
1 MICROSOFT 1001

USOO7418504B2

(12) United States Patent (10) Patent No.: US 7,418,504 B2
Larson et al. (45) Date of Patent: Aug. 26, 2008

(54) AGILE NETWORK PROTOCOL FOR SECURE (58) Field of Classification Search 709/226,
COMMUNICATIONS USING SECURE
DOMAIN NAMES

(75) Inventors: Victor Larson, Fairfax, VA (US);
Robert Dunham Short, III, Leesburg,
VA (US); Edmund Colby Munger,
Crownsville, MD (US); Michael
Williamson, South Riding, VA (US)

(73) Assignee: VirnetX, Inc., Scotts Valley, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 646 days.

(21) Appl.No.: 10/714,849

(22) Filed: Nov. 18, 2003

(65) Prior Publication Data

US 2004/0098485 A1 May 20, 2004

Related US. Application Data

(63) Continuation of application No. 09/558,210, filed on
Apr. 26, 2000, now abandoned, which is a continua—
tion-in-part of application No. 09/504,783, filed on
Feb. 15, 2000, now Pat. No. 6,502,135, which is a

continuation-in-part of application No. 09/429,643,
filed on Oct. 29, 1999, now Pat. No. 7,010,604.

(60) Provisional application No. 60/137,704, filed on Jun.
7, 1999, provisional application No. 60/106,261, filed
on Oct. 30, 1998.

(51) Int. Cl.
G06F 15/1 73 (2006.01)

(52) US. Cl. .. 709/226

ORIGINATTNG
TERMINAL

fl

 IP PACKET

IP ROUTER
fl

709/221; 713/201
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,933,846 A 6/1990 Humphrey et al.
4,988,990 A 1/1991 Warrior
5,164,988 A 11/1992 Matyas et 31.
5,276,735 A 1/1994 Boebert et 31.
5,311,593 A 5/1994 Carmi

(Continued)

FOREIGN PATENT DOCUMENTS

DE 199 24 575 12/1999

(Continued)

OTHER PUBLICATIONS

Laurie Wells (Lancasterbibelmail MSN Com); “Subject: Security
Icon” Usenet Newsgroup, Oct. 19, 1998, XP002200606.

(Continued)

Primary ExamineriKrisna Lim
(74) Attorney, Agent, or FirmiMcDermott Will & Emery,
LLP

(57) ABSTRACT

A secure domain name service for a computer network is
disclosed that includes a portal connected to a computer net-
work, such as the Internet, and a domain name database
connected to the computer network through the portal. The
portal authenticates a query for a secure computer network
address, and the domain name database stores secure com-
puter network addresses for the computer network. Each
secure computer network address is based on a non-standard
top-level domain name, such as .scom, .sorg, .snet, .snet,
.sedu, .smil and .sint.

60 Claims, 40 Drawing Sheets

1F ROUTER

1P ROUTER

IP ROUTER

IP ROUTER

1P ROUTER |p ROUTER _

_2_9_ 25
w ROUTER

”lacuna A
g

IP ROUTER
fl

48 ENCRYFTION KEY

IP ROUTER
26

DESTINATION
TERMINAL

m

MICROSOFT 1001

2

US 7,418,504 B2
Page 2

5,329,521
5,341,426
5,367,643
5,559,883
5,561,669
5,588,060
5,625,626
5,654,695
5,682,480
5,689,566
5,740,375
5,774,660
5,787,172
5,790,548
5,796,942
5,805,801
5,842,040
5,845,091
5,867,650
5,870,610
5,878,231
5,892,903
5,898,830
5,905,859
5,918,019
5,996,016
6,006,259
6,006,272
6,016,318
6,016,512
6,041,342
6,052,788
6,055,574
6,061,736
6,079,020
6,092,200
6,101,182
6,119,171
6,119,234
6,147,976
6,157,957
6,158,011
6,168,409
6,175,867
6,178,409
6,178,505
6,179,102
6,222,842
6,226,751
6,233,618
6,243,360
6,243,749
6,243,754
6,256,671
6,263,445
6,286,047
6,301,223
6,308,274
6,311,207
6,324,161
6,330,562
6,332,158
6,353,614
6,425,003
6,430,155
6,430,610
6,487,598
6,502,135
6,505,232
6,510,154
6,549,516

US. PATENT DOCUMENTS

>>
7/1994
8/1994

11/1994
9/1996

10/1996
12/1996
4/1997
8/1997

10/1997
11/1997
4/1998
6/1998
7/1998
8/1998
8/1998
9/1998

11/1998
12/1998
2/1999
2/1999
3/1999
4/1999
4/1999
5/1999
6/1999

11/1999
12/1999
12/1999

1/2000
1/2000
3/2000
4/2000
4/2000
5/2000
6/2000
7/2000
8/2000
9/2000
9/2000

11/2000
12/2000
12/2000

1/2001
1/2001
1/2001
1/2001
1/2001
4/2001
5/2001
5/2001
6/2001
6/2001
6/2001
7/2001
7/2001
9/2001

10/2001
10/2001
10/2001
11/2001
12/2001
12/2001
3/2002
7/2002
8/2002
8/2002

11/2002
12/2002

1/2003
1/2003
4/2003

Walsh ct al.

Barney et a1.
Chang et a1.
Williams

Lenney et al.
Aziz
Umekita
Olnowich et a1.

Nakagawa
Nguyen
Dunne et a1.
Brendel et al.
Arnold
Sistanizadeh et a1.
Esbensen

Holloway et a1.
Hughes et a1.
Dunne et a1.
Osterman

Beyda et a1.
Baehr et a1.
Klaus

Wesinger, Jr. et a1.
Holloway et a1.
Valencia
Thalheimer et a1.
Adelman et a1.
Aravamudan et a1.
Tomoike
Huitema

Yamaguchi
Wesinger, Jr. et a1.
Smorodinsky et a1.
Rochberger et a1.
Liu

Muniyappa et a1.
Sistanizadeh et a1.
Alkhatib
Aziz et a1.
Shand et a1.
Berthaud
Chen et a1.
Fare

Taghadoss
Weber et a1.
Schneider et a1.
Weber et a1.

Sasyan et a1.
Arrow et a1.
Shannon
Basilico
Sitaraman et a1.
Guerin et a1.
Strentzsch et a1.
Blumenau
Ramanathan et a1.
Hrastar et al.
Swift

Mighdoll et a1.
Kirch
Boden et a1.

Risley et a1.
Borella et al.

Herzog et al.
Davie et a1.
Carter
Valencia

Munger et al.
Mighdoll et a1.
Mayes et a1.
Albert et a1.

6,557,037 B1 4/2003)rovino 709/227
6,571,296 B1 5/2003)illon
6,571,338 B1 5/2003 Shaio et al.
6,581,166 B1 6/2003 Iirst et a1.
6,606,708 B1 8/2003)evine et a1.
6,618,761 B2 9/2003 VIunger et a1.
6,671,702 B2 12/2003 {ruglikov et a1.
6,687,551 B2 2/2004 Steindl
6,714,970 B1 3/2004 :iveash et a1.
6,717,949 B1 4/2004 Soden et a1.
6,751,738 B2 6/2004 Wesinger, Jr. et a1.
6,760,766 B1 7/2004 Sahlqvist
6,826,616 B2 11/2004 sarson et a1.
6,839,759 B2 1/2005 sarson et a1.
7,010,604 B1 3/2006 VIunger et a1.
7,133,930 B2 11/2006 VIunger et a1.
7,188,180 B2 3/2007 sarson et a1.
7,197,563 B2 3/2007 Sheymov et a1.

2002/0004898 A1 1/2002)roge
2003/0196122 A1 10/2003 Wesinger, Jr. et a1.
2005/0055306 A1 3/2005 VIiller et a1.

2006/0059337 A1 3/2006)olyhonen et a1.

FOREIGN PATEI\T DOCUMENTS

DE 199 24 575 A1 12/1999
EP 0 814 589 12/1997
EP 0 814 589 A 12/1997
EP 0 838 930 4/1998
EP 0 838 930 A 4/1998
EP 0 838 930 A2 4/1998
EP 836306 A1 4/1998
EP 0 858189 8/1998
GB 2317 792 4/1998
GB 2317792 A 4/1998
GB 2 334181 A 8/1999
WO 9827783 A 6/1998
W0 WO 98/27783 6/1998
W0 W0 98 55930 12/1998
W0 W0 98 59470 12/1998
W0 W0 99 38081 7/1999
W0 W0 99 48303 9/1999
W0 WO 00/17775 3/2000
W0 WO 00/70458 11/2000
W0 W0 01 50688 7/2001

OTHER PUBLICATIONS

Davila J et a1, “Implementatin of Virtual Private Networks at the
Transport Layer”, Information Security, Second International Work-
shop, ISW’99. Proceedings (Lecture Springer-Verlag Berlin, Ger-
many, [Online] 1999, pp. 85-102, XP002399276, ISBN 3-540-
66695 -B, retrieved from the Internet: URL: http://wwwspringerlink.
com/content/4uac0tb0heccma89/fulltext.pdf>(Abstract).
Donald E. Eastlake, III, “Domain Name System Security Exten-
sions”, Internet Draft, Apr. 1998.
P. Srisuresh, et a1., “DNS Extensions to Network Address Transla-
tors”, Internet Draft, Jul. 1998.
DB. Chapman, et a1., “Building Internet Firewalls, chapters 8 and 10
(parts)”, pp. 278-296 and pp. 351-375.
Search Report (dated Jun. 18, 2002), International Application No.
PCT/USOl/13260.

Search Report (dated Jun. 28, 2002), International Application No.
PCT/USOl/13261.

Donald E. Eastlake, “Domain Name System Security Extensions”,
DNS Security Working Group. Apr. 1998, 51 pages.
D. B. Chapman et a1., “Building Internet Firewalls”, Nov. 1995, pp.
278-297 and pp. 351-375.
P. Srisuresh et a1., “DNS extensions to NetworkAddress Translators”,
Jul. 1998, 27 pages.
Laurie Wells, “Security Icon”, Oct. 19, 1998, 1 page.
W. Stallings, “Cryptography And Network Security”, 2nd Edition,
Chapter 13, IP Security, Jun. 8, 1998, pp. 399-440.

3

US 7,418,504 B2
Page 3

W. Stallings, “New Cryptography and Network Security Book”, Jun.
8, 1998, 3 pages.
Fasbender,Kesdogan, and Kubitz: “Variable and Scalable Security:
Protection ofLocation Information in Mobile IP”, IEEE publication,
1996, pp. 963-967.
Linux FreeS/WAN Index File, printed from http://liberty.freeswan.
org/freeswan, trees/freeswan-1.3/doc/ on Feb. 21, 2002, 3 Pages.
J. Gilmore, “Swan: Securing the Internet against Wiretapping”,
printed from http://liberty.freeswan.org/freeswan, trees/freeswan-
1.3/doc/rationale.html on Feb. 21, 2002, 4 pages.
Glossary for the Linux FreeS/WAN project. printed from http://
liberty.freeswan.org/freeswan, trees/freeswan-l .3/doc/glossary.
htrnl on Feb. 21, 2002,25 pages.
Alan 0. Frier et al., “The SSL Protocol Version 3.0”, Nov. 18, 1996,
printed from http://www.netscape.com/eng/ssl3/draft302.b<t on Feb.
4,2002, 56 pages.
Search Report (dated Aug. 20, 2002), International Application No.
PCT/US01/04340.

Search Report (dated Aug. 23, 2002), International Application No.
PCT/US01/13260.

Shree Murthy et al., “Congestion-Oriented Shortest Multipath Rout-
ing”, Proceedings of IEEE INFOCOM, 1996, pp. 1028-1036.
Jim Jones et al., “Distributed Denial of Service Attacks: Defenses”,
Global Integrity Corporation, 2000, pp. 1-14.
James E. Bellaire, “New Statement of RulesiNaming Internet
Domains”, Internet Newsgroup, Jul. 30, 1995, 1 page.
D. Clark, “US Calls for Private Domain-Name System”, Computer,
IEEE Computer Society, Aug. 1, 1998, pp. 22-25.
August Bequai, “Balancing Legal Concerns Over Crime and Security
in Cyberspace”, Computer & Security, vol. 17, No. 4, 1998, pp.
293 -298.

Rich Winkel, “CAQ: Networkinig With Spooks: The NET & The
Control Of Information”, Internet Newsgroup, Jun. 21, 1997, 4
pages.

Search Report (dated Oct. 7, 2002), International Application No.
PCT/US01/13261.

F. Halsall, “Data Communications, Computer Networks And Open
Systems”, Chapter 4, Protocol Basics, 1996, pp. 198-203.
Reiter, Michael K. and Rubin, Aviel D. (AT&T LabsiResearch),
“Crowds: Anonymity for Web Transmissoins”, pp. 1-23.
Dolev, Shlomi and Ostrovsky, Rafil, “Efficient Anonymous Multicast
and Reception”(Extended Abstract), 16 pages.
Rubin, Aviel D., Greer, Daniel, and Ranum, Marcus J. (Wiley Com-
puter Publishing), “Web Security Sourcebook”, pp. 82-94.
Fasbender, Kesdogan, and Kubitz: “Variable and Scalable Security”
Protection of Location Information in Mobile IP, IEEE publication,
1996, pp. 963-967.

Eastlake, D. E., “Domain Name System Security Extensions”,
Internet Draft, Apr. 1998, XP002199931, Sections 1, 2.3 and 2.4.
RFC 2401 (dated Nov. 1998) Security Architecture for the Internet
Protocol (RTP).
RFC 2543-SIP (dated Mar. 1999): Session Initiation Protocol (SIP or
SIPS).

Search Report, IPER (dataed Nov. 13, 2002), International Applica-
tion No. PCT/USO 1/04340.

Search Report, IPER (dated Feb. 6, 2002), International Application
No. PCT/US01/13261.

Search Report, IPER (dated Jan. 14, 2003), International Application
No. PCT/US01/13260.

Shankur, A.U. “A verified sliding window protocol with variable flow
control”. Proceedings of ACM SIGCOMM conference on Commu-
nications architectures & protocols. pp. 84-91, ACM Press, NY, NY
1986.

W. Stallings, “Crytography and Network Security”, 2nd, Edition,
Chapter 13, IP Security, Jun. 8, 1998, pp. 399-440.

4

U.S. Patent Aug. 26, 2008 Sheet 1 0f 40 US 7,418,504 B2

ORIGINATING

TERMINAL

100

IP PACKET

IP ROUTER

31IP ROUTER

1;

IP ROUTER |P ROUTER

E E
IP ROUTER

fl

INTEIIIIET IPROUTER
'P ROUTER |p ROUTER — IP ROUTER &

19— fi .32

IP ROUTER

&
IP ROUTER

21

48 ENCRYPTION KEY

 DESTINATION

TERMINAL

m

FIG. 1

5

U.S. Patent Aug. 26, 2008 Sheet 2 0f 40 US 7,418,504 B2

 TARP

TERMINAL

m
140

TARP PACKET

lP ROUTER

TARP m
ROUTER

L22 t“

m ARP
'PR$3%TER ROUTER

146
LINK KEY

TARP

ROUTER fl

@

INTE§7NET
IP ROUTER TARP —

m ROUTER
ROUTER

121

TERMINAL

m

FIG. 2

6

U.S. Patent Aug. 26, 2008 Sheet 3 0f 40 US 7,418,504 B2

2073 207b 207c 207d ' ° '

320
AVE WINDOW

.2-_. ".13 B IE". .':'.I \330 SESSION-KEY-ENCRYPTED
PAYLOAD DATA

\340 TARP PACKET WITH
ENCRYPTED PAYLOADS

\350 LINK-KEY-ENCRYPTED
TARP PACKETS

'3’"- ‘\360 IP PACKETS WI
ENCRYPTED TARP

PACKETS AS PAYLOAD

TARP
DESTINATION

7

U.S. Patent Aug. 26, 2008 Sheet 4 0f 40 US 7,418,504 B2

207a 207b 207C 207d 0 o o /300 DATA STREAM
A;
fli—fl—Ifl_-_- ‘ ° '

 DUMMY

BLOCKS
OR DATA
MAY BE
ADDED

‘ \SZOBLOCK-ENCRYPTED

(SESSION-KEY) PAYLOAD
SEQUENCE

r 33 \522 ENCRYPTED BLOCK
DIVIDED INTO PAYLOADS

 ' - 3' \523 ENCRYPTED BLOCK
DIVIDED INTO PAYLOADS
INTERLEAVED

517

 \523 ENCRYPTED BLOCK
DIVIDED INTO PAYLOADS
INTERLEAVED

 \340 TARP PACKETS WITH
ENCRYPTED PAYLOADS

8

U.S. Patent Aug. 26, 2008 Sheet 5 0f 40 US 7,418,504 B2

TARP TRANSCEIVER

fl

 NETWORK (IP) LAYER
m

ONE ALTERNATIVE TO
CONNNE

III_ TARP PROCESSING
WITH O/S |P

PROCESSOR

TARP LAYER

fl

OTHERALTERNATIVE
TO COMBINE

TARP PROCESSING

WITH D.L. PROCESSOR

(e.g., BURN INTO BOARD
PROM)

DATA LINK LAYER

Q

450
DATALINK

PROTOCOL WRAPPER

FIG. 4

9

U.S. Patent Aug. 26, 2008 Sheet 6 0f 40 US 7,418,504 B2

BACKGROUND LOOP - DECOY

GENERATION SO

AUTHENTICATE TARP

PACKET S7.

OUTER LAYER DECRYPTION
0F TARP PACKET USING

LINK KEY 33
DUMP DECOY

CHECK FOR DECOY AND
INCREMENT PERISHABLE

DECOY COUNTER AS
APPROPRIATE

TRANSMIT DECOY?

35
YES

NO DECREMENT
TTL m > 0?

39 87
YES

S4

DETERMINE DESTINATION GENERATE NEXT-HOP TARP
TARP ADDRESS AND STORE ADDRESS AND STORE LINK
LINK KEY AND IF ADDRESS KEY AND IF ADDRESS 38

GENERATE NEXT-HOP TARP
ADDRESS AND STORE LINK

KEY AND IP ADDRESS 310

GENERATE lP HEADER

AND TRANSMIT S11

FIG. 5

10

U.S. Patent Aug. 26, 2008 Sheet 7 0f 40

BACKGROUND LOOP - DECOY

GENERATION

GROUP RECEIVED IP PACKETS

INTO INTERLEAVE WINDOW

DETERMINE DESTINATION TARP

ADDRESS, INITIALIZE TTL, STORE
IN TARP HEADER

RECORD WINDOW SEQ. NOS. AND

INTERLEAVE SEQ. NOS. IN TARP
HEADERS

CHOOSE FIRST HOP TARP

ROUTER, LOOK UP IPADDRESS
AND STORE IN CLEAR IP HEADER,

OUTER LAYER ENCRYPT

INSTALL CLEAR IP HEADER AND

TRANSMIT

FIG. 6

10

820

821

322

823

$24

$25

US 7,418,504 B2

11

U.S. Patent Aug. 26, 2008 Sheet 8 0f 40 US 7,418,504 B2

BACKGROUND LOOP - DECOY

GENERATION S40

AUTHENTICATE TARP PACKET

RECEIVED S42
DECRYPT OUTER LAYER DIVIDE BLOCK INTO PACKETS

USING WINDOW SEQUENCE

ENCRYPTION WITH LINK KEY 843 DATA, ADD CLEAR IP HEADERS S49
GENERATED FROM TARP

HEADERS '

INCREMENT PERISHABLE

COUNTER IF DECOY S44
HAND COMPLETED IP PACKETS

TO IP LAYER PROCESS $50
THROW AWAY DECOY OR KEEP

IN RESPONSE TO ALGORITHM S45

CACHE TARP PACKETS UNTIL

WINDOW IS ASSEMBLED S46

DEINTERLEAVE PACKETS

FORMING WINDOW S47

DECRYPT BLOCK S48

FIG. 7

11

12

U.S. Patent Aug. 26, 2008 Sheet 9 0f 40 US 7,418,504 B2

SSYN
SSYN ACK SSYN ACK

TECEEIML PAgzfiE-r PACKET ACK PACKET
822 823801

 TARP

ROUTER

w.

824

825 SECURE SESSION
SECURE SESSION INITIATION

INITIATION ACK

FIG. 8

12

13

U.S. Patent Aug. 26, 2008 Sheet 10 0f 40 US 7,418,504 B2

CLIENT 1 A TARP
ROUTER

TRANSMIT TABLE RECEIVE TABLE
921 924

—\.____ ____—

131.218.204.98 0 131.218.204.65 131.218.204.98 I 131.218.204.65

131.218.204.221 - 131.218.204.97 131.218.204.221 - 131.218.204.97

131.218.204.139 . 131.218.204.186 131.218.204.139 . 131.218.204.186

131.218.204.12 0 131.218.204.55 131.218.204.12 . 131.218.204.55

RECEIVE TABLE TRANSMIT TABLE

922 923

____A__ #—

131.218.204.161 - 131.218.204.89 131.218.204.161 0 131.218.204.89

131.218.204.66 - 131.218.204.212 131.218.204.66 0 131.218.204.212

131.218.204.201 0 131.218.204.127 131.218.204.201 0 131.218.204.127

131.218.204.119 . 131.218.204.49 131.218.204.119 0 131.218.204.49

13

14

U.S. Patent Aug. 26, 2008 Sheet 11 0140 US 7,418,504 B2

 ISPA

TARP

1021 ROUTER
10H

CUENT
1001

 ISPB

TARP

ROUTER

1012

 ISPC

TARP

ROUTER

1013

FIG. 10

14

15

US 7,418,504 B2Sheet 12 0f 40Aug. 26, 2008U.S. Patent

2

ono<o._><n_3”ad:2285a”mmmmanzn:9meE”mmmmoe‘n:6138E95:555n__8”mmmmoe‘2,:9meS”mmmmoex>>_._0%”Gem:mzémEzmmzm8:

NEEssammwn2new:2235g2“£02n:.53<8:2”Egg0:$58llllvmgfixméi2:a:£292;08:Mwmm$32285aawn:«£92n:.53so:2”8552n:mass$2”:555n:
mg:mg:__g.gag:<3:<5:mm5%8”mmmmonz>>_._.95$55:mzémEzmmzm8:

15

16

418,504 B29US7Sheet 13 of 40. 26, 2008AugU.S. Patent

meow

<3.0_u_
meowE

o0.2moI>>Io3:01;:<3<morn:m8:01;
5.vaXmmmfizo:<o_._&<Em:

:3

SNF

33

mg83
III

Inna.afifiHEEEEggEEE5%?8om8am
E

x83x83zo:<o:&<ES

16

17

U.S. Patent Aug. 26, 2008 Sheet 14 0f 40 US 7,418,504 B2

MODE

HARDWARE DISCRIMINATOR FIELD
OR IF ADDRESSES

SAME FOR ALL NODES
CAN BE VARIED CAN BE VARIED

1. PROMISCUOUS OR wngJELY IN SYNC IN SYNC

2. PROMISCUOUS
PER VPN

3. HARDWARE CAN BE VARIED CAN BE VARIED
HOPPING IN SYNC IN SYNC

FIG. 128

CAN BE VARIED

IN SYNC

CAN BE VARIED
IN SYNC

CAN BE VARIED
IN SYNC

FIXED FOR EACH VPN

17

18

BEE920%oz

US 7,418,504 B2

55%

360%mm;
:2

Sheet 15 of 40Aug. 26, 2008

mpzmjo32‘

U.S. Patent

OE.o..<02¢02%$2528
momF

m_‘.OE
HERE 32N02

o<o._><n_QmEEozm$52:2818ES:was,oz;2958use:

m3<>oz>mwmmmonz.53n:

mmmmog5128n:<Emso52

82mom_‘

18

19

U.S. Patent Aug. 26, 2008 Sheet 16 0f 40 US 7,418,504 B2

CURRENT IP PAIR ‘x- IP PAIR 1

ckpt_o ~¢ IP PA|R2

ckpt_n ‘ :
ckpt_r

TRANSMITTER

IP PAIR 1

IP PAIR 2
O

WINDOW 0 CURRENT IP PAIR0

IP PAIR W ckpt_

ckpt_o ckpt_n
ckpt_n

ckpt_r <

RECEIVER TRANSMITTER

SENDER'S ISP RECIPIENT'S ISP

KEPT IN SYNC FOR SENDER T0 RECIPIENT SYNCHRONIZER ‘----------------------->

KEPT IN SYNC FOR RECIPIENT TO SENDER SYNCHRONIZER <——>

FIG. 14

19

20

U.S. Patent Aug. 26, 2008

@

@ WHEN SYNCHRONIZATION
BEGINS TRANSMIT (RETRANSMIT
PERIODICALLY UNTIL ACKed)
SYNC_REQ USING NEW
TRANSMITTER CHECKPOINT IP

PAIR ckpt_n AND GENERATE
NEW RECEIVER RESPONSE

CHECKPOINT ckpt_r

WHEN SYNC_ACK
ARRIVES WITH INCOMING

HEADER = ckpt_r:
GENERATE NEW

CHECKPOINT IP PAIR

ckpt_n IN TRANSMITTER

SYNC_REQ

FIG. 15

20

Sheet 17 of 40

JW

US 7,418,504 B2

* WHEN SYNC_REQ ARRIVES
WITH INCOMING HEADER =

RECEIVER'S ckpt_n:

[w
°UPDATE WINDOW

'GENERATE NEW

CHECKPOINT IP PAIR

ckan IN RECEIVER
'GENERATE NEW

CHECKPOINT IP PAIR

ckpt_r IN TRANSMITTER
°TRANSMIT SYNC_ACK
USING NEW CHECKPOINT

IP PAIR ckpt_r

21

U.S. Patent Aug. 26, 2008 Sheet 18 0f 40 US 7,418,504 B2

21

22

U.S. Patent Aug. 26, 2008 Sheet 19 0f 40 US 7,418,504 B2

000 —VIII/Illllll

O

’IIIIIIIIIIIA
VIII/IIIIIIA
'Illlllllllll.

