
addressing. This addressing is supported by the instruction set and is based on segments that
contain from 1 to 64 pages each. A page contains 2048 bytes. Each processor can address up to
8192 segments, providing a billion bytes (1 GB) of virtual memory address space (later extended
to 2 GB on the Cyclone processor, introduced in 1989).

The instruction set supports standard and extended addressing modes. The standard 16-bit
addressing mode provides high-speed access within the environment of an executing program.
The extended 32-bit addressing mode allows access to the entire virtual memory space by privi-
leged processes. Programs written in Pascal, C, COBOL8S, and the Transaction Application
Language {TAL) can use extended addressing for access to large data structures.

The instruction set supports two types of extended addressing: absolute and relocatable.
Absolute extended addressing is available only to privileged users such as the operating system
itself. Absolute addresses can address any byte within the virtual memory. Relocatable extended
addresses are available to all users. This form of addressing can reference any byte of the current
process’s data space, as well as one or more private relocatable extended data segments. Each
extended data segment can contain up to 127.5 MB.

To provide efficient virtual-to-physical address translations, each NonStop Hl processor in-
cluded 1024 high-speed map registers. The memory maps contained absent, dirty, and referenced
bits to help the software manage virtual memory.

Maintenance. A major feature of the NonStop 11 system was the OSP located in a console supplied
with the system. In addition to serving as an operations interface for communication with the
system, the OSP was a powerful diagnostic and maintenance tool. The OSP is described later in
this section,

NonStop TXP Processor

While the NonStop I system extended the instruction set of the NonStop [system to handle 32-
bit addressing, it did not efficiently support that addressing mode. The existing 5 MB/s /O channel
and 26 MB/s Dynabus interprocessor bus offered more than enough bandwidth to handle a
processor with two to three times the performance. The existing packaging had an extra processor
card slot for future enhancements, and the existing power supplies could be reconfigured to
handle a higher powered processor. The NonStop TXP processor module, introduced in 1983,
was designed in this environment.

The main problems concerned designing a new micro-architecture that would efficiently
support the 32-bit instructions at much higher speeds, with only 33 percent more printed circuit
board area and the existing backplane. This design involved eliminating some features that were
not critical to performance and finding creative ways to save area on the PC board, inctuding
strategic uses of programmable array logic and an unusual multilevel control-store scheme.

The perfermance improvements in the NonStop TXP system were attained through a com-
bination of advances in architecture and technology. The Non§top TXP architecture used dual

88

e

602

FIGURE 8—47
Parallel data paths
of the TXP proces-
sor [Horst and
Metz; © 1984 by
McGraw-Hill]

H., THE PRACTICE OF RELIABLE SYSTEM DESIGN

16-bit data paths, three levels of macro-instruction pipelining, 64-bit parallel access from memory,
and a large cache (64 KB/processor). Additional performance gains were obtained by increasing
the hardware support for 32-bit memory addressing. The machine’s technology includes 25-nsec
programmable array logic, 45-nsec 16K static RAM chips, and Fairchild Advanced Schottky Tech-
nofogy (FAST) logic. With these high-speed components and a reduction in the number of logic
levels in each path, a 12-MHz (83.3 nsec per microinstruction) clock rate could be used.

The TXP's dual data-path arrangement increased performance through added parallelism, as
shown in Figure 8-47. A main ALU operation could be performed in parallel with another
operation done by one of several special modules. Among these modules were a second ALU to
perform both multiplications and divisions, a barrel shifter, an array of 4096 scratch-pad registers,
an interval timer, and an interrupt controlier. Other modules provided interfaces among the [PU
and the interprocessor bus system, 1/0 channel, main memory, and a diagnostic processor.

The selection of operands for the main ALL and the special modules was done in two stages.
In the first stage, data was accessed from the dual-ported register file or external registers and
placed into two of the six registers. During the same cycle, the other four pipeline registers were
loaded with cache data, a literal constant, the result of the previous ALU operation, and the result
of the previous special-module operation. In the second stage, one of the six pipeline registers
was selected for each of the main ALU inputs, and another one of these registers was selected
for each special-module operand. Fxecuting the register selection in two stages, so that the
register file could be two-ported rather than four-ported, greatly reduced the cost of multiplexers
and control storage; the flexibility in choosing the required operands was unimpeded,

The dual 16-bit data paths tended to require fewer. cycles than a single 32-bit path when
manipulating byte and 16-bit quantities. However, the paths did require slightly more cycles when
manipulating 32-bit quantities. A 32-bit add took two cycles rather than one, but the other data

v E
£
Address o & .
generator | Special ALU —»
16-word ¢' o scratchond
register Cach cratch-pa
file ache »| registers
¢ # ¢ ad > Barrel
Pipeline registers [o shifter [7]
" Memory
’ Data selectors _ | L interface Lol
L,
» ¥ Dynabus [~
& ¥ » in}t,erface > To/from memory
— Main ALU N
¥ Channel
» interface To/from Dynabus

To/from 1/O channel

89

8. HIGH-AVAILABILITY SYSTEMS 603

path was free to use the two cycles to perform either another 32-bit operation or two 16-bit
operations. Measurements of transaction-processing applications showed that the frequencies of
32-bit arithmetic were insignificant relative to data-movement and byte-manipuilation instructions,
which were handled more efficiently by the dual data paths than by a single 32-bit data path.
Most instructions include enough paraltelism to let the microcode make effective use of both
data paths.

To control the large amount of parallelism in the NonStop TXP processor, a wide control-
store word was required. The effective width of the control store was aver 100 bits. To reduce
the number of RAMs required, the control store was divided between a vertical control store of
8K 40-bit words and a horizontal control store of 4K 84-bit words. The vertical control store
controlled the first stage of the microinstruction pipeline and included a field that addressed the
horizontal control store, whose fields controlled the pipeline’s second stage. Lines of microcode
that required the same or similar horizontal controls could share horizontal control-store entries.

Unlike microprocessor-based systems that have microcode fixed in read-only memory, the
NonStop TXP system microcode was implemented in RAM so that it could be changed along with
normal software updates and so that new performance-enhancing instructions could be added.
Because instructions were pipelined, the TXP processor could execute its fastest instructions in
just two clock cycles (167 nsec). The processor could also execute frequently used load and
branch instructions in only three clock cycles C!SO nsec).

Each NonStop TXP processor had a 64-KB cache holding both data and code. A 16-processor
NonStop TXP system had a full megabyte of cache memory. To determine the organization of the
cache, a number of measurements were performed on a NonStop 1l system using a specially
designed hardware monitor. The measurements showed that higher cache hit ratios resulted with
a large, simple cache (directly mapped) than with a smaller, more compléx cache (organized as
two-way or four-way associative). Typical hit ratios for transaction processing on the NonStop
TXP system fell in the range of 96 percent to 99 percent. Cache misses were handled in a firmware
subrautine, rather than by the usual methiod of adding a special state machine and. dedicated
data paths for handling a miss. Because of the large savings in the cache hardware, the cache
could reside on the same board as the primary data paths. Keeping these functions proximal
reduced wiring delays, contributing to the fast 83.3-nsec cycle time,

The cache was addressed by the 32-bit virtual address rather than by the physical address,
thus eliminating the extra virtual-to-physical translation step that would otherwise be required
for every memory reference. The virtual-to-physical translation, needed to refill the cache on
misses and to store through to memory, was handled by a separate page table cache that held
mapping information for as many as 2048 pages of 2 KB each (see Figure 8-48).

Manufacturing and Testing. The NonStop TXP processor was implemented on four large PC boards
using high-speed FAST logic, PALs, and high-speed static RAMSs. Each processor module had from
one to four memory boards. Each memory board contained up to 8 MB of error-correcting
memory. A 16-processor NonStop TXP system could therefore contain up to 256 MB of physical
Memaory. ’

The NonStop TXP system was designed to be easy to manufacture and efficient to test. Data
and controf registers were implemented with shift registers configured into several serial-scan
strings. The scan strings were valuable in isolating failures in field-replaceable units. This serial
access to registers also made board testing much faster and more efficient because the tester
could directly observe and control many control points. A single custom tester was designed for
all four IPU boards and for the memory-array board.

90

604

FIGURE 8-48
TXP memory ac-
cess

[1. THE PRACTICE OF RELIABLE SYSTEM DESIGN

From data paths

'L i If yes,
‘ Address register ‘ ¥ Address | cache hit
I ‘ Cache) tag?
g eg
f
2
T: Data and instructions To/from data paths >
2 64 KB Instruction registers
=
= If yes, Fl|1agf1 .f;abie
! Y cache hi
& Page table cache *| Address
tag?
_’44—‘
Tag
2K physical N
address entries 24-hit Memory
| physical 16 MEB
address
16-bit buses to and from data paths

T ¢ ¥
4-to-1 Write _‘__—ﬁemory data register

multiplexor queue

T

VLX Processor Module

The VLX processor module combines advanced V1.SI technology with the fault-tolerant features
of its predecessors. This processor module uses emitter-coupled logic (ECL) gate array technoiogy
to implement its dual path structure and other extensions to the TXP system. These features
in¢lude dual interleaved control store; 83.3-nsec cycle time; 64-KB direct-mapped, store-through
cache with 16-byte block size; hardware cache fill; 256-MB physical memory addressing; up to
9 MB of physical memory with 48-MB memary boards; on-line power and temperatute moni-
toring; four-stage instruction pipeiine, supporting single clock instruction execution; and dual
20-MB/sec Dynabus interprocessor bus.

One of the VLX processor module’s printed circuit boards appears in Figure 8-49. The VLX
IPU uses 32-bit native addressing and 64-bit main memory transfers to improve upon the trans-
action throughput of its predecessors, move large amourits of data, and lower the cost per
transaction. Failed component sparing in cache memory allows a single malfunctioning compo-
nent to be replaced by means of a logical switch to a spare; thus, a single point of failure does
not require a service cail, _

Chips in the VLX processors contain_up to 20,000 circuits, preducing modules with over
three times the density of the TXP processor. This increased density adds functions that enhance
error checking and fault correction, as well as performarice. By making it possible to reduce the
number of components and interconnections, the increased density improves both performance
and reliability. VLX processor gate arrays use ECL for enhanced internal performance and TTL for

91

8. HIGH-AVAILABILITY SYSTEMS 605

FIGURE 8—49 Printed circuit board from VIX processor module

input/cutput functions. Each VLX processor intludes 31 ECL/TTL gate arrays s5pread over anly two
modules.

Maintenance. A major goal of the VLX processor was to reduce the cost of servicing the system,
This goal was accomplished in several ways,

Traditional mainframe computers have error-detection hardware as well as hardware that
allows instructions to be retried after a failure. This hardware is used both to improve availability
and to reduce service costs. The Tandem architecture does not require instruction retry for
availability; processors can be fail-fast. The VLX processor is the first Tandem processor to
incorporate a kind of retry hardware, primarily to reduce service costs.

In the VLX processor, most of the data-path and control circuitry is in high-density gate
arrays, which are extremely reliable. This design leaves the high-speed static RAMs in the cache
and the control store as the major contributors to processor unreliability. Both the cache and the
control store are designed 1o retry intermittent errors, and both have spare RAMs that can be
switched in to continue operating despite a hard RAM failure [Horst, 19891,

92

——

606

1. THE PRACTICE OF RELIABLE SYSTEM DESIGN

The cache provides store-through operation, so there is always a valid copy of cache data in
main memory. A cache parity error just forces a cache miss, and the correct data is refetched
from memory. The microcode keeps track of the parity error rate; when this rate exceeds a
threshold, the miicrocode switches in the spare RAM. The VIX control store has two identical
copies to allow a two-cycle access of each control store starting on alternate cycles. The second
copy of control store is also used to retry an access in case of an intermittent failure in the first
copy. Again, the microcode switches a spare RAM on line once the error threshold is reached.
Traditional instruction retry was not included due to its high cost and complexity relative to the
small improvement in system MTBF it would vield.

There is also parity checking on all data paths, single-bit error correction and double-bit
error detection on data in memory, as well as single-bit error detection on addresses. Bus control
lines are checked for line errors, and hardware consistency checks are used throughout the
system, ‘

Each processor contains a microprocessor-based diagnostic interface, which ensures that
the processor is functioning properly before the operating system receives control. Pseudo-
random scan diagnosis is conducted to provide a high Jevel of coverage and a short execution
time. Correct operation of the processor is verified before processing begins.

The VLX system cabinet, shown in Figure 8-50, is divided into four sections: the upper card
cage, the lower card cage, the cooling section, and the power supply section. The upper card
cage contains up to four processors, each with its own /O channel and private memory. The
lower card cage contains up to 24 /O controller printed circuit (PC) cards, where each controller
consists of one to three PC cards. The cocling section c'on_sists of four fans and a pfenum chamber

'] controller Dual-ported
O @ing@ Q controller ||

J 1 Power Power ' Power
4 processors supply supply supply
Processor Processor Processor
24 1/0 slots
Dual-ported |

4 power Dual-ported
supplies controller

!

FIGURE 8-50 NonStop VLX system cabinet (Ieft) and power distribution (right)

93

8. HIGH-AVAILABILITY SYSTEMS 607

that forces laminar air flow through the card cages. The power supply section contains up to four
power supply modules. Multiple cabinets can be bolted together.

For the VLX system, the Tandem Maintenance and Diagnostic System (TMDS) replaced the
operations and service processor used on the NonStop |f and TXP processors. Information about
TMDS appears later in this case, in the section on maintenance facilities and practices.

ClX Processbr Module

The CLX system was designed to fill the need for a low-cost distributed system. The design goal
was to provide user serviceability, modular design, and fault tolerance with lower service and
maintenance costs. The CLX is based on a custom CMOS chip set developed using silicon

compilation techniques [Lenoski, 1988]. The original CLX-600 processor was introduced in 1987 -

and is based on 2.0-p. CMOS. The silicon compiler allowed the processor chip to be retargeted
into 1.5-p. CMOS for the CLX-700 and into 1.0-p. CMOS for the CLX-800. The CLX-700, introduced
less than 18 months after the 600, raised performance by 50 percent, and the CLX-800 raised
performance again by nearly 50 percent. The description in this section is based on the latest
CLX-800.

All CEX processors have a similar micro-architecture that integrates the features of both
traditional board-level minicomputers and high-performance V1S microprocessors. This hybrid
design incorporates several novel structures, including a single static RAM array that serves three
functions: writable control store, data cache, and page table cache. The processor also features
intensive fault checking to promote data integrity and fault-tolerant operation.

A fully-equipped, single-cabinet CLX system contains two processor boards with optional
expansion memory, six /0 controllers, five 145-MB to 1-GB disk drives, and one cartridge tape
drive. Dual power supplies and cooling fans are also included in the cabinet. The entire system
operates within the power, noise, and size requirements of a typical ofiice environment. To
expand the system, the customer simply adds more /O or processor cabinets to the basic
configuration. The CLX system architecture appears in Figure 8-51. A view of the actual cabinet
appears in Figure 8-52. .

As with the other Tandem processors, each CLX processor communicates with other pro-
cessors over two interprocessor buses (IPBs). Each bus operates synchronously on 16-bit wide
data, and each provides a peak bandwidth of 20 MB/sec. The two buses transfer data indepen-
dently of one another, providing a total bandwidth of 40 MB/sec for a maximum of eight proces-
sors. Processors communicate with /O devices either through a local I/0 bus or through the
interprocessor bus (IPB) to another processor and its /O bus. Each processor contains a single
asynchronous, burst-multiplexed /O bus that transfers data at a maximum rate of 4.4 MB/sec to
a maximum of 16 controllers. As with the other processors, these controllers are dual-ported and
can be driven by either of the processors to which they are attached.

The CLX uses a multifunction controller (MFC) based on a Motorola 68010 microprocessor
to control dual smali computer system interfaces (SCS1) that support up to five disk drives and
one tape drive. The MFC runs its own real-time operating system kernel that coordinates inde-
pendent disk control, tape control, synchronous and asynchronous communication, and remote
maintenance tasks. The CLX processor module’s printed civcuit hoard appears in Figure 8-53.
Through the maintenance buses, maintenance and diagnostic information can flow among the
system control panel, processors, multifunction controllers, and environmental monitors. En-
hanced diagnostic software and careful design of ali replaceable units allows customers to service
98 percent of all compenent failures.

94

T

608

FIGURE 8-51
CLX system
architecture

Il. THE PRACTICE OF RELIABLE SYSTEM DESICN

I Interprocessor bus

l
[] B |1

Processor Processor
and private and private
memory memory
Multifunction controfler
manages dua! SCSI buses
connecting disk, tape,
Multifunction Z and comn%unicatim? lines,

controfler

1/O bus
/O bus

Multifunction
controlier

Asynchronous or
synchronous
commaunications
lines

Communications
controller

4 optional communications
controllers or LAN controllers
in base cabinet

0

The processor logic resides within six custom CMOS chips, allowing the processor and main
memory to be implemented in a single board. A block diagram of the processor appears in Figure
8-54. The chip set was designed using a silicon compiler supplied by Silicon Compiler Systems
Corporation. The two IPU chips are identical, running in lock-step to form a fully self-checking
rmodule. These chips provide the complete 1PU function, They work together with a single bank
of static RAM that serves as the microcode control store, page table cache, and datafinstruction
cache. The RAM provides for 14K x 7B of microcode and scratch pad memory, 4K entries of page
table cache, and 192 KB of instruction/data cache,

The MC chip includes the control and ECC logic (SEC/DED) to interface with the up to 32 MB
of on-board dynamic memory. This chip contains FIFO buffers to hold data in transit to and from
the main-memory dynamic RAMs, using nibble mode access. The chip also features a wraparound
mode to support high-speed memory-to-memory block transfers.

Each processor has one IPB chip per interprocessor bus. Fach chip contains a 16-word in-
queue and a 16-word out-queue. These queues work with on-chip state machines for sending
and receiving interprocessor message packets asynchronous to processor execution.

The [OC chip contains the data latches and logic to conirol a burst-multiplexed, asynchron-
ous /O bus. The IO bus is primarily controlled by the IPU, but it can also handle DMA transfer
polling and selection without micracode intervention. The bus also includes priority-encoding
fogic to support the fair servicing of /O interrupts.

95

8. HIGH-AVAILABILITY SYSTEMS : 609

FIGURE 8--52
CLX system cabi-
net (frant view
showing from top
to bottom: car-
tridge fape drive
and SCS!I disk
drives, two proces-
sor modules with
memory and 1/O
boards, dual fans,
power supplies,
and batteries for
memory power)

The final component of the processor is a Motorola 6803-based maintenance and diagnostic
processor. This processor furnishes overall control of the main processor, as well as a diagnastic
and error-reporting path for the main processor through the maintenance buses.

The IPU architecture for the CEX, as mentioned earlier, is a blend of features found in both
minicomputer and microcomputer architectures. The 1P chip’s external interface is similar to
that of a VL5 microprocessor. For example, the interface features one address bus, one data bus,
and one status bus, along with miscellaneous signals, such as an interrupt request, memory wait

96

610

1. THE PRACTICE OF RELIABLE SYSTEM DESIGN

FIGURE 8-53 Printed circuit board for CLX-600 processor module, showing dual, lock-stepped
{PU chips (botiom center)

controls, and three-state bus controls. Minicomputer features, however, appear in the size of the
address bus, which is 18 bits wide, and the data bus, which is 60 bits wide.

The [PU chip interface merges many buses that would normally be separate in a minicom-
puter architecture. In particular, a bus cycle on the CLX can execute any of the following functions:
microcode control store access, instruction or data cache access, page table cache access, main
memory access, microcode scratchpad memory access, and special module (IPB, 10C, MDP)
access. Merging these buses reduced the cost of the processor by decreasing the numbet of
static RAM parts and their associated support fogic and by reducing the number of pins needed
on the 1PU chips. If this merging were not implemented carefully, however, performance would
have degraded significantly. To reduce the bandwidth required on the buses and to minimize the
impact on performance, the designers employed a variety of techniques, including the use of a
small on-chip microcode ROM, a virtually-addressed. cache, nibble-mode DRAM with hlock op-
erations to the main memory controller, and high-level control operations for special modules.

The on-chip micro-ROM is most important in reducing the impact from the merged bus
structure. The micro-ROM contains 160 words of microcode, with an identical format to the off-
chip microcode. This ROM is addressed either by the microcode PC or through an explicit index

97

FIGURE 854
CLX processor
block diagram

8. HIGH-AVAILABILITY SYSTEMS 611

Address bus

iPU
master Data bus
1PL)
PMaster
Main
MC memaory
(DRAM)
J1RAM
(SRAM)
Physical
address bus
Ly Vi Expansion
Physical memory
IPBCG <— |PBO data bus bus
bus —>
loc ps VO |
IPB14— IPB1T channe
bus
MDP Dual maintenance
(6803 +) buses

specified in the previous line of microcode. The microcode PC addressing is used to implement
the inner loops of IPB and 10C transfers, cache filling routines, and block memory moves. The
explicit index is used for short sequences of commaen microcode. These lines averlay otherwise
sequential lines of external microcode. Use of these ROM lines does not conflict with other
micro-operations.

