EP 0 214 718 A2

Européilaches Patentamt

Europesn Patent Offica

Office européen des hrevets

Application dumber: 853048900

@ Deteoffiing: 17.06.86

0 214 718
A2

@ Publication number:

EUROPEAN PATENT APPLICATION

G mct: G 06 F 9/44
G 06 F 12/08, G 06 F 13/40

Priosity: 22.07.85 US 757745
22.07.85 US 757853
22.07.85 US 757749

@ Date of publicarion of application:
18.03.87 Bullstin 87/12

Designated Contracting States:
AT%ECHBEFRGE?IUL&}NLSE

() Applicant: ALLIANT COMPUTERSYSTEMS
CORPORATION
42 Magoy Park
Acton Massechusetts D1720{US)

Inventor: Frediew, Hobert L.
28 Sawin Strast
Arlington Massachusetts 02174{US)

@ Inventor: Gruner, Ronald 4,
148 West Berlin Road
Bolton Massachusstts 01432{US}

@ inventor: MeAndrew, Bichard T,
Boven Monadnock Drive
Wss:fon;i _M;ss&ghumm S1886{USE

@ Inventor: Mundie, Cralg J.
510 Grest Rosd -
Stows Massachusetts 017751L8)

@ invenior: Myszewskl, Mathew J,
Apertiment Ne, 302 3848 Gros Rosg
Acton Massechusetts 0 F20{USH

inventor: Stewsrt, Wilhiam K,
No. 1,76 Gordon Strest
Brighton Massachusetis 21 35{US)

@ Inventor: Veres, Jamest,
1R Foxhill Rosd
Framingham Massachussts 01701 {US)

@ Inventor: Ziegler, Michaett,
188 vy Lane
Whitlnsville Massachusetts 01588{US)

Representative: Deans, Michsel Jokn Parcy et s,
Lioyd Wise, Tregour 8 CO:. Norman House 105-108 Strand
London WCIR OAEIGE)

Digital computer.

@ An efficient. technigue for concurrently executing the
Herations of an iterative construct is described. A paraliel-
processing computer is provided which is capabls of success-
futly processing computationatly intensive applications typic-
ally Tound in enginesting and scientific applications,

Atechnique is also described forinterla aving the memaory
elernenis of a paralisl-processing computer; and in particular
one sdapted for use in processing computationally imensive
spplications Involving memary scoesses at fixed strides. The
memory slements {for exampie, cache sections) are highly
accessible 10 the processors.

There is slso described 2 backplane-residens switch for
sefectively connecting sny selecied plurality of firgt sub-
system buses to any selecied plurstity of second sub-systern
buses,

Petitioner ARRIS Group, Inc.’s

Cropdon Printing Lompairy Lyg,

ARRIS883IPRI0001374

asommer
Petitioner Name

asommer
Rounded Exhibit Stamp

ARRIS883IPRI0001375

EMORY A&DDULE

e

a7 £ 5 1¥ ;7
PP A——— e N Y
0]
| ‘ i o
e L. .«.A,lu.m. _.i._._- i s b o
‘m%wi““ oy s i
O ___,,.,.._.,._w_ e o ey W
} LU LACRY O ‘ = CFLACHE§ \ e oty
L |
SWITCH l i E
. |
| T
BE
| 7% lctuz l | /U e

FIG 1

CDUGMM&C«? CQN“IROL 6‘35

HﬁL’l’k&L\S

10

15

20

25

30

0214718

Background of the Invention

This invention relates to digital computers capable
of parallel processing. There has been some academic
interest in the possibility of concurrently executing
the iterations of an iterative construct such as a DO
loop in FORTRAN. E.g,, Kuck, D.J., "Parallel Processor
Architecture--A Survey”, 1975 Sagamore Computer

Conference on Parallel Processing; Kuck,

D.J., "Automatic Program Restructuring for High~Speed
Computation”, Proceedings of CONPAR (1981}): Kuck, D.Jd.,
Structure of Computers and Computation. A principal

difficulty in designing a parallel-processing
architecture that will efficiently execute DO loops
and other iterative conétfucts is synchronizing the
so-called dependencies that exist in the loops. Kuck
has classified more than one type of dependency (Id.),
but the dependency of practical interest is that
wherein a first instruction cannot properly be executed
in a given iteration until a second instruction {whiech
could also be the first instruction) has been executed
in a prior iteration. |

There has been little progress in applying
parallel processing to the computationally intensive
applications typically found in engineering and
sclentific applications, particularly to parallel
processing of the same job {(i.e.; the same instructions
and data),

In such applications, it is typical to
find repetitive accesses to memory at fixed address
intervals known as strides. FEach new access initiated
by a processor is for a memory location separated from
the last access by the length of the stride. A stride

of one means that the processor accesses every word

ARRIS883IPRI0001376

10

i5

20

25

e 0214718

(whose length may very) in sequence. A stride of

two means that every other wora is accessed. If
interleaved memory elements are accessed by the
processors, the stride determines a upigue sequence of
memory accesses known as the access pattern (e.g., for
four memory elements, the access pattern might be ABCD}.

Caches have long been used in digital
computers, and have been applied to parallel
processing, with one cache assigned to each processocr.
A cache is & high-speed memory containing copies of
selected data from the main memory. Memory accesses
from a processor come to the cache, which determines
whether it currently has a copy of the accessed memory
iécation., I¥f not, a cache "miss® has occurred, and the
cache customarily stops accepting new accesses while it
performs a main memory access for the data needed by
the processor.

This invention relates to digltal computers,
and particularly to technigues for interconnecting
parallel processors with memories. In a digital
computer in which a plurality of processors must
be connected to a plurality of memories, it is
conventional to provide a common bus connected to all
processors and memories, and to have the processors

share the bus.

ARRIS883IPRI0001377

< 0214718

Summary of the Invention
The invention has three aspects.

In a first aspect of the invention, we
have discovered and reduced to practice an extremely
5 efficient technique for concurrently executing the
iterations of an iterative construct. The invention
provides a parallel-processing computer capable of
successfully processing computationally intensive
applications typically found in engineering and
10 scientific applications.

In general this first aspect of the
invention features, firstly, a plurality of processors
eacn adapted for concurrently processing different
iterations of an iterative construct, and each adapted

15 for serially processing portions of the program outsice
of the iterative construct: means are provided for
activating idle processors at the start of concurrent
processing of the iterative construct and for
transferring sufficient state information to the

20 activated processors so that they can begin concurrent
processing.

In a first set of preferred embodiments of
this first aspect, the iterative construct contains one
or more dependencies. A processor encountering the

25 first instruction (of the dependency defined above)
delays further processing until it receives a go-ahead
signal indicating that the second instruction of the
dependency has been executed in the prier iteration.
The go-ahead signal 1§ provided by a synchronizing

30 means that stores a number representative of the lowest
iteration to have not executed the second instruction:
the stored number is incremented each fime the second

instruction is executed. The synchronizing means

ARRIS883IPRI0001378

i0

290

25

30

ARRIS883IPRI0001379

H 0214718

issues the go-~ahead signal when a comparison of the
stored number Lo a number representative of the prior
iteration shows that the second instruction has been
executed in the prior iteration. The synchronizing
means includes a synchronization register that is
incremented each time it receives an advance-register
signal, sent to it after the second instruction is
executed in each iteration; processing is delayed after
execution of the second instruction until the processor
is informed that all lower iterations than the one
being executed have caused the synchronization
register to be incremented; speclal await and advance
instructions are inserted before and after the first
and second instructions, respectively, to effect
synchronizationy a plurality of synchronization
registers are provided, each fqr synehronizing a
different dependency {or group of dependencies); the
await and advance instructions have an argument for
specifying the synchronization register; the go-ahead
signal is issued based on a comparision of the contents
of the synchronization register to the contents of a
current iteration register minus a specified iteration
offset (representative of the number of iterations
separating the current iteration from the prior
jteration in which the second instruction must have
been executed); the iteration offset is specified as an
argument to the await instruction; the synchronization
register contains only the least significant bits of
the lowest iteration to have not executed the second
instruction, enough bits to express the maximum
difference in iterations ever being processed
concurrently; a further bit in the registers keeps
track of whether the register has been advanced during
the current iteration.

i5

20

25

30

5 0214718

In a second set of preferred embodiments of
this first aspect, the invention features transferring
state information to all of the processors during
initiation of concurrent processing so thateany one
of the processors can resume serial processing at
the completion of concurrent processing., The processor
to resume serial processing is the one to process the
last iteration of the iterative construct; and the
transferred state information includes the value of the
stack pointer just before concurrent processing began.
Allowing the processor executing the last iteration to
resume: serial processing, rather than returning serial
processing to a predetermined processor has the
advantage that program state does not need to be
transferred at the resumption of serial processing. as
the processor executing the last iteration necessarily
has the correct program state for continuing serial
processing.

In a third set of preferred embodiments of
this first aspect, the invention features assigning a
new iteration to the next processor to reguest an
iteration, so that iterations are not assigned to
processors in any prearvanged order. Iterations are
assigned by determining the number of processors
simultaneously bidding for an iteration using ready
lines that extend between the processors, one line
being assigned to each processor; the total number of
asserted ready lines is used to increment a register
that keeps track of which iterations have already been
assigned (and which preferably contains the next
iteration, i.e., the iteration to be assigned when the
next bid is made for an iteration): a current iteration
register is provided; the maximum iteration of the

ARRIS883IPRI0001380

10

15

20

25

ARRIS883IPRI0001381

b 0214718

jterative construct is transferred to all the
processors and compared to the current iteration

to determine whether concurrent processing by that
processor should be terminated; the hardware for making
iteration assignments is located at each processor and
is adapted to permit each processor to simultaneously
and independently determine its iteration assignment
based on the number of asserted ready lines; initial
iteration assignments are also made simultaneously
using the same hardware.

in a fourth set of preferred embeodiments of
this first aspect, the invention features concurrency
control lines connecting the processors and serving as
a conduit for passing signals between the processors
to control concurrent processingy local concurrency
control logic is provided at each processor for
transmitting and receiving signals over the lines.

A common data bus extends between the processors

for transferring state information such as the stack
pointer between processors at the start of concurrent
processing; the concurrency control lines extending
between processors include the ready lines, lines for
passing signals such as the advance-register signals
for the synchronization registers, and lines for
informing the processors of the initiation and
conclusion of concurrent processing.

In a fifth set of preferred embodiments of
this first aspect, the invention features concurrently
executing an iterative construct that contains within
it a conditional branch to an address outside of the
construct: means are provided for informing processors
other than the one taking the branch that such has
taken place and that concurrent processing is

7 0214718

terminated. A processor encountering a trap is
prevented from taking the trap until it receives an
indication from a trap-serializing synchronization
register that the iteration it is processing is the

5 lowest one being processed in which there remains z
possibility that the conditional branch could be taken;
the synchronization reglster is incremented at the
completion of each iteration {(or at a point in the
code beyond which there is any possibility of said

10 conditicenal branch ¢ccurring before completion of an
iteration); the conditional branch in the lowest
iteration is forced to occcur prior te such a branch in
a higher iteration by inserting an await instruction
before the gquit instruction; the await instruction

i5 causes further processing to be delayed until the
trap-serlalizing synchronization register reaches a
value egual to the current iteration.

In a sixth set of preferred embodiments of
this first aspect, the invention features providing

20 each processor with a private stack pointer for use
during concurrent processing far‘stsring data unique
to a single iteration (e.g., temporary variables,
subroutine arguments, and return addresses). The
global stack pointer in use before the start of

25 concurrent processing is saved for reuse at the
completion of concurrent processing; and the global
stack pointer is transferred to all the processors so
that it is available to whichever processor resumes
serial processing.

30 In a seventh ‘set of preferréd embodiments of
this first aspect, the invention features determining
whether an lterative construct intended to be processed
concurrently is nested within another construct already

ARRIS883IPRI0001382

10

20

25

30

ARRIS883IPRI0001383

471
< 0214718

being concurrently processed. If such is the case, the
nested construct or loop is executed serially on the
processor that encounters it. The nested loop is
executed using the same iteration assignment hardware,
except that the current iteration is incremented by one
for sach new iteration; and the current iteration of
the outer concurrent loop is saved so that it can be
reused after processing of the nested loop has been
completed. v .

This first aspect of the invention also
features concurrent processing of vector instructions;
the elements of the vectors operated on by the vector
instructions are divided between the processors,
either horizontally or vertically, and each processoy
takes one pass {or "iteration") through the vector
instructions. In preferred embpodiments, each processor
computes, just prior to concurrently executing the
vecktor instructions, a length, increment, and ocffset
for use in selecting the vector elements that have been
assigned to the processor; a start-vector-concurrency
instruction is placed before the first of the vector
instructions and a repeat concuryency instruction is
placed after the instructions.

The invention provides a high performance
system capable of being constructed from moderately
priced components, performance that can easily be
expanded by adding additional prdeessors {CEs), and
fault tolerance resulting from continued operation
after failure of one or more pProcessOrs.

In a second aspect of the invention, we bave
discovered an excellent technique for interleaving the
memory elements of a parallel-processing computer, one

g 0214718

particularly adapted for use in processing
computationally intensive applications involving
memory accesses at fixed strides. It makes the memory
elements (e.g., cache sections) highly accessible to

5 the processors.

In general this second aspect of the inventidn
features, firstly, a plurality of memory elements
{e.g., cache sections) connected to a plurality of
parallel processors, with the memory elements so

10 interleaved that the access pattern generated by
said processors when accessing data at predetermined
strides permits all of the processors to reach a phase
relationship with the other processors in which each
processor is able to access a different said memory

15 element simultaneously without access eonflicts
arising. In preferred embodiments, the processors
are adapted for concurrently processing the same
instructions and data {e.g., different iterations of
the same iterative construct}; the interleaving is

20 such that the access pattern generated by the
processors for strides of one and two meets the
conditions that (1) the pattern will tolerate being
offset with respect to an identical pattern by an
offset (or any multiple therecf) equal to the length of

25 the pattern divided by the number of memory elements,
and (2) the pattern includes at least one conflict at
every offset other than the tolerable offset so that
access conflicts force the processors to assume a phase
relationship with each other wherein their accessing

36 patterns are offset by the tolerable offset; there are
four memory elements W,X.Y,7 and the interleaving
produces an access pattern of WXXWYZZY {or, less
preferably, WAXWYYZZ or WWXZYXZY) for a stride of

ARRIS883IPRI0001384

1¢

15

20

25

30

ARRIS883IPRI0001385

o 0214798

one and WXYY% for a stride of twop or the interleaving
produces an access pattern of WWXXXXWWYYZZZZYY for a
stride of one, a pattern of WXXWYZZY for a stride of
two, and a pattern of WXYZ for a stride of four;

the interleaving for eight memory elements is
ABCDDCBAEFGHHGFE for a stride of oné and ACDBEGHF

for a stride of twop the memory elements choose among
simultaneously contending processors on the basis of a
fived priority ranking.

This second aspect of the invention also
features a global cache acctessed by a plurality of
parallel processors. In preferred embodiments, the
processors are adapted for concurrently processing the
same instructions and data (e.g., different iterations
of the same iterative construct); the cache is divided
into interleaved sections; blocks of data accessed from
memory are divided between the cache sections; each of
two cache sections drive a common memory address bus
with the block address of the block being accessed and
both sections concurrently read the block address from
the common bus; separate buses connect each of the two
cache sections to main memory, and each cache section's
half of the data block is transferred over its memory
bus; and the two cache sections share a common circuit
board.

In this second aspect of the invention it is
also noted that in a parallel processing environment,
particularly one dedicated to concurrently processing
portions of the same job (i.e., same instructions and
data), a cache may be usefully given the capability of
simultaneously accepting current accesses while working
on completion of pending accesses that it was unable to
complete earlier {e.g., because 2 malin memory access

i 0214718

was regquired). This makes possible far greater memory
bandwidth for each processor. In preferred
embodiments, the block addresses.for the pending
accesses are stored along with a status code comprising
5 a prescription of the steps necessary to complete the

access; the stored block addresses for pending accesses
are compared to the addresses of each new block of data
received from main memory and. the status code for each
is redetermined based on the prior state of the code

1c and the outcome of the address comparison; the block
addresses of current accesses are compared to the
addresses of main memory accesses still in progress
{i.e., not yet avalilable in the cache memory); the
cache index of current accesses are compared to the

15 cache indexes of main memory accesses in progress to
determine whether a block of data accessed from Bemory,
though not the data sought by the current access, is
data that will be written into the cache memory
location addressed by the current access; the cache

20 is divided into a plurality of sections and is capable
of concurrently accepting a plurality of accesses to
different sections; the cache control logic is divided
into gquick-work logic for completing accesses capable
of immediate completion, pending~status logic for

25 initially determining the status code for a pending
access and redetermining the status codes as conditions
change, and access-completion logic for taking control
of the data and address paths within the cache to
complete a pending access when the status code

30 indicates that it can be completed; logic is provided
to assure that pending accesses from the same processor
are completed in the order they are received, rather
than the order in which they could best be completed;

ARRIS883IPRI0001386

2 0214718

two cache sections split data blocks accessed from
menory and share a maln memory address busg, 8o as
thereby to detect the addresses of blocks acceéssed by
the other cache section. We incorporate by reference

5 the copending application entitled "Digital Computer
with Cache Capable of Concurrently Handling Multiple
Accesses from Parallel Frocessors”, filed on even date
herewith.

A third aspect of the invention features a

10 backplane~resident switch for selectively connecting
any selected plurality of first subsystem buses to any
selected plurality of second subsystem buses. In
preferred embodiments, the first subsystems are
processors and the second subsystems are cache

15 sections; there are more processors than cache
sections: separate processor-access lines and
cache~acknowledge lines {(e.g., CBUSYL) are provided
outside of the switch; control of the switch resides
in the cache sections; cache-not~ready lines {e.g.,

20 CWAITL) aré provided separate from the switch; the
cache sections are interleaved:; and the switch is
implemented as a plurality of gate arrays mounted on
a circuit board forming the backplane.

Phe third aspect of the invention also

25 features a bus-switching means selectively connecting a
plurality of parallel processor buses to a plurality of
memory buses in a parallel processing system in which
the processorg are adapted for concurrently processing
portions of the same job {i.e., the same instructions

30 and data). In preferred embodiments, the processors
are adapted for concurrently processing different
iterations of the same iterative construct.

ARRIS883IPRI0001387

12, 0214718

Other features and advantages of the invention
will be apparent from the description of & preferred
embodiment and from the claims.

ARRIS883IPRI0001388

10

15

20

25

30

ARRIS883IPRI0001389

0214718

bescription of the Preferred Embouiment

I. Drawings
Fig. 1 is a syctem block diagram.

Fig. 2 is & block diagram of an interactive
PLocessor.

Fig. 3 is a block disgram of a high-speed
processor or computational element (hereinafter a "CEY).

Fig. 4 is a diagram showing the structure of
the concurrency status register (CSTAT).,

Fig. S is a block diagram showing the
copngurrency contyrol bus that connects concurrency
control units {hereinafter "CCUs") and showing the
connections between each CCU and its CE {only two CEs
and CCUs are shown).

Figs. 6-10 collectively are a block diagram of
the CCU.,

Figs. 1IA and 118 are two halves of a block
diagram of the CCU status register (CSTAT).

Fig., 12 is a block diagram of one of the eight
4-bit synchronizZation registers.

Fig. 13 is & timing diagram for the CSTART
instruction.

Fig. 14 is a diagram illustrating an example
of concurrent processing.

Pig. 15 is a block diagram showing the CEs,
backplane switch, and cache guadrants, and the
connections therebetween.

Fig. 16 is a block diagram of the
backplane~switch logic simplified to show the logic for
one bit of the ninety-six bits switched between the CEs
ang cache guadrants.

10

15

20

25

30

1= 0214718

Fig. 17 is a block diagram showing one of
twenty-four four-bit gate arrays forming the backplane
switch, ;

Fig. 18 is a perspective view, somewhat
diagrammatic, of the c¢ircuit boards forming the CEs,
cache guadrants, and backplane.

Fig. 19 is a block diagram showing the address
and data paths in the cache guadrants.

Fig. 20 is an overall block diagram of the
control logic for the cache quadrants.

Fig. 21 is a block diagram of the
pending-status logic in a cache gquadrant.

Ii. Bummary
A& system block diagram is shown in Fig. 1.

Eight high-speed processeors or computational elements
{CEs} 10 are connected to two central processing cache
boards 12 {each comprising two guadrants of a four-way
interleaved central processing cache (CP cache}) by a
switch 14 which resides on backplane 192 {Pig. 18) into
which the CE and cache boards are plugged. The switch
permits any four CEs to be concurrently accessing the
four cache guadrants. The CEs each have a concurrency
control unit {CCU} 24 for controlling concurrent
processing. The CCUs communicate with other CCUs
across a concurrency control bus 26. Memory bus 16
connects the caéhe guadrants to eight memory modules 17
{each B megabytes}. Alsc connected to the memory bus
are two interactive processor caches 18, each of which
is connected to three interactive processors (IPs) 20.
Fach IP serves a multibus 22, to which peripheral
devices (not shown) are connected.

The system is a shared-global-memory,
symmetric (i.,e., not master-slave) multiprocessing

ARRIS883IPRI0001390

lo 0214718

computer particularly useful for general scientific
and engineering computation. The CEs can execute
vector, floating-point, and concurrency instructions,
as well as integer and logical instructions. The CEs

L

concurrently process different iterations of the same
jterative construct (but they may also operate
independently to provide a high-performance
multi-tasking system). The IPs are moderate-speed
interactive processors that can execute integer and
10 logical operations only, and are used for handling
input/output traffic, text editing, and similar
operations. Data types supported include 8, 16, and 32
bit integer/logical data as well as IEBE standard 32
and 64 bit floating-point data on the CEs only. Memory
15 is virtnally addressed. CEs access gliobal memory
through cache boards 12, which the CEs communicate
with via switch 14. Each CE has its own 16K byte
virtually-addressed instruction cache. The IPs access
global memory through interactive processor caches 18.

20 1II. Computational Elements

The computational elements (CEs} are intended
for high-speed computations. The CEs are identical,;
and as Few as one may be installed in & system.

Any number of CEs may participate in concurrent
25 processing. Those that do are sald to be in the
concurrency complex (hereinafter "the complex™). Those
that do not are said to be detached (CCU status bit
DETACHED is 1 to indicate such detached operation).
CEs can be detached in the event that a job mix being
30 executed on the system includes jobs that cannot make
use of concurrent processing (e.g., compilation and
debugging) as well as jobs that can (e.g., production

ARRIS883IPRI0001391

10

15

20

25

30

0214718

”

jobs). A detached CE acts as if it were a system
with only one CE present; it executes concurrency
instructions as if it were a one-processor system.

A block diagram of a CE is shown in Fig. 3.
A processor interhal bus PIBUS (32 bits wide) is used
to transfer data and addresses between the CCU 24, an
address translation unit, an instruction pProcessor
{(containing both an address unit and an integer logic
unit and comprising a Motorola 68020 instruction set},
and a CE switch, which serves as a conduit between the
PIBUS, the vector registers, and the floating point
units (which include multipliers, dividers, and an
adder). & control section (which includes an
instruction parser, a microsequencer, and a RAM-based
control store) provides instruction commands to the
CCU, the instruction processor, the vector registers,
an instruction cache, and the CE switch. The CE
communicates with other CEs across the concurrency
control bus 26, and with the CP caches 12 using the
address and data ports connected to the memory
switch 14.

A. Instructions

kach CE executes instructions stored in
memory. Each is capable of interpreting and
executing four categories of instructions: (1) base
instructions, which implement data movement, logical,
integer arithmetic, shift and rotate, bit manipulation,
bit field, binary coded decimal, and program control
operations; (2) floating point instructions, which
implement arithmetic (including functions such as

square root and sine), test, and move operations on

floating point data; {3) vector instructions, which

ARRIS883IPRI0001392

190

15

20

25

30

ARRIS883IPRI0001393

6 0214718

implement integer and floating point operations on up
to 32 data elements at a time; and (4) concurrency
instructions, which implement the parallel execution of

instructions by multiple CEs. The processor coptains
several classes of registers (see below) for supporting
instruction execution. An instruction consists of one
or more whole words, where a word is 16 bits.

An instruction contains the information on
the function and operands. Particular bits in the
instruction define the function being reguested of the
processor; the number and loéatiQn of theidefining bits
can vary depending on the instruction. The remaining
bits of the instruction define the operand--the data to
be acted upon. The data can be in memory, in registers
within the processor, or in the instruction itself
{immediate data): it can be specified as register
numbers, values, and addresses.

Instruction execution normally occurs in the
order in which the instructions appear in memory, from
low addresses to high addresses. Instructions being
executed in the normal sequence must immediately follow
one another.

The processor controls the sequence of
instruction execution by maintaining the memory address
of the next instruction to be executed in a 3Z-bit
register called the program counter (PC}. During the
execution of instructions that do not alter the normal
sequence, the processor increments the PC so that it
contains the address of the next sequential instruction
in memory {(that is, the address of the word immediately
following the current instruction). For example, the
PC would be incremented by 4 following execution of
a 32 bit instruction. Instructions medify the

10

15

20

25

30

19 0214718

contents of the PC to permit branching from the normal
instruction sequence. Other instructions alter the
normal sequence by loading a specified value into

the PC.

Most of the base instructions and those vector
instructions that produce scalar integer results alter
special bits in the processor called integer condition
codes. For example, subtracting twe equal integer
values sets the zero condition code, while subtracting
a larger integer value from a smaller integer value
sets the negative condition code. Some instructions
contain a 4-bit condition code field whose value
specifies a condition such as equal, less than,
greater than, and so on. The condition is true if the
condition codes are set in a certain way. For example,
if the zero condition code is set, the equal condition
is true; if the neqative condition code is set and the
overflow condition code is cleared, the less than
condition is true; if the negative and overflow
condition codes are set and the zero condition code
is cleared, the greater than condition is true. The
floating point instructions have separate floating
point condition coedes.

1. Vector Instructions

& vector instruction can operate on up to 32

elements of integer or floating point data at once.

For example, a single vector add instruction can:

add a scalar value to each element of a vector, adad

the corresponding elements of 2 vectors, or add the
elements of a vector together (reducing the vector to a
scalar value). Vector instructions require set-up work
to specify the characteristics of the vectors. Vectors

ARRIS883IPRI0001394

{4

i0

15

20

25

30

L0 0214718

of length greater than 32 elements are processed in a
loop. On each iteration of the loop, the length is
decremented by 32. The final iteration may (and
usually does) contain fewer than 32 elements. E.g.,
with a 72-element vector, the vector instructions
would operate on 32-element vectors during the first 2
iterations and on an 8-element vector in the third and
Tast iteration. The different iterations of such
vector loops can be executed concurrently on a
plurality of CEs.

2. Processing SBtates

A CE operates in one of the three processing
states: {1y normal, the state in which the processor
executes instructions from memory as described in the
preceding sections; {2}_exceptiong the state initiated
by external interrupts, bus exceptions, certain
instructions, traps, and occurrences of certain
conditions during instruction execution; (3) halted,
the state caused by a serious failure requring the
processor to halt. The processor operates in one of
two privilege states: user, in which execution of
privileged instructions is inhibited, and su ervisor,
in which execution of nearly all instructions is
permitted. The supervisor state can be either
interrupt-supervisor state or master-supervisor state,
to permit access to different system stacks. The
processor enters interrupt-supervisor state when an
exception occurs. Exception processing is the only
method for entering supervisor state.

3, Addregs Spaces

addresses specified in instructions are

normally virtual (logical) and undergo a tramslation

ARRIS883IPRI0001395

10

15

20

25

30

2| 0214718

before being used. A virtvual address can occur in

one of several address spaces depending on the state of
the machine and the nature of the data being accessed
{for example, whether the processor is fetching an
instruction or an operand): user data space (accesses

of data in user privilege state); user PIOgram space
(accesses of instructions in user privilege state);

supervisor data space (accesses of data in supervisor

privilege state); supervisor program space (accesses of

instructions in supervisor privilege state): processor
(CPU) space {accesses of instructions in any privilege
state do not normally occur in processor space, which
contains internal registers). The user and supervisor
address spaces are references to external memory
units. The processor address space is a read/access

storage area internal to a CE.

B. Data Types

A CE supports integer, bit, bit field, binary
coded decimal, and floating point data types. In
addition, integer and floating point data can be
accessed as vectors.

1. Integer Data

An integer data element can be a byte

(8 bits), a word (16 bits, 2 bytes), or a léngword

(32 bits, 4 bytes). For signed arithmetic operations,
the integer represents a positive or negative whole
number. The most significant bit constitutes the
sign of the number; it is cleared for a positive
number, and set for a negative number, The remaining
bits constitute the value of the number, Positive

numbers are stored in binary notation. Negative

ARRIS883IPRI0001396

10

15

20

25

30

0214718
e

numbers are stored in two's conmplement notation--the
bits of the corresponding positive value are inverted
and one is added to the result. For unsigned
arithmetic operations, the integer represents an
absolute whole number; all the bits constitute the
value of the number; numbers are stored inm binary
notation. TFor logical operations, the integer is
treated on a bit by bit basis.

2. Bit and Bit Field Data
Bit operations permit access of a bit by

specifying its cffset from the low order bit of a

byte. Bit field operations permit access to a sequence
of bits by specifyving (a} the offset of the bit fielad
from the low address bit of & byte and {(b) the width of
the bit field.

3. Floating Point Data
A floating point data element can be a

longword (single precision) or a guadword (double

precision). The least significant bit is always the

high address bit of the data element and the bit
numbers run from the high address bit to the low
address bit within the data element. Representation

of floating point data in memory follows the IEEE
standards for single and double precision numbers, with
some restrictions. The storage element consists of
three parts: sign, exponent, and fractional part of
mantissa.

4, Vector Dats
A vector can be integer or floating point in
type. The number of elements is called the vector

ARRIS883IPRI0001397

I3 0214718

length. The elements can be adjacent or can be

- separated by a constant stride. The stride is called
the vector increment and is measured in multiples of
the element size.

5 C. General Registers

Each CE contains data, address, floating
point, and vector registers for general programming
use. There are 8 data registers, named DO through D7,
which can be used for storing integer and bit field

10 data; each register is 32 bits in size. There are B
address registers, named A0 through A7, which can be
used for storing word &nd loéngword integer data: each
register is 32 bits in size., There are B floating
point registers, named FPO through ¥P7, which can be

15 used for storing single and double precision floating
point data; each register is 64 bits in size. There
are B vector registers, named V0 through V7, which can
be used for storing long integer and floating point
data; each vector register is 64 bits by 32 elements

20 {2048 bits total) in size; the data elements in one
register must be of the same type and size.

D. Control Registers

In addition to the registers for general use,
there are control registers. Most of these registers
25 are modified implicitly during the execution of certain
instructions, although some of the control registers
¢an be manipulated directly.
The program counter {PC} is a 32-bit register
that contains the address of the next instructioh to be
30 executed. The processor alters the contents of the BC
as a part of normal instruction execution. Most

ARRIS883IPRI0001398

S 0214718

instructions advance the PC to the memory address
immediately following the instruction being executed,
so that a sequential flow of instructions occurs. Some
instructions permit jumping to a new instruction by

5 loading a néw address into the PC.