VII/[IIIIIIA
VII/IIIIIIIA

O

WINDOW_S|ZE I INACTIVE
a ACTIVE
E USED

WINDOW_S|ZE 'llllllllll‘
VIII/[Illllfl
VIII/IIIIIIIA
VlllllllllllA

FIG. 17

22

23

U.S. Patent Aug. 26, 2008 Sheet 20 0f 40 US 7,418,504 B2

000

_
'IIIIIIIIIIA

WINDOW_S|ZE
VIII/IIIIIIA
’IIIIIIIIIIIA
VIII/IIIIIIA
VII/IIIIIIIA
Will/[Ill]

C

WINDOW_S|ZE
23

24

U.S. Patent

000

WINDOW_S|ZE

WINDOW_S|ZE

Aug. 26, 2008 Sheet 21 0f 40

VIII/[IIIIIA
C

VIII/”0m
VIII/III,”
VIII/III,”

O

VII/[IIIIIIA
VII/IIIIIIIA
WII'IIIIIIIA
VII/llllllll.
mill/”Ill

VIII/1111114

FIG. 19

24

US 7,418,504 B2

I |NACT|VE
a ACTIVE
fl USED

OoO

25

US 7,418,504 B2Sheet 22 0f 40Aug. 26, 2008U.S. Patent

%mmhamzoo

$501$8

E501moom

EESEOQ

25

26

U.S. Patent Aug. 26, 2008 Sheet 23 0f 40 US 7,418,504 B2

AD TABLE

|P1 |P2

|P3 an4

2101

AE TABLE

2102

AF TABLE

2103

BD TABLE

2104

BE TABLE

2105
LINK DOWN

BF TABLE

2106

CD TABLE2100/
2107

CE TABLE

2108

CF TABLE

2109

FIG. 21

26

27

U.S. Patent Aug. 26, 2008 Sheet 24 0f 40 US 7,418,504 B2

MEASURE

QUALITY OF
TRANSMISSION

PATH X

MORE THAN

ONE TRANSMITTER
TURNED ON?

PATH X

QUALITY < THRESHOLD?

N0 SET WEIGHT
TO MIN. VALUE

PATH X
WEIGHT LESS THAN

STEADY STATE
VALUE?

 DECREASE WEIGHT
FOR PATH X
 2208

INCREASE

WEIGHT FOR PATH X
TOWARD STEADY

STATE VALUE

ADJUST WEIGHTS
FOR REMAINING
PATHS SO THAT

WEIGHTS EQUAL ONE

FIG. 22A

27

28

U.S. Patent Aug. 26, 2008 Sheet 25 0f 40 US 7,418,504 B2

(EVENT) TRANSMITTER

FOR PATH x

TURNS OFF 2210

AT LEAST DROP ALL PACKETS

ONE TRANSMITTER UNTIL ATRANSMITTER

TURNED ON? TURNS ON

SET WEIGHT

TO ZERO

ADJUST WEIGHTS

FOR REMAINING PATHS

SO THAT WEIGHTS

EQUAL ONE

FIG. 22B

28

29

U.S. Patent Aug. 26, 2008 Sheet 26 0f 40 US 7,418,504 B2

2308

\
TRANSMIT TABLE 2302

PATH X1

PATH X2

PACKET
TRANSMITTER

PATH X3

PATH X4

PACKET W(X1)=0.2

'w RECEIVER W(X2)=0.1

w (X3) = 0.6

w (x4) = 0.1

2301

LINK QUALITY
MEASUREMENT

FUNCTION

WEIGHT
ADJUSTMENT

FUNCTION

FIG. 23

29

30

U.S. Patent Aug. 26, 2008 Sheet 27 0f 40 US 7,418,504 B2

2403 2404

! 100Mbls MESST=32 9

9 25Mb/s MESST=8

FIG. 24

COMPUTER COMPUTER

30

31

U.S. Patent Aug. 26, 2008 Sheet 28 0f 40 US 7,418,504 B2

2502

DNS REQ

2504

, WEB
BROWSER

DNS RESP

PAGE REQ

TARGET

WEB SITE PAGE RESP

FIG. 25
(PRIOR ART)

31

32

U.S. Patent Aug. 26, 2008 Sheet 29 0f 40 US 7,418,504 B2

 DNS

2609 SERVER

2602

WEB
BROWSER

GATEKEEPER

HOPPING RULES 2503

HOPPING

SECURE
TARGET

SHE

UNSECURE
TARGET

flTE

26“

FIG. 26

32

33

U.S. Patent Aug. 26, 2008 Sheet 30 0f 40 US 7,418,504 B2

 RECEIVE

DNS REQUEST
2701 FOR TARGET SITE

ACCESS TO

SECURE SITE

REQUESTED?

PASS THRU

REQUEST TO
DNS SERVER

USER

AUTHORIZED TO

CONNECT?

RETURN

“HOST UNKNOWN"

ERROR

ESTABLISH

VPN WITH
2705 TARGET SITE

FIG. 27

33

34

U.S. Patent Aug. 26, 2008 Sheet 31 0f 40 US 7,418,504 B2

2803

2802

EDGE

ROUTER

2804

HOST

COMPUTER #2

FIG. 28

2801

HOST

COMPUTER #1
2805

HIGH BW

34

35

U.S. Patent Aug. 26, 2008 Sheet 32 0f 40 US 7,418,504 B2

2901

HOST COMPUTER #1

EDGE

ROUTER

TX RX

HIGH BW

IP TX

100-200

L. HOST COMPUTER #2

 TX RX
2902

2912 2913

4'

HACKER FLOODIP

2903 COMPUTER TX100-200

FIG. 29

35

36

omGE

US 7,418,504 13240.mB

m8208mmmw3%m8%?mmfifiw52::
2

6,ESE
20.5

uA

mmEEmz<E

U.S. Patent

5%Eémzmo0mm.uz>mm>momm

39:.xx
$382

36

37

U.S. Patent Aug. 26, 2008 Sheet 34 0f 40 US 7,418,504 B2

3103

3101

CLIENT #1

3106

CLIENT #2

TXlRX TX/RX TXlRX

3102

3208 3209 3210 HACKER 3105

FIG. 31

37

38

U.S. Patent

CLIENT

\

SEND DATA PACKET

USING cka_n
CKPT_O=cka_n
GENERATE NEW cka_n
START TIMER, SHUT TRANSMITTER
OFF

IF CKPT_0 IN SYNC_ACK
MATCHES TRANSMITTER‘S

ckpt_o
UPDATE RECEIVERS

ckpt_r
KILL TIMER, TURN
TRANSMITTER ON

SEND DATA PACKET

USING ckpt_n
ckpt_o=ckpt_n
GENERATE NEW cka_n
START TIMER, SHUT TRANSMITTER
OFF

WHEN TIMER EXPIRES

TRANSMIT SYNC_REQ
USING TRANSMITTERS

cka_o, START TIMER

IF ckpt_o IN SYNC_ACK
MATCHES TRANSMITTER'S

ckpt_o
UPDATE RECEIVER'S

cka_r
KILL TIMER, TURN
TRANSMITTER 0N

Aug. 26, 2008

SYNC_REQ

FIG. 32

38

Sheet 35 of 40

US 7,418,504 B2

SERVER

\

PASS DATA UP STACK

ckpt_o=ckpt_n
GENERATE NEW ckpt_n
GENERATE NEW ckpt_r FOR
TRANSMITTER SIDE

TRANSMIT SYNC_ACK

CONTAINING ckpt_o

ckpt_o=ckpt_n
GENERATE NEW ckan
GENERATE NEW cka_r FOR
TRANSMITTER SIDE

TRANSMIT SYNC_ACK

CONTAINING ckao

39

US 7,418,504 B2Sheet 36 of 40Aug. 26, 2008U.S. Patent

28

:8208219
:8

$8mzoem

28:82%mm.0_H_
3mm.__<s_.m_ESEmmmmmxmEomzom

$8$58

..<zmm:z_

8mm

88.258$585

mcmmmg

Em”

28

%

52%;;8mm
’7

528m./(i88
«N8

38z_.o:._n_manomwowxmmgomm
8mm8mm

39

40

U.S. Patent Aug. 26, 2008 Sheet 37 0f 40 US 7,418,504 B2

LAUNCH LINK TO

.COM SITE 3404

DOWNLOAD AND

INSTALL PLUG-IN 3405

CLOSE CONNECTION 3406

3400

3401

DISPLAY WEB PAGE
CONTAINING GO

SECURE HYPERLINK

 3402
E

YES

VPN

PLUG-IN

LOAODED

AUTOMATIC REPLACEMENT OF TOP-LEVEL

DOMAIN NAME WITH SECURE TOP-LEVELDOMAIN NAME 3407 3412 DISPLAY "SECURE" ICON

 ACCESS SECURE PORTALAND

SECURE NETWORKANDSECUREDNS 3403 TEPNIIII‘EE N0
CONNECTION

3413 '

OBTAIN SECURE COMPUTER NETWORK YES
ADDRESS FOR SECURE WEB SITE 3409 REPLACE SECURE TOP_LEVEL

DOMAIN NAME WITH NON-SECURE
3414 TOP-LEVEL DOMAIN NAME

ACCESS GATE KEEPER AND RECEIVE

PARAMETERS FOR ESTABLISHING VPN 3410
WITH SECURE WEBSITE 3415 DISPLAY "GO SECURE" HYPERLINK

CONNECTTOSECUREWEBSITE
USINGVPN BASEDON PARAMETERS m

ESTABLISHEDBYGATE KEEPER 3411

40

41

U.S. Patent Aug. 26, 2008 Sheet 38 of 40

3500

REQUESTOR ACCESSES WEBSITE
AND LOGS INTO SECURE

DOMAIN NAME REGISTRY SERVICE

REQUESTER COMPLETES ONLINE
REGISTRATION FORM

QUERY STANDARD DOMAIN NAME
SERVICE REGARDING OWNERSHIP

OF EQUIVALENT NON-SECURE
DOMAIN NAME

RECEIVE REPLY FROM STANDARD

DOMAIN NAME REGISTRY

3501

3506

3507

VERIFY INFORMATION AND

ENTER PAYMENT INFORMATION

REGISTER SECURE DOMAIN NAME

FIG. 35

3508

41

INFORM REQUESTOR
OF CONFLICT

US 7,418,504 B2

42

U.S. Patent Aug. 26, 2008 Sheet 39 0f 40 US 7,418,504 B2

WEB SERVER

SERVER PROXY

VPN GUARD

 3611

 3610

3600

COMPUTER NETWORK

FIREWALL

3602

3601

I BROWSER I PROXYAPPLICATION I
3606 3607

3605

CLIENT COMPUTER 3604

FIG. 36

42

43

U.S. Patent Aug. 26, 2008 Sheet 40 0f 40 US 7,418,504 B2

GENERATE MESSAGE PACKETS
3700 3701

/

MODIFY MESSAGE PACKETS WITH PRIVATE

CONNECTION DATA AT AN APPLICATION LAYER 3702

SEND TO HOST COMPUTER

THROUGH FIREWALL 3703

RECEIVE PACKETS AND AUTHENTICATE

AT KERNEL LAYER OF HOST COMPUTER 3704

RESPOND TO RECEIVED MESSAGE

PACKETS AND GENERATE REPLY
MESSAGE PACKETS 3705

MODIFY REPLY MESSAGE PACKETS WITH

PRIVATE CONNECTION DATA AT A
KERNEL LAYER 3706

SEND PACKETS TO CLIENT COMPUTER

THROUGH FIREWIRE 3707

RECEIVE PACKETS AT CLIENT

COMPUTER AND AUTHENTICATE AT
APPLICATION LAYER 3708

FIG. 37

43

44

US 7,418,504 B2

1
AGILE NETWORK PROTOCOL FOR SECURE

COMMUNICATIONS USING SECURE
DOMAIN NAMES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority from and is a continuation
patent application of US. application Ser. No. 09/558,210,
filed Apr. 26, 2000 now abandoneed, which is a continuation-
in-part patent application ofpreviously-filed US. application
Ser. No. 09/504,783, filed on Feb. 15, 2000, now US. Pat. No.

6,502,135, issued Dec. 31, 2002, which claims priority from
and is a continuation-in-part patent application ofpreviously-
filed US. application Ser. No. 09/429,643, filed on Oct. 29,
1999 now US. Pat. No. 7,010,604. The subject matter ofU.S.
application Ser. No. 09/429,643, which is bodily incorporated
herein, derives from provisional US. application Nos.
60/106,261 (filed Oct. 30, 1998) and 60/137,704 (filed Jun. 7,
1999). The present application is also related to US. appli-
cation Ser. No. 09/558,209, filed Apr. 26, 2000, and which is
incorporated by reference herein.

GOVERNMENT CONTRACT RIGHTS

This invention was made with Government support under
Contract No. 360000-1999-000000-QC-000-000 awarded by
the Central Intelligence Agency. The Government has certain
rights in the invention.

BACKGROUND OF THE INVENTION

A tremendous variety of methods have been proposed and
implemented to provide security and anonymity for commu-
nications over the Internet. The variety stems, in part, from the
different needs of different Intemet users. A basic heuristic

framework to aid in discussing these different security tech-
niques is illustrated in FIG. 1. Two terminals, an originating
terminal 100 and a destination terminal 110 are in communi-
cation over the Internet. It is desired for the communications

to be secure, that is, immune to eavesdropping. For example,
terminal 100 may transmit secret information to terminal 110
over the Internet 107. Also, it may be desired to prevent an
eavesdropper from discovering that terminal 100 is in com-
munication with terminal 1 10. For example, ifterminal 1 00 is
a user and terminal 110 hosts a web site, terminal 100’s user
may not want anyone in the intervening networks to know
what web sites he is “visiting.” Anonymity would thus be an
issue, for example, for companies that want to keep their
market research interests private and thus would prefer to
prevent outsiders from knowing which web-sites or other
Internet resources they are “visiting.” These two security
issues may be called data security and anonymity, respec-
tively.

Data security is usually tackled using some form of data
encryption. An encryption key 48 is known at both the origi-
nating and terminating terminals 100 and 110. The keys may
be private and public at the originating and destination termi-
nals 100 and 110, respectively or they may be symmetrical
keys (the same key is used by both parties to encrypt and
decrypt). Many encryption methods are known and usable in
this context.

To hide traffic from a local administrator or ISP, a user can
employ a local proxy server in communicating over an
encrypted channel with an outside proxy such that the local
administrator or ISP only sees the encrypted trafiic. Proxy
servers prevent destination servers from determining the

10

15

20

25

30

35

40

45

50

55

60

65

2

identities of the originating clients. This system employs an
intermediate server interposed between client and destination
server. The destination server sees only the Internet Protocol
(IP) address ofthe proxy server and not the originating client.
The target server only sees the address of the outside proxy.
This scheme relies on a trusted outside proxy server. Also,
proxy schemes are vulnerable to traffic analysis methods of
determining identities of transmitters and receivers. Another
important limitation ofproxy servers is that the server knows
the identities of both calling and called parties. In many
instances, an originating terminal, such as terminal A, would
prefer to keep its identity concealed from the proxy, for
example, ifthe proxy server is provided by an Internet service
provider (ISP).

To defeat traffic analysis, a scheme called Chaum’s mixes
employs a proxy server that transmits and receives fixed
length messages, including dummy messages. Multiple origi-
nating terminals are connected through a mix (a server) to
multiple target servers. It is difficult to tell which of the
originating terminals are communicating to which ofthe con-
nected target servers, and the dummy messages confuse
eavesdroppers’ efforts to detect communicating pairs by ana-
lyzing traffic. A drawback is that there is a risk that the mix
server could be compromised. One way to deal with this risk
is to spread the trust among multiple mixes. If one mix is
compromised, the identities of the originating and target ter-
minals may remain concealed. This strategy requires a num-
ber of alternative mixes so that the intermediate servers inter-

posed between the originating and target terminals are not
determinable except by compromising more than one mix.
The strategy wraps the message with multiple layers of
encrypted addresses. The first mix in a sequence can decrypt
only the outer layer of the message to reveal the next desti-
nation mix in sequence. The second mix can decrypt the
message to reveal the next mix and so on. The target server
receives the message and, optionally, a multi-layer encrypted
payload containing return information to send data back in
the same fashion. The only way to defeat such a mix scheme
is to collude among mixes. If the packets are all fixed-length
and intermixed with dummy packets, there is no way to do
any kind of traffic analysis.

Still another anonymity technique, called ‘crowds,’ pro-
tects the identity of the originating terminal from the inter-
mediate proxies by providing that originating terminals
belong to groups ofproxies called crowds. The crowd proxies
are interposed between originating and target terminals. Each
proxy through which the message is sent is randomly chosen
by an upstream proxy. Each intermediate proxy can send the
message either to another randomly chosen proxy in the
“crowd” or to the destination. Thus, even crowd members
cannot determine if a preceding proxy is the originator of the
message or if it was simply passed from another proxy.

ZKS (Zero-Knowledge Systems) Anonymous IP Protocol
allows users to select up to any of five different pseudonyms,
while desktop software encrypts outgoing traffic and wraps it
in User Datagram Protocol (UDP) packets. The first server in
a 2+-hop system gets the UDP packets, strips off one layer of
encryption to add another, then sends the traffic to the next
server, which strips off yet another layer of encryption and
adds a new one. The user is permitted to control the number of
hops. At the final server, traffic is decrypted with an untrace-
able IP address. The technique is called onion-routing. This
method can be defeated using traffic analysis. For a simple
example, bursts of packets from a user during low-duty peri-
ods can reveal the identities of sender and receiver.

Firewalls attempt to protect LANs from unauthorized
access and hostile exploitation or damage to computers con-

44

45

US 7,418,504 B2

3

nected to the LAN. Firewalls provide a server through which
all access to the LAN must pass. Firewalls are centralized
systems that require administrative overhead to maintain.
They can be compromised by virtual-machine applications
(“applets”). They instill a false sense of security that leads to
security breaches for example by users sending sensitive
information to servers outside the firewall or encouraging use
of modems to sidestep the firewall security. Firewalls are not
useful for distributed systems such as business travelers,
extranets, small teams, etc.

SUMMARY OF THE INVENTION

A secure mechanism for communicating over the intemet,
including a protocol referred to as the Tum1eledAgile Routing
Protocol (TARP), uses a unique two-layer encryption format
and special TARP routers. TARP routers are similar in func-
tion to regular IP routers. Each TARP router has one or more
IP addresses and uses normal IP protocol to send IP packet
messages (“packets” or “datagrams”). The IP packets
exchanged between TARP terminals via TARP routers are
actually encrypted packets whose true destination address is
concealed except to TARP routers and servers. The normal or
“clear” or “outside” IP header attached to TARP IP packets
contains only the address of a next hop router or destination
server. That is, instead of indicating a final destination in the
destination field of the IP header, the TARP packet’s IP
header always points to a next-hop in a series ofTARP router
hops, or to the final destination. This means there is no overt
indication from an intercepted TARP packet of the true des-
tination of the TARP packet since the destination could
always be next-hop TARP router as well as the final destina-
tion.

Each TARP packet’s true destination is concealed behind a
layer ofencryption generated using a link key. The link key is
the encryption key used for encrypted communication
between the hops intervening between an originating TARP
terminal and a destination TARP terminal. Each TARP router

can remove the outer layer of encryption to reveal the desti-
nation router for each TARP packet. To identify the link key
needed to decrypt the outer layer of encryption of a TARP
packet, a receiving TARP or routing terminal may identify the
transmitting terminal by the sender/receiver IP numbers in the
cleartext IP header.

Once the outer layer of encryption is removed, the TARP
router determines the final destination. Each TARP packet
140 undergoes a minimum number ofhops to help foil traffic
analysis. The hops may be chosen at random or by a fixed
value. As a result, each TARP packet may make random trips
among a number of geographically disparate routers before
reaching its destination. Each trip is highly likely to be dif-
ferent for each packet composing a given message because
each trip is independently randomly determined. This feature
is called agile routing. The fact that different packets take
different routes provides distinct advantages by making it
difficult for an interloper to obtain all the packets forming an
entire multi-packet message. The associated advantages have
to do with the inner layer of encryption discussed below.
Agile routing is combined with another feature that furthers
this purpose; a feature that ensures that any message is broken
into multiple packets.

The IP address of a TARP router can be changed, a feature
called IP agility. Each TARP router, independently or under
direction from another TARP terminal or router, can change
its IP address. A separate, unchangeable identifier or address
is also defined. This address, called the TARP address, is
knoan only to TARP routers and terminals and may be cor-

10

15

20

25

30

35

40

45

50

55

60

65

4

related at any time by a TARP router or a TARP terminal using
a Lookup Table (LUT). When a TARP router or terminal
changes its IP address, it updates the other TARP routers and
terminals which in turn update their respective LUTs.

The message payload is hidden behind an im1er layer of
encryption in the TARP packet that can only be unlocked
using a session key. The session key is not available to any of
the intervening TARP routers. The session key is used to
decrypt the payloads ofthe TARP packets permitting the data
stream to be reconstructed.

Communication may be made private using link and ses-
sion keys, which in turn may be shared and used according to
any desired method. For example, public/private keys or sym-
metric keys may be used.

To transmit a data stream, a TARP originating terminal
constructs a series of TARP packets from a series of IP pack-
ets generated by a network (IP) layer process. (Note that the
terms “network layer,” “data link layer,” “application layer,”
etc. used in this specification correspond to the Open Systems
Interconnection (OSI) network terminology.) The payloads
of these packets are assembled into a block and chain-block
encrypted using the session key. This assumes, ofcourse, that
all the IP packets are destined for the same TARP terminal.
The block is then interleaved and the interleaved encrypted
block is broken into a series of payloads, one for each TARP
packet to be generated. Special TARP headers IPT are then
added to each payload using the IP headers from the data
stream packets. The TARP headers can be identical to normal
IP headers or customized in some way. They should contain a
formula or data for deinterleaving the data at the destination
TARP terminal, a time-to-live (TTL) parameter to indicate
the number of hops still to be executed, a data type identifier
which indicates whether the payload contains, for example,
TCP or UDP data, the sender’ s TARP address, the destination
TARP address, and an indicator as to whether the packet
contains real or decoy data or a formula for filtering out decoy
data if decoy data is spread in some way through the TARP
payload data.

Note that although chain-block encryption is discussed
here with reference to the session key, any encryption method
may be used. Preferably, as in chain block encryption, a
method should be used that makes unauthorized decryption
difficult without an entire result of the encryption process.
Thus, by separating the encrypted block among multiple
packets and making it difficult for an interloper to obtain
access to all of such packets, the contents of the communica-
tions are provided an extra layer of security.

Decoy or dummy data can be added to a stream to help foil
traffic analysis by reducing the peak-to-average network load.
It may be desirable to provide the TARP process with an
ability to respond to the time of day or other criteria to gen-
erate more decoy data during low traffic periods so that com-
munication bursts at one point in the Internet cannot be tied to
communication bursts at another point to reveal the commu-
nicating endpoints.

Dummy data also helps to break the data into a larger
number of inconspicuously-sized packets permitting the
interleave window size to be increased while maintaining a
reasonable size for each packet. (The packet size can be a
single standard size or selected from a fixed range of sizes.)
One primary reason for desiring for each message to be bro-
ken into multiple packets is apparent if a chain block encryp-
tion scheme is used to form the first encryption layer prior to
interleaving. A single block encryption may be applied to
portion, or entirety, of a message, and that portion or entirety
then interleaved into a number of separate packets. Consid-
ering the agile IP routing of the packets, and the attendant

45

46

US 7,418,504 B2

5

difficulty of reconstructing an entire sequence of packets to
form a single block-encrypted message element, decoy pack-
ets can significantly increase the difficulty of reconstructing
an entire data stream.

The above scheme may be implemented entirely by pro-
cesses operating between the data link layer and the network
layer of each server or terminal participating in the TARP
system. Because the encryption system described above is
insertable between the data link and network layers, the pro-
cesses involved in supporting the encrypted communication
may be completely transparent to processes at the IP (net-
work) layer and above. The TARP processes may also be
completely transparent to the data link layer processes as
well. Thus, no operations at or above the Network layer, or at
or below the data link layer, are affected by the insertion ofthe
TARP stack. This provides additional security to all processes
at or above the network layer, since the difficulty ofunautho-
rized penetration of the network layer (by, for example, a
hacker) is increased substantially. Even newly developed
servers running at the session layer leave all processes below
the session layer vulnerable to attack. Note that in this archi-
tecture, security is distributed. That is, notebook computers
used by executives on the road, for example, can communi-
cate over the Internet without any compromise in security.

IP address changes made by TARP terminals and routers
can be done at regular intervals, at random intervals, or upon
detection of “attacks.” The variation of IP addresses hinders

traffic analysis that might reveal which computers are com-
municating, and also provides a degree of immunity from
attack. The level of immunity from attack is roughly propor-
tional to the rate at which the IP address of the host is chang-
ing.

As mentioned, IP addresses may be changed in response to
attacks. An attack may be revealed, for example, by a regular
series of messages indicating that a router is being probed in
some way. Upon detection of an attack, the TARP layer pro-
cess may respond to this event by changing its IP address. In
addition, it may create a subprocess that maintains the origi-
nal IP address and continues interacting with the attacker insome manner.

Decoy packets may be generated by each TARP terminal
on some basis determined by an algorithm. For example, the
algorithm may be a random one which calls for the generation
of a packet on a random basis when the terminal is idle.
Alternatively, the algorithm may be responsive to time ofday
or detection of low traffic to generate more decoy packets
during low traffic times. Note that packets are preferably
generated in groups, rather than one by one, the groups being
sized to simulate real messages. In addition, so that decoy
packets may be inserted in normal TARP message streams,
the background loop may have a latch that makes it more
likely to insert decoy packets when a message stream is being
received. Alternatively, if a large number of decoy packets is
received along with regular TARP packets, the algorithm may
increase the rate of dropping of decoy packets rather than
forwarding them. The result of dropping and generating
decoy packets in this way is to make the apparent incoming
message size different from the apparent outgoing message
size to help foil traffic analysis.

In various other embodiments of the invention, a scalable
version ofthe system may be constructed in which a plurality
of IP addresses are preassigned to each pair of communicat-
ing nodes in the network. Each pair of nodes agrees upon an
algorithm for “hopping” between IP addresses (both sending
and receiving), such that an eavesdropper sees apparently
continuously random IP address pairs (source and destina-
tion) for packets transmitted between the pair. Overlapping or

10

15

20

25

30

35

40

45

50

55

60

65

6

“reusable” IP addresses may be allocated to different users on
the same subnet, since each node merely verifies that a par-
ticular packet includes a valid source/destination pair from
the agreed-upon algorithm. Source/destination pairs are pref-
erably not reused between any two nodes during any given
end-to-end session, though limited IP block sizes or lengthy
sessions might require it.

