
of messages, assembly and disassembly of messages is necessary. Further,

assembly or disassembly of messages would be performed in accordance with how

such messages are defined as noted in element [B].

Regarding a comparison being performed, EMV ’96 discloses that an error

can be detected during communication involving the system or the terminal, which

would require some form of comparison to a stored definition of how an acceptable

message should be formatted.

The First Data ‘879 Patent teaches the use of a distinct communication

software module, referred to as a “communication processor” [the claimed “virtual

message processor”] handling messaging functions with an “execution control

processor” software module [the claimed “virtual function processor”]. The First

Data ‘879 Patent explicitly teaches how distinct software modules can be used to

handle communication processing separately from other processing.

OMNI 300 discloses that a service call invoked by an application can initiate

a data transfer. Regarding a message comparison, OMNI 300 performs a check for

corrupt data received in messages by comparing a received cyclic redundancy

check (CRC) value with calculated CRC value to determine if a match is present.

Two bytes in the header ofmessages exchanged via a network are used for the

comparison of CRC values, as indicated in the first table of element [B].

Petitioner First Data - Exhibit 1009 - Page 26

[C] a virtual EMV ‘96

message processor, which “An authorisation message shall be used when

is arranged to be called by transactions are batch data captured. A financial

the function processor transaction message shall be used when online data

and which is arranged to capture is performed by the acquirer.” EMV ’96, at

carry out the message §2.l, p. III-6. “The terminal shall be able to support at

handling tasks of least one or more Issuer Scripts in each authorization

assembling the messages, or financial transaction response it receives” 1d,,

disassembling messages at §2.2.9, p. I-10. Further, “The terminal shall transmit

and comparing the the Issuer Script Results in the batch data capture

messages under the message” Id.

direction of the message

instruction means that is “ ‘OF’ - PROCESSING ERROR - Displayed to

arranged to provide the cardholder or attendant when the card is removed

directions for operation of before the processing of a transaction is complete or

the virtual message when the transaction is aborted because of a power

processor, failure, or the system or terminal has malfunctioned,

such as communication errors or time-outs.” Id., at pp.

III-3, III-4.

The First Data ‘879 Patent

FIG. 1

EXLCUIION CONIROL

First

Data, Fig. 1. “It

W should be
“ understood thatGRAPHICAL

USER LSER
INIERF.-\.CE the tCITl’l

_‘ mm, _ processor used
Rpm 1‘ herein refers to a

PROCESSOR fvERF|’<IJ§; ,
Phgggn software module

operating to

perform a

particular task orCOMMUNICATION HELP

PROCESSOR PROCESSOR gfO1lp Of tasks.

NETWORK A Single SuchCONNECTIONS

module may

actually be running on a variety of hardware

architectures which could include single or multiple

hardware processors.” First Data ‘879 Patent, at col.

2, 11. 58-63.

Petitioner First Data - Exhibit 1009 - Page 27

“The execution control processor 10 is also

coupled to a communications processor 20.” 1d,, at

col. 4, ll. 5, 6.

OMNI 300

An application causes communication to occur:

“Terminal applications may be programmed to

initiated ZONTALK 2000 downloads (full or partial)

by using the following service call: result —

SVC_ZONTALK(x) . . . OMNI 300, p. 2-4.

Messages are both assembled for transmission

and disassembled following being received:

Figure 10-1: '
NORM

Message

Protocol ‘E

1d,, at p. 10-8. Such messages are constructed

and deconstructed in accordance with “struct

packet_header” as detailed in element [B].

“Corrupt Data — If the destination terminal

receives a data packet whose CRC-16 entry does not

match the terrninal’s CRC calculation, it sends a NAK

to the sending terminal.” 1d,, at p. 10-10.

Element D. This element of the ‘945 Patent is directed to calling a message

processor to handle a message. Each of EMV ’96 and the First Data ‘879 patent

disclose a software module being called to handle a message. Further, OMNI 300

_ 10 _

Petitioner First Data - Exhibit 1009 - Page 28

specifies how an application can call on a communication software module to

handle a message exchange such that a download can occur. In OMNI 300, an

application (which could be executing as a first software module) can make a call

to start a download (which is handled by a separate software module).

