
REEBSHESTER O P E N

Eflma sYsTEMs

June 19-22, 1996

RYERSON POLYTECHNIC UNIVERSITY

Toronto, Ontario

Canada

Petitioner First Data - Exhibit 1010 - Page 1

Copyright 1997

by the Institute for Applied Forth Research, Inc.

Individual papers in this volume maybe

copyrighted by the author(s) or company

responsible for the work. The Institute
makes no claims for the correctness of the

material presented.

ISBN# 0-914593-16-1

A publication of

The Institute for Applied Forth Research, Inc.
70 Elmwood Avenue

Rochester, NY 1461 1

Published in the United States of America

Printed in the United States of America

Petitioner First Data - Exhibit 1010 - Page 2

TABLE OF CONTENTS

Starting Kiln 4 with Forth Inc’s EXPRESS

Open Systems - Theory and Reality

Using Forth as a Scripting Language

This Android Goes Forth Openly and Objectively

The GENETIX Software Genomes

The Europay Open Terminal Architecture: A Forth-based Token System

for Payment Terminals

Microconlroller Forth: A Windows-Based Development Environment

Microcontroller Forth: An Approach to Hardware Programming

The Evolution of Development Tools for the Forth Language

Booting Martian Software

Proposed ANS-Forth C—Interface Word Set

The Evolution of SENDIT into EPIC

Highlighting a Scheme for Threaded-Code Optimizing‘

A Concept for Medium Sized Relational Database Programming.

The Europay Open Terminal Architecture:A Forth-based Token System

for Payment Terminals

A Small 32-bit RISC Core

A System for Distributed Inferencing‘

Martian Memory Management

Standard Tools that are Standard Code themselves

Laws of Computing, Version 2.0

Traffic Controller and Zen of State Machines

The Sensor Driven Airbomer Replanner Simulation: Building The World
in a Box

I’ Abstracts only are included for these presentations.

Petitioner First Data - Exhibit 1010 - Page 3

Allen Anway

Steve Benson

Dr. Everett F. Caner Jr.

Paul Frenger M.D.

Bernard A. Hodson

Peter Johannes,
Elizabeth D. Rather and

Stephen Pele

Viacheslav Kirillin,

Andrey Kloubovitch and

Dmitri Preobrazhensky

Oleg Klemenziev and

Dmitri Preobrazhensky

Randy Leberknight

Benjamin Lee

Marty McGowan

Stephen Pele

Ewald Pfau

Ewald Pfau

E. D. Rather,
Peter Johannes and

Stephen Pele

John Rible

Bradford J. Rodriguez and
W F. S. Poehlman

Ray Sl-Laurent and

Benjamin Lee

J E Thomas

C. H. Ting

C. H. Ting

Richard C. Wagner

—Ima \OU»)\D'4.)

43

47

53

57

63

69

79

85

93

103

109

Petitioner First Data - Exhibit 1010 - Page 4Petitioner First Data - Exhibit 1010 - Page 4

Introduction

The 1996 Rochester Forth Confer-

ence on Open Systems was held at Ryer-

son Polytechnic University, in Toronto,

Ontario, in Canada June 19-22, 1996.

This was the first Rochester Conference

to be held outside the United States, and

was a great success. Attendees came

from Canada, the United States, Eng-

land, the Netherlands, Australia, Austria,

and Russia.

The Conference was hosted by the

Institute for Applied Forth Research,

Inc-, in cooperation with the Southern

Ontario chapter of the FORTH Interest

Group. The Conference was sponsored

by New Micros, Inc., with the continuing

support of Mr. Randy Dumse; ITV Cor-

poration, with the new support of Mr.

Joe Zott; Ross Technology, Inc. and the

support of Mr. Warren Bean and IWK

International Corporation, with the con-

tinuing support of Dr. Jay Khim. Addi-

tional support was provided by Xela As-

sociates, and Alexander Forsley, of An-

nandale, Virginia and Miller Microcom-

puter Systems, of Natick, MA.

During most Conferences the appar-

ent theme appears, in contrast to the ad-

vertised theme. This year was an excep-

tion. Several papers dealt with different

aspects of Open Systems. These include

an overall view of Open Systems by Dr.

Steve Benson, Forth as a scripting lan-

guage by Dr. Everett Carter; and GE-

NETIX by Bernard Hodson. An even

larger view of Open Systems was de-

scribed in a paper by Peter Johannes,

Elizabeth Rather and Stephen Pelc re-

garding Europay and a background paper

on the supporting software, EPIC, by

Stephen Pelc. These efforts are all the

more far reaching by supporting banking

institutions in a variety of countries on a

variety of hardware platforms. Finally,

two remarkable papers: John Rible pre-
sented a small 32-bit RISC Core and

Richard Wagner gave details of an air-
borne simulation.