Address register 7 (A7) is treated as the user
stack pointer (8P} if user mode is in effect, the
master stack pointer if master supervisor mode is in
effect, and the interrupt stack pointer if interrupt

10 supervisor mode iz in effect. The stacks are areas of
memory that can be accessed on a last-in, first-out
basis. Each stack is contiquous, running from high
addresses to low addresses. The term system stack
refers to any of the three stacks. The term supervisor

15 stack refers to either the master stack or the
interrupt stack. The stack pointer contains the
address of the last word placed on the stack (the top
of the stack). Storage is allocated on the stack by
decrementing the stack pointer, and deallocated by

20 incrementing the stack pointer. For exampleé, to push
the contents of A0 onto the system stack, the stack
pointer (A7) is decremented by 4 (4 bytes}, and A0 is
stored at the address contained in the stack pointer.

A status register (16-bits) is prowvided.

25 The low-order 8 bits contain the condition codes and
the integer overflow bit., Instructions that operate
on ‘integer, bit, and bit field data {the base
instructions) typically affect the condition codes.
Vector instructions that produce scalar integer results

30 also affect the condition codes. Condition codss
include negative condition code {set if an instruction
produces a negative result), zero condition code {set
if an instruction produces a result of 0), overflow

ARRIS883IPRI0001399

&5 0214718

condition code (set if an instruction produces a result

that overflows the size of the destination operand},

carry condition code (set if an instruction generates a

carry or a borrow}, and extend condition code (set the
5 same as the carry condition codel.

Floating point operations (including vector
operations on floating point operands) use a floating
point status register, a 32-bit register that contains
floating point condition codes and exception codes; and

10 a floating point control register, a 32-bit register
that contains exception trap enable codes and floating
point mode codes.

Vector instructions reserve three data
registers as control registers for specifying the

15 length, increment, and offset of the vector instruction
being processed. These registers are loaded prior to a
vector instruction.

The control registers for concurrency
coperations are discussed in & subseguent section.

20 Each CE also has several internal processor
registers.

E. Memory Management

The memory management mechanism permits each

program using the processor to address a very large

25 amount of virtual memory (e.g., 332 bytes) starting
at address 8. The processor (as a part of normal
instruction execution) translates a program's virtual
references to physical memory addresses using tables
provided by software (for example, an operating

30 system). If a virtual reference does not have a
corresponding physical memory address, the processor
can change t0 exception processing and transfer centrol

ARRIS883IPRI0001400

Lk 0214718

to the memory management exception vector routine,
permitting software to validate the virtual reference
{for example, by reading the referenced instruction or
data into memory from secondary storage}. In this way,
5 a program can use more space than a machine has
physical memory, and many programs can work on cne
machine as if each program occupied memory alone.
virtual addresses for each program can be mapped to
geparate physical memory addresses for private,

10 protected environments and to the same physical memory
addresses as other programs to share gode and data. In
addition, the memory management mechanism permits areas
of memory tc be flagged as read-only.

Memory management supports four virtual

15 address spaces: user data (accesses of data in
user privilege state), user program (accesses of
instructions in user privilege state), supervisor
data {accesses of data in supervisor privilege state),
and supervisor program {accesses of instructions in

20 supervisor privilege state}. The initial memory
addressed by each program can be divided into 1024
segments, each segment containing 1024 pages; and each
page containing 4096 bytes. Virtual addresses can be
flagged as read-only on & per spaceé, per segment, and

25 per page basis.

23 addressable

Physical memory consists of 2
bytes numbered consecutively from address 0. Memory
management divides physical memory into a series of
pages each 4096 bytes in size.

30 A virtual address {32 bits in size) is
divided into segment (10 bits), page (10 bits), and
byte {12 bits) numbers. A physical address (28 bits in
size) is divided into physical page (16 bits) and byte

ARRIS883IPRI0001401

10

15

20

25

39

L] 0214718

{12 bits) numbers. The low order 12 bits of a virtual
address map directly to the low order 12 bits of &
physical address; no translation takes place. The high
order 20 bits of a virtual address (the segment and
page numbers} point to a physical page through tables
supplied by software, inciuding segment and page
tables., The processor constructs a physical address
by determining the physical page number from the tables
and the high order 20 bits of the virtual address. The
12 low order bits of the virtual address are tlien added
to the physical page number yielding a complete
physical memory address.,

A CE caches the most recently used segment
and page tables in an internal page translation buffer
as translations are made. & CE first attempts to
determine the physical page number associated with a
virtual address from the page tables in the translation
buffer. If the translation buffer does not contain the
necessary page table, the CE attempts to locate the
page table in memory from the segment tables in the
translation buffer. If the translation buffer contains
the necessary segment tables, the CE then examines the
page table in memory to detérmine the physical page
number, If the translation buffer does not contain the
necessary segment table, the processor must examine the

tables in memory to determine the physical page number,

IVv. Interactive Processors

The interactive processors (IPs) are oriented
toward input/output and coperating systems duties.
Each IP has the same base instructions and supporting
registers as the CEs, but not its floating point,
vector, ©r concurrency registers and instructions. An

ARRIS883IPRI0001402

10

15

20

25

34Q

P 0214718

IP can access system registers, system devices,; and
input/output devices. Memory is sccessed through an
interactive processor cache (IPC), with up to three IPs
being served by a single IPC. &An IP is connected to
peripheral devices through a multibus, and can transfer
data between a peripheral device and system memory

by way of the multibus and its IPC. An IP has
asynchronous communications channels for conscle and
diagnostic devices. A conscle IP is used to start the
system, using the code read from its power-up EPROM.
The operating system is also booted from EPROMs.

Fig. 2 is a block diagram of an IP.

Processor 30 is conneécted by data bus 32 to multibus
interface 34, IPC interface 36, and local memory 38.
Virtual addresses supplied by processor 30 are
translated by memory managementr 40. The local memory
includes a power-up EPROM, boot EPROMs, régisters,
timers, a local 512K RAM, an EEPROM {providing
additional registers), and registers for accessing
DUART {(dual universal asynchronous receiver/transmitter)
channels.

Memory management is acconmplished using two
caches--a sSupervisor map aéé a user address translation
unit {(ATU)=--and logic for translating virtual memory
addresses {32 bits} to physical addresses (28 bits).
The ATU is divided into a program section and a data
section. Physical addresses are one of four types:
global memory {28 bits defining an address in the main
memory accessible by way of the IP cache), multibus
{20 bits), local memory (28 bits), and IPC device
(28 bits specifying a device; register, or stoerage area

‘on the IPCY.

ARRIS883IPRI0001403

10

15

20

25

Z4
0214718

V. Concurrent Processing and the CCus

Referring to Fig. 1 and 5, each CE 10 includes
a CCU 24 that communicates with other CCUs across &
concurrency control bus 26. The CCU provides hardware
support for initiating concurrent processing, assigning
iterations, synchronizing dependencies, and terminating
cencurrent processing. The CCU and CCU bus are shown
in Figs. 5-12. Appendix B comprises the Boolean
equations for five logic arrays of the CCU {CONTROL,
DECODER, WAIT, PIDEC, RIDLE).

A, Concurrency Instructions

Concurrent processing is controlled using the
following twenty concurrency instructions:

@

Loop Control Instructions

CADVANCE Advance synchronization register.

CAWAIT Await synchronization register
advance.

CIDLE Do nothing.

CQuUIT Exit concurrent loop.

CSTART Start concurrent loop.

CSTARTST Start concurrent loop and
serialize traps.

CVECTOR Start vector concurrent loop.

CVECTORST v Start vector concurrent loop and

serislize traps.,

CREPEAT Branch to top of concurrent loop
if more iterations,

ARRIS883IPRI0001404

20 0214718

Save, Restore, and Move Instructions

CMOVE FROM Move CCU status register contents
to a specified address.
CMOVE TO Load CCU status register from a
5 specified address.
CHNEST Save gontents of CCURR, CHMBYX, CGSP

and CSTAT reglsters.

CUNNEST Restore contents of CCURR, CMAX,
CGsp and CSTAT registers.

10 CRESTORE Restore contents of all ten CCU
registers.

CSAVE Save contents of all ten CCU
registers.

Vector Concurrency Instructions

15 VIH Calculate the increment of a
vector for horizdntal concurrent
vector operatlions.

VLH Calculate the length of a vectoxr
for horizontal concurrent
20 operations.

VLV Calculate the length of a vector
for vertical concurrent operations.

VOH Calculate the offset of a vector
for horizontal concurrent
25 operations.

VOV Caleulate the offset of a vector
for vertical concurrent operations.

54 detailed description of the functions
performed by each of the first fifteen instructions
30 is given in Appendix A, using a pseudocode that is
explained in the appendix. The last five, the vector
concurrency instructions, are described in the section
on vector concurrent processing.

ARRIS883IPRI0001405

10

15

20

25

30

0214718

B. CCU Registers

There are ten 32-bit registers in each CQU:

CHMAX {maximum iteration): The register
contains the maximum iteration count for a concurrent
loop in progress. This value is the same across all
CEs in the concurrency complex.

CNEXT {next outer iteration}: The register
contains the low-order portion of the number of the
next iteration for a concurrent loop in progress.

The complete number is 33 bits with the high-order bit
(CNEXT32) being stored in the CCU status register. The
value is the same across all CEs in the complex.

CCURR ({current iteration): The register
contains the low-order portion of the number of the
current iteration of a concurrent loop. The complete
number 1s 33 bits with the highrorder bit being stored
in the CCU status register. This value is unique to
each CE in the complex.

CC8P (unigue ("cactus”) stack pointer):

The register holds the address of the base of g stack
for storing local variables during concurrent loop
execution. This value is unique to each CE in the
complex.,

CGSP {global stack pointer): The register is
used to broadcast the stack pointer to other CEs prior
to starting a éencurrent loop.

CGPC ({global program counter): The register
is used to broadcast the program counter to other CEs
prior to starting a concurrent loop.

CGFP {(global frame pointer): The register is
used to broadcast the frame pointer to other CEs prior
to starting a concurrent loop.

CIPC (idle instruction address): The register
is used to hold the address of the idle instruction,

ARRIS883IPRI0001406

10

15

20

25

30

23 Cz14718

the instruction continuocusly executed by CEs in the
complex when they are not needed.

CBYNC (synchronization registers): The
registér is the collective contents of the eight
4=bit synchronization registers, which adre uged to
synchronize dependencies within a concurrent loop, and
one 0f which may also be usped to serialize traps,

CSTAT (the CCU status register): The register
contains a variety of single~bit and multi~-bit fields,
as shown in Fig. 4.

C. CCU 8tatus Register

The various fields of the CCU status register
{CETATY are:

VPN, (virtual processor number}:; VBN is the
rank of a CE among N CEs in the-complex, using a
continguous numbering from 0 to N-1. There is not a
one-to~one correspondence between the physical number
of a CE and its VPN, as & CE may be absent, broken, ox
not taking part in cohcurrent processing. The VPN of
each CE within the concurrency complex is computed
during the CSTART sequence.,

NUM (the number of CEs in the concurrency
complex}: HNUM is a number from 0 te 7 eupressing the
total number of CEs in the complex (0 meaning one CE
in the complex). NUM eguals the highest VPN in the
compler. BUM is computed during the CSTART sequence.

INLOOP: The INLOOP status bit indicates
whether & CE is processing a concurrent loop. INLOOP
is globally set to 1 (in all CCUs in the complex)
during the CSTART sequence, and is used to wake up
other CEs in the complex. It is cleared wher a CE
goes idle or resumes serial processing.

ARRIS883IPRI0001407

53 0214718

NESTED: The NESTED status bit indicates that
its CE is executing a nested concurrent loop. NESTED
is locally set to 1 whén a CNEST instruction. is
encountered after concurrent processing is underway.

5 SERTRAP: The SERTRAP status bit is globally
set to 1 when either a {STARTST or CVECTORST is
encountered, so that that traps become serialized.

ENABLE: The EWNABLE bit can be used by the
CE ({with a CSAVE and CRESTORE operation) to leave a

16 flag that a request to change the number of CBs in the
complex has been made. Logic in the CE could inspect
INLOOP and ENABLE, and if the bits were 0 and 1,
respectively, inform the operating system so that a
change in the complex size could be made while no

15 concurrent processing was underway.

DETACHED: The DETACHED status bit specifies
whether a CE is a member of the concurrency complex
{a 1 indicates that it is not).

VECTOR: 'The VECTOR status bit is set to

20 indicate that 1t ig a vector~concurrent loop that is
being executed.

PARITY: The PARITY status bit is set to force
a CCU data bus parity error (by asserting PERR).

TEST: The TEST status bit can be used for

25 diagnostiec purposes.

CCURRO:s These four bits are a zero fFollowed
by & duplicate of the low-order three bits of the
current iteration number {CCURR}.

CCURR3Z2: This is the highest order bit of

30 CCURR.

CNE®T32: This is the highest order bit of

CNEXT,

ARRIS883IPRI0001408

i5

30

ARRIS883IPRI0001409

2
+ 0214718

p. Concurrency Control Bus

As shown in Fig. 5, the CCUs communicate
with other CCUs across a concurrency control bus 26
consisting of 22 control lines and one 33-bit data bus
{CCUBUS). The CLUBUS is bidirectional, and includeés an
additionial parity bit CCUP. The control lines include
three eight-bit groups of linesy advance lines ADV,
ready lines RDY, and active lines ACT. Each advance
line corresponds to one of eight synchronization
registers, Each ready and active line corresponds to
one of the eight CEs. The notation {Fig. 5) "“{(7:0}"
following each of these groups of eight lines indicates
that the lines are dencted "0% through "7%. Every CCU
receives as inpute all elght ready and active lines,
and can place an output on its own line within each
group. QOutputs are denocted by the suffix "0"; inputs
by the suffix "I" {e.g., there are eight ready input
lines RDYI(7:0) and one ready output line RDYQO at each
CCU}. The remaining five control lines comprise two
select lines SEL{1:0}, a CSTART line, a CQUIT line, and
a write line CWR, all of which can be read and written
by each CCU. The same "0 and "I" suffixes, meaning
output and input, respectively, are used for signals on
these lines.

The physical identity of each CE and its
CCU is established where the CE is plugged inte the
backplane. & different board idemntity signal BDID
(varying from 0 to 7) is supplied to each CE connector,
from which it is routed to the CCU.

E. Communication Between the CEs and CCUs

Edch CCU communicates with its CE across the
CE's 32-bit data bus (PIBUS) and several control lines

ia

15

20

25

30

% 0214718

{Fig. 5}. Control signals supplied to the CCU by the
CE include a register select signal RSEL (4 bits), a
write signal WR, a command signal DO, the iteration
offset OFFS (3 bits; an argument of the AWAIT
instruction}), a read (or output enablé) signal OB, a
synchronizer select signal SSBEL (3 bits: an argument
of the AWAIT and ADVANCE instructionzs}, and an
instruction identifier signal CMND {4 bits). Control
and status siqnals supplied to the CE from the CCU
include six status bits from the CSTATUS register
{ENABLE, DETACHED, SERTRAP, VECTOR, NESTED, INLOOP},
the number of CEs in the complex NUM {3 bits), the CE's
virtual number VPN (3 bits), and the signals TRAPOK,
SERIAL, QUIT, WAIT, and PERR {each 1 bit}. Several
¢locks €1, C3, P1, P3, E4 are passed to the CCU frowm
the CE. .

F. Initiating Concurrent Processing

Pricr to concurrent processing only one of
the CEs in the concurrency complex is active; the
others are ordinarily idle. Concurrent processing is
initiated when the active CE executes a CSTART {or
CSTARTST, CVECTOR, CVECTORST) instruction. Microcode
in the active CE supplies a multicycle sequence of
instructions to the CE's CCU, iastructions that
{1} wake up the other CEs in the complex, (2} pass
information {maximum iteration, global stack pointer,
global frame pointer, and program counter) to its own
CCU and, via the CCU bus, to other CCUs .and CEs in the
complex, (3) cause each CCU to arbitrate for an
iteration to be executed by its CE, and {4} read from
the CCU the assigned itération number and a unigue
{("cactus") stack pointer for use during concurrent

pProcessing.

ARRIS883IPRI0001410

o 0214718

1. Waiting For Other CEs To Go 1dle
Before the active CBE begins this CSTART
sequence, it checks to be sure that all other CEs in

the complex are in the idle state., The CE establishes

5 the idle status of the other CEs by inspecting the WAILT
line, which emanates from multiplexer 100 (Fig. 6).
The multiplexer is supplied with a four-bit
instruction identifier CMND that indicates which of six
instructions for which waiting may be required (CSTART,

10 CWAIT, CADVANCE, CQUIT, CIDLE, CHEPEAT} is currently
being executed by the CE. The multiplexer uses the
CMND signal to place the appropriate output of the WAIT
logic array 102 on the WAIT line. The WAIT logic array
has an output for each of the six instructions for

15 which waiting may be required; each output is asserted
whenever, based on several inputs, the WAIT logic array
determines that the CE should delay further processing
if it encounters the instruction. In the case of
CSTART, a wait condition is imposed unless the ANYACT

20 signal goes low, indicating that no other CEs in the
complex are active. ANYACT is asserted by RIDLE logic
array 90 if any active line ACT,; other than the CCU's
own ACT line, 1s asserted. An active line is asserted
whenever a CE is not detached and not executing the

25 CIDLE instruction. (The wait condition is also not
imposed if the DETACHED or NESTED status bits are set,
as in either case the loop following the CSTART

instruction will not be exeguted concurrently.)

2. Loading Registers

30 After the wait conditien imposed on
executing CSTART is lifted, the CE's microcode begins a
multicycle sequence of instructions to the CCU. Its

ARRIS883IPRI0001411

10

15

20

25

30

EY, 0214718

first step is to write the global stack pointer (GSP,
contained in a CE register} into the CGSP register
(Fig. 9) of all CCUs in the complex (i.e., GSP is
"globally" written into the CGSP registers). That is
accomplished by the CE placing the contents of the A7
register on the PIBUS {Fig. 8), asserting the write
line WR (Fig. 7}, and placing the appropriate four-bit
code on the RSEL lines., The RSEL and WR lines are fed
to DECODER logic artay 124 (Fig. 7), causing two events
to occurs {1} CWRO is asserted, connecting the PIBUS
to the CCUBUS, so0 that GSP is available at all CCUs in
the complex; and (2) the code for the CGSP register is
asserted on the SEL lines, instructing all the CCUs to
read the contents of the CCUBUS into their CGsp
registers. The SEL code together with assértion of
CWRC cause each CCU's CONTROL logic array to assert
LDGSP, which, in turn, causes. the CGSP register to read
from the CCUBUS. The CCUBUS, rather than the PIBUS, is
read into the CGSP register, because the RESTORE signal
controliing multiplexer 120 (Fig. 9} is low {RESTORE is
high during a state restore operation, when the saved
state is read back into the local registers using the
PIBUS) .

A similar procedure is followed to store GPC,
GFP, and MAX in the CGPC, CGFP, and CMAX registers,
respectively, of all CCUs in the complex., (The last
step, storing MAX, is not performed if it is a CVECTOR
or CVECTORST that has been executed, because in those
cases, only one iteration is performed by each
processor in the complex.)

ARRIS883IPRI0001412

N 0214718

3. Clearing Synchronization and
Iteration-Assignment Registers

A further action taken upon execution of a
CSTART {or CSTARTST, CVECTOR, CVECTORST)} instruction
5 is clearing the synchronization registers CS0 to C87,
the current iteration register CCURR, and the next
iteration register CNEXT, in all CCUs in the complex.
The CE executing the CSTART asserts a DO CSTART
instruction to its CCU, by asserting DO and placing
10 the code for CS8TART on the RSEL lines (Fig. 7). The
DECODER logic array responds‘by asserting CSTARTC on
the CSTART line of the CCU bus., The CONTROL logic
arrays in each CCU in the complex respond by asserting
CLRSYNC, CLRPAST, CLRCURR, and CLRNEXT, which, in turn,
i5 cause the corresponding registers to be cleared.
CSTAERTI, CSTARTIL, and CSTARTI3 (the latter two being
delayed versions of CSTARTI) cause the CONTROL and
DECODER legic arrays to assert the various signals

required during the CSTART seguence.

240 4. Waking Up Other CEg
In the same cycle as these clearing operations
are performed, SETINLOOP is asserted by the CONTROL

logic azray (Fig. 7) in each CCU in the complex.
SETINLOOP causes the INLOOP status bits of the CSTAT
25 register in each CCU in the complex to be set. That,
in turn, causes the other CEs in the complex, all of
which are constantly inspecting the INLOOP bit, to wake
up and to begin their portion of the CSTART sequence.

5. Assigning Iterations

30 In the machine c¢ycle following the register
clearing operations,; the CCUs assign iterations for
their CEs to execute following completion of the CSTART

ARRIS883IPRI0001413

10

15

20

25

30

=y 0214718

sequence. CSTARTO asserted on the CSTART line of the
CCU bus causes CSTARTIL to be asserted in each CCU in
the complex in the following cycle (CSTARTI, the signal
read from the CSTART line, is delayed one cyéle by
latches 134, 136, and emerges as CSTARTIL). The
DECODER logic array 124 in each CCU in the complex
responds to the assertion of CSTARTILI by asserting
RDYO, which is tied to that CCU's RDY line, one of
the eight on the CCU bus. As there is a one-to-one
corresponderice between an asserted ready line and a
€CU bidding for an iteration, the total number of CEs
bidding for an iteration, or what is the same thing,
the number of CEs in the complex,; is simply the total
number of asserted ready lines. That total is
generated by incrementer 142; it totals the number of
asserted lines, increments the 32-bit contents of line
144 by the total number of lines, and places the sum on
line 146. The CHEXT register was cleared in the prior
cycle so that tha input line 144 to the incrementer is
zero, meaning that its output on line 146 is simply the
total number of CEs in the complex. Accordingly, the
first three bits of the ocutput are channeled off as
NEWNPO (new HNUM plus one} and loaded {after being
decremented by 1} into the NUM £ield of the CSTAT
register (ADDNUM having been asserted by the CONTROL
logic array). The output of incrementer 142 also
represents the number of the next iteration to be
processed by the first CE to complete the first
iteration assigned to it, and thus it is loaded into
the CHNEXT register wia port 2 (ADDNEXT having been
asserted by the CONTROL logic array}).

Iteration assignment is also achieved using
the ready lines. HMASK logic array 140 screens the

ARRIS883IPRI0001414

10

15

20

25

30

10 0214718

ready lines; using BDID, the CCU's physical address,
and zerces its own ready line and any lines
corresponding to a physical address higher than its
own {as RDY7, the highest ready line, would always be
masked, it is not supplied to the MASK logic array).
The total number of asserted ready lines emerging from
MASK is the number of the iteration assigned to that
CCU (iteration numbering begins with zere). For
example, if three CCUs are in the complex, and ong
inspects the CCU with the highest physical address,
one would find that the number of asserted ready lines
emerging from MASK is two, which is the highest
iteration to be initiallv assigned. The CCU with

the next highest physical address will bave one
asserted ready line emerge from MASK, and be assigned
iteration 1. The third, and final, CCU will have zero
asserted ready lines emerge from MASK, and be assigned
iteration 0.

The manner in which this number of emerging
asserted ready lines is translated into an iteration
assignment is as follows. Incrementer 148 adds the
number of asserted ready lines emerging from MASK to
the previous contents of the CNEXT register (i.e.,
before it was incremented by the total number of
asserted ready lines), and the sum is loaded into the
CCURR register via port 2 (ADDCURR having been asserted
by the CONTROL logic array). The CCURR register,
tharefore, receives the value of the current iteration
to be processed by its CE.

6. Reading Registers

The final set of operations performed during
the CSTART sequence is reading from the CCUs the

ARRIS883IPRI0001415

10

15

20

25

30

o 0214718

contents of certain registers whose value was
determined earlier in the CSTART sequence. The
initiating CE reads the cactus stack pointeér (CSP} from
the CCSP register and the current iteration from the
CCURR register. The other CEs in the complex read
those two registers, and also the CGFP and CGpe
registers. The contents of the CGFP and CCSP registers
are reqguired in ardér that every CE in the. complex have
the necessary state information to begin concurrent
processing. The GFP is used to access global variables
during loop execution. The contents of the CGPC
register is read by the other CEs in order that they
have the program counter value needed for resumption
of serial processing. GPC is the address of the
instruction at the top of the concurrent loop {i.e.;
immediately after the CSTART instruction). Reading
registers from the CCU is accomplished by the CE
asserting the output enable line OFE and the RSEL
code corresponding to the desired register,

Following those register read operations, the
CEs in the complex begin execution of the instructions
within the concurrent loop. Aas they are all executing
the same instructions, the CEs execute the initial
instructions of the loop roughly in phase with one
another, although the initiating CE may get slightly
ahead of the others because of the higher probability
that the others will suffer cache misses {e.g.,
instruction cache misses arising because the other Cgs*
were in the idle state). The phase relationship of the
CEs changes substantially, however, when the first
CAWAIT instruction is encountered (see synchronization
discussion below).

ARRIS883IPRI0001416

10

15

20

25

0214718

7. Timing

The timing of the actions taking place
following CSTART is shown graphically in Fig. 13.

The notational scheme can be explained using examples.
WRCGSP in the first machine cycle méans that the
initiating CE (the one executing the CSTART) has
asserted the global write into the CGSP reglsters.
The indication [GSP] in the third machine cycle
indicates that the stack pointer has become valid for
the first time in that cycle (they were loaded at the
third quarter of the previous cycle, in which LDGSP was
asserted). Similarly, the indication [INLOOP] in the
fourth cycle indicates that the 1 loaded into the
INLOOP bit of the status register in the third cycle
upon assertion of SETINLOOP has become valid.

It can be seen that the DO CSTART instruction
is asserted in the second machine cycle, after just one
of the four write operations has begun. This timing
permits the multi-cycle operations following DC CSTART
to occur in parallel with the write operations.

G. Relative Delay Between CE and CCU

Delay latches 126, 127 delay execution of
instrucgtions given the CCU by the CE. The first half
of the lateh iIs clocked by the CE's P3 clock, high
during the third quarter of the the CE's cycle. The
second half of the lateh is clocked by the CCU's C1
clock, high during the first guarter of the CCU's

cycle. The result is a variable delay of either one or
one~half machine cycle, depending on the relative phase
of the CE and CCU. The CCUs are always in phase with
one another, as they are all driven by the same clock.
The CEs, on the other hand, though driven by clocks

ARRIS883IPRI0001417

10

15

20

25

30

= 0214718

synchronized with the CCU clock, can {as the result,
for example, of cache misses) become one-half cycle out
0f phase with respect to the CCUs and other CEs. There
is a full cycle of delay through latches 126, 127 when
@ CE and its CCU are in phase, and one-half cycle of
delay when the devices are out of phase.

To make the difference in relative phase of
the CCU and CE transparent to the CE, so that the delay
between assertion of a signal by the CE and response by
the CCU always appears the same, an additional variable
delay of either zero or one-half cycle is added to some
of the signals sent back to the CE. The 32-bit lines
carrying the contents of four of the ten CCU registers
to multiplexer 130 are delayed in this manner. These
four (CCURR, CHNEXT, C80-C87, and CSTAT} are edge
triggered by CCU clock Cl and their outputs pass though
a latch clocked by Pl before reaching the multiplexer,
resulting in the multiplexer output on the PIBUS being
delayed by an additional one-half c¢cycle when the CE
and CCU clocks are out of phase. The remaining six
registers are loaded at CCU clock €3, and reach the
multiplexer with a delay that is variable by one-half
cycle, This variation is accomodated by the CE waiting
the worst case delay at all times.

H, Assigning New Iterations

When a CE executing a concurrent loop reaches
the CREPEAT instruction, which is placed after the last
instruction within the loop, two actions are taken:

(1) the displacement specified in the instruction is
added to the program counter (this is done wholly
within the CE) and (2} a new iteration is assigned
using the ready lines RDY and CCURR and CNEXT registers.

ARRIS883IPRI0001418

10

15

20

25

30

fy 0214718

The lteration assignment proceédure is initiated
by the CE asserting the DO CREPEAT instruction using
its RSEL and DO lines (Fig. 7). That CE's own CCU
responds by asserting its own ready line RDY. Other
CEs simultanesously executing a CREPEAT instruction may
also. assert their own RDY line. The total number of
asserted ready lines is used to update the CHEXT and
CCURR registers in the same manner as described for the
CSTART instruction. ADDNEXT is always asserted during
concurrent execution to c¢anse the contents of CHEXT to
be incremented by the number of RDY lines asserted
(even at times when a CCU is not asserting its own
ready line}. MASK zeroes all ready lines except those
of CCUs of lower physical number than itself. CCURR
is set egual to the prior contents of CNEXT plus the
number of RDY lines emerging from MASK. In the case of
a single RDY line being asserted, CNEXT is incremented
by one, and CCURR is set equal to CHEXT.

To obtain the newly assigned iteration, the CE
asserts a READ CCURR instruction by asserting the read
line OF {Fig. %) and placing the code for CCURR on its
RSEL lines. That causes the contents of CCURR to pass
through multiplexer 130, and be placed onto the PIBUS.
The CE then begins execution of the new iteration of
the concurrent loop.

Alithough the CE has begun execution o0f a new
iteration, it will be brought to a halt if the CCU
determines shortly thereafter that the new iteration
exceeds the maximum iteration stored in the CMAX
register. The contents of CCURR are compared to the
contents of CMAX at comparator 110 (Fig. 8). 1If the
maximom iteration has been exceeded, GTMAX is asserted,
causing CONTRCL logic array 118 (Fig. 7} to assert

ARRIS883IPRI0001419

10

15

20

25

30

ne 0214718

KWIT and, in turn, latch 112 (Fig. 1 1A) in the & STaT
register to assert QUIT. The CE, constantly che <king
for the occurence of QUIT, responds T o its asser Tion by
going idle (it reads the contents of the CIPC r & =gister
from its CCU, and places the contents in its pror<3ran
counter) .

The same comparison of CCURR to CMAX al =0
establishes whether the new iteratiors is the las &=
iteration; if it is, actions are taken to cause <=he (R
assigned the new iteration to be the one to cont & nue
serial processing when it again reaches CREPEAT.
Comparator 110 asserts EQMAX iFf CCURR eguals CMA > .
Assertion of EQMAX will cause CONTROL logic arra ™ 118
(Fig. 7) to assert CLRINLOOP the next time that = DO
CREPEAT instruction is received from the CE. EQZFEAX
asserts CEREAL; which causes SERIAL to be assertes =3,
preventing the CE from branching back on the nex#—
CREPEAT.

The CURR32 input to the gates generatincsg EQMAX
and GTMAX is needed in the event that the number =<5F
iterations stored in CCURR exceeds its maximum c= F—acipy
of 232 (approximately 4 billion} of the register.