The virtually-addressed cache reduces the number of page-table accesses; thus, it decreases
the required bandwidth to the shared micro-RAM. Likewise, the use of block-mode commands
to the memory controller reduces the number of memory commands needed during cache filling
and block moves. Finally, the use of higher-level commands to the IPB and 10C reduces the
control transfers needed to receive and transmit data to these devices. The on-chip micro-ROM,
together with these other features, reduces the penalty of using a single bus approach from over
50 percent to less than 12 percent.

The main alternative to the micro-ROM used on the CLX would be an emulation scheme in
which a subset of instructions is implemented entirely by internal ROM, and the remaining
instructions are emulated by a sequence of the simpler instructions. The micro-ROM scheme has
two chief benefits when compared with emulation techniques. First, it provides much higher
performance when the amount of ROM space is limited relative to the number of instructions
that must be implémented. Second, the dispatch of each instruction is to external writable control
store, enabling any ROM microcode errors to be corrected externally (although with some
performance penalty).

98

612

Data
master

Error

Il. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Data Integrity Through Fail-Fast Operation. In a NonStop system, fail-fast hardware operation is
essential to providing fault tolerance at the system level. Fail-fast operation requires that faults
do not escape detection and that the processor is halted before a fault is propagated. The CLX's
processor module uses a variety of error-checking strategies to provide extensive fault coverage.

The IPU chip itself is covered by a duplicate-and-compare scheme. This scheme minimizes
the amount of internal logic required for a high degree of coverage, and it maximizes the
utilization of existing library elements in the silicon compiler CAD system. The implementation
of the 1PU’s duplicate-and-compare logic appears in Figure 8-55. The CLX's scheme improves the
fault coverage of other duplicate-and-compare schemes by providing for a cross-coupling of data
and parity outputs. One chip, designated the data master, drives all data outputs, while the other
chip, designated the parity master, drives all parity outputs. This action ensures that both chips’
outputs and checking logic are active and that latent errors in the checking logic cannot tead to
an undetected double failure. The parity outputs of the [PU also cover the address and data lines
connecting the 1PU to other parts of the processor and the micro-RAM.

Within the memory system, ECC with encoded address parity provides checking of all
memory system data paths. In addition, redundant state machines are contained in the MC chip

Data in Parity on data in

Parity
master

Error

(=) Equality checker

T Parity checker
: Parity generator

v Enabled tri-state driver
v Disabled tri-state driver

iChin] Non-checked internal
. lcores logic of chip

Data out Parity on data out

FIGURE 8-55 CLX processor's cross-coupled checking

99

8. HIGH-AVAILABILITY SYSTEMS 613

and in the external RAS/CAS generation logic. The state transitions of these machines are encoded
into CRC registers whose outputs are compared. The resulting structure produces a high fault
coverage for both the data and control sections of main memory.

The IOC and IPB pravide for parity protection of the data and control lines to which they
are interfaced. In addition, they are protected by end-to-end checksums supported in software;
these checksums guarantee the integrity of their respective buses,

Cyclone Processor Module

The design goals of the Cyclone system were to significantly increase performance, while provid-
ing improvements in serviceability, manufacturahility, installability, and overall cost of ownership.
The Cyclone processor, introduced in 1989 [Horst, Harris, and Jardine, 19901, provides more than
three times the performance of the VLX, yet it retains full object-code compatibility. About half
of the performance improvement is due to higher clock rates, and the other half is due to the
new micro-architecture. Much of the architectural improvement is due to the ability to execute
up to two instructions per clock cycle, a technique that has been cailed superscalar [Jouppi and
Wall, 1989]. Other improvements are due to parallel data paths and new designs for the caches
and main memory. ‘

Cyclone Technology. The technology for Cyclone is a combination of ECL for speed, CMOS for
high density, and TTL for standard interfaces and buses. The ECL gate arrays, jointly developed
by Tandem and Advanced Micro Devices, contain approximately 5000 gate equivaients. These
gate arrays are implemented in 155-pin, grid-array packages. The pins ¢an be individually pro-
grammed for TTL or ECL interfaces.

The processor is implemented on three 18" % 18" circuit boards, with a fourth board holding
either 32 MB or 64 MB of main memory. A second, optional, memory board allows expansion up
to a total of 128 MB of main memory per processor (with 1 Mb DRAMs). The circuit boards have
eight signal layers, four of which have controlled impedance for routing ECL signals.

Like the V1X, Cyclone uses an interleaved control store, allowing two clock cycles for access.
The control store is implemented in 16K % 4 CMOS SRAMs, surface-mounted on a double-sided
ceramic substrate, which is then vertically mounted on the main boards.

Cyclone Processor Architecture. The superscalar design of the Cyclone processor was necessitated
by the fact that the V1X processor executes many frequent instructions in a single clock cycle,
and the goal of three times VLX performance could not realistically be achieved based on cycle
time only. Such a fast cycie time would involve higher risk, lower reliability, and higher product
cost. Thus, Cyclone needed to break the one-cycle-per-instruction barrier. At peak rates, the
Cyclone processqr execules two instructions per clock cyele. To do this, it incorporates an
independent, asynchronous instruction fetch unit (IFU), separate large caches for instructions
and data, a deep pipeline, and a dynamic branch prediction mechanism. A block diagram of the
Cyclone processor is shown in Figure 8-56.

The IFU operates independently of the rest of the processor. it fetches up to two instructions
per clock cycle from the instruction cache, decodes the instructions to determine whether they
are candidates. for paired execution, and presents a microcode entry address for either a single
instruction or a pair of instr'uctiqns to the control unit and data unit for execution. It also assists
in the execution of branching instructions and of exception handling. Up to 16 different instruc-
tions can be in some stage of execution at any point in time. The [FU is shown in more detail in
Figure 8-57. .

The Cyclone processor uses a dynamic branch prediction mechanism for conditional

100

614

1. THE PRACTICE OF RELIABLE SYSTEM DESIGN
Data unit S-bus Instruction unit
ﬂ— p—d———
Address Address L B
generator | —— 9-port generator 1/0 /O
I register I I channel "~ huses
i file Instruch Pracessor —ij'
nstruction
Da(t; c;;he cache (64 KB) | | |
] ;
{ ! Instruction L E
ineli queue
Pipeline regs, muxes B i | tstruction |
pairing I
Dual 6-stage logic
V w instruction |
pipeline ‘
|
|
Serial diagnostic bus |
Interprocessor] N A T __{'—“T
buses | E |
Diagnostic - [
FIFOs processor Muitiplier [‘
4-port ' \
{ I [memory |
control |
|
- . Page
ey L table %
cache
Microsequencer [i
I
|| 32 ME or 64 MB |
Vertical Jump Horizontal ECC memory I
cs s S Fast page mode |
16K x 48— 16K x 48| 16K x 112 64-bit access l
Control unit Memory unit MJ

FIGURE 8—56 Cyclone processor block diagram [Chan and Horst, 1989; reprinted by permission
from CMP Publications]

branches. This mechanism relies on the premise that when a particular branch instruction is
repeatedly encountered, it will tend to be taken (condition met) or not taken {condition not met)
the same direction each time. An extra bit for each instruction is included in the instruction
cache. This bit records the branch direction actually taken by the last execution of each branch
instruction in the cache. When a branch is fetched from the instruction cache, the [FU predicts
that the branch will choose the same path as the previous time, so it continues prefetching along
the predicted path. When the branch instruction later enters the execution pipeline, the micro-
code determines whether the prediction was correct. If so, it does nothing. I not, the microcode
directs the IFU to back up and resume instruction fetching along the other pati. Modeling has

101 j

FIGURE 8-57
Cyclone instruc-
tion fetch unit

8. HIGH-AVAILABILITY SYSTEMS 615

Fetch instructions Instruction
and predict address IADR__S IADR__F
branches. registers ‘ ¢
BR Instruction
PRED cache
,,,,,, U E S = second
1 F = first
o —— .

¥ b h ¥ hd ¥
Decode instructions Instruction
and determine queue 1Q3 ¥ Q2 —» 1Q1 —» Q0 Rank 0
pairing, ¢ ¢
Fetch first microcode line. R11_S R1_F Rank 1
Finish fetching first microcode line I k2
and generate data cache addresses. RA_S R2A_F | Ran
Fetch OEerands from data cache : R3L_S R3L_F Rank 3
and registers.
Perform ari?hmetic, logical, or RAL_S Ral F Rank 4
shift operation.
Store result to cache or register; K
abort on exception or branch mispredict. RSLS RSI_F | Rank 3

shown that this mechanism would be correct between 85 percent and 95 percent of the time.
The result is an average cost of 1.3 to 1.9 cycles per branch instruction. In addition, because the
branch prediction occurs early in the prefetch queue, branches may be executed in a pair with
the previous instruction, the sequentially following instruction, or the target instruction.

The Cyclone data path uses two 16-bit ALUs, similar to the TXP and VLX, but with two major
differences. First, the two ALUs are connected with the register file in a very general way. This
interconnection is necessary for the execution of many of the instruction pairs, but it is also quite
useful in improving the performance of many complex, multicycle instructions as well. In addition,
the two ALUs can be linked together so that 32-bit arithmetic can be accomplished in a single
clock cycle.

Both the instruction cache and the data cache are capable of fetching two adjacent 16-bit
words in a single cycle, regardless of alignment. This feature, along with the instruction pairing,
the nine-port register file, the 32-bit ALU capability, and the deep pipeline, allows the execution
of a double (32-bit) load instruction and a 32-bit arithmetic instruction, as a pair, in a single clock

cycle.
The Cyclone sequencer is similar to the VLX sequencer in that two copies of the control

102

616

1. THE PRACTICE OF RELIABLE SYSTEM DESIGN

store are used to allow two-cycle access time. In addition to allowing the use of slower, denser
CMOS RAM parts, the two copies provide backup for each other. In the event of an error in
fetching a word from control store, the alternate bank is automatically accessed. If the error is a
soit error, one of the banks can be refreshed from the other bank. In the event of a hard failure,
a spare RAM can be switched in. Part of the control store is duplicated yet again (four total
copies). This duplication allows both potential paths of a microcode branch to be fetched simul-
taneously, thus minimizing the penalty for microcode choices.

In the Cyclone processor, virtual addresses are sent directly to the main memory. A four-
entry, content-addressable memory (CAM) compares each access to the row address that previ-
ously addressed a bank of DRAM. When the addresses match, the DRAM column address is
generated by a few bits from the CAM plus the address offset. Translation from virtual to physical
address is performed only on a CAM miss. Since the translation is performed infrequenty, it was
possible to implement the page table cache (franslation look-aside buffer) in relatively slow, but
dense, CMQOS static RAMS.

For both increased bandwidth and increased connectivity, Cyclone allows the connection of
up to four /O channels per processor, whereas previous Tandem processors allowed only one
channel. Two channels are supplied on the instruction unit board, while an additional two
channels are available on an optional board. The maximum Cyclone processor thus contains six
boards {three processor, two memory, one optional VO).

Cyclone Faull Tolerance, Data Integrity, and Reliability Features. Parity checking is used extensively
to detect single-bit errors. Parity is propagated through devices that do not alter data, such as
memories, control signals, buses, and registers. Parity prediction is used on devices that alter
data, such as arithmetic units and counters, Predicted parity is based strictly on a device's data
and parity inputs; it does not rely on the device’s outpuis, which may be faulty. Thus, an adder
might generate an erroneous sum, bul the parity that accompanies the sum will correspend to
the correct result. Parity checkers downstream will then detect the error. Invalid-state checking
or duplication-and-comparison are used in sequential state machines.

The hardware multiplier is protected by a novel technique similar to recomputation with
shifted operands (RESO} [Sohi, Franklin, and Saluja, 1989]. After each muitiplication, a second
maultiplication is initiated with the operands exchanged and one operand shifted. Microcode
compares the two results whenever the multiplier is needed again or before any data leaves the
processor. Unlike other implementations of RESO, these checking cycles incur almost no perfor-
mance penaity because they occur concurrently with unrelated execution steps.

If the processor hardware detects a fault from which it cannot recover, it shuts itself down
within two clock cycles, before it can transmit any corrupt data along the interprocessor bus or
/O channel. The error is flagged in ene or more of the approximately 300 error-identification
registers, allowing quick fault isolation to any of the 500 hardware error detectors in each
processor. Like the VLX, Cycione processars include spare RAM devices in all of the large RAM
arrays, such as caches and control stores. These devices are automatically switched in to replace
hard-failed RAMs.

Cyclone systems make extensive use of fiber-optic interconnections, which, among other
advantages, increase reliability. The Dynabus+ fiber links between sections were described earlier
in this case. In addition, Cyclone systems use fiber optic links between the disk controllers and
the disk units themseives and between the communications controlfers and outboard commu-
nications concentrators. v

The Cyclone approach to diagnostics is similar to the approach taken on VLX, but it goes
beyond in many respects. Test coverage of microprogrammed diagnostic routines has been

103

FIGURE 8-58
Cyclone printed
circuit board show-
ing impingement
cooling

8. HIGH-AVAILABILITY SYSTEMS ’ 617

dramatically increased, and more support has been added for pseudo-random scan test. Together,
these changes improve the ability to automatically diagnose faults on line and quickly pinpoint
the field-replaceable unit responsible for the fault. In addition, a guided-probe facility, which
leads factory personnel through the diagnostic process, enhances the product’s manufacturability.
Like the VLX processor, the Cyclone processor is implemented primarily in ECL gate arrays,
although Cyclone’s arrays are considerably more dense. Because of this added density and the
increased clock speed, Cyclone’s gate arrays dissipate up to 11 watts. In order to cool these
devices without resorting to liquid cooling, Cyclone uses an impingement air-cooling technique.
Instead of blowing chilled air across the circuit board, Cyclone’s boards include an orifice plate,
which serves to focus the incoming air onto the hottest components. This design is shown in
Figure 8-58. The result is that Cyclone’s devices, in spite of dissipating much more power, operate
at a junction temperature 10°C cooler than those in the VLX, significantly increasing reliability.

104

.

618

INTEGRITY 52

I, THE PRACTICE OF RELIABLE SYSTEM DESIGN

while Tandem’s traditional NonStop architecture provides efficient fault tolerance through its
fail-fast hardware and proprietary Guardian operating systemn, some computing environments
require an open standards-based operating system and fault tolerance based strictly in hardware
(e.g., the telecom industry). Tandem’s Integrity S2 was designed to meet the needs of these
markets.

The primary design objective for Integrity 52 was to provide a fault-tolerant on-line user-
serviceable UNIX-based system [Jewett, 1991]. Application portability at the source level was a
requirement as well as support for an industry standard peripheral bus. Furthermore, no single
hardware failure should corrupt the data stored or manipulated by the system. Last, but certainly
not least, among the major design objectives was the recognition that the operating system would
represent a single point of failure.

System Architecture

A depiction of the machine architecture is provided in Figure 8-59. The system is divided into a
number of customer-replaceable units (CRUs). Every CRU in the systemn is designed to be hot-
pluggable. This permits on-line removal of fault CRUs and on-line insertion of replacement CRUs.

The system consists of a triplicated processor-local memaory system cormtained on three
central processor CRUs (CPCs). Duplexed triple modular redundant controliers (TMRCs) provide
a large secondary main memory (global memory) and serve as the nexus for the /O operations
of the machine. The CPCs connect to the TMRCs over the reliable systemn bus (RSB}, Duplexed
input/output packetizers (IOPs) provide the interface for a superset of an industry standard 1O
bus (YMEFE} on one side and an interface to the TMRC on the other. The interconnection between
the 10Ps and the TMRCs is called the reliable /O bus (RIOB), The IOPs are the conduit through
which alf /O in the machine flows. Each 10P produces a bus that is called the NonStop-V+,
which is a high data integrity variant of the popular VME bus. Ordinary VME controllers are
connected 1o the system via a bus interface module (BIM). The BIM provides a dual-ported path
from a peripheral controller to each 1OP,

Each CPC consists of a 33.33-MHz oscillator driving an R2000 processor, R2010 fleating point
coprocessor, 128 KB of split instruction and data caches, local memory and RSB interface. In
addition, the CPC contains a DMA machine used to transfer blocks of data between local memory
and the secondary memory store, a minimum of 8 MB of on-board DRAM, augmented with
hardware write-protection logic and an RSB interface. The DMA engine transfers packets of
memory between local and global memory and accumuiates a checksum of the data during the
transfer. Upper layers of the system software use this checksum to provide end-to-end checking
for disk transfers.

The clocks of the three processing modules have no fixed-phase relationship that is main-
tained by the gystem. The processors operate independently, but are kept in logical phase via
proprietary synchronization logic, Two different time domains are relevant to synchronization:
virtual and physical. Virtual time is measured by the passage of instructions on a given CPC. The
independent processing modules are designed to execute the same instruction stream in virtual
time. These instruction streams proceed until such time as the processing complex needs to
access a resource beyond the CPC boundary. All such non-CPC resource requests generate RSB
transactions that are voted at the TMRC. Voted read operations inherently bring the processors
into closer alignment in physical time because there is a single logical copy of the data.

Since the machine can operate within the bounds of the cache and local memory subsystem
for long periods of time, another synchronization mechanism is required. The progress of the
processors is monitored on each CPC by a set of counters which are incremented as the machine

105

8. HIGH-AVAILABILITY SYSTEMS 619

Synchronization control

FIGURE 8-59
[ntegrity 52 archi- _ I
CPCC

tecture CPC A CPC B

1 RSBs

TMRC C

RIOBs

0P 0 Controf 0P 1
panel .

SCsl
controller

Iggigg .
g;;%;;;;

NonStop V+

+ : :
NonStop V Mirrered disks
bus 1

bus 0

S—
=

I

SCSI
controller

ASYNC
controller

Terminals ***® Printers

SYNC
controller

SNA X.25

LAN
confrolier

‘— Ethernet LAN

L]
[]
-

8 I/O controllers maximum

pipeline advances. Periodically (every 2047 instructions), each of the processors is stalled until all
of the processors arrive at the synchrenization point or a timeout expires. In addition, the arbiter
for the local bus on the CPC ensures that all machines execute reads and writes in the same

S

temporal order.

106

620

Il. THE PRACTICE OF RELIABLE SYSTEM DESIGN

The technique devised ta provide precise presentation of exceptions to each of the proces-
<ors involves instruction counting. As the pipeline of the processor advances, a number of
counters are incremented. In the current system, interrupts can be presented every 64 instruc-
tions. The process of collecting, distributing, voting and presenting exceptions on specific mod-
ulos of an instruction counter guarantees that all processors will field the exception at the same
virtual time.

The TMRC contains up to 128 MB of global memory and interfaces to the CPC via the RSB
and to the [OPs via the RIOB. The TMRC also contains the cause, mask, and clear registers for
the interrupt mechanism. Having the TMRC serve as the repository for causes of exceptions
presents a uniform view of interrupts to the processors.

A central role that the TMRC has in system operations is voting the RSB transactions. All
processor transactions that are external to the CPC are voted on a bit-by-bit basis and the vertical
OR of these results implicate the errant CPU module, The voting circuit is duplicated and
compared and any self-check error halts the board. During system operation one of the TMRCs
is designated as primary and the other as backup. The primary TMRC provides the data in the
case of a read operation and both TMRCs perform all write operations. All TMRC registers and
static RAMs are protected by even byte parity. The memory is word organized, and the even
parity of the word address of the datum is hashed into every byte of data parity in order to detect
addressing failures in the memory controller.

The nonvolatile memory (EPROM) on the TMRC is not parity protected, but is checksummed
by the software. All of the data paths on each TMRC are protected by even parity hashed amang
the four data bytes. State machines are protectéd using either parity or duplication. Scrubbers,
implemented in the operating system, are used to detect, and correct if possible, latent errors in
both local and global memory. .

Like the TMRC, the 10P is designed to be a self-checking fail-fast CRU. The system has two
[OPs, each of which can support the full complement of peripheral controllers. If an 10P fails,
software arranges for the peripheral controllers to become bound to the other IOP and system
operation continues. The data path on the OP is checked using techniques analogous to those
described for the TMRC.

All peripheral controller-initiated bus transactions result in NonStop-V+ transactions that
are translated into RIOB bus transactions by the 10P. In order to prevent errant peripheral
controllers from writing or reading inappropriate global memory cells, the 1OP contains an access
and validation RAM (AVRAM). This AVRAM is a direct-mapped cache that translates virtual VME
addresses into physical RIOB addresses. During the translation process, the 10P checks the
permission bits in the AVRAM entry to see if the specific peripheral controller is permitted to
read or write the appropriate physical RIOB address.

The power subsystem was also designed to be fault-tolerant. Batteries are provided to
support continued ‘system operation during power failures. Redundant bulk supplies drive in-
dependent 36 Vi rails to protect against bulk failures. Redundant batteries drive dual 24 Voc

- rails to protect against baitery failures. The DC-DC converters use these four independent DC

rajls to produce the requisite DC voltage required by a specific CRU.

Software Architecture

Since one of the basic design goals of the system was to use an existing UNIX kernel as the basis
for the operating system, the system software architeciure was based on an industry standard
implementation of UNIX. A major addition that was made in the kernel was a two-tiered memory
management system to supporl the local/global bifurcation of the main memory system. This

107

8. HIGH-AVAILABILITY SYSTEMS 621

virtual memory system treats local memory as the main memory pool with global memory serving
as a backing paging pool. Finally, pages in global will be swapped to disk if global memory is in
short supply. The text, most of the data’and per process stacks for the kernel reside in local
memory. User processes text, data and stacks may also reside in local memory.