[D] whereby when EMV ‘96

a message is required to “If the card indicates to process online, the

be handled by the terminal shall transmit an authorization or financial

communications device transaction request message, if capable.” EMV ’96, at

the message processor is §2.2.7, p. 1-10.

called to carry out the

message handling task, “The terminal shall be able to recognize the tag

for the Issuer Script transmitted in the response

message. If the tag is ‘7l’, the terminal shall process

the script before issuing the second GENERATE AC

command.” EMV ‘96, at §2.2.9, p. 1-1 1.

The First Data ‘879 Patent

“The Execution control processor 10 is also

coupled to a communications processor 20. The

communications processor 20 allows the integrated

system to communicate with other system through

network connections. According to one embodiment

of the present invention, the communications

processor 20 allows for communication with an

integrated communications platform system to allow

for session-based communications with a host

computer.” First Data, col. 4, ll. 5-8. “The

communications processor 20 acts as an interface

between the integrated systems and whatever

communication facilities are available via network

connections.” 1d,, at col. 4, 11. 32-35.

“The system of the present invention then uses

this serial number to access the data files of the host

computer through the communications processor 20

_ 11 _

Petitioner First Data - Exhibit 1009 - Page 29

and network connections as described in step 116.”

Id., at col. 14, ll. 4-7.

OMNI 300

The application may initiate a LAN download:

“OMNI 300 Series LAN terminals support application

download Via the LAN port. Prior to beginning the

download, each terminal must have a particular set of

parameters present in its CONFIG.SYS file.” OMNI

300, p. 2-4. “Terminal applications may be

programmed to initiate ZONTALK 200 downloads

(full or partial) by using the following service call:

result=SVC_ZONTALK(x); . . .” Id.

The exchange initiated by such a request may be

represented as:

Tbtmlrul

Download Rnquest Paduat (ssq no. 0)

<:ENO>(saqno.0)
<——T-—-2

Sign-onPad:nt(saqnot0):.

Element E. This element of the ‘945 Patent requires that the implemented

Virtual machine be emulatable on different computers (e.g., different POS devices)

_ 12 _

Petitioner First Data - Exhibit 1009 - Page 30

having different, incompatible hardware platforms or different, incompatible

operating systems. EMV ’96 and the First Data ‘879 Patent disclose such an

ability to be emulatable on different hardware platforms and/or different operating

systems. Further, OMNI 300 indicates how different dialects of the C

programming language can be used to allow for compatibility across varying

systems. OTA indicates how application programs for OTA terminals can be

“completely platform independent.”

[E] wherein the

virtual machine means is

emulatable in different

computers having

incompatible hardwares

or operating systems.

EMV ‘96

“The kernel for each particular CPU type is

written to make that processor emulate the virtual

machine. The virtual machine concept makes a high

degree of standardisation possible across widely

varying CPU types and simplifies program portability,

testing, and certification issues.” EMV ‘96, at 111.44,

p. II-5.

Also, see element [A] re: EMV ’96, §l.4.l, pp.
II-3-H-4.

The First Data ‘879 Patent

“The financial instrument processing system of

the present invention comprises an object-oriented

software system that is highly portable between

various hardware platforms. The architecture of the

integrated software system is constructed such that the

system can be easily and conveniently ported to a

variety of operating system such as MS DOS,

Windows, OS2, or UNIX.” First Data ‘879 Patent,

col. 2, 11. 43-49.

OMNI 300

“VeriFone supports the Standard ANSI C and a

_ 13 _

Petitioner First Data - Exhibit 1009 - Page 31

UNIX-V7 compatible dialect of the C language (non-

ANSI) for TXO application development.” OMNI

300, p. 3-1.

“VeriFone has maintained programming

compatibility to enable you to port application source

code from one terminal platform to another.” p. F-1,

Table F-1, p. F-2 and p. F-7

OTA

“Using the ‘Open Terminal Architecture’ (OTA)

it will be possible for credit card issuers and acquirers

to write application programs that will be completely

platform independent, and run on all OTA-compliant

kernels.” OTA, p. 73, 1.