In that event, CURROVF (Fig. 8) is asserted by
incrementer 148 and the CURR32Z bit of the CSTAT
register is set to 1 (Fig., 11a). When CURR3Z is =
GTMAX is set to 1 and EQMAX to 0. That immediate = ¥
halts concurrent processing of the affected CE. T o
avoid this result, it may be preferable to adapt = fie
software running on the system to assure that the

number of iterations of a concurrently executed lo= =0p
does not exceed the capacity of the 32-bit CCURR

register.

ARRIS883IPRI0001420

ne 0214718

KWIT and, in turn, latch 112 (Fig. 11A) in the CSTAT
register to assert QUIT. The CE, constantly checking
for the occurence of QUIT, responds to its assertion by
going idle (it reads the contents of the CIPC register

5 from its CCU, and places the contents in itslprogram
counter) . ‘

The same comparison of CCURR to CMAX also
establishes whether the new iteration is the last
iteration; if it is, actions are taken to cause the CE

10 2ssigned the new iteration to be the one to continuve
serial processing when it again reaches CREPEAT,
Comparator 110 asserts EQMAX if CCURR equals CMAX.
Assertion of EQMAX will cause CONTROL logic array 118
(Fig. 7) to assert CLRINLOOP the next time that a BO

15 CREPEAT instruction is received from the CE. EQMAX
asserts CEREAL; which causes SERIAL to be asserted,
preventing the CE from branching back on the next
CREPEAT. _

The CURR32 input to the gates generating EQMAX

20 and GTMAX is needed in the event that the number of
iterations stored in CCURR exceeds its maximum capacity
of 232 (approximately 4 billion} of the register.

In that event, CURROVF {(Fig. 8} is asserted by
incrementer 148 and the CURR3Z bit of the CSTAT

25 register is set to 1 (Fig., 11A)}. When CURR32 is 1,
GTMAX is set to 1 and EQMAX to 0. That immediately
halts concurrent processing of the affected CE. To
avoid this result, it may be preferable to adapt the
software running on the system to assure that the

30 number of iterations of a copcurrently executed loop
does not exceed the capacity éf the 32~bit CCURR

register.

ARRIS883IPRI0001421

i, 0214718

1, Synchronizing Dependencies

The presence, within a concurrently executed
loop, of an instruction that cannot properly be
executed until another instruction {often the same

5 instruction) ig executed in a prior iteration creates
what is called a dependency, and execution of the
first instruction must be synchronized with execution
of the second instruction in the prior iteration.
Synchronization is accomplished using two instructions,
10 CAWAIT and CADVANCE. A CAWAIT instruction is placed
before the first instruction, and a CAEDVANCE after the
second instruction. In the event that the same
instruction is both the first and second instruction,
the CAWAIT is placed before the instruction, and the
15 CADVANCE is placed after it. FEach pair of CAWAIT and
CADVANCE instructions is ordinarily keyed to one of the
eight synchronizaticn registers CS0 to CS7. The fact
+hat there are only eight synchronization registers
does not, however, limit the number of dependencies
20 that can be handled. If more than eight dependencies
are present in the same iterative construct, groups of
dependencies may be bracketed by palrs of CAWALT and
CADVANCE instructions, each group thereby being handled
by a single synchronization register.

25 1. The CAWAIT Instruction
The CAWAIT instruction has two arguments: the
aumber {8SEL) of the synchronization register {CS1-(CS87)
assigned to this dependency and the offset (OFFS) from

+he current iteration to the prier iteration (an offset
30 of zero means the immediately prior iteration). .

Execution of a CAWAIT causes the CB to delay furthex

processing until the WAIT output of the CCU's WAILT

ARRIS883IPRI0001422

i0

15

20

25

30

e |
0214718

logic array goes low {Fig, 6). The CE places the
number of the synchronization register specified in the
AWAIT instruction on the SSEL lines. That selects the
corresponding AWTOK line at multiplexer 114. When the
AWTOK line 1s asserted during execution of the CAWAIT
instruction, WAIT array 102 and multiplexer 100
(selecting the CAWAIT line in response to recognition
of the code for CAWAIT on the CMND lines) cause the
WAIT line to go low, allowing the CE to process the
instruction follswing the CAWAIT instruction.

The AWIOK lines aie controlled by
synchronization registers CS0-CS7 (Figs. 10, 12}. an
AWTOK line (the assertion of which acts as a go-ahead
signal to a CE executing an AWAIT instruction) is
asserted when its respective synchronization register
is advanced to a number represemting the prior
iteration in which the second instruction (see
above} is to have been executed. Specifically, the
AWTOK is asserted when the first three bits of its
synchronirzation register, the contents of 3-bit
register SYNC in Fig. 12, is equal to {or greater
than) the least significant three bits of the current
iteration, the CURRO field of the status register,
reduced by the offset OFFS plus 1. Set forth as an
eguation, AWIOK is asserted when

SYNC CURRO - QFFS,

This test is carried out by forming the difference
CURRO - SYNC using circuit 106, and comparing the
output of that circuit teo the offset OFFS at
comparator 108. '

ARRIS883IPRI0001423

10

15

20

25

ARRIS883IPRI0001424

® 0214718

Circuit 108 actually forms the expression

CURRO - BYNC + C - 1

The "C -~ 1% term in the expression is there as the
result of supplying an inverted copy of the ADVI signal
to the comparator, in order to save a machine cycle of
time in this synchronization procedure. Thée ADVI
input, which is asserted as & conseguence of gxecution
of the CADVANCE instruction {see discussion below),
increments the SYNC register, but the incremented value
is not available until the machine cycle following
assertion of ADVI. To make the effect of ADVI felt in
the same cycle it is asserted, it is supplied through
an inverter to circuitr 106, In that cycle, C eguals 0,
and the output F of the circaitﬁis thereby set to

CURRO ~ {BY¥YNC + 1},

which is the value it will have after SYNC is
incremented. In the next cyvcle when ADVI will be low
{making C equal to 1) and SYNC will have already been
incremented by 1, the same output will be produced.

2. The Four-Bit Size of the
Sypchronization Registers

Even though iterations as high as 2°% are

permitted, it is possible to limit the size of each
synchronization register to four bits, a three bit SYNC
register and a single bit PAST register. The reason
this is possible is that the CEs are never more than
seven iterations away from one another. Thisg is
begcause of the ADVANCE instruction’s built-in await,
which causes a CE to walt until the immediately prior

it

15

20

25

30

4 0214718

iteration has executed its CADVANCE (see discussion
below). Accordingly, only three bits are needed to
keep track of how far the current iteration is from the
prior iteration responsible for the dependency. These
three bits are stored in the SYNC register (Fig. 12},
The three bits can be thought of as the least three
significant bits of a virtual 32-bit synchronization
register containing the number of the lowest iteration
to have not executed its CADVANCE. Put another way, it
is the least three significant bits of the iteration
that has not yet cleared the dependent region (for once
an iteration executes its CADVANCE no later iteration
is dependent on it}.

The single bit PAST register is provided
to keep track of whether the sYNC register has been
advanced past the current iteration CURRO. If that
occurs, PAST is locally set to 1, PAST is actually set
to 1 when the ADVANCE instruction is executed by its
associated CE. PAST is cleared at the end of the
iteration, when CREPEAT is executed. Unlike the 3-bit
SYNC registers, which are simultaneously altered in all
CCUs so as to be identical across the concurrency
complex, the PAST bit is setr locally.

3. The CADVANCE Instruction

The other synchronization instruction,
CADVANCE, is responsible for incrementing the
synchronization register. CADVANCE has one argument,
the synchronization register to he advanced. When a CE
executes a CADVANCE, it initially waits until its CCU
determines that the immediately preceding iteration has
executed its CADVANCE. Then it causes the specified
synchronization register to be advanced by one.

ARRIS883IPRI0001425

5o 0214718

The CBDVANCE instruction has what amounts
to a built-in CAWAIT with zero offset; it causes the
CE to wait until the CADVANCE instruction has been
executed in the immediately preceding iteration,

5 This is accomplished using the ADVOK lines: The
synchronization register specified in the CADVANCE
instruction is placed on the SBEL lines, thereby
selecting the corresponding ADVOK line at multiplexer
116 (ADVOKO also bypassed the multiplexer because of

10 its use in seriélizing traps; see discussion below).
When the selected ADVOK line is asserted, the effect
is to set the WAIT line to low, signalling the CE to
reésume processing. The ADVOK line 1s asserted when
comparator 108 (Fig. 12} senses its B input is zero,

i5 an event that occurs when SYNC = CURRC (i.e., when the
synchronization register has been incremented to this
iteration).

After the WAIT line goes low, the CE asserts
the DO CADVANCE instruction using the DO and RSEL

20 lines. The DECODER logic array responds by asserting
ADVG on the ADV line for the specified synchronization
register {(there are eight ADV lines, one for each
register). The ADVD assertion has a local effect and
a global effect. Locally, the assertion of ADVO sets

25 PAST to 1 (because the fact that CADVANCE has been
executed means that the synchronization register has
been incremented past the current outermost iteration
number}. Globally, the asserted ADVO line is received
as ADVI, and causes the respective SYNC register to be

30 incremented by one in all CCUs in the complex. It is
possible to provide just eight ADV lines because only
cne CE can possibly assert any one ADV line during the

same cycle,

ARRIS883IPRI0001426

5i 0214718

The fact that CADVANCE sets the PAST bit to 1
assures that further CAWAIT and CADVANRCE instructions
for the same dependency €ncountered in the same
iteration will be idgnored (branching within a

5 concurrent loop may make such further occurrences

possible). To accomplish this, all eight PAST bits
are brought to the DECODER logic array where the DO
CADVARNCE instruction is decoded., 1If the PAST bit for
the dependency specified in the CADVANCE instruction is

10 set to 1, ADVO is not asserted. Also, the fact that
PAST is set to 1 means the WAIT line is immediately set
to low when either a CAWAIT or CADVANCE is encountered,
because both the AWIOK and ADVOK lines are automatically
asserted by OR gates 109, 111 {(Fig. 12},

15 J. Concluding Concurrent Processing

Concurrent processing is concluded by
execution of one of two instructions: CREPEAT or couIT.

1. Executing CREPEAT
in the Last Iteration

20 As discussed previously, execution of CREPEAT
will conclude concurrent processing if the iteration
being processed is the maximum iteration (CURR equals
MAXj, as in that event EQMAX will have been asserted at
the start of the iteration. Assertion of EQMAX has the

25 immediate effect, even before the conclusion of that
iteration, of asserting SERIAL ({CEREAL is asserted by
the CONTROL logiec, causing latch 112 in the CSTAT
register (Fig. L1A} to assert SERIAL). The assertion
of SERIAL gives the CE advance warning that concurrent

30 processing will end with the next CREPEAT. The CE
executing CREPEAT is made to wait by the WAIT logic
array until the rest of the CEs have put themselves

ARRIS883IPRI0001427

15

20

25

30

0214718
53

into the 1dle state {(by fetching iteration numbers that
exceed the contents of CMAX). _The WAIT logic array
senses the idle state of the other CEsS by looking

at the AWYACT line., When the CREPEAT is actually
estecuted, the assertion of the DO CREPEAT instruction
by the CE concludes concurrent processing in this CE.
The CONTROL logic array, sensing both EQMAX and DO
CREPEAT, asserts CLRINLOOP, CLRVECTOR, and CLRSERTRAP
thereby clearing the INLOOP, VECTOR, and SERTRAP status
bits.

2. Executing CQUIT

When a loop includes an instruction to branch
out of the loop prior to completion ¢of the prescribed
number of iterations, a CQUIT instruction is inserted
at the address to which the code may branch. A
premature branch from a loop creates a potential
preblem for concurrently executed loops, because it is
possible that the branch may be taken in an iterstion
preceding iterations for which instructions have
already been executed by other CEs. As these further
iterations would never have been processed if
processing had been serial, there is the possibility
that concurrent processing will change the result.
There are at least three ways that such a change of
result sould occur: {1} data is stored into global
memory in the subequent iterations changing the result
of an operation outside the loop; (2) a subsequent
iteration is first to execute a CQUIT; and (3} a trap
is taken in the subseguent iterations {(e.g., a divide
by zero that would not have occurred had processing
been serial). '

Preventing the first potential
difficultyw-étmfe operations that should not have

ARRIS883IPRI0001428

53 0214718

occurred--must be handled by the software. One approach
is to use the cactus stack for all store operations
until there remains no possibility of a CQUIT being
executed in a prior iteration, and to then transfer the
5 private copies from the cactus stack to global memory.
The second difficulty--out of order CQUITS~-is
handled using the CAWAIT instruction. &4 zero offset
CAWAIT on the CS50 synchronization register is inserted
just beforée the CQUIT instruction (the branch from the

10 loop is made to the CAWAIT). Also, the CSTARTST
instruction ([CSTARY with serialized traps) is used
instead of the CSTART instruction {and the CVECTORST
instead of the CVECTOR), to cause automatic
incrementing of the CS0 register by the CREPEAT

15 instruction. These steps ensure that CQUITS are
executed in order. o

The third difficulty~--uniniended traps--is
handled also by using the CSTARTST or CVECTORST
instructions ({instead of the CSTART or CEVECTOR)

20 instructions. ‘These instructions differ from the
others only in that they cause the SERTRAP status bit
to be set during the CETART sequence. When the SBERTRAP
bit is set, a CE encountering a trap waits before
proceeding further until TRAPCK is asserted, telling it

25 that the trap may be taken because no lower iteration
capable of branching out of the loop is still executing.

TRAPOR is controlled by synchronization
register €80, If the iteration contained in CS0 equals
the current iteration CURRDO, a gondition measured by

30 comparators 106, 108 (Fig. 12), ADVOK0 is asserted.
Register €50 is advanced by CREPEAT {(the very last
instruction in a loop) if SERTRAP is 1, and thus the
register contains the three least significant bits of

ARRIS883IPRI0001429

10

20

25

30

S 0214718

the lowest iteration to have been completed. ADVOKXO

is fed directly into WAIT logic array 102 (Fig. 6),
which responds by asserting TRAPOK. TRAPOK is also
asserted by WAIT if SERTRAP is zero, as that means trap
gerialization has not been specified. (TRAPOK is also
asserted if DETACHED is set to 1, as that means there
is no concurrent processing.)

K. Vector Concurrent Processing

The CEs in the concurrency complex can be
used not only for concurrently processing iterative
constructs such as DO loops but also for concurrently
processing portions of a vector operation. For
example, if a vector multiply operation is required,
and the vector length is 100, a concurrency complex of
thres CEs (e.g., CEO, CEl, CEZ2)+can divide the vector
so that two CEs perform 34 of the vector operations and
the third CE performs 32 of the operations. 2ll of the
operations performed by each CE are done in a single
"ireration®,. The division of the vector between CEs
can be done vertically or horizontally. 1In a vertical
division, the first 34 vector elements of the example
are processed by the first CE, the next 34 by the
second CE, and the final 32 by the third CE. In &
horizontal division, the first CE performs operations
on vector elements 1, 4, 7, and 50 on; the second CE,
on elements 2, 5, 8, and so on; the third CE, on
elements 3, 6, 9, and so on. Which type of division is
best is a software matter, and is typically determined
by a compiler.

Five vector concurrency instructlons are used
by the CEs to calculate the parameters needed for the

CEs to perform the concurrent processing of a vector

ARRIS883IPRI0001430

10

15

20

25

30

=Y

0214718

operation. The parameters are calculated by each
CE using the NUM and VPN fields provided by its CCU,
and then stored in a CE data register. In the
calculations, the CE sets NUM and VPN to zero if
either NESTED or DETACHED ig asserted by the CCu,

In a horizontal division of the vector,
three parameters are caleulated: length, offset, and
increment.

Length is the number of vector elements to be

operated on by each CE. It is galculated using the VLH
instruction, according to the formula:

Length = CEIL[{(N -~ VPN}/{(NUM + 1}]

where N is the total number of vector elements and CEIL
means that the result is roundegd up to the next highest
integer if not already an integer (VPN and NUM are set
to zerc in the calculation if NESTED or DETACHED
are 1). In the example, CE0 ip given a length of 34,
and CEl and CE2 are given lengths of 33. (In the
actual implemenation, the calculation is done as
follows: VPN is subtracted from N and one of two
operations are performed. If NOM is O, 1, 3, or 7
{meaning the number of CEs is a power of two), NUM is
added to (N - VPN} and the result is shifted right by
0, 1, 2, 3 bits {according to the power of two). If
NUM is 2, 4, 5, or 6, the (N - VPNJ term is multiplied
by 2/3, 2/5, 2/6 or 2/7,bfesgectively {where each
fraction is rounded toward zerp before use), the result
is shifted right one bit, the fraction is truncated,
and 1 is added to the result.)

Increment is the spacing or stride between the
vector elements to be operated on by the CE. It is

ARRIS883IPRI0001431

5k 0214718

calculated using the VIH instruction, according to the
formulas

Increment = VINCR{NUM + 1}

where VINCR is the increment of the original vector.

(1

In the example, where VINCR is 1, all CEs are given an
increment of 3. (In the actual implementaticn, the
multiplication is done by shifting and adding.)

Offset is the location in the vector where
the CE is to begin. It is calculated using the VOH
i instruction, according to the formula:

Offset = VINCR(VPN)

where VINCR is the increment of the original vector.
In the example, CED is given an' offset of G, CEL an
cffset of 1, and CEZ an offset of 2. {In the actual

12 implementation, the multiplication is done by shifting
and adding.)

When the vector division is vertical, only the
first two of these three parameters need be calculated,
as increment is one for all CEs.

20 Length 1s calculated using the VLV

instruction,; according to the formula:

Length = MIN[CEIL[N/ (NUM+1}}l, N - VPN({CEILIN/(NUM+1)]]

where CEIL is the same function described above and
MIN is the minimum of the two parameters within the
25 brackets. In the example, CE0 and CEl are given
lengths of 34, and CEZ a length of 32. (In the
actual implementation, the CEIL[N/(NUM + 1)} term is
formed using the same methoéds used for the combined

ARRIS883IPRI0001432

o

15

20

25

30

51
0214718

division-and-CEIL operation in the VLH instruction.
The multiplication by VPN is done by shifting and
adding. The minimum is found by comparing the two
quantities, and choosing the smaller of the two.)

Offset is calculated using the VOV
instruction, according to the formula:

Offset = CEIL{N/(NUM + 1}] (VPN)

In the example, CEQ is given an offset of 0, CEl an
offset of 34, and CE2 an offset of 6B. {Iin the actual
implementation, the calculation is performed using the
same method as for the second term of the VLV equation.)

Actual concurrent processing is begun when a
CVECTCR (or CVECTORST) instruction is executed at the
start of the vector "loop", i.e., before the first of
the vector operations to be processed concurcently.
The parameter calculation instructions fe.g., VLH, VOH,
VIH) follow the CVECTOR instruction.

The sequence of CCU instructions initiated by
a CVECTOR instruction is largely identical to that
initiated by & CSTART. The difference is that the
VECTOR status bit is set to 1 in all CCUs in the
complex during the third machine cyecle, at the same
time as INLOOP is set to 1. The fact that it isg
a CVECTOR instruction, rather than a CETART, is
communicated to the other CEs using two bits of the
CCUBUS, referred to as CC(11l:10). These two bits
provide a code that the CCUs use to distinguish between
the four types of instructions that initiate concurrent
processing (CSTART, LSTARTST, CVECTOR, and CVECTORST) ,
The two bits are only used during the DO CSTART
instruction in the second machine eycle, a time when
the CCUBUS is not being used.

ARRIS883IPRI0001433

L

10

15

20

25

30

ARRIS883IPRI0001434

5%
0214718

Vector concurrent processing is concluded
using a CREPEAT instruction following the last vector
operation in the “"loop™. As there is only one
“iteration” following a CVECTOR instruction, a
mechanism is needed to force an end to concurrent
processing upon execution of the first CREPEAT. This
is provided by multiplexer 105 (Fig. 9), which supplies
to the Y input of comparator 110 a 32-bit number
containing all zeroes except for NUM in the least
three significant bits (this instead af the contents of
CMAX, as in the CSTART case). This causes the gate
following comparator 110 to assert GIMAX at the start
of the second "iteration®, thereby setting INLOOP
to 0 to prevent continued execution of that second
“iteration®. CCURR is set to a number in excess of NUM
by assertion of the RDY lines following completion of
the first *iteration".

L., Nested Concurrent LoOOpS

The system accommcdates subroutine calls
within concurrently-executed loops, including
subroutines that themselves call for concurrent
execution of a loop. The latter occurs because
cubroutines can be compiled independently of the
program calling them, making it impossible to know at
compile time whether a particular subroutine will be
called from within a concurrently-executed loop,

A concurrent loop within another concurrent
loop is known as a nested concurrent loop, and is not
executed concurrently. Provision is made for executing
nested loops serially on the same processor that
encounters them., It is possible to have a series of
nested loops, each within the other. In all cases,

10

15

20

25

5q 0214718

however, only the outermost loop is executed
concurrently. All inner loops, whether or not they
contain instructions for concurrent execution, are
executed serially on the same processzor.

The NESTED and INLOOP status bits are used to
keep track of whether it is the ocutermost or a nested
concurrent loop that is being executed. INLOOP is set
to “1" when the first CSTART is encountered during
execution, signifying the start of an outermost
concurrent loop. NESTED is set to "1" when a CNEST is
encountered after INLOOP has already been set to "1%,

At the beginning of a nested loop, thé CCU
clears the the current iteration register {CCURR) .
Subseqguent iterations of the nested loop are assigned
by adding @ to the value of CCURR at the end of each
iteration (assertion of the NESTED status bit alters
the operation of the logic incrementing CCURR).

In order that trap serialization (see earlier
discussion) may continue even during execution of a
nested loop, the least three significant bits of the
current iteration of the outermost loop are saved as
CURRD in the CSTAT register (when NESTED is asserted,
CURRO is frozen at the value it had during the last
iteration of the outermost loop; ADDCURRO is not
asserted by the CONTROL logic array upon execution of a
CREPEAT in 2 nested loop}. The three bits of CURRO are
compared to the contents o¢f synchronization register
CS0, and TRAPOK is asserted, all in the same manner as
if the processor were executing an outermost concurrent
loop. Thus, if a trap is encountered during execution
of a nest loop, and the SERTRAP bit is set, indicating

serialization of traps, the CE waits until TRAPOK is
asserted,

ARRIS883IPRI0001435

1G

15

20

&0 0214718

The values of four registers (CCURR, CMAX,
CGsp, CETAT) must be saved at the time a nested
concurrent loop begins in order for the CE to properly
continue processing at the conclusion of that nested
loop. A CNEST instruction causes the four values to be
saved {at a memory location specified by the operand},
and must be placed before the CSTART of any concurrent
loop that could possibly be executed as a nested loop
{one CNEST placed before the first CSTART may suffice
for a series of such concurrent loops). A CUNHEST
instruction causes the fouy values to be written
{from the memory location specified in the operand;
ordinarily the same location as specified in the
previous CHNEST instruction) into the corresponding
registers, and must follow the CQUIT or CREPEAT
instructiocn of the nested loop {or the last of a
series of nested loops). Ordinarily, different memory
locations are specified by each pair of CHNEST and
CUNNEST Lnatructlens, so that loops may be nested
within one another.

The values of CCURR and CHMAX are saved
because those registers will be used during execution
of the nested loop, and the values will be needed when
processing of the outermost loop resumes.

The value of CGSP is saved for a similar
reason. The global stack pointer must be preserved so
that it can be supplied to the CE that resumes serial
processing. It is saved prior to execution of a nested
loop because the CSTART sequence, which is the same for
a nested loop as for an ocutermost loop, causes the
current value of the CE's stack pointer to Be written
inta the CGSP register. In the case of an outermost
concurrent 1loop, that current value of the stack

ARRIS883IPRI0001436

bl 0214718

pointer is preserved in the CGSP register, and a
private stack is assigned to the CE later in the CSTART
sequence (see next section), by having the CE read the
value of the CCSP register. But in the case of a
5 nested loop, the current velue of the CE's stack

pointer does not need to be preserved, and must be
given back to the CE, as the nested loop will be
processed on the private stack assigned to that CE for
the outermost loop. This is accomplished by causing

10 the CE to read from CGSP when WNESTED is set, and from
CCSP when NESTED is not set {this in the function of
the PIDEC logic array shown in Fig. 9).

The contents of the CSTAT register are saved

in order to preserve the state of NESTED prior to

15 execution of the nested loop. This is necessary for
proper handling of a series of nested loops, each
within another. Each time a CUNNEST instruction is
executed, signifying the completion of one level of
nesting, the prior value of NESTED is restored to the

20 cCu, so that the CCU will be able to determine whether
it has returned to the putermost loop (in which case
NESTED will be restored to 0) or to a higher level
nested loop {in which case NESTED will remain set to Y.

During execution of & nested loop, the value

25 stored in the CNEXT register continues to be updated
when other CEs assert their ready lines {which will
only occur when a CE bids for a pew iteration in an
outermost concurrent loop). But the contents of CREXT
are not used during execution of the nested loop, as

30 all iterations of a nested loop are executed by the
same CE that initiated the loop. A new iteration
assignment is made upon execution of a CREPEAT in the

nested loop simply by incrementing the contents of

ARRIS883IPRI0001437

b
0214718

CCURR by one. (This ls accomplished as follows: The
multiplexer at the input to incrementer 148 (Fig. 8)
feeds the output of CCURR, rather than the output of
CHNEXT, to the incrementer when NESTED is asserted; MASK
5 logic array 140 masks all of the ready lines when
NESTED is asserted, so that only one line {(the line
driven by NESTED itself) is asserted at the input to
incrementer 148.)
A further change brought about by setting the
10 NESTED bit is that the VPN and NUM outputs from the
CSTAT register are set to zero {Fig‘vilB}, so that the
computations made upon execution of the five vector
concurrency instructions {e.g., VLH, VOH, VIH) result
in vector instructions being executed serially {(all
15 vector elements processed on the CE executing the

instructions). ,

M. Cactus Btack

Each CE in the concurrency complex is assigned
a private stack {collectively referred to as the cactus
20 stack), for storing data unigue to a single iteration
of a concurrent loop. Such unique data is of two
types: subroutine arguments {and return addresses)
and temporary variables., The cactus stack is created
durding the CUSTARY sequence. The CE executing the
23 CSTART instruction bullds the cactus stack by causing
its global stack pointer (GSP} to be written into the
CGSP registers of all the CEs in the complex, and by
causing all of the same CEs to read from their CCUs &
virtuval stack pointer (CVSP}, which in the case of an
30 outermost concurrent loop (NESTED not set) is the
contents of the cactus stack register CCSP. The actual

ARRIS883IPRI0001438

16

15

20

25

30

& 0214718

%

addresses assigned as cactus stack pointers are unique
to each CE, and are established by the operating
system, which writes the addresses into the CCSP
register using a CSAVE and CRESTORE instruction prior
to concurrent processing. The virtual stack pointer is
read by asserting the appropriate RSEL code and the
output enable bit OF (Fig. 9}, If NESTED iz not set,
the PIDEC logic array selects the contents of CCSP. If
NESTED is set, it selects the contents of CGSP {which,
in a nested loop, contains the current value of the
stack pointer on the CE's cactus stack).

Vi. Examples of Concurrent Processing

Fig. 14 illustrates several characteristics of
concurrent execution. Initially execution is serial;
that is, only one CE is executing instructions, and the
remaining CEs are idle, Here the active CE is CES, but
could be any CE. Concurrent execution begins when the
active CE executes & CSTART instructipn. FEach of the
CEs is given an iteration number, starting with
iteration 0. The CSTARY instruetion spzcifies the
maximum iteration, here 20.

When a CE finishes an iteration, it executes
a CREPEAT instruction to begin the next iteration, if
there is one. An iteration is asgigned to a CE as soon
as it asks for one. HNote that lterations can be
different lengths if they include conditional code.

If there are no more iterations to execute
when the CREPEAT instruction is eajxecuted, one of two
things happens. If the CE was exeppting an iteration
other than the last one, it simply becomes idle. This
is the case for CEO after it finishes iteration 16.

ARRIS883IPRI0001439

10

20

25

Gl 0214718

I1f, on the other hand, the CE was executing the last
iteration, it waits for all the other CEs to become
idle before continuing serial execution. This is the
case for CEZ after it finishes iteration 20.

This code wonld take 50 time units to execute
on a single CE. With concurrent execution it takes 8
time units. The speed up is 50/8 = 6.25. Typically N
CEs will speed up code by a factor somewhat less than N
when the number of iterations is not a multiple of N orx
when the. iterations take different times ko execute.
The speed up approaches the number of CEs, however, as
rhe number of iterations increases.

Giving @ CE an iteration means that at the
start of an iteration the iteration number CURR is
placed in register D7 of the CE which is to execute
the iteration. The first iteration for any CE is the
virtual processor number VPN of the CE.

A CE learns what code it is to execute during
the CSTART sequence following execution of a CSTART
by one CE. Using the CCUs and the CCUBUS, all CEs
are started with a program counter egual to the address
of the instruction after the CSTART instruction.

The CREPEAT instruction is a conditional branch
instruction. If there is another ilteration, the CE
rakes the branch and is given & new iteration. IE
there is not another iteration, the CE falls through or
becomes idle, depending on whether it was executing the
last. iteration or not., Table 1 shows a concurifent loop:

ARRIS883IPRI0001440

65

0214718

Table 1
#
« Serial code exzcutsd in a single CE
'
cstart <aa>
P

Loop prologus
code axscuted orece
per LB

2

35 T 1

¥

&

%

Concurrent code
axacuted in
wultiple CEs

Tep: «
Loop bodyg “
« code executed oncs ®
« per lteration. &
¥ '
crepeat Top v
s
- Serial code exscuted in a single CE
-
¥ .

The loop prologue, code executed once per CE, can load
registers and perform other operations which need not

be executed on every iteration.
5 simple Fortran loop:

Table 2
Fortran codal D0 3 I=1i,N
I ACL) = I+
Lodel Serial code
movl Ned2
subl #1lyd2
estart | d2
movl Jydé”
Tops movl d47,d1
adda #il,.d1
addl d6sdl
movl diA31087¢)47
crepgat Top

Serial code

ARRIS883IPRI0001441

E
;

Table 2 pregents a

Start fdoncurrant
gxecution.
H iterations
Load 4 {bnce per CED
iteration count
1 = ¥ =» di
I+ 4 => di
Cdiy =2 ACLY
8ranch if morsa iteratians

2

tho 0214718

The loops of Tables 1 and 2 have independent
iterations; that is, the iterations may be done in any
6rder without changing the results. The more difficult
case is a loop with iterations that depend on each

5 other and that must, therefore, be synchronized to
give correct results. Table 3 shows a dependency that

requires synchronization.

Table 3

Iterazion I-1

Iteration I

Can. I go ahead?