VO operations are launched on behalf of user processes by the operating system. The
operating system arranges for the data to be moved to the approp'riate destination for the user
process. If the source of the.data for a write operation is in local memory then a buffer is alfocated
in global memory and the data is moved from local to globat by the special purpose DMA hardware
implemented on the CPC and TMRC. Similarly, if the destinatiop of a read operation is in local
memaory, the data transfer performed by the operat_ing' system uses this DMA engine after the
data is placed in global memory by the peripheral controller. The collection of services that assist
in providing the illusion of fault-free operation to the system is called subscription based
services. An entity in the operating system that required notification of an event calls a function
to subscribé to the occurrence of that event. If the event occurs, a function specified by the
calter is invoked with parameters that depend on the particular event type.

" Faults that occur within the processor memory complex (CPC and TMRC) are known as core
faults. The hardware guarantees that the operating system can continue to execute instructions
to effect repair of the system, but the operating system must identify the faulting component and
take the appropriate recovery action. '

" A core fault is indicated to the processors via a high priority interrupt. The processors then
use the private-write mechanism to distribute a global view of the faulting condition. The private-
write mechanism allows the processors to store private, possrbly asymmetric, non-voted data in
the global memory without causing the voting mechanism to register a fault. .

Onee a common view of the cause is obtamed by each of the three processors, low-level
exception processing code follows a deterministic parsing mechanism of the hardware status.
This parse results in an implication of the offending CRU, which precipitates an action based on
the type and severity of fault and the current configuration graph of the system. Typical actions
are, in order of likelihood, incrementing a threshold counter, Ioggmg an event to the event
reporting mechanism, or finally removing a CPC or TMRC.

Faults beyond the core, namely in the 1OP or peripheral controllers, are handled by the /O
fautt handling layer. 10P failures are typically recoverable. At any given moment a collection of
controllers is bound to either 10P via the BIM, and the system can still access the controller via
the alternate path. i

A key to high availability in replicated systems is the ability to repair the system on-line. The
operating system support for such repair activity is called reintegration. Consider CPC integration.
A newly inserted CPC runs a power-on self-test (POST) from its lpcal EPROM to verity the health
of the board, The remaining processors agree to reintegrate and copy a small amount of local
state to global memory. The processors then issue a soft reset (an operation supported by the
R5B and TMRC, and hence voted) that resuls in all three CPCs entering reset. The CPCs notice
that this is a soft reset operation and, after m1t|ahzmg some local state, find the communication
block deposited by the operating system in global memory and load the program counter and
stack pointer. The operating system now has control again and it proceeds to move a copy routine
into each processor’s local memary. Then, the processors use the local-global DMA engine to
move pages from local to global and back, using the voting mechanism to bring the contents of
all three local memory arrays into agreement. After this copying process is completed, normal
execution resumes. Note that processing is suspended during the copy perlod of CPC reintegra-
tion. This is slightly more than one second on an 8-MB local memory system.

Unlike the processar, TMRC reintegration takes place during normal machine operation and

108

622

MAINTENANCE
FACILITIES AND
PRACTICES

1l. THE PRACTICE OF RELIABLE SYSTEM DESIGN

anly borrows cycles from the machine in small chunks that are controlled by the system admin-
istrator. The first phase of TMRC reintegration just copies global memory to a global memory
buffer and back to global memory using the local-global DMA engine. During this phase, the
IOPs believe that the replacement TMRC is off-line. The replacement TMRC returns “good” status
for all RSB TMRC reads and writes.

In the second phase, the replacement TMRC remains a write-only memory. The processors
lock the RIOB, copy a packet from global to tocal and back to global using the DMA engine. The
RIOB is unlocked, and the process is repeated until the entire memory array has been restored.
Durihig the entire |OP revive process, both TMRCs accept writes from the CPCs and 10OPs. This
guarantees that the memories are consistent after the copying process is complete.

The standard UNIX operating system assumes perfect hardware and software. A failure in
either the hardware or the kernel will resubt in an unconditional loss of alf services (a “panic”).
Given this collection of self-imposed constraints, a fault recovery model based on forward re-
covery was adopted. The kernel uses consistency checks as a fault-detection mechanism through
approximately 1000 ASSERTs. An ASSERT is simply a macro that ensures that an expression is true.
In the standard UNIX kernel, the failure of an ASSERT results in a system panic. Recovery from
an assertion failure is provided using an assertion-specific forward recovery routine. These re-
covery routines are guided by data structure audit routines. Data structure audit routines deter-
mine the validity and consistency of various data structures.

A provably correct implementation of any version of UNIX has yet to be produced. A reliable
“panic” mechanism was implemented to greatly increase the probability that various disk resident
data structures are consistent upon reboot from an unrecoverable operating system fault. To
accomplish this, the hardware write-protection feature is used to lock a number of critical kernel
data structures during the panic procedure. Then, a number of kernel data structure consistency
checks are performed and only those data structures that pass the various validity checks are
subsequently utilized. The dirty blocks in the buffer pool are written to disk using a polled version
of the disk driver. This ensures that a minimal amount of the system structure is used to accom-
plish the write operation. Finally, an image of the kernel is written to the disk using the PROMs.
Experience shows that this procedure greatly increases the probability of the file systems being
in a consistent state upon reboot.

In sum, the Integrity S2 incorporates numerous hardware and software techniques appro-
priate to a commercial, standards-dominated marketplace which demands fault tolerance. Fault
tolerance has been accomplished without compromising the programmatic interface, operating
system or system performance.

Tandem’s tools, facilities, and practices for hardware maintenance have evolved considerably in
the last ten years. Over time, the trend has been increasingly to share maintenance responsibility
with its customers, making it easier for customers to resolve hardware problems quickly on their
own. '

Early Methods

Early maintenance systems were based mainly on the use of on-line diagnostic tests to isolate the
causes of readfly apparent failures. Subsequent systems, however, moved toward the ability to
detect failures automatically, analyze them, report upon them, and track their repair.

The first diagnostic and maintenance tools were very primitive. For example, to suppotrt the
NonStop 1 systems, only a set of lights and switches was available on each processor for com-

109

8. HIGH-AVAILABILITY SYSTEMS ’ 623

municating error information and for resetting and loading the processor. In 1979, the Diaglink
diagnostic interface was introduced to permit access to the system from remote maintenance
sites. Draglink featured an asynchronous modem. With Diaglink, customer engineers could
remotely examine customers’ systems, obtain system status by running operating system utilities,
and execute diagnostics with customer assistance for remote, low-leve! debugging.

QOperations and Service Processor (OSP)

The NonStop Il system replaced Diaglink with an operations and service processor (OSP). The
OSP was a microcomputer system that communicated with all processors and a maintenance
console. The Q5P offered all of the capabilities of Diaglink, as well as additional features to
diagnose faflures and to operate a system remotely. The OSP enabled operations and support
personnel to obtain an internal view of the status of each processor.

The OSP communicates with the diagnostic data transceiver (DDT} included as a part of each
processor module in the system. This communication allows the operator to diagnose software
and hardware problems through the operator’s console. The DDT monitors the status of the
Dynabus interface, /O channel processor, memory, and IPU, including the internal data paths.
For example, the DDT enables the operator to put the processor in single-step mode and monitor
the contents of its registers before and after execution of a specific instruction,

The OSP includes a built-in modem that can connect it to a remote terminal or to another
OSP. This connection allows an operator or customer engineer to diagnose and possibly even
correct problems from the remote site. A remote customer engineer can, for example, run
microdiagnostics residing on a local OSP. Alternatively, the customer engineer can download
diagnostics from the remote OSP to the local OSP, remotely reset and load processors, and
display error information. For the TXP systemn, the OSP was enhanced to include an asynchronous
modem, improved microdiagnostics, more remote operations capability, and additional remote
support capabilities.

Tandem Maintenance and Diagnostic System. For the VLX system, the Tandem Maintenance and
Diagnostic System (TMDS) replaced the OSP. TMDS provides a framewaork for problem detection
with the VLX system, which was intended to reduce the cost of ownership in various ways [White,
1987]1. A major aspect of this attack on costs was improved diagnostic and maintenance facilities.
TMDS permitted the elimination of front panel lights and switches from the system design,
dramatically streamlining maintenance activities. Unlike its predecessors, TMDS operated on line
without requiring significant system resources. It provided a uniform interface to many diagnostic
subsystems [Troisi, 1985].

By the time of the VLX system, the maintenance strategy had evolved beyond real-time
ronitoring of system components to include automatic on-line fault analysis and automatic dial-
out for on-line support by remote service centers [Eddy, 1987], TMDS was based on that strategy.
Today, although it is known primarily for its use on the VLX, CLX, and Cyclone systems, TMDS
is compatible with all NonStop systems. It runs under the Guardian operating system and is
distributed automatically to all customers.

Through pervasive instrumentation, an internal fault-tolerant maintenance and diagnostic
subsystem continuously monitors the system’s processors, power supplies, and cabinet environ-
ments. When the Guardian operating system or an /O process detects a change of state or an
irregular event, it writes an event signature to an event log on disk. Then, TMDS examines each
event signature. If further study seems advisable, TMDS starts a module known as an automatic
fault analyzer. Thus, TMDS supports both active testing of components and symptom-based fault
analysis.,

110

_ — "_

624

M. THE PRACTICE OF RELIABLE SYSTEM DESIGN

TMDS fault analyzers relieve the customer of the need for an intimate knowledge of hard
ware, status codes, or specific error values. TMDS uses if-then-rule—hased algorithms to evaluate
events agafnst a knowledge base, autornating many of the detection, interpretation, and reporting
tasks previously required of a console operator. The knowledge base contains a range of accept:
able component states and environmental factors. If the fault analyzer finds that an event falls
within the acceptable range, TMDS saves the fault analysis in a local log (a catalog of system
events and patterns that can aid future troubleshooting}.

However, if a fault analyzer detects an event that suggests an active or potential problem,
TMDS transmits a signal to a fault-tolerant service processor called the remote maintenance
interface (RMI}. The RMI consists of dual Matorola 68000-based processors that communicate
with each other and with other subsystems over dual bit-serial maintenance buses. The proces-
sors, FOX controllers, and power supply monitors all connect to the maintenance buses. The
RMI supports all the functions of the old OSP, but does so as a much more compact unit—two
circuit boards residing in one of the cabinets (VLX and Cyclone) or a part of the MFC {CLX},
Through a synchronous protocol, a special communication process, and a password requirement,
the RMI also greatly reduces the risk of unauthorized users gaining access to the system through
the diagnostic facility.

When it receives a problem sighal, the RMI alerts the on-site operator and, on the CLX, VLX,
or Cyclone system, optionally dials out to a Tandem National Support Center (TNSC). Tandem
staffs two such centers: one to service sites in North America and one for sites in Europe. Gther
TNSCs are planned as business needs for them develop.

Through the RMI, either the on-site operator or the remote analysts and engineers at the
TNSC can review the event jog, run diagnostics, test compaonents, and isolate and diagnose the
problem. On newer equipment, these actions incfude detecting out-of-spec intake and exhaust
cabinet temperatures, malfunctioning disks or tape controllers, and faulty fans. TMDS also uses
processor diagnostics to test power supplies, clocks, and batteries. If necessary, the TNSC can
dispatch a field service engineer for on-site troubleshaoting or part replacernent. The TNSC staff
has identified and diagnosed the problem, so the service engineer is very likely to arrive with
the correct replacement part in hand.

TMDS also allows analysts and engineers to run on-line diagnostics to identify problems that
fault analyzers don’t cover. In fact, many diagnostics can be run while the device that is being
studied is on line. In the worst cases, only the problem device needs to be shut down; under
previous diagnostic systems, both the device and its controlling processor needed to be shut
down. In any case, testing with TMDS only minimally affects the system’s performance. Processing
continues unhindered by the diagnostic tests, unless a processor itself is being evaluated.

The following steps illustrate how TMDS operates if a tape /0O process detects an error event
involving a tape unit:

1. The tape 1/O process immediately creates an error event and sends it to the TMDS event
log.

2. TMBS signals the fault analyzer.

. The fault analyzer localizes the error to a particular controller board.

4. The fault analyzer writes additional error information to the event log, specifying the prob-
able FRU, the controller address, and the terminal error code. All of these actions take place
within seconds.

5. After completing the analysis, TMDS dials out to the TNSC.

6. The TNSC dials back in to verify the analysis.

W

111

SOFTWARE

8. HIGH-AVAILABILITY SYSTEMS 625

7. The TNSC dispatches a customer engineer to replace the controller board.
8. TMDS records the replacement in the event log.

TMDS event logs and the reports generated by the remote intervention are archived in a

- centralized support database. This database contains a history of service requests, diagnoses, and

support actions for hardware and software. Experts periodically scrutinize the database, seeking
out diagnostic patterns and irregularities that they can use to improve system maintenance.

TMDS continues to evolve, incorporating many new features. One of these features is a
built-in self-test {BIST) method that uses pseuda-random test vectors and scan-path design [Garcia,
1988]. On the CLX, the pseudo-random test covers several custom 1Cs, commercial MSI logic, a
static RAM array, and their interconnects. The BIST also does a functional test of the dynamic
RAM main memory and its control logic. The test is controlled by maintenance processor software,
simplifying the processor board hardware dedicated to the BIST. With the BIST, hardware prob-
lems on the CLX processor can be detected and reported to TMDS without requiring downloaded,
handwritten diagnostics.

In the Cyclone system, the power and environmental monitoring facitities have been signif-
icantly enhanced. In addition to sensing more components {voltages both on the circuit boards
and at the power supply outputs, intake and outlet air temperatures, battery condition, and fan
rotation), sensors are polled much more frequently, and most sensors are replicated to allow
differentiation between a failing component and a failing sensor. In addition, Cyclone’s mainte-
nance subsystem can detect the physical presence or absence of many components, such as
cables, power supplies, fans, and bus terminators. Both the logical address and physical location
{which cabinet and which slot within the cabinet) are automatically available to the maintenance
subsystem so that failed components can be easily identified and reliably replaced,

Overview

In the preceding discussion of the evolution of the Tandem system, the careful reader will find
no mention of fault-tolerant hardware modules. In fact, one of the primary design criteria for
Tandem hardware is to make it fault intolerant. Any incorrectly functioning hardware module
should detect the problem and, as quickly as possible, shut itself down. There are a few exceptions
to this rule, such as error-correcting main memory, but the fundamental design of the Tandem
system is to connect fail-fast hardware with fault-tolerant software.

Fault tolerance normally implies hardware red undancy. While this is true for a Tandem system,
the net additional cost ta the customer has been kept surprisingly low due to the many innovative
features of the Tandem system. In most cases, the redundant modules each perform useful work
in their own right and, except when they have failed, contribute to the capacity of the system.
Failing modules can be replaced while the system is running. The net effect of a hardware failure
is, at worst, a short period of slightly degraded performance. A system with a normal amaount of
excess capacity will survive a failure without any noticeable effect.

The key ta fault tolerance without wasted redundancy is the Guardian operating system. The
following sections describe the many components of Guardian, from the kernel (process and
memory management and message system) to the transaction manager, networking support, and
NonStop Structured Query Language (SQL}. Each makes an important contribution, not only to
the functionality of the Tandem system, but also to the support of fault tolerance.

Fault tolerance would be of little value without data integrity; business demands accurate
record keeping, and an inconsistent database is often worse than no database at all. Furthermore,

112

S

626

11. THE PRACTICE OF RELIABLE SYSTEM DESIGN

a business that depends on its computer system must be able to grow that systern at least as fast
as the business. The following sections also describe how the system has been engineered to
prevent data corruption and to provide expandability.

Guardian: An Integrated OLTP Operating System

A basic difference between Guardian and other systems is the very high level of software inte-
gration. Although there is the usual layering of software function, these layers are relatively
closely tied together and interdependent. This approach has its costs, but the resulting efficiency,
coupled with a high level of functionality, is unique in the computer industry. There are many
software components that contribute to the fault tolerance, data integrity, expandability, and
basic functionality of the Tandem system. In this section, we will give a general overview of the
Guardian elements that differentiate Tandem from other systems,

* The kemel includes the usual support for the management of processes, memary, inter-
process communication, names, time, petipheral 10, process synchronization, and debugging.
In addition, the kernel detects failures of any processor, interprocessor bus, or O channel and
performs recovery. Several innovative techniques are used to synchronize the independent pro-
cessors and to provide a consistent view of time and system state, despite failures and commu-
nication delays. Finally, the kernel supports the management of process pairs, which are the
keystone of both hardware and software fault toferance.

* The fife system hides the distributed nature of the system from application processes and
presents a conventional view of peripheral /O devices. Communication with /0O devices and
other processes is accomplished without regard to the location of the resource, be it in the same
processor, another processor in the same system, or a processor in a remote system. The file
system also provides checkpoint and retry mechanisms for hiding the effects of hardware and
software failures from the application process.

» I/Q processes manage peripheral devices and react to component failures by routing access
over working paths and devices and then notifying operators and customer engineers about the
nieed to repair or replace the failing component, /O processes receive messages from application
processes (via the file system) and perform the requested operations on physical devices. In the
view of the application programmer, the I/O process and the device it manages are indistinguish-
abie. There are dozens of different I/Q processes, each designed to manage a particular class of
device.

* The disk process is probably the single most important component of the system. It
provides data integrity and reliable access to data despite processor, channel, controller, or media
failure. It supports mirrored disks efficiently, making good use of the dual access paths to data.
It supports four types of file structures, as well as SQL tables; it supports file partitioning, alternate
indices, data security, and main memory cacheing for both reading and writing of data. It supports
full transaction managemerit, including two-phase tocking and two-phase commit protocols. Last,
but far from least, it can execute those parts of SQL queries that require data local to one disk,
greatly reducing message traffic for many applications. :

* The transaction management facifity (TMF) coordinates the processing of disk accesses and
updates, ensuring the requirements for atomicity, consistency, isolation, and durability. An ap-
plication can, in a very simple manner, request multiple database updates in many physical
focations, possibly thousands of miles apart, and be assured that either all or none of them will
be performed; during the transaction, other applications will always have a consistent view of

113

8. HIGH-AVAILABILITY SYSTEMS 627

the database, never being able to see only some of the updates and not others. TMF protects
the database from total media failure (including the loss of a mirrored disk pair) through the
technique of on-line dumping and roll-forward of the transaction log. TMF also supports the
remote duplicate database facility, which can quickly recover from the loss of an entire computing
facility.

* The transaction processing monitor (Pathway) provides a flexible method for managing
customer applications in a distributed system. Pathway automatically distributes application pro-
cesses (called servers) to the available processors and, in the event of a processor failure,
redistributes the applications to the remaining processors. Any work that was lost or compromised
by the failure is automatically restarted after being rolled back to its initial state. Customer
programming is straightforward and is not required to perform any special operations to achieve
full fault tolerance.

* The network control process and line handler processes (Fxpand) manage communications
between a system and a network of other Tandem systems. To a user on one node of a network,
the rest of the network appears as a seamless extension of the local system. The requirement for
local autonomy may impose access barriers, and communication delays may impose performance
penalties; otherwise, it is as easy to manage distributed applications and databases as it is to
ménage local ones.

Fundamental System Structure

A Tandem system is composed of from 2 to 16 independent processors connected by a dual,
high-speed interprocessor bus (IPB}. Guardian, Tandem’s proprietary operating system, has two
primary responsibilities: (T) to maintain a consistent view of the system while allowing each
processor to exercise independent autonomy, and (2) to provide general services for its clients
and the processes and particularly to provide an efficient and reliable means of communication
between them.

The first responsibility of the operating system requires that each processor establish and
maintain communication with the other processors of the system. Continuous availability of the
IPB is a fundamental assumption, since the processors must coordinate many operations and
notify each other of changes in system staté. If any two processors are not able to cornmunicate
with each other for any period, it is likely that they will have inconsistent views of the system
state; one or the other must be restarted. Thus, a dual (fault-tolerant) 1PB is an important
requirement.

Except for the lowest-level functions of process dispatching, message transmission, and
interrupt processing, all work in the system is managed by one or more processes. System
processes manage process creation and termination, virtual memory, security, performance mea-
surement, event management, diagnostics, and debugging. /O processes manage access to
peripheral devices and are responsible for dealing with failing components. Application and utility
processes direct the operation of the system towards some useful purpose.

Messages are the primary method for process-to-process interaction, eliminating the need
for applications to deal with the multiple-computer organization of the system. To applications,
the system has the appearance of a conventional uniprocessor programmed in conventional
programming languages such as COBOLS5, Pascal, C, and FORTRAN. Processes interact with one
another using a client-server protacol typical of the remote procedure call protocols that are
common in workstation-server LANS today. This client-server design is well accepted today, but
fifteen years ago it was considered novel,

114

628

I. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Fault tolerance is provided by duplication of components in both the hardware and the
software. Access to I/O devices is provided by process pairs consisting of a primary process and
a backup process, The primary process must checkpoint state information to the backup process
so that the backup can take over if a failure oocurs. Requests to these devices are routed using
the logical process name so that the request is always routed to the current primary process. The
result is a set of primitives and protocols that allow recovery and continued processing in spite
of bus, processor, VO controller, or /O device failures. Furthermore, these primitives provide
access to all system resources from every process in the system.