Claim 2. Claim 2 of the ‘945 Patent discloses that a virtual protocol

processor is used to organize communications. The protocol processor has

instructions which direct the operation of the protocol processor. The ‘945 Patent

describes the “protocol processor” as follows: “The protocol processor means is

preferably a program module the specific function of which is to control and select

the sequence of message processor operations in relation to messages received and

transmitted.” Col. 4, 11. 27-30. “The protocol instructions are divided into

‘sections’ 130, ‘lines’ 131 and ‘protocol commands’ 132, as illustrated in FIG.

12A. FIG. 12B illustrates how an instruction is displayed on a development tool

for protocol instructions. Protocol instructions describe message flow both from

_ 14 _

Petitioner First Data - Exhibit 1009 - Page 32

and to the device. The top line specifies outgoing messages and the other lines

display possible incoming results.” Col. 15, l 63 — Col. 16, l. 2.

The control and sequencing of messages is shown in Omni 300, such as the

example chart in Claim 1, element [D] above. OMNI 300’s exchange of messages

in claim 1 element [D] indicates how the terminal responds to a sequence of

messages, the messages and acknowledgments having distinct sequence numbers.

As detailed below, control is exercised over packets by OMNI 300 indicating that

transmitted messages are sequenced and the sequencing of received packets is

monitored to ensure that packets are not processed if an invalid sequence number is

identified. Whether the instructions for controlling and sequencing messages

(“protocol processor”) and the instructions for assembling and disassembling

messages (“message processor”) are in the same module (virtual processor) or not

is a simple matter of design choice. The ‘945 Patent describes the advantage of

being in native code, and that is shown in the claim 1 chart above.

EMV ’96 involves a terminal communicating via a network, thereby

necessarily requiring the network’s protocol (sequence of messages) to be handled

by the connected terminal. It is inherent that protocol handling by the terminal rely

on some form of instructions in order for communications to be organized in

accordance with the protocol. OMNI 300 clarifies that sequencing and control of

messages (e.g., ignoring messages based on a sequence number) is handled by the

_ 15 _

Petitioner First Data - Exhibit 1009 - Page 33

terminal. Each message is assigned a sequence number, which identifies the

proper order of data packets. Such ordering constitutes organization of

communications.

Further, the First Data ‘879 Patent discloses that the communication

processor, which is a software module, communicates with other systems via a

network connection. Such network-based communication requires that the

appropriate network protocols be enforced by the device. Also, OTA indicates that

the handling of a protocol occurs at the target system (the POS device). This

handling of the protocol is performed by instructions stored in a ROM of the

terminal. The loading of code into the te1minal’s ROM allows for a protocol of the

interactive development link to be handled.

Patent

2. A device in

accordance with

claim 1, further

comprising a virtual

protocol processor

arranged to organize

communications to

and from the device,

and protocol

processor instruction

means arranged to

provide directions

for operation of the

protocol processor

EMV ’96

Acquirer Host

EMV ’96, p. 1-5.

The First Data ‘879 atent

“The communications processor 20 allows the

integrated system to communicate with other systems

through network connections. According to one

-16-

Petitioner First Data - Exhibit 1009 - Page 34

embodiment of the present invention, the communications

processor 20 allows for communication with an integrated

communications platform system to allow for session-based

communications with a host computer.” The First Data

‘879patent, p. 4, ll. 6-8.

OMNI 300

Sequence Number—Bytes #9—12

Identifies order of data packets from sending terminal.
Defined as unsigned long tx_seq:

Range of values: 0 - OXFFFFFFFF
See Sequence Numbers later in this section.

The application may write to the tx_seq fietd it the t ype held
is DOWNLOAD or d s t_a dd r is BROADCAST Othenvise. the
operating system controls the sequence field and overwntes
any value set by the application. If an application-generated
BROADCAST message is the first message after LAN
rnitiatization. the application must manuatty set the sequence

”””"”°"° " OMNI 300, p.

10-5 , 1 0-6.

“Generally, if a terminal receives more than one

packet with the same sequence number, the second packet

and all subsequent packets with the same sequence number

are ACKed but are thrown away.” Id., at p. 10-11.