Cwaitl
X 2 sua <~Daependancy on X~ Cuait)
Gd aheadl ’ Cwait)

caa = 4

s, oo e, s s i, s e |
o . o e e, S
s . . o e, e
e e o s s |

Here a value stored in one iteration is loaded by the
10 next iteration. To get the right result the load must
happen after the store. Before iteration I may load X,
it must wait until iteration I-1 has stored X. To
synchronize this dependency, two instructions need
to be inserted in the code., A PCan I go ahead?"
15 instruction called CAWAIT and a "Go aheadl” instruction
called CADVANCE. An example is shown in Table 4:

ARRIS883IPRI0001442

&7

0214748
Table 4
Fortrant D0 1 I=isK
£ = X 4+ exp
I CONTINUE
Codet movl Hed2 Start concurrent
subl #1.d2 . dXBcuUtions
cstart [+ 1vd B itesrations
Top: & w
Code to put exp in fpi
cawait csle#0 Can I go aheszd?
fadds Kefpl X %+ axp
fmoves foieX -2 X
cadvance esi Go ahesadf

crapaat Top

The CAWAIT instruction causes the CE that executes it
to wait until the CE executing the previocus iteration
has performed a CADVANCE, Then ¥ can safely be

5 fetched from memory. After X ig stored the CADVANCE
instruction signals the CE excuting the next iteration
that it can proceed,

The CS1 in the CAWAIT and CADVANCE

instructions is one of the eight synchronization

10 registers CS0-CS7. Each can be used to synchronize a
different dependency in a loop. In the Unlikely event
that a loop has more dependencies than there are
synchronization registers, two dependencies can be
combined with a CAWAIT before the first and a CADVANCE

15 after the second. The 0 in the CAWAIT instruction isg
an offset in the range 0-7. Normally a dependendy will
be from one iteration to the next and an offset of ZEX o
will be used. Sometimes, however, the dependency will
Epan two or more iterations, as in the example of

20 Table 5:

ARRIS883IPRI0001443

&8 0214718

Table 5
Fortrant DO 1 I=14H
FE R} -
A€13 = ACI~33 + exp
1 CONTINUE
Codps movl Ned2 , Start concurrent
subl #1l,d2 gxscutions
cstart 42 N diterations
-IQD: o
Code to put sxp in fpl »
cawait cels#d Hait for iteration [~3
fadds A-123310d75150405,1p1 ACI~3) + exp
fmovaes fpleAsifd?ilesl] -5 ALIZ
cadvancs 5l Go ahsadl
crapeat Top

Four of the concurrency instructions have
been discussed so far. The fifth instruction, CQUIT,
implements loop exit prior to the last iteration. An

5 example is given in Table 6&:

Table 6
Fortrans: 00 1 I=sisiz
1 IF CACID-EQ.X260 7O 2
L]
2 Jd=I
Codss cstartst §i1 " Start concurrent
’ execution
fmoves Xefpl Load register ~ oncs
per CE
Topt femps AtIDd7sY:43sfpl ACIY = X. 73
fheg Two_A It sey branch
crepeat Top Next iteration
Tua A% cavait ot 80 Hait for lower iterations
cauit Exit concurrency
addgl #1.d7 Iteratiaon count =+ 1
moyvl 4741 = I
Twoe? movl Isd J=1I

ARRIS883IPRI0001444

a1 0214718

Table 7 illustrates how the code of Table § is executed

on a four CE concurrency complex when X=1 and A=[0

4, 6, 8, 7, 5, 3,

1,2, 1,-93.

2,

For simplicity, it is

assumed that each instruction takes one unit of time.

5 Table 7
CEs
Time .. B . 1 . 2 .o 3
;1(Testartst (idley Cidled (idle>
" e Ofmcves Lfmoves © Zfmoves ... :-3froves e
13 U 0fcmps T ifemps 2femps o 31‘5;{“;}5 Torn
4 0fbeg (0213 * Itheg (2#1) 2ibeo (L#1) . ..3fbeq (&#%1)
5 ’chepamt lerzpent Zerepeat Jcrepent
L& 4icrps Stcmps &fomps T Ttfcups PN
¥ 4ibeg (uﬁl} S5theq (7#1) 6then (5213 Ttheq (3413
¥ herepeat Screpeart bdcrepest Terepeat -
:9 a%cmp: 9fcmes . .. 1Gfcmps -,,;1;»i£?cwps P
10 . Bfbeq (1=1) 9fbec (2#1) .16fhey (1=1) LbZfheg (541)
11 Bcawsix — Scropeat L 1Beeawait ., A,llcreneat v
12 7. .8cquit - fidled s Gdled s aCialed o
13 -addel . . " {idle) vose- Lidled w?uggb xiala} s
i%tb:~movl s et e (idlz}*_u;h C;dle} L
150 =movi - Cigleld ;. L., Cidle) ’
The iteration number and the mnemonic executed by each
CE is listed at each time step. The first thing to
notice is that since each iteration is identical, the
CREPEAT instructions occur on the same cycle and do
i0 net have to wait., The next thing to notice is tha+
iterations are started even though it is not known if a
previous iteration will be the last. Iterations 9, 10,
and 11 were started even though 8 is the last actual
iteration, Starting the later iterations is not
i5

result.
and thus no proble
however,

m can oCour.,

surplus iterations.

ARRIS883IPRI0001445

harmful so long as they do nothing to change the

In the example, all they do is fetch and test,
& problem could result,
1f store operations are carried out in these

Jo
0214718

it is necessary to make sure that the correct
ireration performs the CQUIT,. CE2 must not be allowed
©o think that iteration 10 is the last one just because
A{1IY=¥, To assure that the correct iteration
5 executes the CQUIT, the loop is started with a CSTARTST
instruction, which causes the CREPEAT instruction to
perform a CADVANCE on synchronization counter CS0,
which is also called CST (see below). Also, prior
to the CQUIT instruction a CAWAIT €S0 instruction is
10 inserted. This guarantees thadat the earliest iteration
will exit, even if a later iteration tries to exit
earlier.
Software should be written so as not to
store results 1f it is not certain whether an earlier
15 iteration will execute a CQUIT. That 15 why, in the
example, the storing of the loop index was done aftex
the CQUIT instruction.
Another side effect of beginning iterations
even though a CQUIT may be executed in an earlier
20 iteration is that a trap, e.g., a divide by zero or a
page fault, may be encountered in these iterations. A&n

example is glven in Table 8:

Table &

cstartst N
?QQ: w8 o=
I‘f B % a T‘hén Qqﬁl‘t
A = B/C

crepeat Topn

On diteration 10

€ = 6 on iteratisn 11

ARRIS883IPRI0001446

10

15

20

25

T
D214718

The divide by zero trap in iteration 11
should not be allowed to happen before the CQUIT in
iteration 10, To accomplish this, the CsTARTST variant
of CSTART is again used (the "ST" suffix standing for
serialize traps). Trap serialization is only necessary
in concurrent loops with a CQUIT instruction. CSTARTST
loops implicitly use synchronization counter CSO
(which is also called CST as a reminder that it is
used to serialize traps). The use of the CSTARTST
instruction makes advance of CST implicit in the
CREPEAT instruction and forces an implied AWAIT on CST
when a trap is encountered {until TRAPOK is asserted) .

A CQUIT may be used without a CAWAIT CSO, #0
preceding it. This is called a preemptive CQUIT. Any
processor executing a preemptive CQUIT will stop the
concurrent loop, even if it is not the one executing
the lowest iteration. This is valuable in certain
search programs to end searching when any CE has found
the object of the search.

A concurrent loop may be used around a call
to a subroutine whether or not the subroutine itself
contains a concurrent loop. In cther words, concurrent
loops may be nested; however, the inner loop(s) each
execute serially on a single CE. For this reason, a
single subroutine would not normally contain nested
concurrent loops within it. The code in Table 9 is
used for a routine that contains a concurrent loop and
may be called from either a concurrent loop or from
serial code:

ARRIS883IPRI0001447

HEN

0214718
Table 9
Calling routines Called routined .
° 8w NI+ P
estart HNi enest ~{spd
Ti: o n e cstart NZ
33? s '
o G A . TZ: &® % o
crepeat T1 o
. crepsat T2
dsr 5 P
& e more concurrent loops
cstart Nn

Tn: = om oA
&3;‘
rrepoat Tn
R
cunnest {spl+

R

ris

Note that the instructions CNEST and CUNNEST are used
at the beginning and end of a subroutine that has one
or more concurrent loops. These are needed to save and
5 restore the current and final iteration for the outer
loop. In the example of Table 9, the first subroutine
call (jsr) in the calling routine appears within a
concurrent loop, meaning that each execution of a
concurrent loop within the subroutine is performed
10 serially by the CE that called the subroutine. The
second {jsr) appears outside the concurrent loop, and
thus ‘the concurrent loops in the subroutine are
executed concurrently on multiple CEs.

VII. Backplane Switch
15 The CEs are connected to the cache gquadrants
by backplane switch 14, as shown in Fig. 15.

ARRIS883IPRI0001448

10

15

20

25

306

73 0214718

A. Circuitry

Forty-eight control lines 200 extend across
the backplane directly from the CEs to the cache
guadrants, without passing through the backplane
switch. S8ix control lines are connected to each CE,
for a total of forty-eight contrel lines, all of which
are are comected to each quadrant. The six control
lines for each CE are: CSTRTL, CBUSYL, CWAITL, CADRS,
CADR4X3, and CDTPAR. Collectively, the six control
lines are denoted AC for CE0, BC for CEl, CC for CE2;
and so on. CBUSYL, CWAITL, and CDTPAR are implemented
as open-coilector signals,

Ninety-six lines extend to the backplane
switch from each CE and each cache quadrant:
sixty-four bidirectional data lines CDT(63:0),
twenty-six address lines CADR(27:6,4,2:0), an
address parity line CADRPAR, three CE operation lines
CEOP {2:0}, and two data-length lines CDLN{1:0}. Each
CE and cache quadrant also provides the backplane
switch with enable lines, e.g., AE and WE, for enabling
data and addresses to be read from the ninety-six
bidirectional lines connected to the switch. The cache
guadrants provide the backplane switch with direction
signals WD, ¥D, YD, %D, which define the direction of
data being transferred through the switch, and two sets
of three-bit CE selection signals WS{2:0), %8{2:0),
¥8{2:0}, 28(2:0), which specify the CE to which, or
from which, a transfer is being made. Only one set
of selection signals is shown in the drawings, but
separate 3-bit selection signals are provided for
addresses and data.

The backplane switch consists of twenty-four
identical four-line switches 180, which together

ARRIS883IPRI0001449

e 0214718

provide the capability of switching ninety-six lines
between the CEs and cache guadrants. The switches 180
physically reside on backplane 192 (Fig. 18), into
which the CE boards and cache boards are plugged. Each

5 four~line switch is implemented using a single CMOS
gate array (e.g., Fujitsu 2600).

K block diagram of one four-line switch 190 is
shown in Fig. 17. Four of the ninety-six lines passing
through backplane 14 are connected to esch four-line

10 switch 190, for each cache quadrant and CE {e.g., W3,
W2, Wl; WO for quadrant W, and A3, a2, A1, AQ for
CEQ). The enable lines (e.g., WE and AE), direction
lines {e.g., WD), and CE selection lines {(e.g., WSZ,
WS1l, W80} are also connected to the four~line switch.

15 Each four-line switch has three functional
sections: a cache-ports section 202, selection section
204, and a CE-ports section 208.

The cache and CE-ports sections serve to
divide the four bidirectional lines from each cache

20 guadrant and CE into eight vnidirectional lines, four
going toward the CE (the "IN" lines) and four coming
from the CE {the "OUT" lines). For example, the four
bidirectional lines A{3:0} from CED are divided into
four lines AIN(3:0) going to the CE and four lines

25 AQUT{3:0) coming from the CBE. The logic 208, 209 used
for this function is shown in Fig. 16 Ffor one of the
four=lines from each cache gquadrant and CE. Each line
{(e.g., WO} entering the switch (sixteen from the cache
guadrants and thirty two from the CEs) passes through

30 buffer gate 210 and inverter 212, and each line leaving
the switch passes through three-state gate 214, enabled
when the corresponding enable line is low (cache ports)
or high (CE ports). For example, on the cache side,

ARRIS883IPRI0001450

10

15

20

25

30

5 0214718

bidirectional line W0 passes through gates 210, 212

and emerges as WINO: in the opposite dirséction, WOUTO
passes through three-~state gate 214 when enable line WE
is low. On the CE side, bidirectional Lline a0 passes
through gates 210, 212 and emerges as ADUTO, and AIND
passes through three-state gate 214 when enable line AE
is high. Gates 210, 212, 214 are provided for each of
the cache ports and CE ports connected to the backplane
switch,

The selection section 204 of the switch serves
to connect selected cache output lines {e.g., WINO) to
selected CE input lines (e.g., AINO) when the transfer
is to the CE, and to connect selected CE output lines
{€.g., AOUTD) to selected cache input lines {ecg.,
WOUTO}) , when the transfer is from the CE. The
selections are controlled by the cache, using the
direction lines {(e.g., WD} and the three~bit CE
selection lines {(e.g., WS{2:0)).

Data transferred from a cache port to a CE
port is selected at the CE port by a four-bit-wide
selector 216 consisting of four OR gates 218 driving a
NAND gate 220 (Fig. 16)}. The OR gates select one of
four cache output signals WIND, XINO, YINO, ZINO under
control of four selection signals WSELA, XSELA, YSELA,
ZSELA, which are generated by deceding the CE selection
signals WS, %8, ¥X, ZS at decoder 222. When a
selection signal is low, its corresponding cache
output signal is selected {e.g., WSELA set low, causes
WINO to be connected to AINO}. Proper operation of the
selector requires that no two cache ports access the
same CE port at the same time: this is assured by the
CE-cache protocol (see below). For clarity, only one
selector 216 and decoder 222 are shown in Fig. 16. A

ARRIS883IPRI0001451

10

20

30

e 0214718

total of thirty two, one for each of the four lines
connected to each CE, are provided in each four-line
switch. .

Data transferred from a CE port to a cache
port is selected at the cache port by an gight~-to~-one
multiplexer 230 consisting of decoder 224, which
converts a three~bit CE selection signal (e.g., Z5) to
eight selections signals (e.g., ASEL%Z to HSELZ}, and
gates 226, 228, which use the eight selection signals
to connect one of the eight CE output signals (AOUTO to
HOUTO) to a cache port {e.g., ZOUT0). The CE-cache
protocol {see below} assures that only one cache
quadrant (W, X, ¥, or Z} ever accesses the same CE at
any one time, Only one multiplexer 230 is shown in
Fig. 4. A total of sixteen, one for each of the four
lines connected to each cache guadrant, are provided in

each four-line switch,

B. Operation

A CE initiates a cache operation by asserting
its CSTRTL and supplying the two address bits CADRS
and CADR4X3 specifving which of the four interleaved
guadrants of the cache are invelved in the operation.
CADRS is the £ifth least significant bit of the memory
address involved in the operation being initiated by
the CE, CADR4X3 is the exclusive-OR combination of
the third and fourth bits of the memory address. The
reason that these two bits are combined in addressing
the cache guadrants has to do with the way in which the
cache gquadrarnts are interleaved (see discussion of
cache). If only two cache guadrants are in use {(e.g.,
if only four CEs are in use), only address bit CADRAX3
is used to address a particular gquadrant, and CADRS is

ARRIS883IPRI0001452

10

i5

20

25

30

77 0214718

saved by the addressed cache quadrant for use with the
remainder of the address transferred through the
backplane switch.

As many as eight CEs may simultaneously bid
for access to any of the four cache guadrants., Access
conflicts are resclved by the cache guadrants., In the
same 85 nanosecond cycle as the CSTRTL is asserted (the
first cycle), the cache gquadrant a&dres;eé resolves
which of the contending CEs has priority {on the basis
of the CE's physical loecation in the backplane, e.g.,
CE0 has priority over all other CEs), and in the second
B85 nanosecond period, asserts CBUSYL to all but the
highest-priority CE of those that are reguesting access
to that guadrant. CEs receiving the CBUSYL maintain
their assertions of CSTRTL in subsequent cycles {only
if they continue to desire accees to that guadrant).
The cache guadrant wmaintains assertion of CBUSYL in
subsequent cycles until it is able to accept an address
from the CE in question or until the CE removes
CSTRTL., When CBUSYL is removed, the address transfer
takes place in the same cycle. A CE must remove its
CSTRTL in the cycle following transfer of an address,
or the cache gquadrant will interpret its presence as
a new cache access reguest. A cache access may be
aborted by a CB by its removing the CSTRTL assertion
in the second cycle--the c¢yecle in which the address
transfer is to take place.

Also in the second cycle,; the cache guadrant
instructs the backplane switch to transfer the address
CADR{27:6,4,2:0), operation code CEOF, and data length
code CEDLN from the selected CE. The cache quadrant
accomplishes this by asserting the code for the
selected CE on its CE selection lines {(e.g., ®5).

ARRIS883IPRI0001453

20

30

?% 0214718

As the address lines through the backplane switch are
tinidirectional (CE to cache guadrant), the direction
lines {e.g., WD) and enable lines {é.g., WE} for the
eight address gates of the switch are hardwired in the
appropriate state. The cache guadrant combines the
twenty-six bits of address CEADR{27:0,4,2:0)
transferred through the switch with the two bits CADRS
and CADR4X3 used in addressing the cache guadrant, to
generate the full memory address,

In the third cycle, if the CEOPF code shows
that the CE is requesting ‘a read operation, the cache
guadrant inspects its tag store to determine whether
the addressed quadword {data transfers are in 64 bit
gquadwords) is present in its data store while
simultaneously reading from the data store the data
at the location at which the data to be read would be
found if present. During the same cycle, the cache
gquadrant prepares to set up the backplane switch to
transfer data back to the selected CE (by asserting the
CE selection lines for the CDT lines of the switch, and
changing the state of the direction line, e.g., WD}.

In the fourth cycle, if the tag-store lookup
is successful, and there ig no other condition that
precludes it (e.g., a resource conflict), data are
transferred through the backplane switch to the
selected CE. If the lock~up is unsuccessful (i.e., a
“cache miss™ hag cccurred), the cache guadrani asserts
the CWAITL line for the selected CE, instructing the
CE to wait until the removal of the CWAITL assertion
before reading data from the backplane switch. CWAITL
remaing asserted until the cache quadrant 1s prepared
to transfer the reguested data. The transfer occcurs
during the first cycle in which CWAITL is nhot asserted.

ARRIS883IPRI0001454

10

15

20

25

30

79 0214718

If the CEOP code specifies a write operation,
the tag-store lookup operation cccurs in the third
cycle (but a data store read is not performed) , and the
backplane switch is configured to transfer data from
the CE to the caché on the CDT lines. 1If the lookup
is sueccessful, the data transfer ocdurs in the fourth
cycle, and the write into the data store in the Fifth
cycle. If the lookup is unsuccessful, CWAITL is
asserted, instructing the CE to hold the data on its
CDT lines until the CWAITL assertion is removed.

The data transfer to or from a CE gan be
overlapped with a second CSTRTL assertion and address
transfer from the same CE. Such overlapped accesses
raise the possibility that a cache start will be
accepted (CBUSYL not returned} by one cache gquadrant
before the data transfer for a previous operation has
been completed by the same or another guadrant. In
such a case the one or two quadrants involved must work
tegether to assure that the data ig transferred in the
expected order and that the CWAITL signal is asserted
unambiguously. 'This is accomplished by assuring that
CWAITL is asserted only by the first quadrant to accept
a cache start, until such time as the data transfer for
that quadrant is complete. The data transfer for the
later operation is delayed until at least two cycles
after the earlier data transfer (rather than two cycles
after the address transfer as in the ordinary case).
If the guadrant controlling the later transfer wishes
to delay the transfer further, it may then do so by
asserting CWAITL. In this case, there will be exactly
two cycles of delay from the end of one assertion of
CWAITL to the start of the next assertion. Orce CWAITL
is under the control of the cache quadrant performing

ARRIS883IPRI0001455

10

20

25

30

ARRIS883IPRI0001456

S0 0214718

the later transfer, the timing of the data transfer
will be the same as for the ordinary case. The cache
quadrants are able to detect for which CEs the CWAITL
line nas been asserted as the CWAITL lines for all CEs
can be read by all cache guadrants.

Data parity bit CDTPAR, which is based on
the entire 64 bits of data transferred across the
cpT lines, is sent in the cycle following the data
transfer. Address parity bit CADRPAR is transferred
with the address during the second cycle.

There are three basic operations specified by
the CEOP code: READ, WRITE, and TEST AND SET (TAS).
The first two are Straightforward, and have already
been discussed. The TAS operation performs an atomic
test and set of a bit in memory. The operation is
performed by reading the addressed byte from the cache
and transferring it back to the CE (as part of an
eight-byte guadword transfer) while also writing the
addressed byte back to memory with bit 7 set to one.
1t is guaranteed that no other processor, anywhere in
the system, can access the data between the read and
writeback portions of the operation.

The CEOP code may alsc be used to pass a
cross-processor interrupt message to other processors
via the backplane switch, cache, and memory bus.
Additional interrupt control lines (not shown} may be
provided for use by the cache to signal a CE of the
occurrence and nature of such interrupts.

In addition to the read, write, and
TAS operations specified by the CEOP code, a
write-continuation operation may be specified (to
perform the second half of a mis-aligned write that
crosses a guadword boundary}).

10

15

29

25

30

4! 0214718

The data~length bits CDLN{Y:0) are transferred
with an addreés to instruct the cache quadrant as to
the number of bytes following the address that are to
be modified by a write opération.

VIII. Central Processing Cache

A, Summary
The system has a global central processing

cache that serves up to eight CEs. fThe cache is
divided into four interleaved guadrants (denoted

W, X,¥,2), two of which reside on each of two CP cache
boards 12. Each cache guadrant can ordinarily complete
one quadword (64-bit) read or write access in each 85
nanosecond cycle, resulting in a total peak throughput
in the vicinity of 375 megabytes per second.

The block size of the cache (the smallest
amount of data moved between the cache and memory)
is 32 bytes. The data of each block is interleaved
between two quadrants W,X on the same cache board so
that for any 32-byte block quadwords 0 and 3 {quadwords
are B-byte words) are contained in quadrant W and
quadwords 1 and 2 in guadrant X. Contiguous 32-byte
blocks are interleaved between cache boards s8¢ that
quadwords 4 and 7 are located in quadrant Y and
quadwords 5 and 6 in guadrant 2. The interleaving is
accomplished by the use of CADRS to¢ select the gache
board and CADR4X3 to select the quadrant within the
board.

The cache quadrants use a write-back cache
protocol, meaning that both read and write operations
are handled by the cache. Data which has been modified
in the cache will not be written back into main Bl ey

ARRIS883IPRI0001457

10

15

20

25

30

22 0214718

until the data is reguired elsewhere in the system, or
until the cache block in which it is contained is
needed for other data, and blocks that have not been
modified during their stay in the cache are not written
back into memory when replaced.

Each cache guadrant contains 32 kilobytes of
data storsge, and the entire four-guadrant cache 128
kilobytes. The data stores of the quadrants are direct
mapped, meaning that for any given location in main
memory, there will be a single location in the cache
which may contain a copy of the data from that main
memory location.

B. Data Paths

The data paths for each cache guadrant are
shown in Fig. 19 (which shows guadrant W
of guadrant ¥X}. A 64-bit data bus CDIO(63:0) connects

the I/0 lines of data store 300 with ECC gate array 302

and a portion

(implemented as two gate arrays}, CE interface data
input register CDIN, CE interface data output registerx
¢pouT, and main memory bus input register DMBIN. Data
store 300 is implemented using sixteen 4K X 4 HMOS
static RAMs plus eight 4X X 1 MOS RAMs for parity. The
output enable signals of the parts driving the CDIO bus
are gated with timing signals generated by a delay line
to minimize the possibility of bus fighting during
transitions from one bus gource to another, The W
suffixes in Fig. 19 indicate the parts belenging to
guadrant Wy identical parts are present in quadrant X.
The DMBIN register receives data from
one of the main memory data buses and supplies it
simultaneously to the data store, ECC array, and CDOUT

register.

ARRIS883IPRI0001458

ER 0214718

The CDIN register receives data on the CDT bus
from a CE via the backplane switch and supplies it
simultaneously to the data store and ECC array {for
parity checking and generation). The CWAITL signal is

5 used to delay acceptance of the data from the CE until
the data store is able to accept it.

The CDOUT register receives data from the data
store, BECC array, and DMBIN register and supplies it to
a CE via the backplane switch. The clock for this

10 tegister can be stopped {by a HLDCDOUT signal} to hold
the data for an extra cycle during. the checking of the
ECC check bits, or during the transition from write
data to read data on the CDT bus.

The read or write to the parity portion of the

15 data store 300 occurs one cycle after the corresponding
read or wiite to the data portion. This is done to
remove the time spent in generating parity bits from
the critical timing path.

The ECC gate array in each guadrant performs

20 error correction checking and generation functions for
the main memory interface, and parity check and
generation for the data store and the CE interface.
The ECC array slso provides the data path for data
written from the cache back to main memory and assists

25 in the execution of the TEST AND SET operation.

Fach block of data to be written back Lo main
memory f£rom the cache is read from the data store into
the ECC array one guadword (64 bits) at s time. In the
cycle after receiving the data, the ECC array checks

30 the byte parity of the data and generates check bits to
be written along with the data into main memory. The
combined 72 bits of data and check bits are then stored
in a write-back file. "The write-back file holds two
quadwords for transfer to main memory. The other two

ARRIS883IPRI0001459

L0

15

20

25

30

ARRIS883IPRI0001460

Sl 0214718

words of a given cache block are handled by the ECC
array for the other cache guadrant on the board. When
the data from the write-back file is subsequently
driven onto the main memory data bus, the ECC arrays
for the two guadrants alternate in driving the data
onte thelr respective data buses.

There are two 72-bit main memory buses, DMBTA
and DMBTB. Cache guadrants on the same cache board are
assigned to different buses. DMBTA is assigned to the
W and Y guadrants; DMBTB is assigned to the X and %
gquadrants, Thus, the DMBTA bus always transfers
quadwords 0 and 3 of a given data block, and the
DMBTE bus transfers guadwords 1 and 2. The use of two
parallel buses increases the bandwidth of the memory
bus by permitting two data block transfers to be in
progress simultaneously. Dividing accessed data
blocks between cache guadrants provides an advantageous
prefetch of data. Each memory pus is driven by an ECC
array no more frequently than every other 85 nanosecond
cycle, and the ECC array begins to drive the data in
the cycle prior to the one in which the data will be
placed on the memory bus.

In addition to serving as the data path for
write back to memory, the ECC array also reads in any
cther data placed on the CDIO bus and performs parity
or BCC operations on that data. For example, when data
is read from the data store to the CDOUT register, the
ECC arrays check for correct data store parity and
generate the appropriate bus parity for the transfer to
the CE. Similarly, when data is transferred from the
CE to the cache, the ECC array checks for correct bus
parity and generates the appropriate data store parity.

When data is transferred from the DMBIR
register to the data store, the ECC array generates the

25 0214718

correct data store parity and checks for ECC error,
If an BCC error is found, the RCC array supplies the
corrected data to the data store (and to the Cp data
output register if appropriate) in the thira cycle
5 following the initial transfer of the erroneous data
on the CDIO bus,
The ECC gate array also plays a role in the
execution of the TEST AND SET (TAS) operation. When a
TAS operation is specified by the CEOP code transferred
16 from the CE, the ECC arrays read in the data supplied
by the data store and check its parity as usual. %Ywo
cycles later, the ECC array returns the same data to
the bus, but with the most significant bit of each
byte set to 1. In the following cycle the ECC array
15 supplies the parity bits for the new data so that the
appropriate data store parity bit can be updated.

C. Address Paths

The address paths for each cache quadrant are

shown in Fig. 19. The cache quadrants receive a 28-bit
20 physical byte address from the CEs, The significance
of the various parts of the address is shown in Table-

10-
Table 10
| Tag] Index i I |
& 17 14 6 5 4 2 2 0
AV S AN .
Fodule Selecty ___7/ / 4
/ !
Werd Select __/f /
£

yte Select ___/

—

ARRIS883IPRI0001461

10

15

20

25

38

A 0214718

The three least significant bits of the
address (bits 0 through 2) indicate the desired byte
within the specified quadword. These bits are treated
by the cache as control information rather than as part
of the address; they are used along with the data
length code CDLN specified by the CE to determine which
bytes should be modified by a write or TAS operation.

The next two bits {(bits 3 and 4} of the
address specify the desired guadword within the cache
block. Because quadwords 0 and 3 are located in one
guadrant and quadwords 1 and 2 are located in the
other, the CE-supplied CADR4AX3 signal, which is the
Exclusive OR of bits 3 and 4, 1is used to determine
which cache guadrant on a CP cache board contains the
desired data. The CE also supplies a normal address
hit 4 so that the selected cache gquadrant can determine
which of its two words is required.

Bit 5 of the address (supplied as CADRS by
the reguesting CE) indicates which of the two CP cache

boards in a four-way interleaved system contains the

desired block of data.

Tne next il bits of the address [bits &
through 16) form the cache index. These bits are used
to address the tag store and (along with address bit 4)
to address the data store of the selected cache
quadrant. In effect, the index bits along with the
bits which select the cache guadrant are used to
specify the one location within the CP cache which
could be occupied by the data from the addressed main
memory location,

The remaining bits of the address (bits 17
through 27) form the cache tag. These bits indicate
which one of the wany possible blocks from main memory

+

ARRIS883IPRI0001462

87 o2t4718

which could be contained in the addressed cache block
is actually required by the CE. When the cache is
accessed, these bits are compared with the contents
of the tag store entry for the addressed block to

5 determine if the desired data is in fact contained in
the cache.

When a single CP cache board is used by itself

as a two-way interleaved vache, the address is

interpreted in accordance with Table 11:

it Table 11
o o e 2 e 3 9 25 e o e 3 e e 1

- R N ot e ot s S e S S s S i o . o e i ok 5t 6 e e vt 7 o 7 S

Wora Szlect __ ./ Ty

Zyte Selsct __ _/

The function of bits 0 through 4 does not change. BRit
5; however, is no longer needed as a board-select bit
and is shifted into the index. To make room for bit 5
in the index, bit 16 is shifted into the tag, which

15 becomes one bit wider,

Each cache quadrant has three address input

registers which are clocked in each {85 ns) ¢yele. The
TAG register 310 is a simple 12 bit register which
receives CADR(27:16) from the backplane switch and

206 gupplies thése twelve bits to the address flow gate
array 312 (the "AF array", implemented as two gate
arrays) and to tag comparator 314. The DSIDX and TSIDY
registers 316, 318 are used to hold two copies of the
index portion of the address, one for the data store

25 and the other for the tag store. The TSIDX register
318 accepts bits 5 through 16 of the address from

ARRIS883IPRI0001463

BB 0214718

either the CE via the backplane switch or from the AF
array and feeds those bits to the AF array and the tag
store 320. The DSIDX register 316 receives the same
address bits, along with address bit 4, from the same
5 two sources, and uses them to address the data store.
Bits 4 and 6-16 of the address recelived from the CE are
supplied from the backplane switch, while bit 5 is
supplied by a flipflop in which it has been saved from
its transfer as CADRS in the previous cycle. The DSIDX
10 register 316 also receives bit 4 of the address CADRI(4)
from the backplane switch.
although the two index registers 316, 318
recelve essentially the same data from the same two
sources, their input select lines are independently
15 controlled so that the TSIDX register can be accepting
an address from the CE &t the sdme time that the DSIDX
register is accepting a different address from the
address flow gate array.
In order to be able to work correctly in
20 either the single or the dual~board configuration, the
two index registers always receive both bit 5 and bit
16 of the address, while the tag register always
receives a full 12 bit tag, including bit 16. The
inclusion of an extra bit in the tag comparison for a
25 twa board cache will not affect its operation, as a bit
which is included in both the index and the tag will
always compare sucgessfully. For the two index
registers, it ig necessary to select either bit 5 orx
bit 16 of the address, depending upon the configuration.
30 Tag store 320 consists of two banks of four 1IX
X 4 fast static MOS RAMs which provide 2048 15-bit tag
entries. Twelve bits of each tag store entry contain
the tag itself. An additional bit is used for the

ARRIS883IPRI0001464

0214718
39

VALID control flag, and the final two bits are used as
tag parity bits. The VALID control flag is used to
indicate whether or not the data store location
associated with a given tag store entry contains any

5 yalid data. The flaqg is set at the completion of a
cache miss resolution,; and reset whenever the cache
hlock will be in an indeterminate state {i.e., when
one, but not both words of a new block have been
written}).