Initialization and Processor Loading. System initialization starts with one processor being cold
loaded from a disk attached to that processar; any processor can be used for this operation, as
long as it is connected to a disk with a copy of the operating system image file. The image file
contains the code of the kernel and the system processes that are automatically started when
each processor is loaded. Once any processor is loaded, it is then used to load the other
processors via the IPB. All processors other than the first can be loaded in parallel. Should a
processor fail or be removed for maintenance, it can be reloaded by any other processor. There
is no essential difference between an initial load of a processor and a later reload of a processor
after it has been repéired. A processor reload operation does not interfere with the operation of
application processes. :

Each processor receives an identical copy of the kernel and other system-level software, but
a different processor configuration, depending upon the peripheral devices attached to the
processor. Fach processor will start the appropriate /0 pracesses to manage the attached devices.
Once a processor’s software and configuration is Eo_aide‘d, it passes through a phase in which it is
synchronized with the other processars. Basically, this synchronization involves transmitting a
consistent copy of the system state to the processor. Once this is éccomplished, the processor
becomes a fully independent entity. There is no master processor,

Processor Synchronization. Although Tandem computer sysfems are designed to tolerate any single
fault, either hardware or software, multiple failures do sometimes occur, either‘throﬁgh multiple
hardware errors (uniikely), software errors {likely), operation errors (more likely), or during
maintenance periods. Lven when multiple faults occur, only a portion of the system (some disk
volumes and/or processors) becomes unusable untit it can be repaired and reintegrated into the
system. .

Two different mechanisms are provided for dealing with multiple faults: processor synchro-
nization and transactions. The following sections describe the issues of processor synchroniza-
tion. In addition to a simple algerithm to detect processor failure, Guardian also has three more
camplex afgorithms to ensure that all processors of a system have closely agreeing views of
processor configuration, replicated data, and time. Each of these algorithms requires a minimum
of communication and s sufficiently robust without resorting to the cost and complexity of
solving the Byzantine Generals problem. ’ :

'm-Alive Protocol. Once two or more processors are icaded, they must continually check on each
other’s health. Because the processors are designed o be fail-fast, they respond to any internal
error by shutting down completely and refusing to communicate ‘with the outside world until
receiving an explicit signal that they are ready to be reloaded. Thus, it is up to the remaining
processors to detect a failure through the absence of any response from the failed processor.
Using the 'm-Alive protocol, each pracessor transmits a short message to each processor,
including itself, at least once every second, over each of the two [PBs {the message to itself
verifies that the sending and recefving bus circuitry is functioning). Every two seconds, each

115

8. HIGH-AVAILABILITY SYSTEMS 629

processor checks to see that it has received at least one message from each processor in the
interval. Any missing messages imply that a processdr is not healthy and has probably failed.
Normally, any processor would immediately declare such a processor down and proceed to
cancel all outstanding-communication with that processor.

Regroup Protocol. Experience showed, however, that thete are rare instances in which one pro-
cessor might merely be a little late in sending out its I'm-Alive messages. This situation usually
‘occurs when recovery from power failure or other high-priority error recovery momentarily
usurped a processor. Because the I'm-Alive intervals are not synchronized between processors,
a late I'm-Alive might result in a processor’s being declared down by some processors and not
by others. Such a case, termed a split-brain situation, could lead to a lack of database integrity.
Thus;a Regroup algorithm was implemented to handle these cases with as little disruption as
possible. In essence, the slow processor is given a second chance, Whenever any processor
detects a missing 1'm-alive message, all processors (including the suspect processor, if able)
exchange messages to decide which processors are healthy. After two broadeast rounds, the
decision is made and all processors act on it.

Global Update Protocol. Certain information, notably the destination control table (described
later}, is replicated. in each processor and must be identical in each processor. Updates to
replicated information, however, ofiginate in multiplé processes and multiple processors. Con-
sistency of an update depends ipon atomicity [Gray, 1979}, which demands that (1) any update
is completed within a maximum time, {2) either all replicated copies are updated or no copy is
updated, and (3 all updates occur serially.)

In Tandem systems, atomic update is guaranteed by the Global Update protocol [Carr, 1985).
All such updates are performed by the Guardian kernel o that high-priority processes cannot
delay the completion of an update within a maximum time. All updates must first be sent to a
locker processor, which ensures that updates occur serially and also ensures that an update is
propagated to alf processors even if the originating pracessor fails, including simultaneous failure
of the updating and locker processors. '

Time Syrichronization. An OLTP system is designed to record and control real-world evetits at the
time they actually occur. An important part of the informiation processed is the current time.
Furthermore, it is important that the sequence in which events occur can be reconstructed from
timestamps associated with each event. -

Although it s cléarly difficult to have coordinated clocks in a widely distributed system,
initial attempts to synchronize time on a local Tandem system showed that this is not a simple
problem either. Although it is no great problem to keep clocks within seconds of each other,
synchronization of a multiprocessor system requires that no message that can be sent from
processor A, with A's clock time T, shouid arrive at processor B beforé B's clock time has reached
T. Otherwise, time would appear to move backwards. .

A novel algorithm INellen, 1985, 1986] passes filﬁe-adjustment packets from processor to
processor; each processor not only adjusts its own clock to the average time of all processors,
but it also calculates its clock error relative to the average and makes adjustments on a continual
basis. This algorithm ensures that the average time does not fluctuate wildly when a processor
fails and is replaced by a processor with a different speed clock.)

The provision for an external clock can extend the local synchronization algarithm to geo-
graphicaliy distributed Tandem systems. Electronic clocks that monitor a broadcast time standard
can keep Tandem systems synchronized to less than the time it takes them to communicate with
each other.

116

e

630

Il. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Guardian Kernel Services

Now that the basic problem of maintaining consistency between the distributed processors Has
been addressed, we can turn to the performance of useful work. As in ali modern systems,
Guardian supports the concurrent execution of multiple independent processes. What distin-
guishes Guiardian is its heavy dependence on messages to coordinale the operations of processes.
Messages are essential for the operation of both system-level software and customer applications,

The design of the system was strongly influenced by Dijkstra’s “THE” system [Dijkstra, 1968]
and Brinch Hansen's implementation of a message-based operating system nucleus [Brinch Han-
sen, 1970]. Both hardware and software have been optimized to facilitate the sending of messages
between processors and between processes. The heavy dependence upon messages, in prefer-
ence to other communication and synchronization mechanisms, has been very important in the
design of a system that is both distributed and smoothly expandable. Customer applications can
be easily grown by simply adding more processors, disks, and other peripherals, without changing
software or even reloading the system.

Because of the message-based structure, the applications are unaware of the physical con-
figuration of the system. An application accesses a directly connected peripheral and a remotely
connected peripheral in exactly the same way: Messages are exchanged with the peripheral’s
manager (an /O process); the /O process is also unaware if the requestor is in the same or a
different processor, ‘

Efficient messages have also been a key element in implementing fault tolerance. System-
level software uses messages to checkpoint information critical to data integrity and continued
operation in the event of a failure. Applications are generally unaware that 4 failure has accurred
because messages can be automatically rerouted from a failing component to a functioning one.

Processes

A process is an independently executable entity that consists primarily of shareable program
code, private memory, and the process stite vector. The process state vector includes the program
counter, registers, privileges, priority, and a microsecond timer that is incremented only when
the process is executing.)

Once a process begins execution in some processor, it remains in that processor until it is
terminated. Fach process in the system has a unigue identifier or name by which other processes
may communicate with it on a network-wide basis. Messages to a process are addressed to its
identifier, and so the identifier provides a network-wide and fault-tolerant method for process
addressing.

Guardian maintains a destination control table that is identical in all processors of a system,
This table relates the name of a process with its focation {that is, its processor and process
number) so that messages to a process can be routed in an efficient manner.

Processes scheduling uses a pure priority mechanism with preemption. Scheduling is round
robin within a pricrity class. Considerable care is taken to avoid the priority inversion problem
in which a low-priority client makes a request of a high-priority server, thereby promoting its
work to high priority. This problem is unique to message-based systems and must be solved in
order to provide a global priority scheduling mechanism. '

Memory Management

Each process has a virtual address space containing its program and a process data-stack. A
program consists of user code and an optional user /ibrary. The user tibrary is an object code file

117

8. HIGH-AVAILABILITY SYSTEMS 631

that can be shared by processes that execute different user code program files. All processes
within a processor executing the same program share memory for object code. The process data
stack is private to the process and cannot be shared.

Processes may allocate additional extended memory segments, which have a maximum size
of 127.5 MB each. A process may access its data stack and one extended segment concurrently.
If multiple extended segments are allocated, the process must explicitly request that a particular
segment be placed in use when it is required.

Data in extended segments may be shared with other processes in two different ways:

1. A read-only segment is a method of accessing the contents of a file as if it were main
memory, using virtual memory to load the information on demand. Such segments can be
shared among all processes in all processors, although multiple copies of the data may exist
in different processors.

2. A read-write segment can be shared only by processes in a single processor, since it would
be impractical to update multiple copies in different processors.

The sharing of read-write data among customer application processes is discouraged so that fault
containment is maintained and so that the system load can be distributed by the placing processes
in idle processors. Guardian does not provide interprocess concurrency control (other than via
messages) necessary for coordination of updates to shared memory.

The Guardian memory manager supports virtual memory using demand paging and a clock
replacement strategy [Carr, 1982]. It intentionally does not support load (thrashing) control, as
the performance requirements of on-line transaction processing do not permit the paging or
swapping of processes commonly found in interactive time-sharing systems.

Interprocess Messages

The basic message system protocol follows the requestor-server model. One process sends a
message with a request to another process and waits for a response. The second process services
the request and replies with a result as depicted in Figure 8-60. This is considered to be a single
message and can also be viewed as a remote procedure call. Naturally, this basic mechanism also
suffices for simple datagrams or for transferring buik data {up to 60 KB per message) in either
direction.

Multi-threaded requestor processes may have many messages outstanding to collections of
server processes. Multi-threaded server processes may accept multiple requests and reply to each
in any desired order. Any process may operate concurrently both as a client and as a server. For
application processes, access to the message sysiem is through the file system, which provides
some protection from abuse of privileged mechanisms and simplifies the interface for sending
messages. System processes, on the other hand, generally use the message-system primitives
directly, as these provide better performance.

The simplest use of messages is for application processes to access peripheral devices; the
programmer is generally unaware that messages are involved, as the program makes a simple
read or write of data on a file. If, for example, the file is a disk file, then the read/write request
will send a message to the manager of the disk, known as the disk process.

It is simple for a process to masquerade as a device manager. An example of this is the
printing spocler process: Applications send print output messages to a spooler (which pretends
to be a physical printer process) and stores them for printing later; the spooler then sends the
output, again via messages, to a true physical printer process. The application programmer need
not be concerned with whether the message system routes the messages to the spooler process

118

632

FIGURE 8—60
Process concepts
in the Guardian
operating system

1. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Request Each process has a program
and private storage; they
communicate via messages.

0

Reply
Request A process pair is one logical
process; the backup process is
Reply idle until the primary fails.

Request >

Reply

DR

A server class is a group of
processes spread over many
processors for load balancing.

() L
Sleilo

or directly to an /0 process controlling a physical printer; only the process name must be
changed to choose the destination process. A more interesting use of messages is in the struc-
turing of applications as a network of communicating processes, which is described in the section
on Pathway. .

In the Tandem system, messages are a fundamental mechanism for providing fault tolerance:

« The communication protocol for the interprocessor buses tolerates any single bus error
during the execution of any message-system primitive. A communication failure will gccur only
if the sender or receiver processes or either of their processors fails. Any bus errors that occur
during a message-system operation are automatically corrected without involving the communi-
cating processes.)

* The process-pair mechanism, as described in the next section, provides fault-tolerant access
to peripheral devices despite processor, channel, or even most software failures. A request
message that is being processed by the failing component is automatically resent to the backup
component; the application is not even aware that this has happened and need not make any
provision for it. .

Memory moves rather than the interprocessor buses are used for communication between
processes in the same processor, but there is no apparent difference to the communicating
processes. In addition to messages between processes, Guardian also implements simpler controf
messages, which are for communication between processor kernels. Control messages are used

119

8. HIGH-AVAILABILITY SYSTEMS 633

as a basis of the full message-system protocol, as well as an inexpensive mechanism to maintain
synchronization between processors.

Guardian and the IPB are highly optimized for the processing of interprocess messages,
especially for short messages of 2 KB or less. A message between processes in different processors
is only marginally more expensive than an intraprocessor message. In fact, an interprocessor
message usually has a shorter efapsed time than an intraprocessor message, since both sender
and receiver processes can execute in parallel.

A final advantage of the message system is its transparent support of both short- and long-
haul networks. Except for the inevitable communication delays, the client and server can detect
no apparent difference between accessing a local disk file (or process or printer) and a remote
one [Uren, 1986]. The message-system and file-system protocols are precisely the same in both
the local and remote cases.

Tolerating Software Faults

Systems whose fault tolerance is based solely on hardware mechanisms can be designed to
provide high reliability and to continue to function in the presence of hardware component
failures. Unfortunately, a high percentage of computer system failures are due to software.

Unlike the situation with hardware components, it is possible to develop perfect, defect-
free, failure-proot software. 1t is only a matter of cost to the manufacturer and inconvenience to
the customer, who must wait much longer for some needed software to be delivered. In the
commercial world, customers demand a continuous flow of hew software and improvements to
old software. They demand that this be done quickly (more quickly than the competition) and at
a reasonable price. New software systems are inevitably more functional and more complex than
the systems they replace. .

The use of structured programming and higher-level languages has not eliminated software
errors because they have enabled the building of larger and more complicated programs. Methods
to improve software quality, such as code inspections and structured testing techniques, are
effective, but they only reduce the number of errors; they do not eliminate them. Therefore, in
practice, even with significant care taken in software development processes, software faults are
inevitable, In fact, as previously stated, software failures are typicatly more common than hardware
failures.

Software fault tolerance leads, indirectly, to better software quality and data integrity. At
Tandem, system programmers are encouraged to make numerous consistency checks and, if a
problem is detected, to halt the processor. (Tandem’s system software probably has one of the
highest densities of processor-halt instructions in the industry.) The system programmer kaows
that, for almost all consistency problems, the backup processes {described in the next section)
will continue tu provide service to the customer. This consistency checking has two direct effects:

1. When contamination of system data structures is detected, the processor is immediately
shut down, reducing the chance that the database can become contaminated.

2. All significant errors in sysiem software become very visible, and since the entire processor
state is frozen and dumped when an error is detected, it s easier to uncover the cause of
the error. Thus, errors that affect system stability and data integrity are found and corrected
in a very timely manner. The result is higher-quality software and fewer failures that need
to be tolerated.

 Process pairs provide fault-tolerant execution of programs. They tolerate any single hardware “’
fault and most transient software faults. (Transient software faults are those caused by some

120

634

FIGURE 8-61
Diagram of system
structure

Il. THE PRACTICE OF RELIABLE SYSTEM DESIGN

untimely combination of events, such as a resource shortage that occurs at the same time tha
an /O error must be handled.) Most faults in production software are transient [Gray, 1985],
since the simpler programming ervors are weeded out during testing. Process pairs allow fail-fast
programs to continue execution in the backup process when the software bug is transient.

Pracess Pairs

The key to both hardware and software fault tolerance is the process pair [Bartiett, 1981]. A
process pair consists of a primary process, which does all the work, and a backup process, which
is passive but is prepared to take over when the primary process fails. (See Figure 8-61.) This
arrangement is analogous to having a standby processor or computer system, except that, ii
properly arranged, the cost of the backup process is far less than the cost of the primary process.
Generally, the memory requirements and processor time consumption is a small fraction (usually
about 10 percent) of the primary process.

A typical process pair is started in the same way as an ordinary process: as a single process
executing in a single processor. The process then notifies the operating system that it would like
to create a clone of itself, using the same program file, in another processor. The second process
is also started in a very ordinary fashion, but with two small differences:

1. The second process receives an initial message that informs it that it is a backup process;
the process then goes into a passive mode, accepting messages only from the primary or
from Guardian (to notify the backup that either the primary process or its processor has
failed). ‘ :

2. Both the primary and backup process share a single name, and for each name, the destination
control table registers both the primary-and backup processes; all communication to the
process pair is routed to the primary process.

While the primary process executes, the backup is largely passive. At critical points, the primary
process sends checkpoint messages to the backup,

Checkpoint messages have two different forms; a process pair will normally use either one
or the other, but not both. For application software, a simple form of checkpointing is provided.
Checkpoints copy the selected process state, at caréfully chosen takeover points, from the pri-

Process Process These processes represent

application programs that are
communicating with one
rc“:'355 ancther and with device servers

] N These two processes are a pair
Process |~ Checkpoints ’&E controlling a mirrored disk.

—{ Disk controller |

Disk controller

121

8. HIGH-AVAILABILITY SYSTEMS 635

mary to the backup. Updating the process state of the backup is performed solely by the sys-
tem software at the command of the primary process; the backup process is completely passive.

At a checkpoint, usually immediately before or after some important /O operation, the
primary and backup are functionally identical. if the primary fails, the backup begins executing
at the point at which the last checkpoint occurred. For most system software, such as /O
processes, checkpoint messages contain functional updates to the process state. The backup
processor must interpret these messages and apply apptopriate updates to its own local data
structures; this is sometimes referred to as an active backup. Although the program code is
identical, the contents of memory can be entirely different. A typical checkpoint wauld indicate
that a file has been opened or closed, but, in the case of the disk process, most updates to
important files also will involve a checkpoint.

The active backup approach is more complicated, but it has several advantages. Less data is
transmitted on each checkpoint, and information that the backup can obtain from other sources
(such as a disk file) need not be checkpointed. For software fault tolerance, the active backup is
better because the backup must manage its own state, and errors in the primary process are less
likely to contaminate the backup [Borr, 1984].

Since the process pair shares a single name, it appears to all other processes as a 'single
process. When a message is sent to it, the message system automatically consults the destination
control table to determine which process is primary and routes the message to that location.
When the primary process fails for somé reason, the backup becomes the primary, the destination
control table is changed, and all messages are directed to the new primary process. The new
primary has already received checkpoints that describe the current openers of the process, so
those opengrs need do nothing to re-establish communication.

There are potential race conditions in which a server process pair has performed some
request and has not replied to the client when a failure occurs. When the outstanding request is
resent to the new primary process, it might perform the same operation a second time, possibly
causing an inconsistency. This problem is eliminated by associating sequence numbers with each
request and having the new primary simply make duplicate responses to already-processed
requeasts.)

Similar problems could occur if a client process pair performs a checkpoint and then makes
requests to a server. If a failure occurs, the backup client takes over and makes duplicate requests
to the server. These requests are handled using the same sequence numbering scheme. During
normal operation, the sequence numbers are used for duplicate elimination and detection of lost
messages in case of transmission error [Bartlett, 1978].

IO Processes

Most processes can execute on any processor. The exceptions are /O processes because they
manage devices, and each device is connected to two processors via dual-ported device con-
trollers. When a device is configured, an /O process pair is automatically defined for the device;
one member of the pair resides in each processor connected 1o the device. The configuration
parameters may state which processor is the normal primary access path to the device, but this
choice can be altered by the operator for testing and performance tuning. In the case of a
processor, channel, or controller port failure, the process that still has access to the device will
take over control, and all application requests will be routed to it.

When a request for an operation such as a file open or close occurs, the primary process
sends. this information to the backup process through the message system. These checkpoints

122

636

1. THE PRACTICE OF RELIABLE SYSTEM DESIGN

“ensure that the backup process has all information needed to take over control of the device.

Process pairs provide a uniform way to access /0 devices and all other system-wide rescurces.
This access is independent of the functions performed within the processes, their locations, or
their implementations. Within the process pair, the message system is used to checkpoint state
chanhges so that the backup process can take over in the event of a failure. A process pair for a
mirrored disk volume appears in Figure 8-61.

Disk Process

Although the overall design of an OLTP application may be very complex, it is essentially com-
posed of many simple servers that require a minor amount of computatiori and perform a large
number of database accesses and updates. To achieve high performance in this environment
requires a great deal of sophistication in the design of the database management software. In
this séction, we are able to give only a broad outline of the myriad responsibilities and functions
of the disk process, but it clearly has the most demanding task of any component of the system.

Each disk process pair must manage a pair of mirrored disks, each connected to two con-
trollers, which are in turn connected to two processor channels. Thus, there are eight possible
paths to the data, any component of which may fail; even in the rare case of a multiple failure,
the disk process must attempt to use all available resources to provide continuous access to the
data.