The Conference Program Chair and

Proceedings Editor was Dr. Nicholas

Solnsteff and the Facility Chair was Dr.

Bradford Rodriguez. I was delighted to

have their strong support. In large

measure they organized and orchestrated

this Conference, resulting in a great suc-

cess! My thanks goes to both of them,

and I look forward .to working with them
on future Conferences.

No conference can be a success

without a large supporting cast. We had

very able assistance from: Elliott Chapin,

Kirby Dumse, Alexander Forsley, Brenda

Forsley, Beverly Galloway, Ken Kupisz,

Ken McCracken, Rob McDonald, Wendy

Rodriguez, Jon Verne and Robin Ziolk—

owski. I wish to complement and thank

the very helpful Ryerson University Staff,

most notably Patti Franklin, of the Inter-

national Living Center and Peter Young,
of the International Conference Center.

——Lawrence P. G. Forsley
Conference Chairman

Petitioner First Data - Exhibit 1010 - Page 5

Open Systems 73

The Europay Open Terminal Architecture

A Forth-based Token System for Payment Terminals

E. D. Rather, Peter Johannes, Stephen Pelc,

FORTH, Inc. Europay International MicroProcessor Engineering. Ltd.

111 N. Sepuiveda Blvd, Suite 300 Cltausée de Tervuren 198A 133 Hill Lane

Manhattan Beach, CA 90266 USA B4410 Waterloo, Belgium Southampton, England

Abstract

Europay, the major European credit card organization (Eurocard. MasterCard in Europe, and other

financial systems) is developing technology to support “smart" cards — Integrated Circuit Cards, or ICCs

— in the credit cards of the future. This will require new software in all credit card teruiinals (ranging

from 80Sl—based POS terminals to high-end ATMS). To facilitate this transition, they are designing a

token-based system conceptually similar to Open Firmware or Java based on Forth. Using the “Open

Terminal Architecture” (OTA) it will be possible for credit card issuers and acquirers to write application

programs that will be completely platform independent, and run on all OTA-compliant kernels.

This is the second of three papers on OTA; it will discuss the overall architecture of OTA.

System Components

The purpose of an OTA system is to provide software to run in terminals used in payment applications.

Conceptually, there are two hardware environments, and several classes of software. The hardware environments

include the development system, which is based on a simple PC. and a target which is some form of payment

terminal. The software includes development software, which runs on the PC; kernels, which include all platform-

specific software in a terminal and other mandatory standard functions; libraries, which provide general functions

to support terminal programs. and payment applications; applications, which are the functions specific to a

particular payment product. and terminal programs. which perform general non—payment terminal functions and

include high-level mecliartisms for selecting and executing transactions and associated applications.

Interactive development link

Targ et system

Figure 1

An OTA development environment for a terminal small program to support the terminal end of the

Interactive Development Link (IDL) protocol is usually placed in the telsmR@M.

Development Enviranment

An OTA development system is used to develop terminal software. either low-level kernel software or high-level

library or application software. Kernel development requires a target terminal to be connected, as the kernel is

cross-compiled on the PC host and downloaded to the terminal across the Interactive Development Link. OTA

libraries, terminal programs. and applications are also developed on a PC host. Because they are high-level code,

they may also be executed on the host for preliminary testing, using the host's version of the standard kernel, and

Petitioner First Data - Exhibit 1010 - Page 6

74 Proceedings of the 1996 Rochester Conference

thus a target is not needed. For final testing using the terminal‘s own kernel and I/O, these programs would be

tokenized (see discussion below) and downloaded to the target terminal.

As an example, a prototype development system consists of a PC running Windows 3.11, Windows-NT or

Windows 95 and an [DL to a target terminal (see Figure 1). Development software on the PC is based on ProForth

for Windows, a product of MicroProcessor Engineering Ltd.

Terminal Target Environments

The target system is any one of a large variety of payment terminals. Actual products range from small, hand-held

devices with simple 8-bit microprocessors such as the 8031l51 family to 32-bit computers running operating

systems such as Windows-NT or Unix. In order to simplify the production, certification and maintenance of

software on such a wide variety of targets, OTA terminal code is based on a single virtual machine which is

emulated on the actual devices. Prototype coding and testing has shown that this approach is feasible and provides

good run-time performance, even on an 8051 CPU.