Further improvements described in this continuation-in-
part application include: (1) a load balancer that distributes
packets across different transmission paths according to
transmission path quality; (2) a DNS proxy server that trans-
parently creates a virtual private network in response to a
domain name inquiry; (3) a large-to-small link bandwidth
management feature that prevents denial-of-service attacks at
system chokepoints; (4) a traffic limiter that regulates incom-
ing packets by limiting the rate at which a transmitter can be
synchronized with a receiver; and (5) a signaling synchro-
nizer that allows a large number of nodes to communicate
with a central node by partitioning the communication func-
tion between two separate entities

The present invention provides key technologies for imple-
menting a secure virtual Internet by using a new agile network
protocol that is built on top of the existing Internet protocol
(IP). The secure virtual Internet works over the existing Inter-
net infrastructure, and interfaces with client applications the
same way as the existing Internet. The key technologies pro-
vided by the present invention that support the secure virtual
Internet include a “one-click” and “no-click” technique to
become part of the secure virtual Internet, a secure domain
name service (SDNS) for the secure virtual Internet, and a
new approach for interfacing specific client applications onto
the secure virtual Internet. According to the invention, the
secure domain name service interfaces with existing applica-
tions, in addition to providing a way to register and serve
domain names and addresses.

According to one aspect ofthe present invention, a user can
conveniently establish a VPN using a “one-click” or a “no-
click” technique without being required to enter user identi-
fication information, a password and/or an encryption key for
establishing a VPN. The advantages of the present invention
are provided by a method for establishing a secure commu-
nication link between a first computer and a second computer
over a computer network, such as the Internet. In one embodi-
ment, a secure communication mode is enabled at a first
computer without a user entering any cryptographic informa-
tion for establishing the secure communication mode ofcom-
munication, preferably by merely selecting an icon displayed
on the first computer. Alternatively, the secure communica-
tion mode of communication can be enabled by entering a
command into the first computer. Then, a secure communi-
cation link is established between the first computer and a
second computer over a computer network based on the
enabled secure communication mode of communication.

According to the invention, it is determined whether a secure
communication software module is stored on the first com-

puter in response to the step of enabling the secure commu-
nication mode ofcommunication. A predetermined computer
network address is then accessed for loading the secure com-
munication software module when the software module is not

stored on the first computer. Subsequently, the proxy software
module is stored in the first computer. The secure communi-
cation link is a virtual private network communication link
over the computer network. Preferably, the virtual private
network can be based on inserting into each data packet one or
more data values that vary according to a pseudo-random
sequence. Alternatively, the virtual private network can be
based on a computer network address hopping regime that is

46

47

US 7,418,504 B2

7

used to pseudorandomly change computer network addresses
or other data values in packets transmitted between the first
computer and the second computer, such that the second
computer compares the data values in each data packet trans-
mitted between the first computer and the second computer to
a moving window of valid values. Yet another alternative
provides that the virtual private network can be based on a
comparison between a discriminator field in each data packet
to a table of valid discriminator fields maintained for the first

computer.
According to another aspect ofthe invention, a command is

entered to define a setup parameter associated with the secure
communication link mode of communication. Consequently,
the secure communication mode is automatically established
when a communication link is established over the computer
network.

The present invention also provides a computer system
having a communication link to a computer network, and a
display showing a hyperlink for establishing a virtual private
network through the computer network. When the hyperlink
for establishing the virtual private network is selected, a vir-
tual private network is established over the computer net-
work. A non-standard top-level domain name is then sent over
the virtual private network communication to a predeter-
mined computer network address, such as a computer net-
work address for a secure domain name service (SDNS).

The present invention provides a domain name service that
provides secure computer network addresses for secure, non-
standard top-level domain names. The advantages of the
present invention are provided by a secure domain name
service for a computer network that includes a portal con-
nected to a computer network, such as the Internet, and a
domain name database connected to the computer network
through the portal. According to the invention, the portal
authenticates a query for a secure computer network address,
and the domain name database stores secure computer net-
work addresses for the computer network. Each secure com-
puter network address is based on a non-standard top-level
domain name, such as .scom, .sorg, .snet, .snet, .sedu, .smil
and .sint.

The present invention provides a way to encapsulate exist-
ing application network traffic at the application layer of a
client computer so that the client application can securely
communicate with a server protected by an agile network
protocol. The advantages of the present invention are pro-
vided by a method for communicating using a private com-
munication link between a client computer and a server com-
puter over a computer network, such as the Internet.
According to the invention, an information packet is sent
from the client computer to the server computer over the
computer network. The information packet contains data that
is inserted into the payload portion of the packet at the appli-
cation layer of the client computer and is used for forming a
virtual private connection between the client computer and
the server computer. The modified information packet can be
sent through a firewall before being sent over the computer
network to the server computer and by working on top of
existing protocols (i.e., UDP, ICMP and TCP), the present
invention more easily penetrates the firewall. The information
packet is received at a kernel layer of an operating system on
the server side. It is then determined at the kernel layer of the
operating system on the host computer whether the informa-
tion packet contains the data that is used for forming the
virtual private connection. The server side replies by sending
an information packet to the client computer that has been
modified at the kernel layer to containing virtual private con-
nection information in the payload portion of the reply infor-

10

15

20

25

30

35

40

45

50

55

60

65

8

mation packet. Preferably, the information packet from the
client computer and the reply information packet from the
server side are each a UDP protocol information packet.
Alternative, both information packets could be a TCP/IP pro-
tocol information packet, or an ICMP protocol information
packet.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of secure communications over the

Internet according to a prior art embodiment.
FIG. 2 is an illustration of secure communications over the

Internet according to a an embodiment of the invention.
FIG. 3a is an illustration ofa process of forming a tunneled

IP packet according to an embodiment of the invention.
FIG. 3b is an illustration ofa process of forming a tunneled

IP packet according to another embodiment of the invention.
FIG. 4 is an illustration of an OSI layer location of pro-

cesses that may be used to implement the invention.
FIG. 5 is a flow chart illustrating a process for routing a

tunneled packet according to an embodiment ofthe invention.
FIG. 6 is a flow chart illustrating a process for forming a

tunneled packet according to an embodiment ofthe invention.
FIG. 7 is a flow chart illustrating a process for receiving a

tunneled packet according to an embodiment ofthe invention.
FIG. 8 shows how a secure session is established and

synchronized between a client and a TARP router.

FIG. 9 shows an IP address hopping scheme between a
client computer and TARP router using transmit and receive
tables in each computer.

FIG. 10 shows physical link redundancy among three Inter-
net Service Providers (ISPs) and a client computer.

FIG. 11 shows how multiple IP packets can be embedded
into a single “frame” such as an Ethernet frame, and further
shows the use of a discriminator field to camouflage true
packet recipients.

FIG. 12A shows a system that employs hopped hardware
addresses, hopped IP addresses, and hopped discriminator
fields.

FIG. 12B shows several different approaches for hopping
hardware addresses, IP addresses, and discriminator fields in
combination.

FIG. 13 shows a technique for automatically re-establish-
ing synchronization between sender and receiver through the
use of a partially public sync value.

FIG. 14 shows a “checkpoint” scheme for regaining syn-
chronization between a sender and recipient.

FIG. 15 shows further details of the checkpoint scheme of
FIG. 14.

FIG. 16 shows how two addresses can be decomposed into
a plurality of segments for comparison with presence vectors.

FIG. 17 shows a storage array for a receiver’s active
addresses.

FIG. 18 shows the receiver’s storage array after receiving a
sync request.

FIG. 19 shows the receiver’s storage array after new
addresses have been generated.

FIG. 20 shows a system employing distributed transmis-
sion paths.

FIG. 21 shows a plurality of link transmission tables that
can be used to route packets in the system of FIG. 20.

FIG. 22A shows a flowchart for adjusting weight value
distributions associated with a plurality oftransmission links.

FIG. 22B shows a flowchart for setting a weight value to
zero if a transmitter turns off.

47

48

US 7,418,504 B2

9

FIG. 23 shows a system employing distributed transmis-
sion paths with adjusted weight value distributions for each
path.

FIG. 24 shows an example using the system of FIG. 23.
FIG. 25 shows a conventional domain-name look-up ser-Vice.

FIG. 26 shows a system employing a DNS proxy server
with transparent VPN creation.

FIG. 27 shows steps that can be carried out to implement
transparent VPN creation based on a DNS look-up function.

FIG. 28 shows a system including a link guard function that
prevents packet overloading on a low-bandwidth link LOW
BW.

FIG. 29 shows one embodiment ofa system employing the
principles of FIG. 28.

FIG. 30 shows a system that regulates packet transmission
rates by throttling the rate at which synchronizations are
performed.

FIG. 31 shows a signaling server 3101 and a transport
server 3102 used to establish a VPN with a client computer.

FIG. 32 shows message flows relating to synchronization
protocols of FIG. 31.

FIG. 33 shows a system block diagram of a computer
network in which the “one-click” secure communication link

of the present invention is suitable for use.
FIG. 34 shows a flow diagram for installing and establish-

ing a “one-click” secure communication link over a computer
network according to the present invention.

FIG. 35 shows a flow diagram for registering a secure
domain name according to the present invention.

FIG. 36 shows a system block diagram of a computer
network in which a private connection according to the
present invention can be configured to more easily traverse a
firewall between two computer networks.

FIG. 37 shows a flow diagram for establishing a virtual
private connection that is encapsulated using an existing net-
work protocol.

DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG. 2, a secure mechanism for communicat-
ing over the internet employs a number of special routers or
servers, called TARP routers 122-127 that are similar to regu-
lar IP routers 128-132 in that each has one or more I)

addresses and uses normal IP protocol to send normal-look
ing IP packet messages, called TARP packets 140. TAR
packets 140 are identical to normal IP packet messages tha
are routed by regular IP routers 128-132 because each TAR
packet 140 contains a destination address as in a normal I
packet. However, instead of indicating a final destination ii
the destination field of the IP header, the TARP packet’s 140
IP header always points to a next-hop in a series of TAR)
router hops, or the final destination, TARP terminal 110.
Because the header of the TARP packet contains only the
next-hop destination, there is no overt indication from a1
intercepted TARP packet of the true destination of the TAR3
packet 140 since the destination could always be the next-ho 3
TARP router as well as the final destination, TARP terminal
110.

Each TARP packet’s true destination is concealed behind
an outer layer of encryption generated using a link key 146.
The link key 146 is the encryption key used for encrypted
communication between the end points (TARP terminals or
TARP routers) of a single link in the chain ofhops connecting
the originating TARP terminal 100 and the destination TARP
terminal 110. Each TARP router 122-127, using the link key
146 it uses to communicate with the previous hop in a chain,

HU

WV

10

15

20

25

30

35

40

45

50

55

60

65

10

can use the link key to reveal the true destination of a TARP
packet. To identify the link key needed to decrypt the outer
layer of encryption of a TARP packet, a receiving TARP or
routing terminal may identify the transmitting terminal
(which may indicate the link key used) by the sender field of
the clear IP header. Alternatively, this identity may be hidden
behind another layer of encryption in available bits in the
clear IP header. Each TARP router, upon receiving a TARP
message, determines if the message is a TARP message by
using authentication data in the TARP packet. This could be
recorded in available bytes in the TARP packet’s IP header.
Alternatively, TARP packets could be authenticated by
attempting to decrypt using the link key 146 and determining
if the results are as expected. The former may have compu-
tational advantages because it does not involve a decryption
process.

Once the outer layer ofdecryption is completed by a TARP
router 122-127, the TARP router determines the final desti-
nation. The system is preferably designed to cause each
TARP packet 140 to undergo a minimum number of hops to
help foil traffic analysis. The time to live counter in the IP
header of the TARP message may be used to indicate a num-
ber of TARP router hops yet to be completed. Each TARP
router then would decrement the counter and determine from

that whether it should forward the TARP packet 140 to
another TARP router 122-127 or to the destination TARP
terminal 110. If the time to live counter is zero or below zero

after decrementing, for an example ofusage, the TARP router
receiving the TARP packet 140 may forward the TARP packet
140 to the destination TARP terminal 110. If the time to live

counter is above zero after decrementing, for an example of
usage, the TARP router receiving the TARP packet 140 may
forward the TARP packet 140 to a TARP router 122-127 that
the current TARP terminal chooses at random. As a result,
each TARP packet 140 is routed through some minimum
number ofhops ofTARP routers 122-127 which are chosen at
random.

Thus, each TARP packet, irrespective of the traditional
factors determining traffic in the Internet, makes random trips
among a number of geographically disparate routers before
reaching its destination and each trip is highly likely to be
different for each packet composing a given message because
each trip is independently randomly determined as described
above. This feature is called agile routing. For reasons that
will become clear shortly, the fact that different packets take
different routes provides distinct advantages by making it
difficult for an interloper to obtain all the packets forming an
entire multi-packet message. Agile routing is combined with
another feature that furthers this purpose, a feature that
ensures that any message is broken into multiple packets.

A TARP router receives a TARP packet when an IP address
used by the TARP router coincides with the IP address in the
TARP packet’s IP header IPC. The IP address of a TARP
router, however, may not remain constant. To avoid and man-
age attacks, each TARP router, independently or under direc-
tion from another TARP terminal or router, may change its IP
address. A separate, unchangeable identifier or address is also
defined. This address, called the TARP address, is known only
to TARP routers and terminals and may be correlated at any
time by a TARP router or a TARP terminal using a Lookup
Table (LUT). When a TARP router or terminal changes its IP
address, it updates the other TARP routers and terminals
which in turn update their respective LUTs. In reality, when-
ever a TARP router looks up the address ofa destination in the
encrypted header, it must convert a TARP address to a real IP
address using its LUT.

48

49

US 7,418,504 B2

11

While every TARP router receiving a TARP packet has the
ability to determine the packet’s final destination, the mes-
sage payload is embedded behind an inner layer ofencryption
in the TARP packet that can only be unlocked using a session
key. The session key is not available to any of the TARP
routers 122-127 intervening between the originating 100 and
destination 110 TARP terminals. The session key is used to
decrypt the payloads of the TARP packets 140 permitting an
entire message to be reconstructed.

In one embodiment, communication may be made private
using link and session keys, which in turn may be shared and
used according any desired method. For example, a public
key or symmetric keys may be communicated between link or
session endpoints using a public key method. Any ofa variety
of other mechanisms for securing data to ensure that only
authorized computers can have access to the private informa-
tion in the TARP packets 140 may be used as desired.

Referring to FIG. 3a, to construct a series ofTARP packets,
a data stream 300 of IP packets 207a, 207b, 2076, etc., such
series of packets being formed by a network (IP) layer pro-
cess, is broken into a series of small sized segments. In the
present example, equal-sized segments 1-9 are defined and
used to construct a set of interleaved data packets A, B, and C.
Here it is assumed that the number of interleaved packets A,
B, and C formed is three and that the number of IP packets
207a-207c used to form the three interleaved packets A, B,
and C is exactly three. Of course, the number of IP packets
spread over a group of interleaved packets may be any con-
venient number as may be the number of interleaved packets
over which the incoming data stream is spread. The latter, the
number of interleaved packets over which the data stream is
spread, is called the interleave window.

To create a packet, the transmitting software interleaves the
normal IP packets 20711 et. seq. to form a new set of inter-
leaved payload data 320. This payload data 320 is then
encrypted using a session key to form a set of session-key-
encrypted payload data 330, each of which, A, B, and C, will
form the payload of a TARP packet. Using the IP header data,
from the original packets 20711-2070, new TARP headers IPT
are formed. The TARP headers IPT can be identical to normal
IP headers or customized in some way. In a preferred embodi-
ment, the TARP headers IPT are IP headers with added data
providing the following information required for routing and
reconstruction ofmessages, some ofwhich data is ordinarily,
or capable of being, contained in normal IP headers:

1 .A window sequence numberian identifier that indicates
where the packet belongs in the original message
sequence.

2. An interleave sequence numberian identifier that indi-
cates the interleaving sequence used to form the packet
so that the packet can be deinterleaved along with other
packets in the interleave window.

3. A time-to-live (TTL) datumiindicates the number of
TARP-router-hops to be executed before the packet
reaches its destination. Note that the TTL parameter may
provide a datum to be used in a probabilistic formula for
determining whether to route the packet to the destina-
tion or to another hop.

4. Data type identifieriindicates whether the payload con-
tains, for example, TCP or UDP data.

5. Sender’s addressiindicates the sender’s address in the
TARP network.

6. Destination addressiindicates the destination termi-
nal’s address in the TARP network.

7. Decoy/Realian indicator of whether the packet con-
tains real message data or dummy decoy data or a com-
bination.

10

15

20

25

30

35

40

45

50

55

60

65

12

Obviously, the packets going into a single interleave win-
dow must include only packets with a common destination.
Thus, it is assumed in the depicted example that the IP headers
of IP packets 20711-2070 all contain the same destination
address or at least will be received by the same terminal so
that they can be deinterleaved. Note that dummy or decoy
data or packets can be added to form a larger interleave
window than would otherwise be required by the size of a
given message. Decoy or dummy data can be added to a
stream to help foil traffic analysis by leveling the load on the
network. Thus, it may be desirable to provide the TARP
process with an ability to respond to the time of day or other
criteria to generate more decoy data during low traffic periods
so that communication bursts at one point in the Internet
cannot be tied to communication bursts at another point to
reveal the communicating endpoints.

Dummy data also helps to break the data into a larger
number of inconspicuously-sized packets permitting the
interleave window size to be increased while maintaining a
reasonable size for each packet. (The packet size can be a
single standard size or selected from a fixed range of sizes.)
One primary reason for desiring for each message to be bro-
ken into multiple packets is apparent if a chain block encryp-
tion scheme is used to form the first encryption layer prior to
interleaving. A single block encryption may be applied to a
portion, or the entirety, of a message, and that portion or
entirety then interleaved into a number of separate packets.

Referring to FIG. 3b, in an alternative mode of TARP
packet construction, a series ofIP packets are accumulated to
make up a predefined interleave window. The payloads ofthe
packets are used to construct a single block 520 for chain
block encryption using the session key. The payloads used to
form the block are presumed to be destined for the same
terminal. The block size may coincide with the interleave
window as depicted in the example embodiment of FIG. 3b.
After encryption, the encrypted block is broken into separate
payloads and segments which are interleaved as in the
embodiment of FIG. 3a. The resulting interleaved packets A,
B, and C, are then packaged as TARP packets with TARP
headers as in the Example of FIG. 3a. The remaining process
is as shown in, and discussed with reference to, FIG. 311.

Once the TARP packets 340 are formed, each entire TARP
packet 340, including the TARP header IP13 is encrypted
using the link key for communication with the first-hop-
TARP router. The first hop TARP router is randomly chosen.
A final unencrypted IP header IPC is added to each encrypted
TARP packet 340 to form a normal IP packet 360 that can be
transmitted to a TARP router. Note that the process of con-
structing the TARP packet 360 does not have to be done in
stages as described. The above description is just a useful
heuristic for describing the final product, namely, the TARP
packet.

Note that, TARP header IPT could be a completely custom
header configuration with no similarity to a normal IP header
except that it contain the information identified above. This is
so since this header is interpreted by only TARP routers.

The above scheme may be implemented entirely by pro-
cesses operating between the data link layer and the network
layer of each server or terminal participating in the TARP
system. Referring to FIG. 4, a TARP transceiver 405 can be an
originating terminal 100, a destination terminal 110, or a
TARP router 122-127. In each TARP Transceiver 405, a trans-
mitting process is generated to receive normal packets from
the Network (IP) layer and generate TARP packets for com-
munication over the network. A receiving process is gener-
ated to receive normal IP packets containing TARP packets
and generate from these normal IP packets which are “passed

49

50

US 7,418,504 B2

13

up” to the Network (IP) layer. Note that where the TARP
Transceiver 405 is a router, the received TARP packets 140
are not processed into a stream ofIP packets 415 because they
need only be authenticated as proper TARP packets and then
passed to another TARP router or a TARP destination termi-
nal 110. The intervening process, a “TARP Layer” 420, could
be combined with either the data link layer 430 or the Net-
work layer 410. In either case, it would intervene between the
data link layer 430 so that the process would receive regular
IP packets containing embedded TARP packets and “hand
up” a series of reassembled IP packets to the Network layer
410. As an example of combining the TARP layer 420 with
the data link layer 430, a program may augment the normal
processes running a communications card, for example, an
Ethernet card. Alternatively, the TARP layer processes may
form part ofa dynamically loadable module that is loaded and
executed to support communications between the network
and data link layers.

Because the encryption system described above can be
inserted between the data link and network layers, the pro-
cesses involved in supporting the encrypted communication
may be completely transparent to processes at the IP (net-
work) layer and above. The TARP processes may also be
completely transparent to the data link layer processes as
well. Thus, no operations at or above the network layer, or at
or below the data link layer, are affected by the insertion ofthe
TARP stack. This provides additional security to all processes
at or above the network layer, since the difficulty ofunautho-
rized penetration of the network layer (by, for example, a
hacker) is increased substantially. Even newly developed
servers running at the session layer leave all processes below
the session layer vulnerable to attack. Note that in this archi-
tecture, security is distributed. That is, notebook computers
used by executives on the road, for example, can communi-
cate over the Internet without any compromise in security.

Note that IP address changes made by TARP terminals and
routers can be done at regular intervals, at random intervals,
or upon detection of “attacks.” The variation of IP addresses
hinders traffic analysis that might reveal which computers are
communicating, and also provides a degree ofimmunity from
attack. The level of immunity from attack is roughly propor-
tional to the rate at which the IP address of the host is chang-
ing.

As mentioned, IP addresses may be changed in response to
attacks. An attack may be revealed, for example, by a regular
series of messages indicates that a router is being probed in
some way. Upon detection of an attack, the TARP layer pro-
cess may respond to this event by changing its IP address. To
accomplish this, the TARP process will construct a TARP-
formatted message, in the style of Internet Control Message
Protocol (ICMP) datagrams as an example; this message will
contain the machine’ s TARP address, its previous IP address,
and its new IP address. The TARP layer will transmit this
packet to at least one known TARP router; then upon receipt
and validation ofthe message, the TARP router will update its
LUT with the new IP address for the stated TARP address.

The TARP router will then format a similar message, and
broadcast it to the other TARP routers so that they may update
their LUTs. Since the total number of TARP routers on any
given subnet is expected to be relatively small, this process of
updating the LUTs should be relatively fast. It may not, how-
ever, work as well when there is a relatively large number of
TARP routers and/or a relatively large number of clients; this
has motivated a refinement of this architecture to provide
scalability; this refinement has led to a second embodiment,
which is discussed below.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

Upon detection of an attack, the TARP process may also
create a subprocess that maintains the original IP address and
continues interacting with the attacker. The latter may pro-
vide an opportunity to trace the attacker or study the attack-
er’s methods (called “fishbowling” drawing upon the analogy
ofa small fish in a fish bowl that “thinks” it is in the ocean but

is actually under captive observation). A history of the com-
munication between the attacker and the abandoned (fish-
bowled) IP address can be recorded or transmitted for human
analysis or further synthesized for purposes ofresponding in
some way.

As mentioned above, decoy or dummy data or packets can
be added to outgoing data streams by TARP terminals or
routers. In addition to making it convenient to spread data
over a larger number of separate packets, such decoy packets
can also help to level the load on inactive portions of the
Internet to help foil trafiic analysis efforts.

Decoy packets may be generated by each TARP terminal
100, 110 or each router 122-127 on some basis determined by
an algorithm. For example, the algorithm may be a random
one which calls for the generation of a packet on a random
basis when the terminal is idle. Alternatively, the algorithm
may be responsive to time of day or detection of low trafiic to
generate more decoy packets during low trafiic times. Note
that packets are preferably generated in groups, rather than
one by one, the groups being sized to simulate real messages.
In addition, so that decoy packets may be inserted in normal
TARP message streams, the background loop may have a
latch that makes it more likely to insert decoy packets when a
message stream is being received. That is, when a series of
messages are received, the decoy packet generation rate may
be increased. Alternatively, ifa large number ofdecoy packets
is received along with regular TARP packets, the algorithm
may increase the rate ofdropping ofdecoy packets rather than
forwarding them. The result of dropping and generating
decoy packets in this way is to make the apparent incoming
message size different from the apparent outgoing message
size to help foil trafiic analysis. The rate of reception of
packets, decoy or otherwise, may be indicated to the decoy
packet dropping and generating processes through perishable
decoy and regular packet counters. (A perishable counter is
one that resets or decrements its value in response to time so
that it contains a high value when it is incremented in rapid
succession and a small value when incremented either slowly
or a small number of times in rapid succession.) Note that
destination TARP terminal 110 may generate decoy packets
equal in number and size to those TARP packets received to
make it appear it is merely routing packets and is therefore not
the destination terminal.

Referring to FIG. 5, the following particular steps may be
employed in the above-described method for routing TARP
packets.

SO. A background loop operation is performed which
applies an algorithm which determines the generation of
decoy IP packets. The loop is interrupted when an
encrypted TARP packet is received.

82. The TARP packet may be probed in some way to
authenticate the packet before attempting to decrypt it
using the link key. That is, the router may determine that
the packet is an authentic TARP packet by performing a
selected operation on some data included with the clear
IP header attached to the encrypted TARP packet con-
tained in the payload. This makes it possible to avoid
perfomiing decryption on packets that are not authentic
TARP packets.

50

51

US 7,418,504 B2

15

S3. The TARP packet is decrypted to expose the destination
TARP address and an indication ofwhether the packet is
a decoy packet or part of a real message.

S4. If the packet is a decoy packet, the perishable decoy
counter is incremented.

SS. Based on the decoy generation/dropping algorithm and
the perishable decoy counter value, if the packet is a
decoy packet, the router may choose to throw it away. If
the received packet is a decoy packet and it is determined
that it should be thrown away (S6), control returns to
step SO.

S7. The TTL parameter ofthe TARP header is decremented
and it is determined if the TTL parameter is greater thanzero.