Mirrored Disks. Mirrored disks are, as the name implies, identical images of one another. It would
appear that this is a situation in which fault tolerance requires a redundant (and expensive}
resource that contributes nothing to system capacity. {The value of data integrity in most cases,
hawever, justifies the éxpense of the redundant disks.} Fortunately, however, even though the
redundant disk does not contribute to storage capacity, it usually contributes significantly 10
processing capacity. When data must be read from disk, the disk process can use either of the
two disks, usually the disk that offers the shorter seek time. Multiple read requests can he
processed concurrently, and, if one disk is busy, then the other disk can be used. Because
dupleked disks offer shorter seeks, they support higher read rates than two ordinary disks [Bitton,
1989]. ‘

Any write operation must be made to each of the mirrored disks and requires that both
disks seek to the same cylinder {thereby reducing the chance of having a short seek on the next
read). Consequently, disk writes dre considerably more expensive than reads, but, when per-
formed in parallel, they are not much slower than a write to a singte disk. The proper use of disk
cache, particularly when protected by transaction management, can eliminate a large majority of
disk writes without sacrificing data integrity. ‘ ‘

Customers who consider all or part of their database to be a noncritical resource may have
unmirrored disks on a disk-by-disk basis. Modern disks are very reliable, and, even when drives
fail, it is exceedingly rare that the data are lost. Many activities, such as software development,
would not be seriously impacted by the rare unavailability of a disk.

Disk Cache. Each disk process can be allotted many megabytes of main memory for disk cache.
In 1990, the upper limit was 56 MB per disk volume, but this will steadily increase, along with the
size of main memory. The disk process uses the cache to hold recently accessed disk pages and,
under normal circumstances, can satisfy most read requests without performing any physical O
operation. The disk process can service many requests concurrently, so it is not unusual for it to
satisfy a half-dozen requests from cache while it is performing a single réal disk O.

The worst case for cache management is an application that performs random accesses to a

123

8. HIGH-AVAILABILITY SYSTEMS 637

very large database. The probability that it re-uses a recently accessed page in cache is quite low.
Experience, however, shows that the typical application usually has, at most, one such file in
addition to numerous smailer files that are also accessed in each transaction; thus, the ratio of
cache-hits to physical /Os remains quite good. Even in the case of the large file, traversing the
B-tree index structure to find a data record might normally require three physical I/Os that can
be saved by cacheing the index blocks,)

Although cache has an obvious benefit in reducing read /O operations, the situation is not
so ciear with write operations. There are many situations in which disk file updates are made to
blocks that were recently updated; if only part of a block is being updated, this clearly saves a
read to get the unchanged parts of the block. More significantly, if updated blocks could be kept
in main memory and written to disk only when convenient, many disk writes could be eliminated.
On a conventional system, we couldnt do this because a processor failure would lose a large
number of disk updates and corrupt the entire database.)

In Tandem ‘systems, we might consider checkpointing disk updates to the backup disk
process, which is much cheaper than performing an actual VO. If a processor failed, the backup
could make sure that the updates were written to disk. This approach, however, would not be
safe enough, since it is possible for a long power failure, or simple bad luck, fo cause a multipfe
failure and loss of an unacceptable number of database updates. Luckily, there is a solution to
this problem, but we must postpone its discussion until we have covered the basics of transac-
tions.

Partitioning. If an OLTP application has a high transaction rate and each transaction accesses a
particular file, the load on the disk process, even with perfect cacheing, may be too large to
sustain on a single processor. As with the application, it is necessary to be able to distribute the
database access load across the processors easily. (In general, dynamic load redistribution has
not proved necessary, but it must be easy to redistribute in a static manner.}

The concept of file partitioning is not new, but the disk process and file system cooperate
to provide a simple and flexible solution. Any file can he simply partitioned by issuing a few
commands specifying the key ranges of each partition. To the applications, the partitioned file
appears as a single file, and the file system redirects any read or write request to the proper
partition, depending on the key of the record. If a partition becomes too full, or too busy, it can
be split by subdividing its key range and moving the appropriate records to the new partitions.

The partitions of a file can be distributed throughout a netwark, and, thus, a distributed
database can be created and maintained in a manner that is completely invisible to the applica-
tions, while maintaining excellent performance when accessing local data. For example, one
could easily construct a 50-partition file, one for each of the United States, and physically locate
each partition an a separate Tandem system in each state. On each system, local state data could

"be processed very efficiently, but every application process could have access to the full database
as if it were a single file, subject only to the inevitable communication delays.

Locking and Transaction Protection. An OLTP application may have hundreds of independent
servers performing concurrent accesses to the same set of files; the disk process must support
file and record locks, for both shared and exclusive access. Locks can be obtained through explicit
application request or through the operation of transaction management, which automatically
provides atomicity and isolation of all database accesses in a transaction. More about transactions
appears later.

File System. The file system is a set of system routines that execute in the application process and
manage communication with 1/O processes and other application processes. For access to /O

124

638

It. THE PRACTICE OF RELIABLE SYSTEM DESIGN

devices, the file system hides the process-and-message structure, and the application program
appears to be issuing direct requests to a local I/Q supervisor. That is, the file system provides a
procedure call interface to the remote /O processes, masking the fact that they are remote
procedure calis. The application is unaware of the distributed nature of the system. In order to
implement partitioned files, the file system automatically manages requests. It implements buf-
fering so that many sequential operations can he satisfied with one request to the /O process.

The tile system implements the first level of system security, as it does not allow an appli-
cation to send a message to an /O (or application) process unless the application has first
identified itself with an Open message that contains an authenticated user name. If the server
process denies access to the object, the file system will not permit further messages {except for
Open messages) to be sent.

The file system manages timeout and retransmission of requests; it sends the message to
the backup server process if the primary fails. In addition, if the client is a process pair, the file.
system manages checkpointing of the process state to the backup process.

NonStop SQL

The file system and the disk server cooperate to process Structured Query Language (SQL)
database operations in an integrated and efficient manner [Tandem Data Base Group, 19881, The
file system manages the SQL processing in the client and performs all the high-level operations
such as sort, join, and aggregation. The disk process understands simple constructs, such as
table, field, and expression, and will do low-level SQL operafions on the data. Thus, operations
can be performed at whatever level promotes the best &fficiency. For example, the SQL statement

UPDATE ACCOUNT SET BALANCE = BALANCE + :DEPOSIT-AMOUNT
WHERE ACCOUNT_NUMBER = :ACCOUNT-ID;

can be processed with a single message to the disk process. There is no need for the application
to fetch the information, update it, and send it back to the disk process. [n another example, the
statement

SELECT FIELDA, FIELDE FROM TABLEX WHERE FIELDA + FIELDB > FIFELDC;

allows filtering to be performed at the disk process, minimizing the transfer of data to the
application. ‘

NonStop SQL is designed specifically to handle OLTP applications while achieving good
performance. Because it is integrated with other system software, it can be used for OLTP
applications in a geographically distributed network of systems. SQL tables can be partitioned
across systems in a network. Also, applications can run at one network node while accessing and
updating data at another node. Furthermore, the applications themselves can be distributed.
With NonStop SQL., fault tolerance derives from the basic mechanisms of process pairs, mirrored
disk, and geographically distributed systems, along with node autonomy and transaction support.
All transactions, local and network, are protected for consistency and error recovery.

From a fault-tolerance perspective there are two novel things about NonStop SQL. First is
the design goal of node autonomy. The system is designed so that if the client and server can
communicate, then the client can access the data. This simple requirement implies that all the
metadata describing the file must be replicated with the file. If the file is partitioned among many
nodes of the network, the catalog information describing the file must be replicated at all those
nodes, :)

The second requirement is that no administrative operations on the data are allowed to take

125

FIGURE 8-62
Structure of the
transaction morni-
toring facility

8. HIGH-AVAILABILITY SYSTEMS 639

the database off line. For example, taking an archive dump of the database must be done while
the data are being accessed, reorganizing the data must be done on line, and so on. Many
administrative tasks are not yet on line, but a major focus of current efforts is to make all
administrative operations completely on line. :

SQL allows data administrators to attach integrity constraints to data; these may take the
form of entity constraints that limit the values a record may have or referential integrity constraints
that constrain the relationships among records in different tables. Placing the constraints on the
data is more reliable than depending on the application program to make such checks, Updates
to the data that would violate these entity constraints are rejected.

Transactions

The work involved in a computation can be packaged as an atomic unit by using the transaction
monitoring facility (TMF) (Figures 8-62, 8-63). This facility allows an application to issue a Begin-
Transaction request, make numerous database accesses and updates in multiple files, on multipie
disks, and on multiple network nodes, and then issue an End-Transaction request [Borr, 1981].
The system guarantees that the work of the transaction will be ACID, defined as follows [Haerder
and Reuter, 1983]. ’

= Atomic: Either all of the database updates will be performed, or none of them will be; for
example, if a transaction moves money from one bank account balance to another, the end
result will never be more or less money on the books.

= Consistent: Each successiul transaction preserves the.consistency of the database.

* Isolated: Fvents within a transaction must be hidden from other transactions running con-
currently; otherwise, a failing transaction could not be reset to its beginning.

= Durable: Once committed, the results of the transaction must survive any failure.

Should the application or Guardian (that is, the disk process or TMF) detect a problem
that compromises the transaction, either one may issue Abort-Transaction, which will cause any

Accept

-

Display

Undo-redo log of
old value and
new value

of each updated
record

126

S

640

Accept

Display

1. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Backout Audit trail has list
process of database updates

of this transaction.

- Database updates are
undone and then

locks are released.

<7

Read
audit
trail
and
apply
Undo
to
database
servers

FIGURE 8-63 TMF transaction backout structure

database updates to be undone. The system can manage thousands of concurrent transactions,
keeping them all isolated from one another. The application program need not concern iiself
with the locking protocol, as the required locking operations are well defined and performed
automatically.

The work of a transaction can be distributed to multiple processes. As we shall see, it is
narmal to structure an application as client processes directing numerous server processes, each
designed to perform some simple part of the transaction. Once the client has issued Begin-
Transaction, all requests to servers are marked as belonging to the transaction; all database
updates by the servers become part of the single transaction until the client issues the End-
Transaction or Abort-Transaction request.

When a client issues Begin-Transaction, the system creates a unique transaction identifier
and uses it to tag all messages and all database requests. If a tagged message is accepted by a
server, all of its messages and database requests receive the same tag. Database locks acquired
by the client or its servers are also tagged by the transaction identifier.

During a transaction, disk processes hold the updates in their caches. If there is insuificient
cache, the disk process may update the database before the transaction completes, but first it
must generate undo and redo records that alfow the transaction to be either undone in case it
aborts or redone in case it commits and a later failure occurs. When the client issues End-
Transaction, each disk process with updates for the transaction must generate undo and redo
log records before it updates the disk.

The undo and redo records are written to specially designated transaction log files called

127

8. HIGH-AVAILABILITY SYSTEMS 641

the audit trail. Normally, these files are on disks that are separate from the database, and the
undo and redo records must be written to the audit trail disk before the main database is updated.
Thus, even a total system failure will not lose transactions that are committed or allow the database
to become inconsistent. Even if a mirrored disk pair is destroyed, the database and all transactions
can be recovered from an archival copy of the disk and the transaction log. Any process partici-
pating in the transaction can unilaterally abort it. The system implements two-phase locking and
uses a nonblocking, grouped, presumed-abort, two-phase commit protocol.

It might appear that support of transactions adds considerable overhead to the basic oper-
ations of accessing and updating the database. Surprisingly, TMF improves performance, while
enhancing fault tolerance and data integrity. As described previously, updates to a database
should be written to disk immediately in order to prevent their loss in case of a failure. This
increases disk traffic and lengthens transaction response time.

When database operations are protected by TMF, a description of all updates is written to
the audit trail; it becomes unnecessary for the disk process to write the updates to the database,
except when it is convenient to do so. As soon as the audit trail records are reliably stored on
disks, the application can be notified that the updates have been permanently recorded and will
survive any failure. Writing the updates to the audit trail is considerably more efficient than
writing the updates to the database because many updates from a single transaction (and, in a
busy system, from multiple concurrent transactions) are blocked together and written in a single
/O operation. Further, the audit trail is written sequentially and writing is performed with a
minimum of seeks, while database updates are random-access and imply numerous seeks. Finaily,
the disk process performs less checkpointing to its backup because uncommitted updates do not
need to be protected against processor failures.

The result of these effects is that the logging and recovery of TMF is a net savings over the
less functional store-thru-disk cache. TMF converts random main memory database access to
sequential accesses, dramatically reducing the density of I/O transfers. Benchmarks have dem-
onstrated that IO density can be reduced by a factor of two or three when TMF is used [Enright,
1985]. '

While the Tandem system provides high availability through single-fault tolerance, TMF
provides multiple-fault tolerance for the critical element of transaction processing systems: the
database. Afthough multiple faults are exceedingly rare, the consequent cost of database loss is
very high.

Before the introduction of TMF, application programmers relied on process pairs and forward
error recovery to provide fault tolerance. Whenever an error was detected, the backup process
resumed the computation from the last checkpoint. Process pairs were difficult to design and
implement and reduced the preductivity of application programmers. Applications implemented
with-TMF are much simpler to program and achieve the equivalent level of fault tolerance. Because
transactions imply an automatic locking protocol, it is much easier to maintain a consistent -
database.

Process pairs are still an important concept and are used for system and 1/O processes, as
well as for specialized utility processes such as the print spoofer. They are the fundamental basis
on which TMF and other system software are built so that the customer can write fault-tolerant
applications without regard for fault tolerance.

Transaction Processing Monitor

Applications are structured as client (requestor) and server processes. The clients are responsible
for presentation services and for managing the user inferface. Such user interfaces range from a
forms-oriented interface to an electronic mail or home banking system, to real-time interfaces

128

642

Il. THE PRACTICE OF RELIABLE SYSTEM DESIGN

where the user is an automated warehouse, gas pump, ot telephone switch. The servers are
programmed to periorm specific functions, usually a set of related database accesses and updates.
in the electronic mail example, one server looks up names while another is responsible for
routing messages to other network nodes and to gateways. In the gas pump example, one server
does user authentication while another does billing. Typically, applications are structured as
hundreds of services. Breaking an application into requestors and servers promotes software
modularity, allows an-line change and growth of applications, and exploils the multicomputer
architecture. With the advent of intelligent terminals (workstations, automated teller machines,
and other computers acting as clients and servers), the client is migrating to the workstation, and
the client-server architeciure is becoming the standard structure for all transaction processing
applications.

The application designer specifies the programs and parameters for each client and server.
The servers can be programmed in any language, but the clients have traditionally been pro-
grammed in a COBOL dialect calied Screen COBOL. This interpretive language automatically
manages transactions and process pairs. In case the client process fails for any reason, the backup
process takes over, reprocesses the input message if necessary, and redelivers the output mes-
sage. This gives exactly-once semantics to transaction processing. Screen COBOL relieves the
application programmer from needing to understand how to write process pairs. It is the most
common way that customers get message integrity.

The transaction processing monitor, Pathway (Figure 8-64), is respon5|ble for managing the
application’s requestors and servers. It creates requestors and servers at system startup, maintains
a configuration database that can be altered on line by operator commands, and load balances
the system by creating and deleting server instances as the load changes and as processors come
and go from the system.

Process Server Classes

To obtain software modularity, computations are broken into several processes. For example, a
transaction arriving from a terminal passes through a line-handler process (for instance, X.25), a
protocol {for example, SNA), a presentation services process to do screen handling, an application
process that has the database logic, and several disk processes that manage disks, disk buffer
pools, locks, and transaction audit trails, This method breaks the application into many small
modules, which serve as units of service and of failure. If one unit fails, its computation switches
to its backup process. ’

If a process performs a particular service (for example, acting as a name server or managing

‘a particular database), then traffic against this server is likely to grow as the system grows.

Gradually, the load on such a process wilt increase until it becomes a bottleneck. Such bottienecks
cart be an impediment to linear growth in performance as processors are added. The concept of
process server ¢lass is introduced to circumvent this bottleneck problem.

A server class is a collection of processes that all perform the same function, typically
spread over several processors. Such a collection can be managed by Pathway. Requests are sentto
the class rather than to individual members of the class. As the load increases, members are
added to the class. If a member fails or if one of the processors fails, the server class migrates
into the remaining processors. As the foad decreases, the server class shrinks. Hence, process
server classes are a mechanism for fault tolerance and for load balancing in a distributed system
[Tandem, 1985}. The application designer specifies the program, parameters, minimum size,
maximum size, and distribution of the server class. Pathway reads this configuration database at

.

129

FIGURE 8-64

The structure of
the Pathway trans-
action processing
monitor

8. HIGH-AVAILABILITY SYSTEMS 643

Pathway requester and
server class manager

Server classes

Screen COBOL requester
process pair

e

system startup and manages the server class, growing it as the load increases and shrinking it as
the load decreases.

Networr'king

The process- and message-based structure of Guardian naturally generalizes to a network oper-
ating system. A proprietary network, called Expand [Tandem, 1987], enlarges the original 16-
processor design to a 4080-pracessor (255-node) network. Expand uses a packet-switched, hop-
by-hop routing scheme to move messages among nodes; in essence, it connects all of the IPBs

_of remote systems. Expand is now widely used as a backhone for corporate networks or as an

intelligent network, acling as a gatewdy among other networks. The fault tolerance and modularity
of the architecture make it a naturafl choice for these applications. Increasingly, the system
software supports standards such as SNA, QSI, MAP, SWIFT, TCP/IP, Named Pipes, and so forth.
These protocols run on top of the message system and appear to extend it.

130

(
)

644

Il. THE PRACTICE OF RELIABLE SYSTEM DESIGN

The fault tolerance provided by the system extends to the network, Networking softwal
allows a session to continue even if a communication link breaks. For example, SNAX, Tandem
implementation of IBM's System Network Architecture, provides continuous operation by tran
parently checkpointing at key points the internal information needed to sustain operation, Th
enables SNAX to maintain all active sessions in tHe event that a single processor or line fail
Similar provisions exist in the open system interconnection software.

Fault tolerance also underiies the distributed systems management products for global
maraging NonStop systems and Expand networks. For example, with the event managemer
subsystem, an event recorder process executing as a NonStop process pair provides for graceft
recovery from single-process failures. Fhat is, if the primary event recorder process fails or
stopped, the backup process continues recording in the appropriate event logs.

Disaster Protection

In conventional disaster recovery operations, when a disaster happens, people at a standby sit
retrieve the database tapes from archival storage, transfer them to the standby site, establish
compatible operating system environment, restore the data from tape to disk, switch commun,
cation lines to the backup site, and restart application programs. This is a complex, labor-intensive
and error-proné process that commonly takes from 12 to 48 hours. The issues surrou nding disaste
recovery change dramaticilly when one moves from a traditional batch environment o the worls
of on-line transaction processing. OLTP customers require recovery within a matter of seconds o
minutes with little or no lost transactions or data, Symmetric network and application design,
based on the remote duplicate database facility (RDF) software give this kind of disaster protection

Operations personnel can use RDF to get applications back on line within five minutes afte
a disaster. RDF stores the database at two systems, typically at two distinct geographic sites, Fo
each data item there is a primary copy and a batkup copy of record. All updates are made to the
primary copy, and the TMF log records for the primary are sent to the site that holds the backug
copy of the record, where they are appiied to the backup copy of the data. The customer car
select one of three 'options for the sending of these log records:

+ 2-Safe: No lost transactions at takeover. In t_hisAcas‘e, the transaction is recorded at bott
sites prior to committing the transaction to the client. it implies slightly longer response times
because of the added network delay.

* 1-Safe: The last few transactions may be lost at takeover because they were not recordec
at the backup site. 1-safe has better response time and may be appropriate if each transaction is
of little value or is easily reconstructed at a later time,

> Electronic Vaulting: The log of the system is simply transmitted to a remote site and stored
there. It is not applied to the remote database until there is an actual disaster. This is similar to
the standby site scheme, but avoids the movement of data to the standby site when the disaster
happens. : ‘

RDF makes it possible to maintain a current, on-line copy of the database at a secondary
node, as ilfustrated in Figure 8-65. The secandary database can be located nearby or across the
nation. The use of RDF is completely transparent to the application programmer. Any TMF
application can be converted to an RDF application without change. Only the database configu-
ration and operations procedures change [Lyon, 19901,

To support its backup capabilities, RDF monitors and extracts information from TME audit
files and sends this information over the Expand network to a corresponding RDF process on the

.

131

8. HIGH-AVAILABILITY SYSTEMS 645

Primary

1}

= e

— X 2hrrs, Z,
Mutual Backup: Each has Hub: One site acts as backup Vault: Log from primary
half DB and application for many others saved at backup)

FIGURE 8-65 Remote duplicate database facility

second node. This extraction usually takes place within seconds of the audit's being created by
TMF. The RDF process on the second node receives the audit transactions and stores them in
disk buffers. Another RDF process on the second node then applies these transactions to the
database, thus maintajning the duplicate database. The second copy of the database is usually
current within seconds of the primary database. Updating aclivities on the second database can
be temporarily suspended without compromising the integrity of the on-line backup process.
The audit transactions accumulate in disk buffers at the secondary site until updating is resumed.
Then all accumulated updates are automatically applied in the correct sequence.
RDF has some additional fault-tolerance benefits. If one of the sites needs to be taken off .

line for a software upgrade, hardware upgrade, facilities move, or just a fire drill to test the
disaster recovery facility, the load can be switched to the other node without interrupting service,

Operating System Summary

The innovative aspects of the Guardian operating system do not entail new concepts; instead,
they are a synthesis and integration of preexisting ideas. Of particular importance are the low-
level abstractions: processes and messages. These abstractions allow all processor boundaries to
be hidden from both application programs and most system software. These initial dbstractions
are the key to the system’s ability to tolerate failure. They also provide the configuration inde-
pendence that is necessary in order for systern and application software to run on systems of
many sizes. Process pairs are a natural exfension of the process concept to fault-tolerant execu-
tion. Transactions have been tntegrated with the operating system and appear as a natural parg
of the execution environment. Spooling the transaction log to a remote site is the basis of the
disaster recovery facility. Extending the message-based system to a long-haul network makes it
geographically distributed.