Each target contains a kernel consisting of a standardized set of functions whose CPU-specific implementation is

optimized for that specific platform. This kernel suppons standard libraries and terminal programs and
applications which are written in high—level code for the virtual machine and will therefore run on any terminal
with a standard OTA kernel.

Virtual Machine

The software in every.0TA terminal is written in terms of a common virtual machine. This is a theoretical 32-bit

microprocessor with standard characteristics defming addressing modes, stack usage, register usage, address space,

etc. The kernel for each particular CPU type is written to make that processor emulate the virtual machine. The

virtual machine concept makes a high degree of standardization possible across widely varying CPU types, and

simplifies program portability. testing, and certification issues.

Virtual machine emulation may be accomplished by one of three methods: interpreting tokens representing VM

instructions (like Java), translating these tokens into a directly executable “threaded code” form (like Open

Firmware), or translating them into actual code for the target CPU. The latter two methods offer improved

performance at a modest cost in added target complexity. Present systems employ interpretation.

Kernel

A kernel contains all functions whose implementation depends upon a particular platform (CPU and OS). It

includes a selected subset of ANS Forth words, plus a number of specialized OTA functions such as terminal IIO

support token loader/interpreter support, and operations designed to support the particular needs of payment

programs. Since it cannot itself be tokenized and downloaded, but must be physically installed (e.g. in PROM), the

kentel is intended to be installed once, and not changed thereafter during the lifetime of the terminal. Therefore its

functions are carefully designed to be very general in nature and as complete as possible, in order to support a wide

range of present and future terminal programs and applications.

A kernel is normally provided by the manufacturer of the terminal in which it resides. It is developed and certified

according to the OTA Kernel Specification. Standard kernel functions not appropriate to a particular terminal type

(e.g., action of a non-existant device) may be coded for that terminal as null functions, so every kernel has an
identical set of functions and the testing and certification process is simplified.

Libraries

OTA Libraries contain higher-level functions that support common features of terminal programs, such as

language selection, and common features of applications, such as PIN verification. A terminal may contain several
libraries, some accessible to all applications. and some restricted to particular applications or payment systems.
Libraries are written and tokenized for the virtual machine, using functions provided in the kernel, and therefore

can be run on any terminal.

Petitioner First Data - Exhibit 1010 - Page 7

Open Systems

Terminal Program

A terminal program is part of the Terminal Resident Services and consists of the high-level “personality"

characteristic of this terminal type (POS, ATM, etc.). This includes the functions common to all transactions (e.g.,

card initialization and language selection) as well as the user interface required to select an application and process

a transaction. The temtinal program at the highest level is typically triggered by a card insertion. Like libraries. a

terminal program is written for the vinual machine, based on both kernel and library functions, and supplied in

token form. It can therefore be run on any terminal of the appropriate type (e.g., ATM), and is easily changed by

downloading over a network at any time.

Applications

A terminal transaction will select an application as part of its processing flow. Applications fall into three general

areas: cashless “purses” (Pay Before), debit cards (Pay Now) and credit cards (Pay Later); applications will

generally vary in their method of processing a given transaction. Versions of these applications may be provided

by different payment systems and furthercustomiaed by individual issuers or acquirers. Applications are supplied

in token form via the communications path, and (if security considerations permit) may be enhanced by token

programs on an ICC.

Taken compiler: and The Token Loader/Interpreter

Libraries, applications, and tenninal programs are written in high-level code for the virtual machine. The OTA

development system includes Forth and C compilers for this virtual machine, whose output consists of tokens.

Tokens may be thought of as machine language instructions for the virtual machine. Tokens are either one or two

bytes in length, and therefore represent the program in a form that is both CPU-independent and extremely

compact (far more so, for example, than compressed source text).

Each kernel contains a Token Loader/Interpreter (TLI), which processes a stream of tokens into an executable

form. Once the kernel is installed in a terminal, the libraries, applications, and terminal programs can be

downloaded into the terminal in a variety of ways (direct connection to an OTA development host. acquirer hard-

wired network, modem and dial-up telephone line, etc.). Program modifications and new applications are down-
loadable in the same manner whenever needed.

166 Functions

One function of lCCs is to improve transaction security by incorporating and managing encrypted data and

participating actively in the transaction validation process. It is conceptually possible to go beyond these functions

and provide for lCCs that also contain program code to enhance a terminaI's transaction processing, thereby

providing new opportunities for payment products and services. To facilitate this, “sockets” are provided. that can

be “plugged” by issuer-specific functions such as loyalty programs, which may be invoked at appropriate points in

the transaction processing. The OTA does not currently propose that lCCs contain entire applications, but only

plug behaviors that enhance existing terminal applications.