SS. If the TTL parameter is greater than zero, a TARP
address is randomly chosen from a list of TARP
addresses maintained by the router and the link key and
IP address corresponding to that TARP address memo-
rized for use in creating a new IP packet containing the
TARP packet.

S9. If the TTL parameter is zero or less, the link key and IP
address corresponding to the TARP address of the des-
tination are memorized for use in creating the new IP
packet containing the TARP packet.

$10. The TARP packet is encrypted using the memorized
link key.

81 1. An IP header is added to the packet that contains the
stored IP address, the encrypted TARP packet wrapped
with an IP header, and the completed packet transmitted
to the next hop or destination.

Referring to FIG. 6, the following particular steps may be
employed in the above-described method for generating
TARP packets.

S20. A background loop operation applies an algorithm
that determines the generation of decoy IP packets. The
loop is interrupted when a data stream containing IP
packets is received for transmission.

S21. The received IP packets are grouped into a set con-
sisting of messages with a constant IP destination
address. The set is further broken down to coincide with
a maximum size of an interleave window The set is

encrypted, and interleaved into a set of payloads des-
tined to become TARP packets.

S22. The TARP address corresponding to the IP address is
determined from a lookup table and stored to generate
the TARP header. An initial TTL count is generated and
stored in the header. The TTL count may be random with
minimum and maximum values or it may be fixed or
determined by some other parameter.

S23. The window sequence numbers and interleave
sequence numbers are recorded in the TARP headers of
each packet.

S24. One TARP router address is randomly chosen for each
TARP packet and the IP address corresponding to it
stored for use in the clear lP header. The link key corre-
sponding to this router is identified and used to encrypt
TARP packets containing interleaved and encrypted
data and TARP headers.

S25. A clear lP header with the first hop router’s real IP
address is generated and added to each of the encrypted
TARP packets and the resulting packets.

Referring to FIG. 7, the following particular steps may be
employed in the above-described method for receiving TARP
packets.

S40. A background loop operation is performed which
applies an algorithm which determines the generation of

10

15

20

25

30

35

40

45

50

55

60

65

51

16

decoy IP packets. The loop is interrupted when an
encrypted TARP packet is received.

S42. The TARP packet may be probed to authenticate the
packet before attempting to decrypt it using the link key.

S43. The TARP packet is decrypted with the appropriate
link key to expose the destination TARP address and an
indication ofwhether the packet is a decoy packet or part
of a real message.

S44. If the packet is a decoy packet, the perishable decoy
counter is incremented.

S45. Based on the decoy generation/dropping algorithm
and the perishable decoy counter value, if the packet is a
decoy packet, the receiver may choose to throw it away.

S46. The TARP packets are cached until all packets form-
ing an interleave window are received.

S47. Once all packets ofan interleave window are received,
the packets are deinterleaved.

S48. The packets block of combined packets defining the
interleave window is then decrypted using the session
key.

S49. The decrypted block is then divided using the window
sequence data and the lPT headers are converted into
normal ch headers. The window sequence numbers are
integrated in the lPC headers.

$50. The packets are then handed up to the 1P layer pro-cesses.

1. Scalability Enhancements

The IP agility feature described above relies on the ability
to transmit IP address changes to all TARP routers. The
embodiments including this feature will be referred to as
“boutique” embodiments due to potential limitations in scal-
ing these features up for a large network, such as the lntemet.
(The “boutique” embodiments would, however, be robust for
use in smaller networks, such as small virtual private net-
works, for example). One problem with the boutique embodi-
ments is that if IP address changes are to occur frequently, the
message trafiic required to update all routers sufficiently
quickly creates a serious burden on the Internet when the
TARP router and/or client population gets large. The band-
width burden added to the networks, for example in lCMP
packets, that would be used to update all the TARP routers
could overwhelm the lntemet for a large scale implementa-
tion that approached the scale of the Internet. In other words,
the boutique system’s scalability is limited.

A system can be constructed which trades some of the
features of the above embodiments to provide the benefits of
IP agility without the additional messaging burden. This is
accomplished by IP address-hopping according to shared
algorithms that govern IP addresses used between links par-
ticipating in communications sessions between nodes such as
TARP nodes. (Note that the 1P hopping technique is also
applicable to the boutique embodiment.) The IP agility fea-
ture discussed with respect to the boutique system can be
modified so that it becomes decentralized under this scalable

regime and governed by the above-described shared algo-
rithm. Other features of the boutique system may be com-
bined with this new type of lP-agility.

The new embodiment has the advantage of providing lP
agility governed by a local algorithm and set of IP addresses
exchanged by each communicating pair of nodes. This local
governance is session-independent in that it may govern com-
munications between a pair ofnodes, irrespective of the ses-
sion or end points being transferred between the directly
communicating pair of nodes.

52

US 7,418,504 B2

17

In the scalable embodiments, blocks of IP addresses are

allocated to each node in the network. (This scalability will
increase in the future, when Internet Protocol addresses are

increased to 128-bit fields, vastly increasing the number of
distinctly addressable nodes). Each node can thus use any of
the IP addresses assigned to that node to communicate with
other nodes in the network. Indeed, each pair of communi-
cating nodes can use a plurality of source IP addresses and
destination IP addresses for communicating with each other.

Each communicating pair ofnodes in a chain participating
in any session stores two blocks of IP addresses, called net-
blocks, and an algorithm and randomization seed for select-
ing, from each netblock, the next pair ofsource/destination IP
addresses that will be used to transmit the next message. In
other words, the algorithm governs the sequential selection of
IP-address pairs, one sender and one receiver IP address, from
each netblock. The combination of algorithm, seed, and net-
block (IP address block) will be called a “hopblock.”A router
issues separate transmit and receive hopblocks to its clients.
The send address and the receive address of the IP header of

each outgoing packet sent by the client are filled with the send
and receive IP addresses generated by the algorithm. The
algorithm is “clocked” (indexed) by a counter so that each
time a pair is used, the algorithm turns out a new transmit pair
for the next packet to be sent.

The router’s receive hopblock is identical to the client’s
transmit hopblock. The router uses the receive hopblock to
predict what the send and receive IP address pair for the next
expected packet from that client will be. Since packets can be
received out oforder, it is not possible for the router to predict
with certainty what IP address pair will be on the next sequen-
tial packet. To account for this problem, the router generates
a range of predictions encompassing the number of possible
transmitted packet send/receive addresses, of which the next
packet received could leap ahead. Thus, if there is a vanish—
ingly small probability that a given packet will arrive at the
router ahead of 5 packets transmitted by the client before the
given packet, then the router can generate a series of 6 send/
receive IP address pairs (or “hop window”) to compare with
the next received packet. When a packet is received, it is
marked in the hop window as such, so that a second packet
with the same IP address pair will be discarded. If an out-of-
sequence packet does not arrive within a predetermined tim—
eout period, it can be requested for retransmission or simply
discarded from the receive table, depending upon the protocol
in use for that communications session, or possibly by con-
vention.

When the router receives the client’s packet, it compares
the send and receive IP addresses of the packet with the next
N predicted send and receive IP address pairs and rejects the
packet if it is not a member of this set. Received packets that
do not have the predicted source/destination IP addresses
falling with the window are rejected, thus thwarting possible
hackers. (With the number of possible combinations, even a
fairly large window would be hard to fall into at random.) If it
is a member of this set, the router accepts the packet and
processes it further. This link-based IP-hopping strategy,
referred to as “IHOP,” is a network element that stands on its
own and is not necessarily accompanied by elements of the
boutique system described above. If the routing agility fea-
ture described in connection with the boutique embodiment is
combined with this link-based IP-hopping strategy, the rout-
er’s next step would be to decrypt the TARP header to deter-
mine the destination TARP router for the packet and deter-
mine what should be the next hop for the packet. The TARP
router would then forward the packet to a random TARP

5

10

15

20

25

30

35

40

45

50

55

60

65

18
router or the destination TARP router with which the source

TARP router has a link-based IP hopping communication
established.

FIG. 8 shows how a client computer 801 and a TARP router
811 can establish a secure session. When client 801 seeks to

establish an IHOP session with TARP router 811, the client
801 sends “secure synchronization” request (“SSYN”)
packet 821 to the TARP router 811. This SYN packet 821
contains the client’s 801 authentication token, and may be
sent to the router 811 in an encrypted format. The source and
destination IP numbers on the packet 821 are the client’ s 801
current fixed IP address, and a “known” fixed IP address for

the router 811. (For security purposes, it may be desirable to
reject any packets from outside of the local network that are
destined for the router’s known fixed IP address.) Upon
receipt and validation of the client’s 801 SSYN packet 821,
the router 811 responds by sending an encrypted “secure
synchronization acknowledgment” (“SSYN ACK”) 822 to
the client 801. This SSYN ACK 822 will contain the transmit

and receive hopblocks that the client 801 will use when com-
municating with the TARP router 811. The client 801 will
acknowledge the TARP router’s 811 response packet 822 by
generating an encrypted SSYN ACK ACK packet 823 which
will be sent from the client’s 801 fixed IP address and to the
TARP router’s 811 known fixed IP address. The client 801

will simultaneously generate a SSYN ACK ACK packet; this
SSYN ACK packet, referred to as the Secure Session Initia-
tion (SSI) packet 824, will be sent with the first {sender,
receiver} IP pair in the client’s transmit table 921 (FIG. 9), as
specified in the transmit hopblock provided by the TARP
router 811 in the SSYN ACK packet 822. The TARP router
811 will respond to the SSI packet 824 with an SSI ACK
packet 825, which will be sent with the first {sender, receiver}
IP pair in the TARP router’s transmit table 923. Once these
packets have been successfully exchanged, the secure com-
munications session is established, and all further secure
communications between the client 801 and the TARP router

811 will be conducted via this secure session, as long as
synchronization is maintained. Ifsynchronization is lost, then
the client 801 and TARP router 802 may re-establish the
secure session by the procedure outlined in FIG. 8 and
described above.

While the secure session is active, both the client 901 and
TARP router 91 1 (FIG. 9) will maintain their respective trans-
mit tables 921, 923 and receive tables 922, 924, as provided
by the TARP router during session synchronization 822. It is
important that the sequence ofIP pairs in the client’s transmit
table 921 be identical to those in the TARP router’s receive

table 924; similarly, the sequence of IP pairs in the client’s
receive table 922 must be identical to those in the router’s

transmit table 923. This is required for the session synchro-
nization to be maintained. The client 901 need maintain only
one transmit table 921 and one receive table 922 during the
course of the secure session. Each sequential packet sent by
the client 901 will employ the next {send, receive} IP address
pair in the transmit table, regardless of TCP or UDP session.
The TARP router 911 will expect each packet arriving from
the client 901 to bear the next IP address pair shown in its
receive table.

Since packets can arrive out of order, however, the router
911 can maintain a “look ahead” buffer in its receive table,
and will mark previously-received IP pairs as invalid for
future packets; any future packet containing an IP pair that is
in the look-ahead buffer but is marked as previously received
will be discarded. Communications from the TARP router

911 to the client 901 are maintained in an identical manner; in
particular, the router 911 will select the next IP address pair

52

53

US 7,418,504 B2

19

from its transmit table 923 when constructing a packet to send
to the client 901, and the client 901 will maintain a look-ahead
buffer ofexpected IP pairs on packets that it is receiving. Each
TARP router will maintain separate pairs of transmit and
receive tables for each client that is currently engaged in a
secure session with or through that TARP router.

While clients receive their hopblocks from the first server
linking them to the Internet, routers exchange hopblocks.
When a router establishes a link-based IP-hopping commu-
nication regime with another router, each router of the pair
exchanges its transmit hopblock. The transmit hopblock of
each router becomes the receive hopblock of the other router.
The communication between routers is governed as described
by the example of a client sending a packet to the first router.

While the above strategy works fine in the IP milieu, many
local networks that are connected to the Internet are Ethernet

systems. In Ethernet, the IP addresses of the destination
devices must be translated into hardware addresses, and vice
versa, using known processes (“address resolution protocol,”
and “reverse address resolution protocol”). However, if the
link-based IP-hopping strategy is employed, the correlation
process would become explosive and burdensome. An alter-
native to the link-based IP hopping strategy may be employed
within an Ethernet network. The solution is to provide that the
node linking the Internet to the Ethernet (call it the border
node) use the link-based IP-hopping communication regime
to communicate with nodes outside the Ethernet LAN. Within

the Ethernet LAN, each TARP node would have a single IP
address which would be addressed in the conventional way.
Instead of comparing the {sender, receiver} IP address pairs
to authenticate a packet, the intra-LAN TARP node would use
one ofthe IP header extension fields to do so. Thus, the border
node uses an algorithm shared by the intra-LAN TARP node
to generate a symbol that is stored in the free field in the IP
header, and the intra-LAN TARP node generates a range of
symbols based on its prediction ofthe next expected packet to
be received from that particular source IP address. The packet
is rejected if it does not fall into the set of predicted symbols
(for example, numerical values) or is accepted if it does.
Communications from the intra-LAN TARP node to the bor-

der node are accomplished in the same manner, though the
algorithm will necessarily be different for security reasons.
Thus, each of the communicating nodes will generate trans-
mit and receive tables in a similar manner to that ofFIG. 9; the
intra-LAN TARP nodes transmit table will be identical to the

border node’ s receive table, and the intra-LAN TARP node’s
receive table will be identical to the border node’s transmit
table.

The algorithm used for IP address-hopping can be any
desired algorithm. For example, the algorithm can be a given
pseudo-random number generator that generates numbers of
the range covering the allowed IP addresses with a given seed.
Alternatively, the session participants can assume a certain
type ofalgorithm and specify simply a parameter for applying
the algorithm. For example the assumed algorithm could be a
particular pseudo-random number generator and the session
participants could simply exchange seed values.

Note that there is no permanent physical distinction
between the originating and destination terminal nodes.
Either device at either end point can initiate a synchronization
ofthe pair. Note also that the authentication/synchronization-
request (and acknowledgment) and hopblock-exchange may
all be served by a single message so that separate message
exchanges may not be required.

As another extension to the stated architecture, multiple
physical paths can be used by a client, in order to provide link
redundancy and further thwart attempts at denial of service

10

15

20

25

30

35

40

45

50

55

60

65

20

and traffic monitoring. As shown in FIG. 10, for example,
client 1001 can establish three simultaneous sessions with

each of three TARP routers provided by different ISPs 1011,
1012, 1013. As an example, the client 1001 can use three
different telephone lines 1021, 1022, 1023 to connect to the
ISPs, or two telephone lines and a cable modem, etc. In this
scheme, transmitted packets will be sent in a random fashion
among the different physical paths. This architecture pro-
vides a high degree of communications redundancy, with
improved immunity from denial-of-service attacks and traffic
monitoring.

2. Further Extensions

The following describes various extensions to the tech-
niques, systems, and methods described above. As described
above, the security of communications occurring between
computers in a computer network (such as the lntemet, an
Ethernet, or others) can be enhanced by using seemingly
random source and destination Internet Protocol (IP)
addresses for data packets transmitted over the network. This
feature prevents eavesdroppers from determining which com-
puters in the network are communicating with each other
while permitting the two communicating computers to easily
recognize whether a given received data packet is legitimate
or not. In one embodiment ofthe above-described systems, an
IP header extension field is used to authenticate incoming
packets on an Ethernet.

Various extensions to the previously described techniques
described herein include: (1) use of hopped hardware or
“MAC” addresses in broadcast type network; (2) a self-syn-
chronization technique that permits a computer to automati-
cally regain synchronization with a sender; (3) synchroniza-
tion algorithms that allow transmitting and receiving
computers to quickly re-establish synchronization in the
event of lost packets or other events; and (4) a fast-packet
rejection mechanism for rejecting invalid packets. Any or all
of these extensions can be combined with the features

described above in any of various ways.

A. Hardware Address Hopping

Internet protocol-based communications techniques on a
LAN40r across any dedicated physical mediumitypically
embed the IP packets within lower-level packets, often
referred to as “frames.” As shown in FIG. 11, for example, a
first Ethernet frame 1150 comprises a frame header 1101 and
two embedded IP packets IPl and IP2, while a second Eth-
ernet frame 1160 comprises a different frame header 1104
and a single IP packet IP3. Each frame header generally
includes a source hardware address 1101A and a destination

hardware address 10B; other well-known fields in frame

headers are omitted from FIG. 11 for clarity. Two hardware
nodes communicating over a physical communication chan-
nel insert appropriate source and destination hardware
addresses to indicate which nodes on the channel or network
should receive the frame.

It may be possible for a nefarious listener to acquire infor-
mation about the contents ofa frame and/or its communicants

by examining frames on a local network rather than (or in
addition to) the IP packets themselves. This is especially true
in broadcast media, such as Ethernet, where it is necessary to
insert into the frame header the hardware address of the

machine that generated the frame and the hardware address of
the machine to which frame is being sent. All nodes on the
network can potentially “see” all packets transmitted across
the network. This can be a problem for secure communica-

53

54

US 7,418,504 B2

21

tions, especially in cases where the communicants do not
want for any third party to be able to identify who is engaging
in the information exchange. One way to address this problem
is to push the address-hopping scheme down to the hardware
layer. In accordance with various embodiments of the inven-
tion, hardware addresses are “hopped” in a manner similar to
that used to change IP addresses, such that a listener cannot
determine which hardware node generated a particular mes-
sage nor which node is the intended recipient.

FIG. 12A shows a system in which Media Access Control
(“MAC”) hardware addresses are “hopped” in order to
increase security over a network such as an Ethernet. While
the description refers to the exemplary case of an Ethernet
environment, the inventive principles are equally applicable
to other types ofcommunications media. In the Ethernet case,
the MAC address of the sender and receiver are inserted into

the Ethernet frame and can be observed by anyone on the
LAN who is within the broadcast range for that frame. For
secure communications, it becomes desirable to generate
frames with MAC addresses that are not attributable to any
specific sender or receiver.

As shown in FIG. 12A, two computer nodes 1201 and 1202
communicate over a communication channel such as an Eth-

ernet. Each node executes one or more application programs
1203 and 1218 that communicate by transmitting packets
through communication software 1204 and 1217, respec-
tively. Examples of application programs include video con-
ferencing, e-mail, word processing programs, telephony, and
the like. Communication software 1204 and 1217 can com-

prise, for example, an OSI layered architecture or “stack” that
standardizes various services provided at different levels of
functionality.

The lowest levels of communication software 1204 and

1217 communicate with hardware components 1206 and
1214 respectively, each of which can include one or more
registers 1207 and 1215 that allow the hardware to be recon-
figured or controlled in accordance with various communica-
tion protocols. The hardware components (an Ethernet net-
work interface card, for example) communicate with each
other over the communication medium. Each hardware com-

ponent is typically pre-assigned a fixed hardware address or
MAC number that identifies the hardware component to other
nodes on the network. One or more interface drivers control

the operation ofeach card and can, for example, be configured
to accept or reject packets from certain hardware addresses.
As will be described in more detail below, various embodi-
ments of the inventive principles provide for “hopping” dif-
ferent addresses using one or more algorithms and one or
more moving windows that track a range ofvalid addresses to
validate received packets. Packets transmitted according to
one or more of the inventive principles will be generally
referred to as “secure” packets or “secure communications”
to differentiate them from ordinary data packets that are trans-
mitted in the clear using ordinary, machine-correlated
addresses.

One straightforward method ofgenerating non-attributable
MAC addresses is an extension of the IP hopping scheme. In
this scenario, two machines on the same LAN that desire to
communicate in a secure fashion exchange random-number
generators and seeds, and create sequences of quasi-random
MAC addresses for synchronized hopping. The implementa-
tion and synchronization issues are then similar to that of IP
hopping.

This approach, however, runs the risk of using MAC
addresses that are currently active on the LANiwhich, in
turn, could interrupt communications for those machines.
Since an Ethernet MAC address is at present 48 bits in length,

10

15

20

25

30

35

40

45

50

55

60

65

22

the chance of randomly misusing an active MAC address is
actually quite small. However, ifthat figure is multiplied by a
large number of nodes (as would be found on an extensive
LAN), by a large number offrames (as might be the case with
packet voice or streaming video), and by a large number of
concurrent Virtual Private Networks (VPNs), then the chance
that a non-secure machine’s MAC address could be used in an

address-hopped frame can become non-trivial. In short, any
scheme that runs even a small risk of interrupting communi-
cations for other machines on the LAN is bound to receive

resistance from prospective system administrators. Neverthe-
less, it is technically feasible, and can be implemented with-
out risk on a LAN on which there is a small number of

machines, or if all of the machines on the LAN are engaging
in MAC-hopped communications.

Synchronized MAC address hopping may incur some
overhead in the course of session establishment, especially if
there are multiple sessions or multiple nodes involved in the
communications. A simpler method of randomizing MAC
addresses is to allow each node to receive and process every
incident frame on the network. Typically, each network inter-
face driver will check the destination MAC address in the

header of every incident frame to see if it matches that
machine’s MAC address; if there is no match, then the frame
is discarded. In one embodiment, however, these checks can
be disabled, and every incident packet is passed to the TARP
stack for processing. This will be referred to as “promiscu-
ous” mode, since every incident frame is processed. Promis-
cuous mode allows the sender to use completely random,
unsynchronized MAC addresses, since the destination
machine is guaranteed to process the frame. The decision as to
whether the packet was truly intended for that machine is
handled by the TARP stack, which checks the source and
destination IP addresses for a match in its IP synchronization
tables. Ifno match is found, the packet is discarded; if there is
a match, the packet is unwrapped, the inner header is evalu-
ated, and if the inner header indicates that the packet is des-
tined for that machine then the packet is forwarded to the IP
stackwtherwise it is discarded.

One disadvantage of purely-random MAC address hop-
ping is its impact on processing overhead; that is, since every
incident frame must be processed, the machine’s CPU is
engaged considerably more often than if the network inter-
face driver is discriminating and rejecting packets unilater-
ally. A compromise approach is to select either a single fixed
MAC address or a small number of MAC addresses (e.g., one
for each virtual private network on an Ethernet) to use for
MAC-hopped communications, regardless of the actual
recipient for which the message is intended. In this mode, the
network interface driver can check each incident frame

against one (or a few) pre-established MAC addresses,
thereby freeing the CPU from the task of physical-layer
packet discrimination. This scheme does not betray any use-
ful information to an interloper on the LAN; in particular,
every secure packet can already be identified by a unique
packet type in the outer header. However, since all machines
engaged in secure communications would either be using the
same MAC address, or be selecting from a small pool of
predetermined MAC addresses, the association between a
specific machine and a specific MAC address is effectively
broken.

In this scheme, the CPU will be engaged more often than it
would be in non-secure communications (or in synchronized
MAC address hopping), since the network interface driver
cannot always unilaterally discriminate between secure pack-
ets that are destined for that machine, and secure packets from
other VPNs. However, the non-secure traffic is easily elimi-

54

55

US 7,418,504 B2

23

nated at the network interface, thereby reducing the amount
of processing required of the CPU. There are boundary con-
ditions where these statements would not hold, of coursei
e.g., if all of the traffic on the LAN is secure traffic, then the
CPU would be engaged to the same degree as it is in the
purely-random address hopping case; alternatively, if each
VPN on the LAN uses a different MAC address, then the
network interface can perfectly discriminate secure frames
destined for the local machine from those constituting other
VPNs. These are engineering tradeoffs that might be best
handled by providing administrative options for the users
when installing the software and/or establishing VPNs.

Even in this scenario, however, there still remains a slight
risk of selecting MAC addresses that are being used by one or
more nodes on the LAN. One solution to this problem is to
formally assign one address or a range of addresses for use in
MAC-hopped communications. This is typically done via an
assigned numbers registration authority; e.g., in the case of
Ethernet, MAC address ranges are assigned to vendors by the
Institute of Electrical and Electronics Engineers (IEEE). A
formally-assigned range of addresses would ensure that
secure frames do not conflict with any properly-configured
and properly-functioning machines on the LAN.

Reference will now be made to FIGS. 12A and 12B in order

to describe the many combinations and features that follow
the inventive principles. As explained above, two computer
nodes 1201 and 1202 are assumed to be communicating over
a network or communication medium such as an Ethernet. A

communication protocol in each node (1204 and 1217,
respectively) contains a modified element 1205 and 1216 that
performs certain functions that deviate from the standard
communication protocols. In particular, computer node 1201
implements a first “hop” algorithm 1208X that selects seem-
ingly random source and destination IP addresses (and, in one
embodiment, seemingly random IP header discriminator
fields) in order to transmit each packet to the other computer
node. For example, node 1201 maintains a transmit table
1208 containing triplets of source (S), destination (D), and
discriminator fields (DS) that are inserted into outgoing IP
packet headers. The table is generated through the use of an
appropriate algorithm (e.g., a random number generator that
is seeded with an appropriate seed) that is known to the
recipient node 1202. As each new IP packet is formed, the
next sequential entry out ofthe sender’s transmit table 1208 is
used to populate the IP source, IP destination, and IP header
extension field (e.g., discriminator field). It will be appreci-
ated that the transmit table need not be created in advance but

could instead be created on-the-fly by executing the algorithm
when each packet is formed.

At the receiving node 1202, the same IP hop algorithm
1222X is maintained and used to generate a receive table
1222 that lists valid triplets of source IP address, destination
IP address, and discriminator field. This is shown by virtue of
the first five entries of transmit table 1208 matching the sec-
ond five entries of receive table 1222. (The tables may be
slightly offset at any particular time due to lost packets, mis-
ordered packets, or transmission delays). Additionally, node
1202 maintains a receive window W3 that represents a list of
valid IP source, IP destination, and discriminator fields that
will be accepted when received as part of an incoming IP
packet. As packets are received, window W3 slides down the
list ofvalid entries, such that the possible valid entries change
over time. Two packets that arrive out of order but are never-
theless matched to entries within window W3 will be

accepted; those falling outside ofwindow W3 will be rejected
as invalid. The length of window W3 can be adjusted as
necessary to reflect network delays or other factors.