“The firmware checks sequence numbers of all

packets in the download protocol. Any packet with an

invalid sequence number is ignored by the firmware, and is

not passed up to the application. In all protocols, the

sequence numbers ofpackets prior to and including the

ENQ packet is zero. After the ENQ packet, the sequence

numbers are incremented after every ACK is sent or

received. The sequence numbers of all ACKs must match

the sequence numbers of the packets they are ACKing.”

1d,, at p. 10-48.

OTA

“An OTA development environment for a terminal

small program to support the terminal end of the Interactive

Development Link (IDL) protocol is usually placed in the

terrninal’s ROM ”. OTA, . ' . 1.

_ 17 _

Petitioner First Data - Exhibit 1009 - Page 35

Claim 3. Claim 3 of the Ogilvy ‘945 patent requires that the protocol

processor run in the microprocessor’s native code. EMV ’96 indicates that virtual

processor instructions can be implemented as the actual code for the target CPU.

Such recitations would be obvious to combine with OMNI 300, which discloses

sequencing and control of messages (e.g., ignoring messages based on a sequence

number) is handled by the terminal. Therefore, handling ofprotocols could be

performed in the native code of the processor on which the “protocol processor” is

implemented. OTA discloses that instructions to handle a protocol may be loaded

to the terminal’s ROM and OTA further indicates that a virtual machine may be

implemented as native code.

The ‘945 Patent —
3. A device in accordance with EMV ’96

claim 2, wherein the device includes a “Virtual machine emulation may

microprocessor which runs in be accomplished by one of three

accordance with native software code methods: interpreting virtual machine

and the protocol processor is instructions, translating the virtual

implemented as a native software code machine language into a directly

of the microprocessor. executable ‘threaded code’ form, or

translating it into actual code for the

target CPU.” EMV ’96, at §l.4.4, p. 11-
5.

Omni 300

See claim 2, re: OMNI 300.

OTA

See claim 1, element [A] and

claim 2, re: OTA

_ 18 _

Petitioner First Data - Exhibit 1009 - Page 36

Claim 4. This claim of the ‘945 Patent requires that the protocol instruction

means does not require translation to the native code of the microprocessor. EMV

’96 discloses several options for implementation of a virtual machine, including

implementing as the actual code discussed with respect to claim 3, and that virtual

machine emulation may involve interpreting virtual machine instructions. Such

recitations would be obvious to combine with OMNI 300, which discloses control

and sequencing of messages being managed by the terminal. Implementing the

protocol processing of OMNI 300 using a virtual machine implementation of EMV

’96 that does not require translation would have been obvious. Further, OTA

discloses that instructions to handle a protocol may be loaded to the terrninal’s

ROM and OTA further indicates that implementation of a virtual machine may not

require translation in a processor’s native code.

The ‘945 Patent —
4. A device in accordance with EMV ‘96

claim 2, wherein the device includes a “Virtual machine emulation may

microprocessor which runs in be accomplished by one of three

accordance with native software code methods: interpreting virtual machine

and wherein the protocol instruction instructions, translating the virtual

means are implemented in software machine language into a directly

defined by the protocol processor executable ‘threaded code’ form, or

means, and do not require translation to translating it into actual code for the

the native code of the microprocessor. target CPU.” EMV ‘96, at §l.4.4, p. 11-
5.

Omni 300

See claim 2, re: OMNI 300.

_ 19 _

Petitioner First Data - Exhibit 1009 - Page 37

OTA

See claim 1, element [A] and

claim 2, re: OTA
Claim 5. This claim of the ‘945 Patent requires that the message processor

be implemented in the native code of the microprocessor. EMV ’96 and OTA

disclose that virtual machine emulation may be based on implementation in the

actual code for CPU. Further, the communication processor of the First Data ‘879

Patent, is implemented as a software module that is executed by an underlying

hardware processor, and therefore is in the native code of the microprocessor.

The ‘945 Patent —
5. A device in accordance with claim 1, EMV ‘96

wherein the device includes a microprocessor See claim 3 re: EMV ‘96, at

which runs in accordance with native software §l.4.4, p. II-5.

code, and the message processor is

implemented as the native software code of the See claim 1, element [C].

microprocessor.