As far as security is concerned, the presumption is that if an ICC passes the decryption and data authentication

tests, whatever functions and plug behaviors are on the card have been certified and are syntactically valid. The

terminal decides to allow or disallow the card’s proposed actions only as controlled by the terminal access security
functions.

Open Terminal Architecture Features

The OTA token set provides program portability in systems with multiple CPU types by passing source code

programs of various types through an intermediate compiler whose output is a string of tokens. Target terminals

then process this code either by further compiling it to native code. translating it to a different form, or by

interpreting it directly. Figure 2 illustrates this process.

The OTA token set covers three main areas. The first is the instruction set of a theoretical processor (virtual

machine), and thus provides the instructions necessary for the efficient execution of programs. The second allows

what are normally called “operating system functions“ to be defined. In the embedded systems for which OTA is

targeted, system functions cover not only OTA functions such as communications, TLVs, and library functions, but

Petitioner First Data - Exhibit 1010 - Page 8

76 Proceedings of the 1996 Rochester Conference

also access between program modules and the associated access control mechanism. The third token group

includes tokens specific to OTA processing, including such functions as user message management, database

management and handling of TLVs (“Tag, Length, Value” data formats, specified by ISOIIEC 8825, and used for
communicating with the chip cards).

The OTA token set has been optimized for use on small terminals with ease of compilation. ease of interpretation,
and good code density.

 ;: ‘Sunrise CodeI .F-orlh ='§uurm I 5:;
(other languages)

rakera:appt'ieations“a.

Figure 2

Tokens in the Interpreter Conceptfhey may be generated from a variety of source code formats, down-
loaded to a terminal, and interpreted or executed.

Virtual Machine CPU Features

The OTA virtual machine is based on a two-stack architecture, as seen in Forth. This architecture has been further

modified for portability, code density, ease of compilation, and for use with other programming languages. For

example, it contains provisions for local variables and frame pointers used in C. Thus. OTA token compilers can

be written not only for Forth but also C and other languages. It is a byte-addressed, 32-bit machine, with 32-bit
registers and stack elements.

OTA defines a single address space for programs. This address space is accessible for data storage only. Programs

may not assume that executable code is in this address space. Depending on the actual CPU and kernel

implementation strategies the executable code may be in a different address space, or may be under the control of a

memory management unit. In any case, programs are not permitted to access their own program memory directly,

and any attempt to do so will be flagged during the program certification procedure.

“External memory” may be used to store databases and program modules; however this space is controlled entirely

by the kernel, and access to data therein is provided to client programs only indirectly. This memory may be in

mapped pages, flash ROM, disk, or simply more main memory — this is completely at the discretion of the kernel

implementor and is transparent to the programs.

Programs and Tokens

The instruction set of the virtual machine is coded as a byte stream of tokens. The most common functions,

including most Forth primitives, are expressed in one-byte or “pn'mary“ tokens. Some system functions and most

OTA-specific functions are two—byte or “secondary” tokens. Some tokens also have associated values, for such

things as literal values and branch offsets.

Petitioner First Data - Exhibit 1010 - Page 9

Open Systems 77

The token compiler compiles source code as a string of tokens which may be downloaded to the target terminal.

After downloading, the terminal uses a token loaderlinterpreter to execute the tokens.

Program and Library Management

The software on an OTA terminal is organized as a set of separate modules. A module is a collection of definitions

passed through the token compiler as a single unit. The main Terminal Program, each application, and each

library are examples of modules.

Modules need to communicate to perform overall terminal functions. A program module, for example a library,

contains a number of definitions. Some of these are used only internally, and others must be accessible externally.

Following all the definitions in a module there is a special section where definitions to be referred to externally are

“exported" or listed in a way that constucts a table of entry points published for access by higher-level modules.

Figure 3

Architecture Summary and Status

The basic architecture of OTA was successfully validated in the prototypes exhibited at the Europay Members‘

Meeting in Seville. Issues to be revisited include placement of certain functions in the kernel vs. external token

programs, minimum and maximum size requirements, and further definition of standard libraries and application

functions. In addition, intensive efforts will be directed in the next few months toward development of salable

software products, including development kits and validation suites for both kernels and token modules.

Petitioner First Data - Exhibit 1010 - Page 10