10

15

20

25

30

35

40

45

50

55

60

65

24
Node 1202 maintains a similar transmit table 1221 for

creating IP packets and frames destined for node 1201 using
a potentially different hopping algorithm 1221X, and node
1201 maintains a matching receive table 1209 using the same
algorithm 1209X. As node 1202 transmits packets to node
1201 using seemingly random IP source, IP destination, and/
or discriminator fields, node 1201 matches the incoming
packet values to those falling within window W1 maintained
in its receive table. In effect, transmit table 1208 ofnode 1201
is synchronized (i.e., entries are selected in the same order) to
receive table 1222 ofreceiving node 1202. Similarly, transmit
table 1221 ofnode 1202 is synchronized to receive table 1209
of node 1201. It will be appreciated that although a common
algorithm is shown for the source, destination and discrimi-
nator fields in FIG. 12A (using, e.g., a different seed for each
of the three fields), an entirely different algorithm could in
fact be used to establish values for each of these fields. It will

also be appreciated that one or two of the fields can be
“hopped” rather than all three as illustrated.

In accordance with another aspect of the invention, hard-
ware or “MAC” addresses are hopped instead ofor in addition
to IP addresses and/or the discriminator field in order to

improve security in a local area or broadcast-type network. To
that end, node 1201 further maintains a transmit table 1210
using a transmit algorithm 1210X to generate source and
destination hardware addresses that are inserted into frame

headers (e.g., fields 1101A and 1101B in FIG. 11) that are
synchronized to a corresponding receive table 1224 at node
1202. Similarly, node 1202 maintains a different transmit
table 1223 containing source and destination hardware
addresses that is synchronized with a corresponding receive
table 1211 at node 1201. In this manner, outgoing hardware
frames appear to be originating from and going to completely
random nodes on the network, even though each recipient can
determine whether a given packet is intended for it or not. It
will be appreciated that the hardware hopping feature can be
implemented at a different level in the communications pro-
tocol than the IP hopping feature (e.g., in a card driver or in a
hardware card itself to improve performance).

FIG. 12B shows three different embodiments or modes that

can be employed using the aforementioned principles. In a
first mode referred to as “promiscuous” mode, a common
hardware address (e.g., a fixed address for source and another
for destination) or else a completely random hardware
address is used by all nodes on the network, such that a
particular packet cannot be attributed to any one node. Each
node must initially accept all packets containing the common
(or random) hardware address and inspect the IP addresses or
discriminator field to determine whether the packet is
intended for that node. In this regard, either the IP addresses
or the discriminator field or both can be varied in accordance

with an algorithm as described above. As explained previ-
ously, this may increase each node’s overhead-since addi-
tional processing is involved to determine whether a given
packet has valid source and destination hardware addresses.

In a second mode referred to as “promiscuous per VP ”
mode, a small set of fixed hardware addresses are used, with
a fixed source/destination hardware address used for all nodes

communicating over a virtual private network. For example,
if there are six nodes on an Ethernet, and the network is to be
split up into two private virtual networks such that nodes on
one VPN can communicate with only the other two nodes on
its own VPN, then two sets of hardware addresses could be
used: one set for the first VPN and a second set for the second
VPN. This would reduce the amount of overhead involved in

checking for valid frames since only packets arriving from the
designated VPN would need to be checked. IP addresses and

55

56

US 7,418,504 B2

25

one or more discriminator fields could still be hopped as
before for secure communication within the VPN. Of course,
this solution compromises the anonymity ofthe VPNs (i .e., an
outsider can easily tell what traffic belongs in which VPN,
though he cannot correlate it to a specific machine/person). It
also requires the use of a discriminator field to mitigate the
vulnerability to certain types of DoS attacks. (For example,
without the discriminator field, an attacker on the LAN could
stream frames containing the MAC addresses being used by
the VPN; rejecting those frames could lead to excessive pro-
cessing overhead. The discriminator field would provide a
low-overhead means of rejecting the false packets.)

In a third mode referred to as “hardware hopping” mode,
hardware addresses are varied as illustrated in FIG. 12A, such
that hardware source and destination addresses are changed
constantly in order to provide non-attributable addressing.
Variations on these embodiments are of course possible, and
the invention is not intended to be limited in any respect by
these illustrative examples.

B. Extending the Address Space

Address hopping provides security and privacy. However,
the level ofprotection is limited by the number ofaddresses in
the blocks being hopped. A hopblock denotes a field or fields
modulated on a packet-wise basis for the purpose of provid-
ing a VPN. For instance, if two nodes communicate with IP
address hopping using hopblocks of4 addresses (2 bits) each,
there would be 16 possible address-pair combinations. A
window of size 16 would result in most address pairs being
accepted as valid most of the time. This limitation can be
overcome by using a discriminator field in addition to or
instead of the hopped address fields. The discriminator field
would be hopped in exactly the same fashion as the address
fields and it would be used to determine whether a packet
should be processed by a receiver.

Suppose that two clients, each using four-bit hopblocks,
would like the same level of protection afforded to clients
communicating via IP hopping between two A blocks (24
address bits eligible for hopping). A discriminator field of 20
bits, used in conjunction with the 4 address bits eligible for
hopping in the IP address field, provides this level of protec-
tion. A 24-bit discriminator field would provide a similar level
ofprotection ifthe address fields were not hopped or ignored.
Using a discriminator field offers the following advantages:
(1) an arbitrarily high level ofprotection can be provided, and
(2) address hopping is unnecessary to provide protection.
This may be important in environments where address hop-
ping would cause routing problems.

C. Synchronization Techniques

It is generally assumed that once a sending node and
receiving node have exchanged algorithms and seeds (or
similar information sufficient to generate quasi-random
source and destination tables), subsequent communication
between the two nodes will proceed smoothly. Realistically,
however, two nodes may lose synchronization due to network
delays or outages, or other problems. Consequently, it is
desirable to provide means for re-establishing synchroniza-
tion between nodes in a network that have lost synchroniza-
tion.

One possible technique is to require that each node provide
an acknowledgment upon successful receipt of each packet
and, ifno acknowledgment is received within a certain period
of time, to re-send the unacknowledged packet. This
approach, however, drives up overhead costs and may be

10

15

20

25

30

35

40

45

50

55

60

65

26

prohibitive in high-throughput environments such as stream-
ing video or audio, for example.

A different approach is to employ an automatic synchro-
nizing technique that will be referred to herein as “self-syn-
chronization.” In this approach, synchronization information
is embedded into each packet, thereby enabling the receiver to
re-synchronize itself upon receipt of a single packet if it
determines that is has lost synchronization with the sender. (If
communications are already in progress, and the receiver
determines that it is still in sync with the sender, then there is
no need to re-synchronize.) A receiver could detect that it was
out of synchronization by, for example, employing a “dead-
man” timer that expires after a certain period oftime, wherein
the timer is reset with each valid packet. A time stamp could
be hashed into the public sync field (see below) to preclude
packet-retry attacks.

In one embodiment, a “sync field” is added to the header of
each packet sent out by the sender. This sync field could
appear in the clear or as part of an encrypted portion of the
packet. Assuming that a sender and receiver have selected a
random-number generator (RNG) and seed value, this com-
bination of RNG and seed can be used to generate a random-
number sequence (RNS). The RNS is then used to generate a
sequence of source/destination IP pairs (and, if desired, dis-
criminator fields and hardware source and destination

addresses), as described above. It is not necessary, however,
to generate the entire sequence (or the first N—l values) in
order to generate the Nth random number in the sequence; if
the sequence index N is known, the random value correspond-
ing to that index can be directly generated (see below). Dif-
ferent RNGs (and seeds) with different fundamental periods
could be used to generate the source and destination IP
sequences, but the basic concepts would still apply. For the
sake of simplicity, the following discussion will assume that
IP source and destination address pairs (only) are hopped
using a single RNG sequencing mechanism.

In accordance with a “self-synchronization” feature, a sync
field in each packet header provides an index (i.e., a sequence
number) into the RNS that is being used to generate IP pairs.
Plugging this index into the RNG that is being used to gen-
erate the RNS yields a specific random number value, which
in turn yields a specific IP pair. That is, an IP pair can be
generated directly from knowledge of the RNG, seed, and
index number; it is not necessary, in this scheme, to generate
the entire sequence of random numbers that precede the
sequence value associated with the index number provided.

Since the communicants have presumably previously
exchanged RNGs and seeds, the only new information that
must be provided in order to generate an IP pair is the
sequence number. If this number is provided by the sender in
the packet header, then the receiver need only plug this num-
ber into the RNG in order to generate an IP pairiand thus
verify that the IP pair appearing in the header of the packet is
valid. In this scheme, if the sender and receiver lose synchro-
nization, the receiver can immediately re-synchronize upon
receipt of a single packet by simply comparing the IP pair in
the packet header to the IP pair generated from the index
number. Thus, synchronized communications can be
resumed upon receipt of a single packet, making this scheme
ideal for multicast communications. Taken to the extreme, it
could obviate the need for synchronization tables entirely;
that is, the sender and receiver could simply rely on the index
number in the sync field to validate the IP pair on each packet,
and thereby eliminate the tables entirely.

The aforementioned scheme may have some inherent secu-
rity issues associated with it namely, the placement of the
sync field. If the field is placed in the outer header, then an

56

57

US 7,418,504 B2

27

interloper could observe the values of the field and their
relationship to the IP stream. This could potentially compro-
mise the algorithm that is being used to generate the IP-
address sequence, which would compromise the security of
the communications. If, however, the value is placed in the
inner header, then the sender must decrypt the inner header
before it can extract the sync value and validate the IP pair;
this opens up the receiver to certain types ofdenial-of-service
(DoS) attacks, such as packet replay. That is, if the receiver
must decrypt a packet before it can validate the IP pair, then it
could potentially be forced to expend a significant amount of
processing on decryption if an attacker simply retransmits
previously valid packets. Other attack methodologies are pos-
sible in this scenario.

A possible compromise between algorithm security and
processing speed is to split up the sync value between an inner
(encrypted) and outer (unencrypted) header. That is, if the
sync value is sufficiently long, it couldpotentially be split into
a rapidly-changing part that can be viewed in the clear, and a
fixed (or very slowly changing) part that must be protected.
The part that can be viewed in the clear will be called the
“public sync” portion and the part that must be protected will
be called the “private sync” portion.

Both the public sync and private sync portions are needed
to generate the complete sync value. The private portion,
however, can be selected such that it is fixed or will change
only occasionally. Thus, the private sync value can be stored
by the recipient, thereby obviating the need to decrypt the
header in order to retrieve it. If the sender and receiver have

previously agreed upon the frequency with which the private
part of the sync will change, then the receiver can selectively
decrypt a single header in order to extract the new private sync
ifthe communications gap that has led to lost synchronization
has exceeded the lifetime of the previous private sync. This
should not represent a burdensome amount ofdecryption, and
thus should not open up the receiver to denial-of-service
attack simply based on the need to occasionally decrypt a
single header.

One implementation of this is to use a hashing function
with a one-to-one mapping to generate the private and public
sync portions from the sync value. This implementation is
shown in FIG. 13, where (for example) a first ISP 1302 is the
sender and a second ISP 1303 is the receiver. (Other alterna-
tives are possible from FIG. 13.) A transmitted packet com-
prises a public or “outer” header 1305 that is not encrypted,
and a private or “inner” header 1306 that is encrypted using
for example a link key. Outer header 1305 includes a public
sync portion while im1er header 1306 contains the private
sync portion. A receiving node decrypts the inner header
using a decryption function 1307 in order to extract the pri-
vate sync portion. This step is necessary only ifthe lifetime of
the currently buffered private sync has expired. (If the cur-
rently-buffered private sync is still valid, then it is simply
extracted from memory and “added” (which could be an
inverse hash) to the public sync, as shown in step 1308.) The
public and decrypted private sync portions are combined in
function 1308 in order to generate the combined sync 1309.
The combined sync (1309) is then fed into the RNG (1310)
and compared to the IP address pair (1311) to validate or
reject the packet.

An important consideration in this architecture is the con-
cept of “future” and “past” where the public sync values are
concerned. Though the sync values, themselves, should be
random to prevent spoofing attacks, it may be important that
the receiver be able to quickly identify a sync value that has
already been sent%ven if the packet containing that sync
value was never actually received by the receiver. One solu-

5

10

15

20

25

30

35

40

45

50

55

60

65

28

tion is to hash a time stamp or sequence number into the
public sync portion, which could be quickly extracted,
checked, and discarded, thereby validating the public sync
portion itself.

In one embodiment, packets can be checked by comparing
the source/destination IP pair generated by the sync field with
the pair appearing in the packet header. If (1) they match, (2)
the time stamp is valid, and (3) the dead-man timer has
expired, then re-synchronization occurs; otherwise, the
packet is rejected. If enough processing power is available,
the dead—man timer and synchronization tables can be
avoided altogether, and the receiver would simply resynchro-
nize (e.g., validate) on every packet.

The foregoing scheme may require large-integer (e.g., 160-
bit) math, which may affect its implementation. Without such
large-integer registers, processing throughput would be
affected, thus potentially affecting security from a denial-of-
service standpoint. Nevertheless, as large-integer math pro-
cessing features become more prevalent, the costs of imple-
menting such a feature will be reduced.

D. Other Synchronization Schemes

As explained above, if W or more consecutive packets are
lost between a transmitter and receiver in a VPN (where W is
the window size), the receiver’s window will not have been
updated and the transmitter will be transmitting packets not in
the receiver’s window. The sender and receiver will not

recover synchronization until perhaps the random pairs in the
window are repeated by chance. Therefore, there is a need to
keep a transmitter and receiver in synchronization whenever
possible and to re-establish synchronization whenever it is
lost.

A “checkpoint” scheme can be used to regain synchroni-
zation between a sender and a receiver that have fallen out of

synchronization. In this scheme, a checkpoint message com-
prising a random IP address pair is used for communicating
synchronization information. In one embodiment, two mes-
sages are used to communicate synchronization information
between a sender and a recipient:

l . SYNCiREQ is a message used by the sender to indicate
that it wants to synchronize; and

2. SYNC_ACK is a message used by the receiver to inform
the transmitter that it has been synchronized.

According to one variation of this approach, both the trans-
mitter and receiver maintain three checkpoints (see FIG. 14):

l . In the transmitter, ckpt_o (“checkpoint old”) is the IP
pair that was used to re-send the last SYNC_REQ packet
to the receiver. In the receiver, ckpt_o (“checkpoint old”)
is the IP pair that receives repeated SYNC_REQ packets
from the transmitter.

2. In the transmitter, ckpt_n (“checkpoint new”) is the IP
pair that will be used to send the next SYNC_REQ
packet to the receiver. In the receiver, ckpt_n (“check-
point new”) is the IP pair that receives a new SYN-
C_REQ packet from the transmitter and which causes
the receiver’s window to be re-aligned, ckpt_o set to
ckpt_n, a new ckpt_n to be generated and a new ckpt_r to
be generated.

3. In the transmitter, ckpt_r is the IP pair that will be used
to send the next SYNC_ACK packet to the receiver. In
the receiver, ckpt_r is the IP pair that receives a new
SYNC_ACK packet from the transmitter and which

57

58

US 7,418,504 B2

29

causes a new ckpt_n to be generated. Since SYNC_ACK
is transmitted from the receiver ISP to the sender 181’, the
transmitter ckpt_r refers to the ckpt_r ofthe receiver and
the receiver ckpt_r refers to the ckpt_r of the transmitter
(see FIG. 14).

When a transmitter initiates synchronization, the 1P pair it
will use to transmit the next data packet is set to a predeter-
mined value and when a receiver first receives a SYNC_REQ,
the receiver window is updated to be centered on the trans-
mitter’s next 1P pair. This is the primary mechanism for
checkpoint synchronization.

Synchronization can be initiated by a packet counter (e.g.,
after every N packets transmitted, initiate a synchronization)
or by a timer (every S seconds, initiate a synchronization) or
a combination of both. See FIG. 15. From the transmitter’s

perspective, this technique operates as follows: (1) Each
transmitter periodically transmits a “sync request” message
to the receiver to make sure that it is in sync. (2) Ifthe receiver
is still in sync, it sends back a “sync ack” message. (If this
works, no further action is necessary). (3) Ifno “sync ack” has
been received within a period of time, the transmitter retrans-
mits the sync request again. Ifthe transmitter reaches the next
checkpoint without receiving a “sync ack” response, then
synchronization is broken, and the transmitter should stop
transmitting. The transmitter will continue to send sync_reqs
until it receives a sync_ack, at which point transmission is
reestablished.

From the receiver’s perspective, the scheme operates as
follows: (1) when it receives a “sync request” request from the
transmitter, it advances its window to the next checkpoint
position (even skipping pairs ifnecessary), and sends a “sync
ack” message to the transmitter. If sync was never lost, then
the “jump ahead” really just advances to the next available
pair of addresses in the table (i.e., normal advancement).

Ifan interloper intercepts the “sync request” messages and
tries to interfere with communication by sending new ones, it
will be ignored if the synchronization has been established or
it will actually help to re-establish synchronization.

A window is realigned whenever a re-synchronization
occurs. This realignment entails updating the receiver’s win-
dow to straddle the address pairs used by the packet transmit-
ted immediately after the transmission of the SYNC_REQ
packet. Normally, the transmitter and receiver are in synchro-
nization with one another. However, when network events
occur, the receiver’s window may have to be advanced by
many steps during resynchronization. In this case, it is desir-
able to move the window ahead without having to step
through the intervening random numbers sequentially. (This
feature is also desirable for the auto-sync approach discussed
above).

E. Random Number Generator with a Jump-Ahead
capability

An attractive method for generating randomly hopped
addresses is to use identical random number generators in the
transmitter and receiver and advance them as packets are
transmitted and received. There are many random number
generation algorithms that could be used. Each one has
strengths and weaknesses for address hopping applications.

Linear congruential random number generators (LCRs) are
fast, simple and well characterized random number genera-
tors that can be made to jump ahead 11 steps efficiently. An
LCR generates random numbers X1, X2, X3 . . . Xk starting
with seed X0 using a recurrence

Xi:(a Xi,1+b) mod C, (l)

10

15

20

25

30

35

40

45

50

55

60

65

30

where a, b and c define a particular LCR. Another expression
for X,

Xi:((ai(XO+b)—b)/(a—1)) mod 0 (2)

enables the jump-ahead capability. The factor ai can grow
very large even for modest i if left unfettered. Therefore some
special properties of the modulo operation can be used to
control the size and processing time required to compute (2).
(2) can be rewritten as:

Xi:(ai()(0(a—1)+b)—b)/(a—1) mod C. (3)

It can be shown that:

(ai(X0(a—1)+b)—b)/(a—1)mod C:((aimod ((a—1)C)(X0
(a—l)+b)—b)/(a—1))mod C (4)-

O(O(a—1)+b) can be stored as (XO(a—1)+b) mod c, b as b mod
c and compute ai mod((a—1)c) (this requires O(log(i)) steps).

A practical implementation ofthis algorithm wouldjump a
fixed distance, n, between synchronizations; this is tanta-
mount to synchronizing every n packets. The window would
commence 11 IP pairs from the start of the previous window.

Using)9”, the random number at thej ”1 checkpoint, as X0 and
n as i, a node can store a"mod((a—1)c) once per LCR and set

Xj+1W:A;U.l):<<a"mod <<a—1)c><2g-W<a—1>+b>—b>/<a—
1))mod C, (5)

to generate the random number for the j +1”? synchronization.
Using this construction, a node couldjump ahead an arbitrary
(but fixed) distance between synchronizations in a constant
amount of time (independent of n).

Pseudo-random number generators, in general, and LCRs,
in particular, will eventually repeat their cycles. This repeti-
tion may present vulnerability in the 1P hopping scheme. An
adversary would simply have to wait for a repeat to predict
future sequences. One way ofcoping with this vulnerability is
to create a random number generator with a known long
cycle. A random sequence can be replaced by a new random
number generator before it repeats. LCRs can be constructed
with known long cycles. This is not currently true of many
random number generators.

Random number generators can be cryptographically inse-
cure. An adversary can derive the RNG parameters by exam-
ining the output or part of the output. This is true of LCGs.
This vulnerability can be mitigated by incorporating an
encryptor, designed to scramble the output as part of the
random number generator. The random number generator
prevents an adversary from mounting an attack%.g., a
known plaintext attackiagainst the encryptor.

F. Random Number Generator Example

Consider a RNG where a:31, b:4 and c:15. For this case
equation (1) becomes:

Xi:(31x;.,1+4)mod 15. (6)

If one sets XO:1, equation (6) will produce the sequence 1,
5, 9, 13, 2, 6, 10, 14, 3, 7, 11,0, 4, 8, 12. This sequence will
repeat indefinitely. For a jump ahead of 3 numbers in this
sequence a":313:29791, c*(a—1):15*30:450 and a" mod
((a—1)c):3 13mod(1 5 *30):29791mod(450):91. Equation
(5) becomes:

((91 (X,30+4)—4)/30)mod 15 (7).

Table 1 shows the jump ahead calculations from (7). The
calculations start at 5 and jump ahead 3.

58

59

US 7,418,504 B2

31

TABLE 1

1 xi (xi3o + 4) 91 (xi3o + 4) — 4 ((91 (xi3o + 4) — 4)/3o xi+3

1 5 154 14010 467 2
4 2 64 5820 194 14
7 14 424 38580 1286 11

10 11 334 30390 1013 8
13 8 244 22200 740 5

G. Fast Packet Filter

Address hopping VPNs must rapidly determine whether a
packet has a validheader and thus requires further processing,
or has an invalid header (a hostile packet) and should be
immediately rejected. Such rapid determinations will be
referred to as “fast packet filtering.” This capability protects
the VPN from attacks by an adversary who streams hostile
packets at the receiver at a high rate of speed in the hope of
saturating the receiver’s processor (a so-called “denial of
service” attack). Fast packet filtering is an important feature
for implementing VPNs on shared media such as Ethernet.

Assuming that all participants in a VPN share an unas-
signed “A” block of addresses, one possibility is to use an
experimental “A” block that will never be assigned to any
machine that is not address hopping on the shared medium.
“A” blocks have a 24 bits of address that can be hopped as
opposed to the 8 bits in “C” blocks. In this case a hopblock
will be the “A” block. The use of the experimental “A” block
is a likely option on an Ethernet because:
1. The addresses have no validity outside of the Ethernet and

will not be routed out to a valid outside destination by a
gateway.

2. There are 224 (~16 million) addresses that can be hopped
within each “A” block. This yields >280 trillion possible
address pairs making it very unlikely that an adversary
would guess a valid address. It also provides acceptably
low probability of collision between separate VPNs (all
VPNs on a shared medium independently generate random
address pairs from the same “A” block).

3. The packets will not be received by someone on the Eth-
ernet who is not on a VPN (unless the machine is in pro-
miscuous mode) minimizing impact 011 non-VPN comput-ers.

The Ethernet example will be used to describe one imple-
mentation of fast packet filtering. The ideal algorithm would
quickly examine a packet header, determine whether the
packet is hostile, and reject any hostile packets or determine
which active IP pair the packet header matches. The problem
is a classical associative memory problem. A variety of tech-
niques have been developed to solve this problem (hashing,
B-trees etc). Each of these approaches has its strengths and
weaknesses. For instance, hash tables can be made to operate
quite fast in a statistical sense, but can occasionally degener-
ate into a much slower algorithm. This slowness can persist
for a period of time. Since there is a need to discard hostile
packets quickly at all times, hashing would be unacceptable.

H. Presence Vector Algorithm

A presence vector is a bit vector of length 2" that can be
indexed by n-bit numbers (each ranging from 0 to 2"'1). One
can indicate the presence of k n-bit numbers (not necessarily
unique), by setting the bits in the presence vector indexed by
each number to 1. Otherwise, the bits in the presence vector
are 0. An n-bit number, x, is one of the k numbers if and only

5

10

15

20

25

30

35

40

45

50

55

60

65

32

if the X“ bit ofthe presence vector is 1 . A fast packet filter can
be implemented by indexing the presence vector and looking
for a 1, which will be referred to as the “test.”

For example, suppose one wanted to represent the number
135 using a presence vector. The 135th bit ofthe vector would
be set. Consequently, one could very quickly determine
whether an address of 135 was valid by checking only one bit:
the 135th bit. The presence vectors could be created in
advance corresponding to the table entries for the IP
addresses. In effect, the incoming addresses can be used as
indices into a long vector, making comparisons very fast. As
each RNG generates a new address, the presence vector is
updated to reflect the information. As the window moves, the
presence vector is updated to zero out addresses that are no
longer valid.

There is a trade-off between efficiency of the test and the
amount of memory required for storing the presence
vector(s). For instance, if one were to use the 48 bits of
hopping addresses as an index, the presence vector would
have to be 35 terabytes. Clearly, this is too large for practical
purposes. Instead, the 48 bits can be divided into several
smaller fields. For instance, one could subdivide the 48 bits
into four 12-bit fields (see FIG. 16). This reduces the storage
requirement to 2048 bytes at the expense of occasionally
having to process a hostile packet. In effect, instead of one
long presence vector, the decomposed address portions must
match all four shorter presence vectors before filrther pro-
cessing is allowed. (If the first part of the address portion
doesn’t match the first presence vector, there is no need to
check the remaining three presence vectors).

A presence vector will have a 1 in the y’h bit if and only if
one or more addresses with a corresponding field of y are
active. An address is active only if each presence vector
indexed by the appropriate sub-field of the address is 1.

Consider a window of 32 active addresses and 3 check-

points. A hostile packet will be rejected by the indexing ofone
presence vector more than 99% of the time. A hostile packet
will be rejected by the indexing ofall 4 presence vectors more
than 99.9999995% of the time. On average, hostile packets
will be rejected in less than 1.02 presence vector index opera-
tions.

The small percentage of hostile packets that pass the fast
packet filter will be rejected when matching pairs are not
found in the active window or are active checkpoints. Hostile
packets that serendipitously match a header will be rejected
when the VPN software attempts to decrypt the header. How-
ever, these cases will be extremely rare. There are many other
ways this method can be configured to arbitrate the space/
speed tradeoffs.

I. Further Synchronization Enhancements

A slightly modified form ofthe synchronization techniques
described above can be employed. The basic principles ofthe
previously described checkpoint synchronization scheme
remain unchanged. The actions resulting from the reception
of the checkpoints are, however, slightly different. In this
variation, the receiver will maintain between 000 (“Out of
Order”) and 2><WINDOW_SIZE+OoO active addresses
(1 éOoOéWINDOW_SIZE and WINDOW_SIZEi2).
000 and WINDOW_SIZE are engineerable parameters,
where 000 is the minimum number of addresses needed to

accommodate lost packets due to events in the network or out
oforder arrivals and WINDOW_SIZE is the number ofpack-
ets transmitted before a SYNC_REQ is issued. FIG. 17
depicts a storage array for a receiver’s active addresses.