OTA

See claim 1, element [A].

Claim 6. Claim 6 of the ‘945 Patent requires that the software functioning as

the function processor be in the native code of the microprocessor. EMV ’96 and

OTA disclose that a kernel that allows for the virtual machine function on various

CPU types be written for the type of CPU on which it will be implemented.

_ 20 _

Petitioner First Data - Exhibit 1009 - Page 38

Further, EMV ’96 and OTA explicitly state that the virtual machine instructions

can be translated into instructions for the processor’s native code.

The ‘945 Patent
6. A device in EMV ‘96

accordance with claim 5, “Virtual machine emulation may be

wherein the function accomplished by one of three methods: interpreting

processor is implemented virtual machine instructions, translating the virtual

as native code of the machine language into a directly executable ‘threaded

microprocessor. code’ form, or translating it into actual code for the

target CPU.” EMV ‘96, at §l.4.4, p. II-5.

See claim 1, element [E], EMV ’96.

OTA

“A kernel contains all functions whose

implementation depends upon a particular platform

(CPU and OS).” OTA, p. 74.

See claim 1, element [A] re: OTA.

Claim 7. Claim 7 of the ‘945 Patent requires that the message processor

need not be translated into the native software code of the microprocessor. EMV

’96 explicitly states that the virtual machine instructions do not need to be

translated into native instructions for the microprocessor. When combined with

the First Data ‘879 Patent, which discloses a separate communication processor

module being used, it is obvious that a message processor could be implemented in

the native software code of a microprocessor.

The ‘945 Patent —

_ 21 _

Petitioner First Data - Exhibit 1009 - Page 39

7. A device in accordance with EMV ‘96

claim 1, wherein the message processor “Virtual machine emulation may

instruction means is implemented in be accomplished by one of three

software defined by the message methods: interpreting virtual machine

processor, wherein the device includes a instructions, translating the virtual

microprocessor, and wherein the machine language into a directly

message instruction means do not executable ‘threaded code’ form, or

require translation to the native software translating it into actual code for the

code of the microprocessor. target CPU.” EMV ‘96, at §l.4.4, p. 11-
5.

First Data ‘879 Patent

See claim 1, element [C], re: the
First Data ‘879 Patent.

Claim 8. Claim 8 of the ‘945 Patent requires that the function processor

need not be translated into the native software code of the microprocessor. EMV

’96 explicitly states that the virtual machine instructions does not need to be

translated into native instructions for the microprocessor. The virtual machines of

EMV ’96 and OTA allow for code that is interpreted by a virtual machine (i.e.,

written in code for the virtual machine rather than the processor itself). The virtual

machine, which executes on the CPU, performs the instructions.

The ‘945 Patent —
8. A device in accordance with EMV ‘96

claim 1, wherein the device includes a “Virtual machine emulation may

microprocessor which runs in be accomplished by one of three

accordance with native software code, methods: interpreting virtual machine

and wherein the function processor instructions, translating the virtual

instruction means are implemented in machine language into a directly

software defined by the function executable ‘threaded code’ form, or

_ 22 _

Petitioner First Data - Exhibit 1009 - Page 40

processor means and do not require translating it into actual code for the

translation to the native code of the target CPU.” EMV ’96, at §1.4.4, p. 11-

microprocessor. 5.

See claim 1, element [A], EMV
’96.

OTA

See claim 1, element [A] re:
OTA.

Claim 9. Claim 9 of the ‘945 Patent requires that a hardware abstraction

layer be present that includes a series of routines which provide an API to exercise

an operating system, BIOS, or hardware drivers of the device. EMV ’96 specifies

that device drivers are included as part of the kernel to allow a virtual machine to

be implemented on a specific real machine. EMV ’96 also discloses that an

operating system that interacts with a variety of routines that can be called by

applications. OMNI 300, such as in relation to claim 2, discloses the use of

various abstraction layers in relation to hardware as part of the OSI model. Also,

OTA discloses the concept of a kernel which serves as the interface between the

virtual machine and the specific operating system and hardware of the terminal.