The operating system provides the application programmer with general approaches to
process structuring, interprocess communication, and failure tolerance. Much has heen docu-
mented about structuring programs by using multiple communicating processes, but few oper-
ating systems support such structures. :

QJ-“-\A

132

646

Il. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Firally, the design goals of the system have been demonstrated in practice. Systems with
from 2 to 200 processors have been installed and are running on-line applications. Many of these
systems are members of multinode networks. They are recovering from failures and failures are
being repaired on line, with litile or no impact on the system users.

Application Software

Application software provides a high-level interface for developing on-line transaction processing
applications to run on the low-level process-message-network system described in the preceding
sections. The basic principle is that the simpler the system, the less likely the user is to make
mistakes [Gray and Anderson, 1985]. For data communications, high-level interfaces are provided
t0 paint screens for presentation services. Furthermore, a high-level interface is provided to SNA
to simplify the applications prdgramming task. For database management, the relational data
model is adopted, and the NonStop SQL software provides a variety of easily implemented
functions. A relational query language integrated with a report writer allows quick development
of ad hoc reports.

System programs are written in the transaction application language (TAL), which is a high-
level, block-structured language similar to ALGOL or Pascal; TAL provides access tc machine
instructions where necessary. Most commercial applications are written in COBOLES or developed
through application generators. In addition, the system supports FORTRAN, Pascal, C, BASIC,
MUMPS, and other specialized languages. A binder allows programmers to combine modules
from different languages into a single application, and a symbolic debugger allows them to debug
in the source programming language. The goal, however, is to reduce such low-level programming
by moving to application-specific, fourth-generation languages.

A menu-coriented application generation system, Pathmaker, guides develapers through the
pracess of developing and maintaining applications. Whenever passible, it generates the appli-
cation code for clients and servers based on the contents of an integrated system dictionary. The
application generator builds most clients from the menu-oriented interface, although the user
can tailor the client by adding COBOL statements, The template for the servers is also automat-
ically generated, but customers must add the semantics of the application, generally using
COBOL. Servers access the relational database either through COBOL record-at-a-time verbs or
through set-oriented relational operators. Using automatically generated clients and the trans-
action mechanism, customers can build fault-tolerant distributed applications with no special
programming required. Pathmaker provides maximum protection against failures through its
reliance on TMF, i

Ongoing investigations support the hypothesis that, as programmers migrate from language
to language, human error rates remain nearly constant. That is, a programmer wilf produce about
the same number of errors for every 1000 lines of code, regardless of the language being used.
Thus, the higher the level of language a programmer uses, the smaller the number of errors in
the object code. On this basis, Tandem urges its customers to use high-level teols like the
Pathmaker application generator and other products that incorporate fourth-generation language
voncepts for OLTP program development. These tools include SQL Forms from Oracle, Appli-
cations By Forms from Ingres, and Focus from Information Builders. These toois greatly simplify
the programmer’s work., '

New application software is under development that takes advantage of the growing number
of personal computers and other workstations in the business world. This influx of desktop
computers has dramatically influenced the way that business people do their computing. As these
machines become faster and provide more memory and disk storage, businesses are expected

-

133 i

OPERATIONS

SUMMARY AND
CONCLUSIONS

8. HIGH-AVAILABILITY SYSTEMS 647

to want system software for them that parallels software running on mainframes and minicom-
puters. This software, in turn, will generate a growing number of applications.

As stressed earlier in this section, customers demand good price/performance from fault-
tolerant systems. Each Cyclone processor can process about 25 standard transactions per second.
Benchmarks have demonstrated that 32 processors have 32 times the transaction throughput of
one processor; that is, throughput grows linearly with the number of processors, and the price
per transaction declines slightly [Tandem Performance Group, 1988]. Tandem believes a
50-processor Cyclone systern is capable of 1000 transactions per second. The price per trans-
action for a smail system compares favorably with other full-function systems. This price per
transaction demonstrates that single-fault tolerance need not be an expensive proposition.

Errors that originate with computer operators are a major source of faults. Qperators are often
asked to make difficult decisions based on insufficient data or training. The system attempts to
minimize operator actions and, where required, directs the operator to perform tasks and then
checks the operator’s actions for correctness [Gray, 1990]. Nevertheless, the operator is in charge
and dictates what orders the computer must follow. This relationship poses a dilemma to the
system designer: how to limit the actions of the operator. First, all routine operations are handled
by the system. For example, the system automatically reconfigures itself in the case of a single
fault. The operator is left with only exceptional situations. Single-fault tolerance reduces the
urgency of dealing with failures of single components. The operator can be more leisurely in
dealing with most single failures.

Increasingly, operators are given a simple and uniform high-level model of the system’s
behavior that reflects physical real-world entities, such as disks, tapes, lines, terminals, applica-
tions, and so on, rather than contral blocks and other abstractions. The interface is organized in
terms of actions and exception reports. The operator is prompted through diagnostic steps to
localize and repair a failed compenent. .

Maintenance problems, discussed earlier in this chapter, are very similar to operations.
Ideally, there would be no maintenance. Single-fault tolerance allows hardware repair to be done
on a scheduled basis rather than as soon as possible, since the system continues to operate even
it a module fails. This approach reduces the cost and stress of conventional maintenance. The
areas of single-fault-tolerant operations and single-fault-tolerant maintenance are major topics of
research at Tandem.

Single-fault tolerance is a good engineering tradeoff for commercial systems [Horst and Gray,
1989]. For example, single disks are rated at an MTBF of five years. Duplexed disks, which record
data on two mirrored disks connected through dual controllers to dual processors, raise the
MTBF to 5000 years {theoretical) and 1500 years (measured). Triplexed disks would have a theo-
ritical MTBF of over one million years, but because operator and software errors dominate, the
measured MTBF would probably be similar to that of duplexed disks.

Single-fault tolerance through the use of fail-fast modules and reconfiguration must be
applied to both software and hardware, Processes and messages are the key to structuring
software into modules with good fault isolatfon. A side benefit of this design is that it can utilize
multiple processors and lends itself to a distributed system design. Modular growth of software
and hardware is a side effect of fault tolerance. If the system can tolerate repair and reintegration
of modules, then it can tolerate the addition of brand new modules. In addition, systems must
tolerate operations and environmental faults.

Fault tolerance can aiso be applied to open standard-based systems. These systems provide
the benefit of application transparent fault tolerance at the cost of additional hardware resources
and a decreased resilience to software faults.

134

648

REFERENCES

Il. THE PRACTICE OF RELIABLE SYSTEM DESIGN

Bartlett, 1978, 1981; Bitton, 1989; Bitton and Gray, 1988; Borr, 1981, 1984; Brinch Hansen, 1970;
Burman, 1985; Carr, 1981, 1985; Chan and Horst, 1989; Dijkstra, 1968; Eddy, 1987; Englert, 1989;
Enright, 1985; Garcia, 1988; Gray, 1979, 1985, 1990; Gray and Anderson, 1985; Haerder and Reuter,
1983; Homan, Malizia, and Reismer, 1988; Horst, 1989; Horst and Chou, 1985; Horst and Gray,
1989; Horst, Harris, and Jardine, 1990; Horst and Metz, 1984; lewett, 1991; Jouppi and Wall, 1989.

Katzman, 1977; Lenoski, 1988; Lyon, 1990; Mourad and Andrews, 1985; Nelien, 1985, 1986; Sohi,
Franklin, and Saluja, 1989; Tandem, 1985, 1987; Tandem Database Group, 1988; Tandem Perfor-
mance Group, 1988; Tom, 1988; Troisi, 1985; Uren, 1986; White, 1987.

THE STRATUS CASE
The Stratus Architecture

STEVEN WEBBER*

The fault-tolerant computer industry uses many terms that have different meanings for different
people. The following definitions are of particular importance in this report on Stratus architec-
ture.

* Hardware fault tolerance is the technique of applying hardware alone to effect fault-
tolerance. Commercially available hardware fault-tolerant solutions include voting systems and
systems such as those developed by Stratus that utilize two levels of duplexing—one for checking
and one for fault-tolerance. Successful hardware fault-tolerant solutions require no effort on the
part of application programmers to effect fault-tolerance. Hardware fault-tolerant computers are
programmed as if they were simple, nonfault-tolerant computers

« Software fault tolerance is the technique of applying software programs to effect fault-
tolerance. These techniques typically include checkpointing information between different com-
puters within a computer network so that some other back-up computer can take over when the
primary computer fails. The majority of commercially available fault-tolerant products rely on
software fault tolerance. :

» Software fault recovery, or the ability of a system to recover from software faults, refers to
the techniques brought into play when a software failure is recognized. These techniques preserve
the integrity of the execution environment. They are independent of hardware fault tolerance,
providing an additional level of protection for a different class of faitures,

= Critical on-line computing refers to systems that run a company’s most important business
operations and manage the delivery of their most important products and services to customers.
The system directly contributes to a business’s profitability, revenue growth, or competitive
advantage; it is the direct interface between a business and its customers; it provides constantly
changing data relied upon for decisions in real time by many users; it is responsible for individual
transactions of enormaus financial value or business importance.

* The author acknowledges Kippi Fagerlund, who edited the draft manuscript, and also Mare Siil and Greg
Baryza, whe provided some of the artwork. The evolution of Stratus products is the result of the efforts of
many people, including Bob Reid, Ken Wolff, Kurt Baty, Ron Dynneson, Joe Samson, Gardner Hendrie, Mike
Grady, larry Johnson, Jerry Stern, Janice Lacy, Bob Freiburghouse, Richard Barnes, Paul Green, Otto Newman,
Herb Robinson, Neil Swinton, Doug Steinfeld, Jim Murry, Jim Bush, JohrBongiovanni, and Jim Filreis.

135

8. HIGH-AVAILABILITY SYSTEMS 649

» Data integrity refers to the consistency of multiple database records and files. Data integrity
is usually a concern only after a system interruption. Fault tolerance does not guarantee data
integrity. Data integrity is typically achieved through transaction protection.

« Data corruption is the contamination or alteration of data without any indication that the
data is no longer correct. The kind of fault tolerance provided by Stratus systems protects against
data corruption in nearly all cases. Most other systems, even fault-tolerant ones, provide minimal
means of protection against or detection of corrupted data, and often the data is irrevocably
corrupted before-the detection hardware can stop it.

» Transaction protection (TP) is the ability to perform a sequence of database and commu-
nications operations in an atomic way such that if any changes are made to a database or sequence
of databases, all associated changes that are part of the transaction are instituted, TP is indepen-
dent of fault tolerance. A complete TP systerri must include its own recovery capabilities so that
the integrity of the database after a system failure is guaranteed. Some TP systems do not provide
fault-tolerant features. When hardware failures occur, such systems go down, but when service
is réstored, the database is made consistent such that each transaction prior to the failure is
applied or lost. Even hardware fault-tolerant TP systems must provide mechanisms in addition to
the normal system fault toferance to guarantee database integrity against nonhardware-related
systern crashes.

« On-line transaction processing (OLTF} refers to a TP systern’s performing sequences of
transactions in real time as on-line users, machinery, or other computers wait. Typical OLTP
applications include 24-hour banking netwarks, airline reservation systems, manufacturing sup-
port programs, and point-of-sale terminal networks.

System downtime is typically broken up into the following categories.

s Hardware failures—failures of hardware that cause the system to stop running: As a result,
the application (solution for which the computer was purchased) is not available. Usually, hard-
ware failures lead to some degree of system degradation or failure. The degradation often
ranifests itself as poorer performance (response time and/or throughput) and occasionally results
in the unavailability of selected data. The degradation may also result in the inaccessibility of
selected devices.

« Operating system software crashes—failure of the software resulting in a system crash:
After a failure of this type, the system must somehow reinitialize all or part of itseli. Often, the
failure is data-dependent and will crash multiple systems or continue to crash a system until some
manual corrective action is taken. In other cases, the failure is unreproducible and is brought
out only by the juxtaposition of relatively rare events {often related to /O or communications
error situations that are difficult to test}. If the failure is unreproducible, retrying or restarting
the system usually works, although there may be no insight as to why the system crashed.

» Operational downtime—SYSGEN, missing or improper operator intervention: Operators
usually have high-leve! privileges (access or permission not granted to most users) and can
inadvertently cause considerable damage.

» Application software problems—failure of the application software leading to the inability

of the end-users to do their work: The operating system may remain operational, but the .

application must reinitialize itself or be reinitialized by explicit operator intervention. The fact
that the system remains up is of little consequence to the end-users.

« Database maintenance and backup—the maintenance and support of database systems
often results in periods of time when the database is not available for normal use: Registering

136

e

650

STRATUS
SOLUTIONS TO
JOWNTIME

1. THE PRACTICE OF RELIABLE SYSTEM DESIGN

new users, adding new structures, and backing up a database often requires that the database
be made unavailable. As with application system software problems, the availability of the system
without the database is of limited value.

+ Environmental problems—problems with electrical power, air conditioning, earthquakes,
floods or ather storms, smoke, contaminants, or sabotage.

« Communications failures—failure of communications lines used to interconnect systems.

« Field service—removal of parts of the system or the disabling of the entire system for such
activities as repairing failed components, running preventive maintenance, and running diagnos-
tics.

« Software installation—the unavallability of part of the system or an entire system while new
software is installed: Software installations fall into twe main groups, installation of basic operating
system software (which usually requires a reboot) and installation of application software (which
rarely requires a reboot but usually requires the application to be quiesced or stopped).

« Hardware instaliation—the installation of new hardware to expand or upgrade a configu-
ration.

The design of a modern computer system must minimize or eliminate downtime in all of these
areas.

The statistical breakdown of the occurrence of downtime as a result of the various factors
listed previously is different in nearly all published reports. Two trends are clearly important,
however. First, hardware (including that of nonfault-tolerant systems} is becoming more reliable,
resulting in less downtime. Second, operational downtime (including operator errors and system
downtime for performing such activities as installing new hardware or software and running
preventive maintenance on some component of the system) seems to be on the increase.

Another important trend is that software tends to become more stable and reliable the
longer it is in the field without significant functional improvement. Software stability is one of
the most important factors feading to software reliability. Modern software practices (structured
design techniques such as design reviews, documentation, and code; use of modern development
tools; object oriented programming; more extensive testing) have led to software products that
are initially significantly more reliable, but the highest levels of reliability of most software aré
achieved only after fixing problems as they are encountered.

Another important issue relating to the availability of systems is environmental quality. For
example, it is becoming increasingly difficult to get high-quality, continuous electrical power.
Today's computer systems must not only be more forgiving of power fluctuations but must also
be able fo survive (ride through) brief power outages.

Stratus has addressed potential downtime problem areas as follows.
+ Hardware Failures: The Stratus hardware fault-tolerant architecture isolates users from
almost all hardware failures.

« Operating System Software Crashes: System crashes are minimized (but not completely
eliminated) with the use of software fault recovery procedures.

« Qperational Downtime: Operational downtime is aimost completely eliminated due to the
lack of need for a SYSGEN; that is, hardware and software configuration occurs automatically.

“An operator needs to do little to run the system.

137

TABLE 8—7
Introduction of
major Stratus
hardware products

8. HIGH-AVAILABILITY SYSTEMS 651

Year Product Significant New Features

1981 FT200 2-CPU 68000-based (2 logical CPUs/board); up 10 16 MB of memory; user
and executive CPUs (not symmetric); 20-slot main chassis; powerfail
recovery

1984 XA400 4-CPU 68010-based (4 logical CPUs/board); symmetric multiprocessing

1984 XAB00 6-CPU 68010-based (6 logical CPUs/3 boards); symmetric

multiprocessing; §-KB cache/CPU; floating point assist in hardware; 40-
slot main chassis
1987 XA2000 1- to 6-CPU 68020-based (1 logical CPU/board); up to 96 MB of memory;
110-160 64-KB cache/CPU; floating point coprocessor; dynamic processor
upgrades; enhanced powerfail ride-through

1988 - XAZ000 4-CPU 68020-based (4 logical CPUs/board); generalized /O controller;

50-70 10-slot chassis; fault-tolerant /O communications bus
1989 XA2000 . Single-CPU 68030-based (1 logical CPU/board) “midplane” eliminates
30 need for many cables and simplifies service; 6-slot chassis; integrated

. peripheral package; increased customer serviceability
1990 XA2000 1- to 6-CPU 68030-based (1 logical CPU/board); up to 256 MB of
210-260 memory; 128-KB intelligent cache/CPU; bus-watching for cache
consistency

* Application System Software Problems: Siratus provides highly structured, powerful inter-
faces for transaction processing and forms management. These interfaces can simplify application
development and lower the risk of the application’s introducing errors.

* Environmental Problems: Using sophisticated powerfail recovery procedures, powerfail ride-
through, and battery backup, Stratus systems avoid or minimize most power-related environ-
mental problems. Stratus systems usually require no special air conditioning.

- Field Service: Nearly all Stratus hardware can be replaced while the system is fully opera-
tional, minimizing the impact of field service on system availability. Boards, disks, fans, power
supplies, and line adapters {interfaces to peripherals of all types) can be replaced on line while
the system is runnjng. Most replacements can be installed by customers, although some assem-
blies require trained field service personnel. Self-diagnosing boards clearly indicate broken parts.
Specific failures are reported automatically to the Stratus Customer Assistance Center (CAC)
through the remote service network (RSN) {usirig autodialing madems). Field service is simple
and reliable,

* Software Installation: Installing basic operating system software (excluding device drivers)
requires a system reboot. Most other software (including most device drivers) can be installed
while the system is fully operational. To install new application software, however, it is often
necessary for the application itself to quiesce or reach a clean point.

+ Hardware Installation: Table 8-7 lists the major hardware products Sttatus has introduced
since 1987. Most Stratus hardware can be replaced on line while the system runs at full capacity.
Further, any configuration expansions (including adding disks, memory boards, communications
lines, and additional processors anywhere within a Stratus computer network) can be performed
while the system is fully operational. The ability to dynamically expand or change the hardware

138

JES OF FAULT
ERANCE

Il. THE PRACTICE OF RELIABLE SYSTEM DESIGN

configuration of a system is becoming increasingly important due to the need for frequent changes
in many critical on-line systems.

A fault-tolerant system must be designed to withstand failures of alt types. This means that the
architecture and design of system software must be fault resilient and that every hardware
component of the system must be, in some way, redundant.

Software Issues

Stratus has taken several approaches to solving the problem of system software reliability. First,
from the beginning the Stratus architecture has included a mechanism that gives the system
software designers powerful analysis tools and capabilities. The Stratus system automatically
records information about every system crash and forwards this information or makes it available
to the CAC or operations system personnel through the RSN, Stratus learns of every customer
system crash automatically, and therefore has more knowledge of software problems than other
companies. The system continuously logs system and error activity. These logs are valuable for
analyzing many system outages.

Second, Stratus uses software fault recovery techniques to enable the operating system to
recover from software bugs within the system. These techniques are described in detail later.

Finally, Steatus has used modern software development techniques, including use of high-
level languages, extensive design and code reviews, testing for both guality and performance,
and significant customer inveolvement in new hardware and software products. The use of tools
and compilers avoids many classical errors (for example, forgetting to recompile all programs
when an include file changes or forgetting to initialize a variable}.

Hardware Issues

Most fault-tolerant systems provide some method of recovery from the failure of 2 major hardware
component, but basic components are often overlooked. Specific critical components include
power, buses (often printed circuits), disks, printed circuit boards, and the clock.

Table 8-8 describes the redundancy technigues of Stratus system components. The following
paragraphs describe how Stratus has addressed failures of these components.

Power. Power failures occur within the computer itself as well as outside of it. Uninterrupted
power sources solve only the external problem. The failure of a power supply or the cables or
buses that distribute the power to the active components will crash most systems. A complete
solution requires that power from separate sources be fed through different power supplies to
separate logic boards over different buses. :

Techniques that use special chips to provide duplicate, self-checking circuiiry do not satis-
factorily address the problem of power failures. Such chips use a single power source. This
solution to protect against internal chip logic errors is becoming less practical as a means for
achieving fault tolerance as computer chips become more reliable. Most failures today occur
above the chip level. Similarly, triply redundant voting systems do not solve the power problem
unless each voting circuit and logic unit derives power from a separate source.

Buses. Architectures that use a bus must have a duplicate bus to protect against failure. A bus
can fail because of a mechanical problem, such as a short in the bus interface logic. Systems that
use some form of local area network must have duplicate media and interfacing logic. Further-
more, local area network systems must provide software to automatically manage failures in the

139

. TABLE 3-8
" Stratus system
“ components

SYSTEM
ARCHITECTURE
OVERVIEW

8. HIGH-AVAILABILITY SYSTEMS

653

Component Type/Width Bandwidth/Speed Redundancy Technique
Processor 68000 8 MHz Self-checking; lockstep pairs
68010 8 MHz
68020 16 MHz
68030 24 MHz
Memory 8 MB —— Self-checking logic for
16 MB — control; ECC for data;
32 MB - lockstep pairs
StrataBus 32 bits data 64 MB/sec Duplicated; parity on groups
o of signals
Stratalink — 1.4/2.8 MB/sec Seff-checking; duplicated

IO controllers Communications 600 Kb/sec Self-checking; lockstep pairs

10P 4 MB/sec Self-checking; lockstep pairs
' or duplicated

Disk 1.2 MB/sec Self-checking; duplicated
Tape 600 KB/sec Self-checking

Devices Disks —_— Duplicated
Terminals — None
Tapes — —

media. Without such software, application programmers must take on what should be a system
function.