10 A separate pair of 4K X 1 fast static RAMs is
used to keep two copies of the tag entry's MODIFIED
kcontrol filag. The use of separate and independently

controlled RAMs allows the modified bit to be set ox
cleared at the same time that the rest of the tag entry

15 is being read. Ywo copies are kept to provide a
separate parity check for this bit, The MODIFIED
control flag is used to keep track of whether or not
the data contained in the corresponding data store
location has been modified. This flag is set when data

20 sontained in the cache, but currently unmodified, is
written for the First time. The MODIFIED flag is reset
when data which is currently in the cache and modified
is being read into the write-back file in the ECC
array. The MODIFIED flag is also reset whenever the

25 vyALID flag is reset.

Each cache guadrant checks each address
submitted to it by a CE in order to determine if the
requested data is already present in the cache. The
check is performed by selecting the index portion of

30 CADR as input to the TSIDX register 318 and applying
the data read from the tagq store 320 to one side of
identity comparator 314 while applying the tag portion
of CADR {contained in the tag register) to the other

ARRIS883IPRI0001465

10

20

25

30

q0 0214718

side of the comparator. The result of this comparison
is gated with the VALID flag read from the tag store to
generate a Cache Hit {or Cache Miss) indication.

when the address submitted for tag comparison
is for a write or TAS opetation, the tag comparigson
includes a check to verify that the MODIFIED flag is
already set. If the MODIFIED flag is not yet set, the
cache guadrant must set it to keep track of the fact
that the data has been modified, so that the guadrant
will know to write back to memory the block contalning
that data.

The MODIFIED flag will also be checked when
the tag check indicates a cache miss. If the MODIFIED
and VALID flags are both seét when a miss is detected,
the cache will cause the data contained in the data
store to be written back to memory when it is replaced
by the new data.

5 significant portion of the address paths for
a cache guadrant is contained in the AF array 312. The
paths in the AF array can be divided into two halves.
One half receives the addresses from the TAG register
and the tag store index register TSIDX and is able to
hold three of these addresses for operations which may
be pending. The addresses from this half of the array
can be driven onto the main memory address bus DMBADR
t5 initiate reads for cache miss resolutions, and can
be used to address the data store for the completion of
an access that has been delayed for some reason. The
paths in this half of the array are also used to delay
the data store index used for write operations from the
corresponding access of the tag store. The second half
of the AF array reads addresses from the main memory
address bus DMBADR, and holds other addresses for

ARRIS883IPRI0001466

a4 0214718

memory-related activity in progress. Addresses are
placed on the DMBADR bus by the array itself to
initiate main memory reads, and the addresses are read
by the AF arrays for both guadrants, and saved so that
5 they may be used in the completion of the operation.
Addresses placed on the bus by the AF array
for the other cache guadrant of the same board are
similarly taken into a gquadrant's own-AF array and used
to update the daia and tag stores as appropriate to the
10 action initiated by the other quadrant. The AF arrays
are also responsible for generating the parity bits for
a new tag entry, and for checking parity whenever a tag
entry ls read from the tag store.
When a write-back is reguired as part of a
15 miss resolution, the miss address taken into the AF
array from the main memory bus is iised to read the old
data from the appropriate data store block into the
write~-back file. The AF array for the guadrant which
initiated the miss resolution also reads in the old
20 tag from the tag store at this time. This 0ld tag is
concatenated with the index portion of the miss address
to form the main memory address needed for initiating
the write-back operation.
In addition to their several address registers
25 and latches, the AF arrays alsc include a number of
identity comparators for determining when two
operations which are pending or in progress involve
either the same data block {i.e., both tag and index
are the same) or the same cache block {i.e., the index
30 is the samej.
Because of the need to work in both single and
dual-board configurations, the AP array always includes
bit 16 in the tag and includes both bits 5 and 16 in

ARRIS883IPRI0001467

the index. <Control inputs to the arrays will indicate
in which of the two modes a given array is operating
and for which half of the address the array has
responsibility. The array which contains bit 16 of

5 the address will enable or disable the inclusion of
that bit in any index comparison, depending on the mode
of operation, in order to be able to perform such
comparisons correctly.

A single main memoiy address input register

10 DMBADRIN and ¥CVR are shared by both guadrants on the
same cache board. The sharing of the output drivers is
facilitated by the fact that any given CP cache board
will not drive a new main memory address onto the bus
more often than every fourth cycle. The AP arrays for

15 a quadrant which 1s about to place an address on the
bus are enabled to drive the inputs of the bus drivers
during the cycle before the bus itself is to be
driven. The delay to the enabling of the data onto the
main memory address bus will thus depend solely on the

20 enabling of the output drivers at the start of the next
cycle, and not on any delays introduced by the gate

arrays themselves.

D. Handling Multiple Accesses

The cache quadrants have the ability to
25 continue accepting CE accesses even after a cache miss
or similar event has prevented them from immediately
completing an access. Bach guadrant has the capability
of simultaneously working on three pending CE accesses.
There are a number of reasons besides a cache
30 miss for a guadrant being unable to complete an access
immediately: e.g., the data store may be temporarily
inaccessible because it is being used for a highex

ARRIS883IPRI0001468

1¢

15

20

25

30

13 0214718

priority activity: the CE may be unable to accept the
data accessed as the result of an earlier acgess not
having been completed (CEs may overlap cache accesses,
but they must receive data transfers in order}.

Each cache guadrant keeps track of pending CE
accesses using one address register and two address
latches, and corresponding status registers (see
below). The address register and latches are located
in the AF array. They are the CE address register
CEREG ‘and two miss latches MISSA, MISSB. The CEREG
register receives the address for the most current CE
access: the 12-bit tag store index {equivalent to
CADR({16:5)) from the TSIDX register and the 12-bit tag
feguivalent to CADR{27:16)} from the TAG register,

If a CE cache access is completed immediately
by the guick-work logic (described below: the memory
location is found in the cache and data is transferred
in the fourth cycle following the CSTRTL assertion},
the contents of CEREG is simply replaced by the address
of the next CE access. If, on the ather hand, the Cy
access cannot be handled immediately (and CWAITL is
asserted to the CE), the contents. of CEREG are held by
the MISSA or MISSB latches, whichever is free. When
both the MISSA and MISSB latches are full, and the
access corresponding to the current contents of CEREG
cannot be completed immediately, the clock to CEREG is
halted to thereby temporarily store the address it
contains, and the cache quadrant is alerted to refuse
any further CE accesses (it asserts CBUSYL to all
contenders). Thus, as many as three accesses may be
simultaneously worked on by each cache quadrant.
Hormally, each cache gquadrant accepts new accesses
every 85 nanoseconds. After both miss registers are

ARRIS883IPRI0001469

G 0214718

full, the speed is halved to provide enough time for
the quadrant to determine, before accepting a new
access, whether the current access {(for which the
address is stored in CEREG) will be completed

5 immediately.

CE accesses are initially controlled by
guick-work logic 322 (Fig. 20}, which controls the tag
store lookup, data store read and write, and so on
{as well as the interface with the CE}. When an access

10 cannot be immediately handled, control of it shifts to
pending-status logic 324. As many as three pending
accesses in each guadrant can be under the control

of the pending-status logic at any one time. The
pending-status logic controls address register CEREG
and address latches MISSA, MISSE in each guadrant,
asgsigns to them addresses received from the guick-work

et
1643

logic, and maintains and updates & status code for
each. Status codes are initially generated by the
IRITSTAT programmable logic array (PLA), and stored
20 jp initial-status register INIT (Fig. 21). From
there they c¢an be updated by three next-status PLAs
{NEXTSTATC, NEXTSTATA, NEXTSTATB) and held in three
next-status fegisters NEXTC, NEXTB, NEXTA.
When it is determined that an gccess cannot be
25 handled immediately by the guick-work logic, the access
becomes a "pending® access, and control of it is
transferred to the pending-status logic. A four-bit
state encoding and a three-bit substate encoding is
generated by INITSTAT and assigned to the access. The
30 state/substate combination identifies the reasons why
the access could not be completed immediately and
indicates the path that must be taken to resolve
whatever conflicts are preventing completion of the

access.

ARRIS883IPRI0001470

10

15

20

25

30

95
0214718

At the same time as the state and substate
encodings are made, initial values of an § bit and a
WB bit are set for that access., The & bit, when set,
indicates that the completion of the access must be
delayed until after a previous operation requested by
the same CE has been completed, irrespective of
whatever other constraints may ©r may ncot be placed on
that access by its state or substate. The WB bit is
used to track the state of the MODIFIED bit for the
block which will be replaced if it should be necessary
to bring a new data block in from memory in order to
complete the access. The WB bit indicates whether or
not a write-back operation is to be performed as part
of the miss resolution.

The determination of the initial state and
substate is based upon the type.of access requested and
upcn the results of the tag comparison and the state of
the MODIFIED bit, along with other information, such as
the status of other CF accesses still pending and the
results of address comparisons performed within the AF
array.

The initial status ({state, substate,

S bit, and WB bit) is loaded, along with the CEOP
specification for the access and the CEID of the
requesting CE, from the INIT register into one of the
next-status registers. If either NEXTA or NEXTB is
empty, the status is loaded via the associated
next-status PLA into the empty register. If both
NEXTA and NEXTB are already full, the output of INIT is
loaded only into NEXTC via the NEXTSTATC PLA. HEXTC is
only used when CEREG is called upon to temporarily
store the address of a third pending access. When the

number of pending accesses is reduced to two Or less,

ARRIS883IPRI0001471

10

15

20

25

30

L3 0214718

the contents of NEXTC {if its access has not already
heen completed) Is transferred to either NEXTA or
NEXTB. The cholce of NEXTA or NEXTB as the destination
for the output of INIT 1ls governed by multiplexers 340,
342. During the transfer of INIT the ocutput of HEXTC
{which is coupled to the output of INIT via three-state
logie not shown) is nob enabled.

The status codes of pending accesses are
redetermined each cycle by the next-status PLA to which
the access is assigned. The PLAs determine a new
status each ¢ycle based on the ¢ld status {which is
either fed back from the PLA's own next-status register
or f{as discussed above) transferred from the NEXTC
register), inputs from the AF array indicating the
results of address comparisons, and cther inputs
indicating the status of other activity occurring in
the cache.

Whern the pending-status logic recognizes that
address latches MISSA, MISSB in the AF array are full,
it instructs the quick-work logic to accept CE accessés
at a slower rate. When it recognizes that a third
access has become pending (with its address stored in
CEREG) , it notifies the guick-work logic to stop
accepting accesses, by asserting CBUSY to all
contending CEs.

To complete pending accesses, the
pending-status logic relies on either the
memory~interface logic 326 or the unpended work
logic 328, To complete an access by accessing the
required data block from memory, the pending-status
logic communicates with the memory-interface logic by
asserting one of four memory-access signals ARBNXTI,
ARBNXTC, ARBNXTA, ARBNXTB, to inform the

ARRIS883IPRI0001472

ig

15

20

25

30

T 0214718

memory-interface logic that it should access from
memory the data block having the address stored in
the corresponding register (CEREGC ARBNATC, MISSA for
ARBNXTA, and MISSB for ARBNXTB; ARBNXTI is asserted
before it is known in which register or latch the
access éddress will be held). Alsoc supplied to the
memory-interface logic is the CE operation code CEOP
and the CE identity CEID.

The memory~interface logic accomplishes two
tasks. First, it compl&teé the requested memory
access, by instructing the AF array to assert the
required block address on the DMBADR OUT bus and by
instructing the DMBINA {or DMBINB, depending on the
guadrant) register to accept data from the main memor y
bus. Seécond, it completes the cache access assigned to
it by the pending-status logic.. To complete the cache
access, it must obtain the use of the data paths from
the DMBINA register to the data store and ECC array and
to the address paths from the AF array to the tag
store, paths normally controlled by the quick-work
logic. To do so, the memory-interface logic asserts
DERQ (data store request) and TSRQ (tag store request)
to the quick-work logic., Assertion of these signals
may prevent the quick-work logic from completing
accesses, and may result in accesses being transferred
to the pending-status logic, but the memory-interface
logic is given priority so that data accessed from
memory reaches the data store without delay. Once it
has control of the paths, the memory-interface logic
instructs the AF array to transfer the index portion
from the RDADR latch (which contains the address of
data accessed from main memory) to the paths to the tag
and data stores, and it causes data to be moved across

ARRIS883IPRI0001473

15

20

25

30

9% 0214718

the CDIC bus to the ECC array and data store. When the
memory~interface logic has completed an access assigned
to it, it informs the guick-work logic to clear the
CWAIT corresponding to the completed access,

Pending accesses not completed by the
memory-interface logi¢ are completed by the
unpended-work logic 328. Only CE accesses that
initiate a memory access are completed by the
memory~interface logic. Those that can be
completed without a memory access are handled by the
unpended-work logic. Examples of accesses completed
by the unpended-work logic include ones caused not by
nisses but by resource conflicts and ones for which the
desired gquadword is read from memory as the result of
another pending agcess. The pending~status logic
transfers accesses to the unpended-work logic by
asserting one or more UNPEND signals (AUNPERD, BUNPEND,
CUNPEND,; one for each of the three possible pending
accesses) as well as the CE operation code CEQP and
the CE identity CEID. The UNPEND signals constitute
one bit of the status code stored in the next-status
registers, and are updated b§ the next-status PLAs with
each .change in the state/substate of an access; they
represent a decoding of the specific state encoding
{UNPEND} that indicates whether an access has a status
appropriate £or completion by the unpended-work logic.
The unpended-work logic constantly checgks to see 1f the
resources are available to complete accesses assigned
to it. When they are, it will control the AF array,
BCC array, data store, and tag store as necessary to
complete the access,

When the unpended-work logic completes an
access, it informs the pending-status logic of that

ARRIS883IPRI0001474

i¢

15

20

25

30

4 0214718

fact by asserting the appropriate EMPTY line (EMPTYA,
EMPTYB, or EMPTYC), which causes the corresponding
status and address registers and latches to be cleared,
and it instructs the quick-work logic to clear the
corresponding CWAIT signal.

in summary, there are three ways in which a
cache access is completed: by the guick-work logic
if completion can be done immediately, by the
memory-interface logic if the cache access initiates a
memory access, and by the unpended-work logic if the
cache access can be completed without initiating a
memory access,

Priority for access to the data store
and related resources is always given to the
memory-interface logic, as it cannot be reguired
to hold up transfers from memory, Ordinarily the
quick-work logic has the next highest priority, as it
is ordinarily better to avoid creating new pending
accesse$ than to complete those already pending. The
unpended-logic may, however, take priority by asserting
STOP to the quick-work logic, instructing it to assert
CBUSY to all contending CEs. The quick-work logic, in
turn, instructs the unpended-work logic whether it will
be vusing the resources in the next cycle (e.g., if it
will be accepting an address transfer for the last
access it accepted) by asserting RISTRT., If RISTRT is
asserted, the unpended-work logic waits until the
following cycle, when it is assured of use of the
resources,

The pending~status logic relies on the results
of address comparisons made in the AF array to update
the status of pending accesses. These comparisons are
primarily of two typesv‘ First, addresses stored in

ARRIS883IPRI0001475

0214718

CEREG, MIESA, and MISSB are compared to every addréss
DMBIN received by the AF array from the main memory
address bus DMBADR. Second, the address CEIN of the
most current CE access (which may become a pending

f8u

access) 1s compared to not only the current address
DMBIN being received from memory but also to addresses
received from memory in several prior cycles. The
prior~-received addresses are stored in a pipeline in
the AF arrav and include register ADRIN ana latches
10 PDADR, RDADR.

A successful comparison between CEIN and the
contents of addresses in the incoming address pipeline
{e.g., PDADR, RDADR} may cause the pending-status logic
{the INITSTAT PLA} to generate an initial status

15 indicating that the current access is pending on
ancther miss {POOM), i.e., that-the data needed to
complete the new access is on its way to the data
store from the main memory bus. On the other hand, a
successful comparison between only the index (and not

20 the tag) of CEIN and an address of data being read in
from main memory causes the pending-status logic to
generate an initial status indicating that, even though
the data reguired might presently be in the data store,
it is about to be replaced by other data, and that, if

25 the access cannot be immediately completed by the
gquick~work logic, the access must be given a status
that reqguires it not initiste another memory access
until after an interval long enocugh for completion of
the access that caused the new data to be transferred

30 from memory.

In summary, the address comparisons performed
to determine how the status of a pending access should
be updated {e.g., to a status indicating that the

ARRIS883IPRI0001476

10

15

20

25

30

ol 0214718

access can be completed by the memory-interface or
unpended-work logic) comprise (1) comparisons of esach
new access address transferred by a CE to all addresses
for main memory accesses still in progress {(i.e., those
for which the data has not already been stored in the
data store) and (2) comparisons of each new memory
access address to the addresses of each pending access.

The address comparisons made by the AF array
include ones that assure that if both a read and a
Wwrite to the same data are pending, the read is not
completed if it came later until the earlier write has
been completed.

The two cache quadrants on the same cache
board share common main memory address buses (as shown
in Fig. 19 for quadrants W, X). The DMBADR IN lines
from the AF array of each guadrent are tied together,
&s are the DMBADR OUT lines. In this manner, the
address of a data block being accessed by one guadrant
is read by the other guadrant, which will be receiving
half of the data block. Cache guadrants alternate in
accessing main memory.

The CP cache may be provided with hardware
for maintaining coherency between data in its own data
stores and data stored in other subsystems {(e.g.; obther
caches) having access to memory. For example, the
hardware monitors the main memory bus to detect whether
cther subsytems (e.g., other caches) are about to
modify data of which the CP cache presently has a
copy. The CP cache must‘immediatély invalidate any
such data (by setting the VALID bit low}. Furthermore,
if the CP cache has a modified copy of that data (which
is necessarily the only such modified copy because
other subsystems have invalidated any copies they have

ARRIS883IPRI0001477

10

15

20

25

30

(o 0214718

upon learning that the CP cache was modifiying its
copy), and another subsystem wante a copy of the data,
the cache must transfer the data onto the maip memoly
bus so that it is available to the other subsystem.
another example of a function performed by such
data~coherency hardware is informing other subsystems
when the CP cache is about to modify its copy of data.
such data coherency hardware increases the complexity
of the state/substate status coding. Such data
coherency hardware is discussed in Yen et al., "Data
Coherence Problem in a Multicache System®, IEEE

Transactions on Computers, Vol, C34, Ho. 1

{(January 1985), which is incorporated by reference.

E. Cache Interleaving

The preferred interleaving is shown in

Table 12:
Table 12

Cache Cache

BDR(5: 3} ADR4AX3 Quadrant Board
g 00] W g
001 1 z G
g 10 1 X i
g1l G W 0
100 0 Y 1
101 1 Z 1
110 XL Z 1
111 e Y i

The interleaving scheme provides excellent cache
accessing efficiency (i.e., a minimum of wasted cache
access cycles due te more than one CE attempting o
access the same cache) when a plurality of CEs (each
assigned a fixed priority ranking) are concurrently

ARRIS883IPRI0001478

10

15

20

25

30

03 0214718

processing a program that accesses memory in strides of
one and two guadwords ({as well as larger strides that

~are divisible by two but not by four: e.g., strides 6f

six and ten gquadwords). A memory stride is the address
spacing between successive memory accesses by scftware
operating on the system. Scientific and engineering
software, for which the present system is best suited,
typically accesses memory with strides of both one and
two (stride of ten is also relatively common.

To understand the advantages of the preferred
interleaving it is helpful to examine other, less
desirable schemes. Some schemes have poor performance
for either a stride of one or a stride of two. For
example, the interleaving scheme shown in Table 13
works well for strides of one, but poorly for strides

Table 13

Cache Cache
ADR{5:3} Quadrant Bgard

et ek ot et €3 £ £ CD
Pt ot U £ B et D ED
Pt K et D €D D
DR DI b b 5
oot oo D LD e ol LD

of two, wheérein no cachie accesseés whatsoever would be
made to half of the cache guadrants (because they only
contain memory locations skipped over in a siride of
two). The interlesaving scheme of Table 14 works well
for a stride of two, but poorly for a stride of one.

ARRIS883IPRI0001479

10

15

20

25

30

ARRIS883IPRI0001480

of 0214718

Table 14

Cache Cache

ADR(5:3) Quadrant Board
000 W g
00 1 W g
010 X]
011 % 0
100 ¥ 1
101 ¥ 1
1310 Z i3
111 Z L

The reason for the difficulty with a stride of
oné can be seen by examining the cache access patterns
for four CEs all concurrently processing a program with
a memory-access stride of one., As shown in Table 15,

a phase relationship between the access patterns can
result in which the fourth CE (with the lowest priority)

Table ié
CE
1 WWXXYYZZWWRIEYYZZ
2 ¥ 72 ZWWXLYYZ ZWWAILAY
3 RRAYY & Z2HHWAXEZYY ZZ2WNW
4 $ ¥ W EF FWEALEEEFXEYE

is locked ocut of accesses {indicated by a #)} most of
the time. In this phase relationship, each of the
first three CBs is offset from the next higher priority
CE by an odd number of cycles (specifically three in
this instance).

There is another phase relationship, shown in
Table 16, for the Table 14 interleaving scheme at a
stride of two. 1In this phase relationship, in which
each CE is offset from the next higher priority CE by

an even number of cycles (specifically two in this

15

20

25

30

oS 0214718

instance}, access lock-out of CE4 does not result.
The difficulty, however, is that thére is

Table 16
cE
1 WHXEXYY ZZWWXYYY7 Z
2 ZIZHWHEAYY Z Z2WWIERXYY
3 YY¥ 2 2 HWWXIXYY Z 2uWXZX
4 AEX Y VY Z ZWWAERYYSZ 2 WwW

nothing about the interleaving of Table 14 that will
force the CEs to adopt the more efficient even-offset
of Table 16 rather than the less-efficient odd-offset
of Table 15, and thus performance will degrade on the
average for a stride of one.

What is advantageous about the interleaving
scheme ©f Table 12 is that it produces a stride-of-one
access pattern (WXXWYZZY} that forces the CEs into a
phase relationship in which there are a minimum of (and
ideally no) wasted cache accesses. Table 17 shows the

initial cache accesses in the four CEs for a stride

Table 17
CE
1 WYX XWY 2 2YWHXXWUYZZZY
2 W EHEAWY Z2FYHAIEXAY T
3 $EWH S XAWYZZYHAAW
4 4 4 8 W F X AEWYZIZYEH

of one. In the hypothetical shown, the four CEs
initially attempt to access the same cache guadrant in
the first cycle (something approximating what could
occur at initiation of vector goncurrent processing:
see below}. &ccess conflicts force CE2, CE3, and CE4

to delay some accesses until each reaches a phase

ARRIS883IPRI0001481

10

15

20

30

b

0214718

relationship in which no further conflicts arise,
wherein each CE's access pattern is offset by an even
number of cycles from that of the CE with the next -
highest priority. This phase relationship will be
reached by all the CEs no matter what the initial phase
relationship.

The cache accessing sequence shown in Table 17
actually shows only half of the accesses that occcur
during a typical initiation of vector-concurrent
processing on an eight-CE system (with all eight CEs
participating in the concurrency complex). The
sequence of Table 17 depicts the accessing occurring
every other 85 nanosecond cache cycle for four of the
eight CEs; the same accessing pattern occurs during
the other cycles for the other four CEs. Assuming
for simplicity that all eight CEs initially contend for
the same cache quadrant, those that lose on the first
cycle will contend on the very next cache cycle (not
shown in the Table 17 seqguence). One CE will win
during that cycle, and the remaining ones will contend
during the third cache cycle {(the second cycle shown in
Table 17}, One by one the eight CEs will find a niche
on one or the other of the alternating cache cycles,
with the result that four will access the cache on odd
cache cycles, and another four on even cycles (with
the resulting assignment to odd or even cycles being
random) . The superior performance of the preferred
interleaving is most pronounced when seven to eight CEs
are part of the concurrency complex.

The general procedure for choosing an
efficient interleaving is as follows. For each stride
of interest, the desired offset between the access
patterns of the contending CEs is determined. In

ARRIS883IPRI0001482

(o7 0214718

general, the desired offset is equal to the guotient
(or any multiple thereof) of the length of the pattern
and the number N of available cache sections {the
generality of this expression for offsets greater than

5 four is believed to be accurate, but has not been
investigated):

OFFSET = {LENGTH/N)

The stride-of-one pattern for the preferred
interleaving of Table 12 (WXXWY2ZY) has a length of
10 eight, and thus the desired offset (and multiples
thereof) for four processors is 2, 4, 6, 8, and so
on--i.e., any even number,
If an interleaving is efficient for a
particular stride, it is also efficient for all odd
15 multiples thereof. Thus, for example, the interleaving
that produces the desirable eight-bit pattern WXXWYzZ2Y
for a stride of one also produces the same desirable
pattern (except for irrelevant interchanges of cache
gection identities) for strides of three and five, ang
20 so for all odd strides. And the desirable pattern
{WXYZ) for a stride of two also results for strides of
&, 10, and all other odd multiples of 2.
In general the length of a pattern equals
the number of cache sections multiplied by the largest
25 power of two stride that the pattern accommodates. TFor
example, in the WXXWYZZY example, the length of B8
equals 4 cache quadrants multiplied by a largest
power-of-two offset of 2,
Once the desired offset is known, the access
30 pattern must be inspected to determine whether it will
tolerate such an offset without conflicts arising.
This inspection is easily carried out by determining

ARRIS883IPRI0001483

(0% 0214718

whether the same cache section (e.g., W,X,¥,Z in the
present case) appears in the pattern at any interval
equal to the desired offset or a multiple thereof. If
the samevcache(semtien does appear at such intervals,

5 it means a confiict can result, making the pattern
undesirable, Inspection of the stride-of-one patterns
(WEXWYZZY and WWXXYYZ} for the interleaving schemes of
Tables 12 and 14 shows 1o conflicts at the desired
offset of 2 nor at multiples of that offset. This

10 accounts for the ability of the Table 14 interleaving
to achieve the phase relationship shown in Pig. 16.
Although these two access patterns will tolerate an
offset of two, there are obviously patterns that will
not {e.g., WXWXYZYZ).

15 After it has been determined that the pattern
has no conflicts at the desired offset {or at multiples
thereof), it is necessary to provide some means of
forcing the contending processors to fall into the
desired offset. With the contending CEs having a

20 fixed priority ranking (e.g., based on their physical
locations in the backplane}, it is possiblie to Fforce
the desired offset simply by judicious selection of the
interleaving itself. The interleaving is chosen so
that the resulting access pattern generates at least

25 one conflict at all of the undesired offsets. 1In the
case of a desired offset of 2 (and also 4, 6, and 8},
the access pattern must have at least one conflict at
offsets of 1, 3, 5, and 7 (although the conflicts at 5
and 7 necessarily arise if conflicts are present at 1

30 and 3} . As shown in Table 18 below, the stride-of-one
access pattern for the Table 12 interleaving (repeated
twice pelow) has the necessary odd-offset conflicts.

ARRIS883IPRI0001484

Lo 0214718

Table 18
s i s st i T s e e o v
WXAWY ZZYWEIXIWYZZY
et CEE U R R

5 By contrast, the stride-of-one pattern for the Table 14
interleaving does not have the necessary conflicts. As
shown in Table 19, it lacks the conflicts for an offset
of 3 {and 5), having only conflicts at offsets of 1

fand 7).
10 Table 18
. - A

WHXXYYZZWUWEAXYYZZ

This procedure can be applied to any number
15 of cache Sections {and processors} and to any stride.
{The number of cache sections must, for practical
purposes, be a power of two because of the binary
memory addressing.) For example, if eight (instead of
four) cache sections are provided, the offset for a
20 sixteen cycle access pattern (which is needed to

accommodate strides of 1 and 2} is

OFFSET = L/N = 16/8 = 2

& desirable sixteen-cycle pattern is shown in Table 20
{in which the cache sections are denoted A through H).

25 As required, it has no conflicts at all even offsets,
and at least one conflict at all odd offsets (exemplary
odd-offset conflicts are shown for offsets of 1, 3, 5,
and 7).

ARRIS883IPRI0001485

1o 0214718

Table 20
..,l;_ _____ 3 _____
EAEBCDDUCBAEFGHHGTPEFE
UL NS e y DR
5 Other interleaving schemes than the one shown

in Table 12 can be used. Schemes could be used that
produce either of the eight-cyele access patterns shown
in Table 21. Both patterns have the required absence
of even~offset conflicts and presence of at least one

10 conflict at all odd offsets (exemplary odd-offset
conflicts are shown for offsets of 1 and 3).

Table 21

-1 -
WAXWYYZ ?
15 N T

i T
WWZXZYXZ2Y

e 3 e

The interleaving schemes corresponding to these

20 patterns {which are for a stride of one; stride of two
produces the desirable pattern WXYZ) do not have the
implementational &implicity of the interleaving scheme
cf Table 12, which permits the cache gections to be
realized as two ldentical boards, each with ideéntical

25 gquadrants.

Another interleaving scheme that could be
used in place of Table 12 is one that provides the
sixteen~cycle stride-of-one pattern shown in Table 22.
Tt has the advantage of performing well not only at a

30 Table 22

WWEXXXWWY Y222 2YY

ARRIS883IPRI0001486

It 5214718

stride of one {the pattern above} but alsc at strides
of two (WAXWYZZY pattern) and four {WKYZ pattern)., It
has the disadvantage, however, of requiring a longer
concurrency startup, the interval shown in Table 17
5 during which numerous cache access cvcles are wasted
in forcing the necessary phase relationships between
CEs. The interleaving reguired to produce the Table 22
paétern ¢an be achieved by interleaving at the
two~-gquadword level {using the exclusive-OR of ADRS
10 and ADR4 to choose the guadrant, ADR6 to choose the
board, and ADR3 and ADR4 to choose the word within
the guadrant) rather than, as preferred, at the
one-guadword level. This interleaving might be
advantageous in circumstances wherein the performance
15 for a stride of four outweighed the loss of concurrency
startup speed.
Other embodiments of the invention are within
the following c¢laimsz.
What is claimed is:

ARRIS883IPRI0001487

itel
APPENDIX A

0214711
Desceiprion or ConcuReENCY TwnsTROCTION S,

Pseudo~code Synizx

gxpraession operatorsd

+ plus {unsigned integers carries discarded)
- minus (unsigned integery; borrows discsrded?
= equel to

2 greatesr than

£ less than

S greater than or gqual to

=g less than or agusl <o

< not scusl to

oy disjunction

and canjunction

net negation

conditienal statements:

it expgl then
brock

else if éxp2 than
block

alse
block

Balse LT wes then® ang Talse® are opitionzi.
expl and exp?2 are logical expressions.