The ‘945 Patent

_ 23 _

Petitioner First Data - Exhibit 1009 - Page 41

9. A device in EMV ‘96

accordance with claim 1,

including a hardware “The kernel contains

abstraction layer comprising device drivers, interface

a series of routines which routines, security and control

provide an application . .1 functions, and the software for

program interface to exercise , translating from the virtual

an operating system, BIOS - machine language to the

or hardware drivers of the language used by the real

device. c... ' machine. In other words, the

kernel is the implementation of

Operating the virtual machine on a specific

Systeln real machine.” Id., at §3, p. X.

Figure ll-1 - Terminal
Software

EMV ’96, §l.2, p. II-2.

OMNI 300

See claim 1, element [D] and claim 2.

E
“A kernel contains all functions whose

implementation depends upon a particular platform

(CPU and OS). It includes a selected subset of

ANS Forth words, plus a number of specialized

OTA functions such as terminal I/O support, token

loader/interpreter support, and operations designed

to support the particular needs ofpayment

programs.” OTA, p. 74, 117.

Claims 10 and 11. Claims 10 and 11 of Ogilvy focus on the type of device

claimed. Claim 10 focuses on a device that is a network access device and claim

11 focuses on a remote payment terminal. A point of service device, as presented

_ 24 _

Petitioner First Data - Exhibit 1009 - Page 42

in relation EMV ’96, is a network access device that communicates with a host to

provide financial services, such as purchase transactions. In addition, both OMNI

300 and The First Data ‘879 Patent disclose network access devices and, more

specifically, remote payment terminals that communicate with a host system. OTA

discloses the use of credit card terminals, which require communication via a

network with a host system in order to perform credit card transactions, such as

8051-based POS terminals.

The ‘945 Patent —
10. A device in accordance with EMV ‘96

claim 1, wherein the device is a See claim 1, Preamble, EMV ’96.

specialized network access device

arranged for communication over a OMNI 300

network. “The OMNITM 300 Series is a

family of dial-type and LAN-type

transaction automation systems

These terminals are ideal for a multitude

of applications, including: Point of

Sale/Service (POS). OMNI 300, p. 1-1.

First Data ‘879 Patent

“According to another

embodiment of the present invention, a

communications processor is included

and is operable to communicate with the

data base processing system to provide

information stored in the data base

processing system to other systems such

as host accounting systems.” First Data

‘879 Patent, col. 1, l. 66 — col. 2, l. 4.

OTA

“The purpose of an OTA system

_ 25 _

Petitioner First Data - Exhibit 1009 - Page 43

is to provide software to run in terminals

used in payment applications.” OTA, p.

73, 1B. “This will require new software

in all credit card terminals (ranging from

8051-based POS terminals to high-end

11. A device in accordance with See claim 10.

claim 10, the device being a remote

payment terminal and the messages

being messages relating to remote

a ment transactions.

Claim 12. Independent claim 12 of Ogilvy is a method claim that is

substantially similar to claim 1 in scope.

The ‘945 Patent —
12. A method ofprogramming a See claim 1, Preamble.

device for processing communications,

comprising the steps of

loading a processing means of the See claim 1, element [A].

device with a virtual machine which

includes a virtual function processor and

function processor instructions for

controlling operation of the device,

and a virtual message processor See claim 1, elements [B] and

which is arranged to be called by the [C].

functions processor and which is

arranged to carry out the task of

assembling, disassembling and

comparing messages, under the

direction of the message instruction

means that is arranged to provide

directions for operation of the virtual

rocessor,

whereby when a message is See claim 1, element [D].

required to be handled by the

-26-

Petitioner First Data - Exhibit 1009 - Page 44

communications device the message

processor is called to carry out the

message handling task,

wherein the virtual machine See claim 1, element [E].

means is emulatable in different

computers having incompatible

hardwares or o eratin; s stems.

Claim 13. This claim of the ‘945 Patent requires that processor of claim 12

be loaded with a virtual protocol processor to handle organization of

communications to and from the device, with protocol processor instructions

controlling the protocol processor. Both EMV ’96 and OMNI 300 discloses that

software can be loaded to their respective devices. Further, by definition, software

that is implemented by a processor must at some point be loaded onto the

processor; otherwise the processor would have no way of having the software

available. Moreover, OTA discloses that programs (instructions) can be

downloaded to a terminal.

