A CATV-Based High-Speed Packet-Switching Network Design

! =

DOCKE

R

М

Δ

David Charles Feldmeier

April 1986

© Massachusetts Institute of Technology 1986

This research was supported in part by the Defense Advanced Research Projects Agency of the Department of Defense and monitored by the Office of Naval Research under contract number N00014-83-K-0125

> Massachusetts Institute of Technology Laboratory for Computer Science Cambridge, Massachusetts 02139

> > Petitioner ARRIS Group, Inc.'s

1

Find authenticated court documents without watermarks at docketalarm.com.

A CATV-Based High-Speed Packet-Switching Network Design

by David Charles Feldmeier

Submitted to the Department of Electrical Engineering and Computer Science on April 24, 1986 in partial fulfillment of the requirements for the Degree of Master of Science

Abstract

A high-speed packet-switching data network to the home can be built on an existing, unmodified, residential cable television (CATV) system. This thesis considers the theoretical and practical technical aspects of providing such a service and suggests a possible system design. All network data must pass through the CATV hub, so the network design is divided into three major parts: upstream transmission, downstream transmission, and access scheme.

Upstream transmission is difficult because of the high noise level on the upstream channel caused by ingress of shortwave signals and impulse noise. The noise level is increased by the CATV system topology that funnels all system noise to the headend. Several noisereduction techniques must be used simultaneously for robust upstream transmission. The downstream channel has low noise, but the data signal must be compatible with the CATV system, video signals and television receivers. Vestigial sideband data modulation is suggested for total system compatibility. Existing access schemes, such as those for local area networks and satellite networks, are unsuitable for a high-speed CATV-based network. Modified versions of two satellite access schemes are suggested as possible solutions. The best techniques for upstream transmission, downstream transmission and access scheme are combined into a single proposed system.

Key Words: cable television, metropolitan area networks, broadband networks, access control techniques

Thesis supervisor: Jerome H. Saltzer.

2

DOCKE

Acknowledgments

I would like to thank my thesis advisor *Jerry Saltzer* for proposing a CATV-based computer network as a research project and for his thoughts on various aspects of communication via residential CATV systems.

John Cafarella of Micrilor spent many hours with me, discussing aspects of modulation and error-correction coding for noisy channels, both of which are important for the design of the upstream transmission system. His help and expertise are greatly appreciated.

George Papadopoulos of the University of Patras, Greece, spent a few weeks considering possible access schemes for CATV networks. He and I had several meetings discussing the pros and cons of various access schemes.

Stanly Reible of Micrilor helped with measurement and interpretation of noise on some local CATV systems.

My special thanks to Patrick Mock, Katy Isaacs, and Corine Bickley for their helpful comments on my thesis.

i

DOCKE

Table of Contents

Chapter One: Introduction	9
1.1 Background	g
1.2 Goals	11
1.3 Communication Systems to the Home	13
1.4 Previous Work	15
Chapter Two: An Introduction to Cable Television	18
2.1 Community Antenna Television	18
2.2 Distribution Plant	19
2.3 Residential versus Institutional Cable	21
2.4 Constraints on Network Design	22
2.4.1 Central Clock	22
2.4.2 Economics	23
2.4.3 CATV Topology	24
2.4.4 Noise	24
2.5 Problem Division	26
2.6 Summary	26
Chapter Three: Upstream Data Transmission	28
3.1 Power Measurements on CATV Systems	28
3.2 Phase Distortion	29
3.2.1 The Cause of Phase Distortion	29
3.2.2 The Effects of Delay Distortion	30
3.2.3 Overcoming Delay Distortion	32
3.3 System Characteristics	32
3.3.1 CATV Topology	33
3.3.2 Digital Regenerators	33
3.4 Upstream Noise	33
3.4.1 White Noise	34
3.4.2 Narrow Band Noise	35
3.4.3 Impulse Noise	36
3.5 Effective Channel Utilization	37
3.5.1 Modulation Techniques	37
3.5.1.1 Noise and Signal Power Considerations	38
3.5.1.2 Delay and Interference Considerations	44
3.5.2 Selective Spectrum Utilization	44
3.5.3 Coding	46
3.6 System Noise Budget	48

1

DOCKET A L A R M

	3.7 Summary	51
		51
	Chapter Four: Downstream Data Transmission	52
	4.1 CATV System Considerations	52
	4.2 Frequency Shift Keying	53
	4.3 Vestigial Sideband Modulation	54
	4.3.1 Transmitter Baseband Processing	55
	4.3.1.1 Number of Signal Levels	55
	4.3.1.2 Low-pass Filtering	56
	4.3.2 Amplitude Modulation	57
	4.3.3 Transmitter Bandwidth Restriction Filter	57
	4.3.4 Vestigial Sideband Filtering	59
	4.3.5 Signal Detection	61
	4.3.5.1 Coherent Detection	62
	4.3.5.2 Envelope Detection	62
	4.4 A Sony VSB Data Transmission System	65
	4.4.1 Transmitter	65
	4.4.1.1 Nyquist Filtering	65
	4.4.1.2 Modulation	66
	4.4.1.3 Transmitter Bandpass Filter	66
	4.4.2 Receiver	67
	4.5 Channel Capacity	68
	4.6 Master Clock Reception	70
	4.7 Summary	72
1	Chapter Five: Network Access Schemes	73
	5.1 Introduction	73
	5.2 CATV Access Schemes Considerations	73
	5.2.1 Packet-Switching Broadcast Networks	73
	5.2.2 Preliminary Access Scheme Evaluation	74
	5.2.3 Monitoring of the Upstream Channel	75
	5.2.4 An Example CATV System	76
	5.2.5 Expected Traffic	77 77
	5.2.6 Traffic Modeling	78
	5.2.7 The Comparison Metric	79
	5.3 Deterministic Access Schemes	82
	5.3.1 Polling	≈ 2 82
	5.3.2 Token Passing	83
	5.3.3 Fixed Reservation	84
	5.4 Contention Access Schemes	88
	5.4.1 Aloha	88
	5.4.1.1 Collision Detection	89
	5.4.1.2 P-Persistent CSMA	91
	5.4.2 Contention Reservation	92
		04

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