A block is one or more statemsnts.

Staterents are terminsted with sericeclons.

The "continue® statement is & dummy statament.
Since there is no Maend 1f" statement,
formztting is semantically significant:

an false if s.. then' and Yelse! statemant
goes with the immedistely preceding "iIf ... then' stztsment
that starts in the sawme colunna

It a2 block consists of exactly one ststsrents
that statément way appear on the same line

85 the "if «... then¥ op "elgeW:®

it exp then siatementiy
alse siatemant2i

assignment ststementss
axn ~=>» loci
exp 1s an arithmetic sxpression.
loc 1= & locaticns.
(x2 weans Tcontents of %", wmhere ¥ is a location.
Far examples

{did + 1 == gl,d2:

means “one is mdded to the contents of lccation [+89]
and the result is copied $inte locaticns of anc d2.%

ARRIS883IPRI0001488

INSTRUCTICN GLOSSARY

0214718
cadvance
BNEMDRICS cadyanca
OQPERATIONS advance synchronizastion countar
ASSERBLER
SYNTAY: cadvance cosdx>»

DESCRIPTICNG If {inloop¥=0 then

Take concurrency protacel-arrop tragps

I¥ Cesd<ud)L2d=C L (nestedd=0 & {detzched)=0 then
walt until (ecurrelb2~03 = (eslxy)L2-032
1 ==2 ce<x>l 338
(x> 0203 + L =~=> 811 csdxd0a-073

Else
Continueg;

ARRIS883IPRI0001489

INSTRUCTION GLOSSARY)
cawall @314??$
RNEMDRIC cawait

DPERATION: await synchronization counter zdvance

ASSEMBLEZR

SYRTAR® cawait csdxry #lofTfsats

DESCRIPTICNE IT (inloopl=0 then
Take concurrency protocol-error tragt
I+ Cos<x»)E33=0 & (nestedl)=0 & {detacnedl=0 then
Wait unill Lcocurrold[2~01 -~ (cs<x>3L2~0]
= offsats
Else
Continuel

ARRIS883IPRI0001490

INSTRUCTION GLOSSARY 0214718
gidla

MHNEMONICD S cidle

QPERATION: do nothing

ASSEMBLER

SYNTAX: cidls

DESCRIPTION: The CE remsins didle wuntil 2 cstarts cstartst,

ARRIS883IPRI0001491

ceveetors or <cvectorst instruction (executed 4in
another CE) or an interrupt zctivates i4.

INSTRUCTION GLOSSARY

Cmave

MREMOMICE
BPERATIONS

ASSEMBLER
SYNTAX:

ATTRIBUTESS

DESCRIPTICNS

ARRIS883IPRI0001492

CRMOVE
raad/wriiz‘CCU status register

cmove cstaty <ez>
cmave <eary csiast

size = (longl? privileged Curite only)

The LLU ststus reglster is poved todfrer +he
worag at the affective addraess.

0214718

lang

INSTRUCTIOW GLUOSSARY

crens

MHEMONICE
UPERATION:

ASSEMBLER
SYNTAX:

ATTRIBUTES:

DESCRIPTIONS

ARRIS883IPRI0001493

0214718

chnest

store cstat, ccurrs cmaxy &nd cUsp

cnest {gap
size = {longl

cstats Courry ermax,; and ¢gsh asbe stered 8%t the
effective address in that order unless predscremant
addressing is uwsed, in which case the reverse order
is ussd. Afteruarcss

0 ==2 gourr:
If Cinloopd=1 then 1 ~-» restad:?

INSTRUCTION GLOSSARY

cguit @?? ﬁ?@g
MNEMONICE cguit
OPERATIDNS quit concurrant loep

ASSEMBLER
SYNTAX: cquit

DESCRIPTICHN: IT Cinloop)=0 thken
Take conturrency protocol-~arror trag;
Else if (nesited)=1 thoen
Continues
Else if (detached)=l then
0 ==> sertreps vectory inlocp:
It (enablal=l then

Teke leaving do~across trep!
Else

Force all other (Es idis:
G ~=> sertrep; vectory inlacg:
It C(enableld=i then

Take leaving do~across trap}

NOTES: 411 other CZs becore idle as follows:

1f (detached)=0 then

0 -=~> sertrep; vector, nesteady inloop:
{cipe) —=> peji

dnly one couit ray be exarcuted cer concurrant logp.
Either & cawzit must precede gach ccourrencs of
cquits or cquit must be ussg as follows:

Llabeld: tes Lear
bris <label>
couit
whars <aa> is &z hyte constant whosg rost
significant bit hzs peen cleared grrior 1o loop
antrys

ARRIS883IPRI0001494

19

INSTRUCTION GLOSSARY 0214718
crapest

MNEMOCRICE crepaat

GPERATIONS branch 4 wore dterations

ASSEMBLER

SYNTAX: craepaat <label>

ATTRIBUTES: size = (wordy leéng)

BESCRIPTIONS I+ Cinloop¥=0 than
Take concurrency protocol—erpar trag:
Else if (nestedd=1 then
1f Ccourrl < €max) then
(cecurr) + 1 ~=> cecurry d7:
Cpe) + dizsp --> pet
Else
Continual
Eise 4f (detached)=1 thsn
If Cecurr) ¢ {mzxy then
Locurerd 4 1 == courr, courray d7%
Ceged + disp ~~> pei
Else
0 ==> sartraspy vectors inloap:
I¥ (ensbled=% then,
Take leaving de-across trep}
Elseg
If (ceure) < (mex) then
It (sertrapl)=1 and {cs03033=0 then
Wait until (esO3LZ2~01 = Cccurvrol(2-03:
Ces0302-~03 ¢ L ~=> all csOL2-CT¢
0 -~ £sQL30s ©5103ds o o ceTL20s
Cenaxt) 4 nep ~-> all cnext:
Cenext) # nhp =-3 courr, ceurray ot
If Ceeurr) > (maxd then (cipe) == peg
Else (pe) + disp == pci
Else
kedt until all cther CEs zre jdlas
0 ==> sertrsp, vector; inloop:
It {ensblel=i than
Teke leaving do-scross trapd

ARRIS883IPRI0001495

NOTES?®

ARRIS883IPRI0001496

D214718
=le;

In - the above algorithm ALL means every CE in the
concurrency corplexs MAX 1t cmax it {vectory=0,
num it {vectord=1 and {rested)=0; znd zero if
(vector}=1l snd {nasted)=l. The cokparisans beticon
ceuyrr and max ars unsigned integer COmpariscons.
NRP is <the numper ot LEs in the CE complex
requesting an iterztion on this eyeley sng NHP is
the number of these &Es zhich have higher priority
then this CE. VPN is thks virtuzl grocessor nurber
and HNUM is 4he iargest VPN in the concurrency
complexs These are determined by ‘the CCU during
thea sxecution of non~neasted estert(st) and
cvector(std Instructions. VPN and RUM are zero for
detached CZs and arpear 1o be zupo in & nested loop
when tha vector-concurrant instructions VIhy V0LHe
VLVy VOH; znd VLV request tham.

IHSTRUCTION GLOSSARY

cresiore

HNEMORICS
OPERATIONS

ASSEMBLER
SYRTAX:

ATTRIBUTESS

DESCRIPTIONS

ARRIS883IPRI0001497

crestiors

0214718

restore CLU stete

crestore

priviieged

<gay

The CCU stote is leeded from the effective address
i the following ordard

ceurye
cnaxt
osSYne

cstat

CmB X
LR85
LCsp
cipe
cgoe
cafe

Current iteration reglister

Next outer iteration register
Synchronization registers

LU status registar

Meximur iterstion reglster

Gichal stack pointer regitter
frsa-cf-cactus~sitack wointer regaister
Yole instruction gcdress register
Global prograwm countetr register
Glchal frame pointer register

INSTRUCTION GLOBSARY 0214 gg?*g'g
CEAVE

HNERORICE cBEVe

OPERATIODNS: save (LU state

ASSEMELER

SYNTAX: csavae <gawy

ATTRIBUTES: privilaged

DESCRIPTICONI The CCU state is stored at the sfisctive addrass

in the follewing order unless predecrenent
Caddressing is wusedy in which cese the reverse order
is used:

courye Currant dteration register

chnext Next outer iteration recister

CEYNC Synchrenization recisters

cstat 0L status register

cmax Meximur iteration regilster

cgsp Global stack poidnter register

cecsp Base-cf-cactus-stack peinter register

cipe Idle instruction zddress ragister

cgpc Gicbal program counter recister

cgfp Global frame pointer reagister

ARRIS883IPRI0001498

INSTRUCTION GLUSSARY

cstart, cstartsts cvectore cyectorst @@?g@?%@
HHEKMOMICS: estarty esizrtsty cvector; cvectorst
OPERATION: start concurrent loop
ASSEMBLER cstert <ear Stert concurrent lecp
SYNTAXS cstertet Lgal Start concurrent lecop
and serialize traps
cvector Stert vactor-concurrasnt loop
cyectorst Start vector~concurrent leoop

ATTRIEBUTES:

DESCRIPTICN:

ARRIS883IPRI0001499

and serialize {raps
gize = {long)

1% {(nosted)=1 than
{ai) —~> cygspi
{ad) ~=Y cgips
{pcd ~=» cygrpc}
IT e¢start or cstartst then (£ead) ~-> cmaxi
If cventer ¢y cvectorst therm L »=> vegtory
Else 0 ==» vector:

Y ~=3 ccurrs d7¢

Else 1if {(detsched)=1 than
{al} -=> tgspi
{as) -=3 ceoips
{prd =—2 €gpe;s
If cstart or estartst than {{ead) -=-> crax;

If cstartst or cvecterst then 1 =+> sarirapi
Else 0 --> ssrirap:

It cvector or cvecttorst then 1 --» vector;
Flse § ——>» wectcr;

1 =-=> inloorpt

{cesp) ==2> 813

g ~=> pumy VER CCUrry ccurros d73%

Else
W¥ait until 311 cther CEs arse idles
(my 273 =~=> 211 cogsps
Cmy &) ==0 £l1l cgfpt
(my pe) —+=> 211 cgpeil
If estart or csteortst then (<ea?) -=-» #ll cmax:
If cstardist or cvectorzt then 1 -=2 gll sertrap}
Else 0 =-=>» 21l sertiraps
If cvector ¢r cvectorst then I ~-2 g1l vector:
Else 0 ~-> &ll vector:

i ==» a1l inloce:

4 =~3 all ¢s@y cs5l,s

{each cesp) ~~> its

{egach cgipd -=> its

Caach Cgpe) <=2 1its p
¥

¥

. €51%

oo

T3
&%
o
egch nhp =~> its vong ¢
nrp =-» 211 cnexti
nrep o~ L o~=3> 211 numt
If feccurrl 7 (mex) then
{eiped ==3 poi

cuUrry courros d73

HGTES S

ARRIS883IPRI0001500

2y
0214718

tn the sbove alcorithm ALL means every CE in the
copcurrency corplaxs MAX is cmex Lt {vector)s0.
num if (vectorl=l and (nestoady=0s end zere if
(vector)=1 znd (nestasd)=l. The corparisons betussn
cetrr and max ere unsigned Anteger COMPEriscnss
NRP is the numbar of CEs 1in the ©CE complax
requesting an iterstion on this cycles and HNHP is
the numbar ¢f these CEs which have wigher prierity

4han this CE. VPN is the virtugl procéssor nusber

snd NLM is the largest VYPh din the concurrency
compleax. These are detarmined by the CLU during
the axecltion of non-ngsted cstertlzt) and
cvsetor(st) instructions. VPN &nd KU sre 2ero for
dstached CEs and appear to be zero in 3 nested loop
when the vecior~concurrant instructions ¥Ihs WLHs
YLV, VOHs snd YLV request them. '

Since the itezrztiens in 3n n~itersticn loop &re
numbared 03 1s = &« « fA=ly 2t lezst cne iteration
will alusys octuUrs

cstzptat and cvecterst ars used to serislize traps
in loeps that can axit via the cauit instructions
Traps sre serirlized s follous? then a trap
aceurs in = csterist or cvectorst looapy the CE will
wait until

Cos0302~0F & {(ceurrodli-03

before taking the trap. This 1est assures that the
processor takirg the trep is pxecuting the lonest

current {outsrrost) dteration. crapest sdvsnces
cs0 in @ cstertst or cvectorst locp if it has not
already hean acvancad in & given ttarztion. For

this test to work cerrectlys csC wrusit nol bea

[y
)

INSTRUCTION GLOSSARY
cstariy cstartsts cvscior, cvectors+t

ARRIS883IPRI0001501

cadvancad premeturely (ivess
possible trzp in the loop)d.

cvector and cvectorst initiste
iteration count is squal
processors in the complex. In
procassor performs exactly ons

0214743

grier 1o the last

loops in which +4he
to the nurber of
such @ loop each

iteraticns

0214718

Lo

t
ILSTRUCTICH GLOSSARY
cunnsast
MNENMOMNICS cunnest
GPERATIONS Cload cstiats ccurry Cmaxy and £¢sp
ASSEMELER
SYNTAX: cunnest -0

ATTRIEBUTES: size = (longl
DESCRIPTICNY costat (sertraps vectory nesteds and inleop onlyls

courrs ocmaxs and ggsn are loadso from the efifective
address in that orders

ARRIS883IPRI0001502

RooLpay Emoamons ror CPU fesraunanie Lotic Agemls

' 0214718
Frogrammable Loglc Array §Ph§} Eaquation Files

Syntaxs

An esgustion file is @ header followed by zers 6r more aquations.
A hszder is zerec or more comments followsd by an input staterent
followed by an output statemant.

A comrent is 2 semicolon followed By zny string

fellowad by & tarriage rellUrfe

An dinput statement is the word input followed by & colon
foellowed by ons or more icentifisrs separsted by commes

followsd by one oF Wore commentis,

An output stotement 1s the word sutput Followed by & calon
followed by one or more identifiers separsztad by commss

followed by one or more comments.

An ddentifier Is any alphanumaric siring.

An sousilon is an identifier followed by an egual sign

followed by an expression followea by one or more corronts.

An sxpression is cne or more terms Sepirsted by exclaration peints,
A term i3 one or more factors ssparated by ampersinds.

& tactor 4s an identifier or an identifisr follouwad by & tilda.

Semantics:

& PLA sguation file 4s 2 1list of Boolean squations.

n. exclamation point signifies disjuction,

an wmpersand signifies conjunciicn,. and & tilde siconifies nacstion.
For sxsmpley the aguation)

Foo =4 & U7 & D
I & & 8™ ¢ C™
8 &C7 8 o~ ¢

maans "FOO is true £f & end D are trie and © is fzlsey

or it A is true and B and C sre fzlse,

or if B is true end £ and 0 are false.®

FOOs Ay By C; and U sre identifiers.

FOO ds an ocutput or an intermedizte.

Ay By Cy and O ars inputs or inteéermediatas.

The sxpression to waich FLO 13 equal contains thrae terms
6 thres fsciors wach.

Note the uss of a null corment to delimit the equatisn.

ARRIS883IPRI0001503

2%
0214718

Nisjunction mzy be implicit.
For exampley

FOoo = A &L B™ L C H
Fao = AT L D & E™ 3
e esguivalent to
Foo = A L B EC P BT LD & E™ 4

Interradiate variables mey bs bs usede.
For axamples

TEMP = & & BY i
followed by
Foo = TEKP & C H
BLETCH = TEMP E E” E F &
FLO = A" B D & BT
is pauivalent ¢
FOO = A & B™ & C H
FOO = A" & 0 & ET H
BLETCH = A & B™ & E~ & F H

ARRIS883IPRI0001504

This FLA gensrates internzl CLU control signels. 0294718
For modelling purposaesys it should be svelusted durding €3

ped W wm e WA W

KPUT: RSELD, RSELIs RSELZs RSEL3:
WR g
D

- DETACKED
SERTRAPy
VECTOR
NESTED
INLUOOP,

CC10s £C11,
CSTARTI3s CSTARTIL,
COUITI3, CRUITIL:

EQHAXS

GTMAX s

COSTARTI,

CQUITI,

CWRI

SELIGy SELIL,

PIgy PI9y PILOy PIlls
KYQUITS

DUTPUTY KHWIT,
CEREAL

LOMAX, LDGPCs LDGSPy LDGFPs LLCUSP, LDIPL,

RETHNEXT ADDNEXT ¢ CLRNEXT g
RSYCURR, ACDCURR, CLRCURR,
RSTSTAT,

RSTSYNL

CLRSYAC

CLRPAST

SETSERTRAP CLRSERTRAP

SETVECLTORS CLRVECTOR,

SETHESTED CLRNESTED,

SETINLOOPR CLRIKLODP

ACODCURRDY CLROLURRO,

AGDHUY ¢ CLRNUH

RESTORES

hkdhk INPUTS mdiudgy

B SR WE WP AN P O Ve B B

RSELCILO> READ UOPERATICH WRITE GPERATION
0000 CHAX CHAX
0001 CGPLC CGPL
0 g 10 CGSsP CGSP
9 ¢ 11 CGFp CGFP

ARRIS883IPRI0001505

120

0214718
iy 0100 CCURR coure
3 831 01 CHEXT CHEXT
HE I O O ¢ CLSpP CLSk
;o111 CIPC CipC
R s B ¢ O CHAX CAMAX Colabeld
I S e 1 I § CePe GAGPC {global)
;i ro1o0 £GP CAGSP C(¢lobell
§ 10 11 CGFP CAGFP fLgolobeld
P11 00 LIYRC CSYRC
: 1 191 CETAT C5TAY
HES S SN S 1} CUSP CNEST (S:VadsI bits of CSTAT onlyl
F 1311 ik Reserved F3x %% Ramerved %k
H
H Locul writes; as in CRESTOHRE: CUNKEST, and LCFCVE to CSVAT.
14
LOMAX = WE E BSEL3™ L HSEL2Z™ £ RSELLI™ & RSELO™ H
LLGPC ® WE L OBARELIY L RSELZT 4 REELIT & REELO S
LLGSP ® WR b RSEL3™ L RSELRZ™ & RSELY & RSELD™ H
LOUGFEP = WR & RSEL3™ E RSELZ™ & RSELYI & RSELO H
RETCLRR = WR L RSEL3™ & KSELZ & RSELL™ & RSELD™ H
RETHEXY ® WR L RSEL3™ £ RS&EL2 & RSEL1™ £ RSELO H
LOCSP x YR L RSEL3™ & RSELZ & RSELYL & RSELO™ 3
LOIPC = WR L RSEL3™ & KSELZ &4 HSELI & RSELD H
RE15YRC = WE & BSFL3 & RBELE L RSELI™ & RSELDT H
RETETAT = W L ORSEL® & RSELZ B RSELLI™ L RSELOD H
¥
H CURHEST only. .
¥
SETINLOGP ® WH £ RSELI & RSELZ &L RSELL & RSELG™ & PIE §
CLRINLUBGP = WR L RSELI & RSELZ L RSELY L ORSELDY B PIE™ H
SETHESTED w WR L RSEL3Z & BSELZ & RSELY & RSELO™ & PIS t
CLRHESTED = WR B RSEL3 & RSEL2 & RSELY & RSELO™ &L PIG™ H
SETVELTOR = WR L RSELZ & RSELZ & RSELI L REELGY £ PILIO $
CLEYECTOR = WR L RSEL3Z L RSELZ & RSELY &L 8SELO™ £ PlIO” $
SETSERTRAP & WR L RSELI £ RSELZ & RSELYI & KSELO™ & PIIL H
CLREERTRAP = WR £ RSEL3 L RSELZ &L BSELYI & RSELO™ & pIIIT H
*
H Globnl writess 3%z in CSTARYCSTY and CVECTORLSTS.
¥
WREAMAX = YR £ 8SEL3I &L RSELZ™ & RSELI™ & RSELO™ H
WRCAGPC = WR L RSEL3 & HSEL2™ £ RSELY™ L RSELD H
HRCAGSP = WR & RSEL3 & RSELZ™ £ RSELL & RSELOT ¢
WRCAGFP = ¥R & BSEL3 & RSEL2Z™ & RSELI & RSELOD H
H RSELCILOD 8O0 OPERATION
{0 e e ot e o
PR I (O B ¢ CYECTOR Waits thed wake up cowplexd set VECTICR
PR VI ¢ O § LVECTORST Waity then wake wp complax} sel YECTCR, SERTRAP
;08190 #¥% Resarved %%
PR I I O en¥ Resarved 208%
O : T S LNEST Set HESTED and clear VECTOR 3 IALUDP
P 00101 8% Reserved #%W
FIR D S A 0% Rgserved g
§ [A § CREFEAT Do the richt thing
i 10049 CSTART Ralty thsn wake up compley
501 60 1 CSTARTET Wwaity then wska up cowplex) set SERTRAP
i 1019 CTESTY Microdiagnostic Yunction
F10 11 CADVAREE Weite than zoyance sync counier
§ 11 890 CQUITY hssert LLLITCY wait
3 1103 CQUITZ Clear SERTRAPy YECTOR, IxL{pRe

ARRIS883IPRI0001506

Y
oo ot
Bt bt
o ot
Lasti e

DOCYECTOR
ORCYECTORST
H

H
DOCRESY

¥
¥

¥
OOCREPERT
DOCSTARY
DUCETARTST
ORCAUVANCE
ouLouITl
BOCQUIT2
DOCIDLEY
DECIDLEZ

i

AHYSTARY

R W W wr o ws WD A

RESTURE
RESTORE
i

LEMAX

¥

LEGPE
LEGSP
LDGEP

e e

CLRSYNC
LLRPAST
CLRREXTY
CLRCURR
SETINLOOP
SETSERYRAP
CLEZERTRAP
SETYELTOR
CLRVECTOR

v
1]

H

H

BODRUM
AGDCURRD

H
ADDCURR

o ws me w

ARRIS883IPRI0001507

CIDLER
CIDLEZ

Cloar SERTRAP,
Stoep aeserting ALTD

V34

Partorm the desirszd cperations

]

»

B o8 8 BoR H 2

CSTARTs USTARYSY, CYELTDR:

23]
oo

jaks}

&
£

FHOR O O Y

RSEL3™
RSELE™

RSELS

RSEL3
RSELE
RSEL
RSELD
RSEL3
RSELA
RSELE
RSEL3

t RSEL2™
L BSELZ2™

L RSELZ

RSEL2
R3ELZ"
RSEL2T
REEL2™
RSELZ
RSELZ
RSELZ
RSEL2

R S B i o B S

bl

REELZ”

[
&

L

RBELL™
RSELL™

REELL™

R3ELL
RSELL™
REELLY
RSELL
REELL™
FSELL”
RSELL
RSELL

RSELLT

AnELRex DUTPLTS #dwuddéx

F el o BT o S -

eail

RSELO™
REELO

RIELO™

RSELQ
RSELO™
RAELQ
RSELO
RSELO™
RSELO
RSELO”
RSELO

VECTDR, HESTEL,

0214718

IntLoOe

na

@

R R WA TG R A% e

CSTART(ST) or CYECTLR(ST?

Firsts; the non-deisched; non-nestsd cises

=
®

® W R

DETACHED

CWRI™

DETACHEDR™

DETACKEDR™
DETACHEDR™
DETACHED™

L

A
i
£

¥
>
3

CWRI. L SELIL™ & SELIG™

CWRI & SELII™ © SELIG

CHAL & SELIL
CHRI & SELIL

I8t dyclel dnitialize thingse.

Bo®w M OB W OW s HoR

Znd cyeclal

DETACHED™
DETACHED™
DETZCHEL™
DET&CHED™
DETACHED™
BETACRED”
DETACHED™
DETACHED™
DETACHED™

= DETACHEL™
DETACHED™

=

DETACHEL™

Nows

the detsched non-nested cose.

£
£
&
A
L
L
L
£
£

£
L

&

CSTARTIZ
CSTARYIE
CSTARTIZ
CSTRRTIZ
CSTARTIZ
CETARYTIZ
CSTARTLZ
CSTHRTIZ
CSTARTIZ

CSTARYIY
CSTAERTIL

CETARTTIL

£

€Ll

£ L1

£
&

CLig
[95 1ing

get an itsration.

EOSELIOT
& SELIO

z
&
i
@
*
@
&
€
€

B s O D WE SO WR DS me

wa s w0 we

EYECTORST dnstructions

Lozd frem CCU bus only 47 2 oglebsl arids
ocours phile nol detached

Optionsl--this won'y
hagpen an CYECTORESY)

Ssis up NUH and YPH
Copy of CCURR lo bits
in cuter locp

1471
A 02 8

LDHAX = DETACHED £ NESTED™ L WRCAKAX ¢ ODptipngl-~thiz won®t
z ¢ happen on CVECLTOR(ST:
LLGPC # DETACHED £ NESTED™ & WRCAGPC H
LOGSP w DETACHED £ HESTED™ § WROAGSP ¥
LOGFP = DETACHED & HESTED™ & WECAGFP H
H
3 Anslogous to the 1xt eyels sbeves
i v
CLRCURR = DETACHED L NESTEU™ £ AMYSTART H
SETINLOOR = DETACHED & NESTED™ &L BNYST&RTY H
. CLESERTRAP = DEYACHED £ NESTED™ £ DOCSTART H
CLRYELTYOR =« DETBCHELD £ MESTED™ £ LDCET2RY ¥
SETSERTRAP = DETACHED § NESTED™ L LDCSTARYST 3
CLRVELTOR = DETACHED & NESTED™ & COCSTARTST H
CLRSERTRAP = DETACHED L NESTED™ & COCVECTOR H
SETVELTOR = DETAUHED & RESTED™ £ LOCYECTOR 4
SETSERTRAP = DETACHED & NESTED™ £ DUCUHECTORST H
SETVELTGR = DETACHED & NESTED™ L DOCYECTORSY H
H
3 Analogous to the 2nd cyels sboved
CLRNUEK = DETACHED & NESTED™ L ANYSTARY § Sets up NUM and YPK
CLROLRAD = DETACHED £ NESTED™ L AKYSTARY ¥ Copy of CCURR l¢ hits
b4 ¥ oin suter loop
H Finallys ithe nested Ceses
3
LDMAX = NESTED L KRCAHAX ¢t Optionsl-=1his con®t
i % happen on CYECYCRUSTS
LOGPC = MESTED & SRCAGRC H
LOGSE = NESTED L KRLAGSP H
LEGFP = BESTED & RRCAGFP b
H
H dnalogous to the Ist cycle asboves
CLECLRR = NESTED L ANYSYTARTY H
CLEYELTOR = HESTED & LOCSTARY H
CLRVECTOR = RESTED & LCUCSTARYST H
SETVECTOR = MESTED L LCCYECTOR ¥
SETVECTOR = HESTEDL & COCYECTORSY H
H
R H CREPEAT dnstructicn

H
H Looping back:
CLRPAST = INLEOP & NESTED™ L ECQHAX™ & DGCREPEAT 3
ADSCESR = IHLODPR - E OEORAX™ L DOUREPREATY &
ADDCURRD = INLODOP & HESTED™ & EQHMAX™ L DOCREPEAT 3
3 Geing werial:
CLRINLDOP = INLOOP £ NESTECD®™ & EOMAX L DDCREPERT 3
CLRVELTGR = INLEOP & EQNAX L DUCREPEAT
CLESERTRAP = INLDOP & WESTEIL™ & ELHAR L DOCREPEAT 3
3 LRUIY dnsiruction
CLRINLOOP = INLECOP £ NESTED™ & COCCUITZ2 1
CLRYECTOR = INLLOP L OCDOCUITR :

cow oo KLRSERTRAP = INLEOP & HESTEG™ & LOCLUIT2 H

£

#

ARRIS883IPRI0001508

0214718

%
H CIOLE inmtruction
§
CLEINLOOP ® DOCIDLEY H
CLRHESTED = QOLIDLEY M
CLRYECYOR = DOCIDLELY §
LLRSERTRAP = LOCIDLEY H
b
i CHEST instruetion
i .
SETHESYED = IHLOOP L DOUNEST i Set the nested biy I¢ slrasdy inlecp
CLEYELTOR ® INLOOP L DOCHESY H
H
i . Random stuty
¥
KUIT = INLOUP £ DEYTACKED™ & CCUITIY
ERIT = INLDDP L §TMAXY H
LEREAL = INLODF L ECHAK b
%
ADDHEXY = DETALHEL $ Yeg-~all the tire:
ADDHERT . = DETHCHED™ + LLEREXT and RETHEXT averrice

&

ARRIS883IPRI0001509

0214718
{3%

CECODER PLA

This PLA cendrates LLU bus contrel signels.
For mecdelling purposess 11 sheuld be evalusted during Cl,.

B4 we wx wh wmE we wm

KPUT: RSELO, RSELLy RSELZs RSEL3,
KRy
£0»

DETACHED,
SERTRAP,
YECTOR,
HESTEL y
IRLOOF,

CSTARTIL
CQUITIL,

PRSTC, PASTL, PASTZ: FASTZy PASTAy PASTE, PASTE, PASTTy
S5ELOs SSEL1e SSELZS

GUTPLTY SELDD, SELOY,
CCoLe, CCO1Ls

CSTARTC,
CLUITE
Cwile

ACTO:
ROYD.

ADYOD0; AQYODYL ADYDZs ADYU3Zs ALYUAy ADVOS: ADVCSEs ADYLT:

FHEHFRy TRPUTS wdduswd

REELL3102 "po" DPERATIGN

¢

H

§

&

H

%

FE A ¢ CYELTICR Waity then weke up corplex) set VECTEOR
FRRE S O I § CYECTERSY Waite then wéke up corpPlexi set VELCTORy SERTRAP
FEE A I wsn Reservad »®x%

[(O I N § 4% Resesrvad %%

PR R S I CHESTY Set KESTEL and clear YELILR i1 IaLpnp
y 010 1 wu% Raserved wxg

$ 6110 pE%¥ Ruesarved HEw

s 00111 CHREPEST Do ths right thing

s 1 G00¢C CETART Hpity then wike up cowplex

i 3001 CSTARTSTY Waity then wike up cenmplaxi xat SERTRAP
i1 010 CTESTY Hitreoingnostdle fundiion

10611 CADVARCE H¥aits ther sdvance syng countar

1 100 CRUITL Assart CRLITCY wait

[S S B § CouIiTe Clear SERTRAP, YECTOR, IMLOOP

LA S O S ¢ CIDLEL Clear SERTRAPy VECTGR; NESTEL, INLDOP
;1.1 %11 Ciouce Stop ssserting ALTO! uwaid

¥

H CLU instructicns rwust cause the CE to breadesst

M only if the {E i% peither nestied nor astzchet.