59

60

US 7,418,504 B2

33

The receiver starts with the first 2><WINDOW_SIZE

addresses loaded and active (ready to receive data). As pack-
ets are received, the corresponding entries are marked as
“used” and are no longer eligible to receive packets. The
transmitter maintains a packet counter, initially set to 0, con-
taining the number of data packets transmitted since the last
initial transmission of a SYNC_REQ for which SYNC_ACK
has been received. When the transmitter packet counter
equals WINDOW_SIZE, the transmitter generates a SYN-
C_REQ and does its initial transmission. When the receiver
receives a SYNC_REQ corresponding to its current
CKPT_N, it generates the next WINDOW_SIZE addresses
and starts loading them in order starting at the first location
after the last active address wrapping around to the beginning
of the array after the end of the array has been reached. The
receiver’ s array might look like FIG. 18 when a SYNC_REQ
has been received. In this case a couple of packets have been
either lost or will be received out of order when the SYN-

C_REQ is received.
FIG. 19 shows the receiver’s array after the new addresses

have been generated. If the transmitter does not receive a
SYNC_ACK, it will re-issue the SYNC_REQ at regular inter-
vals. When the transmitter receives a SYNC_ACK, the packet
counter is decremented by WINDOW_SIZE. If the packet
counter reaches 2><WINDOW_SIZE—OoO then the transmit-

ter ceases sending data packets until the appropriate SYN-
C_ACK is finally received. The transmitter then resumes
sending data packets. Future behavior is essentially a repeti-
tion of this initial cycle. The advantages of this approach are:

1. There is no need for an efficient jump ahead in the
random number generator,

2. No packet is ever transmitted that does not have a cor-
responding entry in the receiver side

3. No timer based re-synchronization is necessary. This is
a consequence of 2.

4. The receiver will always have the ability to accept data
messages transmitted within 000 messages of the most
recently transmitted message.

J. Distributed Transmission Path Variant

Another embodiment incorporating various inventive prin-
ciples is shown in FIG. 20. In this embodiment, a message
transmission system includes a first computer 2001 in corn-
munication with a second computer 2002 through a network
2011 of intermediary computers. In one variant of this
embodiment, the network includes two edge routers 2003 and
2004 each ofwhich is linked to a plurality of Internet Service
Providers (ISPs) 2005 through 2010. Each ISP is coupled to a
plurality ofother ISPs in an arrangement as shown in FIG. 20,
which is a representative configuration only and is not
intended to be limiting. Each connection between ISPs is
labeled in FIG. 20 to indicate a specific physical transmission
path (e.g., AD is a physical path that links ISP A (element
2005) to ISP D (element 2008)). Packets arriving at each edge
router are selectively transmitted to one of the ISPs to which
the router is attached on the basis of a randomly or quasi-
randomly selected basis.

As shown in FIG. 21, computer 2001 or edge router 2003
incorporates a plurality of link transmission tables 2100 that
identify, for each potential transmission path through the
network, valid sets of IP addresses that can be used to transmit
the packet. For example, AD table 2101 contains a plurality of
IP source/destination pairs that are randomly or quasi-ran-
domly generated. When a packet is to be transmitted from first
computer 2001 to second computer 2002, one of the link
tables is randomly (or quasi-randomly) selected, and the next

10

15

20

25

30

35

40

45

50

55

60

65

34

valid source/destination address pair from that table is used to
transmit the packet through the network. If path AD is ran-
domly selected, for example, the next source/destination IP
address pair (which is pre-determined to transmit between
ISP A (element 2005) and ISP B (element 2008)) is used to
transmit the packet. If one of the transmission paths becomes
degraded or inoperative, that link table can be set to a “down”
condition as shown in table 2105, thus preventing addresses
from being selected from that table. Other transmission paths
would be unaffected by this broken link.

3. Continuation-In-Part Improvements

The following describes various improvements and fea-
tures that can be applied to the embodiments described above.
The improvements include: (1) a load balancer that distrib-
utes packets across different transmission paths according to
transmission path quality; (2) a DNS proxy server that trans-
parently creates a virtual private network in response to a
domain name inquiry; (3) a large-to-srnall link bandwidth
management feature that prevents denial-of-service attacks at
system chokepoints; (4) a traffic limiter that regulates incom-
ing packets by limiting the rate at which a transmitter can be
synchronized with a receiver; and (5) a signaling synchro-
nizer that allows a large number of nodes to communicate
with a central node by partitioning the communication func-
tion between two separate entities. Each is discussed sepa-
rately below.

A. Load Balancer

Various embodiments described above include a system in
which a transmitting node and a receiving node are coupled
through a plurality of transmission paths, and wherein suc-
cessive packets are distributed quasi-randomly over the plu-
rality ofpaths. See, for example, FIGS. 20 and 21 and accom-
panying description. The improvement extends this basic
concept to encompass distributing packets across different
paths in such a manner that the loads on the paths are gener-
ally balanced according to transmission link quality.

In one embodiment, a system includes a transmitting node
and a receiving node that are linked via a plurality of trans-
mission paths having potentially varying transmission qual-
ity. Successive packets are transmitted over the paths based 011
a weight value distribution function for each path. The rate
that packets will be transmitted over a given path can be
different for each path. The relative “health” of each trans-
mission path is monitored in order to identify paths that have
become degraded. In one embodiment, the health ofeach path
is monitored in the transmitter by comparing the number of
packets transmitted to the number of packet acknowledge-
ments received. Each transmission path may comprise a
physically separate path (e.g., via dial-up phone line, com-
puter network, router, bridge, or the like), or may comprise
logically separate paths contained within a broadband com-
munication medium (e.g., separate channels in an FDM,
TDM, CDMA, or other type of modulated or unmodulated
transmission link).

When the transmission quality of a path falls below a
predetermined threshold and there are other paths that can
transmit packets, the transmitter changes the weight value
used for thatpath, making it less likely that a given packet will
be transmitted over that path. The weight will preferably be
set no lower than a minimum value that keeps nominal traffic
on the path. The weights of the other available paths are
altered to compensate for the change in the affected path.
When the quality of a path degrades to where the transmitter

60

61

US 7,418,504 B2

35

is turned offby the synchronization function (i.e., no packets
are arriving at the destination), the weight is set to zero. If all
transmitters are turned off, no packets are sent.

Conventional TCP/IP protocols include a “throttling” fea-
ture that reduces the transmission rate of packets when it is
determined that delays or errors are occurring in transmis-
sion. In this respect, timers are sometimes used to determine
whether packets have been received. These conventional
techniques for limiting transmission of packets, however, do
not involve multiple transmission paths between two nodes
wherein transmission across a particular path relative to the
others is changed based on link quality.

According to certain embodiments, in order to damp oscil-
lations that might otherwise occur if weight distributions are
changed drastically (e.g., according to a step function), a
linear or an exponential decay formula can be applied to
gradually decrease the weight value over time that a degrad-
ing path will be used. Similarly, if the health of a degraded
path improves, the weight value for that path is gradually
increased.

Transmission link health can be evaluated by comparing
the number ofpackets that are acknowledged within the trans-
mission window (see embodiments discussed above) to the
number ofpackets transmitted within that window and by the
state of the transmitter (i.e., on or off). In other words, rather
than accumulating general transmission statistics over time
for a path, one specific implementation uses the “windowing”
concepts described above to evaluate transmission path
health.

The same scheme can be used to shift virtual circuit paths
from an “unhealthy” path to a “healthy” one, and to select a
path for a new virtual circuit.

FIG. 22A shows a flowchart for adjusting weight values
associated with a plurality oftransmission links. It is assumed
that software executing in one or more computer nodes
executes the steps shown in FIG. 22A. It is also assumed that
the software can be stored on a computer-readable medium
such as a magnetic or optical disk for execution by a com-
puter.

Beginning in step 2201, the transmission quality of a given
transmission path is measured. As described above, this mea-
surement can be based on a comparison between the number
of packets transmitted over a particular link to the number of
packet acknowledgements received over the link (e.g., per
unit time, or in absolute terms). Alternatively, the quality can
be evaluated by comparing the number of packets that are
acknowledged within the transmission window to the number
of packets that were transmitted within that window. In yet
another variation, the number of missed synchronization
messages can be used to indicate link quality. Many other
variations are of course possible.

In step 2202, a check is made to determine whether more
than one transmitter (e.g., transmission path) is turned on. If
not, the process is terminated and resumes at step 2201.

In step 2203, the link quality is compared to a given thresh-
old (e.g., 50%, or any arbitrary number). If the quality falls
below the threshold, then in step 2207 a check is made to
determine whether the weight is above a minimum level (e.g.,
1%). Ifnot, then in step 2209 the weight is set to the minimum
level and processing resumes at step 2201. If the weight is
above the minimum level, then in step 2208 the weight is
gradually decreased for the path, then in step 2206 the
weights for the remaining paths are adjusted accordingly to
compensate (e.g., they are increased).

If in step 2203 the quality of the path was greater than or
equal to the threshold, then in step 2204 a check is made to
determine whether the weight is less than a steady-state value

10

15

20

25

30

35

40

45

50

55

60

65

61

36

for that path. If so, then in step 2205 the weight is increased
toward the steady-state value, and in step 2206 the weights for
the remaining paths are adjusted accordingly to compensate
(e.g., they are decreased). If in step 2204 the weight is not less
than the steady-state value, then processing resumes at step
2201 without adjusting the weights.

The weights can be adjusted incrementally according to
various functions, preferably by changing the value gradu-
ally. In one embodiment, a linearly decreasing function is
used to adjust the weights; according to another embodiment,
an exponential decay function is used. Gradually changing
the weights helps to damp oscillators that might otherwise
occur if the probabilities were abruptly.

Although not explicitly shown in FIG. 22A the process can
be performed only periodically (e.g., according to a time
schedule), or it can be continuously run, such as in a back-
ground mode ofoperation. In one embodiment, the combined
weights of all potential paths should add up to unity (e.g.,
when the weighting for one path is decreased, the correspond-
ing weights that the other paths will be selected will increase).

Adjustments to weight values for other paths can be pro-
rated. For example, a decrease of 10% in weight value for one
path could result in an evenly distributed increase in the
weights for the remaining paths. Alternatively, weightings
could be adjusted according to a weighted formula as desired
(e.g., favoring healthy paths over less healthy paths). In yet
another variation, the difference in weight value can be amor-
tized over the remaining links in a manner that is proportional
to their traffic weighting.

FIG. 22B shows steps that can be executed to shut down
transmission links where a transmitter turns off. In step 2210,
a transmitter shut-down event occurs. In step 2211, a test is
made to determine whether at least one transmitter is still

turned on. If not, then in step 2215 all packets are dropped
until a transmitter turns on. If in step 2211 at least one trans-
mitter is turned on, then in step 2212 the weight for the path
is set to zero, and the weights for the remaining paths are
adjusted accordingly.

FIG. 23 shows a computer node 2301 employing various
principles ofthe above-described embodiments. It is assumed
that two computer nodes of the type shown in FIG. 23 com-
municate over a plurality of separate physical transmission
paths. As shown in FIG. 23, four transmission paths X1
through X4 are defined for communicating between the two
nodes. Each node includes a packet transmitter 2302 that
operates in accordance with a transmit table 2308 as
described above. (The packet transmitter could also operate
without using the IP-hopping features described above, but
the following description assumes that some form ofhopping
is employed in conjunction with the path selection mecha-
nism.). The computer node also includes a packet receiver
2303 that operates in accordance with a receive table 2309,
including a moving window W that moves as valid packets are
received. Invalid packets having source and destination
addresses that do not fall within window W are rejected.

As each packet is readied for transmission, source and
destination IP addresses (or other discriminator values) are
selected from transmit table 2308 according to any of the
various algorithms described above, and packets containing
these source/destination address pairs, which correspond to
the node to which the four transmission paths are linked, are
generated to a transmission path switch 2307. Switch 2307,
which can comprise a software function, selects from one of
the available transmission paths according to a weight distri-
bution table 2306. For example, if the weight for path X1 is
0.2, then every fifth packet will be transmitted on path X1. A
similar regime holds true for the other paths as shown. Ini-

62

US 7,418,504 B2

37

tially, each link’s weight value can be set such that it is
proportional to its bandwidth, which will be referred to as its
“steady-state” value.

Packet receiver 2303 generates an output to a link quality
measurement function 2304 that operates as described above
to determine the quality ofeach transmission path. (The input
to packet receiver 2303 for receiving incoming packets is
omitted for clarity). Link quality measurement function 23 04
compares the link quality to a threshold for each transmission
link and, if necessary, generates an output to weight adjust-
ment function 2305. If a weight adjustment is required, then
the weights in table 2306 are adjusted accordingly, preferably
according to a gradual (e.g., linearly or exponentially declin-
ing) function. In one embodiment, the weight values for all
available paths are initially set to the same value, and only
when paths degrade in quality are the weights changed to
reflect differences.

Link quality measurement function 2304 can be made to
operate as part ofa synchronizer function as described above.
That is, if resynchronization occurs and the receiver detects
that synchronization has been lost (e.g., resulting in the syn-
chronization window W being advanced out of sequence),
that fact can be used to drive link quality measurement func-
tion 2304. According to one embodiment, load balancing is
performed using information garnered during the normal syn-
chronization, augmented slightly to communicate link health
from the receiver to the transmitter. The receiver maintains a

count, MESS_R(W), of the messages received in synchroni-
zation window W. When it receives a synchronization request
(SYNC_REQ) corresponding to the end of window W, the
receiver includes counter MESS_R in the resulting synchro-
nization acknowledgement (SYNC_ACK) sent back to the
transmitter. This allows the transmitter to compare messages
sent to messages received in order to asses the health of the
link.

If synchronization is completely lost, weight adjustment
function 2305 decreases the weight value on the affected path
to zero. When synchronization is regained, the weight value
for the affected path is gradually increased to its original
value. Alternatively, link quality can be measured by evalu-
ating the length of time required for the receiver to acknowl-
edge a synchronization request. In one embodiment, separate
transmit and receive tables are used for each transmission

path.
When the transmitter receives a SYNC_ACK, the

MESS_R is compared with the number of messages trans-
mitted in a window (MESS_T). When the transmitter receives
a SYNC_ACK, the traffic probabilities will be examined and
adjusted ifnecessary. MESS_R is compared with the number
of messages transmitted in a window (MESS_T). There are
two possibilities:

I . IfMESS_R is less than a threshold value, THRESH, then
the link will be deemed to be unhealthy. Ifthe transmitter was
turned off, the transmitter is turned on and the weight P for
that link will be set to a minimum value MIN. This will keep
a trickle of traffic on the link for monitoring purposes until it
recovers. Ifthe transmitter was turned on, the weight P for that
link will be set to:

P’:0txMIN+(1—0t)xP (1)

Equation 1 will exponentially damp the traffic weight value to
MIN during sustained periods of degraded service.

2. If MESS_R for a link is greater than or equal to
THRESH, the link will be deemed healthy. If the weight P for
that link is greater than or equal to the steady state value S for

10

15

20

25

30

35

40

45

50

55

60

65

38

that link, then P is left unaltered. If the weight P for that link
is less than THRESH then P will be set to:

P”|3><S+(17[5)><P (2)

where [3 is a parameter such that 0<:[3<:1 that determines the
damping rate of P.

Equation 2 will increase the traffic weight to S during
sustained periods ofacceptable service in a damped exponen-
tial fashion.

A detailed example will now be provided with reference to
FIG. 24. As shown in FIG. 24, a first computer 2401 commu-
nicates with a second computer 2402 through two routers
2403 and 2404. Each router is coupled to the other router
through three transmission links. As described above, these
may be physically diverse links or logical links (including
virtual private networks).

Suppose that a first link L1 can sustain a transmission
bandwidth of 100 Mb/s and has a window size of 32; link L2
can sustain 75 Mb/s and has a window size of 24; and link L3
can sustain 25 Mb/s and has a window size of 8. The com-

bined links can thus sustain 200 Mb/s. The steady state traffic
weights are 0.5 for link L1; 0.375 for link L2, and 0.125 for
link L3. MIN:1 Mb/s, THRESH:0.8 MESS_T for each link,

(F075 and [3:05. These trafiic weights will remain stable
until a link stops for synchronization or reports a number of
packets received less than its THRESH. Consider the follow-
ing sequence of events:

1. Link L1 receives a SYNC_ACK containing a MESS_R
of24, indicating that only 75% ofthe MESS_T (32) messages
transmitted in the last window were successfully received.
Link 1 would be below THRESH (0.8). Consequently, link
L1’s trafiic weight value would be reduced to 0.12825, while
link L2’s trafiic weight value would be increased to 0.65812
and link L3’s trafiic weight value would be increased to
0.21793 8.

2. Link L2 and L3 remained healthy and link L1 stopped to
synchronize. Then link L1 ’s traffic weight value would be set
to 0, link L2’s trafiic weight value would be set to 0.75, and
link L33’s trafiic weight value would be set to 0.25.

3. Link L1 finally received a SYNC_ACK containing a
MESS_R of 0 indicating that none of the MESS_T (32)
messages transmitted in the last window were successfully
received. Link L1 would be below THRESH. Link L1’ s traffic

weight value would be increased to 0.005, link L2’s traffic
weight value would be decreased to 0.74625, and link L3’s
traffic weight value would be decreased to 0.24875.

4. Link L1 received a SYNC_ACK containing a MESS_R
of 32 indicating that 100% of the MESS_T (32) messages
transmitted in the last window were successfully received.
Link L1 would be above THRESH. Link L1’s traffic weight
value would be increased to 0.2525, while link L2’s traffic

weight value would be decreased to 0.560625 and link L3’s
traffic weight value would be decreased to 0.186875.

5. Link L1 received a SYNC_ACK containing a MESS_R
of 32 indicating that 100% of the MESS_T (32) messages
transmitted in the last window were successfully received.
Link L1 would be above THRESH. Link L1’s traffic weight
value would be increased to 0.37625; link L2’s trafiic weight
value would be decreased to 0.4678125, and link L3 ’s traffic
weight value would be decreased to 0.1559375.

6. Link L1 remains healthy and the traffic probabilities
approach their steady state traific probabilities.

62

63

US 7,418,504 B2

39

B. Use of a DNS Proxy to Transparently Create
Virtual Private Networks

A second improvement concerns the automatic creation of
a Virtual private network (VPN) in response to a domain-
name server look-up function.

Conventional Domain Name Servers (DNSs) provide a
look-up function that returns the IP address of a requested
computer or host. For example, when a computer user types in
the web name “Yahoo .com,” the user’ s web browser transmits
a request to a DNS, which converts the name into a four-part
IP address that is returned to the user’s browser and then used

by the browser to contact the destination web site.
This conventional scheme is shown in FIG. 25. A user’s

computer 2501 includes a client application 2504 (for
example, a web browser) and an IP protocol stack 2505.
When the user enters the name ofa destination host, a request
DNS REQ is made (through IP protocol stack 2505) to a DNS
2502 to look up the IP address associated with the name. The
DNS returns the IP address DNS RESP to client application
2504, which is then able to use the IP address to communicate
with the host 2503 through separate transactions such as
PAGE REQ and PAGE RESP.

In the conventional architecture shown in FIG. 25, nefari-
ous listeners on the Internet could intercept the DNS REQ and
DNS RESP packets and thus learn what IP addresses the user
was contacting. For example, if a user wanted to set up a
secure communication path with a web site having the name
“Target.com,” when the user’s browser contacted a DNS to
find the IP address for that web site, the true IP address ofthat
web site would be revealed over the Internet as part of the
DNS inquiry. This would hamper anonymous communica-
tions on the Internet.

One conventional scheme that provides secure virtual pri-
vate networks over the Internet provides the DNS server with
the public keys of the machines that the DNS server has the
addresses for. This allows hosts to retrieve automatically the
public keys of a host that the host is to communicate with so
that the host can set up a VPN without having the user enter
the public key ofthe destination host. One implementation of
this standard is presently being developed as part of the
FreeS/WAN project(RFC 2535).

The conventional scheme suffers from certain drawbacks.

For example, any user can perform a DNS request. Moreover,
DNS requests resolve to the same value for all users.

According to certain aspects ofthe invention, a specialized
DNS server traps DNS requests and, if the request is from a
special type of user (e.g., one for which secure communica-
tion services are defined), the server does not return the true IP
address of the target node, but instead automatically sets up a
virtual private network between the target node and the user.
The VPN is preferably implemented using the IP address
“hopping” features of the basic invention described above,
such that the true identity of the two nodes cannot be deter-
mined even if packets during the communication are inter-
cepted. For DNS requests that are determined to not require
secure services (e.g., an unregistered user), the DNS server
transparently “passes through” the request to provide a nor-
mal look-up function and return the IP address of the target
web server, provided that the requesting host has permissions
to resolve unsecured sites. Different users who make an iden-

tical DNS request could be provided with different results.
FIG. 26 shows a system employing various principles sum-

marized above. A user’s computer 2601 includes a conven-
tional client (e.g., a web browser) 2605 and an IP protocol
stack 2606 that preferably operates in accordance with an IP
hopping function 2607 as outlined above. A modified DNS

5

10

15

20

25

30

35

40

45

50

55

60

65

40
server 2602 includes a conventional DNS server function

2609 and a DNS proxy 2610. A gatekeeper server 2603 is
interposed between the modified DNS server and a secure
target site 2704. An “unsecure” target site 2611 is also acces-
sible via conventional IP protocols.

According to one embodiment, DNS proxy 2610 intercepts
all DNS lookup functions from client 2605 and determines
whether access to a secure site has been requested. Ifaccess to
a secure site has been requested (as determined, for example,
by a domain name extension, or by reference to an internal
table of such sites), DNS proxy 2610 determines whether the
user has sufficient security privileges to access the site. If so,
DNS proxy 2610 transmits a message to gatekeeper 2603
requesting that a virtual private network be created between
user computer 2601 and secure target site 2604. In one
embodiment, gatekeeper 2603 creates “hopblocks” to be used
by computer 2601 and secure target site 2604 for secure
communication. Then, gatekeeper 2603 communicates these
to user computer 2601. Thereafter, DNS proxy 2610 returns
to user computer 2601 the resolved address passed to it by the
gatekeeper (this address could be different from the actual
target computer) 2604, preferably using a secure administra-
tive VPN. The address that is returned need not be the actual

address of the destination computer.

Had the user requested lookup of a non-secure web site
such as site 2611, DNS proxy would merely pass through to
conventional DNS server 2609 the look-up request, which
would be handled in a conventional manner, returning the IP
address ofnon-secure web site 2611. Ifthe user had requested
lookup of a secure web site but lacked credentials to create
such a connection, DNS proxy 2610 would return a “host
unknown” error to the user. In this manner, different users
requesting access to the same DNS name could be provided
with different look-up results.

Gatekeeper 2603 can be implemented on a separate com-
puter (as shown in FIG. 26) or as a function within modified
DNS server 2602. In general, it is anticipated that gatekeeper
2703 facilitates the allocation and exchange of information
needed to communicate securely, such as using “hopped” IP
addresses. Secure hosts such as site 2604 are assumed to be

equipped with a secure communication function such as an IP
hopping function 2608.

It will be appreciated that the functions ofDNS proxy 2610
and DNS server 2609 can be combined into a single server for
convenience. Moreover, although element 2602 is shown as
combining the functions oftwo servers, the two servers can be
made to operate independently.

FIG. 27 shows steps that can be executed by DNS proxy
server 2610 to handle requests for DNS look-up for secure
hosts. In step 2701, a DNS look-up request is received for a
target host. In step 2702, a check is made to determine
whether access to a secure host was requested. Ifnot, then in
step 2703 the DNS request is passed to conventional DNS
server 2609, which looks up the IP address of the target site
and returns it to the user’ s application for further processing.

In step 2702, if access to a secure host was requested, then
in step 2704 a further check is made to determine whether the
user is authorized to connect to the secure host. Such a check

can be made with reference to an internally stored list of
authorized IP addresses, or can be made by communicating
with gatekeeper 2603 (e.g., over an “administrative” VPN
that is secure). It will be appreciated that different levels of
security can also be provided for different categories ofhosts.
For example, some sites may be designated as having a cer-
tain security level, and the security level ofthe user requesting
access must match that security level. The user’s security

63

64

US 7,418,504 B2

41

level can also be determined by transmitting a request mes-
sage back to the user’s computer requiring that it prove that it
has suflicient privileges.

Ifthe user is not authorized to access the secure site, then a
“host unknown” message is returned (step 2705). If the user
has suflicient security privileges, then in step 2706 a secure
VPN is established between the user’s computer and the
secure target site. As described above, this is preferably done
by allocating a hopping regime that will be carried out
between the user’ s computer and the secure target site, and is
preferably performed transparently to the user (i.e., the user
need not be involved in creating the secure link). As described
in various embodiments of this application, any of various
fields can be “hopped” (e.g., IP source/destination addresses;
a field in the header; etc.) in order to communicate securely.

Some or all of the security functions can be embedded in
gatekeeper 2603, such that it handles all requests to connect to
secure sites. In this embodiment, DNS proxy 2610 commu-
nicates with gatekeeper 2603 to determine (preferably over a
secure administrative VPN) whether the user has access to a
particular web site. Various scenarios for implementing these
features are described by way of example below:

Scenario #1: Client has permission to access target com-
puter, and gatekeeper has a rule to make a VPN for the client.
In this scenario, the client’s DNS request would be received
by the DNS proxy server 2610, which would forward the
request to gatekeeper 2603. The gatekeeper would establish a
VPN between the client and the requested target. The gate-
keeper would provide the address of the destination to the
DNS proxy, which would then return the resolved name as a
result. The resolved address can be transmitted back to the
client in a secure administrative VPN.

Scenario #2: Client does not have permission to access
target computer. In this scenario, the client’s DNS request
would be received by the DNS proxy server 2610, which
would forward the request to gatekeeper 2603. The gate-
keeper would reject the request, informing DNS proxy server
2610 that it was unable to find the target computer. The DNS
proxy 2610 would then return a “host unknown” error mes-
sage to the client.