The ‘945 Patent —
13. A method in accordance with EMV ‘96

claim 12, comprising the further step of “A means of software upgrade

loading the processor means of the shall be supported wherever this is not

device with a virtual protocol processor in conflict with national legal

arranged to organize communications to restrictions. The software upgrade may

and from the device, and protocol be facilitated from a remote site over a

processor instructions arranged to network or locally.” EMV ’96, p. II-7.

provide directions for operation of the

protocol processor. “A means for updating data

elements secific to a ment s stem

_ 27 _

Petitioner First Data - Exhibit 1009 - Page 45

applications shall be supported wherever

this is not in conflict with national legal

restrictions. Data update may be

facilitated from a remote site over a

network or locally.” 1d,, at p. 11-11.

OMNI 300

“OMNI 300 Series firmware

support several methods of downloading

application, data and configuration files

to the terminal.” OMNI 300, p. 2-3.

See claim 1, element [D],and

claim 2 re: OMNI 300.

OTA

“For final testing using the

terminal’s own kernel and I/O, these

programs would be tokenized . . . and

downloaded to the target terminal.”

OTA, .74 1.

Claim 14. Independent claim 14 is substantially similar to claim 1 in scope.

While claim 1 is directed to a device, the instructions of EMV ’96, The First Data

‘879 Patent, and OMNI 300 are implemented as software, thus a computer memory

is used to store such instructions for execution as indicated in claim 14.

The ‘945 Patent —
14. A computer memory storing See claim 1, element [A].

instructions for controlling a computing

device to implement a virtual machine
means

which includes a virtual function See claim 1, element [A].

processor and function processor

-23-

Petitioner First Data - Exhibit 1009 - Page 46

instructions for controlling operation of

the device,

and a virtual message processor See claim 1, elements [B] and

which is arranged to be called by the [C].

function processor and which is

arranged to carry out the task of

assembling, disassembling and

comparing messages, under the

direction of the message instruction

means that is arranged to provide

directions for operation of the virtual

rocessor,

whereby when a message is See claim 1, element [D].

required to be handled by the

communications device the message

processor is called to carry out the

message handling task,

wherein the virtual machine See claim 1, element [E].

means is emulatable in different

computers having incompatible

hardwares or o eratin; s stems.

Claim 15. Claim 15 of the ‘945 Patent is substantially similar to recitations

previously discussed in relation to claim 1, element [B].

15. A computer readable memory See claim 1, element [B].

in accordance with claim 14, further

storing instructions for implementing

message processor instruction means

arranged to provide directions for

operation of the message processor.

_ 29 _

Petitioner First Data - Exhibit 1009 - Page 47

Claims 16 and 17. Claim 16 and 17 of the ‘945 Patent are directed to

implementation of a virtual protocol processor. Similar to as detailed in relation to

claim 2, OMNI 300 discloses that the control and sequencing of messages is shown

in Omni 300, such as the example chart in Claim 1, element [D]. Whether the

instructions for controlling and sequencing messages (“protocol processor”) and

the instructions for assembling and disassembling messages (“message processor”)

are in the same module (virtual processor) or not is a simple matter of design

choice. The example in claim 1 element [D] indicates how the terminal responds

to a sequence of messages, the messages and acknowledgments having distinct

sequence numbers. Further, control is exercised over packets by OMNI 300

indicating that transmitted messages are sequenced and the sequencing of received

packets is monitored to ensure that packets are not processed if an invalid sequence

number is identified.

The ‘945 Patent —
16. A computer readable memory See claim 2.

in accordance with claim 14, further

storing instructions for implementing a

virtual protocol processor arranged to

organize communications to and from

the computing device.

17. A computer readable memory See claim 16.

in accordance with claim 16, further

storing instructions for implementing

protocol processor instructions arranged

to provide directions for operation of the

protocol processor means.

_ 30 _

Petitioner First Data - Exhibit 1009 - Page 48

66242276V.1

_ 31 _

Petitioner First Data - Exhibit 1009 - Page 49