H

BUASTOK = NESTED™ & DETAUHED™ i

L

ARRIS883IPRI0001510

(S 0214718

Foartory the deusired sperztiont

o

DRCYELTGR = 00 & RSEL3™ & BSELZ™ & RSEL1I™ & RSELO™ §
DLCYECTORST = 00 B RSEL3™ & RSEL2™ & RSELI™ &L RSELOD H
;

DCOREST #= DO L RSELAT & ESELZ & RSELY™ L RSELO™ H
H

$

DUCREPEARY = 00 % RSELI™ L RSELZ £ RSELY & RSELG i
POCSTART = 00 £ RSELI & RJSEL2Z™ & RSELI™ & RSELO™ H
DOCEYARTST = DO & RSELI & RSEL2™ &L RSELI™ & RSELO H
OUCADVANCE = DO & RSEL3 & RSEL2™ & RSFLYI £ RSELE H
polauITy = DO & RSELI &L RSELZ L BSEL1™ L RSECD™ H
pacouiyz # D0 L RSELD £ RBELZ £ RSELI™ £ NSELD H
DECIOLER = 0O L RSELI § FSg£bL2 & RSELY & RSELO™ H
gLCInLER = 04 L RSELI B RSELZ L RSELY L RSELG H
H

ANYATERTY = DO B OBSEL2™ &L ASELLI™ ¢ CSTARTLSTY or CWELTCRCLT)
H

% Select the desired syne countaers

i)

SELECYY = R5ELZ F SSELY & SSELG §

RELECYS ® $5€L2 £ SSELY L SSELOT i

SELECYS = S5ELE L SSELIT L SSELG ¢

SELECTS # BREL2 L S3ELRL™ L SiFLC™ H

SELECTS = S§ELZ™ L BHELY L SSELC PR

SELECYZ = SSEL2™ & SBELY & SSELOT H

SELECTY = SSELZ™ & SSELLIT L SSELL H

SELELYD # 385EL2Z” L S3ELIY & SSELUT H

H

3

I REHwAEws CUTPUTS $dxupsy

H

3 CSTARY, CRTARTST, LVELTDH, CVECTORST

b4

CHRU = BCASTOK & WR L RSELZ® L RSEL2™ &

:

H Qualifying SELOCII0) with LWRE sccomplishes nothing,

- sincs SELOCLI20) ds drrelevant unless CWRD,

H and since ddle precessors do not WR their LCLs during CST&RTs.
H

SELDL = BLASYOX £ WE £ RSELY

PN

SELDO #= BUASTOK § WR £ RSEELOD
H .

CSTARTD = BCASYDK &£ AWYSTaART H

Rote that the CCLU dats bus is not snsbled unléss CSTARTD | CwRO,

cand that COOCI1018) £s not selected wurmlsess CWRRO™.
Therafores it is unnecessary 1o cualify CTCDCII2X0) with CSTARID.

Wh K WE wR S e

LC0XL = BCASTOR L DUCSTARTST
FLCOLY = BCASYOR E QOUYECTORSY
fCo3y = RSELG

e e e

¥

L0010 = BCASYCK & DCUVECYODR
;L0010 = BUASTOR & DOCYECTORST
CLoLn = RSEL3Z™

ma ey e

3
ROYD = SCASTCOK L CITaRTil i All precessers simulianeously hid
Pofer first dterziiors.

ARRIS883IPRI0001511

12 6214718

CADVANCE

hdvances are not performed 47 not in concurrencys
1% nestedy 1f detacheds or if the specified counter
has already bgen advsnced this iteration.

B RS e @ wE WH @y

¥ .

ADVEO = INLOOP & BLASTLK & DOCALDVARCE & SELELCTD £ PASTE® H
ADVE1 = INLGOPR & BCA&TQK & DOCALVANCE & SELECTL & PaASTL™ H
ADVYOZ = INLGOP & BUASTDK & DOCADVANCE & SELECTZ & PASTZ™ H
ADY I3 = INLGOP L BCASTOK & DOCADVAKCE £ SELECTY3 L PASTE™ H
ADVO4 = INLODP & BLASTOK & DOUCADVARCE & SELECTS L FAST4L™ i
ADVOS = INLCDP & BUASTLK & DDCACYANCE & SELECTS & FPASTS™ H
ARpVO6 = INLODP & BLCASTUK & DOCAUDVAKCE & SELECTE L PASTE™ H
sOVDT = TNLOOP & BLASTOK & DOCALDVANCE £ SELECYT L PasTI™ H
¥

H CREPEAT

LEVO0 = INLOOP & BLASYOK & DOCREPEAT & SERTRAPF & PASTD™ H
RBYD = TNLODP & BCASTOK & DOLREPEAT H
]

; CoULIT

H

CCUITD = INLCOP & BCASTODK & DOCQUITI H

H LIDLE

H A

; & detsched Cor missing) processor is tregated as idle.
ACTD = DETACHED™ & DOCIDLEZ™ 3

ARRIS883IPRI0001512

% N

'}

H

H

H

i

3

H

INPUTE: DETLCHED:
SERTRAP,
VECTOR,
MESTEL s
INLODP
ANTOK 5
ADYOK ¢
BOVDKG,
BHYALT,
CETARTTL,
EQSAXS

QUYPUTE CS5TART,
CAWALY ¢
CADVARCE,
COUIT,
CIOLE,
CREPEAT,
DKYDTREP

H

§

H

{STaRY =

¥

CREPERT =

LREPEAT =

H i

3 M

H H

4

LeuIyY &

§

;Z

H

i

CHEWALY =

H

H

3

H

CADYANCE =

i

H

H

CIOLE =

CIDLE =

B

OKTOTRAP S

ARRIS883IPRI0001513

0214718
=y

S WAIT FLA

This PLA determings when the CE should WAITs
whether by micro-branch or SWISTELL.
Far modelling purposesy 41 should be svaluztss during Eé4.

ARRkeds CUTPUTS sungdex

HESTED™ € DETACHED™ & ANYACT ¢ wsit until rest iols
P unless detached or nestad

INLCDP L NESYED™ ¢ DEYACHED™ © SERTRAR & ABYORD™
IHLEGOP &L RESTEL™ £ DEYACUHED™ [EQHMRY £ ANYALT
walt until lowest iteretion if serizlizing traps
or until rest dale if going serisls

uniens dotichady netisa,s or net iplcop

s me

INLOOP L NESTED™ { DETACHED™ © ﬁg?ﬁﬁ? WEIY uptdl rest (e
unless detschedy
ne¥sted;

or net inleep

@5 ma G wm

INLOOP £ MESTEGQ™ & DETACHED™ & AWTOR™ wsit until OK to co
utless defachad,
ﬁ@i_fﬁdﬁ

or not inlcoen

e we W e

INLCOP & NESYED™ & DETAUHEL™ & ADVYLK™ welt wntil Ok to ge
unlessz detochat,
nestedy

of not inlgep

ok we w2

CSTARTI™ ¢ wait until kisgssd by cherming Prince,
OETECHED ¢ or forsver if detachasg
DETACHED P OK to trap unless sttachad,

QK TSTRAP
CKTIDIRAF
OKTOTRAP

i

ARRIS883IPRI0001514

w

%

INLEOPT
SERTRAR™
ADYCKO

izH

W WE W

0214718

inloaops
serializing traps,
and not the lowest iterziion

S we ik mE WK mw

INPUT:
BUTPLT:
PISEL3

PISclz

PISELS

PISRELCQ

ARRIS883IPRI0001515

RSEL3,

PISELZ,

[

o o w3

RSEL3

RSEL3
RSELR
RIELZ
R3212

RSELZ,

PISELZ

£

L
11
£
L

Hodifies RSEL{3:0) so ih
#1 bus gets base~ot~

RSELL™

RSEL2
RSEL3™
ESELL™
RSELD

12y 0214718

PIDEC PLE

at when virtual stsck pointer (VSPY i reguestad,

ractus-steck pointer register (£583 {f not nestad,
glopal stack pointar register (G5P) £ nested.

RSELZ. RSELG, WESTED:

PISELL: PISELDS

®
¥

L RSELY & RSELD™ L KESTED™

sz
3

¥
RIDLE

w

ARRIS883IPRI0001516

¥ OB % ¥ 2 OB M

b e e dom o e 3

RIDLE {Rest

o .
0214718

of Complex Idis} FLA

BDIEZ™ & BDIDI™ & BDIDO™:

s0IL2™ & BLIDL™ & BDInG ¢

EpIL2™ £ BDIDY £ BRDIDOY

BDILE™ & BDIDY £ BDIDO &

8pILZ L BDIDI™ & BGIDD™Y

AGICZ & BOIDLI™ £ BRIDU ¢

ELIL2 &L BDIDL £ BOIDD™G

BOICZ & BDIDI & BODIDO ¢

IMD & ACTYE™ & ALYSE™ & ACT5™ & BLTA™ £ ACT3™ & ACT2™ & H0T1™

IML & ACTYTT B BLCTS™ £ ACTS™ L ALTA™ & ACT3™ I aCTs™ LoACTO™
INZ L ACTT™ B ACTE™ b ALYS™ £ ACT&™ & 40713~ £ ACT1™ &L BCTO”
IM3 L ACTTT B ADTE™ & ACTS™ & BLTS™ L ORCTZ™ £ BCTLI™ & aCTo™
IM& & BCTT™ & ALYE™ L ACTS™ £ ACT3Y & RETZ™ & BCTI™ & ALTO™
IME L ACTI™ L ALTS™ £ ACTA™ B ORCT2™ & BLT2™ € ACIY™ B ACTO™
IHg L ACTT™ & ACYS™T & ALT&™ & ACT3™ L ACT2™ L ECTI™ L aCLTO™
INT E ACTSE™ & ACYS™ & ACT4™ & ACT3™ L ACTZ™ & ACTL™ & ACTQ™:

06214718

1 Claims

2 1. A digital computer for processing &
3 program containing an iterative construct, said digital
4 computer comprising
5 a plurality of processors,
6 each said processor adapted for serially
7 processing, without the assistance of the other said
8 processors, those portions of said program outside of
9 said iterative construct and
10 each gaid processor adapted for
11 concurrently processing different iterations of saig
12 iterative construct,
13 means for activating those of said processors
14 that have been idle at the start of said iterative
15 construct and for transferring sufficient state
1s information to the activated processors so that they
17 can begin concurrent processing of iterations.

ARRIS883IPRI0001517

0214718

2

1 2. The digital computer of claim 1 wherein

2 said iterative ceonstruct contains one ot more

3 dependencies (a dependency comprising a first .

4 instruction that cannot properly be executed in a

5 given iteration until a second instruction (which could
6 be the same instruction as said first instruction) bas
7 been executed in a prior iteration}), and whereln said
g digital computer further comprises

9 waiting means for causing a said processor to
10 delay further processing upon encountering said first
11 instruction until it.receives a go-ahead signal
12 indicating that said second instruction has been
13 executed in said prior iteration,
14 synchronizing meansg for storing information
15 representative of the lowest lteration to have executed
16 said second instruction, and for providing said
17 go-ahead signal to said waiting means based on a
18 . comparison of said lowest iteration and said prior
19 iteration,
20 advancing means for informing said
21 synchronizing means that said second instruction has
22 heen executed.
23 3. The digital computer of claim 2 wherein

said advancing means includes means for

b
et

sending sald synchronizing means an advance-register

N
Ut

26 signal when said second instruction lias been executed,
27 and

28 said synchronizing means comprises a

258 synchronization register and means for incrementing
30 said register when an advance-register signal is

31 received.

ARRIS883IPRI0001518

[oc RS EE <A T B N 7L N R

10
11
iz
13

14
15
16
17
18
19

20
21
22
23

24

0214718

4, The digital computer of claim 3 wherein
said advancing means includes its own walting means
for causing a processor that has executed said second
instruction to delay further processing and to delay
issuing said advance-register signal until it is
informed that all lower iterations than the one it is
executing havé caused sgaid synchronization register to

be incremented.

5. The digital computer of claim 4 wherein
said walting means comprises means for effecting said
delay of further processing in response to recognition
of an await instruction {e.g., the CAWAIT instruction)

appearing before said first instruction.

6. The digital computer of claim 5 wherein
said advancing means comprises means for initiating the
action performed by said advancing means in response to
recognition of an advance instruction {e.g., the
CADVANCE instruction) appearing after said second
instruction.

7. The digital computer of claim 3 wherein
said synchronization means comprises a plurality of
synchronization registers, each said register Being
capable of synchronizing a different dependency in said

iterative construct,

ARRIS883IPRI0001519

0214718

e

8. The digital computer of claim é wherein

said synchronization means comprises a
plurality of said synchronization registers, each said
register being capable of synchronizing a different
dependency in said iterative construct

said await instruction provides said waiting
means with an argument specifying from which of said
plural synchr@nixatioﬁ registers said go-ahead signal
must come from, and

said advancé instruction provides said

Josd

advancing means with an argument specifying which of

f&JE’JD\DQD*\)C\U’J&wM}—'

said plural synchronization registers is to be

P gk et
Lot

incremented by said advance-register signal.

14 9. The digital computer of claim 3 or 8

15 wherein sald synchronization means further comprises

14 comparison means for comparing the contents of & said
17 synchronization register to the current iteration being

13 executed by a processor.

18 10. The digital computer of claim 9

20 wherein each said processor furtheér c¢omprises a current
21 iteration register containing a number representative
22 of the current iteration the processor is processing

23 and wherein said comparison means compares the contents
24 of a synchronization register to the contents of said
25 current iteration register,

ARRIS883IPRI0001520

5 0214718

1i. The digital computer of claim 9 wherein
the offset between said given iteration {(the iteration
in which the first instruction is executed) and said
prior iteration (the iteration in which said second
instruction must have been executed in order for said
first instruction to be executed) is provided as an
argument in said awalt instruction and said comparisen

means compares the contents of a synchronization

W sd e U B e B3 R

register to the current iteration minus said offset.

10 12. The digital computer of claim 3 or 8

11 wherein each said synchronization register contains

12 only the least significant bits of said lowest

13 iteration and the number of said least significant bits
14 is selected to be sufficient to express the maximum

15 difference in iteration number being concurrently

16 processed.

17 13. The digital computer of «claim 12 wherein
18 said advancing means includes its own waiting
1is means for causing a processor that has executed said
20 second instruction to delay further processing and to
21 delay issuing said advance-register instruction upntil

22 it is informed that all lower iterations than the one

23 it is executing have caused said synchronization
24 register to be incremented, and
25 salid synchronization registers are selected

26 to be sufficient to express the number N-1, where N is
27 the maximam number of said processors concurrently

28 processing said iterative construct.

ARRIS883IPRI0001521

; 0214718

1 4. The digital computer of claim 12 wherein
2 said synchronization register contains a further bit
3 (the PAST bit) and means are provided for asserting -
4 cald PAST bit'locally in a said processor when said
5 register has been incremented in a given iteration,
6 15, The digital computer of eclaim 2 wherein
said processors include means for processing vector
8 instructions within sald iterative construct.
16, The digital computer of claim 1 wherein
10 said digital computer further comprises
11 means for transferring further state
12 information to 8aid activated processors so that any
13 one of them can take up serial processing at the
14 conclusion of concurrent processing of szid iterative

15 construct, and

16 means for assigning any one of said processors
17 to serizl processing at the conclusion of concurrent

18 processing.

15 17. The digital computer of claim 16

20 wherein the processor assigned serial processing at the
21 conclusion of said construct is the processor that has
22 executed the final iteration of said construct,

ts
Lot

18, The digital computer of c¢laim 16 wherein

24 sald further state information comprises the value of

25 the stack polinter just before concurrent processing

286 began.

27 18%. The digital computer of claim 16 wherein
said sufficient state information comprises the value

29 of the program counter.

ARRIS883IPRI0001522

R SR

fon B ¥ B » « SR I * B € 44

21
22
23

0214718

20, The digital computer of claim 19 wherein
said sufficient state information further comprises the
value of the frame pointer and the maximum iteration of

sald iterative construct.

21. The digital computer of c¢laim 1
wherein said digital computer further comprises
iteration-assignment meang for assigning iterations to
sald processors by assigning the next iteration (i.e.,
the highest numbered iteration not yet assigned} to the
first processor to .request an iteration {or to one of
the processors to simultaneously first reguest an

iterationy.

22. The digital computer of claim 21 .wherein
said iterationp-assignment means comprises

means in each processor for bidding for a new
iteration,

means for determining the number N of
processors simultaneously bidding for an iteration, and

means for assigning the next N iterations to

the N processors simultaneously bidding.

23. The digital computer of claim 22 wherein
said means for determining and said means for assigning

reside 1in each said processor.

ARRIS883IPRI0001523

; 0214718

1 24. The digital computer of claim 23 wherein

a3

said means for determining the number of processors

3 simultaneously bidding comprises .

4 a plurality of ready lines extending on a bus
5 running between said processors, one line assigned to

6 each sald proecessor,

7 means at each processor for asserting that

8 processor's assigned ready line when the processor

9 needs a new ilteration, and
10 means at each processor for determining the
11 total number of said ready lines being concurrently
1z asserted.
13 25. The digital computer of claim 24 wherein
14 saild means for assigning the next N iterations comprises
15 & current-iteration register at each processor

16 for storing the current iteration being processed by
17 that processor,
18 an iterations-already-assigned register at
19 each processor for storing a number representative of
z the highest lteration already assigned or the next
21 iteration to be assigned,

2 incrementing means at each processor for
22 dncrementing said Eterations-already~assigned register
24 by the total number of ready lines asserted during any
25 machine cycle, and
I6 means at each processor for determining the
7 current iteration to be stored in sald current

8 dteration register.

3

26. The digital computer of claim 25 wherein

¥y

&
fo

said iterations-already-assigned register contains the

it
Jrd

next Iteration to be assigned, i.e., the next iteration

n

following those already assigned.

fd

ARRIS883IPRI0001524

L - R R« I © I Ny B

11
12
13
14
15
16
17
iB
19
20
21
22
23

24
25
26
27
28
29
30
31

0214718

27, The digital computer of claim 25 wherein
said means for determining the current iteration
comprises

means for determining the number of said ready
lines being asserted by processors of lower rank than
sald processor making the determination, and

means. for adding said number of asserted
lower-rank ready lines to the contents of said

iterations-already-assigned register,

28. The digital computer of claim 23 or 25
wherein

said means for activating and transferring
state information transfers to all said processors the
maximum iteration for which said iferative construct is
to be executed, .

each said processor further comprises a
register for storing said maximum iteration and a
comparator for comparing the said current iteration to
said maximum iteration, and

each sald processor further comprises means
for terminating concurrent processing when the output
of sald comparator indicates that said maximum

iteration has been reached or exceeded.

29. The digital computer of claim 23 or 25
wherein said means for bidding, means for determining,
and means for assigning residing in each processor are
adapted to perform the next iteration assignment
independently of other processors, based on the number
of processors simultaneously bidding for an iteration
and ‘a predetermined rank number assigned to each

processor.

ARRIS883IPRI0001525

[UR S (W

i

i

303 M wy G

12

13
14

T
b

0214718
10

30. The digital computer of claim 23 or 25
wherein each said processor bidding for an iteration
assigns an iteration to itself at the same time as any
other processors then bidding assign iterations to

themselves.

31. The digital computer of claim 22 or 25
wherein said iteration-assignment means assigns initial
iterations using said means for bidding, means for
determining, and means £or assigning, and wherein each
said processor is adapted to bid simultaneously for an
initial iteration during initiation of concurrent

processing.

3Z2. The digital computer of claim 1
wherein said iterative construet contains one or
more dependencies {a dependency comprising a first
instruction that cannot properly be executed in a given
iteration until a second instruction (which could be
the same instruction as saild first instruction) has
heen executed in a prior iteration}, and wherein said
digital computer further comprises

concurrency control lines connecting said
processors for passing concurrency control signals
between sald processors, and

local concurrency control weans at each said
processor for transmitting and receliving said control
signals from other processors and for controlling
concurrent processing of said processor, said
controlling including assigning iterations to said
processor and causing sald processor to delay further
processing when necessary to synchronize dépendencies,

whereby control of said processors during

concurrent processing is decentralized,

ARRIS883IPRI0001526

382

LI s L

[eo RN 21

11
12
13
14
15
1le
17
18
18
20

21
22

2
~*

24
25
26

11 0214

33. The digital computer of ¢laim 32 wherein
sald concurrency control lines include a data bus for
transferring state information such as the stack
pointer between processors at the start of concurrent

execubion of said construct.

34. The digital computer of claim 33 wherein
said concurrency control lines include

a ready line for each processor for asserting
that a processor needs to be assigned an iteration,

one or more dependency-contyrol -lines for use
by a processor te inform other processors that said
second instruction has been executed in said prior
iteration and that said first instruction may,
therefore, be executed,

one or more lines for -informing the processors
of the initiation and conclusicn of concurrent
processing, and

one or more data-contrel lines for tagging and
contrelling the flow of state information across said
data bus.

35. The digital computer of c¢laim 34 wherein

said concurrency control means comprises an
iterations-already-assigned register and one or more
dependency-synchronization registers and wherein means
are provided for assuring that said registers have the

same contents in all said processors.

ARRIS883IPRI0001527

‘g}?

T8

B

[RN S

ooo~3 Y U b

10
i1
12
13
14
15
16

font

feat
W

b
|]

(NSRS T N
W B

ARRIS883IPRI0001528

12 0214718

36, The digital computer of clalim 1
wherein said iterative construct contains within it
a conditional branch terminating processing of said
iterative construct, &nd wherein said digital computer
further comprises means for informing other said
processors that said conditional branch has been taken
and for causing said ¢ther processors to assume the
idlie state.

37. The digital computer of claim 36 further
comprising means for preéventing a said processor
ercountering a trap during concurrent execution of a
given iteration of said construct from taking the trap
until that said processor receives an indication (the
"OR-to-trap” indication) that said given iteration is
the lowest iteration being processed in which it is

still possible for said conditional branch to be taken,

38. The digital computer of claim 37 wherein
a said means for preventing the taking of a trap is
provided at each said processor and means are provided
for transmitting betweeén processors information
representative of said lowest iteration being processed
in which it is still possible for said c¢onditional

branch to be taken.

[

oW s L

i |

10
1L
12
13

14
15
i6
17
is
19
20
21

L 0214718

39, The digital computer of claim 38 further
comprising

a trap-control register at each said processor
for providing said indication,

register advance means at each sald processor
for incrementing said trap-control register at the
completion of an iteration {(or at a poinkt beyond which
there is any possibility of said conditionsl branch
occurring before completion of an iteration), and

means for comparing the céntents of said
trap-control register to the current iteration being
executed by that processor to determine when said

OK-to-trap indication should be given.

40, The digital computer of claim 36
wherein means are provided at sach processor for
preventing a said processor from taking said branch
during concurrent execution of a given iteration until
that sald processoy receives an indication that said
given iteration is the lowest iteration being processed
in which it is still possible for said conditional

branch to be taken.

ARRIS883IPRI0001529

- .
Fon AN e B » « IR N B O =t B 7 2 2 T

fot
il

EA

S T =
@ s Lo RO

17

18
18
20
21

SO TE N 6 T 6 T S O R
[UCTIN > SPNG SE S TR ¥ 2 B~ §5

14 0214718

41. The digital computer of claim 40 wherein

there is provided z synchronization register
for providing said indication that said given iteration
is the lowest iteration,

said means for preventing said branch comprise
means for causing said processor to delay further
processing in response to recognition of an await-qguit
imstruction (or instructions) appearing before said
conditional branch, said processing being delayed until
said synchronization register reaches a value egual to
the current iteratipn, and

means are provided at each said processor for

ncrementing said register at the completion of each

fodt s

samid iteration {or at a point beyond which there is any

cesibility of said conditional branch occurring before

g

completion of an iteration). .

42, The digital computer of claim 1 wherein
said digital computer further comprises means for
providing each said processor with a private stack for
use during concurrent processing for storage of data
gnigue to an iteration {(e.g., temporary variables ana

subreoutine arguments) .

43. The digital computer of claim 42 wherein
means are provided for saving the contents of the stack
pointer register in use prior to concurrent processing,
for loading a pointer for sald private stack into said
register at the start of concurrent processing, and for
restoring the stack pointer register with the saved

value at the completion of concurrent processing.

ARRIS883IPRI0001530

15 0214718

1 44, The digital computer of claim 43 wherein
2 means are provided for caving a copy in each processor
3 ¢f the stack pointer in use prior to concurrent
4 processing so that a said copy will be available
5 to whichever processor is the one to resume serial
& processing.
7 45, fThe digital computer of claim 1 wherein
8 said program contalins a second iterative construct
9 {said first-mentioned construct being hereinafter
10 referred £t as said first iterative construct), and
11 wherein caid second iterative construct 1s either

12 within or outside of said first iterative construct,

13 and wherein said digital computer further comprises

14 means for detecting during execution whether said

15 second iterative construct is within said first

1% construct, and for causing the processor starting said
17 second iterative construct to execute it serially {(all
18 iterations on the same processor) if it is within said
13 first construct and concurrently if it is outside said
20 first construct.

21 46, The digital computer of claim 45 wherein
22 means are provided for gaving the current iteration of
23 said first construct when sald second construct is

24 encountered within said first construct and executed
25 serially.

26 47, 'The digital vomputer of claim 46 ‘
27 wherein means are provided for also saving the maximum
28 iteration of said first construct when said second

29 construct is encountered within said first construct
30 and executed serially.

ARRIS883IPRI0001531

NS bt

d o

L

10
11

1z
13
1¢
i5
16
17
18
18
20

ARRIS883IPRI0001532

D214718

16

48. The digital computer of claim 47 wherein
a status bit {or bits) is provided for indicating
whether the iterative construct being processed is
within another iterative construct being executed
concurrently {i.e., whether the construct being
processed 1s nested).

49. The digital computer of claim 48 wherein
means are provided for saving the content of said
status bit st the start of execution of a nested
construct and for rgstcring the saved value at

completion of the construct.

50. The digital computer of claim 45 wherein
said means for detecting whether said second iterative
construct is within said first iterative construct
includes means for detecting whether a third and
subsequent iterative constructs are within said first
construct, either because they are called directly by
=aid first construct or because they are called by said
second construct or subseguent constructs nested within

gzid first construct.

e T« TR W S < O Y R C I

o

11
1z
13
14
15
16
17
18
18
20
21
22

23
24
25
26
27
28
24

17 0214718

51. A digital computer for processing a
program contalning one or more vector instructions for
operating on vectors each of N elements, said digital
computer gomprising

a plurality of processors,

each said processor being adapted for
serially processing, without the assistance of the
other said processors, portions of said program before
and after said vector instructions,

each said processor including means for
concurrently processing a subset of said N elements
using sald vector instructions,

means for dividing saild N vector elements
among =ald processors during exscontion of said program
based on the number of processors participating in
concurrent processing, and

means for activating those of said processors
that have been idle at the start of said vector
instructions and for transferring sufficient state
information to the activated processors so that they
can begin concurreént processing of their assigned

vector elements.

52. The digital computer of claim 51
wherein the number of said processors participating in
concurrent processing is varidable and not predetermined
and wherein said means for dividiarg said N vector
glements among saild processors includes means for
determining the number of processors participating at

the start of concurrent processing.

ARRIS883IPRI0001533

18 0214713

1 53, ‘fhe digital computer of claim 52 further

B

comprising means for instructing said processors

3 whether the vector is to be divided horizontaily or
4 vertically between proCessors. B
5 54, The digital computer of claim 53 further
b comprising means at each processor for determining
7 during processing said length, offset, and increment to
8 be used by said processor in making said division of
9 said vector.
10 55. The digital computer of claim 51 wherein
11 cald processors are adapted to initiate concurrent
12 processing of said vector upon recognition of a
13 start-vector-concurrency instruction placed before the
14 first of said vector instructidns, and sald processors
15 are adapted to terminate vector processing of sald '
16 vector upon recognition oif a repeat instruction placed
17 after said vector instructions.
18 56. The digital computer of claim 52 wherein
19 each said processor includes logic circuitry for
20 concurrently processing different iterations of an
21 iterative construct, and wherein said logic circuitry
22 s2lso serves as said means for concurrently processing a
=3 subset of said N elements and said means for activating

S84

’
i

idle processors,

ARRIS883IPRI0001534

(02 B~ SR ¥ T % R S

10
11

12
13
14
15
16

17

20
21
22
23
24

25

19 0214718

57. The digital computer of claim 54 wherein
said means for determining said length, offset, and
increment includes, for horizontal division of the
vecter, means for determining said length agocecording to

the expression:

Length = CEBIL[(N - VPH)/(RUM + 1}]

where N is the total number of vector elements, VPN

is the virtual processor number, NUM is the highest
virtual processor number, and CEIL means that the
result is rounded ué to the next highest integer if not

already an integer,

58. The digital computer of claim 54 wherein
sdid means for determining said length, offset, and
increment includes, for horizontal division of the
vector, means for determining said offset according to

the expression:

Offset = VIRCR{VPN)}

where VINCR is the increment of the original vector and

VEN is the virtvel procassor number,

59. The digital computer of claim 54 wherein
said means for determining said length, offset, and
increment includes, for horizontal division of the
vector, means for determining said incrément acording

to the expression:

Increment = VINCR{NUM + 1}

where VINCR is the increment of the original vector and

NUM 1s the highest wvirtual processor number,

ARRIS883IPRI0001535

0214718
20

i 60, The digital computer of claim 54 wheredn

e

caid means for determining said length, offset, and
3 increment .includes, for vertical division of the

vector, means for determining said length acording to

sk

the expression:

[

6 Length = MIN[CEIL[N/(NUM+1}]}, N - VPN(CEIL[N/ {(RUM+1) 1]

7 where N is the total number of vector elements, VPN

1S is the virtual processor number, NUM is the highest

Y virtual processor number, CEIL means that the result is
10 rounded up to the next highest integer if not already

11 zn integer, and MIN is the winimum of the two

12 parameters within the brackets.
13 61. The digital computer of claim 54 wherein
14 czid means for determining said length, offset, and
5 ipcrement includes, for vertical division of the
16 vector, means for determining said offset acording to

17 the expression:

1B Offset = CEILIN/(MUM + 1) 1{VPN}
19 where N ig the total number of vector elements, VPN

[ES
faa

is the virtual processor number, RUM is the highest

{38
-

virtual processor number, and CEIL means that the

T

result is rounded up to the next highest integer if not

fuk

3]

23 already an integer.

ARRIS883IPRI0001536

L0 ~3 O Ut i L b e

X1
12
13
14
15
16
17
i8
19
20
21
22

23
24
25
26
217
28
28
30
31
32

- 0214718

62. A digital computer comprising

a plurality of memory elements, said menory
glements being interleaved {i.e., each is assigned
memory addresses oh the basis of a low order pertion of
the memory address),

a plurality of parallel processors,

said processors each having means for
initiating an access of data from any of said memory
elements simultanecously with accesses of other said
processors,
said memory elements each being capable

of accepting an access from just one of saigd procescors
during a given cvele,

wherein said memory elements are 80
interleaved that the ztcess pattern generated by said
processors when accessing data 4t a predetermined
stride permits all of said processors to reach a phase
relationship with other said procesgors in which each
sald processor is able to access a different said
memory element simultaneously without creating access
conflicts {i,e., more than one processor simultaneocusly

attempting to access the sanme memory element) .