Scenario #3: Client has permission to connect using a
normal non-VPN link, and the gatekeeper does not have a rule
to set up aVPN for the client to the target site. In this scenario,
the client’s DNS request is received by DNS proxy server
2610, which would check its rules and determine that no VPN
is needed. Gatekeeper 2603 would then inform the DNS
proxy server to forward the request to conventional DNS
server 2609, which would resolve the request and return the
result to the DNS proxy server and then back to the client.

Scenario #4: Client does not have permission to establish a
normal/non-VPN link, and the gatekeeper does not have a
rule to make a VPN for the client to the target site. In this
scenario, the DNS proxy server would receive the client’s
DNS request and forward it to gatekeeper 2603. Gatekeeper
2603 would determine that no special VPN was needed, but
that the client is not authorized to communicate with non-

VPN members. The gatekeeper would reject the request,
causing DNS proxy server 2610 to return an error message to
the client.

C. Large Link to Small Link Bandwidth
Management

One feature ofthe basic architecture is the ability to prevent
so-called “denial of service” attacks that can occur if a com-

puter hacker floods a known Internet node with packets, thus
preventing the node from communicating with other nodes.

5

10

15

20

25

30

35

40

45

50

55

60

65

42

Because IP addresses or other fields are “hopped” andpackets
arriving with invalid addresses are quickly discarded, Internet
nodes are protected against flooding targeted at a single IP
address.

In a system in which a computer is coupled through a link
having a limited bandwidth (e.g., an edge router) to a node
that can support a much higher-bandwidth link (e.g., an Inter-
net Service Provider), a potential weakness could be
exploited by a determined hacker. Referring to FIG. 28, sup-
pose that a first host computer 2801 is communicating with a
second host computer 2804 using the IP address hopping
principles described above. The first host computer is coupled
through an edge router 2802 to an Internet Service Provider
(ISP) 2803 through a low bandwidth link (LOW BW), and is
in turn coupled to second host computer 2804 throughparts of
the Internet through a high bandwidth link (HIGH BW). In
this architecture, the ISP is able to support a high bandwidth
to the intemet, but a much lower bandwidth to the edge router
2802.

Suppose that a computer hacker is able to transmit a large
quantity of dummy packets addressed to first host computer
2801 across high bandwidth link HIGH BW. Normally, host
computer 2801 would be able to quickly reject the packets
since they would not fall within the acceptance window per-
mitted by the IP address hopping scheme. However, because
the packets must travel across low bandwidth link LOW BW,
the packets overwhelm the lower bandwidth link before they
are received by host computer 2801. Consequently, the link to
host computer 2801 is effectively flooded before the packets
can be discarded.

According to one inventive improvement, a “link guard”
function 2805 is inserted into the high-bandwidth node (e.g.,
ISP 2803) that quickly discards packets destined for a low-
bandwidth target node if they are not valid packets. Each
packet destined for a low-bandwidth node is cryptographi-
cally authenticated to determine whether it belongs to a VPN.
If it is not a valid VPN packet, the packet is discarded at the
high-bandwidth node. If the packet is authenticated as
belonging to a VPN, the packet is passed with high prefer-
ence. Ifthe packet is a valid non-VPN packet, it is passed with
a lower quality of service (e.g., lower priority).

In one embodiment, the ISP distinguishes between VPN
and non-VPN packets using the protocol of the packet. In the
case of IPSEC [rfc 2401], the packets have IP protocols 420
and 421. In the case of the TARP VPN, the packets will have
an IP protocol that is not yet defined. The ISP’s link guard,
2805, maintains a table ofvalidVPNs which it uses to validate
whether VPN packets are cryptographically valid. According
to one embodiment, packets that do not fall within any hop
windows used by nodes on the low-bandwidth link are
rejected, or are sent with a lower quality of service. One
approach for doing this is to provide a copy of the IP hopping
tables used by the low-bandwidth nodes to the high-band-
width node, such that both the high-bandwidth and low-band-
width nodes track hopped packets (e.g., the high-bandwidth
node moves its hopping window as valid packets are
received). In such a scenario, the high-bandwidth node dis-
cards packets that do not fall within the hopping window
before they are transmitted over the low-bandwidth link.
Thus, for example, ISP 2903 maintains a copy 2910 of the
receive table used by host computer 2901. Incoming packets
that do not fall within this receive table are discarded. Accord-

ing to a different embodiment, link guard 2805 validates each
VPN packet using a keyed hashed message authentication
code (HMAC) [rfc 2104].

According to another embodiment, separate VPNs (using,
for example, hopblocks) can be established for communicat-

64

65

US 7,418,504 B2

43

ing between the low-bandwidth node and the high-bandwidth
node (i.e., packets arriving at the high-bandwidth node are
converted into different packets before being transmitted to
the low-bandwidth node).

As shown in FIG. 29, for example, suppose that a first host
computer 2900 is communicating with a second host com-
puter 2902 over the Internet, and the path includes a high
bandwidth link HIGH BW to an ISP 2901 and a low band-

width link LOW BW through an edge router 2904. In accor-
dance with the basic architecture described above, first host
computer 2900 and second host computer 2902 would
exchange hopblocks (or a hopblock algorithm) and would be
able to create matching transmit and receive tables 2905,
2906, 2912 and 2913. Then in accordance with the basic
architecture, the two computers would transmit packets hav-
ing seemingly random IP source and destination addresses,
and each would move a corresponding hopping window in its
receive table as valid packets were received.

Suppose that a nefarious computer hacker 2903 was able to
deduce that packets having a certain range of IP addresses
(e.g., addresses 100 to 200 for the sake of simplicity) are
being transmitted to ISP 2901, and that these packets are
being forwarded over a low-bandwidth link. Hacker com-
puter 2903 could thus “flood” packets having addresses fall-
ing into the range 100 to 200, expecting that they would be
forwarded along low bandwidth link LOW BW, thus causing
the low bandwidth link to become overwhelmed. The fast

packet reject mechanism in first host computer 3000 would be
of little use in rejecting these packets, since the low band-
width link was effectively jammed before the packets could
be rejected. In accordance with one aspect of the improve-
ment, however, VPN link guard 2911 would prevent the
attack from impacting the performance of VPN traflic
because the packets would either be rejected as invalid VPN
packets or given a lower quality of service than VPN traflic
over the lower bandwidth link. A denial-of-service flood

attack could, however, still disrupt non-VPN traffic.
According to one embodiment of the improvement, ISP

2901 maintains a separateVPN with first host computer 2900,
and thus translates packets arriving at the ISP into packets
having a different IP header before they are transmitted to
host computer 2900. The cryptographic keys used to authen-
ticate VPN packets at the link guard 2911 and the crypto-
graphic keys used to encrypt and decrypt the VPN packets at
host 2902 and host 2901 can be different, so that link guard
2911 does not have access to the private host data; it only has
the capability to authenticate those packets.

According to yet a third embodiment, the low-bandwidth
node can transmit a special message to the high-bandwidth
node instructing it to shut down all transmissions on a par-
ticular IP address, such that only hopped packets will pass
through to the low-bandwidth node. This embodiment would
prevent a hacker from flooding packets using a single IP
address. According to yet a fourth embodiment, the high-
bandwidth node can be configured to discard packets trans-
mitted to the low-bandwidth node if the transmission rate

exceeds a certain predetermined threshold for any given IP
address; this would allow hopped packets to go through. In
this respect, link guard 2911 can be used to detect that the rate
of packets on a given IP address are exceeding a threshold
rate; further packets addressed to that same IP address would
be dropped or transmitted at a lower priority (e.g., delayed).

D. Traflic Limiter

In a system in which multiple nodes are communicating
using “hopping” technology, a treasonous insider could inter-

10

15

20

25

30

35

40

45

50

55

60

65

44

nally flood the system with packets. In order to prevent this
possibility, one inventive improvement involves setting up
“contracts” between nodes in the system, such that a receiver
can impose a bandwidth limitation on each packet sender.
One technique for doing this is to delay acceptance of a
checkpoint synchronization request from a sender until a
certain time period (e.g., one minute) has elapsed. Each
receiver can effectively control the rate at which its hopping
window moves by delaying “SYNC ACK” responses to
“SYNC_REQ” messages.

A simple modification to the checkpoint synchronizer will
serve to protect a receiver from accidental or deliberate over-
load from an internally treasonous client. This modification is
based on the observation that a receiver will not update its
tables until a SYNC_REQ is received on hopped address
CKPT_N. It is a simple matter of deferring the generation of
a new CKPT_N until an appropriate interval after previous
checkpoints.

Suppose a receiver wished to restrict reception from a
transmitter to 100 packets a second, and that checkpoint syn-
chronization messages were triggered every 50 packets. A
compliant transmitter wouldnot issue new SYNC_REQ mes-
sages more often than every 0.5 seconds. The receiver could
delay a non-compliant transmitter from synchronizing by
delaying the issuance ofCKPT_N for 0.5 second after the last
SYNC_REQ was accepted.

In general, if M receivers need to restrict N transmitters
issuing new SYNC_REQ messages after every W messages
to sending R messages a second in aggregate, each receiver
could defer issuing a new CKPT_N until MxNxW/R seconds
have elapsed since the last SYNC_REQ has been received
and accepted. If the transmitter exceeds this rate between a
pair of checkpoints, it will issue the new checkpoint before
the receiver is ready to receive it, and the SYNC_REQ will be
discarded by the receiver. After this, the transmitter will re-
issue the SYNC_REQ every Ti seconds until it receives a
SYNC_ACK. The receiver will eventually update CKPT_N
and the SYNC_REQ will be acknowledged. If the transmis-
sion rate greatly exceeds the allowed rate, the transmitter will
stop until it is compliant. If the transmitter exceeds the
allowed rate by a little, it will eventually stop after several
rounds of delayed synchronization until it is in compliance.
Hacking the transmitter’ s code to not shut offonly permits the
transmitter to lose the acceptance window. In this case it can
recover the window and proceed only after it is compliant
again.

Two practical issues should be considered when imple-
menting the above scheme:

1. The receiver rate should be slightly higher than the
permitted rate in order to allow for statistical fluctuations in
traffic arrival times and non-uniform load balancing.

2. Since a transmitter will rightfully continue to transmit
for a period after a SYNC_REQ is transmitted, the algorithm
above can artificially reduce the transmitter’s bandwidth. If
events prevent a compliant transmitter from synchronizing
for a period (e.g. the network dropping a SYNC_REQ or a
SYNC_ACK) a SYNC_REQ will be accepted later than
expected. After this, the transmitter will transmit fewer than
expected messages before encountering the next checkpoint.
The new checkpoint will not have been activated and the
transmitter will have to retransmit the SYNC_REQ. This will
appear to the receiver as if the transmitter is not compliant.
Therefore, the next checkpoint will be accepted late from the
transmitter’s perspective. This has the effect of reducing the
transmitter’s allowed packet rate until the transmitter trans-
mits at a packet rate below the agreed upon rate for a period of
time.

65

66

US 7,418,504 B2

45

To guard against this, the receiver should keep track of the
times that the last C SYNC_REQs were received and
accepted and use the minimum of M><N><W/R seconds after
the last SYNC_REQ has been received and accepted, 2><M><
N><W/R seconds after next to the last SYNC_REQ has been
received and accepted, C><M><N><W/R seconds after (C—l)’h
to the last SYNC_REQ has been received, as the time to
activate CKPT_N. This prevents the receiver from inappro-
priately limiting the transmitter’ s packet rate ifat least one out
ofthe last C SYNC_REQs was processed on the first attempt.

FIG. 30 shows a system employing the above-described
principles. In FIG. 30, two computers 3000 and 3001 are
assumed to be communicating over a network N in accor-
dance with the “hopping” principles described above (e.g.,
hopped IP addresses, discriminator values, etc.). For the sake
of simplicity, computer 3000 will be referred to as the receiv-
ing computer and computer 3001 will be referred to as the
transmitting computer, although full duplex operation is of
course contemplated. Moreover, although only a single trans-
mitter is shown, multiple transmitters can transmit to receiver
3000.

As described above, receiving computer 3000 maintains a
receive table 3 002 including a window W that defines valid IP
address pairs that will be accepted when appearing in incom-
ing data packets. Transmitting computer 3001 maintains a
transmit table 3003 from which the next IP address pairs will
be selected when transmitting a packet to receiving computer
3000. (For the sake of illustration, window W is also illus-
trated with reference to transmit table 3003). As transmitting
computer moves through its table, it will eventually generate
a SYNC_REQ message as illustrated in function 3010. This is
a request to receiver 3000 to synchronize the receive table
3002, from which transmitter 3001 expects a response in the
form of a CKPT_N (included as part of a SYNC_ACK mes-
sage). If transmitting computer 3001 transmits more mes-
sages than its allotment, it will prematurely generate the
SYNC_REQ message. (If it has been altered to remove the
SYNC_REQ message generation altogether, it will fall out of
synchronization since receiver 3000 will quickly reject pack-
ets that fall outside of window W, and the extra packets
generated by transmitter 3001 will be discarded).

In accordance with the improvements described above,
receiving computer 3000 performs certain steps when a SYN-
C_REQ message is received, as illustrated in FIG. 30. In step
3004, receiving computer 3000 receives the SYNC_REQ
message. In step 3005, a check is made to determine whether
the request is a duplicate. If so, it is discarded in step 3006. In
step 3007, a check is made to determine whether the SYN-
C_REQ received from transmitter 3001 was received at a rate
that exceeds the allowable rate R (i.e., the period between the
time of the last SYNC_REQ message). The value R can be a
constant, or it can be made to fluctuate as desired. If the rate

exceeds R, then in step 3008 the next activation of the next
CKPT_N hopping table entry is delayed by W/R seconds
after the last SYNC_REQ has been accepted.

Otherwise, if the rate has not been exceeded, then in step
3109 the next CKPT_N value is calculated and inserted into

the receiver’s hopping table prior to the next SYNC_REQ
from thetransmitter 3101. Transmitter 3101 then processes
the SYNC_REQ in the normal manner.

E. Signaling Synchronizer

In a system in which a large number ofusers communicate
with a central node using secure hopping technology, a large
amount of memory must be set aside for hopping tables and
their supporting data structures. For example, if one million

10

15

20

25

30

35

40

45

50

55

60

65

46

subscribers to a web site occasionally communicate with the
web site, the site must maintain one million hopping tables,
thus using up valuable computer resources, even though only
a small percentage of the users may actually be using the
system at any one time. A desirable solution would be a
system that permits a certain maximum number of simulta-
neous links to be maintained, but which would “recognize”
millions of registered users at any one time. In other words,
out of a population of a million registered users, a few thou-
sand at a time could simultaneously communicate with a
central server, without requiring that the server maintain one
million hopping tables of appreciable size.

One solution is to partition the central node into two nodes:
a signaling server that performs session initiation for user
log-on and log-off (and requires only minimally sized tables),
and a transport server that contains larger hopping tables for
the users. The signaling server listens for the millions of
known users and performs a fast-packet reject of other (bo-
gus) packets. When a packet is received from a known user,
the signaling server activates a virtual private link (VPL)
between the user and the transport server, where hopping
tables are allocated and maintained. When the user logs onto
the signaling server, the user’ s computer is provided with hop
tables for communicating with the transport server, thus acti-
vating the VPL. The VPLs can be torn down when they
become inactive for a time period, or they can be torn down
upon user log-out. Communication with the signaling server
to allow user log-on and log-off can be accomplished using a
specialized version of the checkpoint scheme described
above.

FIG. 31 shows a system employing certain of the above-
described principles. In FIG. 31, a signaling server 3101 and
a transport server 3102 communicate over a link. Signaling
server 3101 contains a large number of small tables 3106 and
3107 that contain enough information to authenticate a com-
munication request with one or more clients 3103 and 3104.
As described in more detail below, these small tables may
advantageously be constructed as a special case of the syn-
chronizing checkpoint tables described previously. Transport
server 3102, which is preferably a separate computer in com-
munication with signaling server 3101, contains a smaller
number of larger hopping tables 3108, 3109, and 3110 that
can be allocated to create a VPN with one of the client com-

puters.
According to one embodiment, a client that has previously

registered with the system (e.g., via a system administration
function, a user registration procedure, or some other
method) transmits a request for information from a computer
(e.g., a web site). In one variation, the request is made using
a “hopped” packet, such that signaling server 3101 will
quickly reject invalid packets from unauthorized computers
such as hacker computer 3105.An “administrative” VPN can
be established between all of the clients and the signaling
server in order to ensure that a hacker cannot flood signaling
server 3101 with bogus packets. Details of this scheme are
provided below.

Signaling server 3101 receives the request 3111 and uses it
to determine that client 3103 is a validly registered user. Next,
signaling server 3101 issues a request to transport server 3102
to allocate a hopping table (or hopping algorithm or other
regime) for the purpose of creating a VPN with client 3103.
The allocated hopping parameters are returned to signaling
server 3101 (path 3113), which then supplies the hopping
parameters to client 3103 via path 3114, preferably in
encrypted form.

Thereafter, client 3103 communicates with transport
server 3102 using the normal hopping techniques described

66

67

US 7,418,504 B2

47

above. It will be appreciated that although signaling server
3101 and transport server 3102 are illustrated as being two
separate computers, they could of course be combined into a
single computer and their functions performed on the single
computer. Alternatively, it is possible to partition the func-
tions shown in FIG. 31 differently from as shown without
departing from the inventive principles.

One advantage of the above-described architecture is that
signaling server 3101 need only maintain a small amount of
information on a large number ofpotential users, yet it retains
the capability ofquickly rejecting packets from unauthorized
users such as hacker computer 3105. Larger data tables
needed to perform the hopping and synchronization functions
are instead maintained in a transport server 3102, and a
smaller number of these tables are needed since they are only
allocated for “active” links. After a VPN has become inactive

for a certain time period (e.g., one hour), the VPN can be
automatically torn down by transport server 3 1 02 or signaling
server 3101.

A more detailed description will now be provided regard-
ing how a special case of the checkpoint synchronization
feature can be used to implement the signaling scheme
described above.

The signaling synchronizer may be required to support
many (millions) of standing, low bandwidth connections. It
therefore should minimize per-VPL memory usage while
providing the security offered by hopping technology. In
order to reduce memory usage in the signaling server, the data
hopping tables can be completely eliminated and data can be
carried as part ofthe SYNC_REQ message. The table used by
the server side (receiver) and client side (transmitter) is shown
schematically as element 3106 in FIG. 31.

The meaning and behaviors of CKPT_N, CKPT_O and
CKPT_R remain the same from the previous description,
except that CKPT_N can receive a combined data and SYN-
C_REQ message or a SYNC_REQ message without the data.

The protocol is a straightforward extension of the earlier
synchronizer. Assume that a client transmitter is on and the
tables are synchronized. The initial tables can be generated
“out ofband.” For example, a client can log into a web server
to establish an account over the Internet. The client will

receive keys etc encrypted over the Internet. Meanwhile, the
server will set up the signaling VPN on the signaling server.

Assuming that a client application wishes to send a packet
to the server on the client’s standing signaling VPL:

l. The client sends the message marked as a data message
on the inner header using the transmitter’ s CKPT_N address.
It turns the transmitter off and starts a timer TI noting
CKPT_O. Messages can be one of three types: DATA, SYN-
C_REQ and SYNC_ACK. In the normal algorithm, some
potential problems can be prevented by identifying each mes-
sage type as part of the encrypted inner header field. In this
algorithm, it is important to distinguish a data packet and a
SYNC_REQ in the signaling synchronizer since the data and
the SYNC_REQ come in on the same address.

2. When the server receives a data message on its CKPT_N,
it verifies the message and passes it up the stack. The message
can be verified by checking message type and and other
information (i.e., user credentials) contained in the inner
header It replaces its CKPT_O with CKPT_N and generates
the next CKPT_N. It updates its transmitter side CKPT_R to
correspond to the client’s receiver side CKPT_R and trans-
mits a SYNC_ACK containing CKPT_O in its payload.

3. When the client side receiver receives a SYNC_ACK on

its CKPT_R with a payload matching its transmitter side
CKPT_O and the transmitter is off, the transmitter is turned
on and the receiver side CKPT_R is updated. If the SYN-

10

15

20

25

30

35

40

45

50

55

60

65

48

C_ACK’s payload does not match the transmitter side
CKPT_O or the transmitter is on, the SYNC_ACK is simply
discarded.

4. TI expires: If the transmitter is off and the client’ s trans-
mitter side CKPT_O matches the CKPT_O associated with

the timer, it starts timer Ti noting CKPT_O again, and a
SYNC_REQ is sent using the transmitter’s CKPT_O address.
Otherwise, no action is taken.

5. When the server receives a SYNC_REQ on its CKPT_N,
it replaces its CKPT_O with CKPT_N and generates the next
CKPT_N. It updates its transmitter side CKPT_R to corre-
spond to the client’s receiver side CKPT_R and transmits a
SYNC_ACK containing CKPT_O in its payload.

6. When the server receives a SYNC_REQ on its CKPT_O,
it updates its transmitter side CKPT_R to correspond to the
client’s receiver side CKPT_R and transmits a SYNC_ACK

containing CKPT_O in its payload.

FIG. 32 shows message flows to highlight the protocol.
Reading from top to bottom, the client sends data to the server
using its transmitter side CKPT_N. The client side transmitter
is turned off and a retry timer is turned off. The transmitter
will not transmit messages as long as the transmitter is turned
off. The client side transmitter then loads CKPT_N into

CKPT_O and updates CKPT_N. This message is success-
fully received and a passed up the stack. It also synchronizes
the receiver i.e., the server loads CKPT_N into CKPT_O and

generates a new CKPT_N, it generates a new CKPT_R in the
server side transmitter and transmits a SYNC_ACK contain-

ing the server side receiver’s CKPT_O the server. The SYN-
C_ACK is successfully received at the client. The client side
receiver’s CKPT_R is updated, the transmitter is turned on
and the retry timer is killed. The client side transmitter is
ready to transmit a new data message.

Next, the client sends data to the server using its transmitter
side CKPT_N. The client side transmitter is turned off and a

retry timer is turned off. The transmitter will not transmit
messages as long as the transmitter is turned off. The client
side transmitter then loads CKPT_N into CKPT_O and

updates CKPT_N. This message is lost. The client side timer
expires and as a result a SYNC_REQ is transmitted on the
client side transmitter’s CKPT_O (this will keep happening
until the SYNC_ACK has been received at the client). The
SYNC_REQ is successfully received at the server. It synchro-
nizes the receiver i.e., the server loads CKPT_N into

CKPT_O and generates a new CKPT_N, it generates an new
CKPT_R in the server side transmitter and transmits a SYN-

C_ACK containing the server side receiver’s CKPT_O the
server. The SYNC_ACK is successfully received at the client.
The client side receiver’ s CKPT_R is updated, the transmitter
is turned off and the retry timer is killed. The client side
transmitter is ready to transmit a new data message.

There are numerous other scenarios that follow this flow.

For example, the SYNC_ACK could be lost. The transmitter
would continue to re-send the SYNC_REQ until the receiver
synchronizes and responds.

The above-described procedures allow a client to be
authenticated at signaling server 3201 while maintaining the
ability of signaling server 3201 to quickly reject invalid pack-
ets, such as might be generated by hacker computer 3205. In
various embodiments, the signaling synchronizer is really a
derivative ofthe synchronizer. It provides the same protection
as the hopping protocol, and it does so for a large number of
low bandwidth connections.

67

68

US 7,418,504 B2

49
F. One-click Secure On-line Communications and

Secure Domain Name Service

The present invention provides a technique for establishing
a secure communication link between a first computer and a
second computer over a computer network. Preferably, a user
enables a secure communication link using a single click of a
mouse, or a corresponding minimal input from another input
device, such as a keystroke entered on a keyboard or a click
entered through a trackball. Alternatively, the secure link is
automatically established as a default setting at boot-up ofthe
computer (i.e., no click). FIG. 33 shows a system block dia-
gram 3300 of a computer network in which the one-click
secure communication method of the present invention is
suitable. In FIG. 33, a computer terminal or client computer
3301, such as a personal computer (PC), is connected to a
computer network 3302, such as the Internet, through an ISP
3303 . Alternatively, computer 3301 can be connected to com-
puter network 3302 through an edge router. Computer 3301
includes an input device, such as a keyboard and/or mouse,
and a display device, such as a monitor. Computer 3301 can
communicate conventionally with another computer 3304
connected to computer network 3302 over a communication
link 3305 using a browser 3306 that is installed and operates
on computer 3301 in a well-known manner.

Computer 33 04 can be, for example, a server computer that
is used for conducting e-commerce. In the situation when
computer network 3302 is the Internet, computer 3304 typi-
cally will have a standard top-level domain name such as
.com, .net, .org, .edu, .mil or .gov.

FIG. 34 shows a flow diagram 3400 for installing and
establishing a “one-click” secure communication link over a
computer network according to the present invention. At step
3401, computer 3301 is connected to server computer 3304
over a non-VPN communication link 3305. Web browser

3306 displays a web page associated with server 3304 in a
well-known manner. According to one variation of the inven-
tion, the display ofcomputer 3301 contains a hyperlink, or an
icon representing a hyperlink, for selecting a virtual private
network (VPN) communication link (“go secure” hyperlink)
through computer network 3302 between terminal 3301 and
server 3304. Preferably, the “go secure” hyperlink is dis-
played as part of the web page downloaded from server com-
puter 33 04, thereby indicating that the entity providing server
3304 also provides VPN capability.

By displaying the “go secure” hyperlink, a user at com-
puter 3301 is informed that the current communication link
between computer 3301 and server computer 3304 is a non-
secure, non-VPN communication link. At step 3402, it is
determined whether a user of computer 3301 has selected the
“go secure” hyperlink. If not, processing resumes using a
non-secure (conventional) communication method (not
shown). If, at step 3402, it is determined that the user has
selected the “go secure” hyperlink, flow continues to step
3403 where an object associated with the hyperlink deter-
mines whether a VPN communication software module has

already been installed on computer 33 01 . Alternatively, a user
can enter a command into computer 3301 to “go secure.”