Disks, Al fault-tolerant computers provide some form of disk redundancy. Some systems provide
the option of mirroring entire volumes; others allow mirroring of partial volumes. Since disks
are far lfess volatile than main memory, many applications and users rightfully feel secure only
after their data is safely stored on one or more disks.

Boards. Failure of a single component on a computer board usually has one of two effects: the
entire board breaks in some way recognizable by the rest of the system, or worse yet, the error
goes unnaticed. In most systermns, either situation eventually-leads to a crash of the module
containing the board. A truly fault-tolerant computer must protect against any error of this type.

Clocks. Although very reliable, clock circuits which generate and distribute clocking signals to
the various components of the system must be considered when designing a fault-tolerant system.

A Stratus computer system consists of up to 32 modulfes connected through a Stratus intermodule
bus (Siratalink). The Stratalink, a redundant, coaxiaf, prop'rietary interconnect mechanism, is
used for system expansion. Using Stratalink, the Stratus gperating system provides a global
system view for all devices in the system. Italso provides “message passing” between cooperating
processes. The StrataLink restricts modules to-a geographic proximity of a few miles, but typically
the modules are linked into a systern in a single building or a few adjacent buildings. The Stratalink
consists of two independent coaxial “links.” Each link runs at 1.4 megabytes per second, providing
an intermodule throughput capability of 2.8 megabytes per gfzcond. The system software contin-

140

654

FIGURE B-66
A typical network

[1. THE PRACTICE OF RELIABLE SYSTEM DESIGN

uously uses both links, thereby recognizing immediately if one of the links fails. If a link does
fail, the throughput drops to 1.4 megabytes per second.

A Stratus network consists of several systems connected using an X.25 packet switched
network or the Stratalink hardware. Figure 8-66 illustrates an X.25 packet switched network of
four systems (4 groups of 14 modules total connected with Stratalinks).

Each module within a system is a complete computer; Figure 867 illustrates a typical Stratus
module. Fach module is bus-oriented, containing a Stratus backplane or midplane that imple-
ments a proprietary fault-tolerant module bus called a StrataBus. A module also contains one or
more processor board pairs, one or more memory board pairs, and pairs of /O controllers
connected to various peripheral devices, including disks, tapes, and communications interfaces.
A module contains its own redundant power supplies, battery backup subsystem, and various
card cages for /O line adapters and IO controlling logic.

The Basic Module Bus

The major boards of a Stratus module interface with the StrataBus. The StrataBus has 32 logical
slots and is implemented in various Stratus modules with 6, 10, 20, or 40 physical slots. {The 40-
slot chassis supports logical board stacks that contain multiple physical boards.) The StrataBus
uses an arbitration scheme that, in is simplest form, provides bus priority as a function of bus
slot number. Even-numbered slots within the bus derive power from a subsystem that is totally
independent of the power subsystem used by the odd-numbered slots of the bus. This partitioning
of slots into disjoint, isolated sets enables a module to survive the complete failure of either of
its power subsystems. :

The power for the boards derived from these power supplies consists of unregulated 24
Vbe. Each board regulates this power to the necessary levels. By placing the power regulation
function on each board, it is possible to remove and insert boards from the StrataBus while the

Fogl= R ol - - LR]

D e R e o U

Packet D

switched 5

network @_ ;

a

t

L

5 -

t ;

! k
a
t
a

Modules L | 4— Systems ~~
i
n
k

141

FIGURE 8-67
A Stratus 40-slot
module

8. HIGH-AVAILABILITY SYSTEMS 655

T —IEES

¥ J
2}
© o
[
) I
&
@ N
[T TP ===]
] L
i N —
LI =]
H © S

o 0 6]

bus is fully powered, No components of the system need to be disabled to remove or insert a
board.

The StrataBus is a synchronous bus. The system clocking function drives all circuitry in the
system and is distributed using a single bus signal. This clock signal generates a standard bus
tick of 125 nanoseconds (6 MHz). The bus protocol provides for extensive overlapping/pipelining,
allowing a new bus request of up to 64 hits of data on every 125-nancsecond tick. This yields a
maximum bus bandwidth of 64 megabytes per second. {The system clocking function generates
higher frequencies for boards running at rates faster than § MHz.)

Nearly every signal on the bus is duplicated. The bus is actually viewed as two independent
buses, bus A and bus B, each with its own power, ground, data, address, and control lines. Parity
protects the lines of each bus.

Each major system board simultaneously interfaces with both buses. A board drives the same
data on both buses and reads data from both buses if they are both enabled. (The hardware
automatically instructs all boards to ignore a suspect bus.)

A power supply for each bus powers pullup resistors to effect an open colfector technology.
Unless driven to a 1 state by at least one board, each bus signal represents a fogical 0.

Bus Monitoring by Memory Boards. The various parity signals on the StrataBus detect bus failures
or bus-related faitures of boards that interface with the bus. Controller logic performs the
detection within the memory boards. If multiple pairs of memory boards exist within a module,
all such boards monitor the bus for problems. if a memory board detects a problem on either
bus, it declares that bus broken and instructs all boards to stop using the bus (by asserting signals

.

142

e

656

1. THE PRACTICE OF RELIABLE SYSTEM DESIGN

on bus lines). This bus monitoring detects such failures as an open bus line, a shorted bus line,
or the failure of a bus driver on one of the boards plugged into the bus. Such bus driver failures
cannot be detected by the on-board checking logic, as the drivers are enabled and disabled by
the comparator logic and are thus logically beyond it (see Figure 8-69). The bus drivers are the
only logic on a major board not covered by the self-checking logic of the board.

If the memory subsystem detects a subsequent failure of the single working bus, that bus is
declared broken and the originally broken bus is declared good. The buses alternate in this
manner until system software tests the buses and places them both back in service. Alternating
between failing buses provides a simple recovery strategy for transient bus errors. If the original
failed bus has a hard failure, implying that both buses have simultaneously failed, the module is
inoperable.

Power Subsystem

Fach power supply has an associated battery backup system. The battery system works in two
modes: It either powers all boards within the module, or it powers only the memory boards.
The power supplies monitor the AC power and interrupt the system when they detect a power
failure. The system software reacts to a power failure indication by saving in main memory all
information needed by boards in the system, In 90-95 percent of all power failures, power returns
within a few seconds. If the AC power-sensing hardware detects a failure of this type, the system
simply continues with what it was doing before the power faifure was first detected.

The battery systems have enough capacity to power the entire module (excluding disk and
tape drives) for up to six seconds during a power outage. After six seconds, if the AC power has
not returned, the system quiesces all boards and instructs the hardware to supply power only to-
the memory boards. In this extended battery backup made, the system is not operational, but
its complete state is preserved. If power is restored within an hour or two, depending on the
amount of memory that must be backed up by battery, the system software restores the system
to its state at the time of the power interruption. All YO that did not complete is restarted.

During the first few seconds of a power outage (while the system is still operating), the disks
are not powered and begin to cycle down. This typically leads to normal, recoverable disk errors
that are retried when the power is fully restored. No data can be damaged.

With the large memory sizes supported by Stratus modules, there is not enough time to
save all of memory to disk before it becomes necessary to switch to the low power usage mode,
which supports only memory. The battery system has insufficient power to support all disks in
an operational state. Additional batteries can be configured to provide recovery from arbitrarily
long power outages.

Systern Boards

The boards that interface to the StrataBus have several common features. First, they all operate
synchronously at a simple multiple of the common system frequency. First-generation boards run
at 8 MHz, but newer boards operate at up to 24 MHz.

Second, all boards are self-checking and auto-isolating. The boards check themselves for
component errors on every clock tick and will not place data on the bus if a board finds itself to
be in error. This self-checking is typically performed by duplicating the logic on the board and
running both sets of logic independently but synchronously, The outputs of these independent
logic networks then run through onboard comparator circuits that enable the bus drivers. The
self-checking logic automatically causes a board to break. A failed board is said to be broken or

143 l

FIGURE 8-68
A self-checking
board

8. HIGH-AVAILABILITY SYSTEMS 657

red-fighted. {(When a board breaks, a red LED on the front of the board lights to identify it.) A
broken board never drives data onto the buses.

Third, each board must provide its own power regulation to convert the unregutated 24 Vpg
available from the bus to usable TTL levels. .

Fourth, each board is self-identifying, providing system software with coded information
describing the board’s type, the revision level of the board, the revision level of the PROM
software on the board (if any), and a limited amount of board repair history. This information is
critical to the software that puts reinserted boards on line. If the boards are incompatible, the
system does not accept the new board.

Fifth, all boards that interface to the StrataBus must obey a set of common interface con-
ventions used by the Stratus maintenance and diagnostic software for testing, initializing, and
enabling boards in the system. The common interface allows the operating system software (o
monitor and diagnose boards plugged into the bus through a common mapped /O space—a
special range of virtual memory addresses—which is interpreted similarly for all boards. (Each
slot within the backplane has a set of addresses associated with it that control the board in that
stot. These addresses are referenced to enable, disable, test, remove, and restore the board.)

One specific requirement of this self-checking feature is that both halves of a board must
behave totally deterministically. Any logic must progress from state to state with each clock tick
totally deterministically. In particular, don‘t care states (bits that can apparently harmlessly assume
either a 0 or a 1) are not allowed, since they may yield conilicting values in the comparator logic
on the boards.

" Figure 8-68 depicts the general layout of a Stratus self-checking board. The A connector
connects to bus A, the B connector connects to bus B, and the C connector connects to external

Mechanical
key and C
A connector B connector connecior
c
2
=
A : B Zo
logic : logic kY
area : area 5
: z
3
-9
= Stiffener .
R — 7
> Airflow

144

S

658 Il. THE PRACTICE OF RELIABLE SYSTEM DESIGN

fogic, such as an /O bus, the maintenance panel (in the case of CPU boards), or'to other boards
of the same type (as is the case for memory boards).

Figure 8-69 is a block diagram of the typical checking logic for a seif-checking board. The
comparator logic (represented by the question mark in Figure 8-69) enables and disables the bus
drivers. If a compare mismatch occurs, the bus drivers are immediately disabled, and no data is
allowed out on the buses.

Boards within a Stratus system nearly always occur in pairs. Such boards are referred to as
partners. Major boards operate in two ways: either in synchronous lockstep with a partner board
or only logically paired with a partner board. When operating in synchronous lockstep, proprietary
Stratus hardware and software synchronize hoth self-checking boards of the pair; thus, both
boards (including a total of four sets of logic} do exactly the same thing on any bus cycle. This
requires that the boards behave completely deterministically with respect to any conditions that
can arise. In essence, the same requirements that apply to seif-checking boards (mainly total
determinism of the logic) apply to boards in synchronous lockstep.

Two boards running in synchronous lockstep read the same values from the StrataBus
simultaneously. Qutput signals are logically ORed on the StrataBus. For example, two client
partner boards ask for a bus cycle {arbitration for the bus) at exactly the same time (on the same
cycle) by asserting their intention to use the bus. if the arbitration network grants the bus to the
pair of boards, they both place the address for a read or write on the bus at the next clock tick,
Two ticks later, the client boards or the responding boards (usually memory controllers) place
the data on the bus. The data is taken off the bus one tick later,

Boards that interface with such devices as disks, tapes, and the Stratalink operate in a
logically paired state. Such boards are not synchronized in lockstep with their partners; rather,
they rely on operating system software for an equivalent function. (The two halves of the board
must be synchronized.) Disk mirroring with dedicated disk controllers uses this method. Software
ensures that mirrored disks contain duplicate, consistent copies of data. This software is com-

FIGURE 8-69
The logic of a self-

checking board

Input A

145

8. HIGH-AVAILABILITY SYSTEMS 659

pletely invisible and inaccessible to application code (and most operating system code) and
therefore need not concern application and operating system developers. The placement of
partner boards in even-odd slots of the StrataBus chassis is hot required by the architecture, but
it is required to protect against power supply failures.

Off-Board /O Interface Buses

The VO controller boards usually connect to some form of I/O bus, The type of bus is a function
of the type of controller. The dedicated disk controllers have several interface options such as
Stratus proprietary and SMD, The tape and Stratalink controllers each interface to a single device
and do not have an associated bys. The programmable StrataBus interface (PS1) controller has a
Stratus proprietary bus. The communications controllers interface to Stratus proprietary buses,
some of which are fault tolerant. The 1/0 processor (10P) boards interface to a Stratus proprietary
fault-tolerant bus.

Any controllers that run in lockstep with a partner and interface to nonfault-tolerant buses
must have special logic to interface to the bus, This guarantees that all four sets of logic {(two
sets on each board of the partnered pair) see the same data. This scheme is typically implemented
using (1) latches on the logjc interfacing to the bus, (2) conservative timing assumptions so that
clocking signals from the bus lead 10 all four sets of logic seeing the same data, and more recently,
) reflexive checking logic on the controller hoards. The reflexive checking logic trades special
signals between the partnered boards at each clock tick to make sure that the boards are still
synchronized. The signals traded are basic board cycle signals, the earliest indicators that the
boards are out of synchronization. If the boards do go out, the hardware stops one of the boards
automatically, This reflexive checking guards against failing devices connected to one of the
nonfault-tolerant buses.))

Line adapters, or 1O adapters {10As), plug into the various 17O buses and interface with
devices or communications lines. These come in many types: full modem asynchronous, null
modem asynchronous, synchronous, or high-speed synchronous. The [QAs usually contain mi-
croprocessors and significant amounts of memory for loading protocol-specific code 1o drive that
particular device or communications line.

The 1OP utilizes a sophisticated, seli-checking, duplexed 1/Q bus, called the PIQY bus, to
interface to the IOAs. This is a duplicated address/data multiplexed bus. The same bus signals
are used for both address and data, and there are two separate sets of signals. The bus is limited
to 20 feet in length and supports 4 megabytes per second transfer speeds. Both the P and the Q
buses use parity for checking. Each bus has four function code lines, again protected by parity.
The bus design is expandable to 8 megabytes per second. '

The P/Q bus protects against any single-bit asynchronous glitch and any muMtibit failure on
a single bus. The bus uses loop-back checking to ensure that a bus has what was placed on it,
bus-to-bus comparison (P versus Q) to see if both buses have the same data, and continual
checking for errors by every board on the bus. Fach I0A has a pair of custom gate arrays to
implement the special bus protocois and checking logic. The P/Q bus can accept white noise on
any data line and continue to run. Figure 8-70 illustrates the logical configuration of /0.

Major Board Types

Stratus supports three major board types: processors, memory boards, and /O controllers. The
processor and memory boards run in lockstep. Some I/O controliers run in lockstep, and some
run logically paired.

146

660

FIGURE 8--7¢
Logical configura-
tion of /O compo-
nents

II. THE PRACTICE OF RELIABLE SYSTEM DESIGN

StrataLink Disk ‘% 8-inch disks
(SIB) Up to 761 MB
— Tape
—y CTlape % 45 and 60 MB
\/ 9-track, 90 IPS
— PSl
— Comm [77 " 4lines
. A
o Up te 19.2 Kb/s
@ 1 Disk -
3 2 ' 10 Mb/s
£ o ENET —C I- CSMA/CD
= Com a L TEP/ip
rF—1 omm '
— ucoMm [T 2 lines
1op | 2" Upto 64 Kbss
i User programmable
Memory —1 Token ring —— 4 Mb/s token ring
—— CPU —— SCSI ~—— §CS! interface

Processors. Stratus has several processor board products, all based on the same principles. The
operating system software supports multiple processors executing out of a common shared
memory system (often referred to as symmetric multiprocessing). This provides significant per-
formdnce improvements over single-CPU configurations. For applications that require more CPUs
than the maximum supported by a single module, Stratus resorts to the same architecture other
computers use for expansion: Ioosely-coupled configurations tinked together over some high-
speed |nterc0nnect usmg a combmat]on of message passing and remote procedure calls.

Memories. Stratus systern memory is CDntgingd on memory packages of one-, two-, or three-
board stacks. Such stacks are calfed a board since they behave as a single unit and use one logical
slot in the StrataBus chassis. A memory board contains controfler logic that interfaces to the
StrataBus and drives the memory chips. Memory currently comes in 4-, 8-, T6-, and 32-megabyte
packages. All memory is protected by smgfe -bit error-correcting, double-bit error-detecting (ECC)
logic.

Mermory can be configured in one of two ways: simplexed or duplexed. When configured
in a simplexed manner, the memory is not fault tolerant, although it can survive single-bit errors.
When configured in a duplexed manner, the memory is fault tolerant. The simplexed configuration
is provided for customers who want to configure more memory at certain times while knowingly
sacrificing fault tolerance. Memory cdn be switched between fully duplexed and simplexed and
back to fully duplexed again while the system operates. Figure 8-71 illustrates varicus configu-

147

FIGURE 8-71
Methods of du-
plexing and sim-
plexing memory

8. HIGH-AVAILABILITY SYSTEMS 661

43 MB

40 MB

32 MB

24 MB

16 MB

8 MB

224 MB 32 MB 40 MB 40 MB

I ‘_‘4 ‘ l 8-MB boards

Fully Partially Filly

duplexed duplexed simplexed 16-MB boards

rations of the same set of four memory boards, two of which are 16 megabytes and two of which
are 8 megabytes. s) '

The ECC logic on the memory boards behaves differently, depending on whether or not the
memory is duplexed. If the memory is duplexed, & board detecting an ECC error immediately
declares itself temporarily broken, allowing the remaining partner board to continue operating.
Operating system software tests the broken board, and if the error appears to be transient, the
board is reduplexed with its partrier. If the memory board is running simplexed when the ECC
error occurs, the error is corrected, and the client board receives the correct data two cycles
later. The board is not reported as broken in this case.) .

When a memory board is reduplexed with its partner, the additional memory controller is
placed into a listening state; it does not drive data onto the bus. This state allows a special bus
cycle to read from the good memory and immediately write back to hoth memory boards. A
background system process sweeps through all memory using this cycle, allowing normal oper-
ations to continue while a memory board is added to the system. More recently manufactured
memaory boards can perform this update operation automatically (after diagnostic system software
instructs them to do so). ‘ :

/O Contrellers. As previously mentioned, /O controller boards operate in one of two ways.
Synchronously lockstepped boards include the various models of communications controllers,

e T

148

662

1. THE PRACTICE OF RELIABLE SYSTEM DESIGN

the IOP, and the PSL. If one of the boards of such a pair fails or is removed from the system
physically, the other board continues 1o process what the two boards were doing in parallel.

lLogically paired /O controller boards perform different physical tasks simultaneously for
peripherals such as disk and tape. The operating system software ensures that applicationé are
presented with a fault-tolerant base on which to work. The most interesting board type handled
in this way is the disk controfler, (Stratus supports disks with the 10P, as well as with dedicated
disk controllers. The basic algorithms that follow apply to either.)

Disks. Disks are grouped into logical volumes of up to 10 pairs of disks. The disks in a logical
volume need not all be of the same type. Each disk in the logical volume is usually, but not
necessarily, duplexed or mirrored with another disk. A disk and its corresponding partner disk
are called a duplexed pair. Dupléxed pairs must be of the same disk type.

Standard configurations assign the two disks of a duplexed pair to difierent disk controller
boards. This configuration provides two completely independent hardware paths for accessing
the two copies of data. The controlling logic, electrical power to drive the logic, bus interfaces,
and cabling system are also duplicated. The operating system software uses several techniques
to ensure that both disks of a duplexed pair contain exacily the same data and that if one disk
fails, its replacement is brought Up to date automatically.

CRC Checks for Disk Blocks. Each block of data written to disk is checksummed, and the checksum
is written to the disk with the data. This allows the hardware to detect problems related to cables
and connectors and failures that were not detected by the disk hardware, The checksums are
examined by logic in the disk controller, which is itself seli-checking, providing an additional
guarantee of data integrity.

Bad Block Remapping. Stratus software keeps a list of blocks that are unusable—either because
the manufacturer declared them unusable or because Stratus diagnostic software determined they
were unusable during the manufacturing process or normal operation. [n either case, the oper-
ating system allocates another block on the disk from a pool (on each disk) reserved for this
purpose and uses this alternate block whenever refererices are made to the failed block, The
software uses the alternate disk block address for alf accesses to the disk. The remapping is done
whenever a réad or write fails and retries are unsuccessful. The knowledge of thls remapping is
isolated to limited software in the disk system.

When a write failure oeeurs, the data is simply kept in memory and written to the newly
aflocated block. When a read fails, the data is read from the other disk and then written back to
an alternate block on the disk that had the read failure.’

5CSI disk manufacturers now build this type of facility {or a variant of it) into the drives that
Stratus purchases and incorporates into its systems.