63. The digital computer of claim 62 wherein
said memories are so interleaved that the access
pattern generated by said pracéssors for a given
power-of-two stride greater than one meets the
condition that the pattern tolerates being offset with
respect to an identical pattern by an OFFSET or any
multiple of s5aid OFFSET, said OFFSET being equal to the
length of the access pattern divided by the number of
memory elements {wherein tolerating means that no

access conflicts arise}.

ARRIS883IPRI0001537

22 0214748

: 64. The digital conputer of ¢laim 63 wherein

& caid memories are so interleaved that the access

L

pettern generated by said processors for said given.

4 stride meets the further condition that the pattern

L

includes at least one conflict at every offset other
than said OFFSET and multiples of said OFFSET, whereby

£

7 said conflicts force said processors to assume a phase
g relationship with each other wherein the cffset between
9 access patterns eguals said OFFSET or a multiple
10 thereof.
11 5. The digital computer of claim 64 wherein
12 there are four said memory elements W,X,Y,% and said
K] memory elements are interleaved so that at a stride of
1= orte the access pattern is WXXWYZZY and at a stride of
15 two the pattern is WXYZ. .
1€ 66. The digital computer of claim 64 wherein
17 there are four said memory elements W,%,Y,2 and said
18 memory elements are interleaved so that at a stride of
1e one the access pattern is WXXWYYZZ and at a stride of
20 two. the pattern is WXYZ.
21 67. The digital computer of claim 64 wherein
22 there are four said memorvy elements W,X,Y,2 and said
=3 memory elements are interleaved so that at & stride of
o4 one the access pattern is WWXZYYXZY and at a stride of
25 two the pattern is WXYZ.

ARRIS883IPRI0001538

0214718

23
1 68. The digital computer of claim 64 wherein
z there are four saild memory elements W,X,¥,Z and said
3 memory elements dre interleaved so that at a stride of
4 one the access pattern is WWXXXXWWYYZZZIZYY, at & stride
5 ©f two theé pattern is WWX2ZYX%ZY, and at a stride of four
5 the pattern is W{YZ.
7 69. The digltal computer of claim 64 wherein
8 there are eight said memory elements A,8,C,0,E,F,G,H

g and said memory elements are interleaved so that at a
10 stride of one the access pattern is ABCDDCBAEFGRHGFE,
11 at @ stride of two the pattern is ACDBEGHF.

12 70. The digital computer of claim 65 wherein

13 said memory’ elements are interleaved as follows:

14 Addregs Bits on

15 which Memory Elements

16 Are Interleaved . Memcrv Element
17 8 00 W

18 001 X

15 ¢ 10 X

20 011 W

21 100 Y

22 101 Z

23 1190 A

24 111 ¥

25 7l. The digital computer of claim 70 wherein

26 said three address bits on which said interleaving is
27 done are bits five through three of the byte«level

28 address for data in said memory elements.

29 72, The digital computer of claim 62, 64, 65,
30 70, or 71 wherein said memory €lements are sections of
31 a cache and sald digital computer further comprises a

32 main memory to which said cache is connected.

ARRIS883IPRI0001539

o

8

o
DD

S
[-

Yot
s

[
ooen

ARRIS883IPRI0001540

ASH
pos

0214713

73. The digital computer of claim 72 wherein
said memory elements each include means for choosing
among processors simultanecusly contending for access
on the basis of a fixed processor priority ranking.

74. The digital computer of claim 62, 64, 65,
70, or 7L wherein said processors include means for
concurrently processing the same instructions and data,

wherein said data is accessed from said memory elements.

75. 7The digital ceomputer of claim 74 wherein
said memory elements each include means for choosing
among procecssprs simultaneously contending for access

on the basis of a fixed processor priority ranking.

76, The digital computer of claim 74
vherein said processors include means for concurrently
processing different iterations of the same iterative

construct,

77. The digital computer of claim 76 wherein
said memory elements are sections of a cache and said
digital computer further comprises a main memory to

which said cache is connected.

78, The digital computer ©f claim 77 wherein
said memory elements each include means for choosing
among processors simultanecusly contending for access

on the basig of a fixed processor priority ranking.

FOUE T T S

e IS SR o ST 4 ¢

10
11
12

13
14
i5
16

25 0214718

79. A digital computer comprising

a main memory for storing data,

a cache for storing copies of said data, said
cache being connected to said main memory,

a plurality of parallel processors connected
to said cache,; and

means for permitting each of sald processors

to access the same memory locations of said cache.

80. The digital computer of ¢laim 79
wherein said processors include means for concurrently
processing the same instructions and data, wherein saigd

data is read from and written to said cache.

Bl. The digital computer of claim 80
wherein saild processors include means for concurrently
processing different iterations of the same iterative

construct.

82. The digital computer of claim 79 wherein

sald cache comprises a plurality of cache
sections,

each sald processor has means for accessing
the same memory locations of gach said cache section,
and

means are provided for a plurality of said
processors to simultaneously access a plurality of said

cache sectionia.

83. The digital computer of c¢laim 82 wherein
said c¢ache sections are interleaved {i,e., each cache
section is assigned memory addresses on the basis of a

low order portion of the memory address).
P Y

ARRIS883IPRI0001541

My bt

ad

fmd hat
B WD 0D W

fort
o]

14
15
16
17
18
18
20
21

0214718

¥
)

84, The digital computer of glaim 83 wherein
said cache sections include means for accessing blocks
of data from said main memory and means for dividing

each said block between cache sections.

85, The digital computer of claim 84 wherein

two or more of sald cache sections each
include means for driving a common nmemory address bus
with the block address of the bleck of data to be
accessed in memory; and

szid two or more cache sections each include
mezns for concurrently reading said block address from

caid common memory address bus.

86. The digital conmputer of claim 85 further
comprising ;

two Or more main memory data buses, one sald
dat
sections, and

means in said main memory for transferring

a bus connected to each of said two or more cache
A

scross any one said data bus only those portions of
said data block with addresses assigning them to the

cache section to which said data bus is connected.

ARRIS883IPRI0001542

- 0214718

87. The digital computer of claim 86 wherein

2 there are four said cache sections, said interleaving is

3 Address Bits on

4 which Cache Sections

5 Are Interleaved Cache Section

& 000 W

7 001 ¢

8 010 %

9 011 w
10 io0 hs
11 101 Z

12 110 Z

13 1115 ¥

14 said blocks are defined by the highest bit of
15 the address bits used to define said interleaving, and
16 said blocks are divided between pairs of said
17 cache sections.
18 88. The digital computer of claim 87 wherein
19 said three address bits on which interleaving is based
20 are the fifth through the third bits of the byte-level
21 address in sald cache sections.
22 89. The digital computer of claim 87 wherein
23 said pairs of cache sections share a common circuit

24 hoard,

25 90. The digital computer of claim 87 wherein
26 said memory elements each include means for choosing
27 among processcrs simultanecusly contending for access

28 on the basis of a fixed processor priority ranking.

ARRIS883IPRI0001543

By

[%]

fd et
[T N R SV v BN S s~ B B NS

bt

bt
b

Yot
(931

17
18
18

v 0214718

91. A digital computer comprising

a plurality of first subsystems resident on
one or more first cirecuit boards, each said first
cubgystem having a first subsystem bus,

a plurality of second subsystems resident on
one or more second circuilt boards, each said second
subsystem having a second subsystem bus,

& backplane circuit board to which said first
and second circuit boards are connected,

a bus-switching means resident on said
backplane circuit beoard for selectively connecting any
selected plurality of first subsystem buses to any

selected plurality of second subsystem buses.

92. The digital computer of claim 91 wherein

said first subsystems are processors.

93. The digital computer of claim 92 wherein
said second subsystems are memories, and wherein said
bus-switching means is adapted to permit any said

processor to access any addréss in said memories.

94. The digital computer of claim 93 wherein

caid memories are caches,

5. The digital computer of claim 94 wherein
sald caches are sections of a global cache,

96. The digital computer of c¢laim 95 wherein
there are a greater number of said processors than said

cache sections.

ARRIS883IPRI0001544

TSI T

o U

nd

10
11
12
13
14
15
16
17
18

19
20
21

22
23
24
25
26
27
28
29

30

0214718
29

27. The digital computer of claim 96 wherein
said cache sections are adapted to accept accesses fronm
said processors more frequently than an individual said

processor i adapted to make accesses.

98. The digital computer of claim 97 further
comprising

processor-access control lines separate from
sald bus-switching means,

megang in sald processors for asserting said
access lines to initlate an access and to indicate
which of said cache sections the processor desires to
access,

cache-acknowledge control lines separate from
said bus-switching means, and

means In said cache sections for asserting
said acknowledge lines to inform contending processors
whether they have won access to said cache section via

said switch.

$9. The digital computer of claim 98 wherein
the means for controlling said bus-switching means

resides exclusively in said cache sections,

100. The digital computer of claim 89 further
compr ising

cache-not-ready control lines separate from
said bus-switching means, and

means in each cache section for asserting a
not-ready line to inform a processor after it has
gained access to a cache section that it must wait
before the data transfer between it and the cache

section may proceed.

ARRIS883IPRI0001545

30 0214718

1 101. 'The digital computer of claim 95 wherein

sald cdche sections are interleaved.

b2

3 102. The digital computer of claim 383, 95,

4 or 101 wherein said processors include means for

5 concurrently processing the same instructions and data,
& and said data resides in said memories or cache

7 sections.

3 103. 7The digital computer of claim 102

9 wherein said processors include means for concurrently
10 processing different iterations of the same itevative

11 construct.

12 104. A digital computer comprising

13 a plurality of parallel processors, each said

14 processor having one oOr more processor buses,

15 a plurality of meémories, each said memory

it having one or more memory buses,

17 a bus-switching means for selectively

18 connecting any selected plurality of processor buses to
19 any selected plurality of memory buses,

20 wherein said processors include means for

21 concurrently processing the same instructions and data,

22 and said data resides in said memories,

23 105. The digital computer of claim 104
4 wherein said processors include means for concurrently
25 processing different iterations of the same iterative

26 construct.

ARRIS883IPRI0001546

0214718

1 106, The digital computer of claim 91 wherein
said bus~switching means comprises a plurality of gate

3 arrays mounted on said backplane circuit board,
107, The digital computer of claim 104

wherein said bus-switching means comprises a plurality

6 of gate arrays mounted on a backplane circuit board. .

ARRIS883IPRI0001547

0214718

L 914

SN8rinnw
s
/ 92 508 T0HLNOD KONIHUNONOD
2z z : _
//3 ¢ ,z% “ vz vz N0 | ve 2 [vz ndd] bz bz 2
. ‘. £ Q\\ £ £ L
dl d1 130l 939 530 30 £39 239 139 032
N kN N\ N AN AN A
ol o1 o1 ol ol o ol ol
/ON /om
~HI LIS s =41
3HIYD @l FHOIVD dI U 3AHIYD 42 o O IHIVO d I~
al ™~ g1 -~ i 21
SNE AHOWIW
[_]
) | |
. "\ A N N ~ N
L v 21 X L 2 74 L1

INAONW AHOW3W

ARRIS883IPRI0001548

ARRIS883IPRI0001549

LOORESS

OXh ALBEESS

MEVORY 440

MAHAGEMENT

I SV

o

S LTS

jos]

il

[
™

I

CDEDIR 4 BITS OF

Q

Bl7 s 54]32 10

DEYEACHED (SET
NABLE (SET

L

(587

FOR

USCCLARGEST VPN 1t
FOR CONJURRENT
O (R0Y EQR KESTED LOOP
I OFOR WECTOR CUNCURRENT LOOI)
SCRIALIZAY TN

LVPN (YIRT
&

PROCESSOR 1S DETACHED)

TO ENABLE CHANGING S1ZE OF (OMPLEY)Y
FORCE CCU
(SET FOR (LU DIAGNOSTIC MODE)

ERRORD

0214718

BLEE Y B

¢ 9ld

(HILIMSG A¥OW3EW OL) (RDLIMS ANOWIW OL)

0214718

1¥0d viva 1304 $SIEJAY
: 52
;)i
SNG I0ELINGD ATHIZENINOGD
SSINCAY TYI I SAH
. . . ud T
gaqauy [u3giATg LUHN L1mn
=L . 533 :
, mamwwwwwm O 1LY TS L TOU L1
S I LNTOE SNLLYE T3 5533007 | [ANIEYNINOD fesp
2k 25k 2ed .) g
- BOr 9 2€
2O%SE 08 A TSR AN S
vay
A Linn
HOLIMS 37 193 ¢ 2.t
wm BCOluIadin
i X
v Lv0 TOHLNGD 23
B i3 .
sNg 1 2%
%
e e
=] CHYWWOD RO e i %
k-
FEPLEHEES ERDESS
Fe0%w D OB UN (O 1LBNaLENI
O LIRS
LIS 08 LN

ARRIS883IPRI0001550

0214718

A N W ow Q2
I aliR4 oy
LI T TS SR w4
<< D ey e e (g
= Be o ot ome oy
g P : FR I “
[w— o falogn
A VS W A "
} / > ¥ 12e
8w
2;'& G
/ , R U
i CCUBYS, CLUP 33
P1BUS .22
U.‘--»g——sam Loy CETA&?Q% 3
REEL moopfonipns CSTARTY bt ' r
R i CQUI?O“D"_—_%
[T aRem— CQUITLP
OF F§ i gl CWRO “‘*‘D”‘""}
UE g TRt P
SSELross] SEL0 % >
CM»:{}&%V SEL] pase - 4
paw Rt v [T
D M ALy G i
. =S VPN FOYGC AR
10~ ~——{ TRAPOX POV babe 3
g QU] T 201D E&A;ﬁCYQE}L
gt SER [AL i
M:wu:f RIDLE] B ¥ 8
A ANTACT bt i «
] PERR BD1D fLA 50
= #
CEB {3 @pio(2:ay) 3 o
24
, L CCUBUS, CCUP 33
3
PIBUS—Se cey Csmmg%
fol
REE L oo CSTART] "
WP) ;;Quwo-———{ %‘j
DO CQUITY beg
GFF Sl cw.re:ow—{ >o-'q
QL‘? WP
56T L] ,cgu,(}»w«l?* :»—ﬁ?
CrnD *—'frg-@* STL) e 5
“*%‘g,m,s,v,w,z ADVO e]
et (UM apv i pat 2
g ypn WSM)L
B’ I TRAPOK RDY T bt . g
10 e (W3] ACTO —-.%>°.*§_fi&_l >L
i SER VAL
sigend A] T RIOLELE ¥ B
ANYALT pet PLA .
el P ER B e N
‘ 90
cE is B010¢2:8) Y3 i
s
26
£ - ENABLE ” e
‘ CONCURRENE Y
D - DETACHED CONTROL BUS
S - SERTRAP
Y - VECTOK
N o~ NESTED
Io- 1Loop F%G 5

ARRIS883IPRI0001551

0214718

= LT
,
b Qe
7
% . ¥ 3 I P TR
mm 2 m Gy e e
- L= RN o SO e
I i R S Lot
S L R O o _
e L%e)

ot IS0
b3

e

Pd

e d

LAV LDV SNy e
Liavisn

NONY. Ohdnle Fovg vy

/ 1
/ . 1955

q

5

HIAGY WO LMY “
|
¥

ARRIS883IPRI0001552

of byt
OAQY 5

0214718

QRQY =

UL o]

QUMD]
OLINDY w—
QLYY S e
(AR PR by

RE b
O Fg = 5

H3000230
1355
L aan
L iewiss
QU
EEY

WD T) v
[
QBENICHTD Qg) mre

am:ugddaaﬁmﬁ%xm,
LIXANCHII QU T 150 et

Cod s da 9 a8 9 0d9 Ryl YA
AEGLS T

T3y

LM

prot e LSv
8 1
i 1'N'A‘s g Ng @m&
& T Ed _
10 ,A\ ” .
- (=R
; EL
—
] w0 LLEALD
rm I e i
Tigwlsd
I 5]
2P

T

ARRIS883IPRI0001553

0214718

g 8 RDYY
¥ L4
- TEST-
127~ N
o 136
0 \\.Q.-d
Ea
3 g
: 5
P1EUS i’ L
» Pl
P3| ¢ 8
H
144
3 142 % s
. L w»
e 3 Y jB T
LEFT OVE CO INCE Ci
22 Lan
£ ~%
Me—LLiE)2 e b
b3
¥
: 2
CLR CLRNEXT
¢t D CREXT LD} RETNEYT
LD7 beme ADONEXT
! ' 32
TIE BREAKING: |..
CLR>LD1>LD2 ~ | 5o NESTED+ .
DETACHED
Fa
32 $§<6:g} 7
NESTED e 128
DETACHED > 8
CURROVE Co INCR ¢ dwj
32 r32
TIE HREAKING: L 783
L e NEWYPN
CLRNLDISLD?Z :
‘\\\x [{32
\ L 5
CLRR— CLRCURR
€t CCURR LD} RSTCURR
e . BT g A
GL31112,9:8) 3p LDZfe~ ADDCURR CHEXT
N g
ccocitripySiiiied 2 v i 32 CCURR

CHRO- }@}(\
22

PART TY
% ccue
+

CHRO%
CSTART R

: 1T
F?E(; gg ii>>““**CCUﬁu5

e

o

ARRIS883IPRI0001554

0214718

6 9Old

EEES _ 4
Q_MN L5 dunD
Ml
XL v Y0 A0 3
3
4 PR
: Ol
SNETd - | A 3
4 J/_ \ mﬁuu\,'{yﬁ\/f
30 ¢
CI1S Ibgms] / MR TR ™
33Q e o
135 . *\\ Xl] :
. b
0] ﬁmwwwnm,@nw
bd TEE %]t 3% sEnso
- el 7 YRS
FAN L le
| 15
28 € 2e.f 2t 2e e £2
L¥LS, e 1 1D €0 2833 §D 1893 (D G55 ZH S R YCEPA Cret £
ﬂ w 1 M; T1evisD
| { D
~ _ _ Nm,n iw
Jg ' AR 4S50] 3l Tl -
2 | s b 210N 5 4550 44507 350 ST N 390453
Wfa mi ¢
LIRSS e
s B §1G b}
Td DINAS

ARRIS883IPRI0001555

e

0214718

CE ?
&’ i) i
(SRS R |
w2 i
o g > >
[s MR I
¢ @ & -
W s wd 3
(O e Ty
mugi i é l 3z -
LSS S %
CSl:zéqu SYRT T [73 o) B')a:::'?*
(73 vew o~ b {1 JADVI
PASY SR . {73
73 . i { Fapve
LOVOK ¥ L | § £13 90
i H
(73 . [T pylesl2ii282
Svryn Gkl S B R S S
(272834 T i | i)
§ig U omosh 083
S:D; pasy 2l b | iAgv‘ ,,(63
(63 o E; Lo ; ADV G
prran L B ; i Pyl 27:24)
le 284 SALLSNE R B S)
5:280485yne | i : i ;m;w: (53
(5) 4 o ! ‘
AST w2
75) ryig £ Pl ; I Taove L3l
PN ADVOK 7, | [pl {23528
oS AWTOK § oy] ¢
SLELE S
(52 pAST ; I (&)
. *
G liovox 21 L1 paove P
) 2 N O R Y ARG L TR LY
DEPITPEyy ALLINE It B SR IR T
ISERE ¥ LN vy I €33
(13 , . PP ADVIE—
3y pzf; 2 E % ; | §AOV8 3
S :” nrob Iy P 3{151323
PPRTYPY N T I B B
R P I (23
(2> oagy o1 b Lo opaDvI
€2 ' bty apvopeSi2
ADVOK X .
(2 = i } i] 1 1 {31.8}
Dok Ty g gy T
AL DA P R 13
(1) PRST ; : g ; ; { ADVL {I}
Cry ADVOK T %ADVC“‘(?;L‘}
LG5I Jive v IHNEEN PH
G DEA peravy
§]
€83 PAST &j ALV 5y
(8 AbvoK > ABvE (3:p
£8) AWTOK P
S ol wt o 3
i
AR
food FIG 10
vy fL i] "f

ARRIS883IPRI0001556

0214718

4000t
03 Iwiuas Lind GALsIL M
) . 3D ¥OI193A A
32 4YHI¥IE 5
~ i Q3-9v13¢ @
IgyNg H
QuuD
ALl¥vd 4
¢ £53L 1
SALY LS § » .
g g ~ Lo
2 L) o Py o “ e
Uﬂ ﬂw) %. H..u o W MU s ot .
o Rt B B o Wﬂ m h m o1
=7 o PR ¢ & g
£ L ']
a pes] 4
— AYL < v oy
. v h
w2 v] !
7q7 e mmgiu . 7G 7 he
e 3730474 an OxEnd 107 Z€4WsnD 100 TELXA 10 ke I
%10 e RIS YYD oy
z_ 2 24
il 1
£y - e
. W e T
v JEI—— L I o o
3 % v I
- N0 & % b
- et W R S I PN
M S = Mw] H,w % o o ‘.H .4:&
o N . e n,.m ML o
~ e m” et - 5
) =
%
¢ ot I
2%
e
¢

ARRIS883IPRI0001557

0214718

- 7y
-
i
<F
i
[ia}
& l o
~ et 12
ik} ad {'jiu
" < =z 1 h 5
) H &3 G
(07 z) > v g
o N v o
T SAEEN L ol 7
o o e : Lo
[NCIN S (gl '_D‘k“ o
T
1 1
SV .
i } T oo R
UHENS | “ A
ot > " i Gl y
Ry A ~ g) S 0
i RS (1 iy L. " n
//L\ T i) i3 |
el B TR — e unny i !
1 ¥
kr/’j 5%
ul
- (%) !
(g - N §
i ot
Sy i
= 3
GO0 L3S L oomie {
¥
-)
(i 4 o el
A5 O T | | ¥
o | »L..‘
L czisawn1n
3] -« Lor
[TE S o B |
PR
¥01DIANI G L sois3awns X
&
ax T .,
b ‘ w G ; ;? m
e ‘:’“]’ oy Vi « ¥ "; pr—
: - ts s
GYEIHDEL TG] i AVEINESHIS]l LB 4
peR P A 163
A owoow - W A i
" N CRE T
t t;: - \;2 wd LL
= P t} fz .
¢ NI

ARRIS883IPRI0001558

0214711

we»xax?i%%if%&”MﬂH?i?lﬁ‘
i
HOAQY e |
G-0 8w

80)
O+ 9 4
e mw
S44Q
[
B
w t=Degmy
INAS v wc,e CHo Rk
[ERpe L s MU G135
s A ACHO S I |
=B jtel
iavay r
%
= 1o
(%} v

ARRIS883IPRI0001559

0214718

Haghnine Al CEE Gther CEs
Cycle In Complex In Compley
1 IDLE
2 CODSTART LOGSP IBLE
3 WROGEP CSTARTI {cespl IDLE
CSTARTC CSTARTIZ CLR3YHC
EETINLOOE CLEPLET
4 WRECGPD CSTARTIN CINLOoP!? 1DLE
LDGFP ADDHUM
RODYO ADDCURRO
ADDCURR
ADDWEXT
5 WRCMAX LDGEC [CGEP]. RDCCGF R
fCREXT]
{CCURR]
& HoP LDHAY (LepCl RDCGRT
7 RECVSP femaxd ROCVS P
8 RDCCURR RDCCURR

ARRIS883IPRI0001560

0214718

=

of

!
Lo et I
E Y45y T2 vt
Aot J Tt
i
H
P bk b e
f
1 ;
e R s L -1
§ femt

F o s s i
3
Bt b e b e N
1
[———
[3
Bk bof fod bed oot o o
i i
IR —————
§ ¥
B g B g e ©Y e
i {
@
& -t B
ot
P

S S it

Sk S g i o

[

Hotest 1 -~ Idly L8

§ - estary instruction

R - g¢repest 1nsc

setion

ey

8-20 - Iteration numbsr

FIG 14

ARRIS883IPRI0001561

0214718

an
2 AN
I
CACHE w
40
med ST RT L CrEw
— O RUSYL
& | e CHATTL
1 ot CED RS
et CADRE X T
e O 5T PAR
SE
&4)
ekl COT(H 28
25 .
K A CADR(T 6, b, B8)
e £ 25 5
- S CADRPAR
5 { LS 3
i AT EDP{2 08D
“E ,\&LCLSNQI:B) J
3 ~ wl
W BETES N ACOS Y
w5218
COTOLY g;,,.g’? € — : —10
: BC o
, I oL
SO Y By} .
gg &E
CADRPAR fw—es -~ 96 B5(a5:8)
CEORCZ: et -
e -
COLNCT: g)l S A
2 CE
\ 4 s
CACRE % AL -HL #8 T{35:6)
5E g - =10
o i
b5
3 DE
XS 8D 45 (o5
) D{95:8
%94 gk 38 ki >
LN =10
les. £ CF b
‘ PO .- eC
CACHE Y AT =G -
YE * £099:83
=10
— L FAY
FE
g
B rcosied
i2 p
N ey 45 B ¢ T @
CALHE 7 D L aS— gy £y s
G
o)
I ¥ oeasied
250218 s 6 I 0
ST TN 48 ’ b
2L95:e. K BACHLAKE HE
£ty . 95
SWITOH HOOG)

ARRIS883IPRI0001562

J

D

Eas]

5
o

= PO

Al kg

FORETR

2084~ =~
EIOWW
12195
WB -
}
?
o e E
|
WD
WS

(2:8) 208,

H

i
AP
i
{E.—j
¥

xD

SIS JUHR S —

EAS

‘708 208~

Yt

[o e

o

Hinug

T S
208~
. l b
ging 1
BOUTE |
1
Lo
_ 208
Cing f
coutg |
|
b e
L2095
Ging E
nouTE |
1
209~y .
. EI1NB !
! EOUTH | |
1
i.—- e, somonn’ -
_ 208~
FiNg 3 |
FOUTH | | -
{
| {
205~
-2
Sihig ¥ |
RN :
L]
209+

=T

7t
[
g ey
t
f
0
75~
(Fe8)
202 ~
A

ARRIS883IPRI0001563

206~

0214718

o B Wit
XE ¥y
Y{;——~1 i £ PRI
' —RCBIAY L
Eaikd
4
e
Ly
i
AR
aamaame s
B{3:8> ws
a7
e]
AINC3 8D LB
BINC3 g £r
CINC3:2) LEETD BN
Wit 3y] D!?&‘(!E) o
YInf3:g3 EINC3:8) o
' Fiii(3:8) e
AEIGIT A et L CB
GINC3:8) 0731
SER LSRN AN SIS E) T
WHUTC TR ADUT R 0ED %..__._
S
BOVUT : L
KOUTC3Es OUTE3:8) -«tﬂ”
PR, COUT(3:8) S
w38 S,
W3 YOUT(3:8) DOUT(3:8) E(3:8% .
W2 ; e ——
e D §20UTCR: 83 EQUTC38) .
" n P
UEU L T FOUT(3:8) o
we COUT(318) T e
B2
{3187 HOUT(3 . 8) .
X3 F{3:8)
PV AK. S i)
. X? R,
P
X1 .] i
PN W CACHE - CEUELTION CEBORTS i
B PORTS o
ra
YC3:187 i
vy (€3:8) GC3iRY
' ™ WE 7 el v 3
¥ W1 o
¥ T m— P g o e
et b - -y
e LET —— - Loar
B RS2 it CE R
7¢3:8) X e
23 , Sl S —— Wisigy
22 %58 & 1 A
f .
Z] VG D e £E A ——
...Tw e 1l
¥ R e]
78 S i o
¥58 L
782 IR

ARRIS883IPRI0001564

ARRIS883IPRI0001565

0z14718

-
</‘J(
/

e

CP CACHE
CP CACHE

19g
\\\ -
N \\ R
EOTIEE AN E IR 0 IR TN <3 SR ¢ e] IE A
Lo g W g) b W
21 AL WL DR O O W W

N,
S,

S,

0214718

e i i
. "vj

e J M
IBEGTR

éh

| I ohu ; |
tmenraL2iF A LA } ;
P v ’ wyig I
cnvuiii? 651 | 0 ! i
; i i i t | |
i [PENEEEE l tca@w;« } f DEER] fcanmw } i i
H
i P
: i6ie Los:p 6318 ! ;
1 H
i PESEE: DA [t 630) 6308 Flib4% Y7164 ; §
| 300~ TG A BB |
) F I DA S
f 4 sate seore | p Ece | f
! L AGRAY i i
; ™. Pig o '
I iz | i
i g ' § ‘
: DLEDUTW e Vo §
, DUTW 307 312 E |
| 320 ! |
; DIHBADR | !
T
§ AF iyl |
j A TAL 87GRE ARRAY pusaoR | | b
| bl (3 W W oUT v
i i I
i . Ts TS i
I iy) TS TAG 1ox joxil
i /o 170 1/0 IN ouT) | ’
; \ [
H <
REET B
i | 0% 161y H |
| L e 1 f
CACHE i
! [SE R § |
| -«_—_1 LMD ARATOR i |
Pis: 161w ! 1 |
bl Lh 314 {
f : — 165 ;]
| Frioie | i |
165 - | ~
| 318 6-;,558 /310 ; : FIG IS
! L o5 1Ry } t T5DXW 1 f TAGW T i f
! | |
!
| l
; 2] F27:10 ; |
t27:6] 7 162 QUADRARNT | Ef}uarmn.xar
CADRW et W \ [y
: i
boie o i e o e e e e e d L _ 4
A 7y h%_
270k r”“i—' E
OB ADR) XCVR Pw««—*m»j DRMEADRIN }m
CADRX AR

ARRIS883IPRI0001566

0214718

MEMORY
INTERFALE
326“\--~
Bt B B s
OIS I
ol
Pt g I L O
Hiowm] & ol =
Z % w o [ER] IS
3'28%\ ‘ 5% REY 1ab u

CwhiT

PENTING
STATUS

UNPENTED
WIRE

o
ot SR Y
[=% 24 b
[Bty d
ExbTy il B
b ; \\:
2 w
Sal e 324
e SEeL W
} ~ 5 o -
i O ol e g
: o e g
! v [PEibe o
URSRS
TIeTI
TLUELE Casat
<1op QuicK
— WOnR ’ I

o
322

FIG 20

ARRIS883IPRI0001567

-

s

NEXTA

ARBHETA
ADDRESS
COMPARTSOSS
CACHE
ACTIVITY

ARUNPERD

340

1

0214718

;/

NEXTE

»%

NEXTSTATR

ARBNXTE
o Vs
ADDRESS
COMPAR | SONS
CACHE
ACTEVITY

e s >
BUNPEND

NEXTETATL

ARBNXTC
e

ADDRESS
. COMPARTSONS

CACHE
ACTIVITY

CUNPEND

ARRIS883IPRI0001568

INET

INITSTAT

ARBNKT]

. ARBNXTE
ADDRESS
COMPAR I SONS

CACKE

PRITIAL

GENERATE
5TATUS

ACTIVITY

342

FIG 21