If, at step 3403, the object determines that the software
module has been installed, flow continues to step 3407. If, at
step 3403, the object determines that the software module has
not been installed, flow continues to step 3404 where a non-
VPN communication link 3307 is launched between com-

puter 3301 and a website 3308 over computer network 3302
in a well-known manner. Website 3308 is accessible by all
computer terminals connected to computer network 3302
through a non-VPN communication link. Once connected to

5

10

15

20

25

30

35

40

45

50

55

60

65

50

website 3308, a software module for establishing a secure
communication link over computer network 3302 can be
downloaded and installed. Flow continues to step 3405
where, after computer 3301 connects to website 3308, the
software module for establishing a communication link is
downloaded and installed in a well-known manner on com-

puter terminal 3301 as software module 3309. At step 3405, a
user can optionally select parameters for the software mod-
ule, such as enabling a secure communication link mode of
communication for all communication links over computer
network 3302. At step 3406, the communication link between
computer 3301 and website 3308 is then terminated in a
well-known manner.

By clicking on the “go secure” hyperlink, a user at com-
puter 3301 has enabled a secure communication mode of
communication between computer 3301 and server computer
3304. According to one variation of the invention, the user is
not required to do anything more than merely click the “go
secure” hyperlink. The user does not need to enter any user
identification information, passwords or encryption keys for
establishing a secure communication link. All procedures
required for establishing a secure communication link
between computer 3301 and server computer 3304 are per-
formed transparently to a user at computer 3301.

At step 3407, a secure VPN communications mode of
operation has been enabled and software module 3309 begins
to establish a VPN communication link. In one embodiment,
software module 3309 automatically replaces the top-level
domain name for server 3304 within browser 3406 with a

secure top-level domain name for server computer 3304. For
example, if the top-level domain name for server 3304 is
.com, software module 3309 replaces the .com top-level
domain name with a scom top-level domain name, where the
“s” stands for secure. Alternatively, software module 3409
can replace the top-level domain name of server 3304 with
any other non-standard top-level domain name.

Because the secure top-level domain name is a non-stan-
dard domain name, a query to a standard domain name ser-
vice (DNS) will return a message indicating that the universal
resource locator (URL) is unknown. According to the inven-
tion, software module 3309 contains the URL for querying a
secure domain name service (SDNS) for obtaining the URL
for a secure top-level domain name. In this regard, software
module 3309 accesses a secure portal 3310 that interfaces a
secure network 3311 to computer network 3302. Secure net-
work 3311 includes an internal router 3312, a secure domain
name service (SDNS) 3313, a VPN gatekeeper 3314 and a
secure proxy 3315. The secure network can include other
network services, such as e-mail 3316, a plurality of chat-
rooms (of which only one chatroom 3317 is shown), and a
standard domain name service (STD DNS) 3318. Of course,
secure network 3311 can include other resources and services
that are not shown in FIG. 33.

When software module 3309 replaces the standard top-
level domain name for server 3304 with the secure top-level
domain name, software module 3309 sends a query to SDNS
3313 at step 3408 through secure portal 3310 preferably using
an administrative VPN communication link 3319. In this

configuration, secure portal 3310 can only be accessed using
a VPN communication link. Preferably, such a VPN commu-
nication link can be based on a technique of inserting a source
and destination IP address pair into each data packet that is
selected according to a pseudo-random sequence; an IP
address hopping regime that pseudorandomly changes IP
addresses in packets transmitted between a client computer
and a secure target computer; periodically changing at least
one field in a series of data packets according to a known

68

69

US 7,418,504 B2

51

sequence; an Internet Protocol (IP) address in a header ofeach
data packet that is compared to a table of valid IP addresses
maintained in a table in the second computer; and/or a com-
parison of the IP address in the header of each data packet to
a moving window of valid IP addresses, and rejecting data
packets having IP addresses that do not fall within the moving
window. Other types of VPNs can alternatively be used.
Secure portal 3310 authenticates the query from software
module 3309 based on the particular information hopping
technique used for VPN communication link 3319.

SDNS 3313 contains a cross-reference database of secure

domain names and corresponding secure network addresses.
That is, for each secure domain name, SDNS 3313 stores a
computer network address corresponding to the secure
domain name. An entity can register a secure domain name in
SDNS 3313 so that a user who desires a secure communica-

tion link to the website of the entity can automatically obtain
the secure computer network address for the secure website.
Moreover, an entity can register several secure domain
names, with each respective secure domain name represent-
ing a different priority level of access in a hierarchy of access
levels to a secure website. For example, a securities trading
website can provide users secure access so that a denial of
service attack on the website will be ineffectual with respect
to users subscribing to the secure website service. Different
levels of subscription can be arranged based on, for example,
an escalating fee, so that a user can select a desired level of
guarantee for connecting to the secure securities trading web-
site. When a user queries SDNS 3313 for the secure computer
network address for the securities trading website, SDNS
3313 determines the particular secure computer network
address based on the user’s identity and the user’s subscrip-
tion level.

At step 3409, SDNS 3313 accesses VPN gatekeeper 3314
for establishing aVPN communication link between software
module 3309 and secure server 3320. Server 3320 can only be
accessed through a VPN communication link. VPN gate-
keeper 3314 provisions computer 3301 and secure web server
computer 3320, or a secure edge router for server computer
3320, thereby creating the VPN. Secure server computer
3320 can be a separate server computer from server computer
3304, or can be the same server computer having both non-
VPN and VPN communication link capability, such as shown
by server computer 3322. Returning to FIG. 34, in step 3410,
SDNS 3313 returns a secure URL to software module 3309
for the .scom server address for a secure server 3320 corre-

sponding to server 3304.
Altematively, SDNS 3313 can be accessed through secure

portal 3310 “in the clear”, that is, without using an adminis-
trative VPN communication link. In this situation, secure

portal 3310 preferably authenticates the query using any
well-known technique, such as a cryptographic technique,
before allowing the query to proceed to SDNS 3319. Because
the initial communication link in this situation is not a VPN

communication link, the reply to the query can be “in the
clear.” The querying computer can use the clear reply for
establishing a VPN link to the desired domain name. Alter-
natively, the query to SDNS 3313 can be in the clear, and
SDNS 3313 and gatekeeper 3314 can operate to establish a
VPN communication link to the querying computer for send-
ing the reply.

At step 3411, software module 3309 accesses secure server
3320 through VPN communication link 3321 based on the
VPN resources allocated by VPN gatekeeper 3314. At step
3412, web browser 3306 displays a secure icon indicating that
the current communication link to server 3320 is a secure
VPN communication link. Further communication between

10

15

20

25

30

35

40

45

50

55

60

65

52

computers 3301 and 3320 occurs via the VPN, e.g., using a
“hopping” regime as discussed above. When VPN link 3321
is terminated at step 3413, flow continues to step 3414 where
software module 3309 automatically replaces the secure top-
level domain name with the corresponding non-secure top-
level domain name for server 3304. Browser 3306 accesses a

standard DNS 3325 for obtaining the non-secure URL for
server 3304. Browser 3306 then connects to server 3304 in a

well-known manner. At step 3415, browser 3306 displays the
“go secure” hyperlink or icon for selecting aVPN communi-
cation link between terminal 3301 and server 3304. By again
displaying the “go secure” hyperlink, a user is informed that
the current communication link is a non-secure, non-VPN
communication link.

When software module 3309 is being installed or when the
user is off-line, the user can optionally specify that all com-
munication links established over computer network 33 02 are
secure communication links. Thus, anytime that a communi-
cation link is established, the link is a VPN link. Conse-
quently, software module 3309 transparently accesses SDNS
3313 for obtaining the URL for a selected secure website. In
other words, in one embodiment, the user need not “click” on
the secure option each time secure communication is to be
effected.

Additionally, a user at computer 3301 can optionally select
a secure communication link through proxy computer 3315.
Accordingly, computer 3301 can establish a VPN communi-
cation link 3323 with secure server computer 3320 through
proxy computer 3315. Alternatively, computer 3301 can
establish a non-VPN communication link 3324 to a non-

secure website, such as non-secure server computer 3304.
FIG. 35 shows a flow diagram 3500 for registering a secure

domain name according to the present invention. At step
3501, a requester accesses website 3308 and logs into a secure
domain name registry service that is available through web-
site 3308. At step 3502, the requestor completes an online
registration form for registering a secure domain name having
a top-level domain name, such as .com, .net, .org, .edu, .mil or
.gov. Ofcourse, other secure top-level domain names can also
be used. Preferably, the requestor must have previously reg-
istered a non-secure domain name corresponding to the
equivalent secure domain name that is being requested. For
example, a requestor attempting to register secure domain
name “website.scom” must have previously registered the
corresponding non-secure domain name “website.com”.

At step 3503, the secure domain name registry service at
website 3308 queries a non-secure domain name server data-
base, such as standard DNS 3322, using, for example, a whois
query, for determining ownership information relating to the
non— secure domain name corresponding to the requested
secure domain name. At step 3504, the secure domain name
registry service at website 3308 receives a reply from stan-
dard DNS 3322 and at step 3505 determines whether there is
conflicting ownership information for the corresponding non-
secure domain name. If there is no conflicting ownership
information, flow continues to step 3507, otherwise flow con-
tinues to step 3506 where the requestor is informed of the
conflicting ownership information. Flow returns to step 3502.

When there is no conflicting ownership information at step
3505, the secure domainname registry service (website 3308)
informs the requestor that there is no conflicting ownership
information and prompts the requester to verify the informa-
tion entered into the online form and select an approved form
of payment. After confirmation of the entered information
and appropriate payment information, flow continues to step
3508 where the newly registered secure domain name sent to
SDNS 3313 over communication link 3326.

69

70

US 7,418,504 B2

53

If, at step 3505, the requested secure domain name does not
have a corresponding equivalent non-secure domain name,
the present invention informs the requestor of the situation
and prompts the requester for acquiring the corresponding
equivalent non-secure domain name for an increased fee. By
accepting the offer, the present invention automatically reg-
isters the corresponding equivalent non-secure domain name
with standard DNS 3325 in a well-known manner. Flow then

continues to step 3508.

G. Tunneling Secure Address Hopping Protocol
Through Existing Protocol Using Web Proxy

The present invention also provides a technique for imple-
menting the field hopping schemes described above in an
application program on the client side of a firewall between
two computer networks, and in the network stack on the
server side of the firewall. The present invention uses a new
secure connectionless protocol that provides good denial of
service rejection capabilities by layering the new protocol on
top of an existing IP protocol, such as the ICMP, UDP or TCP
protocols. Thus, this aspect of the present invention does not
require changes in the Internet infrastructure.

According to the invention, communications are protected
by a client-side proxy application program that accepts unen-
crypted, unprotected communication packets from a local
browser application. The client-side proxy application pro-
gram tunnels the unencrypted, unprotected communication
packets through a new protocol, thereby protecting the com-
munications from a denial of service at the server side. Of

course, the unencrypted, unprotected communication packets
can be encrypted prior to tunneling.

The client-side proxy application program is not an oper-
ating system extension and does not involve any modifica-
tions to the operating system network stack and drivers. Con-
sequently, the client is easier to install, remove and support in
comparison to a VPN. Moreover, the client-side proxy appli-
cation can be allowed through a corporate firewall using a
much smaller “hole” in the firewall and is less of a security
risk in comparison to allowing a protocol layer VPN through
a corporate firewall.

The server-side implementation of the present invention
authenticates valid field-hopped packets as valid or invalid
very early in the server packet processing, similar to a stan-
dard virtual private network, for greatly minimizing the
impact ofa denial of service attempt in comparison to normal
TCP/IP and HTTP communications, thereby protecting the
server from invalid communications.

FIG. 36 shows a system block diagram of a computer
network 3 600 in which a virtual private connection according
to the present invention can be configured to more easily
traverse a firewall between two computer networks. FIG. 37
shows a flow diagram 3700 for establishing a virtual private
connection that is encapsulated using an existing network
protocol.

In FIG. 36 a local area network (LAN) 3601 is connected to
another computer network 3 602, such as the Internet, through
a firewall arrangement 3603. Firewall arrangement operates
in a well-known manner to interface LAN 3601 to computer
network 3602 and to protect LAN 3601 from attacks initiated
outside of LAN 3601.

A client computer 3604 is connected to LAN 3601 in a
well-known manner. Client computer 3604 includes an oper-
ating system 3605 and a web browser 3606. Operating system
3605 provides kernel mode functions for operating client
computer 3604. Browser 3606 is an application program for
accessing computer network resources connected to LAN

10

15

20

25

30

35

40

45

50

55

60

65

54

3601 and computer network 3602 in a well-known manner.
According to the present invention, a proxy application 3607
is also stored on client computer 3604 and operates at an
application layer in conjunction with browser 3606. Proxy
application 3607 operates at the application layer within cli-
ent computer 3604 and when enabled, modifies unprotected,
unencrypted message packets generated by browser 3606 by
inserting data into the message packets that are used for
forming a virtual private connection between client computer
3604 and a server computer connected to LAN 3601 or com-
puter network 3602. According to the invention, a virtual
private connection does not provide the same level of security
to the client computer as a virtual private network. A virtual
private connection can be conveniently authenticated so that,
for example, a denial of service attack can be rapidly rejected,
thereby providing different levels of service that can be sub-
scribed to by a user.

Proxy application 3607 is conveniently installed and unin-
stalled by a user because proxy application 3607 operates at
the application layer within client computer 3604. On instal-
lation, proxy application 3607 preferably configures browser
3606 to use proxy application for all web communications.
That is, the payload portion ofall message packets is modified
with the data for forming a virtual private connection between
client computer 3604 and a server computer. Preferably, the
data for forming the virtual private connection contains field-
hopping data, such as described above in connection with
VPNs. Also, the modified message packets preferably con-
form to the UDP protocol. Alternatively, the modified mes-
sage packets can conform to the TCP/IP protocol or the ICMP
protocol. Alternatively, proxy application 3606 can be
selected and enabled through, for example, an option pro-
vided by browser 3606. Additionally, proxy application 3607
can be enabled so that only the payload portion of specially
designated message packets is modified with the data for
forming a virtual private connection between client computer
3604 and a designated host computer. Specially designated
message packets can be, for example, selected predetermined
domain names.

Referring to FIG. 37, at step 3701, unprotected and unen-
crypted message packets are generated by browser 3606. At
step 3702, proxy application 3607 modifies the payload por-
tion of all message packets by tunneling the data for forming
a virtual private connection between client computer 3604
and a destination server computer into the payload portion. At
step, 3703, the modified message packets are sent from client
computer 3604 to, for example, website (server computer)
3608 over computer network 3602.

Website 3608 includes aVPN guard portion 3609, a server
proxy portion 3610 and a web server portion 3611. VPN
guard portion 3 609 is embedded within the kernel layer ofthe
operating system of website 3608 so that large bandwidth
attacks on website 3608 are rapidly rejected. When client
computer 3604 initiates an authenticated connection to web-
site 3608, VPN guard portion 3609 is keyed with the hopping
sequence contained in the message packets from client com-
puter 3604, thereby performing a strong authentication ofthe
client packet streams entering website 3608 at step 3704.
VPN guard portion 3609 can be configured for providing
different levels of authentication and, hence, quality of ser-
vice, depending upon a subscribed level of service. That is,
VPN guard portion 3609 can be configured to let all message
packets through until a denial of service attack is detected, in
which case VPN guard portion 3609 would allow only client
packet streams conforming to a keyed hopping sequence,
such as that of the present invention.

70

71

US 7,418,504 B2

55

Server proxy portion 3610 also operates at the kernel layer
within website 3608 and catches incoming message packets
from client computer 3604 at the VPN level. At step 3705,
server proxy portion 3610 authenticates the message packets
at the kernel level within host computer 3604 using the des-
tination IP address, UDP ports and discriminator fields. The
authenticated message packets are then forwarded to the
authenticated message packets to web server portion 3611 as
normal TCP web transactions.

At step 3705, web serverportion 3611 responds to message
packets received from client computer 3604 in accordance
with the particular nature ofthe message packets by generat-
ing reply message packets. For example, when a client com-
puter requests a webpage, web server portion 3611 generates
message packets corresponding to the requested webpage. At
step 3706, the reply message packets pass through server
proxy portion 3610, which inserts data into the payload por-
tion of the message packets that are used for forming the
virtual private connection between host computer 3608 and
client computer 3604 over computer network 3602. Prefer-
ably, the data for fonning the virtual private connection is
contains field-hopping data, such as described above in con-
nection withVPNs. Server proxy portion 3610 operates at the
kernel layer within host computer 3608 to insert the virtual
private connection data into the payload portion of the reply
message packets. Preferably, the modified message packets
sent by host computer 3608 to client computer 3604 conform
to the UDP protocol. Alternatively, the modified message
packets can conform to the TCP/IP protocol or the ICMP
protocol.

At step 3707, the modified packets are sent from host
computer 3608 over computer network 3602 and pass
through firewall 3603. Once through firewall 3603, the modi-
fied packets are directed to client computer 3604 over LAN
3601 and are received at step 3708 by proxy application 3607
at the application layer within client computer 3604. Proxy
application 3607 operates to rapidly evaluate the modified
message packets for determining whether the received pack-
ets should be accepted or dropped. If the virtual private con-
nection data inserted into the received information packets
conforms to expected virtual private connection data, then the
received packets are accepted. Otherwise, the received pack-
ets are dropped.

While the present invention has been described in connec-
tion with the illustrated embodiments, it will be appreciated
and understood that modifications may be made without
departing from the true spirit and scope of the invention.

What is claimed is:

1. A system for providing a domain name service for estab-
lishing a secure communication link, the system comprising:

a domain name service system configured to be connected
to a communication network, to store a plurality of
domain names and corresponding network addresses, to
receive a query for a network address, and to comprise
an indication that the domain name service system sup-
ports establishing a secure communication link.

2. The system of claim 1, wherein at least one of the
plurality of domain names comprises a top-level domainname.

3. The system of claim 2, wherein the top-level domain
name is a non-standard top-level domain name.

4. The system of claim 3, wherein the non-standard top-
level domain name is one of .scom, .sorg, .snet, .sgov, .sedu,
.smil and .sint.

5. The system ofclaim 2, wherein the domain name service
system is configured to authenticate the query using a cryp-
tographic technique.

10

15

20

25

30

35

40

45

50

55

60

65

71

56

6. The system of claim 1, wherein the communication
network includes the lntemet.

7. The system ofclaim 1, wherein the domain name service
system comprises an edge router.

8. The system ofclaim 1, wherein the domain name service
system is connectable to a virtual private network through the
communication network.

9. The system of claim 8, wherein the virtual private net-
work is one of a plurality of secure communication links in a
hierarchy of secure communication links.

10. The system of claim 8, wherein the virtual private
network is based on inserting into each data packet commu-
nicated over a secure communication link one or more data

values that vary according to a pseudo-random sequence.
11. The system of claim 8, wherein the virtual private

network is based on a network address hopping regime that is
used to pseudorandomly change network addresses in pack-
ets transmitted between a first device and a second device.

12. The system of claim 8, wherein the virtual private
network is based on comparing a value in each data packet
transmitted between a first device and a second device to a

moving window of valid values.
13. The system of claim 8, wherein the virtual private

network is based on a comparison ofa discriminator field in a
header of each data packet to a table of valid discriminator
fields maintained for a first device.

14. The system of claim 1, wherein the domain name
service system is configured to respond to the query for the
network address.

15. The system of claim 1, wherein the domain name
service system is configured to provide, in response to the
query, the network address corresponding to a domain name
from the plurality of domain names and the corresponding
network addresses.

16. The system of claim 1, wherein the domain name
service system is configured to receive the query initiated
from a first location, the query requesting the network address
associated with a domain name, wherein the domain name
service system is configured to provide the network address
associated with a second location, and wherein the domain
name service system is configured to support establishing a
secure communication link between the first location and the
second location.

17. The system of claim 1, wherein the domain name
service system is connected to a communication network,
stores a plurality of domain names and corresponding net-
work addresses, and comprises an indication that the domain
name service system supports establishing a secure commu-
nication link.

18. The system of claim 1, wherein at least one of the
plurality of domain names is reserved for secure communi-
cation links.

19. The system of claim 1, wherein the domain name
service system comprises a server.

20. The system of claim 19, wherein the domain name
service system further comprises a domain name database,
and wherein the domain name database stores the plurality of
domain names and the corresponding network addresses.

21. The system of claim 1, wherein the domain name
service system comprises a server, wherein the server com-
prises a domain name database, and wherein the domain
name database stores the plurality of domain names and the
corresponding network addresses.

22. The system of claim 1, wherein the domain name
service system is configured to store the corresponding net-
work addresses for use in establishing secure communication
links.

72

US 7,418,504 B2

57

23. The system of claim 1, wherein the domain name
service system is configured to authenticate the query for the
network address.

24. The system of claim 1, wherein at least one of the
plurality of domain names comprises an indication that the
domain name service system supports establishing a secure
communication link.

25. The system of claim 1, wherein at least one of the
plurality of domain names comprises a secure name.

26. The system of claim 1, wherein at least one of the
plurality of domain names enables establishment of a secure
communication link.

27. The system of claim 1, wherein the domain name
service system is configured to enable establishment of a
secure communication link between a first location and a

second location transparently to a user at the first location.
28. The system of claim 1, wherein the secure communi-

cation link uses encryption.
29. The system of claim 1, wherein the secure communi-

cation link is capable of supporting a plurality of services.
30. The system of claim 29, wherein the plurality of ser-

vices comprises a plurality of communication protocols, a
plurality of application programs, multiple sessions, or a
combination thereof.

31. The system of claim 30, wherein the plurality of appli-
cation programs comprises items selected from a group con-
sisting of the following: Video conferencing, e-mail, a word
processing program, and telephony.

32. The system of claim 29, wherein the plurality of ser-
vices comprises audio, Video, or a combination thereof.

33. The system of claim 1, wherein the domain name
service system is configured to enable establishment of a
secure communication link between a first location and a
second location.

34. The system of claim 33, wherein the query is initiated
from the first location, wherein the second location comprises
a computer, and wherein the network address is an address
associated with the computer.

35. The system of claim 1, wherein the domain name
service system comprises a domain name database connected
to a communication network and storing a plurality ofdomain
names and corresponding network addresses for communi-
cation,

wherein the domain name database is configured so as to
provide a network address corresponding to a domain
name in response to a query in order to establish a secure
communication link.

36. A machine-readable medium comprising instructions
executable in a domain name service system, the instructions
comprising code for:

connecting the domain name service system to a commu-
nication network;

storing a plurality of domain names and corresponding
network addresses;

receiving a query for a network address; and
supporting an indication that the domain name service

system supports establishing a secure communication
link.

37. The machine-readable medium of claim 36, wherein
the instructions comprise code for storing the plurality of
domain names and corresponding network addresses includ-
ing at least one top-level domain name.

38. The machine-readable medium of claim 36, wherein
the instructions comprise code for responding to the query for
the network address.

39. The machine-readable medium of claim 36, wherein
the instructions comprise code for providing, in response to

5

10

15

20

25

30

35

40

45

50

55

60

65

58

the query, the network address corresponding to a domain
name from the plurality ofdomain names and the correspond-
ing network addresses.

40. The machine-readable medium of claim 36, wherein
the instructions comprise code for receiving the query for a
network address associated with a domain name and initiated

from a first location, and providing a network address asso-
ciated with a second location, and establishing a secure com-
munication link between the first location and the second
location.

41. The machine-readable medium of claim 36, wherein
the instructions comprise code for indicating that the domain
name service system supports the establishment of a secure
communication link.

42. The machine-readable medium of claim 36, wherein
the instructions comprise code for reserving at least one ofthe
plurality of domain names for secure communication links.

43. The machine-readable medium of claim 36, wherein
the code resides on a server.

44. The machine-readable medium of claim 36, wherein
the instructions comprise code for storing a plurality of
domain names and corresponding network addresses so as to
define a domain name database.

45. The machine-readable medium of claim 36, wherein
the code resides on a server, and the instructions comprise
code for creating a domain name database configured to store
the plurality ofdomain names and the corresponding network
addresses.

46. The machine-readable medium of claim 36, wherein
the instructions comprise code for storing the corresponding
network addresses for use in establishing secure communi-
cation links.

47. The machine-readable medium of claim 36, wherein
the instructions comprise code for authenticating the query
for the network address.

48. The machine-readable medium ofclaim 36, wherein at
least one of the plurality of domain names includes an indi-
cation that the domain name service system supports the
establishment of a secure communication link.

49. The machine-readable medium ofclaim 36, wherein at
least one of the plurality of domain names includes a securename.

50. The machine-readable medium ofclaim 36, wherein at

least one of the plurality of domain names is configured so as
to enable establishment of a secure communication link.

51. The machine-readable medium of claim 36, wherein
the domain name service system is configured to enable
establishment of a secure communication link between a first

location and a second location transparently to a user at the
first location.

52. The machine-readable medium of claim 36, wherein
the secure communication link uses encryption.

53. The machine-readable medium of claim 36, wherein
the secure communication link is capable of supporting a
plurality of services.

54. The machine-readable medium of claim 53, wherein
the plurality of services comprises a plurality of communica-
tion protocols, a plurality of application programs, multiple
sessions, or a combination thereof.

55. The machine-readable medium of claim 54, wherein
the plurality of application programs comprises items
selected from a group consisting of the following:
video conferencing, e-mail, a word processing program, and
telephony.

56. The machine-readable medium of claim 53, wherein
the plurality of services comprises audio, video, or a combi-
nation thereof.

72

73

US 7,418,504 B2

59

57. The machine-readable medium of claim 36, wherein
the domain name service system is configured to enable
establishment of a secure communication link between a first
location and a second location.

58. The machine-readable medium of claim 57, wherein
the instructions include code for receiving a query initiated
from the first location, wherein the second location comprises
a computer, and wherein the network address is an address
associated with the computer.

59. The machine-readable medium of claim 36, wherein
the domain name service system comprises a domain name
database connected to a communication network and storing
a plurality of domain names and corresponding network
addresses for communication,

wherein the domain name database is configured so as to
provide a network address corresponding to a domain

5

10

15

73

60

name is response to the query in order to establish a
secure communication link.

60. A method of providing a domain name service for
establishing a secure communication link, the method com-
prising:

connecting a domain name service system to a communi-
cation network, the domain name service system com-
prising an indication that the domain name service sys-
tem supports establishing a secure communication link;

storing a plurality of domain names and corresponding
network addresses; and

receiving a query for a network address for communica-
tion.