Reads from a Duplexed Pair. The operating system can read from either of two disks containing
the same data. Depending on load, activity, and reference patterns, appropriate disk selection
algorithms can lead to an effective disk performance improvement. One algorithm that Stratus
uses is simple: If both disks are idle (no real or queued activity to the disk), the operating system
selects the disk positioned closest to the cylinder on which the data resides. If one disk is busy,
the operating system selects the other disk. If both disks are busy, a disk is selected at random
and the operating system uses a finer-grained disk sorting algorithm.

Fast and Normal Disk Recovery. Stratus hardware and software can diagnose a particular failure
when it occurs. Two cases are significant: a controller (which can be controlling several disk
drives) fails, or a single drive fails.

149

8. HIGH-AVAILABILITY SYSTEMS 663

in the case of a controller failure, the system continues to operate by reading from and
wiiting to the disks connected to the controller partner that is interfacing with the mirrored disks.
When the failed controller is replaced (on line, while the system is fully operational), the operating
system automatically brings the disks connected to that controller in synchronization with the
disks that were in use while the controller was out of service. Stratus calls this updating operation
disk recovery. The operating system performs it automatically upen recognition of the replacement
controller in the module, Basically, disk recovery consists of copying data from the good (con-
sistent, complete)} disk to the bad {inconsistent, incomplete} disk.

Stratus provides two forms of disk recovery. The first, fast disk recovery, is used when a
controller, rather than a drive, fails. in this case, most of the data that exist on the drives connected
to that controller are valid. As soon as the controller fails, the operating system software begins
tracking all writes to the disks connected to that controller. When the controller is later replaced,
the system need only update the blocks that were modified while the controlier was missing or
broken. Any data that may have been modified while the controller was broken are copied from
the good disk, thereby guaranteeing consistency of data on both disks.

The second form of disk recovery, normal disk recovery, is used when the entire disk must
be updated from its partner. Normal disk recovery is necessary, for example, if the drive itself
must be replaced. The system software copies all used blocks from the valid disk to the new disk
while the system operates. During the recovery period, the software forces writes to both disks
{while reading only from the good disk), guaranteeing that, when the recovery pass is complete,
the disks are synchronized.

Disk Writes. Most operating system developers do not worry about failure scenarios to the degree
that developers of fault-tolerant systems must. Two issues are of particular interest because they
demonstrate Stratus’s concern for guaranteeing data integrity.

The first relates to serial writes; the second relates to verified writes. The Stratus disk software
must, as noted, manage the writing of each data block to two separate disks. Writing could be
done in paratiel {overlapping the 1/0), since totally separate IO paths are available. Instead, the
operating system does not usually begin the second write of the two until it knows that the first
write has completed without error. This strategy protects against an extended power failure while
a parallel write is done to both disks. Such a power failure, in rare cases, could lead to blocks
being written incorrectly as the write logic within the disk drives loses power. Incorrectly written
blocks, in turn, could lead to the destruction of both copies of a piece of data.

Writes are aiso verified to guarantee that the data is reliably on disk. The second check,
referred to as disk verify, is provided on most vendors’ disk hardware.

Stratus provides the option of allowing selected disks to run without verifying writes. A

_parallel write option will be available in the future.

Synchronizing Boards

When a Stratus module is initialized, all boards that are running in lockstep must be synchronized.
The concept is fairly simple: get the four sets of logic to do exactly the same thing. The actual
implementation is a hit tricky. The system starts up with all intelligence isolated to one of the
main CPUs of the system. Tie-breaking hardware effectively runs exactly one CPU at first, All
other boards initialize themselves but remain off [ine. The running CPU surveys the hardware in
the system, using the mapped l/O space that is part of the common interface to each board that
interfaces with the StrataBus, The CPU brings the other boards within the system on line one by
one.

Before a CPU can run, it must synchronize its two halves: All registers, caches, memory

150

664

RECOVERY
SCENARIOS

1l. THE PRACTICE OF RELIABLE SYSTEM DESIGN

cells, and microprocessors must be provided with the same data. The CPU initializes these items
before enabling the comparator logic that would otherwise force the board off-line as broken.
Memories must be brought on line by the initializing CPU before any VO (other than primitive
character I/O to a terminal} can be accomplished.

Reflexive Checking

The term reflexive checking describes the interboard communication performed by certain pairs
of boards to guarantee they are synchronized. If the boards get out of synchronization, one of
them is forced off line automatically by the hardware so that the boards’ signals, which are ORed
on the bus, do not confuse other boards in the system. This logic typically exchanges selected
control state indicators that change frequently (at least every tick) during operation of the boards.

Periodic Tests

The comparator logic on self-checking boards can fail. Such a failure has two manifestations:
either a false failure can be reported, or a true failure can be missed. A false failure indication is
harmless to the system, but even so, it is immediately detected and indicated—the board goes
broken. Failure to diagnose a real problem is also harmless as long as the partner board is
working. If a single failure occurs, one of the buses is receiving the correct data from both boards.
The failing board can fail in one of two ways. First, it can place a 0 on the bus when it should
place a 1, in which case the partner board overrides it by placing the correct data on the bus
with an OR signal. Second, it can place a 1 on the bus when it should (and its partner does) place
a 0 on the bus. In this case, the memory controllers detect the problem using the parity-checking
logic and declare that bus broken.

The board can also be broken in such a way that no data at all are being placed on the bus;
for example, the on-board power system could be broken. If this is the case, the bus monitoring
software run by the maintenance process detects the problem. The board does not appear to be
on line. Note that the state of the bus logic is such that a 0 is assumed if nothing is driving the
bus (as would be the case if the board had no power}.

With this background, it is easy to understand how Stratus achieves its fault tolerance while
meeting so many of its corporate product goals. Once an entire system is initialized and all
duplexed components are synchronized with their partners, the following failures are insignificant
both to system availability and capacity.

+ Board Failure: When a component or materials failure associated with a board occurs, the
failing board automatically drops out while its partner continues to run. The partner does not
take over, as would be the case with a backup component; instead, it continues the actions it
was performing synchronously with its pariner. One board, rather than two, is ORing signals to
the bus and respanding to other bus requests. The operating system software hides the unavail-
ability of the failed board for boards not running in lockstep. After the falled board takes itself
off line, the system increments a fault count associated with the board and recalculates the
board’s mean time between failures (MTBF) based on any earlier failures. If the MTBF is less than
an administratively set value, the board is marked for replacement, and the RSN is invoked to
report the board as a failed component. If the calculated MTBF is still greater than acceptable
pa{arheters, the board performs a series of self-tests. If it fails these tests, the failure is not
transient, and the replacement process is initiated. If the board passes these seif-tests, it is either

151

ARCHITECTURE
TRADEOFFS

8. HIGH-AVAILABILITY SYSTEMS 665

reduplexed with its partner board {for synchronously lockstepped boards) or logically brought
back into service (for logically paired boards).

« Power Supply Failure: If one of the two Stratus power supplies within a module fails, all of
the boards driven by that power supply drop out while their partner boards continue to run at
full capacity. If either power supply is operational, no battery backup hardware is needed.

* Operational Downtime: Operational downtime because of improper action as a result of a
hardware failure is almost unheard of. The board that failed is self-identifying, so it is unlikely
that the wrong board will be removed for repair. Further, all board replacements are performed
while the system is fully operational, It typically requires no more than a few seconds to integrate
the replacement board into the module. No time is lost waiting for someone to notice that the
system has failed in some way. When a failure does occur, it results in no downtime, and
natification (including the CAC, usually responsible for initiating the correct repair action) is
automatic.

* Field Service: The classical outages due to field service {shotgunning by trying to guess
what might be wrong and restarting the system to see if the guess was correct} do not exist with
Stratus systems. The self-diagnosing and self-identifying nature of the boards makes this approach
obsolete. No preventive maintenance is required for the central system components and therefore
no downtime results. As mentioned previously, repair of the system by replacing boards does
not affect system operation.

* Hardware Installation: Installing new hardware to expand or upgrade a module or system
does not require any downtime. In fact, when new hardware is dynamically added, the system
automatically makes such hardware available to already running applications. For example, ad-
ditional processor boards can be added to a system, and the software can immediately benefit
from the increase in processing power (due to the symmetric multiprocessing architecture of the
operating systern). Similarly, memory boards and disks can be dynamically added to a live con-
figuration and are then immediately available for application use {without rebooting the system).

The entire Stratus architecture reflects tradeaffs between simplicity, ease of maintenance, lifetime
system costs, Jogistics concerns, and technology trends on one hand and slight increases in
product cost on the other hand. The resulting products clearly justify such tradeoffs.

First, the Stratus sclution requires more hardware. Any truly fauli-tolerant system requires
more hardware than a conventional system, but a Stratus system needs, in some cases, four times
the amount of hardware. However, the cost of hardware (primarily logic chips) that Stratus must
quadruplicate is low and is decreasing, becoming a less significant part of the total cost of a
computer system, particularly when measured over the lifetime of the system. The components
with the most significant hardware costs (mainly on-line memory and peripherals} need only be
duplicated (or, in the case of disks, redundant in some way), and any truly fauit-tolerant computer
has these same requirements.

Second, to design circuits that use Stratus concepts, logic chips must be totally deterministic.
This has been problematic in the past, but it is becoming less so, as chip manufacturers become
more aware of the needs of architectures built on Stratus concepts. Stratus has received com-
mitments from several chip manufacturers for the fuiure production of chips with totally deter-
ministic behavior.

Third, since the logic circuits depend on total synchronization, anything that detracts from
this synchronization can be a potential problem. The primary sources of difficulty in this area are

152

666

STRATUS
SOFTWARE

I1. THE PRACTICE OF RELIABLE SYSTEM DESIGN

new revisions of chips (new masks, usually to fix bugs). Chips that behave slightly differently
from earlier revisions are harmless to all other arcHitectures, but to the Stratus architecture, they
can be devastating. (If the differing chips are on the same board, the board automatically diag-
noses the difference and stops itself, If the differing chips are on separate boards, the boards
cannot be synchronized or stay synchronized.) Therefore, Stratus must be sensitive to the revision
leve! of the chips that are placed on boards. Extensive onboard self-identification hardware allows
the operating system software to reject boards that do not meet synchronization requirements.

The Stratus approach to fault tolerance does not depend on a particular operating system;
however, software must be capable of managing disk mirroring, redundant intermodule connec-
tions, and the diagnostics and maintenance functions necessary to test, remove, and install
replacement or expansion hardware. Further, as noted earlier, extensive work is needed to
improve the quality and fault tolerance of system software. This work includes a well-structured
development process, of course, but Stratus has been able to transcend normal quality levels
with its extensive knowledge of system failure scenarios {through the RSN) and with the use of
software fault-recovery techniques described later,

Stratus chose to develop its own proprietary operating system, the Virtual Operating System
(VOS). When VOS was developed, no other commercially available operating system provided
the necessary features. These features include support for the following: multiple processors
running in a tightly coupled, shared main memory configuration; disk mirroring; a file system
that supports all high-level features of COBOL, as well as transaction-protected files; worldwide
networking, providing a single systemn view of thousands of modules; and the previously men-
tioned features needed for fault tolerance. :

Stratus has since decided to support the UNIX operating system, as well as VOS. The
following discussion refers specifically to VOS, but all of the concepts leading to high-quality
software are also used in the Stratus UNIX offering, FTX.

Processes

VO3 is a process-oriented operating system based on a procedure-call model. It differs from
other general-purpose operating systems in its support for multiple processors, emphasis on the
client/server model, ability to provide transaction-protected distributed databases, management
of fauli-tolerant issues such as disk mirroring, and its relative newness.

Programs run within processes that call upon the operating system to complete tasks. A
typical call to the operating systern does not swiich processes (as would be the case with a
message-based operating system); rather, it verifies that the arguments to the operating system
entry are valid and optionally switches the process to a higher level of privilege. For intermodule
or intersystem calls, call arguments are placed in a message that is sent to the appropriate server
module, Message-passing primitives are also provided for interprocess communication, particu-
farly for applications that may grow to require muktiple modules. These message-passing primitives
are vital to the recommended method of developing applications: a client/server process orga-
nization.

Processes play a key role in application development but also are a means of implementing
some of the basic concepts of Stratus fauit tolerance. System processes are created, usuaily at
modutle initialization time, to manage the diagnostics and maintenance of the hardware. Similarly,
system processes are created to interface to the remote service network (RSN).

Systemn processes also implement VOS networking. Server processes perform remote file

153

!
i
i
!

8. HIGH-AVAILABILITY SYSTEMS 667 .

operations for the benefit of client processes. This client/server relationship is similar to the client/
server relationship recommended for applications. Any process, however, can be a client process
merely by requesting some remote operation that must be processed by a setver on some other
module. The difference hetween VOS message passing and pure message passing in other
operating systems is that local requests do not require the client/server process switch and other
overhead. VOS becomes a message-passing {distributed) operating system only for off-module
requests. Finally, an important use of processes is to implement the distributed transaction
management required by any transaction processing system.

Access Control

YOS provides extensive access control facilities to protect data and access to modules and systems
in general. Access control lists, passwords, data encryption, and privilege levels protect data.

Distributed Transaction Protection

An important attribute that contributes to the success of VOS in the OLTP marketplace is its
ability to support the concept of a distributed transaction. A distributed transaction requires
interaction between client processes that typically start and commit transactions, server processes
acting on behalf of the client processes, and transaction processing (TP) overseer processes that
manage transaction processing, including the TP log files and TP recovery after a module inter-
ruption.

The TP overseer processes on each module communicate using message passing and remote
procedure calls to effect a two-phase commit protocal, This protocol guarantees that the distrib-
uted databases involved in a transaction are kept consistent, even when some modules involved
in the transaction may be unavailable for extended periods of time.

The methods used by Stratus involve TP log files that contain afterimages of the database,
flushed to disk at commit time. These log files are applied to the real database files as time
permits. VOS also provides the ability to back up transaction-protected files during operation
and to perform database roll-forward after a system interruption.

Software Fault Recovery

Since software problems are a primary cause of unavailable applications, Stratus has devised
methods of software fault recovery that make its operating system more resilient than most other
systems. The extensive data structure locking needed to implement full support for multiple
tightly-coupled CPUs is the basis for the operating system strategy. Since every shared data
structure within the operating system must be protected from simultaneous updates by multiple
CPUs, an extensive locking protocol is necessary. If a data structure is not locked, it is in a
consistent state. If a data structure is write lockad (where a distinction exists between read locks
and write locks), it is potentially inconsistent. _

If a fault occurs within a process that is executing within the kernel, or if the process detects
a problem through the use of its own checking software, fault recovery procedures that check
which datd structures might be inconsistent are automatically invoked. The check simply sees
which data structures are write locked by the faulting piocess. Fach lock has an associated
procedure to call in case the fault recovery software detects the lock set at recovery time.

By establishing recovery procedures for each locked data structure and by defining the data
structures so that the called recovery procedures can determine how to make the data structure

154

668

1l. THE PRACTICE OF RELIABLE SYSTEM DESIGN

consistent, many operating system software bugs can be rendered harmless. Many key software
packages within the operating system have been designed to operate using this software fault
recovery strategy.

Diagnostic Software . : -

Several pracesses are created to manage the diagnostics, reporting, and maintenance of the
hardware. The key processes are the maintenance process and the diagnostic process. The
maintenance process determines if a significant event {such as a board failure or the removat or
insertion of a board) has occurred. When the maintenance process detects a significant event,
the diagnostic process is notified and d:rected to test the hardware involved.

The maintenance process uses two distinct techniques to determine when events of interest
occur. The first technique uses a hardware interrupt signal generated by a board when it breaks.
This interrupt is referred to as a red-light interrupt. Since a board could break in such a way that
it might not be able to set this interrupt, the maintenance process also uses another technique.
This second technique polis all boards plugged into the StrataBus to determine if any boards
have been inserted, removed, or broken. The typical polling interval is 10 seconds.

When the maintenance proc‘éss notices a change, it places a request in the diagnostic queue
serviced by the diagnostic process. The quéue entries typically request the diagnostic process to
test a piece of hardware. However, software must occasionally be downloaded into a line adapter
before it can be fully tested. The diagnostic process also performs this action. If a piece of
hardware is diagnosed as broken, thie hardware .is left off line and the RSN notifies the Stratus
Customer Assistance Center (CAC). If the board error appears to be transient, it is placed back
on line and synchronized with its partner if necessary. If too many transterit errors are encotintered
in a specified period of time, the board is declered broken, and the software initiates the process
of calling for a replacement board.

System Log Files

One last system process that plays a role in the overall diaghostic management of a module is
the overseer process. Among other things, it maintains various log files that record events of
interest to system operation. The log files of primary interest are the system error Jog and the
hardware log. These files are wtitten to by the system at appropriate tines by buffering messages
in operating system space. The overseer process then copies the messages into actual files. The
hardware log file consists of hundreds of message types, all adhering to a standard, formatted
structure. All log messages are time stamped. Application software can be notified whenever a
message is placed in these files and can therefore reflect these messages to a terminal or some
other file. When the RSN packages a message to send to the CAC about a failed piece of hardware,
the log files are scanned, and dny entries within the file related to the failed hardware are copied
into the package sent to the CAC.

As noted earlier, the RSN plays an important role in improving the reliability of Stratus
software by notifying the Stratus CAC whenever a system interruption occurs. This gives Stratus
engineering personnel extensive insights into the types of problems that occur in the field.
Whenever a module is booted, it sends a message to the CAC over the RSN indicating why the
reboot occurred. If the reboot was triggered by a software cfash, the reason for the crash is
available through the remote dump analysis software available through the RSN, In general, the
reboot messages provide a complete and accurate tracking of the avallability of Stratus systems.
This information is used to continuously improve upon the target of continuous availability.

155

SERVICE
STRATEGIES

8. HIGH-AVAILABILITY SYSTEMS 669

Gne of the important design issues for VOS and for Stratus hardware was the strategy for servicing
the computers. The following paragraphs compare the Stratus approach to the then current
approaches of other computer companies. (Since the introduction of Stratus systems, some of
the techniques described have been adopted by other companies.)

The Classical Repair Approach
A classical approach to computer repair follows & scenario such as the following:

1. Someone notices that something is wrong,. Fither the computer does not seem to be giving

~ the right answetrs, or.it seems to have crashed.]

2. Someone, usually a vendor field engineer, tries to determine what might be broken. The
problem may be hardware- or software-related.

3. If hardware is suspected, a shotgun approach is often, used whereby boards are replaced
singly or in groups in an effort to determine where the problém lies. To aid in determining
which boards may be problematic, diagnostic programs are often run, usually requiring a
dedicated machine.

4, An attempt is made to check whether or not the fix has been effective. Often, this amounts
to little more than seeing if the system seems to work. Such a method is rarely exhaustive,
scientific, or conclusive.

5. If the problem still exists or recurs within a few days or weeks, the process loops back to
step 2 again.

The disadvantages with this scheme are obvious. The process is expensive, time-consuming,
error-prone, unconvincing, and usually makes the system unavailable for extended periods of
time.

The Stratus Service Approach

The Stratus approach coritrasts with the classical approach in many ways. Hardware errors and
saftware errors may be distinguished with complete corifidence. If there is no red light on any
board, the problem is a software problem. If there is a red light on a board, that board is broken.
if the board failed because of a transient error, the system has already tried to reinstate it into
the system several times before giving up and leaving the red light on. {There is no need to
diagnose what is wrong with the board; it will not be repaired until it is brought back to the
Stratus manufacturing facility.)

. The RSN (Remote Service Network) plays a key role in Stratus maintenante. The RSN software
provides a means for computers at Stratus customer sites to inform the Stratus CAC of broken
or failing hardware automatically. It also provides a communications path for such activities as
remote maintenance by CAC personnel, exchange of files, on-line updates, and bug fixes.

The CAC periodically uses the RSN to poll sites; to gather configuration information, error
statistics, and system refease information; and to check on the consistency of software versions.
Customer sites use the RSN to ask both fechnical and nontechnical questions of CAC personnel.
The RSN also informs Stratus publications personnel about problems with or suggestions for
manuals.

Many customers are concerned about the implicit access to their files that the RSN might
provide to CAC personnel. Extensive protection is built into the RSN software facility, and most
customers are completely satisfied with the level of protection provided.

When a hardware error does occur, the RSN immediately informs the Stratus CAC. Appro-

156

L

N

670

SUMMARY

[f. THE PRACTICE OF RELIABLE SYSTEM DESIGN

priate local operations personnel can arrange far immediate notification on their terminals as
well,]

The advantages to the Stratus approach are clear. First, errors do not result in emergency
situations; the systemn continues to run at full capacity. Second, since the repair can usually be
made by onsite, untrained staff personnel, there is a considerable customer savings. The parts
necessary for the repair are typically sent to the site automatically from the Stratus manufacturing
facility using overnight courier. After repair, these parts undergo a complete testing cycle as
rigorous as the initial manufacturing of the parts.

The introduction of computer systems based on the Stratus architecture provides businesses of
all types with new levels of system availability and serviceability. The architecture has proven
portable to new /0 systems and faster chip technologies. It provides a platform on which software
not cognizant of issues of fault tolerance can provide continuously available solutions. Finally, it
provides reiief to the ever-increasing threats of rising service costs and quality degradation. Stratus
systems and their customers enjoy the highest satisfaction for service and quality.

157

